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Abstract. This paper presents new theoretical contributions on scale-
space representations based on levelings through hierarchies of level sets,
i.e., component trees and tree of shapes. Firstly, we prove that reconstruc-
tions of pruned trees (component trees and tree of shapes) are levelings.
After that, we present a new and fast algorithm for computing the re-
construction based on marker images from component trees. Finally, we
show how to build morphological scale-spaces based on levelings through
the reconstructions of successive pruning operations (whether based on
increasing attributes or marker images).
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1 Introduction

As we know, an operator in Mathematical Morphology (MM) can be seen as
a mapping between complete lattices. In particular, mappings on the set of
all gray level images F(D) defined on domain D ⊂ Z

2 and codomain K =
{0, 1, ...,K} are of special interest in MM and they are called image operators.
Furthermore, when ψ enlarges the partition of the space created by the flat zones,
it is called connected operator [1]. They represent a wide class of operators in
which F. Meyer [2, 3, 4] extensively studied their specializations. One of these
specializations, known as levelings, are powerful simplifying filters that preserve
order, do not create new structures (regional extrema and contours) and their
values are enclosed by values of a neighborhood of pixels (see Def. 1).

Definition 1 (F. Meyer [3, 2]). An operator ψ : F(D) → F(D) is said to be
leveling, if and only if, for any f ∈ F(D) the following relation is valid for all
pairs of adjacent pixels, i.e., ∀(p, q) ∈ A,

[ψ(f)](p) > [ψ(f)](q) ⇒ f(p) ≥ [ψ(f)](p) and [ψ(f)](q) ≥ f(q).

where A is a adjacency relation1 on D.

1 An adjacency relation A on D is a binary relation on pixels of D. Thus, (p, q) ∈ A if
and only if p is an adjacent of q. 4 or 8-adjacency are common examples of adjacencies
relation on D.
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From the definition of a class of operators, it is possible to build a binary
relation R on F(D) as follows: (f, g) ∈ R if and only if there exists ψ in this
class such that g = ψ(f). Thus, the definition of levelings can be seen as a
binary relation Rleveling on F(D). So, we say that g is leveling of f if and
only if (f, g) ∈ Rleveling . In [2], F. Meyer, shows that Rleveling is reflexive and
transitive and if we ignore the constant images then Rleveling is anti-symmetric,
i.e.,Rleveling is a order relation. With the help of this order relation, the levelings
can be nested to create a scale-space decomposition of an image f ∈ F(D) in
the form of a series of levelings (g0 = f, g1, ..., gn), where gk is leveling of gk−1

and as a consequence of transitivity, gk is also a leveling of each image gj, for
j < k [4, 5]. Thus, a morphological scale-space is generated with the following
features: simplification, causality and fidelity [4, 5]. For example, this scale-space
can be created with the help from a traditional algorithm Λ to construct levelings
that takes as arguments two images: an input image f ∈ F(D) and a marker
image h ∈ F(D). It modifies h in such a way that it becomes a leveling of f .
Thus, we will say that g = Λ(f, h) is a leveling of f , obtained from the marker
h [3, 4]. With this algorithm it is possible to construct a morphological scale-
space based on levelings from any family of markers (h1, h2, ..., hn) with the
following chaining: g1 = Λ(f, h1), g2 = Λ(g1, h2), ..., gn = Λ(gn−1, hn) [4].

In this work, we follow a different approach for construction of scale-spaces.
Our approach consists of representing an image through a tree based on hierar-
chies of level sets (i.e., component tree and tree of shapes) and from this tree is
proved that reconstruction of pruned trees are levelings. Despite these facts are
knowns and/or mentioned by several authors [6, 7, 8, 9, 10, 11] this is the first
study that presents a formal proof on the perspective of trees which reconstruc-
tion of pruned trees are levelings. In addition, we present a new fast algorithm
for computing the reconstruction by dilation (or erosion) which is faster than
the algorithm by Luc Vincent [12]. Finally, we show how to construct a morpho-
logical scale-space based on levelings through the reconstructions of successive
pruning operations (whether based on increasing attributes or marker images).

