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Pharmacology of TRP Channels
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Abstract  TRP channels are a family of ion channels involved in a plethora of phys-
iological sensory processes. Since their discovery they have attracted the attention 
of academic and non-academic laboratories with the aim of developing modula-
tors that could be used as pharmacological tools for unveiling their physiological 
and pathological activities, and as therapeutic compounds for intervening in TRP 
dysfunction. Intriguingly, TRP pharmacology shows dispersed progress, with vast 
pharmacology developed for some members of the so-called thermoTRP channel 
subfamily (TRPV1, TRPV3, TRPM8 and TRPA1), and very little, for all other TRP 
channels. Pharmacologically, the most investigated TRP channel is undoubtedly 
TRPV1 for which a large number of agonists and antagonists with in vitro and 
in vivo activities have been characterized. Recent interest has grown for TRPV3, 
TRPM8 and TRPA1 because of their implication in several human pathologies and 
disorders. Similarly, the TRPM3 channel is emerging as important targets for pain 
transduction. With the development of novel screening methods, the focus is slowly 
changing to other TRP members for whom we do not have appropriate agonists or 
antagonists. These include the TRPC family, which has limited our understanding 
of their role in pathological processes and whether pharmacological intervention 
in these channels will have a therapeutic benefit. A bright future is anticipated for 
TRP pharmacology, with the discovery of selective and potent modulators for this 
important family of sensory channels.
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2.1 � Introduction

TRP channels are a superfamily of ion channels that includes seven subfamilies, 
namely TRPC, TRPV, TRPP, TRPM, TRPA, TRPML, and TRPN. These channels 
perform a wide diversity of physiological functions and are present in many tissues, 
and almost all cell types. Most TRP channels are non-selective cation channels with 
low voltage dependence. TRP channels use a wide variety of activation and regula-
tory mechanisms and carry out functions as diverse as thermosensation, phototrans-
duction, pheromone reception, magnesium homeostasis, and vascular tone regula-
tion (Montell 1999) (see Chap. 4 by Bacigalupo et al. in this Book). Thus, these 
channels are considered molecular gateways in sensory and regulatory systems.

Structurally, TRP channels are tetrameric assemblies of basic subunits organized 
around a central aqueous pore. Akin to voltage-gated K+  channels, each subunit is 
composed of a transmembrane region containing 6 transmembrane segments. The 
recent structural model derived from cryo-electron microscopic images has clearly 
shown this molecular analogy (Liao et al. 2013). All TRP channels display this core 
transmembrane region, and differ in the cytosolic N- and C-termini domains, which 
are involved in channel gating and mediating intracellular signaling. Indeed, most 
of TRP channels, if not all, are part of protein complexes known as signalplexes 
(Devesa et al. 2011; Fernandez-Carvajal et al. 2011; Ferrer-Montiel et al. 2012).

Some TRP channels have been involved in the pathophysiology of human dis-
eases. This pathological contribution could be the result of channel mutations, giv-
ing rise to channelopathies (Devesa et  al. 2011; Fernandez-Carvajal et  al. 2011; 
Ferrer-Montiel et al. 2012), or the change in channel function due to alteration of the 
protein function and/or expression (Devesa et al. 2011; Fernandez-Carvajal et al. 
2011; Ferrer-Montiel et al. 2012). The pivotal involvement in the etiology of patho-
logical conditions has signaled members of this large channel family as druggable 
targets for therapeutic intervention, which has driven discovery programs in aca-
demic and non-academic institutions. This concerted effort has notably expanded 
the pharmacology of TRP channels, although, unfortunately, for a limited number 
of TRP members. For instance, large families of modulators have been obtained 
for TRPV1, TRPV3, TRPM8 and TRPA1, while the pharmacology of other TRP 
channels is still in its infancy. A plausible reason for the pharmacological prog-
ress in these channels is the availability of natural ligands present in food spices. 
Nonetheless, the development of combinatorial chemistry and the large diversity of 
vegetal and marine extracts, along with the development of high throughput electro-
physiological assays for ion channels will expand the pharmacology of TRP chan-
nels to the entire family. Here, we briefly expose the pharmacological data for the 
most studied TRP channels, namely TRPV1, TRPM8 and TRPA1, and include the 
data accrued for TRPV2, TRPV4, TRPM3 and the TRPC5, most of them with an 
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important role in sensory transduction. We aim to illustrate the differential pharma-
cological progress in this exciting field and evidence a drift towards enhancing the 
pharmacology of other members, if not all, of this pivotal channel family.

2.2 � TRPV1

TRP Vanillod 1, TRPV1, a non-selective Ca2+ channel is a TRP channel activated 
by noxious temperatures ( 43 °C) acidic pH and vanilloid compounds, whose chan-
nel activity is highly potentiated by proalgesic mediators in response to inflamma-
tion, tissue injury and ischemia (Huang et al. 2006; Ueda et al. 2008). In addition, 
TRPV1 expression is markedly up-regulated under acute inflammatory conditions 
(Camprubi-Robles et al. 2009; Morenilla-Palao et al. 2004; Van Buren et al. 2005), 
and in human chronic pain states (Broad et al. 2008; Szallasi and Blumberg 2007). 
Consistent with a role in pain signaling, TRPV1 is highly expressed in C-type, pep-
tidergic nociceptors in the peripheral nervous system. Thus, TRPV1 is considered 
a gateway for pain transduction, and a pivotal target for drug intervention in pain 
syndromes. In addition, due to a widespread tissue distribution of this TRP channel, 
it may be involved in the etiology of other human pathologies or disorders (Avelino 
et al. 2002; Inoue et al. 2002).

TRPV1 sensitization by inflammatory conditions is produced through two dis-
tinct, but complementary mechanisms, namely: (i) covalent modification of the 
channel by protein kinase A (PKA) and/or protein kinase C (PKC) phosphorylation 
(Bhave et al. 2003; Tominaga et al. 2001; Varga et al. 2006; Vellani et al. 2001); 
and, (ii) rapid recruitment of a vesicular population of TRPV1 channels to the neu-
ronal surface through a Ca2+ -dependent, SNARE-mediated exocytosis mechanism 
in response to pro-algesic agents (Camprubi-Robles et al. 2009; Zhang et al. 2005).

