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Abstract. This theoretical paper provides a basis for the optimality of
scale-sets by Guigues [6] and the optimal pruning of binary partition trees
by Salembier-Garrido [11]. They extract constrained-optimal cuts from a
hierarchy of partitions. Firstly, this paper extends their results to a larger
family of partitions, namely the braid [9]. Secondly, the paper shows the
dependence of valid constraint function values and multiplier values in a
Lagrangian optimization framework. Lastly, but most importantly, it also
proposes the energetic order and energetic lattice based solutions for the
constraint optimization problem. This approach operates on a partition
based constraint thus ensuring the existence of a valid multiplier and
constraint value.
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1 Introduction

In this theoretical paper1 we aim to first demonstrate that the optimal cuts on
hierarchies or λ-cuts in the sense of Guigues [6] and Salembier et al.[11], only
provide an upper bound on the minimum energy to the original constrained opti-
mization problem on hierarchies. We show that the choice of a suitable Lagrange
multiplier λ in fact provides a solution to the perturbed problem first stated in
Everett’s theorem [5]. Further in a fundamental contribution we demonstrate
how the constrained optimization problem in the Lagrange sense can be solved
using the energetic lattice [7], by replacing the numerical constraints by partition
based constraint. We start with a quick review of notation and definitions.

1.1 Definitions

We denote a partition of space E by π and a partial partition(p.p.) [10] of subset
S ⊆ E by π(S). The family of all partitions of E is denoted by Π(E), while that

1 Please refer to accompanying paper [9] for notions of braids, energetic ordering,
energetic lattice, singularity and h-increasingness. This work was partly funded by
the French ANR-2010-BLAN-0205-03 program KIDICO.
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of partial partitions by D(E)). A hierarchy of partitions (HOP) is a finite chain
of partitions H = {πi, i ∈ [0, n]}, with πi ≤ πj , i < j, where ≤ stands for the
refinement ordering. The minimal element π0 of H is called the leaves partition,
while the maximal element is the one class partition {E}, called the root. A cut
of hierarchy H is a partition of E whose elements are composed of classes in H .
The set of all cuts of H is Π(E,H). A braid B is a family of partitions B where
the pairwise refinement supremum of any two partial partitions is a cut of some
hierarchy H ; i.e. belongs to Π(E,H) [9].

An energy ω : D → R
+ is a non-negative function that is defined on the family

of partial partitions. The energy of a partition or partial partition is obtained
by the composition of energies either by addition, supremum or other laws [9] of
its constituent classes, ω(π(S)) =

∑
a�π(S) ω(a), though these might not be the

only way. The energy ω is said to be singular when for any p.p. π(S) we have
ω({S}) �= ω(π(S)), S ⊆ E. It is said to be h-increasing when

ω(π(S)) ≤ ω(π′(S)) ⇒ ω(π(S) � π0) ≤ ω(π′(S) � π0), ∀S ⊆ E (1)

where � indicates the concatenation of any p.p π0 with support that is disjoint
with S. A h-increasing energy becomes strict when the inequality ≤ becomes <.

Now the optimal cut in [4], [11], [6], is calculated by aggregating local optima.
The local optimum at class S either choses the parent {S}, or the disjoint union
of the optimums over the its children as shown in equation 2.

π∗(S) =

{
{S}, if ω(S) ≤ comp(ω(π∗(a))), a ∈ π(S)
⊔

a∈π(S) π
∗(a), otherwise

(2)

The solution to the dynamic program in equation (2), when aggregated for
all S ∈ H , following a lexicographic order gives the optimal cut π∗. One should
also note that the composition comp(·) is performed by addition, or supremum,
or many other laws that preserves h-increasingness. It is shown in [7] that this
optimal cut is the minimal element of an energetic lattice. We reproduce the
theorem in [7]:

Theorem 1. Let Π be a family of partitions of E, and let π1, π2 ∈ Π. Given
an energy ω, the partition π1 is said to be less energetic than π2, and one writes
π1 
ω π2 when in each class of π1 ∨ π2 the energy of the partial partition of π1

is smaller or equal to that of π2: :

π1 
ω π2 ⇔ {S ∈ π1 ∨ π2 ⇒ ω(π1  {S}) ≤ ω(π2  {S})} (3)

The relation 
ω is an ordering relation for all singular energies ω, called ener-
getic ordering, if and only if the family Π is the set Π(ω,E,B) of all cuts of a
braid B.

