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35 rue St Honoré, 77300 Fontainebleau, France

{jean-charles.bricola,michel.bilodeau,serge.beucher}@mines-paristech.fr

Abstract. Given a pair of stereo images, the spatial coordinates of a scene
point can be derived from its projections onto the two considered image
planes. Finding the correspondences between such projections however re-
mains the main difficulty of the depth estimation problem: the matching
of points across homogeneous regions is ambiguous and occluded points
cannot be matched as their projections do not exist in one of the image
planes.

Instead of searching for dense point correspondences, this article pro-
poses an approach to the estimation of depth map which is based on the
matching of regions. The matchings are performed at two segmentation
levels obtained by morphological criteria which ensure the existence of
an hierarchy between the coarse and fine partitions. The hierarchy is
then exploited in order to compute fine regional disparity maps which
are accurate and free from noisy measurements.

We finally show how this method fits to different sorts of stereo im-
ages: those which are highly textured, taken under constant illumination
such as Middlebury and those which relevant information resides in the
contours only.

Keywords: Watershed · Segmentation hierarchies · Disparity estima-
tion · Joint stereo segmentation · Non-ideal stereo imagery

1 Introduction

The estimation of depth maps from stereoscopic data traditionally comes down
to finding pixel correspondences between stereo images. For the sake of simplicity,
we assume throughout this paper that stereo images are rectified such that any
scene point projects with the same ordinate in the stereo image planes. The
difference in abscissa is referred to as the disparity and is inversely proportional
to the depth being searched for.

Modern approaches are based on dense pixel correspondences and resort to the
framework described in [11]. The first step consists of computing the matching
costs between a pair of pixels for each scanline and for each disparity belonging
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to the search domain. The cost is obtained by means of a dissimilarity mea-
sure between the patches centred at the pixels being under study. The reader
may find an exhaustive list of such measures in [7]. The second phase of the
estimation aims at ensuring a disparity consistency among the scanlines. Local
approaches achieve this by diffusing the costs across the scanlines which results
in fast algorithms and end with a refinement process. Global approaches gener-
ally associate an energy to the disparity map which takes account of both the
disparity local costs and the consistency across neighbour pixels. This energy is
eventually minimised to yield to final disparity map.

Many of these approaches seek the actual frontiers of objects within their
estimation process. For instance, the gradient of the image is used in order to
determine depth continuities in [6], whilst a geodesic distance across a relief de-
fined by the image intensity values is used in the context of pixels matching [5]
so as to weight the importance of pixels which are in the vicinity of the patch
centre with respect to the scene. This leads to a strong interest in using re-
gions for stereo image analysis, because they determine the frontiers of objects
as well as the membership of an occluded pixel within a region that is only
semi-occluded. Several region-based algorithms have already been made avail-
able which either exploit matchings across over-segmentations [15] or fit planes
through object-oriented regions given a non-refined disparity map such as [4,14].

In this work, we propose a novel region-based stereo algorithm with the fol-
lowing contributions:

1. The disparity maps are estimated without relying on dense pixel matchings.
This aspect is interesting for stereo imagery which is either poorly textured
or subject to noise because the assumption that a majority of valid pixel
matchings exists with respect to the usual aggregation step may no longer
hold. Hence this approach does not assume the existence of a roughly good
initial disparity estimate.

2. Disparities are estimated at the region level on a hierarchy of segmentations
composed of the coarse level which highlights the objects in the scene and a fine
level which is over-segmented. The computations are performed in waterfalls:
first at the coarse levelwhere depth planes are highlighted, then at the fine level
for which a finer degree of precision is obtained. One can choose at which level
to stop the algorithm depending on the speed required for its application.

3. Contours are taken into account within the estimation process after a care-
ful reasoning on occlusion boundaries. Disparities along contours are often
misused because they require the knowledge of object membership. This
problem has little been raised, with the exception of [13] which exploits
boundary junctions to this end.