Pharmacologically, TRPV1 is primarily activated by a diverse collection of 
chemical ligands known as vanilloids (Caterina et al. 2000; Khairatkar-Joshi and 
Szallasi 2009) (Fig. 2.1). The most known agonist of TRPV1 is capsaicin, the pun-
gent compound of chili peppers. Resiniferatoxin (RTX), a vanilloid from Euphorbia 
resinifera, is also a potent agonist of the receptor. Furthermore, TRPV1 may also 
be activated by non-vanilloid compounds, such as allicin, piperine, camphor, 
olvanil, 2-aminoethoxydiphenylborate (2-APB), and tarantula venom peptide tox-
ins (Bohlen et al. 2010) (Table 2.1). In addition, there is a family of endogenous 
compounds, referred to as endovanilloids, that also act as agonists of TRPV1 (Van 
Der Stelt and Di 2004). These compounds may be divided into conjugates of bio-
genic amines [e.g., N-arachidonoylathanolamine (AEA, anandamide), N-arachi-
donoyldopamine (NADA), N-oleoylethanolamine (OLEA), N-arachidonolylserine, 
and various N-acyltaurines and N-acylsalsolinols (Appendino et al. 2008), and oxy-
genated eicosatetraenoic acids like the lipoxygenase products 5-, 12-, and 15-hy-
droperoxyeicosatetraenoic acids (5S-, 12S-, 15S-HPETE), their reduced hydroxyl 
analogs, prostaglandins, and leukotriene B4 (Ahern 2003; Huang et al. 2006; Wang 
et al. 2005) (Fig. 2.1).
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As expected, the activation of TRPV1 in nociceptors with vanilloids causes a 
burning pain sensation and irritation. Paradoxically, capsaicin has been in use for 
many years as anti-nociceptive compound in peripheral neuropathies (e.g., post-
herpetic neuralgia, neuropathy, mastectomy, amputation and skin cancer). Capsaicin 
is used as an analgesic, because in addition to activate the channel, it also induces 
its desensitization. Furthermore, the repetitive application of the vanilloid produces 
a rundown of channel activity known as tachyphylaxia that results in a strong anti-
nociceptive effect (Knotkova et al. 2008). This analgesia may be accompanied by 
reversible and/or irreversible loss of the capsaicin sensitive C-fibers (Hiura 2000).

Although TRPV1 agonists may have some therapeutic application, their low in 
vivo activity, along with their poor bioavailability and secondary effects has limited 
their development as anti-nociceptives, and promoted the research into the design 
of potent antagonists that display higher therapeutic index. The efforts in develop-
ing TRPV1 antagonists have been concentrated in obtaining both competitive and 
non-competitive (including uncompetitive) inhibitors (Planells-Cases et al. 2003; 
Szallasi and Appendino 2004). Uncompetitive antagonists acting as open channel 

Fig. 2.1   Selected examples of activators (1–8) and inhibitors (9–10) of TRPV1. 1 Olvanil (CID 
5311093). 2 Piperine (CID 638024). 3 Allicin (CID 65036). 4 Anandamide (CID 5281969). 5 
NADA: N-arachidonoyl dopamine. (CID 5282105). 6 OLEA: N-oleoyl ethanolamine (CID 
5283454). 7 EMA-6: N-arachidonoyl serine (CID 10596625). 8 15-Hpete: 15-hydroperoxy eico-
satetraenoic acid (CID 6437084). 9 BCTC (CID 9929425). 10 I-RTX: 5-iodoresiniferatoxin (CID 
16219535)
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blockers are activity-dependent blockers that preferentially bind to over-activated 
receptors, with minimal interaction with the physiologically working channels. Ac-
cordingly, they are supposed to display lower side-effects than conventional an-
tagonists.

Among the competitive TRPV1 antagonists (Fig. 2.1), capsazepine was the first 
identified, although with poor in vivo activity (Bevan et al. 1992; Walker et al. 2003). 
A vanilloid with better therapeutic potential is 5-iodo-RTX, a potent TRPV1an-
tagonist (IC50 = 3.9 nM) (McDonnell et al. 2002; Wahl et al. 2001). This compound 
produced notable analgesic activity in vivo and it is currently under clinical studies.

The family of competitive antagonists grew tremendously thanks to the contribu-
tion of pharmaceutical companies that established strong drug discovery programs 
for TRPV1 channels. As a result, ultra-high affinity synthetic antagonists were dis-
covered for analgesic drug development. However, most of the clinical trials for 
these compounds had to be cancelled in Phase I because the indiscriminate block-
ade of TRPV1 channels with these compounds resulted in significant hyperthermia 
in humans, suggesting that this receptor also plays a pivotal role in core body tem-
perature (Gavva et al. 2008).

The first non-competitive TRPV1 antagonist was the trinuclear polyamine com-
plex, ruthenium red that was followed by arginine-rich peptides, and peptidomi-
metic compounds such as peptoids DD00069 and DD01050 (Garcia-Martinez et al. 
2002, 2006). All these compounds resulted in unacceptable in vivo side effects and 
toxicity that prevented their clinical development. Recently, an uncompetitive an-
tagonist, based in a triazine scaffold (triazine 8aA) that block TRPV1 channel by an 
activity-dependent mechanism was reported (Vidal-Mosquera et al. 2011). Triazine 
8aA showed a strong voltage-dependent TRPV1 blockade by inhibiting at negative 
membrane potential, a hallmark of open-channel blockers. This compound holds 
promise for therapeutic development, although in vivo activity in pain models has 
not been yet reported.

Allosteric modulators of TRPV1 activity are another class of non-competitive 
antagonists. These compounds interfere with the allosteric mechanism that gates 
the channel. Structure-function analysis of TRPV1 channels demonstrated that the 
intracellular TRP domain, a highly conserved region adjacent to the receptor inter-
nal gate (Venkatachalam and Montell 2007), is essential for subunit tetramerization 
and allosteric activation (Garcia-Sanz et al. 2004, 2007). Thus, this protein interface 
could be used as an allosteric site to modulate channel function. Indeed, compound 
TRP-p5, a palmitoylated 13-mer peptide patterned after the N-terminus region of 
the TRP domain, displays in vitro and in vivo inhibitory activity (Valente et  al. 
2011). This finding is proof-of-concept that allosteric modulators such as TRPdu-
cins represent another family of non-competitive antagonists that could be devel-
oped therapeutically as anti-nociceptives.