The set Π(ω,E,B) forms a complete lattice for the energetic ordering 
ω.

This theorem described an energetic ordering and thus an energetic lattice [9],
which models the dynamic program to obtain the optimal cut. We will use this
lattice structure for the constrained optimization problem on HOP and braids
further on in this paper.
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1.2 Constrained Optimization on Hierarchies

A lattice structure has been developed in [9], [7] for the dynamic program based
minimization of any general non parametrized energy. We now concentrate on
the constrained optimization problem, which is achieved by the unconstrained
minimization of a Lagrangian function, as is the case with Guigues and Salem-
bier. Consider the constrained optimization problem:

minimize
π∈Π(E,H)

∑

S∈π

ωϕ(S) subject to
∑

S∈π

ω∂(S) ≤ C (4)

The corresponding Lagrangian can now be written as:

ω(π, λ) =
∑

S∈π

ωϕ(S) + λ · (ω∂(S)− C) (5)

where π ∈ Π(E,H) is a cut from HOP H . The objective function being min-
imized is denoted by ωϕ, the constraint function by ω∂ , while C is an im-
posed constraint function value. These energies hold on all partial partitions
ωϕ, ω∂ : D → R of the working space E. In (5) the multiplier λ is scalar for
the sake of simpler notation and pedagogy. This can always extend to vector
multiplier and constraint functions.

2 Guigue’s λ-cuts are Upper Bounds

We illustrate in Figure 1 a tree with its classes, objective function being mini-
mized, constraint function, as well as the λ or scale function values as defined by
Guigues [6]. The objective ωϕ is chosen to be super-additive while constraint ω∂ is
sub-additive, as in [6]. Now the family of Lagranians is {ω(λ) = ωϕ+λω∂ , λ ≥ 0}.
Energies are composed additively here, i.e. ω(π(S)) =

∑
a∈π(S) ω(a). Further

when we have equal parent and child energies, we pick the parent, like in [6].
The λ-cut denoted by π∗(λ) are cuts with least ωϕ, given multiplier λ. There

are three such cuts, for three different values of the multiplier calculated by the
scale function defined by Guigues [6] λ = −Δωϕ/Δω∂ .

Counter Example: Following Guigues and Salembier (as well as Casselles et al.
[2]) we search for the cut with the smallest λ, or λ-cut, which satisfies an input
constraint value here set to C = 7.5. Here the λ-cut with ωϕ(π

∗(λ = 3.5)) = 15
and constraint ω∂(π

∗(λ = 3.5)) = 6 is the optimal λ-cut satisfying constraint.
We now consider other cuts, which are not λ-cuts: say π = (g, c, d, k) with
energy ω(π, λ) = 11.5 + 7 λ. The cut π obviously provides a better minimum
than the minimal λ-cut (g, h, k) since ω∂(π) = 7, which is below the constraint
C = 7.5, for an objective value ωϕ(π) = 11.5, which also is smaller than the
objective function ωϕ(π

∗(λ = 3.5)) = 15). What is worse is that there are
two such different cuts π = (g, c, d, k) and π′ = (a, b, h, k), that have the same
constraint and objective values, ω∂(π

′) = 7 and ωϕ(π
′) = 11.5. Thus there

are several constrained minimal cuts for the energy ωϕ, and none of them are
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Fig. 1. Bottom Left, a hierarchy H with classes. The two trees in the top row, indicate
the two energies (ωϕ, ω∂) associated with the corresponding classes. π and π′ are two
cuts of H . Bottom right, in the nodes, we depict the λ values by equating parent and
child energies, whose level sets give the minimal cuts w.r.t. the ωλ. They are depicted
in the λ-tree for λ = 2, 3.5, 4 as π2, π3, π4. The λ values for the leaves are assumed to
be 0, though in case of Breiman et al. [4] λ for the leaf classes are set to ∞ to avoid
over-fitting.

obtained from the sequence of λ-cuts π∗(λ)! And we cannot take their infimum
π ∧ π′ = (a, b, c, d, k) because ω∂(π ∧ π′) = 8, which is above the constraint
C = 7.5. The plot of the different energies of the λ-cuts with the constraint are
shown in Figure 2.

