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Preface

This volume contains the papers accepted for presentation at C2SI-Berger2015, in honor
of Prof. Thierry Berger, from XLIM Laboratory, University of Limoges, France.
C2SI-Berger2015 is an international conference on the theory, and applications of cryp-
tographic techniques, coding theory, and information security. The first aim of this
conference is to pay homage to Prof. Thierry Berger for his valuable contribution in
teaching and disseminating knowledge in coding theory and cryptography in Morocco
since 2003. The second aim of the conference is to provide an international forum for
researchers from academia and practitioners from industry, from all over the world for
discussion of all forms of cryptology, coding theory, and information security.

The initiative of organizing C2SI-Berger2015 has been started by the Moroccan
Laboratory of Mathematics, Computing sciences and Applications (LabMiA) at Fac-
ulty of Sciences of the University Mohammed V in Rabat and performed by an active
team of researchers from Morocco and France. The conference was organized in co-
operation with the International Association for Cryptologic Research (IACR), and the
proceedings were published in Springer’s Lecture Notes in Computer Science series.

The C2SI-Berger2015 Program Committee consisted of 39 members. There were 59
papers submitted to the conference. Each paper was assigned to at least two members
of the Program Committee and was refereed anonymously. The review process was
challenging and the Program Committee, aided by reports from 17 external reviewers,
produced a total of 130 reviews in all. After this period, 22 papers were accepted on
March 20, 2015. Authors then had the opportunity to update their papers until March
25, 2015. The present proceedings include all the revised papers. We are indebted to the
members of the Program Committee and the external reviewers for their diligent work.

The conference was honored by the presence of the invited speakers Frangois Ar-
nault, Ezedin Barka, Johannes A. Buchmann, Anne Canteaut, Claude Carlet, Jean Louis
Lanet, Ayoub Otmani, and Felix Ulmer. They gave talks on various topics in cryptog-
raphy, coding theory, and information security and contributed to the success of the
conference.

We had the privilege to chair the Program Committee. We would like to thank all
committee members for their work on the submissions, as well as all external reviewers
for their support. We thank the invited speakers, and the authors of all submissions.
They all contributed to the success of the conference.

We would also like to thank Prof. Saaid Amzazi, President of University Mohammed
V in Rabat and Prof. Wail Benjelloun, former Head of University Mohammed V, Agdal
in Rabat for their unwavering support to research and teaching in the areas of cryptog-
raphy, coding theory, and information security.

We are deeply grateful to Prof. Thierry Berger and his laboratory XLIM of the
University of Limoges for great services in contributing to the establishment of a suc-
cessful master’s degree in coding theory, cryptography, and information security at
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University Mohammed V in Rabat. We would like to take this opportunity to acknowl-
edge their professional work.

Finally, we heartily thank all the Local Organizing Committee members, all spon-
sors, and everyone who contributed to the success of this conference. We are also thank-
ful to the staff at Springer for their help in producing the proceedings.

May 2015 Said El Hajji
Abderrahmane Nitaj
El Mamoun Souidi
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Multidimensional Bell Inequalities
and Quantum Cryptography

Francgois Arnault

Université de Limoges, Laboratoire XLIM/DMI, France
arnault@unilim.fr

Abstract. The laws of quantum physics allow the design of cryptographic pro-
tocols for which the security is based on physical principles. The main crypto-
graphic quantum protocols are key distribution schemes, in which two parties
generate a shared random secret string. The privacy of the key can be checked
using Bell inequalities. However, the Bell inequalities initial purpose was a fun-
damental one, as they showed how quantum rules are incompatible with our in-
tuition of reality.

This paper begins with an introduction about quantum information theory,
Bell inequalities, quantum cryptography. Then it presents the use of qudits for
Bell inequalities and cryptography.



Securing the Web of Things
with Role-Based Access Control

Ezedine Barka, Sujith Samuel Mathew, and Yacine Atif

College of IT, UAE University, Al Ain, UAE
ebarka@uaeu.ac.ae

Abstract. Real-world things are increasingly becoming fully qualified members
of the Web. From, pacemakers and medical records to children’s toys and sneak-
ers, things are connected over the Web and publish information that is available
for the whole world to see. It is crucial that there is secure access to this Web of
Things (WoT) and to the related information published by things on the Web. In
this paper, we introduce an architecture that encompasses Web-enabled things in
a secure and scalable manner. Our architecture utilizes the features of the well-
known role-based access control (RBAC) to specify the access control policies to
the WoT, and we use cryptographic keys to enforce such policies. This approach
enables prescribers to WoT services to control who can access what things and
how access can continue or should terminate, thereby enabling privacy and secu-
rity of large amount of data that these things are poised to flood the future Web
with.



On the Security of Long-Lived Archiving Systems
Based on the Evidence Record Syntax

Matthias Geihs, Denise Demirel, and Johannes Buchmann

Technische Universitit Darmstadt, University in Darmstadt, Germany
mgeihs@cdc.informatik. tu-darmstadt.de

Abstract. The amount of security critical data that is only available in digital
form is increasing constantly. The Evidence Record Syntax Specification (ERS)
achieves very efficiently important security goals: integrity, authenticity, dated-
ness, and non-repudiation. This paper supports the trustworthiness of ERS by
proving ERS secure. This is done in a model presented by Canetti et al. that these
authors used to establish the long-term security of the Content Integrity Service
(CIS). CIS achieves the same goals as ERS but is much less efficient. We also
discuss the model of Canetti et al. and propose new directions of research.



Differential Attacks Against SPN:
A Thorough Analysis

Anne Canteaut and Joélle Roué

Inria, project-team SECRET, Rocquencourt, France
{Anne.Canteaut,Joelle.Roue}@inria. fr

Abstract. This work aims at determining when the two-round maximum ex-
pected differential probability in an SPN with an MDS diffusion layer is achieved
by a differential having the fewest possible active Sboxes. This question arises
from the fact that minimum-weight differentials include the best differentials for
the AES and several variants. However, we exhibit some SPN for which the two-
round MEDP is achieved by some differentials involving a number of active
Sboxes which exceeds the branch number of the linear layer. On the other hand,
we also prove that, for some particular families of Sboxes, the two-round MEDP
is always achieved for minimum-weight differentials.



On the Properties of Vectorial Functions
with Plateaued Components
and Their Consequences on APN Functions

Claude Carlet

LAGA, UMR 7539, CNRS, Universities of Paris 8 and Paris 13,
Department of Mathematics, University of Paris 8, 2 rue de laliberté,
93526 Saint-Denis cedex 02, France

claude.carlet@univ-paris8.fr

Abstract. [This is an extended abstract of paper [15], which has been submitted
to a journal] Boolean plateaued functions and vectorial functions with plateaued
components, that we simply call plateaued, play a significant role in cryptog-
raphy, but little is known on them. We give here, without proofs, new charac-
terizations of plateaued Boolean and vectorial functions, by means of the value
distributions of derivatives and of power moments of the Walsh transform. This
allows us to derive several characterizations of APN functions in this framework,
showing that all the main results known for quadratic APN functions extend to
plateaued functions. Moreover, we prove that the APN-ness of those plateaued
vectorial functions whose component functions are unbalanced depends only on
their value distribution. This proves that any plateaued (n, n)-function, n even,
having same value distribution as APN power functions, is APN and has same
extended Walsh spectrum as the APN Gold functions.



Beyond Cryptanalysis Is Software Security
the Next Threat for Smart Cards

Jean-Louis Lanet

INRIA, LHS-PEC,
263 Avenue Général Leclerc, 35042 Rennes, France
jean-louis.lanet@inria.fr

http://secinfo.msi.unilim.fr/lanet/

Abstract. Smart cards have been considered for a long time as a secure con-
tainer for storing secret data and executing programs that manipulate them with-
out leaking any information. In the last decade, a new form of attack that uses
the hardware has been intensively studied. We have proposed in the past to pay
attention also to easier attacks that use only software. We demonstrated through
several proof of concepts that such an approach should be a threat under some
hypotheses. We have been able to execute self-modifying code, return address
programming and so on. More recently we have been able to retrieve secret keys
belonging to another application. Then all the already published attacks should
have been a threat but the industry increased the counter measures to mitigate for
each of the published attack. In such a sensitive domain, we always submit the
attacks to the industrial partners but also national agencies before publishing any
attack. Within such an approach, they have been able to patch their system before
any vulnerabilities should be exploited.



Key-Recovery Techniques in Code-Based Cryptography

Ayoub Otmani

University of Rouen, LITIS, 76821 Mont-Saint-Aignan, France
ayoub.otmani@univ-rouen. fr

Abstract. An important step in the design of secure cryptographic primitives
consists in identifying hard algorithmic problems. Despite the fact that several
problems have been proposed as a foundation for public-key primitives, those
effectively used are essentially classical problems coming from integer factori-
sation and discrete logarithm. On the other hand, coding theory appeared with
the goal to solve the challenging problem of decoding a random linear code. It
is widely admitted as a hard problem that has led McEliece in 1978 to propose
the first code-based public-key encryption scheme. The key concept is to focus
on codes that come up with an efficient decoding algorithm. McEliece recom-
mended the use of binary Goppa codes which proved to be, up to now, a secure
choice.

This talk will explore the important notion underlying code-based cryptogra-
phy in order to understand its strengths and weaknesses. We then look at different
extensions that lead to a wide range of variants of the McEliece scheme. This will
give the opportunity to describe efficient and practical key-recovery cryptanalysis
on these schemes, and to show the large diversity in the design of these attacks.



Extended Abstract:
Codes as Modules over Skew Polynomial Rings

Felix Ulmer

IRMAR, CNRS, UMR 6625, Université de Rennes 1,
Université Européenne de Bretagne, France

felix.ulmer@univ-rennesl. fr

Abstract. This talk is an overview of codes that are defined as modules over
skew polynomial rings. These codes can be seen as a generalization of cyclic
codes or more generally polynominal codes to a non commutative polynomial
ring. Most properties of classical cyclic codes can be generalized to this new set-
ting and self-dual codes can be easily identified. Those rings are no longer unique
factorization rings, therefore there are many factors of X™ — 1, each generating a
“skew cyclic code”. In previous works many new codes and new self-dual codes
with a better distance than existing codes have been found. Recently cyclic and
skew-cyclic codes over rings have been extensively studied in order to obtain
codes over subfields (or subrings) under mapping with good properties.
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Multidimensional Bell Inequalities
and Quantum Cryptography

Francois Arnault(®)

Université de Limoges, Laboratoire XLIM/DMI, France

arnault@unilim.fr

Abstract. The laws of quantum physics allow the design of crypto-
graphic protocols for which the security is based on physical principles.
The main cryptographic quantum protocols are key distribution schemes,
in which two parties generate a shared random secret string. The pri-
vacy of the key can be checked using Bell inequalities. However, the Bell
inequalities initial purpose was a fundamental one, as they showed how
quantum rules are incompatible with our intuition of reality.

This paper begins with an introduction about quantum information
theory, Bell inequalities, quantum cryptography. Then it presents the use
of qudits for Bell inequalities and cryptography.

Keywords: Bell inequalities - Quantum cryptography - Key distribution
schemes - Random numbers

I can give at least three reasons to be interested with quantum theory when
working in the theory of information processing.

(a) Cryptography. Quantum physics may eventually broke most present public
key protocols. But even more importantly, does provide very new cryptographic
protocols for which security is based on physics postulates.

(b) Computing. Quantum computers, if can eventually be built, will oblige us
to change our standard models of computers.

(c) Random generation. Random evolution is a fundamental feature in quantum
physics. Hence true random generation is possible, while it is only approachable
in a classical world.

In this paper we review the use of Bell inequalities and recent progresses in
their use for cryptography. Section 1 exposes the notion Local Realism and how
it is characterized by Bell inequalities. Section 2 introduces the use of multidi-
mensional quantum states (in opposition with only qudits). Section 3 considers
violations by quantum rules. Section 4 is devoted to key exchange, including a
qutrit protocol we proposed in collaboration with Zoé Amblard.

1 Local Realism and CHSH Inequalities

Bell inequalities provide evidence of the incompatibility of the classical de-
scription of the world and its quantum description. The existence of entangled

© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 3—-13, 2015.
DOI: 10.1007/978-3-319-18681-8 1



4 F. Arnault

systems, predicted by quantum physics and experimentally observed, is a man-
ifestation of this incompatibility. When some particles are entangled, measure-
ments on them have results that cannot be explained by classical rules. In par-
ticular, classical rules do conform with Local Realism

1.1 Local Realism

Let consider a physical system made of different (spatially separated) parts,
denoted A, B, C... For each part, an experimenter (Alice, Bob, Charlie. .. ) is
invited to make an experiment of his choice. Classical physics have implicitly
assumed during centuries that:

Objectivism: Measurable quantities are defined even when not measured.
Locality: Distant places can be causally separated.

These two assumptions are the two ingredients of Local Realism [12]. Bell
inequalities are relations which are satisfied by systems which obey Local Realism
rules, but are violated by some quantum systems.

1.2 CHSH Inequalities

Probably the nicest Bell inequalities are the so-called CHSH inequalities (after
Clauser, Horne, Shimony, Holt) [8].

Alice and Bob make measurements on a system constituted of two distant
parties A and B. Alice has the choice to measure X4 or Z4 on A, and Bob
has the choice between Xp and Zp over B. Measurements X 4, Za, Xp, Zp
are dichotomic ones: their issues belong to {£1}. Assuming Local Realism, the
value

T:=XaXp+XuaZp+2ZaXp —ZaZp (1)

is well defined, and it is easy seen equal to +£2. When repeating the experiment
with many identically prepared systems, the expected value of T satisfies:

—2< B(T)<2. 2)

These are the CHSH inequalities.

1.3 Quantum World

In a quantum world, we can consider two half spin particles in a state usually
denoted |¢) = 12 (|01) —]10)). This system is said to be entangled because of the
observed correlations between the issues reported by Alice and Bob. For example,
for this state |¢), if Alice and Bob measurements are spin measurements with
same direction, the issues +1 obtained by Alice and Bob are always opposite.
More generally, quantum formalism shows that when Alice and Bob carry spin
measurements Sz and S? with respective directions given by unitary vectors
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%
@ and b, then the expected value of the product of their issues is given by
E(S— S?) _— Hence, for the configuration shown in Figure 1:

B(T)=~@1- 81~ Da—@o- b1+ @2 ba (3)
= —V2/2 = V/2/2 = /2/2 = V/2/2 = —2V/2. (4)

The value obtained for E(t) does not belong to the interval [—2,2] as required
by (2). This is not compatible with the assumptions of Local Realism. Exper-
iments have been done to know which rules are obeyed by nature, and all have
confirmed quantum rules instead of Local Realism.

Fig. 1. Spin measurement directions chosen by Alice and Bob

When a Bell inequality is not satisfied for some measurements on a quantum
state, it is said that this inequality is wviolated. The violation factor is given by
the value obtained divided by the maximum compatible with Local Realism. For
example, the expected value obtained in (4) corresponds to a violation factor v/2.

1.4 Complete Set of Inequalities

If we swap parties and/or measurements in the two CHSH inequalities defined
by (1) and (2), we obtain eight inequalities which, as shown in [15], form a com-
plete set. This means that the four expected values E(X4), E(Z4), E(Xg) and
E(Zp) observed in some experiment made by Alice and Bob are compatible with
Local Realism if and only if all eight inequalities are satisfied. These inequalities
define in C* a polytope 2 with eight facets, which is the set of values attainable
by the four-vector of expected values assuming Local Realism.

1.5 Generalization to n Parties

Authors of [24] and [25] obtained a generalization of this complete set to the
n parties case. Their inequalities involve the Walsh-Hadamard transform f of
(multiplicative) Boolean functions f : {0,1}" — {£1}:

Z < on where M, = H?=1 XZ_Zilfsi.
{0,1

There are 22" such inequalities and they define a polytope 2 in R?". They form
a complete set.
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2 Multidimensional Inequalities

The above Bell inequalities have been obtained using dichotomic measurements.
Non degenerate dichotomic measurements are described, in quantum physics,
by operators on two-dimensional Hilbert spaces. These operators act on state
vectors, which describe elementary quantum systems designed as qubits, and
usually denoted

al0) + B|1) with a, 8 € C such that |a|? + |32 = 1.

The multidimensional case corresponds to measurement with d possible issues
where d > 2. These measurements are described using operators on d dimensional
Hilbert spaces. The corresponding states are often called qudits and denoted

aol0) + ai|1) + -+ agld—1)  with a; € C and 3 |oy[? = 1.

The use of qudits can be advantageous compared to the use of only qubits. For
example, Bell inequalities over qutrits (d = 3) can be more noise resistant. This
means that it is possible to design even more convincing experiments to check for
(non) Local Realism. Also, qudits are useful to design better cryptographic pro-
tocols. Moreover, general entanglement remains incompletely understood, and
multidimensional Bell inequalities may provide useful tools to give insight over
it.

Some Bell inequalities had been obtained for the multidimensional d > 2 case.
But the search for a complete set had not been successful before. We got such
a complete set in [3]. The inequalities of this set are obtained using Discrete
Fourier Transform.

2.1 Discrete Fourier Transform

Multidimensional discrete Fourier transform is a generalization of the Walsh-
Hadamard transform. The “number of points” of the transform will be denoted
d > 2 (d = 2 is the Walsh-Hadamard case). Boolean functions are replaced with
functions from Z[; to the set U of complex d-roots of unity. There are d®" such
functions. We denote F,, 4 the set of functions from Z} to C, and w a complex
primitive d-root of 1 (say w = exp(2in/d)).

The discrete Fourier transform of f € F,, 4 is defined by

fry=" o f(s).

SEZT
Values of f can be obtained from the column vector of the values of f applying
the matrix H?” = (w’“""')rsezn. In other words, the Fourier transform is the
) d

isomorphism of the vector space F,, 4, with matrix H®". Let H&*@" the matrix
(w™"*)ysezn. Then HY"H;®" = d"I. Hence it is possible to retrieve f from f :

f(s) = dln > Wt ().

rEZg
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2.2 Homogeneous Inequalities

Assume that a physical system is distributed to n parties. For each party 7, two
measurements X; and Z; are considered. These measurements are assumed to
have d > 2 possible issues and, without loss in generality, this issues are assumed
to be the powers of w.

We denote Hull U the convex hull of the set U of the d-roots of unity. In [3]
we obtained, assuming Local Realism, the following property:

3 f(r)E(ﬁX{f’Zf_l_”) € d" - HullU, (5)

rezy i=1

where f is any function from Z7 to U. This can be expressed by the inequalities:

(0 5 fe(fe)) s o

reZy

We named homogeneous Bell inequalities these d%" inequalities (because they
involve homogeneous polynomials). They define a polytope 2 in cd,

For r € Z7, we abbreviate M, the monomial [, X7*Z¢~'~"*. The expected
values F(Mj), for s € Z%, form a vector in C?". The Local Realistic domain is
the subset of C%" allowed to this vector under the Local Realistic assumptions.
We shown in [3] that this domain is exactly the polytope {2 defined by the
homogeneous Bell inequalities. These d¢" inequalities form a complete set.

In the (very) special case d = 2, they are just the inequalities and the polytope
found by Werner & Wolf and Zukowski & Brukner. But, because the convex hull
of the square roots of 1 is contained in the real field, their polytope can indeed
be considered in a real space, as they did.

3 Violation by Quantum Systems

The first purpose of Bell inequalities is to identify when measurement probabil-
ities are compatible with Local Realism. This is exactly what the complete set
of homogeneous inequalities does. However, it is also important to check and
evaluate violations of Bell inequalities by quantum mechanics.

A difficulty appeared here for d > 2. Homogeneous Bell inequalities are formed
with some monomials in which two measurements X; and Z; associated to the
same party appear. But in quantum physics, such measurements are in general
incompatible and cannot be separately carried.

We have addressed with concern using unitary measurements, instead of Her-
mitian ones as more frequently preferred in the literature. This is coherent with
our approach, where the issues of measurements are assumed to be complex
roots of unity, instead of real numbers. With unitary measurement operators,
the product of two of them is also unitary, and can be considered as a separate
measurement. The set of unitary operators we considered, the generalized Pauli
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group, is well known in quantum information theory. The Pauli operators are
the products
Z, X, XZ, ..., Xzt

where X and Z are given by

0o 0 -1 1 0 0
X = and Z = O .w 0
0 :
0 1 0 0 0 w1

With these operators, is is possible to compute violations by quantum physics.
Moreover, the violations computed could be experimentally checked. In such an
experiment, the issues of the measurement corresponding to an operator X*Z*
must not be considered as a product of the issues of two measurements but as
the result of a single measurement. We make explicit in the following section
how this can be done, when using tritters.

3.1 Measurements with Tritters

Measurement on qutrits (i.e. when d = 3) are often implemented with trit-
ters [26]. Note that they can be easily generalized for any d.

A tritter is parametrized by a triplet (o, ©1, ¢2) of phase shifts. For readabil-
ity we put 0; = exp(ip;) (for j =0,1,2) and © = (6y, 01, 62). A tritter performs
over a qutrit the unitary transformation Ug := H Dg where the matrices H and
Do are H = (w*)g<k <2 and Dg = diag(fo, 01,02). After the transformation
performed by the tritter, a measurement is made using three detectors. This
measurement is represented by the observable

2 1 1 1
Z=Y wlk)kl=11 w o
k=0 1 w? w

Thus, the measurement obtained by the combination of the tritter and the de-
tectors corresponds to the following observable

0 0 0,0
Zo:=Deo-H'ZHDg = | 607 0 0 |. (7)
0 6,05 0

Suppose now that we have two tritters, which implement the observables Zg
and Z, described by Equation (7), with © = (6p,601,602) and A = (A, A1, A2).
Then we need to implement the product observable ZgZ 4. But
0 0 9296 0 0 /\2)\8 0 ’}/8’}/1 0
Z@ZA: 9091‘ 0 0 )\0>\T 0 0 = 0 0 ’yf’yg
0 005 0 0 MX; 0 Y% 0 0
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where

(70,715 72) = (037, 0573, 67 A).
Hence, ZoZ4 = Z} where I' has the components (o, y1,72) just given. From
Zr = D*FHTZHDF, we obtain ZgZ, = th = D}HTZTHDF. The product ob-
servable ZgZ 4 can consequently also be implemented by a tritter and a detector,

but with the detector performing a measurement corresponding to the observable
Z' instead of Z.

4 Quantum Keys Exchange

In a quantum key exchange protocol, two parties use a quantum channel to ob-
tain a shared secret. The security of these protocols rely on physical postulates:
any attack can be detected with some probability. These two most famous pro-
tocols are the one by Bennett & Brassard [5] and the one by Ekert [13]. We
focused on the Ekert’91 protocol and variants.

4.1 Ekert’91 Protocol

The protocol relies on pairs of entangled qubits, say in state (|01)—[10))/+/2. This
state is usually realized with pairs of polarized photons, routed in two optical
fibers to their respective parties Alice and Bob. In the original protocol [13], Alice
and Bob each have the choice between three measurement bases, but it is better
to allow four different bases for each party. These measurements are denoted Ay
(for Alice) and By, (for Bob, with 0 < k < 3). In practice these measurements
are polarization measurements with directions given by angles k7 /4 (much as
shown in Figure 1 but each party can choose between the four measurements).

Independently, Alice and Bob choose their measurements (for each received
pair of entangled states). Let A, and By, the chosen bases. When a = b, the issues
obtained by Alice and Bob are opposite, hence they obtained shared keybits.
The issues obtained when the parities of a and b differ can be used to detect the
presence of an attacker. For this, the two following expected values are evaluated:

E(A()Bl) + E(A()Bg) + E(AQBl) — E(AQBS)
E(AlBo) -+ E(A]BQ) -+ E(ASB()) — E(ASBQ)

They correspond to two configurations of CHSH experiments which, by quantum
rules, are predicted to reach —v/2. A deviation from this value can be used to
detect the presence of an attacker. Other pairs (a, b) are ignored. The following
array summarizes the situation. The pairs which provide keybits are marked
with k, and the pairs used to check CHSH violations are marked ¢; and cs.

By B1 B2 B3

AO k C1 C1
A1 [65) k C2
A2 C1 k C1

A 3 C2 C2 k



10 F. Arnault

If no disturbance affects the measurements, the two checks for CHSH must
give violations factors near v = /2. In practice, imperfections in apparatus
will lower this value. If disturbance is approximated with a random noise, the
resulting violation will be (1 — F)v where F is the amount of noise. While
this resultant violation remains greater than 1, the presence of an attacker can
be detected. Hence, F' has to remain lower than 1 — 1/v in order to keep the
protocol secure. With Ekert protocol, F' = 1 — 1/4/2 ~ 0.293. If we can modify
the violation factor v in order to make this threshold for F' larger, the resulting
protocol will allow to detect even more discreet attackers.

4.2 The Inequality CHSH-3

The use of qutrits allows a larger noise proportion F'. This was explained in [10]
where the 3DEB protocol was defined. This protocol uses an inequality similar
to CHSH but involving 3-issues measurements.

This 3-issues variant of CHSH appeared in [20]. It has been rewritten in [6]
in terms of correlation functions, in the form S < 2 with

S = Re (E(AlBl) + E(AlBQ) - E(AQBl) + E(AQBQ))
+\}3 Im (E(AlBl) — E(AlBg) — E(AQBl) -+ E(AQBQ))

But we can remark that S = —3 ReT with
T = 3((w?—1)E(A}B})+(w—1)E(A} B3)+(1-w?) E(A3 B )+ (w”—1)E(A3B3)).

Hence, the CHSH-3 inequality can finally be written Re(—7") < 9.
The state \}3 (|00) 4 |11) + |22)) achieves violations of CHSH-3 with a v =

(6 + 4+/3)/9 ~ 2.873/2 factor. This corresponds to a noise level F =1 —1/v =
(11 — 6v/3)/2 ~ 0.304. Tt is even possible [17] to obtain a CHSH-3 violation
factor (1 4 1/11/3)/2 ~ 1.457 with a non maximally entangled state. The noise
threshold allowed is in this case F' = (7 — /33)/4 ~ 0.314.

4.3 The 3DEB Protocol

This qutrits protocol appeared in [10] (but see also [21]). Alice uses measurement
bases A, (with a = 0,1,2,3) which are obtained for example using tritters with
parameters O, = (1,(% ¢?*) where ( = exp(2in/12). Bob uses measurement
bases By (with b = 0,1,2,3) obtained using tritters with parameters @, =
(1,¢7%,¢72%). When a = b, Alice and Bob obtain keybits because their respective
issues are opposite. Pairs (a,b) = (0,1),(0,3),(2,1),(2,3) can be used to check
violations of CHSH-3, which without any disturbance must equal v = (6 +
44/3)/9 ~ 2.873/2. The same is true for pairs (a,b) = (1,0),(1,2),(3,0),(3,2).
Any presence of attacker will alter the observed violation. As remarked above,
the threshold of admissible noise is F' ~ 0.314.
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4.4 The Homogeneous Qutrits Protocol

Homogeneous Bell inequalities have allowed us to define in [2] an even better
protocol, where the admissible noise threshold is larger. We have chosen to use
the inequality —2 Re(T1) < 1 found in [3], where

T = —(2w+4)E(A2B?) + (w — 1)E(A2B1 B2) + (4w + 2) E(A?B3)
+(UJ — ].)E(AlAQB%) — (20.) + 1)E(A1AgBlBQ) + (4w — 1)E(A1A2B%)
+(w+5)E(A2B2) + (w + 2)E(A2B, By) + (w — 1) E(A2B2).

The state \}3 (|00) + [11) + |22)) achieves a much better violation factor ~ 1.693
when using the same measurements bases as in 3DEB. Hence the threshold F' is
considerably improved because it reaches now ~ 0.409.

The following array details which pairs of measurements provide key trits and
which pairs are used to detect attacker (here Agg := A2, Agz := ApAa,...).

Boo Bo2 Bss Bii Big Bss

A k c c c
Ao k c c c
Aso k c c c
A11 & k

A3 ¢ c c k

A33 C k

Note that this protocol requires to be able to measure the product of two
observables, such Apz. We have shown above how this can be done using tritters.

5 Conclusion

John Bell wrote the inequalities which now bear his name with a very theoretical
aim in mind. This has been a great success and, together with experiments of
Aspects and al, we have learned much of his work.

Near thirty years later, Bell inequalities have proven to have also a practical
interest, in cryptography, with the work of Ekert. They have also applications
in true random generation: they are useful to certify that a certain amount of
entropy has been created in some quantum processes [23]. And many other uses
are possible.

We have insisted on the use of multidimensional states (qudits). The descrip-
tion of Local Realism has been possible with the use of complex correlations
functions, and of unitary observables. We have confirmed that the use of qudits
can improve some protocols.

Bell inequalities, with the use of discrete mathematics to study quantum pecu-
liarities, can be viewed as the start of emergence of quantum information theory.
This exciting field will keep a double interest, as theoretical concerns and appli-
cations will remain quite interleaved. this makes even more interesting working
in this field.
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Abstract. Real-world things are increasingly becoming fully qualified
members of the Web. From, pacemakers and medical records to chil-
dren’s toys and sneakers, things are connected over the Web and publish
information that is available for the whole world to see. It is crucial that
there is secure access to this Web of Things (WoT) and to the related
information published by things on the Web. In this paper, we introduce
an architecture that encompasses Web-enabled things in a secure and
scalable manner. Our architecture utilizes the features of the well-known
role-based access control (RBAC) to specify the access control policies
to the WoT, and we use cryptographic keys to enforce such policies. This
approach enables prescribers to WoT services to control who can access
what things and how access can continue or should terminate, thereby
enabling privacy and security of large amount of data that these things
are poised to flood the future Web with.

Keywords: Web of Things - Privacy - Access Control - RBAC - UCON

1 Introduction

Today society is impacted by revolutionary innovations in information technol-
ogy that are very pervasive and ubiquitous in nature. Along with these advances,
particularly in communications technology, a series of new security threats and
privacy issues arise. Among these technologies is the rapidly increasing Web of
Things (WoT), where physical things are accessed and controlled via the Web.
WoT has several methods that support a variety of applications such as sub-
scribing to a service, notification of an event, status update, and location and
presence services. WoT provides flexible, scalable, and real-time communications
with the physical world in a ubiquitous way but additional security and privacy
concerns result from its ubiquity and mobility.

Secure Web publishing approaches have been developed to allow authenticated
users direct access to a dataset. In doing so, these appraoches provide users with
a published, static “snapshot” of the dataset content. We follow this secure
publishing paradigm [5] to enable a security framework for WoT.

Traditional access controls typically focus on the protection of data in closed
environments, and the enforcement of control has been primarily based on iden-
tity and attributes of a known user. These types of access control lack a com-
prehensive, systematic approach to fulfill the security requirements of today’s
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pervasive and ubiquitous applications on the WoT. To address these issues, we
introduce an architecture that implements role-based access control (RBAC) to
check the access to datasets within WoT based environment. This enables pub-
lishers of things on the Web to control who can locate them, and subsequently
access and use them. Furthermore, it enables the possibility of setting some at-
tributes to determine whether certain accesses should proceed or be terminated.

The remainder of this paper is organized as follows. In Section 2, we provide
some background on WoT and discusses our architecture and its role in the
pervasive environment to address some security challenges. Section 3 provides
an overview of the role-based access control (RBAC). Section 4 presents our
architecture and explains the integration of WoT with RBAC. Section 5 describes
how RBAC is used to specify the access policies to WoT datasets, and the
cryptographic keys used to enforce these policies. Section 6 concludes the paper
with some future work.

2 Overview of WoT

WoT is a platform where billions of physical things are interconnected over
the World Wide Web. Researchers have successfully connected things over the
Web and experimented with various applications in real-world scenarios [4]. The
inevitable challenges lie in how to efficiently and effectively manage and secure
the access to the informaiton hidden within these things, which is critical for a
number of important applications. To address the management of heterogeneous
and wide abundance of candidate things in WoT, the Ambient Space Manager
(ASM) framework was suggested earlier by Mathew et. al [10]

2.1 Representation of Things on WoT

Mathew et. al. suggested a capability based classification, Fig 1 shows the Web
Object Metadata (WOM) structure, which defines the ontological representation
of a thing (Thing A) on the Web [6].

The WOM-Profile composes the semantic details from all ontologies of a thing
that is revealed to external entities. The WOM-Profile is divided into two sec-
tions: the jpreset; and jdynamic; sections. Preset describes static information
about a thing like manufacturer, date of production, or country of production
and the dynamic, describes information about a thing like cost, location, or
owner, which changes. The WOM-Capability ontology classifies a thing based
on its Identity, Processing, Communication, and Storage (IPCS) capabilities.
The ontology classifies a thing to be Web Smart when these capabilities are
Web related. Hence a Web Smart thing has a unique identity on the Web, pro-
cesses Web requests, communicates via Web protocols, and has storage space on
the Web. If any of the capabilities are missing, then the ontology recommends
the augmentation of the missing capabilities.

Once things are Web Smart (i.e. they are participating members of the Web),
they are grouped/clustered into an Ambient Spaces (AS) [10,9]. An AS is the
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Fig. 1. Web Object Metadata (WOM) of a thing on the Web

virtual representation of a cluster of things i.e. the encapsulation of one or more
real-world things that are Web Smart. An AS also represents the boundaries of
a physical space. For example, Web Smart things in a classroom, or in a train
compartment, or a hospital room, or a parking spot. These physical spaces are
repeating patterns. Hence an AS provides a template to compose things and their
containing physical spaces in a gradient to represent larger physical spaces like
campuses, parking lots, airports, trains, and office buildings. Clustering things
into an AS is done based on determining the similarities of things using similarity
functions. The similarity functions are applied on all Web Smart things in an
AS [8].

2.2 Ambient Space Stakeholders

In any fundamental computing setup, the main stakeholders are the providers
and consumers of the services or infrastructure. The consumers use and up-
date the system, while the providers deal with the manufacture, deployment
and maintenance functions. The domain of WoT requires the addition of new
stakeholders and redefinition of the traditional ones. The stakeholders within
the WoT domain not only require providers and consumers but also needs to
consider the role of owners and regulators who control the thing’s inherent dy-
namic and proprietary state. Here, we briefly list the stakeholders, focusing on
their contribution to the content of a thing’s WOM-Profile.

Providers: The providers are essentially the manufacturers that create the
WoT elements. The providers will also hold the responsibility of recycling or
discarding a thing at the end of its lifespan [7]. The maintenance and upgrades
to a thing are the responsibility of providers while a thing is used by other
stakeholders. The providers hold the right to change the content of a thing while
maintaining history of changes. The providers contribute to the preset content
jwom:preset; of a thing’s prole and are responsible for ensuring the presenta-
tion of thing’s composition, use, and disposal. The preset content of a thing’s
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WOM-Profile is fixed and not changeable by other actors. Contact information
of the providers needs to be provided, for the use of thing itself or any of the
other stakeholders. The links to the user manual and the conditions of thing’s
usage are provided by the providers. The providers may also contribute to the dy-
namic content jwom:dynamicj, of a thing’s prole. Annotations for branding, price
composition and marketing are initially added by the providers. The providers
initiate the history of a thing’s existence.

Consumers: The consumers of a Web Smart thing are its users. These users
could be other things or people. Unlike other domains, consumers are not owners
here and are bound to access restrictions that are controlled by the present
owner of a thing. The contribution of consumers populates the dynamic content
iwom:dynamic, of thing’s prole. The consumers provide rich semantics to thing’s
use and add to the history of a thing. The content that the consumers provide to
a thing essentially creates links with other things or people that are connected to
the consumer. Thus the consumers play an important role in promoting thing’s
social connectivity.

Owners: The owners are consumers but have more rights to a thing’s us-
age and content. The owners provide access restriction to a thing’s operations
and can loan or lease a thing. With proper authorization from regulators and
providers, the owners can alter the dynamic content jwom:dynamic; of a thing
and therefore change history. The options to re-brand or marketing a thing al-
lows owners to change the value of a thing and promote its acceptance among
other things or people.

Regulators: While the other stakeholders provide content to value a thing,
the role of the regulators prevails over other stakeholders. For example, govern-
ment authorities or regulatory authorities that ensures the safe, sustainable, and
judicious use of Web Smart things. The regulators provide details on rights and
obligations of other stakeholders. They provide contractual details wherein other
stakeholders and authorities are informed if there is a breach of contract. Because
of the wide spread implication of the virtual use of physical things, liabilities and
exceptions are to be clearly defined by regulators. For the WOM-Profile, the reg-
ulators provide content that are both preset and dynamic related to issues like
privacy, trust, cyber-attack and legal implications. The role of regulators needs
to be actively researched, investigated, and formulated with government and in-
ternational bodies so as to ensure the secure and sustainable use of things on
the Web.

Manufacturers follow a structured product labeling standard to provide con-
sumers with the information of a thing’s content and usage. The process of
monitoring and regulating these standards become easier when the information
is digitally embeded or appended to products. The benefit of using the WOM-
Profile as a digital standard for communicating product infomration is two-fold.
Firstly the standard information can be included in the jwom:preset; part and
secondly user experiences can be included in the jwom:dynamic; part of the
WOM-Profile. While it is important to understand the semantic structure of
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Web Smart thing’s information and the major stakeholders, it is also important
to realize how the information is stored and retrieved from real-world things.

2.3 WoT Framework

The AS enables real-world things to be imbibed into the WoT ensuring seamless
communication between people and things. This opens up many social applica-
tions that is bound to enhance business and industry. Some applications were
suggested based on the ASM framework [5,6]. Here, we take an example of how
classrooms are virtually represented as Ambient Spaces, to describe the frame-
work. Fig 2, depicts each classroom in a school campus as an Ambient Space

(AS).
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Fig. 2. Subsuming classrooms into the WoT using Ambient Spaces

Each AS is controled by an Ambient Space Manager (ASM) which includes
the Controller, Monitor, Rules Engine, and Adapters. These modules provide es-
sential management functionalities that provide the access and control of things
in an AS. The Service repository, Knowledge Base, and Space repository contain
the information that is relevant to all AS. The users has both onsite and online
access to things in an AS.

The ASM framework creates a hierarchical structure for representing physical
spaces and the things therein. Fig 3, provides a general depiction of the structure
and also an example. Similar structure is suggestive to represent hospital rooms,
train compartments, seats on an international flight, or in a movie theatre. Thus
the ASM framework provides a scalable structure to represent physical things
on the Web and populate the WoT.

2.4 WoT Security Challenges

Openness and sharing are always contradictory when it comes to security and
privacy. A practical consideration for enabling widespread adoption of WoT is
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Fig. 3. Representing repeating patterns of physical spaces and things in them with
Ambient Spaces

the security and privacy vulnerabilities of shared resources of things and related
data. Moreover, how does the framework verify Web services and estimate their
reliability against malicious intervention or inadvertent errors. Although secu-
rity solutions and related technologies have been developed to protect systems
against many vulnerabilities, most of these technologies do not have a cohesive
structure to deal with the security issues specifically related to the WoT, and
advocate ad-hoc approaches instead. This is because WoT introduces new di-
mensions of risk, due to its heterogeneous and ubiquitous nature. Some of the
threats that are inherent to the use of WoT are listed as follows:

— Impersonating a server: A WoT user contacts a Proxy server to deliver re-
quests. The server could be impersonated by an attacker. The mobility of
things further complicates this scenario.

— Tampering with message bodies that contain requests.

— Tearing down sessions — insert a disconnect command.

— Denial of Service attacks - Denial of service attacks focus on rendering a
thing on the Web unavailable, usually by directing an excessive amount of
network traffic to its interfaces. The WoT face the public Internet in order
to accept requests from worldwide IP endpoints, which creates a number of
potential opportunities for distributed denial of service attacks that must be
recognized and addressed by the implementers and operators of this ecosys-
tem.

Therefore, the security challenges facing WoT is to ensure the following:

— Data Security and Privacy: How to protect the thing’s data and private
information and locations? In WoT, addressing the issue of data security is
particularly challenging, due to the unique features of the network, such as
mobility of the entities and the size of the network. It is essential that thing’s
critical information is protected from being inserted or modified by attackers.
For privacy, the challenge is on how to ensure a conditional privacy in the
sense that thing’s private information like identity, speed, or location are
protected from unauthorized access while access should always be granted
when needed by authorities.

— Authentication: Most technologies use Web services today and have the
HTTP style access mechanism which is not foolproof when dealing with
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real-world things. A single sign-on authentication mechanism is at-least re-
quired.

— Authorization using policy-based mechanisms: The Read /Write/Execute con-
trols that are embedded in file systems. Earlier recommendations have tried im-
plement, traditional access control models, but they are broadly categorized as
discretionary access control (DAC) [3,12] and mandatory access control (MAC)
models [3,12]. Others have proposed new models such as role-based access con-
trol (RBAC) and task-based access control (TBAC) to address thee security
requirements [13,16].

None of the above mentioned solutions are sufficient in isolation for providing se-
curity for a large-scale, distributed and sometimes resource constrained pervasive
environment like in WoT context. Hence, our approach utilizes the well-known
Role-Based Access Control (RBAC) to control access to things on the Web.

There are many benefits to adapting RBAC to WoT context. RBAC supports
data abstractions which enables subscribers to WoT services to control who can
identify the locations of the things, to approve or disapprove subsequent access,
and to also set parameters to determine whether a certain accessn can continue or
should terminate. RBAC also enforces other security concepts that are specific to
some applications such as lease privileges or separation of privileges. In this case,
RBAC may deny the access or connection when the requested authorization of
the prescriber does not meet the access control policy requirement or the thing’s
attribute changes.

However, RBAC is susceptible to role proliferation. For example, thousands
of users may be granted access to various parts of a thing’s dataset. The access
permission my differ depending upon each user’s affiliation with the system. This
scenario my demand that role-based policy assigns one role to each user, which
can be too much to handle. Therefore, the concept of role parameterization,
developed by [3], has shown to be an effective way to deal with the issue of role
proliferation. The following section provides an overview of the RBAC model.

3 Overview of Role Based Access Control (RBAC) Model

In this section we briefly review the general ideas of RBAC and the core autho-
rization models. The details of these models can be found in [2,14,1].

RBAC is proven to be a good alternative to traditional discretionary and
mandatory access controls. It ensures that access to certain data or resources
is given to authorized users only [14]. It also supports some important secu-
rity principles such as least privilege, separation of duties, and data abstraction.
Least privilege is supported, because RBAC is configurable such that only those
permissions are assigned to the role required for the tasks conducted by members
of the role. Separation of duties is achieved by ensuring that mutually exclusive
roles must be invoked to complete a sensitive task, such as requiring an account-
ing clerk and account manager to participate in issuing a check. Data abstraction
is supported by means of abstract permissions. Instead of the read, write, and
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execute permissions typically provided by the operating system. Other permis-
sions such as join, leave, join as a sender, or join as a receiver, are also be
expressable.

PA
UA Permission P
User Assignments Assignments
"y
A Permissions

Constraints

Sessions

Fig. 4. Basic RBAC Model

A general RBAC model was defined by Sandhu [14] and is summarized in
Fig 4. The model is based on three sets of entities called users (U), roles (R),
and permissions (P). A user is a human being (an entity that seeks access). A
role is a function with some associated semantics regarding the authority and
responsibility conferred on a member of the role. Permission is an approval of a
particular mode of access to one or more users in the system. The user assignment
(UA) and permission assignment (PA) relations of Fig 4 are both many-to-many
relationships (indicated by the double-headed arrows). A user can be a member
of many roles, and a role can be assigned to many users. Similarly, a role can
have many permissions, and the same permission can be assigned to different
roles.

Role hierarchy (RH) in RBAC is a natural way of organizing roles to reflect
the lines of authority and responsibility. The hierarchy is partially ordered, so
it is reflexive, transitive, and anti-symmetric. Inheritance is reflexive because a
role inherits its own permissions. Transitivity is a natural requirement in this
context, and anti-symmetry rules out roles that inherit from one another and
are therefore redundant.

4 Security Architecture for WoT

Integrating the RBAC technology into ubiquitous WoT-based environment
requires a careful mapping between the entities of RBAC and those entities
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and components of the WoT. Following is a list of integrated components which
require such mapping:

— User/Subjects: The concept of participants in WoT is represented as a user

component in the RBAC.

Permissions/Rights: The concept of permissions in RBAC is captured through

the privileges that a WoT participant needs in order to complete a task.

— Objects: the concept of objects in RBAC are used to represent all resources
things that a WoT participant seeks to access or to connects to.

— Authorization Rules: Authorization rules in RBAC are the set of requirements
that should be satisfied before any WoT user be permitted to establish any
connection with, or to access any other WoT entity.

— Session: The concept of session in RBAC is captured in WoT by the set of du-
rations for which WoT entities are active.

4.1 Integrating RBAC in WoT

One of the most critical issues in using RBAC for enforcing the specified ac-
cess policies in WoT environment is to use the concept of a reference monitor
(RM), which has been introduced, and extensively discussed by the access con-
trol community for years, and has become the ISO standard for access control
framework [15].

The RM concept has been considered as the core control mechanism for access
and usage of digital information. In classical access control, subjects access digital
objects only through the reference monitor, which is a process inside the trusted
computer base that is always running and is a tamper proof.

The following section discusses our conceptual structure of RBAC/WoT access
control domains, based on the reference monitor.

4.2 Policy Enforcement Facitilies

In our architecture, we use a customized version of the well-known ISO reference
monitor standard [9].

According to this ISO standard, the reference monitor consists of two facilities:
Access Control Enforcement Facility (AEF) and Access Decision Facility (ADF).
The AEF and ADF interact with each other in such way that every request by
a subject to access an object in the system get intercepted by AEF. The AEF
in turn asks the ADF for a decision on whether to approve or disapprove the
request, and subsequently the ADF returns either ‘yes’ or ‘no’ as appropriate.
The enforcement of this decision takes place at the AEF.

In our architecture, the reference monitor is similar but differs in the details
from that of ISO reference monitor. We incorporate the role-based access con-
trol to handle the “pre-decision” authorization rule. Fig 5 shows the conceptual
structure of the RBAC/WoT reference monitor.

As the Fig 5 shows, any request to access any WoT resource “thing” is inter-
cepted by the AEF. Before making any decisions, the AEF forwards the request
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Fig. 5. Conceptual Structure for RBAC/WoT Reference Monitor

to the ADF, which in turn adheres to the RBAC policy decision of whether to
grant or reject the authorization request. RBAC will allow authorization of an
active (subject) entity to execute a certain right on a passive (resource) entity
only if the subject belongs to a role that RBAC has previously assign that right
to.

The rest of the decision process by AEF would continue only if RBAC grants
authorization, otherwise the process is stopped and response by ADF is negative
(no authorization). Furthermore, RBAC allows authorization after it tests other
decision factors, mainly, hierarchal relationships and constraints. For example,
if the condition for granting authorization is met (i.e., the request is within the
range of the allowed operating time), and also the requester agrees to accept to
perform a certain obligation, then the ADF returns a positive response “Autho-
rize” to the AEF, otherwise request is denied.

4.3 Areas of Control Architecture

To control the access to the WoT environment, our architecture considers one
area of control, based on the location of the reference monitor, which is located
at the space manager. We refer to this set up as the server side control domain
(SCD), because this is the area where the reference monitor is located and where
the access policy to the system resources (things) is enforced. Fig 6 below depicts
this architecture.

Fig 6 shows that the control of subject’s access to objects is done centrally. In
this setup, the subject can either be located within the network or outside, and
the objects may or may not be stored in the client’s storage, depending upon the
criticality and sensitivity of the content of the object. If it is not that sensitive,
then it can be allowed to reside outside of the server-side storage. However, if
the content is very critical or very sensitive, the object must stay within the
server-side storage.
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5 WOT Resources Protection

In this section, we reveal details of the RBACprocess for protecting WOM-
Profiles of things on the Web. To do this, we adopt the method described by
Muldner, Mizilek and Leighton [11]. In this paper, RBAC specifies rules that
consist of pairs of the form (role, resources), where a resource is a document
fragment specified using an XPath expression (XPath, 2008). RBAC’s data ab-
straction feature allows us to consider any permission needed to control access
to the different fragments of an XML document.

5.1 Documents and Views

In this paper, access rights are defined using Access Control Policies (ACPs). In
other words, ACPs are defined for fragments of XML documents, which we refer
to as views. Each WoT activity is published as a single XML document.

Views are specified using a subset of XPath expression referred to as document
paths as follows:

Definition 1. A local document path is a document path with no free variables.
A free variables are those wvariables that represent systems variable and their
names start with $. A global document path is a document path which is not local,
and considered instantiated when each occurrence of free variables is replaced by
some value. For a document D, Pp .. denotes the set of local paths in D. Each
local document path defines a fragment of the document D. Similarly, Pp, giob
denotes the set of global paths in D. Hence, the set of all document paths is
denoted by PD = P p, 1oc U Pp, giop. RBAC is susceptible to role proliferation.
Parameterization has been used in the literature to address this problem (REF),
and is out of the scope of this paper.
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Definition 2. Let At denotes the language for all roles then, for a WOM, D,
and a finite set of simples roles ¥ C At the document-level ACP is a mapping
IID : 4 — Pp such that IID(v)) covers the set D; i.e. each element of D belongs
to at least one document path that occurs in the policy. Often, the IID mapping
is tabulated and shown as tuple [(R1, P1), (R2, P2), ... , (Rm, Pn)].

For a simple role R € v , if IIp(R) is local document then it defines a view
of D. If IIp (%) is global document path that contains free variables, then once
path is instantiated, it defines a view of D. The designer of the RBAC policy
for, WOM D may elect to leave some parts of D unencrypted or make them
inaccessible to all users.

For a WOM D, a finite set of roles ¥ C Ar, and the document—level ACP
IIp : ¢ — Pp a user in role R can access precisely the set IIp(R) and those
nodes in D which are not covered by any path.

5.2 Key Generation and Encryption

Let x be a finite set of keys, where each key is a tuple made of jkey name,
symmetric keyy, and kp, ITpdenotes a document-level key ring for the WOM D
and D’s policy IIp, then the key generation for a document-level policy ACP
IIp : ¢ — Pp takes place as following: If the all paths are local, then each
path can uniquely identify a fragment of D. However, if the paths are global, the
issues of parameterization will complicate the case because condition of the path
cannot evaluated before the values of the variables are known. For simplicity, we
will consider only the local paths.

In this case, a key ring kp, IIp is defined and for each R € v, this key ring
defines a set kp, ITp(R) of R-Accessible keys. A user in role R will be provided
with R-Accessible keys allowing the decryption of the view IIp(R).

To decrypt the document, a user U will travers the document and use the
names of the keys from rp, ITp(R) to extract the appropriate key to decrypt
the accessible document.

To obtain a key ring that can be used to decrypt a fragment of an encrypted
document, a user can request that key ring form the list of roles that user is a
member of. Verification of membership can be achieved through presenting the
certificate that user obtained membership to that role.

6 Conclusion and Future Work

In this paper we introduced a new architecture that encompasses WoT in a
secure and scalable manner. Our architecture integrated the features of the well-
known role-based access control (RBAC) to specify the access control policies
to the WoT. More specifically, we showed how RBAC can be integrated to the
WoT architecture to specify access control to the things, which are represented
on the Web. We also showed how cryptographic keys are generated and used to
enforce such access control policies for these documents. This enable prescribers
of WoT services to control who can access their things and how, thereby enables
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privacy and the security of large amount of data that these things flood the Web
with. Our future work will focus on implementing this architecture.
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Abstract. The amount of security critical data that is only available
in digital form is increasing constantly. The Evidence Record Syntax
Specification (ERS) achieves very efficiently important security goals:
integrity, authenticity, datedness, and non-repudiation. This paper sup-
ports the trustworthiness of ERS by proving ERS secure. This is done
in a model presented by Canetti et al. that these authors used to estab-
lish the long-term security of the Content Integrity Service (CIS). CIS
achieves the same goals as ERS but is much less efficient. We also discuss
the model of Canetti et al. and propose new directions of research.

1 Introduction

The amount of data that is only available in digital form is increasing constantly.
Examples include scientific data, medical records, and land registries. Therefore,
digital archives are needed that efficiently and securely preserve this information
for a long period of time.

Important protection goals for archived data objects are authenticity, in-
tegrity, non-repudiation, and datedness. Integrity means that the data object
has not been altered. Authenticity refers to the origin being identifiable. Non-
repudiation prevents an originator from repudiating that he is the origin of a
document. Datedness allows to identify a time reference when a document ex-
isted.

The Evidence Record Syntax Specification (ERS) [5, 2] achieves these protec-
tion goals efficiently and in the long-term. In fact, ERS focuses on datedness.
This is sufficient as integrity follows from datedness. Also, if the data objects are
digitally signed, then datedness also provides authenticity and non-repudiation.