A complementary approach to reduce the inflammatory sensitization of TRPV1 
has been to interfere with the recruitment of the channel to the neuronal surface. 
This strategy has proven that blockers of neuronal exocytosis such as compound 
DD04107 display analgesic activity (Ponsati et al. 2012). In vitro experiments with 
DD04107 showed that it blocked the inflammatory over expression of TRPV1 
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channels to the plasma membrane (Camprubi-Robles et  al. 2009). In vivo, this 
compound displays long-lasting anti-nociceptive activity against inflammatory 
and neuropathic pain, without apparent side effects, demonstrating that acting on 
the TRPV1 signalplex may be a valuable pharmacological strategy (Ponsati et al. 
2012). This compound is being developed clinically.

2.3 � TRPV2

At variance with TRPV1 channels, the pharmacology of its close homologue 
TRPV2 is still in its infancy (Peralvarez-Marin et  al. 2013). This non-selective 
Ca2+  channel is also present in the peripheral nervous system and co-localizes with 
TRPV1 in a subset of nociceptors (Liapi and Wood 2005). The physiological role of 
this TRP channel is yet elusive. Initially was considered a thermoTRP channel that 
activated at 52 °C, and also responded to hypotonicity (Caterina et al. 1999; Muraki 
et  al. 2003). However, these are still highly debated functions (Park et  al. 2011; 
Peralvarez-Marin et  al. 2013), thus requiring further investigation, including the 
discovery of agonists and antagonists that could be used as pharmacological tools.

The identification of specific TRPV2 modulators is, surprisingly, inexistent, 
probably due to the species-specific pharmacology coupled with problems in devel-
oping stable recombinant cell lines due to cytotoxic effects of TRPV2 expression 
(Penna et  al. 2006). Several chemical compounds have been shown to modulate 
TRPV2, however, virtually all of them are non-specific (Table 2.1 and Fig. 2.2). 
Indeed, TRPV2 is activated by general TRP channel agonists, such as 2-aminoe-
thoxy-diphenyl borate (2-APB), probenecid, lysophospholipids, and cannabinoids 
(Juvin et al. 2007; Monet et al. 2009; Qin et al. 2008). However, the response to 
these ligands is low and variable and quite species-dependent (Neeper et al. 2007).

To date, only general blockers such as ruthenium red and trivalent cations 
(La3+  and Gn3+ ) (Table  2.1), have been described as blockers of TRPV2 (Lef-
fler et  al. 2007). In addition, the potassium channel blockers tetraethylamonium 
(TEA), 4-aminopyridine (4-AP), and 1-(2-(trifluoromethyl)phenyl)imidazole are 
also able to block TRPV2 currents (Vriens et al. 2009). Other reported inhibitors are 
SKF96365, amiloride, and Tranilast, an antiallergic drug (Juvin et al. 2007; Mihara 
et al. 2010) (Fig. 2.2).

2.4 � TRPV3

TRPV3 is a non-selective Ca2+  channel that plays a pivotal role in various physio-
logical processes in the skin and hair follicles. This channel displays a moderate se-
quence homology to TRPV1. TRPV3 is mainly located in keratinocytes and epithe-
lial cells (Nilius and Owsianik 2011; Valdes-Rodriguez et al. 2013), and marginally 
in sensory neurons (Nilius et al. 2014). This TRP channel is a polymodal receptor 
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activated by non-painful temperatures (Peier et  al. 2002a; Smith et al. 2002; Xu 
et al. 2002), and chemical stimuli (Xu et al. 2006a), including natural irritants and 
synthetic ligands (Xu et  al. 2006a), and endogenous compounds, some of them 
involved in the downstream inflammatory cascade (Doerner et al. 2011; Sherkheli 
et al. 2009). Stimulation of TRPV3 releases inflammatory mediators from kerati-
nocytes including ATP, prostaglandin E2 and IL-1, which supports its contribution 
to pain transduction and inflammatory signaling. Indeed, in certain human disease 
states there are changes in the expression of TRPV3, such as an increase in painful 
breast tissue (Matta et al. 2008), or a decrease in keratinocytes in diabetic neuropa-
thy (Facer et al. 2007).

Some evidence points to phosphatidyl inositol-4,5-bisphosphate and 17(R)-re-
solvin D1 as putative in vivo modulators of TRPV3 (Bang et al. 2012; Doerner et al. 
2011) (Table 2.1). A role of 17(R)-resolvin D1 as potential analgesic mediated by 
TRPV3 has been described, although a direct evidence is still missing (Bang et al. 

Table 2.1   Representative modulators of depicted TRP channels
Ion channel Activators Representative blockers
TRPV1 Capsaicin, resiniferatoxin, olvanil, pip-

erine, eugenol, camphor, 2-APB, allicin, 
anandamide, NADA, OLEA, N-arachi-
donolylserine 5S-, 12S-, 15S-HPETE, 
prostagalandine, leukotriene B4

Capsazepine, ruthenium red, 
DD01050, 5-iodo-RTX, Triazine 
8aA, TRP-p5

TRPV2 2-APB, probenecid, lysophospholipids, 
cannabinoids

Ruthenium red, La3+, Gn3+, 
TEA, 4-aminopyridine, 1-(2-(tri-
fluoromethyl)phenyl) imidazole, 
SKF96365, amiloride, Tranilast.