Observations: For an imposed cost ω∂(π) ≤ C one is not assured of the exis-
tence of a corresponding multiplier value λ. The family of λ-cuts {π∗(λ), λ ∈ R}
is not complete to describe all possible constraint values. A cut that minimizes
ωϕ may not belong to the λ-cuts {π∗(λ)}. One may also remark that the dual
problem still remains a combinatorial problem. As we know from convex opti-
mization [3], given a multiplier, the dual Lagrangian serves as an upper bound
on the optimum corresponding to the primal Lagrangian. In our words, π∗(λ∗) is
only the upper-bound of the constrained minimal cuts. Furthermore the values
of λ can be discrete, real, or rational, while still lacking a C → λ constraint-
multiplier map. Finally, one can note that uniqueness is lost, even when ωϕ is
strictly h-increasing.

3 Everett’s Theorem

Everett’s seminal paper [5] studies resource allocation problem by a choosing
an optimal Lagrangian parameter. In literature one of its earliest uses appears
in source-coding by its usage by Shoham-Gersho [12] to study variable rate set
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Fig. 2. For 2 < λ < 3 the minimal cut is (a, b, c, d, i) and ω∂ = 8, for λ ≥ 3 the minimal
cut is (g, h, i) and ω∂ = 6, i.e. ω∂ is never equal to the cost C = 7.5 at any time

quantizers. The function f is an objective being minimized and g, h are inequality
and equality constraints, which are three real valued functions defined over an
arbitrary abstract set X . X need not be topological. Neither do we require
continuity, derivation, or convexity of the functions f, g, h.

Theorem 2. Given the Lagrangian function, with multipliers λ, μ

min
x∈X

{f(x) + μg(x) + λh(x)}

the solution x̄(λ) to this unconstrained minimization problem, is also an optimal
solution to perturbed primal problem, namely

minimize
x∈X

f(x)

subject to g(x) ≤ g(x̄(λ)); h(x) = h(x̄(λ));

For Guigues and Salembier’s problem, this can be restated as:

Theorem 3. Given the multiplier λ ∈ R and the Lagrangian function,

min
π∈Π(E,H)

{∑

S∈π

ωϕ(S) + λ
∑

S∈π

ω∂(S)

}

the solution π̄(λ) to this unconstrained minimization is also an optimal solution
to perturbed primal problem:

minimize
π∈Π(E,H)

∑

π

ωϕ(S) subject to
∑

S∈π

ω∂(S) ≤
∑

S∈π̄(λ)

ω∂(S)
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Everett’s theorem states the following: for any non-negative λ, if an uncon-
strained minimum of the Lagrangian function can be found, with solution x̄(λ)
or π̄(λ), then this solution is also the solution to the constrained problem whose
constraints are, in fact, the amount of each resource expended in achieving the
unconstrained solution. This implies that the constraints are set by choosing the
λ parameter. Any arbitrary set of non-negative λ’s works here, notably causing
the original constraint optimization problem to be unknown, and is only to be
defined once the Lagrangian’s solutions are determined.

4 Constrained Optimization by Energetic Lattices

We now present the energetic lattice framework for constrained optimization.
We shall first reformulate the minimization of the Lagrangian optimization using
the energetic lattice. Further on we develop a constrained optimization model,
where the constraint values a are based on refinement of partitions, as against the
purely numerical order. We also introduce inf-modularity, which generalizes the
sub-additivity of constraint function in Guigues [6], resulting in the important
Theorem 4.