The remainder of this paper is structured as follows. Section 2 briefly recalls
some definitions and properties of image representation by tree structures. In
Section 3, we provide the first original result of this work where establishes
theoretical links between reconstruction pruned trees with levelings. In Section 4,
we associate reconstructions of pruned trees with several morphological operators
based on marker images. In Section 5, we present constructions of morphological
scale-space either based on increasing attributes or marker images. In Section 6,
we show an application of scale-space based on levelings to construct residual
operators. Finally, Section 7 concludes this work.

2 Theoretical Background

For any λ ∈ K = {0, 1, ...,K}, we define Xλ
↓ (f) = {p ∈ D : f(p) < λ} and

X ↑
λ (f) = {p ∈ D : f(p) ≥ λ} as the lower and upper level sets at value λ

from an image f ∈ F(D), respectively. These level sets are nested, i.e., X 1
↓ (f) ⊆
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X 2
↓ (f) ⊆ ... ⊆ XK

↓ (f) and X ↑
K(f) ⊆ X ↑

K−1(f) ⊆ ... ⊆ X ↑
0 (f). Thus, the image f

can be reconstructed using either the family of lower or upper sets, i.e., ∀x ∈ D,
f(x) = inf{λ− 1 : x ∈ Xλ

↓ (f)} = sup{λ : x ∈ X ↑
λ (f)}. From these sets, we define

two other sets L(f) and U(f) composed by the connected components (CCs) of
the lower and upper level sets of f , i.e., L(f) = {C ∈ CC4(X λ

↓ (f)) : λ ∈ K} and

U(f) = {C ∈ CC8(X ↑
λ (f)) : λ ∈ K}, where CC4(X) and CC8(X) are sets of 4 and

8 connected CCs of X , respectively. Then, the ordered pairs consisting of the
CCs of the lower and upper level sets and the usual inclusion set relation, i.e.,
(L(f),⊆) and (U(f),⊆), induce two dual trees [13]. They can be represented by a
non-redundant data structures known as min-tree and max-tree. Combining this
pair of dual trees, min-tree and max-tree, into a single tree, we have the tree of
shapes [13]. Then, let P(D) denote the powerset of D and let sat : P(D) → P(D)
be the operator of saturation [13] (or filling holes), i.e.,

Definition 2. We call holes of A ∈ L(f) ∪ U(f) the CCs of D \ A. Thus, we
call internal holes of A, denoted by Int(A), the CCs of D \ A that are subsets
of sat(A). Likewise, we call exterior hole of A, denoted by Ext(A), the set D \
sat(A). Thus, sat(A) = ∪{H ∈ Int(A)} ∪ A, where the unions are disjoint.

Note that, the complement of a CC A is in Ext(A)∪Int(A) and if H ∈ Int(A)
then sat(H) ⊆ sat(A). Moreover, if A ∈ L(f) with internal holes, then elements
of Int(A) are CCs of U(f) (or vice versa, A ∈ U(f) ⇒ Int(A) ⊆ L(f)). Now,
let SATL(f) = {sat(C) : C ∈ L(f)} and SATU (f) = {sat(C) : C ∈ U(f)}
be the family of CCs of the lower and upper level sets, respectively, with holes
filled and consider SAT (f) = SATL(f) ∪ SATU (f). The elements of SAT (f),
called shapes, are nested by an inclusion relation and thus the pair (SAT (f),⊆),
induces the tree of shapes [13]. The tree of shapes, such as component trees, is
a complete representation of an image which can be represented by a compact
and non-redundant data structure [14] so that a pixel p ∈ D which is associated
with the smallest shape or CC of the tree containing it, by the parenthood
relationship, is also associated to all the ancestors shapes. Then, we denote by
SC(T , p) the smallest shape or CC containing p in a tree T .