TRPV3 2-APB, 17(R)-resolvin D1, PIP2, diphenyl-
boronic anhydride, farnesyl pyrophosphate 
camphor, carvacrol, eugenol, menthol, 
thymol, borneol, cresol, carveol, gerianool, 
propofol, linalool, incensole, citral

Ruthenium red, icilin, isopente-
nyl pyrophosphate chromane-, 
fused pyrimidine-, fused pyrim-
idinones-, chromanone- and fused 
imidazole-derivatives

TRPV4 Endocannabinoids, arachidonic acid 
metabolites, nitric oxide, diaculglycerol, 
bisandrographolide A, 4αPDD phorbol 
derivatives, GSK1016790A, RN-1747

RN-1734

TRPC5 Thioredoxin, lysophosphatidylcholine, lan-
thanides, genistein, diadzein

SKF-96365, BTP-2, flufenamic 
acid, chlorpromazine, W-13, calmid-
azolium, W-7, 2-APB, ML-7, ML-9

TRPM3 Pregnenolone sulphate, dihydro-D-erythro-
sphingosine, N,N-dimethyl-D-erythro-
sphingosine, dihydropyridine nifedipine

2-APB, Gd3+, rosiglitazone, trogli-
tazone, mefenamic acid, cholesterol, 
naringenin, hesperetin

TRPM8 Menthol, icilin, geraniol, D3263 AMTB, JNJ41876666, BCTC, 
Thio-BCTC, clotrimazole, econ-
azole, SKF-96365

TRPA1 Allyl isocyanate, cinnamaldehyde, allicin, 
nifedipine, chlorpromazine, auranofin, 
clotrimazole, clioquinol, apomorphine, 
glibenclamide, BCTC

HC-030031, GRC-17536, 
A-967079, piperazineurea, N-1-Al-
kyl-2-oxo-2-aryl amide, 1,8-cineole, 
chlorpromazine, toxin ProTx-I
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2012). Similarly, TRPV3 has been related with the production of nitric oxide via 
a nitrite independent pathway (Miyamoto et al. 2011). Furthermore, farnesyl pyro-
phosphate and isopentenyl pyrophosphate, intermediates of the melanovate path-
way, are activator and inhibitor respectively, suggesting a fine-tuning of TRPV3 

Fig. 2.2   Selected examples of TRPV2-4 effectors. TRPV2 activators (1) and inhibitors (2–5). 
TRPV3 activators (6–10) and inhibitors (11–12). TRPV4 activators (13–14) and inhibitors (15). 
1 probenecid (CID 4911). 2 4-AP: 4-aminopyridine (CID 1727). 3 Trim: 1-(2-(trifluoromethyl)
phenyl) imidazole (CID 1359). 4 Amiloride (CID 16231). 5 Tranilast (CID 5282230). 6 Resolvin-
D1: 17(R)-resolvin D1 (CID 71434077). 7 Diphenylboronic anhydride (CID 596810). 8 Farnesyl 
pyrophosphate (CID 44134714). 9 Incensole (CID 44583885). 10 Citral (CID 638011). 11 Icilin 
(CID 161930). 12 Isopentenyl pyrophosphate (CID 1195). 13 GSK1016790A (CID 23630424). 14 
RN-1747 (CID 5068295). 15 RN-1734 (CID 3601086)
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function (Bang et al. 2010; 2011). Alfa-hydroxy acids are proton donors commonly 
used in cosmetics to produce skin exfoliation mediated by TRPV3 activation (Cao 
et al. 2012).

The pharmacology of the TRPV family is far from simple, and TRPV3 is not 
an exception (Table 2.1 and Fig. 2.2). 2-APB also activates TRPV3 (Chung et al. 
2004; Hu et al. 2004, 2009). Prolonged exposure of TRPV3 to 2-APB induced sen-
sitization (Sherkheli et al. 2009). Structurally related 2-APB compounds such as 
diphenylboronic anhydride also act as potent TRPV3 agonists (Chung et al. 2005).

Natural aromatic monoterpenes, such as camphor, carvacrol, eugenol, menthol, 
thymol, as well as borneol, cresol, and others are an additional class of TRPV3 
ligands (Moqrich et al. 2005; Vriens et al. 2009; Xu et al. 2006a). Camphor is a 
weak agonist for TRPV3 that activates currents only at concentrations of 10 mM. 
Carvacrol is responsible for arterial vasodilation by activating TRPV3 channels in 
the endothelium (Earley et al. 2010), which may account for some of their attributed 
cardioprotective effects. In addition to camphor and carvacrol, thymol and eugenol 
have also been shown to enhance the temperature response of TRPV3 (Macpherson 
et al. 2006; Xu et al. 2006a).

Non-aromatic monoterpenes such as carveol and derivatives (monocyclic), or 
gerianool, propofol and linalool (acyclic) display strong TRPV3 agonism (Vogt-
Eisele et  al. 2007). Incensole and incensole acetate are diterpenic cembrenoids 
found in incense (Boswellia papyrifera) potently activate TRPV3. The traditional 
use of these natural products is related to anti-inflammatory effects through the 
activation of TRPV3 in the skin. Interestingly, incensole acetate produces anxio-
lytic and antidepressive effects in mice (Moussaieff and Mechoulam 2009; Paul 
and Jauch 2012). Citral, a bioactive component of lemongrass is also an agonist of 
TRPV3 (Stotz et al. 2008), adding to the list of compounds acting on this channel 
(Fig. 2.2).

Cannabinoids such as cannabidiol or delta-9-tetrahydrocannabinol modulate 
nonspecifically TRPV3. Other derivatives such as cannabigerovarin or cannabig-
erolic desensitize TRPV3 (De Petrocellis et al. 2012). Active research is necessary 
in this field because, interestingly, the activation of TRPV3 by these compounds 
may contribute to their described in vivo activity (Anand 2003; Galeotti et al. 2001; 
Santos and Rao 2001; Umezu et al. 2001; Xu et al. 2005a).

TRPV3 antagonists include the non-specific ruthenium red, that blocks all TRPV 
family member at negative potentials (Vennekens et al. 2008). The compound icilin, 
which is a strong agonist of TRPM8 channel, is an inhibitor of TRPV3 at low doses 
(Sherkheli et al. 2012). Novel inhibitors are under study and have promising anal-
gesic effects, which further suggests the involvement of TRPV3 in pain transduc-
tion (Reilly and Kym 2011). Several pharmaceutical industries have reported strong 
and selective TRPV3 antagonists including series of chromane-, fused pyrimidine-, 
fused pyrimidinones-, chromanone- and fused imidazole-derivatives (Ferrer-Monti-
el et al. 2012). Some of these antagonists are currently under clinical studies to treat 
human pain conditions.
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2.5 � TRPV4

