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Abstract. A local blur estimation method is proposed, based on the
difference between the gradient and the residue of the toggle mapping.
This method is able to compare the quality of images with different
content and does not require a contour detection step. Qualitative results
are shown in the context of the LINX project. Then, quantitative results
are given on DIQA database, outperforming the combination of classical
blur detection methods reported in the literature.
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1 Introduction

With the proliferation of handheld devices equipped with high resolution cameras
and increasing computational power, many mobile applications become possible
nowadays. Text is present everywhere in our everyday’s life. Visually impaired
people have no access to it. In the framework of LINX project we aim at de-
veloping a smartphone application making access to textual information possi-
ble within everyone’s reach, including visually impaired people. This project is
funded by the French Interministerial funds (FUI) for competitive clusters.

LINX conditions of use are not under control. The user being visually im-
paired cannot check the acquired image quality: bad lighting conditions, blur or
noise can degrade the acquired image. We focus here on blur, which is a com-
mon problem linked to handheld devices and low cost objectives of smartphone
cameras.

Blur estimation is an extensively studied topic in the literature. Image quality
assessment techniques can be classified in 3 groups:

– Full reference techniques, which compare the image to be evaluated with the
undegraded version of it. This comparison can be based on the mean square
error, the PSNR, the cross-correlation between both images, the structural
similarity index [25] or any other fidelity measure.

– Reduced reference: the comparison is based on some features and not on the
whole image.
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– No-reference: the image quality assessment is based only on the degraded
image itself. This is the most difficult case, and corresponds to the LINX
context, where only the acquired image is available.

No-reference sharpness metrics have been defined in the spatial and in the
frequency domain. Some spatial metrics are based on variance computation [9],
total variation, gradient [8], Brenner’s gradient [3], multiscale gradient [5], lapla-
cian [16]. Others are based on edge width estimation [15,4] or on histogram
measures such as histogram entropy [11,21,17].

Examples of spectral focus measures are the relative high frequency power
compared to the low frequency one, the sum of frequency components above a
certain threshold [8] or the correlation of wavelet coefficients over scales [6,24].
Other works rely on the phase coherence [10,14,1].

Most of these methods have been designed in an autofocus context. They
can rank the quality of an image from an image set as long as their content is
similar. Therefore, they are not appropriate for our application. Some attempts
have been made in order to drop this restriction. Local approaches have been
proposed, computing the metric in a given neighborhood [19], that has to be
defined, or after a contour detection step [4,18].

Several papers address the specific problem of document image quality and
try to correlate the quality measure with an OCR accuracy [2,18,26]. An inter-
esting database, DIQA, has been introduced in this context [13]. 25 documents
have been acquired with a mobile-phone camera. 6 to 8 different images of each
document were taken. The camera was focused at varying focal lenghts to gen-
erate a series of images with focal blur. The quality of each image is estimated
as the OCR accuracy on it.

In this paper we introduce a local blur estimator that does not require a
prior contour detection, nor a neighborhood definition. The rest of the paper is
organised as follows: section 2 presents the toggle-mapping based blur estimator,
section 3 evaluates its performance on DIQA dataset [13]. Finally section 5
concludes the paper and discusses some perspectives of this work.

2 Toggle Mapping Based Blur Estimation

Toggle mapping (TM) operator was introduced in [12]. From an image f , two
transformations are computed: the dilation, δB(f) and the erosion εB(f). Equa-
tion 1 describes the toggle mapping operator:

TMB(f) =

{
δB(f) if δB(f)− f < f − εB(f)
εB(f) otherwise

(1)

where δB(f) and εB(f) correspond respectively to the dilation and the erosion
with structuring element B.

Thus, each pixel is replaced by one of these two transformations, selecting
among them the one that is closest to the original pixel value. This process can
be iterated until convergence is reached. This principle was generalized in [22],
with the use of other transformations involved in the toggle process.
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TM was designed as a contrast enhancement operator. It was also used as
scene text segmentation tool in [7]: pixels replaced by the dilation are set to
1 and those replaced by the erosion are set to 0. In this paper a local blur
estimation is introduced based on TM.