Extended Trees: In this work, we also consider the extended versions of these
trees, i.e., the trees containing all the possible components of an image, de-
fined as follows: Let Ext(L(f)) = {(C, μ) ∈ L(f) × K : C ∈ CC4(Xμ

↓ (f))}
and Ext(U(f)) = {(C, μ) ∈ U(f) × K : C ∈ CC8(X ↑

μ (f))} the set of all pos-
sible CCs of lower and upper level sets, respectively. Consider 
 a relation on
Ext(L(f)) (resp. Ext(U(f))), i.e., ∀(A, i), (B, j) ∈ Ext(L(f)), (A, i) 
 (B, j) ⇔
A ⊆ B and i ≤ j (resp. ∀(A, i), (B, j) ∈ Ext(U(f)), (A, i) 
 (B, j) ⇔ A ⊆
B and i ≥ j). Although, we can similarly build Ext(SAT (f)), in this paper, we
only use extended versions of max-tree and min-tree. Therefore, (Ext(L(f)),
),
(Ext(U(f)),
) and (Ext(SAT (f)),
) are the version extended of trees (L(f),⊆
), (U(f),⊆) and (SAT (f),⊆), respectively. Fig. 1 is an example of these trees
for a given image f . Note that, the smallest shape or CC of a tree Tf containing
a p ∈ D in Ext(Tf ) is the node (SC(Tf , p), f(p)) ∈ Ext(Tf ).
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lower sets

upper sets

X 7
↓ (f)

X 6
↓ (f)

X 5
↓ (f)

X 4
↓ (f)

X 3
↓ (f)

X 2
↓ (f)

X 1
↓ (f)

X ↑
0 (f)

X ↑
1 (f)

X ↑
2 (f)

X ↑
3 (f)

X ↑
4 (f)

X ↑
5 (f)

X ↑
6 (f)

X ↑
7 (f)

current levels in f

image defined with 3 bits of depth

f =

(L(f),⊆) (Ext(L(f)),�) (U(f),⊆) (Ext(U(f)),�) (SAT (f),⊆) (Ext(SAT (f)),�)

Fig. 1. An example of the construction of the extended trees

2.1 Image Reconstruction and Pruning Operation

As we have seen, an image can be reconstructed from its level sets. Now, we will
show how to reconstruct an image f given a tree Tf (min-tree, max-tree or tree
of shapes). This leads us to define the functions levelL : L(f) → K, levelU :
U(f) → K and levelSAT : SAT (f) → K as follows levelL(C) = min{λ −
1 : C ∈ CC4(X λ

↓ (f)), λ ∈ K}, levelU(C) = max{λ : C ∈ CC8(X ↑
λ (f)), λ ∈

K} and levelSAT (C) = f(y) such that y ∈ argmax{|SC(Tf , x)| : x ∈ C}. For
the sake of simpler notation, from now on, the subscript Tf will be dropped
from the level function when it is clear from context. Obviously, the function
level for Ext(L(f)) and Ext(U(f)) is simply levelExt(L)(C) = min{λ : (C, λ) ∈
Ext(L(f))} and levelExt(U)(C) = max{λ : (C, λ) ∈ Ext(U(f))}, respectively.
Using this function, it is possible to prove that an image f ∈ F(D) can be
reconstructed from a tree Tf as follows: ∀x ∈ D, f(x) = level(SC(Tf , x)). In such
a case, we write: f = Rec(Tf ). In particular, if f is obtained by Rec((L(f),⊆))
(resp. Rec((U(f),⊆)), and Rec((SAT (f),⊆))) then we call this operation lower
(resp. upper and shape) reconstruction.

Now, the following definition (Def. 3) gives the conditions for a pruning op-
eration of a tree (T ,
).

Definition 3. We say that (T ′,
) is obtained by a pruning operation of a tree
(T ,
) if and only if, T ′ ⊆ T , for any X ∈ T ′, �Y ∈ (T \ T ′) such that X 
 Y .
In such a case, we write T ′ = Pruning(T ).

Following this definition, if Tf is a tree of an image f ∈ F(D), then we say Tg is
the pruned version of Tf if and only if Tg = Pruning(Tf ). Also, one can easily see
that Tg ⊆ Tf and Tg is still a tree. In addition, since the nodes of Tf and Tg are
nested by the order relation, it can be proved that, p ∈ D, SC(Tf , p) ⊆ SC(Tg, p).
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3 Links Between Reconstruction of Pruned Trees and
Levelings

Once the pruning operation and the reconstruction of pruned trees are estab-
lished, we can relate the reconstruction of pruned trees with levelings. We be-
gin observing that, if Tg is obtained by a pruning operation of a max-tree
(resp. min-tree) Tf , then, ∀p ∈ D, level(SC(Tf , p)) ≥ level(SC(Tg, p)) (resp.
level(SC(Tf , p)) ≤ level(SC(Tg, p))), thanks to the well-defined ordering of the
level sets. Thus, Rec(Tf) ≥ Rec(Tg) (resp. Rec(Tf ) ≤ Rec(Tg)). This property
shows that upper (resp. lower) reconstructions are anti-extensive (resp. exten-
sive). Now, we state a simple property, given by Prop. 1, thanks to the well-
defined ordering of the level sets.

