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Abstract. We study and present two new algorithms for constructing
the waterfall hierarchy of a topographic surface. The first models a topo-
graphic surface as a flooding graph, each node representing a lake filling
a catchment basin up to its lowest pass point ; each edge representing
such a pass point. The second algorithm produces the waterfall partition
in one pass through the edges of a minimum spanning tree of the region
adjacency graph associated to a topographic surface.
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1 Introduction

The waterfall hierarchy represents the nested structure of the catchment basins
of a topographic surface [3]. Consider a series of increasing floodings of a topo-
graphic surface. The associated watershed partitions form a hierarchy, as each
catchment basin of a higher flooding is the union of catchment basins of a lower
flooding of the surface. The waterfall hierarchy is obtained when a topographic
surface is submitted to the highest flooding possible without any overflow from
one catchment basin to a neighboring bassin ; each basin is then filled up to its
lowest pass leading to a neighboring basin. This flooding level is thus independent
of the shape, size or depth of the basins. As a result is the waterfall hierarchy
invariant under the change of scale, orientation or contrast of the images.

Fig.1 presents a topographic surface with 3 successive levels of waterfall flood-
ing. The associated waterfall partitions are indicated below each flooded surface.

The waterfall hierarchy unfolds the nested structure of the catchment basins
of a topographic surface. From one level to the next of the waterfall hierarchy,
a number of catchment basins merge, revealing a new scale, until a last flooding
completely covers the domain. In general does the waterfall hierarchy possess only
a low number of hierarchical levels. The lowest levels provide highly simplified
partitions compared to the initial oversegmentation produced by the watershed.
The waterfall hierarchy has been used with success for segmenting not only gray
tone images [11], but also color and texture images [19]. It has been used not only
on images but also on probability distribution functions used for the stochastic
watershed of multipectral images [2] or on triangular meshes [9]. The domain of
application is broad going from multimedia images [22] to SAR imagery [20].
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Fig. 1. 4 levels of the waterfall hierarchy. The watershed partition is presented below
each topographic surface. Each topographic surface has been flooded up to the lowest
pass point of the catchment basins associated to the preceding surface.

After a rapid discussion of the classical constructions of the waterfall hierarchy,
we present two new methods having each its merits.

The first method models the topographic surface as a particular graph, per-
fectly representing the waterfall flooding, where all lakes are full, at the verge
of overflow. The nodes of the graph represent the full lakes and their weight
equals the altitude of the lake. A drop of water added to a full lake provokes an
overflow into a neighboring lake, called exhaust lake of the first one. An edge
links each lake with its exhaust lakes ; its weight is equal to the altitude of the
lake which overflows through this edge. Such node and edge weighted graphs are
called flooding graphs. On such a graph the trajectory of a drop of water is the
same, whether one considers the edge weights alone or the node weights alone.
Efficient, precise and fast algorithms based on the node weights only permit to
construct the watershed partitions [16,17,18].

The second method constructs a complete waterfall hierarchy in one pass
through the edges of the minimum spanning tree of the region adjacency graph

2 The Waterfall Hierarchy: State of the Art

2.1 An Algorithm Based on Successive Image Floodings

The waterfall hierarchy has been defined by Serge Beucher for grey tone images
[3]. A first algorithm works at the image level [4]. Each catchment basin is
flooded up to its lowest pass point. As the pass points are regional minima of
the watershed line, the solution consists in the following steps:

* constructing the watershed line of the topographic surface f , producing the
level 1 of the waterfall hierarchy.

* constructing a ceiling function equal to f on the watershed line and ∞
elsewhere

* constructing the highest flooding of f under this ceiling function
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A new topographic surface is produced, which is then submitted to the same
process, producing the next level of the waterfall hierarchy.

Discussion: Using the watershed line is an advantage, as the ceiling function is
easily constructed. It also is a disadvantage, as the watershed line has no meaning
in terms of image content. It "takes place" to the detriment of thin and narrow
structures which cannot be represented. It makes the construction of a hierarchy
more difficult. Below we present a method where each level of the waterfall hier-
archy is a partition, without watershed line separating neighboring tiles.