To make ERS trustworthy it is desirable to have a security model and a cor-
responding security proof that establishes the security properties of ERS from a
theoretical point of view. This is what we do in this paper. As a security model,
we use the framework of Canetti et al. for analyzing computational security in
long-lived systems [4]. Using their framework, they analyze the security of the
Content Integrity Service (CIS) proposed by Haber et al. [6] that also ensures
datedness in archives. ERS is a refined, more efficient variant of CIS. The main
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difference is the intelligent use of hash functions that allow for better perfor-
mance. In this work, we extend their analysis of CIS to ERS. The main idea
is to introduce hash services extending the signature services used by Canetti
et al. They allow to model the ERS evidence records that are used to establish
datedness at any point in time.

The structure of the paper is as follows. In Section 2, we describe the setup of
long-term archiving systems and provide a summary of the ERS specification. In
Section 3, we present the security framework of Canetti et al. and briefly explain
their analysis of CIS. Using their framework, in Sections 4 and 5 we analyze the
security of ERS. In Section 6, we draw conclusions and present future work.

2 ERS Archiving System

In this section, we describe the setup of secure archiving systems and provide a
summary of the ERS specification.

2.1 Setup

A secure archiving system is used to store data objects for a long period of time
while ensuring datedness of stored data. To achieve this, for each data object
d stored at time t, the system maintains an evidence record ey which allows to
prove that data object d was archived at time t.

For maintaining evidence records, archiving systems typically rely on times-
tamp services. Timestamp services are trusted third parties which can be queried
to issue a timestamp on a given bit string. When a timestamp service A is queried
to timestamp bit string z at time ¢, it responds with timestamp 6. Afterwards,
timestamp 6 can be used to verify that timestamp service A indeed timestamped
bit string x for time ¢.

In this work, we consider signature-based timestamp services. A timestamp
for bit string = and time ¢ issued by a signature-based timestamp service is a
signature on (z,t).

2.2 ERS Specification

We give an overview of the ERS specification [5]. For a set of stored data objects
{d1,...,dy}, the ERS specification supports to maintain an evidence record e.
For each data object d € {ds,...,d,}, evidence record e can be used to verify
datedness of d.

When the ERS archiving system is initially asked to store a set of data objects
{di,...,dy}, it generates a new evidence record for {di,...,d,} and stores it
together with the data objects. The generation of an evidence record uses crypto-
graphic primitives. In particular, collision-resistant hash functions and signature
schemes are used. The lifetime of those primitives is limited due to brute-force
attacks, advances in cryptanalysis, or key compromise. Consequently, in order
to remain valid, an evidence record needs to be refreshed periodically.
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The ERS specification provides two methods of evidence record refresh,
namely timestamp-refresh and hash-refresh. Timestamp-refresh protects against
the expiration of a signature-based timestamp. Hash-refresh protects against the
expiration of a hash value.

We describe the data structure of an evidence record and how it is generated,
timestamp-refreshed, hash-refreshed and verified.

Structure. An evidence record consists of a list of timestamps and the ver-
ification information required for timestamp verification. We refrain from
explicitly describing maintenance of verification information since it is not
fundamental for our analysis of ERS. An initially generated evidence record
contains a single timestamp. Upon evidence record refresh, new timestamps
are added to the list.

Generation. Generation of an evidence record e for a set of data objects {dy,
...,dp} is done as follows. First, a Merkle hash tree [7] is generated having
the data objects as the leaves. Let r be the hash value corresponding to the
root of that hash tree. A timestamp 6 on r is requested from a timestamp
service. The freshly generated evidence record e contains timestamp 6.

Timestamp-Refresh. An evidence record e is timestamp-refreshed as follows.
Let 04, ...,0, be the timestamps contained in e, where 6,, is the most recent
timestamp. A new timestamp 6’ on 6,, is requested. The timestamp-refreshed
evidence record e’ contains timestamps 61, ..., 60,,6".

Hash-Refresh. An evidence record e is hash-refreshed as follows. Let {ds, ...,
dy} be the data objects covered by e and let 61,...,6,, be the timestamps
contained in e. A new Merkle hash tree is built with dy,...,d,,01,...,6,
as the leaves. Let 7’ be the root of that hash tree. A new timestamp 6" on
r’ is requested. The hash-refreshed evidence record e’ contains timestamps
01,...,60,,0".

Verification. Datedness verification of data object d for time ¢; using evidence

record e is done as follows. Let 6,...,60, be the timestamps of e and for
i=1,...,n, let t; be the time when 0; was issued. Check the following.
— Fori = 2,...,n, verify if timestamp 6; covers timestamp 6;_ for time ¢;.
If 0; results from hash-refresh, additionally verify if it covers data object
d and timestamps 61, ...,60;_o for time ¢;.

— Verify if 0; covers data object d for time ¢;.

3 Security Framework

In this section, we provide a high level description of the security framework of
Canetti et al. for modeling computational security in long-lived systems [4]. We
refer to the framework as the long-lived computational security framework, or
short, LCS framework.

In this paper, our goal is to analyze the security of the ERS archiving system.
In cryptography, the security of a system is typically defined in the presence
of a resource bounded adversary, often modeled as a polynomial-time machine.
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We must allow the adversary to be active during the whole lifetime of the system.
However, long-lived systems, like the ERS system, are potentially running for
super-polynomial time. Modeling the adversary as a polynomial-time machine
is too restrictive for analyzing the security of systems with super-polynomial
lifetime.

In the context of long-lived systems, we want to allow entities to be active for
unbounded lifetime, while bounding their computational power at any point in
time. To model this behavior, a special kind of automaton model is used, namely
the task-PIOA model [3], augmented with a notion of real time. Combining the
task-PIOA model with a notion of real time allows to put in relationship the
number of automaton steps and the duration of real time required to complete
a task. Computational restrictions on a task-PIOA are imposed in terms of
computation rates, i.e. number of computation steps per unit of real time.

By its nature, a polynomial-time machine uses only a polynomial-bounded
amount of space. There is no such implicit space bound for a machine with
unbounded lifetime, such as a task-PIOA. In addition to specifying a bound on
the computation rate of bounded task-PIOAs, we impose a bound on the space
consumed by a bounded task-PIOA. We allow a bounded task-PIOA to only use
a bounded amount of space at any point in time.

Note that, with respect to the security parameter k, computational bounds
are fixed over the lifetime of the whole protocol. In particular, the LCS frame-
work does not allow to model systems whose computational power increases over
time.

Using the LCS framework, a security proof of a cryptographic system is done
in style of the real-ideal paradigm. In this style, an ideal version of the system
and a real version of the system are defined. Here, the ideal system represents the
functionality of the system, which is secure by definition and usually relies on
a trusted party. The real system represents the implementation of the system,
which uses cryptography to mimic the ideal system’s behavior. To prove the
implementation secure, it is shown that a computationally bounded environment
interacting with the two systems cannot distinguish them. Since the ideal system
implicitly defines the functionality of the secure system, this suffices to show the
security of the real system.

The LCS framework provides a mechanism for long-lived systems to recover
from past security failures. Therefore, an ideal system is allowed to take desig-
nated failure steps. For any polynomial-bounded time interval, the real system
will only have to approximate the ideal system if no failure tasks occur in that
interval.

In Section 3.1 we introduce the task-PIOA model. In Section 3.2 we introduce
the long-term implementation relation which allows to compare an ideal system
to a real system in the presence of a long-lived environment. In Section 3.3 we
briefly describe the CIS archiving system model from [4].
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3.1 Task-PIOAs

If we say, a system is described within the LCS framework, we mean that it is
modeled as a task-PIOA [3], which is a version of a probabilistic input/output
automaton (PIOA).

A PIOA A is defined by a tuple (V,S,s" I, O, H,A). Here, V is a set of
state variables, S is a set of states, s € S is the initial state, I is a set of
input actions, O is a set of output actions, H is a set of hidden actions, and A is
a transition relation. The transition relation describes how the automaton, for
a given action, transitions from one state into another. An action transition can
be viewed as an atomic computation step of a PIOA.

Multiple PIOA actions can be grouped into a task. Formally, a task-PIOA is a
pair (A, R), where A is a PIOA and R is a partition of locally-controlled actions
(i.e., output and hidden actions) of A. The equivalence classes in R are called
tasks. For notational simplicity, we often omit R and refer to the task-PIOA A.

Computational bounds on a task-PIOA are three-fold. Firstly, a step bound
on a task-PIOA limits the turing complexity of every single task-PIOA step.
Secondly, in the LCS framework, task-PIOAs are augmented with a real-time
scheduling mechanism. This allows to impose real-time scheduling constraints on
task schedules. More precisely, real-time scheduling constraints allow to limit the
number of steps performed by a task-PIOA per fraction of real time. Thirdly, step
bound and real-time scheduling constraints are combined to obtain an overall
bound.

Operations. Task-PIOAs are subject to the composition and hiding operation.

Composition. Let A; and Ay be two task-PIOAs. We say A; and Ay are com-
patible, if they do not share any state variables or output actions, and hidden
actions of the one automaton do not collide with any actions of the other au-
tomaton (and vice versa). If two task-PIOAs A; and Ay are compatible, they
can be composed into a new task-PIOA. We denote the composition of A; and
Az by Aj||A2. The composition A || Az is itself a task-PIOA which synchronizes
on shared actions of A4; and As.

Hiding Operator. We define a hiding operator for task-PIOAs. Let A := (V,
S, st 1.0,H,A) be a task-PIOA and X C O be a set of output actions.
Then, hide(A, X) is the task-PIOA given by (V, S, s I, O\ X, HUX, A). This
prevents other task-PIOAs from synchronizing with A via actions in X: any
task-PIOA with an action in X is no longer compatible with A.

Step Bound. The notion of a step bound is defined to limit the amount of
computation a task-PIOA can perform, and the amount of space it can use, in
executing a single step. For p € N, we say a task-PIOA A has step bound p, if
for every single step of A, p limits the complexity of a turing machine simulating
the step.
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Real-Time Scheduling Constraints. In the LCS framework, task-PIOAs are
augmented with real-time scheduling constraints. This allows to model entities
with unbounded lifetime but bounded processing rates. Therefore, a task sched-
ule can be associated with a bound map (rate, burst, b, ub). Here, rate bounds
the number of task executions per real time, burst allows for a fixed violation
of this bound, and /b and ub are lower and upper real time bounds for the first
and last execution of a task, respectively. We say a real time task schedule is
constrained by p, if it is valid under a p-bounded bound map.

Note that real time is only used to express constraints on task schedules.
Computationally bounded system components are not allowed to maintain real
time information in their states, nor to communicate real-time information to
each other. System components that require knowledge of time will maintain
discrete approximations of time in their states, based on inputs from a global
task-PIOA Clock.

Overall Bound. Step bound and real time scheduling constraints are combined
to obtain an overall bound on a task-PIOA A. We say that a task-PIOA A is
p-bounded, if A has step bound p and real time task scheduling is constrained
by p. We say a task-PIOA A is quasi-p-bounded if A is of the form A’||Clock,
where A’ is p-bounded.

Task-PIOA Families. Task-PIOAs can be gathered into task-PIOA families,
indexed by a security parameter k. A task-PIOA family A is an indexed set
{Ai}ren of task-PIOAs. Given a function p : N — N, we say that A is p-
bounded if for all k, Ay, is p(k)-bounded. If p is a polynomial, then we say A is
polynomially bounded.

3.2 Longterm Implementation Relation

The LCS framework allows modeling computational security in long-lived sys-
tems. Traditionally, a system is considered secure if a polynomial-time environ-
ment cannot distinguish the ideal system model (i.e., the functionality) from the
real system model (i.e., the implementation). Restricting environments to be
polynomial-time bounded is not satisfactory in the context of long-lived systems
which potentially run for super-polynomial time.

The LCS framework provides a notion of indistinguishability in the context of
long-lived systems. The idea is to not limit the overall amount of computation
performed by a long-lived environment, but to polynomially bound the amount
of computation performed per fraction of time. Furthermore, long-lived systems
are allowed to recover from past security failures. Therefore, an ideal system is
allowed to take designated failure steps. For a polynomial-bounded time interval,
the real system will only have to approximate the ideal system, if no failure tasks
occur in that interval.
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A long-term implementation relation defines indistinguishability of systems in
the context of a long-lived environment. We sketch the definition of the long-term
implementation relations <, 4 and <,.q ¢ given in [4], Section 5. Task-PIOAs
can only be put in relationship by a long-term implementation relation if they
are comparable. We say task-PIOAs A! and A? are comparable, if they have the
same external interface, that is, they have the same input and output actions.
We say task-PIOA families A' and A? are comparable if for every k, (A!) is
comparable to (A?)g.

Let A' and A2 be comparable task-PIOAs. Let F' and F? be sets of desig-
nated failure tasks associated with A' and A2, respectively. Let p,q € N and
€ € Rxg. If for every g-bounded time window in which no failure tasks F! and
F?2 occur, any quasi-p-bounded environment cannot distinguish .A' and 4% with
probability at most €, we write (A!, F1) <, , (A%, F?).

The <, 4. definition is extended to task-PIOA families. Let .A! and A? be com-
parable task-PIOA families. Let F'* and F? be sets of designated failure tasks as-
sociated with A! and A2, respectively. Let p, ¢ be polynomials and € : N — R>( be
a function. We say (A', F') <p qc (A% F?), i VEk © (A, (FY%) <pr).ate).eh)
(A2, (F?)r)- o o o

We write (A, F1) <peqpt (A% F?), if Vp,q3e : (AL FY) <, 4 (A% F?),
where p, ¢ are polynomials and e is a negligible function. In this case we say A’
implements A2 in the sense of the long-term implementation relation. Here, A*
is usually referred to as the real system (i.e., the implementation), and A? is
usually referred to as the ideal system (i.e., the functionality).

Composition Theorems. We quote the following statement regarding com-
position theorems from [4], Section 7.

In practice, cryptographic services are seldom used in isolation. Usually,
different types of services operate in conjunction, interacting with each
other and with multiple protocol participants. For example, a participant
may submit a bit string to an encryption service to obtain a ciphertext,
which is later submitted to a timestamping service. In such situations,
it is important that the services are provably secure even in the context
of composition.

Indeed, as described in Section 3.1, single task-PIOAs (e.g., encryption or
timestamp services) can be composed to obtain more complex task-PIOAs (e.g.,
a system composed of communicating services). The following composition the-
orems allow to preserve the longterm implementation relation <,¢q ,:. For a
formal definition of the composition theorems see [4], Section 7.

Parallel Composition Theorem. The Parallel Composition Theorem allows
for the parallel composition of polynomially many components.

Sequential Composition Theorem. The Sequential Composition Theorem al-
lows for the sequential composition of exponentially many components. We say
task-PIOAs are sequential if for every real time ¢ at most one of the task-PIOAs
is not dormant at time ¢.
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d-Bounded Composition Theorem. The d-Bounded Composition Theorem
allows for the d-bounded concurrent composition of exponentially many com-
ponents, where d is a positive integer. We say task-PIOAs are d-bounded
concurrent if for every real time ¢ at most d of the task-PIOAs are not
dormant at time t.

We describe application of a composition theorem to sequences of task-PIOAs
associated with a sequence of designated failure task families. Let A}, AL, ... and
A2, A2, ... be comparable sequences of compatible task-PIOA families associated
with sequences of failure task set families Fi, Fy,...and FZ, F2,.. ., respectively.
Let C := {1,2,...,n} be a set of indices. Define the compositions of task-
PIOA families A! := |l;ecA! and A% := |l;ec.A2, and the unions of failure
task set families F1 := {U,cq(FNitren and F2 = {U,co(F?)k}ren. Note
that index set C is subject to the composition theorem to be applied. Then,
(A FY) <pegpt (A2 F?), if ¥, q3eVi : (AL, 1) <pegpt (A2, E2), where p, q are
polynomials and € is a negligible function.

3.3 CIS System Model

In [4], Canetti et al. propose a model for another long-lived archiving system,
namely the content integrity service (CIS) [6]. We explain briefly how the CIS
system is modeled as the composition of task-PIOAs.

The CIS system model is composed of a dispatcher component and a sequence
of timestamp services. The dispatcher component accepts various timestamp re-
quests and forwards them to the appropriate timestamp service. In [4], Section 8,
it is shown that the composition of the dispatcher and real timestamp services
is indistinguishable from an ideal system, composed of the same dispatcher and
corresponding ideal timestamp services. Specifically, this guarantees that the
probability of a new forgery is small at any given point in time, regardless of
any forgeries that may have happened in the past.

We sketch some of the technicalities of the CIS analysis from [4]. The
dispatcher component, the real timestamp services and the ideal timestamp ser-
vices are modeled as task-PIOAs. It is shown that a real timestamp service im-
plements its ideal timestamp service counterpart in the sense of <4 p¢. Using
the d-bounded composition theorem, it is shown that the d-bounded composi-
tion of real timestamp services implements the d-bounded composition of ideal
timestamp services. Using the parallel composition theorem, it is shown that the
parallel composition of the dispatcher and the real timestamp services (i.e., the
real system) implements the parallel composition of the dispatcher and the ideal
timestamp services (i.e., the ideal system).

4 ERS System Model

In this section, we propose a task-PIOA model of the ERS archiving system by
extending the CIS system model (cf. Section 3.3).
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The ERS system extends the CIS system as follows. The CIS system supports
one method for evidence refresh, where data object and evidence are times-
tamped together. In particular, in the CIS system model, no hash functionality
is described. The ERS system supports two methods for evidence refresh, namely
timestamp-refresh and hash-refresh (cf. Section 2). The hash-refresh method is
similar to CIS evidence refresh (i.e., data object and evidence are timestamped
together). The timestamp-refresh method is special to ERS as it allows to re-
fresh the evidence while only part of the current evidence needs to be hashed
and timestamped. This makes ERS more efficient compared to CIS.

4.1 Construction Overview

We give an overview of the ERS model construction. The ERS system is modeled
as the composition of a dispatcher component, a sequence of timestamp services,
and, in particular, a sequence of hash services. The dispatcher component ac-
cepts various evidence record requests and uses appropriate hash and timestamp
services to answer them.

A timestamp service can be queried to produce a timestamp for a bit string.
Here, we consider signature-based timestamp services. When a signature-based
timestamp service is queried for a timestamp on bit string x, it responds with
a signature on (x,t), where ¢ is the time at timestamp request. Each timestamp
service wakes up at a certain time and is active for a specified amount of time
before becoming dormant again. This can be viewed as a regular update of the
service, which may entail a simple refresh of the timestamp key, or the adoption
of a new timestamp algorithm.

A hash service can be queried to produce a hash of a bit string. When a hash
service is queried for a hash of bit string x, it responds with a fixed-length hash
H(xz), where H is a collision-resistant hash function. Because the hash service
offers a collision-resistant hash functionality, it is hard to find a bit string a2/,
such that z # 2’ and H(z) = H(z"). Each hash service starts being available at
a certain time and is available for a specified amount of time before becoming
unavailable again. This can be viewed as a regular update of the hash algorithm.

The real ERS model consists of the dispatcher component, a collection of hash
services, and a collection of real timestamp services. Similarly, the ideal ERS
model consists of the same dispatcher component, a collection of hash services,
and a collection of ideal timestamp services. Note that we do not distinguish
between real and ideal hash services. This is due to the fact that we model
the functionality of a collision-resistant hash algorithm using the random oracle
methodology (cf. Section 4.4).

4.2 Signature Service

We describe the signature service model from [4]. A signature service is identified
by its service identifier. We denote the domain of signature service identifiers by
SIDgign. A signature service is constructed using a signature scheme.
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Definition 1 (Signature Scheme). A signature scheme consists of three al-
gorithms KeyGen, Sign, and Verify. KeyGen is a probabilistic algorithm that out-
puts a signing-verification key pair (sk,vk). Sign is a probabilistic algorithm that
produces a signature o from a message m and the key sk. Finally, Verify is a
deterministic algorithm that maps (m,o,vk) to a boolean. The signature o is
said to be valid for m and vk if Verify(m, o, vk) = 1.

In the following, we describe the real signature service model, the ideal sig-
nature service model, and sketch the proof of Theorem 1 from [4]. According
to this theorem, the real signature service, if instantiated with a complete and
existentially unforgeable signature scheme, implements the corresponding ideal
signature service in the sense of the <,.4 ,¢ definition (cf. Section 4.2).

For every j € SIDsign, suppose that (KeyGen;, Sign;, Verify;) is a signature
scheme. We assume a function alive : T — 25'Psen such that, for every t, alive(t)
is the set of services alive at discrete time ¢. The lifetime of each service j is then
given by aliveTimes(j) := {t € T|j € alive(¢)}.

Real Signature Service. For k € N and j € SIDggn, we define three task-
PIOAs, KeyGen(k, ), Signer(k, j), and Verifier(k, j), representing the key gener-
ator, signer, and verifier, respectively.

KeyGen(k, j) chooses a signing key mySK and a corresponding verification
key myV K by running the KeyGen; algorithm. It does this exactly once during
its lifetime. It outputs the two keys separately, via actions signKey(sk); and
verKey(vk),;. The signing key goes to Signer(k, j), while the verification key goes
to Verifier(k, j). Signer(k, j) responds to signing requests by running the Sign;
algorithm on message m and the signing key sk. Verifier(k, j) accepts verification
requests and simply runs the Verify; algorithm.

For k € N and j € SIDgjgn, we define the real signature service as

RealSig(j) := hide(KeyGen(k, j)||Signer(k, j)|| Verifier(k, j),signKey;) .

Note that the hiding operator prevents the environment from learning the signing
key (cf. Section 3.1).

Ideal Signature Service. We specify an ideal signature functionality SigFunc.
As with KeyGen, Signer, and Verifier, each instance of SigFunc is parametrized
with a security parameter k and an identifier j. The task-PIOA SigFunc(k, j) is
very similar to the composition of Signer(k, j) and Verifier(k, ). The important
difference is that SigFunc(k, j) maintains an additional internal variable history,
which records the set of signed messages. In addition, SigFunc(k, j) has an interal
action fail;, which sets a boolean flag failed. If failed = false, then SigFunc(k, 7)
uses history to answer verification requests: a signature is rejected if the sub-
mitted message is not in history, even if Verify; returns 1. If failed = true, then
SigFunc(k, j) bypasses the check on history, so that its answers are identical to
those from the real signature service.
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For k € N and j € SIDgjgn, we define the ideal signature service as

IdealSig(j)x. := hide(KeyGen(k, j)||SigFunc(F, j), signKey;) .

Implementation Proof. We define standard properties of signature schemes,
namely completeness and existential unforgeability. Afterwards, we show that if a
real signature service is instantiated with a complete and existential unforgeable
signature scheme, it implements the corresponding ideal signature service.

Definition 2 (Completeness). A signature scheme (KeyGen,Sign, Verify) is
complete if Verify(m,o,vk) = 1 whenever (sk,vk) < KeyGen(1¥) and o «
Sign(sk, m).

Definition 3 (EUF-CMA). We say a signature scheme (KeyGen, Sign, Verify)
18 existentially unforgeable under adaptive chosen message attack if no polynomial-
time forger has non-negligible success probability in the following game.

Setup The challenger runs KeyGen to obtain (vk, sk) and gives the forger vk.

Query The forger submits message m. The challenger responds with signature
o < Sign(m, sk). This may be repeated adaptively.

Output The forger outputs a pair (m*,o*) and he wins if m* is not among the
messages submitted during the query phase and Verify(m*, o*, vk) = 1.

For j € SIDgign, define the ideal signature service family

IdealSig () := {ldealSig(j) }ren

and the real signature service family

RealSig(j) := {RealSig(j)x }xen -

Theorem 1 from [4] says that if a real signature service is instantiated with
a complete and existentially unforgeable signature scheme, it implements the
corresponding ideal signature service. We quote Theorem 1 from [4].

Theorem 1. Let j € SIDsign be given. Suppose that (KeyGen;, Sign;, Verify ) is

a complete and EUF-CMA secure signature scheme. Then (RealSig(j),0) <ieg,pt
(IdealSig(37), {fail;}).

To prove Theorem 1, one needs to show the following for every time ¢ and
polynomials p,¢. If task fail; is not scheduled in interval [¢,¢ + ¢(k)], then no
p-bounded environment can distinguish RealSig(j)s from IdealSig(j); with high
probability between time ¢ and time ¢ + g(k). The full proof of Theorem 1 can
be found in [4].
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4.3 Timestamp Service

A timestamp service can be queried to create a timestamp on a bit string. The
timestamp can later be used to verify that the bit string was available at a
certain point in time. More precisely, for bit string x, timestamp service j can
be queried to create a timestamp 6 on x. The timestamp 6 issued by timestamp
service j is associated with a certain point in time ¢. Timestamp 6 can later be
used to verify that z was in fact timestamped for time t by service j.

We augment signature services to support timestamping. For every security
parameter k and signature service j € SIDsign, we define task-PIOA Stamper(k, j).
When Stamper(k, j) receives a timestamp request for bit string x via action
reqStamp(rid, z), where rid is the request identifier, it computes a signature o
on (z,t), where t is the clock reading at reqStamp. Then, Stamper(k, j) responds
with timestamp 0 := (o, t) via respStamp(rid, 6).

When Stamper(k, j) receives a verification request for timestamp 6 := (o, t)
and bit string x via reqVerTs(rid, x, ), it verifies if signature o is a valid signa-
ture for (z,t). If verification is successful, it answers with respVerTs(rid, true).
Otherwise, it answers with respVerTs(rid, false).

We use Stamper(k, j) and the signature service task-PIOAs defined in Sec-
tion 4.2 (i.e., KeyGen(k, j), Signer(k, j), Verifier(k, j), and SigFunc(k, j)) to build
the real and ideal timestamp service. For k € N and j € SIDgign, we define the
real timestamp service RealStamp(j) as

RealStamp(j)y := hide(KeyGen(k, j)||Signer(k, )| Verifier(k, 7)||
Stamper(k, j), signKey;)
and the ideal timestamp service ldealStamp(j)x as
IdealStamp(;j)) := hide(KeyGen(k, j)||SigFunc(k, j)||Stamper(k, j),signKey;) .

We gather the real and ideal timestamp services into families. For j € SIDgign,
we define the real timestamp service family

RealStamp(j) := {RealStamp(j)x }ren ,
and the ideal timestamp service family
IdealStamp(j) := {ldealStamp(j)k }ken -

Theorem 2. Let j € SIDggn be given. Suppose that (KeyGen,, Sign;, Verify ;) is a
complete and EUF-CMA secure signature scheme. Then (RealStamp(j),0) <jeq,pt
(IdealStamp(j), {fail; }).

Proof. By Theorem 1 we have (RealSig(j),0) <pnegpt (IdealSig(j), {fail;}). Ob-
serve that RealSig(j) and ldealSig(j) are modified in the same way (i.e., point-
wise composition with Stamper(k, 7)) to obtain RealStamp(j) and IdealStamp(j).
It follows that (RealStamp(j),0) <yeq,p¢ (IdealStamp(y), {fail;}).
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4.4 Hash Service

Generation of evidence records in the ERS system involves using hash algorithms.
A hash algorithm H : M — H is an efficient deterministic algorithm mapping
a message m € M to a fixed-length hash H(m) € H. We call M the message
space and H the hash space. We say a hash algorithm H is collision resistant if
it is hard to find two messages m and m’ such that m # m’ and H(m) = H(m’).

In order to model the functionality of a collision resistant hash algorithm
we make use of the random oracle methodology [1]. A random oracle can be
thought of as a public, randomly-chosen function H : M — H that can be
evaluated only by querying an oracle that returns H(z) when given input z.
It can easily be seen that a random oracle serves as a collision-resistant hash
algorithm. In the following, we use a random oracle in place of a collision-resistant
hash functionality.

We identify a hash service by its hash service identifier. We denote the domain
of hash algorithm identifiers by SIDpash. For security parameter k£ € N and hash
identifier j € SIDpash, we define task-PIOA Hasher(k, j). Hasher(k, j) has access
to a random oracle Hy, j : My ; — Hy. j, where |Hy ;| > 2¥. When Hasher(k, j)
receives a hash request on message m € M;, ; via input action reqHash(rid, m)
it queries oracle Hy ; with m and returns the hash Hj j(m) € Hy ; via output
action respHash(rid, Hy ;(m)).

In addition, Hasher(k, j) has an internal action fail;, which sets a boolean flag
failed. If failed = false, then Hasher(k, j) uses the random oracle to answer hash
requests as specified above. If failed = true, then Hasher(k, j) denies to answer
hash requests: in that case, to every request reqHash(rid, m), it responds with
respHash(rid, L1).

For j € SIDpash and security parameter k, define the hash service

Hash(j)x := Hasher(j, k) .
For j € SIDpash, define the hash service family

Hash(j) := {Hasher(j, k) } en -

4.5 Service Times

Hash services and timestamp services have limited lifetime. During protocol
execution a service can be in various service states, namely being alive, being the
preferred service, or being a usable service. Let T := N be the domain of discrete
time and define the union of all service identifiers as SID := SIDpash U SIDsign. We
assume the following.

— alive : T — 25'P. For every t, alive(t) is the set of services alive at discrete
time t.

— aliveTimes : SID — T. For every service j, aliveTimes(j) denotes the lifetime
of service j, aliveTimes(j) := {t € T : j € alive(t)}.
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— prefp,en @ T — SIDpash. For every ¢ € T, the hash service pref, g (t) is the
designated hasher for time ¢, i.e., any hash request sent by the dispatcher at
time ¢ goes to hash service pref, g, (t).

— prefgg, : T — SIDsign. For every t € T, the signature service prefg,,(t) is the
designated signer for time ¢, i.e., any signature request sent by the dispatcher
at time ¢ goes to signature service prefy,,(t).

— usable : T — 25'P. For every t € T, usable(t) specifies the set of services that
are accepting new requests.

4.6 Dispatcher

We describe the task-PIOA Dispatcher,, for each security parameter k. In par-
ticular, we describe evidence record generation, timestamp-refresh, hash-refresh,
and verification. In our model, an evidence record is a tuple (i, x, 0, j), where ¢
is the currently used hash service, x is the previously timestamped data, 6 is the
most recent timestamp, and j is the corresponding timestamp service.

Generation. If the environment requests evidence record generation for bit
string = via action reqEviGen(rid,z), Dispatcher; requests a hash of x from
hash service i = prefy,¢,(t), where t is the clock reading at the time of the
request. After hash service ¢ returned hash h, Dispatcher;, requests a times-
tamp on (i, h) from service j = prefg,,(t). After timestamp service j returned
timestamp 6, Dispatcher, issues a new evidence record (i,z,0,j) via action
respEvi(rid, (i, x,0,7)).

Timestamp-Refresh. If the environment requests timestamp-refresh of evi-
dence record (i,yx,0,j) via action reqEviTs(rid, (i, x,0,7)), Dispatcher; first
checks to see if hash service ¢ and timestamp service j are still usable. If not, it
responds with an error message. Otherwise, it requests a hash of x from hash
service i. After hash service ¢ returned hash h, Dispatcher; checks if 0 is a valid
timestamp for (i, h). If not, it responds with an error message. Otherwise, it re-
quests a hash of (i, ) from hash service i. After hash service i returned hash h’,
Dispatcher;, requests a timestamp on (i, h’) from service j' = prefg,,(t), where
t is the clock reading at the time of the request. After timestamp service 7' re-
turned timestamp ¢’, Dispatcher,, issues the refreshed evidence record (i, 6, ¢’, j")
via action respEvi(rid, (i,0,0', j')).

Hash-Refresh. If the environment requests hash-refresh of evidence record
(i,x,0,7) via action reqEviHash(rid, (i, x, 0, j)), Dispatcher, first checks to see
if hash service 7 and timestamp service j are still usable. If not, it responds
with an error message. Otherwise, it requests a hash of x from hash service i.
After hash service 7 returned hash h, Dispatcher;, checks if § is a valid timestamp
for (i, h). If not, it responds with an error message. Otherwise, it requests a
hash of (i, (z,8)) from hash service i’ = pref, ., (t), where ¢ is the clock reading
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at the time of the request. After hash service i’ returned hash h’, Dispatcher,
requests a timestamp on (i, h') from service j' = prefgg,(t). After timestamp
service j' returned timestamp €', Dispatcher;, issues the refreshed evidence record
(7', (x,0),0, ") via action respEvi(rid, (', (x,0),0’,7')).

Verification. If the environment requests evidence verification of evidence
record (i,x,0,j) via action reqCheck(rid, (i,x,0,j)), Dispatcher, first checks
to see if hash service i and timestamp service j are still usable. If not, it
responds with respCheck(rid, false). Otherwise, it requests a hash of x from
hash service i. After hash service i returned hash h, Dispatcher; checks if 6
is a valid timestamp for (i, h). If the verification request fails, Dispatcher, re-
sponds with respCheck(rid, false). Otherwise, Dispatcher; responds via action
respCheck(rid, true).

4.7 ERS Service

We describe how the ideal ERS service and the real ERS service are composed
of the previously described components.

Let SIDhash, the domain of hash service names, be {hash} x N. Likewise, let
SIDsign, the domain of timestamp service names, be {sign} x N. We limit the
number of service components by some exponential in security parameter k. For
every k and polynomial p, let N_opx)y € N denote the set of p(k)-bit numbers. For
every k, define service identifier subsets (SIDhash)x € SIDhash and (SIDsign)r €
SIDsign @8 (SIDhash)r := {hash} x N_gpx) and (SIDsign)r = {sign} x N_gem,
respectively, for some polynomials p and gq.

For security parameter k, define the composition of hash services

Hashy := || je(siDy.n), Hasher(k, j) .

Ideal ERS Service. The ideal ERS service is composed of a dispatcher com-
ponent, a sequence of hash services, and a sequence of ideal timestamp services.
For security parameter k, define the composition of ideal timestamp services
IdealStampy, := [ j(siDy,,), IdealStamp(j)x. The ideal ERS service IdealSys,, is de-
fined as

IdealSys,, := Dispatcher, ||Hashg||ldealStamp,, .

Real ERS Service. The real ERS service is composed of a dispatcher compo-
nent, a sequence of hash services, and a sequence of real timestamp services.
For security parameter k, define the composition of real timestamp services
RealStampy, := || jc(sip,,.), RealStamp(j)x. The real ERS service RealSys;, is de-
fined as

sign) ke

RealSys,, := Dispatcher,||Hashy||RealStamp,, .
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5 ERS Security Proof

In Section 4.7, we specified the real ERS system and the ideal ERS system.
In this section, we first define a concrete time scheme according to which hash
and timestamp services are active. Then, we show that the real ERS system
implements the ideal ERS system in the sense of the longterm-implementation
relation <jeq, pe-

We assume a concrete time scheme for timestamp and hash services. Let
d € Nyo. Each signature service (sign,j) € SIDsign is in alive(t) for ¢t = (j —
1)d,...,(j +2)d — 1, is preferred signer for times (j — 1)d,...,jd — 1, and is
usable for times (j — 1)d,...,(j + 1)d — 1. Each hash service (hash, j) € SIDhash
is in alive(t) for t = (j — 1)de,...,(j + 2)de — 1, is preferred hasher for times
(j — 1)de,...,jde — 1, and is usable for times (j — 1)de,...,(j + 1)de — 1. Note
that, at any real time ¢, at most three signature services and three hash services
are concurrently alive.

Define the ideal ERS service family ldealSys := {ldealSys;, } ken, and the real
ERS service family RealSys := {RealSys;, } xen. Let SIDy := (SIDnash) & U(SIDsign ) k-
Define the family of empty failure sets as () := {0} ren and the family of signature
failure sets as F' := {Fy }ren, where Fj, := Ujesip, {fail; }.

Theorem 3 states that the real ERS system, RealSys, implements the ideal
ERS system, IdealSys, in the sense of the long-term implementation relation

Sneg,pt-

Theorem 3. Assume the concrete time scheme described above and assume that
every signature scheme used in the timestamping protocol is complete and exis-
tentially unforgeable. Then (RealSys, 0) <peq pt (IdealSys, F).

Proof. Observe that RealSys and IdealSys are 7-bounded concurrent and polyno-
mially bounded. We apply the d-Bounded Composition Theorem to

Dispatcher, Hash(1), Hash(2), ..., RealStamp(1), RealStamp(2), . ..
and
Dispatcher, Hash(1), Hash(2), ..., IdealStamp(1), IdealStamp(2), . ..

to obtain (RealSys, ) <y.eq,p¢ (IdealSys, F).

6 Conclusions

The Evidence Record Syntax specification allows to ensure datedness for data
objects stored in a long-lived archiving system. We have described the Evidence
Record Syntax specification and given a high level description of the LCS security
framework, which is a framework for analyzing security properties of long-lived
systems. Extending the CIS analysis by Canetti et al., we have analyzed the
security of ERS using the LCS framework and obtained a security argument for
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ERS analogous to the security argument for CIS given in [4]. This was possible
because ERS is a refined, more efficient variant of CIS. In particular, we have ex-
tended the CIS analysis by introducing hash services and allowing cryptographic
primitives with different lifetimes.

We now discuss in how far the security analysis of CIS and ERS establishes the
expected security properties of these schemes. CIS and ERS allow for datedness
verification of stored data objects. Verifiers just verify digital signatures on time
stamps. They are required to trust the time stamping authorities to properly
issue time stamps. They also need to trust the PKI to allow for correct signature
verification.

However, the model of Canetti at al. [4] requires more trust by the retriever,
namely in the archiving system to act as a trustworthy notary. This notary ver-
ifies previous time stamps and attests their validity by its signature while in
the original versions of CIS and ERS all these time stamps are verified by the
retrievers. Therefore, the security proof only refers to these modified versions
of CIS and ERS. This is a big step forward as no security models for long-
lived archiving systems were known previously. But it also raises the question of
whether there is a model that allows a security proof for the original CIS and
ERS. This is challenging, as the task-PIOA model only allows to process a poly-
nomial amount of data at each point in time but over time, a super polynomial
chain of time stamps may be generated.

We also discuss a few other research directions. As suggested in [4], it would
be desirable to specify an abstract archiving system suiting the specification
of various archiving systems such as the ERS system and the CIS system. This
would allow to analyze security properties of archiving systems in a more generic
way.

In this work we have been concerned with signature-based timestamping.
However, other methods for timestamping exist, such as hash-linking-based
timestamping. It would be worthwhile to analyze the security of such solutions.

As it has been stated in Section 8 of [4], the analysis of Canetti et al. and
our results do not imply that any data object is reliably certified for super-
polynomial time. This is closely related to the fact that the security parameter
is fixed over the lifetime of the protocol. We would like to know if it is possible to
reliably certify a document for super-polynomial time while keeping the security
parameter fixed.

As it has been observed in [4] and we have stated in Section 3, the LCS
framework does not allow to model components whose computational power
increases over time. Since in reality, according to Moore’s law and as observed
over the last 40 years, computational power doubles roughly every 18 months,
this seems to be a shortcoming of the framework. It might be useful to modify
the framework such that it tolerates an increase of computational power over
time.
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Abstract. This work aims at determining when the two-round maxi-
mum expected differential probability in an SPN with an MDS diffusion
layer is achieved by a differential having the fewest possible active Sboxes.
This question arises from the fact that minimum-weight differentials in-
clude the best differentials for the AES and several variants. However,
we exhibit some SPN for which the two-round MEDP is achieved by
some differentials involving a number of active Sboxes which exceeds the
branch number of the linear layer. On the other hand, we also prove that,
for some particular families of Sboxes, the two-round MEDP is always
achieved for minimum-weight differentials.

Keywords: Differential cryptanalysis - Linear layer - MDS codes - AES

1 Introduction

Since the design of the AES and the seminal related work [12], it is known that
the mixing layer which aims at providing diffusion within a block cipher must
have a high differential branch number [10]. This quantity corresponds to the
smallest number of active Sboxes within a two-round differential characteristic.
Indeed, for a given choice of the Sbox, the maximal probability for an r-round
differential characteristic decreases when the number of active Sboxes within
r rounds increases. For this reason, many security analyses focus on the minimal
number of active Sboxes within r consecutive rounds when r varies, not only for
AES-like designs but for some other types of ciphers, including Present [5] or
Feistel ciphers [23]. This approach is rather natural since, in differential attacks,
cryptanalysts usually start by searching for a differential characteristic with
the fewest possible active Sboxes. Therefore, the construction of MDS diffusion
layers with an efficient implementation has been investigated by several authors,
e.g., [22,3,1].

However, the complexity of a differential attack depends on the probability of
a differential, i.e., on the sum of the probabilities of all characteristics starting
by a given input difference and ending by a given output difference. And, within
two consecutive rounds of an SPN (Substitution-Permutation Networks), the
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number of constituent characteristics increases with the Hamming weight of
the differential. Then, the maximum expected probability (MEDP) for a two-
round differential may result from a differential which contains a huge number
of characteristics each with a low but nonzero probability, rather than from a
differential which contains a few characteristics having a high probability. In
other words, for two rounds of an SPN, there is a priori no reason to believe
that the best differential corresponds to a differential with the lowest number
of active Sboxes. However, it appears to be the case for most known examples,
including the AES [17]. This aim of this paper is then to determine whether
this phenomenon is more general and whether there are some general situations
where it can be proved that the two-round MEDP is achieved by a differential
with the smallest number of active Sboxes.

Our Contributions. After recalling the main definitions in Section 2, we show
in Section 3 that the choice of the MDS diffusion layer may affect the two-
round MEDP even if the Sbox is fixed. In particular, we show that the form
of the minimum-weight codewords plays an important role. Also, we provide
some upper bound on the number of characteristics with nonzero probability
within a given differential for an MDS linear layer. Section 4 focuses on the case
where the Sbox is APN: in this case, it appears that the two-round MEDP is
usually achieved by minimum-weight differentials. We prove this result for any
APN Sbox over Fg and any Fg-linear MDS diffusion layer. Finally, Section 5
exploits the previous analysis and exhibits some MDS mixing layers for which
the maximum EDP over two rounds is achieved by a differential in which the
number of active Sboxes exceeds the branch number.

2 Differential Attacks Against Substitution-Permutation
Networks

2.1 Substitution-Permutation Networks

One of the most widely-used constructions for iterated block ciphers is the so-
called key-alternating construction [10,11], which consists of an alternation of
key-independent (usually similar) permutations and of round-key additions. The
round permutation is usually composed of a nonlinear substitution function Sub
which provides confusion, and of a linear permutation which provides diffusion.
In order to reduce the implementation cost of the substitution layer, which is
usually the most expensive part of the cipher in terms of circuit complexity, a
usual choice for Sub consists in concatenating several copies of a permutation
S which operates on a much smaller alphabet. In the whole paper, we will con-
centrate on such block ciphers, and use the following notation to describe the
corresponding round permutation.

Definition 1. Let m and t be two positive integers. Let S be a permutation
of F3* and M be a linear permutation of F3'*. Then, SPN(m,t, S, M) denotes
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any substitution-permutation network defined over F5'* whose substitution func-
tion consists of the concatenation of t copies of S and whose diffusion function
corresponds to M .

For instance, up to a linear transformation, two rounds of the AES can be
seen as the concatenation of four similar superbozes [13]. The superbox, de-
picted on Fig. 1, is linearly equivalent to a two-round permutation of the form
SPN(8,4, S, M) where the AES Sbox S corresponds to the composition of the
inversion in Fys with an affine permutation A. More precisely, S(z) = Ao
ot (cp(:r)254) where ¢ is the isomorphism from F§ into Fas defined by the
basis {1,a,a?, ..., o’} with a a root of X8 + X* 4+ X3 + X + 1.

\ v v \
S
\ v v \
M
& ®
\
\ \ v \

S S S S

\ A\ A\ \
Fig. 1. The AES superbox

2.2 Differential Cryptanalysis

Differential [4] cryptanalysis is one of the most prominent statistical attacks.
The complexity of differential attacks depends critically on the distribution over
the keys k of the probability of the differentials (a,b), i.e.,

DP(a,b) = Prx[Ep(X) + Er(X 4+ a) =]

where Ej, corresponds to the (possibly round-reduced) encryption function under
key k. Since computing the whole distribution of the probability of a differential
is a very difficult task, cryptanalysts usually focus on its expectation.

Definition 2. Let (Ex)kery be an r-round iterated cipher with key-size r. Then,
the expected probability of an r-round differential (a, b) is

EDP/ (a,b) = 27" Y Prx[Ei(X) + Ex(X +a) =1b] .
kEFy
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The maximum expected differential probability for r rounds is

MEDP¥ = max EDPZ (a,b) .
a#0,b
The index in MEDPZ will be omitted when the number of rounds is not specified.

2.3 Expected Probability of a Differential Characteristic

Since computing the MEDP for most ciphers, even for a small number of rounds,
is very difficult, most works focus on the expected probability of a differential
characteristic.

Definition 3. An r-round differential characteristic {2 is a collection of (r +
1) differences, 2 = (ag,a1,...,a,) where a; corresponds to the difference ob-
tained after the i-th round when encrypting two inputs which differ from aq. The
expected probability of the characteristic §2 is then defined as

EDCP,(2) =27% Y Prx,[X1+ X| = a1;...; X, + X] = a, | Xo + X{ = ag] ,
kEFy

where X; (resp. X|) denotes the image of Xo (resp. of X{) after the i-th round
Of Ek.

We here use the specific notation EDCP for the expected probability of a char-
acteristic in order to avoid confusion between differentials and characteristics.
A simple upper-bound on the expected probability of 2-round characteristics
can be derived from the differential branch number of the linear layer and from
the differential uniformity of the Sbox, in the sense of the following definition.

Definition 4 (Differential Uniformity). Let S be a function from F3 into
F2'. For any a and b in F3', we define

6%(a,b) = #{x € F', S(x + a) + S(z) = b} .

The multi-set {6°(a,b), a,b € FT'} is the differential spectrum of S and its
mazimum A(S) = max,op 0°(a,b) is the differential uniformity of S.

Then, for any two-round characteristic {2 = (a, M (b), M (c)), the Markov as-
sumption [19] implies that

EDCP,(2) = DP¥(a, M (b)) x DP¥ (M (b), M(c))
= (ﬁDPf(ai,bi)> (ﬁDPf(M(b)iyci)> : 1)
i=1 =1

Let Supp(z) and wt(x) denote the support and the weight of a vector =z €
FJ'" seen as an element in (F3")!. Then, the previous equation shows that
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EDCP3(£2) = 0 unless Supp(a) = Supp(b) and Supp(M (b)) = Supp(c). Using
this relation, we deduce that

EDCP(£2) < (2_mA(S))wt(b)+wt(M(b)) .

It then appears that the lowest possible value for the weight of a nonzero word
of the form (b, M (b)) plays a major role in the resistance against differential
attacks. This criterion on the diffusion layer of the cipher corresponds to the
notion of differential branch number.

Definition 5 (Differential Branch Number [10]). Let M be a permutation
of (F5*)t. We associate to M the code Car of length 2t and size 2t over F3'
defined by

Cur = {(e,M(c)), c € (F3')'}.
The differential branch number of M is the minimum distance of the code Cyy.

The following upper bound on the expected probability of any 2-round differen-
tial characteristic then follows:

max EDCP,(2) < (27" A(S))? (2)

where d is the differential branch number of the linear layer.

It is worth noticing that a similar notion is considered in the case of linear
cryptanalysis. The linear branch number is then the minimum distance of the
dual code C3; but this quantity is out of the scope of this paper. For this reason,
in the following, branch number always refers to the differential branch number.

From Singleton’s bound, the highest possible value for the branch number
of a permutation of (F5")" is (¢ + 1) and it corresponds to the case where the
associated code Cyps is an MDS (maximum distance separable) code.

3 From Characteristics to Differentials

The problem with the previous result is that differential cryptanalysis exploits
differentials and not characteristics since the differences obtained after each in-
termediate round do not matter in the attack. The probability of a differential
(a, M (b)) then corresponds to the sum of the probabilities of all characteristics
with input difference a and output difference M (b). Then, the relevant quantity
for two rounds is the maximum of

EDP;(a, M(b)) = Y EDCP}(a,z, M(b)) .

mt
rzeFY

Determining the expected probability of a differential, rather than focusing on
a single characteristic, is difficult in general.
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3.1 Expected Probability of a 2-round Differential

From Equation (1), any element x of (F5')! verifies

EDCPy(a, M (z), M (b)) = (ﬁDPf(ai,xi)> (ﬁDPf(M(x)i,bi)> .

i=1

If this probability is different from zero, we have that Supp(a) = Supp(z) and
Supp(M (x)) = Supp(b), implying that (z, M(x)) € (F5)?' is a word of Cp
having the same support as (a,b). Moreover, by definition of the differential
spectrum, DP‘f(a, B) = 27™m6%(a, B). Thus, the two-round probability of a dif-
ferential is

EDP;(a, M (b)) =27 mwHeb) 3~ I e I %(ciss.09)
cECnr: 1€Supp(a) J€E€Supp(d)
Supp(c)=Supp(a,b)

3)

A simple upper bound for the two-round MEDP can then be derived from the

branch number of M and from the differential uniformity of the Sbox (see [15]
and [12, Section B.2]):

MEDP; < (27 A(S))" .

This result has then been refined in [9,21,8]. The bounds in [15,9,21] are
invariant under affine equivalence, i.e., their values are the same for two Sboxes
S and S’ when there exist two affine permutations A; and As such that S’ =
Aj0S50A5. However, the exact values of MEDPs may differ for Sboxes in the same
equivalent class, and there can be a gap between these bounds and the exact value
of MEDPs. In [8], a new upper bound is introduced, that enhances the previously
known bounds in the sense that it may vary when the Sbox is composed by an
affine permutation. This new bound only applies when the diffusion layer M is
linear over the field Fom, where m is the size of the Sbox, exactly as in the AES.
In this case, the linear layer and the Sbox can be represented as functions over
the field Fom and the representation does not change the MEDP. In particular,
the choice of the isomorphism that identifies the vector space F5* with the finite
field Fom has no influence on the differential properties of the cipher. For this
reason, we use the following alternative notation to define an SPN with this
representation.

Definition 6. Let m and t be two positive integers. Let S be a permutation
of Fom and M be a permutation of (Fom)! which is linear over Fam. Then,
we denote by SPNgp(m,t,S, M) a substitution-permutation network defined over
(Fam)t whose substitution function consists of the concatenation of t copies of S
and whose diffusion function corresponds to M.

When the Sbox is defined over Fom, we equivalently define the differential spec-
trum as follows. Let (ayg,...,am—1) be a basis of Fom, and ¢ the corresponding
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isomorphism from F%* into Fom . Let S be a mapping over F5*, and S = poSop~1.
Then, for any (a, 8) € Fam,

§p(a, B) = #{x € Fom,S(z + a) + S(z) = B} = 6% (¢ (@), ¢ (B)) -

As the differential properties of any SPN(m, t,S, M) can be equivalently stud-
ied by considering the alternative representation SPNy(m,t,S, M) [14], this pa-
per focuses on the representation of an SPNg in the field Fom. For the sake
of clarity, all quantities related to the representation in the field Fom will be
indexed by F, and all functions defined over Fom will be denoted by calligraphic
letters.

The new bounds on MEDP; presented in [8] are derived from the particular
structure of the set formed by all codewords in Cyq having a given support,
when M is linear over Fom. These bounds are expressed in terms of the following
quantities. For any Sbox S over Fom with differential spectrum (dr(a,b))q,beFom
and any branch number d, we define for any p € Fom and any integer u > 0,

_ u (d—u)
B (1) L. WGZF; 5r(a,7)"0r (YA + 1, B)
om

and  B(p) = max Bu(u) .

In the rest of the paper, we will restrict ourselves to the case where the dif-
fusion layer is linear over Fom and MDS (i.e., with branch number (¢ + 1)).
We also assume that the well-known MDS conjecture [20] is valid, i.e., in our
context, that ¢+ < 2™~ for m > 3 and t < 3 for m = 2. For such MDS diffusion
layers, Theorem 2 and Proposition 3 in [8] can be expressed as follows.

Theorem 1. Let S be a permutation of Fom and t be any integer such that
t<2mh

— For any Fam -linear diffusion layer M over Fk.. with maximal branch num-
ber, the block cipher E of the form SPNp(m,t,S, M) satisfies

MEDPE < 270+ max B(p) .
pnEFm

— There exists an Fom -linear diffusion layer M over Fi.. with mazimal branch
number such that
MEDPS > 2=m(+D3(0) .

In most cases, the values of the two-round MEDP for two ciphers of the form
SPNgp(m,t,S, M1) and SPNg(m,t,S, M2) where My and My are different
MDS linear layers differ. The minimum-weight codewords of Caq have a large
influence on this value, as shown in the following example.

Example 1. Let us study the two-round MEDP of the SPN with the same build-
ing blocks as the Prgst permutation, which is the core function of several AEAD-
schemes submitted to the CAESAR competition [16]. It is worth noticing that
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the following results do not provide any direct information on the security of
the Prgst permutation: indeed, we study the differential probabilities averaged
over all keys while the key is fixed in the Prgst permutation. Two consecutive
rounds of the Prgst permutation over Fi%¢ d > 1, can be seen as the parallel
application of d copies of a superbox defined over F14. This superbox is of the
form SPN(4,d, S, M) where S is a 4-bit involution named SubRows and M cor-
responds the so-called MixSlices transformation. It has been shown in [8] that
MixSlices is linear over Fig for some particular isomorphism between F3 and
F16. Then, Theorem 1 applies and we get that, for any Fg-linear layer M, the
block cipher E of the form SPNg(4,d,S, M) where S corresponds to the Prgst
Sbox satisfies
MEDPY <278

But, when the diffusion layer corresponds to MixSlices, we have computed the
exact value of the MEDP, and obtained that MEDP; = 3 x 2~ !!, which is
smaller than the general upper bound.