We define the residual image as the absolute difference between the original
image and the TM:

TM ResidueB(f) =

{
δB(f)− f if δB(f)− f < f − εB(f)
f − εB(f) otherwise

(2)

A blur boundary leads to a high residue, and this residue increases with the
size of the structuring element involved in the TM. This is true up to a TM
size equivalent to the blur edge width. A blur estimation could then be built
on the evolution of the TM residues, with a series of structuring elements of
increasing size. However a sharp boundary and a homogeneous region would
have the same series of low value TM residues. In order to distinguish between
these two situations we compare these residues with the gradient value. The
morphological gradient is defined as the difference between the maximum and
the minimum in the neighborhood of a pixel (δB(f) − εB(f)), while the TM
replaces each pixel with the closest extremum in the neighborhood, that is either
the maximum or the minimum. Thus, by definition, the residue of the TM is
lower than the gradient. However if the TM uses a larger structuring element
(BM instead of BN , with M > N) its residue can reach the gradient value. In
which case, the pixel is classified as blur. Therefore we define the Q image as:

QBN ,BM (f) = max (0, gradientBN (f)− TM ResidueBM (f)) (3)

Q image is filtered: first it is thresholded (threshold = 3 for all our exper-
iments), then small regions (less than 5 pixels) are removed and finally Q is
averaged in each connected component. The result is Qfilter image.

Figure 1 shows an example with intermediary images. Figure 1(a) is a crop
of an image acquired by a LINX end user with a mobile phone. The image
is sharp but we can observe some noise that can be reinforced by the toggle
mapping operator. A bilateral filter [23] is applied to get rid of this noise, see
figure 1(b). Figure 1(c) shows the toggle mapping of figure 1(b) and figure 1(d) its
corresponding residue. This residue is subtracted from the gradient image shown
in figure 1(e), leading to pixel-wise quality estimation in figure 1(f). Figure 1(g)
illustrates the Qfilter image. Figure 2 shows the flow chart of the algorithm.
The letters of the diagram (from (a) to (g)) correspond to intermediary images
of figure 1. The average of selected pixels for this image is equal to 34, and it can
be considered as the quality score qscore of the crop, assuming it is homogeneous.

3 Results

In this section we will show qualitative results from LINX examples and quan-
titative results when applying our algorithm to DIQA database.
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(a) original image (b) bilateral filter (c) toggle mapping of (b)

(d) gradient image of (b) (e) TM residue = |(b)− (c)| (f) Q = max(0,(d) - (e))

(g) Qfilter

Fig. 1. Intermediary steps of local quality estimation: (b) Bilateral filter σspatial =
2, σgray = 20; (c) Toggle mapping of size 2; (d) Gradient of size 1; (e) |(b) − (c)|; (f)
Q = max(0,(d)-(e)); (g) Qfilter with threshold equal to 3, regions larger than 5 pixels
and average Q on each selected connected component

Fig. 2. Flow chart of the algorithm

The parameters used in all our experiments (if not specified otherwise) are:

– Bilateral filter σspatial = 2, σgray = 20
– Structuring element: cross (4 neighbors)
– Gradient of size 1 (3x3 pixels)
– Toggle mapping residue of size 2 (5x5 pixels)
– Threshold: 3
– Small regions: 5 pixels

Figure 3 shows some examples with different levels of blur from LINX database.
In the first row we can see a good quality image example, with a quality score of
30. In the second row a good quality image with a score of 20 and in the third row
a blurred image with a score of 4. We can observe a good correspondence of our
score and the observed quality.
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Fig. 3. Example of LINX images with different levels of blur. First row: sharp image
(qscore=30). Second row: Good quality image (qscore=20). Third row: Blurred image
(qscore=4). Left column: original image, Middle column: bilateral filter, Right column:
Qfilter.

