
Said El Hajji
Abderrahmane Nitaj
Claude Carlet
El Mamoun Souidi (Eds.)

 123

LN
CS

 9
08

4

First International Conference, C2SI 2015
Rabat, Morocco, May 26–28, 2015, Proceedings
In Honor of Thierry Berger

Codes, Cryptology,
and Information Security

Lecture Notes in Computer Science 9084
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Said El Hajji · Abderrahmane Nitaj
Claude Carlet · El Mamoun Souidi (Eds.)

Codes, Cryptology,
and Information Security
First International Conference, C2SI 2015
Rabat, Morocco, May 26–28, 2015, Proceedings
In Honor of Thierry Berger

ABC

Editors
Said El Hajji
University of Mohammed V
Rabat
Morocco

Abderrahmane Nitaj
University of Caen
Caen
France

Claude Carlet
LAGA, Universities of Paris 8 and Paris 13,

France
Saint-Denis Cedex 02
France

El Mamoun Souidi
University of Mohammed V
Rabat
Morocco

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-18680-1 ISBN 978-3-319-18681-8 (eBook)
DOI 10.1007/978-3-319-18681-8

Library of Congress Control Number: 2015938320

LNCS Sublibrary: SL4 – Security and Cryptology

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers accepted for presentation at C2SI-Berger2015, in honor
of Prof. Thierry Berger, from XLIM Laboratory, University of Limoges, France.
C2SI-Berger2015 is an international conference on the theory, and applications of cryp-
tographic techniques, coding theory, and information security. The first aim of this
conference is to pay homage to Prof. Thierry Berger for his valuable contribution in
teaching and disseminating knowledge in coding theory and cryptography in Morocco
since 2003. The second aim of the conference is to provide an international forum for
researchers from academia and practitioners from industry, from all over the world for
discussion of all forms of cryptology, coding theory, and information security.

The initiative of organizing C2SI-Berger2015 has been started by the Moroccan
Laboratory of Mathematics, Computing sciences and Applications (LabMiA) at Fac-
ulty of Sciences of the University Mohammed V in Rabat and performed by an active
team of researchers from Morocco and France. The conference was organized in co-
operation with the International Association for Cryptologic Research (IACR), and the
proceedings were published in Springer’s Lecture Notes in Computer Science series.

The C2SI-Berger2015 Program Committee consisted of 39 members. There were 59
papers submitted to the conference. Each paper was assigned to at least two members
of the Program Committee and was refereed anonymously. The review process was
challenging and the Program Committee, aided by reports from 17 external reviewers,
produced a total of 130 reviews in all. After this period, 22 papers were accepted on
March 20, 2015. Authors then had the opportunity to update their papers until March
25, 2015. The present proceedings include all the revised papers. We are indebted to the
members of the Program Committee and the external reviewers for their diligent work.

The conference was honored by the presence of the invited speakers François Ar-
nault, Ezedin Barka, Johannes A. Buchmann, Anne Canteaut, Claude Carlet, Jean Louis
Lanet, Ayoub Otmani, and Felix Ulmer. They gave talks on various topics in cryptog-
raphy, coding theory, and information security and contributed to the success of the
conference.

We had the privilege to chair the Program Committee. We would like to thank all
committee members for their work on the submissions, as well as all external reviewers
for their support. We thank the invited speakers, and the authors of all submissions.
They all contributed to the success of the conference.

We would also like to thank Prof. Saaid Amzazi, President of University Mohammed
V in Rabat and Prof. Wail Benjelloun, former Head of University Mohammed V, Agdal
in Rabat for their unwavering support to research and teaching in the areas of cryptog-
raphy, coding theory, and information security.

We are deeply grateful to Prof. Thierry Berger and his laboratory XLIM of the
University of Limoges for great services in contributing to the establishment of a suc-
cessful master’s degree in coding theory, cryptography, and information security at

VI Preface

University Mohammed V in Rabat. We would like to take this opportunity to acknowl-
edge their professional work.

Finally, we heartily thank all the Local Organizing Committee members, all spon-
sors, and everyone who contributed to the success of this conference. We are also thank-
ful to the staff at Springer for their help in producing the proceedings.

May 2015 Said El Hajji
Abderrahmane Nitaj

El Mamoun Souidi

Organization

C2SI-Berger2015 is organized by University Mohammed V, Rabat, Morocco,
in cooperation with the International Association for Cryptologic Research (IACR).

Honorary Chairs

Saaid Amzazi President of University Mohammed V,
Rabat, Morocco

Thierry Berger XLIM, University of Limoges, France

General Chair

Said El Hajji University Mohammed V, Rabat, Morocco

Program Chairs

Said El Hajji University Mohammed V, Rabat, Morocco
Abderrahmane Nitaj University of Caen, France
Claude Carlet Universities of Paris 8 and Paris 13, France
El Mamoun Souidi University Mohammed V, Rabat, Morocco

Organization Committee

Said El Hajji (Chair) LabMIA, University Mohammed V,
Rabat, Morocco

Ghizlane Orhanou (Co-chair) LabMIA, University Mohammed V,
Rabat, Morocco

El Mamoun Souidi (Co-chair) LabMIA, University Mohammed V,
Rabat, Morocco

Anas Aboulkalam University Cadi Ayyad, Marrakesh, Morocco
François Arnault XLIM, University of Limoges, France
Abdelmalek Azizi University Mohammed I, Oujda, Morocco
Hafssa Benaboud University Mohammed V, Rabat, Morocco
Redouane Benaini University Mohammed V, Rabat, Morocco
Youssef Bentaleb University Ibn Tofail, Kenitra, Morocco
Souad EL Bernoussi University Mohammed V, Rabat, Morocco

VIII Organization

Sidi Mohamed Douiri University Mohammed V, Rabat, Morocco
Caroline Fontaine Télécom Bretagne, Rennes, France
Abelkrim Haqiq University of Settat, Morocco
Hicham Laanaya University Mohammed V, Rabat, Morocco
Jalal Laassiri University Mohammed V, Rabat, Morocco
Mounia Mikram École des Sciences de l’Information,

Rabat, Morocco
Ayoub Otmani University of Rouen, France
Faissal Ouardi University Mohammed V, Rabat, Morocco

Program Committee

Anas Aboulkalam University Cadi Ayyad, Marrakesh, Morocco
François Arnault XLIM, University of Limoges, France
Abdelmalek Azizi University Mohammed I, Oujda, Morocco

and Académie Hassan II, Morocco
Ezedin Barka College of IT, United Arab Emirates University,

Al Ain, UAE
Hafssa Benaboud University Mohammed V, Rabat, Morocco
Youssef Bentaleb ENSA, Kenitra, Morocco
Thierry Berger XLIM, University of Limoges, France
Mohammed Bouhdadi University Mohammed V, Rabat, Morocco
Mohamed Boulmalf Université Internationale de Rabat,

Morocco
Anne Canteaut Inria-Rocquencourt, France
Sidi Mohamed Douiri University Mohammed V, Rabat, Morocco
Pierre Dusart University of Limoges, France
Mohamed Essaaidi IEEE Morocco Section, ENSIAS, Rabat, Morocco
Caroline Fontaine Télécom Bretagne, Rennes, France
Philippe Gaborit XLIM, University of Limoges, France
Sanaa Ghouzali College of Computer and Information Sciences,

King Saud University, Saudi Arabia
Kenza Guenda University of Science and Technology, Houari

Boumedienne, Algiers, Algeria
Abelkrim Haqiq University of Settat, Morocco
Maria Isabel Garcia University of Barcelona, Spain
Zoubida Jadda St Cyr, France
Salahddine Krit Ibn Zohr University Polydisciplinary,

Ouarzazate, Morocco
Jalal Laassiri Ibn Tofail University, Kenitra, Morocco
Jean Louis Lanet Inria Bretagne Atlantique, France
Mounia Mikram École des Sciences de l’Information,

Rabat, Morocco
Marine Minier INSA, Lyon, France
Ghizlane Orhanou University Mohammed V, Rabat, Morocco
Ayoub Otmani University of Rouen, France

Organization IX

Ali Ouadfel University Mohammed V, Rabat, Morocco
Faissal Ouardi University Mohammed V, Rabat, Morocco
Patrice Parraud St Cyr, France
Mohammed Rziza University Mohammed V, Rabat, Morocco
Abderrahim Saaidi University Sidi Mohamed Ben Abdellah,

Taza, Morocco
Tayeb Sadiki Université Internationale de Rabat, Morocco
Felix Ulmer University of Rennes, France
Fouad Zinoun University Mohammed V, Rabat, Morocco

Additional Reviewers

Hussain Ben-Azza Johan Nielsen
Delphine Boucher Tajjeeddine Rachidi
Ilaria Cardinali Netanel Raviv
Pascale Charpin Nicolas Sendrier
Willi Geiselmann Zhang Shiwei
Norafida Ithnin Anna-Lena Trautmann
Vadim Lyubashevsky Antonia Wachter-Zeh
Sihem Mesnager

Invited Speakers

François Arnault XLIM, University of Limoges, France
Ezedin Barka College of IT, United Arab Emirates, Al Ain,

UAE
Johannes A. Buchmann Technische Universität Darmstadt, Germany
Anne Canteaut Inria-Rocquencourt, France
Claude Carlet LAGA, Universities of Paris 8 and Paris 13, France
Jean Louis Lanet Inria Bretagne Atlantique, France
Ayoub Otmani University of Rouen, France
Felix Ulmer University of Rennes, France

Sponsoring Institutions

Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et de la
Formation des Cadres

Faculty of Sciences, Rabat, Morocco
University Mohammed V, Rabat, Morocco
Académie Hassan II des Sciences et Techniques, Morocco
Centre National de Recherche Scientifiques et Techniques, Morocco
IEEE Morocco Section

X Organization

Association Marocaine de Confiance Numérique (AMAN), Morocco
Centre Marocain de Recherches Polytechniques et d’Innovation, Morocco
Equipe Protection de l’Information, Codage et Cryptographie du Laboratoire

XLIM de Limoges, France
Laboratoire de Mathématiques, Informatique et Applications (LabMiA), Rabat,

Morocco

Origin of Submissions

Algeria
Brazil
Cameroon
Canada
France
Germany
Mauritius
Mexico
Morocco
Norway

Pakistan
Russian Federation
Saudi Arabia
Senegal
Spain
Syrian Arab Republic
Tunisia
Turkey
UAE

Biography of Thierry Berger

Thierry P. Berger received the Ph.D. degree and the French Habilitation (Mathematics)
from the University of Limoges, France.

From 1992, he has been with the University of Limoges. He is currently Professor in
the Department of Mathematics and Informatics, Xlim Laboratory. He is the scientific
head of the Protection of Information, Coding and Cryptography group of this depart-
ment. His research interests include finite algebra, automorphism group of codes, links
between coding and cryptography, stream cipher and pseudorandom generators, design
and cryptanalysis of lightweight block ciphers.

Invited Papers

François Arnault Multidimensional Bell inequalities and quantum
cryptography

Ezedin Barka Securing the Web of Things With Role-Based Access
Control

Johannes A. Buchmann On the Security of Long-lived Archiving Systems
based on the Evidence Record Syntax

Anne Canteaut Differential attacks against SPN: a thorough analysis
Claude Carlet On the properties of vectorial functions with

plateaued components and their consequences
on APN functions

Jean Louis Lanet Beyond Cryptanalysis is Software Security the
Next Threat for Smart Cards

Ayoub Otmani Key-Recovery Techniques in Code-Based
Cryptography

Felix Ulmer Codes as modules over skew polynomial rings

Multidimensional Bell Inequalities
and Quantum Cryptography

François Arnault

Université de Limoges, Laboratoire XLIM/DMI, France
arnault@unilim.fr

Abstract. The laws of quantum physics allow the design of cryptographic pro-
tocols for which the security is based on physical principles. The main crypto-
graphic quantum protocols are key distribution schemes, in which two parties
generate a shared random secret string. The privacy of the key can be checked
using Bell inequalities. However, the Bell inequalities initial purpose was a fun-
damental one, as they showed how quantum rules are incompatible with our in-
tuition of reality.

This paper begins with an introduction about quantum information theory,
Bell inequalities, quantum cryptography. Then it presents the use of qudits for
Bell inequalities and cryptography.

Securing the Web of Things
with Role-Based Access Control

Ezedine Barka, Sujith Samuel Mathew, and Yacine Atif

College of IT, UAE University, Al Ain, UAE
ebarka@uaeu.ac.ae

Abstract. Real-world things are increasingly becoming fully qualified members
of the Web. From, pacemakers and medical records to children’s toys and sneak-
ers, things are connected over the Web and publish information that is available
for the whole world to see. It is crucial that there is secure access to this Web of
Things (WoT) and to the related information published by things on the Web. In
this paper, we introduce an architecture that encompasses Web-enabled things in
a secure and scalable manner. Our architecture utilizes the features of the well-
known role-based access control (RBAC) to specify the access control policies to
the WoT, and we use cryptographic keys to enforce such policies. This approach
enables prescribers to WoT services to control who can access what things and
how access can continue or should terminate, thereby enabling privacy and secu-
rity of large amount of data that these things are poised to flood the future Web
with.

On the Security of Long-Lived Archiving Systems
Based on the Evidence Record Syntax

Matthias Geihs, Denise Demirel, and Johannes Buchmann

Technische Universität Darmstadt, University in Darmstadt, Germany
mgeihs@cdc.informatik.tu-darmstadt.de

Abstract. The amount of security critical data that is only available in digital
form is increasing constantly. The Evidence Record Syntax Specification (ERS)
achieves very efficiently important security goals: integrity, authenticity, dated-
ness, and non-repudiation. This paper supports the trustworthiness of ERS by
proving ERS secure. This is done in a model presented by Canetti et al. that these
authors used to establish the long-term security of the Content Integrity Service
(CIS). CIS achieves the same goals as ERS but is much less efficient. We also
discuss the model of Canetti et al. and propose new directions of research.

Differential Attacks Against SPN:
A Thorough Analysis

Anne Canteaut and Joëlle Roué

Inria, project-team SECRET, Rocquencourt, France
{Anne.Canteaut,Joelle.Roue}@inria.fr

Abstract. This work aims at determining when the two-round maximum ex-
pected differential probability in an SPN with an MDS diffusion layer is achieved
by a differential having the fewest possible active Sboxes. This question arises
from the fact that minimum-weight differentials include the best differentials for
the AES and several variants. However, we exhibit some SPN for which the two-
round MEDP is achieved by some differentials involving a number of active
Sboxes which exceeds the branch number of the linear layer. On the other hand,
we also prove that, for some particular families of Sboxes, the two-round MEDP
is always achieved for minimum-weight differentials.

On the Properties of Vectorial Functions
with Plateaued Components

and Their Consequences on APN Functions

Claude Carlet

LAGA, UMR 7539, CNRS, Universities of Paris 8 and Paris 13,
Department of Mathematics, University of Paris 8, 2 rue de laliberté,

93526 Saint-Denis cedex 02, France
claude.carlet@univ-paris8.fr

Abstract. [This is an extended abstract of paper [15], which has been submitted
to a journal] Boolean plateaued functions and vectorial functions with plateaued
components, that we simply call plateaued, play a significant role in cryptog-
raphy, but little is known on them. We give here, without proofs, new charac-
terizations of plateaued Boolean and vectorial functions, by means of the value
distributions of derivatives and of power moments of the Walsh transform. This
allows us to derive several characterizations of APN functions in this framework,
showing that all the main results known for quadratic APN functions extend to
plateaued functions. Moreover, we prove that the APN-ness of those plateaued
vectorial functions whose component functions are unbalanced depends only on
their value distribution. This proves that any plateaued (n, n)-function, n even,
having same value distribution as APN power functions, is APN and has same
extended Walsh spectrum as the APN Gold functions.

Beyond Cryptanalysis Is Software Security
the Next Threat for Smart Cards

Jean-Louis Lanet

INRIA, LHS-PEC,
263 Avenue Général Leclerc, 35042 Rennes, France

jean-louis.lanet@inria.fr

http://secinfo.msi.unilim.fr/lanet/

Abstract. Smart cards have been considered for a long time as a secure con-
tainer for storing secret data and executing programs that manipulate them with-
out leaking any information. In the last decade, a new form of attack that uses
the hardware has been intensively studied. We have proposed in the past to pay
attention also to easier attacks that use only software. We demonstrated through
several proof of concepts that such an approach should be a threat under some
hypotheses. We have been able to execute self-modifying code, return address
programming and so on. More recently we have been able to retrieve secret keys
belonging to another application. Then all the already published attacks should
have been a threat but the industry increased the counter measures to mitigate for
each of the published attack. In such a sensitive domain, we always submit the
attacks to the industrial partners but also national agencies before publishing any
attack. Within such an approach, they have been able to patch their system before
any vulnerabilities should be exploited.

Key-Recovery Techniques in Code-Based Cryptography

Ayoub Otmani

University of Rouen, LITIS, 76821 Mont-Saint-Aignan, France
ayoub.otmani@univ-rouen.fr

Abstract. An important step in the design of secure cryptographic primitives
consists in identifying hard algorithmic problems. Despite the fact that several
problems have been proposed as a foundation for public-key primitives, those
effectively used are essentially classical problems coming from integer factori-
sation and discrete logarithm. On the other hand, coding theory appeared with
the goal to solve the challenging problem of decoding a random linear code. It
is widely admitted as a hard problem that has led McEliece in 1978 to propose
the first code-based public-key encryption scheme. The key concept is to focus
on codes that come up with an efficient decoding algorithm. McEliece recom-
mended the use of binary Goppa codes which proved to be, up to now, a secure
choice.

This talk will explore the important notion underlying code-based cryptogra-
phy in order to understand its strengths and weaknesses. We then look at different
extensions that lead to a wide range of variants of the McEliece scheme. This will
give the opportunity to describe efficient and practical key-recovery cryptanalysis
on these schemes, and to show the large diversity in the design of these attacks.

Extended Abstract:
Codes as Modules over Skew Polynomial Rings

Felix Ulmer

IRMAR, CNRS, UMR 6625, Université de Rennes 1,
Université Européenne de Bretagne, France
felix.ulmer@univ-rennes1.fr

Abstract. This talk is an overview of codes that are defined as modules over
skew polynomial rings. These codes can be seen as a generalization of cyclic
codes or more generally polynominal codes to a non commutative polynomial
ring. Most properties of classical cyclic codes can be generalized to this new set-
ting and self-dual codes can be easily identified. Those rings are no longer unique
factorization rings, therefore there are many factors of Xn −1, each generating a
“skew cyclic code”. In previous works many new codes and new self-dual codes
with a better distance than existing codes have been found. Recently cyclic and
skew-cyclic codes over rings have been extensively studied in order to obtain
codes over subfields (or subrings) under mapping with good properties.

Contents

Invited Papers

Multidimensional Bell Inequalities and Quantum Cryptography 3
François Arnault

Securing the Web of Things with Role-Based Access Control 14
Ezedine Barka, Sujith Samuel Mathew, and Yacine Atif

On the Security of Long-Lived Archiving Systems Based on the
Evidence Record Syntax . 27

Matthias Geihs, Denise Demirel, and Johannes Buchmann

Differential Attacks Against SPN: A Thorough Analysis 45
Anne Canteaut and Joëlle Roué

On the Properties of Vectorial Functions with Plateaued Components
and Their Consequences on APN Functions . 63

Claude Carlet

Beyond Cryptanalysis Is Software Security the Next Threat for Smart
Cards . 74

Jean-Louis Lanet

Extended Abstract: Codes as Modules over Skew Polynomial Rings 83
Felix Ulmer

Regular Papers

CUBE Cipher: A Family of Quasi-Involutive Block Ciphers
Easy to Mask . 89

Thierry P. Berger, Julien Francq, and Marine Minier

A Dynamic Attribute-Based Authentication Scheme 106
Huihui Yang and Vladimir A. Oleshchuk

Repeated-Root Isodual Cyclic Codes over Finite Fields 119
Aicha Batoul, Kenza Guenda, and T. Aaron Gulliver

Formal Enforcement of Security Policies on Parallel Systems with Risk
Integration . 133

Marwa Ziadia and Mohamed Mejri

Countermeasures Mitigation for Designing Rich Shell Code
in Java Card . 149

Noreddine El Janati El Idrissi, Said El Hajji, and Jean-Louis Lanet

XXIV Contents

Weaknesses in Two RFID Authentication Protocols 162
Noureddine Chikouche, Foudil Cherif, Pierre-Louis Cayrel, and
Mohamed Benmohammed

Square Code Attack on a Modified Sidelnikov Cryptosystem 173
Ayoub Otmani and Hervé Talé Kalachi

A Family of Six-Weight Reducible Cyclic Codes and their Weight
Distribution . 184

Gerardo Vega

Codes over L(GF (2)m, GF (2)m), MDS Diffusion Matrices and
Cryptographic Applications . 197

Thierry P. Berger and Nora El Amrani

A Higher Order Key Partitioning Attack with Application to LBlock . . . 215
Riham AlTawy, Mohamed Tolba, and Amr M. Youssef

A Note on the Existence of Self-Dual Skew Codes over Finite Fields 228
Delphine Boucher

The Weight Distribution of a Family of Lagrangian-Grassmannian
Codes . 240

Jesús Carrillo-Pacheco, Gerardo Vega, and Felipe Zald́ıvar

Algorithms of Constructing Linear and Robust Codes Based on Wavelet
Decomposition and Its Application . 247

Alla Levina and Sergey Taranov

Failure of the Point Blinding Countermeasure Against Fault Attack in
Pairing-Based Cryptography . 259

Nadia El Mrabet and Emmanuel Fouotsa

Impossible Differential Properties of Reduced Round Streebog 274
Ahmed Abdelkhalek, Riham AlTawy, and Amr M. Youssef

Security Issues on Inter-Domain Routing with QoS-CMS Mechanism . . . 287
Hafssa Benaboud, Sara Bakkali,
and José Johnny Randriamampionona

Uncovering Self Code Modification in Android . 297
Faisal Nasim, Baber Aslam, Waseem Ahmed, and Talha Naeem

Performance of LDPC Decoding Algorithms with a Statistical Physics
Theory Approach . 314

Manel Abdelhedi, Omessaad Hamdi, and Ammar Bouallegue

Representation of Dorsal Hand Vein Pattern Using Local Binary
Patterns (LBP) . 331

Maleika Heenaye Mamode Khan

Contents XXV

Watermarking Based Multi-biometric Fusion Approach 342
Sanaa Ghouzali

New Attacks on RSA with Moduli N = prq . 352
Abderrahmane Nitaj and Tajjeeddine Rachidi

Factoring RSA Moduli with Weak Prime Factors . 361
Abderrahmane Nitaj and Tajjeeddine Rachidi

Author Index . 375

Invited Papers

Multidimensional Bell Inequalities

and Quantum Cryptography

François Arnault(�)

Université de Limoges, Laboratoire XLIM/DMI, France
arnault@unilim.fr

Abstract. The laws of quantum physics allow the design of crypto-
graphic protocols for which the security is based on physical principles.
The main cryptographic quantum protocols are key distribution schemes,
in which two parties generate a shared random secret string. The pri-
vacy of the key can be checked using Bell inequalities. However, the Bell
inequalities initial purpose was a fundamental one, as they showed how
quantum rules are incompatible with our intuition of reality.

This paper begins with an introduction about quantum information
theory, Bell inequalities, quantum cryptography. Then it presents the use
of qudits for Bell inequalities and cryptography.

Keywords: Bell inequalities ·Quantum cryptography ·Key distribution
schemes · Random numbers

I can give at least three reasons to be interested with quantum theory when
working in the theory of information processing.
(a) Cryptography. Quantum physics may eventually broke most present public
key protocols. But even more importantly, does provide very new cryptographic
protocols for which security is based on physics postulates.
(b) Computing. Quantum computers, if can eventually be built, will oblige us
to change our standard models of computers.
(c) Random generation. Random evolution is a fundamental feature in quantum
physics. Hence true random generation is possible, while it is only approachable
in a classical world.

In this paper we review the use of Bell inequalities and recent progresses in
their use for cryptography. Section 1 exposes the notion Local Realism and how
it is characterized by Bell inequalities. Section 2 introduces the use of multidi-
mensional quantum states (in opposition with only qudits). Section 3 considers
violations by quantum rules. Section 4 is devoted to key exchange, including a
qutrit protocol we proposed in collaboration with Zoé Amblard.

1 Local Realism and CHSH Inequalities

Bell inequalities provide evidence of the incompatibility of the classical de-
scription of the world and its quantum description. The existence of entangled

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 3–13, 2015.
DOI: 10.1007/978-3-319-18681-8_1

4 F. Arnault

systems, predicted by quantum physics and experimentally observed, is a man-
ifestation of this incompatibility. When some particles are entangled, measure-
ments on them have results that cannot be explained by classical rules. In par-
ticular, classical rules do conform with Local Realism

1.1 Local Realism

Let consider a physical system made of different (spatially separated) parts,
denoted A, B, C. . . For each part, an experimenter (Alice, Bob, Charlie. . .) is
invited to make an experiment of his choice. Classical physics have implicitly
assumed during centuries that:

Objectivism: Measurable quantities are defined even when not measured.
Locality: Distant places can be causally separated.

These two assumptions are the two ingredients of Local Realism [12]. Bell
inequalities are relations which are satisfied by systems which obey Local Realism
rules, but are violated by some quantum systems.

1.2 CHSH Inequalities

Probably the nicest Bell inequalities are the so-called CHSH inequalities (after
Clauser, Horne, Shimony, Holt) [8].

Alice and Bob make measurements on a system constituted of two distant
parties A and B. Alice has the choice to measure XA or ZA on A, and Bob
has the choice between XB and ZB over B. Measurements XA, ZA, XB, ZB

are dichotomic ones: their issues belong to {±1}. Assuming Local Realism, the
value

T := XAXB +XAZB + ZAXB − ZAZB (1)

is well defined, and it is easy seen equal to ±2. When repeating the experiment
with many identically prepared systems, the expected value of T satisfies:

− 2 ≤ E(T) ≤ 2. (2)

These are the CHSH inequalities.

1.3 Quantum World

In a quantum world, we can consider two half spin particles in a state usually
denoted |ψ〉 = 1√

2
(|01〉−|10〉). This system is said to be entangled because of the

observed correlations between the issues reported by Alice and Bob. For example,
for this state |ψ〉, if Alice and Bob measurements are spin measurements with
same direction, the issues ±1 obtained by Alice and Bob are always opposite.

More generally, quantum formalism shows that when Alice and Bob carry spin
measurements S�a and S−→

b
with respective directions given by unitary vectors

Multidimensional Bell Inequalities and Quantum Cryptography 5

−→a and
−→
b , then the expected value of the product of their issues is given by

E(S−→a S−→
b
) = −−→a · −→b . Hence, for the configuration shown in Figure 1:

E(T) = −−→a 1 ·
−→
b 1 −−→a 1 ·

−→
b 2 −−→a 2 ·

−→
b 1 +−→a 2 ·

−→
b 2 (3)

= −
√
2/2−

√
2/2−

√
2/2−

√
2/2 = −2

√
2. (4)

The value obtained for E(t) does not belong to the interval [−2, 2] as required
by (2). This is not compatible with the assumptions of Local Realism. Exper-
iments have been done to know which rules are obeyed by nature, and all have
confirmed quantum rules instead of Local Realism.

−→a2

−→
b1

−→a1−→
b2

Fig. 1. Spin measurement directions chosen by Alice and Bob

When a Bell inequality is not satisfied for some measurements on a quantum
state, it is said that this inequality is violated. The violation factor is given by
the value obtained divided by the maximum compatible with Local Realism. For
example, the expected value obtained in (4) corresponds to a violation factor

√
2.

1.4 Complete Set of Inequalities

If we swap parties and/or measurements in the two CHSH inequalities defined
by (1) and (2), we obtain eight inequalities which, as shown in [15], form a com-
plete set. This means that the four expected values E(XA), E(ZA), E(XB) and
E(ZB) observed in some experiment made by Alice and Bob are compatible with
Local Realism if and only if all eight inequalities are satisfied. These inequalities
define in C4 a polytope Ω with eight facets, which is the set of values attainable
by the four-vector of expected values assuming Local Realism.

1.5 Generalization to n Parties

Authors of [24] and [25] obtained a generalization of this complete set to the

n parties case. Their inequalities involve the Walsh-Hadamard transform f̂ of
(multiplicative) Boolean functions f : {0, 1}n → {±1}:

∑
s∈{0,1}n

f̂(s)E(Ms) ≤ 2n where Ms =
∏n

i=1 XiZ
1−si
i .

There are 22
n

such inequalities and they define a polytope Ω in R2n . They form
a complete set.

6 F. Arnault

2 Multidimensional Inequalities

The above Bell inequalities have been obtained using dichotomic measurements.
Non degenerate dichotomic measurements are described, in quantum physics,
by operators on two-dimensional Hilbert spaces. These operators act on state
vectors, which describe elementary quantum systems designed as qubits, and
usually denoted

α|0〉+ β|1〉 with α, β ∈ C such that |α|2 + |β|2 = 1.

The multidimensional case corresponds to measurement with d possible issues
where d > 2. These measurements are described using operators on d dimensional
Hilbert spaces. The corresponding states are often called qudits and denoted

α0|0〉+ α1|1〉+ · · ·+ αd−1|d− 1〉 with αi ∈ C and
∑d−1

i=0 |αi|2 = 1.

The use of qudits can be advantageous compared to the use of only qubits. For
example, Bell inequalities over qutrits (d = 3) can be more noise resistant. This
means that it is possible to design even more convincing experiments to check for
(non) Local Realism. Also, qudits are useful to design better cryptographic pro-
tocols. Moreover, general entanglement remains incompletely understood, and
multidimensional Bell inequalities may provide useful tools to give insight over
it.

Some Bell inequalities had been obtained for the multidimensional d > 2 case.
But the search for a complete set had not been successful before. We got such
a complete set in [3]. The inequalities of this set are obtained using Discrete
Fourier Transform.

2.1 Discrete Fourier Transform

Multidimensional discrete Fourier transform is a generalization of the Walsh-
Hadamard transform. The “number of points” of the transform will be denoted
d ≥ 2 (d = 2 is the Walsh-Hadamard case). Boolean functions are replaced with
functions from Zn

d to the set U of complex d-roots of unity. There are dd
n

such
functions. We denote Fn,d the set of functions from Zn

d to C, and ω a complex
primitive d-root of 1 (say ω = exp(2iπ/d)).

The discrete Fourier transform of f ∈ Fn,d is defined by

f̂(r) =
∑
s∈Zn

d

ωr·sf(s).

Values of f̂ can be obtained from the column vector of the values of f applying
the matrix H⊗n

d =
(
ωr·s)

r,s∈Zn
d

. In other words, the Fourier transform is the

isomorphism of the vector space Fn,d, with matrix H⊗n. Let H∗
d
⊗n the matrix

(ω−r·s)r,s∈Zn
d
. Then H⊗n

d H∗
d
⊗n = dnI. Hence it is possible to retrieve f from f̂ :

f(s) =
1

dn

∑
r∈Zn

d

ω−r·sf̂(r).

Multidimensional Bell Inequalities and Quantum Cryptography 7

2.2 Homogeneous Inequalities

Assume that a physical system is distributed to n parties. For each party i, two
measurements Xi and Zi are considered. These measurements are assumed to
have d ≥ 2 possible issues and, without loss in generality, this issues are assumed
to be the powers of ω.

We denote HullU the convex hull of the set U of the d-roots of unity. In [3]
we obtained, assuming Local Realism, the following property:

∑
r∈Zn

d

f̂(r)E
(n∏

i=1

Xri
i Zd−1−ri

i

)
∈ dn ·HullU, (5)

where f is any function from Zn
d to U. This can be expressed by the inequalities:

Re

(
exp(iπ/d)

cos(π/d)

∑
r∈Zn

d

f̂(r)E
(n∏

i=1

Xri
i Zd−1−ri

i

))
≤ dn. (6)

We named homogeneous Bell inequalities these dd
n

inequalities (because they
involve homogeneous polynomials). They define a polytope Ω in Cdn

.
For r ∈ Zn

d , we abbreviate Ms the monomial
∏n

i=1 X
ri
i Zd−1−ri

i . The expected
values E(Ms), for s ∈ Zn

d , form a vector in Cdn

. The Local Realistic domain is
the subset of Cdn

allowed to this vector under the Local Realistic assumptions.
We shown in [3] that this domain is exactly the polytope Ω defined by the
homogeneous Bell inequalities. These dd

n

inequalities form a complete set.
In the (very) special case d = 2, they are just the inequalities and the polytope

found by Werner & Wolf and Ẑukowski & Brukner. But, because the convex hull
of the square roots of 1 is contained in the real field, their polytope can indeed
be considered in a real space, as they did.

3 Violation by Quantum Systems

The first purpose of Bell inequalities is to identify when measurement probabil-
ities are compatible with Local Realism. This is exactly what the complete set
of homogeneous inequalities does. However, it is also important to check and
evaluate violations of Bell inequalities by quantum mechanics.

A difficulty appeared here for d > 2. Homogeneous Bell inequalities are formed
with some monomials in which two measurements Xi and Zi associated to the
same party appear. But in quantum physics, such measurements are in general
incompatible and cannot be separately carried.

We have addressed with concern using unitary measurements, instead of Her-
mitian ones as more frequently preferred in the literature. This is coherent with
our approach, where the issues of measurements are assumed to be complex
roots of unity, instead of real numbers. With unitary measurement operators,
the product of two of them is also unitary, and can be considered as a separate
measurement. The set of unitary operators we considered, the generalized Pauli

8 F. Arnault

group, is well known in quantum information theory. The Pauli operators are
the products

Z, X, XZ, . . . , XZd−1

where X and Z are given by

X =

⎛
⎜⎜⎜⎝

0 0 · · · 1

1
. . .

. . .
...

...
. . .

. . . 0
0 · · · 1 0

⎞
⎟⎟⎟⎠ and Z =

⎛
⎜⎜⎜⎝

1 0 · · · 0

0 ω
. . . 0

...
. . .

. . .
...

0 0 · · · ωd−1

⎞
⎟⎟⎟⎠ .

With these operators, is is possible to compute violations by quantum physics.
Moreover, the violations computed could be experimentally checked. In such an
experiment, the issues of the measurement corresponding to an operator X iZi

must not be considered as a product of the issues of two measurements but as
the result of a single measurement. We make explicit in the following section
how this can be done, when using tritters.

3.1 Measurements with Tritters

Measurement on qutrits (i.e. when d = 3) are often implemented with trit-
ters [26]. Note that they can be easily generalized for any d.

A tritter is parametrized by a triplet (ϕ0, ϕ1, ϕ2) of phase shifts. For readabil-
ity we put θj = exp(iϕj) (for j = 0, 1, 2) and Θ = (θ0, θ1, θ2). A tritter performs
over a qutrit the unitary transformation UΘ := HDΘ where the matrices H and
DΘ are H = (ωkl)0≤k,l≤2 and DΘ = diag(θ0, θ1, θ2). After the transformation
performed by the tritter, a measurement is made using three detectors. This
measurement is represented by the observable

Z =
2∑

k=0

ωk|k〉〈k| =

⎛
⎝ 1 1 1

1 ω ω2

1 ω2 ω

⎞
⎠ .

Thus, the measurement obtained by the combination of the tritter and the de-
tectors corresponds to the following observable

ZΘ := DΘ∗H†ZHDΘ =

⎛
⎝ 0 0 θ2θ

∗
0

θ0θ
∗
1 0 0

0 θ1θ
∗
2 0

⎞
⎠ . (7)

Suppose now that we have two tritters, which implement the observables ZΘ

and ZΛ described by Equation (7), with Θ = (θ0, θ1, θ2) and Λ = (λ0, λ1, λ2).
Then we need to implement the product observable ZΘZΛ. But

ZΘZΛ=

⎛
⎝ 0 0 θ2θ

∗
0

θ0θ
∗
1 0 0

0 θ1θ
∗
2 0

⎞
⎠

⎛
⎝ 0 0 λ2λ

∗
0

λ0λ
∗
1 0 0

0 λ1λ
∗
2 0

⎞
⎠=

⎛
⎝ 0 γ∗

0γ1 0
0 0 γ∗

1γ2
γ∗
2γ0 0 0

⎞
⎠

Multidimensional Bell Inequalities and Quantum Cryptography 9

where
(γ0, γ1, γ2) = (θ∗2λ

∗
1, θ

∗
0λ

∗
2, θ

∗
1λ

∗
0).

Hence, ZΘZΛ = Z†
Γ where Γ has the components (γ0, γ1, γ2) just given. From

ZΓ = D∗
ΓH

†ZHDΓ , we obtain ZΘZΛ = Z†
Γ = D∗

ΓH
†Z†HDΓ . The product ob-

servable ZΘZΛ can consequently also be implemented by a tritter and a detector,
but with the detector performing a measurement corresponding to the observable
Z† instead of Z.

4 Quantum Keys Exchange

In a quantum key exchange protocol, two parties use a quantum channel to ob-
tain a shared secret. The security of these protocols rely on physical postulates:
any attack can be detected with some probability. These two most famous pro-
tocols are the one by Bennett & Brassard [5] and the one by Ekert [13]. We
focused on the Ekert’91 protocol and variants.

4.1 Ekert’91 Protocol

The protocol relies on pairs of entangled qubits, say in state (|01〉−|10〉)/
√
2. This

state is usually realized with pairs of polarized photons, routed in two optical
fibers to their respective parties Alice and Bob. In the original protocol [13], Alice
and Bob each have the choice between three measurement bases, but it is better
to allow four different bases for each party. These measurements are denoted Ak

(for Alice) and Bk (for Bob, with 0 ≤ k ≤ 3). In practice these measurements
are polarization measurements with directions given by angles kπ/4 (much as
shown in Figure 1 but each party can choose between the four measurements).

Independently, Alice and Bob choose their measurements (for each received
pair of entangled states). Let Aa and Bb the chosen bases. When a = b, the issues
obtained by Alice and Bob are opposite, hence they obtained shared keybits.
The issues obtained when the parities of a and b differ can be used to detect the
presence of an attacker. For this, the two following expected values are evaluated:

E(A0B1) + E(A0B3) + E(A2B1)− E(A2B3)

E(A1B0) + E(A1B2) + E(A3B0)− E(A3B2).

They correspond to two configurations of CHSH experiments which, by quantum
rules, are predicted to reach −

√
2. A deviation from this value can be used to

detect the presence of an attacker. Other pairs (a, b) are ignored. The following
array summarizes the situation. The pairs which provide keybits are marked
with k, and the pairs used to check CHSH violations are marked c1 and c2.

B0 B1 B2 B3

A0 k c1 c1
A1 c2 k c2
A2 c1 k c1
A3 c2 c2 k

10 F. Arnault

If no disturbance affects the measurements, the two checks for CHSH must
give violations factors near v =

√
2. In practice, imperfections in apparatus

will lower this value. If disturbance is approximated with a random noise, the
resulting violation will be (1 − F)v where F is the amount of noise. While
this resultant violation remains greater than 1, the presence of an attacker can
be detected. Hence, F has to remain lower than 1 − 1/v in order to keep the
protocol secure. With Ekert protocol, F = 1− 1/

√
2 	 0.293. If we can modify

the violation factor v in order to make this threshold for F larger, the resulting
protocol will allow to detect even more discreet attackers.

4.2 The Inequality CHSH-3

The use of qutrits allows a larger noise proportion F . This was explained in [10]
where the 3DEB protocol was defined. This protocol uses an inequality similar
to CHSH but involving 3-issues measurements.

This 3-issues variant of CHSH appeared in [20]. It has been rewritten in [6]
in terms of correlation functions, in the form S ≤ 2 with

S = Re
(
E(A1B1) + E(A1B2)− E(A2B1) + E(A2B2)

)
+ 1√

3
Im

(
E(A1B1)− E(A1B2)− E(A2B1) + E(A2B2)

)
.

But we can remark that S = − 2
9 ReT with

T = 3
(
(ω2−1)E(A2

1B
2
1)+(ω−1)E(A2

1B
2
2)+(1−ω2)E(A2

2B
2
1)+(ω2−1)E(A2

2B
2
2)
)
.

Hence, the CHSH-3 inequality can finally be written Re(−T) ≤ 9.
The state 1√

3

(
|00〉 + |11〉 + |22〉

)
achieves violations of CHSH-3 with a v =

(6 + 4
√
3)/9 	 2.873/2 factor. This corresponds to a noise level F = 1 − 1/v =

(11 − 6
√
3)/2 	 0.304. It is even possible [17] to obtain a CHSH-3 violation

factor (1 +
√
11/3)/2 	 1.457 with a non maximally entangled state. The noise

threshold allowed is in this case F = (7−
√
33)/4 	 0.314.

4.3 The 3DEB Protocol

This qutrits protocol appeared in [10] (but see also [21]). Alice uses measurement
bases Aa (with a = 0, 1, 2, 3) which are obtained for example using tritters with
parameters Θa = (1, ζa, ζ2a) where ζ = exp(2iπ/12). Bob uses measurement
bases Bb (with b = 0, 1, 2, 3) obtained using tritters with parameters Θb =
(1, ζ−b, ζ−2b). When a = b, Alice and Bob obtain keybits because their respective
issues are opposite. Pairs (a, b) = (0, 1), (0, 3), (2, 1), (2, 3) can be used to check
violations of CHSH-3, which without any disturbance must equal v = (6 +
4
√
3)/9 	 2.873/2. The same is true for pairs (a, b) = (1, 0), (1, 2), (3, 0), (3, 2).

Any presence of attacker will alter the observed violation. As remarked above,
the threshold of admissible noise is F 	 0.314.

Multidimensional Bell Inequalities and Quantum Cryptography 11

4.4 The Homogeneous Qutrits Protocol

Homogeneous Bell inequalities have allowed us to define in [2] an even better
protocol, where the admissible noise threshold is larger. We have chosen to use
the inequality − 2

9 Re(T1) ≤ 1 found in [3], where

T1 = −(2ω + 4)E(A2
1B

2
1) + (ω − 1)E(A2

1B1B2) + (4ω + 2)E(A2
1B

2
2)

+(ω − 1)E(A1A2B
2
1)− (2ω + 1)E(A1A2B1B2) + (4ω − 1)E(A1A2B

2
2)

+(ω + 5)E(A2
2B

2
1) + (ω + 2)E(A2

2B1B2) + (ω − 1)E(A2
2B

2
2).

The state 1√
3

(
|00〉+ |11〉+ |22〉

)
achieves a much better violation factor 	 1.693

when using the same measurements bases as in 3DEB. Hence the threshold F is
considerably improved because it reaches now 	 0.409.

The following array details which pairs of measurements provide key trits and
which pairs are used to detect attacker (here A00 := A2

0, A02 := A0A2,. . .).

B00 B02 B22 B11 B13 B33

A00 k c c c
A02 k c c c
A22 k c c c
A11 c c c k
A13 c c c k
A33 c c c k

Note that this protocol requires to be able to measure the product of two
observables, such A02. We have shown above how this can be done using tritters.

5 Conclusion

John Bell wrote the inequalities which now bear his name with a very theoretical
aim in mind. This has been a great success and, together with experiments of
Aspects and al, we have learned much of his work.

Near thirty years later, Bell inequalities have proven to have also a practical
interest, in cryptography, with the work of Ekert. They have also applications
in true random generation: they are useful to certify that a certain amount of
entropy has been created in some quantum processes [23]. And many other uses
are possible.

We have insisted on the use of multidimensional states (qudits). The descrip-
tion of Local Realism has been possible with the use of complex correlations
functions, and of unitary observables. We have confirmed that the use of qudits
can improve some protocols.

Bell inequalities, with the use of discrete mathematics to study quantum pecu-
liarities, can be viewed as the start of emergence of quantum information theory.
This exciting field will keep a double interest, as theoretical concerns and appli-
cations will remain quite interleaved. this makes even more interesting working
in this field.

12 F. Arnault

References

1. Aćın, A., Durt, T., Gisin, N., Latorre, J.L.: Quantum non-locality in two three
level systems. Physical Review A 65, 52325 (2002)

2. Amblard, Z., Arnault, F.: A qutrit quantum key distribution protocol with better
noise resistance (Submitted)

3. Arnault, F.: A complete set of multidimensional Bell inequalities. Journal of
Physics A, Mathematical and Theoretical 45, 255304 (2012)

4. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)
5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and

coin tossing. In: Proceedings of the IEEE International Conference on Computers,
Systems, and Signal Processing, Bangalore, pp. 175–179 (1984)

6. Chen, J.-L., Kaszlikowski, D., Kwek, L.C., Oh, C.H.: Wringing out new Bell in-
equalities for three-dimensional systems (qutrits). Modern Physics Letters A 17,
2231 (2002)

7. Chen, J.L., Kaszlikowski, D., Kwek, L.C., Oh, C.H., Ẑukowski, M.: Entangled
three-state systems violate local realism more strongly than qubits: An analytical
proof. Physical Review A 64, 052109 (2001)

8. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test
local hidden variables theories. Physical Review Letters 23, 880 (1969)

9. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: Bell inequalities for
arbitrarily high-dimensional systems. Physical Review Letters 88, 040404 (2002)

10. Durt, T., Cerf, N.J., Gisin, N., Ẑukowski, M.: Security of quantum key distribution
with entangled qutrits. Physical Review A 67, 012311 (2003)

11. Durt, T., Kaszlikowski, K., Ẑukowski, M.: Violations of local realism with quantum
systems described by N-dimensional Hilbert spaces up to N = 16. Physical Review
A 64, 024101 (2001)

12. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of
physical reality be considered complete? Physical Review 47, 777 (1935)

13. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Physical Review
Letters 67, 661 (1991)

14. Feynman, R.: Simulating physics with computers. International Journal of Theo-
retical Physics 21, 467–488 (1982)

15. Fine, A.: Hidden variables, joint probabilities, and the Bell inequalities. Physical
Review Letters 48, 291 (1982)

16. Fu, L.-B.: General correlation functions of the Clauser-Horne-Shimony-Holt in-
equality for arbitrarily high-dimensional systems. Physical Review Letters 92,
130404 (2004)

17. Fu, L.-B., Chen, J.-L., Zhao, X.-G.: Maximal violation of the Clauser-Horne-
Shimony-Holt inequality for two qutrits. Physical Review A 68, 022323 (2003)

18. Ji, S.-W., Lee, J., Lim, J., Nagata, K., Lee, H.-W.: Multisetting Bell inequality for
qudits. Physical Review A 78, 052103 (2008)

19. Kaszlikowski, D., Gnaciński, P., Ẑukowski, M., Miklaszewski, W., Zeilinger, A.:
Violations of local realism by two entangled N-dimensional systems are stronger
than for two qubits. Physical Review Letters 85, 4418 (2000)

20. Kaszlikowski, D., Kwek, L.C., Chen, J.L., Ẑukowski, M., Oh, C.H.: Clauser-Horne
inequality for three-state systems. Physical Review A 65, 032118 (2002)

21. Kaszlikowski, D., Oi, D.K.L., Christandl, M., Chang, K., Ekert, A., Kwek, L.C.,
Oh, C.H.: Quantum cryptography based on qutrit Bell inequalities. Physical Re-
view A 67, 012310 (2003)

Multidimensional Bell Inequalities and Quantum Cryptography 13

22. Masanes, L., Pironio, S., Aćın, A.: Secure device-independent quantum key distri-
bution with causally independent measurement devices. Nature Communications 2,
238, 1244 (2011)

23. Pironio, S., Aćın, A., Massar, S., Boyer de la Giroday, A., Matsukevich, D.N.,
Maunz, P., Ohmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Ran-
dom numbers certified by Bell’s theorem. Nature 464, 1021 (2010)

24. Werner, R.F., Wolf, M.M.: All-multipartite Bell-correlation inequalities for two
dichotomic observables per site. Physical Review A 64, 032112 (2001)

25. M. Ẑukowski, Brukner, Č.: Bell’s theorem for general N-qubit states. Physical
Review Letters 88, 210401 (2002)

26. Ẑukowski, M., Zeilinger, A., Horne, M.A.: Realizable higher-dimensional two-
particle entanglements via multiport beam splitters. Physical Review A 55, 2564
(1997)

Securing the Web of Things with Role-Based

Access Control

Ezedine Barka(�), Sujith Samuel Mathew, and Yacine Atif

College of IT, UAE University, Al Ain, UAE
ebarka@uaeu.ac.ae

Abstract. Real-world things are increasingly becoming fully qualified
members of the Web. From, pacemakers and medical records to chil-
dren’s toys and sneakers, things are connected over the Web and publish
information that is available for the whole world to see. It is crucial that
there is secure access to this Web of Things (WoT) and to the related
information published by things on the Web. In this paper, we introduce
an architecture that encompasses Web-enabled things in a secure and
scalable manner. Our architecture utilizes the features of the well-known
role-based access control (RBAC) to specify the access control policies
to the WoT, and we use cryptographic keys to enforce such policies. This
approach enables prescribers to WoT services to control who can access
what things and how access can continue or should terminate, thereby
enabling privacy and security of large amount of data that these things
are poised to flood the future Web with.

Keywords: Web of Things · Privacy · Access Control · RBAC · UCON

1 Introduction

Today society is impacted by revolutionary innovations in information technol-
ogy that are very pervasive and ubiquitous in nature. Along with these advances,
particularly in communications technology, a series of new security threats and
privacy issues arise. Among these technologies is the rapidly increasing Web of
Things (WoT), where physical things are accessed and controlled via the Web.
WoT has several methods that support a variety of applications such as sub-
scribing to a service, notification of an event, status update, and location and
presence services. WoT provides flexible, scalable, and real-time communications
with the physical world in a ubiquitous way but additional security and privacy
concerns result from its ubiquity and mobility.

Secure Web publishing approaches have been developed to allow authenticated
users direct access to a dataset. In doing so, these appraoches provide users with
a published, static “snapshot” of the dataset content. We follow this secure
publishing paradigm [5] to enable a security framework for WoT.

Traditional access controls typically focus on the protection of data in closed
environments, and the enforcement of control has been primarily based on iden-
tity and attributes of a known user. These types of access control lack a com-
prehensive, systematic approach to fulfill the security requirements of today’s

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 14–26, 2015.
DOI: 10.1007/978-3-319-18681-8_2

Securing the Web of Things with Role-Based Access Control 15

pervasive and ubiquitous applications on the WoT. To address these issues, we
introduce an architecture that implements role-based access control (RBAC) to
check the access to datasets within WoT based environment. This enables pub-
lishers of things on the Web to control who can locate them, and subsequently
access and use them. Furthermore, it enables the possibility of setting some at-
tributes to determine whether certain accesses should proceed or be terminated.

The remainder of this paper is organized as follows. In Section 2, we provide
some background on WoT and discusses our architecture and its role in the
pervasive environment to address some security challenges. Section 3 provides
an overview of the role-based access control (RBAC). Section 4 presents our
architecture and explains the integration of WoT with RBAC. Section 5 describes
how RBAC is used to specify the access policies to WoT datasets, and the
cryptographic keys used to enforce these policies. Section 6 concludes the paper
with some future work.

2 Overview of WoT

WoT is a platform where billions of physical things are interconnected over
the World Wide Web. Researchers have successfully connected things over the
Web and experimented with various applications in real-world scenarios [4]. The
inevitable challenges lie in how to efficiently and effectively manage and secure
the access to the informaiton hidden within these things, which is critical for a
number of important applications. To address the management of heterogeneous
and wide abundance of candidate things in WoT, the Ambient Space Manager
(ASM) framework was suggested earlier by Mathew et. al [10]

2.1 Representation of Things on WoT

Mathew et. al. suggested a capability based classification, Fig 1 shows the Web
Object Metadata (WOM) structure, which defines the ontological representation
of a thing (Thing A) on the Web [6].

The WOM-Profile composes the semantic details from all ontologies of a thing
that is revealed to external entities. The WOM-Profile is divided into two sec-
tions: the ¡preset¿ and ¡dynamic¿ sections. Preset describes static information
about a thing like manufacturer, date of production, or country of production
and the dynamic, describes information about a thing like cost, location, or
owner, which changes. The WOM-Capability ontology classifies a thing based
on its Identity, Processing, Communication, and Storage (IPCS) capabilities.
The ontology classifies a thing to be Web Smart when these capabilities are
Web related. Hence a Web Smart thing has a unique identity on the Web, pro-
cesses Web requests, communicates via Web protocols, and has storage space on
the Web. If any of the capabilities are missing, then the ontology recommends
the augmentation of the missing capabilities.

Once things are Web Smart (i.e. they are participating members of the Web),
they are grouped/clustered into an Ambient Spaces (AS) [10,9]. An AS is the

16 E. Barka et al.

���

����	
��

��������������

�����		������	�

�����������	����

�������������

�������	�� !!	"

���������	��	
��	��
���
��������
���

������##$	������	

����%����
�

����&'

���&'��(!!	"

���

����	
�)

�������*���

��!�+���

Fig. 1. Web Object Metadata (WOM) of a thing on the Web

virtual representation of a cluster of things i.e. the encapsulation of one or more
real-world things that are Web Smart. An AS also represents the boundaries of
a physical space. For example, Web Smart things in a classroom, or in a train
compartment, or a hospital room, or a parking spot. These physical spaces are
repeating patterns. Hence an AS provides a template to compose things and their
containing physical spaces in a gradient to represent larger physical spaces like
campuses, parking lots, airports, trains, and office buildings. Clustering things
into an AS is done based on determining the similarities of things using similarity
functions. The similarity functions are applied on all Web Smart things in an
AS [8].

2.2 Ambient Space Stakeholders

In any fundamental computing setup, the main stakeholders are the providers
and consumers of the services or infrastructure. The consumers use and up-
date the system, while the providers deal with the manufacture, deployment
and maintenance functions. The domain of WoT requires the addition of new
stakeholders and redefinition of the traditional ones. The stakeholders within
the WoT domain not only require providers and consumers but also needs to
consider the role of owners and regulators who control the thing’s inherent dy-
namic and proprietary state. Here, we briefly list the stakeholders, focusing on
their contribution to the content of a thing’s WOM-Profile.

Providers: The providers are essentially the manufacturers that create the
WoT elements. The providers will also hold the responsibility of recycling or
discarding a thing at the end of its lifespan [7]. The maintenance and upgrades
to a thing are the responsibility of providers while a thing is used by other
stakeholders. The providers hold the right to change the content of a thing while
maintaining history of changes. The providers contribute to the preset content
¡wom:preset¿ of a thing’s prole and are responsible for ensuring the presenta-
tion of thing’s composition, use, and disposal. The preset content of a thing’s

Securing the Web of Things with Role-Based Access Control 17

WOM-Profile is fixed and not changeable by other actors. Contact information
of the providers needs to be provided, for the use of thing itself or any of the
other stakeholders. The links to the user manual and the conditions of thing’s
usage are provided by the providers. The providers may also contribute to the dy-
namic content ¡wom:dynamic¿ of a thing’s prole. Annotations for branding, price
composition and marketing are initially added by the providers. The providers
initiate the history of a thing’s existence.

Consumers: The consumers of a Web Smart thing are its users. These users
could be other things or people. Unlike other domains, consumers are not owners
here and are bound to access restrictions that are controlled by the present
owner of a thing. The contribution of consumers populates the dynamic content
¡wom:dynamic¿ of thing’s prole. The consumers provide rich semantics to thing’s
use and add to the history of a thing. The content that the consumers provide to
a thing essentially creates links with other things or people that are connected to
the consumer. Thus the consumers play an important role in promoting thing’s
social connectivity.

Owners: The owners are consumers but have more rights to a thing’s us-
age and content. The owners provide access restriction to a thing’s operations
and can loan or lease a thing. With proper authorization from regulators and
providers, the owners can alter the dynamic content ¡wom:dynamic¿ of a thing
and therefore change history. The options to re-brand or marketing a thing al-
lows owners to change the value of a thing and promote its acceptance among
other things or people.

Regulators: While the other stakeholders provide content to value a thing,
the role of the regulators prevails over other stakeholders. For example, govern-
ment authorities or regulatory authorities that ensures the safe, sustainable, and
judicious use of Web Smart things. The regulators provide details on rights and
obligations of other stakeholders. They provide contractual details wherein other
stakeholders and authorities are informed if there is a breach of contract. Because
of the wide spread implication of the virtual use of physical things, liabilities and
exceptions are to be clearly defined by regulators. For the WOM-Profile, the reg-
ulators provide content that are both preset and dynamic related to issues like
privacy, trust, cyber-attack and legal implications. The role of regulators needs
to be actively researched, investigated, and formulated with government and in-
ternational bodies so as to ensure the secure and sustainable use of things on
the Web.

Manufacturers follow a structured product labeling standard to provide con-
sumers with the information of a thing’s content and usage. The process of
monitoring and regulating these standards become easier when the information
is digitally embeded or appended to products. The benefit of using the WOM-
Profile as a digital standard for communicating product infomration is two-fold.
Firstly the standard information can be included in the ¡wom:preset¿ part and
secondly user experiences can be included in the ¡wom:dynamic¿ part of the
WOM-Profile. While it is important to understand the semantic structure of

18 E. Barka et al.

Web Smart thing’s information and the major stakeholders, it is also important
to realize how the information is stored and retrieved from real-world things.

2.3 WoT Framework

The AS enables real-world things to be imbibed into the WoT ensuring seamless
communication between people and things. This opens up many social applica-
tions that is bound to enhance business and industry. Some applications were
suggested based on the ASM framework [5,6]. Here, we take an example of how
classrooms are virtually represented as Ambient Spaces, to describe the frame-
work. Fig 2, depicts each classroom in a school campus as an Ambient Space
(AS).

����

���� ���� ����

��������	�
���
���
��������	����
��
���

��������������

�
����	�
���
���

����

������

��
�����
��

���������	

���

������

������

���������	��	
���
��	����
	�
����

�
�
�
��
�
�
	

�
�

�
	�

�
�
�
�
�
�

����

	� ���
!	��
����

����
��

������

�"�����	����
��
���

�
����	����
��
���

���������
���
��

��#
���$�
����

%�&����
��

����
�

��������

	
���

��

�
���
�

��
���������

��������

�
�
��
�
�
���

�	

�
�
�
�

�

Fig. 2. Subsuming classrooms into the WoT using Ambient Spaces

Each AS is controled by an Ambient Space Manager (ASM) which includes
the Controller, Monitor, Rules Engine, and Adapters. These modules provide es-
sential management functionalities that provide the access and control of things
in an AS. The Service repository, Knowledge Base, and Space repository contain
the information that is relevant to all AS. The users has both onsite and online
access to things in an AS.

The ASM framework creates a hierarchical structure for representing physical
spaces and the things therein. Fig 3, provides a general depiction of the structure
and also an example. Similar structure is suggestive to represent hospital rooms,
train compartments, seats on an international flight, or in a movie theatre. Thus
the ASM framework provides a scalable structure to represent physical things
on the Web and populate the WoT.

2.4 WoT Security Challenges

Openness and sharing are always contradictory when it comes to security and
privacy. A practical consideration for enabling widespread adoption of WoT is

Securing the Web of Things with Role-Based Access Control 19

Fig. 3. Representing repeating patterns of physical spaces and things in them with
Ambient Spaces

the security and privacy vulnerabilities of shared resources of things and related
data. Moreover, how does the framework verify Web services and estimate their
reliability against malicious intervention or inadvertent errors. Although secu-
rity solutions and related technologies have been developed to protect systems
against many vulnerabilities, most of these technologies do not have a cohesive
structure to deal with the security issues specifically related to the WoT, and
advocate ad-hoc approaches instead. This is because WoT introduces new di-
mensions of risk, due to its heterogeneous and ubiquitous nature. Some of the
threats that are inherent to the use of WoT are listed as follows:

– Impersonating a server: A WoT user contacts a Proxy server to deliver re-
quests. The server could be impersonated by an attacker. The mobility of
things further complicates this scenario.