The mechanism of the depth estimation system is presented in section 2. The
method exploits the advantages offered by a marker-driven watershed. Markers
are used to produce the coarse and fine segmentations and are transferred across
stereo images in order to produce equivalent segmentations which facilitate the
establishment of contour point correspondences. These aspects are discussed in
section 3.
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2 Top-Down Estimation of Disparities

The proposed method relies on the concept of regional disparity. We define the
regional disparity as a measure attributed to a region of the reference image. This
measure represents the average disparity of the pixels that compose the region
and is obtained by searching for a displacement which optimally superimposes
the region with the target image.

In this approach, regional disparities are initially computed for a coarse parti-
tion of the reference image. At this level, region matchings (section 2.1) are quite
stable because of their singularity. The resulting disparity map constitutes a gross
approximation of the true disparity map, with the most important imprecisions
across regions not being fronto-parallel to the camera. At the over-segmented
level, matching errors are more frequent, but disparity variation is better cap-
tured because regions are smaller. A relaxation process (section 2.2) that relies
on the disparity map obtained at the coarse level is applied onto the disparities
obtained for the fine partition in order to correct any mistaken measure and
ensure some smoothness across the coarse segments. Finally, a regularization of
the depth map based on a linear estimation process called kriging (section 2.3)
is performed so as to obtain the final disparity maps.

2.1 Region Matchings and Regional Disparities

A region R is represented as an indicator function R such that R[x, y] = 1 ⇔
(x, y) ∈ R. We denoteR(d) the region obtained by shiftingR of d pixels along the
horizontal image axis and define its indicator function byR(d)[x, y] = R[x−d, y]. A
partition is a set that contains all the regions extracted from an image.We describe
the coarse partitions of the reference and the second images of the stereo pair as
PC1 and PC2 respectively. We also let PF1 to be the fine partition obtained for the
reference image. The disparity d� is assigned to a region of the reference image
if its superimposition onto the second image shifted from d� pixels minimises a
dissimilarity cost chosen according to the image acquisition setup.

A popular dissimilarity measure employed on images acquired under the same
illumination conditions is the Sum of Absolute Differences (SAD) between the
image intensities. It is possible to evaluate the SAD for each region of the ref-
erence image and choose the disparity that yields the superimposition with the
minimum cost. However, when a region undergoes a semi-occlusion in the sec-
ond image, the true superimposition is likely to come at a high cost because it
partially compares pixels with an occluding object. That results in errors as can
be seen in figure 1(b). To circumvent that issue, it is best to compute a mean
of absolute differences for each region resulting from the intersections of the ref-
erence image partition and a coarse partition of the second image of the stereo
pair at every possible disparity and search for the region and the disparity that
minimises the mean.

The Jaccard distance [9] measures the overlap between two regions by com-
puting the ratio between their intersection area and union area. The distance
between two regions is then expressed as:
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cJaccard(Ri,Rj) = 1− |Ri ∩Rj|/|Ri ∪Rj| (1)

Theasymmetric versionof this distancewhich replaces |Ri∪Rj |by |Ri| in equation
1 can be used to discard the dissimilarity costs obtained across region intersections
which cover less than a reasonable threshold of the reference image region. Doing
so yields the coarse regional disparity map represented in figure 1(c).

(a) (b) (c)

Fig. 1. (a) Coarse and fine segmentations obtained for the reference image of Teddy.
(b) Regional disparities obtained for the coarse partition without a constraint partition
PC2 and (c) with a constraint partition PC2. Semi-occluded regions are less affected by
measurement errors when using a constraint partition.