Proposition 1. Let (U(f),⊆) be the max-tree (resp. min-tree (L(f),⊆)) of an
image f . Let (p, q) ∈ A. Then, f(p) > f(q) (resp. f(p) < f(q)) if and only if
SC(U(f), p) ⊂ SC(U(f), q) (resp. SC(L(f), p) ⊂ SC(L(f), q)).

This fact shows that, if Tg is obtained by a pruning operation of a max-tree
(resp. min-tree) Tf , then g = Rec(Tg) is a leveling of f = Rec(Tf ), since, for
any (p, q) ∈ A, the following condition holds: g(p) > g(q) ⇒ f(p) ≥ g(p) >
g(q) = f(q) (resp. g(p) > g(q) ⇒ f(p) = g(p) > g(q) ≥ f(q)). Furthermore, if we
consider the extended version of the max-tree (resp. min-tree) then there is an
equivalence between upper (resp. lower) reconstruction and anti-extensive (resp.
extensive) levelings.

Theorem 1. Anti-extensive (resp. extensive) levelings and upper (resp. lower)
reconstructions are equivalent.

Proof. Let f ∈ F(D) be an image and Tf = (Ext(L(f)),
) the extended version
of the max-tree of f . Thus, we have: g ∈ F(D) is an upper reconstruction of f

⇐⇒ g = Rec(Tg) such that Tg = Pruning(Tf).
⇐⇒ g ≤ f and ∀(p, q) ∈ A,{

either SC(Tf , p) 
 SC(Tf , q) 
 SC(Tg, p) 
 SC(Tg , q)
or SC(Tf , p) 
 SC(Tg, p) 
 SC(Tf , q) = SC(Tg , q)

⇐⇒ g ≤ f and ∀(p, q) ∈ A, SC(Tg , p) � SC(Tg, q)

⇒

⎧⎨
⎩

SC(Tf , p) 
 SC(Tg, p)
and

SC(Tg, q) = SC(Tf , q)
⇐⇒ g ≤ f and ∀(p, q) ∈ A, level(SC(Tg, p)) > level(SC(Tg, q))

⇒

⎧⎨
⎩

level(SC(Tf , p)) ≥ level(SC(Tg, p))
and

level(SC(Tg, q) = level(SC(Tf , q))
⇐⇒ g ≤ f and ∀(p, q) ∈ A, g(p) > g(q) ⇒ f(p) ≥ g(p) and g(q) = f(q)
⇐⇒ g is anti-extensive leveling of f .
The proof for extensive levelings and lower reconstruction follows similarly.

Now, to establish links between shape reconstructions and levelings, it is nec-
essary to know relations between neighboring pixels in the nodes of the tree. In
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this sense, Propositions 2, 3, 4 and 5 help us understand how the neighboring
pixels are related in the tree. Thus, the Prop. 2 is a corollary of Theo. 2.16 given
in [15], the Prop. 3 is a directly consequence of Prop. 1 and the Prop. 5 is a
direct consequence of Prop. 4.

Proposition 2. Let (SAT (f),⊆) be the tree of shapes of an image f . If (p, q) ∈
A such that f(p) �= f(q) then SC(SAT (f), p) and SC(SAT (f), q) are comparable
or disjoint.

Proposition 3. Let (SAT (f),⊆) be the tree of shapes of an image f . If (p, q) ∈
A such that SC(SAT (f), p) ⊂ SC(SAT (f), q) and both SC(SAT (f), p) and
SC(SAT (f), q) belong to SATU (f) (resp. SATL(f)), then f(p) > f(q) (resp.
f(p) < f(q)).

Proposition 4. Let A ∈ L(f) ∪ U(f) such that sat(A) ∈ SAT (f). If B ∈
Int(A) and (p, q) ∈ A such that p ∈ B and q /∈ B, then q ∈ sat(A).