– Tampering with message bodies that contain requests.
– Tearing down sessions – insert a disconnect command.
– Denial of Service attacks - Denial of service attacks focus on rendering a

thing on the Web unavailable, usually by directing an excessive amount of
network traffic to its interfaces. The WoT face the public Internet in order
to accept requests from worldwide IP endpoints, which creates a number of
potential opportunities for distributed denial of service attacks that must be
recognized and addressed by the implementers and operators of this ecosys-
tem.

Therefore, the security challenges facing WoT is to ensure the following:

– Data Security and Privacy: How to protect the thing’s data and private
information and locations? In WoT, addressing the issue of data security is
particularly challenging, due to the unique features of the network, such as
mobility of the entities and the size of the network. It is essential that thing’s
critical information is protected from being inserted or modified by attackers.
For privacy, the challenge is on how to ensure a conditional privacy in the
sense that thing’s private information like identity, speed, or location are
protected from unauthorized access while access should always be granted
when needed by authorities.

– Authentication: Most technologies use Web services today and have the
HTTP style access mechanism which is not foolproof when dealing with

20 E. Barka et al.

real-world things. A single sign-on authentication mechanism is at-least re-
quired.

– Authorization using policy-basedmechanisms: TheRead/Write/Execute con-
trols that are embedded in file systems.Earlier recommendations have tried im-
plement, traditional access controlmodels, but they are broadly categorized as
discretionaryaccess control (DAC) [3,12] andmandatory access control (MAC)
models [3,12]. Others have proposed newmodels such as role-based access con-
trol (RBAC) and task-based access control (TBAC) to address thee security
requirements [13,16].

None of the above mentioned solutions are sufficient in isolation for providing se-
curity for a large-scale, distributed and sometimes resource constrained pervasive
environment like in WoT context. Hence, our approach utilizes the well-known
Role-Based Access Control (RBAC) to control access to things on the Web.

There are many benefits to adapting RBAC to WoT context. RBAC supports
data abstractions which enables subscribers to WoT services to control who can
identify the locations of the things, to approve or disapprove subsequent access,
and to also set parameters to determine whether a certain accessn can continue or
should terminate. RBAC also enforces other security concepts that are specific to
some applications such as lease privileges or separation of privileges. In this case,
RBAC may deny the access or connection when the requested authorization of
the prescriber does not meet the access control policy requirement or the thing’s
attribute changes.

However, RBAC is susceptible to role proliferation. For example, thousands
of users may be granted access to various parts of a thing’s dataset. The access
permission my differ depending upon each user’s affiliation with the system. This
scenario my demand that role-based policy assigns one role to each user, which
can be too much to handle. Therefore, the concept of role parameterization,
developed by [3], has shown to be an effective way to deal with the issue of role
proliferation. The following section provides an overview of the RBAC model.

3 Overview of Role Based Access Control (RBAC) Model

In this section we briefly review the general ideas of RBAC and the core autho-
rization models. The details of these models can be found in [2,14,1].

RBAC is proven to be a good alternative to traditional discretionary and
mandatory access controls. It ensures that access to certain data or resources
is given to authorized users only [14]. It also supports some important secu-
rity principles such as least privilege, separation of duties, and data abstraction.
Least privilege is supported, because RBAC is configurable such that only those
permissions are assigned to the role required for the tasks conducted by members
of the role. Separation of duties is achieved by ensuring that mutually exclusive
roles must be invoked to complete a sensitive task, such as requiring an account-
ing clerk and account manager to participate in issuing a check. Data abstraction
is supported by means of abstract permissions. Instead of the read, write, and

Securing the Web of Things with Role-Based Access Control 21

execute permissions typically provided by the operating system. Other permis-
sions such as join, leave, join as a sender, or join as a receiver, are also be
expressable.

�
�����

�
�����

�
	��
�������

��
���������	
��
��

��

��������
�

����	
��
��

�

��������

�

�����������

Fig. 4. Basic RBAC Model

A general RBAC model was defined by Sandhu [14] and is summarized in
Fig 4. The model is based on three sets of entities called users (U), roles (R),
and permissions (P). A user is a human being (an entity that seeks access). A
role is a function with some associated semantics regarding the authority and
responsibility conferred on a member of the role. Permission is an approval of a
particular mode of access to one or more users in the system. The user assignment
(UA) and permission assignment (PA) relations of Fig 4 are both many-to-many
relationships (indicated by the double-headed arrows). A user can be a member
of many roles, and a role can be assigned to many users. Similarly, a role can
have many permissions, and the same permission can be assigned to different
roles.

Role hierarchy (RH) in RBAC is a natural way of organizing roles to reflect
the lines of authority and responsibility. The hierarchy is partially ordered, so
it is reflexive, transitive, and anti-symmetric. Inheritance is reflexive because a
role inherits its own permissions. Transitivity is a natural requirement in this
context, and anti-symmetry rules out roles that inherit from one another and
are therefore redundant.

4 Security Architecture for WoT

Integrating the RBAC technology into ubiquitous WoT-based environment
requires a careful mapping between the entities of RBAC and those entities

22 E. Barka et al.

and components of the WoT. Following is a list of integrated components which
require such mapping:

– User/Subjects: The concept of participants in WoT is represented as a user
component in the RBAC.

– Permissions/Rights:The concept of permissions in RBAC is captured through
the privileges that a WoT participant needs in order to complete a task.

– Objects: the concept of objects in RBAC are used to represent all resources
things that a WoT participant seeks to access or to connects to.

– Authorization Rules: Authorization rules in RBAC are the set of requirements
that should be satisfied before any WoT user be permitted to establish any
connection with, or to access any other WoT entity.

– Session: The concept of session in RBAC is captured in WoT by the set of du-
rations for which WoT entities are active.

4.1 Integrating RBAC in WoT

One of the most critical issues in using RBAC for enforcing the specified ac-
cess policies in WoT environment is to use the concept of a reference monitor
(RM), which has been introduced, and extensively discussed by the access con-
trol community for years, and has become the ISO standard for access control
framework [15].

The RM concept has been considered as the core control mechanism for access
and usage of digital information. In classical access control, subjects access digital
objects only through the reference monitor, which is a process inside the trusted
computer base that is always running and is a tamper proof.

The following section discusses our conceptual structure of RBAC/WoT access
control domains, based on the reference monitor.

4.2 Policy Enforcement Facitilies

In our architecture, we use a customized version of the well-known ISO reference
monitor standard [9].

According to this ISO standard, the reference monitor consists of two facilities:
Access Control Enforcement Facility (AEF) and Access Decision Facility (ADF).
The AEF and ADF interact with each other in such way that every request by
a subject to access an object in the system get intercepted by AEF. The AEF
in turn asks the ADF for a decision on whether to approve or disapprove the
request, and subsequently the ADF returns either ‘yes’ or ‘no’ as appropriate.
The enforcement of this decision takes place at the AEF.

In our architecture, the reference monitor is similar but differs in the details
from that of ISO reference monitor. We incorporate the role-based access con-
trol to handle the “pre-decision” authorization rule. Fig 5 shows the conceptual
structure of the RBAC/WoT reference monitor.

As the Fig 5 shows, any request to access any WoT resource “thing” is inter-
cepted by the AEF. Before making any decisions, the AEF forwards the request

Securing the Web of Things with Role-Based Access Control 23

��������������������	�
�
��

�����

���
���
��

������

���	�
��

������

������� ��
�
����	�
�
��

�� ��

���!��
"	�
���������

�
#���
���
�
��

 	�	$	��

��	
���

���

���	�����

�
%
�
�
�
�

Fig. 5. Conceptual Structure for RBAC/WoT Reference Monitor

to the ADF, which in turn adheres to the RBAC policy decision of whether to
grant or reject the authorization request. RBAC will allow authorization of an
active (subject) entity to execute a certain right on a passive (resource) entity
only if the subject belongs to a role that RBAC has previously assign that right
to.

The rest of the decision process by AEF would continue only if RBAC grants
authorization, otherwise the process is stopped and response by ADF is negative
(no authorization). Furthermore, RBAC allows authorization after it tests other
decision factors, mainly, hierarchal relationships and constraints. For example,
if the condition for granting authorization is met (i.e., the request is within the
range of the allowed operating time), and also the requester agrees to accept to
perform a certain obligation, then the ADF returns a positive response “Autho-
rize” to the AEF, otherwise request is denied.

4.3 Areas of Control Architecture

To control the access to the WoT environment, our architecture considers one
area of control, based on the location of the reference monitor, which is located
at the space manager. We refer to this set up as the server side control domain
(SCD), because this is the area where the reference monitor is located and where
the access policy to the system resources (things) is enforced. Fig 6 below depicts
this architecture.

Fig 6 shows that the control of subject’s access to objects is done centrally. In
this setup, the subject can either be located within the network or outside, and
the objects may or may not be stored in the client’s storage, depending upon the
criticality and sensitivity of the content of the object. If it is not that sensitive,
then it can be allowed to reside outside of the server-side storage. However, if
the content is very critical or very sensitive, the object must stay within the
server-side storage.

24 E. Barka et al.

Fig. 6. Integrating RM into SM

5 WOT Resources Protection

In this section, we reveal details of the RBACprocess for protecting WOM-
Profiles of things on the Web. To do this, we adopt the method described by
Muldner, Mizilek and Leighton [11]. In this paper, RBAC specifies rules that
consist of pairs of the form (role, resources), where a resource is a document
fragment specified using an XPath expression (XPath, 2008). RBAC’s data ab-
straction feature allows us to consider any permission needed to control access
to the different fragments of an XML document.

5.1 Documents and Views

In this paper, access rights are defined using Access Control Policies (ACPs). In
other words, ACPs are defined for fragments of XML documents, which we refer
to as views. Each WoT activity is published as a single XML document.

Views are specified using a subset of XPath expression referred to as document
paths as follows:

Definition 1. A local document path is a document path with no free variables.
A free variables are those variables that represent systems variable and their
names start with $. A global document path is a document path which is not local,
and considered instantiated when each occurrence of free variables is replaced by
some value. For a document D, PD,loc denotes the set of local paths in D. Each
local document path defines a fragment of the document D. Similarly, PD, glob

denotes the set of global paths in D. Hence, the set of all document paths is
denoted by PD = P D, loc U PD, glob. RBAC is susceptible to role proliferation.
Parameterization has been used in the literature to address this problem (REF),
and is out of the scope of this paper.

Securing the Web of Things with Role-Based Access Control 25

Definition 2. Let Δτ denotes the language for all roles then, for a WOM, D,
and a finite set of simples roles ψ ⊂ Δτ the document-level ACP is a mapping
ΠD : ψ → PD such that ΠD(ψ) covers the set D; i.e. each element of D belongs
to at least one document path that occurs in the policy. Often, the ΠD mapping
is tabulated and shown as tuple [(R1, P1), (R2, P2), . . . , (Rm, Pn)].

For a simple role R ∈ ψ , if ΠD(R) is local document then it defines a view
of D. If ΠD(ψ) is global document path that contains free variables, then once
path is instantiated, it defines a view of D. The designer of the RBAC policy
for, WOM D may elect to leave some parts of D unencrypted or make them
inaccessible to all users.

For a WOM D, a finite set of roles ψ ⊂ Δτ , and the document–level ACP
ΠD : ψ → PD a user in role R can access precisely the set ΠD(R) and those
nodes in D which are not covered by any path.

5.2 Key Generation and Encryption

Let κ be a finite set of keys, where each key is a tuple made of ¡key name,
symmetric key¿, and κD, ΠDdenotes a document-level key ring for the WOM D
and D’s policy ΠD, then the key generation for a document-level policy ACP
ΠD : ψ → PD takes place as following: If the all paths are local, then each
path can uniquely identify a fragment of D. However, if the paths are global, the
issues of parameterization will complicate the case because condition of the path
cannot evaluated before the values of the variables are known. For simplicity, we
will consider only the local paths.

In this case, a key ring κD, ΠD is defined and for each R ∈ ψ, this key ring
defines a set κD, ΠD(R) of R-Accessible keys. A user in role R will be provided
with R-Accessible keys allowing the decryption of the view ΠD(R).

To decrypt the document, a user U will travers the document and use the
names of the keys from κD, ΠD(R) to extract the appropriate key to decrypt
the accessible document.

To obtain a key ring that can be used to decrypt a fragment of an encrypted
document, a user can request that key ring form the list of roles that user is a
member of. Verification of membership can be achieved through presenting the
certificate that user obtained membership to that role.

6 Conclusion and Future Work

In this paper we introduced a new architecture that encompasses WoT in a
secure and scalable manner. Our architecture integrated the features of the well-
known role-based access control (RBAC) to specify the access control policies
to the WoT. More specifically, we showed how RBAC can be integrated to the
WoT architecture to specify access control to the things, which are represented
on the Web. We also showed how cryptographic keys are generated and used to
enforce such access control policies for these documents. This enable prescribers
of WoT services to control who can access their things and how, thereby enables

26 E. Barka et al.

privacy and the security of large amount of data that these things flood the Web
with. Our future work will focus on implementing this architecture.

References

1. Ferraiolo, D., Cugini, J., Kuhn, D.R.: Role-based access control (RBAC): Features
and motivations. In: Proceedings of 11th Annual Computer Security Application
Conference, pp. 241–248 (1995)

2. Ferraiolo, D., Kuhn, D.R., Chandramouli, R.: Role-based access control. Artech
House (2003)

3. Ferraiolo, D., Kuhn, D.R.: Role-based access controls, arXiv preprint
arXiv:0903.2171 (2009)

4. Guinard, D., Trifa, V.: Towards the web of things: Web mashups for embedded
devices, Workshop on Mashups, Enterprise Mashups and Lightweight Composition
on the Web (MEM 2009). In: Proceedings of WWW (International World Wide
Web Conferences), Madrid, Spain (2009)

5. Mathew, S.S., Atif, Y., Sheng, Q.Z., Maamar, Z.: Towards an Efficient Sales Pitch
with the Web of Things. In: ICEBE, 2013, pp. 377–384 (2013)

6. Mathew, S.S., Atif, Y., Sheng, Q.Z., Maamar, Z.: Building sustainable parking lots
with the Web of Things. In: Personal and Ubiquitous Computing, 2013, pp. 1–13.
Springer, Heidelberg (2013)

7. Mathew, S.S., Atif, Y., Sheng, Q.Z., Maamar, Z.: Ambient things on the Web.
Journal of Ubiquitous Systems and Pervasive Networks (JUSPN) 1(1), 1–8 (2010,
2013)

8. Mathew, S.S.: Classifying and Clustering the Web of Things, University of Ade-
laide, School of Computer Science (2013), http://hdl.handle.net/2440/83366

9. Mathew, S.S., Atif, Y., Sheng, Q.Z., Maamar, Z.: The Web of Things - Challenges
and Enabling Technologies. In: Bessis, N., Xhafa, F., Varvarigou, D., Hill, R., Li, M.
(eds.) Internet of Things & Inter-cooperative Comput. Technol. SCI, vol. 460, pp.
1–24. Springer, Heidelberg (2013)

10. Mathew, S.S., Atif, Y., Sheng, Q.Z., Maamar, Z.: Web of Things: Description,
Discovery and Integration. In: International Conference on Internet of Things and
Cyber, Physical and Social Computing (iThings/CPSCom), pp. 9–15. IEEE (2013)

11. Müldner, T., Miziolek, J.K., Leighton, G.: Succinct Access Control Policies for
Published XML Datasets. In: ICEIS, vol. (1), pp. 380–385 (2008)

12. Osborn, S., Sandhu, R., Munawer, Q.: Configuring role-based access control to
enforce mandatory and discretionary access control policies. ACM Transactions on
Information and System Security (TISSEC) 3, 85–106 (2000)

13. Oh, S., Park, S.: Task–role-based access control model, Information Systems,
vol. 28, pp. 533–562. Elsevier (2003)

14. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer Society 29(2), 38–47 (1996)

15. Security frameworks for open systems: Access control framework, Technical Report
ISO/IEC 10181-3, ISO (1996),
http://www.iso.org/iso/catalogue detail.htm?csnumber=18199

16. Thomas, R.K., Sandhu, R.S.: Task-based authorization controls (TBAC): A family
of models for active and enterprise-oriented authorization management. In: DBSec,
1997, vol. 113, pp. 166–181 (1997)

http://hdl.handle.net/2440/83366
http://www.iso.org/iso/catalogue_detail.htm?csnumber=18199

On the Security of Long-Lived Archiving

Systems Based on the Evidence Record Syntax

Matthias Geihs(�), Denise Demirel, and Johannes Buchmann

Technische Universität Darmstadt, University in Darmstadt, Germany
mgeihs@cdc.informatik.tu-darmstadt.de

Abstract. The amount of security critical data that is only available
in digital form is increasing constantly. The Evidence Record Syntax
Specification (ERS) achieves very efficiently important security goals:
integrity, authenticity, datedness, and non-repudiation. This paper sup-
ports the trustworthiness of ERS by proving ERS secure. This is done
in a model presented by Canetti et al. that these authors used to estab-
lish the long-term security of the Content Integrity Service (CIS). CIS
achieves the same goals as ERS but is much less efficient. We also discuss
the model of Canetti et al. and propose new directions of research.

1 Introduction

The amount of data that is only available in digital form is increasing constantly.
Examples include scientific data, medical records, and land registries. Therefore,
digital archives are needed that efficiently and securely preserve this information
for a long period of time.

Important protection goals for archived data objects are authenticity, in-
tegrity, non-repudiation, and datedness. Integrity means that the data object
has not been altered. Authenticity refers to the origin being identifiable. Non-
repudiation prevents an originator from repudiating that he is the origin of a
document. Datedness allows to identify a time reference when a document ex-
isted.

The Evidence Record Syntax Specification (ERS) [5, 2] achieves these protec-
tion goals efficiently and in the long-term. In fact, ERS focuses on datedness.
This is sufficient as integrity follows from datedness. Also, if the data objects are
digitally signed, then datedness also provides authenticity and non-repudiation.

To make ERS trustworthy it is desirable to have a security model and a cor-
responding security proof that establishes the security properties of ERS from a
theoretical point of view. This is what we do in this paper. As a security model,
we use the framework of Canetti et al. for analyzing computational security in
long-lived systems [4]. Using their framework, they analyze the security of the
Content Integrity Service (CIS) proposed by Haber et al. [6] that also ensures
datedness in archives. ERS is a refined, more efficient variant of CIS. The main

This work has been co-funded by the DFG as part of project Long-Term Secure
Archiving within the CRC 1119 CROSSING.

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 27–44, 2015.
DOI: 10.1007/978-3-319-18681-8_3

28 M. Geihs et al.

difference is the intelligent use of hash functions that allow for better perfor-
mance. In this work, we extend their analysis of CIS to ERS. The main idea
is to introduce hash services extending the signature services used by Canetti
et al. They allow to model the ERS evidence records that are used to establish
datedness at any point in time.

The structure of the paper is as follows. In Section 2, we describe the setup of
long-term archiving systems and provide a summary of the ERS specification. In
Section 3, we present the security framework of Canetti et al. and briefly explain
their analysis of CIS. Using their framework, in Sections 4 and 5 we analyze the
security of ERS. In Section 6, we draw conclusions and present future work.

2 ERS Archiving System

In this section, we describe the setup of secure archiving systems and provide a
summary of the ERS specification.

2.1 Setup

A secure archiving system is used to store data objects for a long period of time
while ensuring datedness of stored data. To achieve this, for each data object
d stored at time t, the system maintains an evidence record ed which allows to
prove that data object d was archived at time t.

For maintaining evidence records, archiving systems typically rely on times-
tamp services. Timestamp services are trusted third parties which can be queried
to issue a timestamp on a given bit string. When a timestamp service A is queried
to timestamp bit string x at time t, it responds with timestamp θ. Afterwards,
timestamp θ can be used to verify that timestamp service A indeed timestamped
bit string x for time t.

In this work, we consider signature-based timestamp services. A timestamp
for bit string x and time t issued by a signature-based timestamp service is a
signature on 〈x, t〉.

2.2 ERS Specification

We give an overview of the ERS specification [5]. For a set of stored data objects
{d1, . . . , dn}, the ERS specification supports to maintain an evidence record e.
For each data object d ∈ {d1, . . . , dn}, evidence record e can be used to verify
datedness of d.

When the ERS archiving system is initially asked to store a set of data objects
{d1, . . . , dn}, it generates a new evidence record for {d1, . . . , dn} and stores it
together with the data objects. The generation of an evidence record uses crypto-
graphic primitives. In particular, collision-resistant hash functions and signature
schemes are used. The lifetime of those primitives is limited due to brute-force
attacks, advances in cryptanalysis, or key compromise. Consequently, in order
to remain valid, an evidence record needs to be refreshed periodically.

On the Security of Long-Lived Archiving Systems 29

The ERS specification provides two methods of evidence record refresh,
namely timestamp-refresh and hash-refresh. Timestamp-refresh protects against
the expiration of a signature-based timestamp. Hash-refresh protects against the
expiration of a hash value.

We describe the data structure of an evidence record and how it is generated,
timestamp-refreshed, hash-refreshed and verified.

Structure. An evidence record consists of a list of timestamps and the ver-
ification information required for timestamp verification. We refrain from
explicitly describing maintenance of verification information since it is not
fundamental for our analysis of ERS. An initially generated evidence record
contains a single timestamp. Upon evidence record refresh, new timestamps
are added to the list.

Generation. Generation of an evidence record e for a set of data objects {d1,
. . . , dn} is done as follows. First, a Merkle hash tree [7] is generated having
the data objects as the leaves. Let r be the hash value corresponding to the
root of that hash tree. A timestamp θ on r is requested from a timestamp
service. The freshly generated evidence record e contains timestamp θ.

Timestamp-Refresh. An evidence record e is timestamp-refreshed as follows.
Let θ1, . . . , θn be the timestamps contained in e, where θn is the most recent
timestamp. A new timestamp θ′ on θn is requested. The timestamp-refreshed
evidence record e′ contains timestamps θ1, . . . , θn, θ

′.
Hash-Refresh. An evidence record e is hash-refreshed as follows. Let {d1, . . . ,

dn} be the data objects covered by e and let θ1, . . . , θn be the timestamps
contained in e. A new Merkle hash tree is built with d1, . . . , dn, θ1, . . . , θn
as the leaves. Let r′ be the root of that hash tree. A new timestamp θ′ on
r′ is requested. The hash-refreshed evidence record e′ contains timestamps
θ1, . . . , θn, θ

′.
Verification. Datedness verification of data object d for time t1 using evidence

record e is done as follows. Let θ1, . . . , θn be the timestamps of e and for
i = 1, . . . , n, let ti be the time when θi was issued. Check the following.

– For i = 2, . . . , n, verify if timestamp θi covers timestamp θi−1 for time ti.
If θi results from hash-refresh, additionally verify if it covers data object
d and timestamps θ1, . . . , θi−2 for time ti.

– Verify if θ1 covers data object d for time t1.

3 Security Framework

In this section, we provide a high level description of the security framework of
Canetti et al. for modeling computational security in long-lived systems [4]. We
refer to the framework as the long-lived computational security framework, or
short, LCS framework.

In this paper, our goal is to analyze the security of the ERS archiving system.
In cryptography, the security of a system is typically defined in the presence
of a resource bounded adversary, often modeled as a polynomial-time machine.

30 M. Geihs et al.

We must allow the adversary to be active during the whole lifetime of the system.
However, long-lived systems, like the ERS system, are potentially running for
super-polynomial time. Modeling the adversary as a polynomial-time machine
is too restrictive for analyzing the security of systems with super-polynomial
lifetime.

In the context of long-lived systems, we want to allow entities to be active for
unbounded lifetime, while bounding their computational power at any point in
time. To model this behavior, a special kind of automaton model is used, namely
the task-PIOA model [3], augmented with a notion of real time. Combining the
task-PIOA model with a notion of real time allows to put in relationship the
number of automaton steps and the duration of real time required to complete
a task. Computational restrictions on a task-PIOA are imposed in terms of
computation rates, i.e. number of computation steps per unit of real time.

By its nature, a polynomial-time machine uses only a polynomial-bounded
amount of space. There is no such implicit space bound for a machine with
unbounded lifetime, such as a task-PIOA. In addition to specifying a bound on
the computation rate of bounded task-PIOAs, we impose a bound on the space
consumed by a bounded task-PIOA. We allow a bounded task-PIOA to only use
a bounded amount of space at any point in time.

Note that, with respect to the security parameter k, computational bounds
are fixed over the lifetime of the whole protocol. In particular, the LCS frame-
work does not allow to model systems whose computational power increases over
time.

Using the LCS framework, a security proof of a cryptographic system is done
in style of the real-ideal paradigm. In this style, an ideal version of the system
and a real version of the system are defined. Here, the ideal system represents the
functionality of the system, which is secure by definition and usually relies on
a trusted party. The real system represents the implementation of the system,
which uses cryptography to mimic the ideal system’s behavior. To prove the
implementation secure, it is shown that a computationally bounded environment
interacting with the two systems cannot distinguish them. Since the ideal system
implicitly defines the functionality of the secure system, this suffices to show the
security of the real system.

The LCS framework provides a mechanism for long-lived systems to recover
from past security failures. Therefore, an ideal system is allowed to take desig-
nated failure steps. For any polynomial-bounded time interval, the real system
will only have to approximate the ideal system if no failure tasks occur in that
interval.

In Section 3.1 we introduce the task-PIOA model. In Section 3.2 we introduce
the long-term implementation relation which allows to compare an ideal system
to a real system in the presence of a long-lived environment. In Section 3.3 we
briefly describe the CIS archiving system model from [4].

On the Security of Long-Lived Archiving Systems 31

3.1 Task-PIOAs

If we say, a system is described within the LCS framework, we mean that it is
modeled as a task-PIOA [3], which is a version of a probabilistic input/output
automaton (PIOA).

A PIOA A is defined by a tuple 〈V, S, sinit, I, O,H,Δ〉. Here, V is a set of
state variables, S is a set of states, sinit ∈ S is the initial state, I is a set of
input actions, O is a set of output actions, H is a set of hidden actions, and Δ is
a transition relation. The transition relation describes how the automaton, for
a given action, transitions from one state into another. An action transition can
be viewed as an atomic computation step of a PIOA.

Multiple PIOA actions can be grouped into a task. Formally, a task-PIOA is a
pair 〈A,R〉, where A is a PIOA and R is a partition of locally-controlled actions
(i.e., output and hidden actions) of A. The equivalence classes in R are called
tasks. For notational simplicity, we often omit R and refer to the task-PIOA A.

Computational bounds on a task-PIOA are three-fold. Firstly, a step bound
on a task-PIOA limits the turing complexity of every single task-PIOA step.
Secondly, in the LCS framework, task-PIOAs are augmented with a real-time
scheduling mechanism. This allows to impose real-time scheduling constraints on
task schedules. More precisely, real-time scheduling constraints allow to limit the
number of steps performed by a task-PIOA per fraction of real time. Thirdly, step
bound and real-time scheduling constraints are combined to obtain an overall
bound.

Operations. Task-PIOAs are subject to the composition and hiding operation.

Composition. Let A1 and A2 be two task-PIOAs. We say A1 and A2 are com-
patible, if they do not share any state variables or output actions, and hidden
actions of the one automaton do not collide with any actions of the other au-
tomaton (and vice versa). If two task-PIOAs A1 and A2 are compatible, they
can be composed into a new task-PIOA. We denote the composition of A1 and
A2 by A1‖A2. The composition A1‖A2 is itself a task-PIOA which synchronizes
on shared actions of A1 and A2.

Hiding Operator. We define a hiding operator for task-PIOAs. Let A := 〈V,
S, sinit, I, O,H,Δ〉 be a task-PIOA and X ⊆ O be a set of output actions.
Then, hide(A, X) is the task-PIOA given by 〈V, S, sinit, I, O\X,H∪X,Δ〉. This
prevents other task-PIOAs from synchronizing with A via actions in X : any
task-PIOA with an action in X is no longer compatible with A.

Step Bound. The notion of a step bound is defined to limit the amount of
computation a task-PIOA can perform, and the amount of space it can use, in
executing a single step. For p ∈ N, we say a task-PIOA A has step bound p, if
for every single step of A, p limits the complexity of a turing machine simulating
the step.

32 M. Geihs et al.

Real-Time Scheduling Constraints. In the LCS framework, task-PIOAs are
augmented with real-time scheduling constraints. This allows to model entities
with unbounded lifetime but bounded processing rates. Therefore, a task sched-
ule can be associated with a bound map 〈rate, burst, lb, ub〉. Here, rate bounds
the number of task executions per real time, burst allows for a fixed violation
of this bound, and lb and ub are lower and upper real time bounds for the first
and last execution of a task, respectively. We say a real time task schedule is
constrained by p, if it is valid under a p-bounded bound map.

Note that real time is only used to express constraints on task schedules.
Computationally bounded system components are not allowed to maintain real
time information in their states, nor to communicate real-time information to
each other. System components that require knowledge of time will maintain
discrete approximations of time in their states, based on inputs from a global
task-PIOA Clock.

Overall Bound. Step bound and real time scheduling constraints are combined
to obtain an overall bound on a task-PIOA A. We say that a task-PIOA A is
p-bounded, if A has step bound p and real time task scheduling is constrained
by p. We say a task-PIOA A is quasi-p-bounded if A is of the form A′‖Clock,
where A′ is p-bounded.

Task-PIOA Families. Task-PIOAs can be gathered into task-PIOA families,
indexed by a security parameter k. A task-PIOA family Ā is an indexed set
{Ak}k∈N of task-PIOAs. Given a function p : N → N, we say that Ā is p-
bounded if for all k, Ak is p(k)-bounded. If p is a polynomial, then we say Ā is
polynomially bounded.

3.2 Longterm Implementation Relation

The LCS framework allows modeling computational security in long-lived sys-
tems. Traditionally, a system is considered secure if a polynomial-time environ-
ment cannot distinguish the ideal system model (i.e., the functionality) from the
real system model (i.e., the implementation). Restricting environments to be
polynomial-time bounded is not satisfactory in the context of long-lived systems
which potentially run for super-polynomial time.

The LCS framework provides a notion of indistinguishability in the context of
long-lived systems. The idea is to not limit the overall amount of computation
performed by a long-lived environment, but to polynomially bound the amount
of computation performed per fraction of time. Furthermore, long-lived systems
are allowed to recover from past security failures. Therefore, an ideal system is
allowed to take designated failure steps. For a polynomial-bounded time interval,
the real system will only have to approximate the ideal system, if no failure tasks
occur in that interval.

On the Security of Long-Lived Archiving Systems 33

A long-term implementation relation defines indistinguishability of systems in
the context of a long-lived environment. We sketch the definition of the long-term
implementation relations ≤p,q,ε and ≤neg,pt given in [4], Section 5. Task-PIOAs
can only be put in relationship by a long-term implementation relation if they
are comparable. We say task-PIOAs A1 and A2 are comparable, if they have the
same external interface, that is, they have the same input and output actions.
We say task-PIOA families Ā1 and Ā2 are comparable if for every k, (Ā1)k is
comparable to (Ā2)k.

Let A1 and A2 be comparable task-PIOAs. Let F 1 and F 2 be sets of desig-
nated failure tasks associated with A1 and A2, respectively. Let p, q ∈ N and
ε ∈ R≥0. If for every q-bounded time window in which no failure tasks F 1 and
F 2 occur, any quasi-p-bounded environment cannot distinguish A1 and A2 with
probability at most ε, we write (A1, F 1) ≤p,q,ε (A2, F 2).

The≤p,q,ε definition is extended to task-PIOA families. Let Ā1 and Ā2 be com-
parable task-PIOA families. Let F̄ 1 and F̄ 2 be sets of designated failure tasks as-
sociated with Ā1 and Ā2, respectively. Let p, q be polynomials and ε : N → R≥0 be
a function. We say (Ā1, F̄ 1) ≤p,q,ε (Ā2, F̄ 2), if ∀k : ((Ā1)k, (F̄

1)k) ≤p(k),q(k),ε(k)

((Ā2)k, (F̄
2)k).

We write (Ā1, F̄ 1) ≤neg,pt (Ā2, F̄ 2), if ∀p, q∃ε : (Ā1, F̄ 1) ≤p,q,ε (Ā2, F̄ 2),
where p, q are polynomials and ε is a negligible function. In this case we say Ā1

implements Ā2 in the sense of the long-term implementation relation. Here, Ā1

is usually referred to as the real system (i.e., the implementation), and Ā2 is
usually referred to as the ideal system (i.e., the functionality).

Composition Theorems. We quote the following statement regarding com-
position theorems from [4], Section 7.

In practice, cryptographic services are seldom used in isolation. Usually,
different types of services operate in conjunction, interacting with each
other and with multiple protocol participants. For example, a participant
may submit a bit string to an encryption service to obtain a ciphertext,
which is later submitted to a timestamping service. In such situations,
it is important that the services are provably secure even in the context
of composition.

Indeed, as described in Section 3.1, single task-PIOAs (e.g., encryption or
timestamp services) can be composed to obtain more complex task-PIOAs (e.g.,
a system composed of communicating services). The following composition the-
orems allow to preserve the longterm implementation relation ≤neg,pt . For a
formal definition of the composition theorems see [4], Section 7.

Parallel Composition Theorem. The Parallel Composition Theorem allows
for the parallel composition of polynomially many components.

Sequential Composition Theorem. TheSequentialCompositionTheorem al-
lows for the sequential composition of exponentiallymany components.We say
task-PIOAsare sequential if for every real time t atmost one of the task-PIOAs
is not dormant at time t.

34 M. Geihs et al.

d-Bounded Composition Theorem. The d-Bounded Composition Theorem
allows for the d-bounded concurrent composition of exponentially many com-
ponents, where d is a positive integer. We say task-PIOAs are d-bounded
concurrent if for every real time t at most d of the task-PIOAs are not
dormant at time t.

We describe application of a composition theorem to sequences of task-PIOAs
associated with a sequence of designated failure task families. Let Ā1

1, Ā1
2, . . . and

Ā2
1, Ā2

2, . . . be comparable sequences of compatible task-PIOA families associated
with sequences of failure task set families F̄ 1

1 , F̄
1
2 , . . . and F̄ 2

1 , F̄
2
2 , . . ., respectively.

Let C := {1, 2, . . . , n} be a set of indices. Define the compositions of task-

PIOA families Â1 := ‖i∈CĀ1
i and Â2 := ‖i∈CĀ2

i , and the unions of failure

task set families F̂ 1 := {
⋃

i∈C(F̄
1
i)k}k∈N and F̂ 2 := {

⋃
i∈C(F̄

2
i)k}k∈N. Note

that index set C is subject to the composition theorem to be applied. Then,
(Â1, F̂ 1) ≤neg,pt (Â2, F̂ 2), if ∀p, q∃ε∀i : (Ā1

i , F̄
1
i) ≤neg,pt (Ā2

i , F̄
2
i), where p, q are

polynomials and ε is a negligible function.

3.3 CIS System Model

In [4], Canetti et al. propose a model for another long-lived archiving system,
namely the content integrity service (CIS) [6]. We explain briefly how the CIS
system is modeled as the composition of task-PIOAs.

The CIS system model is composed of a dispatcher component and a sequence
of timestamp services. The dispatcher component accepts various timestamp re-
quests and forwards them to the appropriate timestamp service. In [4], Section 8,
it is shown that the composition of the dispatcher and real timestamp services
is indistinguishable from an ideal system, composed of the same dispatcher and
corresponding ideal timestamp services. Specifically, this guarantees that the
probability of a new forgery is small at any given point in time, regardless of
any forgeries that may have happened in the past.

We sketch some of the technicalities of the CIS analysis from [4]. The
dispatcher component, the real timestamp services and the ideal timestamp ser-
vices are modeled as task-PIOAs. It is shown that a real timestamp service im-
plements its ideal timestamp service counterpart in the sense of ≤neg,pt . Using
the d-bounded composition theorem, it is shown that the d-bounded composi-
tion of real timestamp services implements the d-bounded composition of ideal
timestamp services. Using the parallel composition theorem, it is shown that the
parallel composition of the dispatcher and the real timestamp services (i.e., the
real system) implements the parallel composition of the dispatcher and the ideal
timestamp services (i.e., the ideal system).

4 ERS System Model

In this section, we propose a task-PIOA model of the ERS archiving system by
extending the CIS system model (cf. Section 3.3).

On the Security of Long-Lived Archiving Systems 35

The ERS system extends the CIS system as follows. The CIS system supports
one method for evidence refresh, where data object and evidence are times-
tamped together. In particular, in the CIS system model, no hash functionality
is described. The ERS system supports two methods for evidence refresh, namely
timestamp-refresh and hash-refresh (cf. Section 2). The hash-refresh method is
similar to CIS evidence refresh (i.e., data object and evidence are timestamped
together). The timestamp-refresh method is special to ERS as it allows to re-
fresh the evidence while only part of the current evidence needs to be hashed
and timestamped. This makes ERS more efficient compared to CIS.

4.1 Construction Overview

We give an overview of the ERS model construction. The ERS system is modeled
as the composition of a dispatcher component, a sequence of timestamp services,
and, in particular, a sequence of hash services. The dispatcher component ac-
cepts various evidence record requests and uses appropriate hash and timestamp
services to answer them.

A timestamp service can be queried to produce a timestamp for a bit string.
Here, we consider signature-based timestamp services. When a signature-based
timestamp service is queried for a timestamp on bit string x, it responds with
a signature on 〈x, t〉, where t is the time at timestamp request. Each timestamp
service wakes up at a certain time and is active for a specified amount of time
before becoming dormant again. This can be viewed as a regular update of the
service, which may entail a simple refresh of the timestamp key, or the adoption
of a new timestamp algorithm.

A hash service can be queried to produce a hash of a bit string. When a hash
service is queried for a hash of bit string x, it responds with a fixed-length hash
H(x), where H is a collision-resistant hash function. Because the hash service
offers a collision-resistant hash functionality, it is hard to find a bit string x′,
such that x �= x′ and H(x) = H(x′). Each hash service starts being available at
a certain time and is available for a specified amount of time before becoming
unavailable again. This can be viewed as a regular update of the hash algorithm.

The real ERS model consists of the dispatcher component, a collection of hash
services, and a collection of real timestamp services. Similarly, the ideal ERS
model consists of the same dispatcher component, a collection of hash services,
and a collection of ideal timestamp services. Note that we do not distinguish
between real and ideal hash services. This is due to the fact that we model
the functionality of a collision-resistant hash algorithm using the random oracle
methodology (cf. Section 4.4).

4.2 Signature Service

We describe the signature service model from [4]. A signature service is identified
by its service identifier. We denote the domain of signature service identifiers by
SIDsign. A signature service is constructed using a signature scheme.

36 M. Geihs et al.

Definition 1 (Signature Scheme). A signature scheme consists of three al-
gorithms KeyGen, Sign, and Verify. KeyGen is a probabilistic algorithm that out-
puts a signing-verification key pair 〈sk, vk〉. Sign is a probabilistic algorithm that
produces a signature σ from a message m and the key sk. Finally, Verify is a
deterministic algorithm that maps 〈m,σ, vk〉 to a boolean. The signature σ is
said to be valid for m and vk if Verify(m,σ, vk) = 1.

In the following, we describe the real signature service model, the ideal sig-
nature service model, and sketch the proof of Theorem 1 from [4]. According
to this theorem, the real signature service, if instantiated with a complete and
existentially unforgeable signature scheme, implements the corresponding ideal
signature service in the sense of the ≤neg,pt definition (cf. Section 4.2).

For every j ∈ SIDsign, suppose that 〈KeyGenj , Signj ,Verifyj〉 is a signature

scheme. We assume a function alive : T → 2SIDsign such that, for every t, alive(t)
is the set of services alive at discrete time t. The lifetime of each service j is then
given by aliveTimes(j) := {t ∈ T|j ∈ alive(t)}.

Real Signature Service. For k ∈ N and j ∈ SIDsign, we define three task-
PIOAs, KeyGen(k, j), Signer(k, j), and Verifier(k, j), representing the key gener-
ator, signer, and verifier, respectively.

KeyGen(k, j) chooses a signing key mySK and a corresponding verification
key myV K by running the KeyGenj algorithm. It does this exactly once during
its lifetime. It outputs the two keys separately, via actions signKey(sk)j and
verKey(vk)j . The signing key goes to Signer(k, j), while the verification key goes
to Verifier(k, j). Signer(k, j) responds to signing requests by running the Signj
algorithm on message m and the signing key sk. Verifier(k, j) accepts verification
requests and simply runs the Verifyj algorithm.

For k ∈ N and j ∈ SIDsign, we define the real signature service as

RealSig(j)k := hide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j), signKeyj) .

Note that the hiding operator prevents the environment from learning the signing
key (cf. Section 3.1).

Ideal Signature Service. We specify an ideal signature functionality SigFunc.
As with KeyGen, Signer, and Verifier, each instance of SigFunc is parametrized
with a security parameter k and an identifier j. The task-PIOA SigFunc(k, j) is
very similar to the composition of Signer(k, j) and Verifier(k, j). The important
difference is that SigFunc(k, j) maintains an additional internal variable history,
which records the set of signed messages. In addition, SigFunc(k, j) has an interal
action failj , which sets a boolean flag failed. If failed = false, then SigFunc(k, j)
uses history to answer verification requests: a signature is rejected if the sub-
mitted message is not in history, even if Verifyj returns 1. If failed = true, then
SigFunc(k, j) bypasses the check on history, so that its answers are identical to
those from the real signature service.

On the Security of Long-Lived Archiving Systems 37

For k ∈ N and j ∈ SIDsign, we define the ideal signature service as

IdealSig(j)k := hide(KeyGen(k, j)‖SigFunc(k, j), signKeyj) .

Implementation Proof. We define standard properties of signature schemes,
namely completeness and existential unforgeability. Afterwards, we show that if a
real signature service is instantiated with a complete and existential unforgeable
signature scheme, it implements the corresponding ideal signature service.

Definition 2 (Completeness). A signature scheme 〈KeyGen, Sign,Verify〉 is
complete if Verify(m,σ, vk) = 1 whenever 〈sk, vk〉 ← KeyGen(1k) and σ ←
Sign(sk,m).

Definition 3 (EUF-CMA). We say a signature scheme 〈KeyGen, Sign,Verify〉
is existentially unforgeable under adaptive chosen message attack if no polynomial-
time forger has non-negligible success probability in the following game.

Setup The challenger runs KeyGen to obtain 〈vk, sk〉 and gives the forger vk.

Query The forger submits message m. The challenger responds with signature
σ ← Sign(m, sk). This may be repeated adaptively.

Output The forger outputs a pair 〈m∗, σ∗〉 and he wins if m∗ is not among the
messages submitted during the query phase and Verify(m∗, σ∗, vk) = 1.

For j ∈ SIDsign, define the ideal signature service family

IdealSig(j) := {IdealSig(j)k}k∈N

and the real signature service family

RealSig(j) := {RealSig(j)k}k∈N .

Theorem 1 from [4] says that if a real signature service is instantiated with
a complete and existentially unforgeable signature scheme, it implements the
corresponding ideal signature service. We quote Theorem 1 from [4].

Theorem 1. Let j ∈ SIDsign be given. Suppose that 〈KeyGenj , Signj ,Verifyj〉 is

a complete and EUF-CMA secure signature scheme. Then (RealSig(j), ∅) ≤neg,pt

(IdealSig(j), {failj}).

To prove Theorem 1, one needs to show the following for every time t and
polynomials p, q. If task failj is not scheduled in interval [t, t + q(k)], then no
p-bounded environment can distinguish RealSig(j)k from IdealSig(j)k with high
probability between time t and time t + q(k). The full proof of Theorem 1 can
be found in [4].

38 M. Geihs et al.

4.3 Timestamp Service

A timestamp service can be queried to create a timestamp on a bit string. The
timestamp can later be used to verify that the bit string was available at a
certain point in time. More precisely, for bit string x, timestamp service j can
be queried to create a timestamp θ on x. The timestamp θ issued by timestamp
service j is associated with a certain point in time t. Timestamp θ can later be
used to verify that x was in fact timestamped for time t by service j.

We augment signature services to support timestamping. For every security
parameter k and signature service j ∈ SIDsign, we define task-PIOA Stamper(k, j).
When Stamper(k, j) receives a timestamp request for bit string x via action
reqStamp(rid , x), where rid is the request identifier, it computes a signature σ
on 〈x, t〉, where t is the clock reading at reqStamp. Then, Stamper(k, j) responds
with timestamp θ := 〈σ, t〉 via respStamp(rid , θ).

When Stamper(k, j) receives a verification request for timestamp θ := 〈σ, t〉
and bit string x via reqVerTs(rid , x, θ), it verifies if signature σ is a valid signa-
ture for 〈x, t〉. If verification is successful, it answers with respVerTs(rid , true).
Otherwise, it answers with respVerTs(rid , false).

We use Stamper(k, j) and the signature service task-PIOAs defined in Sec-
tion 4.2 (i.e., KeyGen(k, j), Signer(k, j), Verifier(k, j), and SigFunc(k, j)) to build
the real and ideal timestamp service. For k ∈ N and j ∈ SIDsign, we define the
real timestamp service RealStamp(j)k as

RealStamp(j)k := hide(KeyGen(k, j)‖Signer(k, j)‖Verifier(k, j)‖
Stamper(k, j), signKeyj)

and the ideal timestamp service IdealStamp(j)k as

IdealStamp(j)k := hide(KeyGen(k, j)‖SigFunc(k, j)‖Stamper(k, j), signKeyj) .

We gather the real and ideal timestamp services into families. For j ∈ SIDsign,
we define the real timestamp service family

RealStamp(j) := {RealStamp(j)k}k∈N ,

and the ideal timestamp service family

IdealStamp(j) := {IdealStamp(j)k}k∈N .

Theorem 2. Let j ∈ SIDsign be given. Suppose that 〈KeyGenj , Signj ,Verifyj〉 is a
complete and EUF-CMA secure signature scheme. Then (RealStamp(j), ∅) ≤neg,pt

(IdealStamp(j), {failj}).

Proof. By Theorem 1 we have (RealSig(j), ∅) ≤neg,pt (IdealSig(j), {failj}). Ob-
serve that RealSig(j) and IdealSig(j) are modified in the same way (i.e., point-
wise composition with Stamper(k, j)) to obtain RealStamp(j) and IdealStamp(j).
It follows that (RealStamp(j), ∅) ≤neg,pt (IdealStamp(j), {failj}).

On the Security of Long-Lived Archiving Systems 39

4.4 Hash Service

Generation of evidence records in the ERS system involves using hash algorithms.
A hash algorithm H : M → H is an efficient deterministic algorithm mapping
a message m ∈ M to a fixed-length hash H(m) ∈ H. We call M the message
space and H the hash space. We say a hash algorithm H is collision resistant if
it is hard to find two messages m and m′ such that m �= m′ and H(m) = H(m′).

In order to model the functionality of a collision resistant hash algorithm
we make use of the random oracle methodology [1]. A random oracle can be
thought of as a public, randomly-chosen function H : M → H that can be
evaluated only by querying an oracle that returns H(x) when given input x.
It can easily be seen that a random oracle serves as a collision-resistant hash
algorithm. In the following, we use a random oracle in place of a collision-resistant
hash functionality.

We identify a hash service by its hash service identifier. We denote the domain
of hash algorithm identifiers by SIDhash. For security parameter k ∈ N and hash
identifier j ∈ SIDhash, we define task-PIOA Hasher(k, j). Hasher(k, j) has access
to a random oracle Hk,j : Mk,j → Hk,j , where |Hk,j | ≥ 2k. When Hasher(k, j)
receives a hash request on message m ∈ Mk,j via input action reqHash(rid ,m)
it queries oracle Hk,j with m and returns the hash Hk,j(m) ∈ Hk,j via output
action respHash(rid , Hk,j(m)).

In addition, Hasher(k, j) has an internal action failj , which sets a boolean flag
failed. If failed = false, then Hasher(k, j) uses the random oracle to answer hash
requests as specified above. If failed = true, then Hasher(k, j) denies to answer
hash requests: in that case, to every request reqHash(rid ,m), it responds with
respHash(rid ,⊥).

For j ∈ SIDhash and security parameter k, define the hash service

Hash(j)k := Hasher(j, k) .

For j ∈ SIDhash, define the hash service family

Hash(j) := {Hasher(j, k)}k∈N .

4.5 Service Times

Hash services and timestamp services have limited lifetime. During protocol
execution a service can be in various service states, namely being alive, being the
preferred service, or being a usable service. Let T := N be the domain of discrete
time and define the union of all service identifiers as SID := SIDhash∪SIDsign. We
assume the following.

– alive : T → 2SID. For every t, alive(t) is the set of services alive at discrete
time t.

– aliveTimes : SID → T. For every service j, aliveTimes(j) denotes the lifetime
of service j, aliveTimes(j) := {t ∈ T : j ∈ alive(t)}.

40 M. Geihs et al.

– prefhash : T → SIDhash. For every t ∈ T, the hash service prefhash(t) is the
designated hasher for time t, i.e., any hash request sent by the dispatcher at
time t goes to hash service prefhash(t).

– prefsign : T → SIDsign. For every t ∈ T, the signature service prefsign(t) is the
designated signer for time t, i.e., any signature request sent by the dispatcher
at time t goes to signature service prefsign(t).

– usable : T → 2SID. For every t ∈ T, usable(t) specifies the set of services that
are accepting new requests.

4.6 Dispatcher

We describe the task-PIOA Dispatcherk for each security parameter k. In par-
ticular, we describe evidence record generation, timestamp-refresh, hash-refresh,
and verification. In our model, an evidence record is a tuple 〈i, χ, θ, j〉, where i
is the currently used hash service, χ is the previously timestamped data, θ is the
most recent timestamp, and j is the corresponding timestamp service.

Generation. If the environment requests evidence record generation for bit
string x via action reqEviGen(rid , x), Dispatcherk requests a hash of x from
hash service i = prefhash(t), where t is the clock reading at the time of the
request. After hash service i returned hash h, Dispatcherk requests a times-
tamp on 〈i, h〉 from service j = prefsign(t). After timestamp service j returned
timestamp θ, Dispatcherk issues a new evidence record 〈i, x, θ, j〉 via action
respEvi(rid , 〈i, x, θ, j〉).

Timestamp-Refresh. If the environment requests timestamp-refresh of evi-
dence record 〈i, χ, θ, j〉 via action reqEviTs(rid , 〈i, χ, θ, j〉), Dispatcherk first
checks to see if hash service i and timestamp service j are still usable. If not, it
responds with an error message. Otherwise, it requests a hash of χ from hash
service i. After hash service i returned hash h, Dispatcherk checks if θ is a valid
timestamp for 〈i, h〉. If not, it responds with an error message. Otherwise, it re-
quests a hash of 〈i, θ〉 from hash service i. After hash service i returned hash h′,
Dispatcherk requests a timestamp on 〈i, h′〉 from service j′ = prefsign(t), where
t is the clock reading at the time of the request. After timestamp service j′ re-
turned timestamp θ′, Dispatcherk issues the refreshed evidence record 〈i, θ, θ′, j′〉
via action respEvi(rid , 〈i, θ, θ′, j′〉).

Hash-Refresh. If the environment requests hash-refresh of evidence record
〈i, χ, θ, j〉 via action reqEviHash(rid , 〈i, χ, θ, j〉), Dispatcherk first checks to see
if hash service i and timestamp service j are still usable. If not, it responds
with an error message. Otherwise, it requests a hash of χ from hash service i.
After hash service i returned hash h, Dispatcherk checks if θ is a valid timestamp
for 〈i, h〉. If not, it responds with an error message. Otherwise, it requests a
hash of 〈i, 〈x, θ〉〉 from hash service i′ = prefhash(t), where t is the clock reading

On the Security of Long-Lived Archiving Systems 41

at the time of the request. After hash service i′ returned hash h′, Dispatcherk
requests a timestamp on 〈i′, h′〉 from service j′ = prefsign(t). After timestamp
service j′ returned timestamp θ′, Dispatcherk issues the refreshed evidence record
〈i′, 〈x, θ〉, θ′, j′〉 via action respEvi(rid , 〈i′, 〈x, θ〉, θ′, j′〉).

Verification. If the environment requests evidence verification of evidence
record 〈i, χ, θ, j〉 via action reqCheck(rid , 〈i, χ, θ, j〉), Dispatcherk first checks
to see if hash service i and timestamp service j are still usable. If not, it
responds with respCheck(rid , false). Otherwise, it requests a hash of χ from
hash service i. After hash service i returned hash h, Dispatcherk checks if θ
is a valid timestamp for 〈i, h〉. If the verification request fails, Dispatcherk re-
sponds with respCheck(rid , false). Otherwise, Dispatcherk responds via action
respCheck(rid , true).

4.7 ERS Service

We describe how the ideal ERS service and the real ERS service are composed
of the previously described components.

Let SIDhash, the domain of hash service names, be {hash} × N. Likewise, let
SIDsign, the domain of timestamp service names, be {sign} × N. We limit the
number of service components by some exponential in security parameter k. For
every k and polynomial p, let N<2p(k) ⊆ N denote the set of p(k)-bit numbers. For
every k, define service identifier subsets (SIDhash)k ⊆ SIDhash and (SIDsign)k ⊆
SIDsign as (SIDhash)k := {hash} × N<2p(k) and (SIDsign)k := {sign} × N<2q(k) ,
respectively, for some polynomials p and q.

For security parameter k, define the composition of hash services

Hashk := ‖j∈(SIDhash)kHasher(k, j) .

Ideal ERS Service. The ideal ERS service is composed of a dispatcher com-
ponent, a sequence of hash services, and a sequence of ideal timestamp services.
For security parameter k, define the composition of ideal timestamp services
IdealStampk := ‖j∈(SIDsign)k IdealStamp(j)k. The ideal ERS service IdealSysk is de-
fined as

IdealSysk := Dispatcherk‖Hashk‖IdealStampk .

Real ERS Service. The real ERS service is composed of a dispatcher compo-
nent, a sequence of hash services, and a sequence of real timestamp services.
For security parameter k, define the composition of real timestamp services
RealStampk := ‖j∈(SIDsign)kRealStamp(j)k. The real ERS service RealSysk is de-
fined as

RealSysk := Dispatcherk‖Hashk‖RealStampk .

42 M. Geihs et al.

5 ERS Security Proof

In Section 4.7, we specified the real ERS system and the ideal ERS system.
In this section, we first define a concrete time scheme according to which hash
and timestamp services are active. Then, we show that the real ERS system
implements the ideal ERS system in the sense of the longterm-implementation
relation ≤neg,pt .

We assume a concrete time scheme for timestamp and hash services. Let
d ∈ N>0. Each signature service 〈sign, j〉 ∈ SIDsign is in alive(t) for t = (j −
1)d, . . . , (j + 2)d − 1, is preferred signer for times (j − 1)d, . . . , jd − 1, and is
usable for times (j − 1)d, . . . , (j + 1)d− 1. Each hash service 〈hash, j〉 ∈ SIDhash

is in alive(t) for t = (j − 1)de, . . . , (j + 2)de − 1, is preferred hasher for times
(j − 1)de, . . . , jde− 1, and is usable for times (j − 1)de, . . . , (j + 1)de− 1. Note
that, at any real time t, at most three signature services and three hash services
are concurrently alive.

Define the ideal ERS service family IdealSys := {IdealSysk}k∈N, and the real
ERS service family RealSys := {RealSysk}k∈N. Let SIDk := (SIDhash)k∪(SIDsign)k.
Define the family of empty failure sets as ∅̄ := {∅}k∈N and the family of signature
failure sets as F̄ := {Fk}k∈N, where Fk :=

⋃
j∈SIDk

{failj}.
Theorem 3 states that the real ERS system, RealSys, implements the ideal

ERS system, IdealSys, in the sense of the long-term implementation relation
≤neg,pt .

Theorem 3. Assume the concrete time scheme described above and assume that
every signature scheme used in the timestamping protocol is complete and exis-
tentially unforgeable. Then (RealSys, ∅̄) ≤neg,pt (IdealSys, F̄).

Proof. Observe that RealSys and IdealSys are 7-bounded concurrent and polyno-
mially bounded. We apply the d-Bounded Composition Theorem to

Dispatcher,Hash(1),Hash(2), . . . ,RealStamp(1),RealStamp(2), . . .

and

Dispatcher,Hash(1),Hash(2), . . . , IdealStamp(1), IdealStamp(2), . . .

to obtain (RealSys, ∅̄) ≤neg,pt (IdealSys, F̄).

6 Conclusions

The Evidence Record Syntax specification allows to ensure datedness for data
objects stored in a long-lived archiving system. We have described the Evidence
Record Syntax specification and given a high level description of the LCS security
framework, which is a framework for analyzing security properties of long-lived
systems. Extending the CIS analysis by Canetti et al., we have analyzed the
security of ERS using the LCS framework and obtained a security argument for

On the Security of Long-Lived Archiving Systems 43

ERS analogous to the security argument for CIS given in [4]. This was possible
because ERS is a refined, more efficient variant of CIS. In particular, we have ex-
tended the CIS analysis by introducing hash services and allowing cryptographic
primitives with different lifetimes.

We now discuss in how far the security analysis of CIS and ERS establishes the
expected security properties of these schemes. CIS and ERS allow for datedness
verification of stored data objects. Verifiers just verify digital signatures on time
stamps. They are required to trust the time stamping authorities to properly
issue time stamps. They also need to trust the PKI to allow for correct signature
verification.

However, the model of Canetti at al. [4] requires more trust by the retriever,
namely in the archiving system to act as a trustworthy notary. This notary ver-
ifies previous time stamps and attests their validity by its signature while in
the original versions of CIS and ERS all these time stamps are verified by the
retrievers. Therefore, the security proof only refers to these modified versions
of CIS and ERS. This is a big step forward as no security models for long-
lived archiving systems were known previously. But it also raises the question of
whether there is a model that allows a security proof for the original CIS and
ERS. This is challenging, as the task-PIOA model only allows to process a poly-
nomial amount of data at each point in time but over time, a super polynomial
chain of time stamps may be generated.

We also discuss a few other research directions. As suggested in [4], it would
be desirable to specify an abstract archiving system suiting the specification
of various archiving systems such as the ERS system and the CIS system. This
would allow to analyze security properties of archiving systems in a more generic
way.

In this work we have been concerned with signature-based timestamping.
However, other methods for timestamping exist, such as hash-linking-based
timestamping. It would be worthwhile to analyze the security of such solutions.

As it has been stated in Section 8 of [4], the analysis of Canetti et al. and
our results do not imply that any data object is reliably certified for super-
polynomial time. This is closely related to the fact that the security parameter
is fixed over the lifetime of the protocol. We would like to know if it is possible to
reliably certify a document for super-polynomial time while keeping the security
parameter fixed.

As it has been observed in [4] and we have stated in Section 3, the LCS
framework does not allow to model components whose computational power
increases over time. Since in reality, according to Moore’s law and as observed
over the last 40 years, computational power doubles roughly every 18 months,
this seems to be a shortcoming of the framework. It might be useful to modify
the framework such that it tolerates an increase of computational power over
time.

Acknowledgments. This work has been co-funded by the DFG as part of project
Long-Term Secure Archiving within the CRC 1119 CROSSING.

In addition, we thank Robert Künnemann for the interesting discussions.