When images are poorly textured and acquired under different lighting con-
ditions, the contours appear to remain the most pertinent criterion for matching
regions. To this end, the gradients of the stereo images are compared using the
SAD taking note of the following observation: a contour that separates two re-
gions always constitutes the physical frontier of one of the regions but might
constitute an occlusion border for the other region. For this reason, the regional
disparities are computed across subregions of the reference image illustrated in
figure 2: every region Ri of the reference image is split into two subregions de-
noted by Ri−L and Ri−R along its vertical skeleton. Regions which are likely to
be semi-occluded are those for which the disparities of their subregions differ sig-
nificantly so that the highest disparity equals the disparity of a neighbour region,
the one which is occluding. The following rectification is therefore applied on the
regional disparities: if d�(Ri−R) � d�(Ri−L) and d�(Ri−R) � d�(Rj−L) such
that Ri−R and Rj−L are neighbours, the disparity d�(Ri−L) is transferred to
Ri−R. And vice-versa.

2.2 Relaxation of Regional Disparities on the Fine Partition

A relaxation process is applied to the disparities initially measured on the fine
partition. The process consists of detecting wrong disparity measures, ensuring
that disparities evolve smoothly across neighbour regions whilst permitting dis-
continuities at objects frontiers. For that reason, the relaxation process is applied
independently on each cluster of fine regions composing the same coarse region.
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Fig. 2. Interpretation of regional disparities attributed to subregions when comparing
the image gradients. Every region Ri is split along its vertical skeleton into left and
right sub-regions Ri−L and Ri−R. A region that is semi-occluded, in this example
Ri, has a piece of contour having a disparity equal to the disparity of the occluding
region Rj which is likely to result in d�(Ri−R) � d�(Rj−L). The disparity d�(Ri−L)
is related to the physical frontier of Ri and constitutes the sole disparity representative
of the displacement of Ri.

The relaxation is implemented in the framework of Markov fields. The field’s
nodes represent the fine regions enclosed in the coarse region under study and
the edges model the adjacency relationships between these regions. An objective
function is assigned to every Markov field and is expressed as a sum of pair-
wise terms Pi,j which grow quadratically with the difference between disparities
assigned to neighbour regions Ri and Rj , denoted as d◦(Ri) and d◦(Rj) respec-
tively, and a sum of unary terms Ui which penalize the assignment of a disparity
d◦(Ri) that strongly contradicts the initial measure d�(Ri). It is of course es-
sential to determine the reliability αi ∈ [0, 1] of a disparity measure d�(Ri) and
modulate the unary terms accordingly. To this end, we use the disparity map
obtained for the coarse partition to localise both the fine regions which are likely
to be severely occluded in the second image of the stereo pair and those whose
disparity is significantly too far from the coarse regional disparity dC . The mea-
sures attributed to these fine regions are assumed to have a low reliability. The
pairwise and unary terms are defined by equations 2 and 3 respectively.

Pi,j ∝ (d◦(Ri)− d◦(Rj))
2 (2)

Ui = αi|d�(Ri)− d◦(Ri)|+ (1− αi)|dC − d◦(Ri)| (3)

Finally, the disparity assignments which minimise the objective function are
found using the minimum cut algorithm described in [10]. The effect of the
relaxation process is illustrated in figures 3(b) and 3(c).

2.3 Regularisation of Disparity Maps

The regularisation of disparity maps is performed by ordinary kriging [2]. Given
a set of samples for which the values are known as well as a variogram modelling
the variability of the values taken by two points in terms of their distance, the
kriging computes an unbiased estimator which minimises the variance of the
estimation error.
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Since there is no prior information regarding the expected depth map, we
assume that the variability between two pixels in terms of disparity is propor-
tional to their euclidean distance provided that these pixels are included in the
same coarse segment. The kriging is applied independently on every coarse seg-
ment. The seeds originate from points belonging to the watershed of the coarse
partition and from pics or holes enclosed in a region (cf. figure 3(e)). A corre-
spondence in the second image is searched for each candidate seed. Only those
having a disparity equal to the regional disparity of the fine region in which they
are enclosed are eventually retained within the refinement process which yields
the result presented in figure 3(f).