However, since both lower and upper bounds in Theorem 1 are equal, we
deduce that there exists another diffusion layer M such that

MEDPY =278

An example of such a diffusion layer is

a2 +a+1 o’ +a B +a+1 1
a+1 a+al+a a?+a+1 1
a?+1 a®+a?+1 o® 1

o? o + o? a®+1 1

where « is a root of X4 + X3 + 1. Indeed, the set of codewords of the form
{A\(0,0,0,1,1,1,1,1), A € Fjs} belongs to the code associated with this dif-
fusion layer. Then, the differences a« = (0,0,0,1) and b = (1,1,1,1) satisfy
EDPy(a, M(b)) = 278.

3.2 Influence of the Weight of the Differential

The previous example shows that, in some cases, the form of the minimum-
weight codewords in Caq plays an important role when determining the two-
round MEDP. We observe from Equation (3) that these codewords are involved
in the computation of EDP3(a, M(b)) when the weight of the corresponding
pair (a,b) is equal to the branch number of M. We then call such a differential
a minimum-weight differential. The role played by minimum-weight differentials
appears in a more direct way when the Sbox S has the following additional
property [8, Definition 7|. A mapping S of Fam is said to have multiplicative-
invariant derivatives if, for any = € F3.. there exists a permutation 7, of F3,.
such that

5F (av wy) = 6F(7T€I/’ (O[), y)a Vy S F;”l .
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Power permutations, and more generally any function resulting from the com-
position on the right of a power permutation with an Fs-linear permutation, has
multiplicative-invariant derivatives. Another example of functions with multipli-
cative-invariant derivatives are the crooked permutations, which include all APN
permutations of degree 2. When an Sbox has this property, the expression of
B(p) (including B(0)) simplifies but, more interestingly, we get some universal
lower bound on MEDPy, i.e., which holds for any diffusion layer with maximal
branch number. For instance, for all Sboxes S such that both S and S™! have
multiplicative-invariant derivatives, we obtain that, for any Faom-linear diffusion
layer M with maximal branch number, the corresponding block cipher satisfies
2~m(H) B(0) < MEDPY < 2-m(t+D) max B(u) . (4)
nEFam
Moreover, MEDPY = 2=+ B(0) if and only if the maximum expected differ-
ential probability is achieved by a minimum-weight differential.

Since the probability of a characteristic decreases when the weight of the
underlying differential increases, a natural question is to determine in which
situations the two-round MEDP is achieved by a minimum-weight differential.
This is an important information: computing the two-round MEDP for a given
cipher becomes obviously much easier once it is known that only the minimum-
weight differentials need to be examined. Surprisingly enough, for all AES-like
ciphers which have been investigated, the two-round MEDP is achieved by a
minimum-weight differential. For instance, the bounds in [8] applied to the AES
Sbox show that for any Fays-linear layer M, we have

53 x 27 < MEDP3 < 55.5 x 2734 | (5)

where the lower bound corresponds to some minimum-weight differentials. For
the particular diffusion layer defined by MixColumns in the AES, the exact
value of the two-round MEDP; computed by a pruning search algorithm [17], is
MEDP; = 53 x 2734, It then corresponds to the lower bound of (5).

There also exist some SPNr for which the exact value of the two-round MEDP
can be directly deduced from the bounds in [8], for instance, when the Sbox S
is an involution with multiplicative-invariant derivatives. In this case, the lower
and upper bounds in (4) are equal and do not depend on the MDS diffusion layer.
In other words, for any involution with multiplicative-invariant derivatives, the
two-round MEDP is always achieved by a minimum-weight differential, for any
choice of the MDS linear layer. This holds in particular for the so-called AES
naive Sbox, i.e. the inversion in Fom, which satisfies these conditions.

A natural question then arises from these examples: does there exist any
cipher of the form SPNp for which the two-round MEDP is not achieved by a
minimum-weight differential? We now investigate this problem, and first exhibit
some general families of ciphers for which this situation cannot occur.

3.3 Number of Characteristics Within a Given 2-round Differential

For the sake of simplicity, for any differential (a, M (b)), we denote by (a, ¢, M(b))
the corresponding characteristic where ¢ is the codeword in Cyq defined by the
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concatenation of the input and output differences of the first diffusion layer.
With this notation, we have

EDPy(a, M(b)) = > EDCPs(a,c, M(b)) .
ceCpm:
Supp(c)=Supp(a,b)
In this differential, each characteristic having a nonzero probability is defined by
a codeword in Cpq whose support is equal Supp(a,b). Therefore, we define the
weight of the differential as the weight w = wt(a) + wt(b). Then, the number of
characteristics within a given differential (a, M (b)) of weight w is defined by

Ay (a,b) = #{c € Cp : Supp(c) = Supp(a, b) and EDCPs(a, c, M(b)) # 0}
= #{c € Cprq : Supp(c) = Supp(a, b), 6% (as, ¢;) # 0,Vi € Supp(a)
and 5§(Ct+ja bj) # 0,Vj € Supp(b)} .

A first criterion to determine whether the two-round expected differential
probability is maximized by a minimum-weight differential or not consists in
estimating the number of characteristics involved in a differential having a given
weight w. Since we only consider diffusion layers which are linear over Fom, the
codewords in Cyq having a given support can be gathered in bundles as pointed
out in [13]: if ¢ belongs to Caq, then the whole bundle P(c) = {v¢, v € Fin}
is also included in Caq. It follows that the number of codewords in Caq having
a given support is always divisible by (2™ — 1). Moreover, for any pair («, 8) €
(F3..)%, the values 6% (c,v3), when 7 varies in Fj,., correspond to a row of
the difference table of S. Since these coefficients are all even and sum to 2™,
we deduce that, for any permutation S, at least 2™ ~! — 1 coefficients among
all (0%(,vB),7 € Fim) vanish, with equality if and only if S is APN. It then
follows that, for any ¢ € Cpy,

#{c € P(c) : EDCPy(a,c’, M(b)) # 0} < 2m~ 1.

Differentials of Weight w = t 4+ 1. Recall that we focus on the case where
the diffusion layer has maximal branch number, i.e., where Cpq is MDS. It is
well-known (e.g. [20, Page 319]) that if Cyq is an MDS code of length 2¢ and
dimension t over Fam, then for each support of size (¢ + 1), there exist exactly
(2™ — 1) codewords (i.e., one bundle) having this support. From the previous
discussion, we deduce that, for any minimum-weight differential (a, b)

At+1(a, b) < om—1

Differentials of Weight w = t + 2. We now provide a similar upper bound
on the number of characteristics within a differential of weight (¢ + 2).

Proposition 1. Let M be an Fam -linear MDS permutation of F,.. Then, for
any differential (a,b) of weight (t + 2), we have

Aria(a,b) <2m7H2™ — (t+1)).
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Proof. From the previous discussion, we only have to prove that, for any support
I of size (¢t + 2) there exist exactly (2™ — (¢ 4+ 1)) distinct bundles having I
for support. Let J = {i1,...,is—2} be the set formed by the 2t — (¢t + 2) =
t — 2 coordinates which do not belong to I. The codewords whose support is
included in I then correspond to the codewords which vanish on J. Using that
any t coordinates of Cxq is an information set [20, Page 321|, we deduce that
there are exactly (22 — 1) nonzero codewords whose support is included in I.
Since we count the number of codewords whose support is equal to I, we need
to remove the codewords of weight (¢ + 1) from the previous set. As previously
mentioned, for any support of size (¢ + 1), there exists one bundle having this
support. Since I contains (¢t + 2) subsets of size (¢t + 1), we need to remove
(t+2)(2™ — 1) codewords from the previous set. It follows that the number of
codewords having I for support is

22 1 —(t+2)2m—1)= (2™ - 1)(2™ — (t + 1)).
Therefore, Caq contains exactly (2™ — (¢ + 1)) bundles having I for support,
implying that
Apsa(a,b) < 277127 — (4 1)).
d

Most notably, we deduce from this formula that, when ¢ = 2™~ A, 5 may be
limited by the maximal value of A;11. Some application of this result will be
detailed in the next section.

4 SPN with an APN Sbox

In this section, we focus on the block ciphers SPNy which use an APN Sbox.
These ciphers are of particular interest in our context since the whole differential
spectrum of the Sbox is known. It follows that, for any characteristic within a
differential of weight w has probability either 0 or 2=%(™~=1_ Then, we deduce
that the expected probability of a differential of weight w only depends on the
value of Ay (a,b):

EDPy(a, M(b)) = 27~V A, (a,b) .

It follows that there exists a differential (a,b) of weight (¢t + 2) whose prob-
ability is higher than the probability of any minimum-weight differential if and
only if, for any («a, ) of weight (¢t + 1),

2_(t+2)(m_1)¢4t+2((1, b) > 2_(t+1)(m_1)-/4t+1(a76)

or equivalently

Arga(a,b) > 2" A (o, B) -
From Proposition 1, we know that A;12(a,b) < 2™~ 1(2™ —(t+1)), implying that
this situation can only occur if all minimum-weight differentials («, 3) satisfy

Appr(e, f) < (2™ = (t+1)) - (6)
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For given parameters m and ¢, we can then directly deduce that, if the number of
characteristics in a minimum-weight differential exceeds some bound, then the
two-round MEDP cannot be achieved by a differential of weight (¢ + 2).

4.1 APN Sboxes over Fg

We now show that, if S is an APN permutation over Fys (i.e., m = 3), then the
maximum EDP is always achieved by a minimum-weight differential. This result
is mainly due to the particular properties of 3-bit APN permutations.

Properties of APN Sboxes over Fg. Since a permutation of Fom has degree
at most (m—1), all APN Sboxes over Fg are quadratic, and their inverses are also
quadratic. Therefore, they are crooked [2,18], i.e., for any nonzero a € Fas, the set
{bc Fys : 6% (a,b) = 2} is an affine hyperplane of Fys. Furthermore, it is known
that all these affine hyperplanes are distinct [7, Lemma 5|. Since the inverse S~*
is also a crooked permutation, the same property holds for the columns of the
difference table of S: for any nonzero b, the set {a € Fys : d%(a,b) = 2} is an
affine hyperplane and all these hyperplanes are distinct.

Minimum-Weight Differentials. From this algebraic structure, we deduce
the maximal value of the expected differential probability of the minimum-weight
differentials.

Proposition 2. Let S be an APN permutation of Fos. For any integer t and
any Fys-linear MDS diffusion layer M over (Fgs)t, the block cipher of the form
SPNp(3,t,S, M) satisfies

max  EDPy(a, M(b)) = 272,
a#0,b
wt(a,b)=t+1

Proof. Let I = {iy,...,it41} be a subset of {1,...,2¢t} of size (¢t + 1). Our aim
is to exhibit a pair (a,b) whose support equals I and such that A;11(a,b) = 4.
Such a differential leads to the result since A:11(a,b) = 4 is the highest value
we can have for a minimum-weight differential. Let ¢ be a codeword in Cpq with
Supp(c) = I since such a codeword always exists. Let us choose some nonzero
element a;, € Fas. Then, we consider the set H = {3 : §%(a;,,3) = 2}. Then H
is an affine hyperplane. We now define

I'={c;'\AeH}.

Obviously, I" is also an affine hyperplane. Then, the four codewords in the
bundle of ¢, ¢/ = vc with v € I', satisfy

5?((1,'1,0;1) = 5§(ai1,)\ci_llcil) =2.

Moreover, for any position ¢; in I with 7; < ¢, the coordinates of these four
codewords at position i; vary in the set ¢;;I" which is an affine hyperplane.
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Therefore, there exists some a;; such that this set corresponds to {/3 : 6I‘§(aij ,B) =
2}. Similarly, for any position i; € I with i; > ¢, there exists some b;; such that
the affine hyperplane c;; I" corresponds to {a : d(a,b;;) = 2}. For this choice of
(a,b), we get that, by construction,

Airi1(a,b) =4,

implying that
EDPs(a, M(b)) = 4 x 2720+ — 9=2t
|

It is worth noticing that we have proved a more general result: for any bun-
dle, we can find a pair (a,b) such that the corresponding differential includes
four characteristics from this bundle having a nonzero probability. However, this
does not enable us to determine the maximum EDP for higher-weight differen-
tials since the involved codewords correspond to several bundles, and we cannot
control the different bundles together.

Higher-Weight Differentials. Since Cp is an MDS code over Fg, we have
that t is at most 4. Moreover, we deduce from (6) that the maximum two-round
EDP cannot be achieved by a differential of weight (¢ + 2) when ¢ = 4 since it
would imply that all minimum-weight differentials would satisfy A;11(a,b) <3
while we have proved that A;11(a,b) can be equal to 4.

Then, we need to examine all linear MDS codes of length 2t and dimension ¢
over Fg for t € {2,3}. For each of these codes, we have computed the highest
value of A¢12(a,b) we can get for all (a,b) of weight (¢ + 2). Since the difference
tables of all crooked Sboxes over Fg have the same structure, the maximal value
of Aiy2(a,b) over all (a,b) having a given support I corresponds to the largest
set I' of codewords ¢ with support I such that, for each i € I, ¢; for all c € I
belong to the same affine hyperplane.

For ¢ = 2, the previous quantity has been computed for all [4,2, 3]-codes over
Fs. For all of them, we get that the maximal value for A4(a, ) is equal to 8. We
then deduce that

max EDPy(a, M(b)) =27%and max EDPy(z, M(y)) =2"%x8=275,

a#0,b z#0,y
wt(a,b)=3 wt(z,y)=4
Then, the two-round MEDP is achieved by a minimum-weight differential only.

For t = 3, we have computed the highest possible value of As(a,b) for all
[6, 3, 4]-codes over Fg, and we have obtained that for all these codes, the maximal
As(a,b) is 4, implying that

max EDPy(a, M(b)) = 2% and max EDPy(z, M(y)) =27 0x4 =278,
wt(a,b’)=4 Wt(mvy’)y=5
Moreover, it can be checked that, for all these codes, the maximal Ag(a, b) is 32,
implying that

max EDPa(z, M(y)) =272 x32=2"".
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We then deduce the following result.

Proposition 3. Let S be an APN permutation of Fos. For any integer t and
any Fys-linear MDS diffusion layer M over (Fgs)t, the block cipher of the form
SPNr(3,t,S, M) satisfies

MEDP, = 272,

and this value is achieved by some minimum-weight differentials only.

4.2 APN Sboxes over F35

APN permutations over Fso have been classified in [6] up to equivalence. But
since APN permutations over F3o do not have the same algebraic structure
as APN permutations over Fg, each function from this classification has to be
studied. Moreover, the number of MDS codes with these parameters is also much
higher than in the previous case.

We have then computed the maximal value for A4 for several APN permuta-
tions and MDS permutations with ¢t = 2, 3. For ¢t = 2, we have always observed that
the maximal A;; is at least 10. We should then find some differential of weight 4
with A4 > 10 x 2571 = 160 to reach the same EDP than the best minimum-weight
differential. However, the highest values we have observed for A4 are between 83
and 92. In other words, the maximum EDP for a differential of weight 4 is slightly
higher than half of the maximum EDP for a minimum-weight differential.

For t = 3, we have observed that the maximal A;; is at least 9. We should
then find some differential of weight 5 with A5 > 9 x 2571 = 144, while the
highest values we have observed for A5 lie between 54 and 60.

5 MEDP; can be Tight for a Differential of Non-minimal
Weight

It seems that the number A, of characteristics having a nonzero probability
in a differential of weight w > ¢ + 1 cannot be large enough to achieve a two-
round EDP higher than the one which can be obtained with minimal-weight
differentials. However, in the previously studied cases, the highest probabil-
ity of a minimal-weight characteristic is always equal to the maximal value
(A(S)/2™)t+1. If the probability EDPy is minimized for any minimal-weight
differential, that is, if the number A;4; is small and the probabilities of the con-
stituent characteristics are different from (A(S)/2™)*!] it should be possible to
have a differential of weight w > ¢ + 1 which has a higher probability than all
minimal-weight differentials.

5.1 Examples where MEDP, is Tight for a Differential of Weight
(t+2)

Sboxes such that only a few entries in the difference table are equal to A(S)
are a good choice to avoid the existence of characteristics with probability
(A(S)/2™)"*!  within any given minimum-weight differential. But for
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differentials of weight ¢ 4+ 2, the probability of a characteristic also needs to
be high. An Sbox with 4 to 6 entries in the difference table equal to A(S) seems
to be a good tradeoff, as shown in the following examples. Note that the Sboxes
are defined over the vectorial space F3' while the diffusion layer is defined over
the field Fam, as it is done in many concrete specifications (using the binary rep-
resentation may be relevant to choose the Sbox, for instance in order to minimize
the number of gates).
Let S be a permutation of F3 defined by

z 01234567
S(x)01234675

Its differential uniformity is A(S) = 4 and there are 6 coefficients equal to 4 in
its difference table. Then there exist some Fg-linear permutations with maximal
branch number such that there are differentials of weight (¢ 4+ 2) having a higher
probability than all minimum-weight differentials. An example of such a diffusion

layer with ¢t = 2 is
a a+1
M= (a2 a2+1)

where « is a root of X3 + X 4+ 1. We compute the exact value of EDP, for all
minimum-weight differentials first and then for differentials with weight d+1 = 4.
We obtain:
EDP b)) =271
max 2(a, M(b))
wt(a,b)=3
as there is only one characteristic of probability 2% in the differentials having
the highest probability, and
max EDPy(z, M(y)) =27
z#0,y
wt(x,y)=4
as there are some differentials of weight 4 composed of two characteristics of
probability 274,

Let S be a permutation of F3 defined by

z 012345678 9101112131415
S(x)0215491581211 6 7 3 141013

Its differential uniformity is A(S) = 6 and there are 4 coefficients equal to 6 in
its difference table. Then there exist some Fg-linear permutations with maximal
branch number such that there exist some differentials of weight (¢ + 2) having
a higher probability than all minimum-weight differentials. An example of such
a diffusion layer with t = 4 is

1 1 ol o?
M= ?4+a+1 1 1 a? +a
o a? a’ +1 1 a®+a?+1
a? +1 B+l +a oB+a 1

where « is a root of X4+ X + 1.
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We compute the exact value of EDPy for all differentials of a given weight.
We obtain
max EDPy(a, M(b)) = 1,2656 x 275,

a#0,b
wt(a,b)=5

max EDPy(a, M(b)) = 1,4238 x 278,
a#0,b
wt(a,b)=6

max EDPy(a, M(b)) = 1,0942 x 27'° and
wt(a,b’):7

max EDPy(a, M(b)) = 1,292 x 2712,
wf(a,b’)=8

5.2 Example where MEDP, is Tight for a Differential of Weight
(t+3)

Similarly, we can exhibit an SPN whose two-round MEDP is achieved by some
differentials of weight (¢ 4+ 3) only.
Let S be a permutation of F3 defined by

x 012345 6 7 8 9101112131415
S(z)043791411121013158 6 5 2 1

It has differential uniformity A(S) = 8 and has 4 coefficients equal to 8 in its
difference table. An example of an MDS diffusion layer with ¢ = 3 such that
there are differentials of weight ¢ + 3 = 6 having a higher probability than all
differentials of weight (¢t + 1) or (¢t + 2) is

1 le} a® +a? +a
M= o? a+l aB+a2+a+1
o?+1 o241 a?+1

where « is a root of X4 4+ X + 1.
By computing the exact value of EDPs for differentials with the same weight,
we obtain:

max EDPy(a, M(b)) = max EDPy(a, M(b)) =276
a#0,b a#0,b
wt(a,b)=4 wt(a,b)=5

and

max EDPy(a, M(b)) = 524288 x 2724 =275 .

a0,

wt(a,b)=6
In these two examples, the Sboxes are such that there are only a few entries

in their difference table which reach the maximum value A(S). Conversely, in
the previous section, we have proved that the two-round MEDP is achieved
by minimum-weight differentials when the Sbox is an APN permutation, that
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is, when all the nonzero coefficients of the difference table achieve the maximal
value. Then we can wonder whether, when the number of entries in the difference
table of the Sbox which are equal to the differential uniformity exceeds some
bound, we can deduce that the two-round MEDP is tight for some minimum-
weight differential only.

6 Conclusions

In this work, we have shown that the form of the minimum-weight codewords
associated to the diffusion layer in an SPN affects the two-round MEDP. More-
over, we have exhibited for the first time some SPN such that the two-round
MEDP is achieved by some differentials of weight higher than the branch num-
ber. On the other hand, we have also proved that this situation cannot occur in
some cases, for instance when the Sbox is an APN permutation of Fg. But, we
give some concrete examples of round functions for which the highest differen-
tial probability is not achieved when the number of active Sboxes is minimized.
This observation means that, while the branch number provides an upper bound
on the two-round MEDP in any AES-like cipher [15,12], an attacker searching
for the best two-round differential has to consider all possible number of active
Sboxes.

Acknowledgments. The authors want to thank Thierry Berger for many stimulat-
ing discussions, including the discussions around the relevance of the rank minimum
distance of the diffusion layer, which have initiated our work.
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Abstract. [This is an extended abstract of paper [15], which has been
submitted to a journal] Boolean plateaued functions and vectorial func-
tions with plateaued components, that we simply call plateaued, play a
significant role in cryptography, but little is known on them. We give here,
without proofs, new characterizations of plateaued Boolean and vectorial
functions, by means of the value distributions of derivatives and of power
moments of the Walsh transform. This allows us to derive several charac-
terizations of APN functions in this framework, showing that all the main
results known for quadratic APN functions extend to plateaued functions.
Moreover, we prove that the APN-ness of those plateaued vectorial func-
tions whose component functions are unbalanced depends only on their
value distribution. This proves that any plateaued (n, n)-function, n even,
having same value distribution as APN power functions, is APN and has
same extended Walsh spectrum as the APN Gold functions.

1 Introduction

The notion of plateaued Boolean function, introduced in [29], is the widest known
generalization of quadratic Boolean functions (i.e. of functions from F% to Fy of
algebraic degree 2, see e.g. [13]). It plays an important role in the cryptographic
framework, still more when the notion is extended component wise to vectorial
functions (from F% to F3") used as substitution boxes in block ciphers. The set of
vectorial functions whose components are plateaued, that we shall call plateaued,
includes bent (n, m)-functions (n even, m < n/2), almost bent (AB) vectorial
(n,n)-functions (n odd) and, for n even, some APN (n,n)-functions such as the
Kasami APN functions. An illustration of the importance of these functions is
that any plateaued APN (n,n)-function in odd number n of variables is AB.
However, little is known on (non-quadratic) plateaued Boolean and vectorial
functions, except (1) a few characterizations given in [29] for Boolean functions,
which are direct consequences of the definition, (2) a characterization valid for
Boolean functions, obtained in [17], which will be a starting point for the present
work, and (3) interesting but hardly usable in practice characterizations by the
constance of the ratio of two consecutive Walsh power moments of even orders
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[24]. There is a huge gap between the interest of the notion and the knowledge
we have on it.

After recalling the necessary background in Section 2, we give in Section 3
new characterizations of plateaued Boolean functions and of plateaued vectorial
functions, by means of the second-order and first-order derivatives in Subsection
3.1 (with a particular case when all component functions are unbalanced) and by
means of power moments of the Walsh transform in Subsection 3.2. Then Sec-
tion 4 applies these characterizations to the study of APN functions, gives new
tools for constructing APN functions from known ones and generalizes the main
properties of APN quadratic functions to plateaued functions. Subsection 4.3
studies the important sub-case where all component functions are unbalanced.

2 Preliminaries

A Boolean function f : FY — Fy is called plateaued if its Walsh transform
We(a) = Zwemg(fl)ﬂm)*a“, where “” is any inner product in FJ (for in-
stance a - x = try(ax) where tr, is the trace function from Fon to F3) takes
at most three values: 0 and +u (where p is some positive integer, called the
amplitude of the plateaued function). Changing the inner product permutes
the values of the Walsh transform but does not modify their distribution nor
the notion. According to Parseval’s Relation ZaeIFg Wf(a) = 22 denoting
by Nw, the cardinality of the support {a € Fy/ Wy(a) # 0} of the Walsh
transform, we have wa X maXgefy Wf(a) > 227 and therefore, the minimal
Hamming distance to affine functions (called the nonlinearity of f, and equal

1
VNwy
achieved if and only if f is plateaued.

Because of Parseval’s relation, the amplitude p of any plateaued function must
be of the form 2" where r > n/2 (since Ny, < 2"). Hence, the values of the
Walsh transform of a plateaued function are divisible by 2*/2 if n is even and
by 2»+1/2 if n is odd.

Vectorial functions F' : F3 +— F3* are called (n,m)-functions and used as
substitution boxes (S-boxes) in block ciphers. We shall use the notation Wr(a, u)
for W,,.r(a) and call Walsh spectrum (resp. extended Walsh spectrum) the value
distribution of the Walsh transform (resp. of its absolute value).

to 277! — J max,cry [Wy(a)|) satisfies ni(f) < 27! (1 - . Equality is

Definition 1. An (n,m)-function is called plateaued if all its component func-
tions u - F; u € F5', uw # 0, are plateaued.

Definition 2. An (n,m)-function is called plateaued with single amplitude if
all its component functions are plateaued with the same amplitude.

If the graphs {(z, F(x)); = € F5} and {(z,G(x)); = € Fy} of two (n,m)-
functions F, G correspond to each other by an affine permutation of Fy x F3*
(we say then that F' and G are CCZ-equivalent; the notion is from [16] and the
term comes from [10]), then one is plateaued with single amplitude if and only
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if the other is. The set of plateaued vectorial functions with single amplitude
is then CCZ-invariant. The larger set of plateaued vectorial functions is only
EA-invariant, that is, if two (n, m)-functions are equivalent under composition
on the left and on the right by affine permutations and under addition of an
affine function, then one is plateaued if and only if the other is.

Plateaued Boolean functions and plateaued vectorial functions seem rare and
they do not seem to have a simple structure. Another class whose structure is diffi-
cult to grasp is that of those APN (n, n)-functions, which oppose an optimal resis-
tance to the differential attack, when used as S-boxes in block ciphers [2,25,26,16].
An (n, n)-function F is called Almost Perfect Nonlinear (APN) if, for every nonzero
a € Fy and every v € F%, the equation D, F'(z) := F(z) + F(z +a) = v
has at most 2 solutions, or equivalently, if for every linearly independent elements
a and b of Fy, the second-order derivative D, Dy F does not vanish. More gener-
ally, given a positive integer §, F' is called differentially d-uniform if the equation
F(z)+ F(z+a) = v has at most 6 solutions, for every v € F} and nonzeroa € FJ.
Any (n,n)-function is APN (that is, differentially 2-uniform) if and only if the set
{(z,a,b) € (F3)?| F(x) + F(x 4+ a) + F(z +b) + F(z + a + b) = 0} has the size
3. 22n — 2nFl (je. contains only triples (z, a, b) such that a, b are linearly depen-
dent). Equivalently the Walsh transform Wr(a,u) = ZIGFS(—1)"'17(9"”“'”‘7 has
fourth power moment Zaemg,uemg,u;éo Wi(a,u) equal to 237"F1(2" — 1), which is
the smallest possible value. Few APN functions are known and it is important for
cryptography to find more and to better understand their structure. A sub-class
(see [19]) of APN functions is that of those plateaued functions with single ampli-
tude called Almost Bent (AB) functions, whose Walsh transform Wg(a, u) takes
valuesOand £2"3 " only (nodd), when a and u range over F§ and w is nonzero. They
oppose an optimal resistance to the linear attack [23], thanks to the fact that their
nonlinearity (the minimum distance between their component functions and affine
functions) is optimal (it achieves with equality the Sidelnikov-Chabaud-Vaudenay
bound [19]). Their structure is a little better known than for APN functions, but
much has still to be found on them as well. Surveys on APN and AB functions can
be found in [3,14].

3 Characterizations of Plateaued Boolean and Vectorial
Functions
3.1 Characterization by Means of the Derivatives

It is proved in [17] that any Boolean function f is plateaued on F} if and only if
the expression Za’bemg(fl)D“Dbf(x) does not depend on z € F3, and that this
constant expression equals then the square of the amplitude. We deduce:

Theorem 1. Let F be an (n,m)-function. Then:
— F is plateaued if and only if, for every v € I3, the size of the set
{(a,) € (F3)*; DoDyF(x) = v} (1)

does not depend on x € Fy;
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— F is plateaued with single amplitude if and only if the size of the set (1) does
not depend on x nor of v if v # 0;

— Moreover, for every (n,m)-function F, the value distribution of D, DyF(z)
when (a,b) € (F3)? equals the value distribution of Do F(b) + Do F(x), and
two plateaued functions having same such distribution have the same ex-
tended Walsh spectrum.

Plateaued vectorial functions appear then as a natural generalization of quadra-
tic vectorial functions (i.e. functions of algebraic degree at most 2), which are char-
acterized by the fact that their second-order derivatives are constant. Note that the
algebraic degree d = 2 is the only one for which all Boolean functions of degrees
at most d are plateaued; cubic functions can have very diverse Hamming weights
(see [12]).

Ezample 1. 1. Let F be AB, then, for every z, the number of solutions (a,b)
of the equation Do DpF(x) = 0 equals (as for any APN function) the number
3- 2™ — 2 of ordered pairs (a,b) of linearly dependent elements. We know (see
[14, Proposition 9.12]) that, for every v # 0 and every z, the number of solutions
(a,b) of Dy DpF(x) = v equals (uniformly) 2" — 2, and that conversely any APN
function having this property is AB.

2.Let nbe evenand F(x) = 22 ! be aGold APN function, (i,n) = 1. We have
D, DyF(z) = a* b+ ab® . The number of solutions (a, b) of D, Dy F(z) = 0 equals
again 3 - 2" — 2, and for v # 0, the equation D, Dy F(x) = v has two solutions a
for every b # 0 such that bz}’ ., has null trace. The number of such nonzero b equals
2"=14 22 — 1 when visacubeand 2”~! £22~! — 1 when v is not a cube. Hence
the number of solutions (a, b) of D, Dy F(z) = v equals:

3-2" =2 forv =0,
27 £23+1 — 2 for v anonzero cube (2'; ! cases)
2" 422 — 2 for v a non-cube (2 - 2"3_1 cases).

Since the number of all (a, b) equals 22", we deduce that, among the two “+” above,
oneisa “+” and one is a “—”. We shall see below that the Kasami APN functions
(see definition below) have the same distribution.

It is deduced in [15] that:

Corollary 1. Let n be any even integer, n > 4. Let F be an (n,n)-function
CCZ-equivalent to a Gold APN function G(z) = 22+ or to a Kasami APN
function G(z) = x4i_2i+1, (i,n) = 1. Then F is plateaued with single amplitude
if and only if it is EA-equivalent to G(x).

The Case of Power Functions. It is often simpler to consider power functions
than general functions. This has been illustrated for instance in the study of APN
functions. The case of plateaued functions makes no exception.



On the Properties of Vectorial Functions with Plateaued Components 67

Corollary 2. Let F(z) = 2% be any power function. Then, for every v € Fan,
every «© € Fon, and every A € F5,., we have

l{(a,b) € ]F% i DoF(b) + D, F(x) = v}
= |{(a,b) € F%,: D F(b) + D F(x/\) = v/\%}|.

In particular, |{(a,b) € F3.; D F(b) + D, F(0) = v}| is invariant when v is
multiplied by any d-th power in F3,.
Then:

— F is plateaued if and only if, for every v € Fan:

[{(a,b) € F3.; DoF(b) + Do F(1) = v}|
={(a,b) € F3u ; DoF(b) + Do F(0) = v}[;

— F is plateaued with single amplitude if and only if, for every v, |{(a,b) €
F2.; Do F(b)+ Do F(1) = v}| = |{(a,b) € F3.; D,F(b)+ D,F(0) = v}|, and
for every nonzero v, this size does not depend on v.

If d is co-prime with n, then F is plateaued if and only if it is plateaued with
single amplitude.

The Case of Unbalanced Components. If all component functions of F
are unbalanced, then Wg(0,u) # 0 for every u # 0 (and therefore, for every
u), and we know then that the amplitude of the component function u - F
equals |Wg(0,u)|. Hence, F is plateaued if and only if, for every w,z, the
sum Y, ey (—1) PP equals WE(0,u) = 3, pegy (—1)*F@OFFO). Con-
versely, if this equality is satisfied, then W2(0,u) equals the square of the am-
plitude of u - F' and is then nonzero.

Theorem 2. Let F' be any (n, m)-function. Then F is plateaued with component
functions all unbalanced if and only if, for every v,x € Fy, we have:

[{(a.b) € (F3)?: DuDyF(2) = v}| = |{(a.b) € (F)?: F(a) + F(b) = v}|.
Moreover, F is plateaued with single amplitude if and only if, additionally, this
common value does not depend on v for v # 0.

3.2 Characterization by Means of Power Moments of the Walsh
Transform

Theorem 3. Any n-variable Boolean function f is plateaued if and only if, for
every nonzero o € Fy, we have

Z Wy(a+ ) W;’(a) =0.
a€cly
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Any (n,m)-function F is plateaued if and only if:
Yu € Fy',Va € Fy, o # 0, Z We(a+ o, u) Wa(a,u) = 0.
ackFy
And F is plateaued with single amplitude if and only if, additionally, ZaeIFg
Wi(a,u) does not depend on u for u # 0.

Corollary 3. Any n-variable Boolean function f is plateaued if and only if, for

every b € F5:
400y _ 1)F e b
5 Wi = 2100 3 (1)
a€Fy a€Fy

Any (n,m)-function F is plateaued if and only if, for every b € FY and every

u € Fy:

ZWFau)—2" “F(b)z D Wi(a,u).

a€Fy a€lFy
And F is plateaued with single amplitude if and only if, additionally, these sums
do not depend on u, for u # 0.

Proposition 1. For every n-variable Boolean function f, we have:
2

Yo Wia) | <22 [ Y] W) |, (2)
a€Fy a€Fy

with equality if and only f is plateaued.
For every (n,m)-function F, we have:

2

S whew] =203 [ S whew ], (3)

u€FT \ acFp u€F7 \ acFp

with equality if and only if F is plateaued, which is equivalent to the fact that
the size of the set

4 4

1 4
{(21, 22,73, 24,91, 92, Y3,y €F5)* | D F(ws)+ Y Flyi))=Y wi=» _ y: = 0}
=1 =1

i=1 i=1

equals 2™ times the size of the set

6 6
{(z1, 72,23, 24,75,36) € (F5)°| D F(x;) =Y _x; =0}.
i=1 i=1
For every (n,m)-function F, we have also:

S Y whaw <2t Y Y Weaw (4)

u€Fy acFy ueFP \| acFy

with equality if and only if F' is plateaued.
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The characterization by the equality in (2) is a particular case of the result
of [24] mentioned in introduction. The work in [24] and the present work have
been done independently.

4 Characterizations of the APN-ness of Componentwise
Plateaued Vectorial Functions

If a function F' is quadratic, then given a # 0, the property that all equations
F(z) + F(z + a) = v have at most 2 solutions is equivalent to the fact that
the single homogeneous linear equation F(z) + F(x + a) = F(0) + F'(a) has 2
solutions. This is the main reason why many recent results of constructions of
APN functions [4,6,7,8,9,18,27,28] produce quadratic functions. Unfortunately,
quadratic functions are hardly usable as S-boxes [22,21]. Thanks to the results of
the previous section, we shall show that the nice property of quadratic functions
recalled above, and other properties as well, can be extended to all plateaued
functions.

4.1 Characterization by the Derivatives

An (n,n)-function F is APN if and only if, for every Fa-linearly independent a, b,
the equation D, DpF(x) = F(z)+ F(z+a)+ F(x+b)+ F(z+a+b) =0 has no
solution z. If F' is plateaued, then according to Theorem 1, it is APN if and only
if, for every Fa-linearly independent a, b, we have F(0)+ F(a)+ F(b)+ F(a+b) #
0. Then:

Theorem 4. Any plateaued (n,n) functwn F is APN if and only if, for every
a # 0 in FY, the equation F(x) + F(z + a) = F(0) + F(a) has the 2 solutions 0
and a only.

4.2 Characterization by the Walsh Transform

In the next proposition, we assume that F'(0) = 0, with no loss of generality.
Proposition 2. Let F' be any plateaued (n,n)-function. Assume that F'(0) = 0.
Then F is APN if and only if the set {(x,b) € F2. | F(2) + F(z +b) + F(b) = 0}
has size 3 - 2" — 2. Equivalently:

S W=y
a€Fon ,u€Fy, u#0

This necessary and sufficient condition was known until now only for quadratic
functions, see [14] (of course, it was also known as a necessary condition for
functions of unrestricted degree).

Proposition 3. Let F be any (n,n)-function. Then F is APN and plateaued if
and only if the Walsh transform of F satisfies:

3.93n _92nt+l _ Z Z Wg(a, u)’

u€eFy \| acF2



70 C. Carlet

or equivalently

2Pt =Y [y Wia,u), ()
wer |\l a€Fy
w0
We give now a result which is new, even for quadratic functions, as far as
we know. It depends on the amplitude of each component function, but has the
interest of leading to a characterization involving a sum of squares of the Walsh
values instead of sums of larger degrees as above.

Proposition 4. Let F be a plateaued (n,n)-function. For every u, let 2™« be
the amplitude of u - F. Then F' is APN if and only if:

Z 22)\u S 2n+1(2n _ 1)’ (6)

u€FY , u#0

or equivalently if, for every function ¥ : F} — FZ, we have:

Y. Wi(w),u) <2741 (2" —1). (7)

u€FY u#0
Inequality (6), and Inequality (7) for some v, are then equalities.

Remark 1. As already recalled in introduction, it is known that for n odd, if F'
is APN and is plateaued, then F' is AB (see e.g. [14]). Proposition 4 gives a new
way of proving this result: we know that for n odd we have 2\, > n+1 and (6)
implies that 2\, = n + 1 for every u # 0. This proves that F' is AB. ]

4.3 The Case of Unbalanced Component Functions

In the case that all component functions of a plateaued (n,n)-function F are un-
balanced, we have simpler and more efficient characterizations of its APN-ness.
From Theorem 2 and from the observation that if a and b are Fo-linearly depen-
dent, then we have D,DyF(z) = 0, we directly deduce the following theorem:

Theorem 5. Let F' be any plateaued (n,n)-function having all its component
functions unbalanced, then

{(a.b) € (F3)*,a # b; Fla) = Fb)}] 2 2- (2" 1),

with equality if and only if F' is APN.

Remark 2. Theorem 2 and Theorem 5 show that any APN function having all
its component functions unbalanced is plateaued with single amplitude if and
only if it is AB, and then n must be odd (note that this generalizes up to
EA-equivalence). Indeed, the condition is clearly necessary and, according to
these theorems, it is also sufficient because the size of {(a,b) € (F%)?; F(a) +

F(b) = v} equals then 22"_2;,73'1(2"_1) = 2" — 2 for every v # 0, that is,
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|{(a,b) € (F})?; DoDyF(x) = v}| equals 2" — 2, and this is equivalent to F' AB.
But in fact this result is true without the hypothesis that all component functions
are unbalanced. In odd dimension (i.e. for n odd), we have already recalled that
this is well-known. In even dimension, it is proved in [14] that for a plateaued
APN function, at least two third of the component functions are bent; therefore,
if F' is plateaued with single amplitude, it is necessarily bent, a contradiction
with Nyberg’s result that bent (n,n)-functions cannot exist.

Remark 3. In the framework of Theorem 5, the number
Nbp = |{(a,b) € (F§)?,a # b; F(a) = F(b)}]

is minimal for an APN function. In such case, since Nbp = Zaeﬂ“g'a;ﬁO |(DoF)~!

(0)| and each set (D, F)~1(0) has size at most 2, each such set has size exactly
2. Such function F' with the property that there exist exactly 2 solutions of
the equation F(z) + F(x + a) = 0, for every a # 0, is called zero-difference
2-balanced, see [20]. It is proved in [18] that every quadratic zero-difference 2-
balanced function is APN. With Theorem 5, we extend this result from the class
of quadratic functions to the larger class of plateaued functions (and we also
have its converse). O

Theorem 5 may also lead to a way of constructing new APN functions from
known ones, thanks to the following:

Corollary 4. Let F be any plateaued APN (n,n)-function having all its com-
ponent functions unbalanced. Let m be a permutation of Fy and G a function
injective on the image set F(Fy) = {F(x),z € F3} of F. Then if Go Fox is
plateaued, G o F'or is APN. Moreover, if G is identity, F' and F o have same
extended Walsh spectrum.

A case of application in which G is identity and for which we can characterize
the fact that F o 7 is plateaued is by taking for F' a Gold function (see [15]):

Corollary 5. Let n be an even positive integer. Let d = 28 + 1, (i,n) = 1. Let
7 be the compositional inverse of a quadratic permutation Q of Fon. For every
b € Fan, let us denote by Ly, the linear (n,n)-function such that tr,[(bQ(x +
y) + bQ(x) + bQ(y) + bQ(0)] = try[Lp(z)y] and by E,p the vector subspace
{x € Fon |uz® + (ux)>" " 4 Ly(x) = 0} of Fon. Then:

1. Function F(x) = (7(z))? is plateaued if and only if, for every u € F., the
dimension of E,p is the same for all b’s such that function tro(uz? 1 4+
bQ(x)) is constant on Ey p;

2. If this condition is satisfied, then F is APN.

Dobbertin proved that if F'is a power APN function in even dimension then it
is 3-to-1 over 5, (see his proof reported in [14]) and ged(d, 2™ —1) = 3. Theorem
5 allows proving the converse for any plateaued power function:
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Corollary 6. Let n be even and F(z) = x? be any plateaued power function.
Then F is APN if and only if ged(d,2™ — 1) = 3.

This applies to the Kasami functions for n even.

Question: Does there exist, for any APN plateaued function F, a linear function
L such that F'+ L has unbalanced components?
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Abstract. Smart cards have been considered for a long time as a secure
container for storing secret data and executing programs that manipulate
them without leaking any information. In the last decade, a new form
of attack that uses the hardware has been intensively studied. We have
proposed in the past to pay attention also to easier attacks that use only
software. We demonstrated through several proof of concepts that such
an approach should be a threat under some hypotheses. We have been
able to execute self-modifying code, return address programming and so
on. More recently we have been able to retrieve secret keys belonging
to another application. Then all the already published attacks should
have been a threat but the industry increased the counter measures to
mitigate for each of the published attack. In such a sensitive domain, we
always submit the attacks to the industrial partners but also national
agencies before publishing any attack. Within such an approach, they
have been able to patch their system before any vulnerabilities should
be exploited.

Keywords: Smart Card - Attacks - Ethical Process

1 Introduction

Java Card is a kind of smart card that implements one of the two editions,
“Classic Edition” or “Connected Edition”, of the standard Java Card 3.0 [12].
Such a smart card embeds a virtual machine which interprets codes already
romized with the operating system or downloaded after issuance. Due to security
reasons, the ability to download code into the card is controlled by a protocol
defined by Global Platform [7]. This protocol ensures that the owner of the code
has the necessary authorization to perform the action. Java Card is an open
platform for smart cards, i.e. able of loading and executing new applications
after issuance. Thus, different applications from different providers run in the
same smart card. Thanks to type verification, byte codes delivered by the Java
compiler and the converter (in charge of giving a compact representation of class
files) are safe, i.e. the loaded application is not hostile to other applications in
the Java Card. Furthermore, the Java Card firewall checks permissions between
applications in the card, enforcing isolation between them.
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Java Cards have shown an improved robustness compared to native applica-
tions regarding many attacks. They are designed to resist to numerous attacks
using both physical and logical techniques. Currently, the most powerful attacks
are hardware based attacks and particularly fault attacks. A fault attack modifies
parts of memory content or signal on internal bus and lead to deviant behavior
exploitable by an attacker. A comprehensive consequence of such attacks can
be found in [11]. Although fault attacks have been mainly used in the literature
from a cryptanalytic point of view (see [1,9,13]), they can be applied to every
code layers embedded in a device. For instance, while choosing the exact byte of
a program the attacker can bypass counter-measures or logical tests.

The design of a Java Card virtual machine cannot rely on the environmental
hypotheses of Java. In fact, physical attacks have never been taken into account
during the design of the Java platform. To fill this gap, card designers developed
an interpreter which relies on the principle that once the application has been
linked to the card, it will not be modifiable again. The trade-off is between
a highly defensive virtual machine which will be too slow to operate and an
offensive interpreter that will expose too much vulnerabilities. The know-how of
a smart card design is in the choice of a set of minimal counter-measures with
high fault coverage.

Nevertheless some attacks have been successful in retrieving secret data from
the card. Thus we will present here a survey of different approaches to get ac-
cess to data, which should bypass Java security components. The aim of an
attacker is to generate malicious applications which can bypass firewall restric-
tions and modify other applications, even if they do not belong to the same
security package. Several papers were published and they differ essentially on
the hypotheses of the platform vulnerabilities. After a brief presentation of the
Java Card platform and its security functions, we will present attacks based on a
faulty implementation of the transaction, due to ambiguities in the specification.
Then we will describe the flaws that can be exploited with an ill-typed applet
and we will finish with hostile applet that gain privilege to access the physical
processor leading to the dump of the operating system and the crypto API.

2 Smart Card Security

Smart cards security depends on the underlying hardware and the embedded
software. Embedded sensors (light sensors, heat sensors, voltage sensors, etc.)
protect the card from physical attacks. While the card detects such an attack, it
has the possibility to erase quickly the content of the EEPROM preserving the
confidentiality of secret data or blocking definitely the card (Card is mute). In
addition to the hardware protection, softwares are designed to securely ensure
that application are syntactically and semantically correct before installation
and also sometimes during execution. They also manage sensitive information
and ensure that the current operation is authorized before executing it. The
Byte Code Verifier guarantees type correctness of code, which in turn guaran-
tees the Java properties regarding memory access. For example, it is impossible
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in Java to perform arithmetic on reference. Thus, it must be proved that the
two elements on top of the stack are of primitive types before performing any
arithmetic operation. On the Java platform, byte code verification is invoked
at load time by the loader. Due to the fact that Java Card does not support
dynamic class loading, byte code verification is performed at installation time
i.e. before loading the Card APplet (CAP) onto the card. However, most of the
Java Card smart cards do not have an on-card BCV as it is quite expensive in
terms of memory consumption. Thus, a trusted third party performs an off-card
byte code verification and sign it, and on card its digital signature is checked.

Moreover, the Firewall performs checks at runtime to prevent applets from
accessing (reading or writing) data of other applets. When an applet is created,
the system uses a unique applet identifier (AID) from which it is possible to
retrieve the name of the package in which it is defined. If two applets are in-
stances of classes coming from the same Java Card package, they are considered
belonging to the same context. The firewall isolates the contexts in such a way
that a method executing in one context cannot access any attribute or method
of objects belonging to another context unless it explicitly exposes functionality
via a Shareable Interface Object.

Smart card security is a complex problem with different points of view but
products based on Java Card Virtual Machine (JCVM) have passed success-
fully real-world security evaluations for major industries around the world. It
is also the platform that has passed high level security evaluations for issuance
by banking associations and by leading government authorities, they have also
achieved compliance with FIPS 140-1 certification scheme. Nevertheless imple-
mentations have suffered severals attacks either hardware or software based.
Some of them succeeded into getting access to the EEPROM (code of the down-
loaded applets) but as far as we know nobody succeeded into reversing the code
i.e. having access to the code of the virtual machine, the operating system and
the cryptographic algorithm implementations. These latter are protected by the
interpretation layer which denies access to other memories than the EEPROM.

3 Some Software Attacks Again Java Card

3.1 Ambiguity in the Specification: The Type Confusion

Erik Poll made a presentation at CARDIS’08 about attacks on smart cards.
In his paper [10], he did a quick overview of the classical attacks available on
smart cards and gave some counter-measures. He explained the different kinds
of attacks and the associated counter-measures. He described four methods (1)
CAP file manipulation, (2) Fault injection, (3) Shareable interfaces mechanisms
abuse and (4) Transaction Mechanisms abuse.

He proposed a new way to abuse the Transaction mechanism (4). The pur-
pose of transaction is to make a group of operations becomes atomic. Of course,
it is a widely used concept, like in databases, but still hard to implement. By
definition, the rollback mechanism should also deallocate any objects allocated
during an aborted transaction, and reset references to such objects to null.
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However, Erik Poll find some strange cases where the card keep the references
of objects allocated during transaction even after a roll back.

If he can get the same behavior, it should be easy to get and exploit type
confusion. A first example is to get two arrays of different types, for example a
byte and a short array. One of them is a field (permanent storage) the second is a
local variable. While aborting the transaction, the permanent reference must be
nullified. But the specification do not explain what to do with local variables if
they reference also a permanent object. Poll discovered that some cards cleared
all the references while other let dangling pointers. In such a case reallocating the
memory will let the dangling pointer referencing another object of potentially
another type. If he declares a byte array of 10 bytes, and he has another reference
as a short array, he will be able to read 10 shorts, so 20 bytes. With this method
he can read the 10 bytes saved after the array. If he increases the size of the
array, he can read as much memory as he wants. The main problem is more how
to read memory before the array. The other confusion he used is an array of
bytes and an object. If he puts a byte as first object attribute, it is bound to the
array length. It is then really easy to change the length of the array using the
reference to the object.

3.2 Weakness in the Linker Process

The Java Card Specification defines the linking step done during the loading of
CAP file. When the software is downloading in the card, the Java Card Virtual
Machine provides a way to link, the CAP file to install, with the installed Java
Card API. This step is done thanks to a tokens link resolution references in
the Constant Pool component. To friendly find where each token is used, the
Reference Location component keeps a list of offsets, in the Method Compo-
nent. So, in this loading step, the JCVM translates, with the help of the Constant
Pool component and the Reference Location component, each reference to
methods or fields use in the CAP file. To abuse the linking mechanism [14], [§]
we modify the token following any natural instructions, as invokestatic, which
are following by a token. If the card have not any BCV component, a modifica-
tion may push the linked reference on the stack and returned at the end of the
current function.

Using this approach we are able to use the on board linker to generate the
correct information, to store it on top of the stack and to send it back to the
reader. Thanks to this information leakage we are able to obtain all the linked
address of the Java Card API for a given card. For retrieving one address we
need to build one CAP file. Retrieving the complete API, need to generate 98
test cases for the methods of the classes and 60 test cases for the interfaces. All
the test cases are valid whatever the card is tested. It means that the effort to
design the test cases for retrieving the addresses will be reusable on all the cards.
This attack is completely generic and independent of the platform.
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3.3 Dumping the EEPROM

As said previously, the verifier must check several points. In particular: there are
no violations of memory management and any stack underflow or overflow. This
means that these checks are potentially not verified during run time and then
can lead to vulnerabilities. The Java frame is a non persistent data structure but
can be implemented in different manners and the specification gives no design
direction for it. Getting access to the RAM provides information of other objects
like the APDU buffer, return address of a method and so on. So, changing the
return of a local address modifies the control flow of the call graph and returns
it to a specific address.

The EMAN2 attack [3] allows to modify the value of the return address of
a method by storing a short into a local. By choosing the right value for the
local number we overwrite the return address. In a given card the return address
register is stored at MAX LOCAL + 2. The value stored in this register will
be the address where Java PC will be updated while returning from the current
method. We just need to define a static array which is stored close to the method
area. Then after returning from the method, the JCVM will execute the content
of the array. Due to the fact that getstatic and putstatic are not checked by
the firewall, we can read the content of the memory. The shell code is presented
in Listing 1.1.

Listing 1.1. Executing the basic shell code

7C 01 00 getStatic 0x0100
78 sreturn

This code puts on top of the stack, the content of the memory at the address
0x0100 and returns this value. The caller has just to store it into the APDU
buffer and the value is send to the terminal. Then, the third byte of the static
array must be incremented and the next call will return the value of the address
0x0101. We just need to manage the carry from the low byte to the high byte
representing the address. Another way to update the return address is the sinc
instruction. The sinc instruction aims to increase a local short variable by a
constant value given in its parameter.

Recently, Faugeron [6] presented a way to fool the Java Card runtime based
on the dup x instruction. This instruction duplicates the top of operands stack
words and inserts them below. This instruction takes two parameters encoded
on 1-byte where the high nibble describes the number of words to duplicate and
the low nibble defines where the duplicated words are placed. Since the Java
Card operands stack does not contain enough elements, the runtime uses the
system data as words for the dup x instruction. Thus, an attacker can shift the
value of the frame header by a custom words pushed on the stack.