44 M. Geihs et al.

References

[1] Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing
efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby,
V. (eds.) Proceedings of the 1st ACM Conference on Computer and Communica-
tions Security, CCS 1993, Fairfax, Virginia, USA, November 3-5, pp. 62–73. ACM
(1993), http://doi.acm.org/10.1145/168588.168596

[2] Blazic, A.J., Saljic, S., Gondrom, T.: Extensible Markup Language Evidence
Record Syntax (XMLERS). RFC 6283 (Proposed Standard) (July 2011),
http://www.ietf.org/rfc/rfc6283.txt

[3] Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O.,
Segala, R.: Time-bounded task-pioas: A framework for analyzing security pro-
tocols. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 238–253. Springer,
Heidelberg (2006), http://dx.doi.org/10.1007/11864219 17

[4] Canetti, R., Cheung, L., Kaynar, D.K., Lynch, N.A., Pereira, O.: Modeling compu-
tational security in long-lived systems, version 2. IACR Cryptology ePrint Archive
2008, 492 (2008), http://eprint.iacr.org/2008/492

[5] Gondrom, T., Brandner, R., Pordesch, U.: Evidence Record Syntax (ERS) (2007),
http://www.ietf.org/rfc/rfc4998.txt

[6] Haber, S.: Content Integrity Service for Long-Term Digital Archives. In: Archiving
2006, pp. 159–164. IS&T, Ottawa (2006)

[7] Merkle, R.C.: Protocols for public key cryptosystems. In: IEEE Symposium on
Security and Privacy, pp. 122–134 (1980)

http://doi.acm.org/10.1145/168588.168596
http://www.ietf.org/rfc/rfc6283.txt
http://dx.doi.org/10.1007/11864219_17
http://eprint.iacr.org/2008/492
http://www.ietf.org/rfc/rfc4998.txt

Differential Attacks Against SPN:
A Thorough Analysis

Anne Canteaut(�)and Joëlle Roué

Inria, project-team SECRET, Rocquencourt, France
{Anne.Canteaut,Joelle.Roue}@inria.fr

Abstract. This work aims at determining when the two-round maxi-
mum expected differential probability in an SPN with an MDS diffusion
layer is achieved by a differential having the fewest possible active Sboxes.
This question arises from the fact that minimum-weight differentials in-
clude the best differentials for the AES and several variants. However,
we exhibit some SPN for which the two-round MEDP is achieved by
some differentials involving a number of active Sboxes which exceeds the
branch number of the linear layer. On the other hand, we also prove that,
for some particular families of Sboxes, the two-round MEDP is always
achieved for minimum-weight differentials.

Keywords: Differential cryptanalysis · Linear layer · MDS codes · AES

1 Introduction

Since the design of the AES and the seminal related work [12], it is known that
the mixing layer which aims at providing diffusion within a block cipher must
have a high differential branch number [10]. This quantity corresponds to the
smallest number of active Sboxes within a two-round differential characteristic.
Indeed, for a given choice of the Sbox, the maximal probability for an r-round
differential characteristic decreases when the number of active Sboxes within
r rounds increases. For this reason, many security analyses focus on the minimal
number of active Sboxes within r consecutive rounds when r varies, not only for
AES-like designs but for some other types of ciphers, including Present [5] or
Feistel ciphers [23]. This approach is rather natural since, in differential attacks,
cryptanalysts usually start by searching for a differential characteristic with
the fewest possible active Sboxes. Therefore, the construction of MDS diffusion
layers with an efficient implementation has been investigated by several authors,
e.g., [22,3,1].

However, the complexity of a differential attack depends on the probability of
a differential, i.e., on the sum of the probabilities of all characteristics starting
by a given input difference and ending by a given output difference. And, within
two consecutive rounds of an SPN (Substitution-Permutation Networks), the

Partially supported by the French Agence Nationale de la Recherche through the
BLOC project under Contract ANR-11-INS-011.

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 45–62, 2015.
DOI: 10.1007/978-3-319-18681-8_4

46 A. Canteaut and J. Roué

number of constituent characteristics increases with the Hamming weight of
the differential. Then, the maximum expected probability (MEDP) for a two-
round differential may result from a differential which contains a huge number
of characteristics each with a low but nonzero probability, rather than from a
differential which contains a few characteristics having a high probability. In
other words, for two rounds of an SPN, there is a priori no reason to believe
that the best differential corresponds to a differential with the lowest number
of active Sboxes. However, it appears to be the case for most known examples,
including the AES [17]. This aim of this paper is then to determine whether
this phenomenon is more general and whether there are some general situations
where it can be proved that the two-round MEDP is achieved by a differential
with the smallest number of active Sboxes.

Our Contributions. After recalling the main definitions in Section 2, we show
in Section 3 that the choice of the MDS diffusion layer may affect the two-
round MEDP even if the Sbox is fixed. In particular, we show that the form
of the minimum-weight codewords plays an important role. Also, we provide
some upper bound on the number of characteristics with nonzero probability
within a given differential for an MDS linear layer. Section 4 focuses on the case
where the Sbox is APN: in this case, it appears that the two-round MEDP is
usually achieved by minimum-weight differentials. We prove this result for any
APN Sbox over F8 and any F8-linear MDS diffusion layer. Finally, Section 5
exploits the previous analysis and exhibits some MDS mixing layers for which
the maximum EDP over two rounds is achieved by a differential in which the
number of active Sboxes exceeds the branch number.

2 Differential Attacks Against Substitution-Permutation
Networks

2.1 Substitution-Permutation Networks

One of the most widely-used constructions for iterated block ciphers is the so-
called key-alternating construction [10,11], which consists of an alternation of
key-independent (usually similar) permutations and of round-key additions. The
round permutation is usually composed of a nonlinear substitution function Sub
which provides confusion, and of a linear permutation which provides diffusion.
In order to reduce the implementation cost of the substitution layer, which is
usually the most expensive part of the cipher in terms of circuit complexity, a
usual choice for Sub consists in concatenating several copies of a permutation
S which operates on a much smaller alphabet. In the whole paper, we will con-
centrate on such block ciphers, and use the following notation to describe the
corresponding round permutation.

Definition 1. Let m and t be two positive integers. Let S be a permutation
of Fm

2 and M be a linear permutation of Fmt
2 . Then, SPN(m, t, S,M) denotes

Differential Attacks Against SPN: A Thorough Analysis 47

any substitution-permutation network defined over Fmt
2 whose substitution func-

tion consists of the concatenation of t copies of S and whose diffusion function
corresponds to M .

For instance, up to a linear transformation, two rounds of the AES can be
seen as the concatenation of four similar superboxes [13]. The superbox, de-
picted on Fig. 1, is linearly equivalent to a two-round permutation of the form
SPN(8, 4, S,M) where the AES Sbox S corresponds to the composition of the
inversion in F28 with an affine permutation A. More precisely, S(x) = A ◦
ϕ−1

(
ϕ(x)254

)
where ϕ is the isomorphism from F8

2 into F28 defined by the
basis {1, α, α2, . . . , α7} with α a root of X8 +X4 +X3 +X + 1.

S
�

�

S
�

�

S
�

�

S
�

�

S
�

�

S
�

�

S
�

�

S
�

�

��

��
+

M

�

�

�k

Fig. 1. The AES superbox

2.2 Differential Cryptanalysis

Differential [4] cryptanalysis is one of the most prominent statistical attacks.
The complexity of differential attacks depends critically on the distribution over
the keys k of the probability of the differentials (a, b), i.e.,

DP(a, b) = PrX [Ek(X) + Ek(X + a) = b]

where Ek corresponds to the (possibly round-reduced) encryption function under
key k. Since computing the whole distribution of the probability of a differential
is a very difficult task, cryptanalysts usually focus on its expectation.

Definition 2. Let (Ek)k∈Fκ
2

be an r-round iterated cipher with key-size κ. Then,
the expected probability of an r-round differential (a, b) is

EDPE
r (a, b) = 2−κ

∑
k∈Fκ

2

PrX [Ek(X) + Ek(X + a) = b] .

48 A. Canteaut and J. Roué

The maximum expected differential probability for r rounds is

MEDPE
r = max

a �=0,b
EDPE

r (a, b) .

The index in MEDPE
r will be omitted when the number of rounds is not specified.

2.3 Expected Probability of a Differential Characteristic

Since computing the MEDP for most ciphers, even for a small number of rounds,
is very difficult, most works focus on the expected probability of a differential
characteristic.

Definition 3. An r-round differential characteristic Ω is a collection of (r +
1) differences, Ω = (a0, a1, . . . , ar) where ai corresponds to the difference ob-
tained after the i-th round when encrypting two inputs which differ from a0. The
expected probability of the characteristic Ω is then defined as

EDCPr(Ω) = 2−κ
∑
k∈Fκ

2

PrX0 [X1 +X ′
1 = a1; . . . ;Xr +X ′

r = ar |X0 +X ′
0 = a0] ,

where Xi (resp. X ′
i) denotes the image of X0 (resp. of X ′

0) after the i-th round
of Ek.

We here use the specific notation EDCP for the expected probability of a char-
acteristic in order to avoid confusion between differentials and characteristics.

A simple upper-bound on the expected probability of 2-round characteristics
can be derived from the differential branch number of the linear layer and from
the differential uniformity of the Sbox, in the sense of the following definition.

Definition 4 (Differential Uniformity). Let S be a function from Fm
2 into

Fm
2 . For any a and b in Fm

2 , we define

δS(a, b) = #{x ∈ Fm
2 , S(x+ a) + S(x) = b} .

The multi-set {δS(a, b), a, b ∈ Fm
2 } is the differential spectrum of S and its

maximum Δ(S) = maxa �=0,b δ
S(a, b) is the differential uniformity of S.

Then, for any two-round characteristic Ω = (a,M(b),M(c)), the Markov as-
sumption [19] implies that

EDCP2(Ω) = DPE
1 (a,M(b))×DPE

1 (M(b),M(c))

=

(
t∏

i=1

DPS
1 (ai, bi)

)(
t∏

i=1

DPS
1 (M(b)i, ci)

)
. (1)

Let Supp(x) and wt(x) denote the support and the weight of a vector x ∈
Fmt

2 seen as an element in (Fm
2)t. Then, the previous equation shows that

Differential Attacks Against SPN: A Thorough Analysis 49

EDCP2(Ω) = 0 unless Supp(a) = Supp(b) and Supp(M(b)) = Supp(c). Using
this relation, we deduce that

EDCP2(Ω) ≤
(
2−mΔ(S)

)wt(b)+wt(M(b))
.

It then appears that the lowest possible value for the weight of a nonzero word
of the form (b,M(b)) plays a major role in the resistance against differential
attacks. This criterion on the diffusion layer of the cipher corresponds to the
notion of differential branch number.

Definition 5 (Differential Branch Number [10]). Let M be a permutation
of (Fm

2)t. We associate to M the code CM of length 2t and size 2t over Fm
2

defined by
CM = {(c,M(c)), c ∈ (Fm

2)t} .

The differential branch number of M is the minimum distance of the code CM .

The following upper bound on the expected probability of any 2-round differen-
tial characteristic then follows:

max
Ω

EDCP2(Ω) ≤
(
2−mΔ(S)

)d
, (2)

where d is the differential branch number of the linear layer.
It is worth noticing that a similar notion is considered in the case of linear

cryptanalysis. The linear branch number is then the minimum distance of the
dual code C⊥

M but this quantity is out of the scope of this paper. For this reason,
in the following, branch number always refers to the differential branch number.

From Singleton’s bound, the highest possible value for the branch number
of a permutation of (Fm

2)t is (t + 1) and it corresponds to the case where the
associated code CM is an MDS (maximum distance separable) code.

3 From Characteristics to Differentials

The problem with the previous result is that differential cryptanalysis exploits
differentials and not characteristics since the differences obtained after each in-
termediate round do not matter in the attack. The probability of a differential
(a,M(b)) then corresponds to the sum of the probabilities of all characteristics
with input difference a and output difference M(b). Then, the relevant quantity
for two rounds is the maximum of

EDP2(a,M(b)) =
∑

x∈Fmt
2

EDCPE
2 (a, x,M(b)) .

Determining the expected probability of a differential, rather than focusing on
a single characteristic, is difficult in general.

50 A. Canteaut and J. Roué

3.1 Expected Probability of a 2-round Differential

From Equation (1), any element x of (Fm
2)t verifies

EDCP2(a,M(x),M(b)) =

(
t∏

i=1

DPS
1 (ai, xi)

)(
t∏

i=1

DPS
1 (M(x)i, bi)

)
.

If this probability is different from zero, we have that Supp(a) = Supp(x) and
Supp(M(x)) = Supp(b), implying that (x,M(x)) ∈ (Fm

2)2t is a word of CM
having the same support as (a, b). Moreover, by definition of the differential
spectrum, DPS

1 (α, β) = 2−mδS(α, β). Thus, the two-round probability of a dif-
ferential is

EDP2(a,M(b)) = 2−mwt(a,b)
∑

c∈CM :
Supp(c)=Supp(a,b)

⎛
⎝ ∏

i∈Supp(a)

δS(ai, ci)

⎞
⎠
⎛
⎝ ∏

j∈Supp(b)

δS(ct+j , bj)

⎞
⎠

(3)
A simple upper bound for the two-round MEDP can then be derived from the

branch number of M and from the differential uniformity of the Sbox (see [15]
and [12, Section B.2]):

MEDP2 ≤
(
2−mΔ(S)

)t
.

This result has then been refined in [9,21,8]. The bounds in [15,9,21] are
invariant under affine equivalence, i.e., their values are the same for two Sboxes
S and S′ when there exist two affine permutations A1 and A2 such that S′ =
A1◦S◦A2. However, the exact values of MEDP2 may differ for Sboxes in the same
equivalent class, and there can be a gap between these bounds and the exact value
of MEDP2. In [8], a new upper bound is introduced, that enhances the previously
known bounds in the sense that it may vary when the Sbox is composed by an
affine permutation. This new bound only applies when the diffusion layer M is
linear over the field F2m , where m is the size of the Sbox, exactly as in the AES.
In this case, the linear layer and the Sbox can be represented as functions over
the field F2m and the representation does not change the MEDP. In particular,
the choice of the isomorphism that identifies the vector space Fm

2 with the finite
field F2m has no influence on the differential properties of the cipher. For this
reason, we use the following alternative notation to define an SPN with this
representation.

Definition 6. Let m and t be two positive integers. Let S be a permutation
of F2m and M be a permutation of (F2m)t which is linear over F2m . Then,
we denote by SPNF (m, t,S,M) a substitution-permutation network defined over
(F2m)t whose substitution function consists of the concatenation of t copies of S
and whose diffusion function corresponds to M.

When the Sbox is defined over F2m , we equivalently define the differential spec-
trum as follows. Let (α0, . . . , αm−1) be a basis of F2m , and ϕ the corresponding

Differential Attacks Against SPN: A Thorough Analysis 51

isomorphism from Fm
2 into F2m . Let S be a mapping over Fm

2 , and S = ϕ◦S◦ϕ−1.
Then, for any (α, β) ∈ F2m ,

δSF (α, β) = #{x ∈ F2m ,S(x+ α) + S(x) = β} = δS(ϕ−1(α), ϕ−1(β)) .

As the differential properties of any SPN(m, t, S,M) can be equivalently stud-
ied by considering the alternative representation SPNF (m, t,S,M) [14], this pa-
per focuses on the representation of an SPNF in the field F2m . For the sake
of clarity, all quantities related to the representation in the field F2m will be
indexed by F , and all functions defined over F2m will be denoted by calligraphic
letters.

The new bounds on MEDP2 presented in [8] are derived from the particular
structure of the set formed by all codewords in CM having a given support,
when M is linear over F2m . These bounds are expressed in terms of the following
quantities. For any Sbox S over F2m with differential spectrum (δF (a, b))a,b∈F2m

and any branch number d, we define for any μ ∈ F2m and any integer u > 0,

Bu(μ) = max
α,β,λ∈F∗

2m

∑
γ∈F∗

2m

δF (α, γ)
uδF (γλ+ μ, β)(d−u)

and B(μ) = max
1≤u<d

Bu(μ) .

In the rest of the paper, we will restrict ourselves to the case where the dif-
fusion layer is linear over F2m and MDS (i.e., with branch number (t + 1)).
We also assume that the well-known MDS conjecture [20] is valid, i.e., in our
context, that t ≤ 2m−1 for m > 3 and t ≤ 3 for m = 2. For such MDS diffusion
layers, Theorem 2 and Proposition 3 in [8] can be expressed as follows.

Theorem 1. Let S be a permutation of F2m and t be any integer such that
t ≤ 2m−1.

– For any F2m-linear diffusion layer M over Ft
2m with maximal branch num-

ber, the block cipher E of the form SPNF (m, t,S,M) satisfies

MEDPE
2 ≤ 2−m(t+1) max

μ∈F2m

B(μ) .

– There exists an F2m-linear diffusion layer M over Ft
2m with maximal branch

number such that
MEDPE

2 ≥ 2−m(t+1)B(0) .

In most cases, the values of the two-round MEDP for two ciphers of the form
SPNF (m, t,S,M1) and SPNF (m, t,S,M2) where M1 and M2 are different
MDS linear layers differ. The minimum-weight codewords of CM have a large
influence on this value, as shown in the following example.

Example 1. Let us study the two-round MEDP of the SPN with the same build-
ing blocks as the Prøst permutation, which is the core function of several AEAD-
schemes submitted to the CAESAR competition [16]. It is worth noticing that

52 A. Canteaut and J. Roué

the following results do not provide any direct information on the security of
the Prøst permutation: indeed, we study the differential probabilities averaged
over all keys while the key is fixed in the Prøst permutation. Two consecutive
rounds of the Prøst permutation over F16d

2 , d ≥ 1, can be seen as the parallel
application of d copies of a superbox defined over F16. This superbox is of the
form SPN(4, d, S,M) where S is a 4-bit involution named SubRows and M cor-
responds the so-called MixSlices transformation. It has been shown in [8] that
MixSlices is linear over F16 for some particular isomorphism between F4

2 and
F16. Then, Theorem 1 applies and we get that, for any F16-linear layer M, the
block cipher E of the form SPNF (4, d,S,M) where S corresponds to the Prøst
Sbox satisfies

MEDPE
2 ≤ 2−8 .

But, when the diffusion layer corresponds to MixSlices, we have computed the
exact value of the MEDP2 and obtained that MEDP2 = 3 × 2−11, which is
smaller than the general upper bound.

However, since both lower and upper bounds in Theorem 1 are equal, we
deduce that there exists another diffusion layer M such that

MEDPE
2 = 2−8 .

An example of such a diffusion layer is
⎛
⎜⎜⎝

α2 + α+ 1 α3 + α α3 + α+ 1 1
α+ 1 α3 + α2 + α α2 + α+ 1 1
α2 + 1 α3 + α2 + 1 α3 1
α2 α3 + α2 α3 + 1 1

⎞
⎟⎟⎠

where α is a root of X4 + X3 + 1. Indeed, the set of codewords of the form
{λ(0, 0, 0, 1, 1, 1, 1, 1), λ ∈ F∗

16} belongs to the code associated with this dif-
fusion layer. Then, the differences a = (0, 0, 0, 1) and b = (1, 1, 1, 1) satisfy
EDP2(a,M(b)) = 2−8.

3.2 Influence of the Weight of the Differential

The previous example shows that, in some cases, the form of the minimum-
weight codewords in CM plays an important role when determining the two-
round MEDP. We observe from Equation (3) that these codewords are involved
in the computation of EDP2(a,M(b)) when the weight of the corresponding
pair (a, b) is equal to the branch number of M. We then call such a differential
a minimum-weight differential. The role played by minimum-weight differentials
appears in a more direct way when the Sbox S has the following additional
property [8, Definition 7]. A mapping S of F2m is said to have multiplicative-
invariant derivatives if, for any x ∈ F∗

2m there exists a permutation πx of F∗
2m

such that
δF (α, xy) = δF (πx(α), y), ∀y ∈ F∗

2m .

Differential Attacks Against SPN: A Thorough Analysis 53

Power permutations, and more generally any function resulting from the com-
position on the right of a power permutation with an F2-linear permutation, has
multiplicative-invariant derivatives. Another example of functions with multipli-
cative-invariant derivatives are the crooked permutations, which include all APN
permutations of degree 2. When an Sbox has this property, the expression of
B(μ) (including B(0)) simplifies but, more interestingly, we get some universal
lower bound on MEDP2, i.e., which holds for any diffusion layer with maximal
branch number. For instance, for all Sboxes S such that both S and S−1 have
multiplicative-invariant derivatives, we obtain that, for any F2m -linear diffusion
layer M with maximal branch number, the corresponding block cipher satisfies

2−m(t+1)B(0) ≤ MEDPE
2 ≤ 2−m(t+1) max

μ∈F2m

B(μ) . (4)

Moreover, MEDPE
2 = 2−m(t+1)B(0) if and only if the maximum expected differ-

ential probability is achieved by a minimum-weight differential.
Since the probability of a characteristic decreases when the weight of the

underlying differential increases, a natural question is to determine in which
situations the two-round MEDP is achieved by a minimum-weight differential.
This is an important information: computing the two-round MEDP for a given
cipher becomes obviously much easier once it is known that only the minimum-
weight differentials need to be examined. Surprisingly enough, for all AES-like
ciphers which have been investigated, the two-round MEDP is achieved by a
minimum-weight differential. For instance, the bounds in [8] applied to the AES
Sbox show that for any F28 -linear layer M, we have

53× 2−34 ≤ MEDP2 ≤ 55.5× 2−34 , (5)

where the lower bound corresponds to some minimum-weight differentials. For
the particular diffusion layer defined by MixColumns in the AES, the exact
value of the two-round MEDP2 computed by a pruning search algorithm [17], is
MEDP2 = 53× 2−34. It then corresponds to the lower bound of (5).

There also exist some SPNF for which the exact value of the two-round MEDP
can be directly deduced from the bounds in [8], for instance, when the Sbox S
is an involution with multiplicative-invariant derivatives. In this case, the lower
and upper bounds in (4) are equal and do not depend on the MDS diffusion layer.
In other words, for any involution with multiplicative-invariant derivatives, the
two-round MEDP is always achieved by a minimum-weight differential, for any
choice of the MDS linear layer. This holds in particular for the so-called AES
naive Sbox, i.e. the inversion in F2m , which satisfies these conditions.

A natural question then arises from these examples: does there exist any
cipher of the form SPNF for which the two-round MEDP is not achieved by a
minimum-weight differential? We now investigate this problem, and first exhibit
some general families of ciphers for which this situation cannot occur.

3.3 Number of Characteristics Within a Given 2-round Differential

For the sake of simplicity, for any differential (a,M(b)), we denote by (a, c,M(b))
the corresponding characteristic where c is the codeword in CM defined by the

54 A. Canteaut and J. Roué

concatenation of the input and output differences of the first diffusion layer.
With this notation, we have

EDP2(a,M(b)) =
∑

c∈CM:
Supp(c)=Supp(a,b)

EDCP2(a, c,M(b)) .

In this differential, each characteristic having a nonzero probability is defined by
a codeword in CM whose support is equal Supp(a, b). Therefore, we define the
weight of the differential as the weight w = wt(a) +wt(b). Then, the number of
characteristics within a given differential (a,M(b)) of weight w is defined by

Aw(a, b) = #{c ∈ CM : Supp(c) = Supp(a, b) and EDCP2(a, c,M(b)) �= 0}
= #{c ∈ CM : Supp(c) = Supp(a, b), δSF (ai, ci) �= 0, ∀i ∈ Supp(a)

and δSF (ct+j , bj) �= 0, ∀j ∈ Supp(b)} .

A first criterion to determine whether the two-round expected differential
probability is maximized by a minimum-weight differential or not consists in
estimating the number of characteristics involved in a differential having a given
weight w. Since we only consider diffusion layers which are linear over F2m , the
codewords in CM having a given support can be gathered in bundles as pointed
out in [13]: if c belongs to CM, then the whole bundle P(c) = {γc, γ ∈ F∗

2m}
is also included in CM. It follows that the number of codewords in CM having
a given support is always divisible by (2m − 1). Moreover, for any pair (α, β) ∈
(F∗

2m)2, the values δSF (α, γβ), when γ varies in F∗
2m , correspond to a row of

the difference table of S. Since these coefficients are all even and sum to 2m,
we deduce that, for any permutation S, at least 2m−1 − 1 coefficients among
all (δSF (α, γβ), γ ∈ F∗

2m) vanish, with equality if and only if S is APN. It then
follows that, for any c ∈ CM,

#{c′ ∈ P(c) : EDCP2(a, c
′,M(b)) �= 0} ≤ 2m−1 .

Differentials of Weight w = t + 1. Recall that we focus on the case where
the diffusion layer has maximal branch number, i.e., where CM is MDS. It is
well-known (e.g. [20, Page 319]) that if CM is an MDS code of length 2t and
dimension t over F2m , then for each support of size (t + 1), there exist exactly
(2m − 1) codewords (i.e., one bundle) having this support. From the previous
discussion, we deduce that, for any minimum-weight differential (a, b)

At+1(a, b) ≤ 2m−1 .

Differentials of Weight w = t + 2. We now provide a similar upper bound
on the number of characteristics within a differential of weight (t+ 2).

Proposition 1. Let M be an F2m -linear MDS permutation of Ft
2m . Then, for

any differential (a, b) of weight (t+ 2), we have

At+2(a, b) ≤ 2m−1(2m − (t+ 1)) .

Differential Attacks Against SPN: A Thorough Analysis 55

Proof. From the previous discussion, we only have to prove that, for any support
I of size (t + 2) there exist exactly (2m − (t + 1)) distinct bundles having I
for support. Let J = {i1, . . . , it−2} be the set formed by the 2t − (t + 2) =
t − 2 coordinates which do not belong to I. The codewords whose support is
included in I then correspond to the codewords which vanish on J . Using that
any t coordinates of CM is an information set [20, Page 321], we deduce that
there are exactly (22m − 1) nonzero codewords whose support is included in I.
Since we count the number of codewords whose support is equal to I, we need
to remove the codewords of weight (t+ 1) from the previous set. As previously
mentioned, for any support of size (t + 1), there exists one bundle having this
support. Since I contains (t + 2) subsets of size (t + 1), we need to remove
(t + 2)(2m − 1) codewords from the previous set. It follows that the number of
codewords having I for support is

22m − 1− (t+ 2)(2m − 1) = (2m − 1)(2m − (t+ 1)) .

Therefore, CM contains exactly (2m − (t + 1)) bundles having I for support,
implying that

At+2(a, b) ≤ 2m−1(2m − (t+ 1)) .

�	

Most notably, we deduce from this formula that, when t = 2m−1, At+2 may be
limited by the maximal value of At+1. Some application of this result will be
detailed in the next section.

4 SPN with an APN Sbox

In this section, we focus on the block ciphers SPNF which use an APN Sbox.
These ciphers are of particular interest in our context since the whole differential
spectrum of the Sbox is known. It follows that, for any characteristic within a
differential of weight w has probability either 0 or 2−w(m−1). Then, we deduce
that the expected probability of a differential of weight w only depends on the
value of Aw(a, b):

EDP2(a,M(b)) = 2−w(m−1)Aw(a, b) .

It follows that there exists a differential (a, b) of weight (t + 2) whose prob-
ability is higher than the probability of any minimum-weight differential if and
only if, for any (α, β) of weight (t+ 1),

2−(t+2)(m−1)At+2(a, b) ≥ 2−(t+1)(m−1)At+1(α, β)

or equivalently
At+2(a, b) ≥ 2m−1At+1(α, β) .

From Proposition 1, we know that At+2(a, b) ≤ 2m−1(2m−(t+1)), implying that
this situation can only occur if all minimum-weight differentials (α, β) satisfy

At+1(α, β) ≤ (2m − (t+ 1)) . (6)

56 A. Canteaut and J. Roué

For given parameters m and t, we can then directly deduce that, if the number of
characteristics in a minimum-weight differential exceeds some bound, then the
two-round MEDP cannot be achieved by a differential of weight (t+ 2).

4.1 APN Sboxes over F8

We now show that, if S is an APN permutation over F23 (i.e., m = 3), then the
maximum EDP is always achieved by a minimum-weight differential. This result
is mainly due to the particular properties of 3-bit APN permutations.

Properties of APN Sboxes over F8. Since a permutation of F2m has degree
at most (m−1), all APN Sboxes over F8 are quadratic, and their inverses are also
quadratic. Therefore, they are crooked [2,18], i.e., for any nonzero a ∈ F23 , the set
{b ∈ F23 : δSF (a, b) = 2} is an affine hyperplane of F23 . Furthermore, it is known
that all these affine hyperplanes are distinct [7, Lemma 5]. Since the inverse S−1

is also a crooked permutation, the same property holds for the columns of the
difference table of S: for any nonzero b, the set {a ∈ F23 : δSF (a, b) = 2} is an
affine hyperplane and all these hyperplanes are distinct.

Minimum-Weight Differentials. From this algebraic structure, we deduce
the maximal value of the expected differential probability of the minimum-weight
differentials.

Proposition 2. Let S be an APN permutation of F23 . For any integer t and
any F23-linear MDS diffusion layer M over (F23)

t, the block cipher of the form
SPNF (3, t,S,M) satisfies

max
a �=0, b

wt(a,b)=t+1

EDP2(a,M(b)) = 2−2t.

Proof. Let I = {i1, . . . , it+1} be a subset of {1, . . . , 2t} of size (t + 1). Our aim
is to exhibit a pair (a, b) whose support equals I and such that At+1(a, b) = 4.
Such a differential leads to the result since At+1(a, b) = 4 is the highest value
we can have for a minimum-weight differential. Let c be a codeword in CM with
Supp(c) = I since such a codeword always exists. Let us choose some nonzero
element ai1 ∈ F23 . Then, we consider the set H = {β : δSF (ai1 , β) = 2}. Then H
is an affine hyperplane. We now define

Γ = {c−1
i1

λ, λ ∈ H} .

Obviously, Γ is also an affine hyperplane. Then, the four codewords in the
bundle of c, c′ = γc with γ ∈ Γ , satisfy

δSF (ai1 , c
′
i1) = δSF (ai1 , λc

−1
i1

ci1) = 2.

Moreover, for any position ij in I with ij ≤ t, the coordinates of these four
codewords at position ij vary in the set cijΓ which is an affine hyperplane.

Differential Attacks Against SPN: A Thorough Analysis 57

Therefore, there exists some aij such that this set corresponds to {β : δSF (aij , β) =
2}. Similarly, for any position ij ∈ I with ij > t, there exists some bij such that
the affine hyperplane cijΓ corresponds to {α : δ(α, bij) = 2}. For this choice of
(a, b), we get that, by construction,

At+1(a, b) = 4 ,

implying that
EDP2(a,M(b)) = 4× 2−2(t+1) = 2−2t .

�	
It is worth noticing that we have proved a more general result: for any bun-

dle, we can find a pair (a, b) such that the corresponding differential includes
four characteristics from this bundle having a nonzero probability. However, this
does not enable us to determine the maximum EDP for higher-weight differen-
tials since the involved codewords correspond to several bundles, and we cannot
control the different bundles together.

Higher-Weight Differentials. Since CM is an MDS code over F8, we have
that t is at most 4. Moreover, we deduce from (6) that the maximum two-round
EDP cannot be achieved by a differential of weight (t + 2) when t = 4 since it
would imply that all minimum-weight differentials would satisfy At+1(a, b) ≤ 3
while we have proved that At+1(a, b) can be equal to 4.

Then, we need to examine all linear MDS codes of length 2t and dimension t
over F8 for t ∈ {2, 3}. For each of these codes, we have computed the highest
value of At+2(a, b) we can get for all (a, b) of weight (t+2). Since the difference
tables of all crooked Sboxes over F8 have the same structure, the maximal value
of At+2(a, b) over all (a, b) having a given support I corresponds to the largest
set Γ of codewords c with support I such that, for each i ∈ I, ci for all c ∈ Γ
belong to the same affine hyperplane.

For t = 2, the previous quantity has been computed for all [4, 2, 3]-codes over
F8. For all of them, we get that the maximal value for A4(a, b) is equal to 8. We
then deduce that

max
a �=0, b

wt(a,b)=3

EDP2(a,M(b)) = 2−4 and max
x �=0, y

wt(x,y)=4

EDP2(x,M(y)) = 2−8 × 8 = 2−5.

Then, the two-round MEDP is achieved by a minimum-weight differential only.
For t = 3, we have computed the highest possible value of A5(a, b) for all

[6, 3, 4]-codes over F8, and we have obtained that for all these codes, the maximal
A5(a, b) is 4, implying that

max
a �=0, b

wt(a,b)=4

EDP2(a,M(b)) = 2−6 and max
x �=0, y

wt(x,y)=5

EDP2(x,M(y)) = 2−10×4 = 2−8.

Moreover, it can be checked that, for all these codes, the maximal A6(a, b) is 32,
implying that

max
x �=0, y

wt(x,y)=6

EDP2(x,M(y)) = 2−12 × 32 = 2−7.

58 A. Canteaut and J. Roué

We then deduce the following result.

Proposition 3. Let S be an APN permutation of F23 . For any integer t and
any F23-linear MDS diffusion layer M over (F23)

t, the block cipher of the form
SPNF (3, t,S,M) satisfies

MEDP2 = 2−2t,

and this value is achieved by some minimum-weight differentials only.

4.2 APN Sboxes over F32

APN permutations over F32 have been classified in [6] up to equivalence. But
since APN permutations over F32 do not have the same algebraic structure
as APN permutations over F8, each function from this classification has to be
studied. Moreover, the number of MDS codes with these parameters is also much
higher than in the previous case.

We have then computed the maximal value for At+1 for several APN permuta-
tions and MDS permutations with t = 2, 3. For t = 2, we have always observed that
the maximal At+1 is at least 10. We should then find some differential of weight 4
withA4 ≥ 10×25−1 = 160 to reach the sameEDP than the best minimum-weight
differential. However, the highest values we have observed for A4 are between 83
and 92. In other words, the maximum EDP for a differential of weight 4 is slightly
higher than half of the maximum EDP for a minimum-weight differential.

For t = 3, we have observed that the maximal At+1 is at least 9. We should
then find some differential of weight 5 with A5 ≥ 9 × 25−1 = 144, while the
highest values we have observed for A5 lie between 54 and 60.

5 MEDP2 can be Tight for a Differential of Non-minimal
Weight

It seems that the number Aw of characteristics having a nonzero probability
in a differential of weight w > t + 1 cannot be large enough to achieve a two-
round EDP higher than the one which can be obtained with minimal-weight
differentials. However, in the previously studied cases, the highest probabil-
ity of a minimal-weight characteristic is always equal to the maximal value
(Δ(S)/2m)t+1. If the probability EDP2 is minimized for any minimal-weight
differential, that is, if the number At+1 is small and the probabilities of the con-
stituent characteristics are different from (Δ(S)/2m)t+1, it should be possible to
have a differential of weight w > t + 1 which has a higher probability than all
minimal-weight differentials.

5.1 Examples where MEDP2 is Tight for a Differential of Weight
(t + 2)

Sboxes such that only a few entries in the difference table are equal to Δ(S)
are a good choice to avoid the existence of characteristics with probability
(Δ(S)/2m)t+1 within any given minimum-weight differential. But for

Differential Attacks Against SPN: A Thorough Analysis 59

differentials of weight t + 2, the probability of a characteristic also needs to
be high. An Sbox with 4 to 6 entries in the difference table equal to Δ(S) seems
to be a good tradeoff, as shown in the following examples. Note that the Sboxes
are defined over the vectorial space Fm

2 while the diffusion layer is defined over
the field F2m , as it is done in many concrete specifications (using the binary rep-
resentation may be relevant to choose the Sbox, for instance in order to minimize
the number of gates).

Let S be a permutation of F3
2 defined by

x 0 1 2 3 4 5 6 7
S(x) 0 1 2 3 4 6 7 5

Its differential uniformity is Δ(S) = 4 and there are 6 coefficients equal to 4 in
its difference table. Then there exist some F8-linear permutations with maximal
branch number such that there are differentials of weight (t+2) having a higher
probability than all minimum-weight differentials. An example of such a diffusion
layer with t = 2 is

M =

(
α α+ 1
α2 α2 + 1

)

where α is a root of X3 +X + 1. We compute the exact value of EDP2 for all
minimum-weight differentials first and then for differentials with weight d+1 = 4.
We obtain:

max
a �=0, b

wt(a,b)=3

EDP2(a,M(b)) = 2−4

as there is only one characteristic of probability 2−4 in the differentials having
the highest probability, and

max
x �=0, y

wt(x,y)=4

EDP2(x,M(y)) = 2−3

as there are some differentials of weight 4 composed of two characteristics of
probability 2−4.

Let S be a permutation of F4
2 defined by

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 0 2 1 5 4 9 15 8 12 11 6 7 3 14 10 13

Its differential uniformity is Δ(S) = 6 and there are 4 coefficients equal to 6 in
its difference table. Then there exist some F16-linear permutations with maximal
branch number such that there exist some differentials of weight (t+ 2) having
a higher probability than all minimum-weight differentials. An example of such
a diffusion layer with t = 4 is

M =

⎛
⎜⎜⎝

1 1 α3 α3

α2 + α+ 1 1 1 α2 + α
α2 α3 + 1 1 α3 + α2 + 1

α2 + 1 α3 + α2 + α α3 + α 1

⎞
⎟⎟⎠

where α is a root of X4 +X + 1.

60 A. Canteaut and J. Roué

We compute the exact value of EDP2 for all differentials of a given weight.
We obtain

max
a �=0, b

wt(a,b)=5

EDP2(a,M(b)) = 1, 2656× 2−8,

max
a �=0, b

wt(a,b)=6

EDP2(a,M(b)) = 1, 4238× 2−8,

max
a �=0, b

wt(a,b)=7

EDP2(a,M(b)) = 1, 0942× 2−10 and

max
a �=0, b

wt(a,b)=8

EDP2(a,M(b)) = 1, 292× 2−12.

5.2 Example where MEDP2 is Tight for a Differential of Weight
(t + 3)

Similarly, we can exhibit an SPN whose two-round MEDP is achieved by some
differentials of weight (t+ 3) only.

Let S be a permutation of F4
2 defined by

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S(x) 0 4 3 7 9 14 11 12 10 13 15 8 6 5 2 1

It has differential uniformity Δ(S) = 8 and has 4 coefficients equal to 8 in its
difference table. An example of an MDS diffusion layer with t = 3 such that
there are differentials of weight t + 3 = 6 having a higher probability than all
differentials of weight (t+ 1) or (t+ 2) is

M =

⎛
⎝ 1 α α3 + α2 + α

α2 α+ 1 α3 + α2 + α+ 1
α2 + 1 α2 + 1 α2 + 1

⎞
⎠

where α is a root of X4 +X + 1.
By computing the exact value of EDP2 for differentials with the same weight,

we obtain:

max
a �=0, b

wt(a,b)=4

EDP2(a,M(b)) = max
a �=0, b

wt(a,b)=5

EDP2(a,M(b)) = 2−6

and
max
a �=0, b

wt(a,b)=6

EDP2(a,M(b)) = 524288× 2−24 = 2−5 .

In these two examples, the Sboxes are such that there are only a few entries
in their difference table which reach the maximum value Δ(S). Conversely, in
the previous section, we have proved that the two-round MEDP is achieved
by minimum-weight differentials when the Sbox is an APN permutation, that

Differential Attacks Against SPN: A Thorough Analysis 61

is, when all the nonzero coefficients of the difference table achieve the maximal
value. Then we can wonder whether, when the number of entries in the difference
table of the Sbox which are equal to the differential uniformity exceeds some
bound, we can deduce that the two-round MEDP is tight for some minimum-
weight differential only.

6 Conclusions

In this work, we have shown that the form of the minimum-weight codewords
associated to the diffusion layer in an SPNF affects the two-round MEDP. More-
over, we have exhibited for the first time some SPN such that the two-round
MEDP is achieved by some differentials of weight higher than the branch num-
ber. On the other hand, we have also proved that this situation cannot occur in
some cases, for instance when the Sbox is an APN permutation of F8. But, we
give some concrete examples of round functions for which the highest differen-
tial probability is not achieved when the number of active Sboxes is minimized.
This observation means that, while the branch number provides an upper bound
on the two-round MEDP in any AES-like cipher [15,12], an attacker searching
for the best two-round differential has to consider all possible number of active
Sboxes.

Acknowledgments. The authors want to thank Thierry Berger for many stimulat-
ing discussions, including the discussions around the relevance of the rank minimum
distance of the diffusion layer, which have initiated our work.

References

1. Augot, D., Finiasz, M.: Direct Construction of Recursive MDS Diffusion Layers
using Shortened BCH Codes. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS,
vol. 8540, pp. 3–17. Springer, Heidelberg (2015)

2. Bending, T.D., Fon-Der-Flaass, D.: Crooked Functions, Bent Functions, and Dis-
tance Regular Graphs. Electr. J. Comb. 5 (1998)

3. Berger, T.P.: Construction of recursive MDS diffusion layers from Gabidulin codes.
In: Paul, G., Vaudenay, S. (eds.) INDOCRYPT 2013. LNCS, vol. 8250, pp. 274–285.
Springer, Heidelberg (2013)

4. Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. Jour-
nal of Cryptology, 3–72 (1991)

5. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block
cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
450–466. Springer, Heidelberg (2007)

6. Brinkmann, M., Leander, G.: On the classification of APN functions up to dimen-
sion five. Designs, Codes and Cryptography 49(1-3), 273–288 (2008)

7. Canteaut, A., Charpin, P.: Decomposing bent functions. IEEE Transactions on
Information Theory 49(8), 2004–2019 (2003)

62 A. Canteaut and J. Roué

8. Canteaut, A., Roué, J.: On the behaviors of affine equivalent sboxes regarding
differential and linear attacks. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT
2015. LNCS, vol. 9056, pp. 45–74. Springer, Heidelberg (2015)

9. Chun, K., Kim, S., Lee, S., Sung, S.H., Yoon, S.: Differential and linear cryptanal-
ysis for 2-round SPNs. Inf. Process. Lett. 87(5), 277–282 (2003)

10. Daemen, J.: Cipher and hash function design strategies based on linear and differ-
ential cryptanalysis. Ph.D. thesis, K.U. Leuven (1995)

11. Daemen, J., Rijmen, V.: The Wide Trail Design Strategy. In: Honary, B.
(ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer,
Heidelberg (2001)

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer (2002)

13. Daemen, J., Rijmen, V.: Understanding Two-Round Differentials in AES. In: De
Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 78–94. Springer,
Heidelberg (2006)

14. Daemen, J., Rijmen, V.: Correlation Analysis in GF (2n). In: Advanced Linear
Cryptanalysis of Block and Stream Ciphers. Cryptology and information security,
pp. 115–131. IOS Press (2011)

15. Hong, S.H., Lee, S.-J., Lim, J.-I., Sung, J., Cheon, D.H., Cho, I.: Provable Security
against Differential and Linear Cryptanalysis for the SPN Structure. In: Schneier, B.
(ed.) FSE 2000. LNCS, vol. 1978, pp. 273–283. Springer, Heidelberg (2001)

16. Kavun, E.B., Lauridsen, M.M., Leander, G., Rechberger, C., Schwabe, P., Yalçın, T.:
Prøst v1.1. Submission to the CAESAR competition (2014),
http://proest.compute.dtu.dk/proestv11.pdf

17. Keliher, L., Sui, J.: Exact maximum expected differential and linear probability for
two-round Advanced Encryption Standard. IET Information Security 1(2), 53–57
(2007)

18. Kyureghyan, G.M.: Crooked maps in F2n . Finite Fields and Their Applica-
tions 13(3), 713–726 (2007)

19. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

20. MacWilliams, F., Sloane, N.: The Theory of Error-Correcting Codes, vol. 16. North-
Holland (1977)

21. Park, S., Sung, S.H., Lee, S.-J., Lim, J.-I.: Improving the Upper Bound on the
Maximum Differential and the Maximum Linear Hull Probability for SPN Struc-
tures and AES. In: Johansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 247–260.
Springer, Heidelberg (2003)

22. Sajadieh, M., Dakhilalian, M., Mala, H., Sepehrdad, P.: Efficient recursive diffusion
layers for block ciphers and hash functions. J. Cryptology 28(2), 240–256 (2015)

23. Shibutani, K., Bogdanov, A.: Towards the optimality of Feistel ciphers with
substitution-permutation functions. Des. Codes Cryptography 73(2), 667–682
(2014), http://dx.doi.org/10.1007/s10623-014-9970-4

http://proest.compute.dtu.dk/proestv11.pdf
http://dx.doi.org/10.1007/s10623-014-9970-4

On the Properties of Vectorial Functions

with Plateaued Components
and Their Consequences on APN Functions

Claude Carlet(�)

LAGA, UMR 7539, CNRS, Universities of Paris 8 and Paris 13,
Department of Mathematics, University of Paris 8, 2 rue de laliberté,

93526 Saint-Denis cedex 02, France
claude.carlet@univ-paris8.fr

Abstract. [This is an extended abstract of paper [15], which has been
submitted to a journal] Boolean plateaued functions and vectorial func-
tions with plateaued components, that we simply call plateaued, play a
significant role in cryptography, but little is known on them.We give here,
without proofs, new characterizations of plateaued Boolean and vectorial
functions, by means of the value distributions of derivatives and of power
moments of the Walsh transform. This allows us to derive several charac-
terizations of APN functions in this framework, showing that all the main
results known for quadratic APN functions extend to plateaued functions.
Moreover, we prove that the APN-ness of those plateaued vectorial func-
tions whose component functions are unbalanced depends only on their
value distribution. This proves that any plateaued (n, n)-function, n even,
having same value distribution as APN power functions, is APN and has
same extended Walsh spectrum as the APN Gold functions.

1 Introduction

The notion of plateaued Boolean function, introduced in [29], is the widest known
generalization of quadratic Boolean functions (i.e. of functions from F

n
2 to F2 of

algebraic degree 2, see e.g. [13]). It plays an important role in the cryptographic
framework, still more when the notion is extended component wise to vectorial
functions (from F

n
2 to F

m
2) used as substitution boxes in block ciphers. The set of

vectorial functions whose components are plateaued, that we shall call plateaued,
includes bent (n,m)-functions (n even, m ≤ n/2), almost bent (AB) vectorial
(n, n)-functions (n odd) and, for n even, some APN (n, n)-functions such as the
Kasami APN functions. An illustration of the importance of these functions is
that any plateaued APN (n, n)-function in odd number n of variables is AB.

However, little is known on (non-quadratic) plateaued Boolean and vectorial
functions, except (1) a few characterizations given in [29] for Boolean functions,
which are direct consequences of the definition, (2) a characterization valid for
Boolean functions, obtained in [17], which will be a starting point for the present
work, and (3) interesting but hardly usable in practice characterizations by the
constance of the ratio of two consecutive Walsh power moments of even orders

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 63–73, 2015.
DOI: 10.1007/978-3-319-18681-8_5

64 C. Carlet

[24]. There is a huge gap between the interest of the notion and the knowledge
we have on it.

After recalling the necessary background in Section 2, we give in Section 3
new characterizations of plateaued Boolean functions and of plateaued vectorial
functions, by means of the second-order and first-order derivatives in Subsection
3.1 (with a particular case when all component functions are unbalanced) and by
means of power moments of the Walsh transform in Subsection 3.2. Then Sec-
tion 4 applies these characterizations to the study of APN functions, gives new
tools for constructing APN functions from known ones and generalizes the main
properties of APN quadratic functions to plateaued functions. Subsection 4.3
studies the important sub-case where all component functions are unbalanced.

2 Preliminaries

A Boolean function f : F
n
2 �→ F2 is called plateaued if its Walsh transform

Wf (a) =
∑

x∈Fn
2
(−1)f(x)+a·x, where “·” is any inner product in F

n
2 (for in-

stance a · x = trn(ax) where trn is the trace function from F2n to F2) takes
at most three values: 0 and ±μ (where μ is some positive integer, called the
amplitude of the plateaued function). Changing the inner product permutes
the values of the Walsh transform but does not modify their distribution nor
the notion. According to Parseval’s Relation

∑
a∈Fn

2
W 2

f (a) = 22n, denoting

by NWf
the cardinality of the support {a ∈ F

n
2/ Wf (a) �= 0} of the Walsh

transform, we have NWf
× maxa∈Fn

2
W 2

f (a) ≥ 22n and therefore, the minimal
Hamming distance to affine functions (called the nonlinearity of f , and equal

to 2n−1 − 1
2 maxa∈Fn

2
|Wf (a)|) satisfies nl(f) ≤ 2n−1

(
1− 1√

NWf

)
. Equality is

achieved if and only if f is plateaued.
Because of Parseval’s relation, the amplitude μ of any plateaued function must

be of the form 2r where r ≥ n/2 (since NWf
≤ 2n). Hence, the values of the

Walsh transform of a plateaued function are divisible by 2n/2 if n is even and
by 2(n+1)/2 if n is odd.

Vectorial functions F : F
n
2 �→ F

m
2 are called (n,m)-functions and used as

substitution boxes (S-boxes) in block ciphers. We shall use the notationWF (a, u)
for Wu·F (a) and call Walsh spectrum (resp. extended Walsh spectrum) the value
distribution of the Walsh transform (resp. of its absolute value).

Definition 1. An (n,m)-function is called plateaued if all its component func-
tions u · F ; u ∈ F

m
2 , u �= 0, are plateaued.

Definition 2. An (n,m)-function is called plateaued with single amplitude if
all its component functions are plateaued with the same amplitude.

If the graphs {(x, F (x)); x ∈ F
n
2} and {(x,G(x)); x ∈ F

n
2} of two (n,m)-

functions F,G correspond to each other by an affine permutation of Fn
2 × F

m
2

(we say then that F and G are CCZ-equivalent; the notion is from [16] and the
term comes from [10]), then one is plateaued with single amplitude if and only

On the Properties of Vectorial Functions with Plateaued Components 65

if the other is. The set of plateaued vectorial functions with single amplitude
is then CCZ-invariant. The larger set of plateaued vectorial functions is only
EA-invariant, that is, if two (n,m)-functions are equivalent under composition
on the left and on the right by affine permutations and under addition of an
affine function, then one is plateaued if and only if the other is.

Plateaued Boolean functions and plateaued vectorial functions seem rare and
they do not seem to have a simple structure. Another class whose structure is diffi-
cult to grasp is that of those APN (n, n)-functions, which oppose an optimal resis-
tance to the differential attack, when used as S-boxes in block ciphers [2,25,26,16].
An (n, n)-functionF is calledAlmostPerfectNonlinear (APN) if, for every nonzero
a ∈ F

n
2 and every v ∈ F

n
2 , the equation DaF (x) := F (x) + F (x + a) = v

has at most 2 solutions, or equivalently, if for every linearly independent elements
a and b of Fn

2 , the second-order derivative DaDbF does not vanish. More gener-
ally, given a positive integer δ, F is called differentially δ-uniform if the equation
F (x)+F (x+a) = v has at most δ solutions, for every v ∈ F

n
2 and nonzero a ∈ F

n
2 .

Any (n, n)-function is APN (that is, differentially 2-uniform) if and only if the set
{(x, a, b) ∈ (Fn

2)
3 |F (x) + F (x + a) + F (x + b) + F (x + a + b) = 0} has the size

3 · 22n − 2n+1 (i.e. contains only triples (x, a, b) such that a, b are linearly depen-
dent). Equivalently the Walsh transform WF (a, u) =

∑
x∈Fn

2
(−1)u·F (x)+a·x, has

fourth power moment
∑

a∈Fn
2 ,u∈Fn

2 ,u�=0 W
4
F (a, u) equal to 23n+1(2n − 1), which is

the smallest possible value. Few APN functions are known and it is important for
cryptography to find more and to better understand their structure. A sub-class
(see [19]) of APN functions is that of those plateaued functions with single ampli-
tude called Almost Bent (AB) functions, whose Walsh transform WF (a, u) takes

values 0 and±2
n+1
2 only (n odd),whena andu range overFn

2 andu is nonzero.They
oppose an optimal resistance to the linear attack [23], thanks to the fact that their
nonlinearity (the minimum distance between their component functions and affine
functions) is optimal (it achieves with equality the Sidelnikov-Chabaud-Vaudenay
bound [19]). Their structure is a little better known than for APN functions, but
much has still to be found on them as well. Surveys on APN and AB functions can
be found in [3,14].

3 Characterizations of Plateaued Boolean and Vectorial
Functions

3.1 Characterization by Means of the Derivatives

It is proved in [17] that any Boolean function f is plateaued on F
n
2 if and only if

the expression
∑

a,b∈Fn
2
(−1)DaDbf(x) does not depend on x ∈ F

n
2 , and that this

constant expression equals then the square of the amplitude. We deduce:

Theorem 1. Let F be an (n,m)-function. Then:

– F is plateaued if and only if, for every v ∈ F
m
2 , the size of the set

{(a, b) ∈ (Fn
2)

2 ; DaDbF (x) = v} (1)

does not depend on x ∈ F
n
2 ;

66 C. Carlet

– F is plateaued with single amplitude if and only if the size of the set (1) does
not depend on x nor of v if v �= 0;

– Moreover, for every (n,m)-function F , the value distribution of DaDbF (x)
when (a, b) ∈ (Fn

2)
2 equals the value distribution of DaF (b) +DaF (x), and

two plateaued functions having same such distribution have the same ex-
tended Walsh spectrum.

Plateaued vectorial functions appear then as a natural generalization of quadra-
tic vectorial functions (i.e. functions of algebraic degree at most 2), which are char-
acterizedby the fact that their second-order derivatives are constant. Note that the
algebraic degree d = 2 is the only one for which all Boolean functions of degrees
at most d are plateaued; cubic functions can have very diverse Hamming weights
(see [12]).

Example 1. 1. Let F be AB, then, for every x, the number of solutions (a, b)
of the equation DaDbF (x) = 0 equals (as for any APN function) the number
3 · 2n − 2 of ordered pairs (a, b) of linearly dependent elements. We know (see
[14, Proposition 9.12]) that, for every v �= 0 and every x, the number of solutions
(a, b) of DaDbF (x) = v equals (uniformly) 2n− 2, and that conversely any APN
function having this property is AB.

2. Letn be even andF (x) = x2i+1 be a Gold APN function, (i, n) = 1.We have

DaDbF (x) = a2
i

b+ ab2
i

. The number of solutions (a, b) ofDaDbF (x) = 0 equals
again 3 · 2n − 2, and for v �= 0, the equation DaDbF (x) = v has two solutions a
for every b �= 0 such that v

b2i+1
has null trace. The number of such nonzero b equals

2n−1 ± 2
n
2 − 1 when v is a cube and 2n−1 ± 2

n
2 −1 − 1 when v is not a cube. Hence

the number of solutions (a, b) ofDaDbF (x) = v equals:

⎧⎪⎨
⎪⎩

3 · 2n − 2 for v = 0,

2n ± 2
n
2 +1 − 2 for v a nonzero cube (2

n−1
3 cases)

2n ± 2
n
2 − 2 for v a non-cube (2 · 2n−1

3 cases).

Since the number of all (a, b) equals 22n, we deduce that, among the two “±” above,
one is a “+” and one is a “−”. We shall see below that the Kasami APN functions
(see definition below) have the same distribution.

It is deduced in [15] that:

Corollary 1. Let n be any even integer, n ≥ 4. Let F be an (n, n)-function

CCZ-equivalent to a Gold APN function G(x) = x2i+1 or to a Kasami APN

function G(x) = x4i−2i+1, (i, n) = 1. Then F is plateaued with single amplitude
if and only if it is EA-equivalent to G(x).

The Case of Power Functions. It is often simpler to consider power functions
than general functions. This has been illustrated for instance in the study of APN
functions. The case of plateaued functions makes no exception.

On the Properties of Vectorial Functions with Plateaued Components 67

Corollary 2. Let F (x) = xd be any power function. Then, for every v ∈ F2n,
every x ∈ F2n , and every λ ∈ F

∗
2n , we have

|{(a, b) ∈ F
2
2n ; DaF (b) +DaF (x) = v}|

= |{(a, b) ∈ F
2
2n ; DaF (b) +DaF (x/λ) = v/λd}|.

In particular, |{(a, b) ∈ F
2
2n ; DaF (b) + DaF (0) = v}| is invariant when v is

multiplied by any d-th power in F
∗
2n .

Then:

– F is plateaued if and only if, for every v ∈ F2n:

|{(a, b) ∈ F
2
2n ; DaF (b) +DaF (1) = v}|

= |{(a, b) ∈ F
2
2n ; DaF (b) +DaF (0) = v}|;

– F is plateaued with single amplitude if and only if, for every v, |{(a, b) ∈
F
2
2n ; DaF (b)+DaF (1) = v}| = |{(a, b) ∈ F

2
2n ; DaF (b)+DaF (0) = v}|, and

for every nonzero v, this size does not depend on v.

If d is co-prime with n, then F is plateaued if and only if it is plateaued with
single amplitude.

The Case of Unbalanced Components. If all component functions of F
are unbalanced, then WF (0, u) �= 0 for every u �= 0 (and therefore, for every
u), and we know then that the amplitude of the component function u · F
equals |WF (0, u)|. Hence, F is plateaued if and only if, for every u, x, the
sum

∑
a,b∈Fn

2
(−1)u·DaDbF (x) equals W 2

F (0, u) =
∑

a,b∈Fn
2
(−1)u·(F (a)+F (b)). Con-

versely, if this equality is satisfied, then W 2
F (0, u) equals the square of the am-

plitude of u · F and is then nonzero.

Theorem 2. Let F be any (n,m)-function. Then F is plateaued with component
functions all unbalanced if and only if, for every v, x ∈ F

n
2 , we have:

∣∣{(a, b) ∈ (Fn
2)

2 ; DaDbF (x) = v}
∣∣ = ∣∣{(a, b) ∈ (Fn

2)
2 ; F (a) + F (b) = v}

∣∣ .
Moreover, F is plateaued with single amplitude if and only if, additionally, this
common value does not depend on v for v �= 0.

3.2 Characterization by Means of Power Moments of the Walsh
Transform

Theorem 3. Any n-variable Boolean function f is plateaued if and only if, for
every nonzero α ∈ F

n
2 , we have

∑
a∈Fn

2

Wf (a+ α)W 3
f (a) = 0.

68 C. Carlet

Any (n,m)-function F is plateaued if and only if:

∀u ∈ F
m
2 , ∀α ∈ F

n
2 , α �= 0,

∑
a∈Fn

2

WF (a+ α, u)W 3
F (a, u) = 0.

And F is plateaued with single amplitude if and only if, additionally,
∑

a∈Fn
2

W 4
F (a, u) does not depend on u for u �= 0.

Corollary 3. Any n-variable Boolean function f is plateaued if and only if, for
every b ∈ F

n
2 : ∑

a∈Fn
2

W 4
f (a) = 2n(−1)f(b)

∑
a∈Fn

2

(−1)a·bW 3
f (a).

Any (n,m)-function F is plateaued if and only if, for every b ∈ F
n
2 and every

u ∈ F
m
2 : ∑

a∈Fn
2

W 4
F (a, u) = 2n(−1)u·F (b)

∑
a∈Fn

2

(−1)a·bW 3
F (a, u).

And F is plateaued with single amplitude if and only if, additionally, these sums
do not depend on u, for u �= 0.

Proposition 1. For every n-variable Boolean function f , we have:⎛
⎝∑

a∈Fn
2

W 4
f (a)

⎞
⎠

2

≤ 22n

⎛
⎝∑

a∈Fn
2

W 6
f (a)

⎞
⎠ , (2)

with equality if and only f is plateaued.
For every (n,m)-function F , we have:

∑
u∈Fm

2

⎛
⎝∑

a∈Fn
2

W 4
F (a, u)

⎞
⎠

2

≤ 22n
∑
u∈Fm

2

⎛
⎝∑

a∈Fn
2

W 6
F (a, u)

⎞
⎠ , (3)

with equality if and only if F is plateaued, which is equivalent to the fact that
the size of the set

{(x1, x2, x3, x4, y1, y2, y3, y4)∈(Fn
2)

8 |
4∑

i=1

F (xi)+
4∑

i=1

F (yi))=
4∑

i=1

xi=
4∑

i=1

yi = 0}

equals 2n times the size of the set

{(x1, x2, x3, x4, x5, x6) ∈ (Fn
2)

6 |
6∑

i=1

F (xi) =

6∑
i=1

xi = 0}.

For every (n,m)-function F , we have also:

∑
u∈Fm

2

∑
a∈Fn

2

W 4
F (a, u) ≤ 2n

∑
u∈Fm

2

√∑
a∈Fn

2

W 6
F (a, u) (4)

with equality if and only if F is plateaued.