Transient Receptor Potential Vanilloid 4 (TRPV4) a non-selective Ca2+  channel 
is a homologue of the OSM-9 osmosensory channel first described in C. elegans. 
TRPV4 is activated by warm temperatures (27–35 °C) (Guler et al. 2002; Liedtke 
et al. 2000), and is sensitive to cell swelling and shear stress (Gao et al. 2003; Kohler 
et al. 2006; Loukin et al. 2010; Strotmann et al. 2000). Functions include tempera-
ture monitoring in skin keratinocytes, osmolarity sensing in the kidney (Pochynyuk 
et al. 2013), and shear stress detection in blood vessels, which indicates that TRPV4 
functions as a putative mechanosensor (Nilius et al. 2003a, b), and is involved in 
nociception (Alessandri-Haber et al. 2005, 2006). It has been reported that TRPV4 
may be activated by hypotonic solutions, and by mechanical forces in membrane 
patches (Loukin et al. 2009). TRPV4 may contribute to development of mechani-
cal hyperalgesia after inflammation and injury (Alessandri-Haber et al. 2006). This 
channel is expressed in several tissues, including primary sensory neurons (Alvarez 
et al. 2006; Birder et al. 2007; Guler et al. 2002; Pochynyuk et al. 2013; Strotmann 
et al. 2000; Tabuchi et al. 2005; Watanabe et al. 2002b; Yang et al. 2006).

TRPV4 is activated by endogenous chemical ligands, such as endocannabinoids, 
arachidonic acid metabolites and nitric oxide (Birder et al. 2007) (Table 2.1 and 
Fig. 2.2). Phorbol esters that do not activate PKC, mediate TRPV4 heat responses 
(Watanabe et al. 2002a). TRPV4 sensitivity to osmotic and mechanical stimuli may 
depend on phospholipase A2 activation and the generation of arachidonic acid me-
tabolites (Fernandes et al. 2008; Liedtke et al. 2000; Strotmann et al. 2000; Vriens 
et al. 2004). Furthermore, TRPV4 is activated by hypotonicity, diacylglycerol, and 
PKC-activating phorbol esters (Watanabe et al. 2002a, b, 2003).

Natural plant extracts (Klausen et al. 2009), bisandrographolide A (Smith et al. 
2006) and synthetic compounds, such as a phorbol derivative (Birder et al. 2007), or 
GSK1016790A (Thorneloe et al. 2008) also activate TRPV4 channels. In addition, 
small molecules such as compound RN-1747 was also found to be a TRPV4 agonist 
(Vincent et al. 2009) (Table 2.1 and Fig. 2.2).

TRPV4 antagonism is being considered for inflammatory and neuropathic pain 
treatment (Vincent and Duncton 2011). However, selective TRPV4 antagonists have 
not been described appropriately. Ventilator-induced lung injury has emerged as a 
potential indicator for TRPV4 antagonists (Jin et al. 2011) (Table 2.1). The small 
molecule RN-1734 2,4-Dichloro-N-isopropyl-N-(2-isopropylaminoethyl)benzene-
sulfonamide was observed to inhibit ligand- and hypotonicity-activated TRPV4 
(Vincent et al. 2009). In addition, the compound showed selective properties for 
TRPV4 over other TRPs such as TRPV1, TRPV3 and TRPM8, being a valuable 
pharmacological tool for TRPV4 studies (Vincent et al. 2009).
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2.6 � TRPC5

Several mammalian and Drosophila TRP canonical, TRPC proteins (TRPC1-7) 
have been identified (Plant and Schaefer 2003; Wes et al. 1995; Hardie and Minke 
1995). All mammalian TRPCs seem to be enhanced with G-protein-coupled recep-
tors and tyrosine kinases receptors (Montell 1999). The channels may be divided 
in three subgroups according to sequence homology: C1-C4-C5, C3-C6-C7, and 
C2 (Zufall et al. 2005). Particularly, TRPC5 is a functional plasma membrane ion 
channel (Beech 2007) activated by hypo-osmotic stimuli, which is dependent on 
phosphoinositides (Gomis et al. 2008). The inhibition of TRPC5 has been shown to 
suppress inflammatory pain induced by the component of the bee venom mellitin 
(Ding et al. 2011). Several studies support the conclusion that TRPC5 plays a role 
in growth cone extension and axonal guidance (Davare et al. 2009). A variety of 
other functions have been assigned to TRPC5, indicating a central role of this chan-
nel in physiology (Jiang et al. 2011; Nath et al. 2009; Premkumar and Abooj 2013; 
Wu et al. 2010; Wuensch et al. 2010; Xu et al. 2008), although the channel is not 
essential for life (Riccio et al. 2009).

TRPC5 modulation is not well known. A common stimulus for TRPC5 is the 
activation of G protein-coupled receptor. Many different receptors may be involved, 
including receptors for adenosine 5’-triphosphate, bradykinin, acetylcholine, his-
tamine, prostaglandin E2, thrombin, uridine 5’-triphosphate, sphingosine-1-phos-
phate, glutamate and cholecystokinin (Meis et al. 2007; Riccio et al. 2009; Xu et al. 
2006b; Zeng et al. 2004). TRPC5 is stimulated by activation of growth factor re-
ceptors (Bezzerides et al. 2004). TRPC5 is also a target for thioredoxin, an endog-
enous redox protein with established intracellular functions. Reduced thioredoxin 
activates TRPC5 expressed in secretory fibroblast-like synoviocytes when secreted 
extracellularly in patients with rheumatoid arthritis (Xu et al. 2008). Lysophospha-
tidylcholine has been identified as a TRPC5 activator (Flemming et al. 2006). Cur-
rent data suggest a complex arrangement between TRPC5 activity and various lipid 
factors, supporting the hypothesis that a physiological function of TRPC5 channels 
is to act as lipid signal transducers.

An unusual feature of TRPC5 is its stimulation by external lanthanides (Jung 
et al. 2003; Schaefer et al. 2000; Xu et al. 2005b; Zeng et al. 2004). It was reported 
that ionic lead (Pb2+ ) mimics the effect of lanthanides, leading to the hypothesis 
that TRPC5 may confer survival advantage by acting as a sensor of heavy metal 
ions (Sukumar and Beech 2010). Stimulation of TRPC5 by isoflavones like genis-
tein or diadzein has also been reported (Wong et al. 2010) (Table 2.1, Fig. 2.3).