3.4 Dumping the ROM

In [4] we demonstrated the ability to dump the content of the ROM and thus
to get access to the implementation of the cryptographic functions. We used
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several weaknesses. During the analysis of EEPROM dump corresponding to a
linked applets into the smart card memory, a method with an abnormal call has
been noticed at the address 0xDBE6. This address corresponds to another EEP-
ROM address and not a ROM address. At that address we found a table which
corresponded to non standard method headers. The JCVM Specification [12]
defines a method as a method header info, described in the listing 1.2, and its
associated byte code.

Listing 1.2. Java Card Method Header Info

method header info {
ul bitfield {
bit [4] flags // a mask of modifiers defined for the method
bit [4] max stack // max cells required during execution of
// the method

ul bitfield {
bit [4] nargs // number of parameters passed to the method
bit [4] max locals // number of local variables declared
// by the method

For the flag value, three defined possibilities are expected:

0x0: it is a normal method;

— 0x8 (ACC EXTENDED): the method represents an extended method;
— 0x4 (ACC ABSTRACT): the method represents an abstract method;
All other flag values are reserved.

Each methods of the table contains a non standardized flag value (i.e. : 2).
Moreover, the associated byte code (1-byte) cannot be an instruction. On the
other side, we also also have a set of interesting values in the EEPROM. We
assumed that all these values are addresses that refer to the ROM, except one
which refers to the EEPROM. To prove our hypothesis we checked the data
contained at the address corresponds to a 8051 assembler language which corre-
sponds to the native code for the targeted card. We reversed the code in order
to verify the calling convention of this native Java Interface.

To exploit this weakness, we added to the method table a fake method (a
method with a flag value equals to 2) contains an offset to an address in the in-
direction table. Each element in the indirection table refers to a native function.
At this offset we put the address of our shellcode. Without integrity check, the
Java Card Runtime execute the malicious code. Finally, to execute the native
shell code the parameter of an invokestatic instruction, or another kind of
call instruction should be changed by the address of our fake method. Thus,
the faulty instruction provides a way to execute any shell code with native priv-
ilege. With this shell code, we have been able to do a memory dump of the
ROM code. Examining carefully the code we discovered the cryptographic code
corresponding to the embedded algorithms within this specific card.
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3.5 A Complete Methodology to Attack Smart Card

In his PhD, Bouffard [2] applied the Attack Tree Analysis (ATA) to have a global
view on the vulnerability of the smart card. Attack trees have been introduced
by Schneier in[15], they represent a convenient approach to analyze the different
ways in which a system can be attacked. It is an analytical technique (top-down)
where an undesirable event is defined and the system is then analyzed to find the
combinations of basic events that could lead to the undesirable event. Such an
analysis is closed to the risk analysis community with the cause-effect diagrams.
An attack tree is a tree in which the nodes represent attacks. The root node of
the tree is the property that an attacker wants to break. Children of a node are
refinements of this goal, and leafs therefore represent initial causes. An attack
tree is not a model of all possible combination but a restricted set. It is related to
the property evaluated. In this case, code integrity is the most sensible property
because if not guaranteed, it enables the attacker to execute any arbitrary code.

The property we want to protect is the integrity of the code which can be
violated by a Control Flow Transfer (CFT) attack. So one of the events which can
transgress this property is the CFT attack which becomes the root of the subtree
of the code integrity ATA. Until now, the control flow attack instance was only
the EMAN2 attack. To mitigate such an attack, it was only required to either
check at runtime the locals, pass the BCV or enable a frame integrity check. Such
leaf requires to check the underflow of the stack on some instructions. Some of
the cards now implement a frame integrity that disallows to arbitrary write into
the frame. One can remark that the Frame Integrity detection mechanism covers
both EMAN2 and Faugeron’s attack, while the Check of Local Variables covers
only the EMAN2.

CFT atiack
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Fig. 1. Attack Tree

To succeed, detection event and mitigation event must be inhibited with a not
gate. In this figure a nand gate plays this role. The CFT attack represented in
Figure 1 will succeed if the adequate ill formed CAP is loaded and no integrity
check or no local variable check are present on the card and the BCV is bypassed.
When the event is detected, then the card is muted and the attack is stopped.
We use this methodology to provide a clear overview on how different events can
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be combined to set up attacks that can break the integrity of the code. We do
not pay attention here on the valuation of the effort of the attacker but on the
efficiency of a counter measure. The minimal cut of an ATA defines the minimal
sets of basic events determining an attack scenario. Closer to the root is the
detection event or the mitigation event better is the coverage.

4 Conclusion and Future Works

We have presented here a set of attacks concerning the smart card world an in
particular the Java Card domain. The abality to download application from an
untrusted environment open the possibility to characterize the content of the
smart card. In particular it allows the attacker to recover code from application
(EEPROM) or from the system (ROM) but also to recover some of the data that
do not belong him. integrity and confidentiality can be broken just using the
techniques used in main stream IT programming. We proposed a methodology
based on attack trees to model the knowledge of the attacker. By defining a
minimal cut in such a tree, we define the scenario that could lead to the attack.
Such a tree can also be used as a defensive means by defining close to the root the
adequate counter measure. This optimize the coverage and thus the efficiency of
the defense.
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Abstract. This talk is an overview of codes that are defined as modules
over skew polynomial rings. These codes can be seen as a generalization
of cyclic codes or more generally polynominal codes to a non commu-
tative polynomial ring. Most properties of classical cyclic codes can be
generalized to this new setting and self-dual codes can be easily identi-
fied. Those rings are no longer unique factorization rings, therefore there
are many factors of X" — 1, each generating a “skew cyclic code”. In
previous works many new codes and new self-dual codes with a better
distance than existing codes have been found. Recently cyclic and skew-
cyclic codes over rings have been extensively studied in order to obtain
codes over subfields (or subrings) under mapping with good properties.

In order to generalize cyclic codes (or more generally polynomial codes) we use
a well known construction of a non commutative polynomial ring. Starting from
the finite Ring A and an automorphism 6 of A, we define a ring structure on the set

AX;0] = {an X"+ ... +a1 X +aola; € Aand n € N}.

The addition in A[X; 0] is defined to be the usual addition of polynomials and
the multiplication is defined by the basic rule X - a = 0(a) X (a € A) and
extended to all elements of A[X; 6] by associativity and distributivity. With this
two operations A[X; 0] is a ring known as skew polynomial ring or Ore ring.
If the leading coefficient of g € A[X;6)] is invertible, then for any f € A[X;0]
there exists a unique decomposition f = gg + r.

Definition 1. [2—/] Let A be a ring, 0 an automorphism of A and f € A[X;0)]
be of degree n. A principal module 0-code C is a left A[X;0]-submodule

A[X;01g/A[X;01f C AIX; 0] /A[X;01f

in the basis 1, X, ..., X"~ where g is a monic right divisor of f in A[X;60]. The
length of the code is n = deg(f) and its dimension is k = deg(f) — deg(g), we
say that the code C is of type [n,k]. If the minimal Hamming distance of the
code is d, then we say that the code C is of type [n,k,d]a. We denote this code
C=(9)n,0-

If there exists an a € A* such that g divides X™ — a on the right then the code
(9)n,0 is O-constacyclic. We will denote it (g);, o If a = 1, the code is O-cyclic
and if a = —1, it is 6-negacyclic.
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Note that a submodule A[X;0]g/A[X;0]f C A[X;0]/A[X;0]f where g is not
monic will in general not be a free A[X;6]-module.

For a principal module 0-constacyclic of length n over a ring A generated by
a right divisor (g)n,g« of X™ —a € A[X; 0] , we have

(o, en1) € (9" = (a-0(cn-1),0(c0), ..., 0(cn—2)) € (9)7"-

When 6 is the identity and @ = 1 we obtain the classical cyclic codes, showing
that principal module #-cyclic codes are a natural generalization of cyclic codes.
However, if 6 is not the identity or if A is not a domain, then the ring A[X; 0] is
not a unique factorization domain, leading to many right divisors of X™ £ 1.

Example 1. The field A = F52 of order 25 has two automorphisms: the identity
and the frobenius automorphisms o : y — 3°. This leads to two skew polynomial
rings, the standard commutative polynomial ring Fs2[X;id] = Fs2[X] and the
non commutative skew polynomial ring F2[X; 6].

Table 1. Number of factors of X" + 1 € F52[X; 0] of degree n/2

n=2n=4n=6n=238
0=id 2 6 20 6
=0 6 38 156 678

Ezample 2. The automorphism group of the ring A = Fs[z]/(2?) of order 25
is isomorphic to the cyclic group Cy of order 4 generated by . This leads to
4 skew polynomial rings, one of which is the standard commutative polynomial
ring corresponding to the identity.

Table 2. Number of factors of X" 4+ 1 € F5[Y]/(Y?)[X; 6] of degree n/2

n=2n=4n=6n=238
=id 2 2 4 2
=+% 10 2 500

Il
2
o
ot
=)
~
SN

Definition 2. (¢f. [5]) Let A be a commutative ring. The skew reciprocal
polynomial of h = Y1  h; X' € A[X;0] of degree m is

m

h* = zm:Xm*i chi =)0 (hmi) X°.
i=0 =0

*

The left monic skew reciprocal polynomial of h is h% := (1/0™(hg)) - h*.



Extended Abstract: Codes as Modules over Skew Polynomial Rings 85

When @ is the identity we obtain again the classical reciprocal polynomial. Since
0 is an automorphism, the map *: A[X;0] — A[X;0] given by h — h* is a
bijection. In particular for any g € A[X;6] there exists a unique h € A[X;0]
such that ¢ = h* and, if ¢ is monic, such that g = h%.

Corollary 1. (cf. [5]) Let A be a commutative ring. A module 0-code (g)5, with
g € A[X; 0] of degree k is self-dual if and only if there exists h € A[X;0] such
that g = h® and h*h = X?* — ¢ withe € {—1,1}.

Table 3. Number of generators of self dual codes g € F52[X; 6] of degree |

n=2n=4n=6n=238
f=id 2 4 8 4
=0 2 8 12 28

Example 3. For Fo5 = Fs5(a) where o + 4a + 2 = 0 the polynomial X* +
a¥X3 +a?X? + aX 4+ a'6 € Fos[X, 0] is a right factor of X8 + 1 € Fos[X, 0]
and generates a self-dual code C over Fa5. For the Fs-basis (a®,a”) of Fsz, the
mapping @ : (Fa5)" — (F5)?" given by

5 7 5 7
(apa® + boa’, ... an—10° + by—1a”) = (ao,bo, - ..y an-1,bn-1)

has the property that a self dual code over Fsy5 is mapped to a self-dual over
F5 (cf. [7]). Under this map the code C' is mapped to an optimal self-dual code
&(C) over F5 with minimal distance 7 and whose generating matrix is

4321012310000000
3014123301000000
0002442432100000
0024424022010000
0000432101231000
0000301412330100
0000000244243210
0000002442402201

The best cyclic code (over the classical commutative polynomial ring) is of min-
imal distance 4

Ezample 4. The polynomial X2+ 22X + 3 € (Fs[z]/(2?))[X, ] is a right factor
of X*+1 € (Fs[z]/(2?))[X,7] and generates a self-dual code C over Fs[z]/(z?).
For the Fs-basis (z+2, 1) of F5[z]/(2?), the mapping @ : (Fs[z]/(z%))" — (F5)?"
given by

(ao(l' -+ 2) + bo, . .. ,an,1(1' + 2) + bnfl) — (a(),b(), . ,anfl,bnfl)
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Table 4. Number of generators of self dual codes g € F5[Y]/(Y?)[X; 6] of degree 7

n=2n=4n=6n=238
=id 2 2 4 2
0=~ 2 2 20 2
0=~ 2 6 4 2
=~ 2 6 4 2

has the property that a self dual code over Fy5 is mapped to a self-dual over
F5 (cf. [7]). Under this map the code C' is mapped to an optimal self-dual code
&(C) over F5 with minimal distance 4 and whose generating matrix is

30421000
03210100
00303410
00034201

The best cyclic code (over the classical commutative polynomial ring) is of min-
imal distance 2

Recently mapping of skew cyclic codes have received some attention [2, 1, 6, §].
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Abstract. This paper proposes a new quasi-involutive lightweight de-
sign called CUBE cipher family. The design has been carefully chosen to
be easily masked. The basic building block is a cube of size n X n X n on
which are applied SPN transformations followed by a cube mapping.

We analyze the proposals from a security point of view and provide a
full hardware implementation analysis.

Keywords: Involutive lightweight block cipher - Boolean masking -
Design

Introduction

During the last decade, a part of the symmetric cryptographic community has
focused its efforts on designing new lightweight primitives to fit with the hard-
ware requirements of RFID tags. Among those primitives, we could cite some
lightweight block ciphers: PRESENT [6], LED [15] or PRINCE [7] that are SPNs
and TWINE [23], LBlock [24], SIMON [1] or Piccolo [22] that are Feistel-based
constructions. More recently, some researchers try to add to these requirements
one more constraint leading to build lightweight block ciphers that are by design
easy to mask. In this last category, we could cite PICARO [20], Zorro [12] or
Fantomas and Robin [13].

The aim of this paper is to bring grist to the mill in this research direction.
Thus, we present a new family of lightweight block cipher called CUBE that is
easy to mask. Moreover, the proposed family is built on a cube representation
and is quasi-involutive to limit the hardware footprint required for encryption
and decryption processes. The family is an SPN based framework where each
component is involutive. Moreover, the presented family is generic in the sense
that several possible plaintext sizes are proposed and that two particular cube
mappings are investigated.

This work was partially supported by the French National Agency of Research: ANR-
11-INS-011.
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This paper is organized as follows: Sect. 1 describes the specifications of CUBE
cipher families. Sect. 2 explains our design choices for those ciphers. In Sect. 3,
we discuss their security while Sect. 4 deals with the hardware implementation
results. Sect. 5 concludes this paper.

1 Specifications

The CUBE block cipher family is mainly a 3D view of a bit string of length n?
dedicated to hardware applications. We will instantiate two different variants of
the CUBE cipher family (called CUBEAES and CUBE) for the different n value
n =4, n =25 and n = 6 focusing more particularly on the case n = 4 whereas
the other instantiations are given in App. A.

The plaintext is seen as a CUBE of size nxnxn as shown on Fig. 1. The CUBE
is fulfilled beginning with its least significant bit at position (0,0, 0) according
the reference (X,Y, Z), then the bits are written plane by plane (the first one is
(0,Y, Z)) until the most significant bit fills the position (n —1,n —1,n — 1).

i R S Reference

-

f f T 107 Z

| | | )/\\
I T A Y

| | I 1711
I A A B ¢

| | | 1 1

| | \f‘** | X
- — 77‘77f-‘.

i |
| | |1ﬁ<t‘
Il Il 17

Fig. 1. Block representation

Then the CUBE block cipher family iterates the following round function on r
rounds (the r value of course depends on n). The i-th round function is composed
of the following quasi-involutive operations:

— KeyAdd: A subkey addition with the subkey K.

— SbLayer: A layer of involutive S-boxes that applies n x n a single involutive
S-box on input/output of size n bits in the direction indicated in the left
part of Fig. 2. We choose particular involutive S-boxes that are easy to mask
as explained in Section 2.

— MDSLayer: On each plane (0,Y,72), (1,Y,Z2), (2,Y,Z) and (3,Y, Z), apply
a quasi-involutive Feistel-MDS transformation on n words of size n bits as
shown on the right part of Fig. 2. A quasi-involutive Feistel-MDS transforma-
tion, as introduced in [21], is a linear transformation that after n iterations
gives an MDS code.

— Permutation: we define two different permutations to apply to the cube for
the two families of block ciphers.
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e For the CUBEAES family, PermAES rotates by 90° the reference (X, Y, Z)

as shown on Fig. 3.
e For the CUBE family, Perm rotates the axes (X,Y,Z7) as (Z,X,Y) as

shown on Fig. 4.
A last KeyAdd operation with the subkey K, is added at the end of the r rounds.

8-box

Fig. 2. The SbLayer on the left and the MDSLayer on the right

Pelg\ES A I«
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Fig. 3. The PermAES transformation

Fig. 4. The Perm transformation

1.1 Key Schedule

We define two possible key sizes for the master key K: n® bits or 2 x n3 bits.
For a key of length n?, the subkeys are computed as Ko = K and K;;1 =
KA® (i+1) fori=0,---,(r —1) where A is an invertible matrix of linear
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diffusion using a Feistel structure that will be detailed latter. The counter (i +1)
is added to the least significant bits.

For a key of length 2 x n3, the subkeys are computed as K = K;||Ky and
K; + K;®1 where || denotes the concatenation and K;y2  K; 11 A®K;®(i+2)
for i =0,---,(r —2) where A is always an invertible matrix of linear diffusion.
The counter (i 4 2) is added to the least significant bits.

The size and the word size on which acts the matrix A depend on the value of
n. For n = 4, we choose a matrix of size 8 x 8 that acts on bytes (see Subsection
1.2 for a complete instantiation of A). For n = 5, we choose a matrix of size
5 x 5 that acts on 25-bit words (see App. A for further details). For n = 6, we
choose a matrix of size 12 x 12 that acts on 18-bit words (see App. A for further
details).

1.2 Instantiations

In this subsection, we completely instantiated our 2 lightweight block ciphers
CUBEAES and CUBE with the following parameters: n = 4, the cube is a 64-
bit block, the key length is equal to 2 x n® = 128 bits. So the details of the four
transformations composing a round are the following ones:

e KeyAdd: A subkey addition with the subkey K; of length 64 bits.

e SbLayer: The chosen involutive S-box is the Noekeon one and acts at nibble
level in the X direction applying 16 times the S-box. The S-box is given in
Table 1.

Table 1. S-box in hexadecimal notation

r 0123456789ABCDEF
S(z) TA2C48F0591 E3DBG6

e MDSLayer: The quasi-involutive MDS matrix M of size 4 x 4 acts on the
Field F16 = Fo[X]/(X* 4+ X + 1) with a a root of X* + X + 1. M is obtained as
4 iterations of the so-called “Generalized Feistel” D matrix that acts on nibbles
(see Fig. 5). The circuit of D is also given in Fig. 5.

T3 T2 1 Zo
d o13 ‘
0a10 %3@
|1 a 01 4
D= 1000 and M = D
0100
3 h 1 o

Fig. 5. On the left, the D matrix. On the right, the scheme of the D matrix. x3,--- ,zo
and %, -,z are nibbles.
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In this case, the multiplications by a and a'? are given by the following binary

0100 1011

. 0010 1001
matrices: M, = 0001 and M5 = 1000 Iy = (yo,v1,v2,y3)T and

1100 0100

x = (20,21, T2, x3)T are the binary representations of two nibbles then the binary
matrix multiplications are y = M,z and y = M 3.

e Permutation: CUBEAES uses the permutation PermAES. CUBE uses the
Perm permutation.

The number of rounds is equal for the two instances to 15. Those 15 rounds
are followed by a final key addition with the 64-bit subkey Kj5.

The key schedule algorithm derives 16 subkeys Ko, --- , K15 of 64 bits from
the master key K of length 128 bits. The key schedule works as described in
Subsection 1.1 for a key of length 2 x n® = 128 bits here. The 8 x 8 matrix A
acts at byte level and is built using the matrix B given with its scheme in Fig.
6 and using the relation A = B3.

07l 0 0000 O X7 X6 x5 T4 T3 T2 1 Zo
00 I 0000 O \ >5
00 0 I000 O <1
B 00 0 0100 O
~ 100 0 0010 O
00k1000I O , , , , / / ’ ’
00 0 0000 I Ty Tg T5 Ty T3 Ta T Lo

I0 0 0000>5

Fig. 6. On the left, the B matrix. On the right, the scheme of the B matrix. z7,--- ,zo
and x%, -,z are bytes.

The parameters for the other possible instantiations with n = 5 and n = 6
are given in App. A.

2 Design Rationale

Cube Structure. In the design of an SPN block cipher, non-linear and linear
layers are successively applied to the current state. In a lightweight block cipher,
the size of the state is generally 64 bits, while in a classical block cipher it is at
least 128 bits.

For efficiency reasons, it is not possible to apply a single non-linear trans-
formation simultaneously on the whole current state. So this state is usually
divided into subblocks, for example in bytes for the AES or in nibbles for many
lightweight block ciphers. So an S-box is applied to each byte or each nibble. The
linear layer must mix the subblocks together in order to diffuse the non-linearity
between the subblocks. One of the most efficient way to optimize the linear layer
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is to use an MDS matrix on subblocks. The MDS property ensures the optimal-
ity of linear and differential branch numbers, i.e. maximize the number of active
S-boxes per round.

However, even if it is easy to construct some MDS matrices with some given
parameters, its use is costly in terms of implementation. Indeed, it is linear on the
size of subblocks, but quadratic on the number of subblocks. A classical tradeoff
consists in choosing a number of subblocks equal to the size of subblocks or half
of this size.

In the context of lightweight block ciphers, this constraint becomes more ac-
curate if we use nibbles as inputs of S-boxes. In this case, the size of the MDS
matrix is limited to 8 subblocks, so the size of the whole state is limited to 16
nibbles, and due to the bound given in [16], it is not possible to find an MDS
code so long. Indeed, the MDS conjecture is the fact that, except for some triv-
ial cases, there is no MDS codes of length greater than g + 1 defined over an
alphabet of size q. In practice, this implies that there is no MDS diffusion matrix
defined over nibbles of size strictly greater than 8.

The idea to use CUBE structure is not new and has been used in KECCAK
[2] and also in the lightweight block cipher PRESENT [6]. Indeed, the structure
of PRESENT could be seen as a cube seen at bit level where the round function
is composed of a call to an S-box layer applied at nibble level and a rotation
of the axes. However, PRESENT has no its own diffusion layer, the diffusion
only comes from the rotation property. As shown in [8,9], this lake of diffusion
layer creates particular statistical properties and “linear hulls” coming from the
direct iterations of linear probabilities. However, this weakness is compensated
by numerous iterations of the round function (31).

So, we decide to keep the cube structure at bit level used in PRESENT because
if the size of the cube is n3, then, we apply S-boxes on n-bit words and we could
find MDS matrices of size n x n that work on n-bit words leading to apply
the classical elementary operations on smaller words and to improve the latency
of our proposals. The benefits of such an approach is preserved as long as the
rotation/permutation layer is sufficiently well chosen to mix together the n-bit
words coming from different planes and to break the internal n-bit word structure
using rotation/permutation at bit level. The idea for CUBEAES is to be able to
choose a rotation/permutation that will preserve the MDS property.

MDS Diffusion in Cube Structure. If the final rotation/permuta-tion is
carefully chosen, the MDS diffusion property between the n-bit words of a plane
becomes a diffusion from the n-bit words of a plane to the set of the planes of
the next round. Indeed, suppose there is one active n-bit word in a given plane,
the MDS property ensures the activation of n n-bit words in this plane. If the
rotation sends each n-bit word in a distinct plane, all the planes will be activated
after the application of the next S-box layer followed by the MDS diffusion.

This is the design choice we have made for the CUBEAES cipher. As it will be
explained in Section 3, the transformation PermAES allows to maximize the num-
ber of active S-boxes per round as done for the AES case, leading to maximize
the differential and the linear branch numbers.
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The other proposal CUBE keeps the original cube permutation used in
PRESENT. CUBE could be then seen as a proof of concept of a PRESENT like
cipher that does not have the “bad PRESENT properties” in terms of “linear hulls”
and “statistical saturations” due to the presence of a full diffusion layer induced by
the MDS multiplication.

Recursive and Quasi-Involutive MDS Linear Parts Using Feistel
Schemes. From an implementation point of view, there are two important lin-
ear operations: the MDS transformation applied just after the S-box layer, and
the matrix multiplication used in the key schedule to derive the round subkeys
from the master key.

We want to keep in mind when designing, two main requirements: a quasi-
involutive structure to minimize the cost of the deciphering process and the
use of elementary operations such as shifts, word rotations,... to minimize the
hardware footprint of the used operations.

As explained in [21,14], MDS diffusion could be performed using an iterative
approach and a kind of generalized Feistel scheme with elementary linear internal
functions. We decide to use this approach that guarantees, due to the recursive
implementation a minimal footprint and also the quasi-involutivity of our scheme
due to the use of Feistel networks that are quasi-involutive scheme, i.e. the only
part which is not involutive is the final permutation of subblocks of each round,
which has a negligible hardware cost when implementing the deciphering process.

The MDS diffusion used in the CUBE cipher family has the same recursive
structure that the one of PHOTON [14]. The only difference is that the D matrix
is not a companion matrix. In practice, this difference reduces by a little the
fan-in of our implementation. It is also up to our knowledge, the first example
of recursive implementation of an MDS matrix which is not derived from a
companion matrix.

Involutive S-box Suitable for Masking. We decide to use involutive S-boxes
to build a complete quasi-involutive cipher. Such a choice leads to make our
cipher quasi-involutive, i.e. the implementation cost for the deciphering process
is really low.

We use the Noekeon S-box for the case n = 4 because this S-box is involutive,
has optimal differential and linear probabilities (respectively equal to 272 and to
271), an algebraic degree equal to 3 and a simple implementation circuit. Indeed,
it is composed of 7 XORs, 2 ANDs and 2 NORs leading to a very compact
hardware implementation. Moreover, this S-box is easy to mask because the
masking cost mainly depends on the number of non-linear operations and we
have 4 non-linear operations. Indeed, a boolean masking is quadratic in the
number of shares for the 4 non linear operations and linear in the number of
shares for the 7 linear operations using the method described in [17].

Key Schedule. Contrary to numerous lightweight block ciphers, we want to
provide a key schedule which guarantees a good mixing between the key bits to
maximize the uncertainty coming from the key at low hardware implementation
cost. Our choice focuses on an algorithm which is, up to an XOR of a round
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counter that prevents slide attacks, linear and involutive. We also want to guar-
antee that each subkey contains the maximal possible master key entropy. In
order to ensure a good diffusion of the master key randomness in any round, we
require that this master key can be recovered from any non necessary consecu-
tive pair of round subkeys in the case of a key of length 2 x n® and from each
round subkey in the case of a master key length equal to n3.

Thus the matrix A defined in Subsection 1.1 follows the previous rules and is
an invertible binary matrix. For efficiency reasons, A is calculated by applying
several iterations of a matrix B which has a Feistel structure. Moreover, in the
different choices of A, we try to privilege matrices that do not act on the same
word length than the round function to try to prevent attacks notably in the
related or in the chosen key settings that exploit this kind of properties.

3 Security Analysis

We focus our security analysis on the two instantiations given above with n = 4,
thus a block size of 64 bits and a key length equal to 128 bits.

Differential / Linear Cryptanalysis. Differential and linear cryptanalysis
(respectively described in [5] and in [19]) are the most famous attacks on block
ciphers. Since their discovery, many works have focused on the ways to pre-
vent them from happening for a given cipher [11]. Usually, designers count the
minimal number of active S-boxes crossed all along the ciphering process by dif-
ferential and linear characteristics denoted here respectively by ASp and ASy.
From those numbers, we could estimate the induced maximal differential/linear
probability depending on the maximal differential/linear probability of the S-box
denoted by DP/LP. Here we have DP = 272 and LP = 27! because our S-box
acts at nibble level.

Moreover, the best differential/linear attack against the cipher has a complex-
ity of about DPA9P (respectively LPA5L) operations. Thus, a cipher is supposed
to be secure against differential/linear cryptanalysis as soon as 1/(DPA5P) (re-
spectively 1/(LPA5L)) is greater than the codebook. In Table 2, we evaluate the
minimal number of active S-boxes up to 10 rounds for our schemes.

Table 2. Minimal number of active S-boxes for every round for CUBEAES and CUBE

Round 1234 5 6 7 8 910 Round 1234 5 6 7 8 910
CUBEAES ASp 15925263034505155 CUBE ASp 1591320212529 3340
ASr 159252630 34 50 51 55 ASr 1591219202428 31 38

As CUBEAES verifies the wide trail strategy conditions, the number of active
S-boxes for both linear and differential behaviors reaches the maximal possible
bounds (25 active S-boxes for 4 rounds). To estimate the number of active S-
boxes for CUBE, we compute the possible differential/linear trails using 24°
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plaintexts and deduce the results for 5 rounds. Then, beyond, we estimate the
corresponding number of active S-boxes by iterating together the different results.
We also test using a branch and bound method that there is no elementary
differential /linear paths with a low weight. This particular property does not
occur for CUBE. We think that this fact comes from the MDS diffusion layer.

Thus, the best differential/linear cryptanalysis that could be mounted against
CUBEAES is on 6 rounds. Beyond this number, the required number of plain-
texts is greater than the entire codebook. For CUBE, the best differential/linear
cryptanalysis could be mounted on 8 rounds.

Impossible Differential Attack. The impossible differential attack is a struc-
tural attack introduced by E. Biham et al. in [4] in 1998. Impossible differen-
tial cryptanalysis, contrary to differential cryptanalysis, exploits differences with
probability 0 at some intermediate state of a cipher. The idea is to test from well
chosen plaintext/ciphertext pairs some keybits and to discard keybits that ver-
ify the impossible path. We found the following impossible differential attacks:
For CUBEAES, as expected and due to the wide trail strategy, we found that
the best impossible differential attack could be mounted on 7 rounds using a 4
rounds impossible differential surrounded by one round at the top and 2 rounds
at the end. For CUBE, the best impossible differential attack we found is on 8
rounds and uses a 5 rounds impossible differential.

Integral Attack. Integral cryptanalysis was first introduced against the Square
block cipher in [10]. In [18], L. Knudsen and D. Wagner analyze integral crypt-
analysis as a dual to differential attacks particularly applicable to block ciphers
with bijective components. A first order integral cryptanalysis considers a par-
ticular collection of m words in the plaintexts and ciphertexts that differ on a
particular word. The aim of this attack is thus to predict the values in the sums
(i.e. the integral) of the chosen words after a certain number of rounds. The
same authors generalize this approach to d-th order integrals: the original set to
consider becomes a set of m? vectors which differ in d components and where
the sum of this set is predictable after a certain number of rounds.

For both ciphers CUBE and CUBEAES, we are able to mount a first order
integral property on 3 rounds saturating one nibble and to mount 4th order
integral property on 4 rounds saturating a plane (i.e. 4 nibbles). We think that
for CUBEAES this 4th order integral property could not be extended at the
beginning due to the MDS property whereas we conjecture that this 4th order
integral could be extended by one round at the beginning in the case of CUBE,
but we could not test it due to the huge induced complexity.

Against CUBEAES, the 4 rounds property could be extended by 2 rounds
at the end guessing 80 subkey bits leading to attack 6 rounds with an overall
complexity of about 27° encryptions. For CUBE, the 5 rounds property could be
extended by the same number of rounds with about the same complexity leading
to an attack on 7 rounds.

Related Key and Chosen Key Attacks. The related key attacks introduced
by E. Biham in [3] in 1993 allow an attacker to know some relations between
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different keys without knowing the keys themselves and to cipher under those
keys some plaintexts. From those pairs of plaintext/ciphertext, the aim of the
attacker is to recover the key. In the related key settings, we first evaluate the
related key pairs that activate the lowest number of S-boxes in the key schedule.

In the case of the CUBE and the CUBEAES cipher families, the best related
key attack allows to gain 2 rounds at the beginning of a classical differential
attack considering a master key pair with a single bit difference placed somewhere
on K. Under those conditions, the difference coming from the subkey addition
with Ky could be canceled using well chosen plaintext pairs, then the subkey
addition with K is for free and K5 adds only one bit difference to state pairs
without difference. Thus, a classical differential attack could be extended by
three rounds at the beginning using a related key attack.

However, to try to improve the number of rounds gained using a related or
a chosen key attack, we have implemented a branch and bound algorithm that
tries to cancel the differences coming from the subkeys using differences coming
from the internal state. We do not find a simple way to cancel these differences.
This is mainly due to the fact that the ciphering process and the key schedule
does not act at the same word size.

Resistance to Side Channel Analysis. As said before, the S-box has been
chosen to offer resistance to side channel analysis at a reasonable cost. Indeed
and using the algorithm proposed in [17], as the cost for boolean masking is
quadratic when considering non linear operations and is linear for the XOR
operation, we have chosen an S-box that is easy to mask when considering 3
shares in the algorithm proposed in [17]. Thus, our block ciphers are resistant
to side channel analysis at low cost.

In summary, we conjecture that there is no attack against 8 rounds of CUBEAES
and against 9 rounds of CUBE in the single key settings more efficient than the
exhaustive key search leaving respectively 7 and 6 rounds of security margin.
We also conjecture that there is no attack against 11 rounds of CUBEAES and
against 12 rounds of CUBE in the related, known and chosen key settings more
efficient than the exhaustive key search leaving respectively 4 and 3 rounds of
security margin.

4 Implementation Aspects

In this Section, we sum up our implementation results concerning CUBE ci-
pher with n = 4 and we compare these results with the implementation of
other lightweight block ciphers using three criteria: area, power consumption
and throughput (or latency). Note that we have only implemented CUBE cipher
because the cost for implementing CUBEAES is about the same (the two ciphers
only differ in the Permutation layer which consists in exchanging bit positions).

The majority of lightweight ciphers has been optimized in priority with chip
area minimization in mind. This metric can be expressed in pum? but this value
is dependent of the used technology and standard cells technology. To ease com-
parisons between implementations, the circuit area is measured in Gate Equiv-
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alences (GEs). A GE is the area of a 2-input NAND gate in the used standard
cell technology. So the area of the circuit expressed in GEs is the surface of the
circuit in ym? divided by the surface of a NAND gate.

Compared to other SPN ciphers like PRESENT, the quasi-involutive structure
of CUBE cipher helps to implement both encryption and decryption modes! with
a reasonable overhead. For example, we can save the implementation of Inverse
S-boxes which can represent hundreds of GEs.

4.1 Theoretical Implementation Results

Basic Components of CUBE Cipher. To implement the confusion effect,
CUBE cipher uses a 4x4 bit S-box which is by far smaller than 8x8 S-boxes
and 6x4 ones. We have chosen the S-box of NOEKEON because it is compact
(around 20 GEs) and it has been shown that it is relatively easy to mask with
three shares at a reasonable cost.

The diffusion effect is made of a bit permutation (which costs no GE) and the
MDSlayer which is area optimized: it only costs 16 2-input XORs per layer, so
16 x 4 = 64 XORs = 144 GEs.

The memory elements (flipflops) used to store the round keys and the cipher
state are the most costly hardware elements to implement, and are those which
consumes the most energy. We need 64 x 5.75 = 368 to store the 64-bit cipher.
For storing the 128-bit key state, we have decided to implement one additional
64 bits register to have an involutive structure, i.e. (1284-64)x5.75 = 1104 GEs.
It requires also 64 2-input XORs to compute round key Ko from K; 1 and K,
so 64 x 2.25 = 144 GEs.

For the Key Schedule, we have chosen to make it simple, but not as simple as
KTANTAN or PRINTcipher to protect it against related key and slide attacks.
To implement such kind of secure Key Schedule, we chose a simple Feistel struc-
ture iterated 3 times per round key that computes only rotations, shifts and 16
2-input XORs per round, i.e. 16 x 3 = 48 XORs = 48 x 2.25 = 108 GEs.

Theoretical Implementation Results. We give hereafter the implementation
results of a round-wise implementation of CUBE cipher. It processes 64 bits of
plaintext with a 128-bit key in 25 clock cycles. Round keys are computed on-the-
fly, in parallel of the cipher state processing. There is no resource sharing between
the cipher state and the Key Schedule processes. The S-box is implemented in a
Look-Up-Table way, so we let the compiler do its own optimizations. Only the
encryption process is implemented.

Theoretically, our CUBE cipher implementation needs 1104+ 368 = 1472 GEs
to store both the round keys and the cipher state, 16 x 20 = 320 GEs for the S-
box, (644 64) x 2.25 = 288 GEs for all the XORs, 144 GEs for the MDS, 48 GEs
for the XORs in the Feistel of the Key Schedule, 192 2-to-1 multiplexors 192x2 =
384 GEs, which selects between the encryption key (resp. the plaintext) or the

! Implementing both encryption and decryption modes is mandatory where 3-pass mu-
tual authentication is required. ISO 9798-2 (“Entity Authentication — Mechanisms
using Symmetric Encipherment Algorithms”) specifies such protocols.
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round key (the cipher state)). So, we can estimate (neglecting the implementation
cost of the finite state machine) that our round-wise implementation of CUBE
cipher needs at least 1472 4 320 + 288 + 144 + 48 + 384 = 2656 GEs in total.

4.2 Implementation Results and Comparisons

We implemented CUBE cipher in VHDL and synthesized it using a Low-Power
(LP) High Vt 65 nm standard-cell library. We used Synopsis Design Vision D-
2010.03-SP5-2 for synthesis and power simulation. The foundry typical values
(of 1.2 V for the core voltage and 25° for the temperature) were used. Non-scan
Flip-Flops are used. We applied priority optimizations on area. Our round-wise
low-power CUBE cipher occupies 2536 GEs and has a simulated power of 0.663
#W. A comparison with other ciphers follows in Table 3. We have only listed in
this table block ciphers with 64-bit state and 128-bit key. When possible, we give
results for circuits which makes both encryption and decryption (e.g., TWINE).
The throughputs are given with a clock frequency equal to 100kHz.

Table 3. Comparison with other Lightweight Block Ciphers

Key Block Lat. Area Logic
Size Size (cycles) (GEs) Process
mCrypton 128 64 13 4108  0.13pm (theo.)
HIGHT 128 64 34 3048 0.25um
TWINE-128 128 64 36 2285 90nm
Piccolo-128 128 64 27 1938  0.13um (theo.)
PRESENT-128 128 64 32 1886 0.18um (only enc.)
CUBE Cipher 128 64 25 2536 65 nm LP

Comparisons are usually difficult to make between implementations made on
different technologies and with different experimental conditions, but we will
however give hereafter some discussion elements.

Number of Rounds. First, if we look at the number of rounds needed to
process one 64-bit block, CUBE cipher is faster than almost all its competitors
(only mCrypton is faster, but is bigger). It means that implementing CUBE
cipher is advantageous in terms of latency and energy.

Power Comparison. mCrypton, HIGHT, TWINE, and Piccolo did not give
any result concerning average power consumption of their designs. The only
authors which give such kind of results are the inventors of PRESENT (3.3 uW).
CUBE cipher has a simulated power of 0.663 uW, so the gap between both
propositions is important but it can be explained by the use of a low-power logic
process.

Area Comparison. Compared to HIGHT, CUBE cipher is smaller and faster.
Moreover, HIGHT is susceptible to Meet-in-the-Middle Attacks.

Compared to TWINE, the authors used Scan Flip-flops which allows us to save
1 GE per 1-bit storage. In our ASIC library, a Flip-Flop and 2-to-1 multiplexor
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cost 5.75 GEs and 2 GEs, and a Scan FF costs 6 GEs: hence the use of Scan flip-
flops saves 1.75 GEs per 1-bit storage. So, if we have used scan flip-flops in our
CUBE cipher implementation, we would hope save in total: (128 4+ 64) x 1.75 =
336 GEs. So, the area of CUBE cipher will become: 2536 — 336 = 2200 GEs.
Thus, CUBE cipher will be smaller (85 GEs).

CUBE cipher does not compete on equal terms with Piccolo-128 mainly due
to the very light nature of its lightweight Key Schedule (it needs only 32-bit wide
3-to-1 multiplexor to select the appropriate round key). We wanted for CUBE
cipher a stronger Key Schedule to be more secure against e.g. Meet-in-the-Middle
attacks. Moreover, the authors use scan flip-flops, so CUBE cipher will be a little
bit bigger in that case (2200 GEs vs. 1938). The authors of Piccolo also infer
AND-NOR gates to optimize XOR/XNOR gate count. They estimate that it
allows us to save 0.25 GE per XOR gate. In CUBE cipher, in Key Schedule
process, we have 48 XOR gates inferred in the Feistels and 64 for computing
Ko from K;1; and K;. Moreover, in the round execution, we must implement
64 XORs for the AddRoundKey operation and 64 others for the MDS layer
computation. So, there are: 48+ 64+ 64 +64 = 240 XORs in the circuit. So using
the same optimization than the authors of Piccolo, we can save: 240 x 0.25 = 60
GEs. So, the area of CUBE cipher will become: 2200 — 60 = 2140 GEs. So, the
gap in terms of GEs between the two block ciphers should be reduced to around
200 GEs, while CUBE cipher is faster and has a more secure Key Schedule.

Compared to PRESENT-128, we have an unfavorable gap of 650 GEs. But,
the results we have only concerns encryption. If we consider an implementation
with both encryption/decryption purposes, it would be needed to implement in
PRESENT both true and inverse S-boxes (the overhead is then equal to 16 x
28 = 448 GEs if we consider that the gate count of the S-box is the same than
its inverse) and select their output by a multiplexer (64 x 2 = 128 GEs). So, a
PRESENT-128 with encryption/decryption modes would cost: 1886+448+128 =
2462 GEs, so the gap between the two proposals is only 74 GEs.

In summary, CUBE cipher compares reasonably well to other lightweight ci-
phers when both encryption and decryption must be implemented. The price to
pay to have a secure Key Schedule and avoid undesirable properties of PRESENT
appears to be limited.

5 Conclusion

In this paper, we have presented two involutive families of block ciphers that
are easy to mask and have reasonable hardware cost for the instantiations with
n = 4. One of the main advantages of CUBEAES compared to the AES and of
CUBE compared to PRESENT, is their involutive nature that allows a really
for near-free implementation of the decryption process. Concerning CUBE, the
addition of an MDS layer prevents the bad behaviors of the PRESENT block
cipher concerning “linear hulls” and statistical saturations from happening.

In a future work, we plane to derive for those families of ciphers tweakable
versions that lead to authentication-encryption schemes.
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A Instantiations with n =5 and n = 6

As the Permutation layer will be the same whatever the value of n, we only give
here the S-box called in the SbLayer, the matrices M and D of the MDSLayer
and the matrices A and B used in the key schedule.

A.1 Instantiation for n =5

The number of rounds r for n = 5 is equal to 17. The 5-bit to 5-bit involutive
S-box is given in Table 4. For this S-box, we have DP = 27241 LP =272 an
algebraic degree of 4, a non linearity equal to 3.

Table 4. S-box in hexadecimal notation

zr 01 2 3 45 6789 ABCDEFI10111213141516 17 1819 1A 1B 1C 1D 1E 1F
S(z) IFID1A1IB121EI3EF1816CB1078 D194 6 1514 A1C 911 2 3 17 1 5 0

The matrices A and D of the MDSLayer works on the finite field Fgy =

01000
00100
Fo[X]/(X5 + X2 + 1) with a root of X° + X?>+1.D= [0 0 01 0 | with
00001
1a° aaa®
01000 01001
00100 10000
M=D°> M,=(00010]| and Myso = [ 01000 | in binary representation.
00001 00100
10100 00010
The matrices A and B used in the key schedule acts on 5 blocks of 25 bits:
0 I 000
0 «97I00
B=| 0 0 0I0| and A= B>.
>1 0 0017
I 0 000

A.2 Instantiation for n = 6

The number of rounds r for n = 6 is equal to 19. The 6-bit to 6-bit involutive
S-box is given in Table 5. For this S-box, we have DP = 27341 [P = 27241,
an algebraic degree of 5, a non linearity equal to 5.

The matrices M and D of the MDSLayer works on the finite field Fgqy =
Fo[X]/(X6 + X* + X3 + X + 1) with a root of X6 + X% + X3 + X + 1.
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Table 5. S-box in hexadecimal notation

z 01234567 8 9ABCD EF « 10111213141516 1718 19 1A 1B 1C 1D 1E 1F
S(x) 171335AC26B231C313 6 43D3E20 S(z) 161814 1 122910 0 11 2F 25 39 8 33 36 2E
T 20 21 2223 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F = 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F
S(z) F 3A37 7 2B1A 5 383B 152C 24 2A 3C 1F 19 S(z) 32 9 301D 3F 2 1E22271B 21 282D D E 34

01 0 00O 010000 110111
001 00O 001000 101101
000 100 . 000100 100000
D=1000 o010 | With M=D" M= ;50010 Me=|010000
00 0 0O 1 000001 001000
11a% a* aa*® 110110 000100
101000
010100
and M 0= 8 8 é (1) (1) ? in binary representation.
110100
011010
The matrices A and B used in the key schedule acts on 12 blocks of 18 bits:
0 I0000 O 0 0xw2 0 O
0 0000 O 0 0 O 0 0
0 00100 O 00 O 0 0
0 000710 O 0 0 O 0 0
0 000071 O 0 0 O 0 0
0 00000 I 0 0K13 0 O
B=|800000>2 1 0 0 o o|add=5"
0 00000 O 0 I 0 0 0
0 00000>17 O O I 0 0
0 00000 O 0 0 O I 0
0 00000 O 0 0 O 0 I
I 00000 O >80 0 >10

B Test Vectors

B.1 Test Vectors for CUBEAES and CUBE with n =4

We provide the following test vectors given in little endian and in hexadeximal
for CUBEAES and CUBE:

CUBEAES:

input_message = 0x6666666666666666
KEY = 0x0102030405060708090a0b0c0d0e0f
ciphertext = Oxee0cb8c023716ec7

CUBE:

input_message = 0x6666666666666666
KEY = 0x0102030405060708090a0b0c0d0e0f
ciphertext = 0x710ec4a98692ac3f
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Abstract. Attribute-based authentication (ABA) is an approach to au-
thenticate users by their attributes, so that users can get authenticated
anonymously and their privacy can be protected. In ABA schemes, re-
quired attributes are represented by attribute trees, which can be com-
bined with signature schemes to construct ABA schemes. Most attribute
trees are built from top to down and can not change with attribute re-
quirement changes. In this paper, we propose an ABA scheme based
on down-to-top built attribute trees or dynamic attribute trees, which
can change when attribute requirements change. Therefore, the proposed
dynamic ABA scheme is more efficient in a dynamic environment by
avoiding regenerating the whole attribute tree each time attribute re-
quirements change.

Keywords: Authentication - Attribute-based authentication - Attribute
tree - Privacy

1 Introduction

Compared with traditional identity based authentication (IBA) [1], users in
ABA schemes are authenticated by their attributes instead of identities. Since
users can be authenticated anonymously in ABA schemes, it is more privacy-
preserving and can be used widely in many applications, for example, e-commerce
[2], eHealth [3], mobile applications [4], cloud services [5-7] and so on. To get
served, users first send a request for service. After receiving the service request,
service providers send the request to an entity that controls service policies,
which is usually policy decision point (PDP). The PDP retrieves related policies
and attribute requirements and sends them back to the user. The user checks
whether it owns the required attributes. If so, it generates a signature and sends
it back to the PDP. PDP communicates with attribute authorities, verifies the
signature and sends the verification result to the service provider. If the sig-
nature is valid, the service provider grants the service request from the user,
otherwise the request is rejected. In a more general case, the service provider
and PDP here can be considered as a verifier and policy controller. Since only
(non-identity) attributes are used in the authentication described above, ABA
schemes can achieve anonymity. However, in a traceable ABA scheme [8], users’
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identities can be tracked by a tracking authority, but the verifier itself can not
open the signature.

In the authentication, two parts need to be authenticated. First of all, the
user has to prove that it owns all the required attributes so that the signature
is not generated by co-operation among different users. Secondly, a signature
generated by all required attributes also needs to be verified, providing other
security requirements of the ABA scheme, for example, traceability. There has
already been some work on ABA scheme constructions. As far as we know, [§]
is the most systematic work about ABA schemes, where a general framework
is built so that a fully anonymous and traceable static ABA scheme can be
obtained with the input of a fully anonymous and traceable group signature
scheme, but it does not provide a general framework to generate dynamic ABA
schemes. One thing to notice is that the “static” and “dynamic” mentioned here
is different from what we mean in the title of this paper. In the title, “dynamic”
is to describe the attribute tree construction, while here it means a user is in-
volved in a “join in” protocol [8] to co-generate its secret keys. For some work
such as attribute-based access control (ABAC) [9], attribute-based signatures
(ABS) [10] and attribute-based encryption(ABE) [11], the ways how to build
their cryptographic construction share a lot in common with ABA schemes. Al-
though the way how to generate signature schemes are different, the way how
to build attribute trees are almost the same. Attribute trees originate from ac-
cess trees [12] in access control, where they are used to represent logical access
control requirements and usually built from top to down. The main drawback
of this approach is that it is impossible to achieve a new attribute tree from an
existing one even though their related logical requirements are quite similar. As
a result, the system has to build a new attribute tree each time the attribute re-
quirements change. To our best knowledge, there is only one paper [13] in which
the attribute tree is built from down to top and it allows dynamic attribute tree
construction. In [13], the authors propose an attribute-based group signature
based on this down-to-top built attribute trees. In this approach, a central at-
tribute tree is built first and then different attribute trees can be obtained by
simplifying the central attribute tree.

In this paper, we propose an ABA scheme based on down-to-top built attribute
trees as described in [13]. We modify the group signature protocol proposed in
[14] in the way that it can be combined with the down-to-top attribute trees
to construct an attribute based authentication scheme. Therefore, our proposed
scheme supports dynamic attribute tree generation, so that both computation
and communication resources can be saved by avoiding re-generating attribute
related parameters.

This paper is organized as follows. We first introduce the general structure and
security requirements of the proposed ABA scheme in Section 2. Next we describe
how to construct the proposed scheme in details in Section 3, including the down-
to-top built attribute trees, signature generation, verification and opening. Then
followed in Section 4, we carry out correct, security and efficiency analysis on the
proposed scheme. The last part is a general conclusion of the work in this paper.



108 H. Yang and V.A. Oleshchuk
2 ABA Scheme Introduction

In Section 1, we briefly discussed how a user was authenticated in an ABA
scheme. In this section, we give more details about ABA scheme structure, work-
flow and their security requirements in subsections 2.1 and 2.2 respectively.

2.1 Scheme Structure and Workflow

The structure of the proposed ABA scheme and its workflow can be illustrated
in Fig. 1. There are usually three types of entities in ABA schemes, i.e., author-
ities, users and verifiers, where authorities can be divided into central authority,
attribute authority, revocation authority and opener. The way how they interact
with each other and how the authentication is carried out can be described as
follows.

1) The first stage is system set up.

a) The central authority generates system public and private parameters.

b) Users obtain their secret keys from the central authority.

c) The attribute authority retrieves these system parameters and generates
private and public attribute key pairs.

d) The opener communicates with the central authority and gains the track-
ing keys.

e) Users communicate with the attribute authority for their private attribute
keys.

f) Revocation authority communicates with both the central authority and
the attribute authority to establish a data of revocation information.

2) The second stage is signature generation, verification and possibly opening.

a) After receiving a challenge or attribute requirements form the verifier, the
signer (or the user) sends its signature to the verifier, where the signature
is generated by signing a message with the signer’s attribute keys.

b) The verifier retrieves revocation information from the revocation author-
ity. If the signer and related attribute keys are not revoked, the verifier
checks the validity of the signature and sends a response to the signer.

c) If the identity of the signer needs to be revealed, the verifier delivers the
signature to the opener. The opener uses its tracking keys to open the
signature and reveal the signer’s identity.

2.2 Security Requirements

In this subsection, we generally introduce five security requirements about ABA
schemes. Later in subsection 4.2, we will formally define them based on the
proposed ABA scheme and prove them.

Anonymity. To achieve basic anonymity, identities of signers should be pro-
tected. Furthermore, even signers’ attributes should be protected, and they only
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Fig. 1. Structure of the Proposed ABA Scheme

have to prove that they own the required attributes. This property is the main
security requirement of an ABA scheme and is mandatory.

Unforgeability. The signer’s signature should not be able to be forged by an
outsider that does not belong to the system. In a system, the signature is even
required unforgeable for authorities in the system. However, in a system where
authorities generate all keys and secrets, the authorities obviously can forge
all signatures. Therefore, “unforgeable” is defined differently in different ABA
schemes. However, any system should provide at least the basic level of “un-
forgeability”, i.e, for the outsiders.

Unlinkability. Given two signatures, if it should be impossible to decide whether
they are generated by the same signer, the ABA scheme is unlinkable. If a sys-
tem does not satisfy it, given enough signatures, there is a possibility to reveal the
signer’s identity.

Coalition Resistance. The signer can only generate the signature if he or she
has all the required attributes. It should be impossible for different users to
collude and generate a valid signature together if they as a whole have all the
required attributes. If a system satisfies this requirement, it is coalition resistant.

Traceability. Given a valid signature, if the opener can successfully track the
signer’s identity, the system is traceable. It is a useful security requirement for
some applications, such as obtaining evidence for legitimate issues and so on.