On the Properties of Vectorial Functions with Plateaued Components 69

The characterization by the equality in (2) is a particular case of the result
of [24] mentioned in introduction. The work in [24] and the present work have
been done independently.

4 Characterizations of the APN-ness of Componentwise
Plateaued Vectorial Functions

If a function F is quadratic, then given a �= 0, the property that all equations
F (x) + F (x + a) = v have at most 2 solutions is equivalent to the fact that
the single homogeneous linear equation F (x) + F (x + a) = F (0) + F (a) has 2
solutions. This is the main reason why many recent results of constructions of
APN functions [4,6,7,8,9,18,27,28] produce quadratic functions. Unfortunately,
quadratic functions are hardly usable as S-boxes [22,21]. Thanks to the results of
the previous section, we shall show that the nice property of quadratic functions
recalled above, and other properties as well, can be extended to all plateaued
functions.

4.1 Characterization by the Derivatives

An (n, n)-function F is APN if and only if, for every F2-linearly independent a, b,
the equation DaDbF (x) = F (x)+F (x+ a)+F (x+ b)+F (x+ a+ b) = 0 has no
solution x. If F is plateaued, then according to Theorem 1, it is APN if and only
if, for every F2-linearly independent a, b, we have F (0)+F (a)+F (b)+F (a+b) �=
0. Then:

Theorem 4. Any plateaued (n, n)-function F is APN if and only if, for every
a �= 0 in F

n
2 , the equation F (x) + F (x+ a) = F (0) + F (a) has the 2 solutions 0

and a only.

4.2 Characterization by the Walsh Transform

In the next proposition, we assume that F (0) = 0, with no loss of generality.

Proposition 2. Let F be any plateaued (n, n)-function. Assume that F (0) = 0.
Then F is APN if and only if the set {(x, b) ∈ F

2
2n |F (x)+F (x+ b)+F (b) = 0}

has size 3 · 2n − 2. Equivalently:∑
a∈F2n ,u∈Fn

2 ,u�=0

W 3
F (a, u) = 22n+1(2n − 1).

This necessary and sufficient condition was known until now only for quadratic
functions, see [14] (of course, it was also known as a necessary condition for
functions of unrestricted degree).

Proposition 3. Let F be any (n, n)-function. Then F is APN and plateaued if
and only if the Walsh transform of F satisfies:

3 · 23n − 22n+1 =
∑
u∈Fn

2

√∑
a∈Fn

2

W 6
F (a, u),

70 C. Carlet

or equivalently

22n+1(2n − 1) =
∑
u∈Fn2
u�=0

√∑
a∈Fn

2

W 6
F (a, u), (5)

We give now a result which is new, even for quadratic functions, as far as
we know. It depends on the amplitude of each component function, but has the
interest of leading to a characterization involving a sum of squares of the Walsh
values instead of sums of larger degrees as above.

Proposition 4. Let F be a plateaued (n, n)-function. For every u, let 2λu be
the amplitude of u · F . Then F is APN if and only if:

∑
u∈Fn

2 ,u�=0

22λu ≤ 2n+1(2n − 1), (6)

or equivalently if, for every function ψ : Fn
2 �→ F

n
2 , we have:

∑
u∈Fn

2 ,u�=0

W 2
F (ψ(u), u) ≤ 2n+1(2n − 1). (7)

Inequality (6), and Inequality (7) for some ψ, are then equalities.

Remark 1. As already recalled in introduction, it is known that for n odd, if F
is APN and is plateaued, then F is AB (see e.g. [14]). Proposition 4 gives a new
way of proving this result: we know that for n odd we have 2λu ≥ n+1 and (6)
implies that 2λu = n+ 1 for every u �= 0. This proves that F is AB. �

4.3 The Case of Unbalanced Component Functions

In the case that all component functions of a plateaued (n, n)-function F are un-
balanced, we have simpler and more efficient characterizations of its APN-ness.
From Theorem 2 and from the observation that if a and b are F2-linearly depen-
dent, then we have DaDbF (x) = 0, we directly deduce the following theorem:

Theorem 5. Let F be any plateaued (n, n)-function having all its component
functions unbalanced, then

∣∣{(a, b) ∈ (Fn
2)

2 , a �= b ; F (a) = F (b)}
∣∣ ≥ 2 · (2n − 1),

with equality if and only if F is APN.

Remark 2. Theorem 2 and Theorem 5 show that any APN function having all
its component functions unbalanced is plateaued with single amplitude if and
only if it is AB, and then n must be odd (note that this generalizes up to
EA-equivalence). Indeed, the condition is clearly necessary and, according to
these theorems, it is also sufficient because the size of {(a, b) ∈ (Fn

2)
2 ; F (a) +

F (b) = v} equals then 22n−2n−2·(2n−1)
2n−1 = 2n − 2 for every v �= 0, that is,

On the Properties of Vectorial Functions with Plateaued Components 71

∣∣{(a, b) ∈ (Fn
2)

2 ; DaDbF (x) = v}
∣∣ equals 2n− 2, and this is equivalent to F AB.

But in fact this result is true without the hypothesis that all component functions
are unbalanced. In odd dimension (i.e. for n odd), we have already recalled that
this is well-known. In even dimension, it is proved in [14] that for a plateaued
APN function, at least two third of the component functions are bent; therefore,
if F is plateaued with single amplitude, it is necessarily bent, a contradiction
with Nyberg’s result that bent (n, n)-functions cannot exist.

Remark 3. In the framework of Theorem 5, the number

NbF =
∣∣{(a, b) ∈ (Fn

2)
2 , a �= b ; F (a) = F (b)}

∣∣
is minimal for an APN function. In such case, since NbF =

∑
a∈Fn

2 ;a �=0 |(DaF)−1

(0)| and each set (DaF)−1(0) has size at most 2, each such set has size exactly
2. Such function F with the property that there exist exactly 2 solutions of
the equation F (x) + F (x + a) = 0, for every a �= 0, is called zero-difference
2-balanced, see [20]. It is proved in [18] that every quadratic zero-difference 2-
balanced function is APN. With Theorem 5, we extend this result from the class
of quadratic functions to the larger class of plateaued functions (and we also
have its converse). �

Theorem 5 may also lead to a way of constructing new APN functions from
known ones, thanks to the following:

Corollary 4. Let F be any plateaued APN (n, n)-function having all its com-
ponent functions unbalanced. Let π be a permutation of F

n
2 and G a function

injective on the image set F (Fn
2) = {F (x), x ∈ F

n
2} of F . Then if G ◦ F ◦ π is

plateaued, G ◦F ◦ π is APN. Moreover, if G is identity, F and F ◦ π have same
extended Walsh spectrum.

A case of application in which G is identity and for which we can characterize
the fact that F ◦ π is plateaued is by taking for F a Gold function (see [15]):

Corollary 5. Let n be an even positive integer. Let d = 2i + 1, (i, n) = 1. Let
π be the compositional inverse of a quadratic permutation Q of F2n . For every
b ∈ F2n , let us denote by Lb the linear (n, n)-function such that trn[(bQ(x +
y) + bQ(x) + bQ(y) + bQ(0)] = trn[Lb(x)y] and by Eu,b the vector subspace

{x ∈ F2n |ux2i + (ux)2
n−i

+ Lb(x) = 0} of F2n. Then:

1. Function F (x) = (π(x))d is plateaued if and only if, for every u ∈ F
∗
2n, the

dimension of Eu,b is the same for all b’s such that function trn(ux
2i+1 +

bQ(x)) is constant on Eu,b;
2. If this condition is satisfied, then F is APN.

Dobbertin proved that if F is a power APN function in even dimension then it
is 3-to-1 over F∗

2n (see his proof reported in [14]) and gcd(d, 2n−1) = 3. Theorem
5 allows proving the converse for any plateaued power function:

72 C. Carlet

Corollary 6. Let n be even and F (x) = xd be any plateaued power function.
Then F is APN if and only if gcd(d, 2n − 1) = 3.

This applies to the Kasami functions for n even.

Question: Does there exist, for any APN plateaued function F , a linear function
L such that F + L has unbalanced components?

Acknowledgement. We wish to thank Alexander Pott for useful information and

Lilya Budaghyan for very helpful discussions and information.

References

1. Berger, T., Canteaut, A., Charpin, P., Laigle-Chapuy, Y.: On almost perfect non-
linear functions. IEEE Trans. Inform. Theory 52(9), 4160–4170 (2006)

2. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. Jour-
nal of Cryptology 4(1), 3–72 (1991)

3. Budaghyan, L.: Construction and Analysis of Cryptographic Functions. Springer,
(200 pages) (to appear)

4. Budaghyan, L., Carlet, C.: Classes of Quadratic APN Trinomials and Hexanomials
and Related Structures. IEEE Trans. Inform. Theory 54(5), 2354–2357 (2008)

5. Budaghyan, L., Carlet, C.: CCZ-equivalence of Bent Vectorial Functions and Re-
lated Constructions. Designs, Codes and Cryptography 59(1-3), 69–87 (2011)

6. Budaghyan, L., Carlet, C., Felke, P., Leander, G.: An infinite class of quadratic
APN functions which are not equivalent to power functions. In: Proceedings of
IEEE International Symposium on Information Theory (ISIT) (2006)

7. Budaghyan, L., Carlet, C., Leander, G.: Two classes of quadratic APN binomials
inequivalent to power functions. IEEE Trans. Inform. Theory 54(9), 4218–4229
(2008), This paper is a completed and merged version of [6] and [8]

8. Budaghyan, L., Carlet, C., Leander, G.: Another class of quadratic APN binomials
over F2n : the case n divisible by 4. In: Proceedings of the Workshop on Coding
and Cryptography, WCC 2007, pp. 49–58 (2007)

9. Budaghyan, L., Carlet, C., Leander, G.: Constructing new APN functions from
known ones. Finite Fields and Applications 15(2), 150–159 (2009)

10. Budaghyan, L., Carlet, C., Pott, A.: New Classes of Almost Bent and Almost
Perfect Nonlinear Polynomials. In: Proceedings of the Workshop on Coding and
Cryptography 2005, Bergen, pp. 306–315 (2005)

11. Budaghyan, L., Carlet, C., Pott, A.: New Classes of Almost Bent and Almost
Perfect Nonlinear Functions. IEEE Trans. Inform. Theory 52(3), 1141–1152 (2006),
This is a completed version of [10]

12. Carlet, C.: A transformation on Boolean functions, its consequences on some prob-
lems related to Reed-Muller codes. In: Charpin, P., Cohen, G. (eds.) EUROCODE
1990. LNCS, vol. 514, pp. 42–50. Springer, Heidelberg (1991)

13. Carlet, C.: Boolean Functions for Cryptography and Error Correcting Codes.
Chapter of the monography. In: Crama, Y., Hammer, P. (eds.) Boolean Mod-
els and Methods in Mathematics, Computer Science, and Engineering, pp.
257–397. Cambridge University Press (2010), Preliminary version available at
http://www.math.univ-paris13.fr/∼carlet/pubs.html

http://www.math.univ-paris13.fr/~carlet/pubs.html

On the Properties of Vectorial Functions with Plateaued Components 73

14. Carlet, C.: Vectorial Boolean Functions for Cryptography. Chapter of the monog-
raphy. In: Crama, Y., Hammer, P. (eds.) Boolean Methods and Models. Cambridge
University Press, Preliminary version available at
http://www.math.univ-paris13.fr/∼carlet/pubs.html

15. Carlet, C.: Boolean and vectorial plateaued functions and APN functions. Preprint
16. Carlet, C., Charpin, P., Zinoviev, V.: Codes, bent functions and permutations

suitable for DES-like cryptosystems. Designs, Codes and Cryptography 15(2),
125–156 (1998)

17. Carlet, C., Prouff, E.: On plateaued functions and their constructions. In: Johans-
son, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 54–73. Springer, Heidelberg (2003)

18. Carlet, C., Gong, G., Tan, Y.: Quadratic Zero-Difference Balanced Functions, APN
functions and Strongly Regular Graphs. To appear in Designs, Codes and Cryp-
tography

19. Chabaud, F., Vaudenay, S.: Links between Differential and Linear Cryptanalysis.
In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 356–365. Springer,
Heidelberg (1995)

20. Ding, C., Tan, Y.: Zero-Difference Balanced Functions With Applications. Journal
of Statistical Theory and Practice 6(1), 3–19 (2012)

21. Knudsen, L.: Truncated and higher order differentials. In: Preneel, B. (ed.) FSE
1994. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

22. Lai, X.: Higher order derivatives and differential cryptanalysis. In: Proceedings of
the Symposium on Communication, Coding and Cryptography (1994), in Honor
of J. L. massey on the occasion of his 60’th birthday

23. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

24. Mesnager, S.: Characterizations of plateaued and bent functions in characteristic p.
In: Schmidt, K.-U., Winterhof, A. (eds.) SETA 2014. LNCS, vol. 8865, pp. 71–81.
Springer, Heidelberg (2014)

25. Nyberg, K.: Perfect nonlinear S-boxes. In: Davies, D.W. (ed.) EUROCRYPT 1991.
LNCS, vol. 547, pp. 378–386. Springer, Heidelberg (1991)

26. Nyberg, K.: On the construction of highly nonlinear permutations. In:
Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 92–98. Springer,
Heidelberg (1993)

27. Yu, Y., Wang, M., Li, Y.: A matrix approach for constructing quadratic APN
functions. In: Proceedings of International Workshop on Coding and Cryptography,
pp. 39–47 (2013)

28. Weng, G., Tan, Y., Gong, G.: On almost perfect nonlinear functions and their
related algebraic objects. In: Proceedings of International Workshop on Coding
and Cryptography, pp. 48–57 (2013)

29. Zheng, Y., Zhang, X.-M.: Plateaued functions. In: Varadharajan, V., Mu, Y. (eds.)
ICICS 1999. LNCS, vol. 1726, pp. 284–300. Springer, Heidelberg (1999)

http://www.math.univ-paris13.fr/~carlet/pubs.html

Beyond Cryptanalysis Is Software Security

the Next Threat for Smart Cards

Jean-Louis Lanet(�)

INRIA, LHS-PEC,
263 Avenue Général Leclerc, 35042 Rennes, France

jean-louis.lanet@inria.fr

http://secinfo.msi.unilim.fr/lanet/

Abstract. Smart cards have been considered for a long time as a secure
container for storing secret data and executing programs that manipulate
them without leaking any information. In the last decade, a new form
of attack that uses the hardware has been intensively studied. We have
proposed in the past to pay attention also to easier attacks that use only
software. We demonstrated through several proof of concepts that such
an approach should be a threat under some hypotheses. We have been
able to execute self-modifying code, return address programming and so
on. More recently we have been able to retrieve secret keys belonging
to another application. Then all the already published attacks should
have been a threat but the industry increased the counter measures to
mitigate for each of the published attack. In such a sensitive domain, we
always submit the attacks to the industrial partners but also national
agencies before publishing any attack. Within such an approach, they
have been able to patch their system before any vulnerabilities should
be exploited.

Keywords: Smart Card · Attacks · Ethical Process

1 Introduction

Java Card is a kind of smart card that implements one of the two editions,
“Classic Edition” or “Connected Edition”, of the standard Java Card 3.0 [12].
Such a smart card embeds a virtual machine which interprets codes already
romized with the operating system or downloaded after issuance. Due to security
reasons, the ability to download code into the card is controlled by a protocol
defined by Global Platform [7]. This protocol ensures that the owner of the code
has the necessary authorization to perform the action. Java Card is an open
platform for smart cards, i.e. able of loading and executing new applications
after issuance. Thus, different applications from different providers run in the
same smart card. Thanks to type verification, byte codes delivered by the Java
compiler and the converter (in charge of giving a compact representation of class
files) are safe, i.e. the loaded application is not hostile to other applications in
the Java Card. Furthermore, the Java Card firewall checks permissions between
applications in the card, enforcing isolation between them.

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 74–82, 2015.
DOI: 10.1007/978-3-319-18681-8_6

Beyond Cryptanalysis Is Software Security the Next Threat for Smart Cards 75

Java Cards have shown an improved robustness compared to native applica-
tions regarding many attacks. They are designed to resist to numerous attacks
using both physical and logical techniques. Currently, the most powerful attacks
are hardware based attacks and particularly fault attacks. A fault attack modifies
parts of memory content or signal on internal bus and lead to deviant behavior
exploitable by an attacker. A comprehensive consequence of such attacks can
be found in [11]. Although fault attacks have been mainly used in the literature
from a cryptanalytic point of view (see [1,9,13]), they can be applied to every
code layers embedded in a device. For instance, while choosing the exact byte of
a program the attacker can bypass counter-measures or logical tests.

The design of a Java Card virtual machine cannot rely on the environmental
hypotheses of Java. In fact, physical attacks have never been taken into account
during the design of the Java platform. To fill this gap, card designers developed
an interpreter which relies on the principle that once the application has been
linked to the card, it will not be modifiable again. The trade-off is between
a highly defensive virtual machine which will be too slow to operate and an
offensive interpreter that will expose too much vulnerabilities. The know-how of
a smart card design is in the choice of a set of minimal counter-measures with
high fault coverage.

Nevertheless some attacks have been successful in retrieving secret data from
the card. Thus we will present here a survey of different approaches to get ac-
cess to data, which should bypass Java security components. The aim of an
attacker is to generate malicious applications which can bypass firewall restric-
tions and modify other applications, even if they do not belong to the same
security package. Several papers were published and they differ essentially on
the hypotheses of the platform vulnerabilities. After a brief presentation of the
Java Card platform and its security functions, we will present attacks based on a
faulty implementation of the transaction, due to ambiguities in the specification.
Then we will describe the flaws that can be exploited with an ill-typed applet
and we will finish with hostile applet that gain privilege to access the physical
processor leading to the dump of the operating system and the crypto API.

2 Smart Card Security

Smart cards security depends on the underlying hardware and the embedded
software. Embedded sensors (light sensors, heat sensors, voltage sensors, etc.)
protect the card from physical attacks. While the card detects such an attack, it
has the possibility to erase quickly the content of the EEPROM preserving the
confidentiality of secret data or blocking definitely the card (Card is mute). In
addition to the hardware protection, softwares are designed to securely ensure
that application are syntactically and semantically correct before installation
and also sometimes during execution. They also manage sensitive information
and ensure that the current operation is authorized before executing it. The
Byte Code Verifier guarantees type correctness of code, which in turn guaran-
tees the Java properties regarding memory access. For example, it is impossible

76 J.-L. Lanet

in Java to perform arithmetic on reference. Thus, it must be proved that the
two elements on top of the stack are of primitive types before performing any
arithmetic operation. On the Java platform, byte code verification is invoked
at load time by the loader. Due to the fact that Java Card does not support
dynamic class loading, byte code verification is performed at installation time
i.e. before loading the Card APplet (CAP) onto the card. However, most of the
Java Card smart cards do not have an on-card BCV as it is quite expensive in
terms of memory consumption. Thus, a trusted third party performs an off-card
byte code verification and sign it, and on card its digital signature is checked.

Moreover, the Firewall performs checks at runtime to prevent applets from
accessing (reading or writing) data of other applets. When an applet is created,
the system uses a unique applet identifier (AID) from which it is possible to
retrieve the name of the package in which it is defined. If two applets are in-
stances of classes coming from the same Java Card package, they are considered
belonging to the same context. The firewall isolates the contexts in such a way
that a method executing in one context cannot access any attribute or method
of objects belonging to another context unless it explicitly exposes functionality
via a Shareable Interface Object.

Smart card security is a complex problem with different points of view but
products based on Java Card Virtual Machine (JCVM) have passed success-
fully real-world security evaluations for major industries around the world. It
is also the platform that has passed high level security evaluations for issuance
by banking associations and by leading government authorities, they have also
achieved compliance with FIPS 140-1 certification scheme. Nevertheless imple-
mentations have suffered severals attacks either hardware or software based.
Some of them succeeded into getting access to the EEPROM (code of the down-
loaded applets) but as far as we know nobody succeeded into reversing the code
i.e. having access to the code of the virtual machine, the operating system and
the cryptographic algorithm implementations. These latter are protected by the
interpretation layer which denies access to other memories than the EEPROM.

3 Some Software Attacks Again Java Card

3.1 Ambiguity in the Specification: The Type Confusion

Erik Poll made a presentation at CARDIS’08 about attacks on smart cards.
In his paper [10], he did a quick overview of the classical attacks available on
smart cards and gave some counter-measures. He explained the different kinds
of attacks and the associated counter-measures. He described four methods (1)
CAP file manipulation, (2) Fault injection, (3) Shareable interfaces mechanisms
abuse and (4) Transaction Mechanisms abuse.

He proposed a new way to abuse the Transaction mechanism (4). The pur-
pose of transaction is to make a group of operations becomes atomic. Of course,
it is a widely used concept, like in databases, but still hard to implement. By
definition, the rollback mechanism should also deallocate any objects allocated
during an aborted transaction, and reset references to such objects to null.

Beyond Cryptanalysis Is Software Security the Next Threat for Smart Cards 77

However, Erik Poll find some strange cases where the card keep the references
of objects allocated during transaction even after a roll back.

If he can get the same behavior, it should be easy to get and exploit type
confusion. A first example is to get two arrays of different types, for example a
byte and a short array. One of them is a field (permanent storage) the second is a
local variable. While aborting the transaction, the permanent reference must be
nullified. But the specification do not explain what to do with local variables if
they reference also a permanent object. Poll discovered that some cards cleared
all the references while other let dangling pointers. In such a case reallocating the
memory will let the dangling pointer referencing another object of potentially
another type. If he declares a byte array of 10 bytes, and he has another reference
as a short array, he will be able to read 10 shorts, so 20 bytes. With this method
he can read the 10 bytes saved after the array. If he increases the size of the
array, he can read as much memory as he wants. The main problem is more how
to read memory before the array. The other confusion he used is an array of
bytes and an object. If he puts a byte as first object attribute, it is bound to the
array length. It is then really easy to change the length of the array using the
reference to the object.

3.2 Weakness in the Linker Process

The Java Card Specification defines the linking step done during the loading of
CAP file. When the software is downloading in the card, the Java Card Virtual
Machine provides a way to link, the CAP file to install, with the installed Java
Card API. This step is done thanks to a tokens link resolution references in
the Constant Pool component. To friendly find where each token is used, the
Reference Location component keeps a list of offsets, in the Method Compo-
nent. So, in this loading step, the JCVM translates, with the help of the Constant
Pool component and the Reference Location component, each reference to
methods or fields use in the CAP file. To abuse the linking mechanism [14], [8]
we modify the token following any natural instructions, as invokestatic, which
are following by a token. If the card have not any BCV component, a modifica-
tion may push the linked reference on the stack and returned at the end of the
current function.

Using this approach we are able to use the on board linker to generate the
correct information, to store it on top of the stack and to send it back to the
reader. Thanks to this information leakage we are able to obtain all the linked
address of the Java Card API for a given card. For retrieving one address we
need to build one CAP file. Retrieving the complete API, need to generate 98
test cases for the methods of the classes and 60 test cases for the interfaces. All
the test cases are valid whatever the card is tested. It means that the effort to
design the test cases for retrieving the addresses will be reusable on all the cards.
This attack is completely generic and independent of the platform.

78 J.-L. Lanet

3.3 Dumping the EEPROM

As said previously, the verifier must check several points. In particular: there are
no violations of memory management and any stack underflow or overflow. This
means that these checks are potentially not verified during run time and then
can lead to vulnerabilities. The Java frame is a non persistent data structure but
can be implemented in different manners and the specification gives no design
direction for it. Getting access to the RAM provides information of other objects
like the APDU buffer, return address of a method and so on. So, changing the
return of a local address modifies the control flow of the call graph and returns
it to a specific address.

The EMAN2 attack [3] allows to modify the value of the return address of
a method by storing a short into a local. By choosing the right value for the
local number we overwrite the return address. In a given card the return address
register is stored at MAX LOCAL + 2. The value stored in this register will
be the address where Java PC will be updated while returning from the current
method. We just need to define a static array which is stored close to the method
area. Then after returning from the method, the JCVM will execute the content
of the array. Due to the fact that getstatic and putstatic are not checked by
the firewall, we can read the content of the memory. The shell code is presented
in Listing 1.1.

Listing 1.1. Executing the basic shell code

7C 01 00 g e t S t a t i c 0x0100
78 s r e tu rn

This code puts on top of the stack, the content of the memory at the address
0x0100 and returns this value. The caller has just to store it into the APDU
buffer and the value is send to the terminal. Then, the third byte of the static
array must be incremented and the next call will return the value of the address
0x0101. We just need to manage the carry from the low byte to the high byte
representing the address. Another way to update the return address is the sinc

instruction. The sinc instruction aims to increase a local short variable by a
constant value given in its parameter.

Recently, Faugeron [6] presented a way to fool the Java Card runtime based
on the dup x instruction. This instruction duplicates the top of operands stack
words and inserts them below. This instruction takes two parameters encoded
on 1-byte where the high nibble describes the number of words to duplicate and
the low nibble defines where the duplicated words are placed. Since the Java
Card operands stack does not contain enough elements, the runtime uses the
system data as words for the dup x instruction. Thus, an attacker can shift the
value of the frame header by a custom words pushed on the stack.

3.4 Dumping the ROM

In [4] we demonstrated the ability to dump the content of the ROM and thus
to get access to the implementation of the cryptographic functions. We used

Beyond Cryptanalysis Is Software Security the Next Threat for Smart Cards 79

several weaknesses. During the analysis of EEPROM dump corresponding to a
linked applets into the smart card memory, a method with an abnormal call has
been noticed at the address 0xDBE6. This address corresponds to another EEP-
ROM address and not a ROM address. At that address we found a table which
corresponded to non standard method headers. The JCVM Specification [12]
defines a method as a method header info, described in the listing 1.2, and its
associated byte code.

Listing 1.2. Java Card Method Header Info

method header in fo {
u1 b i t f i e l d {

b i t [4] f l a g s // a mask o f mod i f i e r s de f in ed f o r the method
b i t [4] max stack // max c e l l s r equ i r ed during execu t ion o f

// the method
}
u1 b i t f i e l d {

b i t [4] nargs // number o f parameters passed to the method
b i t [4] max loca l s // number o f l o c a l v a r i a b l e s dec la red

// by the method
}

}
For the flag value, three defined possibilities are expected:

– 0x0: it is a normal method;
– 0x8 (ACC EXTENDED): the method represents an extended method;
– 0x4 (ACC ABSTRACT): the method represents an abstract method;
– All other flag values are reserved.

Each methods of the table contains a non standardized flag value (i.e. : 2).
Moreover, the associated byte code (1-byte) cannot be an instruction. On the
other side, we also also have a set of interesting values in the EEPROM. We
assumed that all these values are addresses that refer to the ROM, except one
which refers to the EEPROM. To prove our hypothesis we checked the data
contained at the address corresponds to a 8051 assembler language which corre-
sponds to the native code for the targeted card. We reversed the code in order
to verify the calling convention of this native Java Interface.

To exploit this weakness, we added to the method table a fake method (a
method with a flag value equals to 2) contains an offset to an address in the in-
direction table. Each element in the indirection table refers to a native function.
At this offset we put the address of our shellcode. Without integrity check, the
Java Card Runtime execute the malicious code. Finally, to execute the native
shell code the parameter of an invokestatic instruction, or another kind of
call instruction should be changed by the address of our fake method. Thus,
the faulty instruction provides a way to execute any shell code with native priv-
ilege. With this shell code, we have been able to do a memory dump of the
ROM code. Examining carefully the code we discovered the cryptographic code
corresponding to the embedded algorithms within this specific card.

80 J.-L. Lanet

3.5 A Complete Methodology to Attack Smart Card

In his PhD, Bouffard [2] applied the Attack Tree Analysis (ATA) to have a global
view on the vulnerability of the smart card. Attack trees have been introduced
by Schneier in[15], they represent a convenient approach to analyze the different
ways in which a system can be attacked. It is an analytical technique (top-down)
where an undesirable event is defined and the system is then analyzed to find the
combinations of basic events that could lead to the undesirable event. Such an
analysis is closed to the risk analysis community with the cause-effect diagrams.
An attack tree is a tree in which the nodes represent attacks. The root node of
the tree is the property that an attacker wants to break. Children of a node are
refinements of this goal, and leafs therefore represent initial causes. An attack
tree is not a model of all possible combination but a restricted set. It is related to
the property evaluated. In this case, code integrity is the most sensible property
because if not guaranteed, it enables the attacker to execute any arbitrary code.

The property we want to protect is the integrity of the code which can be
violated by a Control Flow Transfer (CFT) attack. So one of the events which can
transgress this property is the CFT attack which becomes the root of the subtree
of the code integrity ATA. Until now, the control flow attack instance was only
the EMAN2 attack. To mitigate such an attack, it was only required to either
check at runtime the locals, pass the BCV or enable a frame integrity check. Such
leaf requires to check the underflow of the stack on some instructions. Some of
the cards now implement a frame integrity that disallows to arbitrary write into
the frame. One can remark that the Frame Integrity detection mechanism covers
both EMAN2 and Faugeron’s attack, while the Check of Local Variables covers
only the EMAN2.

Fig. 1. Attack Tree

To succeed, detection event and mitigation event must be inhibited with a not
gate. In this figure a nand gate plays this role. The CFT attack represented in
Figure 1 will succeed if the adequate ill formed CAP is loaded and no integrity
check or no local variable check are present on the card and the BCV is bypassed.
When the event is detected, then the card is muted and the attack is stopped.
We use this methodology to provide a clear overview on how different events can

Beyond Cryptanalysis Is Software Security the Next Threat for Smart Cards 81

be combined to set up attacks that can break the integrity of the code. We do
not pay attention here on the valuation of the effort of the attacker but on the
efficiency of a counter measure. The minimal cut of an ATA defines the minimal
sets of basic events determining an attack scenario. Closer to the root is the
detection event or the mitigation event better is the coverage.

4 Conclusion and Future Works

We have presented here a set of attacks concerning the smart card world an in
particular the Java Card domain. The abality to download application from an
untrusted environment open the possibility to characterize the content of the
smart card. In particular it allows the attacker to recover code from application
(EEPROM) or from the system (ROM) but also to recover some of the data that
do not belong him. integrity and confidentiality can be broken just using the
techniques used in main stream IT programming. We proposed a methodology
based on attack trees to model the knowledge of the attacker. By defining a
minimal cut in such a tree, we define the scenario that could lead to the attack.
Such a tree can also be used as a defensive means by defining close to the root the
adequate counter measure. This optimize the coverage and thus the efficiency of
the defense.

References

1. Aumller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert, J.P.: Fault Attacks on RSA
with CRT: Concrete Results and Practical Countermeasures. In: Kaliski Jr., B.S.,
Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 260–275. Springer,
Heidelberg (2003)

2. Bouffard, G.: A Generic Approach for Protecting Java Card Smart Card Against
Software Attacks. Ph.D. thesis, University of Limoges, 123 Avenue Albert Thomas,
87060 LIMOGES CEDEX (October 2014)

3. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.-L.: Combined Software and Hardware
Attacks on the Java Card Control Flow. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 283–296. Springer, Heidelberg (2011)

4. Bouffard, G., Lanet, J.L.: Reversing the operating system of a java based smart
card. Journal of Computer Virology and Hacking Techniques 10(4), 239–253 (2014),
http://dx.doi.org/10.1007/s11416-014-0218-7

5. Card, J.: 2.1. 1 virtual machine specification. SUN Microsystems Inc. (2000)
6. Faugeron, E.: Manipulating the Frame Information With an Underflow Attack. In:

Francillon, A., Rohatgi, P. (eds.) CARDIS 2013. LNCS, vol. 8419, pp. 140–151.
Springer, Heidelberg (2014)

7. GlobalPlatform: Card Specification. GlobalPlatform Inc., 2.2.1 edn. (January 2011)
8. Hamadouche, S., Bouffard, G., Lanet, J.L., Dorsemaine, B., Nouhant, B., Magloire,

A., Reygnaud, A.: Subverting byte code linker service to characterize java card api.
In: Seventh Conference on Network and Information Systems Security (SAR-SSI),
May 22-25, pp. 75–81 (2012)

9. Hemme, L.: A differential fault attack against early rounds of (triple-) DES. In:
Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 254–267.
Springer, Heidelberg (2004)

http://dx.doi.org/10.1007/s11416-014-0218-7

82 J.-L. Lanet

10. Hubbers, E., Poll, E.: Transactions and non-atomic API calls in Java Card: speci-
fication ambiguity and strange implementation behaviours. Tech. rep., University
of Nijmegen (2004)

11. Iguchi-Cartigny, J., Lanet, J.L.: Developing a Trojan applets in a Smart Card.
Journal in Computer Virology 6, 343–351 (2010)

12. Oracle: Java Card 3 Platform, Virtual Machine Specification, Classic Edition. No.
Version 3.0.4, Oracle, Oracle America, Inc., 500 Oracle Parkway, Redwood City,
CA 94065 (2011)

13. Piret, G., Quisquater, J.-J.: A differential fault attack technique against SPN struc-
tures, with application to the AES and KHAZAD. In: Walter, C.D., Koç, Ç.K.,
Paar, C. (eds.) CHES 2003. LNCS, vol. 2779, pp. 77–88. Springer, Heidelberg
(2003)

14. Razafindralambo, T., Bouffard, G., Lanet, J.-L.: A friendly framework for hidding
fault enabled virus for Java based smartcard. In:Cuppens-Boulahia, N., Cuppens, F.,
Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 122–128. Springer,
Heidelberg (2012)

15. Schneier, B.: Attack trees: Modeling security threat. Dr. Dobbs Journal (1999)

Extended Abstract: Codes as Modules over

Skew Polynomial Rings

Felix Ulmer(�)

IRMAR, CNRS, UMR 6625, Université de Rennes 1,
Université Européenne de Bretagne
felix.ulmer@univ-rennes1.fr

Abstract. This talk is an overview of codes that are defined as modules
over skew polynomial rings. These codes can be seen as a generalization
of cyclic codes or more generally polynominal codes to a non commu-
tative polynomial ring. Most properties of classical cyclic codes can be
generalized to this new setting and self-dual codes can be easily identi-
fied. Those rings are no longer unique factorization rings, therefore there
are many factors of Xn − 1, each generating a “skew cyclic code”. In
previous works many new codes and new self-dual codes with a better
distance than existing codes have been found. Recently cyclic and skew-
cyclic codes over rings have been extensively studied in order to obtain
codes over subfields (or subrings) under mapping with good properties.

In order to generalize cyclic codes (or more generally polynomial codes) we use
a well known construction of a non commutative polynomial ring. Starting from
the finite RingA and an automorphism θ ofA, we define a ring structure on the set

A[X ; θ] = {anXn + . . .+ a1X + a0 | ai ∈ A and n ∈ N} .

The addition in A[X ; θ] is defined to be the usual addition of polynomials and
the multiplication is defined by the basic rule X · a = θ(a)X (a ∈ A) and
extended to all elements of A[X ; θ] by associativity and distributivity. With this
two operations A[X ; θ] is a ring known as skew polynomial ring or Ore ring.
If the leading coefficient of g ∈ A[X ; θ] is invertible, then for any f ∈ A[X ; θ]
there exists a unique decomposition f = qg + r.

Definition 1. [2–4] Let A be a ring, θ an automorphism of A and f ∈ A[X ; θ]
be of degree n. A principal module θ-code C is a left A[X ; θ]-submodule

A[X ; θ]g/A[X ; θ]f ⊂ A[X ; θ]/A[X ; θ]f

in the basis 1, X, . . . , Xn−1 where g is a monic right divisor of f in A[X ; θ]. The
length of the code is n = deg(f) and its dimension is k = deg(f) − deg(g), we
say that the code C is of type [n, k]. If the minimal Hamming distance of the
code is d, then we say that the code C is of type [n, k, d]A. We denote this code
C = (g)n,θ.

If there exists an a ∈ A∗ such that g divides Xn−a on the right then the code
(g)n,θ is θ-constacyclic. We will denote it (g)an,θ. If a = 1, the code is θ-cyclic
and if a = −1, it is θ-negacyclic.

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 83–86, 2015.
DOI: 10.1007/978-3-319-18681-8_7

84 F. Ulmer

Note that a submodule A[X ; θ]g/A[X ; θ]f ⊂ A[X ; θ]/A[X ; θ]f where g is not
monic will in general not be a free A[X ; θ]-module.

For a principal module θ-constacyclic of length n over a ring A generated by
a right divisor (g)n,θa of Xn − a ∈ A[X ; θ] , we have

(c0, . . . , cn−1) ∈ (g)θ,an ⇒ (a · θ(cn−1), θ(c0), . . . , θ(cn−2)) ∈ (g)θ,an .

When θ is the identity and a = 1 we obtain the classical cyclic codes, showing
that principal module θ-cyclic codes are a natural generalization of cyclic codes.
However, if θ is not the identity or if A is not a domain, then the ring A[X ; θ] is
not a unique factorization domain, leading to many right divisors of Xn ± 1.

Example 1. The field A = F52 of order 25 has two automorphisms: the identity
and the frobenius automorphisms σ : y �→ y5. This leads to two skew polynomial
rings, the standard commutative polynomial ring F52 [X ; id] = F52 [X] and the
non commutative skew polynomial ring F52 [X ; θ].

Table 1. Number of factors of Xn + 1 ∈ F52 [X; θ] of degree n/2

n = 2 n = 4 n = 6 n = 8

θ = id 2 6 20 6

θ = σ 6 38 156 678

Example 2. The automorphism group of the ring A = F5[x]/(x
2) of order 25

is isomorphic to the cyclic group C4 of order 4 generated by γ. This leads to
4 skew polynomial rings, one of which is the standard commutative polynomial
ring corresponding to the identity.

Table 2. Number of factors of Xn + 1 ∈ F5[Y]/(Y 2)[X; θ] of degree n/2

n = 2 n = 4 n = 6 n = 8

θ = id 2 2 4 2

θ = γ2 10 2 500 2

θ = γ 2 50 4 2

θ = γ3 2 50 4 2

Definition 2. (cf. [5]) Let A be a commutative ring. The skew reciprocal
polynomial of h =

∑m
i=0 hi X

i ∈ A[X ; θ] of degree m is

h∗ =
m∑
i=0

Xm−i · hi =
m∑
i=0

θi(hm−i) X
i.

The left monic skew reciprocal polynomial of h is h� := (1/θm(h0)) · h∗.

Extended Abstract: Codes as Modules over Skew Polynomial Rings 85

When θ is the identity we obtain again the classical reciprocal polynomial. Since
θ is an automorphism, the map ∗:A[X ; θ] → A[X ; θ] given by h �→ h∗ is a
bijection. In particular for any g ∈ A[X ; θ] there exists a unique h ∈ A[X ; θ]
such that g = h∗ and, if g is monic, such that g = h�.

Corollary 1. (cf. [5]) Let A be a commutative ring. A module θ-code (g)θ2k with
g ∈ A[X ; θ] of degree k is self-dual if and only if there exists h ∈ A[X ; θ] such
that g = h� and h�h = X2k − ε with ε ∈ {−1, 1}.

Table 3. Number of generators of self dual codes g ∈ F52 [X; θ] of degree n
2

n = 2 n = 4 n = 6 n = 8

θ = id 2 4 8 4

θ = σ 2 8 12 28

Example 3. For F25 = F5(α) where α2 + 4α + 2 = 0 the polynomial X4 +
α9X3 + α2X2 + αX + α16 ∈ F25[X, θ] is a right factor of X8 + 1 ∈ F25[X, θ]
and generates a self-dual code C over F25. For the F5-basis (α

5, α7) of F52 , the
mapping Φ : (F25)

n → (F5)
2n given by

(a0α
5 + b0α

7, . . . , an−1α
5 + bn−1α

7) �→ (a0, b0, . . . , an−1, bn−1)

has the property that a self dual code over F25 is mapped to a self-dual over
F5 (cf. [7]). Under this map the code C is mapped to an optimal self-dual code
Φ(C) over F5 with minimal distance 7 and whose generating matrix is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 3 2 1 0 1 2 3 1 0 0 0 0 0 0 0
3 0 1 4 1 2 3 3 0 1 0 0 0 0 0 0
0 0 0 2 4 4 2 4 3 2 1 0 0 0 0 0
0 0 2 4 4 2 4 0 2 2 0 1 0 0 0 0
0 0 0 0 4 3 2 1 0 1 2 3 1 0 0 0
0 0 0 0 3 0 1 4 1 2 3 3 0 1 0 0
0 0 0 0 0 0 0 2 4 4 2 4 3 2 1 0
0 0 0 0 0 0 2 4 4 2 4 0 2 2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The best cyclic code (over the classical commutative polynomial ring) is of min-
imal distance 4

Example 4. The polynomial X2 +2xX +3 ∈ (F5[x]/(x
2))[X, γ] is a right factor

of X4+1 ∈ (F5[x]/(x
2))[X, γ] and generates a self-dual code C over F5[x]/(x

2).
For the F5-basis (x+2, 1) of F5[x]/(x

2), the mapping Φ : (F5[x]/(x
2))n → (F5)

2n

given by

(a0(x + 2) + b0, . . . , an−1(x+ 2) + bn−1) �→ (a0, b0, . . . , an−1, bn−1)

86 F. Ulmer

Table 4. Number of generators of self dual codes g ∈ F5[Y]/(Y 2)[X; θ] of degree n
2

n = 2 n = 4 n = 6 n = 8

θ = id 2 2 4 2

θ = γ2 2 2 20 2

θ = γ 2 6 4 2

θ = γ3 2 6 4 2

has the property that a self dual code over F25 is mapped to a self-dual over
F5 (cf. [7]). Under this map the code C is mapped to an optimal self-dual code
Φ(C) over F5 with minimal distance 4 and whose generating matrix is

⎛
⎜⎜⎝

3 0 4 2 1 0 0 0
0 3 2 1 0 1 0 0
0 0 3 0 3 4 1 0
0 0 0 3 4 2 0 1

⎞
⎟⎟⎠

The best cyclic code (over the classical commutative polynomial ring) is of min-
imal distance 2

Recently mapping of skew cyclic codes have received some attention [2, 1, 6, 8].

References

1. Abualrub, T., Aydin, N., Seneviratne, P.: On R-cyclic codes over F2 + vF2.
Australas. J. Combin. 54, 115–126 (2012)

2. Boucher, D., Solé, P., Ulmer, F.: Skew constacyclic codes over galois rings. Ad-
vances in Mathematics of Communications 2, 273–292 (2008)

3. Boucher, D., Ulmer, F.: Codes as modules over skew polynomial rings. In:
Parker, M.G. (ed.) Cryptography and Coding 2009. LNCS, vol. 5921, pp. 38–55.
Springer, Heidelberg (2009)

4. Boucher, D., Ulmer, F.: A note on the dual codes of module skew codes. In: Chen, L.
(ed.) IMACC 2011. LNCS, vol. 7089, pp. 230–243. Springer, Heidelberg (2011)

5. Boucher, D., Ulmer, F.: Self-dual skew codes and factorization of skew polynomials.
Journal of Symbolic Computation 60, 47–61 (2014)

6. Bhaintwal, M.: Skew quasi-cyclic codes over Galois rings, Des. Codes Cryptogr. 62,
85–101 (2012)

7. Szabo, S., Ulmer, F.: Dualilty Preserving Gray Maps (Pseudo) Self-dual Bases and
Symmetric Base (preprint) (2015)

8. Yildiz, B., Karadeniz, S.: Linear codes over F2 + uF2 + vF2 + uvF2. Des. Codes
Cryptogr. 54(1), 61–81 (2010)

Regular Papers

CUBE Cipher: A Family of Quasi-Involutive

Block Ciphers Easy to Mask

Thierry P. Berger1, Julien Francq2, and Marine Minier3(�)

1 XLIM (UMR CNRS 7252), Université de Limoges, 123 avenue A. Thomas,
87060 Limoges Cedex, France
thierry.berger@xlim.fr

2 Airbus Defence and Space - CyberSecurity, 1 Bd Jean Moulin, CS 40001,
MetaPole, 78996 Elancourt Cedex, France

julien.francq@cassidian.com
3 Université de Lyon, INRIA - INSA-Lyon, CITI, F-69621, Villeurbanne, France

marine.minier@insa-lyon.fr

Abstract. This paper proposes a new quasi-involutive lightweight de-
sign called CUBE cipher family. The design has been carefully chosen to
be easily masked. The basic building block is a cube of size n×n×n on
which are applied SPN transformations followed by a cube mapping.

We analyze the proposals from a security point of view and provide a
full hardware implementation analysis.

Keywords: Involutive lightweight block cipher · Boolean masking ·
Design

Introduction

During the last decade, a part of the symmetric cryptographic community has
focused its efforts on designing new lightweight primitives to fit with the hard-
ware requirements of RFID tags. Among those primitives, we could cite some
lightweight block ciphers: PRESENT [6], LED [15] or PRINCE [7] that are SPNs
and TWINE [23], LBlock [24], SIMON [1] or Piccolo [22] that are Feistel-based
constructions. More recently, some researchers try to add to these requirements
one more constraint leading to build lightweight block ciphers that are by design
easy to mask. In this last category, we could cite PICARO [20], Zorro [12] or
Fantomas and Robin [13].

The aim of this paper is to bring grist to the mill in this research direction.
Thus, we present a new family of lightweight block cipher called CUBE that is
easy to mask. Moreover, the proposed family is built on a cube representation
and is quasi-involutive to limit the hardware footprint required for encryption
and decryption processes. The family is an SPN based framework where each
component is involutive. Moreover, the presented family is generic in the sense
that several possible plaintext sizes are proposed and that two particular cube
mappings are investigated.

This work was partially supported by the French National Agency of Research: ANR-
11-INS-011.

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 89–105, 2015.
DOI: 10.1007/978-3-319-18681-8_8

90 T.P. Berger et al.

This paper is organized as follows: Sect. 1 describes the specifications of CUBE
cipher families. Sect. 2 explains our design choices for those ciphers. In Sect. 3,
we discuss their security while Sect. 4 deals with the hardware implementation
results. Sect. 5 concludes this paper.

1 Specifications

The CUBE block cipher family is mainly a 3D view of a bit string of length n3

dedicated to hardware applications. We will instantiate two different variants of
the CUBE cipher family (called CUBEAES and CUBE) for the different n value
n = 4, n = 5 and n = 6 focusing more particularly on the case n = 4 whereas
the other instantiations are given in App. A.

The plaintext is seen as a CUBE of size n×n×n as shown on Fig. 1. The CUBE
is fulfilled beginning with its least significant bit at position (0, 0, 0) according
the reference (X,Y, Z), then the bits are written plane by plane (the first one is
(0, Y, Z)) until the most significant bit fills the position (n− 1, n− 1, n− 1).

1 bit

Reference

• X

Y

Z

Fig. 1. Block representation

Then the CUBE block cipher family iterates the following round function on r
rounds (the r value of course depends on n). The i-th round function is composed
of the following quasi-involutive operations:

– KeyAdd: A subkey addition with the subkey Ki.
– SbLayer: A layer of involutive S-boxes that applies n× n a single involutive

S-box on input/output of size n bits in the direction indicated in the left
part of Fig. 2. We choose particular involutive S-boxes that are easy to mask
as explained in Section 2.

– MDSLayer: On each plane (0, Y, Z), (1, Y, Z), (2, Y, Z) and (3, Y, Z), apply
a quasi-involutive Feistel-MDS transformation on n words of size n bits as
shown on the right part of Fig. 2. A quasi-involutive Feistel-MDS transforma-
tion, as introduced in [21], is a linear transformation that after n iterations
gives an MDS code.

– Permutation: we define two different permutations to apply to the cube for
the two families of block ciphers.

CUBE Cipher: A Family of Quasi-Involutive Block Ciphers Easy to Mask 91

• For the CUBEAES family, PermAES rotates by 90◦ the reference (X,Y, Z)
as shown on Fig. 3.

• For the CUBE family, Perm rotates the axes (X,Y, Z) as (Z,X, Y) as
shown on Fig. 4.

A last KeyAdd operation with the subkey Kr is added at the end of the r rounds.

S-box MDS

Fig. 2. The SbLayer on the left and the MDSLayer on the right

X

Y

Z

X

Y

Z

PermAES⇒

Fig. 3. The PermAES transformation

X

Y

Z

Z

X

Y

Perm⇒

Fig. 4. The Perm transformation

1.1 Key Schedule

We define two possible key sizes for the master key K: n3 bits or 2× n3 bits.
For a key of length n3, the subkeys are computed as K0 = K and Ki+1 =

KiA ⊕ (i + 1) for i = 0, · · · , (r − 1) where A is an invertible matrix of linear

92 T.P. Berger et al.

diffusion using a Feistel structure that will be detailed latter. The counter (i+1)
is added to the least significant bits.

For a key of length 2 × n3, the subkeys are computed as K = K1||K0 and
K1 ← K1⊕1 where || denotes the concatenation andKi+2 ← Ki+1A⊕Ki⊕(i+2)
for i = 0, · · · , (r − 2) where A is always an invertible matrix of linear diffusion.
The counter (i + 2) is added to the least significant bits.

The size and the word size on which acts the matrix A depend on the value of
n. For n = 4, we choose a matrix of size 8× 8 that acts on bytes (see Subsection
1.2 for a complete instantiation of A). For n = 5, we choose a matrix of size
5 × 5 that acts on 25-bit words (see App. A for further details). For n = 6, we
choose a matrix of size 12× 12 that acts on 18-bit words (see App. A for further
details).

1.2 Instantiations

In this subsection, we completely instantiated our 2 lightweight block ciphers
CUBEAES and CUBE with the following parameters: n = 4, the cube is a 64-
bit block, the key length is equal to 2× n3 = 128 bits. So the details of the four
transformations composing a round are the following ones:

• KeyAdd: A subkey addition with the subkey Ki of length 64 bits.
• SbLayer: The chosen involutive S-box is the Noekeon one and acts at nibble

level in the X direction applying 16 times the S-box. The S-box is given in
Table 1.

Table 1. S-box in hexadecimal notation

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 7 A 2 C 4 8 F 0 5 9 1 E 3 D B 6

• MDSLayer: The quasi-involutive MDS matrix M of size 4 × 4 acts on the
Field F16 = F2[X]/(X4 +X +1) with a a root of X4 +X +1. M is obtained as
4 iterations of the so-called “Generalized Feistel” D matrix that acts on nibbles
(see Fig. 5). The circuit of D is also given in Fig. 5.

D =

⎛
⎜⎜⎝
0 a13 1 0
1 a 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ and M = D4

x0

x′
0

x1

x′
1

x2

x′
2

x3

x′
3

a13

a

⊕⊕⊕
⊕

⊕

Fig. 5. On the left, the D matrix. On the right, the scheme of the D matrix. x3, · · · , x0

and x′
3, · · · , x′

0 are nibbles.

CUBE Cipher: A Family of Quasi-Involutive Block Ciphers Easy to Mask 93

In this case, the multiplications by a and a13 are given by the following binary

matrices: Ma =

⎛
⎜⎜⎝
0 1 0 0
0 0 1 0
0 0 0 1
1 1 0 0

⎞
⎟⎟⎠ and Ma13 =

⎛
⎜⎜⎝
1 0 1 1
1 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠. If y = (y0, y1, y2, y3)

T and

x = (x0, x1, x2, x3)
T are the binary representations of two nibbles then the binary

matrix multiplications are y = Max and y = Ma13x.
• Permutation: CUBEAES uses the permutation PermAES. CUBE uses the

Perm permutation.
The number of rounds is equal for the two instances to 15. Those 15 rounds

are followed by a final key addition with the 64-bit subkey K15.
The key schedule algorithm derives 16 subkeys K0, · · · ,K15 of 64 bits from

the master key K of length 128 bits. The key schedule works as described in
Subsection 1.1 for a key of length 2 × n3 = 128 bits here. The 8 × 8 matrix A
acts at byte level and is built using the matrix B given with its scheme in Fig.
6 and using the relation A = B3.

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 0 0
0 0 0 0 0 I 0 0
0 0 � 1 0 0 0 I 0
0 0 0 0 0 0 0 I
I 0 0 0 0 0 0 ≫ 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x0

x′
0

x1

x′
1

x2

x′
2

x3

x′
3

x4

x′
4

x5

x′
5

x6

x′
6

x7

x′
7

≫5 ⊕
�1⊕

Fig. 6. On the left, the B matrix. On the right, the scheme of the B matrix. x7, · · · , x0

and x′
7, · · · , x′

0 are bytes.

The parameters for the other possible instantiations with n = 5 and n = 6
are given in App. A.

2 Design Rationale

Cube Structure. In the design of an SPN block cipher, non-linear and linear
layers are successively applied to the current state. In a lightweight block cipher,
the size of the state is generally 64 bits, while in a classical block cipher it is at
least 128 bits.

For efficiency reasons, it is not possible to apply a single non-linear trans-
formation simultaneously on the whole current state. So this state is usually
divided into subblocks, for example in bytes for the AES or in nibbles for many
lightweight block ciphers. So an S-box is applied to each byte or each nibble. The
linear layer must mix the subblocks together in order to diffuse the non-linearity
between the subblocks. One of the most efficient way to optimize the linear layer

94 T.P. Berger et al.

is to use an MDS matrix on subblocks. The MDS property ensures the optimal-
ity of linear and differential branch numbers, i.e. maximize the number of active
S-boxes per round.

However, even if it is easy to construct some MDS matrices with some given
parameters, its use is costly in terms of implementation. Indeed, it is linear on the
size of subblocks, but quadratic on the number of subblocks. A classical tradeoff
consists in choosing a number of subblocks equal to the size of subblocks or half
of this size.

In the context of lightweight block ciphers, this constraint becomes more ac-
curate if we use nibbles as inputs of S-boxes. In this case, the size of the MDS
matrix is limited to 8 subblocks, so the size of the whole state is limited to 16
nibbles, and due to the bound given in [16], it is not possible to find an MDS
code so long. Indeed, the MDS conjecture is the fact that, except for some triv-
ial cases, there is no MDS codes of length greater than q + 1 defined over an
alphabet of size q. In practice, this implies that there is no MDS diffusion matrix
defined over nibbles of size strictly greater than 8.

The idea to use CUBE structure is not new and has been used in KECCAK
[2] and also in the lightweight block cipher PRESENT [6]. Indeed, the structure
of PRESENT could be seen as a cube seen at bit level where the round function
is composed of a call to an S-box layer applied at nibble level and a rotation
of the axes. However, PRESENT has no its own diffusion layer, the diffusion
only comes from the rotation property. As shown in [8,9], this lake of diffusion
layer creates particular statistical properties and “linear hulls” coming from the
direct iterations of linear probabilities. However, this weakness is compensated
by numerous iterations of the round function (31).

So, we decide to keep the cube structure at bit level used in PRESENT because
if the size of the cube is n3, then, we apply S-boxes on n-bit words and we could
find MDS matrices of size n × n that work on n-bit words leading to apply
the classical elementary operations on smaller words and to improve the latency
of our proposals. The benefits of such an approach is preserved as long as the
rotation/permutation layer is sufficiently well chosen to mix together the n-bit
words coming from different planes and to break the internal n-bit word structure
using rotation/permutation at bit level. The idea for CUBEAES is to be able to
choose a rotation/permutation that will preserve the MDS property.

MDS Diffusion in Cube Structure. If the final rotation/permuta-tion is
carefully chosen, the MDS diffusion property between the n-bit words of a plane
becomes a diffusion from the n-bit words of a plane to the set of the planes of
the next round. Indeed, suppose there is one active n-bit word in a given plane,
the MDS property ensures the activation of n n-bit words in this plane. If the
rotation sends each n-bit word in a distinct plane, all the planes will be activated
after the application of the next S-box layer followed by the MDS diffusion.

This is the design choice we have made for the CUBEAES cipher. As it will be
explained in Section 3, the transformation PermAES allows to maximize the num-
ber of active S-boxes per round as done for the AES case, leading to maximize
the differential and the linear branch numbers.

CUBE Cipher: A Family of Quasi-Involutive Block Ciphers Easy to Mask 95

The other proposal CUBE keeps the original cube permutation used in
PRESENT. CUBE could be then seen as a proof of concept of a PRESENT like
cipher that does not have the “badPRESENTproperties” in terms of “linear hulls”
and “statistical saturations” due to the presence of a full diffusion layer induced by
the MDS multiplication.

Recursive and Quasi-Involutive MDS Linear Parts Using Feistel
Schemes. From an implementation point of view, there are two important lin-
ear operations: the MDS transformation applied just after the S-box layer, and
the matrix multiplication used in the key schedule to derive the round subkeys
from the master key.

We want to keep in mind when designing, two main requirements: a quasi-
involutive structure to minimize the cost of the deciphering process and the
use of elementary operations such as shifts, word rotations,... to minimize the
hardware footprint of the used operations.

As explained in [21,14], MDS diffusion could be performed using an iterative
approach and a kind of generalized Feistel scheme with elementary linear internal
functions. We decide to use this approach that guarantees, due to the recursive
implementation a minimal footprint and also the quasi-involutivity of our scheme
due to the use of Feistel networks that are quasi-involutive scheme, i.e. the only
part which is not involutive is the final permutation of subblocks of each round,
which has a negligible hardware cost when implementing the deciphering process.

The MDS diffusion used in the CUBE cipher family has the same recursive
structure that the one of PHOTON [14]. The only difference is that the D matrix
is not a companion matrix. In practice, this difference reduces by a little the
fan-in of our implementation. It is also up to our knowledge, the first example
of recursive implementation of an MDS matrix which is not derived from a
companion matrix.

Involutive S-box Suitable for Masking. We decide to use involutive S-boxes
to build a complete quasi-involutive cipher. Such a choice leads to make our
cipher quasi-involutive, i.e. the implementation cost for the deciphering process
is really low.

We use the Noekeon S-box for the case n = 4 because this S-box is involutive,
has optimal differential and linear probabilities (respectively equal to 2−2 and to
2−1), an algebraic degree equal to 3 and a simple implementation circuit. Indeed,
it is composed of 7 XORs, 2 ANDs and 2 NORs leading to a very compact
hardware implementation. Moreover, this S-box is easy to mask because the
masking cost mainly depends on the number of non-linear operations and we
have 4 non-linear operations. Indeed, a boolean masking is quadratic in the
number of shares for the 4 non linear operations and linear in the number of
shares for the 7 linear operations using the method described in [17].

Key Schedule. Contrary to numerous lightweight block ciphers, we want to
provide a key schedule which guarantees a good mixing between the key bits to
maximize the uncertainty coming from the key at low hardware implementation
cost. Our choice focuses on an algorithm which is, up to an XOR of a round

96 T.P. Berger et al.

counter that prevents slide attacks, linear and involutive. We also want to guar-
antee that each subkey contains the maximal possible master key entropy. In
order to ensure a good diffusion of the master key randomness in any round, we
require that this master key can be recovered from any non necessary consecu-
tive pair of round subkeys in the case of a key of length 2 × n3 and from each
round subkey in the case of a master key length equal to n3.

Thus the matrix A defined in Subsection 1.1 follows the previous rules and is
an invertible binary matrix. For efficiency reasons, A is calculated by applying
several iterations of a matrix B which has a Feistel structure. Moreover, in the
different choices of A, we try to privilege matrices that do not act on the same
word length than the round function to try to prevent attacks notably in the
related or in the chosen key settings that exploit this kind of properties.

3 Security Analysis

We focus our security analysis on the two instantiations given above with n = 4,
thus a block size of 64 bits and a key length equal to 128 bits.

Differential / Linear Cryptanalysis. Differential and linear cryptanalysis
(respectively described in [5] and in [19]) are the most famous attacks on block
ciphers. Since their discovery, many works have focused on the ways to pre-
vent them from happening for a given cipher [11]. Usually, designers count the
minimal number of active S-boxes crossed all along the ciphering process by dif-
ferential and linear characteristics denoted here respectively by ASD and ASL.
From those numbers, we could estimate the induced maximal differential/linear
probability depending on the maximal differential/linear probability of the S-box
denoted by DP/LP . Here we have DP = 2−2 and LP = 2−1 because our S-box
acts at nibble level.