Although no specific or potent exogenous chemical inhibitors of TRPC5 are 
known, various chemicals have effects on TRPC5 function (Table 2.1). In many of 
these cases, it is not clear if the agent acts directly on the channel. TRPC5 has been 
reported to be inhibited by SKF-96365 (Okada et al. 1998), 3,5-bis(tri-fluorometh-
yl)pyrazole derivative BTP-2 (He et  al. 2005; Kiyonaka et  al. 2009), flufenamic 
acid (Lee et  al. 2003b), W-13 or chlorpromazine (Shimizu et  al. 2006), W-7 or 
calmidazolium (Kim et al. 2006), Pyr2, 2-APB (Xu et al. 2005b), and the myosin 
light chain kinase inhibitors ML-7 or ML-9 (Shimizu et al. 2006) (Fig. 2.3).
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2.7 � TRPM3

TRPM3, TRP melastatin 3, non-selective Ca2+  channel is one of the least investi-
gated proteins of the TRP family of ion channels. In humans, it is highly expressed in 
the kidney (Grimm et al. 2003; Lee et al. 2003a), brain (Lee et al. 2003a; Oberwin-
kler 2007), sensory neurons, human pituitary (Fonfria et al. 2006), vascular smooth 

Fig. 2.3   Selected examples of activators (1) and inhibitors (2–9) of TRPC5. 1 Diadzein (CID 
5281708). 2 SKF-96365 (CID 11957693). 3 BTP2 (CID 2455). 4 Flufenamic acid (CID 3371). 5 
Chlorpromazine (CID 2726). 6 W-13 (CID 4299). 7 Calmidazolium (CID 644274). 8 2-APB (CID 
1598). 9 ML-7 (CID 4216)
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muscle (Naylor et al. 2010) and pancreatic beta cells (Thiel et al. 2013; Wagner 
et al. 2008). However, its physiological role is still under investigation. Activation 
of TRPM3 has been linked to insulin secretion in pancreatic beta-cells (Wagner 
et al. 2008), to vascular smooth muscle cell contraction (Naylor et al. 2010), and to 
potentiating glutamatergic transmission in cerebellar Purkinje neurons of develop-
ing rats (Zamudio-Bulcock et al. 2011). A role in pain transduction has also been 
reported for TRPM3 (Vriens et al. 2011).

Recently, pharmacological investigations have been initiated in order to identify 
substances that influence TRPM3 channel activity. TRPM3 is rapidly and reversibly 
activated by extracellular pregnenolone sulphate, a neuroactive steroid. Applica-
tion of pregnenolone sulphate led to a rapid calcium influx and enhanced insulin 
secretion from pancreatic islets (Wagner et  al. 2008). Pregnenolone sulfate also 
activates TRPM3 channels in HEK293 cells, vascular smooth muscle cells, and sy-
novial fibroblasts (Ciurtin et al. 2010; Klose et al. 2011; Majeed et al. 2012; Naylor 
et al. 2010), confirming the functional relevance of TRPM3 in contractile function. 
However, the concentration of pregnenolone sulfate required to stimulate TRPM3 
channels is in the micromolar range, suggesting that pregnenolone sulfate is not a 
physiological agonist of TRPM3 and may have only pharmacological relevance. 
Moreover, the fact that TRPM3 deficient mice did not show alterations in resting 
blood glucose levels (Vriens et al. 2011) suggests that TRPM3 plays a marginal role 
in controlling β-cell functions.

Two structural analogs of sphingosine, dihydro-D-erythro-sphingosine and N, 
N-dimethyl-D-erythro-sphingosine, are able to activate TRPM3 (Grimm et  al. 
2005) (Table 2.1 and Fig. 2.4). Surprisingly, TRPM3 channels are also activated by 
the dihydropyridine nifedipine, an inhibitor of voltage-gated Ca2+  channels, while 
the structurally related compounds nimodipine, nicardipine, and nitrendipine were 
inactive (Wagner et al. 2008).

As for many other members of the TRP ion channel family, 2-APB and Gd3+  
have been reported to inhibit Ca2+  influx through TRPM3 channels (Grimm et al. 
2003; Harteneck and Schultz 2007; Xu et al. 2005b). Other TRPM3 channel block-
ers described thus far include the antidiabetic PPARγ-agonists rosiglitazone and 
troglitazone (Majeed et al. 2012). Nonsteroidal anti-inflammatory drugs (NSAIDs) 
of the fenamate group, like mefenamic acid are able to selective block TRPM3-
mediated Ca2+  entry as well as insulin release (Klose et  al. 2011). Cholesterol, 
the precursor metabolite of pregnenolone and progesterone, also prevents TRPM3 
channel activation. (Naylor et al. 2010).

Recently, the screening of a compound library revealed that citrus fruit flava-
nones, such as naringenin and hesperetin, and fabacea secondary metabolites selec-
tively inhibit TRPM3 channel activation with potencies ranged from upper nano-
molar to lower micromolar concentrations (Straub et al. 2013) (Table 2.1).
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2.8 � TRPM8

TRPM8 is a Ca2+  permeable channel that was first identified in prostate cancer 
cells (Tsavaler et al. 2001; Bidaux et al. 2007), but also is present along the male 
urogenital tract (De Blas et al. 2009), artery myocytes (Johnson et al. 2009), and 
lung epithemium cells (Sabnis et al. 2008), although its role in many of these tissues 
still remains unclear. These channels are expressed in primary sensory neurons in 
skin and mucosae, with a physiological role in detecting low temperature signals 
(10–33 °C) (Babes et al. 2011), and in sensing cooling chemicals like menthol and 
icilin (McKemy et al. 2002; Peier et al. 2002) (Bharate and Bharate 2012; Chuang 