Proof. Suppose, by contradiction, q /∈ sat(A). Then q belongs to the complement
of sat(A), i.e., q ∈ (D \ sat(A)) = Ext(A) ⊆ (D \ A). As Int(A) contains the
CCs of (D \ A) included in sat(A) and B ∈ Int(A), we have that both B and
Ext(A) are CCs of (D \ A). With that fact in mind, and, since p ∈ B, q ∈
Ext(A), and (p, q) ∈ A, we have that Ext(A) = B. But, this is a contradiction,
since q /∈ B. Therefore, q ∈ sat(A).

Corollary 1. Let A,B ∈ SAT (f) such that B ⊂ A, A ∈ SATU (f) and B ∈
SATL(f) (resp. A ∈ SATL(f) and B ∈ SATU (f)). If (p, q) ∈ A such that p ∈ B
and q /∈ B, then q ∈ A.

Proposition 5. Let (p, q) ∈ A and let SC(SAT (f), p) and SC(SAT (f), q) be el-
ements of SATU (f) (resp. SATL(f)). IfX ∈ SAT (f) such that SC(SAT (f), p) ⊂
X ⊂ SC(SAT (f), q), then X ∈ SATU (f) (resp. X ∈ SATL(f)).
Proof. Suppose, by contradiction,X /∈ SATU (f). Thus,X ∈ SATL(f) sinceX ∈
SAT (f). Then, thanks to Corol. 1, it follows that q ∈ X , since SC(SAT (f), p) ∈
SATU (f) and SC(SAT (f), p) ⊂ X . So we have a contradiction, since X ⊂
SC(SAT (f), q) and SC(SAT (f), q) is the smallest shape containing q. Therefore,
X ∈ SATU (f).

Theorem 2. Shape reconstructions are levelings.

Proof. Let f ∈ F(D) be an image and Tf be the tree of shapes of f . Then,
g ∈ F(D) is a shape reconstruction of f if and only if g = Rec(Tg) such that
Tg = Pruning(Tf). To prove that g is leveling of f , we just need to check if,
∀(p, q) ∈ A, the definition of leveling holds, that is, g(p) > g(q) ⇒ f(p) ≥ g(p)
and g(q) ≥ f(q).

Let us consider two cases, where f(p) = f(q) and f(p) �= f(q). In the first
case, g meets the definition of leveling by vacuity. In the second case, we have
SC(Tf , p) �= SC(Tf , q) and the pruning in Tf , which generates Tg, can: (1) pre-
serve both nodes; or (2) eliminate both nodes; or (3) eliminate one of the nodes.
See in Fig. 2 the illustrations of pruning settings.
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Cases 1 and 2: triviality

Tf

Tg Tg

SC(Tf , q)

SC(Tf , p)

SC(Tg, q)

SC(Tg, p)

SC(Tg, p) = SC(Tg, q)

case 2:
g(p) = g(q)

case 1:
f(p) = g(p)

and
f(q) = g(q)

Case 3: eliminate one of the nodes

↙ Prop.2 ↘
(a) comparable

same type

Tf

SC(Tf , q)

SC(Tf , p)

Props.3, 5

SC(Tg, q)

SC(Tg, p)

both cases:
f(p) ≥ g(p) ≥ g(q) = f(q)

or

f(p) ≤ g(p) ≤ g(q) = f(q)

different types

Tf

SC(Tf , q)

SC(Tf , p)

↙Props.3, 5

and

Corol.1

Tg Tg SC(Tg, q)

SC(Tg, p)

(b) disjoint

Tf

Tg Tg

SC(Tf , p) SC(Tf , q)

¬Prop.3

SC(Tg, p)

SC(Tg, q) SC(Tg, p)

SC(Tg, q)

both cases:

f(p) ≥ g(p) > g(q) ≥ f(q)
or

f(p) ≤ g(p) < g(q) ≤ f(q)

Fig. 2. Illustrations of pruning settings

1. If both nodes are preserved, then f(p) = g(p) and f(q) = g(q) that meets
the definition of leveling (see Fig. 2 - Case 1);

2. If both nodes are eliminated and comparable, then g(p) = g(q), and thus the
definition of leveling is valid by vacuity (see Fig. 2 - Case 2). In case they
are eliminated and not comparable, see case 3(b);

3. If only one of the two nodes is eliminated, then, thanks to Prop. 2, SC(Tf , p)
and SC(Tf , q) are either comparable or disjoint (see Fig. 2 - Case 3).