Fig. 3. The top-down approach to depth map computation. (a) Regional disparities
of PC1 which serve as a basis for detecting wrong measures on the (b) brute regional
disparity map of PF1. (c) Regional disparities issued from the relaxation process on PF1

and (d) its visualisation with a restricted range of disparities. (e) Contour disparities
along the watershed of the coarse segmentation and internal points disparities. (f)
Interpolation result obtained by kriging.

3 Joint Stereo Segmentations Using Markers Transfer

The watershed-based segmentation [3] controlled by markers plays an essential
role in this approach. This section is devoted to the mechanisms employed for
extracting markers which delineate the salient objects in the scene, even if the im-
age gradients suffer from leakages, and for computing equivalent segmentations
between the images composing the stereo pair given the regional disparities and
matching criteria presented in section 2.

3.1 Markers Extraction

The h-minima of a function g are defined as a binary function M(g, h) which
exclusively equals 1 at any point satisfying R∗g (g + h)−g > 0, where the elevation
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h is a positive constant and R∗g (g + h) stands for the dual geodesic reconstruction
of g+h on top of the original function g. Taking the h-minima of a colour gradient
yields markers which segment regions based on their frontier contrast. Although
h has been fixed in all our experiments, it is worth mentioning that this elevation
can be dynamically determined using a method similar to [12].

Markers originating directly from the h-minima have a severe inconvenient
because two catchment basins of g merge as soon as a point with the smallest
altitude on the watershed of g has been flooded. This favours premature fusions
of h-minima as h increases when the gradient is subject to leakages. One way of
preventing a flood at such leaking passages is to analyse the shape of the lakes
resulting from the flooding induced by the h-minima. To this end, an adaptive
erosion is applied on the h-minima and yields the marker set resulting from the
indicator function in equation 4:

Mα(g, h)[x, y] =

{
1 if (D − RD (αD)) [x, y] > 0

0 otherwise
(4)

where D is the distance function computed by successive erosions on the marker
set issued from M(g, h), α ∈ [0, 1[ is a scaling factor controlling the intensity of
the erosion and RD (αD) stands for the geodesic reconstruction of the rescaled
distance function under the original distance function. The adaptive erosion
splits markers at narrow valleys with respect to their distance function. New
markers are contained in the original h-minima and all h-minima can be recon-
structed from the new marker set.

3.2 Stereo Equivalent Segmentations

Themorphological co-segmentation consists of obtaining equivalent partitions be-
tween the images composing a stereo pair. In that context, the watershed seg-
mentation driven by markers remains the tool of choice. The first experiments are
presented in [3], where the idea is to propagate the markers obtained for the ref-
erence image to the second image. We now propose two mechanisms for obtaining
equivalent segmentations of stereo images thanks to the transfer of labels onto
image markers. The first one which is asymmetric relies on the regional dispar-
ities directly without being concerned about the matching criteria which makes
it ideal for non-ideal stereo imagery. The second one which is symmetric revisits
the matching criteria discussed in section 2 and in the current form applies only
to images taken under the same illumination conditions. However, its mechanism
identifies regions which are occluded in the reference image and attributes them
a specific label which does not exist in the reference image partition.

Asymmetrical Transfer. In this algorithm, the transfer of markers is guided
using the regional disparities presented in section 2. The algorithm first con-
sists of estimating the equivalent partition of the second image, followed by the
labelling of the gradient minima from which the watershed is eventually con-
structed.
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(a) (b) (c)

Fig. 4. Asymmetric co-segmentation of (a) Art reference image from Middlebury
database. (b) Reference image segmentation. (c) Equivalent segmentation of the sec-
ond image. The labels attributed to the markers are preserved throughout the co-
segmentation process and yields a matching between regions.

Given thepartitioning of the reference imageas a labelmapL1, such thatL1[x, y]
= i ⇔ Ri[x, y] = 1, the label map L2 is estimated according to equation 5.