Moreover, the best differential/linear attack against the cipher has a complex-
ity of aboutDPASD (respectively LPASL) operations. Thus, a cipher is supposed
to be secure against differential/linear cryptanalysis as soon as 1/(DPASD) (re-
spectively 1/(LPASL)) is greater than the codebook. In Table 2, we evaluate the
minimal number of active S-boxes up to 10 rounds for our schemes.

Table 2. Minimal number of active S-boxes for every round for CUBEAES and CUBE

Round 1 2 3 4 5 6 7 8 9 10

CUBEAES ASD 1 5 9 25 26 30 34 50 51 55

ASL 1 5 9 25 26 30 34 50 51 55

Round 1 2 3 4 5 6 7 8 9 10

CUBE ASD 1 5 9 13 20 21 25 29 33 40

ASL 1 5 9 12 19 20 24 28 31 38

As CUBEAES verifies the wide trail strategy conditions, the number of active
S-boxes for both linear and differential behaviors reaches the maximal possible
bounds (25 active S-boxes for 4 rounds). To estimate the number of active S-
boxes for CUBE, we compute the possible differential/linear trails using 240

CUBE Cipher: A Family of Quasi-Involutive Block Ciphers Easy to Mask 97

plaintexts and deduce the results for 5 rounds. Then, beyond, we estimate the
corresponding number of active S-boxes by iterating together the different results.
We also test using a branch and bound method that there is no elementary
differential/linear paths with a low weight. This particular property does not
occur for CUBE. We think that this fact comes from the MDS diffusion layer.

Thus, the best differential/linear cryptanalysis that could be mounted against
CUBEAES is on 6 rounds. Beyond this number, the required number of plain-
texts is greater than the entire codebook. For CUBE, the best differential/linear
cryptanalysis could be mounted on 8 rounds.

Impossible Differential Attack. The impossible differential attack is a struc-
tural attack introduced by E. Biham et al. in [4] in 1998. Impossible differen-
tial cryptanalysis, contrary to differential cryptanalysis, exploits differences with
probability 0 at some intermediate state of a cipher. The idea is to test from well
chosen plaintext/ciphertext pairs some keybits and to discard keybits that ver-
ify the impossible path. We found the following impossible differential attacks:
For CUBEAES, as expected and due to the wide trail strategy, we found that
the best impossible differential attack could be mounted on 7 rounds using a 4
rounds impossible differential surrounded by one round at the top and 2 rounds
at the end. For CUBE, the best impossible differential attack we found is on 8
rounds and uses a 5 rounds impossible differential.

Integral Attack. Integral cryptanalysis was first introduced against the Square
block cipher in [10]. In [18], L. Knudsen and D. Wagner analyze integral crypt-
analysis as a dual to differential attacks particularly applicable to block ciphers
with bijective components. A first order integral cryptanalysis considers a par-
ticular collection of m words in the plaintexts and ciphertexts that differ on a
particular word. The aim of this attack is thus to predict the values in the sums
(i.e. the integral) of the chosen words after a certain number of rounds. The
same authors generalize this approach to d-th order integrals: the original set to
consider becomes a set of md vectors which differ in d components and where
the sum of this set is predictable after a certain number of rounds.

For both ciphers CUBE and CUBEAES, we are able to mount a first order
integral property on 3 rounds saturating one nibble and to mount 4th order
integral property on 4 rounds saturating a plane (i.e. 4 nibbles). We think that
for CUBEAES this 4th order integral property could not be extended at the
beginning due to the MDS property whereas we conjecture that this 4th order
integral could be extended by one round at the beginning in the case of CUBE,
but we could not test it due to the huge induced complexity.

Against CUBEAES, the 4 rounds property could be extended by 2 rounds
at the end guessing 80 subkey bits leading to attack 6 rounds with an overall
complexity of about 275 encryptions. For CUBE, the 5 rounds property could be
extended by the same number of rounds with about the same complexity leading
to an attack on 7 rounds.

Related Key and Chosen Key Attacks. The related key attacks introduced
by E. Biham in [3] in 1993 allow an attacker to know some relations between

98 T.P. Berger et al.

different keys without knowing the keys themselves and to cipher under those
keys some plaintexts. From those pairs of plaintext/ciphertext, the aim of the
attacker is to recover the key. In the related key settings, we first evaluate the
related key pairs that activate the lowest number of S-boxes in the key schedule.

In the case of the CUBE and the CUBEAES cipher families, the best related
key attack allows to gain 2 rounds at the beginning of a classical differential
attack considering a master key pair with a single bit difference placed somewhere
on K0. Under those conditions, the difference coming from the subkey addition
with K0 could be canceled using well chosen plaintext pairs, then the subkey
addition with K1 is for free and K2 adds only one bit difference to state pairs
without difference. Thus, a classical differential attack could be extended by
three rounds at the beginning using a related key attack.

However, to try to improve the number of rounds gained using a related or
a chosen key attack, we have implemented a branch and bound algorithm that
tries to cancel the differences coming from the subkeys using differences coming
from the internal state. We do not find a simple way to cancel these differences.
This is mainly due to the fact that the ciphering process and the key schedule
does not act at the same word size.

Resistance to Side Channel Analysis. As said before, the S-box has been
chosen to offer resistance to side channel analysis at a reasonable cost. Indeed
and using the algorithm proposed in [17], as the cost for boolean masking is
quadratic when considering non linear operations and is linear for the XOR
operation, we have chosen an S-box that is easy to mask when considering 3
shares in the algorithm proposed in [17]. Thus, our block ciphers are resistant
to side channel analysis at low cost.

In summary, we conjecture that there is no attack against 8 rounds of CUBEAES
and against 9 rounds of CUBE in the single key settings more efficient than the
exhaustive key search leaving respectively 7 and 6 rounds of security margin.
We also conjecture that there is no attack against 11 rounds of CUBEAES and
against 12 rounds of CUBE in the related, known and chosen key settings more
efficient than the exhaustive key search leaving respectively 4 and 3 rounds of
security margin.

4 Implementation Aspects

In this Section, we sum up our implementation results concerning CUBE ci-
pher with n = 4 and we compare these results with the implementation of
other lightweight block ciphers using three criteria: area, power consumption
and throughput (or latency). Note that we have only implemented CUBE cipher
because the cost for implementing CUBEAES is about the same (the two ciphers
only differ in the Permutation layer which consists in exchanging bit positions).

The majority of lightweight ciphers has been optimized in priority with chip
area minimization in mind. This metric can be expressed in µm2 but this value
is dependent of the used technology and standard cells technology. To ease com-
parisons between implementations, the circuit area is measured in Gate Equiv-

CUBE Cipher: A Family of Quasi-Involutive Block Ciphers Easy to Mask 99

alences (GEs). A GE is the area of a 2-input NAND gate in the used standard
cell technology. So the area of the circuit expressed in GEs is the surface of the
circuit in µm2 divided by the surface of a NAND gate.

Compared to other SPN ciphers like PRESENT, the quasi-involutive structure
of CUBE cipher helps to implement both encryption and decryption modes1 with
a reasonable overhead. For example, we can save the implementation of Inverse
S-boxes which can represent hundreds of GEs.

4.1 Theoretical Implementation Results

Basic Components of CUBE Cipher. To implement the confusion effect,
CUBE cipher uses a 4×4 bit S-box which is by far smaller than 8×8 S-boxes
and 6×4 ones. We have chosen the S-box of NOEKEON because it is compact
(around 20 GEs) and it has been shown that it is relatively easy to mask with
three shares at a reasonable cost.

The diffusion effect is made of a bit permutation (which costs no GE) and the
MDSlayer which is area optimized: it only costs 16 2-input XORs per layer, so
16× 4 = 64 XORs = 144 GEs.

The memory elements (flipflops) used to store the round keys and the cipher
state are the most costly hardware elements to implement, and are those which
consumes the most energy. We need 64× 5.75 = 368 to store the 64-bit cipher.
For storing the 128-bit key state, we have decided to implement one additional
64 bits register to have an involutive structure, i.e. (128+64)×5.75 = 1104 GEs.
It requires also 64 2-input XORs to compute round key Ki+2 from Ki+1 and Ki,
so 64× 2.25 = 144 GEs.

For the Key Schedule, we have chosen to make it simple, but not as simple as
KTANTAN or PRINTcipher to protect it against related key and slide attacks.
To implement such kind of secure Key Schedule, we chose a simple Feistel struc-
ture iterated 3 times per round key that computes only rotations, shifts and 16
2-input XORs per round, i.e. 16× 3 = 48 XORs = 48× 2.25 = 108 GEs.

Theoretical Implementation Results.We give hereafter the implementation
results of a round-wise implementation of CUBE cipher. It processes 64 bits of
plaintext with a 128-bit key in 25 clock cycles. Round keys are computed on-the-
fly, in parallel of the cipher state processing. There is no resource sharing between
the cipher state and the Key Schedule processes. The S-box is implemented in a
Look-Up-Table way, so we let the compiler do its own optimizations. Only the
encryption process is implemented.

Theoretically, our CUBE cipher implementation needs 1104+368 = 1472 GEs
to store both the round keys and the cipher state, 16 × 20 = 320 GEs for the S-
box, (64+64)×2.25 = 288 GEs for all the XORs, 144 GEs for the MDS, 48 GEs
for the XORs in the Feistel of the Key Schedule, 192 2-to-1 multiplexors 192×2 =
384 GEs, which selects between the encryption key (resp. the plaintext) or the

1 Implementing both encryption and decryption modes is mandatory where 3-pass mu-
tual authentication is required. ISO 9798-2 (“Entity Authentication − Mechanisms
using Symmetric Encipherment Algorithms”) specifies such protocols.

100 T.P. Berger et al.

round key (the cipher state)). So, we can estimate (neglecting the implementation
cost of the finite state machine) that our round-wise implementation of CUBE
cipher needs at least 1472 + 320 + 288 + 144 + 48 + 384 = 2656 GEs in total.

4.2 Implementation Results and Comparisons

We implemented CUBE cipher in VHDL and synthesized it using a Low-Power
(LP) High Vt 65 nm standard-cell library. We used Synopsis Design Vision D-
2010.03-SP5-2 for synthesis and power simulation. The foundry typical values
(of 1.2 V for the core voltage and 25◦ for the temperature) were used. Non-scan
Flip-Flops are used. We applied priority optimizations on area. Our round-wise
low-power CUBE cipher occupies 2536 GEs and has a simulated power of 0.663
µW. A comparison with other ciphers follows in Table 3. We have only listed in
this table block ciphers with 64-bit state and 128-bit key. When possible, we give
results for circuits which makes both encryption and decryption (e.g., TWINE).
The throughputs are given with a clock frequency equal to 100kHz.

Table 3. Comparison with other Lightweight Block Ciphers

Key Block Lat. Area Logic
Size Size (cycles) (GEs) Process

mCrypton 128 64 13 4108 0.13µm (theo.)

HIGHT 128 64 34 3048 0.25µm

TWINE-128 128 64 36 2285 90nm

Piccolo-128 128 64 27 1938 0.13µm (theo.)

PRESENT-128 128 64 32 1886 0.18µm (only enc.)

CUBE Cipher 128 64 25 2536 65 nm LP

Comparisons are usually difficult to make between implementations made on
different technologies and with different experimental conditions, but we will
however give hereafter some discussion elements.

Number of Rounds. First, if we look at the number of rounds needed to
process one 64-bit block, CUBE cipher is faster than almost all its competitors
(only mCrypton is faster, but is bigger). It means that implementing CUBE
cipher is advantageous in terms of latency and energy.

Power Comparison. mCrypton, HIGHT, TWINE, and Piccolo did not give
any result concerning average power consumption of their designs. The only
authors which give such kind of results are the inventors of PRESENT (3.3 µW).
CUBE cipher has a simulated power of 0.663 µW, so the gap between both
propositions is important but it can be explained by the use of a low-power logic
process.

Area Comparison. Compared to HIGHT, CUBE cipher is smaller and faster.
Moreover, HIGHT is susceptible to Meet-in-the-Middle Attacks.

Compared to TWINE, the authors used Scan Flip-flops which allows us to save
1 GE per 1-bit storage. In our ASIC library, a Flip-Flop and 2-to-1 multiplexor

CUBE Cipher: A Family of Quasi-Involutive Block Ciphers Easy to Mask 101

cost 5.75 GEs and 2 GEs, and a Scan FF costs 6 GEs: hence the use of Scan flip-
flops saves 1.75 GEs per 1-bit storage. So, if we have used scan flip-flops in our
CUBE cipher implementation, we would hope save in total: (128+ 64)× 1.75 =
336 GEs. So, the area of CUBE cipher will become: 2536 − 336 = 2200 GEs.
Thus, CUBE cipher will be smaller (85 GEs).

CUBE cipher does not compete on equal terms with Piccolo-128 mainly due
to the very light nature of its lightweight Key Schedule (it needs only 32-bit wide
3-to-1 multiplexor to select the appropriate round key). We wanted for CUBE
cipher a stronger Key Schedule to be more secure against e.g.Meet-in-the-Middle
attacks. Moreover, the authors use scan flip-flops, so CUBE cipher will be a little
bit bigger in that case (2200 GEs vs. 1938). The authors of Piccolo also infer
AND-NOR gates to optimize XOR/XNOR gate count. They estimate that it
allows us to save 0.25 GE per XOR gate. In CUBE cipher, in Key Schedule
process, we have 48 XOR gates inferred in the Feistels and 64 for computing
Ki+2 from Ki+1 and Ki. Moreover, in the round execution, we must implement
64 XORs for the AddRoundKey operation and 64 others for the MDS layer
computation. So, there are: 48+64+64+64 = 240 XORs in the circuit. So using
the same optimization than the authors of Piccolo, we can save: 240× 0.25 = 60
GEs. So, the area of CUBE cipher will become: 2200− 60 = 2140 GEs. So, the
gap in terms of GEs between the two block ciphers should be reduced to around
200 GEs, while CUBE cipher is faster and has a more secure Key Schedule.

Compared to PRESENT-128, we have an unfavorable gap of 650 GEs. But,
the results we have only concerns encryption. If we consider an implementation
with both encryption/decryption purposes, it would be needed to implement in
PRESENT both true and inverse S-boxes (the overhead is then equal to 16 ×
28 = 448 GEs if we consider that the gate count of the S-box is the same than
its inverse) and select their output by a multiplexer (64 × 2 = 128 GEs). So, a
PRESENT-128 with encryption/decryption modes would cost: 1886+448+128 =
2462 GEs, so the gap between the two proposals is only 74 GEs.

In summary, CUBE cipher compares reasonably well to other lightweight ci-
phers when both encryption and decryption must be implemented. The price to
pay to have a secure Key Schedule and avoid undesirable properties of PRESENT
appears to be limited.

5 Conclusion

In this paper, we have presented two involutive families of block ciphers that
are easy to mask and have reasonable hardware cost for the instantiations with
n = 4. One of the main advantages of CUBEAES compared to the AES and of
CUBE compared to PRESENT, is their involutive nature that allows a really
for near-free implementation of the decryption process. Concerning CUBE, the
addition of an MDS layer prevents the bad behaviors of the PRESENT block
cipher concerning “linear hulls” and statistical saturations from happening.

In a future work, we plane to derive for those families of ciphers tweakable
versions that lead to authentication-encryption schemes.

102 T.P. Berger et al.

A Instantiations with n = 5 and n = 6

As the Permutation layer will be the same whatever the value of n, we only give
here the S-box called in the SbLayer, the matrices M and D of the MDSLayer

and the matrices A and B used in the key schedule.

A.1 Instantiation for n = 5

The number of rounds r for n = 5 is equal to 17. The 5-bit to 5-bit involutive
S-box is given in Table 4. For this S-box, we have DP = 2−2.41, LP = 2−2, an
algebraic degree of 4, a non linearity equal to 3.

Table 4. S-box in hexadecimal notation

x 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

S(x) 1F 1D 1A 1B 12 1E 13 E F 18 16 C B 10 7 8 D 19 4 6 15 14 A 1C 9 11 2 3 17 1 5 0

The matrices A and D of the MDSLayer works on the finite field F32 =

F2[X]/(X5 +X2 + 1) with a root of X5 +X2 + 1. D =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 a30 a a a30

⎞
⎟⎟⎟⎟⎠ with

M = D5. Ma =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 1 0 0

⎞
⎟⎟⎟⎟⎠ and Ma30 =

⎛
⎜⎜⎜⎜⎝

0 1 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

⎞
⎟⎟⎟⎟⎠ in binary representation.

The matrices A and B used in the key schedule acts on 5 blocks of 25 bits:

B =

⎛
⎜⎜⎜⎜⎝

0 I 0 0 0
0 ≪ 9 I 0 0
0 0 0 I 0

� 1 0 0 0 I
I 0 0 0 0

⎞
⎟⎟⎟⎟⎠ and A = B5.

A.2 Instantiation for n = 6

The number of rounds r for n = 6 is equal to 19. The 6-bit to 6-bit involutive
S-box is given in Table 5. For this S-box, we have DP = 2−3.41, LP = 2−2.41,
an algebraic degree of 5, a non linearity equal to 5.

The matrices M and D of the MDSLayer works on the finite field F64 =
F2[X]/(X6 + X4 + X3 + X + 1) with a root of X6 + X4 + X3 + X + 1.

CUBE Cipher: A Family of Quasi-Involutive Block Ciphers Easy to Mask 103

Table 5. S-box in hexadecimal notation

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S(x) 17 13 35 A C 26 B 23 1C 31 3 6 4 3D 3E 20

x 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

S(x) 16 18 14 1 12 29 10 0 11 2F 25 39 8 33 36 2E

x 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F

S(x) F 3A 37 7 2B 1A 5 38 3B 15 2C 24 2A 3C 1F 19

x 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E 3F

S(x) 32 9 30 1D 3F 2 1E 22 27 1B 21 28 2D D E 34

D=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 a61 a49 a a49

⎞
⎟⎟⎟⎟⎟⎠

with M=D6, Ma=

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 1 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎠

Ma61=

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 1 1 1
1 0 1 1 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞
⎟⎟⎟⎟⎟⎠

and Ma49=

⎛
⎜⎜⎜⎜⎜⎝

1 0 1 0 0 0
0 1 0 1 0 0
0 0 1 0 1 0
0 0 0 1 0 1
1 1 0 1 0 0
0 1 1 0 1 0

⎞
⎟⎟⎟⎟⎟⎠

in binary representation.

The matrices A and B used in the key schedule acts on 12 blocks of 18 bits:

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 I 0 0 0 0 0 0 0 ≪ 2 0 0
0 0 I 0 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0 0
0 0 0 0 0 0 I 0 0 � 13 0 0

≫ 8 0 0 0 0 0 � 2 I 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 � 17 0 0 I 0 0
0 0 0 0 0 0 0 0 0 0 I 0
0 0 0 0 0 0 0 0 0 0 0 I
I 0 0 0 0 0 0 � 8 0 0 � 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and A = B9.

B Test Vectors

B.1 Test Vectors for CUBEAES and CUBE with n = 4

We provide the following test vectors given in little endian and in hexadeximal
for CUBEAES and CUBE:

CUBEAES:

input_message = 0x6666666666666666

KEY = 0x0102030405060708090a0b0c0d0e0f

ciphertext = 0xee0cb8c023716ec7

CUBE:

input_message = 0x6666666666666666

KEY = 0x0102030405060708090a0b0c0d0e0f

ciphertext = 0x710ec4a98692ac3f

104 T.P. Berger et al.

References

1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The
simon and speck families of lightweight block ciphers. Cryptology ePrint Archive,
Report 2013/404 (2013), http://eprint.iacr.org/

2. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The keccak sha-3 submission.
Submission to NIST (Round 3) (2011)

3. Biham, E.: New types of cryptoanalytic attacks using related keys (extended ab-
stract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 398–409.
Springer, Heidelberg (1994)

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

5. Biham, E., Shamir, A.: Differential cryptanalysis of des-like cryptosystems. In:
Menezes, A., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

6. Bogdanov, A.A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A.,
Robshaw, M., Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block
cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp.
450–466. Springer, Heidelberg (2007)

7. Borghoff, J., Canteaut, A., Güneysu, T., Kavun, E.B., Knezevic, M., Knudsen,
L.R., Leander, G., Nikov, V., Paar, C., Rechberger, C., Rombouts, P., Thomsen,
S.S., Yalçın, T.: PRINCE – A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012.
LNCS, vol. 7658, pp. 208–225. Springer, Heidelberg (2012)

8. Collard, B., Standaert, F.-X.: A Statistical Saturation Attack against the Block
Cipher PRESENT. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473,
pp. 195–210. Springer, Heidelberg (2009)

9. Collard, B., Standaert, F.-X.: Multi-trail statistical saturation attacks. In: Zhou, J.,
Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 123–138. Springer, Heidelberg
(2010)

10. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

11. FIPS 197. Advanced Encryption Standard. Federal Information Processing Stan-
dards Publication 197, U.S. Department of Commerce/N.I.S.T. (2001)

12. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: How far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

13. Grosso, V., Leurent, G., Standaert, F.-X., Varici, K.: LS-designs: Bitslice encryp-
tion for efficient masked software implementations. In: Cid, C., Rechberger, C.
(eds.) FSE 2014. LNCS, vol. 8540, pp. 18–37. Springer, Heidelberg (2015)

14. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON Family of Lightweight Hash
Functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

15. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.J.B.: The LED Block Cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

16. Hirschfeld, J.W.P.: The main conjecture for mds codes. In: Boyd, C. (ed.) Cryptog-
raphy and Coding 1995. LNCS, vol. 1025, pp. 44–52. Springer, Heidelberg (1995)

http://eprint.iacr.org/

CUBE Cipher: A Family of Quasi-Involutive Block Ciphers Easy to Mask 105

17. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: Securing hardware against prob-
ing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481.
Springer, Heidelberg (2003)

18. Knudsen, L.R., Wagner, D.: Integral cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

19. Matsui, M.: Linear cryptoanalysis method for des cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

20. Piret, G., Roche, T., Carlet, C.: PICARO – A block cipher allowing efficient higher-
order side-channel resistance. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012.
LNCS, vol. 7341, pp. 311–328. Springer, Heidelberg (2012)

21. Sajadieh, M., Dakhilalian, M., Mala, H., Sepehrdad, P.: Recursive diffusion layers
for block ciphers and hash functions. In: Canteaut, A. (ed.) FSE 2012. LNCS,
vol. 7549, pp. 385–401. Springer, Heidelberg (2012)

22. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo:
An ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011.
LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011)

23. Suzaki, T., Minematsu, K., Morioka, S., Kobayashi, E.: TWINE: A Lightweight
Block Cipher for Multiple Platforms. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012.
LNCS, vol. 7707, pp. 339–354. Springer, Heidelberg (2013)

24. Wu, W., Zhang, L.: Lblock: A lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

A Dynamic Attribute-Based Authentication

Scheme

Huihui Yang(�)and Vladimir A. Oleshchuk

Department of Information and Communication Technology,
University of Agder, Gimlemoen 25, 4630 Kristiansand S, Norway

{huihui.yang,vladimir.oleshchuk}@uia.no

Abstract. Attribute-based authentication (ABA) is an approach to au-
thenticate users by their attributes, so that users can get authenticated
anonymously and their privacy can be protected. In ABA schemes, re-
quired attributes are represented by attribute trees, which can be com-
bined with signature schemes to construct ABA schemes. Most attribute
trees are built from top to down and can not change with attribute re-
quirement changes. In this paper, we propose an ABA scheme based
on down-to-top built attribute trees or dynamic attribute trees, which
can change when attribute requirements change. Therefore, the proposed
dynamic ABA scheme is more efficient in a dynamic environment by
avoiding regenerating the whole attribute tree each time attribute re-
quirements change.

Keywords: Authentication · Attribute-based authentication · Attribute
tree · Privacy

1 Introduction

Compared with traditional identity based authentication (IBA) [1], users in
ABA schemes are authenticated by their attributes instead of identities. Since
users can be authenticated anonymously in ABA schemes, it is more privacy-
preserving and can be used widely in many applications, for example, e-commerce
[2], eHealth [3], mobile applications [4], cloud services [5–7] and so on. To get
served, users first send a request for service. After receiving the service request,
service providers send the request to an entity that controls service policies,
which is usually policy decision point (PDP). The PDP retrieves related policies
and attribute requirements and sends them back to the user. The user checks
whether it owns the required attributes. If so, it generates a signature and sends
it back to the PDP. PDP communicates with attribute authorities, verifies the
signature and sends the verification result to the service provider. If the sig-
nature is valid, the service provider grants the service request from the user,
otherwise the request is rejected. In a more general case, the service provider
and PDP here can be considered as a verifier and policy controller. Since only
(non-identity) attributes are used in the authentication described above, ABA
schemes can achieve anonymity. However, in a traceable ABA scheme [8], users’

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 106–118, 2015.
DOI: 10.1007/978-3-319-18681-8_9

A Dynamic Attribute-Based Authentication Scheme 107

identities can be tracked by a tracking authority, but the verifier itself can not
open the signature.

In the authentication, two parts need to be authenticated. First of all, the
user has to prove that it owns all the required attributes so that the signature
is not generated by co-operation among different users. Secondly, a signature
generated by all required attributes also needs to be verified, providing other
security requirements of the ABA scheme, for example, traceability. There has
already been some work on ABA scheme constructions. As far as we know, [8]
is the most systematic work about ABA schemes, where a general framework
is built so that a fully anonymous and traceable static ABA scheme can be
obtained with the input of a fully anonymous and traceable group signature
scheme, but it does not provide a general framework to generate dynamic ABA
schemes. One thing to notice is that the “static” and “dynamic” mentioned here
is different from what we mean in the title of this paper. In the title, “dynamic”
is to describe the attribute tree construction, while here it means a user is in-
volved in a “join in” protocol [8] to co-generate its secret keys. For some work
such as attribute-based access control (ABAC) [9], attribute-based signatures
(ABS) [10] and attribute-based encryption(ABE) [11], the ways how to build
their cryptographic construction share a lot in common with ABA schemes. Al-
though the way how to generate signature schemes are different, the way how
to build attribute trees are almost the same. Attribute trees originate from ac-
cess trees [12] in access control, where they are used to represent logical access
control requirements and usually built from top to down. The main drawback
of this approach is that it is impossible to achieve a new attribute tree from an
existing one even though their related logical requirements are quite similar. As
a result, the system has to build a new attribute tree each time the attribute re-
quirements change. To our best knowledge, there is only one paper [13] in which
the attribute tree is built from down to top and it allows dynamic attribute tree
construction. In [13], the authors propose an attribute-based group signature
based on this down-to-top built attribute trees. In this approach, a central at-
tribute tree is built first and then different attribute trees can be obtained by
simplifying the central attribute tree.

In this paper, we propose an ABA scheme based on down-to-top built attribute
trees as described in [13]. We modify the group signature protocol proposed in
[14] in the way that it can be combined with the down-to-top attribute trees
to construct an attribute based authentication scheme. Therefore, our proposed
scheme supports dynamic attribute tree generation, so that both computation
and communication resources can be saved by avoiding re-generating attribute
related parameters.

This paper is organized as follows. We first introduce the general structure and
security requirements of the proposed ABA scheme in Section 2. Next we describe
how to construct the proposed scheme in details in Section 3, including the down-
to-top built attribute trees, signature generation, verification and opening. Then
followed in Section 4, we carry out correct, security and efficiency analysis on the
proposed scheme. The last part is a general conclusion of the work in this paper.

108 H. Yang and V.A. Oleshchuk

2 ABA Scheme Introduction

In Section 1, we briefly discussed how a user was authenticated in an ABA
scheme. In this section, we give more details about ABA scheme structure, work-
flow and their security requirements in subsections 2.1 and 2.2 respectively.

2.1 Scheme Structure and Workflow

The structure of the proposed ABA scheme and its workflow can be illustrated
in Fig. 1. There are usually three types of entities in ABA schemes, i.e., author-
ities, users and verifiers, where authorities can be divided into central authority,
attribute authority, revocation authority and opener. The way how they interact
with each other and how the authentication is carried out can be described as
follows.

1) The first stage is system set up.

a) The central authority generates system public and private parameters.
b) Users obtain their secret keys from the central authority.
c) The attribute authority retrieves these system parameters and generates

private and public attribute key pairs.
d) The opener communicates with the central authority and gains the track-

ing keys.
e) Users communicate with the attribute authority for their private attribute

keys.
f) Revocation authority communicates with both the central authority and

the attribute authority to establish a data of revocation information.

2) The second stage is signature generation, verification and possibly opening.

a) After receiving a challenge or attribute requirements form the verifier, the
signer (or the user) sends its signature to the verifier, where the signature
is generated by signing a message with the signer’s attribute keys.

b) The verifier retrieves revocation information from the revocation author-
ity. If the signer and related attribute keys are not revoked, the verifier
checks the validity of the signature and sends a response to the signer.

c) If the identity of the signer needs to be revealed, the verifier delivers the
signature to the opener. The opener uses its tracking keys to open the
signature and reveal the signer’s identity.

2.2 Security Requirements

In this subsection, we generally introduce five security requirements about ABA
schemes. Later in subsection 4.2, we will formally define them based on the
proposed ABA scheme and prove them.

Anonymity. To achieve basic anonymity, identities of signers should be pro-
tected. Furthermore, even signers’ attributes should be protected, and they only

A Dynamic Attribute-Based Authentication Scheme 109

Fig. 1. Structure of the Proposed ABA Scheme

have to prove that they own the required attributes. This property is the main
security requirement of an ABA scheme and is mandatory.

Unforgeability. The signer’s signature should not be able to be forged by an
outsider that does not belong to the system. In a system, the signature is even
required unforgeable for authorities in the system. However, in a system where
authorities generate all keys and secrets, the authorities obviously can forge
all signatures. Therefore, “unforgeable” is defined differently in different ABA
schemes. However, any system should provide at least the basic level of “un-
forgeability”, i.e, for the outsiders.

Unlinkability. Given two signatures, if it should be impossible to decide whether
they are generated by the same signer, the ABA scheme is unlinkable. If a sys-
tem does not satisfy it, given enough signatures, there is a possibility to reveal the
signer’s identity.

Coalition Resistance. The signer can only generate the signature if he or she
has all the required attributes. It should be impossible for different users to
collude and generate a valid signature together if they as a whole have all the
required attributes. If a system satisfies this requirement, it is coalition resistant.

Traceability. Given a valid signature, if the opener can successfully track the
signer’s identity, the system is traceable. It is a useful security requirement for
some applications, such as obtaining evidence for legitimate issues and so on.

3 Construction of the Dynamic ABA Scheme

In this section, we present how to construct the proposed dynamic ABA scheme.
We modify the group signature proposed in [14] and combine it with the down-
to-top attribute tree, so that the scheme can provide attribute tree changes.

110 H. Yang and V.A. Oleshchuk

3.1 Down-to-Top Attribute Tree Construction

An attribute tree [12, 13] is a tree structure where leaves are attributes and
interior nodes are threshold gates and they are used to express logical relations
between attributes. For an interior node x, let lx and kx be the numbers of
children and the threshold respectively. It represents logical “AND” and “OR”
respectively when kx is equal to and less than lx. We build a down-to-top at-
tribute tree in two steps: build a central attribute tree and simplify the central
attribute tree to get the required attribute tree. We denote these two steps by
algorithms Create CTree and Simplify CTree respectively.

Suppose the system attribute set is Ψ , and Ψi is a subset attribute set. The
attribute tree built based on Ψ and Ψi are Γ and Γi, and their roots are root and
rooti respectively. For each interior node x, if kx < lx, add lx−kx dummy nodes
as x’s children, so that x can be considered as “AND”. Denote the dummy
leaf node set as LDum, attribute leaf node set as LAtt and whole leaf set as
L = LDum ∪ LAtt. For attribute subset Ψi, the node sets are LDumi , LAtti and
Li accordingly. Each node x is indexed with a random number ind(x), and each
interior node x is binded to a polynomial qi(x) (i = ind(x)) (Refer to [8, 13]
for more details.). The degree of qi(x) is lx − 1. Polynomials are constructed by
algorithm Create CTree as follows.

1) Assign a secret tj (1 ≤ i ≤ |LAtt|, |LAtt| = |Ψ |) to each attribute leaf node.

2) Let the related polynomial qi(x) be the one passing through these points
with the coordinates (j, tj) (y ∈ ChildAtt(x), j = ind(y)), where ChildAtt(x)
is the set of child leaf nodes belonging to Ψ , so qi(x) can be computed by
Lagrange’s theorem [15]. Assign qi(0) to node x.

3) For x’s dummy leaf child y ∈ ChildDum(x), compute dj by dj = qi(j) (j =
ind(y)) and assign dj to each dummy leaf node.

4) Repeat Steps 2) and 3) until all polynomials related to interior nodes are
constructed. Then the root node is assigned with value r = qroot(0).

After the central attribute tree Γ is built, we can simplify it to get at-
tribute tree Γi based on attribute subset Ψi ⊂ Ψ . The simplification algorithm
Simplify CTree is as follows.

1) Delete all leaf nodes that does not belong to Ψi.

2) Delete an interior node together with its descendants if the number of its chil-
dren is less than the threshold. The remaining part is the required attribute
tree Γi.

For a leaf node x, let Insib(x) be the index set of all x’s siblings including

x. We define Lx =
∏

l∈Insib(x),l �=ind(x)
−l

ind(x)−l , Pathx = {x, x1, · · · , xn} and

�x =
∏

z∈{Pathx−root} Lz, where x1 = parent(x), xi+1 = parent(xi) (1 ≤ i ≤
n− 1) and xn = root. Then for Γi, equation

∑
j∈LAtti �jtj+

∑
j∈LDumi �djdj =

qrooti(0) holds.

A Dynamic Attribute-Based Authentication Scheme 111

3.2 Construction Algorithms

Before introducing the scheme construction, we first briefly explain bilinear
groups and q-SDH problem, on which the proposed scheme is built.

Definition 1. ([8, 13]) (Bilinear Groups) Let G1, G2 and G3 be cyclic group
of prime order p, with g1 ∈ G1 and g2 ∈ G2 as the generators. e is an efficient
bilinear map if

1) Bi-linearity: e(ga1 , g
b
2) = e(g1, g2)

ab holds for any a, b ∈ Z
∗
p.

2) Non-degenerate: e(g1, g2) �= 1G3, where 1G3 is the unit of G3.

Let ψ : G1 → G2 be an isomorphism with ψ(g2) = g1. If there is an efficient
algorithm to compute it, we way ψ is computable.

Definition 2. ([8, 16]) (q-Strong Diffie-Hellman Problem (q-SDH) in
G1 and G2) Let G1 and G2 be cyclic groups of prime order p, with g1 ∈ G1

and g2 ∈ G2 as the generators. Given a q+2 tuple input (g1, g2, g
γ
2 , g

γ2

2 , · · · , gγ
q

2)

(γ ∈ Z
∗
p), an SDH output is a pair (g

1/γ+x
1 , x) (x ∈ Z

∗
p).

The cryptographic algorithms of the dynamic ABA scheme proposed in this
paper can be constructed as follows.

• System Setup. Assume k is the security parameter. G1, G2 and G3

are three multiplicative groups of prime order and e : G1 × G2 → G3 is
a bilinear map. ψ is a computable isomorphism between G1 and G2. H :
{0, 1}∗ → Z

∗
q is a hash function. Randomly select a generator g2 ∈ G2

and γ, ξ1, ξ2,∈ Z
∗
q . Then the system private parameter is Spri =< γ, tk >,

where tk =< ξ1, ξ2 > is the tracking key. The public parameter is Spub =<
G1, G2, G3, e,H, g1, g2, h, u, v, w >, where g1 = ψ(g2), u = hξ1 , v = hξ2 and
w = gγ2 .
• User Key Generation. Take γ as input and generate a private key base

bsk[i] =< Ai, xi > for each user Ui, where xi ∈ Z
∗
q and Ai = g

1/(γ+xi)
1 is

the output of a q-SDH pair (g1, g2, g
r0
2 , g

r20
2 , · · · , gr

q
0

2). Ai is registered in an
authority’s databased for tracking if necessary.
• Attribute Key Generation. This algorithm is run by the attribute
authority. Assume Ψ is the system attribute set. Select a number tj ∈ Z

∗
q for

each attribute attj . The private and public key pair for attj is tj and bpktj =

g
tj
2 . The public key related to Ψ is gpk = {G1, G2, G3, g1, g2, e,H, h, u, v, w,
h1, · · · , h|Ψ |, bpk}, where hj = htj and bpk = {bpkt1 , · · · , bpkt|Ψ|}.
•User Attribute Key Generation. This algorithm is run by the attribute
authority. If Ui is not in the revocation list and wants to register attj , the

attribute authority calculates Ti,j = A
tj
i and sends it to Ui. Then Ui’s private

key is gsk =< Ai, xi, Ti,1, · · · , Ti,|Ψi| >, where Ψi is the attribute subset
owned by Ui.
•Attribute Tree Generation. AssumeΨ is the systemattribute set.Create
an attribute tree Γ by algorithm Create CTree described in subsection 3.1

112 H. Yang and V.A. Oleshchuk

with root as its root. LAtt (|LAtt| = |Ψ |) and LDum are the attribute leaf set
and dummy leaf node set. Randomly select a dj ∈ Z

∗
q for each dummy leaf

node dumj . Calculate gpkdj = g
dj

2 . Assign gpktj to each attribute leaf node
and gpkdj to each dummy node. Make Γ and bpk′ = {gpkd1, · · · , gpkd|LDum|}
public.
• Signature Generation and Verification. Suppose M is the message to
sign and Ψi is the selected attribute set, and then protocol runs as follows:

1) Let V be the verifier. V selects the attribute requirements and sends them
to Ui.

2) After receiving Ψi, Ui first runs algorithm Simplify CTree described in
subsection 3.1, obtains the attribute subtree Γi, and computes �j (attj ∈
LAtti), �dj (dj ∈ LDumi) and its root value ri. Next Ui calculates gd =∏

dj∈LDumi gpk
�dj

dj
. Then Ui randomly selects ζ, α, β, ε, rζ , rα, rβ , rε, rx,

rδ1 , rδ2 ∈ Z
∗
p and then does the following calculations

C1 = uζ, C2 = vβ , C3 = Aih
ζ+β, C4 = Aiw

ε, CTj = Ti,jh
α
j ,

δ1 = xiζ, δ2 = xiβ,R1 = urζ , R2 = vrβ , R4 = Crx
1 u−rδ1 ,

R5 = Crx
2 v−rδ2 , R3 = e(C3, g2)

rxe(h,w)−rζ−rβe(h, g2)
−rδ1−rδ2 ,

RAtt =
e(
∏

attj∈Ψi
h
�j

j , g2)
rα

e(w, ri/gd)rε
,

c = H(M,C1, C2, C3, C4, R1, R2, R3, R4, R5, RAtt) ∈ Z
∗
p

sζ = rζ + cζ, sβ = rβ + cβ, sα = rα + cα, sε = rε + cε, sx = rx + cxi,

sδ1 = rδ1 + cδ1, sδ2 = rδ2 + cδ2.

Then the signature is δ =< M,C1, C2, C3, C4, c, CT1, · · · , CT|Ψ ′
i|, sζ , sβ ,

sα, sε, sx, sδ1 , sδ2 , Ψ
′
i >, where Ψ ′

i is the attribute subset Ui decides to use.
3) The first step of V is to check whether Ui and Ψ ′

i are revoked or not. If
not, V continues and otherwise it rejects the signature. First of all, V
runs algorithm Simplify CTree described in subsection 3.1 to get the
simplified tree Γi, the root value ri and �j (attj ∈ LAtti), �dj (dj ∈
LDumi) and gd =

∏
dj∈LDumi gpk

�dj

dj
. Next it computes

R′
1 = usζC−c

1 , R′
2 = vsβC−c

2 , R′
4 = u−sδ1Csx

1 , R′
5 = v−sδ2Csx

2 ,

R′
3 = e(C3, g2)

sxe(h,w)−sζ−sβe(h, g2)
−sδ1−sδ2 (

e(C3, w)

e(g1, g2)
)c,

R′
Att =

e(
∏

attj∈Ψi
h
�j

j , g2)
sα

e(w, ri/gd)sε

(
e(C4, ri/gd)

e(
∏

attj∈Ψi
CT

�j

j , g2)

)c

.

Finally, V checks whether c = H(M,C1, C2, C3, C4, R
′
1, R

′
2, R

′
3, R

′
4, R

′
5,

R′
Att) holds. If valid, V accepts the signature and Ui is authenticated,

and otherwise V rejects the signature.

A Dynamic Attribute-Based Authentication Scheme 113

• Signature Open. Before opening the signature, the opener needs to
check whether the signature is valid or not. If it is valid, it computes Ai =
C3/(C

ε1
1 Cε2

2).

4 Analysis of the Dynamic ABA Scheme

In this section, we analyze the proposed ABA scheme, including their correctness,
security requirements and efficiency.

4.1 Correctness Analysis

Theorem 1. (Correctness) The construction of the proposed ABA scheme
proposed in Section 3 is correct, which means:

1) Tuple < R1, R2, R3, R4, R5, RAtt > equals to < R′
1, R

′
2, R

′
3, R

′
4, R

′
5, R

′
Att >.

2) Ai = C3/(C
ε1
1 Cε2

2) holds.

Proof. 1) The verifier computes tuple < R′
1, R

′
2, R

′
3, R

′
4, R

′
5, R

′
Att > as follows.

R′
3 = e(C3, g2)

sxe(h,w)−sα−sβe(h, g2)
−sδ1−sδ2 (

e(C3, w)

e(g1, g2)
)c

= e(C3, g2)
rx+cxie(h,w)−(rα+cα)−(rβ+cβ)e(h, g2)

−(rδ1+cδ1)−(rδ2+cδ2)(
e(C3, w)

e(g1, g2)
)c

= R3

(
e(C3, g2)

xie(h,w)−(α+β)e(h, g2)
−(δ1+δ2) e(C3, w)

e(g1, g2)

)c

= R3

(
e(C3h

−(α+β), wgxi
2)e(C3, w)−1 e(C3, w)

e(g1, g2)

)c

= R3

(
e(Ai, wgxi

2)(g1, g2)
−1

)c
= R3

R′
1 = usζC−c

1 = urζ+cζ(uζ)−c = urζ = R1

R′
2 = vsβC−c

2 = vrβ+cβ(vβ)−c = vrβ = R2

R′
4 = u−sδ1Csx

1 = u−rδ1−cδ1(uζ)rx+cxi = u−rδ1−cζxi(uζ)rx+cxi = u−rδ1uζrx

= Crx
1 u−rδ1 = R4

R′
5 = v−sδ2Csx

2 = v−rδ2−cδ2(vβ)rx+cxi = v−rδ2−cβxi(vβ)rx+cxi = v−rδ2 vβrx

= Crx
2 v−rδ2 = R5

From subsections 3.1 and 3.2, we know that
∑

j∈LAtti �jtj+
∑

j∈LDumi �djdj =

ri and gd =
∏

dj∈LDumi gpk
�dj

dj
, so we have

e(
∏

j∈LAtti

A
tj�j

i , g2)e(
∏

j∈LDumi

A
dj�j

i , g2) = e(Ari
i , g2)

⇐⇒ e(
∏

j∈LAtti

A
tj�j

i , g2)e(Ai, gd) = e(Ai, ri)

⇐⇒ e(
∏

j∈LAtti

A
tj�j

i , g2) = e(Ai, ri/gd).

114 H. Yang and V.A. Oleshchuk

Based on the above equation, we have

R′
Att =

e(
∏

attj∈Ψi
h
�j

j , g2)
sα

e(w, ri/gd)sε

⎛
⎝ e(C4, ri/gd)

e(
∏

attj∈Ψi
CT

�j

j , g2)

⎞
⎠

c

=
e(
∏

attj∈Ψi
h
�j

j , g2)
rα

e(w, ri/gd)rε

e(
∏

attj∈Ψi
h
�j

j , g2)
cα

e(w, ri/gd)cε

⎛
⎝ e(C4, ri/gd)

e(
∏

attj∈Ψi
CT

�j

j , g2)

⎞
⎠

c

= RAtt

⎛
⎝ e(

∏
attj∈Ψi

h
�j

j , g2)
α

e(w, ri/gd)ε
e(C4, ri/gd)

e(
∏

attj∈Ψi
CT

�j

j , g2)

⎞
⎠

c

= RAtt

⎛
⎝ e(

∏
attj∈Ψi

h
α�j

j , g2)

e(wε, ri/gd)

e(wε, ri/gd)

e(
∏

attj∈Ψi
h
α�j

j , g2)

⎞
⎠

c ⎛
⎝ e(Ai, ri/gd)

e(
∏

attj∈Ψi
T

�j

i,j , g2)

⎞
⎠

c

= RAtt

⎛
⎝ e(Ai, ri/gd)

e(
∏

attj∈Ψi
A

tj�j

i , g2)

⎞
⎠

c

Since e(
∏

j∈LAtti A
tj�j

i , g2) = e(Ai, ri/gd), equation RAtt = R′
Att holds. Thus,

tuple < R1, R2, R3, R4, R5, RAtt > equals to < R′
1, R

′
2, R

′
3, R

′
4, R

′
5, R

′
Att >.

2) C3/(C
ε1
1 Cε2

2) = Aih
ζ+β/((uζ)ε1 (vβ)ε2) = Ai.

From the above proofing, we can see Theorem 1 is correct, so a user can be
authenticated by the algorithm proposed in subsection 3.2.

4.2 Security Requirements Analysis

In this subsection, we prove that the proposed ABA scheme satisfies several se-
curity requirements, including anonymity, unforgeability, unlinkability, coalition
resistance and traceability. Before the proof, we first introduce some definitions
and assumptions based on which our proof performs.

Definition 3. ([8, 14]) (Decision Linear Diffie-Hellman Problem (DLP)
in G1) Let G be a cyclic group of prime order p, with u, v, h ∈ G as its gener-
ators. Given ua, vb, hc ∈ G (a, b, c ∈ Z

∗
p) as the input, decide whether a+ b = c

or not.

Definition 4. ([14]) (Decision Linear Diffie-Hellman based Encryption
(DLE) in G1) In a DLE scheme, a user’s public key is u, v, h ∈ G1 and its
private key is ε1, ε2 ∈ Z

∗
q, satisfying uε1 = vε2 = h. To encrypt message M ,

the user randomly chooses α, β ∈ Z
∗
q and computes the encryption message as a

triple < C1, C2, C3 >, where C1 = uα, C2 = vβ and C3 = Mhα+β. The decrypted
message is calculated by C3/(C

ε1
1 Cε2

2).

Assumption 1. ([8]) (q-SDH Problem) For an algorithm A, if |Pr[A(g1,

g2, g
γ
2 , g

γ2

2 , · · · , gγ
q

2) = (g
1/γ+x
1 , x)] − 1/|G|| ≤ ε holds, we say that A has a

negligible advantage to solve q-SDH in (G1, G2) and then we can assume q-SDH
is hard.

A Dynamic Attribute-Based Authentication Scheme 115

Assumption 2. (DLP) For an algorithm A, if |Pr[A(uα, vβ , hα+β) = (uα, vβ ,
hc)] − 1/|G|| ≤ ε holds, we say that A has a negligible advantage to solve DLP
in G1 and then we can assume DLP is hard.

Assumption 3. (IND-CPA Security) ([16]) If DLP holds, we say that DLE
is semantically secure against a chosen-plaintext attack (CPA) or IND-CPA se-
cure.

Assumption 4. (Forking Lemma) ([8]) Given only public data as input, if
an adversary A with polynomial computation ability can find a valid signature
(M, δ0, c, δ1) with non-negligible probability, then there exists a replay with a
different oracle, which can output new valid signatures (M, δ0, c

′, δ′1) with non-
negligible probability where c �= c′.

Theorem 2. (Anonymity) The proposed ABA scheme is fully anonymous
if DLE is IND-CPA secure under the same attribute set. More specifically,
given Ai(0) and Ai(1) and the corresponding signature δ1 and δ2, where δb =<
M,C1, C2, C3(b), C4, c, CT1, · · · , CT|Ψ ′

i|, sζ , sβ , sα, sε, sx, sδ1 , sδ2 , Ψ
′
i > (b ∈

{0, 1}). Given a random toss b ∈ {0, 1}, if the probability that an adversary
A with polynomial computation ability has non-negligible advantage to guess the
correct b, we say that the proposed scheme is not fully anonymous. Otherwise,
the scheme is fully anonymous.

Proof. Suppose that adversary A can break the anonymity of the proposed
scheme, and then it means A has a non-negligible advantage to guess the correct
b in the above statement. More precisely, given Ai(0) and Ai(1), the adversary A
has a non-negligible advantage to distinguish the tuple < C1, C2, C3(0) > from

< C1, C2, C3(1) >, where C1 = uζ, C2 = vβ , C3(0) = Ai(0)h
ζ+β and C3(1) =

Ai(1)h
ζ+β. From Definition 4, we know that < C1, C2, C3(0) > is a DLE tuple.

If A has the ability to distinguish < C1, C2, C3(0) > from < C1, C2, C3(1) >, it
means A can break DLE problem, and it contradicts with Assumption 3. Thus
it is impossible for A to distinguish δ0 from δ1 with a non-negligible probability,
and the proposed ABA scheme is fully-anonymous.

Theorem 3. (Traceability) The proposed ABA scheme is fully traceable if q-
SDH is hard in G1 and G2. More specifically, if an adversary A with polynomial
computation ability can find a valid signature δ =< M,C1, C2, C3, C4, c, CT1, · · · ,
CT|Ψ ′

i|, sζ , sβ , sα, sε, sx, sδ1 , sδ2 , Ψ
′
i >, then it can find a find a SDH pair and thus

break the q-SDH problem.

Proof. The proof is based on Forking Lemma. Suppose adversary A can forge
a valid signature δ =< M, δ0, c, δ1, δ2 >, where δ0 = {C1, C2, C3, C4}, c =
H(M,C1, C2, C3,4 , R1, R2, R3, R4, R5, RAtt) as computed during signature gen-
eration, δ1 = {sζ, sβ , sα, sε, sx, sδ1 , sδ2 , Ψ ′

i}, and δ2 = {CT1, · · · , CT|Ψ ′
i |}. Ac-

cording to Forking Lemma, we can extract a tuple < δ0, c
′, δ′1, δ2 > from δ =<

δ0, c, δ1, δ2 >, where c′ �= c and δ′1 �= δ′2. Then based on < δ0, c
′, δ′1, δ2 > and

c′ �= c and δ′1 �= δ1. Thus we can create a new SDH tuple denoted as < A′
i, x

′ >,

116 H. Yang and V.A. Oleshchuk

which is presented as Theorem 5.3.5 in details in [8] and we will not repeat
it here. If adversary A can create a q-SDH pair without the knowledge of γ, it
can break q-SDH problem. It contradicts to Assumption 1 and thus Theorem 3
holds.

Among the above security requirements, unforgeability and coalition resis-
tance can be promised by traceability, and unlinkability can be promised by
anonymity. The general idea is as follows. Suppose S is a system that provides
both anonymity and traceability. If S is not against unforgeability, it means that
an adversaryA can forge a valid signature δ on behalf of a valid user U . Similarly,
if S is not coalition resistant, an adversary A can corrupt a few users and then
use their private keys to generate a valid signature δ. In both situations, when δ
is handed over to an opener, the identity revealed is U instead of the real signer
A. It contradicts with “traceability” (Theorem 3) and thus both unforgeability
and coalition resistance can be inferred by traceability. Anonymity promises that
the system does not leak any useful information of signers given their signatures.
From the description of unlinkability, we can see that it is also a kind of user
identity information, meaning that anonymity is a stronger security requirement
than unlinkability. Therefore, unlinkability can be deduced by anonymity.

4.3 Efficiency Analysis

We mainly focus on the computation, storage and communication costs when
analyzing the efficiency of the proposed ABA scheme, and they are related to the
attribute tree as well as the signature itself. From the construction of the down-
to-top attribute trees, we can see that the cost is more than top-to-down built
attribute trees because of the following two reasons. First of all, the attribute
set Ψ for central attribute tree Γ is bigger than the required attribute subset
Ψi, and thus attribute related keys (tj , gpkj), users’ attribute keys Ti,j are more
than those based only on Ψi. Secondly, we add some dummy nodes to build the
tree from down to top, which causes the computation and storage of dj and
gpkdj for dummy leaf node set LDum. At the cost of a bigger central attribute
tree instead of a fixed tree and more parameters, we achieve the flexibility and
dynamic of attribute trees.

For the computation and communication cost of the signature, we compare
our work with two typical ABA schemes in [8] and the results are summarized
in Table 1. Suppose |G| is the bit length of bilinear group Gi (i ∈ {1, 2, 3}), k
is the bit length of number in Z

∗
q and p is the computation cost of pairing. To

simplify the comparison, we only count the computation of pairing and we will
not include the length of message M as well as the length of attributes to be
used in the signature size. [8].1 and [8].2 (see Table 1) are the schemes proposed
in Chapter 5.4 and 5.5 in [8] respectively.

Among these schemes, the signature size in [8].2 (see Table 1) is extremely
short, because it does not include attribute related parameter CTj in the sig-
nature at the cost of verifying the validity of the signer’s attributes. From the
result, we can see that the general signature size, computation complexity for

A Dynamic Attribute-Based Authentication Scheme 117

both signing and verification are more in our scheme. The main reason is that
we add parameters C4 and RAtt to adjust the signature with the down-to-top
attribute construction. Therefore, the ABA scheme proposed in this paper is
beneficial in a dynamic environment where the attribute requirements change
frequently. However, when the attribute requirements are comparatively fixed,
our scheme needs more computation and communication cost, and also requires
more storage space.

Table 1. Computation and Communication Efficiency Comparison of ABA Schemes

Paper Signature Size Sign Complexity Verify Complexity

[8].1 5k + (|Ψi|+ 5)|G| 3p 5p

[8].2 7|G| 3p 5p

This paper 8k + (|Ψi|+ 4)|G| 5p 9p

5 Conclusions

In this paper, we have proposed a dynamic attribute tree based ABA scheme,
which can adapt to a dynamic environment where attribute requirements change
frequently. To gain this flexibility, the proposed ABA scheme is constructed
based on down-to-top built attribute trees. In the scheme, a central attribute
tree Γ is built first based on attribute set Ψ , and later attribute subtree Γi

based on attribute subset Ψi can be obtained by simplifying Γ . Compared with
top-to-down based ABA schemes, we add extra parameters in the signature to
adjust to this new attribute tree construction approach. The scheme avoids the
cost of regenerating attribute tree related parameters, but it increases costs in
three aspects, storage cost for a bigger attribute tree, signature size and more
computation complexity. As a results, it should be careful to chose which ABA
schemes to use, i.e., down-to-top or top-to-down built attribute tree based, and it
requires precise evaluation of the costs of regenerating attribute trees, signature
generation and verification.

References

1. Li, H., Dai, Y., Tian, L., Yang, H.: Identity-based authentication for cloud com-
puting. In: Jaatun, M.G., Zhao, G., Rong, C. (eds.) Cloud Computing. LNCS,
vol. 5931, pp. 157–166. Springer, Heidelberg (2009)

2. Schläger, C., Sojer, M., Muschall, B., Pernul, G.: Attribute-based authentica-
tion and authorisation infrastructures for e-commerce providers. In: Bauknecht,
K., Pröll, B., Werthner, H. (eds.) EC-Web 2006. LNCS, vol. 4082, pp. 132–141.
Springer, Heidelberg (2006)

3. Guo, L., Zhang, C., Sun, J., Fang, Y.: Paas: A privacy-preserving attribute-based
authentication system for ehealth networks. In: 2013 IEEE 33rd International Con-
ference on Distributed Computing Systems, pp. 224–233 (2012)

118 H. Yang and V.A. Oleshchuk

4. Covington, M.J., Sastry, M.R., Manohar, D.J.: Attribute-based authentication
model for dynamicmobile environments. In: Clark, J.A., Paige, R.F., Polack, F.A.C.,
Brooke, P.J. (eds.) SPC 2006. LNCS, vol. 3934, pp. 227–242. Springer, Heidelberg
(2006)

5. Liu, X., Xia, Y., Jiang, S., Xia, F., Wang, Y.: Hierarchical attribute-based access
control with authentication for outsourced data in cloud computing. In: 2013 12th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), pp. 477–484 (July 2013)

6. Ruj, S., Stojmenovic, M., Nayak, A.: Privacy preserving access control with au-
thentication for securing data in clouds. In: 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 556–563 (May
2012)

7. Xu, D., Luo, F., Gao, L., Tang, Z.: Fine-grained document sharing using attribute-
based encryption in cloud servers. In: 2013 Third International Conference on
Innovative Computing Technology (INTECH), pp. 65–70 (August 2013)

8. Khader, D.D.: Attribute-based Authentication Scheme. PhD thesis, University of
Bath (2009)

9. Liu, X., Xia, Y., Jiang, S., Xia, F., Wang, Y.: Hierarchical attribute-based access
control with authentication for outsourced data in cloud computing. In: 2013 12th
IEEE International Conference on Trust, Security and Privacy in Computing and
Communications (TrustCom), pp. 477–484 (2013)

10. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In:
Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer,
Heidelberg (2011)

11. Yu, S., Wang, C., Ren, K., Lou, W.: Attribute based data sharing with attribute
revocation. In: Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, ASIACCS 2010, pp. 261–270 (2010)

12. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: Proceedings of the 13th ACM Con-
ference on Computer and Communications Security, CCS 2006, pp. 89–98. ACM,
New York (2006)

13. Emura, K., Miyaji, A., Omote, K.: A dynamic attribute-based group signature
scheme and its application in an anonymous survey for the collection of attribute
statistics. In: International Conference on Availability, Reliability and Security,
ARES 2009, pp. 487–492 (2009)

14. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)

15. Armstrong, M.: Lagranges theorem. In: Groups and Symmetry, pp. 57–60.
Springer, New York (1988)

16. Boneh, D., Boyen, X.: Short signatures without random oracles. In: Cachin, C.,
Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 56–73. Springer,
Heidelberg (2004), http://dx.doi.org/10.1007/978-3-540-24676-3 4

http://dx.doi.org/10.1007/978-3-540-24676-3_4

Repeated-Root Isodual Cyclic Codes

over Finite Fields

Aicha Batoul1(�), Kenza Guenda1, and T. Aaron Gulliver2

1 Faculty of Mathematics USTHB,
University of Science and Technology of Algiers, Algeria
2 Department of Electrical and Computer Engineering,

University of Victoria, BC, Canada
a.batoul@hotmail.fr, kguenda@gmail.com, agullive@ece.uvic.ca

Abstract. In this paper we give several constructions of cyclic codes
over finite fields that are monomially equivalent to their dual, where the
characteristic of the field divides the length of the code. These are called
repeated-root cyclic isodual codes over finite fields. The constructions
are based on the field characteristic, the generator polynomial and the
length of the code.

Keywords: Repeated-root cyclic codes · Isodual codes · Multipliers ·
Splitting · Duadic codes

1 Introduction

An isodual code is a linear code which is equivalent to its dual. The class of
isodual codes is important in coding theory because it contains the self-dual
codes as a subclass. In addition, isodual codes are contained in the larger class
of formally self-dual codes, and they are related to isodual lattices [1]. For some
parameters, it can be shown that there are no cyclic self-dual codes over finite
fields [3,5], whereas cyclic isodual codes can exist. Several types of equivalence
between codes can be defined [4]. In [2] the authors gave specific constructions
of self-dual and isodual codes over finite fields. Two codes C and C′ are called
monomially equivalent if there exists a monomial permutation, i.e. a permutation
of the coordinates followed by multiplication of coordinates by nonzero field
elements, which sends C to C′. Only monomial equivalence is considered here.

Jia et al. [6] considered cyclic isodual codes using multiplier equivalency. Mul-
tiplier equivalence is a monomial equivalence, but the converse is not true in
general. In this paper, isodual cyclic codes over finite fields are studied. Con-
ditions are given concerning the existence of isodual cyclic codes based on the
generators polynomial, field characteristic, and length. Several constructions of
isodual cyclic codes and self-dual codes are given which have good Hamming
minimum distance.