4.1 Refinement and Energetic Lattices

There are two types of lattices we refer to in this paper, refinement lattices and
energetic lattices. The refinement lattices over a family of partitions, namely
Π(E) all partitions,Π(E,H), partitions from a hierarchyH and finallyΠ(E,B)
partitions from a braid B. Here Π(E,H), Π(E,B) are sub-lattices of Π(E).
When we say two partitions are ordered, πi ≤ πj , we refer to the refinement
ordering.

Given this family of partitions, and any singular energy ω we can now con-
sider the corresponding energetic order and lattice. Here, Πω(λ) is a based on
the energetic ordering 
ω(λ) w.r.t the Lagrangian ω(π, λ), of order 
ω(λ). The
minimal cut for this energetic lattice is π∗(λ) = �ω(λ){π, π ∈ Π}. The value of
ω(π, λ) for a cut π ∈ Π(E,B) is denoted by ω(π, λ), and that for the minimal
cut by ω(π∗(λ)). Similarly we have the lattices Πωϕ and Πω∂

for (
ωϕ , ωϕ) and
(
ω∂

, ω∂) energetic order-energy pairs, respectively. In these lattices the family
of partitions under study are assumed to be cuts, either from the hierarchy or
the braid under study.

4.2 Inf-Modularity

Definition 1. An energy ω∂ : D(E) → R
+ is said inf-modular when for each

p.p. π of support S ∈ P(E) we have

ω∂({S}) ≤
∧

{ω∂(a), a � {S}}. (6)
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Inf-modularity provides a non-linear version of sub-additivity [1], where the
former acts on partial partitions, while latter on general subsets of the space.
An energy ω is sub-additive when, for any p.p. π(S) of support S, the energy
ω(S) ≤ ∑

Ti∈π(S) ω(Ti) for the sake of comparison. Since the energy ω is defined

on partial partitions of E, we need to introduce the energy ω′
∂ on sets such that

ω′
∂(S) = ω∂({S}). Then any extension ω∂ of ω′

∂ to the p.p. of E which satisfies
the following inequality is inf-modular.

ω∂(S)(π) ≤
j=p∑

j=1

ω∂({Tj}) =
j=p∑

j=1

ω′
∂(Tj), (7)

Conversely, the restriction ω′
∂ to sets of an inf-modular energy ω∂ is sub-additive

[8]. For example, in a partition of R2 the perimeters ω′
∂ of the classes generate

an inf-modular energy ω∂ on the partial partitions.

4.3 Lagrange Families

Definition 2. A scalar Lagrange family of energies {ω(λ) = ωϕ + λω∂ , λ ∈ R}
is one where ω(λ), ωϕ, and ω∂ are singular and h-increasing, and further ω∂ is
inf-modular.2

Theorem 4. Let {ω(λ) = ωϕ + λ ω∂}, be a scalar Lagrange family of energies
on the partial partitions of a space E, and suppose λ > 0. Given a braid B on
space E, let Πω(λ), Πωϕ and Πω∂

be energetic lattices over the cuts π ∈ Π(E,B)
w.r.t. the Lagrangian ω(π, λ), the objective ωϕ, and constraint ω∂ respectively.
The minimal element of Πω(λ) is denoted by π∗(λ).

0 ≤ λ ≤ μ ⇒ π∗(λ) �ω∂
π∗(μ) and π∗(λ) 
ωϕ π∗(μ) (8)

i.e. as λ increases, the sequence {π∗(λ), λ > 0} of the λ-cuts w.r.t. the Πω(λ)

decreases in the energetic lattice Πω∂
and increases in the energetic lattice Πωϕ .

Concerning the energies ω∂ (resp. ωϕ) we have:

λ ≤ μ ⇒ ω∂(π
∗(λ)) ≥ ω∂(π

∗(μ)) (resp. ωϕ(π
∗(λ)) ≤ ωϕ(π

∗(μ))). (9)

Proof for this theorem is given in [8]. The two energies ωϕ and ω∂ vary in
opposite senses on the minimal cuts. The relation in (9) generalizes the result
of Salembier and Guigues over hierarchies and for linear energies ωϕ and ω∂ ,
to braids and Lagrange families. But the stronger implications (8) require the
energetic lattices Πωϕ and Πω∂

. The role of inf-modularity of the constraint
function ω∂ is demonstrated in Theorem 4.