L2[x, y] = argmax
i

{d�(Ri)×Ri[x+ d�(Ri), y]} (5)

Hence, each region Ri belonging to the reference image partition is shifted ac-
cording to its regional disparity. The shifts are of different intensities implying
therefore the existence of some overlaps between the shifted regions. In the case
of an overlap, only the region which has the smallest depth can be visible to the
camera. Hence L2[x, y] is set to the label of the region which remains visible at
(x, y). The other regions at that point can be marked as being occluded.

The equivalent segmentation is obtained by computing the watershed con-
trolled by the minima of the gradient of the second image. The labels estimated
in L2 are transferred to the markers, i.e. if (x, y) belongs to the minima, then the
label L2[x, y] is attributed to that point. The preservation of labels through the
co-segmentation process yields the matching between the regions of the stereo
partitions, as shown in figure 4.

The asymmetrical transfer has one limitation: it is impossible to represent
regions in the second image which do not appear in the reference image. Such
regions are directly merged in the equivalent segmentation to regions that are
visible in the reference image. So another way to tackle the co-segmentation
problem is to focus on a symmetrical transfer.

Symmetrical Transfer. The problem now comes down to relabelling the mark-
ers obtained independently for each image of the stereo pair. To achieve this,
a sequence of back-and-forth label transfers is performed until no label changes
after one of the transfer. Let MC1 and MC2 be the set of markers chosen for
computing the coarse segmentations of the reference and the second image re-
spectively. We define as c(mi,mj) the cost of transferring the label of mi ∈ MC1

to mj ∈ MC2. A single way transfer consists of:
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1. Defining the affinity cost c(mi,m
(d)
j ) between mi and mj shifted by d pixels.

This cost is initialized to the mean of absolute differences between the image

intensities across each intersection. If mi ∩m
(d)
j = ∅, the cost is set to +∞.

2. Searching for a set of markers J
(d)
i = {m(d)

k } for anymk ∈ MC2 such that the
Jaccard distance, as expressed in equation 1, between this union of markers
and mi is minimised.

3. Resetting c(mi,m
(d)
j ) to +∞ if m

(d)
j /∈ J

(d)
i or cJaccard(mi,J

(d)
i ) is too high.

4. Computing the final affinity cost c(mi,mj) = mind c(mi,m
(d)
j )

5. Transferring the label of mi to mj if c(mi,mj) is reasonably small.

In this procedure, we use the symmetric Jaccard distance, because the markers
are chosen with the same flooding criterion and yield segmentations at the same
scale of precision. However such markers can split between two stereo images as
can be noticed in figure 5. For that reason, step 2 has been introduced in the
matching procedure in order to prevent a penalty that would be due to a low
Jaccard distance taken between the markers individually. Our procedure hence
favours the transfer of a unique label to markers that have split. Step 5 ensures
that a transfer can only occur when the regions that are covered by markers are
similar in texture and colour. Costs exceeding 0.08 as a mean of the absolute
differences of image intensities scaled between 0 and 1 do not generally lead to
pertinent matchings.

m1
(d) m2

(d)

m3
(d)mi

m4
(d)

(a) (b) (c)

Fig. 5. (a) Illustration of the generalised Jaccard distance. Here, mi is a marker of the

reference image. The set J
(d)
i that minimises cJaccard(mi, J

(d)
i ) is {m(d)

1 ,m
(d)
2 ,m

(d)
3 }.

(b)-(c) Using this distance within the symmetric transfer algorithm enables the label
transfer from a marker of the source image to its corresponding markers in the target
image.

4 Experimental Results and Evaluation

In this section, the results obtained on the Middlebury database are analysed
in terms of precision. We also present an application of the proposed method to
a particularly challenging stereo pair subject to a considerable amount of noise
and homogeneous regions.
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(a) (b) (c)

Fig. 6. Symmetric co-segmentation of Teddy reference image. (a) Reference image
markers. (b) Reference image segmentation. (c) Second image segmentation. Regions
of the second image which are occluded in the reference image now appear with new
labels.