Fig. 2.4   Selected examples of TRPM3 and TRPM8 effectors. TRPM3 activators (1–3) and 
inhibitors (4–7). TRPM8 activators (8–9) and inhibitors (10–13). 1 Pregnenolone sulphate (CID 
105074). 2 Safingol: Dihydro-D-erythro-sphingosine (CID 91486). 3 Nifedipine (CID 4485). 4 
Rosiglitazone (CID 77999). 5 Troglitazone (CID 5591). 6 Mefenamic acid (CID 4044). 7 Narin-
genin (CID 932). 8 Menthol (CID 16666). 9 D-3263 (CID 44137358). 10 AMTB (CID 3036972). 
11 JNJ-41876666: Johnson&Johnson patent. 12 Clotrimazole (CID 2812). 13 Econazole (CID 
3198)
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et al. 2004). Under pathological conditions, there are increasing experimental evi-
dences that confirm the anomalous over-expression of TRPM8 channels in sensory 
neurons after nerve injury or inflammation, as well as their involvement in cold 
allodynia and hyperalgesia (Kapoor 2012; Xing et al. 2007) (Abe et al. 2006; Ram-
achandran et al. 2013). The activation of TRPM8 also attenuates pain in certain 
acute and inflammatory pain states, mediating for instance the analgesic effects of 
menthol (Liu et al. 2013). Therefore, both TRPM8 agonists and antagonists could 
be valuable analgesic agents (Liu and Qin 2011; Maelkiae et  al. 2011). TRPM8 
channels are also expressed in corneal afferent neurons implicated in the regulation 
of ocular surface wetness, and in this respect TRPM8 modulators could have appli-
cation in dry eye syndrome and excessive lacrimation dysfunction (Fernández-Peña 
and Viana 2013; Parra et al. 2010).

On the other hand, TRPM8 is abnormally over-expressed in androgen-sensitive 
prostate cancer (Gkika and Prevarskaya 2011; Tsavaler et  al. 2001), breast can-
cer (Dhennin-Duthille et al. 2011; Ouadid-Ahidouch et al. 2012), skin melanoma 
cells (Yamamura et al. 2008), human pancreatic adenocarcinoma (Yee et al. 2010), 
oral scamous cell carcinoma (Okamoto et al. 2012), and osteosarcoma tissues and 
cell lines (Wang et al. 2014). Again, both agonists and antagonists of TRPM8 have 
proved to be valid as pharmacological tools for reducing growth and progression 
of neoplasias with intense expression of TRPM8 channels. Therefore, TRPM8 may 
also be considered an attractive target for therapeutic intervention in the search for 
new antitumor agents (Knowlton and McKemy 2011; Lehen’kyi and Prevarskaya 
2011).

The crucial role of TRPM8 in the human pathologies is behind the intensive 
drug-discovery programs developed in recent years around this channel (with more 
than 25 patents filed since 2009). Among the antagonists, different families having 
benzotiophene, benzimidazole and arylglycine moieties as the central scaffold have 
been reported (Calvo et al. 2012; Matthews et al. 2012; Parks et al. 2011; Zhu et al. 
2013). Some of these compounds showed excellent in vitro and in vivo profiles, 
including activity in animal models of inflammatory and neuropathic pain, thus 
emerging as strong candidates for future development (Table 2.1). The benzothio-
phene derivative JNJ41876666 has been used, along with other antagonist, AMTB, 
and RNAi to determine that the inhibition of either the expression or function of 
TRPM8 channels reduces the proliferation rate of prostate tumor cells, while no 
effect was observed in non-tumor cells (Valero et al. 2012).

The commercial antagonist N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-
N-(2-thienylmethyl) benzamide hydrochloride AMTB has also served to suggest 
the potential of TRPM8 channel blocker as a new therapeutic opportunity for treat-
ing overactive bladder and painful bladder syndrome (Lashinger et al. 2008). Some 
tetrahydroquinoline and aza-analogues are TRPM8 antagonists, and a selected com-
pound from this series reduced icilin-induced wet-dog shakes (WDS) in a dose 
dependent manner (Tamayo et al. 2012). Other chemotypes able to inhibit TRPM8 
channels include the piperazine urea derivative BCTC, used to demonstrate that the 
menthol- and cold-induced allergic responses of mast cells are mediated by TRPM8 
(Cho et al. 2010). A series of spiro-chromene-piperidines endowed with high po-
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tency and favorable ADME properties are effective in rodent models of neuropathic 
pain (Chaudhari et al. 2013). SKF-96365 and the antifungic drugs clotrimazole and 
econazole are also effective blockers of TRPM8 (Madrid et al. 2006; Mälkiä et al. 
2009 Meseguer et al. 2014; Table 2.1 and Fig. 2.4).

It has also been described that the Gαq protein, formed after activation of GP-
CRs, blocks TRPM8 activity by the direct formation of a complex with the chan-
nel (Zhang et  al. 2012). This could indirectly arbitrate the inhibition of TRPM8 
by the inflammatory mediators bradykinin and histamine in sensory nerves, and 
could open new strategies for modulating these channels, interfering within protein-
protein interactions.

TRPM8 agonists are also therapeutically important for attenuating pain, and may 
induce apoptosis in TRPM8 expressing cancer cells (Maelkiae et  al. 2011) (Ta-
ble 2.1). The most remarkable result in this field refers to the ability of 3-(2-amino-
ethyl)-1(R)-[(2(S)-isopropyl-5(R)-methyl cyclohexanecarbonyl)]− 5-methoxy-1,3-
dihydro-benzoimidazol-2-1 hydrochloride D3263 to inhibit the growth of TRPM8 
expressing tumors. This new orally bioavailable chemical entity has already com-
pleted Phase I clinical trials in healthy individuals. The company also reported clini-
cal studies on patients with advanced solid tumors, for which the preliminary results 
indicate disease stabilization after treatment. Some preclinical data also demon-
strated the potential of D3263 to treat benign prostatic hyperplasia by itself or in 
combination with the synthetic 5α-reductase inhibitor finasteride.

2.9 � TRPA1

Transient receptor potential ankyrin 1 (TRPA1) is a non-selective Ca2+  channel 
characterized by a high number of ankyrin repeats (14) at the N-terminal domain 
(Andrade et al. 2012). This channel is activated by multiple stimuli, including tem-
perature, acids, and numerous chemicals, like different noxious environmental and 
industrial pollutants, oxidant agents and bacterial endotoxins (Bandell et al. 2004; 
Bautista et al. 2005; Jordt et al. 2004; Levine and Alessandri-Haber 2007; Peterlin 
et  al. 2007; Meseguer et  al. 2014). Experimental evidence suggests that TRPA1 
is activated by low temperatures, near the threshold of harmful cold for humans 
(Abrahamsen et al. 2008; del Camino et al. 2010; Karashima et al. 2009), although 
the categorization of TRPA1 as a cold thermosensor has been controversial.