(a) original image (b) bilateral filter (c) Qfilter

Fig. 4. Example with heterogenous blur. First row, the whole image; second row a
crop from the top of the image, in a blurred area (qscore=5); third row a crop from the
middle of the image, in a good quality area (qscore=10).
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One of the advantages of our method is that the measure is local. Figure 4
shows an example with heterogeneous blur. The upper part of the image is more
out-of-focus than the lower part. We can observe a higher result in the lower
part. Two crops from different areas have been extracted, and we confirm a
good correlation of our measure with the image quality: the crop from the upper
part has a quality score equal to 5 while the crop from the lower part has a
quality score equal to 10. Note that the crop has been extracted for visualization
purposes. The measure is local and each region has its own score.

In order to have quantitative results we apply our algorithm to the recently
published DIQA image database [13]. It is an interesting dataset, composed of
175 document images acquired with a mobile phone. It is noteworthy that images
are directly acquired by a camera, so the blur is not simulated. 25 documents
have been acquired, 6 to 8 times each, in different conditions: from perfect focus
to completely out-of-focus images. The quality of each image is given by the
OCR accuracy on the processed image. Three different OCRs have been used:
Tesseract, FineReader and Omni. The overall accuracy of these OCRs on the
whole database are:

Tesseract FineReader Omni
OCR accuracies: 0.53 0.76 0.72

FineReader leads to the best overall accuracy (0.76) and will be our reference
in the rest of the paper, unless stated otherwise. Figure 5 shows 3 crops from
this dataset, with an OCR accuracy ranging from 0.97 to 0.24. Our quality score
for these images ranges from 5 to 55. Spearman correlation is commonly used to
assess the coherence of two variables without taking into account their precise
values. It compares their ranking indexes instead of the variables themselves. In
our example, the ranking based on the OCR accuracy or on our quality score
is the same ( 1.- (a); 2.-(b); 3.-(c)). Thus, for this simple example with only
three images, our quality score is perfectly correlated with the OCR accuracy:
the Spearman correlation between them is then equal to 1.

Some works [13,20] have tried to estimate the OCR accuracy based on some
features extracted from the image. The score used for comparing different meth-
ods is the median of the Spearman correlation applied to each document set. The
scores reported are over 0.9. We think that the proposed score overestimates the
quality of the OCR accuracy prediction. Indeed, if the Spearman correlation is
computed for each document set, the content of images to be compared is sim-
ilar. The context is then close to an autofocus situation which is much easier
than comparing the quality of images with different content. This problem is
pointed out in [20]: a failure is reported for an image with a low focus measure
whereas the OCR accuracy is over 0.9, provoked by the large white space in the
page. Another reported issue concerns an image with a high focus measure with
a low OCR accuracy due to a text out-of-focus but a huge headline leading to a
focus measure optimistically high. Those are exactly the situations that we ad-
dress in this paper. Moreover, as stated in [20], by reporting the median value,
outlier classes in which the methods might not perform well are disregarded.
They propose to compute the Spearman correlation directly for the 175 images
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(a) 2012-04-16 17-34-12 68 (b) 2012-04-16 17-32-27 295 (c) 2012-04-16 17-33-23 805

(d) OCR accuracy=
0.9738; qscore=55

(e) OCR accuracy =
0.8861; qscore=14

(f) OCR accuracy =
0.2412; qscore=5

Fig. 5. DIQA examples. First row: original images. Second row: Qfilter Left
(FineReader accuracy = 0.9738; qscore=55), Middle (FineReader accuracy =0.8861;
qscore = 14). Right (FineReader accuracy = 0.2412; qscore = 5).