The remainder of this paper is organized as follows. Some preliminary results
are given in Section 2. In Section 3, the structure of the generator polynomial
of cyclic codes of length 2amps is given using the generator polynomial of cyclic

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 119–132, 2015.
DOI: 10.1007/978-3-319-18681-8_10

120 A. Batoul et al.

codes of length m. Using the structure of cyclic codes of length 2amps, a con-
struction for isodual codes is given in Section 4. In Section 5, isodual codes are
constructed from duadic codes over finite fields. The motivation to construct
isodual codes from duadic codes is that the duadic codes are known to have
good minimum distance. Examples of isodual codes are given based on the con-
structions presented here.

2 Preliminaries

Let Fq be a finite field with q a power of a prime p, and denote the corresponding
group of units by F

∗
q . Let n a positive integer. A block code C of length n is

called a linear code over Fq if it is a subspace of F
n
q . Here, all codes are assumed

to be linear. We attach the standard inner product to Fq, i.e. [v, w] =
∑

viwi.
The dual code of C is defined as

C⊥ = {v ∈ Fq
n | [v, w] = 0 for all w ∈ C}. (1)

If C ⊆ C⊥, the code is said to be self-orthogonal and if C = C⊥, the code is
self-dual.

x⊥

A linear code C over a finite field and its dual satisfy the following

|C||C⊥| = qn, and (C⊥)⊥ = C. (2)

A monomial linear transformation of F
n
q is an Fq-linear transformation τ such

that there exists scalars λ1, . . . , λn in F
∗
q and a permutation σ ∈ Sn (the group

of permutations of the set {1, 2, . . . , n}), such that for all (x1, x2, . . . , xn) ∈ F
n
q ,

we have
τ(x1, . . . , xn) = (λ1xσ(1), λ2xσ(2), . . . , λnxσ(n)).

Two linear codes C and C′ of length n are called monomially equivalent if there
exists a monomial transformation of F

n
q such that τ(C) = C′. Here, whenever

two codes are said to be equivalent it is meant that they are monomially equiv-
alent. Hence in our context an isodual code is a linear code which is monomially
equivalent to its dual given by (1). A linear code C of length n over Fq is said
to be cyclic if it satisfies

(cn−1, c0, . . . , cn−2) ∈ C, whenever (c0, c1, . . . , cn−1) ∈ C.

We follow the usual convention of representing vectors as polynomials. With
this representation, it is well known that every cyclic code has a polynomial that
generates it as an ideal of the finite ring Fq[x]/(x

n−1). In general there are many
generators for a given cyclic code. However, the monic generator polynomial of
least degree is unique. Such a polynomial is called the generator of the code and
it is a divisor of xn − 1. Therefore, there is one-to-one correspondence between
cyclic codes of length n over Fq, and divisors of xn − 1.

Repeated-Root Isodual Cyclic Codes over Finite Fields 121

Let a be an integer such that (a, n) = 1. The function μa defined on Zn =
{0, 1, . . . , n− 1} by μa(i) ≡ ia mod n is a permutation of the coordinate posi-
tions {0, 1, 2, . . . , n− 1} and is called a multiplier. Multipliers also act on poly-
nomials and this gives the following ring automorphism

μa : Fq[x]/(x
n − 1) −→ Fq[x]/(x

n − 1)
f(x) �→ μa(f(x)) = f(xa).

(3)

Suppose that f(x) = a0 + a1x + . . . + arx
r is a polynomial of degree r with

f(0) = a0 �= 0. Then the monic reciprocal polynomial of f(x) is

f∗(x) = f(0)−1xrf(x−1) = f(0)−1xr(μ−1(f(x))) = a−1
0 (ar+ar−1x+ . . .+a0x

r)

If a polynomial is equal to its reciprocal polynomial, then it is called a self-
reciprocal polynomial. If g(x) is a generator polynomial of a cyclic code C of
length n over Fq, then the dual code C⊥ of C is the cyclic code whose generator
polynomial is h∗(x) where h∗(x) is the monic reciprocal polynomial of h(x) =
(xn − 1)/g(x). Thus the cyclic code C is self-dual if and only if g(x) = h∗(x).

3 Cyclic Codes of Length 2amps over Fq

For our construction of isodual cyclic codes we need the structure of cyclic codes
of length 2amps over Fq where q is a power of p and (m, p) = 1. We begin with
the following two lemmas.

Lemma 3.1. Let q be a power of an odd prime p, a ≥ 1 an integer. There exists
a primitive 2a-th root of unity in F

∗
q if and only if q ≡ 1 mod 2a.

Proof. Suppose there exists a primitive 2a-th root of unity α ∈ F
∗
q . Then

α2a = 1, and since F
∗
q is a cyclic group of order q−1, 2a divides q−1. Conversely,

if 2a divides q − 1, then there exists a positive integer k such that q − 1 = k2a.
If β is a primitive element of F

∗
q , then 1 = βq−1 = (βk)2

a

. We have that in the

cyclic group F
∗
q , ord(β

k) = ord(β)
(k,ord(β)) = q−1

(k,q−1) = k2a

(k,k2a) = 2a. Thus, βk is a

primitive 2a-th root of the unity in F
∗
q . 	

Lemma 3.2. Let a ≥ 1 be an integer and α a primitive 2a-th root of unity in
F

∗
q. Then the following holds:

i) α2i is a primitive 2a−i-th root of unity in F
∗
q for all i, i ≤ a.

ii) αm is a primitive 2a-th root of unity in F
∗
q for all odd integers m.

iii)
∏2a

k=1 α
k = −1.

Proof. (i) For i ≤ a, in the cyclic groupF
∗
q we have that ord(α

2i) = ord(α)
(2i,ord(α)) =

2a

(2i,2a) =
2a

2i = 2a−i.

(ii) Since (2a,m) = 1, then ord(αm) = ord(α)
(m,ord(α)) =

2a

(m,2a) = 2a.

(iii)(x2a − 1) =
∏2a

k=1(x− αk) so that
∏2a

k=1 α
k = (−1)2

a (−1)
1 = −1. 	

122 A. Batoul et al.

Proposition 3.3. Let q be a power of an odd prime p and n = 2am a positive
integer such that m is an odd integer, (m, p) = 1 and a ≥ 1. Then if F

∗
q contains

a primitive 2a-root of unity and the fi(x), 0 ≤ i ≤ r are the monic irreducible
factors of xm − 1 in Fq, we have that

x2am − 1 = (x2a − 1)

r∏
i=1

fi(α
−kx). (4)

Proof. Assume that xm − 1 = (x − 1)
∏r

i=1 fi(x) (for calculation purposes we
let f0(x) = (x − 1)), is the factorization of xm − 1 into monic factors over Fq.
This factorization is unique since it is over a unique factorization domain (UFD).
Let α ∈ F

∗
q be a primitive 2a-th root of unity and let 1 ≤ k ≤ 2a.

(α−kx)m − 1 = (α−kx− 1)
∏r

i=1 fi(α
−kx)

(α−k)m(xm − (αk)m) = α−k(x− αk)
∏r

i=1 fi(α
−kx)

(xm − αkm) = αk(m−1)(x− αk)
∏r

i=1 fi(α
−kx)

(xm − (αm)k) = αk(m−1)(x− αk)
∏r

i=1 fi(α
−kx).

Then by Lemma 3.2, αm is also a primitive 2a-th root of unity so that

∏2a

k=1(x
m − (αm)k) =

∏2a

k=1 α
k(m−1)(x− αk)

∏r
i=1 fi(α

−kx)

=
∏2a

k=1 α
k(m−1)

∏2a

k=1(x− αk)
∏2a

k=1

∏r
i=1 fi(α

−kx)

=
∏2a

k=1
αkm

αk

∏2a

k=1(x− αk)
∏2a

k=1

∏r
i=1 fi(α

−kx)

= (x2a − 1)
∏2a

k=1

∏r
i=1 fi(α

−kx).

Since (x2am−1) = ((xm)2
a −(αm)2

a

) =
∏2a

k=1(x
m−αkm), the result follows. 	

Corollary 3.4. Let q be a power of an odd prime p and n = 2amps a positive
integer such that m is an odd integer, (m, p) = 1 and a ≥ 1. Then if F

∗
q contains

a primitive 2a-root of unity and the fi(x), 0 ≤ i ≤ r are the monic irreducible
factors of xm − 1 in Fq, we have that

(x2amps − 1) = (x2am − 1)p
s

= (x2a − 1)p
s

2a∏
k=1

r∏
i=1

fps

i (α−kx).

Proof. The proof is similar to that for Proposition 3.3. 	

In the following corollary we give the structure of cyclic codes of length 2amps

over Fq.

Corollary 3.5. Let q be a power of an odd prime p, and n = 2amps be a
positive integer such that m is odd integer, a ≥ 1 and (m, p) = 1. If F

∗
q contains

a primitive 2a-root of unity and (x−1), fi(x), 1 ≤ i ≤ r are the monic irreducible
factors of xm− 1 in Fq[x] then any cyclic code of length n = 2amps is generated

by
∏2a

k=1((x − αk)lk
∏r

i=1 f
ji
i (α−kx)) where 0 ≤ lk, ji ≤ ps.

Repeated-Root Isodual Cyclic Codes over Finite Fields 123

Proof. Any cyclic code of length n = 2amps is generated by a divisor of
(x2amps − 1). By Corollary 3.4 we have that

(x2amps − 1) = (x2am − 1)p
s

=

2a∏
k=1

((x − αk)p
s

r∏
i=1

fps

i (α−kx)),

and the result follows. 	

4 Construction of Cyclic Isodual Codes of Length 2amps

over Fq

We first recall the following important result of Batoul et al. given in [2]

Proposition 4.1. (Proposition 3.1 [2]) Let C be a cyclic code of length n over
Fq generated by the polynomial g(x), and λ ∈ F

∗
q such that λn = 1. Then the

following holds:

(i) C is equivalent to the cyclic code generated by g∗(x).
(ii) C is equivalent to the cyclic code generated by g(λx).

Using Proposition 4.1, we give new constructions of isodual cyclic codes of length
2amps over Fq.

Theorem 4.2. Let q be a power of an odd prime p such that q ≡ 1 mod 2a,
with a ≥ 1 an integer, n′ an odd integer and f(x) a polynomial in Fq[x] such
that

xn′ − 1 = (x − 1)f(x).

Then the cyclic codes of length 2an′ generated by

(x2a−1 − 1)

2a−1−1∏
k=0

f(α−2k−1x),

and

(x2a−1

+ 1)
2a−1∏
k=1

f(α−2kx).

are isodual codes of length 2an′ over Fq where α ∈ F
∗
q is a primitive 2a-th root

of unity.

Proof. By Lemma 3.1, if q ≡ 1 mod 2a then there exists a primitive 2a-th root
of unity α ∈ F

∗
q such that α2a = 1. Suppose that xn′ − 1 = (x− 1)f(x), so then

(x2an′ − 1) = (x2a − 1)

2a∏
k=1

f(α−kx).

124 A. Batoul et al.

We have (x2a − 1) = (x2a−1 − 1)(x2a−1

+ 1), which gives that

(x2an′ − 1) = (x2a−1 − 1)(x2a−1

+ 1)

2a∏
k=1

f(α−kx)

= (x2a−1 − 1)(x2a−1

+ 1)

2a−1∏
k=1

f(α−2kx)

2a−1−1∏
k=0

f(α−2k−1x)

Let

g(x) = (x2a−1 − 1)
2a−1−1∏
k=0

f(α−2k−1x),

so that we have

h(x) = (x2a−1

+ 1)
2a−1∏
k=1

f(α−2kx),

and h∗(x) = g∗(αx). By Proposition 4.1(i), C is equivalent to the cyclic code
generated by g∗(x). By Proposition 4.1(ii), the cyclic code generated by g∗(x) is
equivalent to the cyclic code generated by g∗(αx) = h∗(x). As the latter code is
C⊥, C is isodual, so that the cyclic code generated by g(x) is isodual. The same
result is obtained for

g(x) = (x2a−1

+ 1)
2a−1∏
k=1

f(α−2kx).

	

Example 4.3. Over F3 we have x7−1 = (x+2)(x6+x5+x4+x3+x2+x+1),
so that x14 − 1 = (x+ 2)(x6 + x5 + x4 + x3 + x2 + x+ 1)(x+ 1)(x6 − x5 + x4 −
x3 + x2 − x+ 1), and the cyclic codes generated by

(x+2)(x6−x5+x4−x3+x2−x+1) and (x+1)(x6+x5+x4+x3+x2+x+1)

are isodual.

Remark 4.4. The codes generated by

(x2a−1n′ − 1) = (x2a−1 − 1)

2a−1∏
k=1

f(α−2kx),

and

(x2a−1n′
+ 1) = (x2a−1

+ 1)

2a−1−1∏
k=0

f(α−2k−1x),

are the trivial isodual cyclic codes of length 2an′.

Repeated-Root Isodual Cyclic Codes over Finite Fields 125

Theorem 4.5. Let q be a power of an odd prime p such that q ≡ 1 mod 2a,
with a ≥ 1 an integer, n′ an odd integer and f1(x), f2(x) polynomials in Fq[x]
such that

xn′ − 1 = (x− 1)f1(x)f2(x).

Then the cyclic codes of length 2an′ generated by

(x2a−1 − 1)

2a−1∏
k=1

fi(α
−2kx)

2a−1−1∏
k=0

fj(α
−2k−1x),

and

(x2a−1

+ 1)

2a−1∏
k=1

fi(α
−2kx)

2a−1−1∏
k=0

fj(α
−2k−1x),

i, j ∈ {1, 2}, i �= j, respectively, are isodual codes of length 2an′ over Fq where
α ∈ F

∗
q is a primitive 2a-th root of unity.

Proof. By Lemma 3.1, if q ≡ 1 mod 2a then there exists a primitive 2a-th root
of unity α ∈ F

∗
q such that α2a = 1. Suppose xn′ − 1 = (x− 1)f1(x)f2(x) so that

(x2an′ − 1) = (x2a − 1)

2a∏
k=1

f1(α
−kx)f2(α

−kx).

We have (x2a − 1) = (x2a−1 − 1)(x2a−1

+ 1), which gives that

(x2an′ − 1) = (x2a−1 − 1)(x2a−1

+ 1)

2a∏
k=1

f1(α
−kx)f2(α

−kx)

= (x2a−1 − 1)(x2a−1

+ 1)
2a−1∏
k=1

f1(α
−2kx)f2(α

−2kx)

2a−1−1∏
k=0

f1(α
−2k−1x)f2(α

−2k−1x).

If

g(x) = (x2a−1

− 1)

2a−1∏
k=1

fi(α
−2kx)

2a−1−1∏
k=0

fj(α
−2k−1x), i �= j,

then we have

h(x) = (x2a−1

+ 1)

2a−1−1∏
k=0

fi(α
−2k−1x)

2a−1∏
k=1

fj(α
−2kx),

and h∗(x) = g∗(α−1x). By Proposition 4.1(i), C is equivalent to the cyclic code
generated by g(x)∗. By Proposition 4.1(ii), the cyclic code generated by g(x)∗ is

126 A. Batoul et al.

equivalent to the cyclic code generated by g∗(α−1x) = h∗(x). As the latter code
is C⊥, C is isodual, so the cyclic code generated by g(x) is isodual. The same
result is obtained for the code generated by

g(x) = (x2a−1

+ 1)

2a−1∏
k=1

fi(α
−2kx)

2a−1−1∏
k=0

fj(α
−2k−1x), i �= j.

	

Remark 4.6. If

g(x) = (x2a−1

− 1)

2a−1∏
k=1

fi(α
−2kx)

2a−1∏
k=1

fps

j (α−2kx), i �= j

then g(x) = (x2a−1n′ − 1) = (x
n
2 − 1) and the cyclic code generated by g(x) is

the trivial isodual code.

Corollary 4.7. Let q be an odd prime power such that m is an odd integer and
f1(x), f2(x) be polynomials in Fq[x] such that xn′ −1 = (x−1)f1(x)f2(x). Then
the cyclic codes of length 2an′ generated by

(x2a−1 − 1)
2a−1∏
k=0

fi(α
−2k−1x)

2a−1−1∏
k=0

fj(α
−2k−1x),

and

(x2a−1

+ 1)
2a−1∏
k=1

fi(α
−2kx)

2a−1∏
k=1

fj(α
−2kx),

i, j ∈ {1, 2}, i �= j are isodual codes of length 2an′ over Fq.

Proof. The results follows immediately from Theorem 4.2. 	

Example 4.8. For q = 5, from Lemma 3.1 there exists β ∈ F5 such that β4 = 1,
e.g. β = 2. If m = 11, we have

(x11 − 1) = (x− 1)(x5 +2x4 +4x3 + x2 + x+ 4)(x5 +4x4 +4x3 + x2 +3x+4),

so that (x11 − 1) = (x− 1)f1(x)f2(x), and

(x44 − 1) = (x− 1)f1(x)f2(x)(x + 1)f1(−x)f2(−x)(x + 2)f1(2x)f2(2x)(x − 2)

f1(−2x)f2(−2x).

Then the cyclic codes generated by g1(x) = (x2 ± 1)f1(x)f1(−x)f1(2x)f1(−2x)
and g2(x) = (x2±1)f2(x)f2(−x)f2(2x)f2(−2x) are isodual cyclic codes over F5.

Repeated-Root Isodual Cyclic Codes over Finite Fields 127

Example 4.9. For q = 17 ≡ 1 mod 24, from Lemma 3.1 there exists α ∈ F17

such that α16 = 1, e.g. α = 3. If m = 9, we have

(x9−1) = (x−1)(x2+x+1)(x2+3x+1)(x2+4x+1)(x2+10x+1) = (x−1)f1(x)f2(x).

With f1(x) = (x2 +x+1)(x2 +3x+1) and f2(x) = (x2 +4x+1)(x2 +10x+1),
the cyclic codes generated by

(x8 − 1)17
s

8∏
k=1

f17s

i (3−2kx)
7∏

k=0

f17s

j (3−2k−1x),

and

(x8 + 1)17
s

8∏
k=1

f17s

i (3−2kx)

7∏
k=0

f17s

j (3−2k−1x),

i �= j, are isodual cyclic codes over F17.

5 Cyclic Isodual Codes of Length 2amps over Fq from
Duadic Codes

The results of Section 4 provide constructions of isodual cyclic codes over finite
fields. However, a more straightforward means of finding these codes is desirable.
Further, determining codes with good minimum distance is very important. In
this section, infinite families of cyclic isodual codes over finite fields are con-
structed from duadic codes. The motivation is that duadic codes are known to
have good minimum distance. Before giving our constructions of isodual cyclic
codes, we recall some results about duadic codes which be used in this section.
Of course isodual codes cannot be duadic since their length is even. Let q be a
power of a prime p and let m be a positive odd integer such that (m, q) = 1.
Then if 0 ≤ i < m, the q-cyclotomic coset of i (mod m) is defined as

Cl(i) = {iql (mod m)|l ∈ N}.

Let α be a primitive m-th root of unity in an extension field of Fq, and C be a
cyclic code over Fq of length m generated by a polynomial f(x). C is uniquely
determined by its defining set T = {0 ≤ i < m | f(αi) = 0}. Hence the defining
set of a cyclic code over Fq is the union of some q-cyclotomic cosets.

Let S1 and S2 be unions of cyclotomic cosets modulo m such that S1∩S2 = ∅,
S1 ∪S2 = Zm \ {0}, and μaSi mod n = S(i+1) mod 2. Then the triple μa, S1, S2

is called a splitting modulo m. The odd-like duadic codes D1 and D2 are the
cyclic codes over Fq with defining sets S1 and S2 and generator polynomials
f1(x) = Πi∈S1(x − αi) and f2(x) = Πi∈S2(x − αi), respectively. The even-like
duadic codes C1 and C2 are the cyclic codes over Fq with defining sets {0} ∪ S1

and {0} ∪ S2, respectively.
For the remainder of the paper, the notation q = � mod n means that q

is a quadratic residue modulo n. For a prime power q and integer n such that

128 A. Batoul et al.

gcd(q, n) = 1, denote by ordn(q) the multiplicative order of q modulo n. This is
the smallest integer l such that ql ≡ 1 mod n.

The multiplier μ−1 plays a special role in determining the duals of duadic
codes just as it does for duals in general cyclic codes. In the following we give
some important results concerning μ−1.

Lemma 5.1. (Proposition 4.4 [2]) Let Fq be a finite field and m a positive odd
integer such that (m, q) = 1 and q = � mod m. Then there exists a pair of odd-
like duadic codes over Fq, D1 and D2, generated by f1(x) and f2(x), respectively,
such that xn − 1 = (x− 1)f1(x)f2(x). We have the following results:

i) If the splitting is given by μ−1 then f∗
1 (x) = f2(x) and f∗

2 (x) = f1(x) .
ii) If the splitting is not given by μ−1 then f∗

1 (x) = f1(x) and f∗
2 (x) = f2(x).

We now consider when a splitting is given by μ−1, and also when a splitting
is left invariant by μ−1.

Theorem 5.2. [7] Let Fq be a finite field and m = ps11 ps22 · · · pskk be the prime
factorization of an odd integer m such that q ≡ � mod m.

i) If pi ≡ −1 mod 4, i = 1, 2, . . . , k, then all splittings mod m are given by
μ−1.

ii) If there is at least one pi such that pi ≡ 1(mod 4), i ∈ {1, 2, . . . , k}, then
there is a splitting mod m which is not given by μ−1.

Remark 5.3. In general, the same splitting modulo m an odd integer can be
given by different multipliers. For more details see [4, p. 214]. When we consider
the multiplier μ−1, we mean any multiplier which gives the same splitting as μ−1.

In the following we give several constructions of isodual cyclic codes over Fq

of length 2amps, a ≥ 1 using generators of odd-like duadic codes over Fq of
length m an odd integer. The construction of repeated-root isodual cyclic codes
over fields with even characteristic was given in [2]. Here we give constructions
of repeated-root isodual cyclic code over fields with odd characteristic.

Theorem 5.4. Let q be a power of an odd prime p. Suppose there exists a pair
of odd-like Duadic codes Di = 〈fi(x)〉 of odd length m, and α ∈ F

∗
q is a primitive

2a-th root of unity. We then have the following:

i) The cyclic codes Cij and C′
ij of length 2amps over Fq generated by

(x2a−1

− 1)p
s
2a−1∏
k=1

fps

i (α−2kx)

2a−1−1∏
k=0

fps

j (α−2k−1x),

and

(x2a−1

+ 1)p
s
2a−1∏
k=1

fps

i (α−2kx)

2a−1−1∏
k=0

fps

j (α−2k−1x),

i, j ∈ {1, 2}, i �= j, respectively, are isodual codes of length 2amps over Fq.

Repeated-Root Isodual Cyclic Codes over Finite Fields 129

ii) If the splitting modulo m is given by μ−1, the cyclic codes Ci and C′
i of length

2amps generated by

(x2a−1 − 1)p
s

2a∏
k=1

fps

i (α−kx),

and

(x2a−1

+ 1)p
s

2a∏
k=1

fps

i (α−kx),

respectively, are isodual over Fq.
iii) If the splitting modulo m is not given by μ−1, then the dual of the cyclic code

of length 2amps over Fq generated by

(x2a−1 − 1)p
s

2a∏
k=1

fps

i (α−kx),

is equivalent to the cyclic code generated by

(x2a−1

+ 1)p
s

2a∏
k=1

fps

j (α−kx).

Proof.
i) Follows from Theorem 4.5.
ii) Let

Ci = 〈gi(x)〉

= 〈(x2a−1 − 1)p
s

2a∏
k=1

fps

i (α−kx)〉. (5)

If the splitting modulo m is given by μ−1 then f∗
1 (x) = f2(x) and f∗

2 (x) = f1(x),
so that

C⊥
i = 〈h∗

i (x)〉

= 〈(x2a−1

+ 1)∗p
s

2a∏
k=1

fps

j (α−kx)∗〉

= 〈(x2a−1

+ 1)p
s

2a∏
k=1

fps

i (α−kx)〉

= 〈−gi(α
−1x)〉. (6)

By Proposition 4.1(ii), Ci is equivalent to the cyclic code generated by gi(α
−1x).

As the latter code is C⊥
i , Cii is isodual. The same proof is used for codes gener-

ated by gi(x) = (x2a−1

+ 1)p
s ∏2a

k=1 f
ps

i (α−kx).

130 A. Batoul et al.

iii) If the splitting modulo m is not given by μ−1, then f∗
1 (x) = f1(x) and

f∗
2 (x) = f2(x), so that

C⊥
i = 〈h∗

i (x)〉

= 〈(x2a−1

+ 1)∗p
s

2a∏
k=1

fps

j (α−kx)∗〉

= 〈(x2a−1

− 1)p
s

2a∏
k=1

fps

j (α−kx)

= 〈−gj(α
−1x)〉 (7)

By Proposition 4.1(ii) Cj � C⊥
i . The same proof is used for codes generated by

gi(x) = (x2a−1

+ 1)p
s ∏2a

k=1 f
ps

i (α−kx). 	

Example 5.5. For q = 3 and m = 13, 3 ≡ 16 mod 13, so there exist duadic
codes generated by fi 1 ≤ i ≤ 2. Since 13 ≡ 1 mod 4, by Theorem 5.2 there is a
splitting modulo 13 which is not given by μ−1 so that

xm − 1=(x− 1)(x3 + 2x+ 2)(x3 + x2 + x+ 2)(x3 + x2 + 2)(x3 + 2x2 + 2x+ 2)

=(x− 1)u(x)u∗(x)v(x)v∗(x).

We have the following results:

(i) If f1(x) = u(x)u∗(x)) and f2(x) = v(x)v∗(x)), then f∗
i (x) = fi(x), and the

cyclic code of length 26 over F3 generated by g(x) = (x − 1)fi(x)fj(−x)
(i �= j) is an isodual code with minimum distance 6.

(ii) If f1(x) = u(x)v(x)) and f2(x) = u∗(x)v∗(x)), then f∗
i (x) = fj(x), and the

cyclic code of length 26 over F3 generated by g(x) = (x − 1)fi(x)fi(−x) is
isodual with minimum distance 6.

Example 5.6. For q = 5 and m = 11, 5 ≡ 16 mod 11, so there exist duadic
codes generated by fi 1 ≤ i ≤ 2. Since 11 ≡ −1 mod 4, by Theorem 5.2 all
splittings are given by μ−1 and we have

(x11 − 1) = (x− 1)(x5 + 2x4 + 4x3 + x2 + x+ 4)(x5 + 4x4 + 4x3 + x2 + 3x+ 4),

so that (x11 − 1) = (x − 1)f1(x)f2(x) = −(x − 1)f1(x)f
∗
1 (x). Then the code of

length 22 over F5 generated by g1(x) = (x − 1)fi(x)f
∗
i (−x) is an isodual cyclic

code with minimum distance 8, and the code of length 22 over F5 generated by
g2(x) = (x + 1)fi(x)fi(−x) is an isodual cyclic code with minimum distance 6.

Example 5.7. For q = 7 and m = 9, 7 ≡ 1 mod 3, so there exist duadic codes
generated by fi 1 ≤ i ≤ 2. Since 3 ≡ −1 mod 4, by Theorem 5.2 all splittings
are given by μ−1. From (x9 − 1) = (x − 1)(x + 3)(x + 5)(x3 + 3)(x3 + 5), we
have f1(x) = (x + 3)(x3 + 3) and f2(x) = (x + 5)(x3 + 5) so that (x9 − 1) =
(x−1)f1(x)f2(x) = (x−1)f1(x)f

∗
1 (x). Then the cyclic codes of length 18 over F7

generated by (x−1)fi(x)fi(−x) and (x−1)fi(x)fi(−x) are isodual with minimum
distance 4.

Repeated-Root Isodual Cyclic Codes over Finite Fields 131

Example 5.8. For q = 5 ≡ 1 mod 4, from Lemma 3.1 there exists γ ∈ F5 such
that γ2 = −1, e.g. γ = 2. If m = 11, we have

(x11 − 1) = (x− 1)(x5 + 2x4 + 4x3 + x2 + x+ 4)(x5 + 4x4 + 4x3 + x2 + 3x+ 4),

and therefore (x11 − 1) = (x− 1)f1(x)f2(x) and

(x44 − 1) = (x− 1)f1(x)f2(x)(x + 1)f1(−x)f2(−x)(x + 2)f1(2x)f2(2x)(x − 2)

f1(−2x)f2(−2x).

Let g1(x) = (x2±1)f1(x)f1(−x)f1(2x)f1(−2x) and g2(x) = (x2±1)f2(x)f2(−x)
f2(2x)f2(−2x). Then the cyclic codes generated by g1(x) and g2(x) are isodual
cyclic codes over F5.

Example 5.9. For q = 17 ≡ 1 mod 24, from Lemma 3.1 there exists α ∈ F17

such that α16 = 1, e.g. α = 3. If m = 13 ≡ 1 mod 4, there exist a pair of odd
like duadic codes of length 13 generated by f1(x) and f2(x),such that

(x13 − 1) = (x − 1)(x6 + 5x5 + 2x4 + 4x3 + 2x2 + 5x+ 1)
(x6 + 13x5 + 2x4 + 12x3 + 2x2 + 13x+ 1) = (x− 1)f1(x)f2(x).

Then the cyclic codes generated by

(x8 − 1)17
s

8∏
k=1

fps

i (3−2kx)
7∏

k=0

f17s

j (3−2k−1x),

and

(x8 + 1)17
s

8∏
k=1

f17s

i (3−2kx)
7∏

k=0

f17s

j (3−2k−1x),

i �= j, are isodual cyclic codes of length 2413(17)s, s ≥ 1, over F17.

Example 5.10. For q = 17 ≡ 1 mod 24, from Lemma 3.1 there exists α ∈ F17

such that α16 = 1, e.g. α = 3. If m = 19 ≡ −1 mod 4, then there exist a pair
of odd like duadic codes of length 19 generated by f1(x) and f2(x) such that

(x13 − 1)= (x− 1)(x9 + 4x8 + 15x7 + 15x6 + 6x5 + x4 + 12x3 + 2x2 + 3x+ 16)
(x9 + 14x8 + 15x7 + 5x6 + 16x5 + 11x4 + 2x3 + 2x2 + 13x+ 16),

so that x13 − 1) = (x − 1)f1(x)f2(x). Since 19 ≡ −1 mod 4, the splitting μ−1

gives codes Ci and C′
i generated by

(x8 − 1)17
s

16∏
k=1

f17s

i (3−kx),

and

(x8 + 1)17
s

16∏
k=1

f17s

i (3−kx)

1 ≤ i ≤ 2, respectively, are isodual codes of length 2419(17)s, s ≥ 1, over F17.

132 A. Batoul et al.

References

1. Bachoc, C., Gulliver, T.A., Harada, M.: Isodual codes over Z2k and isodual lattices.
J. Algebra. Combin. 12, 223–240 (2000)

2. Batoul, A., Guenda, K., Gulliver, T.A.: On isodual cyclic codes over finite fields
and finite chain rings: Monomial equivalence. CoRR abs/1303.1870 (2013)

3. Guenda, K.: New MDS self-dual codes over finite fields. Des., Codes, Crypt. 62(1),
31–42 (2012)

4. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge
Univ. Press, New York (2003)

5. Jia, Y., Ling, S., Xing, C.: On self-dual cyclic codes over finite fields. IEEE Trans.
Inform. Theory 57(4), 2243–2251 (2011)

6. Jia, Y., Ling, S., Solé, P.: On isodual of cyclic codes over finite fields: Multiplier
equivalence. Preprint

7. Smid, M.H.M.: Duadic codes. IEEE. Trans. Inform. Theory 33(3), 432–433 (1987)

Formal Enforcement of Security Policies

on Parallel Systems with Risk Integration

Marwa Ziadia(�) and Mohamed Mejri

Department of Computer Science,
Laval University, Quebec, Canada

Marwa.ziadia.1@ulaval.ca, Mohamed.Mejri@ift.ulaval.ca

Abstract. In this paper, we survey the problem of mobile security.
Therefore, we introduce a formal technique allowing the enforcement
of security policy on this parallel system. The main idea was to give the
end-user the possibility to choose his mobile security level and to control
it by choosing a risk level. So we adapted this notion to the syntax as
well as the semantic of the used languages. We use an extended version
of process algebra ACP (Algebra of Communicating Process) to specify
the program and we define a logic that goes well with this language, to
specify security policy. An example is given at the end to illustrate the
approach and apply it with a real Android application from Google Play.

Keywords: Mobile security · Security policy · Enforcement · Process
algebra · Risk

1 Introduction

Nowadays, securing our mobile and protecting our private life, requires intellec-
tual effort from user. User has to inquire about applications that he wants to
install, because a set of permissions are displayed each time that he requests to
set up an application. These permissions corresponds to the application’s poten-
tial behavior. At this level, he has no choice, he must accept all the permissions
or to deny it, and in this case the installation will be aborted. Knowing that there
is nothing between this two possibilities without using a third party software,
which is too technical for a classic user.

Usually, when user clicks on the “Accept” button, which is the only permission
decision most he ever get to make, it is for him to evaluate the risk that he will
take, because nothing can guarantee if it is a malicious or benign application.
With the acceptance of installation, user grants to the installed application au-
thorities that it maybe will never need. According to [1], analytic results showed
that from 141, 372 Android applications, 76, 366 (54, 01%) required more per-
mission(s) than that it really need.

This can cause negative impacts, such as leaking of private information, ac-
cessing the system tools, recording audio & video, or surreptitiously calling ex-
pensive phone numbers, etc. Even more, allowing for example an application
to modify or delete the contents of the SD card means that we can give it the

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 133–148, 2015.
DOI: 10.1007/978-3-319-18681-8_11

134 M. Ziadia and M. Mejri

authority to read and write any element of the card, such permission gives ma-
licious applications the ability to replace existing files on the card. To address
this, the idea was to give the end-user the possibility to control and specify his
mobile security level, and this is by choosing a risk level.

Concurrent system consists of programs running in parallel. As can be seen,
in our work, we mean with parallel system; the mobile platform, because concur-
rency or parallelism aspect is inherently existent in this system, that we could
also called it, system of parallel processors. It is through the process algebra that
we are able to specify such system. This mathematical framework studies the
behavior of parallel or distributed systems by algebraic means [2]. This algebraic
rules allow process to be simply described, manipulated and analyzed.

In this paper, we propose an algebraic approach that enforces a security policy
on a given parallel system, based upon a risk evaluation. Our method relies on
some assumptions, that allow us to include the risk notion and adapt it in the
syntax as well as semantics of the used language.

The inputs of our problem are, a security policy ϕ, a process P and a risk
value α (threshold) which is fixed according to the risk level chosen by the mobile
user.

The output is a new process P ′ that respects the security policy and the user
choice.

Untrusted Program P
Process

P

P ′ = P � ϕ

Security policy ϕ
Formula

ϕ

Risk
α

ACPϕ
α

Lα
ϕ

This new process has the following characteristics :

- P ′| ∼ ϕ : P ′ must respect ϕ;
- P ′ ⊆ P : the traces of P ′ are also the traces of P ;
- ∀Q : ((Q| ∼ ϕ) ∧ (Q ⊆ P)) ⇒ Q ⊆ P ′ : all P traces that respect ϕ are also
P ′ possible traces.

This paper is organized as follows: Section 2 is devoted to the definition of the
risk notion and the used languages, with a brief description of related works. In
Section 3, we present the syntax and the semantic of the logic used to specify
security policies. In Section 4, we present as well the syntax and semantic used
to specify processors. Section 5 is dedicated to the description of enforcement
approach and how we integrated the risk to it; whether in security policy or in

Formal Enforcement of Security Policies on Parallel Systems 135

the enforced program. In Section 6, we exemplify the approach with an Android
application and an invented security policy . Our conclusion is given in Section 7.

2 State of the Art

Even though there are diverse promising works that have treated the subject
of security enforcement, the idea of introducing the risk notion in this type of
problem remains original. From these works we can cite ([3], [4], [5], [7], [6], [8]).

[9] was one of the first works that has been oriented to the formalization
of enforcement notion. In his paper, Schneider discusses the enforcement mech-
anism that works by monitoring, i.e. a monitor that supervises an untrusted
program and blocks its execution when a property of security policy is violated.
In [5], a new model of monitor is introduced, it’s based on rewriting in which
the program can be modified at run time. The monitor in this work can correct
the execution of the program that violates the security policy rather than stops
its execution.

Recently in [10], a program rewriting approach has been adopted to automat-
ically enforce a security policy on an untrusted sequential program. The security
enforcement is transformed to a resolution of linear systems, extracted from
a computation of intersection between a process presenting the policy security
and another capturing the sequential program. The basic idea of this approach is
taken from a previous work [11], trying to ameliorate it formally and to prove its
main results and finally to implement it in an environment denoted by FASER.

In [4], Langar and al. proposed an algebraic and automatic approach that
generates from a given program and a security policy a new secure version of
the original program. They defined a process algebra ACPϕ offering an alge-
braic framework for the enforcement and a logic that allows specifying a formal
monitor. The results provide an elegant technique allowing automatically to en-
force security policy on concurrent systems. This technique is restrictive, since
it doesn’t give the final user the possibility to choose his own level of security
and to decide if such action can be executed. An action that violates a property
of the security policy is simply aborted.

In our paper, we start from this work, and we adapt the technique used to
our system (mobile) and to our problem (risk evaluation). So we have relied
on a modified version of ACP ; ACPϕ used in [4], this version is enhanced with
enforcement operation, in order to modify it to cover the aspect of mobile system
as well as the risk concept. So the reader may refer for instance to [4] for more
details.

Starting by the risk, by definition, the risk is closely related to uncertainty. It
is defined as a combination of the probability of an event and its consequences.

Risk = Probability ∗ Impact (1)

Note firstly that in our case, the risk can be considered equivalent to the im-
pact; as we said the risk is a combination of an event (this event is the action

136 M. Ziadia and M. Mejri

executed by a process in our case) and its consequences (the impact of the execu-
tions of action(s)). So this cannot be related any more to the future, because the
occurrence of actions is certain, which means that the probability of occurrence
is equal to 1, and it’s the impact of the execution that is in question. As a result,
the risk is equivalent to the impact.

Risk ≡ Impact (2)

So each action executed has an impact in the target program. Therefore, we
can classify the risk as “low”, “medium”, “high” and “very high” to be compared
after.

As mentioned above, our proposal includes a risk evaluation in order to add
necessary information that allows the control (deny or permit) of actions exe-
cuted by an application. Each application declare a list of permissions that would
be not risky for a user who lack visibility into how applications use his private
data, especially applications coming from unknown or unsafe sources, that could
hide unauthorized access and perform sensitive operations without user consent.
In [12], a new framework that analyzes smartphone application activity is pro-
posed. It detects anomalous behavior of known applications. They show that
the actions like; open(), read(), access() and chmod() are the most used system
calls by malware. So we can consider these actions as risky and which need more
control.

From this definition, we have adapted this concept and integrated the risk
semantically into our algebraic framework.

3 Lα
ϕ: The Specification Logic of Security Policy

In this section, we introduce syntax, semantics and basic properties of our Logic
used to define security policy.
To properly include the risk, we define a logic Lα

ϕ inspired from extended regular
expressions. This logic expresses specific properties for enforcement of security
policy. It is a linear logic which expresses the regular language class with the
possibility of expressing infinite properties. In addition, it allows us to express the
temporal aspect (temporal evolution of a process) and especially we can express
the risk notion in a formula by this logic, besides, it fits well with process algebra
syntax.

Notations
We first present notations adopted to express the syntax and semantics of each
formula. See Table 1.

3.1 Syntax of a Logic Lα
ϕ

We started out from a formula of a simple atomic action and then we used the
basic operations to compose it into more complicated formulas. The syntax of
the resulted Logic Lα

ϕ is presented in Table 2.

Formal Enforcement of Security Policies on Parallel Systems 137

Table 1. Notations

tt Constant boolean that represents true

ff Constant boolean that represents false

A Set of atomic actions

a Action that belongs to the set A
T Set of possible traces constructed from the action of A
ε Empty trace

ξ1.ξ2 Concatenation of two traces ξ and ξ′

α Impact value

Risk() Function that calculates the impact of a process (action(s)).

Table 2. Syntax of Lα
ϕ

ϕ ::= < tt >α (boolean constant)

| < ff >α (boolean constant)

| < a >α (atomic action)

| < ϕ1 ∧ ϕ2 >α (conjunction of two formulas)

| < ϕ1 ∨ ϕ2 >α (dis-junction of two formulas)

| < ϕ1.ϕ2 >α (sequential composition)

| < ϕ∗
1ϕ2 >α (iteration operator)

| < ¬ϕ >α (negation of a formula)

3.2 Semantics of Lα
ϕ

The semantic of Lα
ϕ is defined with the function :

[[−]] : Lα
ϕ −→ T

In the following, we present the semantic followed by the intuitive sense of
each formula:

– [[< tt >α]] = T :
Every trace, with a risk that does not exceed α satisfies tt;

– [[< ff >α]] = ∅ :
No trace satisfies ff , whatever its impact.

138 M. Ziadia and M. Mejri

– [[< a >α]] = {< a >α} :

Only the trace formed from the atomic action a, and which has an impact
that does not exceed α, can satisfy this formula.

– [[< ϕ1 ∧ ϕ2 >α]] = [[< ϕ1 >α1]] ∩ [[< ϕ2 >α−α1]]:

It is equal to the intersection of two sets of traces, such that the sum of
impact caused by ϕ1 and ϕ2, i.e. (α1 + α2) does not exceed α.

– [[< ϕ1 ∨ ϕ2 >α]] = [[< ϕ1 >α]] ∪ [[< ϕ2 >α]] :

It is equal to the union of two sets of traces ϕ1 and ϕ2, such that the risk
produced by ϕ1 or by ϕ2 does not exceed α.

– [[< ϕ1.ϕ2 >α]] = {ξ1.ξ2|ξ1 ∈ [[< ϕ1 >α1]] and ξ2 ∈ [[< ϕ2 >α−α1]]} :

It is a composition of a prefix ξ1 that belongs to the semantic of < ϕ1 >α1

and which has an impact α1 and a suffix ξ2 that belongs to the < ϕ2 >α

semantic and also with an impact that doesn’t exceed α− α1.

–

[[< ϕ∗
1ϕ2 >α]] =

⎧⎪⎪⎨
⎪⎪⎩

[[< ϕ1 >α1]]
∗ ∪ {ξ1.ξ2}| ξ1 ∈ [[< ϕ1 >α1]] and

ξ2 ∈ [[< ϕ2 >α−α1]] if [[< ϕ2 >]] �= ∅

[[< ϕ1 >α1]]
∗ else

(3)

There are two cases for the formula < ϕ∗
1ϕ2 >α that depend on ϕ2 semantic:

• If there are traces that satisfy < ϕ2 >α2 ([[< ϕ2 >α2]] �= ∅, the semantic
will be defined by the composition of a number of traces ξi∈1...n belonging
to [[< ϕ1 >α1]] with a risk lower than α concatenated to a trace ξ2 that
belongs to [[< ϕ2 >α−α1]].

• If there is no trace that satisfies< ϕ2 >α2 ([[< ϕ2 >α2]] = ∅), then a trace
ε that satisfies < ϕ∗

1ϕ2 >α, is equal to a set possibly infinite of traces
ξi∈1...n belonging to [[< ϕ1 >α1]] and with a risk α1 that doesn’t exceed α.

– [[< ¬ϕ >α]] = T \ < ϕ >1−α : the semantics of a formula negation is the
complement of its semantic. This complement of traces must not exceed a
risk equal to 1− α.

4 ACP ϕ
α : The Specification Language of Program

In this section, we introduce syntax, semantics and basic properties of our pro-
cess specification. It is a modified version of ACP (Algebra of Communicating
Processes). Our choice is motivated with the power of this language to describe
interactions, communications and synchronizations between a collection of pro-
cesses.

Formal Enforcement of Security Policies on Parallel Systems 139

4.1 Syntax

The notable difference between ACPϕ
α presented in the previous section and the

ACPϕ used in [4], is the integration of a condition denoted by c, that controls
actions executed by a process. Therefore, a new condition c (considered as a
process) is added to the syntax, to evaluate a comparison of two constants. The
result of this condition is either true or false, depending of the evaluation between
this constants (see Table 3).

Table 3. Syntax of ACPϕ
α

P ::= 1 (Constant representing successful termination)
| δ (Constant representing deadlock)
| a (Atomic action)
| P +Q (Alternative composition)
| P.Q (Sequential composition)
| P ‖γ Q (Parallel composition)
| P |γQ (Communication merge)
| P ∗Q (Iteration operator)
| ∂H(P) (Encapsulation operator, H ⊆ A)
| τI(P) (Abstraction operator, H ⊆ A)
| c (Boolean constant)

Note that the merge operator ‖γ and the communication operator |γ are
parameterized by a communication function γ defined as follows:
A communication function is any commutative and associative function form
A×A −→ A, if :

(1) ∀a, b ∈ A : γ(a, b) = γ(b, a) and
(2) ∀a, b, c ∈ A : γ((a, b), c) = γ(a, γ(b, c)).

We use the restriction and abstraction operators (respectively: ∂H and τI) de-
fined in [4], and we will recall their functionality thereafter.

4.2 Semantic

The operational semantics of ACPϕ
α extended from ACPϕ language is illustrated

in Table 4. We added one new rule (Rc) that treats the risk.

– Ra : this rule indicates that a process P formed by the action a can evolve
by executing this action and finish successfully.

– R+ : This rule indicates that the process P + Q can execute the action a
and becomes P ′ +Q, if and only if P is able to execute the same action and
become P ′.

140 M. Ziadia and M. Mejri

Table 4. Operational semantics of ACPϕ
α

(Ra)
�

a
a−→ 1

(R+)
P

a−→ P ′

P +Q
a−→ P ′ +Q

(R.)
P

a−→ P ′

P.Q
a−→ P ′.Q

(R∗)
P

a−→ P ′

P ∗Q a−→ P ′.(P ∗Q)

(R‖γ)
P

a−→ P ′

P ‖γ Q
a−→ P ′ ‖γ Q

(R|γ)
P

a−→ P ′ Q b−→ Q′

P |γQ
γ(a,b)−→ P ′ ‖γ Q′

γ(a, b) �= δ

(Rϕ
τ)

P
a−→ P ′

τI(P)
τ−→ τI(P ′)

a /∈ I (Rτ)
P

a−→ P ′

τI(P)
τ−→ τI(P ′)

a ∈ I

(R∂H)
P

a−→ P ′

∂H(P)
a−→ ∂H(P ′)

a /∈ H (Rc)
[[c]] ≡ tt P

a−→ P ′

c.P
a−→ P ′

– R. : The sequential composition of two processes P and Q can evolve only
if P can advance.

– R∗: P ∗Q can choose to evolve with P or Q, when P finishes, it still has the
same choice.

– R‖γ : A process P ‖γ Q can advance by executing the action a to become
P ′ ‖γ Q if and only if P is capable to advance with the same action and
becomes P ′.

– R|γ : It is the synchronization operator. In this case, a process in the form
P |γQ can only advance if there are two actions a and b, such that P advance
by executing the action and becomes P ′ and Q advance with the action b
and become Q′and the function γ(a, b) is defined .

– Rϕ
τ : This rule masks internal actions through the abstraction operator τI . A

process of the form τI(P) can advance by executing the silent action τ and
becomes τI(P

′), where I is any set of atomic actions called internal actions:
it abstracts all output action in I by the silent action τ .

– R∂H : This rule permits with the restriction operator to prohibit the ex-
ecution of certain actions by a process. A process of the form ∂H(P) can
advance with the action a and become ∂H(P ′), if and only if P is able to
advance with the same action a.

– Rc : This rule permits a process P to evolve to P ′, if and only if the condition
c is equivalent to true, and P is able to evolve to P ′.

Formal Enforcement of Security Policies on Parallel Systems 141

Table 5. Lα
ϕ Logic translation function

‖ − ‖Lα
ϕ × N −→ ACPϕ

α

‖tt‖i =
∑
b∈A

(b
i
d.b

i
f)

∗ ∑
b∈A

b
i
d.b

i
f + 1

‖ff‖i = δ

‖1‖i = 1

‖δ‖i = δ

‖ < a >α ‖i = (Risk(a) � α).ai
d.a

i
f

‖ < ϕ1.ϕ2 >α ‖i = c1.‖ϕ1‖i. c2.‖ϕ2‖i
‖ < ϕ1 > ∨ < ϕ2 >α ‖i = c1.‖ϕ1‖i + c2.‖ϕ2‖i

‖ < ϕ ∗
1 ϕ2 >α ‖i = c1.‖ϕ1‖ ∗

i .c2.‖ϕ2‖i
‖ < ¬a >α ‖i = (Risk(ac) < α).ai c

d .ai c
f .((

∑
b∈A

b
i
d.b

i
f)

∗ ∑
b∈A

b
i
d.b

i
f + 1)

5 Formal Enforcement of Security Policies with Risk
Integration

As we mentioned in Section 2, to respect the user choice, the security policy
will depend on a security level chosen by the mobile user. So for each level, we
attribute a threshold (α) that limits and controls the program behavior; if there
is an action that exceeds this value, it will be blocked. This threshold will be
“consumed” by the execution of each action in the process.

We recall the reader, that the current paper borrows the main methodology
of enforcement from [4], adding the necessary modifications to reflect its new
concepts.

The idea of control according to the user decision is applied as follows; while
the threshold is not completely consumed by the execution of each action, the
process can advance. Otherwise, if this value is crossed process cannot advance,
that means that actions are blocked.

To formalize this idea, we need first to introduce the following notations:

- Ac : synchronization set, C(A) =
⋃

a∈A
{ad, af , ad, af};

- γ is a communication function, defined as follows:

γ(a|a) =
{
a|a if a ∈ A

⋃
C(A)

δ Else .

- H = Ac

- I =
⋃

μ∈Ac

{μ|μ}

142 M. Ziadia and M. Mejri

First, we modify the controlled process by adding the synchronization actions
that mark the start and the end of the execution of actions by the function �−�
defined in Table 6, where:

– i is an integer used to ensure the freshness of synchronization actions.
– H is a set of trusted functions in A, representing trusted actions introduced

to avoid the translation of synchronization actions [4].

Then, we transform the security policy into a controller process by adding
synchronization actions and we add the condition c that monitors the process,
allowing only the execution of actions that respect the security policy, i.e. which
the risk does not exceed the threshold fixed by the security policy (and taken
from user).
On the other side, we transform the risk to a condition and we insert it to the
monitor denoted by ϕα. This condition will permit or deny the synchronization
of two actions that belong to I.
Then synchronization actions are added also to the controller process via the
function ‖ − ‖ defined in Table 5.

Here, we explain the translation of the logic Lα
ϕ to a controller process illus-

trated in Table 5.

- The formula tt is translated to a process which can synchronize with any
other process.

- The formula ff is transformed to δ (deadlock), view that no process satisfies
ff .

- The formula < a >α is transformed to a monitor ϕα composed from a
boolean condition that control the risk followed by synchronization actions
(ad.af).

- The formula < ϕ1.ϕ2 >α is transformed to two conditions c1 and c2 that
controls respectively the risk of ϕ1 and ϕ2 traces. Notice that c1 and c2 are
calculated with the semantic presented in Section 3.2.

- < ¬a >α: as defined in the semantic of a formula negation, ‖ < ¬a >α ‖ =
T \ {< a >1−α}, this means that this formula is transformed to a process
that synchronizes with any process that begins with any action different to a
(except the action a), and with a risk that does not exceed α (Risk(ac) < α)),
with ac ∈ T \ {a}.

Finally to enforce ϕ on P , the program must be executed in parallel with the
monitor. In order to explain our approach, we give the following simple examples,
without and with risk integration to highlight the difference.
We start with an example without the risk integration. Thus, we suppose the
following inputs:

P = a.b

Formal Enforcement of Security Policies on Parallel Systems 143

Table 6. Lα
ϕ −→ ACPϕ

α Process translation function

�−�ACPϕ
α × N× 2A −→ ACPϕ

α

�1�Hi = 1
�δ�Hi = δ

�a�Hi =

{
a ifa ∈ H ∪ {τ}
ai
d.a.a

i
f Else

�P1.P2�Hi = �P1�Hi .�P2�Hi
�P1 + P2�Hi = �P1�Hi + �P2�i
�P ∗

1 P2�Hi = �P1�H
∗

i �P2�Hi
�P1 ‖γ P2�Hi = �P1�Hi ‖γ �P2�Hi
�∂H′(P)�Hi = ∂H′(�P �H∪H′

i)
�τI(P)�Hi = τI(�P �H∪I

i)
�∂Pϕ(P)�Hi = ∂Hi(τIi(�P �Hi ‖γ ‖Pϕ‖i)

which is a composition of two actions a and b.

ϕ = a

which mean that only the action a is permitted.

We apply the different steps to enforce ϕ on P :

First step, we transform the program to a process by adding the synchronization
actions (using Table 6):

�P �1 = a1d.a.a
1
f .b

1
d.b.b

1
f

Secondly, we transform the policy security to a monitor (process):

‖ϕ‖1 = a1d.a
1
f

The last step is to execute this two processors on parallel:

∂H(τI(a
1
d.a.a

1
f .b

1
d.b.b

1
f ‖γ a1d.a

1
f))

with H = {ad, af , bd, bf , ad, af} and I = {γ(ad, ad), γ(af , af)}

∂H(τI(a
1
d.a.a

1
f .b

1
d.b.b

1
f ‖γ a1d.a

1
f))

τ−→ 〈Rules R‖γ , Rϕ
τ et R∂Havec γ(ad, ad) = ad|ad ∈ I〉

∂H(τI(a.a
1
f .b

1
d.b.b

1
f ‖γ a1f))

a−→ 〈Rules R‖γ , Rϕ
τ et R∂Havec a /∈ H〉

144 M. Ziadia and M. Mejri

∂H(τI(a
1
f .b

1
d.b.b

1
f ‖γ a1f))

τ−→ 〈Rules R‖γ , Rϕ
τ et R∂Havec γ(af , af) = af |af ∈ I〉

∂H(τI(b
1
d.b.b

1
f))

Here, we see that the process cannot execute the action b, view that the action bd
cannot synchronize with its complement bd, so the sub-process b1d.b.b

1
f is blocked

and as consequence, the policy security is respected.
Now, we present the second example, with risk integration.

The same process as above:

P = a.b

A security policy with a risk value equal to 0.6.

ϕ =< a.b >0.6

Which mean that the impact of the execution of the action a followed by the
action b should not pass a risk value equal to 0.6, i.e, the sequential composition
of these two actions is limited by this risk value. Given that we suppose that 0.6
present the value assigned to security level chosen by the user.

First step is to modify the process by limiting each action with synchronization
actions that mark the start and the end of each action

�P � = ad.a.af .bd.b.bf

On the other side, the security policy is transformed to a controller process ϕα.
So we add the complement of synchronization actions used:

‖ϕα‖ = ad.af .bd.bf .

Then, based on the semantics presented, we transform the risk into two condi-
tions :

(Risk(a) ≤ 0.6) and (Risk(b) ≤ 0.6−Risk(a)).

Now to enforce the security policy, both processors must be executed in par-
allel.

∂H(τI(ad.a.af .bd.b.bf |γ (Risk(a ≤ 0.6).ad.af .(Risk(b) ≤ 0.6−Risk(a)).bd.bf))

where I = {γ(ad, ad), γ(af , af), γ(bd, bd), γ(bf , bf)} and
H = {ad, af , bd, bf , ad, af , bd, bf}.

As indicated in the the rule Rc, the action ad can synchronize with ad only and
only if the condition (Risk(a) ≤ 0.6) is true. If this condition is true, the pro-
cess will advance and the two actions can synchronize (which is the case). We
suppose that Risk(a) = 0.4 and Risk(b) = 0.3.

Formal Enforcement of Security Policies on Parallel Systems 145

∂H(τI(ad).a.af .bd.b.bf |γ ((Risk(a) ≤ 0.6).ad.af .(Risk(b) ≤
0.6−Risk(a)).bd.bf)))

τ−→ 〈RulesR‖γ, Rc, Rϕ
τ R∂H where γ(ad, ad) = ad|ad ∈ I〉

∂H(τI(a.af .bd.b.bf |γ (Risk(a) ≤ 0.6).af .(Risk(b) ≤ 0.6−Risk(a)).bd.bf)))

a−→ 〈RulesR‖γ , Rτ R∂H where a /∈ I〉

∂H(τI(af .bd.b.bf |γ (Risk(a) ≤ 0.6).af . (Risk(b) ≤ 0.6−Risk(a)).bd.bf)).

τ−→ 〈RulesR‖γ, Rc, Rϕ
τ R∂H where γ(af , af) = af |af ∈ I〉

∂H(τI(bd.b.bf |γ (Risk(a) ≤ 0.6).(Risk(b) ≤ 0.6−Risk(a)).bd.bf)).

To ensure that bd can synchronize with bd, it is necessary that the condition
(Risk(b) ≤ 0.6−Risk(a)) is equivalent to true, or that it is not the case.

As can be seen, this two examples (with and without the inclusion of risk)
leads to the same result (blocking the action b), except that in the second example
(with the risk integration), dangerous actions wrer blocked according to the user
choice.

6 Example

In this section, we present an example closer to reality, with a famous Android
application called Linked In. This application allows user to make connections,
access professional papers, be informed with personalized news, to view and save
recommended jobs, etc.

In this example, we based on a risk classification that allows to quantify the
risk of each action. This idea is inspired from the classification of Android permis-
sions. According to [13], we see that Google classifies an application permissions
to categories, that we can base on two main ones:

- Normal permissions: with a minimal risk, granted automatically without
user’s explicit approval;

- Dangerous permissions: with a higher-risk that could provide negative ef-
fects, this type of permissions belongs to permissions requested by the ap-
plication.

From this classification, we can classify actions, and for each action we assigns
a meaningful numerical value (0 ≤ α ≤ 1) that presents the potential impact of
an action, and as result, this allow us to control those actions.
Concerning this application, the following permissions are those requested by
the application.

- read contacts rc ;
- write contacts wc ;

146 M. Ziadia and M. Mejri

- read calendar rcalend ;
- precise location (GPS and network-based) rGPS ;
- read call log rcl;
- write call log wcl;
- modify the content of USB storage mUSB ;
- delete the content of USB storage dUSB ;
- open connection oc ;
- receive data from Internet recI ;
- read phone status and identity rid.

We can consider the previous list of actions in the range of normal permissions,
because this application comes from a known source (Google play store), so
we can assign to it a certain level of confidence, but nothing prevents us from
controlling the hidden actions behind this application. We assigned to this class
a risk value 0 ≤ α ≤ 0.2.

The second class with a high risk level (dangerous permissions), it must be
carefully controlled. Actions that can be placed in this class are more sensible
than others and require a very high degree of control. Here, we can think about
permissions related to phone category as making calls without user intervention.
Also permissions related to SMS are very sensible too, as editing and sending
SMS that user can accept without realizing it. As risk value, we assigned to this
class 0, 3 ≤ α ≤ 0, 5.

- read SMS rSMS ;
- edit SMS eSMS ;
- send SMS sSMS ;
- make calls call.

A typical example of where leakage can occur on Android, is an app that
allowed to access personal information (SMS, Video, Contacts, etc) and at the
same time is allowed to access the Internet. In this case, to ensure that confiden-
tial information could not be published or diffused via Internet, we could enforce
a security policy that prevents access to the Internet after reading such informa-
tion from the phone internal memory, and this will depend on the security level
chosen.
Consider the following inputs:
First the process:

P = rSMS .oc + rc.mc

which mean that the process can read SMS and then open connection or read
contacts and then modify it.
P must satisfy the following property:

ϕ = rSMS .(¬oc)

which mean after the action of reading from SMS, the process cannot open
connection.