TRPA1 receptors are vastly expressed in different unmyelinated sensory neu-
rons (Story et al. 2003). They are also expressed in different organs, including the 
cardiovascular, gastrointestinal, and urinary systems (Andrade et al. 2012). TRPA1 
co-localizes with TRPV1 channels at least in a subpopulation of C-type nociceptors 
(Fajardo et al. 2008). Akin to TRPV1, a number of studies have also established 
a crucial role of TRPA1 channels in neuronal and non-neuronal neuropathic pain 
(Barriere et al. 2012; Chen et al. 2011; Wei et al. 2010).

TRPA1 is also involved in respiratory reflexes due to inhaled pollutants (Bessac 
et  al. 2009). These results suggest that the activation of this channel might con-
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tribute to asthma and chronic obstructive pulmonary disease (Andre et  al. 2008; 
Materazzi et  al. 2010). TRPA1 is also activated by electrophilic products gener-
ated during oxidative processes, suggesting that these channels may act as sensors 
for the tissue damage during inflammatory processes (Taylor-Clark et  al. 2008). 
Furthermore, TRPA1 channels have been identified as targets of allyl isocyanate, 
cinnamaldehyde, nifedipine, chlorpromazine, auranofin, as well as of clotrimazole, 
clioquinol, apomorphine, glibenclamide (Andrade et al. 2012; Babes et al. 2013), 
which provides some pharmacological basis for painful side effects of some of these 
drugs (Table 2.1 and Fig. 2.5).

The TRPA1 channel is considered a promising target for the development of 
new, clinically relevant drugs in different therapeutic areas (Baraldi et al. 2010). 
In this respect, the past few years have seen the emergence of novel TRPA1 an-
tagonists, with more than 30 patents filed by different academic and non-academ-
ic institutions. Compounds claimed in these patents belong to different chemical 

Fig. 2.5   Selected examples of activators (1–5) and inhibitors (6–10) of TRPA1. 1 Allyl isocyanate 
(CID15123). 2 Auranofin triethylphosphane (CID 24199313). 3 Clioquinol (CID 2788). 4 Apo-
morphine (CID 6005). 5 Glibenclamide (CID 3488). 6 HC-030031 (CID 1150897). 7 A-967079 
(CID 42641861). 8 Piperazine urea (CID 96934). 9 Eucalyptol: 1,8-cineole (CID 2758). 10 PR-
Toxin (CID 56844124)
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families, but a number of them are related to fused pyrimidindione derivatives dis-
playing efficacy in various models of pain (Table  2.1). Among the pyrimidindi-
one antagonists, we can mention compound HC-030031 and its isobutyl analogue 
Chembridge-5861528, which are being profusely used as pharmacological tools for 
studying the implication of TRPA1 channels in pathophysiological pain, among 
other disorders (Koivisto et al. 2012; Meotti et al. 2013; Samer et al. 2008; Shige-
tomi et al. 2012). A small library of related pyrrolo[3,2-d]pyrimidinone derivatives 
with micromolar antagonist potencies was described (Baraldi et al. 2012). In addi-
tion, compound GRC-17536 has successfully completed Phase I clinical trials and, 
since 2012, is under Phase II studies in patients with painful diabetic neuropathy. 
Good efficacy was also observed when this selective compound was administered 
by the inhalation route, and a Phase IIa study is ongoing in people with refractory 
chronic cough.

The oxime derivative A-967079 is a TRPA1 antagonist that inhibits Ca2+  influx 
through this channel at nanomolar concentrations, displayed moderate/good oral 
biovailability, and was active in models of inflammatory and neuropatic pain (Chen 
et al. 2011). Related analogues, showing either modest TRPA1 agonist or antagonist 
properties, have been described (DeFalco et al. 2010). Other chemotypes displaying 
potent TRPA1 antagonist properties include N-arylsufonyl-proline derivatives, pi-
perazineurea, and N-1-Alkyl-2-oxo-2-aryl amide (Vallin et al. 2012). In addition, a 
series of 3-ylidenephtahlides and some leucettamol marine products were described 
to display a dual action, since they are able to activate the TRPA1 channel and to 
block the related cold sensor TRPM8 (Chianese et al. 2012; Ortar et al. 2013). On 
the contrary, the 1,8-cineole, an essential oil from eucalyptus, evoked inward cur-
rents through human TRPM8, but inhibited TRPA1 activation (Takaishi et al. 2012). 
BCTC, a good blocker of TRPM8 at micromolar concentrations is also a strong 
activator of TRPA1 at similar concentrations (Madrid et al. 2006) (Table 2.1 and 
Fig. 2.5). All these structures may be considered versatile templates towards novel 
TRP channel modulators.

Very recently, toxin ProTx-I was identified as a high-affinity TRPA1 antago-
nist. This Cys-rich peptide, isolated from the venom of the Peruvian green-velvet 
tarantula, also behave as an antagonist of voltage-gated sodium (NaV1.2) channels 
(Gui et al. 2014). However, mutations by Ala-scan indicated subtle differences in 
the structural requirements for binding to both ion channels. These findings open 
the possibility of using this peptide as the starting point for the development of new 
TRPA1 modulators. The use of ProTx-I, its mutants and the above indicated antago-
nists as pharmacological tools could certainly contribute to deepen our knowledge 
of TRPA1 function under physiological and pathological conditions, and to shed 
light on its gating mechanism.
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2.10 � Concluding Remarks

TRP channels pharmacology has been evolving a different pace for the members of 
this channel family, resulting in a plethora of modulators for few TRP proteins and 
a lack of ligands for the vast majority. However, technical advances in automated 
electrophysiology, along with an increase in the chemical diversity provided by syn-
thetic and natural libraries most likely will change this conspicuous pharmacologi-
cal unbalance. Furthermore, the discovery that allosteric modulators may be derived 
from the protein sequence will probably accelerate the discovery of TRP modula-
tors. Moreover, the finding that TRP channel signalplexes are central to their func-
tion open new venues for drug intervention by targeting protein complexes involved 
in channel expression or signaling. Taken together, all these strategies will expand 
TRP pharmacology, even to previously considered non-druggable TRP channels.
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