(a) If SC(Tf , p) and SC(Tf , q) are comparable (see Fig. 2 - Case 3(a)),
then suppose without loss of generality that SC(Tf , p) ⊂ SC(Tf , q).
Thus, SC(Tf , p) �= SC(Tg, p) and SC(Tf , q) = SC(Tg, q) and consequently
g(q) = f(q).

– If SC(Tf , p) and SC(Tf , q) belong to SATU (f) (resp. SATL(f)) then
thanks to Prop. 5, follows that SC(Tg, p) ∈ SATU (f). Thus, thanks
to Prop. 3, follows that f(p) ≥ g(p) ≥ g(q) = f(q) (resp. f(p) ≤
g(p) ≤ g(q) = f(q) ), that meets the definition of leveling (see left
tree of Fig. 2 - Case 3(a));

– If SC(Tf , p) and SC(Tf , q) are of different types, then thanks to
Corollary 1, it follows that ∀(r, s) ∈ A such that r ∈ SC(Tf , p)
and s /∈ SC(Tf , p) follows that s ∈ SC(Tf , q). Thus, SC(Tf , p) ⊂
SC(Tf , s) ⊆ SC(Tf , q) and consequently either f(p) < f(s) ≤ f(q) ⇒
f(p) ≤ g(p) ≤ g(q) = f(q) or f(p) > f(s) ≥ f(q) ⇒ f(p) ≥ g(p) ≥



272 W.A.L. Alves et al.

g(q) = f(q), that meets the definition of leveling (see right tree of
Fig. 2 - Case 3(a)).

(b) If SC(Tf , p) and SC(Tf , q) are disjoint (see Fig. 2 - Case 3(b)), then they
are of different types (see Prop. 3). Moreover, SC(Tf , p) and SC(Tf , q)
are not in the same branch of Tf . In this case, certainly there exists a
node SC(Tf , r) which is common ancestor of both nodes SC(Tf , p) and
SC(Tf , q). Thus, SC(Tf , r) is the same type of SC(Tf , p) or SC(Tf , q).
Then, either f(p) > f(r) > f(q) or f(p) < f(r) < f(q). Without loss
of generality, assume f(p) > f(r) > f(q). Thus, if SC(Tf , p) is removed
and SC(Tf , q) is preserved, then we have that SC(Tf , p) ⊂ SC(Tg, p) ⊆
SC(Tf , r) and SC(Tg, q) = SC(Tf , q) and consequently f(p) > g(p) ≥
f(r) and g(q) = f(q). Therefore, f(p) > g(p) ≥ f(r) > g(q) = f(q) ⇒
f(p) > g(p) > g(q) = f(q) which in turn meets the leveling defini-
tion. But, if SC(Tf , p) is preserved and SC(Tf , q) is removed, then we
have SC(Tg , p) = SC(Tf , p) and SC(Tf , q) ⊂ SC(Tg, q) ⊆ SC(Tf , r)
and consequently f(p) = g(p) and f(r) ≥ g(q) > f(q). Therefore,
f(p) = g(p) > g(q) > f(q) which in turn meets the leveling definition.

4 Morphological Reconstruction Based on a Marker
Image

In this section, present a new and fast algorithm for morphological reconstruc-
tions based on a marker image by reconstruction of pruned trees. In fact, pruning
strategy based on marker image is not well explored in the literature. The strat-
egy is to use the marker image to determine the place of pruning in extended
versions of max-trees and min-trees.

The reconstruction operator is relatively simple in binary case, which consists
in extracting the CCs of an binary image X ⊆ D which are marked by another
binary image M ⊆ X . The binary images M and X are respectively called
marker and mask. Then, the reconstruction ρB(X,M) of mask X from marker
M is the union of all the CCs of X which contain at least one pixel of M , i.e.,
ρB(X,M) = {C ∈ CC(X) : C ∩M �= ∅} [12].