3 Construction of the Dynamic ABA Scheme

In this section, we present how to construct the proposed dynamic ABA scheme.
We modify the group signature proposed in [14] and combine it with the down-
to-top attribute tree, so that the scheme can provide attribute tree changes.
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3.1 Down-to-Top Attribute Tree Construction

An attribute tree [12, 13] is a tree structure where leaves are attributes and
interior nodes are threshold gates and they are used to express logical relations
between attributes. For an interior node x, let [, and k, be the numbers of
children and the threshold respectively. It represents logical “AND” and “OR”
respectively when k, is equal to and less than [,,. We build a down-to-top at-
tribute tree in two steps: build a central attribute tree and simplify the central
attribute tree to get the required attribute tree. We denote these two steps by
algorithms Create CTree and Simplify C'Tree respectively.

Suppose the system attribute set is ¥, and ¥; is a subset attribute set. The
attribute tree built based on ¥ and ¥; are I and I, and their roots are root and
root; respectively. For each interior node z, if k, < [, add [, — k, dummy nodes
as x’s children, so that x can be considered as “AND”. Denote the dummy
leaf node set as LP%" attribute leaf node set as LA and whole leaf set as
L = LPvwm y LA For attribute subset ¥;, the node sets are LP%™: LA and
L; accordingly. Each node z is indexed with a random number ind(x), and each
interior node x is binded to a polynomial ¢;(x) (i = ind(z)) (Refer to [8, 13]
for more details.). The degree of ¢;(z) is I, — 1. Polynomials are constructed by
algorithm Create CTree as follows.

1) Assign a secret t; (1 <4 < |[LAY||LA%| = |¥]) to each attribute leaf node.

2) Let the related polynomial ¢;(x) be the one passing through these points
with the coordinates (j,%;) (y € Childaw(x), j = ind(y)), where Child a¢ ()
is the set of child leaf nodes belonging to ¥, so ¢;(x) can be computed by
Lagrange’s theorem [15]. Assign ¢;(0) to node z.

3) For z’s dummy leaf child y € Childpym (), compute d; by d; = ¢;(j) (j =
ind(y)) and assign d; to each dummy leaf node.

4) Repeat Steps 2) and 3) until all polynomials related to interior nodes are
constructed. Then the root node is assigned with value r = ¢,00:(0).

After the central attribute tree I' is built, we can simplify it to get at-
tribute tree I'; based on attribute subset ¥; C ¥. The simplification algorithm
Simplify CTree is as follows.

1) Delete all leaf nodes that does not belong to ;.

2) Delete an interior node together with its descendants if the number of its chil-
dren is less than the threshold. The remaining part is the required attribute
tree I;.

For a leaf node x, let Ing,) be the index set of all 2’s siblings including
z. We define L, = Hlelnsib(m),l#nd(z) md(i;zf)fzv Path, = {z,z1,---,z,} and
Do = Tle(path, —rooty Lz, Where zy = parent(z), i1 = parent(z;) (1 < i
n — 1) and x,, = root. Then for I, equation » y aee, Njti+3 "5 pum, Da;d;
Groot; (0) holds.

I IA
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3.2 Construction Algorithms

Before introducing the scheme construction, we first briefly explain bilinear
groups and q-SDH problem, on which the proposed scheme is built.

Definition 1. (/8, 13]) (Bilinear Groups) Let G1, G2 and G3 be cyclic group
of prime order p, with g1 € G1 and g2 € Go as the generators. e is an efficient
bilinear map if

1) Bi-linearity: e(g, g5) = e(g1,g2)?® holds for any a,b € Zy.
2) Non-degenerate: e(g1,92) # la,, where 1g, is the unit of Gs.

Let ¢ : G; — G4 be an isomorphism with t(g2) = ¢1. If there is an efficient
algorithm to compute it, we way 1) is computable.

Definition 2. (/8, 16]) (q-Strong Diffie-Hellman Problem (q-SDH) in
G1 and G3) Let Gy and Gy be cyclic groups of prime order p, wzth g1 € G1

and go € Go as the generators. Given a q+2 tuple input (g1, 92,92,92 ARt )
(v € Zy), an SDH output is a pair (g 1/7+ ,x) (x € Zy).

The cryptographic algorithms of the dynamic ABA scheme proposed in this
paper can be constructed as follows.

e System Setup. Assume k is the security parameter. Gy, G2 and Gj3
are three multiplicative groups of prime order and e : Gy X Go — G3 is
a bilinear map. @ is a computable isomorphism between G; and Go. H
{0,1}* — Z; is a hash function. Randomly select a generator g € G
and v, &1, 82, € Z;. Then the system private parameter is Sp,.; =< v,k >,
where tk =< &,& > is the tracking key. The public parameter is Sy, =<
G1,Ga,Gs,e, H, g1, g2, h,u,v,w >, where g1 = 1(g2), u = h%*, v = h*? and
w=gg.

e User Key Generation. Take v as input and generate a private key base
bskli] =< A;,x; > for each user U;, where x; € Z; and A; = g}/('erxi) is

the output of a q-SDH pair (gl,gg,g;‘),g;g, e ,g;g). A; is registered in an
authority’s databased for tracking if necessary.

e Attribute Key Generation. This algorithm is run by the attribute
authority. Assume ¥ is the system attribute set. Select a number ¢; € Z} for
each attribute att;. The private and public key pair for att; is t; and bpk;, =
g;j. The public key related to ¥ is gpk = {G1, G2, G3, 91, g2, €, H, h,u, v, w,
hi,--- , hig|, bpk}, where hj = h' and bpk = {bpky,, - - - s bpkt -

e User Attribute Key Generation. This algorithm is run by the attribute
authority. If U; is not in the revocation list and wants to register att;, the
attribute authority calculates T; ; = Aﬁj and sends it to U;. Then U,’s private
key is gsk =< Ay, x4, Ti1,- -, T w, >, where ¥; is the attribute subset
owned by Uj;.

e Attribute Tree Generation. Assume ¥ is the system attribute set. Create
an attribute tree I' by algorithm Create C'Tree described in subsection 3.1
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with root as its root. LA* (|LAY| = |@|) and LP“™ are the attribute leaf set

and dummy leaf node set. Randomly select a d; € Z7 for each dummy leaf

node dum;. Calculate gpkq, = ggj . Assign gpk;, to each attribute leaf node

and gpkq; to each dummy node. Make I" and bpk’ = {gpkq,, - - - ,gpk:d‘LDum‘}

public.

e Signature Generation and Verification. Suppose M is the message to

sign and ¥; is the selected attribute set, and then protocol runs as follows:

1) Let V be the verifier. V' selects the attribute requirements and sends them
to Uz

2) After receiving ¥;, U; first runs algorithm Simplify CTree described in
subsection 3.1, obtains the attribute subtree I;, and computes A; (att; €
LA, Ng; (dj € LPvmi) and its root value ;. Next U; calculates gg =

Ny
deeLDmW gpk:d'_d’. Then U; randomly selects (, o, B,€,7¢,74,78,7c, T,
*

ToysTsy € L, and then does the following calculations
Cr =ut,Cy =07,Cy = AihSP Cy = Aju®,CT; =T, ;S
01 =xi(, 00 = x; 8, R = uw', Ry =v"" Ry = Ci‘wuir‘sl,
R5 - Cgmvirlh ) RS = 6(03, 92)7"16(]7/’ w)*”‘(*Tﬁe(h’ 92)77‘51 T 5
A
G(Hattje% hj 7, 92)"

e(w,r;/ga)"
¢=H(M,C1,Cs,Cs,Cy, Ry, Ra, Ry, Ra, Rs, Raw) € Zy,

sC:TC+CC,35:7’5+cﬁ,sa:raJrca,sE:r€+cs,sm:rm+cxi,

Ray =

)

S5, =15, + 01,85, = 15, + COa.

Then the signature is § =< M, C1,Cs,C3,Cy, ¢, CTy, -+, CTigy), S¢, S,
Sas Sey Szy 615 S60, W) >, where ¥/ is the attribute subset U; decides to use.
3) The first step of V' is to check whether U; and W] are revoked or not. If
not, V' continues and otherwise it rejects the signature. First of all, V
runs algorithm Simplify CTree described in subsection 3.1 to get the
simplified tree I3, the root value r; and A; (att; € LA%), Ay, (d; €

Aqg,
LPuwmiy and gy = deeLDumi gpk:djd’. Next it computes

Ry =u®Cy° Ry, =vCy ¢ R} =u*10*, R, = v *205°,
e(Cs,w) ..
6(91392)

Ay} Sa ¢
R, _ e(Hattje% hj ’gz) 6(047 ri/gd)
Att — s A :
e(w,r;/ga)*e e(]] C’Tj 7.92)

Ry = €(Ch,go) " e(h,w) e, g2) =" "%

9

att;€W;

Finally, V' checks whether ¢ = H(M,C4,Cs,Cs,Cy, R}, Ry, RS, Ry, RL,
R'y,;) holds. If valid, V accepts the signature and U; is authenticated,
and otherwise V rejects the signature.
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e Signature Open. Before opening the signature, the opener needs to
check whether the signature is valid or not. If it is valid, it computes A; =

C3/(CT*C57).

4 Analysis of the Dynamic ABA Scheme

In this section, we analyze the proposed ABA scheme, including their correctness,
security requirements and efficiency.

4.1 Correctness Analysis

Theorem 1. (Correctness) The construction of the proposed ABA scheme
proposed in Section 8 is correct, which means:

1) Tuple < Ri1, Ra, R3, Ry, Rs, Ray > equals to < R}, Ry, R, R, Rf, Ry, >.
2) A; = C3/(C5*C5?) holds.

Proof. 1) The verifier computes tuple < R}, R5, R}, R}, Ri, Ry,, > as follows.

. —sam e Cs, w)
R, = e(C3, g2)°e(h,w) %> "*Be(h, ga) %6152 e(Cs,w) (¢
= e(Conga)elh ) el )L )
_ 6(03792)Tm+cxi€(h7w)_(ra+ca)_(rﬁ+6ﬁ)e(h792)_(T61+661)_(T62+C52) 6(03,11}) ¢
e(g1, g2)
: - (51489 €(Ca,w) \©
= Rs [ e(C3, g2)% e(h, w) " “TPe(h, (61+62) €(Cs, )
3( (Covgm)methw) (.52) e(g1, 92)
- ‘ 1 e(Cs,w) \°
= R; (e(Csh™ @A) wg¥i)e(Cs, 1€(Cs, )
3 (e( 3 wgy)e(Cs,w) e(or. 2

= R (e(Ai,wg3')(91,92) ") = Rs

Ry = e Cre = wret S () ¢ = e = By

Ry =0 05° = 05+ = v = B,

Ri; =u % Cf” — o0 (UC)rﬁczi — 61— G (uC)erc:z:i — o1 ST
=C{"u""1 = Ry

R/5 — e CQS”” — T _c52(v,8)rm+cw71 — T2 —cﬂxi(v,ﬁ)m+cxi — T2 yfTe
=Ch* v "2 = Ry

From subsections 3.1 and 3.2, we know that > ;ar, 8jtj+3 iy pum, D;dj =

D,
r; and gq = deeLDumi gpk,, . so we have

e T AV g2 T[] AP .92) = (A}, g2)

jeLAtti jELDum’i

— ¢ H AZjAj’gz)e(Ai,gd) = e(A;, ;)

jELAtti

el [[ A7 92) = e(Ai,ri/ga).
jeLAtti
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Based on the above equation, we have

Aj

, B(HattjE!Pi h] 792)3”4 6(0477‘1'/9(1) ‘
o = (I1
e

e(w,ri/ga)™ att; €W, CTJ'Aj:92)

A ra Ay ca ©
e(Hattjem h; 7, 92) e(Hattjem h; 7, 92) ( e(Cu,7i/94) )

e(w,ri/ga)" e(w,ri/ga)e e([Tass.co, CT, 7 g2)
€%
Ay

(e(Hattje-pi h; 192)° e(Ca,7i/ga) )
= Rawu

e(w,ri/ga)* ([ase, v, CT; 7, go)

— Ran e(Hattje-pi h?Aj ) 92) e(wE, Ti/gd) ’ e(Ai, Tz‘/gd) )
e(ws,ri/9a)  e([] R g0y |\ eI T/, g2)

att;€v; 'Vj att; €v;

-nr e(Ai,ri/ga)
= fvAtt 0
e(Hattjem A7, 92)

Since e(][ e pare: A?Aj,gz) = e(Ai,7i/ga), equation Ray = Ry, holds. Thus,
tuple < R1, Ro, R3, R4, Rs, Ray > equals to < R}, Ry, Rs, Ry, R, Ry, >.
2) C3/(CT1C52) = Aih<HP /((u€) (vF)2) = A;.

From the above proofing, we can see Theorem 1 is correct, so a user can be
authenticated by the algorithm proposed in subsection 3.2.

4.2 Security Requirements Analysis

In this subsection, we prove that the proposed ABA scheme satisfies several se-
curity requirements, including anonymity, unforgeability, unlinkability, coalition
resistance and traceability. Before the proof, we first introduce some definitions
and assumptions based on which our proof performs.

Definition 3. (/8, 14]) (Decision Linear Diffie-Hellman Problem (DLP)
in G1) Let G be a cyclic group of prime order p, with u,v,h € G as its gener-
ators. Given u®,v*, h¢ € G (a,b,c € Zy) as the input, decide whether a +b = c
or not.

Definition 4. ([1/]) (Decision Linear Diffie-Hellman based Encryption
(DLE) in G1) In a DLE scheme, a user’s public key is u,v,h € G1 and its
private key is €1,€2 € Zy, satisfying u®* = v°2 = h. To encrypt message M,
the user randomly chooses a, 3 € Z; and computes the encryption message as a
triple < C1,Ca, Cs >, where C, = u®, Cy = v® and C3 = Mh**8. The decrypted
message is calculated by Cs3/(CTC5?).

Assumption 1. (/8]) (g-SDH Problem) For an algorithm A, if |Pr[A(g1,

92,92,95 5 - ,QSQ) = (g}/'wx,f)] — 1/|G|| < e holds, we say that A has a
negligible advantage to solve ¢-SDH in (G1,G2) and then we can assume ¢-SDH

s hard.
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Assumption 2. (DLP) For an algorithm A, if |Pr[A(u®, v, haT8) = (u®,vP,
he)] = 1/|G|| < e holds, we say that A has a negligible advantage to solve DLP
i G1 and then we can assume DLP is hard.

Assumption 3. (IND-CPA Security) ([16]) If DLP holds, we say that DLE
is semantically secure against a chosen-plaintext attack (CPA) or IND-CPA se-
cure.

Assumption 4. (Forking Lemma) ([8]) Given only public data as input, if
an adversary A with polynomial computation ability can find a valid signature
(M, bo,¢,01) with non-negligible probability, then there exists a replay with a
different oracle, which can output new valid signatures (M, dg,c,d}) with non-
negligible probability where ¢ # c’.

Theorem 2. (Anonymity) The proposed ABA scheme is fully anonymous
if DLE is IND-CPA secure under the same attribute set. More specifically,
giwen Ajy and Ay and the corresponding signature 01 and d2, where §, =<
M, C1,C2,C31), Ca, ¢, CTh, -+, CTiwy), 8¢, 865 Sas Ses S S51:86,, W, > (b €
{0,1}). Given a random toss b € {0,1}, if the probability that an adversary
A with polynomial computation ability has non-negligible advantage to guess the
correct b, we say that the proposed scheme is not fully anonymous. Otherwise,
the scheme is fully anonymous.

Proof. Suppose that adversary A can break the anonymity of the proposed
scheme, and then it means A has a non-negligible advantage to guess the correct
b in the above statement. More precisely, given A;) and A;(1), the adversary A
has a non-negligible advantage to distinguish the tuple < C1,C3, C3gy > from
< 01702,03(1) >, where ('} = uc, Cy = ’UB, 03(0) = Ai(o)h<+6 and 03(1) =
Ai(l)h<+5. From Definition 4, we know that < Ci,Cq, C3(9) > is a DLE tuple.
If A has the ability to distinguish < C4, Cq, C3(g) > from < C,Cy, C3(1) >, it
means A can break DLE problem, and it contradicts with Assumption 3. Thus
it is impossible for A to distinguish 0y from ¢; with a non-negligible probability,
and the proposed ABA scheme is fully-anonymous.

Theorem 3. (Traceability) The proposed ABA scheme is fully traceable if g-
SDH is hard in G1 and Gs. More specifically, if an adversary A with polynomial
computation ability can find a valid signature 6 =< M, C1,Cs,Cs,Cy,c,CTy, -+,
CTiw!|, 8¢, 88 Say Sey Szs 8515 565, W! >, then it can find a find a SDH pair and thus
break the g-SDH problem.

Proof. The proof is based on Forking Lemma. Suppose adversary A can forge
a valid signature § =< M, dg,c, 01,02 >, where §g = {C1,C2,C3,C4}, ¢ =
H(M,Cy,C5,C3,4, R1, R, R3, R4, R5, Rast) as computed during signature gen-
eration, d1 = {s¢, $8, Sa, S, S, So,556,, Y]}, and 6o = {CTy,-- -, C’TW”}. Ac-
cording to Forking Lemma, we can extract a tuple < dg, ', 07,2 > from § =<
00, ¢, 01,02 >, where ¢ # ¢ and 0] # 65. Then based on < dg,c’, 07,02 > and
¢ # ¢ and 6] # §1. Thus we can create a new SDH tuple denoted as < AL, 2/ >,
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which is presented as Theorem 5.3.5 in details in [8] and we will not repeat
it here. If adversary A can create a -SDH pair without the knowledge of ~, it
can break q-SDH problem. It contradicts to Assumption 1 and thus Theorem 3
holds.

Among the above security requirements, unforgeability and coalition resis-
tance can be promised by traceability, and unlinkability can be promised by
anonymity. The general idea is as follows. Suppose S is a system that provides
both anonymity and traceability. If S is not against unforgeability, it means that
an adversary A can forge a valid signature d on behalf of a valid user U. Similarly,
if S is not coalition resistant, an adversary A can corrupt a few users and then
use their private keys to generate a valid signature §. In both situations, when
is handed over to an opener, the identity revealed is U instead of the real signer
A. Tt contradicts with “traceability” (Theorem 3) and thus both unforgeability
and coalition resistance can be inferred by traceability. Anonymity promises that
the system does not leak any useful information of signers given their signatures.
From the description of unlinkability, we can see that it is also a kind of user
identity information, meaning that anonymity is a stronger security requirement
than unlinkability. Therefore, unlinkability can be deduced by anonymity.

4.3 Efficiency Analysis

We mainly focus on the computation, storage and communication costs when
analyzing the efficiency of the proposed ABA scheme, and they are related to the
attribute tree as well as the signature itself. From the construction of the down-
to-top attribute trees, we can see that the cost is more than top-to-down built
attribute trees because of the following two reasons. First of all, the attribute
set ¥ for central attribute tree I" is bigger than the required attribute subset
¥;, and thus attribute related keys (¢;, gpk;), users’ attribute keys T; ; are more
than those based only on ¥;. Secondly, we add some dummy nodes to build the
tree from down to top, which causes the computation and storage of d; and
gpka; for dummy leaf node set LPwm At the cost of a bigger central attribute
tree instead of a fixed tree and more parameters, we achieve the flexibility and
dynamic of attribute trees.

For the computation and communication cost of the signature, we compare
our work with two typical ABA schemes in [8] and the results are summarized
in Table 1. Suppose |G| is the bit length of bilinear group G; (i € {1,2,3}), k
is the bit length of number in Zj and p is the computation cost of pairing. To
simplify the comparison, we only count the computation of pairing and we will
not include the length of message M as well as the length of attributes to be
used in the signature size. [8].1 and [8].2 (see Table 1) are the schemes proposed
in Chapter 5.4 and 5.5 in [8] respectively.

Among these schemes, the signature size in [8].2 (see Table 1) is extremely
short, because it does not include attribute related parameter C7} in the sig-
nature at the cost of verifying the validity of the signer’s attributes. From the
result, we can see that the general signature size, computation complexity for
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both signing and verification are more in our scheme. The main reason is that
we add parameters Cy and Ry to adjust the signature with the down-to-top
attribute construction. Therefore, the ABA scheme proposed in this paper is
beneficial in a dynamic environment where the attribute requirements change
frequently. However, when the attribute requirements are comparatively fixed,
our scheme needs more computation and communication cost, and also requires
more storage space.

Table 1. Computation and Communication Efficiency Comparison of ABA Schemes

Paper Signature Size Sign Complexity Verify Complexity

[8].1 5k + (|¥:] + 5)|G| 3p 5p
[8].2 7G| 3p 5p
This paper 8k + (|¥;| + 4)|G| 5p 9p

5 Conclusions

In this paper, we have proposed a dynamic attribute tree based ABA scheme,
which can adapt to a dynamic environment where attribute requirements change
frequently. To gain this flexibility, the proposed ABA scheme is constructed
based on down-to-top built attribute trees. In the scheme, a central attribute
tree I' is built first based on attribute set ¥, and later attribute subtree I
based on attribute subset ¥; can be obtained by simplifying I". Compared with
top-to-down based ABA schemes, we add extra parameters in the signature to
adjust to this new attribute tree construction approach. The scheme avoids the
cost of regenerating attribute tree related parameters, but it increases costs in
three aspects, storage cost for a bigger attribute tree, signature size and more
computation complexity. As a results, it should be careful to chose which ABA
schemes to use, i.e., down-to-top or top-to-down built attribute tree based, and it
requires precise evaluation of the costs of regenerating attribute trees, signature
generation and verification.
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Abstract. In this paper we give several constructions of cyclic codes
over finite fields that are monomially equivalent to their dual, where the
characteristic of the field divides the length of the code. These are called
repeated-root cyclic isodual codes over finite fields. The constructions
are based on the field characteristic, the generator polynomial and the
length of the code.
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1 Introduction

An isodual code is a linear code which is equivalent to its dual. The class of
isodual codes is important in coding theory because it contains the self-dual
codes as a subclass. In addition, isodual codes are contained in the larger class
of formally self-dual codes, and they are related to isodual lattices [1]. For some
parameters, it can be shown that there are no cyclic self-dual codes over finite
fields [3,5], whereas cyclic isodual codes can exist. Several types of equivalence
between codes can be defined [4]. In [2] the authors gave specific constructions
of self-dual and isodual codes over finite fields. Two codes C' and C’ are called
monomially equivalent if there exists a monomial permutation, i.e. a permutation
of the coordinates followed by multiplication of coordinates by nonzero field
elements, which sends C' to C’. Only monomial equivalence is considered here.

Jia et al. [6] considered cyclic isodual codes using multiplier equivalency. Mul-
tiplier equivalence is a monomial equivalence, but the converse is not true in
general. In this paper, isodual cyclic codes over finite fields are studied. Con-
ditions are given concerning the existence of isodual cyclic codes based on the
generators polynomial, field characteristic, and length. Several constructions of
isodual cyclic codes and self-dual codes are given which have good Hamming
minimum distance.

The remainder of this paper is organized as follows. Some preliminary results
are given in Section 2. In Section 3, the structure of the generator polynomial
of cyclic codes of length 2°mp?® is given using the generator polynomial of cyclic
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codes of length m. Using the structure of cyclic codes of length 2*mp?®, a con-
struction for isodual codes is given in Section 4. In Section 5, isodual codes are
constructed from duadic codes over finite fields. The motivation to construct
isodual codes from duadic codes is that the duadic codes are known to have
good minimum distance. Examples of isodual codes are given based on the con-
structions presented here.

2 Preliminaries

Let [F, be a finite field with ¢ a power of a prime p, and denote the corresponding
group of units by ]FZ. Let n a positive integer. A block code C of length n is
called a linear code over I, if it is a subspace of F;L. Here, all codes are assumed

to be linear. We attach the standard inner product to [y, i.e. [v,w] = 3 v;w;.
The dual code of C' is defined as

Ct={vel," | [v,w] =0 forallw e C}. (1)

If C C C*, the code is said to be self-orthogonal and if C' = C*, the code is
self-dual.

I'J'

A linear code C over a finite field and its dual satisfy the following
C|CH| = ¢", and (C*)* = C. (2)

A monomial linear transformation of ]FZ is an [f-linear transformation 7 such
that there exists scalars Ay,..., A\, in ]FZ and a permutation o € S,, (the group
of permutations of the set {1,2,...,n}), such that for all (x1,za,...,2,) € ]F;L,
we have

T(xl, . ,.’bn) = ()\11’0(1), )\21’0(2), ey )\n.’ba(n)).

Two linear codes C and C’ of length n are called monomially equivalent if there
exists a monomial transformation of I, such that 7(C)) = C’. Here, whenever
two codes are said to be equivalent it is meant that they are monomially equiv-
alent. Hence in our context an isodual code is a linear code which is monomially
equivalent to its dual given by (1). A linear code C of length n over [F, is said
to be cyclic if it satisfies

(¢n-1,C05--.,cn—2) € C, whenever (cg,c1,...,¢p-1) € C.

We follow the usual convention of representing vectors as polynomials. With
this representation, it is well known that every cyclic code has a polynomial that
generates it as an ideal of the finite ring [F,[z]/(z™ —1). In general there are many
generators for a given cyclic code. However, the monic generator polynomial of
least degree is unique. Such a polynomial is called the generator of the code and
it is a divisor of ™ — 1. Therefore, there is one-to-one correspondence between
cyclic codes of length n over Iy, and divisors of 2" — 1.
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Let a be an integer such that (a,n) = 1. The function p, defined on Z,, =
{0,1,...,n — 1} by pe(é) = ia mod n is a permutation of the coordinate posi-
tions {0,1,2,...,n — 1} and is called a multiplier. Multipliers also act on poly-
nomials and this gives the following ring automorphism

pa : Folz]/ (2™ — 1) — Fylz]/(2™ — 1) (3)
f(z) = pa(f(@) = f(a?).

Suppose that f(z) = ag + a12 + ... + a,2" is a polynomial of degree r with
f(0) = ag # 0. Then the monic reciprocal polynomial of f(x) is

fr@) = f0) 2" f(a™h) = f(0) 2" (u-1(f(2)) = ag ' (ar +ar—12+... +aoz")

If a polynomial is equal to its reciprocal polynomial, then it is called a self-
reciprocal polynomial. If g(x) is a generator polynomial of a cyclic code C' of
length n over IF,,, then the dual code C* of C is the cyclic code whose generator
polynomial is h*(z) where h*(z) is the monic reciprocal polynomial of h(x) =
(™ —1)/g(z). Thus the cyclic code C' is self-dual if and only if g(x) = h*(x).

3 Cyclic Codes of Length 2mp® over I,

For our construction of isodual cyclic codes we need the structure of cyclic codes
of length 2%mp® over [F, where ¢ is a power of p and (m, p) = 1. We begin with
the following two lemmas.

Lemma 3.1. Let q be a power of an odd prime p, a > 1 an integer. There exists
a primitive 2*-th root of unity in F; if and only if g =1 mod 2°.

Proof. Suppose there exists a primitive 2*-th root of unity a € FZ. Then

a?" =1, and since ]F; is a cyclic group of order g—1, 2% divides ¢— 1. Conversely,

if 2¢ divides ¢ — 1, then there exists a positive integer k such that ¢ — 1 = k2%.
If 8 is a primitive element of FZ, then 1 = g9=1 = (5¥)2". We have that in the

. d _ a .
cyclic group FZ, ord(B¥) = (k(’)gw(l’?;)) = (k’qul) = (k’f,fw) = 2% Thus, f* is a
primitive 22-th root of the unity in ]FZ. ]

Lemma 3.2. Let a > 1 be an integer and o a primitive 2%-th root of unity in
FZ. Then the following holds:

i) o? isa primitive 2 -th root of unity in ]FZ for alli, i < a.
it) o™ is a primitive 2%-th oot of unity in F; for all odd integers m.
iii) [Tiey a® = —1.

Proof. (i) Fori < a, in the cyclic group I, we have that ord(a?') = ( ord(e)

5 e ) 2% ord(a))
(2¢,20) = 2i — 207
(i) Since (27, m) = 1, then ord(a™) = , %) = — 27 y =2°

(m,ord(a)) (m,29
(i) (2" — 1) = [Ti—, (z — o*) so that [;_, of = (-=1)>* GV = —1. 0
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Proposition 3.3. Let q be a power of an odd prime p and n = 2%m a positive
integer such that m is an odd integer, (m,p) =1 and a > 1. Then z'f]FZ contains
a primitive 2%-root of unity and the f;(x), 0 < i < r are the monic irreducible
factors of ™ — 1 in 'y, we have that

2 -1 = -1 [] file ). (4)
i=1

Proof. Assume that 2™ — 1 = (z — 1) [[;_, fi(z) (for calculation purposes we
let fo(xz) = (z — 1)), is the factorization of 2™ — 1 into monic factors over IF,.
This factorization is unique since it is over a unique factorization domain (UFD).
Let a € FZ be a primitive 2%-th root of unity and let 1 < k < 2%,

(@) =1 = (o "z =Dl fila™"z)
(a—k)m(xm _ (ak)m) — Oé_k(.’If _ ak) H: L fz(a k.’II)

(@™ —afm) = k(m*”(x—a )T fila™"2)

(@™ = (a™)F) =MD (@ — M) [T, fila ).

Then by Lemma 3.2, o™ is also a primitive 2%-th root of unity so that

[Tisi (@™ = (@™)F) =TTy @"" =D (@ — ab) [T1_, fila™"a)
= [ o) T — o) T T o)

Hkal ok Hk (z—ab )H2a1H::1 fila™"x)
= (@ V)T T, fila Fa).

Since (22" —1) = ((2™)%" — (a@™)?") = H,::l (2™ — k™) the result follows. O

Corollary 3.4. Let g be a power of an odd prime p and n = 2°mp° a positive
integer such that m is an odd integer, (m,p) =1 and a > 1. Then if]FZ contains
a primitive 2%-root of unity and the f;i(x), 0 < i < r are the monic irreducible

factors of ™ — 1 in [y, we have that

2¢  r
(@ 1) = @ 1 = @ P T[] (0 Fa).

k=1i=1

Proof. The proof is similar to that for Proposition 3.3. a
In the following corollary we give the structure of cyclic codes of length 2¢mp?®
over [F,.

Corollary 3.5. Let g be a power of an odd prime p, and n = 2%°mp° be a
positive integer such that m is odd integer, a > 1 and (m,p) = 1. If FZ contains
a primitive 2%-root of unity and (x—1), fi(z), 1 <i < r are the monic irreducible
factors of x™ — 1 in F,[z] then any cyclic code of length n = 2%mp® is generated

by Hiil((f - O‘k)lk H::1 fsz (a_kf)) where 0 < I, j; < p°.
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Proof. Any cyclic code of length n = 2%mp® is generated by a divisor of
(x2"™P" —1). By Corollary 3.4 we have that

9a

(xgamps o 1) _ (1,2“m _ 1)17S — H x — a pr a .’ﬂ

k=1

and the result follows. O

4 Construction of Cyclic Isodual Codes of Length 2%mp?
over [,

We first recall the following important result of Batoul et al. given in [2]

Proposition 4.1. (Proposition 3.1 [2]) Let C be a cyclic code of length n over
[, generated by the polynomial g(z), and X\ € ]FZ such that X = 1. Then the
following holds:

(i) C is equivalent to the cyclic code generated by g*(x).
(ii) C is equivalent to the cyclic code generated by g(Ax).

Using Proposition 4.1, we give new constructions of isodual cyclic codes of length
2°mp?® over F,.

Theorem 4.2. Let q be a power of an odd prime p such that ¢ = 1 mod 2,
with a > 1 an integer, n’ an odd integer and f(z) a polynomial in IF,[z] such
that

2 —1=(z—1)f ().
Then the cyclic codes of length 2°n’ generated by
20711

2“17 Hf72k1

and
2(1. 1

2“1 Hf 2k,

are isodual codes of length 2°n’ over [F, where a € FZ is a primitive 2%-th root
of unity.

Proof. By Lemma 3.1, if ¢ =1 mod 2 then there exists a primitive 2*-th root
of unity a € ]FZ such that o?” = 1. Suppose that 2™ — 1 = (x — 1) f(x), so then

@ —1) =@ 1) [] fla ).
k=1
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We have (z2° — 1) = (22 —1)(22" " + 1), which gives that

@ =1 =@ - )E" H flo

2“*1—1

:(12“—1 _ 2“ 1 H f —2k H f(a—Qk—lx)
k=0

Let
2“ 11

g(w) = (@~ H fla™ e
so that we have

h(@) = (@ + Hf e

and h*(x) = g*(ax). By Proposition 4.1(i), C is equivalent to the cyclic code
generated by ¢*(z). By Proposition 4.1(ii), the cyclic code generated by g*(z) is
equivalent to the cyclic code generated by ¢g*(ax) = h*(x). As the latter code is
C+, C is isodual, so that the cyclic code generated by g(z) is isodual. The same
result is obtained for

2(1—1

g(z) = @+ 1) [] fla ).

k=1
O
Example 4.3. Over F3 we have 27 —1 = (2 +2)(25 +2° +2* + 23+ 22 + 2+ 1),
sothat o1 — 1= (2 +2) (a5 +2° +2* + ¥ + 22 + 2+ V) (v + 1)(2% — 2® + 2* —
23+ 2% — 2+ 1), and the cyclic codes generated by
(x+2)(z® =2 +a* a3+ 2% —2+1) and (z+1) (28 +2° 2 + 23 22 42 +1)

are isodual.

Remark 4.4. The codes generated by

20‘71
@ 1) =@ 1) [ fla ),
k=1
and
2e—1_1
2a—1n/

(x +1) =@+ H Fla= 21

are the trivial isodual cyclic codes of length 2°n’.
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Theorem 4.5. Let q be a power of an odd prime p such that ¢ = 1 mod 2,
with a > 1 an integer, n’ an odd integer and fi(z), f2(x) polynomials in F,[z]
such that ,

" —1=(z—1)fi(z)f2(2).
Then the cyclic codes of length 2°n’ generated by

201

2“1 HfZ ~2k . Hf72k1)

and
201

22070 HfZ —2k . H fj(a’%’lx),
k=0

i, € {1 2},i # j, respectively, are isodual codes of length 2°n’ over ¥, where
a € ]F 18 a primitive 2%-th root of unity.

Proof. By Lemma 3.1, if ¢ = 1 mod 2 then there exists a primitive 2*-th root
of unity o € FZ such that o?” = 1. Suppose " — 1 = (x — 1) fi () f2(z) so that

ga

(@~ 1) = @ 1) [ Ao *2)fa(a"a).

k=1

We have (22° — 1) = (22 —1)(22" " + 1), which gives that
@ =1 =@ —)E" H Fila™ ) fa(a " a)

= (xT‘_l _ 227 ! H fl —2k ( 72k1,)

20—1_1

H f1(a72k71x)f2(a72k71x).

k=0

If
ga—1_1
gl@) = (> - Hfz "2 T file ), i #5,

then we have

2(1. 1_q ga—1

h(.’L‘) — 2“ 1 H fz —2k— 1 H fj(a—ka)
k=1

and h*(z) = g*(a~'z). By Proposition 4.1(i), C is equivalent to the cyclic code
generated by g(x)*. By Proposition 4.1(ii), the cyclic code generated by g(z)* is
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equivalent to the cyclic code generated by g*(a~tx) = h*(x). As the latter code
is C*+, C is isodual, so the cyclic code generated by g(x) is isodual. The same
result is obtained for the code generated by

2a1

glw) = (> + Hfz 2y H a ), i £ .

Remark 4.6. If

2(11

glx) = (=¥ - Hfz 2y Hf” "), i

then g(z) = (x2" '™ —1) = (2% — 1) and the cyclic code generated by g(x) is
the trivial isodual code.

Corollary 4.7. Let q be an odd prime power such that m is an odd integer and
f1(x), f2(z) be polynomials in ¥ [z] such that 2™ —1 = (z—1) f1(z) f2(x). Then
the cyclic codes of length 2°n’ generated by

ga—1 ga—1_1

227 * H f —2k—1, H fj(a72k71$),
k=0

and
2(1. 1 2(1 1

2“ 1 H fz —2k H f —2k‘
i,j € {1,2}, i # j are isodual codes of length 2°n’ over IF,,.
Proof. The results follows immediately from Theorem 4.2. O

Example 4.8. Forq =5, from Lemma 3.1 there exists 8 € F5 such that 8* =1,
e.g. B=2. If m =11, we have

(2™ —1) = (x—1)(2® + 22" +42° + 2% + 2+ 4)(2° + 42 + 42 + 2% + 32 +4),
so that (z* — 1) = (x — 1) f1(2) f2(z), and

(@4 — 1) = (2 = DA fo(@)(@ + D fi(—2) fo—2) (@ + 2) 1 (22) fo(22) (5 — 2)
f1(—2z) fa(—2x).

Then the cyclic codes generated by g1(x) = (z? + 1) f1(x) f1(—2) f1(2x) f1(—22)
and go(x) = (22 £1) f2(2) f2(—) f2(22) f2(—22) are isodual cyclic codes over Fs.
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Example 4.9. For ¢ = 17 =1 mod 2%, from Lemma 3.1 there exists o € F17
such that &' =1, e.g. a« = 3. If m = 9, we have

(mgfl) = (:Ef1)(:B2+x+1)(x2+3x+1)(m2+4x+1)(x2+10x+1) = (z—-1) fi(z) fo ().

With f1(x) = (22 + 2+ 1)(2%2 + 32 + 1) and fo(x) = (2% + 42 +1)(22 + 10z + 1),
the cyclic codes generated by

8 7
(Z‘S _ 1)17b H fi17& (3—2kx) H fjl?b (3—2k—1x)7
k=1 k=0
and
3 8 s 7 s
(xS + 1)17b H fi17 (3—2kx) H fj17 (3—2]6—11,),
k=1 k=0

i # j, are isodual cyclic codes over IFy;.

5 Cyclic Isodual Codes of Length 2°mp?® over F, from
Duadic Codes

The results of Section 4 provide constructions of isodual cyclic codes over finite
fields. However, a more straightforward means of finding these codes is desirable.
Further, determining codes with good minimum distance is very important. In
this section, infinite families of cyclic isodual codes over finite fields are con-
structed from duadic codes. The motivation is that duadic codes are known to
have good minimum distance. Before giving our constructions of isodual cyclic
codes, we recall some results about duadic codes which be used in this section.
Of course isodual codes cannot be duadic since their length is even. Let ¢ be a
power of a prime p and let m be a positive odd integer such that (m,q) = 1.
Then if 0 < i < m, the g-cyclotomic coset of ¢ (mod m) is defined as

Cl(i) = {ig" (mod m)|l € N}.

Let a be a primitive m-th root of unity in an extension field of [F,, and C be a
cyclic code over [F,, of length m generated by a polynomial f(z). C is uniquely
determined by its defining set T = {0 < i < m| f(a’) = 0}. Hence the defining
set of a cyclic code over [F, is the union of some g-cyclotomic cosets.

Let S1 and Ss be unions of cyclotomic cosets modulo m such that S; NSy =0,
S1USy = Ziym \ {0}, and poS; mod n = S(i+1) mod 2. Then the triple p,, S1,S2
is called a splitting modulo m. The odd-like duadic codes D; and Dy are the
cyclic codes over F, with defining sets S; and S> and generator polynomials
fi(x) = ies, (x — ') and fao(x) = ies,(x — af), respectively. The even-like
duadic codes C; and Cy are the cyclic codes over Fy with defining sets {0} U Sy
and {0} U Sz, respectively.

For the remainder of the paper, the notation ¢ = O mod n means that ¢
is a quadratic residue modulo n. For a prime power ¢ and integer n such that
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ged(g,n) = 1, denote by ord,(q) the multiplicative order of ¢ modulo n. This is
the smallest integer [ such that ¢ =1 mod n.

The multiplier g1 plays a special role in determining the duals of duadic
codes just as it does for duals in general cyclic codes. In the following we give
some important results concerning pi_.

Lemma 5.1. (Proposition 4.4 [2]) Let ¥, be a finite field and m a positive odd
integer such that (m,q) = 1 and ¢ = O mod m. Then there exists a pair of odd-
like duadic codes over Fy, Dy and Ds, generated by fi(z) and fa(z), respectively,
such that 2™ — 1 = (x — 1) f1(x) f2(x). We have the following results:

i) If the splitting is given by p—y then fi(x) = fa(z) and f5(x) = f1(x) .
i) If the splitting is not given by u—_q then fi(x) = fi(x) and f5(x) = fa(x).

We now consider when a splitting is given by p_1, and also when a splitting
is left invariant by p_1.

Theorem 5.2. [7] Let ', be a finite field and m = py*ps* - - - pi* be the prime
factorization of an odd integer m such that ¢ =0 mod m.

i) If p; = —1 mod 4, i = 1,2,...,k, then all splittings mod m are given by
H—1-

it) If there is at least one p; such that p; = 1( mod 4), i € {1,2,...,k}, then
there is a splitting mod m which is not given by p_.

Remark 5.3. In general, the same splitting modulo m an odd integer can be
given by different multipliers. For more details see [4, p. 214]. When we consider
the multiplier p—1, we mean any multiplier which gives the same splitting as ji—1 .

In the following we give several constructions of isodual cyclic codes over [F,
of length 2%mp®, a > 1 using generators of odd-like duadic codes over [F, of
length m an odd integer. The construction of repeated-root isodual cyclic codes
over fields with even characteristic was given in [2]. Here we give constructions
of repeated-root isodual cyclic code over fields with odd characteristic.

Theorem 5.4. Let g be a power of an odd prime p. Suppose there exists a pair
of odd-like Duadic codes D; = (f;(x)) of odd length m, and o € FZ is a primitive
2%-th root of unity. We then have the following:

i) The cyclic codes C;; and C. of length 2*mp* over ¥, generated by
ga— 1 20— 1 -1

( ga-1 H fp —2k H fp —2k—1 )

and
2(1. 1 2(1 1 -1

( 20—t H fp —2k H fp —2k—1 )

i,j € {1,2},i # j, respectively, are isodual codes of length 2°mp* over IF,,.
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ii) If the splitting modulo m is given by u_1, the cyclic codes C; and C! of length
2%mp® generated by

2(1 1 H fp a :E
and
2“ 1 H fp

respectively, are isodual over IF,.
iii) If the splitting modulo m is not given by p_1, then the dual of the cyclic code
of length 2°mp* over ¥, generated by

2a1 pr a x

is equivalent to the cyclic code generated by

2(1 1 pr a 'T

Proof.
i) Follows from Theorem 4.5.
ii) Let

= (@ H S (0 k) (5)
If the splitting modulo m is given by p—; then fi(z) = fa(z) and f3(z) = f1(z),
so that

Cit = (hj (x))

.
= (@ 17 H 7 (o

= (> 1) H I7 (a7 Fx)
= (~gi(a™ ). (6)

By Proposition 4.1(ii), C; is equivalent to the cyclic code generated by g;(a~'z).

As the latter code is C’il, Cj; is isodual. The same proof is used for codes gener-
ated by g;(x) = (:EQW1 + 1)P" Hizl 17 (e Fa).
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iii) If the splitting modulo m is not given by p_1, then ff(x) = fi(z) and
f3(x) = fa(x), so that

Cit = (hi (x))

= (@ 1) pr

= (22" pr (o Fz)
= (—gj(a™"x)) (7)

By Proposition 4.1(ii) C; ~ C;-. The same proof is used for codes generated by
a—1 s a s

gi(zr) = (> + 1P [I{_, 7 (e a). 0

Example 5.5. For ¢ = 3 and m = 13, 3 = 16 mod 13, so there exist duadic

codes generated by f; 1 <i < 2. Since 13 =1 mod 4, by Theorem 5.2 there is a
splitting modulo 13 which is not given by u_1 so that

2™ —1=(x — 1) (23 + 2z + 2)(2® + 22 + 2+ 2)(2® + 2% + 2)(2® + 22 + 22 + 2)
=(z — Du(z)u” (z)v(z)v* (z).
We have the following results:

(i) If fi(z) = u(x)u*(x)) and fao(x) = v(z)v*(x)), then fi(x) = fi(x), and the
cyclic code of length 26 over I3 generated by g(z) = (xv — 1) f;(z)f;(—x)
(i # j) is an isodual code with minimum distance 6.

(it) If fi(z) = u(z)v(z)) and fo(z) = u*(z)v*(z)), then f(x) = fj(x), and the
cyclic code of length 26 over 5 generated by g(z) = (x — 1) fi(x) fi(—x) is
isodual with minimum distance 6.

Example 5.6. For ¢ =5 and m = 11, 5 = 16 mod 11, so there exist duadic
codes generated by f; 1 < i < 2. Since 11 = —1 mod 4, by Theorem 5.2 all
splittings are given by p—1 and we have

(™ —1) = (z — 1)(a® + 22" + 423 + 2% + 2+ 4)(2° + 42 +42® + 22 + 32 + 4),

so that (' — 1) = (z — 1) fi(2) f2(x) = —(x — 1) f1(2) f{ (x). Then the code of
length 22 over F5 generated by g1(z) = (x — 1) fi(z) fF(—x) is an isodual cyclic
code with minimum distance 8, and the code of length 22 over 5 generated by
92(x) = (& + 1) fi(z) fi(—x) is an isodual cyclic code with minimum distance 6.

Example 5.7. Forq=7 and m =9, 7=1 mod 3, so there exist duadic codes
generated by f; 1 < i < 2. Since 3= -1 mod 4, by Theorem 5.2 all splittz'ngs
are given by p_1. From (2° — 1) = (z — 1)(x + 3)(z + 5) (23 + 3)(23 + 5), w
have fi(z) = (z + 3)(z® + 3) and fa(x) = (z + 5)(2® +5) so that (2° — 1) =
(x—1)f1(z) fa(z) = (x—1) f1(z) ff (x). Then the cyclic codes of length 18 over [F7
generated by (x—1) f;(x) fi(—x) and (x—1) f;(x) fi(—x) are isodual with minimum
distance 4.
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Example 5.8. Forq=5=1 mod 4, from Lemma 3.1 there exists v € F5 such
that v = —1, e.g. v = 2. If m = 11, we have

(™ —1) = (x — 1)(@® + 22" + 423 + 2 + 2 +4)(2° + 42 + 42 + 22 + 32 + 4),
and therefore (x1' — 1) = (z — 1) f1(x) f2(z) and

(@4 = 1) = (2 = D@ fo (@)@ + ) fi(—2) fo—2) (@ + 2) f1(22) fo(22) (5 — 2)
fi(=2z) fo(—2z).
Let g1(z) = (22 £ 1) f1(z) f1(—2) f1(22) f1(—22) and g2(x) = (2% £ 1) fao() fo(—2)

f2(2z) fo(—2x). Then the cyclic codes generated by g1(x) and go(x) are isodual
cyclic codes over F's.

Example 5.9. For ¢ =17 =1 mod 2%, from Lemma 3.1 there exists o € F17
such that o'® =1, e.g. « = 3. If m = 13 = 1 mod 4, there exist a pair of odd
like duadic codes of length 13 generated by f1(x) and fa(x),such that

(213 —1) = (. — 1)(2® + 5% + 2% + 423 + 222 + 5r + 1)
(28 4+ 1325 + 22* + 122% + 222 + 132 + 1) = (x — 1) f1 () fa(2).
Then the cyclic codes generated by

7

8
(.’58 o 1)17S H fng (372’6‘%) H fjl’YS (372k71$),
k=1

k=0

and

8 7
@+ 0T AT e [T 67 ),

k=1 k=0
i # j, are isodual cyclic codes of length 24'3(17)%, s > 1, over Fy7.

Example 5.10. For ¢ =17=1 mod 2%, from Lemma 3.1 there exists o € F17
such that o'® =1, e.g. « = 3. If m = 19 = —1 mod 4, then there exist a pair
of odd like duadic codes of length 19 generated by fi(x) and fo(x) such that

(x13 = 1) = (z — 1)(2° + 42® + 1527 + 1525 + 62° + z* + 1223 + 222 + 3z + 16)
(2% + 142® + 1527 + 52° + 162° + 11a* + 223 + 222 + 132 + 16),

so that x13 — 1) = (z — 1) f1(2) f2(x). Since 19 = —1 mod 4, the splitting j1—;
gives codes C; and C! generated by

16
(@ =) [T A7 6 ),
k=1

and

16
@+ )7 T AT )
k=1

1 <i <2, respectively, are isodual codes of length 2*19(17)%, s > 1, over [F17.
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Abstract. In this paper, we survey the problem of mobile security.
Therefore, we introduce a formal technique allowing the enforcement
of security policy on this parallel system. The main idea was to give the
end-user the possibility to choose his mobile security level and to control
it by choosing a risk level. So we adapted this notion to the syntax as
well as the semantic of the used languages. We use an extended version
of process algebra ACP (Algebra of Communicating Process) to specify
the program and we define a logic that goes well with this language, to
specify security policy. An example is given at the end to illustrate the
approach and apply it with a real Android application from Google Play.

Keywords: Mobile security - Security policy - Enforcement - Process
algebra - Risk

1 Introduction

Nowadays, securing our mobile and protecting our private life, requires intellec-
tual effort from user. User has to inquire about applications that he wants to
install, because a set of permissions are displayed each time that he requests to
set up an application. These permissions corresponds to the application’s poten-
tial behavior. At this level, he has no choice, he must accept all the permissions
or to deny it, and in this case the installation will be aborted. Knowing that there
is nothing between this two possibilities without using a third party software,
which is too technical for a classic user.

Usually, when user clicks on the “Accept” button, which is the only permission
decision most he ever get to make, it is for him to evaluate the risk that he will
take, because nothing can guarantee if it is a malicious or benign application.
With the acceptance of installation, user grants to the installed application au-
thorities that it maybe will never need. According to [1], analytic results showed
that from 141,372 Android applications, 76,366 (54,01%) required more per-
mission(s) than that it really need.

This can cause negative impacts, such as leaking of private information, ac-
cessing the system tools, recording audio & video, or surreptitiously calling ex-
pensive phone numbers, etc. Even more, allowing for example an application
to modify or delete the contents of the SD card means that we can give it the
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authority to read and write any element of the card, such permission gives ma-
licious applications the ability to replace existing files on the card. To address
this, the idea was to give the end-user the possibility to control and specify his
mobile security level, and this is by choosing a risk level.

Concurrent system consists of programs running in parallel. As can be seen,
in our work, we mean with parallel system; the mobile platform, because concur-
rency or parallelism aspect is inherently existent in this system, that we could
also called it, system of parallel processors. It is through the process algebra that
we are able to specify such system. This mathematical framework studies the
behavior of parallel or distributed systems by algebraic means [2]. This algebraic
rules allow process to be simply described, manipulated and analyzed.

In this paper, we propose an algebraic approach that enforces a security policy
on a given parallel system, based upon a risk evaluation. Our method relies on
some assumptions, that allow us to include the risk notion and adapt it in the
syntax as well as semantics of the used language.

The inputs of our problem are, a security policy ¢, a process P and a risk
value « (threshold) which is fixed according to the risk level chosen by the mobile
user.

The output is a new process P’ that respects the security policy and the user
choice.

ACP?
Untrusted Program P —— Process

P
Pr=Pney
. . L3 Formula
Security policy ¢ o

Risk

This new process has the following characteristics :

- P'| ~ ¢ : P’ must respect ;

- P’ C P : the traces of P’ are also the traces of P;

-VQ: ((Q ~¢) AN (Q C P)) = Q C P': all P traces that respect ¢ are also
P’ possible traces.

This paper is organized as follows: Section 2 is devoted to the definition of the
risk notion and the used languages, with a brief description of related works. In
Section 3, we present the syntax and the semantic of the logic used to specify
security policies. In Section 4, we present as well the syntax and semantic used
to specify processors. Section 5 is dedicated to the description of enforcement
approach and how we integrated the risk to it; whether in security policy or in
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the enforced program. In Section 6, we exemplify the approach with an Android
application and an invented security policy . Our conclusion is given in Section 7.

2 State of the Art

Even though there are diverse promising works that have treated the subject
of security enforcement, the idea of introducing the risk notion in this type of
problem remains original. From these works we can cite ( [3], [4], [5], [7], [6], [8])-

[9] was one of the first works that has been oriented to the formalization
of enforcement notion. In his paper, Schneider discusses the enforcement mech-
anism that works by monitoring, i.e. a monitor that supervises an untrusted
program and blocks its execution when a property of security policy is violated.
In [5], a new model of monitor is introduced, it’s based on rewriting in which
the program can be modified at run time. The monitor in this work can correct
the execution of the program that violates the security policy rather than stops
its execution.

Recently in [10], a program rewriting approach has been adopted to automat-
ically enforce a security policy on an untrusted sequential program. The security
enforcement is transformed to a resolution of linear systems, extracted from
a computation of intersection between a process presenting the policy security
and another capturing the sequential program. The basic idea of this approach is
taken from a previous work [11], trying to ameliorate it formally and to prove its
main results and finally to implement it in an environment denoted by FASER.

In [4], Langar and al. proposed an algebraic and automatic approach that
generates from a given program and a security policy a new secure version of
the original program. They defined a process algebra AC'P¥ offering an alge-
braic framework for the enforcement and a logic that allows specifying a formal
monitor. The results provide an elegant technique allowing automatically to en-
force security policy on concurrent systems. This technique is restrictive, since
it doesn’t give the final user the possibility to choose his own level of security
and to decide if such action can be executed. An action that violates a property
of the security policy is simply aborted.

