
Chapter 37
Parameter Estimation of Nonlinear Response
Surface Models by Using Genetic Algorithm
and Unscented Kalman Filter

Özlem Türkşen and Esin Köksal Babacan

Abstract Some of the real world problems are characterized by using nonlinear
functions in the parameters. In this case, optimization of nonlinear response surface
models become challenging with derivative-based optimization methods. In this
study, two of the derivative free methods, Genetic Algorithm (GA) and Unscented
Kalman Filter (UKF), are used for parameter estimation of complex nonlinear
response surface model. A numerical example in chemical science is given to
illustrate the performance of the methods.

37.1 Introduction

One of the main stage to solve a real world problem is development of an adequate
functional relationship between a response of interest and a number of associated
input variables. In general, such a relationship is unknown and may have uncertainty
related to the structure of model parameters which characterize the model. The
most common preferred basic modeling tool is regression analysis. The regression
analysis investigates the response models which are linear in the parameters such
as low degree polinomial models in many response surface modeling studies
[2, 7]. Parameter estimation of these linear response models is achieved by using
Ordinary Least Squares (OLS) method. However, many mathematical models used
in scientific research contain parameters that are not expressed linearly. In this case,
nonlinear regression models are preferred.

A regression model is called nonlinear in the parameters, if the derivatives of the
model with respect to the model parameters depends on one or more parameters.
The most commonly used assumptions for nonlinear regression is the same as
assumptions for linear regression. The only exception being that the regression
function is a nonlinear function of the unknown parameters instead of a linear
function of the parameters. The nonlinear models have been used in many fields
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particularly in guidance or navigational systems, target tracking, biological and
chemical sciences, economic and growth models. The models, which are nonlinear
in parameters, can be made linear in parameters by suitable transformations. Even
so, the transformations seem to destroy the model assumptions, e.g. assumption of
variance homogeneity. A formal application of the OLS to the transformed model
will not produce a model with correct statistical properties. According to this, the
OLS method will be biased for parameter estimation of the transformed models. On
the other hand, calculating derivatives with respect to the parameters will be resulted
with normal equations which are nonlinear in the parameters. Therefore, derivative-
free optimization methods will be very useful for obtaining parameter estimates of
complex response problems.

The parameter estimation procedure for nonlinear response models is based on
minimizing the quadratic function of difference between observed and predicted
response values which is called error function. This error function is considered as
objective function. There have been several derivative free methods for optimizing
this complex objective function, e.g. Genetic Algorithm (GA), [4] Nelder-Mead
simplex method [11], Simulated Annealing [8], Unscented Kalman Filter (UKF)
[5]. In this study, two of the derivative free methods, GA and UKF, are preferred
to achieve the parameter estimation procedure for nonlinear response models. In
the next section, brief description about nonlinear response model is given. In
Sect. 37.3, parameter estimation procedures of nonlinear response problems with
GA and UKF are explained and algorithmic steps are presented. An application
study is performed in Sect. 37.4. In Sect. 37.5, the conclusion is given with the
obtained estimation results through performance metric.

37.2 Nonlinear Responses Model

A nonlinear response surface model is a continuous nonlinear multivariate approxi-
mation to real form of the response. Suppose an unknown response model given as
the form below

Yi D � .XiI ™/ C "i; i D 1; 2; : : : ; n (37.1)

in which Yi is the response variable; Xi is a vector of input variables, Xi D
ŒX1i; X2i; : : : ; Xki�; ™, is a vector of parameters, ™ D �

�1; �2; : : : ; �p
�
; � is a nonlinear

function in the parameters (at least partially nonlinear function of a � dimensional
parameter vector ™) and "i is the error term, i D 1; 2; : : : ; n. In order to obtain
parameter estimates of the model given in Eq. (37.1), the sum of squares for error is
defined as
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which wanted to be minimized. The quadratic function given in Eq. (37.2) is
considered as objective function for parameter estimation procedure. In order to
minimize the Eq. (37.2) a well-known methodology is calculating derivatives with
respect to parameter vector ™. However, the obtained normal equations can be
nonlinear in the parameters. In this case, derivative-free optimization methods
should be used to achieve the parameter estimates.