2.2 A Watershed Algorithm on the Region Adjacency Graph

A second algorithm [5] constructs the catchment basins of the topographic sur-
face at the pixel level. They constitute the finest level of the waterfall hierarchy.
The higher levels of the waterfall hierarchy are then constructed on the region
adjacency graph, whose nodes are the catchment basins, whose edges represent
the pass points between neighboring basins, weighted by the altitude of the pass
point. B.Marcotegui et al use the watershed partition of this graph by construct-
ing a minimum spanning forest rooted in its regional minima [13]. The edge inside
each tree are then contracted within the MST, producing a new tree on which
the same process is repeated. This has been the first watershed algorithm on
edge weighted graphs. More recent alternative algorithms could be used for the
construction of the watershed on edge weighted graphs [8,10,17].

Discussion: The minimum spanning tree of the region adjacency graph is not
unique and with a unlucky choice, the results could be poor. This is due to the
fact that the watershed algorithms on an edge weighted graph are myopic and
evaluate the steepness of the flooding on the immediate neighboring edges of
each node. Below we present a watershed algorithm in which the steepness of
the flooding is better taken into account.

3 Construction of the Waterfall Hierarchy, Thanks to the
Flooding Graph

3.1 Reminders on Node and/or Edge Weighted Graphs

A non oriented graph G = [N,E] contains a set N of vertices or nodes and a
set E of edges ; an edge being a pair of vertices. The nodes are designated with
small letters: p, q, r...The edge linking the nodes p and q is designated by epq.

A path, π, is a sequence of vertices and edges, interweaved in the following
way: π starts with a vertex, say p, followed by an edge epq, incident to p, followed
by the other endpoint q of epq, and so on.

Edges and/or nodes may be weighted. Denote by Fe and Fn the sets of non
negative weight functions on the edges and on the nodes respectively. The func-
tion η ∈ Fe takes the value ηpq on the edge epq, and the graph holding only
edge weights is designated by G(η, nil). The function ν ∈ Fn takes the weight
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νp on the node p and the graph holding only these node weights is designated
by G(nil, ν). If both nodes and edges are weighted we write G(η, ν).

Images defined on a grid may also be modelled by such a graph : the pixels of
the image become the nodes of the graph, with the same weight ; neighboring
pixels are linked by an unweighted edge.

We define two operators between the node and edge weights:

* an operator δen associating to the function ν ∈ Fn the function δenν ∈ Fe

taking the value (δenν)pq = νp ∨ νq on the edge epq.
* an operator εne associating to the function η ∈ Fe the function εneη ∈ Fn

taking the value (εneη)p =
∧
ηps

(s neighborsof p)
on the node p.

The pair of operators (δen, εne) form an adjunction:

∀η ∈ Fe, ∀ν ∈ Fn : δenν < η ⇔ ν < εneη. It follows that ([21]):
* δen is a dilation from Fn into Fe

* εne is an erosion from Fe into Fn

This section is based on the flooding graph, whose nodes represent the full lakes
of a topographic surface when the flooding of each basin reaches its lowest pass
points . We first rigorously establish the altitude of a full lake. The flooding graph
is completed by adding the edges linking each lake with its exhaust lakes. The
flooding graph contains the necessary and sufficient information for constructing
the watershed partition or the waterfall hierarchy of a topographic surface.

3.2 The Lowest Pass Point of a Catchment Basin

Consider a watershed partition π of a topographic surface, verifying the following
condition : if s and p are two neighboring nodes belonging to the catchment
basins of two distinct minima m1 and m2, then there exists a non increasing
path going from s to m1 and a non increasing path from p to m2.

Our aim is to figure out the level of the full lakes on such a topographic
surface, given this watershed partition.

Consider a catchment basin CB1 filled by a lake up to its lowest pass point,
leading to an unflooded neighboring basin CB2. The regional minima of CB1

and CB2 are respectively m1 and m2.
Consider among all paths linking the minimum m1 with the minimum m2,

a path whose highest altitude is the lowest. Such a path crosses the pass point
between both basins CB1 and CB2. The highest altitude of the path is equal to
the altitude of the pass point.