Accuracy. The precision evaluated on the Middlebury database [1] is presented
in table 1. Pixels which are badly matched are those having a disparity which
differ from a certain threshold with respect to the ground truth [11]. The main
source of inaccuracy arises from highly slanted regions, like the ground in Teddy
(cf. figure 3(c)). Searching for an optimal superimposition between such regions
cannot be reasonably done by performing a simple shift which accounts for the
observed instability. One should consider more complex geometrical transfor-
mations. Another source of imprecision comes from regions undergoing a severe
image border occlusion, like in Cones or Teddy. Although these regions are de-
tected thanks to the co-segmentation and then merged to neighbour regions
according to the image gradient prior to the kriging process (cf. figure 3(f)), the
linear variability model doesn’t seem to be sufficient to guess the true dispari-
ties. Nevertheless, it is interesting to note that methods having the same level of
precision usually produce disparity maps which are perceptually less appealing
than ours obtained with the present method at the coarse level of the segmenta-
tion. The human sensibility to the contrast between the different depth planes
is indeed predominant and this is not taken by the accuracy measurement into
account.

Micro-stereopsis Imagery. Our method is compared to the semi-global esti-
mation algorithm of [8] on a stereo pair having the following characteristics: low
disparity range, acquisition under different illuminations, many homogeneous
regions, noise, semi-transparent objects. The establishment of pixel correspon-
dences is therefore particularly difficult and yields to ambiguities across homo-
geneous regions as shown in figure 7(c). The most pertinent disparities actually
arise from the object contours but this information tends to be diffused from
either side of the contour in [8]. Our regional disparity map is computed at a
coarse segmentation level using the matching criterion based on gradient super-
imposition and occlusion reasoning from subregions disparities. We obtain the
result shown in figure 7(d) which answers to the two aforementioned problems.
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Table 1. Percentage of pixels which are badly matched with respect to different tol-
erances on the Middlebury database

Tolerance ± 0.5 px. Tolerance ± 1 px. Tolerance ± 2 px.

NonOcc All Disc NonOcc All Disc NonOcc All Disc

Tsukuba 10.1 10.7 23.7 5.14 5.58 17.3 3.15 3.40 12.3

Venus 9.06 9.50 15.5 2.11 2.46 10.9 0.65 0.80 4.94

Teddy 14.2 20.2 28.6 7.38 15.8 20.8 4.25 7.76 10.7

Cones 13.5 18.8 23.0 6.84 11.9 14.0 3.80 8.04 8.36

Average 16.4 9.50 5.38

Fig. 7. Micro-stereopsis imagery. (a) reference and (b) second images of the stereo pair,
(c) disparity map obtained with [8], (d) our coarse regional disparity map.

5 Conclusion

We have presented an approach to the estimation of depth map controlled by
the matching and the superposition of regions. Our depth maps are estimated
at two different scales of segmentation: first at a coarse level, then at a fine level.
The final disparity maps are obtained by means of an interpolation process, the
kriging, which relies on disparity emitter points having a disparity equal to the
regional disparity on the fine partition. Points belonging to the watershed are
also taken into account as soon as their membership to the appropriate region has
been established. The approach strongly relies on the use of the watershed-based
segmentation driven by markers in order to obtain the segmentation hierarchies
and equivalent segmentations across stereo pairs.

Our method offers good results in terms of precision and perception. It also
paves the way to the processing of non-ideal stereo images. Being able to choose
the level of precision is of great interest for applications concerned by the process
running-time. One could for instance restrain the refinement of disparities to
regions having a low average depth only. Furthermore, the availability of efficient
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watershed implementations based on hierarchical queues, the few nodes involved
in each Markov field during the relaxation process and the fact that kriging only
comes down to solving systems of linear equations lead to interesting perspectives
for computationally efficient implementations of this global depth estimation
method. Future work focuses on the exploitation of such mechanisms in the
view of processing stereoscopic video sequences.
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