In our paper, we start from this work, and we adapt the technique used to
our system (mobile) and to our problem (risk evaluation). So we have relied
on a modified version of ACP; ACP¥ used in [4], this version is enhanced with
enforcement operation, in order to modify it to cover the aspect of mobile system
as well as the risk concept. So the reader may refer for instance to [4] for more
details.

Starting by the risk, by definition, the risk is closely related to uncertainty. It
is defined as a combination of the probability of an event and its consequences.

Risk = Probability x Impact (1)

Note firstly that in our case, the risk can be considered equivalent to the im-
pact; as we said the risk is a combination of an event (this event is the action
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executed by a process in our case) and its consequences (the impact of the execu-
tions of action(s)). So this cannot be related any more to the future, because the
occurrence of actions is certain, which means that the probability of occurrence
is equal to 1, and it’s the impact of the execution that is in question. As a result,
the risk is equivalent to the impact.

Risk = Impact (2)

So each action executed has an impact in the target program. Therefore, we
can classify the risk as “low”, “medium”, “high” and “very high” to be compared
after.

As mentioned above, our proposal includes a risk evaluation in order to add
necessary information that allows the control (deny or permit) of actions exe-
cuted by an application. Each application declare a list of permissions that would
be not risky for a user who lack visibility into how applications use his private
data, especially applications coming from unknown or unsafe sources, that could
hide unauthorized access and perform sensitive operations without user consent.
In [12], a new framework that analyzes smartphone application activity is pro-
posed. It detects anomalous behavior of known applications. They show that
the actions like; open(), read(), access() and chmod() are the most used system
calls by malware. So we can consider these actions as risky and which need more
control.

From this definition, we have adapted this concept and integrated the risk
semantically into our algebraic framework.

3 Lg: The Specification Logic of Security Policy

In this section, we introduce syntax, semantics and basic properties of our Logic
used to define security policy.

To properly include the risk, we define a logic L7 inspired from extended regular
expressions. This logic expresses specific properties for enforcement of security
policy. It is a linear logic which expresses the regular language class with the
possibility of expressing infinite properties. In addition, it allows us to express the
temporal aspect (temporal evolution of a process) and especially we can express
the risk notion in a formula by this logic, besides, it fits well with process algebra
syntax.

Notations
We first present notations adopted to express the syntax and semantics of each
formula. See Table 1.

3.1 Syntax of a Logic Lg

We started out from a formula of a simple atomic action and then we used the
basic operations to compose it into more complicated formulas. The syntax of
the resulted Logic Lg is presented in Table 2.
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Table 1. Notations

tt Constant boolean that represents true

ff Constant boolean that represents false

A Set of atomic actions

a Action that belongs to the set A

T Set of possible traces constructed from the action of A
€ Empty trace

&1.62 Concatenation of two traces ¢ and ¢
«@ Impact value

Risk() Function that calculates the impact of a process (action(s)).

Table 2. Syntax of L

pu= <ttt >q (boolean constant)
| < ff>a (boolean constant)
| <a>a (atomic action)
| <1 Ap2>a (conjunction of two formulas )
| <1V >a (dis-junction of two formulas )
| < Q1.2 >a (sequential composition)
| <pip2 >a (iteration operator)
| <9 >a (negation of a formula)

3.2 Semantics of Lg
The semantic of Lg is defined with the function :
[-]: Ly — T

In the following, we present the semantic followed by the intuitive sense of
each formula:

—[<tt>] =T:
Every trace, with a risk that does not exceed « satisfies tt;

—I<ff>a]=0:

No trace satisfies ff, whatever its impact.
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[<a>a]={<a>s}:
Only the trace formed from the atomic action a, and which has an impact
that does not exceed a, can satisfy this formula.

[<e1 A2 >a] = [< o1 >a ] N[< 02 >a-ai]:
It is equal to the intersection of two sets of traces, such that the sum of
impact caused by @1 and @9, i.e. (a1 + a2) does not exceed .

[<p1Vpr>a] = [< o1 >a] U< 92 >a]
It is equal to the union of two sets of traces ¢ and 9, such that the risk
produced by ¢; or by @2 does not exceed a.

[< 102 >a] = {&1.6216 € [< 1 >a,] and & € [< 2 >a—ai]} -

It is a composition of a prefix & that belongs to the semantic of < @1 >4,
and which has an impact «; and a suffix & that belongs to the < o >,
semantic and also with an impact that doesn’t exceed o — 1.

[<¢1>a]"U{GEH & € [< o1 >a] and
[< pips o = 2 €ISz el Tl e 2] £0 (3)

[< o1 >0 ] else

There are two cases for the formula < ¢]ps >, that depend on ¢y semantic:

e If there are traces that satisfy < p2 >4, ([< ¥2 >a,] # 0, the semantic
will be defined by the composition of a number of traces £;¢1..., belonging
to [< 1 >q,] with a risk lower than « concatenated to a trace &; that
belongs to [< p2 >a—a,]-

e If there is no trace that satisfies < 2 >a, ([< 2 >a,] = 0), then a trace
¢ that satisfles < pjp2 >4, is equal to a set possibly infinite of traces
ic1...n belonging to [< @1 >4, ] and with a risk «; that doesn’t exceed a.

[< ~¢ >a] = T\ < ¢ >1_q : the semantics of a formula negation is the
complement of its semantic. This complement of traces must not exceed a
risk equal to 1 — .

ACPY?: The Specification Language of Program

In this section, we introduce syntax, semantics and basic properties of our pro-
cess specification. It is a modified version of ACP (Algebra of Communicating
Processes). Our choice is motivated with the power of this language to describe
interactions, communications and synchronizations between a collection of pro-
cesses.
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4.1 Syntax

The notable difference between AC'P? presented in the previous section and the
ACP¥? used in [4], is the integration of a condition denoted by ¢, that controls
actions executed by a process. Therefore, a new condition ¢ (considered as a
process) is added to the syntax, to evaluate a comparison of two constants. The
result of this condition is either true or false, depending of the evaluation between
this constants (see Table 3).

Table 3. Syntax of ACPZ

P:= 1 (Constant representing successful termination )
| (Constant representing deadlock)
| a (Atomic action)
| P+Q (Alternative composition)
| PQ (Sequential composition)
| Pl,Q (Parallel composition )
| P|,Q (Communication merge )
| P'Q (Iteration operator )
|  Ou(P) (Encapsulation operator, H C A)
| 71 (P) (Abstraction operator, H C A)
| ¢ (Boolean constant)

Note that the merge operator |, and the communication operator |, are
parameterized by a communication function 7 defined as follows:
A communication function is any commutative and associative function form

Ax A — A, if:

(1) Va,b € A:~(a,b) =7(b,a) and
(2) Va,b,ce A:v((a,b),c) =~(a,v(b,c)).

We use the restriction and abstraction operators (respectively: dy and 77) de-
fined in [4], and we will recall their functionality thereafter.

4.2 Semantic

The operational semantics of ACP? extended from AC'P¥ language is illustrated
in Table 4. We added one new rule (R€) that treats the risk.

— R° : this rule indicates that a process P formed by the action a can evolve
by executing this action and finish successfully.

— R, : This rule indicates that the process P + ) can execute the action a
and becomes P’ + @, if and only if P is able to execute the same action and
become P’.
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Table 4. Operational semantics of ACPY?

o P-* P
(R*) (R+) a
a1 P+Q - P +Q
PP PP
(R. . (R.) .
PQ-%P.Q PxQ - P .(P*Q)
PP PP Q-
(Ry,) s NPT S #s
Ply@— P, Q Pl,Q = P, @
a / a /
(re) TP g R’y TP acn
T[(P)*)T[(P’) T[(P)*)T[(P’)
PP ald=tt PSP
(Roy) . agn  wold="t
8H(P) —>3H(P’) c.P— P’/

R, : The sequential composition of two processes P and @ can evolve only
if P can advance.

R*: P*(Q can choose to evolve with P or (), when P finishes, it still has the
same choice.

R), : A process P ||, @ can advance by executing the action a to become
P’ ||, @ if and only if P is capable to advance with the same action and
becomes P’.

Ry, : It is the synchronization operator. In this case, a process in the form
P|,Q can only advance if there are two actions a and b, such that P advance
by executing the action and becomes P’ and () advance with the action b
and become @’and the function ~y(a,b) is defined .

R? : This rule masks internal actions through the abstraction operator 77. A
process of the form 7;7(P) can advance by executing the silent action 7 and
becomes 77(P’), where I is any set of atomic actions called internal actions:
it abstracts all output action in I by the silent action 7.

Ry, : This rule permits with the restriction operator to prohibit the ex-
ecution of certain actions by a process. A process of the form 9y (P) can
advance with the action a and become 9y (P’), if and only if P is able to
advance with the same action a.

R¢ : This rule permits a process P to evolve to P’, if and only if the condition
¢ is equivalent to true, and P is able to evolve to P’.
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Table 5. L Logic translation function

| —lLg x N — ACPZ

tt]s = 3 (byb)* 32 bubs +1
A be A

be
Ifflli =0
1] =1
[16]]: = o

| <a>ali = (Risk(a) < @).al.a}f
| < @1.02 >a lli = cilloilli c2.|lp2]li
| <@1>V <2 >alli =cr el + collpz2li
[ <er'w2 >a lli = cilloalli™co-llp2 s o
| < =a >a |li = (Risk(a®) < a).a®ab.(( X baby)* 3 baby +1)
be A be A

5 Formal Enforcement of Security Policies with Risk
Integration

As we mentioned in Section 2, to respect the user choice, the security policy
will depend on a security level chosen by the mobile user. So for each level, we
attribute a threshold («) that limits and controls the program behavior; if there
is an action that exceeds this value, it will be blocked. This threshold will be
“consumed” by the execution of each action in the process.

We recall the reader, that the current paper borrows the main methodology
of enforcement from [4], adding the necessary modifications to reflect its new
concepts.

The idea of control according to the user decision is applied as follows; while
the threshold is not completely consumed by the execution of each action, the
process can advance. Otherwise, if this value is crossed process cannot advance,
that means that actions are blocked.

To formalize this idea, we need first to introduce the following notations:

- A, : synchronization set, C(A) = U {aa,;ar,aq,a5};

- 7y is a communication function, deﬁned as follows:

~(ala) = {ag EilJ;ea e AYC(A)
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First, we modify the controlled process by adding the synchronization actions
that mark the start and the end of the execution of actions by the function [—]
defined in Table 6, where:

— 4 is an integer used to ensure the freshness of synchronization actions.
— H is a set of trusted functions in A, representing trusted actions introduced
to avoid the translation of synchronization actions [4].

Then, we transform the security policy into a controller process by adding
synchronization actions and we add the condition ¢ that monitors the process,
allowing only the execution of actions that respect the security policy, i.e. which
the risk does not exceed the threshold fixed by the security policy (and taken
from user).

On the other side, we transform the risk to a condition and we insert it to the
monitor denoted by ¢,. This condition will permit or deny the synchronization
of two actions that belong to I.

Then synchronization actions are added also to the controller process via the
function || — || defined in Table 5.

Here, we explain the translation of the logic Lg to a controller process illus-
trated in Table 5.

- The formula ¢t is translated to a process which can synchronize with any
other process.

- The formula f f is transformed to § (deadlock), view that no process satisfies

fr

- The formula < a >, is transformed to a monitor ¢, composed from a
boolean condition that control the risk followed by synchronization actions

(aq.af).

- The formula < ¢1.99 >, is transformed to two conditions ¢; and co that
controls respectively the risk of ¢; and @9 traces. Notice that ¢; and ¢y are
calculated with the semantic presented in Section 3.2.

- < ma >4 as defined in the semantic of a formula negation, || < —a >, || =
T\ {<a>i_u}, this means that this formula is transformed to a process
that synchronizes with any process that begins with any action different to a
(except the action a), and with a risk that does not exceed a (Risk(a®) < «)),
with a® € T\ {a}.

Finally to enforce ¢ on P, the program must be executed in parallel with the
monitor. In order to explain our approach, we give the following simple examples,
without and with risk integration to highlight the difference.

We start with an example without the risk integration. Thus, we suppose the
following inputs:

P=ua.b
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Table 6. L — ACPZ Process translation function

[-]ACP? x N x 24 — ACP?

[ =1
[617 =6
- a ifa € HU{r}
[ali {aé‘a‘ai} Else
(PP = [P [P
[P+ Py = [P + [P2):
(PP =[P [P
[Pyl P21 = TPy (P2l
[0 (P)]{ = 0n ([P]1)
[r1(P)1i* = 7([P11°)
[0p, (P)1{" = 0u, (11,(TP1 |l 1Pelli)

which is a composition of two actions a and b.

p=a

which mean that only the action a is permitted.

We apply the different steps to enforce ¢ on P:

[P]1 = aj.a.a}.by.b.by

Secondly, we transform the policy security to a monitor (process):

el = ag.aj

The last step is to execute this two processors on parallel:

Ou(tr(ay.a.ap.by.b.by ||y aj.a}))

with H = {aq4,a5,ba,bf,aq,ar} and I = {y(aq, aq),v(ar,ar)}

O (rr(aj.a.af.bhb.b} ||y a).a}))

5 (Rules Ry, R¥ et Rp,avecy(aq,aq) = aqlag € I)

O (tr(a.a}.by.b.by |l af))

%5 (Rules Ry, Rf et Ry aveca ¢ H)

143

First step, we transform the program to a process by adding the synchronization
actions (using Table 6):
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O (1r(a}.by.b.by |1y a}))

— (Rules Ry, R?

T

et Ry, avecy(ag,ay) = aflay € I)

Here, we see that the process cannot execute the action b, view that the action by
cannot synchronize with its complement by, so the sub-process bb.b.b} is blocked
and as consequence, the policy security is respected.

Now, we present the second example, with risk integration.
The same process as above:

P=ab
A security policy with a risk value equal to 0.6.
p =< a.b >o6

Which mean that the impact of the execution of the action a followed by the
action b should not pass a risk value equal to 0.6, i.e, the sequential composition
of these two actions is limited by this risk value. Given that we suppose that 0.6
present the value assigned to security level chosen by the user.

First step is to modify the process by limiting each action with synchronization
actions that mark the start and the end of each action

[P] = ag.a.a5.bg.b.by

On the other side, the security policy is transformed to a controller process ¢,-
So we add the complement of synchronization actions used:

leall = aq.a5.bq.by.

Then, based on the semantics presented, we transform the risk into two condi-
tions :

(Risk(a) < 0.6) and (Risk(b) < 0.6 — Risk(a)).

Now to enforce the security policy, both processors must be executed in par-
allel.

Ou(rr(ag.a.ar.bq.b.bs|y (Risk(a < 0.6).aq.a5.(Risk(b) < 0.6 — Risk(a)).ba.by))

where I = {v(aq,aq),v(ays,ayr),v(ba,ba),v(bs,by)} and
H ={ag,ay,bq,bp,aq,ar,bq,by}.

As indicated in the the rule R¢, the action a4 can synchronize with a4 only and
only if the condition (Risk(a) < 0.6) is true. If this condition is true, the pro-
cess will advance and the two actions can synchronize (which is the case). We
suppose that Risk(a) = 0.4 and Risk(b) = 0.3.
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O (71(aa)-a.ap.babby|y (Risk(a) < 0.6).a4.a;.(Risk(b) <
0.6 — Risk(a)).ba.br)))

T

— (Rules Ry, R°, R Ry, where v(aq4,aq) = aqlaq € I)
Ou(7r(a.ay.bg.b.bsly (Risk(a) < 0.6).as.(Risk(b) < 0.6 — Risk(a)).bg.by)))
- (RulesR), R+ Ry, where a ¢ I)

On(tr(ay.bg.b.bsly (Risk(a) < 0.6).a5. (Risk(b) < 0.6 — Risk(a)).ba.bs)).

T

— (Rules Ry, R°, R? Ry, where y(as,af) = aflay € I)
Om (77(bg.b.bsly (Risk(a) < 0.6).(Risk(b) < 0.6 — Risk(a)).ba.by)).

To ensure that by can synchronize with by, it is necessary that the condition
(Risk(b) < 0.6 — Risk(a)) is equivalent to true, or that it is not the case.

As can be seen, this two examples (with and without the inclusion of risk)
leads to the same result (blocking the action b), except that in the second example
(with the risk integration), dangerous actions wrer blocked according to the user
choice.

6 Example

In this section, we present an example closer to reality, with a famous Android
application called Linked In. This application allows user to make connections,
access professional papers, be informed with personalized news, to view and save
recommended jobs, etc.

In this example, we based on a risk classification that allows to quantify the
risk of each action. This idea is inspired from the classification of Android permis-
sions. According to [13], we see that Google classifies an application permissions
to categories, that we can base on two main ones:

- Normal permissions: with a minimal risk, granted automatically without
user’s explicit approval;

- Dangerous permissions: with a higher-risk that could provide negative ef-
fects, this type of permissions belongs to permissions requested by the ap-
plication.

From this classification, we can classify actions, and for each action we assigns
a meaningful numerical value (0 < o < 1) that presents the potential impact of
an action, and as result, this allow us to control those actions.

Concerning this application, the following permissions are those requested by
the application.

- read contacts r, ;
- write contacts w ;
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- read calendar r.qiend ;

- precise location (GPS and network-based) rgps ;
- read call log r.;

- write call log we;;

- modify the content of USB storage myssp ;

- delete the content of USB storage dysp ;

- open connection o, ;

- receive data from Internet recy ;

- read phone status and identity r;4.

We can consider the previous list of actions in the range of normal permissions,
because this application comes from a known source (Google play store), so
we can assign to it a certain level of confidence, but nothing prevents us from
controlling the hidden actions behind this application. We assigned to this class
a risk value 0 < a < 0.2.

The second class with a high risk level (dangerous permissions), it must be
carefully controlled. Actions that can be placed in this class are more sensible
than others and require a very high degree of control. Here, we can think about
permissions related to phone category as making calls without user intervention.
Also permissions related to SMS are very sensible too, as editing and sending
SMS that user can accept without realizing it. As risk value, we assigned to this
class 0,3 < a <0,5.

- read SMS rgus;
- edit SMS eguss;
send SMS ssass;
- make calls call.

A typical example of where leakage can occur on Android, is an app that
allowed to access personal information (SMS, Video, Contacts, etc) and at the
same time is allowed to access the Internet. In this case, to ensure that confiden-
tial information could not be published or diffused via Internet, we could enforce
a security policy that prevents access to the Internet after reading such informa-
tion from the phone internal memory, and this will depend on the security level
chosen.

Consider the following inputs:
First the process:

P =rgsys.0c +1reme

which mean that the process can read SMS and then open connection or read
contacts and then modify it.
P must satisfy the following property:

@ =rsms-(—0oc)

which mean after the action of reading from SMS, the process cannot open
connection.
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As threshold ,we suppose that user chooses a medium level of security.
a=0,5
We modify the policy security by inserting the risk :

Pa =< TSMS-Oc >0,5

As we mentioned, we suppose that o, (open connection) belongs to a class whose
risk is lower than 0, 2, because it’s among the actions requested by the application,
and rgps belong to the second class. So, we suppose that Risk(rsars) = 0,4 and
Risk(o.) =0, 2.

The security policy formula is transformed to the monitor via the logic trans-
lation function in Table 5.

rsms p-(Risk(oc) < 0,5 — Risk(rsas))-0cq-Oc f
The process is transformed as well by the Process translation function to:
[P| = rsmsq-rsMs-TSMS f-0cd-Oc-Ocf
The enforcement step requires that this two processors run on parallel.

Or(T1(rsMsq-TsMS-TSMS f-0cq-0c-0cs ||l (Risk(rsis) <
0, 5).T5M5d.T‘SMSf.(RiSk(OC) <0,5— Risk(TSMs)).Ocd.ch))

where

I ={v(rsmsa,msmsa), V(Tsas g, Tsms ) V(0cys 0ca)s V(0cs 5 0c,) }
and

H = {rsmsa,TsMS fsTSMSd> TSMS f5Ocqs Ocyy Ocds Ocf }

Note that this sequence violates the property ¢, and the program should be
blocked before executing the action open connection.

O (tr(rsars, TSMS-TSMS f-0cd-0c-Oct ||~
(Risk(rsams) < 0,5).rsns4-msms f-(Risk(oe) < 0,5 — Risk(rsars))-0cq-0cf))

— (Rules R°, Ry, RY and Ry, , ¥(rsmsa,rsmsa) = rsmsalrsmsa € 1)
On (T1(rsars rsms j-0cq-0c-0cy ||y -0cs-(Risk(rsams) < 0,5 — Risk(oc))-0c4-0c1))
TSMg (Rules Ry, R: and Ra, wherersys & I)
O (1(rsars f-0ca-0c-Ocy |l Tsars p-(Risk(oc) < 0,5 — Risk(rsas))-0ca-0cy))
— (Rules R°, Ry, R and Ro,,v(rsmsy rsmsy) =rsusslrsmsy € 1)
Op (71(0cq-0c-0cy ||y -(Risk(oc) < 0,5 — Risk(rsars))-0ca-Ocy))

As can be seen, the condition: (Risk(o.) < 0,5 — Risk(rsas)) = false. The
sub-process 0.q.0c.0cy cannot execute the action open connection after reading
sms, and as well the action o.,; cannot synchronize with o .
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7 Conclusion and Future Work

In this paper, we present an idea that appears with the need to secure mobiles.
The notion of risk has been crucial throughout this work, it gives a chance to
the end-user to decide and choose its own level of security and to trust more
applications that he installed. So we adopted a formal approach for the enforce-
ment of security policies in parallel systems, based on the risk notion to monitor
the process behavior. The results provides a technique that allows controlling
applications and applying it to real language such as Java.

As future work, we want to implement the proposal approach on Android
device and evaluate the results. It will also be interesting to add the Sandboxing
concept to improve security by isolating applications, which could be based on
a risk classification.
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Abstract. Recently, it has been published that Java based smart cards
are still exposed to logical attacks. These attacks take advantage of the
lack of a full verification and dynamically use a type of confusion. Coun-
termeasures have been introduced on recent smart card to avoid exe-
cuting rich shell code and particulary dynamic bound checking of the
code segment. We propose here a new attack path for performing a type
confusion that leads to a Java based self modifying code. Then, to miti-
gate this new attack an improvement to the previous countermeasure is
proposed.

Keywords: Smart Card - Shell Code - Self Modifying Code

1 Introduction

Today most of the smart cards embed a Java Card Virtual Machine (JCVM).
Java Card is a type of smart card that implements the standard Java Card
3.0 [14] Classic Edition or Connected Edition. Such a smart card embeds a
virtual machine, which interprets application byte codes already romized with
the operating system or downloaded after issuance. Due to security reasons,
the ability to download code into the card is controlled by a protocol defined
by Global Platform [11]. This protocol ensures that, the code owner has the
required credentials to perform the particular action.

A smart card can be viewed as a smart and secure container which stores
sensitive assets. Such tokens are often the target of attacks at different levels:
pure software attacks, hardware based, i.e. side channel of fault attacks but
also mixed attacks. Security issues and risks of these attacks are increasing and
continuous efforts to develop countermeasures against these attacks are sought.
The main assets in a smart card are the sensitive data (i.e. the cryptographic
keys) and the code of the program. Often attackers perform cryptanalysis using
side channel to recover the keys, thus break the confidentiality of the keys. The
difficulty of breaking the security properties of these assets are given bellow in
decreasing order:

© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 149-161, 2015.
DOI: 10.1007/978-3-319-18681-8 12
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— Data confidentiality,
— Data integrity,
— Code integrity
— Code confidentiality

We have shown in our previous work [7], that it was relatively easy to break the
code confidentiality then the code integrity can be broken leading to the dump
of the memory. Once the memory is read, it is possible to perform memory
carving to gain information on the data and in particular the key containers.
Smart card manufacturers increase the security of their JCVM each in a way
that the published attacks do not work anymore on recent cards. The current
smart cards are now well protected against pure software attacks with program
counter bound checks, typed stack and so on. For such smart cards, we propose
in this paper, a new attack that mitigate the secure jump countermeasure which
avoid developing rich shell code. Firstly, We demonstrate a proof of concept and
then its application with the dump of a card. It is based on separating the control
flow and the basic blocks of a program.

The remaining of the paper is organized as follows: the first section introduces
the Java Card security. The second section presents the state of the art both in
term of attacks and published countermeasures. Then, in the third section, we
propose our contribution for mitigating the control flow countermeasure. Next,
we propose an implementation that performs a type confusion and allows a Java
based self modifying code. Finally, in the last section, we conclude.

2 Java Card Security

Smart cards security depends on the underlying hardware and the embedded
software. Embedded sensors (light sensors, heat sensors, voltage sensors, etc.)
protect the card from physical attacks. While the card detects such an attack, it
has the possibility to erase quickly the content of the EEPROM preserving the
confidentiality of secret data or blocking definitely the card (Card is mute). In
addition to the hardware protection, softwares are designed to securely ensure
that applications are syntactically and semantically correct before installation
and also sometimes during execution. They also manage sensitive information
and ensure that the current operation is authorized before executing it.

The Byte Code Verifier (BCV) guarantees type correctness of code, which in
turn guarantees the Java properties regarding memory access. For example, it is
impossible in Java to perform arithmetic on reference. Thus, it must be proved
that the two elements on top of the stack are of primitive types before performing
any arithmetic operation. On the Java platform, BCV is invoked at load time
by the loader. Due to the fact that Java Card does not support dynamic class
loading, BCV is performed at loading time, i.e. before installing the Converted
Applet(CAP) onto the card. However, most of the Java smart cards do not have
an on-card BCV as it is quite expensive in terms of memory consumption. Thus,
a trusted third party performs an off-card byte code verification and sign it, and
on-card its digital signature is checked.
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Moreover, the Firewall performs checks at runtime to prevent applets from
accessing (reading or writing) data of other applets. When an applet is installed,
the system uses a unique applet identifier (AID) from which it is possible to
retrieve the name of the package in which it is defined. If two applets are in-
stances of classes coming from the same Java Card package, they are considered
belonging to the same context. The firewall isolates the contexts in such a way
that a method executing in one context cannot access any attribute or method
of objects belonging to another context unless it explicitly exposes functionality
via a Shareable Interface Object.

Smart card security is a complex problem with different points of view but
products based on JCVM have passed successfully real-world security evaluations
for major industries around the world. It is also the platform that has passed high
level security evaluations for issuance by banking associations and by leading
government authorities, they have also achieved compliance with FIPS 140-1
certification scheme. Nevertheless implementations have suffered severals attacks
either hardware or software based. Some of them succeeded into getting access to
the EEPROM (code of the downloaded applets) but as far as we know, nobody
succeeded into reversing the code i.e. having access to the code of the VM, the
operating system and the cryptographic algorithm implementations. These latter
are protected by the interpretation layer which denies access to other memories
than the EEPROM.

3 Embedded Countermeasures

There are three main types of attacks on a smart card. The first one is the
software attack [5,9], which provides the cheapest solution to access sensitive
information from the targeted cards. The second one is called side-channel or
observation attack. This technique enables one either to retrieve secret crypto-
graphic keys [8] used during a sensitive operation, or to reverse engineer the code
used during a given operation [17]. The last one is the combined attack where a
physical perturbation may create a logical fault which, in turn, is exploited to
attack a card. We focus, in this paper, on the logical attacks which require the
least knowledge for the attacker and that are the most affordable ones.

Designing a smart card attack must face several problems. The first one is
the complete absence of documentation. The designer works within a black box
approach. The second one is related with the embedded countermeasures. Such a
product must resist to different attacks and several hardware and software frag-
ments are dedicated to mitigate these attacks. The following section is dedicated
to this class of attack and their related countermeasures.

3.1 State of the Art of Attacks Against Java Cards

Logical attacks are based on the fact that the runtime relies on the BCV to avoid
costly tests. Then, once someone find an absence of a test during runtime, it is
possible to perform an attack path. An attack aims to confuse the applet’s control
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flow upon a corruption of the Java Card Program Counter or perturbation of
the data.

Misleading the application’s control flow purposes to execute a shell code
stored somewhere in the memory. The aim of EMANTI attack [13], explained by
Tguchi-Cartigny et al., is to abuse the Firewall mechanism with the unchecked
static instructions (as getstatic, putstatic and invokestatic) to call mali-
cious byte codes. In a malicious CAP file, the parameter of an invokestatic
instruction may redirect the Control Flow Graph (CFG) of another installed ap-
plet in the targeted smart card. Such an attack leads for the first time to execute
self modifying code in a Java Card. This attack has been mitigated through dif-
ferent countermeasures. EMAN2 [6] attack was related to the return address
stored in the Java Card stack. They used the unchecked local variables to mod-
ify the return address, while Faugeron in [9] uses an underflow on the stack to
get access to the return address.

When a BCV is embedded or if the process requires its usage, installing an ill-
formed applet is impossible. To bypass an embedded BCV, new attacks exploit
the idea of combining software and physical attacks. Barbu et al. presented and
performed several combined attacks such as the attack [3] based on the Java
Card 3.0 specification leading to the circumvention of the Firewall application.
Another attack [2] consist on tampering the APDU that leads to access the APDU
buffer array at any time. They also discussed in [1] about a way to disturb the
operand stack with a combined attack wich gives the ability to alter any method
regardless of its Java context or to execute any byte code sequence, even if it
is ill-formed. This attack bypasses the on-card BCV [4]. In [6], Bouffard et al.
described how to change the execution flow of an application after loading it into
a Java Card. Recently, Razafindralambo et al. [16] introduced a combined attack
based on fault enabled viruses. Such a virus is activated by hitting with a laser
beam, at a precise location in the memory, where the instruction of a program
(virus) is stored. Then, the targeted instruction mutates one instruction with
one operand to an instruction with no operand. Then, the operand is executed
by the JCVM as an instruction. They demonstrated the ability to design a code
in a such way that a given instruction can change the semantics of the program.
And then a well-typed application is loaded into the card but an ill-typed one is
executed.

Hamadouche et al. [12] described various techniques used for designing effi-
cient viruses for smart cards. The first one is to exploit the linking process by
forcing it to link a token with an unauthorized instruction. The second step is to
characterize the whole Java card API by designing a set of CAP files which are
used to extract the addresses of the API regardless of the platform. The authors
were able to develop CAP files that embed a shell code (virus). As they know all
the addresses of each method of the API, they could replace instructions of any
method. In [16], they abuse the on board linker in such a way that the applica-
tion is only made of tokens to be resolved by the linker. Knowing the mapping
between addresses to tokens thanks to the previous attacks, they have been able
to use the linker to generate itself the shell code to be executed.
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3.2 Mitigating the Attacks with Affordable Countermeasures

The objective of a system countermeasure is to detect an attack which occurs
at linking time, run time (e.g. when the byte code transits on the data bus) or
during the execution of another piece of code. Thus, the nature of the counter-
measure is different in terms of:

— protection of variable integrity: instance field, code to be executed, evaluation
stack, execution context, etc.

— protection against control flow execution modification: bypassing a test,
jumping to an unauthorized data area, jumping to an argument instead
of an instruction, etc.

— execution of shell code,

— type confusion, executing an instruction on an object with a given type and
this object is considered in another code fragment to another type.

The integrity of application data is often used in Java Card and is called secure
storage. It mainly consists of a dual storage or a checksum in order to verify
whether the modification of the field is only done through the virtual machine
(VM). Another integrity check concerns the VM structure and in particular
the frame context. Using the EMAN 2 attack, it is possible to modify the return
address in the frame using unchecked local variable indexes. Most of smart cards
available on the web markets might be flooded by the modification of the CFG.
Thus, it is possible to jump into an array which contains any shell code.

To prevente the execution of a shell code, there is the possibility to re-encode
on the fly during the linking phase of the value of byte code. So, if someone trying
to execute an arbitrary array will not be able to obtain the desired behavior. In
such a method the encoded value depends on a dynamic variable, using the JPC
for example as a nonce is enough to avoid any brute force attack for guessing
the scrambled value.

There are lot of possibilities to protect the data and the execution of a code
into the VM. Unfortunately, if all of them are activated during the execution
of an application, the performance of the smart card will drastically decrease
reaching an unacceptable level. For that reason, most of the smart cards available
on web market implement the bound check counter measure which has been
demonstrated as efficient enough to mitigate any exploitable shell code.

3.3 Checking the Jump Boundaries

An affordable countermeasure against the execution of shell code is to verify if
the code is still executing within the boundaries of the current method. For each
method, the system maintains several information like maxJPC. So, the domain
of the JPC of a method belongs to {0.maxJPC}. An attack like the EMAN2
presented in the previous section, modifies the return address such that as it
returns from method £() the control is transferred to the shell code instead
of the caller. But the execution of the shell code is done within the execution
context of the caller as shown Figure 1. In such a case, when the shell code ends
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with its own return instruction, it goes back to the caller of the caller of the
method £ (). The shell code can not be embedded within the method £() and
thus is implemented as an array stored in a different area of the method.

method ()
maxIPC Shell Code ()
ret ret
stack stack
system system
Tocals locals
execution context of f{) execution context of
f() caller

Fig. 1. Description of execution context

A naive solution should be to check if the value of JPC belongs to its domain
as shown in the code fragment of the Listing 1.1.

Listing 1.1. Check the boundaries for each instruction

int16 BC pop(void)
{
vm sp——;
vm pc += 1;
if (vm pc > maxJPC)
return BC SECURITY ();
return ACTION NONE;

This increases the size of each byte code of 16 bytes on an ARMT7 architecture.
The original instruction requires 44 bytes. The increase for each instruction is
around 36% which is too much for such a small device. The trade off is to check
only the jump destination while the control flow is transferred. Thus, only the
exit of a basic block will be checked, reducing the overhead. The exit instructions
belong to the set {if xx yy, goto yy} with yy having the value wide or not,
depending on the domain of the offset coded on a byte or a short. The term
xx has the values type,ne, eq, 1t, ge, gt. The overhead is drastically lower
impacting only a subset of the instruction set. On the Oracle Purse application
it represents only 4% of overhead on the same architecture. This countermeasure
is affordable and is able to detect that the control flow has been transferred to
a shell code if this one requires a branch.
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It does not prevent to jump to a shell code but restrict the semantics of
the shell code to a linear code. In particular no loop is available, no condition
evaluation and so on. As an effect, it becomes impossible to use a shell code for
dumping the memory.

4 Mitigating the Control Flow Countermeasures

Two solutions are possible to bypass the countermeasure. Both of them are
related to the non completeness of the countermeasure. The first one is to use
the exception mechanism to transfer the control flow and data to the caller.
It requires that the caller rebuilts the control flow using the catch mechanism
of Java. Thus, the exception object is propagated to the caller if a handler is
present, it can take decision using the reason embedded in the exception object.
The second possibility is to simply use the return mechanism of Java if correctly
handled. We have chosen the second but any avatar using the exception can get
the same result.

The first step consist in implementing an EMAN2 as described by Bouffard
et al. [5]. This attack abuses the instructions that access the local stack area!
in order to write outside the domain of the locals. The authors succeeded in
modifying the return address. When the return instruction is executed, it leads
to a controlled execution flow modification.

A fragment of the EMAN2 exploit is shown in the Listing 1.2. The described
function contains two parameters (the class instance, this, and the address pa-
rameter) and no local variable. In this function, the sload 1 operation pushes
the value of address parameter onto the Java Card stack. The following oper-
ation, sstore 4, stores the last pushed short value into the local variable 4.

Listing 1.2. Stack overflow into a Java Card.

public void updateReturnAddress (short address) {
02 // flags:0 max stack:2

20 // nargs:2 max locals:0

16 01 sload 1 // push address from the local 1
29 03 sstore 4 // STACK OVERFLOW!

TA return // Jump to the shellcode

}

As the function’s stack contains only two elements into the locals part, the
authors made a stack overflow from the local variable area to set up the return
address? by a specific value. The state of the Java Card stack is presented into

! As defined in the Java Card specification [14], accessing to the local variable is done
by the aload, astore, sload and sstore instructions.
2 On the evaluated smart cards, the references are encoded on 2-byte as short values.
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the Figure 2 at left. For the current frame, we find first the arguments of the
method and then the locals variables. Often, a system area is used to be able to
retrieve the state of the caller. We have found some cards where the system area
is not contiguous with the locals and the stack as shown in the Figure 2 right.

S, stack
s
return address =2, stack
system
dat sec. context
ata
system
arg | max loc.
gl locals current_ctx data
locals
system
current_frame | Arguments data
current_frame | rguments
-_—
Fig. 2. Stack

4.1 Principle of the Control Flow Extraction

The objective of the attack is to split the original code fragment that we want to
execute even in presence of the countermeasure into several basic blocks. Then,
an instruction sspush value is inserted and the value is the variable that is
evaluated at the beginning of the next basic block. An instruction sreturn fin-
ishes each of the basic block. All these basic blocks are stored consecutively into
an array. The control flow is then assumed by a specific method controlFlow().
The CFG is implemented into this method which contains only decision and call
to the dummy () method. This method plays only the role to be the context ex-
ecution of the shell code and just invokes the method shellCodeLauncher ().
This latter is the one patched thanks to the EMAN2 attack.

Once the shellCodeLauncher () ends its execution, it transfers the control
flow to one of the basic block stored into the array. At the end of the shell code
the return instruction is executed leading to transfer the control flow to the
method controlFlow() as shown in Figure 3. It is important to notice that the
execution context of the shell code is the dummy method and not the method
shellCodeLauncher ().

With such an architecture, illegal code is executed in the shellCode method
while the CFG is managed by the controlFlow method.

4.2 Parameters Exchange between the Controller and the Shell
Code

We have seen how retrieving data from the shell code using simply the value
pushed on top of the stack and send back to the caller. To provide input data
to any of the basic blocks stored into the array, we can use the caller context
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controlFlow dummy shellCodeLauncher

shellCode

return

A

return

A

Fig. 3. Control flow derivation

i.e. the argument of the dummy method. The number of argument of the dummy
method must be the max argument of all the basic blocks for each type of data.

For example, if the shell code is made of three basic blocks requiring the
following data: BB1 = short, byte, BBy = byte, byte, BB3 = ref, short, byte the
maximum of generic argument of dummy method is 4 defined as Lo = short, L1 =
byte, Ly = byte, L3 = ref. Note that BB3 will be called with a reordering of its
arguments: BB3 = short, byte, ref. Then the argument used by each basic blocks
will be the following BBy = Lo, L1, BBy = Ly, Lo, BBs = Ly, L1, Ls. For each
basic block, the unused variables are set to their default Java value.

The first parameter of the dummy method is the offset to jump into the shell
code array. In the code fragment given in the Listing 1.3, the first call in the
evaluation condition is for the first segment of the shell code with the related
parameters, the size of the first segment (n) is then added at the first parameter
of the second segment leading to a call to BB3. The size of the first and the
second (m) is then used to call the third segment.

Listing 1.3. Calling convention of the basic blocks

if (dummy (arAdd,L 0,L 1,0,null)) // implicit call to BBI
dummy (arAdd+n,L 0,L 1,L 2,null); //implicit call to BB2
else

dummy (arAdd+m,L 0,0,L 2,L3); //implicit call to BB3

}

The only constraint is that the order of the parameters of the dummy method
must be strictly the same as the method shellCodeLaucher.
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5 Experiments: The Java Self Modifying Code Revisited

We use our method to execute polymorphic code, i.e. a code that modifies itself
like a virus to be able to execute illegal instruction. This shell code is able to
completely dump the card memory even in countermeasure presence.

5.1 Type Confusion Exploitation

The idea is to use in the controlFlow method an array that can be manipulated
with read and write instructions and the shell code that execute the array. In
the shell code, we use the instruction getstatic s that retrieves the value of
a short at the given index as shown in 1.4. The value of the index is an ar-
gument of the instruction and cannot be incremented directly by the method.
The parameter of the instruction is an index in the constant pool before the link
resolves the token and becomes inside the card an offset, or reference depending
to the implementation.

Listing 1.4. Simple shell code to dump the memory

7 public void getMyAddress(){
8 // flags: 0 max stack : 1

9 // mnargs: 0 max locals: 0
10 7D 00 00 getstatic s 2

11 78 sreturn

12}

The corresponding value in the shell code array is [7D, 00, 00, 78]. Executing
this shell code retrieves the content of the memory at the address 0x0000. The
controlFlow method has to manage the value of the address. In this basic
example, the input data are only the offset in the array and the return value of
the basic block must be stored in input-output buffer to be sent to the reader.
The address to be modified is the content of the shell code array at offset 1 for
the high byte of the address and 2 for the low one. The aim is to write in the
input output buffer 128 bytes of memory.

Listing 1.5. Calling the shell code with parameters and retrieving return value

1 public void controlFlow (APDU apdu, byte[] buffer, short arAdd){
2 short boff=0x00;

3 for (short i=0;i<=0x7F; i++){

4  short x=dummy (arAdd);

5 Util.setShort (buffer , boff, x);

6 if (shellcode[2]==(byte)0xFF){

7 shellcode[2]=(byte)0x00;

8 shellcode[1]4++);}

9 else{shellcode[2]4+=2;}

10 boff=(short)(boff+2);

1m0}

12 apdu.setOutgoingAndSend ((short) 0x00, boff);
13}
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In the Listing 1.5 of the controlFlow method at line 4 we get the content of the
memory and at line 5, we store it in the buffer. At line 9, we increase the value
of the address to be dumped, and from line 6 to 8, we propagate the carry.

5.2 Completeness of the Countermeasure

We have demonstrated that such a counter measure is inefficient due to its
incompleteness. The objective of the initial countermeasure was to detect the
execution of a shell code outside its original position by checking the destination
branch. Thus the current counter measure encompasses only the set of intra pro-
cedure instructions (i.e. goto, if, jsr). It must be extended to the set of intra
procedure instructions which is more complicated. The VM has the information
about the minJPC and the maxJPC which is enough to check destination branch
within the boundaries.

For intra procedure instructions the VM needs to know while building or
destroying the frame if the JPC belongs to a valid method. A valid method JPC
depends on how methods are stored within the class. One can suggest to define
the boundaries of the method pool but if the method is inherited, the check must
be done with the mother class and not the current one. Moreover the method
must be allowed to be called according to the current instance. This is threaten
naturally by the invoke instruction while building the frame, no new check is
required. The return instruction is more difficult to handle but one invariant at
least must hold: at the destination the previous instruction must be an invoke
instruction.

Listing 1.6. Deleting the frame

1 bool releaseFrame(value t xret val)

2 { /* mark this frame as free x/

3 thr active —>curr frame—>method = NULL;

4 if (thr active—>curr frame—>prev == NULL)

5 return false;

6 /+ update link pointers */

7 thr active—>curr frame = thr active—>curr frame—>prev;
8 thr active —>curr frame—>next = NULL;

9 /* copy return value in case it exists x/

10 xret val = *(——vm sp);

11 /+ update SP and PC x/

12 vm sp = thr active—>curr frame—>sp;

13 if (thr active—>curr frame—>pc — 3 = BC invoke){
14 vm pc = thr active—>curr frame—>pc;

15 return true;}

16 else return false;

17}

The check of the invariant can be done by the method that restores the pre-
vious frame as shown in Listing 1.6. At line 13, we verify whether the generic
invoke returns true, otherwise, the caller must handle the security problem.
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The overhead occurs only while retrieving the previous instruction and it en-
sures the completeness of the countermeasure.

6 Conclusion and Future Works

In this paper, we have demonstrated that a well known countermeasure against
shell code execution can be bypassed if not all the instructions are covered by
the dynamic checks. We have shown the possibility to extract the control flow
and to generate a shell code that corresponds to any executable program. We
use the method parameter i.e. its signature to provide input and recover data
from the shell code. The control program can use a type confusion to execute a
rich shell code, using self modifying code. As a proof of concept, we developed a
program with its controller that fills an array that is executed by the shell code.
We have been able to dump entirely the memory.

In the future works, we will develop a program to automatically extract the
controller and the shell code for any program. then, we expect to be able to
reverse the content of the dumped memory by using a memory carving program
which is under development.
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Abstract. One of the most important challenges related to Radio Fre-
quency Identification (RFID) systems is security. In this paper, we an-
alyze the security and performance of two recent RFID authentication
protocols based on two different code-based cryptography schemes. The
first one, proposed by Malek and Miri, is based on randomized McEliece
cryptosystem. The second one, proposed by Li et al., is based on Quasi
Cyclic-Moderate Density Parity Check (QC-MDPC) McEliece cryptosys-
tem. We provide enough evidence to prove that these two RFID authen-
tication protocols are not secure. Furthermore, we propose an improved
protocol that eliminates existing weaknesses in studied protocols.

Keywords: McEliece cryptosystem - RFID - Authentication protocol -
Desynchronization attack - Traceability attack

1 Introduction

Among the systems which were developed quickly during the last years, we can
note those of Radio Frequency Identification (RFID), these are used in various
domains (e.g. access control, e-health,...). RFID is a technology without con-
tact and it makes possible to identify an object. The typical RFID systems are
comprised of three main components:

1. The RFID tag consists of a microchip that stores data and a coupling
element, such as an antenna, to communicate via radio frequency.

2. The RFID reader is a device which communicates with tags via radio
waves.

3. The server (or back-end) is a centralized place that hosts all data regarding
access permissions and may be consulted by the reader.

The security is one of the most important challenges related to RFID systems.
The communication channel between the tag and the reader in RFID technology
is insecure, which makes it open in front of active and passive attacks. In order to
have secure authentication protocols, it is important that a RFID authentication
protocol requires security and privacy properties, such as:
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— Mutual Authentication: A RFID authentication protocol achieves mutual
authentication, that is to say, it achieves tag’s authentication and the reader’s
authentication.

— Untraceability: The tag is untraceable if an intruder cannot tell whether
he has seen the same tag twice or two different tags [4].

— Desynchronization Resilience: This property specifies for RFID proto-
cols that update a shared secret before terminating the protocol. We can de-
fine this property as follows: at session (i), the intruder can block or modify
the exchanged messages between the reader and the tag. In the next ses-
sion, if the authentication process fails, then the tag and the reader are not
correlated and this protocol does not achieve desynchronization resilience.

In a survey of RFID authentication protocols, we can find various protocols de-
veloped using different schemes of error-correcting codes, such as [2,13,3,12,6,5].
This work is articulated around the security analysis of two recent RFID authen-
tication protocols. The first one, proposed by Malek and Miri [6], is based on
randomized McEliece cryptosystem. The second one, proposed by Li et al. [5], is
based on Quasi Cyclic-Moderate Density Parity Check (QC-MDPC) McEliece
cryptosystem.

The rest of this paper is structured as follows: section 2 presents the basic
concepts of code-based cryptography. Section 3 analyzes the Malek and Miri’s
protocol. We analyze the Li et al. protocol in section 4. In section 5, we give
an improved version of Malek and Miri protocol. Finally, the paper ends with a
general conclusion.

2 Preliminaries

2.1 Code-Based Cryptography

Code-based cryptography allows the construction of different schemes (like
public-key encryption scheme, identification scheme, etc.). The encryption and de-
cryption are high-speed and do not require any crypto-processor. Despite those
advantages, the major problem was the size of public key (for more information
see [11]). Let C(n, k, t) be a binary linear code, where n is length, k is dimension
(k and n are positive integers and & < n). C is a t-error correcting linear code,
where t = Ldglj . The minimum distance d is the smallest weight of any non-zero
codeword in the code. An example of parameters (n, k,t) = (2048, 1278,70), the
public key size was about 2.5 Megabits. Recently, code-based cryptosystems were
presented with small key sizes, for example [1] and [8].

2.2 Randomized McEliece Cryptosystem

The McEliece cryptosystem [7] is the first public key cryptosystem using alge-
braic coding theory. The security of this cryptosystem is based on two standard
computational assumptions: the syndrome decoding (SD) problem is hard, and
the public-key is indistinguishable.
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Nojima et al. in [10] prove that padding the plaintext with a random bit-string
provides the semantic security against chosen plaintext attack (IND-CPA) for
the McEliece cryptosystem with the standard assumptions. A McEliece cryp-
tosystem has the following components:

— Key Generation: Randomly generates a k x n generator matrix G’ of a
binary Goppa code C. Randomly generates a nxn binary permutation matrix
P and a k x k binary invertible matrix S/, then computes G = S’G’' P, which
is another valid generator matrix. The private key is (S’,G’, P, A(.)), where
A(.) is a polynomial-time decoding algorithm. The public key is (G, t).

— Encryption: Randomly generates an error vector e € F of weight wt(e) <
t, computes the codeword [r || m] G, where r € F5' is a random string and
m € ]F}Q€2 is the plaintext. The dimension k is equal to ki + ko, with ki < bk
and b < 1. The ciphertext ¢ € F} is ¢/ =[r || m]G @ e.

— Decryption: Given a ciphertext ¢/, computes z = ¢/P~!, and then applies
the polynomial-time decoding algorithm y = A(z) and outputs [r || m] =
yS’~!. The plaintext m is the last ks bits of the decrypted string.

2.3 McEliece Cryptography Based on QC-MDPC Codes

Quasi Cyclic-Moderate Density Parity Check (QC-MDPC) code is a linear block
code with quasi-cyclic construction (see [9]) which permits to reduce the public
key size.

— Quasi-cyclic code: An C(n,k)-code of length n = ¢ng is a quasi-cyclic
code of order ¢ (and index ng) if C is generated by a parity-check matrix
H = [H; ;] where each H, ; is an ¢ x ¢ circulant matrix.

— MDPC codes: An C(n, k, w)-MDPC code is a linear code of length n and

co-dimension k£ which stands a parity-check matrix of row weight w.
The McEliece cryptosystem based on QC-MDPC codes works as follows:

— Key Generation: generate C(n, k, w)-QC-MDPC code. Select a vector h €
F5 of row weight w uniformly at random, as the initialization factor of gen-
erating H € F5*". The parity check matrix H is obtained from k — 1 cyclic
shifts by h. The matrix has the form H = [Ho|Hy|...|Hpn,—1], where row
weight of H; is w; and w = ZZL:"(;I w;. A generator matrix G = (I|Q) can be
derived from the H. Note that the public key for encryption is G € anfk)xn
and the private key is H.

(H ' | Hoy)T

no—1-
0= (H, ' .H)T

(H;ol—l'Hno*?)T
— Encryption: To encrypt the message m € Fgfk, randomly generate e € Fy
of wt(e) < t. The ciphertext ¢’ € Fy is ¢/ = mG @ e.
— Decryption: Let Ay a decoding algorithm equipped with the sparse parity
check matrix H. To decrypt ¢ into m, compute mG = Ay (mG @ e), and
extract the plaintext m from the first n — k positions of mgG.
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2.4 Notations

To describe informally many authentication protocols, We, afterward, use the
following notations:
T R the tag and the reader, respectively

A the adversary

h(.) hash function

t integer numbers

e error vector of length n and weight wt(e) < ¢
id the tag’s identifier

idp the reader’s identifier

r,r random numbers with length k;
ToldsTnew tWO secret synchronization values
D random vector with length n

v random vector with length k

Ap circulant matrix generated from p

3 Malek and Miri’s Protocol

3.1 Review of the Malek and Miri’s Protocol

Malek and Miri proposed in [6] a lightweight mutual RFID authentication proto-
col based on randomized McEliece public-key cryptosystem. Let’s note G = [g; ] ,
with G; and Go two matrices with k; X n and ks X n, respectively. This protocol
uses the following principle:

d=[r|mGoe=rG ®mG ®e (1)

In the initialization phase, the trusted center (e.g. server) selects a binary
string id. Then it generates a random string r that uniquely identifies the tag
with id. The trusted center encrypts [r || id] using the randomized McEliece
cryptosystem. The trusted center outputs Gy ®idGs. Then it stores {rG; ®idGo,
id} in the tag’s memory. The data stored in the reader are private matrices and
a database composed of {idg, r,id}, where idp is the reader’s identifier. We note
that in this protocol, the tag can communicate with a set of authorized readers.
So, it is possible that different parameters for different readers can be stored in
the tag’s memory.

The authentication phase is depicted as follows (see Fig. 1):

— The reader R sends the query message with idg to the tag T

— T searches the values {rG; ¢ idGs,id} corresponding to idg. If T finds the
corresponding values, it generates a random error vector e. T' computes y =
rG1 ® idGs @ e and sends it to R.

— R decrypts y to retrieve (r,id) and e and verifies the received values with id, r
stored in the database. If the tag’s authentication is successful, R generates
a new random vector p € 5 and computes a circular matrix A, from p.
It sends the response set {dp,d1} to T, where dy = rG; @ idGs ® p and
dy =id @ h(eA,), where h(.) € F5? is an hash function.