Table 1. Spearman correlation of our quality score against OCR accuracy, with dif-
ferent pre-processing filter

Filter FineReader Tesseract Omni

original 0.745 0.711 0.622

AF 1 0.784 0.748 0.645

bilateral 1 0.816 0.813 0.692

bilateral 2 0.849 0.892 0.725

bilateral 3 0.843 0.902 0.727

median 1 0.787 0.756 0.659

median 2 0.822 0.808 0.690

of the database. We adopt this proposal that we find more reliable. They report
in [20] a Spearman correlation of 0.6467 for the whole database as a single set
for FineReader OCR.

Table 1 summarizes the results of Spearman correlation between our quality
score against the OCR accuracy for 175 images in DIQA dataset. A higher Spear-
man correlation value indicates the method’s ability to rank images according
to the expected OCR accuracy. Our score is 0.745 compared to 0.6467 reported
in the [20] combining several classical descriptors from [19]. As we observed
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Table 2. Spearman correlation on document 1 from DIQA dataset. Spearman corre-
lation(our score,tesseract) = 0.53. Spearman correlation(our score,FineReader)=0.89.

imA imB imC imD imE imF imG

Our score: 16 17 35 38 19 6 37
Our rank: 6 5 3 1 4 7 2

Tesseract accuracy: 0.77 0.78 0.87 0.86 0.70 0.12 0.71
Tesseract rank: 4 3 1 2 6 7 5

Finereader: 0.95 0.97 0.99 0.98 0.97 0.13 0.98
Finereader rank: 6 5 1 2 4 7 3

Fig. 6. Example with large characters in a blurred context, but still readable

a qualitative improvement in LINX database using a prefiltering step, we tried
different filters (alternate filter AF, bilateral or median filter) on DIQA database
and the best result was 0.849, obtained by a bilateral filter of size 2 (σgray was
fixed to 20, and we have not verified yet the sensitivity of this parameter in our
quality measure).

4 Discussion

Spearman correlation estimates the correlation between two ranked variables.
For example, if we take the 7 images of the first document of DIQA dataset we get
a quality score ranging from 6 to 38. The Spearman correlation between our score
and Tesseract accuracy is 0.53. It can be considered as a relative low correlation
value. However analyzing the result closer we can observe that imF is classified as
the worst image in both cases. imC and imD have quite similar values (0.87 and
0.86 for Tesseract accuracy and 35 and 38 for our score respectively). The ranking
is different but the difference in quality between the two images is small. Both
measures are able to estimate the different groups of image quality but Spearman
correlation does not catch these similarities between images. Somehow it would
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be interesting to quantize the scores and do not consider an error for ranking
differences in the same quantile.

Another issue is related to the scale. Images of figure 6 contain large blurred
characters. As they are blurred, no good quality pixel is selected and the image
is then rejected. However despite the blur the characters are still readable.

5 Conclusions and Perspectives

In this paper we introduce a local quality estimation approach. It is used as a
pre-processing step in a mobile phone application, aiming at avoiding further
processing of bad quality images. The method compares the residue of a toggle
mapping of size N with the gradient of size M , with M < N .

The interest of the approach is shown first through several LINX images.
The quality scores obtained are correlated with the perceived quality of the
images. Then, in order to evaluate quantitatively the efficiency of our method
we rank the quality of the DIQA images. A Spearman correlation of 0.745 is
reached, between our score and FineReader accuracy. This performance is to be
compared to 0.6467 reported in the literature, combining several classical blur
descriptors. Our performance raises to 0.849 if a bilateral filter is applied before
estimating the quality. The OCR accuracy is given for the whole image. It would
be interesting to verify if the errors appear when the quality is locally lower, for
some images with heterogeneous focus.

In the future we will set the quality threshold values for accepting or rejecting
a region in the context of the LINX project. Intermediate quality values could
be considered: contrast enhancement would be applied in those cases, before
further processing. We will also address the problem of large blurred characters,
in a multi-scale approach.

Acknowledgments. The work reported in this paper has been performed as part of
Cap Digital Business Cluster LINX Project.
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