5 Lagrange Minimization by Energy (LME)

In Everett’s theorem one considers a set X and objective f and constraints g, h
defined at any point x ∈ X . Our situation slightly differs: the set X is replaced

2 One can write a vectorial version!
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by the set of all cuts of a braid B, and this set is equipped with three different
lattice structures Πωϕ , Πω∂

and Πω(λ), governed by the three energies ωϕ, ω∂ ,
and ω(λ). The primal and dual problems must be re-stated in the new framework
of energetic lattice:

Problem 1. (LME Primal problem): Given a braid B, a constraint value C,
and objective and constraint functions ωϕ and ω∂, find the cut(s) π ∈ B that
minimize ωϕ(π), subject to the constraint ω∂(π) ≤ C.

The domain of the feasible cuts is Π ′ ⊆ Π(E,B)

Π ′ = {π, π ∈ Π(E,B), ω∂(π) ≤ C} (10)

which by its definition is a braid of partitions itself [9]. In the Lagrangian lattice
Πω(λ)(E,B) of energy ω(λ) = ωϕ + λω∂ , the λ-cut π∗(λ) is a cut with least
energy given the multiplier λ for the Lagrangian energy ω(π∗(λ)). The energy
ω(π∗(λ)) is a function of λ, ωϕ and ω∂ , but not of the cuts π ∈ Π . The dual
problem is relative to this energy ω(π∗(λ)):

Problem 2. (Multiplier Problem) Given a braid B on E and two energies ωϕ

and ω∂, find the parameter λ which maximizes ω(π∗(λ)), subject to the constraint
λ > 0.

The following theorem answers both primal and dual problems (proof in [8])

Theorem 5. Given a braid B, let {ω(λ) = ωϕ + λω∂ , λ ∈ R} be a scalar La-
grange family of energies. Let λ∗ = inf{λ | ω∂(π

∗(λ)) ≤ C}. If

1. the feasible set Π ′ is not empty,

2. Multiplier-Constraint map: ω∂(π
∗(λ∗))− C = 0,

then π∗(λ∗) and λ∗ are solutions of the problems 1 and 2 respectively . When ωϕ

is strictly h-increasing, then the solution π∗(λ∗) is unique.

Multiplier-Constraint Mapping: Theorem 5 demonstrates the multiplier de-
pendence of the constraint function as already discussed by Everett’s theorem
3. This Condition 2 in theorem (5) requires that for any constraint function
value ω∂(π) = C there exists a corresponding optimal multiplier λ∗ such that
ω∂(π(λ

∗)). This is a highly unrealistic constraint. Furthermore finding an opti-
mal multiplier in the dual domain returns us back to a combinatorial problem.
Even for very simple constraint values, in the counter example 1 there are cases
where no multiplier exists for an imposed constraint function value C. Instead
these methods, including Guigues, Salembier and other, rely on the capability
to approximate the imposed constraint function value by searching for a “good”
value of multiplier λ.
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6 Lagrange Minimization by Cut-Constraints (LMCC)

In the LMEmodel, the constraint function ω∂ and the costC are numerical, while
the minimization itself is expressed in the energetic lattices Πωϕ and Πω(λ). Can
we, alternatively, reformulate the constraint conditions directly with the cuts?
We now examine this question, by looking for the cuts smaller than or equal to
a given cut πC ∈ Πω∂

:

Problem 3. Find minimal cut πϕ ∈ Πωϕ subject to the constraint πϕ 
ω∂
πC .