37.3 Parameter Estimation Procedure

In this section, two derivative-free optimization methods, GA and UKF, are
explained briefly. The algorithmic steps of the methods are given in detail for
parameter estimation of nonlinear response surface problems.

37.3.1 Parameter Estimation with Genetic Algorithm

Genetic Algorithm (GA) is a metaheuristic method based on natural selection and
genetic mechanism. The basic principle of it is the Darwinian “survival of the fittest
approach”, introduced by Holland [4]. GAs search from a population points, not a
single point; use objective function information, not derivatives; use probabilistic
rules, not deterministic rules; can produce the solution without requiring initial
solutions by searching from many search points simultaneously [6]. The algorithmic
steps of the GA are given below:

Step 1: Create an initial population

A population of chromosomes is created initially. The chromosomes, represents
the parameters, are candidate solutions of the problem. Each chromosome composed
with genes as a string of binary digits which is called encoding. The population size,
Npop, is defined as the number of chromosomes in the population. Set the generation
number generation D 0.

Step 2: Determine the fitness value of each individual

Fitness function value, which represents the objective function value, is calcu-
lated for each individual chromosome.

Step 3: Select next generation (parent population)

According to the fitness function, the strings with high fitness are selected
so the best chromosomes are included in the new population by using selec-
tion functions, e.g. with replacement, roulette wheel, stochastic uniform, for
reproduction.
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Step 4: Perform reproduction using crossover (mating)

A locus is chosen randomly and exchanges the subsequences before and after that
locus between two chromosomes with crossover probability, Prc, by using crossover
functions e.g. single point, 2-points, uniform, for creating two offsprings.

Step 5: Perform mutation

Some of the bits in a chromosome is chosen and altered from 0 to 1 or 1 to 0 with
mutation probability, Prm, for increasing the variability of the population.

Step 6: Replace the current population with the new population

New solutions are replaced with the current solution set. Set generation D
generation C 1. If generation < maxgen then go to Step 2 else display results.

Each iteration of this procedure is called generation. The entire set of generations
is called a run. Since randomness plays a great role in each run, different runs
produce different results. So, it will be better to report statistics of results [16].
The main disadvantages of the GA stem from its computational complexity because
of the Npop size of the different estimated parameters in each run [3, 10]. And also,
the GA does not guarantee the optimum solution, but leads to solutions acceptably
close to the optimal solution [9].

37.3.2 Parameter Estimation with Unscented Kalman Filter

Kalman Filter (KF) and its derivations have been extensively used for linear
and nonlinear state estimation problems [1]. The KF is an optimal estimator
for linear dynamic systems. However, in real world problems, the systems are
generally formulated as complex and nonlinear. For nonlinear stochastic systems
and nonlinear deterministic systems KF has also been utilized but it is not optimal.
The Extended Kalman Filter (EKF) is commonly used method in the field of
nonlinear estimation. The EKF uses the standard KF equations to the first order
approximation of the nonlinear model about the last estimate. It is very sensitive to
initialization and if the arbitrary noise matrices have not been chosen appropriately
filter divergence is inevitable [12]. The UKF is an another nonlinear estimation
method for nonlinear state space models. The performance of the UKF estimator
is equivalent to the KF for linear systems yet generalizes elegantly to nonlinear
systems without the linearization steps required by the EKF. The UKF is based
on the Unscented Transformation (UT). The UT is a method for calculating the
statistics of a random variable which undergoes a nonlinear transformation [5, 13].
Suppose that x is a random variable which has been transformed a y by using a
nonlinear function h (y D h.x/) and suppose that x has mean x and covariance Pxx.
To calculate the statistics of y, the UT is used deterministically chosen 2nC1 sample