Consider the altitude of the flooded relief g along one such path � (there may
be several of them). The altitude is constant and equal to the altitude of the
full lake covering m1 until it reaches the last node with this altitude, say p ; the
next node q having a lower altitude. But gp > gq ⇒ gp = fp, an implication
which characterizes floodings [14] indicating that the node p is dry and has the
altitude of the full lake. Three cases are to be considered:
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* p ∈ CB1 and q ∈ CB2. Then fp = gp > gq ≥ fq and the altitude of the lake
is fp ∨ fq = fp

* p ∈ CB2 and q ∈ CB2 and the last node preceding p on the path � is a
node s belonging to CB1, then fs ≤ gs = gp = fp. The altitude of the lake is
fs ∨ fp = fp

* p ∈ CB2 and q ∈ CB2 and the last pixel of the path � belonging to CB1

is a pixel s, followed by a series of pixels t1, t2, ...p belonging to CB2. All these
pixels belong to the full lake : gs = gt1 = ... = gp. On the other hand t1, t2, ...p
constitutes a non ascending path for the function f : ft1 ≥ ft1 ≥ ... ≥ fp. As
gp = gt1 ≥ ft1 ≥ fp = gp, all internal inequalities are in fact equalities and
ft1 = gp. Here again the level of the lake is fs ∨ ft1 for two pixels belonging one
to CB1 and the other to CB2.

This gives a clue for determining the altitude of the full lake which will cover
the minimum m1. One considers all couples of neighboring pixels which form
the boundary of CB1, with p ∈ CB1 and q /∈ CB1. The altitude of the full lake
is then the smallest value taken by fp ∨ fq : λ(CB1) =

∧

p∈CB1 and q/∈CB1

p,q neighbors

fp ∨ fq.

Each exhaust passpoint of the catchment basin CB1 towards a basin CB2 is
thus a pair of nodes p ∈ CB1 and q ∈ CB2 verifying fp ∨ fq = λ(CB1). We say
that CB2 is an exhaust basin of CB1, as each additional drop of water falling
in the full lake occupying CB1 provokes an overflow into CB2.

3.3 Modelling the Catchment Basins of a Topographic Surface as a
Flooding Graph

Modeling a Topographic Surface as a Flooding Graph. Consider a topo-
graphic surface in which each catchment basin has been flooded up to its exhaust
pass point. We create a graph G = [N,E] in which each node ni represents a
full lake occupying a catchment basin, with a weight νi equal to the altitude of
this lake. An edge eij with the same weight ηij = νi links this node ni with the
node nj if the catchment basin CBj is an exhaust catchment basin of CBi. We
say that eij is an exhaust edge of ni. We call this node and edge weighted graph
a flooding graph of f , as it models the highest flooding of f without overflow.

Properties of a flooding graph. As each catchment basin has one or several lowest
pass points, each node nk of G = [N,E] has one or several exhaust edges. All
other adjacent edges of nk correspond to higher pass points of CBk and represent
the exhaust edges of neighboring catchment basins. Hence each exhaust edge of
a node has the lowest weight among all adjacent edges of this node: ν = εneη.
In particular, if a node ni is linked with nk through an exhaust edge eik of nk,
we have νk = ηik ≥ νi. It follows that each node is linked by an exhaust edge
with its neighboring nodes whose weight is lower or equal ; and the weight of
each edge is equal to the highest weight of its extremities : ηik = νi ∨ νk. Hence
η = δenν.

A graph where the node and edge weights are coupled by ν = εneη and
η = δenν is called a flooding graph [18].
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Flooding paths and regional minima. Adding a drop of water to a full lake pro-
vokes an overflow through an exhaust pass point into a neighboring full lake
with a lower or equal altitude, which itself provokes an overflow and so on until,
ultimately, a regional minimum lake is reached. Such a trajectory of a drop of
water is modelled on the flooding graph as a flooding path.

Definition 1. A path p−epq−q−eqs−s... is a flooding path if each node except
the last one is followed by one of its exhaust edges.

By construction we then have νp = ηpq ≥ νq = ηqs ≥ νs. Considering only
the node weights, the path will be a flooding path if νp ≥ νq ≥ νs. Considering
only the edge weights it is a flooding path if each edge is an exhaust edge of the
preceding node. A drop of water following a flooding path ultimately is trapped
in a regional minimum. It arrives to a node whose exhaust lead to adjacent
nodes with the same weight. There is no possibility to reach a deeper node as
each neighboring node of a regional minimum has a higher weight and is linked
with the regional minimum by an exhaust edge also with a higher weight.

The catchment zone of a regional minimum is the set of nodes linked with
this minimum through a flooding path. Minimum and flooding path being the
same whether one considers the node weights only or the edge weights only.

Having the same flooding paths and the same regional minima, both graphs
also have the same catchment zones.

Theorem 1. For a flooding graph G(η, ν), the flooding paths, regional minima
and catchment zones of the graphs G(nil, ν) and G(η, nil) are identical.