166 N. Chikouche et al.

En

|
Find {rG:®idG, id} foridr
Generate e with wt(e)=t
Compute y=rG1®idG, Se

Decodey (r,id,e)
verifyidand r
Generate random p

do=rG1®idG2 ®p, d1=id®h(e4,)

Compute do®rG1®idGzto find p
Calculate e4,
Verify di®h(ed,)=id

0K
I
Generate randomlyr’
Calculate y=1'G1®idG. e ,
y

Replace {rG:®idGz,id}
with {y'®e,id}

I *

Fig. 1. Malek and Miri’s Protocol [6]

— T computes dy @ rG1 ® idGa = p and uses its value to generate a circulant
matrix A,, in order to compute eA,. It then, verifies that dy & h(eA,) = id.
When the reader’s authentication is successful, the tag requests OK to R.

— R generates a new random r’ and computes 3y’ = r'G; ® idG> @ e. It sends it
to T

— T refreshes its memory content by replacing {rG; @ idGs,id} with {y’ @ e,id}
and terminates this session.

3.2 Desynchronization Attack

We assume that the adversary A has a complete control over the channel of
communication between the reader R and the tag T'. It can intercept any message
passing through the network, modify or block messages, and it can also create
new messages from its initial knowledge.

Fig.2 shows the message transmission of the desynchronization attack, and
the following is a detailed description of each step:

1. We suppose that the system is processing normally, steps of the tag’s au-
thentication and the reader’s authentication are successful. T' requests OK
to R and the adversary intercepts the messages transmitted between R
and 7.
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Fig. 2. Desynchronisation attack on Malek and Miri’s protocol

2. R generates a new random r’, computes 3y’ = 1'G; @ idG> @ e, and sends it.
R updates the value of r by r’.

3. A blocks the message y’, generates a vector f € FY, and computes y' @ f. It
sends it to T'.

4. T updates the stored data {rG; @ idGs,id} by {y’ & f ®e,id} and termi-
nates the session. The new data stored is {r'Gy @ idGs @ f,id}.

5. In the next run of the protocol, R sends the query message with idg to T

6. T searches {r'G; ®idGs @ f,id} corresponding to idgr. T generates a random
error vector e and computes y = 1'Gy @ idGs $ f & e and sends it to R.

7. After decrypting y, the received id”,r" is different from id, r’ (stored in the
database). Thus, the tag’s authentication has failed.

There is another scenario to realize the attack on desynchronization. When
the intruder blocks the last message, the random value is updated in back-end
and not modified in the tag. Consequentially, the tag and the reader are not
correlated and this protocol does not achieve the desynchronization resilience

property.

4 Li et al.’s Protocol

4.1 Review of the Li et al.’s Protocol

Li et al. proposed in [5] a mutual RFID authentication based on the QC-MDPC
McEliece cryptosystem.

In the initialization phase, the trusted center (e.g. server) generates the ini-
tialization vector h', saved it in T and the database of R with identifier id. The
steps of authentication phase are as follows (see Fig. 3):

— R generates a random vector v and queries 7.
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Fig. 3. Li et al.’s Protocol [5]

— After receiving v, T generates a randomly a error vector e, and then utilizes
the vector I/ to create public-key matrix G for encryption. Compute ¢’ =
1dG @ e and hy; = h(p || €), then sends ¢’ and hy back to the reader.

— After receiving authentication message from R and transmitting them to
back-end database, R performs a decoding algorithm with private key ma-
trices and identifies the error vector e as well as id. From id, the server
retrieves the corresponding value of id. It computes h(p || ) and compares
it with h. If they are equal, R computes ho = h(e) and sends it to 7.

— T would compute h(e), if h(e) = ha, then the object of mutual authentication
is achieved, authentication is successful, otherwise, the reader’s authentica-
tion has failed.

4.2 Traceability Attack

In the McEliece cryptosystem, the parameters (n, k,t) are public. With these
information, and particularly, the minimum distance d and the Hamming weight
t; the adversary can attempt to trace the tag with the following scenario:

At session (i), the adversary intercepts (¢; = idG @ e;) and saves it. At session
(j), it intercepts (c¢; = idG @ e;). The intruder computes: ¢} © ¢ = idG © e; ©
1dG @ e;j

We have e; # e; and the identifier of the tag id is static in all sessions, this
implicates: ¢; & ¢; = e; @ e;. The Hamming weight of (c; & ¢}) is less than 2¢ + 1,
and the codeword idG is fixed for all sessions leads to message-resend attack,
and implicates, that this protocol does not provide untraceability.
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5 Improved Protocol

In the protocol of [5], the tag requires n bits in the space memory to store
the vector h. In each session, the tag generates check parity matrix H, then
computes the public matrix G from H. In the majority of RFID authentication
protocols, the tag does not require to compute codeword in each process of
mutual authentication, but it stores the codeword in tag, such as, the protocol
of Malek-Miri [6].

In the protocol of [6] there are two major weaknesses: this protocol cannot
resist desynchronization attack, and it requires an important space in volatile
memory n X n bits to compute eA,.

5.1 Algorithm of Compute eA,

We propose the Algorithm 1 to reduce the space required from volatile memory.
We symbolize eA, by s and o(.,¢) is a circular permutation function on ¢ posi-
tions. We present two examples of functionality of o(.,¢) with ¢ =1 and ¢ = 2,
respectively, as follows (2):

o(p1p2.--Pn, 1) = PuP1.-Pn—1 @)
0(p1p2-~-pn, 2) = Pn—1Pn---Pn—2

Algorithm 1. compute eA,

Input e = ejez...e,, and p = p1p2...pn
Output s = s152...5,
Initialize the vector s by values 0, (s = 00...0)
q <0
140
7 <0
while ¢ < t do
if e; =0 then

q + q+1
10:  else
11: p=0(p1p2..Pn,q)
12: s=s@p
13: p = o(pip2...pn, 1)
14: q <0
15: 14— i+1
16:  end if
17: j <+ j+1
18: end while
19: return s

©

Thus, using our proposed algorithm, we can reduce the size of memory re-
quired to compute eA, from n x n into 2n.
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5.2 Description of Improved Protocol

The improved version of Malek and Miri’s protocol is shown in Fig.4 and also
shown as follows:

— The reader R sends the query message with idg to the tag T.

— T searches the values {rG; @ idGs,id} corresponding to idg. If T finds the
corresponding values, it generates a random error vector e. T' computes y =
rG1 @ 1dGs @ e and sends it to R.

— R decrypts y to retrieve (id,r) and e and verifies the received values with
(id, o14) or (id,Thew) stored in the database. If the tag’s authentication is
successful, R generates a new random vector p € Fy and computes eA, by
Algorithm 1, where A, is circulant matrix of vector p. It sends the response
set {do,d1} to T, where dy = rG1 ® idG2 ® p and di = id & h(eA,), where
h(.) € F5* is an hash function.

— T computes dy é rG1 & idGa = p and uses its value to compute eA, with
Algorithm 1. It then, verifies that d; @ h(eA,) = id. When the reader’s
authentication is successful, the tag requests OK to R.

— R generates a new random 7', computes ¥’ = 17'G; @ idGs ® e and Hr =
h(r'Gy @ idGa || €). It updates rojq < Tnew and rpew < 7, only in case the
matched 7 18 76 -

— It sends v’ and Hg to T.

= .

L

Find {rG:2idGz, id} for ids
Generate e with wt(e)st
Compute y= rG:1® id Gz Be

Decodey (ride)

Identify the tag ais and ras(or rnew)
Denote the matched raa(or rnew) value asr
Generate random p

do=1G:1®id Gz &p, d1=id Bh(e4y)

Compute do®rG:®1dGzto find p
Using Algorithm 1 to calculate ed,
Verify di©h(ed,)=id

OK

Generate randomly r’
Calculate y'=1'G1© id Gz @e
& He=h(r'G:@1id [ e)
Update ragq, rnew

y‘, Hr

Verify He=? h(r'G:® id [|&)
If succeeds, replace rG1® id Gz with

¥®e

Fig. 4. Improved version of Malek and Miri’s protocol
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Table 1. Security comparison

[3] [12] [6] [5] Our protocol
Mutual Authentication N N Y Y Y
Untraceability Y Y Y N Y
Desynchronization resilience Y Y N Y Y
Forward secrecy N N Y N Y

— T calculates (y'@e to obtaining r’'G; ®idGs. Then, it computes h(r'G ®idGs ||
e) and compare it with received Hp. If they equal, the tag refreshes its mem-
ory content by replacing {rG; @ idGs,id} with {y’ @ e,id} and terminates
this session.

The Table 1 presents the security comparison between the existing protocols
and the proposed protocol. So, we can conclude that the improved protocol is
more efficient against different attacks.

6 Conclusion

Recently, Malek-Miri and Li et al. proposed two mutual RFID authentication
protocols based on error-correcting codes. In this paper, we have analyzed these
two protocols in terms of security and performance. The results of security anal-
ysis show that Malek-Miri authentication protocol is vulnerable to desynchro-
nization attack, and Li et al.’s protocol cannot resist traceability attack.

In this paper, we proposed the improved version protocol to prevent the de-
scribed attacks. At the improved protocol, we used secret synchronisation values
in back-end. We also proposed an algorithm to reduce the space required in
volatile memory.
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macy Division in the framework of ”Science for Peace”, SPS Project 984520.
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Abstract. This paper presents a cryptanalysis of a modified version of
the Sidelnikov cryptosystem which is based on Reed-Muller codes. This
modified scheme consists in inserting random columns in the secret gen-
erating matrix or parity check matrix. The cryptanalysis relies on the
computation of the squares of the public code. The particular nature of
Reed-Muller which are defined by means of multivariate binary polyno-
mials, permits to predicate the value of dimension of the square codes
and then to fully recover in polynomial time the secret positions of the
random columns. Our work shows that the insertion of random columns
in the Sidelnikov scheme does not bring any security improvement.

Keywords: Sidelnikov scheme - Component-wise product - Cryptanal-
ysis - Distinguisher

1 Introduction

Contrary to the cryptosystems based on number theory, the safety of cryptosys-
tems based on error correcting codes appear to be resistant to the emergence of
quantum computers [22]. Its other advantage is that the encryption and decryp-
tion are very fast, about five times faster for encryption, and 10 to 100 times
faster for decryption compared to RSA cryptosystem. The most important rep-
resentative of this cryptography is the McEliece cryptosystem [17] which is also
one of the oldest public key cryptosystems. Its security is based on two problems:
the difficulty of decoding a random linear code and the difficulty of recovering a
decoding algorithm from a public matrix representation of a binary Goppa code.
The second assumption was reformulated in a more formal way by stating there
is no polynomial-time algorithm that distinguishes between a random matrix
and a generating matrix of a binary Goppa code [4,21].

Although efficient, the main drawback of this scheme is the enormous size of
the public key. During these last years, several authors have proposed to consider
more structured codes. The common idea is to focus on codes equipped with a
non-trivial permutation group.! This is the case for example of Misoczki and

! The permutation group of a code is the set of permutations leaving globally invariant
the code.

© Springer International Publishing Switzerland 2015
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Barreto [19] who proposed quasi-dyadic Goppa codes. Their worked followed
Gaborit’s idea to use quasi-cyclic BCH codes [11] and Berger, Cayrel, Gaborit
and Otmani’s paper [1] which used quasi-cyclic alternant codes. The algebraic
attack given in [10] succeeds in breaking most of the parameters of [1,19]. It
makes use of the fact that the underlying codes which are alternant codes come
with an algebraic structure. It allows a cryptanalysis consisting in setting up a
polynomial system and then solving it with Grobner bases techniques. In the
very specific the case of [1,19], the quasi-cyclic and quasi-dyadic structures allow
a huge reduction of the number of variables. Recently, the attack was further
improved for against [19] by exploiting more efficiently the underlying Goppa
structure [8,9].

The apparition of algebraic attacks [10], although it does not undermine the
security of the McEliece scheme, shows however the importance of finding a
better hiding of the structure of the codes. A possible solution would be to
change the description of the scheme by inserting some randomness. Probably,
the first attempt towards this objective, is Berger-Loidreau’s paper [2]. The
authors suggest to add random rows to the description of the codes. They applied
this to Niederreiter encryption scheme [20] instantiated with generalised Reed-
Solomon codes. The goal is to come up with a protection against Sidelnikov and
Shestakov [24]. But Wieshebrink’s paper shows that component-wise product of
codes [27] enables to break Berger-Loidreau’s proposal.

Another simple example would be to insert random columns in the secret
matrix. Several authors [25,14] have indeed proposed this technique to avoid
structural attacks on similar versions of the McEliece cryptosystem. This kind
modification was proposed for the first time by Wieschebrink in [25]. Its pri-
mary goal was to avoid the Sidelnikov-Shestakov attack [24] on the McEliece
cryptosystem using generalized Reed-Solomon codes. Although this proposal
had effectively avoided the original attack, recent studies have shown that in
that case of generalized Reed-Solomon codes, the random columns can be found
through considerations of the dimensions of component-wise product of codes
[12,13,5]. This operation turns out to be a powerful tool. Thanks to [16], it has
also helped in understanding the distinguisher of Goppa code derived in [6,7]
which challenged the validity of the Goppa code indistinguishability assumption
introduced in [4,21]. The paper [16] proves that the distinguisher in [6,7] has
an equivalent but simpler description in terms of the component-wise product
of codes. This distinguisher is even more powerful in the case of Reed-Solomon
codes than for Goppa codes. Indeed, whereas for Goppa codes it is only success-
ful for rates close to 1 [6,7], it can distinguish Reed-Solomon codes of any rate
from random codes.

This paper develops a cryptanalysis of the modified version given in [14] of the
Sidelnikov encryption scheme [23] which is a McEliece-type public key encryption
scheme [17] based on Reed-Muller codes. The idea of [14] is to add random
columns to prevent sub-exponential time key-recovery attacks of [18,3]. But, like
Reed-Solomon codes, Reed-Muller codes are evaluation codes and because of this,
they can be distinguished from random codes. These two families of codes share
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very similar properties which facilitates the recovering of the random columns.
Our key-recovery attack is divided into two steps. The first one is an adaptation
to Reed-Muller codes of the attacks presented in [12,13,5] in order to find the
secret random columns. This is achieved in O(n®) operations in the binary field
where n is the block length of the codes. The second step applies [18,3] to recover
the secret permutation that hides the structure of the Reed-Muller codes. The
rest of the paper is devoted to the description of the first step of the attack.

2 Preliminary Facts

We present in this section definitions and properties from coding theory we need
in the paper.

Let IF, be the finite field of ¢ elements, n and k£ be two non-zero integers such
that £ > n. A linear code of length n and dimension & over F, is a linear subspace
¢ of Fy of dimension k over F,. A generating matriz of ¢ is a k x n matrix
whose rows form a basis of €. The dual of €, generally denoted by €, is the set
of vectors v € Fy such that for all ¢ € ¢ the inner product ¢- v def > civi = 0.
A generating matrix for €+ is also called a parity-check matriz.

Definition 1 (Generalised Reed-Solomon). Let @ = (x1,...,2,) where x;
are distinct elements of By and let y be the vector (yi,...,yn) where y; are
non-zero elements of Fym. The generalised Reed-Solomon code (GRS) of length
n and dimension k over Fym is given by:

GRSy (@.y) “ { (@), ynf(@n)) : f € Fyn[X], deg(f) <k}

Definition 2 (Component-Wise Product). Given two vectors a = (aq, ...,
an) and b = (by,...,b,) in F™ where F is field, we denote by axb the component-
wise product:

axb dZEf (a1b1, .. .,anbn).

Definition 3 (Product of codes). Let &/ and A be two linear codes of length
n. The star product code denoted by </ x B of &/ and P is the vector space
spanned by all products a b where a and b range over A and B respectively.

When B = of then of * o is called the square code of &/ and is rather denoted
by <72,

The importance of the square code construction becomes clear when we com-
pare the dimensions of a code o7 with the dimension of its square code 7% and
one major question is to know what one should expect. This comparison has
already been made in [12,13,5] in the case of generalized Reed-Solomon codes
which allowed to mount efficient attacks on several different schemes based on
generalised Reed-Solomon codes [26,12,13,5]. The results of this paper are based
on these comparisons in the case of Reed-Muller codes.

We recall here important facts about the product of codes.
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Proposition 1. For any linear subspaces F C E and G C E:

(1)

dim F % G < dim F dim G — (dlmFﬂG)

2

Proof. Assume d L dim FN G and let B = {b1,...,baq} be a basis of FNG. We
complete B with vectors F = {f1,..., f:} so that BU F is a basis of F. We do
the same for G by completing B with G = {¢1, ..., gm } so that BUG is a basis of
G. A generating set of F'x G is the union of the four sets {b;xb; : 1 < ¢ < j < d},
{bixf; 1 <i<dl<yj<th{bixg;:1<j<dl<yj<m}and
{fixg; 1 <j<t1<j < m} The proof is terminated by observing the
equality:

d
dt+dm+tm+( ;_

1> = (t+ d)(d+m) — d(d—1).

Corollary 1. For any linear subspace F C E:

dim F
dimF*EgdimFdimE—( ”; )
dimF +1
In particular dim E? < < 1m2 + )

3 Code-Based Public-Key Encryption Schemes

3.1 McEliece Encryption Scheme

In this section we give the basic notion about the McEliece [17] and Niederreiter
[20] cryptosystems . Let G be a family of (n, k)-linear codes over I, for which a
polynomial-time algorithm to decode t-error is available. The general version of
the McEliece cryptosystem is described as follows but McEliece proposed to use
binary Goppa codes.

Key Generation

1. Let G' € Myxn(F,), be a generating matrix of a t-error correcting code
¢ eg

2. Pick an n x n permutation matrix P and a k x k invertible matrix S at
random over [Fy.

3. Compute G = §7'G’P~! which is another generating matrix.

The public key is (G, t) and the private key is (S, G, P).

Encryption. To encrypt the message m € ]F’; , one randomly generates e € Fy
of Hamming weight < ¢. The ciphertext is then the vector ¢ = mG + e.
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Decryption. The vector ¢P~! is at a distance at most ¢ of €. The decoding

algorithm thus allows to find the vector y S, The plaintext is deduced

by computing y.S.

3.2 Niederreiter Encryption Scheme

A version of the McEliece cryptosystem that uses the parity-check matrix in-
stead of the generating matrix has been proposed by Niederreiter [20], and has
been proved to be completely equivalent in term of security. The Niederreiter
cryptosystem is generally describes as follows. In the following, the transpose of
matrix is denoted by 7.

Key Generation

1. Let H' ¢ Mn—ryxn(Fq), be a parity check matrix of a t-error correcting
code €' € G

2. Pick at random an n x n permutation matrix P and a (n — k) X (n — k) non
singular matrix S over F,.

3. Compute H = S™'H'P~ .

The public key is (H,t) and the private key is (S, H', P).

Encryption. For a message m € Fy of Hamming weight < ¢. The cipher text
is given by ¢ = Hm™.

Decryption. Since ¢ = ST'H'P'm” = §7'H' (mP)" and mP is a word
of weight less than or equal to t, the receiver decodes Sc to get the word y. The
associated plaintext is then yP.

4 Wieschebrink’s Masking Technique

Here we present a masking technique first developed in [25] and then proposed
several times with different families of codes. It consists in inserting random
columns in the secret matrix. This technique can be used both in the McEliece
cryptosystem and the Niederreiter version.

4.1 Modified McEliece Scheme

Key Generation

1. Choose three integers ng, k, £ with £ < n and set n def no+£. Pick a random
a generating matrix Gy of an (ng, k)-code € that is able to decode t errors.

2. Pick randomly a k x ¢ matrix R, a k x k invertible matrix S over F, and an
n X n permutation matrix P.

3. Set G' = (Go | R) and compute G = S™'G'P .

The public key is (G, t) and the private key is (S, P, G").
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Encryption. To encrypt a plaintext m € IF’;, one randomly generates e € Fy
of weight < t and computes the ciphertext ¢ = mG + e.

Decryption. To decrypt ¢, one computes y = ¢P and let y’ be the n; first
columns of y. The vector y’ is located within distance ¢ from %. The decoding
of 4y’ provides the plaintext.

4.2 Modified Niederreiter Scheme

Here one can apply the same principle as in the case of McEliece cryptosystem,
but here the insertion of random columns is done in the parity check matrix.

Key Generation

1. Choose three integers ng, k, t, ¢ with £ < n and set n def ng + £. Pick a

random parity-check matrix H of an (ng, k)-code % that is able to decode
t errors.

2. Pick randomly an (ng—k) x £ matrix R and a (ng —k) x (no — k) non singular
matrix S over F,, and an n X n permutation matrix P .

3. Set H' = (Hy | R) and compute H = S~'H' P!

The public key is (H,t) and the private key is (S, H', P).

Encryption. For a plaintext m € IFj; of Hamming weight < ¢, the corresponding
ciphertext is given by ¢ = Hm”.

Decryption. Let dec(-) be the decoding algorithm of @. The symbol L stands
for a decoding failure?. The decryption of a ciphertext ¢ is described in
Algorithm 1.

Algorithm 1. Decryption of Niederreiter scheme with Wieschebrink’s masking.
u=_1
for all z € F, do
y = dec (Sc+ Rz")

if y # 1 then
u=(y,z)P
return u
end if
end for
return u

Note that it is possible for the word u to be different from the transmitted
message m. But an analysis of the meaning of the received message can eliminate

2 This may happen when fro instance the number of errors is greater than t.



Square Code Attack on a Modified Sidelnikov Cryptosystem 179

these cases and consider them as failures decoding. The complexity of this algo-
rithm is of order ¢*T(dec) where T'(dec) is the time complexity of the decoding
algorithm dec(-).

Although the public code seems to be random in this description, a major
problem rests on the choice of the code family to use and how to reduce the size
of the keys. Wieschebrink had proposed the use of Reed-Solomon codes but in
[12,13,5] an attack is presented that can recover the random secret matrix R.

5 Recovering the Random Columns in Polynomial Time

Recently, the paper [14] suggested the use of Reed-Muller codes along with Wi-
eschebrink’s masking technique to propose a McEliece-type encryption scheme.
In the next section, we describe how to find the random columns of R in this
case. Our attack uses the same technique as the one presented in [12,13,5] for
the case of Reed-Solomon codes.

5.1 Reed-Muller Based Encryption Scheme

In this section, we draw inspiration from [12,13,5] to mount an attack on the
version presented in [14]. But before doing so, we present some properties of
Reed-Muller codes.

Definition 4 (Reed-Muller Code). Let Fao[zy,...,x.m] be the set of boolean

polynomials with m variables. Let us set {a1,...,an} = F3* and n Lom. The
Reed-Muller code denoted by RM(r,m) with 0 < r < m is the linear space
defined by:

RM(r,m) d:ef{(f(al), o fan)  fEFafr, ... zp) deg f < r}

We recall an immediate fact about the dimension of Reed-Muller codes.

Fact 1. The dimension of RM(r,m) is equal to E <m>
i
i=0

Theorem 2 ([15] Chapter 13).
RM(r,m)*t = RM(m —r —1,m)

Proposition 2.
RM(r,m)* = RM(2r,m)

Proof. Let ¢y = (f(al), .. .,f(an)) and ¢y = (g(al), . ,g(an)) be elements
of RM(r,m) with deg f < r and degg < r. Hence, ¢; * ¢c2 is the vector of
evaluation (fg(a1),..., fg(an)) which corresponds to polynomial fg. This means
€1 x g € RM(2r,m).

Conversely, each monomial x?,...,xf;; with e; > 0 and Zi e; < 2r is the
product of two polynomials of degree < r. This proves that a basis of RM (21, m)

is contained in RM (r,m)?.
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Proposition 3. Let G be a k x (n + £) matriz obtained by inserting { random
columns in the generating matriz of a Reed-Muller code RM(r,m) and let € be
the code spanned by the rows of G. Assume that £ < (g) and Z?LO (T) < n.Then

we have:

2r m 2r m

<dim%? <

Z(i)\dlm%\Z(i)—&—Z @)

i=0 i=0
Proof. Let 21 be the code with generating matrix G obtained from G by re-
placing the last ¢ columns by all-zero columns and let %, be the code with
generating matrix G2 obtained by replacing in G the first n columns by zero
columns. Hence G = G171 + G2 which implies 21 C € C 21 + 2. We have
91 * D5 = 0 and the following inclusion:

.@12 g%z - @12 —1—922 + D1 % Ds.

Observe we have 2, x %5 = 0. By also remarking dim 2,? = dim RM(2r,m)

and dim %,% = min {E, (g)} = ¢, one can conclude (2) is proven.

5.2 Description of the Attack

It is easy for an adversary to use Prop. 3 to identify the random columns by
computing the dimension of €2 where % is the code generated by the public
matrix G as defined in Sec. 4. We recall that % is permuted version of a Reed-
Muller code RM(r,m). We assume that Z?LO (™) < no where ng = 2™ and

7

(< (g) where k = Y7 (7). We denote by %; the code generated by the
generating matrix G; obtained by deleting the i-th column of G. We also denote
by I C {1,...,n} the set of positions that define the random columns inserted

in G. Two cases occur with high probability:

dimé¢? —1 if iel,
dim %, = (3)
dim ¢ if i¢l.

Once the set I is recovered, it is then easy to find the secret RM(r,m) using
usual attacks on Reed-Muller code [18].

Remark 1. For the parameters in [14], we observed experimentally that (3) is
always true, and the upper-bound given in (2) is always reached, that is to say:

2r
dim 62 = (m)+a
This is way of distinguishing the random positions of the public code assumes
that Z?io (") + € = n. We will see how to deal with parameters that do not
satisfy this assumption. The idea is to look at dim 22 where & is the dual of .
Indeed, like generalized Reed-Solomon codes, the family of Reed-Muller codes is
stable under duality (Theorem 2).
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Proposition 4. Keeping with notation of Proposition 3, let & be the dual of € .
Assuming Z?LO (") > no, we have:

m—r—1 2(m—r—1)

1 m m
dim 22 < 00+ 1)+ ¢ : 4
im 2(+)+ ;(i>+ ; (z) (4)
Proof. Let us set k = ZLO (T) We may assume without loss of generality that
a generating matrix of € is in systematic form: (Ik A R) where R form the
random columns and (I & A) generates RM (r,m). A parity-check matrix for &

is then: -
-A" I, 10
H = 0 .
(RT 0 Ig)

The upper-bound (4) can be readily derived from this last matrix H.

5.3 Complexity of the Attack

Proposition 5. Let & C Fy be a code of dimension k. The complexity of the
computation of a basis of «/* is O(k?n?) operations in Fy.

Proof. The computation, consists first in the computation of (k'gl) generators
of @7?. This computation costs O(k?n) operations. Then, we have to apply a
Gaussian elimination to a (kgl) x n matrix, which costs O(k*n?) operations.

This second step is dominant, which yields the result.

Our attack relies on the computation of the rank of n square codes so the
overall complexity for guessing the random columns is O(n®) operations in the
binary field.

6 Conclusion

In this paper, we study the security of the modified version of the Sidelnikov
scheme [23] given in [14]. We have presented a polynomial-time method that
finds the random columns inserted in a secret matrix. This cryptanalysis uses
the same approach as [12,13,5] which computes the square codes. The resulting
complexity is O(n®) operations in the binary field. The last step that aims to
fully break the scheme ressort to using the attacks developed in [18,3]. Our work
shows that the insertion of random columns in the Sidelnikov scheme does not
bring any security improvement.
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Abstract. Reducible cyclic codes with exactly two nonzero weights were
first studied by T. Helleseth [4] and J. Wolfmann [15]. Later on, G. Vega
[11], set forth the sufficient numerical conditions in order that a cyclic
code, constructed as the direct sum of two one-weight cyclic codes, has
exactly two nonzero weights, and conjectured that there are no other
reducible two-weight cyclic codes of this type. In this paper we present
a new class of cyclic codes constructed as the direct sum of two one-
weight cyclic codes. As will be shown, this new class of cyclic codes is in
accordance with the previous conjecture, since its codes have exactly six
nonzero weights. In fact, for these codes, we will also give their full weight
distribution, showing that none of them can be projective. On the other
hand, recently, a family of six-weight reducible cyclic codes and their
weight distribution, was presented by Y. Liu, et al. [7]; however it is
worth noting that, unlike what is done here, the codes in such family are
constructed as the direct sum of three irreducible cyclic codes.

Keywords: Weight distribution - Reducible cyclic codes and Gaussian
periods

1 Introduction

It is said that a cyclic code is reducible if its parity-check polynomial is factoriz-
able in two or more irreducible factors. Each one of these irreducible factors can
be seen as the parity-check polynomial of an irreducible cyclic code. Therefore,
a reducible cyclic code is, basically, the direct sum of these irreducible cyclic
codes. Reducible cyclic codes, whose parity-check polynomials are factorizable
in exactly two different irreducible factors have been extensively studied (see,
for example, [4], [15], [11], [8], [3], [14], [16] and [12]). Now, each one of these
two irreducible factors might or might not correspond to the parity-check poly-
nomial of a one-weight irreducible cyclic code. Most of the recent efforts along
this line of research have been focused on the study of reducible cyclic codes
constructed as the direct sum of two two-weight irreducible cyclic codes. In fact,
through the easy-to-apply characterization for all semiprimitive two-weight irre-
ducible cyclic codes over any finite field, that was recently presented in [13], it
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is interesting to note that most of the families of reducible cyclic codes studied
in [8], [3], [14], [16] and [12], are constructed as a direct sum of two different
semiprimitive two-weight irreducible cyclic codes of the same dimension. In this
paper, we present a new class of reducible cyclic codes constructed as the direct
sum of two one-weight irreducible cyclic codes. This new class of cyclic codes is
different to the class of codes studied in [4], [15] and [11], and this is so because
the codes presented here have, as we will see later, exactly six nonzero weights.
In fact, for the codes in this new class we will explicitly give their full weight
distribution, and show that none of them can be projective. Recently, on the
other hand, a family of six-weight reducible cyclic codes and their weight dis-
tribution, was presented in [7], however it is worth noting that, unlike what is
done here, the codes in such family are constructed as the direct sum of three
different irreducible cyclic codes of the same dimension.

In order to give a detailed explanation of what is the main result of this work,
let p, t, ¢, k and A be five positive integers, such that p is a prime number,
qg=7p', and A = (¢* —1)/(¢—1). In addition, let y be a fixed primitive element
of IF » and, for any integer a, denote by hq(x) € IFy[z] the minimal polynomial
of v~%. With this notation in mind, the following result gives a description of
the weight distribution of a new class of reducible cyclic codes constructed as
the direct sum of two one-weight cyclic codes of the same length and dimension:

Table 1. Weight distribution of C(4, 4,)

Weight Frequency
0 1
23>\ (qkk—11+ 2(71)5(1:/22—11) qkkf 1
ENCAE G N A 2(¢" - 1)

M 7 +2(-1)°¢"*7Y) L (¢ = 1)(¢* —2(-1)°¢"* - 8)

Mg 7+ (=127 2@ = D"+ (—1)°¢"? - 2)
A"t d* = 12" — (-1)°¢"? = 1)

Ma"h = (=1 Z (@t - DA + (-2 - 14)

Theorem 1. Suppose that q = p' is odd, whereas tk is even. Also suppose that
k

3/(¢* —1) and ged(A, ;1: 1) =3. Let d, s, a1 and ay be any four integers such

that tk = 2sd, as = ay + ¢ ;1 and ged(A, a1) = ged(A, az) = 1. In addition, let

A be the divisor of ¢ — 1, satisfying ged(q — 1,a1) = q;1 and let Cq, q,) be the
cyclic code with parity-check polynomial ha, (x)ha, (7). Fizn = AA. If 3|(p? + 1)

then

(A) hq,(x) and he,(x) are the parity-check polynomials of two different one-
weight cyclic codes of length n and dimension k. The nonzero weight of
these two irreducible cyclic codes is A\g®!.
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(B) C(ay,a0) s an [n,2k] cyclic code over IFy, with the weight distribution given

in Table 1.
(C) If By and By are, respectively, the number of words of weight 1 and 2 in the
dual code of C(q, ay), then By =0 and By = n(q71;(>\71). Therefore Ciq, ay)

is a mon-projective cyclic code.

(D) Cay,az) has, exactly, siz nonzero weights.

For any integer a1, the kind of reducible cyclic codes whose parity-check poly-

nomials are given by the products of the form hq, (x)h .. (x), were studied
1 2

in [8] and [3]. Later, a general description of this kind of codes was given in [12].
Thus, for this work, it is clear that we are dealing with the kind of reducible
cyclic codes whose parity-check polynomials are given by the products of the
form hq, (x)ha1+qk3_1 (x). Recently, a class of this kind of reducible cyclic codes

was the main subject of study in [14]. However, through the aforementioned
easy-to-apply characterization in [13], it is no difficult to see that each code in
this class is always constructed as the direct sum of two different semiprimitive
two-weight irreducible cyclic codes of the same dimension. Conversely, the class
of cyclic codes that are studied in Theorem 1 are the outcome of the direct sum
of two one-weight cyclic codes, and, as will be shown later, this is so thanks to
the condition ged(A4, a1) = ged(A, a1 + qk3_1) = 1. Therefore, it is important to
keep in mind that the class of codes studied in [14], and those studied here, are
two different classes of codes of the same kind.

This work is organized as follows: In Section 2 we establish some notation,
recall some definitions and establish our main assumption that will be considered
throughout this work. We also recall, for this section, some results already known.
In particular, we present the evaluation of a specific exponential sum which can
be derived from a general result originally presented in [9]. Section 3 is devoted
to presenting some preliminary and general results. In Section 4 we use these
results in order to present a formal proof of Theorem 1 and give some examples
for this result. Finally, Section 5 will be devoted to conclusions.

2 Definitions, Notation and Main Assumption

First of all, we set, for this section and for the rest of this work, the following:

Notation. By using p, t, ¢, kK and A, we will denote five positive integers such
that p is a prime number, ¢ = p' and A = (¢* — 1)/(¢ — 1). From now on, 7y
will denote a fixed primitive element of IF . For any integer a, the polynomial
he(z) € IFy[z] will denote the minimal polynomial of v~¢. Furthermore, we will
denote by “Ir”, the absolute trace mapping from IF g« to the prime field I, and
by “Trn:qk JF,” the trace mapping from IFx to IFy. For any positive divisor m of

¢" —1 and for any 0 < i < m — 1, we define ng) = yH(y™), where (y™) denotes

)

the subgroup of IFZk generated by 4. The cosets ng are called the cyclotomic
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classes of order m in IF ;. In connection with these cyclotomic classes, we recall
the cyclotomic numbers of order m. Such cyclotomic numbers are defined by

5,3)™ ) = (™ + 1) N D"
where (ng) +)={z+1]|=z GDEm)}, and 0 <4, <m—1.
The following definitions are important:

An N-weight code is a code such that the cardinality of the set of nonzero
weights is N. It is important to recall that one-weight irreducible cyclic codes
are also known as subfield codes.

A projective code is a linear code such that the minimum weight of its dual
code is at least three (or, equivalently, if any two columns of its generator matrix
are linearly independent).

A cyclic code is irreducible if its parity-check polynomial is irreducible (that
is, its polynomial representation is a minimal ideal).

For this work, we are particularly interested in reducible cyclic codes, whose
parity-check polynomials are factorizable in exactly two different irreducible fac-
tors. That is, we are interested in cyclic codes whose dual codes have two non
conjugated zeros.

We continue with this section by recalling the definition, and a basic property
of the character sums (see, for example, [6]). In order to do this, let p, ¢, k and
7 be as before; then, the canonical additive character x, of I x, is defined as

x(y) :== CpTr(y) ,  forally e,

where (, = exp(%‘/_l). For the canonical additive character x’, of IFy, the
following orthogonal property will be useful:

S Xy =0. (1)

S
Now, we set, for this section and for the rest of this work, the following:

Main Assumption. From now on, we are going to suppose that ¢ is an odd
integer, whereas the product tk is an even integer. Therefore, throughout this
work, we will reserve the letters s and d to represent any two positive integers
that satisfy: tk = 2sd. In addition, we will also suppose that 3|(¢"¥ — 1) and

ged(A, qk; ! — 1) = 3. Therefore, in what follows, we will reserve the Greek
k_q
letter 7 in order to fix 7 ="

Remark 1. As a consequence of our main assumption, observe that IF; - D(()g),
and that the finite field element 7 is a primitive three-root of unity satisfying
724741 = 0, therefore, 71/2 = —7~! = 74 1. In addition, observe that 7 € Dgs)
and since 3| A we also have that k > 1 and, necessarily, the prime number p must
be greater than 3.
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Now, let x be the canonical additive character of I+, and let ¢ be any integer.
Since 3|(¢¥ — 1), it follows that:

dox(r'a?) =143 > x(2).

w€TF i 2ep®

We are particularly interested in the kind of exponential sums that appear in the
RHS of the previous equality. These exponential sums are known as Gaussian
period of order 3. Fortunately, the following result, which is an instance of the
main result in [9, Theorem 1], gives us useful information about such Gaussian
period.

Theorem 2. With our notation and main assumption, suppose that 3|(p® + 1)
and let ng and ny be the two integers given by:

(e

—2(—1)%gk —1

o = 3 ,
—1)5q5 —1

m= . 2)

Then, for any integer i, the Gaussian period of order 3 is:

no ifi=0 (mod 3),

> x(z) =

2eD® m  otherwise

Since we will be dealing with the Gaussian period of order 3, we will also
need the cyclotomic numbers of order 3. The following lemma gives us important
information about such cyclotomic numbers (see [1] for the general result).

Lemma 1. Consider the same notation and hypotheses as in the previous the-
orem. Then

sd __ (_1)3)2 .
9 b
(4,003 = (0,7) 34" = (4, 4)3)
_ (0= (C)N) (@ +2(-1)%)
9
(1,204 = @,pea = B U

0,004 =

, fori=1,2,

Remark 2. Observe that if 3|(p®+1), which is the central hypotheses in Theorem
2, then, for any positive integer s, we have that 3 is a common divisor of both
(p** = (=1)%) and (p** +2(-1)%).
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3 Some Preliminary Results

The following lemma will be useful in order to show that all the cyclic codes
given by Theorem 1 have exactly six nonzero weights.

Lemma 2. Consider the same notation and hypotheses as Theorem 2. Then

s l“7 —1)% ki
mo—m = —(=1)%q%, 2m —no = *TV 0T By —amg = TV 3ng o, =
s k s k
8121 g 29 —n1 = 75(71;’ a2 -1 Therefore, none of these five previous

values, as well as the values of ng and 1, is equal to qul. Furthermore, 19 # 1.

Proof. The first and third assertions come directly from (2). Since ¢ is an odd
integer, it will be enough to prove, for the second assertion, that none of the
. » k_ K
following two conditions hold: 3, — 29y = ¢ Lor 2y —m =1 3 L. Thus,
. 7(~1)%g5 -1 L T d
supposing that 3q = 7.7, implies that p*® = 7, where s must be a
positive even integer. But clearly this conclusion is impossible, therefore 3n; —
s k
210 # qk?’_l. On the other hand, supposing that —°(71)77*~1 — qk_l, implies
that p*@ = 5, where s = d = 1. Now, since k > 1 (recall Remark 1) and tk = 2sd,
we have t = 1, k = 2 and p = ¢ = 5. But, under these circumstances, clearly

ged(A, qk;1 — 1) # 3. Therefore, 29 — 1 # qk;1. O

The following result gives us information about the multiplicity of the elements
in a very particular multiset.

Lemma 3. With our notation and main assumption, let X be a divisor of ¢—1.
Also let i be any integer. If ged(A, (qxl)) =1, then

{zy | x € D(m;l)) andy € F;} =\ « D
4 q i

where \ x DZ@ 1s the multiset in which each element of Dz@ appears with multi-
plicity .

Proof. Since T, C D(()3), (S(qgl))|(qk — 1), and ged(A, 3(’1;1)) = 3, the result

3(q—1) - .
comes from the fact that |DZ( A )| |IF;|/\D£3)\ = A, and ng) = yzDém), for
any integer i and for any divisor m of ¢* — 1. O

In what follows, we will always assume that 3|(p? + 1). Thus, by using the
finite field element 7 and the cyclotomic class of order 3 in IFyx, we define the
following ten sets:

&ij={(, —7a) |77 (a — Ta) € DES)}, for ¢, =0,1,2, and

G={(a,—B) €EFp xFp| (a —7/B) #0, for j =0,1,2} .
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Remark 3. By the previous definition, note that (a, —77a) € & ; if and only if
71-i(1—7)a € D). In consequence, and since 717 (1—7) is a fixed nonzero field
element, we have that these ten sets are pairwise disjoint, and their cardinalities
are |&; ;| = |D(()3)\ = qk?jl, for all 4,5 = 0,1,2, and |G| = ¢** — 1 — 91€ 0| =
(¢* —1)(¢" — 2). Furthermore, due to Remark 1, observe that if 7'=7(a — 7a) €
DES), then 7277 (a — 2a) = (1t + 1)(a — 1) = -7 (a — Ta) € Dgg), for
any 7,7 = 0,1,2. Therefore, the important conclusion here is that if we have
i - Ta) € DES), then we necessarily have also that one of the following
three finite field elements, (a — 77 ), 7(a — 77 1a) or 72(a — 7772q), is equal to
zero and the other two elements belong to DiS

Now, for each (o, —f) € G, we define the function f, g : {0,1,2} — {0, 1,2},
given by the rule f, g(i) = j if and only if 7%(a — 73) € DJ(-S). With the help of
these functions we induce a partition of the set G into the following four disjoint
subsets:

S = {(av _6) €g | Wh(foc,,@(o)vfa,,ﬁ(l)vfaﬁ(Q)) =1 }7 for 1 =0,1,2,3,

where Wp,(-) stands for the usual Hamming weight function.

Remark 4. For any «, 8 € TF ., we define u; = 7%(av — 7°3), for i = 0,1,2. It is
not difficult to see that these u values satisfy: ug + u1 + ue = 0. In addition,
observe that if we arbitrarily choose the values of, say, ugp and us then there must
exist a unique vector (a, ) € IF‘gk, such that ug = (a—f), ug = 72(a—723) and
u; = —(ug + uz). Therefore, if we want to calculate, for example, |Sy| then we
can assume, without loss of generality, that us can take any value in D((JS). This

qk3_1 possible choices for us. But uq = —uz(“0 +1)and —1 € D(s) (in

fact, recall that IFZ € D(()3)) thus, in order that w; and ug also belong to D(3)

it is necessary that (2 + 1) € D(()g), and due to Lemma 1, the number of such

leads us to

instances is given by the cyclotomic number (0, 0)(3’qk). Consequently, we have

|So| = qul (0,0)(3’qk). In a quite similar way, one can obtain |Si], |Sz| and |S3|.

Keeping in mind the previous definitions and observations, we now present
the following result, which will be important in order to determine the weight
distribution of the class of non-irreducible cyclic codes that we are interested in.

Lemma 4. With our current notation and main assumption, we have that
(0,0)(3,11 )

1S1] = (¢" — 1)((0, 1)) 4 (0,2)@")
12 —( —1)((1, 1)) 4 (1,2)34 4 (2,1)B) 4 (2,2)@4))
Y

|S3| =

|Sol = 3

T 0.0 4 (0. 4 (1,01 + (1, 1)) 4
(2,003 4 (2,2)®4) 4 (0,0)>4") 4 (0,2)") .
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Furthermore, if x denotes the canonical additive character of I jx, and if o and
n1 are as in Theorem 2, then, for any o, B € IV, we also have:

qu -1 if (e, B) =(0,0)
qul + 20 if (o, B) € U2_o&o
2 . . TN om if (o, B) € UR, U2, &y

D D XET@ETB)= T3 if () €S

zeDg? =0 2no+m if (o, B) €S

no+2m if (o, ) €S

3"71 Zf (Oé, ﬁ) S 83 .
Proof. The first assertion comes from Remark 4. On the other hand, since
- K

Zzefo’) x(0) = \D63)| =1 ;1, the second assertion comes directly from Theo-
rem 2, Remark 3, and from the definitions of the sets &; ; and &, with 4,5 =0, 1,2
and [ =0,1,2,3. g

Considering the actual values of the cyclotomic numbers in Lemma 1, the
following result is an important consequence of the previous lemma.

2
Table 2. Value distribution of Z Z x(zr (e +7"8))

ep(® =0
Value Frequency
-1 1
qk3—1 + 210 qk -1
. 2(¢" - 1)

310 o7 (0" = 1)(q" = 2(=1)°¢*/* = 8)
20 +m 5(d" = 1)(¢" + (-1)°¢"* - 2)
0 + 2m s(d" = 1)(2¢" — (—-1)°¢*"* - 1)

3m o (@ = 1)(4g" + (—1)°¢"* — 14)

Corollary 1. Consider the same hypotheses as in the previous lemma. Then the
value distribution of the character sum ZzeD{f) Z?:o Xz (a + TB)) is given
in Table II. In addition, each value in Table II is different to any other value,
and its corresponding frequency is different from zero.

Proof. The first assertion comes directly from the previous lemma. Now, observe
that:

(6" —2(=1)°¢"? = 8) = (¢"/% + 2(=1)*)(¢"/? — 4(-1)") ,
(¢" + (=1)°¢"* = 2) = (" +2(-1)")(¢"* - (-1)")
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(24" = (=1)°¢""? = 1) = (¢"* = (=1)")(2¢" " + (-1)*) ,
(4¢" + (=1)°¢"? = 14) = (¢"* + 2(-1)") (44" = 7(-1)*) .

Thus, by recalling that ¢ is an odd number greater than 1, we have that the
proof of the second assertion comes now from Lemma 2, and from the fact
that the roots of the previous polynomials are not odd integers values (greater
than 1). O

4 A Formal Proof of Theorem 1

We begin this section by recalling the following already known identity:

Let C be an N-weight linear code, over IF,, of length n and dimension 2k.
Suppose that wy,ws, -+ ,wy are the nonzero weights of C. For 1 < ¢ < N, let
A; be the number of words of weight w; in C and let B; be the number of words
of weight j in C* (the dual code of C). Then, the third identity of Pless (see [5,
p. 259] for the general result), for C, is

waAi =[n(g—1)(n(g—1)+1)+2Bs— Bi(g+2(n—1)(¢g—1))] ¢** 2. (3)

Remark 5. In the context of the previous identity, observe that a linear code is
projective if and only if By and By are zero in (3).

By keeping in mind the previous notation and identity, we now proceed to
present a formal proof of Theorem 1.

Proof. Part (A): Suppose that hg, (x) = hg,(x). Then, there must exist an in-
teger 0 < v < k such that a1¢" = as (mod ¢* — ) But as = a1 + qk3_1,
. ! (mod ¢* — 1), which
in turn implies that a;1(¢” — 1) = 0 (mod ? _1) That is, A|3a1(q _1) But
ged(A,ap) = 1, thus A|3(q _1) Nevertheless, it easy to see that A > 3(q _1),

if ¢ > 3 and 0 < v < k, therefore, the condition A|3( 1 ') is impossible. Hence
ha,(z) # ha,(z). On the other hand, ged(¢® — 1,a1) = ged(A(g — 1),a1) =
ged(g—1,a1) = q;1 and ged (¥ —1,az) = gcd(q—l,al—&—?(q—l)) = ged(g—1,a1),
that is ged(¢¥ — 1,a1) = ged(¢F — 1, a2) = q;l. Therefore h,, (z) and hg, (x) are
the parity-check polynomials of two different cyclic codes of the same length
n= kl)l/)\ = AA. Due that ged(4,a1) = ged(A, az) = 1, the remaining proof
of this part comes now from the set of characterizations, for the one-weight
irreducible cyclic codes, that was introduced in [10, Theorem 11].

Before beginning with the proof of Part (B), it is important to observe that

since ged(A4, qk?jl —1)=3,a2 =a; + qk?jl and ged(A4,a1) = ged(A4,az) = 1,

thus, the last congruence implies that ai(¢” — 1) =
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we necessary have that 7 € Df”) and a; =1 (mod 3). In addition, since ged(q —
1,a1) = q;1 and ged(A, a1) = 1, we also have that ged(A, q;l) =1.

Part (B): Clearly, the code C(4, 4,) has length n and its dimension is 2k, due
to Part (A).

Now, for each «, 8 € IFx, we define ¢(n, a1, az, o, ) as the vector of length n
over IFy, which is given by:

(T i, (7™ + B(y)0), -
T, jw, (@(y")" ™+ B(y"2)" ) .

Thanks to Delsarte’s Theorem (see, for example, [2]), it is well known that

C(alvaz) = {C(naal,a%aaﬁ) ‘ O‘vﬁ S ]Fqk} .

Thus the Hamming weight of any codeword c(n, a1, az, o, 8) € C(q,,a,) is equal
ton — Z(a, ), where

Z(a,f)=t{i|0<i<mn, and
Trw /i, (7™ +57*2) =0} .

Now, if X’ is the canonical additive character of IFy, then, by the orthogonal
property in (1), we know that for each ¢ € IF, we have

q ifc=0
> X (yeo) = :
yelr, 0ifc#0
thus
1 n—1 ] )
2= |3 3 X (T m, (0(0y™ 4+ 57°2))
i=0 yelF,

If x denotes the canonical additive character of IF x, then x’ and x are related
by X’(TrIqu /1, (€)) = x(¢) for all € € IF jx. Therefore, we have

n 1« ) )
Z(.B) = 4+ > > x(ylay™ +py*")
7 175 yelF;
n n—1
= + ‘ x(Y"'yla+7°8)),
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k k_1
. . -1 q .
where the last equality arises because az = a3 +? ;" and 7 =+ s . Now, since

a; =1 (mod 3) and ged(¢* — 1,a1) = 97", we have

A

Z(a,ﬁ): + ZZ YUy (o + 797 B))

=0 yEIF‘*
n—1
1SS e e ).
1=0 yelFy
But, clearly 3|n, thus
(g—1) (q 1) (q 1) 3(g—1)
N o<i<my =05 > =Dy 2 uD, 0 T uDy )
A
Therefore,
n 1 2
Z(,B)= + > x(@y(a+72B))
T 955 (3(a=1) ) y€IF;
z€D ,_y
‘1A i
n 1 2
=+ > x(@yla+78)) (4)
E N (3(a=1) ) y€IF;
€D, A

where the last equality arises because T} = {7 10<j<q}and 3¢ (q 2

Now, we already said that ged(A, ¢ )\1) = 17 thus after applying Lemma 3 to (4)
we obtain

Z(a,B) = + ZZ za+7p)) .

i=0 ep®

But, 7 € Dgg), thus

Z(a, B) Z ZX 2 (a+7'5)) -

2D =0

The result comes thus as a consequence of the first assertion in Corollary 1,
and from the fact that the Hamming weight of any codeword of the form
c(n, a1, az,a, ), in Ciq, 45y, is equal to n — Z(a, B).

Part (C): It is well known that there are no one-weight words in the dual of
any cyclic code (see for example [15]), therefore B; = 0 in identity (3). But if
B; = 0 in such identity, then, with the help of Table 1, it is not difficult to see
that By = ”(qflg()‘fl). Thus, Bs = 0 if and only if A = 1, but recall that X is the

divisor of ¢ — 1, satisfying ged(qg — 1,a1) = qxl, therefore By = 0 if and only if
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(¢—1)]a1. We will now prove that this condition is impossible and, in order to do
so, we will consider the following two possible scenarios: k is an even integer or
k is an odd integer. If k is even, then clearly A and ¢ — 1 are also even integers,
and consequently, if (¢ — 1)]a; then ged(A,ar) > 2, which is a contradiction.
Now if k is odd, then ¢ is even (recall tk = 2sd) and since p # 3 (see Remark
1), we have p' =1 (mod 3), that is 3|(¢ — 1). But 3|4, thus if (¢ — 1)|a; then
ged(A, ay) > 3, which is again a contradiction. Therefore (¢g—1) { a; and By > 0.
The result now follows from Remark 5.

Part (D): It is a direct consequence of the second assertion in Corollary 1. O

The following are direct applications of Theorem 1.

Ezample 1. With our notation, let p = ¢ = 11, k = 2, a; = 25 and ay =
65. Then d = s = 1, A = 12, A = 2 and n = 24. Clearly, 3|(¢" — 1) and
ged(A, q‘”;1 —1) = 3, and because 3|(p? + 1), we can be sure that C(25,65) is a
6-weight cyclic code over IF11, of length 24, dimension 4 and weight enumerator
polynomial A(z) = 1+ 12022+ 24026 4 60028 4 2880220 + 6720222 + 408024
In addition, Bs = 120.

Ezxample 2. With our notation, let p = ¢ = 5, k = 4, a1 = 1 and as = 209.
Then d = 1, s = 2, A = 156, A = 4 and n = 624. Clearly, 3|(¢* — 1) and
ged(A, qk3_1 — 1) = 3, and because 3|(p? + 1), we can be sure that C(1,209) is a
6-weight cyclic code over IF5, of length 624, dimension 8 and weight enumerator
polynomial A(z) = 14124823204-6242350+1160642804-1697282590+ 898562520+
131042°9. In addition, By = 3744.