37 Parameter Estimation of Nonlinear Response Surface Models by Using. . . 397

points which are called sigma points. The sigma points are chosen to guarantee that
the sample mean x and sample covariance Pxx by the following algorithm

8
ˆ̂<

ˆ̂:

�0 D x ; W0 D �= .n C �/

�i D x C
�p

.n C �/ Pxx

�

i
; Wi D 1=2 .n C �/ ; i D 1; : : : ; n

�i D x �
�p

.n C �/ Pxx

�

i�n
; WiCn D 1=2 .n C �/ ; i D n C 1; : : : ; 2n

in which � 2 R.
�p

.n C �/ Pxx

�

i
is the i.th row or column of the matrix square root

of .n C �/ Pxx. Wi’s are weights of i. sample point with satisfying
2nX

iD0

Wi D 1. The

sigma points are instantiated through the process model, �i D h .�i/, i D 1; 2; : : : ; n,
and the mean and covariance of y are computed by using a weighted sample mean
and covariance of the posterior sigma points

y D
2nX

iD0

Wi�i

Pyy D
2nX

iD0

Wi f�i � ygf�i � ygT :

Consider the following nonlinear discrete-time stochastic system

x.k/ D f .x .k � 1// C w.k/

y.k/ D h .x.k// C v.k/
(37.3)

where x(k) is the n � 1 state vector, y(k) is the m � 1 measurement vector at time
instant k. The vector valued nonlinear functions, f and h are state transition and
observation functions, respectively. w(k) and v(k) are uncorrelated zero-mean white
noise processes with covariance

E
�
w.k/wT.k/

� D Q.k/; E
�
v.k/vT.k/

� D R.k/: (37.4)

The UKF equations for nonlinear system given by Eq. 37.3 are summarized as
follows [13, 15]

Step 0: Initialize

bx.0/ D E .x.0//

P.0/ D E .x.0/ �bx.0// .x.0/ �bx.0//
T
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Step 1: Calculate the sigma points

8
ˆ̂
<

ˆ̂:

�i .k � 1/ Dbx .k � 1/ ; i D 0

�i .k � 1/ Dbx .k � 1/ C
�p

.n C �/ P .k � 1/
�

i
; i D 1; 2; : : : ; n

�i .k � 1/ Dbx .k � 1/ C
�p

.n C �/ P .k � 1/
�

i
; i D n C 1; n C 2; : : : ; 2n

Step 2: Prediction

�i .k jk � 1/ D f .�i .k � 1//

The predicted mean and covariance are computed as

bx .k jk � 1/ D
2nX

iD0

Wi�i .k jk � 1/

P .k jk � 1/ D
2nX

iD0

Wi .�i .k jk � 1/ �bx .k jk � 1// .�i .k jk � 1/ �bx .k jk � 1//
T

C Q.k/

Step 3: Update

�i .k jk � 1/ D h .�i .k jk � 1//

by.k/ D
2nX

iD0

Wi�i .k jk � 1/

The weighted covariance matrix of the predicted observations is given below

Pyy.k/ D
2nX

iD0

Wi .�i.k/ �by.k// .�i.k/ �by.k//
T C R.k/

and the covariance matrix between the state and the measurement is computed as
follows

Pxy.k/ D
2nX

iD0

Wi .�i .k jk � 1/ �bx .k jk � 1// .�i.k/ �by.k//
T
:
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Then the state estimate bx.k/ and the corresponding covariance matrix P(k) can be
updated as

K.k/ D Pxy.k/P�1
yy .k/

bx.k/ Dbx .k jk � 1/ C K.k/ .y.k/ �by.k//

P.k/ D P .k jk � 1/ � K.k/Pyy.k/KT.k/

where K(k) is a Kalman Gain matrix.