An Order Relation Between Flooding Paths. A drop of water following a
flooding path reaching a regional minimum node p can quit this node through
one of its exhaust edges and reach another node q with the same altitude. From
this node, it may then come back. Going hence and forth between p and q, the
flooding path is thus artificially prolongated as a path of infinite length. A lexi-
cographic preorder relation compares the infinite paths π = (p1, p2, ...pk, ...)
and χ = (q1, q2, ...qk, ...):

* π ≺ χ if νp1 < νq1 or there exists t such that ∀l < t : νpl
= νql

νpt < νqt
* π � χ if π ≺ χ or if ∀l : νpl

= νql .
The preorder relation � is total, as it permits to compare all paths with the

same origin p. The lowest of them are called the steepest paths of origin p.

Constructing the Steepest Watershed Partition. A node may be linked by
flooding paths with 2 or more distinct regional minima. In this case the watershed
zones overlap. If one considers only the steepest paths, this will rarely happen,
as the weights all along the paths should be absolutely identical. In particular,
steepest paths reaching regional minima with different altitude necessarily have
a distinct steepness. One obtains like that highly accurate watershed partitions,
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whereas the classical algorithms, being myopic as they use only the adjacent
edges of each node, pick one solution out of many.

The classical algorithm for constructing a watershed partition in which the
flooding of a node weighted graph is governed by a hierarchical queue [12] prop-
agates the labels of the minima along the steepest flooding paths of the graph.
We start detecting and labeling the node regional minima.

Initialisation: Create a hierarchical queue HQ. Put the outer boundary nodes
of the regional minima in the queue corresponding to their weight. Assign to
each regional minimum a distinct label

Repeat until the HQ is empty:
Extract the node p with the highest priority from the queue.

For each node q without label, such that (p, q) neighbors:
* label(q) = label(p)
* put q in the queue with priority nq

At the end of the process, we obtain a watershed partition Π1 of the nodes.
By merging all basins corresponding to nodes belonging to the same tile of Π1,
we obtain a new partition of the domain D. The boundaries of this partition are
a subset of the boundaries of the initial watershed partition of f.

The complete process is repeated: creating the flooding graph of the new
partition, constructing the watershed partition Π2 on the nodes etc.

The Flooding Graph of a Region Adjacency Graph. An alternative so-
lution consists in constructing the region neighborhood graph G = [N,E] asso-
ciated to the initial watershed partition. The subsequent processing is done on
this graph and illustrated in fig.2. The flooding graph G′ is constructed first: for
each node p of G, one retains in G′ only its exhauts edges, i.e. the adjacent edges
with minimal weight. The node p gets the same weight as its exhaust edges. The
watershed partition of G′ is constructed as above, producing a number of con-
nected components. Contracting the inside edges of each component within the
graph G, produces a new edge weighted graph, to which the same process may
be applied.

4 The Waterfall Partition in One Run

We now compute the waterfall hierarchy associated to an arbitrary edge weighted
tree T with edge weights η > 0. In the context of morphological segmentation,
T is the minimum spanning tree of the region adjacency graph associated to
the topographic surface. But the developments below make sense for any edge
weighted tree. The waterfall hierarchy will be expressed as another tree Θ, having
the same structure, i.e. nodes and edges as the tree T but not the same weights.
We associate to the tree Θ the ultrametric distance χ : the distance between two
nodes n1 and n2 is equal to the highest edge on the unique path inside Θ linking
these two nodes.

Initially all edges are assigned a weight equal to ∞. Hence the ultrametric
distance between any two node also is equal to ∞.
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Fig. 2. A: the region adjacency edge weighted graph G ; B: the flooding graph, by
retaining for each node its exhaust edges ; C: assigning to each node the weight of its
exhaust edges and skipping the edge weights ; D: watershed partition on the nodes
obtained by the hierarchical queue algorithm ; E: contraction of all edges which belong
to the same tile of the watershed partition These contracted edges are indicated as bold
lines. At the same time, construction of the associated flooding graph: one retains for
each node obtained by contraction its lowest adjacent edges within the graph G. Each
node gets the weight of its exhaust edge ; F: the watershed partition associated to the
previous node weighted graph ; G: new contraction of edges, and associated flooding
graph. Each node gets the weight of its exhaust edge. There is only one regional mini-
mum ; H: the associated watershed partition has only one region, which marks the end
of the process ; I: the waterfall hierarchy of all edges which have been used as exhaust
edges : each edge is indexed by the time when it has been introduced in a flooding
graph.
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Fig. 3. A: Minimum spanning tree ; B: Initially Θ has only nodes, with a diameter 0 ; C:
The first edge is introduced in Θ with a weight 1. Its extremities have a weight 1 ; D,E:
Additional edges are introduced inΘ with a weight 1. Their extremities have a weight 1 ;
F: First edge linking two subtrees ofΘ with diameter 1. This edge gets a waterfall weight
2, and the diameter of its subtree is 1 ; G: Introduction of new edges with a waterfall level
of 1. The diameters of the subtrees is 2 ; H: Introduction of an edge linking two subtrees
with a diameter 2. The resulting edge gets a weight equal to 3 and its subtree a diameter
3 ; I: After introduction of the last edge, all edges got their waterfall index.
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We define the open ball
◦