Formal Enforcement of Security Policies on Parallel Systems 147

As threshold ,we suppose that user chooses a medium level of security.

α = 0, 5

We modify the policy security by inserting the risk :

ϕα =< rSMS .oc >0,5

As wementioned, we suppose that oc (open connection) belongs to a class whose
risk is lower than 0, 2, because it’s among the actions requested by the application,
and rSMS belong to the second class. So, we suppose that Risk(rSMS) = 0, 4 and
Risk(oc) = 0, 2.

The security policy formula is transformed to the monitor via the logic trans-
lation function in Table 5.

rSMSf .(Risk(oc) ≤ 0, 5−Risk(rSMS)).ocd.ocf

The process is transformed as well by the Process translation function to:

�P � = rSMSd.rSMS .rSMSf .ocd.oc.ocf

The enforcement step requires that this two processors run on parallel.

∂H(τI(rSMSd.rSMS .rSMSf .ocd.oc.ocf ‖γ (Risk(rSMS) ≤
0, 5).rSMSd.rSMSf .(Risk(oc) ≤ 0, 5−Risk(rSMS)).ocd.ocf))

where
I = {γ(rSMSd, rSMSd), γ(rSMSf , rSMSf), γ(ocd , ocd), γ(ocf , ocf)}
and
H = {rSMSd, rSMSf , rSMSd, rSMSf , ocd , ocf , ocd, ocf}

Note that this sequence violates the property ϕα, and the program should be
blocked before executing the action open connection.

∂H(τI(rSMSd
.rSMS .rSMSf .ocd.oc.ocf ‖γ

(Risk(rSMS) ≤ 0, 5).rSMSd.rSMSf .(Risk(oc) ≤ 0, 5− Risk(rSMS)).ocd.ocf))

τ−→ 〈Rules Rc, R‖γ , Rϕ
τ and R∂H , γ(rSMSd, rSMSd) = rSMSd|rSMSd ∈ I〉

∂H(τI(rSMS .rSMSf .ocd.oc.ocf ‖γ .ocf .(Risk(rSMS) ≤ 0, 5−Risk(oc)).ocd.ocf))

rSMS−→ 〈Rules R‖γ , Rτ and R∂H where rSMS /∈ I〉

∂H(τI(rSMSf .ocd.oc.ocf ‖γ rSMSf .(Risk(oc) ≤ 0, 5−Risk(rSMS)).ocd.ocf))

τ−→ 〈Rules Rc, R‖γ , Rϕ
τ and R∂H , γ(rSMSf , rSMSf) = rSMSf |rSMSf ∈ I〉

∂H(τI(ocd.oc.ocf ‖γ .(Risk(oc) ≤ 0, 5−Risk(rSMS)).ocd.ocf))

As can be seen, the condition: (Risk(oc) ≤ 0, 5− Risk(rSMS)) ≡ false. The
sub-process ocd.oc.ocf cannot execute the action open connection after reading
sms, and as well the action ocd cannot synchronize with ocd.

148 M. Ziadia and M. Mejri

7 Conclusion and Future Work

In this paper, we present an idea that appears with the need to secure mobiles.
The notion of risk has been crucial throughout this work, it gives a chance to
the end-user to decide and choose its own level of security and to trust more
applications that he installed. So we adopted a formal approach for the enforce-
ment of security policies in parallel systems, based on the risk notion to monitor
the process behavior. The results provides a technique that allows controlling
applications and applying it to real language such as Java.

As future work, we want to implement the proposal approach on Android
device and evaluate the results. It will also be interesting to add the Sandboxing
concept to improve security by isolating applications, which could be based on
a risk classification.

References

1. Johnson, R., Wang, Z., Gagnon, C., Stavrou, A.: Analysis of Android Applications’
Permissions, Software Security and Reliability Companion (SERE-C). In: Software
Security and Reliability Companion (SERE-C), pp. 45–46 (2012)

2. Baeten, J.C.M.: A brief history of process algebra. Theoretical Computer Sci-
ence 335, 131–146 (2005)

3. Langar, M., Mejri, M.: Optimized enforcement of security policies. Foundations of
Computer Security, 37–42 (2005)

4. Langar, M., Mejri, M., Adi, K.: Formal enforcement of security policies on concur-
rent systems. Journal of Symbolic Computation 46, 997–1016 (2011)

5. Jay, L., Lujo, B., David, W.: Edit automata: Enforcement mechanisms for run-time
security policies. International Journal of Information Security 4, 2–16 (2011)

6. Khoury, R., Tawbi, N.: Corrective enforcement of security policies. In: Degano, P.,
Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp. 176–190. Springer,
Heidelberg (2011)

7. Ould-Slimane, H., Mejri, M., Adi, K.: Using edit automata for rewriting-based se-
curity enforcement. In: Gudes, E., Vaidya, J. (eds.) Data and Applications Security
XXIII. LNCS, vol. 5645, pp. 175–190. Springer, Heidelberg (2009)

8. Chabot, H., Khoury, R., Tawbi, N.: Extending the enforcement power of truncation
monitors using static analysis. Computers & Security 30, 194–207 (2011)

9. Schneider, F.B.: Enforceable Security Policies. ACM Trans. Inf. Syst. Secur. 3,
30–50 (2000)

10. Sui, G., Mejri, M.: FASER Formal and Automatic Security Enforcement by Rewrit-
ing by BPA Algebra with Test. Int. J. Grid Util. Comput. 4, 204–211 (2013)

11. Mejri, M., Fujita, H.: Enforcing Security Policies Using Algebraic Approach. New
Trends in Software Methodologies, Tools and Techniques 182, 84–98 (2008)

12. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: Behavior-based Mal-
ware Detection System for Android. In: Proceedings of the 1st ACM Workshop
on Security and Privacy in Smartphones and Mobile Devices, vol. 12, pp. 15–26
(2011)

13. Permission. Android Developer -API Guides- Android Manifest,
http://developer.android.com/guide/topics/manifest/permission-element.html

http://developer.android.com/guide/topics/manifest/permission-element.html

Countermeasures Mitigation for Designing Rich

Shell Code in Java Card

Noreddine El Janati El Idrissi1(�), Said El Hajji1, and Jean-Louis Lanet2

1 Laboratory of Mathematics, Computing and Applications,
Faculty of Sciences, University of Mohammed-V, Rabat, Morocco

janatinoreddine@gmail.com, elhajji@fsr.ac.ma
2 INRIA, LHS PEC,

263 Avenue Général Leclerc, 35042 Rennes,
jean-louis.lanet@inria.fr

http://secinfo.msi.unilim.fr/lanet/

Abstract. Recently, it has been published that Java based smart cards
are still exposed to logical attacks. These attacks take advantage of the
lack of a full verification and dynamically use a type of confusion. Coun-
termeasures have been introduced on recent smart card to avoid exe-
cuting rich shell code and particulary dynamic bound checking of the
code segment. We propose here a new attack path for performing a type
confusion that leads to a Java based self modifying code. Then, to miti-
gate this new attack an improvement to the previous countermeasure is
proposed.

Keywords: Smart Card · Shell Code · Self Modifying Code

1 Introduction

Today most of the smart cards embed a Java Card Virtual Machine (JCVM).
Java Card is a type of smart card that implements the standard Java Card
3.0 [14] Classic Edition or Connected Edition. Such a smart card embeds a
virtual machine, which interprets application byte codes already romized with
the operating system or downloaded after issuance. Due to security reasons,
the ability to download code into the card is controlled by a protocol defined
by Global Platform [11]. This protocol ensures that, the code owner has the
required credentials to perform the particular action.

A smart card can be viewed as a smart and secure container which stores
sensitive assets. Such tokens are often the target of attacks at different levels:
pure software attacks, hardware based, i.e. side channel of fault attacks but
also mixed attacks. Security issues and risks of these attacks are increasing and
continuous efforts to develop countermeasures against these attacks are sought.
The main assets in a smart card are the sensitive data (i.e. the cryptographic
keys) and the code of the program. Often attackers perform cryptanalysis using
side channel to recover the keys, thus break the confidentiality of the keys. The
difficulty of breaking the security properties of these assets are given bellow in
decreasing order:

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 149–161, 2015.
DOI: 10.1007/978-3-319-18681-8_12

150 N.E.J.E. Idrissi et al.

– Data confidentiality,
– Data integrity,
– Code integrity
– Code confidentiality

We have shown in our previous work [7], that it was relatively easy to break the
code confidentiality then the code integrity can be broken leading to the dump
of the memory. Once the memory is read, it is possible to perform memory
carving to gain information on the data and in particular the key containers.
Smart card manufacturers increase the security of their JCVM each in a way
that the published attacks do not work anymore on recent cards. The current
smart cards are now well protected against pure software attacks with program
counter bound checks, typed stack and so on. For such smart cards, we propose
in this paper, a new attack that mitigate the secure jump countermeasure which
avoid developing rich shell code. Firstly, We demonstrate a proof of concept and
then its application with the dump of a card. It is based on separating the control
flow and the basic blocks of a program.

The remaining of the paper is organized as follows: the first section introduces
the Java Card security. The second section presents the state of the art both in
term of attacks and published countermeasures. Then, in the third section, we
propose our contribution for mitigating the control flow countermeasure. Next,
we propose an implementation that performs a type confusion and allows a Java
based self modifying code. Finally, in the last section, we conclude.

2 Java Card Security

Smart cards security depends on the underlying hardware and the embedded
software. Embedded sensors (light sensors, heat sensors, voltage sensors, etc.)
protect the card from physical attacks. While the card detects such an attack, it
has the possibility to erase quickly the content of the EEPROM preserving the
confidentiality of secret data or blocking definitely the card (Card is mute). In
addition to the hardware protection, softwares are designed to securely ensure
that applications are syntactically and semantically correct before installation
and also sometimes during execution. They also manage sensitive information
and ensure that the current operation is authorized before executing it.

The Byte Code Verifier (BCV) guarantees type correctness of code, which in
turn guarantees the Java properties regarding memory access. For example, it is
impossible in Java to perform arithmetic on reference. Thus, it must be proved
that the two elements on top of the stack are of primitive types before performing
any arithmetic operation. On the Java platform, BCV is invoked at load time
by the loader. Due to the fact that Java Card does not support dynamic class
loading, BCV is performed at loading time, i.e. before installing the Converted
Applet(CAP) onto the card. However, most of the Java smart cards do not have
an on-card BCV as it is quite expensive in terms of memory consumption. Thus,
a trusted third party performs an off-card byte code verification and sign it, and
on-card its digital signature is checked.

Countermeasures Mitigation for Designing Rich Shell Code in Java Card 151

Moreover, the Firewall performs checks at runtime to prevent applets from
accessing (reading or writing) data of other applets. When an applet is installed,
the system uses a unique applet identifier (AID) from which it is possible to
retrieve the name of the package in which it is defined. If two applets are in-
stances of classes coming from the same Java Card package, they are considered
belonging to the same context. The firewall isolates the contexts in such a way
that a method executing in one context cannot access any attribute or method
of objects belonging to another context unless it explicitly exposes functionality
via a Shareable Interface Object.

Smart card security is a complex problem with different points of view but
products based on JCVM have passed successfully real-world security evaluations
for major industries around the world. It is also the platform that has passed high
level security evaluations for issuance by banking associations and by leading
government authorities, they have also achieved compliance with FIPS 140-1
certification scheme. Nevertheless implementations have suffered severals attacks
either hardware or software based. Some of them succeeded into getting access to
the EEPROM (code of the downloaded applets) but as far as we know, nobody
succeeded into reversing the code i.e. having access to the code of the VM, the
operating system and the cryptographic algorithm implementations. These latter
are protected by the interpretation layer which denies access to other memories
than the EEPROM.

3 Embedded Countermeasures

There are three main types of attacks on a smart card. The first one is the
software attack [5,9], which provides the cheapest solution to access sensitive
information from the targeted cards. The second one is called side-channel or
observation attack. This technique enables one either to retrieve secret crypto-
graphic keys [8] used during a sensitive operation, or to reverse engineer the code
used during a given operation [17]. The last one is the combined attack where a
physical perturbation may create a logical fault which, in turn, is exploited to
attack a card. We focus, in this paper, on the logical attacks which require the
least knowledge for the attacker and that are the most affordable ones.

Designing a smart card attack must face several problems. The first one is
the complete absence of documentation. The designer works within a black box
approach. The second one is related with the embedded countermeasures. Such a
product must resist to different attacks and several hardware and software frag-
ments are dedicated to mitigate these attacks. The following section is dedicated
to this class of attack and their related countermeasures.

3.1 State of the Art of Attacks Against Java Cards

Logical attacks are based on the fact that the runtime relies on the BCV to avoid
costly tests. Then, once someone find an absence of a test during runtime, it is
possible to perform an attack path. An attack aims to confuse the applet’s control

152 N.E.J.E. Idrissi et al.

flow upon a corruption of the Java Card Program Counter or perturbation of
the data.

Misleading the application’s control flow purposes to execute a shell code
stored somewhere in the memory. The aim of EMAN1 attack [13], explained by
Iguchi-Cartigny et al., is to abuse the Firewall mechanism with the unchecked
static instructions (as getstatic, putstatic and invokestatic) to call mali-
cious byte codes. In a malicious CAP file, the parameter of an invokestatic

instruction may redirect the Control Flow Graph (CFG) of another installed ap-
plet in the targeted smart card. Such an attack leads for the first time to execute
self modifying code in a Java Card. This attack has been mitigated through dif-
ferent countermeasures. EMAN2 [6] attack was related to the return address
stored in the Java Card stack. They used the unchecked local variables to mod-
ify the return address, while Faugeron in [9] uses an underflow on the stack to
get access to the return address.

When a BCV is embedded or if the process requires its usage, installing an ill-
formed applet is impossible. To bypass an embedded BCV, new attacks exploit
the idea of combining software and physical attacks. Barbu et al. presented and
performed several combined attacks such as the attack [3] based on the Java
Card 3.0 specification leading to the circumvention of the Firewall application.
Another attack [2] consist on tampering the APDU that leads to access the APDU

buffer array at any time. They also discussed in [1] about a way to disturb the
operand stack with a combined attack wich gives the ability to alter any method
regardless of its Java context or to execute any byte code sequence, even if it
is ill-formed. This attack bypasses the on-card BCV [4]. In [6], Bouffard et al.
described how to change the execution flow of an application after loading it into
a Java Card. Recently, Razafindralambo et al. [16] introduced a combined attack
based on fault enabled viruses. Such a virus is activated by hitting with a laser
beam, at a precise location in the memory, where the instruction of a program
(virus) is stored. Then, the targeted instruction mutates one instruction with
one operand to an instruction with no operand. Then, the operand is executed
by the JCVM as an instruction. They demonstrated the ability to design a code
in a such way that a given instruction can change the semantics of the program.
And then a well-typed application is loaded into the card but an ill-typed one is
executed.

Hamadouche et al. [12] described various techniques used for designing effi-
cient viruses for smart cards. The first one is to exploit the linking process by
forcing it to link a token with an unauthorized instruction. The second step is to
characterize the whole Java card API by designing a set of CAP files which are
used to extract the addresses of the API regardless of the platform. The authors
were able to develop CAP files that embed a shell code (virus). As they know all
the addresses of each method of the API, they could replace instructions of any
method. In [16], they abuse the on board linker in such a way that the applica-
tion is only made of tokens to be resolved by the linker. Knowing the mapping
between addresses to tokens thanks to the previous attacks, they have been able
to use the linker to generate itself the shell code to be executed.

Countermeasures Mitigation for Designing Rich Shell Code in Java Card 153

3.2 Mitigating the Attacks with Affordable Countermeasures

The objective of a system countermeasure is to detect an attack which occurs
at linking time, run time (e.g. when the byte code transits on the data bus) or
during the execution of another piece of code. Thus, the nature of the counter-
measure is different in terms of:

– protection of variable integrity: instance field, code to be executed, evaluation
stack, execution context, etc.

– protection against control flow execution modification: bypassing a test,
jumping to an unauthorized data area, jumping to an argument instead
of an instruction, etc.

– execution of shell code,
– type confusion, executing an instruction on an object with a given type and

this object is considered in another code fragment to another type.

The integrity of application data is often used in Java Card and is called secure
storage. It mainly consists of a dual storage or a checksum in order to verify
whether the modification of the field is only done through the virtual machine
(VM). Another integrity check concerns the VM structure and in particular
the frame context. Using the EMAN 2 attack, it is possible to modify the return
address in the frame using unchecked local variable indexes. Most of smart cards
available on the web markets might be flooded by the modification of the CFG.
Thus, it is possible to jump into an array which contains any shell code.

To prevente the execution of a shell code, there is the possibility to re-encode
on the fly during the linking phase of the value of byte code. So, if someone trying
to execute an arbitrary array will not be able to obtain the desired behavior. In
such a method the encoded value depends on a dynamic variable, using the JPC

for example as a nonce is enough to avoid any brute force attack for guessing
the scrambled value.

There are lot of possibilities to protect the data and the execution of a code
into the VM. Unfortunately, if all of them are activated during the execution
of an application, the performance of the smart card will drastically decrease
reaching an unacceptable level. For that reason, most of the smart cards available
on web market implement the bound check counter measure which has been
demonstrated as efficient enough to mitigate any exploitable shell code.

3.3 Checking the Jump Boundaries

An affordable countermeasure against the execution of shell code is to verify if
the code is still executing within the boundaries of the current method. For each
method, the system maintains several information like maxJPC. So, the domain
of the JPC of a method belongs to {0..maxJPC}. An attack like the EMAN2
presented in the previous section, modifies the return address such that as it
returns from method f() the control is transferred to the shell code instead
of the caller. But the execution of the shell code is done within the execution
context of the caller as shown Figure 1. In such a case, when the shell code ends

154 N.E.J.E. Idrissi et al.

with its own return instruction, it goes back to the caller of the caller of the
method f(). The shell code can not be embedded within the method f() and
thus is implemented as an array stored in a different area of the method.

Fig. 1. Description of execution context

A naive solution should be to check if the value of JPC belongs to its domain
as shown in the code fragment of the Listing 1.1.

Listing 1.1. Check the boundaries for each instruction

i n t16 BC pop(void)
{

vm sp−−;
vm pc += 1 ;
i f (vm pc > maxJPC)

return BC SECURITY() ;
return ACTION NONE;

}
This increases the size of each byte code of 16 bytes on an ARM7 architecture.

The original instruction requires 44 bytes. The increase for each instruction is
around 36% which is too much for such a small device. The trade off is to check
only the jump destination while the control flow is transferred. Thus, only the
exit of a basic block will be checked, reducing the overhead. The exit instructions
belong to the set {if xx yy, goto yy} with yy having the value wide or not,
depending on the domain of the offset coded on a byte or a short. The term
xx has the values type,ne, eq, lt, ge, gt. The overhead is drastically lower
impacting only a subset of the instruction set. On the Oracle Purse application
it represents only 4% of overhead on the same architecture. This countermeasure
is affordable and is able to detect that the control flow has been transferred to
a shell code if this one requires a branch.

Countermeasures Mitigation for Designing Rich Shell Code in Java Card 155

It does not prevent to jump to a shell code but restrict the semantics of
the shell code to a linear code. In particular no loop is available, no condition
evaluation and so on. As an effect, it becomes impossible to use a shell code for
dumping the memory.

4 Mitigating the Control Flow Countermeasures

Two solutions are possible to bypass the countermeasure. Both of them are
related to the non completeness of the countermeasure. The first one is to use
the exception mechanism to transfer the control flow and data to the caller.
It requires that the caller rebuilts the control flow using the catch mechanism
of Java. Thus, the exception object is propagated to the caller if a handler is
present, it can take decision using the reason embedded in the exception object.
The second possibility is to simply use the return mechanism of Java if correctly
handled. We have chosen the second but any avatar using the exception can get
the same result.

The first step consist in implementing an EMAN2 as described by Bouffard
et al. [5]. This attack abuses the instructions that access the local stack area1

in order to write outside the domain of the locals. The authors succeeded in
modifying the return address. When the return instruction is executed, it leads
to a controlled execution flow modification.

A fragment of the EMAN2 exploit is shown in the Listing 1.2. The described
function contains two parameters (the class instance, this, and the address pa-
rameter) and no local variable. In this function, the sload 1 operation pushes
the value of address parameter onto the Java Card stack. The following oper-
ation, sstore 4, stores the last pushed short value into the local variable 4.

Listing 1.2. Stack overflow into a Java Card.

pub l i c void updateReturnAddress (shor t address) {
02 // f l a g s : 0 max stack : 2
20 // nargs : 2 max loca l s : 0
16 01 s load 1 // push address from the l o c a l 1
29 03 s s t o r e 4 // STACK OVERFLOW!
7A re tu rn // Jump to the s h e l l c o d e
}

As the function’s stack contains only two elements into the locals part, the
authors made a stack overflow from the local variable area to set up the return
address2 by a specific value. The state of the Java Card stack is presented into

1 As defined in the Java Card specification [14], accessing to the local variable is done
by the aload, astore, sload and sstore instructions.

2 On the evaluated smart cards, the references are encoded on 2-byte as short values.

156 N.E.J.E. Idrissi et al.

the Figure 2 at left. For the current frame, we find first the arguments of the
method and then the locals variables. Often, a system area is used to be able to
retrieve the state of the caller. We have found some cards where the system area
is not contiguous with the locals and the stack as shown in the Figure 2 right.

Fig. 2. Stack

4.1 Principle of the Control Flow Extraction

The objective of the attack is to split the original code fragment that we want to
execute even in presence of the countermeasure into several basic blocks. Then,
an instruction sspush value is inserted and the value is the variable that is
evaluated at the beginning of the next basic block. An instruction sreturn fin-
ishes each of the basic block. All these basic blocks are stored consecutively into
an array. The control flow is then assumed by a specific method controlFlow().
The CFG is implemented into this method which contains only decision and call
to the dummy() method. This method plays only the role to be the context ex-
ecution of the shell code and just invokes the method shellCodeLauncher().
This latter is the one patched thanks to the EMAN2 attack.

Once the shellCodeLauncher() ends its execution, it transfers the control
flow to one of the basic block stored into the array. At the end of the shell code
the return instruction is executed leading to transfer the control flow to the
method controlFlow() as shown in Figure 3. It is important to notice that the
execution context of the shell code is the dummy method and not the method
shellCodeLauncher().

With such an architecture, illegal code is executed in the shellCode method
while the CFG is managed by the controlFlow method.

4.2 Parameters Exchange between the Controller and the Shell
Code

We have seen how retrieving data from the shell code using simply the value
pushed on top of the stack and send back to the caller. To provide input data
to any of the basic blocks stored into the array, we can use the caller context

Countermeasures Mitigation for Designing Rich Shell Code in Java Card 157

Fig. 3. Control flow derivation

i.e. the argument of the dummy method. The number of argument of the dummy
method must be the max argument of all the basic blocks for each type of data.

For example, if the shell code is made of three basic blocks requiring the
following data: BB1 = short, byte, BB2 = byte, byte, BB3 = ref, short, byte the
maximum of generic argument of dummymethod is 4 defined as L0 = short, L1 =
byte, L2 = byte, L3 = ref . Note that BB3 will be called with a reordering of its
arguments:BB3 = short, byte, ref . Then the argument used by each basic blocks
will be the following BB1 = L0, L1, BB2 = L1, L2, BB3 = L0, L1, L3. For each
basic block, the unused variables are set to their default Java value.

The first parameter of the dummy method is the offset to jump into the shell
code array. In the code fragment given in the Listing 1.3, the first call in the
evaluation condition is for the first segment of the shell code with the related
parameters, the size of the first segment (n) is then added at the first parameter
of the second segment leading to a call to BB2. The size of the first and the
second (m) is then used to call the third segment.

Listing 1.3. Calling convention of the basic blocks

. . .
i f (dummy (arAdd , L 0 , L 1 , 0 , nu l l)) // imp l i c i t c a l l to BB1
dummy (arAdd+n , L 0 , L 1 , L 2 , nu l l) ; // imp l i c i t c a l l to BB2
e l s e
dummy (arAdd+m, L 0 , 0 , L 2 , L3) ; // imp l i c i t c a l l to BB3
}

The only constraint is that the order of the parameters of the dummy method
must be strictly the same as the method shellCodeLaucher.

158 N.E.J.E. Idrissi et al.

5 Experiments: The Java Self Modifying Code Revisited

We use our method to execute polymorphic code, i.e. a code that modifies itself
like a virus to be able to execute illegal instruction. This shell code is able to
completely dump the card memory even in countermeasure presence.

5.1 Type Confusion Exploitation

The idea is to use in the controlFlowmethod an array that can be manipulated
with read and write instructions and the shell code that execute the array. In
the shell code, we use the instruction getstatic s that retrieves the value of
a short at the given index as shown in 1.4. The value of the index is an ar-
gument of the instruction and cannot be incremented directly by the method.
The parameter of the instruction is an index in the constant pool before the link
resolves the token and becomes inside the card an offset, or reference depending
to the implementation.

Listing 1.4. Simple shell code to dump the memory

7 pub l i c vo id getMyAddress (){
8 // f l a g s : 0 max stack : 1
9 // nargs : 0 max loca l s : 0
10 7D 00 00 g e t s t a t i c s 2
11 78 s r e tu rn
12 }
The corresponding value in the shell code array is [7D, 00, 00, 78]. Executing

this shell code retrieves the content of the memory at the address 0x0000. The
controlFlow method has to manage the value of the address. In this basic
example, the input data are only the offset in the array and the return value of
the basic block must be stored in input-output buffer to be sent to the reader.
The address to be modified is the content of the shell code array at offset 1 for
the high byte of the address and 2 for the low one. The aim is to write in the
input output buffer 128 bytes of memory.

Listing 1.5. Calling the shell code with parameters and retrieving return value

1 public void controlFlow (APDU apdu , byte [] bu f f e r , short arAdd){
2 short bo f f=0x00 ;

3 for (short i =0; i<=0x7F ; i++){
4 short x=dummy (arAdd) ;

5 Ut i l . s e tShor t (bu f f e r , bo f f , x) ;

6 i f (s h e l l c o d e [2]==(byte)0xFF){
7 s h e l l c o d e [2]=(byte)0 x00 ;

8 s h e l l c o d e [1]++);}
9 else { s h e l l c o d e [2]+=2;}

10 bo f f=(short) (bo f f +2);

11 }
12 apdu . setOutgoingAndSend ((short) 0x00 , bo f f) ;

13 }

Countermeasures Mitigation for Designing Rich Shell Code in Java Card 159

In the Listing 1.5 of the controlFlowmethod at line 4 we get the content of the
memory and at line 5, we store it in the buffer. At line 9, we increase the value
of the address to be dumped, and from line 6 to 8, we propagate the carry.

5.2 Completeness of the Countermeasure

We have demonstrated that such a counter measure is inefficient due to its
incompleteness. The objective of the initial countermeasure was to detect the
execution of a shell code outside its original position by checking the destination
branch. Thus the current counter measure encompasses only the set of intra pro-
cedure instructions (i.e. goto, if, jsr). It must be extended to the set of intra
procedure instructions which is more complicated. The VM has the information
about the minJPC and the maxJPC which is enough to check destination branch
within the boundaries.

For intra procedure instructions the VM needs to know while building or
destroying the frame if the JPC belongs to a valid method. A valid method JPC

depends on how methods are stored within the class. One can suggest to define
the boundaries of the method pool but if the method is inherited, the check must
be done with the mother class and not the current one. Moreover the method
must be allowed to be called according to the current instance. This is threaten
naturally by the invoke instruction while building the frame, no new check is
required. The return instruction is more difficult to handle but one invariant at
least must hold: at the destination the previous instruction must be an invoke

instruction.

Listing 1.6. Deleting the frame

1 bool re leaseFrame (v a lu e t ∗ r e t v a l)
2 { /∗ mark t h i s frame as f r e e ∗/
3 th r a c t i v e−>curr frame−>method = NULL;
4 i f (t h r a c t i v e−>curr frame−>prev == NULL)
5 return f a l s e ;
6 /∗ update l i n k po i n t e r s ∗/
7 th r a c t i v e−>cu r r f rame = th r a c t i v e−>curr frame−>prev ;
8 t h r a c t i v e−>curr frame−>next = NULL;
9 /∗ copy re turn va lue in case i t e x i s t s ∗/

10 ∗ r e t v a l = ∗(−−vm sp) ;
11 /∗ update SP and PC ∗/
12 vm sp = th r a c t i v e−>curr frame−>sp ;
13 i f (t h r a c t i v e−>curr frame−>pc − 3 == BC invoke){
14 vm pc = th r a c t i v e−>curr frame−>pc ;
15 return t rue ;}
16 else return f a l s e ;
17 }

The check of the invariant can be done by the method that restores the pre-
vious frame as shown in Listing 1.6. At line 13, we verify whether the generic
invoke returns true, otherwise, the caller must handle the security problem.

160 N.E.J.E. Idrissi et al.

The overhead occurs only while retrieving the previous instruction and it en-
sures the completeness of the countermeasure.

6 Conclusion and Future Works

In this paper, we have demonstrated that a well known countermeasure against
shell code execution can be bypassed if not all the instructions are covered by
the dynamic checks. We have shown the possibility to extract the control flow
and to generate a shell code that corresponds to any executable program. We
use the method parameter i.e. its signature to provide input and recover data
from the shell code. The control program can use a type confusion to execute a
rich shell code, using self modifying code. As a proof of concept, we developed a
program with its controller that fills an array that is executed by the shell code.
We have been able to dump entirely the memory.

In the future works, we will develop a program to automatically extract the
controller and the shell code for any program. then, we expect to be able to
reverse the content of the dumped memory by using a memory carving program
which is under development.

References

1. Barbu, G., Duc, G., Hoogvorst, P.: Java Card Operand Stack: Fault Attacks, Com-
bined Attacks and Countermeasures. In: Prouff [15], pp. 297–313

2. Barbu, G., Giraud, C., Guerin, V.: Embedded Eavesdropping on Java Card. In:
Gritzalis, D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IFIP AICT, vol. 376,
pp. 37–48. Springer, Heidelberg (2012)

3. Barbu, G., Hoogvorst, P., Duc, G.: Application-Replay Attack on Java Cards:
When the Garbage Collector Gets Confused. In: Barthe, G., Livshits, B., Scan-
dariato, R. (eds.) ESSoS 2012. LNCS, vol. 7159, pp. 1–13. Springer, Heidelberg
(2012)

4. Barbu, G., Thiebeauld, H., Guerin, V.: Attacks on Java Card 3.0 Combining Fault
and Logical Attacks. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.)
CARDIS 2010. LNCS, vol. 6035, pp. 148–163. Springer, Heidelberg (2010)

5. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.L.: Combined Software and Hardware
Attacks on the Java Card Control Flow. In: Prouff, E. (ed.) CARDIS 2011. LNCS,
vol. 7079, pp. 283–296. Springer, Heidelberg (2011)

6. Bouffard, G., Iguchi-Cartigny, J., Lanet, J.L.: Combined Software and Hardware
Attacks on the Java Card Control Flow. In: Prouff [15], pp. 283–296

7. Bouffard, G., Lanet, J.L.: Reversing the operating system of a java based smart
card. Journal of Computer Virology and Hacking Techniques 10(4), 239–253 (2014),
http://dx.doi.org/10.1007/s11416-014-0218-7

8. Carlier, V., Chabanne, H., Dottax, E., Pelletier, H.: Electromagnetic Side Channels
of an FPGA Implementation of AES. IACR Cryptology ePrint Archive 2004, 145
(2004)

9. Faugeron, E.: Manipulating the frame information with an underflow attack. In:
Francillon and Rohatgi [15], pp. 140–151

http://dx.doi.org/10.1007/s11416-014-0218-7

Countermeasures Mitigation for Designing Rich Shell Code in Java Card 161

10. Francillon, A., Rohatgi, P. (eds.): CARDIS 2013. LNCS, vol. 8419. Springer, Hei-
delberg (2014)

11. GlobalPlatform: Card Specification. GlobalPlatform Inc., 2.2.1 edn. (January 2011)
12. Hamadouche, S., Lanet, J.L.: Virus in a smart card: Myth or reality? In: Cheng,

L., Wong, K. (eds.) Journal of Information Security and Applications, vol. 18(2-3),
pp. 130–137. Elsevier (2013)

13. Iguchi-Cartigny, J., Lanet, J.L.: Developing a Trojan applets in a smart card.
Journal in Computer Virology 6(4), 343–351 (2010)

14. Oracle: Java Card 3 Platform, Virtual Machine Specification, Classic Edition. No.
Version 3.0.4, Oracle, Oracle America, Inc., 500 Oracle Parkway, Redwood City,
CA 94065 (2011)

15. Prouff, E. (ed.): CARDIS 2011. LNCS, vol. 7079. Springer, Heidelberg (2011)
16. Razafindralambo, T., Bouffard, G., Lanet, J.-L.: A Friendly Framework for Hidding

fault enabled virus for Java Based Smartcard. In: Cuppens-Boulahia, N., Cuppens,
F., Garcia-Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 122–128. Springer,
Heidelberg (2012)

17. Vermoen, D., Witteman, M.F., Gaydadjiev, G.: Reverse Engineering Java Card
Applets Using Power Analysis. In: Sauveron, D., Markantonakis, K., Bilas, A.,
Quisquater, J.-J. (eds.) WISTP 2007. LNCS, vol. 4462, pp. 138–149. Springer,
Heidelberg (2007)

Weaknesses in Two RFID Authentication

Protocols

Noureddine Chikouche1(�), Foudil Cherif2, Pierre-Louis Cayrel3,
and Mohamed Benmohammed4

1 Computer Science Department, University of M’sila, Algeria
2 Computer Science Department, LESIA Laboratory, University of Biskra, Algeria

3 Laboratoire Hubert Curien, UMR CNRS 5516, France
4 LIRE Laboratory, University of Constantine 2, Algeria

chiknour28@yahoo.fr

Abstract. One of the most important challenges related to Radio Fre-
quency Identification (RFID) systems is security. In this paper, we an-
alyze the security and performance of two recent RFID authentication
protocols based on two different code-based cryptography schemes. The
first one, proposed by Malek and Miri, is based on randomized McEliece
cryptosystem. The second one, proposed by Li et al., is based on Quasi
Cyclic-Moderate Density Parity Check (QC-MDPC) McEliece cryptosys-
tem. We provide enough evidence to prove that these two RFID authen-
tication protocols are not secure. Furthermore, we propose an improved
protocol that eliminates existing weaknesses in studied protocols.

Keywords: McEliece cryptosystem · RFID · Authentication protocol ·
Desynchronization attack · Traceability attack

1 Introduction

Among the systems which were developed quickly during the last years, we can
note those of Radio Frequency Identification (RFID), these are used in various
domains (e.g. access control, e-health,...). RFID is a technology without con-
tact and it makes possible to identify an object. The typical RFID systems are
comprised of three main components:

1. The RFID tag consists of a microchip that stores data and a coupling
element, such as an antenna, to communicate via radio frequency.

2. The RFID reader is a device which communicates with tags via radio
waves.

3. The server (or back-end) is a centralized place that hosts all data regarding
access permissions and may be consulted by the reader.

The security is one of the most important challenges related to RFID systems.
The communication channel between the tag and the reader in RFID technology
is insecure, which makes it open in front of active and passive attacks. In order to
have secure authentication protocols, it is important that a RFID authentication
protocol requires security and privacy properties, such as:

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 162–172, 2015.
DOI: 10.1007/978-3-319-18681-8_13

Weaknesses in Two RFID Authentication Protocols 163

– Mutual Authentication: A RFID authentication protocol achieves mutual
authentication, that is to say, it achieves tag’s authentication and the reader’s
authentication.

– Untraceability: The tag is untraceable if an intruder cannot tell whether
he has seen the same tag twice or two different tags [4].

– Desynchronization Resilience: This property specifies for RFID proto-
cols that update a shared secret before terminating the protocol. We can de-
fine this property as follows: at session (i), the intruder can block or modify
the exchanged messages between the reader and the tag. In the next ses-
sion, if the authentication process fails, then the tag and the reader are not
correlated and this protocol does not achieve desynchronization resilience.

In a survey of RFID authentication protocols, we can find various protocols de-
veloped using different schemes of error-correcting codes, such as [2,13,3,12,6,5].
This work is articulated around the security analysis of two recent RFID authen-
tication protocols. The first one, proposed by Malek and Miri [6], is based on
randomized McEliece cryptosystem. The second one, proposed by Li et al. [5], is
based on Quasi Cyclic-Moderate Density Parity Check (QC-MDPC) McEliece
cryptosystem.

The rest of this paper is structured as follows: section 2 presents the basic
concepts of code-based cryptography. Section 3 analyzes the Malek and Miri’s
protocol. We analyze the Li et al. protocol in section 4. In section 5, we give
an improved version of Malek and Miri protocol. Finally, the paper ends with a
general conclusion.

2 Preliminaries

2.1 Code-Based Cryptography

Code-based cryptography allows the construction of different schemes (like
public-key encryption scheme, identification scheme, etc.). The encryption and de-
cryption are high-speed and do not require any crypto-processor. Despite those
advantages, the major problem was the size of public key (for more information
see [11]). Let C(n, k, t) be a binary linear code, where n is length, k is dimension
(k and n are positive integers and k < n). C is a t-error correcting linear code,
where t =

⌊
d−1
2

⌋
. The minimum distance d is the smallest weight of any non-zero

codeword in the code. An example of parameters (n, k, t) = (2048, 1278,70), the
public key size was about 2.5 Megabits. Recently, code-based cryptosystems were
presented with small key sizes, for example [1] and [8].

2.2 Randomized McEliece Cryptosystem

The McEliece cryptosystem [7] is the first public key cryptosystem using alge-
braic coding theory. The security of this cryptosystem is based on two standard
computational assumptions: the syndrome decoding (SD) problem is hard, and
the public-key is indistinguishable.

164 N. Chikouche et al.

Nojima et al. in [10] prove that padding the plaintext with a random bit-string
provides the semantic security against chosen plaintext attack (IND-CPA) for
the McEliece cryptosystem with the standard assumptions. A McEliece cryp-
tosystem has the following components:

– Key Generation: Randomly generates a k × n generator matrix G′ of a
binary Goppa code C. Randomly generates a n×n binary permutation matrix
P and a k× k binary invertible matrix S′, then computes G = S′G′P , which
is another valid generator matrix. The private key is (S′,G′, P,A(.)), where
A(.) is a polynomial-time decoding algorithm. The public key is (G, t).

– Encryption: Randomly generates an error vector e ∈ F
n
2 of weight wt(e) ≤

t, computes the codeword [r ‖ m]G, where r ∈ F
k1
2 is a random string and

m ∈ F
k2
2 is the plaintext. The dimension k is equal to k1 + k2, with k1 < bk

and b < 1. The ciphertext c′ ∈ F
n
2 is c′ = [r ‖ m]G ⊕ e.

– Decryption: Given a ciphertext c′, computes z = c′P−1, and then applies
the polynomial-time decoding algorithm y = A(z) and outputs [r ‖ m] =
yS′−1. The plaintext m is the last k2 bits of the decrypted string.

2.3 McEliece Cryptography Based on QC-MDPC Codes

Quasi Cyclic-Moderate Density Parity Check (QC-MDPC) code is a linear block
code with quasi-cyclic construction (see [9]) which permits to reduce the public
key size.

– Quasi-cyclic code: An C(n, k)-code of length n = �n0 is a quasi-cyclic
code of order � (and index n0) if C is generated by a parity-check matrix
H = [Hi,j] where each Hi,j is an �× � circulant matrix.

– MDPC codes: An C(n, k, w)-MDPC code is a linear code of length n and
co-dimension k which stands a parity-check matrix of row weight w.

The McEliece cryptosystem based on QC-MDPC codes works as follows:

– Key Generation: generate C(n, k, w)-QC-MDPC code. Select a vector h ∈
F
n
2 ,of row weight w uniformly at random, as the initialization factor of gen-

erating H ∈ F
k×n
2 . The parity check matrix H is obtained from k − 1 cyclic

shifts by h. The matrix has the form H = [H0|H1|...|Hn0−1], where row

weight of Hi is wi and w =
∑n0−1

i=0 wi. A generator matrix G = (I|Q) can be

derived from the H . Note that the public key for encryption is G ∈ F
(n−k)×n
2

and the private key is H .

Q =

⎛
⎜⎜⎝

(H−1
n0−1.H0)

T

(H−1
n0−1.H1)

T

· · ·
(H−1

n0−1.Hn0−2)
T

⎞
⎟⎟⎠

– Encryption: To encrypt the message m ∈ F
n−k
2 , randomly generate e ∈ F

n
2

of wt(e) ≤ t. The ciphertext c′ ∈ F
n
2 is c′ = mG ⊕ e.

– Decryption: Let AH a decoding algorithm equipped with the sparse parity
check matrix H . To decrypt c′ into m, compute mG = AH(mG ⊕ e), and
extract the plaintext m from the first n− k positions of mG.

Weaknesses in Two RFID Authentication Protocols 165

2.4 Notations

To describe informally many authentication protocols, We, afterward, use the
following notations:

T,R the tag and the reader, respectively
A the adversary
h(.) hash function
t integer numbers
e error vector of length n and weight wt(e) ≤ t
id the tag’s identifier
idR the reader’s identifier
r, r′ random numbers with length k1
rold,rnew two secret synchronization values
p random vector with length n
v random vector with length k
Ap circulant matrix generated from p

3 Malek and Miri’s Protocol

3.1 Review of the Malek and Miri’s Protocol

Malek and Miri proposed in [6] a lightweight mutual RFID authentication proto-
col based on randomized McEliece public-key cryptosystem. Let’s note G =

[G1

G2

]
,

with G1 and G2 two matrices with k1 ×n and k2 ×n, respectively. This protocol
uses the following principle:

c′ = [r ‖ m]G ⊕ e = rG1 ⊕mG2 ⊕ e (1)

In the initialization phase, the trusted center (e.g. server) selects a binary
string id. Then it generates a random string r that uniquely identifies the tag
with id. The trusted center encrypts [r ‖ id] using the randomized McEliece
cryptosystem. The trusted center outputs rG1⊕ idG2. Then it stores {rG1⊕ idG2,
id} in the tag’s memory. The data stored in the reader are private matrices and
a database composed of {idR, r, id}, where idR is the reader’s identifier. We note
that in this protocol, the tag can communicate with a set of authorized readers.
So, it is possible that different parameters for different readers can be stored in
the tag’s memory.

The authentication phase is depicted as follows (see Fig. 1):

– The reader R sends the query message with idR to the tag T .
– T searches the values {rG1 ⊕ idG2, id} corresponding to idR. If T finds the

corresponding values, it generates a random error vector e. T computes y =
rG1 ⊕ idG2 ⊕ e and sends it to R.

– R decrypts y to retrieve (r, id) and e and verifies the received values with id, r
stored in the database. If the tag’s authentication is successful, R generates
a new random vector p ∈ F

n
2 and computes a circular matrix Ap from p.

It sends the response set {d0, d1} to T, where d0 = rG1 ⊕ idG2 ⊕ p and
d1 = id⊕ h(eAp), where h(.) ∈ F

k2
2 is an hash function.

166 N. Chikouche et al.

Fig. 1. Malek and Miri’s Protocol [6]

– T computes d0 ⊕ rG1 ⊕ idG2 = p and uses its value to generate a circulant
matrix Ap, in order to compute eAp. It then, verifies that d1 ⊕ h(eAp) = id.
When the reader’s authentication is successful, the tag requests OK to R.

– R generates a new random r′ and computes y′ = r′G1 ⊕ idG2 ⊕ e. It sends it
to T .

– T refreshes its memory content by replacing {rG1 ⊕ idG2, id}with {y′ ⊕ e, id}
and terminates this session.

3.2 Desynchronization Attack

We assume that the adversary A has a complete control over the channel of
communication between the reader R and the tag T . It can intercept any message
passing through the network, modify or block messages, and it can also create
new messages from its initial knowledge.

Fig.2 shows the message transmission of the desynchronization attack, and
the following is a detailed description of each step:

1. We suppose that the system is processing normally, steps of the tag’s au-
thentication and the reader’s authentication are successful. T requests OK
to R and the adversary intercepts the messages transmitted between R
and T .

Weaknesses in Two RFID Authentication Protocols 167

Fig. 2. Desynchronisation attack on Malek and Miri’s protocol

2. R generates a new random r′, computes y′ = r′G1 ⊕ idG2 ⊕ e, and sends it.
R updates the value of r by r′.

3. A blocks the message y′, generates a vector f ∈ F
n
2 , and computes y′ ⊕ f . It

sends it to T .
4. T updates the stored data {rG1 ⊕ idG2, id} by {y′ ⊕ f ⊕ e, id} and termi-

nates the session. The new data stored is {r′G1 ⊕ idG2 ⊕ f, id}.
5. In the next run of the protocol, R sends the query message with idR to T .
6. T searches {r′G1⊕ idG2⊕ f, id} corresponding to idR. T generates a random

error vector e and computes y = r′G1 ⊕ idG2 ⊕ f ⊕ e and sends it to R.
7. After decrypting y, the received id′′, r′′ is different from id, r′ (stored in the

database). Thus, the tag’s authentication has failed.

There is another scenario to realize the attack on desynchronization. When
the intruder blocks the last message, the random value is updated in back-end
and not modified in the tag. Consequentially, the tag and the reader are not
correlated and this protocol does not achieve the desynchronization resilience
property.

4 Li et al.’s Protocol

4.1 Review of the Li et al.’s Protocol

Li et al. proposed in [5] a mutual RFID authentication based on the QC-MDPC
McEliece cryptosystem.

In the initialization phase, the trusted center (e.g. server) generates the ini-
tialization vector h′, saved it in T and the database of R with identifier id. The
steps of authentication phase are as follows (see Fig. 3):

– R generates a random vector v and queries T .

168 N. Chikouche et al.

Fig. 3. Li et al.’s Protocol [5]

– After receiving v, T generates a randomly a error vector e, and then utilizes
the vector h′ to create public-key matrix G for encryption. Compute c′ =
idG ⊕ e and h1 = h(p ‖ e), then sends c′ and h1 back to the reader.

– After receiving authentication message from R and transmitting them to
back-end database, R performs a decoding algorithm with private key ma-
trices and identifies the error vector e as well as id. From id, the server
retrieves the corresponding value of id. It computes h(p ‖ e) and compares
it with h1. If they are equal, R computes h2 = h(e) and sends it to T .

– T would compute h(e), if h(e) = h2, then the object of mutual authentication
is achieved, authentication is successful, otherwise, the reader’s authentica-
tion has failed.

4.2 Traceability Attack

In the McEliece cryptosystem, the parameters (n, k, t) are public. With these
information, and particularly, the minimum distance d and the Hamming weight
t; the adversary can attempt to trace the tag with the following scenario:

At session (i), the adversary intercepts (c′i = idG⊕ei) and saves it. At session
(j), it intercepts (c′j = idG ⊕ ej). The intruder computes: c′i ⊕ c′j = idG ⊕ ei ⊕
idG ⊕ ej

We have ei �= ej and the identifier of the tag id is static in all sessions, this
implicates: c′i⊕ c′j = ei⊕ ej. The Hamming weight of (c′i⊕ c′j) is less than 2t+1,
and the codeword idG is fixed for all sessions leads to message-resend attack,
and implicates, that this protocol does not provide untraceability.

Weaknesses in Two RFID Authentication Protocols 169

5 Improved Protocol

In the protocol of [5], the tag requires n bits in the space memory to store
the vector h. In each session, the tag generates check parity matrix H , then
computes the public matrix G from H . In the majority of RFID authentication
protocols, the tag does not require to compute codeword in each process of
mutual authentication, but it stores the codeword in tag, such as, the protocol
of Malek-Miri [6].

In the protocol of [6] there are two major weaknesses: this protocol cannot
resist desynchronization attack, and it requires an important space in volatile
memory n× n bits to compute eAp.

5.1 Algorithm of Compute eAp

We propose the Algorithm 1 to reduce the space required from volatile memory.
We symbolize eAp by s and σ(., q) is a circular permutation function on q posi-
tions. We present two examples of functionality of σ(., q) with q = 1 and q = 2,
respectively, as follows (2):

σ(p1p2...pn, 1) = pnp1...pn−1

σ(p1p2...pn, 2) = pn−1pn...pn−2
(2)

Algorithm 1. compute eAp

1: Input e = e1e2...en and p = p1p2...pn
2: Output s = s1s2...sn
3: Initialize the vector s by values 0, (s = 00...0)
4: q ←0
5: i ←0
6: j ←0
7: while i < t do
8: if ej = 0 then
9: q ← q+1
10: else
11: p = σ(p1p2...pn, q)
12: s = s⊕ p
13: p = σ(p1p2...pn, 1)
14: q ←0
15: i ← i+1
16: end if
17: j ← j+1
18: end while
19: return s

Thus, using our proposed algorithm, we can reduce the size of memory re-
quired to compute eAp from n× n into 2n.

170 N. Chikouche et al.

5.2 Description of Improved Protocol

The improved version of Malek and Miri’s protocol is shown in Fig.4 and also
shown as follows:

– The reader R sends the query message with idR to the tag T .

– T searches the values {rG1 ⊕ idG2, id} corresponding to idR. If T finds the
corresponding values, it generates a random error vector e. T computes y =
rG1 ⊕ idG2 ⊕ e and sends it to R.

– R decrypts y to retrieve (id, r) and e and verifies the received values with
(id, rold) or (id, rnew) stored in the database. If the tag’s authentication is
successful, R generates a new random vector p ∈ F

n
2 and computes eAp by

Algorithm 1, where Ap is circulant matrix of vector p. It sends the response
set {d0, d1} to T , where d0 = rG1 ⊕ idG2 ⊕ p and d1 = id ⊕ h(eAp), where

h(.) ∈ F
k2
2 is an hash function.

– T computes d0 ⊕ rG1 ⊕ idG2 = p and uses its value to compute eAp with
Algorithm 1. It then, verifies that d1 ⊕ h(eAp) = id. When the reader’s
authentication is successful, the tag requests OK to R.

– R generates a new random r′, computes y′ = r′G1 ⊕ idG2 ⊕ e and HR =
h(r′G1 ⊕ idG2 ‖ e). It updates rold ← rnew and rnew ← r′, only in case the
matched r is rnew .

– It sends y′ and HR to T .

Fig. 4. Improved version of Malek and Miri’s protocol

Weaknesses in Two RFID Authentication Protocols 171

Table 1. Security comparison

[3] [12] [6] [5] Our protocol

Mutual Authentication N N Y Y Y
Untraceability Y Y Y N Y
Desynchronization resilience Y Y N Y Y
Forward secrecy N N Y N Y

– T calculates (y′⊕e to obtaining r′G1⊕idG2. Then, it computes h(r′G1⊕idG2 ‖
e) and compare it with received HR. If they equal, the tag refreshes its mem-
ory content by replacing {rG1 ⊕ idG2, id} with {y′ ⊕ e, id} and terminates
this session.

The Table 1 presents the security comparison between the existing protocols
and the proposed protocol. So, we can conclude that the improved protocol is
more efficient against different attacks.

6 Conclusion

Recently, Malek-Miri and Li et al. proposed two mutual RFID authentication
protocols based on error-correcting codes. In this paper, we have analyzed these
two protocols in terms of security and performance. The results of security anal-
ysis show that Malek-Miri authentication protocol is vulnerable to desynchro-
nization attack, and Li et al.’s protocol cannot resist traceability attack.

In this paper, we proposed the improved version protocol to prevent the de-
scribed attacks. At the improved protocol, we used secret synchronisation values
in back-end. We also proposed an algorithm to reduce the space required in
volatile memory.

Acknowledgments. The third author is supported in part by NATO’s Public Diplo-

macy Division in the framework of ”Science for Peace”, SPS Project 984520.

References

1. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of
the mcEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS,
vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

2. Chien, H., Laih, C.: Ecc-based lightweight authentication protocol with untrace-
ability for low-cost RFID. J. Parallel Distrib. Comput. 69(10), 848–853 (2009)

3. Cui, Y., Kobara, K., Matsuura, K., Imai, H.: Lightweight asymmetric privacy-
preserving authentication protocols secure against active attack. IEICE Transac-
tions 91-D(5), 1457–1465 (2008)

4. van Deursen, T., Mauw, S., Radomirović, S.: Untraceability of RFID protocols.
In: Onieva, J.A., Sauveron, D., Chaumette, S., Gollmann, D., Markantonakis, K.
(eds.) WISTP 2008. LNCS, vol. 5019, pp. 1–15. Springer, Heidelberg (2008)

172 N. Chikouche et al.

5. Li, Z., Zhang, R., Yang, Y., Li, Z.: A provable secure mutual RFID authentication
protocol based on error-correct code. In: Proceedings of 2014 International Con-
ference on Cyber-Enabled Distributed Computing and Knowledge Discovery, pp.
73–78. IEEE (2014)

6. Malek, B., Miri, A.: Lightweight mutual RFID authentication. In: Proceedings of
IEEE ICC 2012, pp. 868–872. IEEE (2012)

7. McEliece, R.J.: A public-key system based on algebraic coding theory. Tech.
Rep. 44, Jet Propulsion Lab, DSN Progress Report (1978)

8. Misoczki, R., Barreto, P.M.: Compact McEliece keys from Goppa codes. In:
Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867,
pp. 376–392. Springer, Heidelberg (2009)

9. Misoczki, R., Tillich, J.P., Sendrier, N., Barreto, P.S.L.M.: MDPC-McEliece: New
McEliece Variants from Moderate Density Parity-Check Codes. In: Cryptology
ePrint Archive, Report 2012/409 (2012)

10. Nojima, R., Imai, H., Kobara, K., Morozov, K.: Semantic security for the McEliece
cryptosystem without random oracles. Designs, Codes and Cryptography 49(1-3),
289–305 (2008)

11. Overbeck, R., Sendrier, N.: Code-based cryptography. In: Post-Quantum Cryptog-
raphy, pp. 95–145. Springer, Heidelberg (2009)

12. Sekino, T., Cui, Y., Kobara, K., Imai, H.: Privacy enhanced RFID using Quasi-
Dyadic fix domain shrinking. In: Proceedings of Global Telecommunications Con-
ference, GLOBECOM 2010, pp. 1–5. IEEE (2010)

13. Suzuki, M., Kobara, K., Imai, H.: Privacy enhanced and light weight RFID system
without tag synchronization and exhaustive search. In: Proceedings of the IEEE
International Conference on Systems, Man and Cybernetics, pp. 1250–1255. IEEE
(2006)

Square Code Attack on a Modified Sidelnikov

Cryptosystem

Ayoub Otmani1(�) and Hervé Talé Kalachi2

1 LITIS, University of Rouen, 76821 Mont-Saint-Aignan, France
ayoub.otmani@univ-rouen.fr

2 Department of Mathematics, University of Yaounde 1, ERAL, Cameroon
hervekalachi@gmail.com

Abstract. This paper presents a cryptanalysis of a modified version of
the Sidelnikov cryptosystem which is based on Reed-Muller codes. This
modified scheme consists in inserting random columns in the secret gen-
erating matrix or parity check matrix. The cryptanalysis relies on the
computation of the squares of the public code. The particular nature of
Reed-Muller which are defined by means of multivariate binary polyno-
mials, permits to predicate the value of dimension of the square codes
and then to fully recover in polynomial time the secret positions of the
random columns. Our work shows that the insertion of random columns
in the Sidelnikov scheme does not bring any security improvement.

Keywords: Sidelnikov scheme · Component-wise product · Cryptanal-
ysis · Distinguisher

1 Introduction

Contrary to the cryptosystems based on number theory, the safety of cryptosys-
tems based on error correcting codes appear to be resistant to the emergence of
quantum computers [22]. Its other advantage is that the encryption and decryp-
tion are very fast, about five times faster for encryption, and 10 to 100 times
faster for decryption compared to RSA cryptosystem. The most important rep-
resentative of this cryptography is the McEliece cryptosystem [17] which is also
one of the oldest public key cryptosystems. Its security is based on two problems:
the difficulty of decoding a random linear code and the difficulty of recovering a
decoding algorithm from a public matrix representation of a binary Goppa code.
The second assumption was reformulated in a more formal way by stating there
is no polynomial-time algorithm that distinguishes between a random matrix
and a generating matrix of a binary Goppa code [4,21].

Although efficient, the main drawback of this scheme is the enormous size of
the public key. During these last years, several authors have proposed to consider
more structured codes. The common idea is to focus on codes equipped with a
non-trivial permutation group.1 This is the case for example of Misoczki and

1 The permutation group of a code is the set of permutations leaving globally invariant
the code.

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 173–183, 2015.
DOI: 10.1007/978-3-319-18681-8_14

174 A. Otmani and H.T. Kalachi

Barreto [19] who proposed quasi-dyadic Goppa codes. Their worked followed
Gaborit’s idea to use quasi-cyclic BCH codes [11] and Berger, Cayrel, Gaborit
and Otmani’s paper [1] which used quasi-cyclic alternant codes. The algebraic
attack given in [10] succeeds in breaking most of the parameters of [1,19]. It
makes use of the fact that the underlying codes which are alternant codes come
with an algebraic structure. It allows a cryptanalysis consisting in setting up a
polynomial system and then solving it with Gröbner bases techniques. In the
very specific the case of [1,19], the quasi-cyclic and quasi-dyadic structures allow
a huge reduction of the number of variables. Recently, the attack was further
improved for against [19] by exploiting more efficiently the underlying Goppa
structure [8,9].

The apparition of algebraic attacks [10], although it does not undermine the
security of the McEliece scheme, shows however the importance of finding a
better hiding of the structure of the codes. A possible solution would be to
change the description of the scheme by inserting some randomness. Probably,
the first attempt towards this objective, is Berger-Loidreau’s paper [2]. The
authors suggest to add random rows to the description of the codes. They applied
this to Niederreiter encryption scheme [20] instantiated with generalised Reed-
Solomon codes. The goal is to come up with a protection against Sidelnikov and
Shestakov [24]. But Wieshebrink’s paper shows that component-wise product of
codes [27] enables to break Berger-Loidreau’s proposal.

Another simple example would be to insert random columns in the secret
matrix. Several authors [25,14] have indeed proposed this technique to avoid
structural attacks on similar versions of the McEliece cryptosystem. This kind
modification was proposed for the first time by Wieschebrink in [25]. Its pri-
mary goal was to avoid the Sidelnikov-Shestakov attack [24] on the McEliece
cryptosystem using generalized Reed-Solomon codes. Although this proposal
had effectively avoided the original attack, recent studies have shown that in
that case of generalized Reed-Solomon codes, the random columns can be found
through considerations of the dimensions of component-wise product of codes
[12,13,5]. This operation turns out to be a powerful tool. Thanks to [16], it has
also helped in understanding the distinguisher of Goppa code derived in [6,7]
which challenged the validity of the Goppa code indistinguishability assumption
introduced in [4,21]. The paper [16] proves that the distinguisher in [6,7] has
an equivalent but simpler description in terms of the component-wise product
of codes. This distinguisher is even more powerful in the case of Reed-Solomon
codes than for Goppa codes. Indeed, whereas for Goppa codes it is only success-
ful for rates close to 1 [6,7], it can distinguish Reed-Solomon codes of any rate
from random codes.

This paper develops a cryptanalysis of the modified version given in [14] of the
Sidelnikov encryption scheme [23] which is a McEliece-type public key encryption
scheme [17] based on Reed-Muller codes. The idea of [14] is to add random
columns to prevent sub-exponential time key-recovery attacks of [18,3]. But, like
Reed-Solomon codes, Reed-Muller codes are evaluation codes and because of this,
they can be distinguished from random codes. These two families of codes share

Square Code Attack on a Modified Sidelnikov Cryptosystem 175

very similar properties which facilitates the recovering of the random columns.
Our key-recovery attack is divided into two steps. The first one is an adaptation
to Reed-Muller codes of the attacks presented in [12,13,5] in order to find the
secret random columns. This is achieved in O(n5) operations in the binary field
where n is the block length of the codes. The second step applies [18,3] to recover
the secret permutation that hides the structure of the Reed-Muller codes. The
rest of the paper is devoted to the description of the first step of the attack.