ΠC = {π | π ∈ Π, π 
ω∂
πC}

Here πC is the set of feasible solutions and we have πϕ = �ωϕ{π | π ∈
ΠC}. As before, the Lagrangian ω(λ) = ωϕ + λω∂ , λ ∈ R, is introduced. It
induces the energetic lattice Πω(λ) of minimal cut π∗(λ). A new minimal λ is also
introduced by

λ∗ = sup{λ | π∗(λ) 
ω∂
πC} (11)

Problem 4. LMCC multiplier problem: find the value of the parameter λ which
optimizes π∗(λ) in Π(ω∂) subject to the constraint λ ≥ 0.

For solving jointly both problems 3 and 4, the following conditions are needed:

Theorem 6. Given a braid B, let {ω(λ) = ωϕ + λω∂ , λ ∈ R} be a scalar La-
grange family of energies. Let λ∗ = sup{λ | π∗(λ) 
ω∂

πC}. If

1. Constraint satisfaction: the set ΠC = {π | π ∈ Π, π 
ω∂
πC} is not empty,

2. Positive multiplier: λ ≥ 0,
3. Energetic-Lattice constraint assumption: πωϕ �ωϕ π∗(λ∗).

are fulfilled, then the set of feasibility in λ is λ ≥ λ∗, and π∗(λ∗) and λ∗ are the
unique solutions to the problems 3 and 4 respectively.

Proof. We first prove that the set of feasible λ are λ ≥ λ∗. According to relation
11 when λ > λ∗, then π∗(λ) doest not belong to the feasible set ΠC . Therefore,
if λ is such that π∗(λ) 
ω∂

πC , then λ ≤ λ∗; if in addition λ ≥ 0, then theorem
4 applies and π∗(λ∗) ≤ π∗(λ), hence π∗(λ∗) 
ω∂

πC , i.e. π
∗(λ∗) ∈ ΠC . Conse-

quently π∗(λ∗) �ωϕ π(ωϕ), and by assumption 3, πϕ = π∗(λ∗). The minimal cut
(of Lattice Πω(λ∗) is a solution of problem 3, and even the unique one, since πϕ

is the minimal element of a lattice. Concerning the multiplier problem we can
apply Theorem 4 since λ ≥ 0, which gives:

�ω∂
π∗(λ) 
ω∂

π∗(λ∗), ∀λ ≥ λ∗ ≥ 0.

As π∗(λ∗) is also an element of left hand side of the above inequality, thus we
obtain equality which solves the the multiplier problem. �
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Fig. 3. Constraint cut π0 shown in dotted line, which takes all classes below it. The
1-classes have ω∂ > C, the 0-classes have ω∂ ≤ C. First index the classes of H by a
lexicographic ordering from the root E to the leaves, and go top-down beginning at
the root. When a class S has all its sons T such that ω∂(T ) ≤ C, then replace S by its
sons. We assume for that the leaves in the hierarchy of partitions must all satisfy the
constraint to ensure a non-void feasible set.

In LMCC the minimal cut is unique, even when the energy is not strictly
h-increasing. This authorizes the use of sup and inf composed energies. The
comparison between LME and LMCC frameworks is instructive. One can also
notice that the assumption 3 of the theorem 6 turns out to be weaker than the
corresponding notion of in Theorem 5, as it involves an inequality only. Both
models show that Lagrangians still work for lattices of cuts, and not just only on
numerical lattices of energies. An interesting feature is that Theorem 6 applies
for infinite partitions of E, as soon as the number of classes is locally finite. This
covers the “remote sensing type” of situations, where the zone under study is
incomparably smaller than the total extension of the scene. The LMCC works
since it avoids the constraint approximation problem.

7 Class Constrained Minimization (CCM)

We now study a constraint applied purely to classes. This restricts the constraint
function to be defined now on the classes and no more on the partitions. This
section treats firstly the case of hierarchies and then that of braids, and develops
an alternative method for constrained optimization, which does not resort to
Lagrangians.

The hierarchy H under study is supposed to be finite. Provide the classes
S ∈ S of the hierarchy H with an energy ω∂ and fix a constraint value C.
Introduce now an objective energy ωϕ that is h-increasing and singular. We can
now set the following problem:

Problem 5. Find the cut(s) of H of smallest energy ωϕ(π), such that all classes
in these cuts satisfy the constraint ω∂(S) ≤ C.