To extend the reconstruction operator to grayscale images, we recall that
any increasing operator defined for binary images can be extended to grayscale
images through threshold decomposition [16]. Thus, given a mask image f ∈
F(D) and a marker image g ∈ F(D) such that g ≤ f , we have:

∀p ∈ D, [ρ(f, g)](p) = sup{μ ∈ K : p ∈ ρB(X ↑
μ (f),X ↑

μ (g))}
⇐⇒ [ρ(f, g)](p) = sup{μ ∈ K : p ∈ {C ∈ CC(X ↑

μ (f)) : C ∩ X ↑
μ (g) �= ∅}}

⇐⇒ [ρ(f, g)](p) = sup{μ ∈ K : SC(U(f), p) ∩ X ↑
μ (g) �= ∅}.

Note that, to construct ρ(f, g) for p ∈ D, we need to find the smallest set
X ↑

μ (g) such that X ↑
μ (g) ∩ SC(U(f), p) �= ∅. Fortunately, this can be expressed

as a pruning operation in the extended version of (U(f),⊆) as follows: remove
(resp. preserve) all nodes (C, μ) ∈ Ext(U(f)), if and only if, there exists a pixel
p ∈ C such that μ > g(p) (resp. g(p) ≥ μ). Therefore, ρ(f, g) = Rec((TU ,
))
such that TU = {(C, μ) ∈ Ext(U(f)) :

∨
p∈C g(p) ≥ μ}.
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Following these ideas, we present the Algorithm 1 to computes the recon-
struction by dilation. This algorithm makes use of a priority queue to process
the pixels of the marker image in an orderly manner and so we do not reprocess
the nodes that already were visited.

Algorithm 1. Compute the reconstruction by dilation
1 Image reconstruction(Max-tree Tf , Image marker g) begin
2 Initialize priority queue Q
3 foreach C ∈ Ext(Tf ) do remove[C] = true foreach p ∈ D such that g(p) ≤ f(p) do

add (Q, p, g(p))
4 while Q is not empty do
5 p = removeMaxPriority(Q);
6 (C, μ) = SC(Ext(Tf ), p)
7 if C was not processed then
8 while remove[C] is true AND μ > g(p) do
9 C = parent (C)

10 remove[C] = false
11 while parent(C) is not null AND remove[parent(C)] is true do
12 remove[parent(C)] = false
13 C = parent(C)

/* reconstruction of pruned tree, i.e., Rec(Pruning(Tf )) such that
Pruning(Tf ) = {(C, μ) ∈ Ext(Tf ) : remove[C] = false} */

14 Initialize queue Qfifo

15 enqueue(Qfifo, root(Ext(Tf )))
16 while Qfifo is not empty do
17 (C, μ) = dequeue(Qfifo)
18 if remove[C] is false then ∀p ∈ C, f(p) = μ foreach S ∈ children(C) do

enqueue(Qfifo, S)

/* The image f = ρ(f, g) is the result of reconstruction by dilation of mask image
f using the marker image g. */

19 return f

The reconstruction using upper level sets can also be defined through the
geodesic dilation of f with respect to g iterated until stability. In this respect,
a traditional fast algorithm for computing reconstruction by dilation has been
proposed by Luc Vincent [12]. Thus, we show in Fig. 3 a graphic for a comparison
simples.
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Algorithm 1

Algorithm 1 (optimized)

Fig. 3. Comparison of computation time. In this comparison each image of ICDAR
dataset [17] is tested with 10 different marker images and the average value is plotted.

Of course, by duality, one can obtain the reconstruction by erosion ρ∗ using
similarly lower level sets. These two morphological reconstructions techniques are
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at basis of numerous operators, such as: opening and closing by reconstruction,
top-hat by reconstruction, h-basins, h-domes and others [3, 12].

5 Scale-Space Representation Through a Sequence of
Reconstructions of Successive Prunings

It is already known that some operators can be obtained by reconstructions
of pruned trees, as for example: attribute opening (resp. closing), grain filters,
and others. From the previous section, we showed that some operators based
on marker images also can be obtained by pruning operation such as opening
by reconstruction, top-hat by reconstruction, h-basins and others. Taking ad-
vantage of this property, we will show in this section a way to build scale-space
representation by a sequence of successive prunings.