5 Conclusion

A recent topic of interest has been the kind of reducible cyclic codes whose
parity-check polynomials are given by products of the form h,, (x)ha Lk (z),
1 3

where a; is an integer. A class of this kind of cyclic codes was the main subject
of study in [14]. In this work we presented the full weight distribution of a new
class cyclic codes belonging to this kind, and we showed that no code in this
class can be projective. As we already said, the class of codes studied in [14],
and those studied here are two different classes of codes of the same kind. Thus,
following the same idea as in [12], perhaps it is possible to develop a more general
theory that allows us to present a unified explanation for these two classes of
codes, and also for other classes of cyclic codes of the same kind.
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Abstract. The aim of this paper is to provide a general framework
in the study of binary block codes. The main objective is to present a
general approach in order to explore MDS diffusion matrices used for
example in the design of block ciphers with a Substitution Permutation
Network design (the so-called SPN block-ciphers).

In order to analyze these codes, we consider additive block codes over
binary m-tuples. We are interested in the distance properties related
to the block structure. To do this, we introduce a notion of L-codes
that are codes over the non-commutative ring of linear endomorphisms
of GF(2)™. We study the main properties of these codes, especially the
notion of duality in this context. We show how most of the known families
of block codes can be interpreted in this context. Finally, we conclude
by practical examples that allow to derive MDS diffusion matrices over
GF(2)™ from MDS matrices constructed over smaller blocks.

Keywords: MDS matrices - Diffusion layers - Additive block codes -
Symmetric cryptography

Introduction

Section 1 presents the notion of additive block codes and explore how most of the
known results on linear codes over a finite field can be extended to additive block
codes. In order to avoid some degenerated cases, we limit our study to systematic
block codes. We characterize the isometries of block codes over E = GF'(2)™ and
deduce a notion of equivalence of codes in this context. We explain the notion
of MDS block codes and the link between these MDS block codes and optimal
diffusion matrices used in block ciphers design. Finally, we conclude this section
by presenting some previous works on codes over polynomial rings that are in
fact related to our approach.

In Section 2, we introduce the notion of L-codes that are codes over the ring
L = L(E,E). Such a ring is not commutative, in this context L£-codes are left
submodules of L, but are not necessarily right submodules. In this context,
we clarify the notion of duality over £ and the underlying binary duality. In
Section 3, we consider some commutative subrings of £ and explain why we
obtain some classical families of codes defined on polynomial rings of the form
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GF(2)[x]/f(x). Finally in Section 4, we present some examples of application of
previously presented results. The aim of this section is not to obtain optimized
matrices, but to give some hints for an effective search of optimal matrices for
targeted applications. Indeed, even for practical values a full exhaustive search
of MDS matrices over L is not possible.

Notation

— E=GF(2)™ is the GF(2)-vector space of binary m-tuples.

— L= L(E, E) is the ring of GF(2)-linear endomorphisms of E.

— M, (R) is the R-module of matrices of size s x ¢ over the ring R.

— Mi(R) = Mg, x(R) is the matrix algebra of square matrices over the ring R.

— If ¢ € L is a linear endomorphism of E, M, € M,,(GF(2)) is its associated
binary matrix with the convention: if z = (21, ...,z,,) € E then ¢(z) = M.

1 Additive Block Codes over GF(2)™ and MDS Diffusion
Matrices

The results presented in this section are mainly known. They are presented in
order to easily introduce our later point of view. For more details on Error
Correcting Codes and basic properties, the reader can refer to [§].

1.1 Codes over a Finite Alphabet

A code C of length r over an alphabet A is a subset of A”. Let a = (ay, ..., ar)
be an element of A”. As usual, the Hamming weight w(a) of a is the number of
non-zero coefficients a;. The Hamming distance between two elements a and a’
is the number of distinct coefficients of a and a’: d(a,a’) = #{i | a; # a.}. The
minimum distance d¢ of a code C' is then the minimum of the distance between
two distinct elements of C.

The following proposition recalls the well-known Singleton bound that links
the size of the code and its minimum distance in its more general form, i.e. for
non-linear codes without structure.

Proposition 1. Let C be a code of length r and minimum distance d over an
alphabet A of size q, then : #C < q"—4+1,

Most of the times, the alphabet A is provided with a mathematical structure.
In the following, we will focus on three of them:

— (A, +) is an additive group. An additive code C of length r over A is then
a subgroup of (A, +)".

— A =F is a finite field. A linear code over F is an F-subspace of the vector
space [F".

— A= TR is aring R. A linear code over R is an R-submodule of R". Note
that the multiplication in R is not necessary commutative, however, we are
only interested in unitary rings.
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In all cases, the alphabet A possesses an additive commutative group struc-
ture. In this situation, the minimum distance of a code becomes the minimum
weight of its non-zero elements.

Definition 1. A code C is a Maximum Distance Separable Code (an MDS code
for short) if it meets the Singleton bound, i.e. #C = q"~4+1,

1.2 Block Codes over E

In this paper, we are concerned with additive codes defined over E, i.e. the
alphabet is the additive group constituted by the binary m-tuples equipped of
the componentwise addition. Our motivation comes from the construction of
MDS diffusion matrices for cryptographic applications. It will be explained in
Section 1.6.

Definition 2. A block code C of length r over E is an additive code over the
alphabet (E,+).

From the GF(2)-vector space isomorphism E” ~ GF(2)™", a block code C
of length r is also a binary linear code of length n = mr over GF'(2). However,
we are not interested in its binary properties, but in its block properties. In
particular we do not look at the binary weight of codewords, but at block weight
of codewords. In the rest of this paper, unless it is explicitly stated, w(c) denotes
the block weight of an element ¢ € E” and d¢ denotes the minimum distance of
the block code C.

1.3 Systematic Block Codes
To avoid some degenerated cases, we define the notion of systematic block code.

Definition 3. Suppose that the size of C is of the form 2F™ for some integer
k. A code C is a narrow sense systematic block code of pseudo-dimension k if
there exists a systematic linear encoding function @ from E* to E™ such that
D(z) = (z1, .., 2k, P1(2), .., Bk (7)), D; € LIEX,E), z = (21, ..., 2%) € E* and
P(EF) =C.

In other words, there exists a linear encoding for C' such that the first & blocks
of a codeword are equal to the message x to be encoded.

This definition is equivalent to the fact that the binary image of C is of
dimension ko = mk and admits a systematic binary generator matrix G = (I|M)
where [ is the identity matrix of size mk and M is a binary matrix of size
mk x m(r — k).

Definition 4. A (general) systematic block code C is a code which is equivalent
to a narrow sense systematic code by blocks permutation (i.e. by permutation of
coordinates acting on E").

One can remark that the Singleton bound for systematic block codes becomes
k+d <7+ 1 as usual for linear codes.
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1.4 L-generator Matrix of a Systematic Block Code

Following the notations of Section 1.3, the linear applications @; from E* into
E can be decomposed in k elements of L: &;(z) = Zle wi(x), i € L.

If M;; € M,,,(GF(2)) denotes the m x m binary matrix corresponding to
the endomorphism ¢; ; (i.e. ¢; ;(a) = aM; ; for a € E), the binary systematic
generator matrix of C' is

Im Om Om Ml,l Ml,'r‘fk
o 0, . . . .
: . - O : :

Om e Om Im Mk,l e Mk,r—k

where I,,, and 0,, are respectively the identity and the zero binary square ma-
trices of size m.
We can construct an £-generator matrix G € My, (£) in the following way:

Id 0 e 0 g0171 e <P1,r—k
0 .
g == )
. . .0 : :
0 -+ 0 Id opa1 -+ Prr—k

where Id and 0 are respectively the identity map and the zero map of L.

The codewords c of C are then ¢ = 2G, © = (z1, ..., 2;) € E¥. By convention,
and to be consistent with the matrix notations, for a € F and ¢ € L, we have
ap = ¢(a). In addition, for ¢ and ¥ in L, pi denotes ¢ o .

This construction can be generalized to any general systematic block code
and to any binary generator matrix of such a code.

Definition 5. Let C be a general systematic block code over E. An L-generator
matriz for Cis a kxr matriz G = (p; ;) over L such that the matriz G = (M, ;)
of size km xrm is a binary generator matrix of the code C' considered as GF(2)-
linear code of dimension km and length rm.

Following this definition, if G is an L-generator matrix of a code C, the L-
generator matrices of C' are those of the form G’ = SG there S € My (L) is an
invertible matrix.

1.5 Equivalence of Systematic Block Codes

In the classical situation of linear codes, two codes C and C’ are equivalent
if there exists an isometry ¥ (i.e. a linear endomorphism of F™ preserving the
Hamming distance) such that C’ = ¥(C'). A major result on isometries in the
context of linear codes over a finite field is the fact that isometries correspond
to monomial matrices, i.e. the n X n matrices with one and only one non-zero
element by row and by column (see [5] Ch.17 §1.5). In practice, such an isometry
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consists in multiplying each coordinate of a codeword by a non-zero scalar, and
then by permuting these coordinates.

These properties can be easily generalized to the case of block codes. First,
we will characterize some isometries on E".

Let Sym(r) be the group of permutations acting on the set of indices [1;7]. A
permutation o € Sym(r) acts on E" in a natural way: if x = (21, ...,2,) € E",
we define ' = o(z) = (25-1(1), .--s To—1(r))- Clearly, o is an isometry of E" for
Hamming block distance. If P, is the permutation matrix associated to o, one
have o(z) = zP,.

The scalar multiplication in the case of linear codes is replaced by the action
of invertible elements of £, i.e. elements of the linear group GL(m,2). If A =
(A1, A2, ..., Ap) is an r-tuple of elements of GL(m,2), it acts on E” as follows:
Az) = (M(z1), .oy Ar(xr)) = (1M1, ..., 2+ Ar). Such an application is clearly an
isometry for the Hamming block distance over E”. Moreover, the diagonal matrix
D, with diagonal elements )\;, is the matrix of this isometry: A(z) = xD).

The following proposition gives the characterization of isometries of E”.

Proposition 2. The isometry group of E™ for the Hamming block distance is
the monomial group constituted of square matrices of size v with one and only
one nonzero invertible elements on each row and each column.

Proof. The proof is similar to that in the case of linear codes. The monomial
group Mon(GL(m,2)) is generated by the permutations and the diagonal in-
vertible matrices. The elements of this group are then isometries of E".

Reciprocally, we look at the images of elements of E" of weight 1 by an
isometry & of E”. Let e € E" be the element of weight 1 such that egz) =1.
The image of ¢ by ¢ is of the form \jel?) for a fixed index j and an element
Aj € E. The underlying permutation is entirely defined by o(j) = 4 and the
element \; is necessarily invertible, otherwise we can construct a word of weight
1 having 0 € E" for image.

If C is a code with L-generator matrix G and M is a monomial matrix in
Mon(GL(m,2)), the matrix G’ = GM is an L-generator matrix of the image C’
of C' by M.

Definition 6. Two block codes C and C' are equivalent if there exists a mono-
mial transformation M € Mon(GL(m,2)) such that C' is the image of C by
M.

1.6 MDS Systematic Block Codes and MDS Matrices

From Definition 1, if an additive block code C' is MDS, then #C = 2m(r—d+1) gq
its size is necessary a power of 2. Moreover, following results of [8] Ch. 11 §2, it
can be shown that C' admits a systematic £-generator matrix G. So #C = 2™mF,
where k is the pseudo-dimension of C' and the MDS condition becomes k + d =
r+1.
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In addition, C' is MDS if and only if the restriction of G to any k columns
leads to an invertible matrix in My (L£). For cryptographic applications, we are
particularly interested in the redundancy part of systematic £-generator matrices
of MDS block codes.

The following theorem is a generalization of the well-known Theorem 8 ([8]
Ch. 11 §4), in the case of codes over finite fields, or [1] Proposition 1 in the case
of commutative ring.

Theorem 1. An additive block code C is MDS if and only if it admits a sys-
tematic L-generator matriz G = (I, | M) such that every e X e square submatriz
of M is a matrix of an automorphism of E°.

Note that, since £ is not a commutative ring we do not use the notion of
determinant for the square submatrices of M. However, the invertibility of an
e X e square matrix is directly related to the invertibility of the corresponding
me X me binary matrix obtained by substituting to each entry ¢; ; the m x m
binary matrix M, ;.

Definition 7. A matriz M € My, (L) is MDS if the systematic block code C
with L-generator matriz G = (I, | M) is an MDS block code of length r = k + s.

The MDS matrices are those satisfying the conditions of Theorem 1.

In Section 1.5, we studied the action of isometries on additive block codes.
Following this approach, we are able to deduce a notion of equivalence for MDS
matrices.

Set s = r — k. Let C' be a systematic block code with L-generator matrix
G = (Ix | M). In order to preserve the systematic structure of this matrix, we
apply to C' a permutation which separately acts on the first k& positions and on
the s last positions. Let 0 = (01,02) € Sym(r) such that o1 € Sym(k) and
o9 € Sym(s). Let C' = o(C) be the image of C' by C’. If the systematic L-
generator matrix of C" is G’ = (I | M’), one have M’ = II,-+ MIl,,, where
II,—+ and II,, are respectively the k x k and (s) x (s) permutation matrices

associated to o7 ' and 5.
Of this reasoning we deduce the following proposition:

Proposition 3. Let M € My, (L) be an MDS matriz. A matrizc M’ obtained
by any permutation of the rows and the columns of M is MDS.

Similarly, suppose that A = (A1,..., A\,) € GL(m,2)" is an r-tuple of “non-zero
scalars” (i.e. invertible elements of £) acting on the code C'. We decompose A =
(A1)[A(2)) into its first & components and its last s components. The systematic
L-generator matrix of the image C’ of C by the action of X is G’ = (I} | M)

with M’ = D>‘<_1§MD)‘<2” where D)‘<_1§ and D) ,, are respectively the k x k and

s x s diagonal matrices with diagonal Aa; and A(g).
So we obtain the following proposition:
Proposition 4. Let M € My s(L£) be an MDS matriz. A matric M’ obtained

by multiplying on the left any row of M and multiplying on the right any column
of M by some elements of GL(m,2) is MDS.
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Definition 8. Two MDS matrices M and M’ in My, (L) are equivalent if M’
can be deduced from M by applying the transformations given in Propositions 3
and 4.

1.7 MDS Diffusion Matrices for Cryptographic Applications

Classically, symmetric cryptographic algorithms alternate confusion layers and
diffusion layers in their iterative cryptographic processes. The confusion layer
consists in the application of a non-linear function, called an S-box which acts
generally on r blocks of size m. The typical values of m are 4 or 8. The diffusion
layer ensures the dissemination of any difference in input between the different
r blocks. For efficiency this diffusion layer is in fact a linear application from E”
to ET.

The goal of this diffusion layer is not to ensure a diffusion inside each block,
but a diffusion between the blocks. In practice, as previously we denote by = =
(1, ..., ), the r input blocks and by y = M the output blocks where M can
be viewed as an r x r L-matrix or an rm X rm binary matrix.

The main example of diffusion matrix is MixColumns, the AES diffusion layer
[3]. In this paper, the authors introduce the notion of branch number, which is
a measure of the resistance of a diffusion matrix against linear and differential
cryptanalysis in the context of SPN block ciphers.

We do not want to describe in detail the concepts of linear and differential
branch numbers and their links with cryptanalysis. We just give a definition of
these concepts adapted to our approach. For more details, the reader can refer
to [3].

We need some notations: let M be an element of My, (L), M denotes the
corresponding km x ks binary matrix. The notation M? corresponds to the
transpose of M in My, s(£), and the matrix MT* denotes the element of My, s(L)
associated to the binary matrix M. Note that MT and MT* are not equal.

Definition 9. Let M € My, (L) be a diffusion matriz which takes as inputs k
blocks of m bits and outputs s blocks of m bits.

The differential branch number of M is the minimum distance of the additive
block code generated by (Iy, | M).

The linear branch number of M is the minimum distance of the additive block
code generated by (I | MT*).

Note that, since we do not require that k = s, this definition is more general
than the usual one. However, even if k # s, the differential branch number is
the minimum number of blocks in input and in output that are impacted by
a difference, which corresponds to a minimal word of the additive block code
since it is GF'(2)-linear. Similarly, the linear branch number is the minimum of
blocks in input and in output that are impacted by a parity check equation, and
corresponds to the minimum block-weight of the binary dual of the previous
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code. The following theorem is a direct generalization of a major result of [3] to
the case where k is not necessary equal to s.

Theorem 2. A binary diffusion matriz M of size km x sm (or equivalently a
diffusion matric M € My (L)) has a mazimal differential branch number if
and only if it has a mazximal linear branch number. In this situation, the both
matrices M and MT* are MDS.

Suppose now that £ = s. Let € be an MDS block code with systematic £-
generator matrix G = (I | M). Obviously, since M is a square MDS matrix,
it is invertible. Moreover (M™! | I},) is another L-generator matrix of €. The
systematic block code €’ generated by the L£-generator matrix G’ = (I | M™1)
is equivalent by block permutation to €, and so it is also an MDS block code.
We have proved the following proposition:

Proposition 5. If M is a square MDS matriz, then M~' is also a square MDS
matrizx.

We consider now a k x s matrix M such that the entries y; ; of M pairwise
commute. This is a classical requirement for the search of MDS diffusion matrices
(cf. [1,3,4]). In fact, we do not know in the literature an example of MDS diffusion
matrix M such that the entries do not commute.

The main reason for this restriction comes from the fact that it is possible to
compute the subdeterminants of M and to use these subdeterminants to test if
the matrix is MDS. In our context, we obtain the following result:

Proposition 6. Suppose that M is a (non necessary square) MDS matriz such
that the entries of M commute pairwise. The matriz M” is MDS.

Proof. Let M be the binary km x sm matrix associated to M. Let A be any
square submatrix of M and A its associated binary submatrix. The coefficients
of M are in fact in a commutative subring R of L. Let § = Det(A) € R be the
determinant of A computed in R. This makes sense since R is commutative. Let
M; be the binary matrix associated to ¢ € L. From a result of Silvester [9], we
have det(A) = det(Ms), where det is the determinant of binary matrices.

To conclude our proof, we remark that Det(A) = Det(AT). So the submatrix
A is invertible if and only if AT is invertible.

Note that this result is false in the general case.

1.8 Ring Structures over GF(2)™ and Related Additive Block
Codes

A natural research direction is to explore potential mathematical structures of
FE to provide additive codes with additional properties, or in order to decrease
an exhaustive search of good candidates for cryptographic applications.
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In this section, we will look at possible ring structures over E. The most basic
ring structure over E corresponds to the Hadamard product of m-tuples i.e.
the component by component product. Most of the other ring structures over £
consists in identifying £ with the ring GF'(2)[z]/f(z) for some polynomial f(x)
of degree m. In both cases, we can define the notion of linear-block codes, that
are not only additive block codes, but also submodules of E".

In these situations, it is possible to determine the minimal ideals of R, which
leads to a natural projection of such linear codes into several linear codes over
finite fields.

Codes over (GF(2)™,+, x). In this section, we consider the ring R =
(GF(2)™,+,x) = (GF(2),+, x)™, where 4+ and x are respectively the addi-
tion and multiplication of binary m-tuples coordinate by coordinate.

For 7 in [0;m — 1], we denote by e; € GF(2)™ the element such that e; ; =0
except e; ; = 1 and m; the projection x = (o, ..., Tm—1) — ;.

If C is an additive code of length r over R, we consider the following derived
codes:

e;C ={e;c = (eico, ..., €iCr1) | c € CH T R"

and m;(C) = {mi(c) = (mi(co), .o, Wi(cr1)) | c € C} T GF(2)".

It is easy to verify that the minimal ideals of R are exactly those generated
by the elements e;.

An R-linear code C of length r over R is then a submodule of R". An additive
code C' is R-linear if and only if the codes e;C are subcodes of C.

Proposition 7. An additive code C of length r over R is an R-linear code if
and only if it is the direct sum of the codes e;C, for i in [0;m — 1]. In this
situation, it is isomorphic to the direct sum of the binary codes 7;(C).

Corollary 1. The minimum block-weight distance of a linear code C' is the min-
imum of the binary non-zero minimum distances of the binary codes m;(C).

In particular the only non trivial MDS linear codes over R are the repetition
block-code and the parity check block-code, with respective generator matrices:

Im 0 ... 0 In
0 o

G=UnIn..Ip)and G'=| @ . .
0 ... ... 0 In

In addition, one can remark that if G = (Ix|M) is the £-generator matrix of
an additive block code, the code C'is linear if and only if the binary matrices of
the coefficients ¢; ; of M are diagonal. In this situation, the two definitions of
duality given in Section 2.2 are the same.

Here is an example of such a code. We set m = 3, £k = 2 and r = 5. The
binary image of the systematic £-generator matrix is:
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100 000 000 100 100
010 000 010 000 010
001 000 001 000 0OO
000 100 100 000 100
000 010 010 010 010
000 001 000 001 0O01

This code is in fact the direct sums of the binary codes C;, 1 < i < 3, generated

10011 10111 10100
by G = <01101)’G2_ (01111) and G = (01011)'

Since the codes Cs and C'5 have a minimum distance equals to 2, the minimum
distance of the block code C' is 2.

Codes over GF(2)[z]/f(x). Let R = GF(2)[z]/f(x) be the ring of binary
polynomials modulo a fixed polynomial f(z) of degree m. In addition, we require
that f(0) = 1 which is equivalent to say that x is invertible in R. This condition
discards some degenerated cases.

Let f(z) = fI* () fY?(x) ... fP=(x) be the factorization of f(z) into irreducible
polynomials. For ¢ € [1;s], we set h;(z) = f(z)/fi(x). The following properties
are basic polynomial algebra results: the ring R is a principal ring, moreover
the ideals of R are exactly those generated by the divisors of f(z). The minimal
ideals of R are those generated by the elements h;(z).

Suppose first that f(z) is irreducible, the ring R = GF(2)[z]/f(x) is then
isomorphic to GF(2™) and the notion of linear code over R is exactly those of
linear code of length r over GF(2™).

Suppose now that f(x) is square-free, i.e. p; = 1 for all i € [1;s]. This con-
dition is equivalent to the fact that R is a semi-simple algebra. In other words
R is equivalent to the product of fields [[;_; F; where F; = GF(2)[z]/fi(x).
The minimal ideal generated by a polynomial h;(x) is simply the set of elements
with all its components equal to 0 except the i-th in the product representation
[T, F..

For i € [1; s] we define the projection p; from R into F; by p;(¢g(x)) = g(x) mod
fi(x). We extend this projection to an application from R" into F} by applying p;
to each component. We obtain s linear codes C; = p;(C), each of these codes is a
linear code over the finite field IF;. The following theorem is a direct consequence
of the isomorphism R = []}_, F,.

Theorem 3. Suppose that the polynomial f(x) is square free.
If f(z) = fi(z)fo(x)... fs(x) is its decomposition into irreducible factors, then
the linear code C over R is isomorphic to the direct sum @;_, C;.

Note that, if C' is a systematic code, all the codes C; are distinct from {0}.
As a consequence, we obtain the following corollary:

Corollary 2. Suppose that f(x) satisfies the conditions of Theorem 3. If C is
a systematic linear code over R, its minimum distance d is the minimum of the
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minimum distances d; of its projections C;. In particular, C is MDS if and only
if all the codes C; are MDS.

The most famous example of codes over such a ring R is those of quasi-cyclic
codes [6], where f(x) = ™ — 1. In that situation,  — 1 is always a factor of
™ — 1, so one of the C} is a binary code. This particular case does not allow to
build MDS block codes.

A generalization of results of [6] to any polynomial f(x) can be found in [2].
We will see in Section 4 that the particular case f(x) = f1(x)fo(x), deg(fi(x)) =
deg(f2(x)) = m/2 is an interesting way in order to construct MDS block codes
over F from MDS block codes over GF(2™/2).

We do not discuss the situation where f(z) is not square free. In this situation,
it is possible to decompose C' in a similar way, but the projections are codes
defined over finite chain rings. The reader can refer to [7] for more details.

2 L-codes

2.1 Definition of L-codes

The set £ is a non-commutative ring. Remember that, for consistency with
our previous notations and the underlying matrix approach, the product in £ is
permuted with the composition: for a € E, apy) = (p)(a) = ¥ (p(a)) = a(ypop).

Following the definition of L-generator matrix for a block code over E, we
define the notion of L-linear code.

Definition 10. An L-left-linear code C of length v over L is a left-submodule of
L.

Note that it is possible to define in the same way an L-right-linear code.
However, our definition of L-linear codes concerns only left-submodule since
there is a one to one correspondence between (left) £-linear codes and additive
block codes over E.

Theorem 4. Let C be an L-code of length r. The set

C = {ap = (p1(a), ..., or(a)) € E" |Va € E and Vo € C} is an additive block
code. Reciprocally, if C is an additive block code, the set C = {p = (¢1,...,0r) €
L"|Va € E, ap € C} is an L-code. Moreover the minimum distance of C and C
are the same.

Proof. The proof of this theorem is essentially direct verification. The only diffi-
cult point concerns the minimum distance. Clearly, we have d¢o < de. Indeed, if
@ € Cis a non-zero element of € of minimum weight de, there exists an element
a€FE,a#0and c=p(a) #0, c€ C and wg(c) < de, so do < de.

Reciprocally, suppose that ¢ = (¢, ...,¢,) € C is a word of minimum weight
de. We construct an element ¢ = (¢1, ..., ) € C as follows: the binary matrices
of the linear applications ; are those with the first row equals to ¢; and the
other rows equal to (0, ..,0). Such an element satisfy the property ap = aic. In
other words, the images by ¢ of E is the GF(2)-vector space of dimension 1
generated by c. This implies ¢ € € and w(y) = d¢, so de = de.
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Following Definition 3 and Definition 4, a narrow sense (resp. general) sys-
tematic £-code € is a submodule of rank k such that C is a narrow sense (resp.
general) systematic additive block code.

In this situation the £-generator matrix of C' is nothing else than a generator
matrix of C as left submodule.

2.2 Duality of L-codes

There is no natural notion of duality on additive block codes when they are con-
sidered as block codes and not as binary codes. The introduction of underlying
L-codes having a module structure leads us to study the concept of duality with
this approach.

L-duality. One can define a kind of scalar product on £ in the following way: for
pand ¢ in L7, weset < 0,0 >=>""_ pith; = > .. iop; € L. Note that L" is
a non commutative module over L. For A\ € £ and ¢ € L, we denote respectively
by Ap = (A1, ..., Apr) and oA = (©1, ..., o A) the left and right product. The
bilinear map is linear as left module on the left component and linear as right
module on the right component. In particular < Ap,9 >= A < ¢,¥ > and
< @, Y\ >=< ¢, > . Moreover this bilinear map is non degenerated in the
sense that if, for a fixed ¢ € L”, < p,9 >=0 for all ) € L, then ¢ = 0.
We are able to define the dual of an £-code.

Definition 11. Let C be an L (left)-linear code. The dual C*+ of C is the subset
of L" defined by
Ct={peLl| <pv>=0,VpeC}

By adapting to the particular case of our non-commutative ring £” the usual
demonstrations concerning the properties of the dual of a linear code, we obtain
the following theorem:

Theorem 5. Let C be a systematic linear code of rank k. The dual C+ of C is
an L right-linear submodule of L™ of rank r — k.

Note that, since G is not a left module, we cannot associate to this code
an additive block code. So, this notion of dual code cannot be extended to
additive block codes. However, it remains a lot of useful properties in relation
with this notion of duality. We can in particular define a generator matrix of G+
for its right-module structure. Moreover, if G is a generator matrix of € and H
a generator matrix of 1, then GHT = 0 (but not necessary HG' = 0).

An element ¢ € E" is in the additive block code C' if and only if cHT = 0. So
the matrix H is also called an L-parity check matrix of the code C.

In addition, if G = (I | M) is a generator matrix of € under systematic form,
then H = (M7 | I,_;) is a (right) generator matrix of C*.

A particular care must be taken to the fact that M7T denotes the transpose of
M at L level and does not correspond to the matrix obtained by the transpose
of its binary image M (i.e. the binary m(r — k) x mk matrix).
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In addition, there exists an equivalent to Theorem 10 of [8] Ch.1 §10 which
deals with the link between independence of columns of a parity check matrix
and minimum distance of a code.

Theorem 6. Let C' be an additive block code and H be an L-parity check matrix
of C. The code C' has minimum block distance d if and only if every d—1 columns
of H define a linear application of rank d — 1 and some d columns of H define
a linear application of rank strictly less than d.

Binary Duality for £-codes. Identifying E” and GF(2)™", it is possible to
define the notion of binary dual of an additive block code. This approach can
be defined as in Section 2.2 using a kind of “Hermitian scalar product” on L.
We need to use the transpose of a linear application. If ¢ is an element of £
with associated binary matrix M, the transpose of ¢ is the linear application
T € £ with binary matrix M¢T .

We define a bilinear map < p,¢ >r=>.._, ¢;9] € L. One can remark that
<A, ) >r= A< @, > and < o, \p >Sr=< @, >p AT,

We are able to define the binary dual of an L-code.

Definition 12. Let C be an L (left)-linear code. The binary dual Ct* of C is
the subset of L defined by

CH*={Yp e L] <, >p=0Vyp € C}.

Theorem 7. Let C be a systematic linear code of rank k. The binary dual C+*
of C is an L left-linear submodule of L™ of rank r — k, i.e. a systematic L-code.

Proof. The proof of this theorem comes directly from the relation < ¢, Ay >p=<
0,1 >7 AT which implies in particular that, if < ¢, >7= 0, then < @, \i) >7p=
0 for all A € £, so C1* is a left submodule.

In order to clarify the relationship between the two types of duality, we in-
troduce the following notation: if M = (g; ;) is a matrix with entries in £, we
denote M* = (goZTJ) obtained by replacing each entry of the matrix by its trans-
pose application. Note that we do not transpose the matrix itself. In particular,

if o = (p1, ., 0r), we set * = (], ..., )).
Proposition 8. An element ¢ € L is in C* if and only if ¢* is in C+*
Proof. Tt is a direct consequence of Definitions 11 and 12.

As a consequence of these results, H is a generator matrix of the right £-code
€1 if and only if the matrix H* is a generator matrix of the (left) £-code C1*.
In particular, if G = (I, | M) is a generator matrix of € under systematic form,
then H* = (MT*| I,_;) is a generator matrix of €.

The following proposition describes the link between the L£-duality and the
binary duality and justify the name of binary dual for C*.
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Proposition 9. Let C' be a systematic block code of length r over E. Identifying
E" and GF(2)™, we denote by C+ the usual binary dual of C. The L linear
code associated to C* is C-*.

Proof. This result comes from the remark that, for ¢ and ¥ € L", we have
M<<P"¢’>T = Z;:l MLPLMil

Note that there is no analogue to Theorem 6 for the binary £-dual linear code.

3 Linear Codes over Subrings of L

3.1 Notations and Remarks

In this section, we focus on systematic additive block codes having a systematic
generator matrix with entries in a subring R of £. We denote these codes system-
atic R-codes. Following Section 2.2, we define in an obvious way the notions of
R-generator elements, R-parity check elements, R-generator matrices, R-parity
check matrices, and the left (resp. right) submodule Cr (resp.Cx, Cx*).

Suppose for instance that R is commutative, then the notions of left and right
submodule becomes the same, so the R-duality leads to the construction of R-
dual additive block codes. Under those hypothesis, we have two distinct notions
of dual block codes.

Another possibility is the fact that R is include in the ring of symmetric
endomorphisms, i.e. the elements ¢ € £ such that 7 = ¢. In that case, the
R-parity check matrix H = (M7T|I,,_y) is an R-generator matrix of the dual
code Cx*.

3.2 Diagonal Endomorphisms

A diagonal endomorphism is an endomorphism such that its binary matrix is
diagonal. We denote by D the ring of diagonal endomorphisms, which is iso-
morphic to the ring GF(2)™. The D-codes are exactly those defined in Section
1.8.

The ring D is commutative, moreover the elements of D are symmetric, so
there is a single notion of duality. Moreover a code is MDS if and only if its dual
is MDS. However, due to Corollary 1, the search of MDS D-codes reduces to the
search of binary MDS codes that only leads to trivial cases.

3.3 Subrings with a Single Generator

Let ¢ be an invertible element of £. Let P(yp) = {P(¢p) = deg(P(w))piW}
be the subring of £ generated by 1. The ring P(¢)) is commutative and was
intensively studied to construct MDS matrices for cryptographic applications
(cf. e.g. [1,2]). Since this ring is commutative, there exists an intrinsic notion of
P(1)-duality.
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In that situation, if f(z) is the minimal polynomial of 1, a P(1)-block code
is in fact isomorphic to a block code over GF(2)[x]/f(z) described in Section
1.8. If f(x) is irreducible, the P(1)-duality is equivalent to the duality of codes
over the finite field GF'(2)[x]/f(z), which is distinct from the binary duality. If
f(z) is not irreducible, the P(¢))-dual of a code is obtained by taking the dual
of each projection and reconstructing the codes from these projections.

A priori, as noticed in [1], in order to construct some MDS diffusion matrices
for cryptographic applications, it seems preferable to limit the search to codes
over finite fields. However, in order to obtain some MDS matrices suitable for
efficient implementation, it remains interesting to construct by this method some
MDS matrices of size m from MDS matrices from smaller size block m’ < m
(typically m = 2m/).

3.4 Block-Diagonal Subrings

Suppose that m = m’ + m” for some non-zero integers m’ and m”. An ele-
ment = (z1,...,Zm,m) can be identified to the couple x = (a/,2”) with 2’ =
(X1, ey ) € BN = GF(Q)’”/ and 2" = (g1, o, Tm) € B/ = GF(Q)m”. We
denote by £’ and L” the rings of linear endomorphisms of E’ and E”. Using
the previous identification, the ring R,/ m» = L' x L can be considered as a
subring of £. The endomorphisms of R,/ ,,~ are those whose matrices are block
diagonal matrices with a first block of size m’ and a second of size m”.

In practice, an R,/ m~-linear block code is constructed as a direct sum of
an L’-linear block code and an £”-linear block code. Even if at bit level such a
code is clearly not very efficient, in the context of MDS diffusion matrices, this
method allows to build MDS matrices over large m from smaller MDS matrices
and it may be useful for some applications. The typical values of m’ and m” are
m' =m"”, som=2m'.

4 Examples of Constructions

The aim of this section is not to present some optimized matrices for hardware or
dedicated embedded software implementations, but to explain how our approach
can be applied for a practical search of good candidates.

4.1 MDS Diffusion Matrices Derived from MDS Linear Codes over
a Finite Field

In this example, we set m = 3, £k = 3 and r = 6. We denote by « a primitive
root of GF'(8). From a Reed-Solomon code of parameters [6, 3, 4] over the finite
1 aa®
field GF(8), we obtain the following MDS matrix M = [ 1 af af
1a*ab
There are different ways to build a binary MDS matrix from M.
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Indifferently, we can consider « as a root of the primitive polynomial 23 +z+1,
or the primitive polynomial 23 4+ 2% 4+ 1. Replacing o by the companion matrix
of its minimal polynomial, we obtain two distinct MDS diffusion layers:

100 010 110 100 010 101
010 001 011 010 001 111
001 110 111 001 101 110
100 101 101 100 011 011
M=1010 100 100 and M'=1010 100 100
001 010 010 001 010 010
100 011 111 100 111 110
010 111 101 010 110 011
001 101 100 001 011 100
101
In addition, one can notice that the minimal polynomial of the M/ = | 001
111

is 22 + 2 + 1 and M/ generates a ring which is isomorphic to GF(23). So the
following binary matrix is an MDS diffusion layer:

100 101 001
010 001 011
001 111 110
100 110 110
010 101 101
001 010 010
100 111 011
010 110 100
001 100 101

M//

Note that, since this matrix M/ is symmetric, all the blocks in M" are also
symmetric matrices.

4.2 An Example of Symmetric Automorphisms

In this section, m = 3, k = 3 and r = 6. We set My 1 = Ma1 = M3, = I3,

001 101 100 001
Miy=|010], Mis=[011], Myp=Mss={011], Mps= {010
101 110 010 100
101
and M39 = | 001 |. The following matrix M is an MDS block diffusion matrix
111
Is My o M 3

M= |13 M3 My 3
I3 M3 o Mo



Codes over L(GF(2)™,GF(2)™), MDS Diffusion Matrices 213

All the submatrices M; ; are symmetric. The matrix My 3 is of order 2, its
minimal polynomial is 22 4+ 1. The matrices M 2 and M o are of order 3, with
the same minimal polynomial 23 + 1. The matrices M; 3 and M3 are of order
7, with respective minimal polynomials x> 4+ 22 + 1 and 2 4+ = + 1. None of
these 5 matrices pairwise commute. The ring generated by these matrices is
L ~M3(GF(2)).

Clearly, this example cannot be obtained by usual methods derived from finite
fields or commutative subrings.

4.3 Iterative Constructions on m

From the examples given in Section 4.1, we are able to construct 3 x 3 MDS
matrices over blocks of size m = 6.
First, we follow the block-diagonal method presented in Section 3.4. From a bi-

nary matrix M, € M3(GF(2)), we construct the matrix Io®@M,: = <Ma 0 )

0 M,
in Mg(GF(2)).

From the MDS matrix M = (M, ;), M; ; € M3(GF(2)), given in Section 4.1,
we construct the MDS matrix M(?) = (I, ® M; ;) which acts on 3 blocks of size
6.

Even if this matrix acts separately on the subblocks of 3 bits inside the blocks
of 6 bits, if this diffusion matrix is applied after a well-chosen Sbox over blocks
of 6 bits, this property is no more a cryptographic weakness.

Another possible combination of MDS matrices from finite field of smaller size
is those derived from Section 1.8. For example, the MDS matrix M over GF(8)
given in Section 4.1.

1 aa®

Recall that M = [ 1 a5 af

1a*ab

Set fi(z) =23 +x+1, fo(z) = 2% + 22 + 1 and f(x) = f1(x)f2(z). The cor-
responding polynomials rings are Ry = GF(2)[z]/ fi(z), Re2 = GF(2)[z]/ f2(z)
and R = GF(2)[z]/f(z).

Since Ry and R are isomorphic to GF'(8), the matrix M can be interpreted
as a matrix in R, and Rg, with

1z 2° 1 =z r+1
Mi=[12520)=(1224+1 22+1
1z 2P la24+za2+z+1

and
1z 2° 1 T r+1
Mo= 12528 =1 224z 2°+=x

1 2% 2? la2424+1 x+1
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The isomorphism R ~ R1Rs able us to construct an MDS matrix with entries
in R using the Remainder Chinese Theorem.

If a1 (x) f1(z) +az(x) fo(x) = 1 is the Bézout identity, to (g1(x), g2(x)) € R1R2
we associate the polynomial g(z) = asf291(z) + a1 f192(z) € R. In our example,
a1(z) =z and aqo(x) = = + 1.

Our MDS matrix over R is then Mg = zfi(z) M + (z + 1) fa(z) Mo,

i-e.

1 T B+ 5+t 41
Mprp=|12+2*+2%+ 22 25 +2* 423 +22
1 2t 41 B+ttt 41

The binary MDS matrix is obtained by substituting the companion matrix M,
of f(x) to x in the entries of Mg. Indeed, M, is the matrix of the multiplication
by « in R.

5 Conclusion

The goal of this paper was not to construct in practice some optimized MDS
matrices dedicated to specific applications, but to present a general framework
for such a research. In order to have a generic approach, we introduced the notion
of L-linear codes and R-linear codes for subrings R of L.

This approach allows us to recover most of the known methods used for the
construction of MDS diffusion matrices. We show that there exists some other
non-explored directions of search, in particular with the ring of symmetric en-
domorphisms and any non-commutative subring of L.
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Abstract. In this paper, we present a higher order key partitioning
meet-in-the-middle attack. Our attack is inspired by biclique cryptanaly-
sis combined with higher order partitioning of the key. More precisely, we
employ more than two equally sized disjoint sets of the key and drop the
restrictions on the key partitioning process required for building the ini-
tial biclique structure. In other words, we start the recomputation phase
of the attack from the input plaintext directly, which can be regarded
as a Meet-in-the-Middle-attack where the tested keys have a predefined
relation. Applying our approach on LBlock allows us to present a known
plaintext attack on the full thirty two round cipher with time complex-
ity of 278338 and negligible memory requirements. The data complexity
of the attack is two plaintext-ciphertext pairs, which is the minimum
theoretical data requirements attributed to the unicity distance of the
cipher. Surprisingly, our results on the full LBlock are better, in terms of
both computational and data complexity, than the results of its biclique
cryptanalysis.

Keywords: Cryptanalysis - Meet-in-the-middle - Low data complexity -
LBlock - Bicliques

1 Introduction

Bicliques are structures that provide a formal representation of the initial execu-
tion separation in MitM attacks [14]. These structures have become particularly
important after they have been used to present a key recovery attack on the
full round Advanced Encryption Standard (AES) [5]. Indeed, a biclique attack
is an optimized exhaustive search attack where the whole key space is tested effi-
ciently. Accordingly, this class of attacks is usually used to analyze the full round
cipher unlike various other attacks which can only be applied to reduced round
versions. As a result of the exhaustive search nature of biclique cryptanalysis,
attacks employing these structure are characterized by their high computational
complexity which can reach that of the brute force search. However, practical
gain has been shown in a dedicated FPGA implementation of the attack on AES
[4]. Most of the biclique attacks require high data complexity (depending on the
length of the employed biclique) which can sometimes reach the entire codebook.
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The need for efficient lightweight cryptography is on the rise due to the cur-
rent popularity of lightweight devices such as RFID chips and wireless sensor
networks. Indeed, these systems provide convenient affordable services on tiny
resource constrained environments. On the other hand, these systems must guar-
antee certain security and privacy requirements. More precisely, the adopted
primitives must fulfill the aggressive restrictions of the application environment
and at the same time maintain acceptable security margins. PRESENT [6],
KATAN and KTANTAN [13], LED [16], Zorro [15], and LBlock [26] are some
examples of cipher designs that have been proposed to address the needs of
lightweight cryptography. Most of the recent cryptanalytic attacks on lightweight
ciphers aim to analyze how some design concepts which are proposed for this
environments have weakened these ciphers and broadened the effect of certain
types of attacks. [20,2,19,7,23].

Recently, there has been an increased interest in adopting low data com-
plexity attacks for the analysis of ciphers. This motivation is backed by the
fact that security bounds are better perceived in a realistic model [8,10]. More
precisely, in a real life scenario, security protocols impose restrictions on the
amount plaintext-ciphertext pairs that can be eavesdropped and/or the number
of queries permitted under the same key. Given the fact that biclique cryptanal-
ysis is characterized by its high data complexity, it has been implicitly avoided
in the analysis of lightweight primitives.

In this work, we present a higher order key partitioning MitM attack. Our
approach adopts only the recomputation phase from the biclique attack and
does not require any specific initial biclique structure. Accordingly, we drop all
the restrictions imposed by the bicliques on how the key is partitioned, and
allow the use of related keys that would have been impossible otherwise. The
absence of the biclique results in a low data complexity related key MitM attack
in the single key setting in which the whole key space is searched efficiently
through partial matching by recomputation [5]. To minimize the computational
complexity of the recomputation, we employ a higher order number of disjoint
sets of the master key [24]. More precisely, we partition the key space into more
than two related keys (not necessarily independent related key differentials).
Adopting this divide and conquer approach means that we have to deal with
multiple small recomputed sets instead a dominating large set. We apply this
attack on the lightweight block cipher LBlock which, similar to other lightweight
ciphers, employs a simple key schedule with relatively slow diffusion to meet the
resources constraints. Additionally, it adopts round subkeys that are shorter
than the master key and a nibble-wise permutation. This fact allows our attack
to achieve more gain over its biclique cryptanalysis counterpart [25]. Moreover,
our attack on LBlock results in the minimum data requirements which makes it
valid on RFID-like systems where the attacker can only acquire a very limited
amount of plaintext-ciphertext pairs.

The rest of the paper is organized as follows. In the next section, we give a
brief overview on the basic biclique attack. Afterwards, in Section 3, we give the
specification of the lightweight block cipher LBlock. In Section 4, we provide the
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details of our approach and its application on LBlock. Specifically, we present
a low-data complexity attack on the full thirty two round cipher. Finally, the
paper is concluded in Section 5.

2 Biclique Cryptanalysis

Biclique cryptanalysis [5] was first used to present an accelerated exhaustive
search on the full round AES. The basic idea of bicliques is to increase the
number of rounds of the basic MitM attack by providing a formal representation
of the initial structure and recomputing only the updated parts of the state.
The key recovery attack starts by dividing the master key space into key sets
where each key set K, is used to build one biclique. As depicted in Figure 1,
a d-dimensional biclique is a structure of two sets of states P; and S; where
|P;| = |S;| = 27 states and a key set K where |K| = 2%¢ keys which encrypt
each state in P; to each state in S;. K is partitioned into three disjoint sets of
key bits, i.e., K = { Ky, K1, K2}. Let Encpy; jj(Pity) and Decpy ; jj(Sj—g) denote
the encryption and decryption of the states P/L, and S}’ using the u, i, and j
values of K, K1, and Ko, respectively. These key sets are chosen such that for
a given u of the 2/%: values and all of ¢ and j of the 2/51, and 2/%2l values,
respectively, S} = Ency, ; j(FP;"), where i, j € {0, .., 24 — 1},

The construction of bicliques imposes restrictions on the choices of K7 and K5
as they must result in independent related key differentials. In other words, K3
and K> must be chosen such that the state variables between P;* and S} that
are affected by a change in the value of K are different than those affected by
a change in the value of K5. In other words, a biclique can be constructed if for
all u,7, and j of the 215:l 2151l and 252! values, respectively, the computation
of S¥ = Encpu,4) (P{,) does not share any active nonlinear state variables with
the computation P}* = Dec[u,iﬁo](S]LO).

The MitM key recovery attack using d-dimension bicliques starts with par-
titioning the master key space into 2/51=2¢ groups, where each group K [u, 1, j]
has a single value u of the 2/%:| values and iterates over the 22 values of i and j
of the 21511 and 2152l values, respectively. As depicted in Figure 1, usually the
constructed biclique is placed on the plaintext side. The attack is divided into
two main parts:

Encryption
oracle /[

Match

\‘ay

K={Ks,K1,Kz}

><

il

Fig. 1. Bicliques used in a MitM attack
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Biclique construction: at this stage, one searches for two independent related
key differentials to partition the key into key groups consisting of a given K
and all the values of K7 and K5. Since we do not use any biclique structures in
our attack, we refer the reader to [5] for the detailed procedure for building the
bicliques.

Recomputation for MitM partial matching: during this step, partial state knowl-
edge is computed from both the backward and forward directions to test each
key group in an efficient manner. More precisely, in what follows, we give the
steps performed for each key group Ku,1, j].

— Choose an appropriate matching variable v between the end of the biclique
and the ciphertext.
— Forward recomputation: for each j out of the 27 values, do the following:

e Compute the matching Variable737 ;= Enc[u’o,j](S;*) and store all the
intermediate states.

e For all the 2% — 1 values of i, compute the matching variable 7;‘] b
recomputing only those variables that differ from those previously com-
puted using Ku, 0, j] due to the effect of i.

— Backward recomputation: for all the 2¢ values of P!, ask the encryption
oracle for their corresponding ciphertexts C}'.
— For each i of the 2¢ values, do the following:

e Compute the matching Variablevﬁo = Decyy,i,01(C}') and store all the
intermediate states.

e For all 2¢ — 1 values of j, compute the matching variable Tf ; by recom-
puting only those variables that differ from those previously computed
using Ku, 7, 0] due to the effect of j.

The remaining candidate keys K[u, i, j] are those producing 7“ ?" The
surviving candidate keys should be further rechecked for full state matchlng as
some of them could be false positives.

Testing each key group by the previous procedure has proved to lead to
some improvements on the computational complexity. While all the 22¢ val-
ues of the key group are tested, we get three sets of computations. More pre-
cisely, the state variables that are affected by K only are computed once,
those affected by either K7 or Ky are computed 2¢ times, and the dominat-
ing large set is due to the variables that are influenced by both K; and K
which are recomputed 22¢ times. The data complexity of the attack is upper
bounded by all possible values of different plaintext produced by all the bi-
cliques = min (215 IHIK1l 9# of active bits in plaintext) " The memory complexity is
upper bounded by the memory required to store the forward and backward 2¢
intermediate states ~ 24+1,

3 Description of LBlock

LBlock [26] is a 64-bit lightweight cipher with an 80-bit master key. It employs
a 32-round Feistel structure and its internal state is composed of eight 4-bit
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nibbles. As depicted in Figure 2, the round function adopts three nibble oriented
transformations: subkey mixing, 4-bit Sboxes, and nibble permutation. The 80-
bit master key, K, is stored in a key register denoted by k = krgkrskzr....... k1kg.
The leftmost 32 bits of the register k are used as i*" round subkey Sk;. The key
register is updated after the extraction of each Sk; as follows:

1. k< 29.

2. [krokrgkrrkrs] = Solkrokrskrrkze).
3. [krskrakrskra] = Sslkrskrakrskra).
4. [ksokaokaskarkas] @ [i]2,

where Sg and Sy are two 4-bit Sboxes. For further details, the reader is referred
to [26].

Fig. 2. The LBlock round function

LBlock [26] has been analyzed with respect to various types of attacks includ-
ing impossible differential [17,18,9], integral [23,22], MitM [1], boomerang [12],
and biclique cryptanalysis [25]. Particularly, the attack presented in [25] is a typ-
ical high data complexity biclique cryptanalysis where the authors presented an
attack with a time complexity = 274 and a data complexity of 252. Our result
for the 9*" order key partitioning MitM cryptanalysis of the full round LBlock
has a better time complexity and is launched with only two known plaintext-
ciphertext pairs. In Table 1, we provide a summary of the current cryptanalytic
results on the LBlock cipher in the single key model. In what follows, we give
the notation used in our attack.

3.1 Notation
The following notation will be used throughout the remainder of the paper.

— K: The master key.

— Sk;: i*" round sub key.

— X;: The eight 4-bit nibble state at round .
— X;[j]: 7' nibble of the i'" round state.

— Ky ;¢ it and j' bits of master key K.
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Table 1. Summary of the current cryptanalytic results on LBlock. DC, CP, KP, and
FC stands for Differential Cryptanalysis, Chosen Plaintext, Known Plaintext, and Full
Computation, respectively

Attack #Rounds Time Memory Data Reference
Integral 22 270 268 28l cp [22]
22 279-28 - 2%CcP [17]

Impossible DC
23 97536 9T4  959(\p [9]

Biclique cryptanalysis 32 2784 28 252 CP [25]
Meet-in-the-middle 32 278:338 97T PC 2 KP This paper

4 Higher Order Key Partitioning MitM Attack

While most of the previous works [3,11,24] were trying to decrease the length
and/or dimension of the bicliques in order to reduce the data complexity, we
opted for removing the biclique structure completely from our attack. In the se-
quel, we turn the biclique attack into a MitM attack where the whole key space is
efficiently tested. However, in contrast to the basic MitM attack, the same tested
key is used to compute the matching variable from both the forward and back-
ward directions. Similar to MitM attacks, our attack is a known plaintext attack
where the number of required plaintext-ciphertext pairs is solely determined by
the relationship between the block length and key lengths. Hence, given its neg-
ligible memory complexity, this approach provides an actual computational gain
over exhaustive search as both of them have the same data requirements.

Our attack skips the independence requirements imposed on the choice of the
related keys in the biclique attack and starts the recomputation phase from the
plaintext. Thus, our approach is equivalent to a MitM attack where the tested
keys have a predefined relation. Moreover, we consider a divide and conquer
approach where higher order partitioning of the key space is adopted. In other
words, instead of dividing the key K into three disjoint sets, we divide it into
n + 1 sets with n > 2 to minimize the complexity of the recomputation in both
directions. Given that the key is partitioned into a (| K| —nd)-bit set and n d-bit
sets, adopting this higher order partitioning shares the complexity of the attack
between n+1 sets of recomputations where Shoxes of the i*" set are recomputed
20=1d times, i € {1,2,...,n+ 1}.

In the sequel, we apply this technique on LBlock and present a low data
complexity key recovery attack on the full round cipher. In fact, our best obtained
result is a two known plaintext MitM attack where the key is partitioned into nine
4-bit sets (i.e., n=9). However, based on our trials with different values of n, we
expect that further reduction in the computational complexity can be obtained
with higher values of n, but given our available computational resources, the
complexity of finding the optimal attack parameters as n grows is not practical.
Our results are particularly interesting, because they show that removing the
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biclique structure from biclique-like attacks can have a good impact on both the
data and computational complexities in some cases as with the case of LBlock.

4.1 A Low Data Complexity Attack on LBlock

In this section, we present a low data complexity attack on the full round LBlock.
The attack exploits the weak diffusion of the key schedule. This fact enables us
to partition the master key into higher order related key partitions for our MitM
attack on the full cipher with some gain over the biclique attack [25]. With
the aim of minimizing the computational complexity, we used an exhaustive
search algorithm to t