The method consists in generating a new hierarchyH ′ where the minimization
of ωϕ is no longer conditioned. Let A(C) stand for the family of the cuts π of H
whose energies of all classes are ≤ C:

π ∈ A(C) ⇔ {S � π ⇒ ω∂(S) ≤ C}. (12)
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Obviously, the problem is feasible if and only if A(C) is not empty. Since
the family A(C) is closed under the refinement infimum, it admits a smallest
element π0:

π0 = ∧{π, π ∈ A(C)} (13)

The classes of π0 can be interpreted as the set of leaves of a new hierarchy H ′,
identical to H above and on π0, but where all classes below π0 are removed (see
Figure 3). The cuts π of H ′ are exactly those of H that satisfy the constraint
ω∂(π) ≤ C. The problem now reduces to find the minimal cut of H ′ w.r.t. ωϕ, a
question that we already know how to treat. As the minimization is understood
in the ωϕ-energetic lattice Π(ωϕ, H

′) relative to H ′, we have to suppose ωϕ

singular and h-increasing, and we can state:

Proposition 1. When ωϕ is a singular and h-increasing energy, then the min-
imal cut π∗

ϕ in the ωϕ-energetic lattice Π(ωϕ, H
′) is also a cut of smallest ωϕ

energy in Π(ωϕ, H) whose all classes S∗ satisfy the cost constraint ω∂(S
∗) ≤ C.

The result is important. It grants the existence and the uniqueness of the
minimal cut π∗

ϕ under very large conditions: no prerequisite is needed for ω∂ ,
and uniquely singularity and h-increasingness for ωϕ. Note that the cost C need
not be constant. Equivalence (12) holds on each class separately. C may vary
through the space, or according to the level i in the hierarchy. When the energy
ωϕ is also increasing w.r.t. the refinement of the cuts (e.g. the usual version of
Mumford-Shah objective energy), i.e. when:

π1 ≤ π2 ⇒ ωϕ(π1) ≤ ωϕ(π2), (14)

then the minimal cut π∗
ϕ coincides with π0, since π0 ≤ π ⇒ ωϕ(π0)=∧{ωϕ(π), π∈

A(C)} = ωϕ(π
∗
ϕ). It remains to build up the hierarchy H ′ i.e. to find the leaves

π0. Suppose now that ω∂ is inf-modular. Let

ω∂(S) ≤ ∧{ω∂(T ), T son of S}, (15)

i.e. the energy ω∂ of class S is smaller or equal to the smallest energy of the
sons of S. Such class inf-modularity acts on classes and no longer on p.p. as in
Rel.(6), but both are equivalent. The partition π0 is obtained at the end of the
scan, i.e. in one pass. A toy example is given in Figure 3. W.r.t. the ω∂-energetic
lattice Πω∂ ,H′ , the cut π0 turns out to be a maximum.

8 Conclusion

We began this theoretical paper by using the Everett’s theorem to show that λ-
cuts in case of Guigues [6], and optimal prunings of Salembier [11] provide only
an upper-bound on minimal objective energy. This was explicated further by
the dependence of the constraint function values on the Lagrangian multiplier,
and also the possibility of the non-existence of multipliers for certain constraint
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values and vice versa. The constraint function values were shown to be lattice
structured and not varying continuously. This motivated the use of an energetic
lattice framework. This gave us two ways to enforce of a constraint:

Numerical Minimization: Lagrangian Minimization by Energy (LME) model
enforces a numerical constraint on energy, without referring to the partition
structure. The Energetic lattice was used to generalize the Lagrangian model in
LME, when one works in the space of partitions from a braid.

Lattice structured Minimization: LagrangeMinimizationbyCut-Constraints
(LMCC) and Class Constrained Minimization (CCM) models enforce the
constraint in the form a partition. This does not involve any numerical constraint
function, but one that is driven or evaluated on the energetic lattice.
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