Step 4: Repeat Steps 1–3 for the next sample.

It is clearly seen that there is no necessity to compute the Jacobian matrix in
the UKF algorithm whereas it is needed in the EKF. This can be considered as an
advantage of UKF against to the EKF.

37.4 Application

In this section, chemical reaction problem is considered as an application. Rational
function response is given as

� .XI ™/ D �1�3X1

1 C �1X1 C �2X2

; X1; X2 > 0I 1 < �1 < 3; 10 < �2 < 20; 0 < �3 < 1

which models the chemical reactions of type R ! P1 CP. Here, � is the speed of the
reaction, X1 is the partial pressure of the sought product P, X2 is the partial pressure
of the sought product P1, �1 is the absorption equilibrium constant for P1, �2 is
the effective constant of the speed of reaction, and �3 is the absorption equilibrium
constant for the reagent R [14]. The data set is given in Table 37.1.

The objective function is defined as

� .™/ D
5X

iD1

�
Yi � �1�3X1

1 C �1X1 C �2X2

	2

:

Table 37.1 The data set for
chemical reaction

X1 : 0.28, 2.9, 3.2, 4.7, 5.5
X2: 0, 0.1, 0.82, 1.1, 2

� W 0.33, 0.57, 0.33, 0.31, 0.23
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Table 37.2 Initial tunable parameters of the GA and the UKF

GA UKF

popsize D 100

Prcr D 0:90

Prm D 0:01

Roulette Wheel Selection

Single Po int Crossover

Bit flip mutation

maxgen D 100

x.0/ D
2

6
4

3

15:3

0:73

3

7
5 I P.0/ D

2

6
4

1 0 0

0 1 0

0 0 1

3

7
5 � 0:0001

R D 0:5 I Q D
2

6
4

1 0 0

0 1 0

0 0 1

3

7
5 � 0:1

Table 37.3 Performance
metric results for the GA and
the UKF

GA UKF

RMSE 0.02611 0.02436

The state-space model of chemical reactions for the UKF is defined as

x D
2

4
1 0 0

0 1 0

0 0 1

3

5

2

4
�1

�2

�3

3

5 D
2

4
�1

�2

�3

3

5

y D
�

�3X1

1 C �1X1 C �2X2

0 0

	
2

4
�1

�2

�3

3

5 :

The initial parameters of the GA and the UKF are given in Table 37.2. These
tunable parameters are defined according to the problem structure and expert
knowledge.

The Root Mean Square Error (RMSE) is used as performance metric for
comparison of the GA and the UKF. The RMSE is defined as

RMSE D
vuu
t 1

n � p

nX

iD1

�
Yi � bYi

�2

(37.5)

in which Yi is observed response, Ŷi is predicted response, n is number of
observations, and p is number of parameters. In this study, n and p are 5 and 3,
respectively. The performance metric results for the GA and the UKF are given in
Table 37.3.

It is seen from the Table 37.3 that the UKF is slightly better than GA for
parameter estimates according to the calculated RMSE values. Therefore, it can
be said that the UKF can be used as an alternative method for parameter estimation
of complex nonlinear response problems.
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37.5 Conclusions

Nonlinear response models are most commonly used as well as linear models for
modeling stage of the complex problems. In this study, response functions are
considered as nonlinear in the parameters. In order to obtain parameter estimates
of the nonlinear functions, two of the derivative-free optimization algorithms are
used instead of derivative-based optimization algorithms. One of the method, used
in the study, is GA which is an efficiently used metaheuristic method for complex
optimization problems. The other one is UKF which is the most popular estimation
method for nonlinear state-space models. The tunable parameters of the GA and
the UKF are chosen according to the problem structure and expert knowledge.
The results show that the GA and the UKF have similar performances according
to the RMSE metric. However, the UKF is slightly better than the GA. It can be
said that the UKF can be preferred as an optimization tool for complex nonlinear
optimization problems.
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