Let Tf be the tree (max-tree, min-tree or tree of shapes) that represents an
image f . Since levelings can be nested to create a space-scale decomposition of an
image, by Theo. 1 and 2, we have that Rec(Pruning(Pruning(Tf))) is a leveling
of Rec(Pruning(Tf)) and Rec(Pruning(Tf)) is a leveling of Rec(Tf ) = f . Then,
by transitivity, we also have that Rec(Pruning(Pruning(Tf))) is a leveling of
Rec(Tf ). This shows that the tree generates a family of levelings that further
simplifies the image f , thus constituting a morphological space-scale and this
leads us to Prop. 6.

Proposition 6. Let Tf be the tree (max-tree, min-tree or tree of shapes) that rep-
resents an image f . Then, the sequence of reconstructions of successive prunings
(g0 = Rec(Tf ), g1 = Rec(Pruning(Tf)), g2 = Rec(Pruning(Pruning(Tf))), ...,
gn = Rec(Pruning(...(Pruning(Pruning(Tf))))) ) is a space-scale of levelings
such that gk is a leveling of gl for all 0 ≤ l ≤ k ≤ n.

Thus, we can build through successive pruning: (1) scale-space based on at-
tributes from increasing criteria on attributes and so generate scale-space of
opening, closing and grain filter by attribute (or extinction values) and others;
(2) scale-space based on marker images from a family of markers and so generate
scale-space of reconstruction by opening and closing, top-hat by reconstruction,
h-basins, h-domes and others. In addition, following F. Meyer [2], from Eq. 1 is
possible define the self-dual reconstruction combining the reconstruction by dila-
tion and erosion, and so generate scale-space of self-dual reconstruction. In fact,
different families of markers may be used to generate a morphological scale-space
based on levelings as shown by F. Meyer in [4].

∀x ∈ D, [ν(f, g)](x) =

⎧⎨
⎩

[ρ(f, g ∧ f)](x) , if g(x) < f(x),
[ρ∗(f, g ∨ f)](x) , if g(x) > f(x),
f(x) , otherwise.

(1)

Based on this idea, Fig. 4 presents some images of a scale-space generated
with marker images produced by alternate sequential filtering.
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Fig. 4. Some images of a scale-space generated with markers produced by alternate
sequential filtering

6 Application Example

In many application in Image Processing and Analysis, the objects of interest
which must be detected, measured, segmented, or recognized in an image are,
in general case, not in a fixed but in many scales. For such situations, several
multi-scale operators have been developed over the last few decades. In this
sense, this section briefly illustrates (see Fig. 5) the application of some residual
operators defined on an scale-space based on levelings [18, 19, 20]. They are:
ultimate attribute opening (UAO) (resp. closing (UAC)) [20] and ultimate grain
filters (UGF) [19]. They belong to a larger class of residual operators that we
call ultimate levelings and defined from a indexed family of levelings {ψi : i ∈ I}
such that i, j ∈ I, i ≤ j ⇒ ψj is a leveling of ψi. Thus, the an ultimate leveling
is defined by Rθ(f) = R+

θ (f) ∨ R−
θ (f) where R+

θ (f) = sup{r+i (f) : r+i (f) =
[ψi(f)−ψi+1(f)∨ 0]} and R−

θ (f) = sup{r−i (f) : r−i (f) = [ψi+1(f)−ψi(f)∨ 0]}.
They can be implemented efficiently through of a max-tree, min-tree or tree of
shapes [21, 19].

input image (b) (c) (d) (e) (f) (g)

Fig. 5. Example of extraction of contrast and segmentation using UAO (b) and (e),
UAC (c) and (f), and UGF (d) and (g)

7 Conclusion

In this work, we have presented scale-space representations of an image based on
levelings through hierarchies of level sets (component trees and tree of shapes).
For that, we first proved the main result of this paper in Section 3 that re-
constructions of pruned trees are levelings. After that, in Section 4 we present a
new and fast algorithm for computing the reconstruction based on marker images
from component trees. Finally, in Section 5 we show how to build morphological
scale-spaces based on levelings through the reconstructions of successive pruning
operations (whether based on increasing attributes or marker images).
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