Ball(p, λ) = {q | χ(p, q) < λ} and diam(p) its diame-

ter, i.e. the weight of the highest edge linking two nodes of
◦

Ball(p,∞). Initially
no such edge is present and we set diam(p) = 0.

We start with the minimum spanning tree T of the neighborhood graph. We
treat the edges in ascending order of their weights η. Let u = (p, q) the current
edge to be processed:

– Θ = Θ ∪{u}
– θ(u) = 1 + (diam(p) ∧ diam(q))

Analysis of the Algorithm (Illustration in Fig.3). Before adding the edge

u to Θ,
◦

Ball(p,∞) and
◦

Ball(q,∞) are disjoint, having respectively the diameters

dp and dq. After adding the edge u to Θ with the weight θ(u),
◦

Ball(p,∞) =
◦

Ball(q,∞) and the largest edge linking two nodes is either included in one of the

previous balls
◦

Ball(p,∞) or
◦

Ball(p,∞) or it is the edge u itself. Hence the new

diameter of
◦

Ball(p,∞) =
◦

Ball(q,∞) is equal to θ(u) ∨ diam(p) ∨ diam(q).
Let us analyze θ(u) = 1 + (diam(p) ∧ diam(q)) :

– if for instance diam(p) < diam(q) then diam(p) ≤ diam(q) − 1 and 1 +
(diam(p) ∧ diam(q)) = 1 + diam(p) ≤ diam(q). The adjunction of the edge

u does not change the diameter of
◦

Ball(q,∞) ; it increases the diameter of
◦

Ball(p,∞) by 1.
– if diam(p) = diam(q), then θ(u) = 1 + diam(p) = 1 + diam(q) and the ad-

junction of the edge u increases the diameter of
◦

Ball(p,∞) and of
◦

Ball(q,∞)
by 1.

5 Discussion

Two methods have been presented for constructing the waterfall hierarchy of
a topographic surface. The second is the fastest but relies upon a number of
arbitrary choices: choice of a minimum tree among many of the regiona adjacency
graph. The edges of the tree are processed in the order of increasing values ;
among edges with the same weight, there are again many arbitrary choices. The
structure of the waterfall hierarchy will remain the same, but the boundaries
of the partitions forming each level will differ. The first method is the most
precise as it relies on a watershed algorithm which reduces to the outmost the
arbitrary choices between alternative solutions [16,17,18] For instance, if the
regional minima have distinct weights, the watershed is unique .

6 Conclusion

The waterfall hierarchy of a grey tone image is illustrated by the waterfall
saliency of its contours in figure <ref>theowfal</ref>.
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The waterfall hierarchy of a grey tone image is illustrated by the waterfall
saliency of its contours in the following figure.

Initial image and the saliency of its waterfall contours

The waterfall hierarchy permits a structural analysis of a topographic surface
as it explores the nested structure of the catchment basins, without any consid-
eration of depth or size. It is in fact a purely ordinal process, as shown by the
last algorithm presented above, which increases by one the waterfall level each
time one encounters a deeper nested level.

The waterfall hierarchy has been invented, with floodings on a topographic
surface in mind. It has then be, conceptually and algorithmically, extended
to node or edge weighted graphs. It may be extremely useful for structuring
large graphs representing complex interconnections in many domains, beyond
the world of image processing.

Sometimes, there are only very few nested structures, and one may wish en-
riching the watershed hierarchy. B.Marcotegui and S.Beucher have shown how
to prevent some regions from mergings. This domain of research merits further
investigations.
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