2 Preliminary Facts

We present in this section definitions and properties from coding theory we need
in the paper.

Let Fq be the finite field of q elements, n and k be two non-zero integers such
that k � n. A linear code of length n and dimension k over Fq is a linear subspace
C of Fn

q of dimension k over Fq. A generating matrix of C is a k × n matrix

whose rows form a basis of C . The dual of C , generally denoted by C⊥, is the set
of vectors v ∈ F

n
q such that for all c ∈ C the inner product c · v def

=
∑

i civi = 0.

A generating matrix for C⊥ is also called a parity-check matrix.

Definition 1 (Generalised Reed-Solomon). Let x = (x1, . . . , xn) where xi

are distinct elements of F
n
qm and let y be the vector (y1, . . . , yn) where yi are

non-zero elements of Fqm . The generalised Reed-Solomon code (GRS) of length
n and dimension k over Fqm is given by:

GRSk (x,y)
def
=

{(
(y1f(x1), . . . , ynf(xn)

)
: f ∈ Fqm [X], deg(f) < k

}

Definition 2 (Component-Wise Product). Given two vectors a = (a1, . . . ,
an) and b = (b1, . . . , bn) in F

n where F is field, we denote by a�b the component-
wise product:

a � b
def
= (a1b1, . . . , anbn).

Definition 3 (Product of codes). Let A and B be two linear codes of length
n. The star product code denoted by A �B of A and B is the vector space
spanned by all products a � b where a and b range over A and B respectively.

When B = A then A �A is called the square code of A and is rather denoted
by A 2.

The importance of the square code construction becomes clear when we com-
pare the dimensions of a code A with the dimension of its square code A 2 and
one major question is to know what one should expect. This comparison has
already been made in [12,13,5] in the case of generalized Reed-Solomon codes
which allowed to mount efficient attacks on several different schemes based on
generalised Reed-Solomon codes [26,12,13,5]. The results of this paper are based
on these comparisons in the case of Reed-Muller codes.

We recall here important facts about the product of codes.

176 A. Otmani and H.T. Kalachi

Proposition 1. For any linear subspaces F ⊆ E and G ⊆ E:

dimF � G � dimF dimG−
(
dimF ∩G

2

)
. (1)

Proof. Assume d
def
= dimF ∩G and let B = {b1, . . . , bd} be a basis of F ∩G. We

complete B with vectors F = {f1, . . . , ft} so that B ∪ F is a basis of F . We do
the same for G by completing B with G = {g1, . . . , gm} so that B∪G is a basis of
G. A generating set of F �G is the union of the four sets {bi �bj : 1 � i � j � d},
{bi � fj : 1 � i � d, 1 � j � t}, {bi � gj : 1 � j � d, 1 � j � m} and
{fi � gj : 1 � j � t, 1 � j � m}. The proof is terminated by observing the
equality:

dt+ dm+ tm+

(
d+ 1

2

)
= (t+ d)(d+m)− 1

2
d(d− 1).

Corollary 1. For any linear subspace F ⊆ E:

dimF � E � dimF dimE −
(
dimF

2

)
.

In particular dimE2 �
(
dimE + 1

2

)
.

3 Code-Based Public-Key Encryption Schemes

3.1 McEliece Encryption Scheme

In this section we give the basic notion about the McEliece [17] and Niederreiter
[20] cryptosystems . Let G be a family of (n, k)-linear codes over Fq for which a
polynomial-time algorithm to decode t-error is available. The general version of
the McEliece cryptosystem is described as follows but McEliece proposed to use
binary Goppa codes.

Key Generation

1. Let G′ ∈ Mk×n(Fq), be a generating matrix of a t-error correcting code
C ′ ∈ G

2. Pick an n × n permutation matrix P and a k × k invertible matrix S at
random over Fq.

3. Compute G = S−1G′P−1 which is another generating matrix.

The public key is (G, t) and the private key is (S,G,P).

Encryption. To encrypt the message m ∈ F
k
q , one randomly generates e ∈ F

n
q

of Hamming weight � t. The ciphertext is then the vector c = mG+ e.

Square Code Attack on a Modified Sidelnikov Cryptosystem 177

Decryption. The vector cP−1 is at a distance at most t of C . The decoding

algorithm thus allows to find the vector y
def
= mS−1. The plaintext is deduced

by computing yS.

3.2 Niederreiter Encryption Scheme

A version of the McEliece cryptosystem that uses the parity-check matrix in-
stead of the generating matrix has been proposed by Niederreiter [20], and has
been proved to be completely equivalent in term of security. The Niederreiter
cryptosystem is generally describes as follows. In the following, the transpose of
matrix is denoted by T .

Key Generation

1. Let H ′ ∈ M(n−k)×n(Fq), be a parity check matrix of a t-error correcting
code C ′ ∈ G

2. Pick at random an n×n permutation matrix P and a (n− k)× (n− k) non
singular matrix S over Fq.

3. Compute H = S−1H ′P−1.

The public key is (H , t) and the private key is (S,H ′,P).

Encryption. For a message m ∈ F
n
q of Hamming weight � t. The cipher text

is given by c = HmT .

Decryption. Since c = S−1H ′P−1mT = S−1H ′ (mP)
T
and mP is a word

of weight less than or equal to t, the receiver decodes Sc to get the word y. The
associated plaintext is then yP .

4 Wieschebrink’s Masking Technique

Here we present a masking technique first developed in [25] and then proposed
several times with different families of codes. It consists in inserting random
columns in the secret matrix. This technique can be used both in the McEliece
cryptosystem and the Niederreiter version.

4.1 Modified McEliece Scheme

Key Generation

1. Choose three integers n0, k, � with � � n and set n
def
= n0+ �. Pick a random

a generating matrix G0 of an (n0, k)-code C that is able to decode t errors.
2. Pick randomly a k× � matrix R, a k× k invertible matrix S over Fq and an

n× n permutation matrix P .
3. Set G′ = (G0 | R) and compute G = S−1G′P−1.

The public key is (G, t) and the private key is (S,P ,G′).

178 A. Otmani and H.T. Kalachi

Encryption. To encrypt a plaintext m ∈ F
k
q , one randomly generates e ∈ F

n
q

of weight � t and computes the ciphertext c = mG+ e.

Decryption. To decrypt c, one computes y = cP and let y′ be the n1 first
columns of y. The vector y′ is located within distance t from C . The decoding
of y′ provides the plaintext.

4.2 Modified Niederreiter Scheme

Here one can apply the same principle as in the case of McEliece cryptosystem,
but here the insertion of random columns is done in the parity check matrix.

Key Generation

1. Choose three integers n0, k, t, � with � � n and set n
def
= n0 + �. Pick a

random parity-check matrix H0 of an (n0, k)-code C that is able to decode
t errors.

2. Pick randomly an (n0−k)×� matrix R and a (n0−k)×(n0−k) non singular
matrix S over Fq, and an n× n permutation matrix P .

3. Set H ′ = (H0 | R) and compute H = S−1H ′P−1

The public key is (H , t) and the private key is (S,H ′,P).

Encryption. For a plaintextm ∈ F
n
q of Hamming weight� t, the corresponding

ciphertext is given by c = HmT .

Decryption. Let dec(·) be the decoding algorithm of C . The symbol ⊥ stands
for a decoding failure2. The decryption of a ciphertext c is described in
Algorithm 1.

Algorithm 1. Decryption of Niederreiter scheme with Wieschebrink’s masking.

u = ⊥
for all z ∈ F

�
q do

y = dec
(
Sc+RzT

)
if y �= ⊥ then

u = (y,z)P
return u

end if
end for
return u

Note that it is possible for the word u to be different from the transmitted
messagem. But an analysis of the meaning of the received message can eliminate

2 This may happen when fro instance the number of errors is greater than t.

Square Code Attack on a Modified Sidelnikov Cryptosystem 179

these cases and consider them as failures decoding. The complexity of this algo-
rithm is of order q�T (dec) where T (dec) is the time complexity of the decoding
algorithm dec(·).

Although the public code seems to be random in this description, a major
problem rests on the choice of the code family to use and how to reduce the size
of the keys. Wieschebrink had proposed the use of Reed-Solomon codes but in
[12,13,5] an attack is presented that can recover the random secret matrix R.

5 Recovering the Random Columns in Polynomial Time

Recently, the paper [14] suggested the use of Reed-Muller codes along with Wi-
eschebrink’s masking technique to propose a McEliece-type encryption scheme.
In the next section, we describe how to find the random columns of R in this
case. Our attack uses the same technique as the one presented in [12,13,5] for
the case of Reed-Solomon codes.

5.1 Reed-Muller Based Encryption Scheme

In this section, we draw inspiration from [12,13,5] to mount an attack on the
version presented in [14]. But before doing so, we present some properties of
Reed-Muller codes.

Definition 4 (Reed-Muller Code). Let F2[x1, . . . , xm] be the set of boolean

polynomials with m variables. Let us set {a1, . . . , an}
def
= F

m
2 and n

def
= 2m. The

Reed-Muller code denoted by RM(r,m) with 0 � r � m is the linear space
defined by:

RM(r,m)
def
=

{(
f(a1), . . . , f(an)

)
: f ∈ F2[x1, . . . , xm], deg f � r

}

We recall an immediate fact about the dimension of Reed-Muller codes.

Fact 1. The dimension of RM(r,m) is equal to

r∑
i=0

(
m

i

)
.

Theorem 2 ([15] Chapter 13).

RM(r,m)⊥ = RM(m− r − 1,m)

Proposition 2.
RM(r,m)

2
= RM(2r,m)

Proof. Let c1 =
(
f(a1), . . . , f(an)

)
and c2 =

(
g(a1), . . . , g(an)

)
be elements

of RM(r,m) with deg f � r and deg g � r. Hence, c1 � c2 is the vector of
evaluation

(
fg(a1), . . . , fg(an)

)
which corresponds to polynomial fg. This means

c1 � c2 ∈ RM(2r,m).
Conversely, each monomial xe1

1 , . . . , xem
m with ei � 0 and

∑
i ei � 2r is the

product of two polynomials of degree � r. This proves that a basis of RM(2r,m)
is contained in RM(r,m)2.

180 A. Otmani and H.T. Kalachi

Proposition 3. Let G be a k × (n+ �) matrix obtained by inserting � random
columns in the generating matrix of a Reed-Muller code RM(r,m) and let C be

the code spanned by the rows of G. Assume that � �
(
k
2

)
and

∑2r
i=0

(
m
i

)
� n.Then

we have:
2r∑
i=0

(
m

i

)
� dimC 2 �

2r∑
i=0

(
m

i

)
+ � (2)

Proof. Let D1 be the code with generating matrix G1 obtained from G by re-
placing the last � columns by all-zero columns and let D2 be the code with
generating matrix G2 obtained by replacing in G the first n columns by zero
columns. Hence G = G1 + G2 which implies D1 ⊆ C ⊆ D1 + D2. We have
D1 �D2 = 0 and the following inclusion:

D1
2 ⊆ C 2 ⊆ D1

2 +D2
2 +D1 �D2.

Observe we have D1 � D2 = 0. By also remarking dimD1
2 = dimRM(2r,m)

and dimD2
2 = min

{
�,
(
k
2

)}
= �, one can conclude (2) is proven.

5.2 Description of the Attack

It is easy for an adversary to use Prop. 3 to identify the random columns by
computing the dimension of C 2 where C is the code generated by the public
matrix G as defined in Sec. 4. We recall that C is permuted version of a Reed-
Muller code RM(r,m). We assume that

∑2r
i=0

(
m
i

)
� n0 where n0 = 2m and

� <
(
k
2

)
where k =

∑r
i=0

(
m
i

)
. We denote by Ci the code generated by the

generating matrix Gi obtained by deleting the i-th column of G. We also denote
by I ⊂ {1, . . . , n} the set of positions that define the random columns inserted
in G. Two cases occur with high probability:

dimCi
2 =

⎧⎨
⎩

dimC 2 − 1 if i ∈ I,

dimC 2 if i /∈ I.
(3)

Once the set I is recovered, it is then easy to find the secret RM(r,m) using
usual attacks on Reed-Muller code [18].

Remark 1. For the parameters in [14], we observed experimentally that (3) is
always true, and the upper-bound given in (2) is always reached, that is to say:

dimC 2 =

2r∑
i=0

(
m

i

)
+ �.

This is way of distinguishing the random positions of the public code assumes
that

∑2r
i=0

(
m
i

)
+ � � n. We will see how to deal with parameters that do not

satisfy this assumption. The idea is to look at dimD2 where D is the dual of C .
Indeed, like generalized Reed-Solomon codes, the family of Reed-Muller codes is
stable under duality (Theorem 2).

Square Code Attack on a Modified Sidelnikov Cryptosystem 181

Proposition 4. Keeping with notation of Proposition 3, let D be the dual of C .
Assuming

∑2r
i=0

(
m
i

)
> n0, we have:

dimD2 � 1

2
�(�+ 1) + �

m−r−1∑
i=0

(
m

i

)
+

2(m−r−1)∑
i=0

(
m

i

)
. (4)

Proof. Let us set k =
∑r

i=0

(
m
i

)
. We may assume without loss of generality that

a generating matrix of C is in systematic form:
(
Ik A R

)
where R form the

random columns and
(
Ik A

)
generates RM(r,m). A parity-check matrix for C

is then:

H =

(
−AT In0−k 0

−RT 0 I�

)
.

The upper-bound (4) can be readily derived from this last matrix H .

5.3 Complexity of the Attack

Proposition 5. Let A ⊂ F
n
q be a code of dimension k. The complexity of the

computation of a basis of A 2 is O(k2n2) operations in Fq.

Proof. The computation, consists first in the computation of
(
k+1
2

)
generators

of A 2. This computation costs O(k2n) operations. Then, we have to apply a
Gaussian elimination to a

(
k+1
2

)
× n matrix, which costs O(k2n2) operations.

This second step is dominant, which yields the result.

Our attack relies on the computation of the rank of n square codes so the
overall complexity for guessing the random columns is O(n5) operations in the
binary field.

6 Conclusion

In this paper, we study the security of the modified version of the Sidelnikov
scheme [23] given in [14]. We have presented a polynomial-time method that
finds the random columns inserted in a secret matrix. This cryptanalysis uses
the same approach as [12,13,5] which computes the square codes. The resulting
complexity is O(n5) operations in the binary field. The last step that aims to
fully break the scheme ressort to using the attacks developed in [18,3]. Our work
shows that the insertion of random columns in the Sidelnikov scheme does not
bring any security improvement.

182 A. Otmani and H.T. Kalachi

References

1. Berger, T.P., Cayrel, P.-L., Gaborit, P., Otmani, A.: Reducing key length of
the McEliece cryptosystem. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS,
vol. 5580, pp. 77–97. Springer, Heidelberg (2009)

2. Berger, T.P., Loidreau, P.: How to mask the structure of codes for a cryptographic
use. Des. Codes Cryptogr. 35(1), 63–79 (2005)

3. Chizhov, I.V., Borodin, M.A.: The failure of McEliece PKC based on Reed-Muller
codes. IACR Cryptology ePrint Archive, Report 2013/287 (2013),
http://eprint.iacr.org/

4. Courtois, N.T., Finiasz, M., Sendrier, N.: How to achieve a McEliece-based digital
signature scheme. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
157–174. Springer, Heidelberg (2001)

5. Couvreur, A., Gaborit, P., Gauthier-Umaña, V., Otmani, A., Tillich, J.P.:
Distinguisher-based attacks on public-key cryptosystems using Reed-Solomon
codes. Des. Codes Cryptogr. 73(2), 641–666 (2014),
http://dx.doi.org/10.1007/s10623-014-9967-z

6. Faugère, J.C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher
for high rate McEliece cryptosystems. In: Proc. IEEE Inf. Theory Workshop, ITW
2011, Paraty, Brasil, pp. 282–286 (October 2011)

7. Faugère, J.C., Gauthier, V., Otmani, A., Perret, L., Tillich, J.P.: A distinguisher
for high rate McEliece cryptosystems. IEEE Trans. Inf. Theory 59(10), 6830–6844
(2013)

8. Faugère, J.C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.P.: Structural
weakness of compact variants of the McEliece cryptosystem. In: Proc. IEEE Int.
Symposium Inf. Theory, ISIT 2014, Honolulu, HI, USA, pp. 1717–1721 (July 2014)

9. Faugère, J.C., Otmani, A., Perret, L., de Portzamparc, F., Tillich, J.P.: Struc-
tural cryptanalysis of McEliece schemes with compact keys. Des. Codes Cryptogr.
(2015), to appear, see also IACR Cryptology ePrint Archive, Report2014/210

10. Faugère, J.-C., Otmani, A., Perret, L., Tillich, J.-P.: Algebraic cryptanalysis of
McEliece variants with compact keys. In: Gilbert, H. (ed.) EUROCRYPT 2010.
LNCS, vol. 6110, pp. 279–298. Springer, Heidelberg (2010)

11. Gaborit, P.: Shorter keys for code based cryptography. In: Proceedings of the
2005 International Workshop on Coding and Cryptography (WCC 2005), Bergen,
Norway, pp. 81–91 (March 2005)

12. Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack of a homo-
morphic encryption scheme relying on Reed-Solomon codes. CoRR abs/1203.6686
(2012)

13. Gauthier, V., Otmani, A., Tillich, J.P.: A distinguisher-based attack on a variant
of McEliece’s cryptosystem based on Reed-Solomon codes. CoRR abs/1204.6459
(2012)

14. Gueye, C.T., Mboup, E.H.M.: Secure cryptographic scheme based on modified
Reed Muller codes. International Journal of Security and its Applications 7(3),
55–64 (2013)

15. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes, 4th
edn. North–Holland, Amsterdam (1986)

16. Márquez-Corbella, I., Pellikaan, R.: Error-correcting pairs for a public-key cryp-
tosystem. preprint (2012) (preprint)

17. McEliece, R.J.: A Public-Key System Based on Algebraic Coding Theory, pp.
114–116. Jet Propulsion Lab (1978), dSN Progress Report 44

http://eprint.iacr.org/
http://dx.doi.org/10.1007/s10623-014-9967-z

Square Code Attack on a Modified Sidelnikov Cryptosystem 183

18. Minder, L., Shokrollahi, M.A.: Cryptanalysis of the Sidelnikov cryptosystem. In:
Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 347–360. Springer,
Heidelberg (2007)

19. Misoczki, R., Barreto, P.: Compact McEliece keys from Goppa codes. In: Selected
Areas in Cryptography, Calgary, Canada (August 13-14, 2009)

20. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Prob-
lems of Control and Information Theory 15(2), 159–166 (1986)

21. Sendrier, N.: Cryptosystèmes à clé publique basés sur les codes correcteurs
d’erreurs. Ph.D. thesis, Université Paris 6, France (2002)

22. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

23. Sidelnikov, V.M.: A public-key cryptosytem based on Reed-Muller codes. Discrete
Mathematics and Applications 4(3), 191–207 (1994)

24. Sidelnikov, V.M., Shestakov, S.: On the insecurity of cryptosystems based on gener-
alized Reed-Solomon codes. Discrete Mathematics and Applications 1(4), 439–444
(1992)

25. Wieschebrink, C.: Two NP-complete problems in coding theory with an application
in code based cryptography. In: Proc. IEEE Int. Symposium Inf. Theory, ISIT 2006,
pp. 1733–1737 (2006)

26. Wieschebrink, C.: Cryptanalysis of the Niederreiter public key scheme based
on GRS subcodes. IACR Cryptology ePrint Archive, Report 2009/452 (2009),
http://eprint.iacr.org/2009/452.pdf

27. Wieschebrink, C.: Cryptanalysis of the Niederreiter public key scheme based on
GRS subcodes. In: Post-Quantum Cryptography 2010, pp. 61–72 (2010)

http://eprint.iacr.org/2009/452.pdf

A Family of Six-Weight Reducible Cyclic Codes

and their Weight Distribution

Gerardo Vega(�)

Dirección General de Cómputo y de Tecnoloǵıas de Información y Comunicación,
Universidad Nacional Autónoma de México, 04510 México D.F., Mexico

gerardov@unam.mx

Abstract. Reducible cyclic codes with exactly two nonzero weights were
first studied by T. Helleseth [4] and J. Wolfmann [15]. Later on, G. Vega
[11], set forth the sufficient numerical conditions in order that a cyclic
code, constructed as the direct sum of two one-weight cyclic codes, has
exactly two nonzero weights, and conjectured that there are no other
reducible two-weight cyclic codes of this type. In this paper we present
a new class of cyclic codes constructed as the direct sum of two one-
weight cyclic codes. As will be shown, this new class of cyclic codes is in
accordance with the previous conjecture, since its codes have exactly six
nonzero weights. In fact, for these codes, we will also give their full weight
distribution, showing that none of them can be projective. On the other
hand, recently, a family of six-weight reducible cyclic codes and their
weight distribution, was presented by Y. Liu, et al. [7]; however it is
worth noting that, unlike what is done here, the codes in such family are
constructed as the direct sum of three irreducible cyclic codes.

Keywords: Weight distribution · Reducible cyclic codes and Gaussian
periods

1 Introduction

It is said that a cyclic code is reducible if its parity-check polynomial is factoriz-
able in two or more irreducible factors. Each one of these irreducible factors can
be seen as the parity-check polynomial of an irreducible cyclic code. Therefore,
a reducible cyclic code is, basically, the direct sum of these irreducible cyclic
codes. Reducible cyclic codes, whose parity-check polynomials are factorizable
in exactly two different irreducible factors have been extensively studied (see,
for example, [4], [15], [11], [8], [3], [14], [16] and [12]). Now, each one of these
two irreducible factors might or might not correspond to the parity-check poly-
nomial of a one-weight irreducible cyclic code. Most of the recent efforts along
this line of research have been focused on the study of reducible cyclic codes
constructed as the direct sum of two two-weight irreducible cyclic codes. In fact,
through the easy-to-apply characterization for all semiprimitive two-weight irre-
ducible cyclic codes over any finite field, that was recently presented in [13], it

Partially supported by PAPIIT-UNAM IN107515.

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 184–196, 2015.
DOI: 10.1007/978-3-319-18681-8_15

A Family of Six-Weight Reducible Cyclic Codes 185

is interesting to note that most of the families of reducible cyclic codes studied
in [8], [3], [14], [16] and [12], are constructed as a direct sum of two different
semiprimitive two-weight irreducible cyclic codes of the same dimension. In this
paper, we present a new class of reducible cyclic codes constructed as the direct
sum of two one-weight irreducible cyclic codes. This new class of cyclic codes is
different to the class of codes studied in [4], [15] and [11], and this is so because
the codes presented here have, as we will see later, exactly six nonzero weights.
In fact, for the codes in this new class we will explicitly give their full weight
distribution, and show that none of them can be projective. Recently, on the
other hand, a family of six-weight reducible cyclic codes and their weight dis-
tribution, was presented in [7], however it is worth noting that, unlike what is
done here, the codes in such family are constructed as the direct sum of three
different irreducible cyclic codes of the same dimension.

In order to give a detailed explanation of what is the main result of this work,
let p, t, q, k and Δ be five positive integers, such that p is a prime number,
q = pt, and Δ = (qk − 1)/(q− 1). In addition, let γ be a fixed primitive element
of IFqk and, for any integer a, denote by ha(x) ∈ IFq[x] the minimal polynomial
of γ−a. With this notation in mind, the following result gives a description of
the weight distribution of a new class of reducible cyclic codes constructed as
the direct sum of two one-weight cyclic codes of the same length and dimension:

Table 1. Weight distribution of C(a1,a2)

Weight Frequency

0 1
2λ
3
(qk−1 + 2(−1)sqk/2−1) qk − 1

2λ
3
(qk−1 − (−1)sqk/2−1) 2(qk − 1)

λ(qk−1 + 2(−1)sqk/2−1) 1
27
(qk − 1)(qk − 2(−1)sqk/2 − 8)

λ(qk−1 + (−1)sqk/2−1) 2
9
(qk − 1)(qk + (−1)sqk/2 − 2)

λqk−1 2
9
(qk − 1)(2qk − (−1)sqk/2 − 1)

λ(qk−1 − (−1)sqk/2−1) 2
27
(qk − 1)(4qk + (−1)sqk/2 − 14)

Theorem 1. Suppose that q = pt is odd, whereas tk is even. Also suppose that

3|(qk−1) and gcd(Δ, qk−1
3 −1) = 3. Let d, s, a1 and a2 be any four integers such

that tk = 2sd, a2 = a1 +
qk−1

3 and gcd(Δ, a1) = gcd(Δ, a2) = 1. In addition, let

λ be the divisor of q − 1, satisfying gcd(q − 1, a1) =
q−1
λ and let C(a1,a2) be the

cyclic code with parity-check polynomial ha1(x)ha2 (x). Fix n = λΔ. If 3|(pd+1)
then

(A) ha1(x) and ha2(x) are the parity-check polynomials of two different one-
weight cyclic codes of length n and dimension k. The nonzero weight of
these two irreducible cyclic codes is λqk−1.

186 G. Vega

(B) C(a1,a2) is an [n, 2k] cyclic code over IFq, with the weight distribution given
in Table I.

(C) If B1 and B2 are, respectively, the number of words of weight 1 and 2 in the

dual code of C(a1,a2), then B1 = 0 and B2 = n(q−1)(λ−1)
2 . Therefore C(a1,a2)

is a non-projective cyclic code.

(D) C(a1,a2) has, exactly, six nonzero weights.

For any integer a1, the kind of reducible cyclic codes whose parity-check poly-
nomials are given by the products of the form ha1(x)ha1± qk−1

2

(x), were studied

in [8] and [3]. Later, a general description of this kind of codes was given in [12].
Thus, for this work, it is clear that we are dealing with the kind of reducible
cyclic codes whose parity-check polynomials are given by the products of the
form ha1(x)ha1+

qk−1
3

(x). Recently, a class of this kind of reducible cyclic codes

was the main subject of study in [14]. However, through the aforementioned
easy-to-apply characterization in [13], it is no difficult to see that each code in
this class is always constructed as the direct sum of two different semiprimitive
two-weight irreducible cyclic codes of the same dimension. Conversely, the class
of cyclic codes that are studied in Theorem 1 are the outcome of the direct sum
of two one-weight cyclic codes, and, as will be shown later, this is so thanks to

the condition gcd(Δ, a1) = gcd(Δ, a1 +
qk−1

3) = 1. Therefore, it is important to
keep in mind that the class of codes studied in [14], and those studied here, are
two different classes of codes of the same kind.

This work is organized as follows: In Section 2 we establish some notation,
recall some definitions and establish our main assumption that will be considered
throughout this work.We also recall, for this section, some results already known.
In particular, we present the evaluation of a specific exponential sum which can
be derived from a general result originally presented in [9]. Section 3 is devoted
to presenting some preliminary and general results. In Section 4 we use these
results in order to present a formal proof of Theorem 1 and give some examples
for this result. Finally, Section 5 will be devoted to conclusions.

2 Definitions, Notation and Main Assumption

First of all, we set, for this section and for the rest of this work, the following:

Notation. By using p, t, q, k and Δ, we will denote five positive integers such
that p is a prime number, q = pt and Δ = (qk − 1)/(q − 1). From now on, γ
will denote a fixed primitive element of IFqk . For any integer a, the polynomial
ha(x) ∈ IFq[x] will denote the minimal polynomial of γ−a. Furthermore, we will
denote by “Tr”, the absolute trace mapping from IFqk to the prime field IFp, and
by “TrIF

qk
/IFq

” the trace mapping from IFqk to IFq. For any positive divisor m of

qk−1 and for any 0 ≤ i ≤ m−1, we define D(m)
i := γi〈γm〉, where 〈γm〉 denotes

the subgroup of IF∗
qk generated by γm. The cosets D(m)

i are called the cyclotomic

A Family of Six-Weight Reducible Cyclic Codes 187

classes of order m in IFqk . In connection with these cyclotomic classes, we recall
the cyclotomic numbers of order m. Such cyclotomic numbers are defined by

(i, j)(m,qk) := |(D(m)
i + 1) ∩ D(m)

j | ,

where (D(m)
i + 1) = {x+ 1 | x ∈ D(m)

i }, and 0 ≤ i, j ≤ m− 1.

The following definitions are important:

An N -weight code is a code such that the cardinality of the set of nonzero
weights is N . It is important to recall that one-weight irreducible cyclic codes
are also known as subfield codes.

A projective code is a linear code such that the minimum weight of its dual
code is at least three (or, equivalently, if any two columns of its generator matrix
are linearly independent).

A cyclic code is irreducible if its parity-check polynomial is irreducible (that
is, its polynomial representation is a minimal ideal).

For this work, we are particularly interested in reducible cyclic codes, whose
parity-check polynomials are factorizable in exactly two different irreducible fac-
tors. That is, we are interested in cyclic codes whose dual codes have two non
conjugated zeros.

We continue with this section by recalling the definition, and a basic property
of the character sums (see, for example, [6]). In order to do this, let p, q, k and
γ be as before; then, the canonical additive character χ, of IFqk , is defined as

χ(y) := ζTr(y)p , for all y ∈ IFqk ,

where ζp := exp(2π
√−1
p). For the canonical additive character χ′, of IFq, the

following orthogonal property will be useful:

∑
y∈IFq

χ′(y) = 0 . (1)

Now, we set, for this section and for the rest of this work, the following:

Main Assumption. From now on, we are going to suppose that q is an odd
integer, whereas the product tk is an even integer. Therefore, throughout this
work, we will reserve the letters s and d to represent any two positive integers
that satisfy: tk = 2sd. In addition, we will also suppose that 3|(qk − 1) and

gcd(Δ, qk−1
3 − 1) = 3. Therefore, in what follows, we will reserve the Greek

letter τ in order to fix τ = γ
qk−1

3 .

Remark 1. As a consequence of our main assumption, observe that IF∗
q ⊆ D(3)

0 ,
and that the finite field element τ is a primitive three-root of unity satisfying

τ2+τ+1 = 0, therefore, τ1/2 = −τ−1 = τ+1. In addition, observe that τ ∈ D(3)
1

and since 3|Δ we also have that k > 1 and, necessarily, the prime number p must
be greater than 3.

188 G. Vega

Now, let χ be the canonical additive character of IFqk , and let i be any integer.
Since 3|(qk − 1), it follows that:

∑
x∈IF

qk

χ(γix3) = 1 + 3
∑

z∈D(3)
i

χ(z) .

We are particularly interested in the kind of exponential sums that appear in the
RHS of the previous equality. These exponential sums are known as Gaussian
period of order 3. Fortunately, the following result, which is an instance of the
main result in [9, Theorem 1], gives us useful information about such Gaussian
period.

Theorem 2. With our notation and main assumption, suppose that 3|(pd + 1)
and let η0 and η1 be the two integers given by:

η0 =
−2(−1)sq

k
2 − 1

3
,

η1 =
(−1)sq

k
2 − 1

3
. (2)

Then, for any integer i, the Gaussian period of order 3 is:

∑
z∈D(3)

i

χ(z) =

⎧⎨
⎩

η0 if i ≡ 0 (mod 3) ,

η1 otherwise
.

Since we will be dealing with the Gaussian period of order 3, we will also
need the cyclotomic numbers of order 3. The following lemma gives us important
information about such cyclotomic numbers (see [1] for the general result).

Lemma 1. Consider the same notation and hypotheses as in the previous the-
orem. Then

(0, 0)(3,q
k) =

(psd − (−1)s)2

9
− 1 ,

(i, 0)(3,q
k) = (0, i)(3,q

k) = (i, i)(3,q
k)

=
(psd − (−1)s)(psd + 2(−1)s)

9
, for i = 1, 2,

(1, 2)(3,q
k) = (2, 1)(3,q

k) =
(psd − (−1)s)2

9
.

Remark 2. Observe that if 3|(pd+1), which is the central hypotheses in Theorem
2, then, for any positive integer s, we have that 3 is a common divisor of both
(psd − (−1)s) and (psd + 2(−1)s).

A Family of Six-Weight Reducible Cyclic Codes 189

3 Some Preliminary Results

The following lemma will be useful in order to show that all the cyclic codes
given by Theorem 1 have exactly six nonzero weights.

Lemma 2. Consider the same notation and hypotheses as Theorem 2. Then

η0−η1 = −(−1)sq
k
2 , 2η1−η0 =

4(−1)sq
k
2 −1

3 , 3η1−2η0 =
7(−1)sq

k
2 −1

3 , 3η0−2η1 =

−8(−1)sq
k
2 −1

3 and 2η0− η1 = −5(−1)sq
k
2 −1

3 . Therefore, none of these five previous

values, as well as the values of η0 and η1, is equal to
qk−1

3 . Furthermore, η0 	= η1.

Proof. The first and third assertions come directly from (2). Since q is an odd
integer, it will be enough to prove, for the second assertion, that none of the

following two conditions hold: 3η1 − 2η0 = qk−1
3 or 2η0 − η1 = qk−1

3 . Thus,

supposing that 7(−1)sq
k
2 −1

3 = qk−1
3 , implies that psd = 7, where s must be a

positive even integer. But clearly this conclusion is impossible, therefore 3η1 −
2η0 	= qk−1

3 . On the other hand, supposing that −5(−1)sq
k
2 −1

3 = qk−1
3 , implies

that psd = 5, where s = d = 1. Now, since k > 1 (recall Remark 1) and tk = 2sd,
we have t = 1, k = 2 and p = q = 5. But, under these circumstances, clearly

gcd(Δ, qk−1
3 − 1) 	= 3. Therefore, 2η0 − η1 	= qk−1

3 .
�

The following result gives us information about the multiplicity of the elements
in a very particular multiset.

Lemma 3. With our notation and main assumption, let λ be a divisor of q− 1.

Also let i be any integer. If gcd(Δ, (q−1)
λ) = 1, then

{xy | x ∈ D(3(q−1)
λ)

i and y ∈ IF∗
q} = λ ∗ D(3)

i ,

where λ ∗ D(3)
i is the multiset in which each element of D(3)

i appears with multi-
plicity λ.

Proof. Since IF∗
q ⊆ D(3)

0 , (3(q−1)
λ)|(qk − 1), and gcd(Δ, 3(q−1)

λ) = 3, the result

comes from the fact that |D(3(q−1)
λ)

i | |IF∗
q |/|D

(3)
i | = λ, and D(m)

i = γiD(m)
0 , for

any integer i and for any divisor m of qk − 1.
�

In what follows, we will always assume that 3|(pd + 1). Thus, by using the
finite field element τ and the cyclotomic class of order 3 in IFqk , we define the
following ten sets:

Ei,j = {(α,−τ jα) | τ1−j(α− τα) ∈ D(3)
i }, for i, j = 0, 1, 2, and

G = {(α,−β) ∈ IFqk × IFqk | (α − τ jβ) 	= 0, for j = 0, 1, 2 } .

190 G. Vega

Remark 3. By the previous definition, note that (α,−τ jα) ∈ Ei,j if and only if

τ1−j(1−τ)α ∈ D(3)
i . In consequence, and since τ1−j(1−τ) is a fixed nonzero field

element, we have that these ten sets are pairwise disjoint, and their cardinalities

are |Ei,j | = |D(3)
0 | = qk−1

3 , for all i, j = 0, 1, 2, and |G| = q2k − 1 − 9|E0,0| =
(qk − 1)(qk − 2). Furthermore, due to Remark 1, observe that if τ1−j(α− τα) ∈
D(3)

i , then τ2−j(α − τ2α) = τ2−j(τ + 1)(α − τα) = −τ1−j(α − τα) ∈ D(3)
i , for

any i, j = 0, 1, 2. Therefore, the important conclusion here is that if we have

τ1−j(α − τα) ∈ D(3)
i , then we necessarily have also that one of the following

three finite field elements, (α− τ jα), τ(α− τ j+1α) or τ2(α− τ j+2α), is equal to

zero and the other two elements belong to D(3)
i .

Now, for each (α,−β) ∈ G, we define the function fα,β : {0, 1, 2} → {0, 1, 2},
given by the rule fα,β(i) = j if and only if τ i(α− τ iβ) ∈ D(3)

j . With the help of
these functions we induce a partition of the set G into the following four disjoint
subsets:

Sl = {(α,−β) ∈ G | Wh(fα,β(0), fα,β(1), fα,β(2)) = l }, for l = 0, 1, 2, 3,

where Wh(·) stands for the usual Hamming weight function.

Remark 4. For any α, β ∈ IFqk , we define ui = τ i(α − τ iβ), for i = 0, 1, 2. It is
not difficult to see that these u values satisfy: u0 + u1 + u2 = 0. In addition,
observe that if we arbitrarily choose the values of, say, u0 and u2 then there must
exist a unique vector (α, β) ∈ IF2

qk , such that u0 = (α−β), u2 = τ2(α−τ2β) and
u1 = −(u0 + u2). Therefore, if we want to calculate, for example, |S0| then we

can assume, without loss of generality, that u2 can take any value in D(3)
0 . This

leads us to qk−1
3 possible choices for u2. But u1 = −u2(

u0

u2
+1) and −1 ∈ D(3)

0 (in

fact, recall that IF∗
q ∈ D(3)

0), thus, in order that u1 and u0 also belong to D(3)
0 ,

it is necessary that (u0

u2
+ 1) ∈ D(3)

0 , and due to Lemma 1, the number of such

instances is given by the cyclotomic number (0, 0)(3,q
k). Consequently, we have

|S0| = qk−1
3 (0, 0)(3,q

k). In a quite similar way, one can obtain |S1|, |S2| and |S3|.

Keeping in mind the previous definitions and observations, we now present
the following result, which will be important in order to determine the weight
distribution of the class of non-irreducible cyclic codes that we are interested in.

Lemma 4. With our current notation and main assumption, we have that

|S0| =
qk − 1

3
(0, 0)(3,q

k)

|S1| = (qk − 1)((0, 1)(3,q
k) + (0, 2)(3,q

k))

|S2| = (qk − 1)((1, 1)(3,q
k) + (1, 2)(3,q

k) + (2, 1)(3,q
k) + (2, 2)(3,q

k))

|S3| =
qk − 1

3
((0, 0)(3,q

k) + (0, 1)(3,q
k) + (1, 0)(3,q

k) + (1, 1)(3,q
k) +

(2, 0)(3,q
k) + (2, 2)(3,q

k) + (0, 0)(3,q
k) + (0, 2)(3,q

k)) .

A Family of Six-Weight Reducible Cyclic Codes 191

Furthermore, if χ denotes the canonical additive character of IFqk , and if η0 and
η1 are as in Theorem 2, then, for any α, β ∈ IFqk , we also have:

∑
z∈D(3)

0

2∑
i=0

χ(zτ i(α+ τ iβ))=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qk − 1 if (α, β) = (0, 0)
qk−1

3 + 2η0 if (α, β) ∈ ∪2
j=0E0,j

qk−1
3 + 2η1 if (α, β) ∈ ∪2

i=1 ∪2
j=0 Ei,j

3η0 if (α, β) ∈ S0

2η0 + η1 if (α, β) ∈ S1

η0 + 2η1 if (α, β) ∈ S2

3η1 if (α, β) ∈ S3 .

Proof. The first assertion comes from Remark 4. On the other hand, since∑
z∈D(3)

0
χ(0) = |D(3)

0 | = qk−1
3 , the second assertion comes directly from Theo-

rem 2, Remark 3, and from the definitions of the sets Ei,j and Sl, with i, j = 0, 1, 2
and l = 0, 1, 2, 3.
�

Considering the actual values of the cyclotomic numbers in Lemma 1, the
following result is an important consequence of the previous lemma.

Table 2. Value distribution of
∑

z∈D(3)
0

2∑
i=0

χ(zτ i(α+ τ iβ))

Value Frequency

qk − 1 1
qk−1

3
+ 2η0 qk − 1

qk−1
3

+ 2η1 2(qk − 1)

3η0
1
27
(qk − 1)(qk − 2(−1)sqk/2 − 8)

2η0 + η1
2
9
(qk − 1)(qk + (−1)sqk/2 − 2)

η0 + 2η1
2
9
(qk − 1)(2qk − (−1)sqk/2 − 1)

3η1
2
27
(qk − 1)(4qk + (−1)sqk/2 − 14)

Corollary 1. Consider the same hypotheses as in the previous lemma. Then the
value distribution of the character sum

∑
z∈D(3)

0

∑2
i=0 χ(zτ

i(α + τ iβ)) is given

in Table II. In addition, each value in Table II is different to any other value,
and its corresponding frequency is different from zero.

Proof. The first assertion comes directly from the previous lemma. Now, observe
that:

(qk − 2(−1)sqk/2 − 8) = (qk/2 + 2(−1)s)(qk/2 − 4(−1)s) ,

(qk + (−1)sqk/2 − 2) = (qk/2 + 2(−1)s)(qk/2 − (−1)s) ,

192 G. Vega

(2qk − (−1)sqk/2 − 1) = (qk/2 − (−1)s)(2qk/2 + (−1)s) ,

(4qk + (−1)sqk/2 − 14) = (qk/2 + 2(−1)s)(4qk/2 − 7(−1)s) .

Thus, by recalling that q is an odd number greater than 1, we have that the
proof of the second assertion comes now from Lemma 2, and from the fact
that the roots of the previous polynomials are not odd integers values (greater
than 1).
�

4 A Formal Proof of Theorem 1

We begin this section by recalling the following already known identity:

Let C be an N -weight linear code, over IFq, of length n and dimension 2k.
Suppose that w1, w2, · · · , wN are the nonzero weights of C. For 1 ≤ i ≤ N , let
Ai be the number of words of weight wi in C and let Bj be the number of words
of weight j in C⊥ (the dual code of C). Then, the third identity of Pless (see [5,
p. 259] for the general result), for C, is

N∑
i=1

w2
iAi = [n(q− 1)(n(q− 1)+ 1)+ 2B2−B1(q+2(n− 1)(q− 1))] q2k−2 . (3)

Remark 5. In the context of the previous identity, observe that a linear code is
projective if and only if B1 and B2 are zero in (3).

By keeping in mind the previous notation and identity, we now proceed to
present a formal proof of Theorem 1.

Proof. Part (A): Suppose that ha1(x) = ha2(x). Then, there must exist an in-

teger 0 ≤ v < k such that a1q
v ≡ a2 (mod qk − 1). But a2 = a1 + qk−1

3 ,

thus, the last congruence implies that a1(q
v − 1) ≡ qk−1

3 (mod qk − 1), which

in turn implies that a1(q
v − 1) ≡ 0 (mod qk−1

3). That is, Δ|3a1(q
v−1
q−1). But

gcd(Δ, a1) = 1, thus Δ|3(q
v−1
q−1). Nevertheless, it easy to see that Δ > 3(q

v−1
q−1),

if q ≥ 3 and 0 ≤ v < k, therefore, the condition Δ|3(q
v−1
q−1) is impossible. Hence

ha1(x) 	= ha2(x). On the other hand, gcd(qk − 1, a1) = gcd(Δ(q − 1), a1) =
gcd(q−1, a1) =

q−1
λ and gcd(qk−1, a2) = gcd(q−1, a1+

Δ
3 (q−1)) = gcd(q−1, a1),

that is gcd(qk − 1, a1) = gcd(qk − 1, a2) =
q−1
λ . Therefore ha1(x) and ha2(x) are

the parity-check polynomials of two different cyclic codes of the same length

n = qk−1
(q−1)/λ = λΔ. Due that gcd(Δ, a1) = gcd(Δ, a2) = 1, the remaining proof

of this part comes now from the set of characterizations, for the one-weight
irreducible cyclic codes, that was introduced in [10, Theorem 11].

Before beginning with the proof of Part (B), it is important to observe that

since gcd(Δ, qk−1
3 − 1) = 3, a2 = a1 +

qk−1
3 and gcd(Δ, a1) = gcd(Δ, a2) = 1,

A Family of Six-Weight Reducible Cyclic Codes 193

we necessary have that τ ∈ D(3)
1 and a1 ≡ 1 (mod 3). In addition, since gcd(q−

1, a1) =
q−1
λ and gcd(Δ, a1) = 1, we also have that gcd(Δ, q−1

λ) = 1.
Part (B): Clearly, the code C(a1,a2) has length n and its dimension is 2k, due

to Part (A).
Now, for each α, β ∈ IFqk , we define c(n, a1, a2, α, β) as the vector of length n

over IFq, which is given by:

(TrIF
qk

/IFq
(α(γa1)0 + β(γa2)0), · · · ,

TrIF
qk

/IFq
(α(γa1)n−1 + β(γa2)n−1)) .

Thanks to Delsarte’s Theorem (see, for example, [2]), it is well known that

C(a1,a2) = {c(n, a1, a2, α, β) | α, β ∈ IFqk} .

Thus the Hamming weight of any codeword c(n, a1, a2, α, β) ∈ C(a1,a2) is equal
to n− Z(α, β), where

Z(α, β) = �{ i | 0 ≤ i < n, and

TrIF
qk

/IFq
(αγa1i + βγa2i) = 0 } .

Now, if χ′ is the canonical additive character of IFq, then, by the orthogonal
property in (1), we know that for each c ∈ IFq we have

∑
y∈IFq

χ′(yc) =

⎧⎨
⎩

q if c = 0

0 if c 	= 0
,

thus

Z(α, β) =
1

q

n−1∑
i=0

∑
y∈IFq

χ′(TrIF
qk

/IFq
(y(αγa1i + βγa2i))) .

If χ denotes the canonical additive character of IFqk , then χ′ and χ are related
by χ′(TrIF

qk
/IFq

(ε)) = χ(ε) for all ε ∈ IFqk . Therefore, we have

Z(α, β) =
n

q
+

1

q

n−1∑
i=0

∑
y∈IF∗

q

χ(y(αγa1i + βγa2i))

=
n

q
+

1

q

n−1∑
i=0

∑
y∈IF∗

q

χ(γa1iy(α+ τ iβ)) ,

194 G. Vega

where the last equality arises because a2 = a1+
qk−1

3 and τ = γ
qk−1

3 . Now, since

a1 ≡ 1 (mod 3) and gcd(qk − 1, a1) =
q−1
λ , we have

Z(α, β) =
n

q
+

1

q

n−1∑
i=0

∑
y∈IF∗

q

χ(γa1iy(α+ τa1iβ))

=
n

q
+

1

q

n−1∑
i=0

∑
y∈IF∗

q

χ(γ
q−1
λ iy(α+ τ

q−1
λ iβ)) .

But, clearly 3|n, thus

{γ
q−1
λ i | 0 ≤ i < n} = D((q−1)

λ)
0 = D(3(q−1)

λ)
0 ∪ D(3(q−1)

λ)
q−1
λ

∪ D(3(q−1)
λ)

2(q−1)
λ

.

Therefore,

Z(α, β) =
n

q
+

1

q

2∑
i=0

∑
x∈D(

3(q−1)
λ

)

q−1
λ

i

∑
y∈IF∗

q

χ(xy(α + τ
q−1
λ iβ))

=
n

q
+

1

q

2∑
i=0

∑
x∈D(

3(q−1)
λ

)

i

∑
y∈IF∗

q

χ(xy(α + τ iβ)) , (4)

where the last equality arises because IF∗
q = {γΔj | 0 ≤ j < q} and 3 � (q−1)

λ .

Now, we already said that gcd(Δ, q−1
λ) = 1, thus after applying Lemma 3 to (4)

we obtain

Z(α, β) =
n

q
+

λ

q

2∑
i=0

∑
z∈D(3)

i

χ(z(α+ τ iβ)) .

But, τ ∈ D(3)
1 , thus

Z(α, β) =
n

q
+

λ

q

∑
z∈D(3)

0

2∑
i=0

χ(zτ i(α+ τ iβ)) .

The result comes thus as a consequence of the first assertion in Corollary 1,
and from the fact that the Hamming weight of any codeword of the form
c(n, a1, a2, α, β), in C(a1,a2), is equal to n− Z(α, β).

Part (C): It is well known that there are no one-weight words in the dual of
any cyclic code (see for example [15]), therefore B1 = 0 in identity (3). But if
B1 = 0 in such identity, then, with the help of Table I, it is not difficult to see

that B2 = n(q−1)(λ−1)
2 . Thus, B2 = 0 if and only if λ = 1, but recall that λ is the

divisor of q − 1, satisfying gcd(q − 1, a1) =
q−1
λ , therefore B2 = 0 if and only if

A Family of Six-Weight Reducible Cyclic Codes 195

(q−1)|a1. We will now prove that this condition is impossible and, in order to do
so, we will consider the following two possible scenarios: k is an even integer or
k is an odd integer. If k is even, then clearly Δ and q − 1 are also even integers,
and consequently, if (q − 1)|a1 then gcd(Δ, a1) ≥ 2, which is a contradiction.
Now if k is odd, then t is even (recall tk = 2sd) and since p 	= 3 (see Remark
1), we have pt ≡ 1 (mod 3), that is 3|(q − 1). But 3|Δ, thus if (q − 1)|a1 then
gcd(Δ, a1) ≥ 3, which is again a contradiction. Therefore (q−1) � a1 and B2 > 0.
The result now follows from Remark 5.

Part (D): It is a direct consequence of the second assertion in Corollary 1.
�

The following are direct applications of Theorem 1.

Example 1. With our notation, let p = q = 11, k = 2, a1 = 25 and a2 =
65. Then d = s = 1, Δ = 12, λ = 2 and n = 24. Clearly, 3|(qk − 1) and

gcd(Δ, qk−1
3 − 1) = 3, and because 3|(pd + 1), we can be sure that C(25,65) is a

6-weight cyclic code over IF11, of length 24, dimension 4 and weight enumerator
polynomial A(z) = 1+ 120z12+240z16+600z18+2880z20+6720z22+4080z24.
In addition, B2 = 120.

Example 2. With our notation, let p = q = 5, k = 4, a1 = 1 and a2 = 209.
Then d = 1, s = 2, Δ = 156, λ = 4 and n = 624. Clearly, 3|(qk − 1) and

gcd(Δ, qk−1
3 − 1) = 3, and because 3|(pd + 1), we can be sure that C(1,209) is a

6-weight cyclic code over IF5, of length 624, dimension 8 and weight enumerator
polynomial A(z) = 1+1248z320+624z360+116064z480+169728z500+89856z520+
13104z540. In addition, B2 = 3744.

5 Conclusion

A recent topic of interest has been the kind of reducible cyclic codes whose
parity-check polynomials are given by products of the form ha1(x)ha1+

qk−1
3

(x),

where a1 is an integer. A class of this kind of cyclic codes was the main subject
of study in [14]. In this work we presented the full weight distribution of a new
class cyclic codes belonging to this kind, and we showed that no code in this
class can be projective. As we already said, the class of codes studied in [14],
and those studied here are two different classes of codes of the same kind. Thus,
following the same idea as in [12], perhaps it is possible to develop a more general
theory that allows us to present a unified explanation for these two classes of
codes, and also for other classes of cyclic codes of the same kind.

References

1. Baumert, L., Mills, W., Ward, R.: Uniform cyclotomy. J. Number Theory 14(1),
67–82 (1982)

2. Delsarte, P.: On subfield subcodes of Reed-Solomon codes. IEEE Trans. Inform.
Theory 5, 575–576 (1975)

196 G. Vega

3. Ding, C., Liu, Y., Ma, C., Zeng, L.: The weight distributions of the duals of cyclic
codes with two zeros. IEEE Trans. Inform. Theory 57(12), 8000–8006 (2011)

4. Helleseth, T.: Some two-weight codes with composite parity-check polynomials.
IEEE Trans. Inform. Theory 22, 631–632 (1976)

5. Huffman, W.C., Pless, V.S.: Fundamental of Error-Correcting Codes. Cambridge
Univ. Press, Cambridge (2003)

6. Lidl, R., Niederreiter, H.: Finite Fields. Cambridge Univ. Press, Cambridge (1983)
7. Liu, Y., Yan, H., Liu, C.: A class of six-weight cyclic codes and their weight distri-

bution. Des. Codes Cryptogr. (published online June 4, 2014) doi:10.1007/s10623-
014-9984-y

8. Ma, C., Zeng, L., Liu, Y., Feng, D., Ding, C.: The Weight Enumerator of a Class
of Cyclic Codes. IEEE Trans. Inf. Theory 57(1), 397–402 (2011)

9. Moisio, M.: A note on evaluations of some exponential sums. Acta Arith 93,
117–119 (2000)

10. Vega, G.: Determining the number of one-weight cyclic codes when length and
dimension are given. In: Carlet, C., Sunar, B. (eds.) WAIFI 2007. LNCS, vol. 4547,
pp. 284–293. Springer, Heidelberg (2007)

11. Vega, G.: Two-weight cyclic codes constructed as the direct sum of two one-weight
cyclic codes. Finite Fields Appl. 14(3), 785–797 (2008)

12. Vega, G.: A General Description for the Weight Distribution of Some Reducible
Cyclic Codes. IEEE Trans. Inform. Theory 59(9), 5994–6001 (2013)

13. Vega, G.: A critical review and some remarks about one- and two-weight irreducible
cyclic codes. Finite Fields Appl. 33, 1–13 (2015)

14. Wang, B., Tang, C., Qi, Y., Yang, Y., Xu, M.: The weight distributions of cyclic
codes and elliptic curves. IEEE Trans. Inform. Theory 58(12), 7253–7259 (2012)

15. Wolfmann, J.: Are 2-Weight Projective Cyclic Codes Irreducible? IEEE Trans.
Inform. Theory 51(2), 733–737 (2005)

16. Xiong, M.: The weight distributions of a class of cyclic codes. Finite Fields
Appl. 18(5), 933–945 (2012)

Codes over L(GF (2)m,GF (2)m), MDS Diffusion

Matrices and Cryptographic Applications

Thierry P. Berger1 and Nora El Amrani1,2(�)

1 XLIM (UMR CNRS 7252), University of Limoges, France
2 Laboratory of Mathematics, Computing and Applications,

Faculty of sciences University of Mohammed V - Agdal, Rabat, Morocco
elamrani.nora@gmail.com

Abstract. The aim of this paper is to provide a general framework
in the study of binary block codes. The main objective is to present a
general approach in order to explore MDS diffusion matrices used for
example in the design of block ciphers with a Substitution Permutation
Network design (the so-called SPN block-ciphers).

In order to analyze these codes, we consider additive block codes over
binary m-tuples. We are interested in the distance properties related
to the block structure. To do this, we introduce a notion of L-codes
that are codes over the non-commutative ring of linear endomorphisms
of GF (2)m. We study the main properties of these codes, especially the
notion of duality in this context. We show how most of the known families
of block codes can be interpreted in this context. Finally, we conclude
by practical examples that allow to derive MDS diffusion matrices over
GF (2)m from MDS matrices constructed over smaller blocks.

Keywords: MDS matrices · Diffusion layers · Additive block codes ·
Symmetric cryptography

Introduction

Section 1 presents the notion of additive block codes and explore how most of the
known results on linear codes over a finite field can be extended to additive block
codes. In order to avoid some degenerated cases, we limit our study to systematic
block codes. We characterize the isometries of block codes over E = GF (2)m and
deduce a notion of equivalence of codes in this context. We explain the notion
of MDS block codes and the link between these MDS block codes and optimal
diffusion matrices used in block ciphers design. Finally, we conclude this section
by presenting some previous works on codes over polynomial rings that are in
fact related to our approach.

In Section 2, we introduce the notion of L-codes that are codes over the ring
L = L(E,E). Such a ring is not commutative, in this context L-codes are left
submodules of Lr, but are not necessarily right submodules. In this context,
we clarify the notion of duality over L and the underlying binary duality. In
Section 3, we consider some commutative subrings of L and explain why we
obtain some classical families of codes defined on polynomial rings of the form

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 197–214, 2015.
DOI: 10.1007/978-3-319-18681-8_16

198 T.P. Berger and N. El Amrani

GF (2)[x]/f(x). Finally in Section 4, we present some examples of application of
previously presented results. The aim of this section is not to obtain optimized
matrices, but to give some hints for an effective search of optimal matrices for
targeted applications. Indeed, even for practical values a full exhaustive search
of MDS matrices over L is not possible.

Notation

– E = GF (2)m is the GF (2)-vector space of binary m-tuples.
– L = L(E,E) is the ring of GF (2)-linear endomorphisms of E.
– Ms,t(R) is the R-module of matrices of size s× t over the ring R.
– Mk(R) = Mk,k(R) is the matrix algebra of square matrices over the ring R.
– If ϕ ∈ L is a linear endomorphism of E, Mϕ ∈ Mm(GF (2)) is its associated

binary matrix with the convention: if x = (x1, ..., xm) ∈ E then ϕ(x) = xM .

1 Additive Block Codes over GF (2)m and MDS Diffusion
Matrices

The results presented in this section are mainly known. They are presented in
order to easily introduce our later point of view. For more details on Error
Correcting Codes and basic properties, the reader can refer to [8].

1.1 Codes over a Finite Alphabet

A code C of length r over an alphabet A is a subset of Ar. Let a = (a1, ..., ar)
be an element of Ar. As usual, the Hamming weight w(a) of a is the number of
non-zero coefficients ai. The Hamming distance between two elements a and a′

is the number of distinct coefficients of a and a′: d(a, a′) = #{i | ai �= a′i}. The
minimum distance dC of a code C is then the minimum of the distance between
two distinct elements of C.

The following proposition recalls the well-known Singleton bound that links
the size of the code and its minimum distance in its more general form, i.e. for
non-linear codes without structure.

Proposition 1. Let C be a code of length r and minimum distance d over an
alphabet A of size q, then : #C ≤ qr−d+1.

Most of the times, the alphabet A is provided with a mathematical structure.
In the following, we will focus on three of them:

– (A,+) is an additive group. An additive code C of length r over A is then
a subgroup of (A,+)r.

– A = F is a finite field. A linear code over F is an F-subspace of the vector
space F

r.
– A = R is a ring R. A linear code over R is an R-submodule of Rr. Note

that the multiplication in R is not necessary commutative, however, we are
only interested in unitary rings.

Codes over L(GF (2)m, GF (2)m), MDS Diffusion Matrices 199

In all cases, the alphabet A possesses an additive commutative group struc-
ture. In this situation, the minimum distance of a code becomes the minimum
weight of its non-zero elements.

Definition 1. A code C is a Maximum Distance Separable Code (an MDS code
for short) if it meets the Singleton bound, i.e. #C = qr−d+1.

1.2 Block Codes over E

In this paper, we are concerned with additive codes defined over E, i.e. the
alphabet is the additive group constituted by the binary m-tuples equipped of
the componentwise addition. Our motivation comes from the construction of
MDS diffusion matrices for cryptographic applications. It will be explained in
Section 1.6.

Definition 2. A block code C of length r over E is an additive code over the
alphabet (E,+).

From the GF (2)-vector space isomorphism Er � GF (2)mr, a block code C
of length r is also a binary linear code of length n = mr over GF (2). However,
we are not interested in its binary properties, but in its block properties. In
particular we do not look at the binary weight of codewords, but at block weight
of codewords. In the rest of this paper, unless it is explicitly stated, w(c) denotes
the block weight of an element c ∈ Er and dC denotes the minimum distance of
the block code C.

1.3 Systematic Block Codes

To avoid some degenerated cases, we define the notion of systematic block code.

Definition 3. Suppose that the size of C is of the form 2km for some integer
k. A code C is a narrow sense systematic block code of pseudo-dimension k if
there exists a systematic linear encoding function Φ from Ek to Er such that
Φ(x) = (x1, ..., xk, Φ1(x), ..., Φr−k(x)), Φi ∈ L(Ek, E), x = (x1, ..., xk) ∈ Ek and
Φ(Ek) = C.

In other words, there exists a linear encoding for C such that the first k blocks
of a codeword are equal to the message x to be encoded.

This definition is equivalent to the fact that the binary image of C is of
dimension k2 = mk and admits a systematic binary generator matrix G = (I |M)
where I is the identity matrix of size mk and M is a binary matrix of size
mk ×m(r − k).

Definition 4. A (general) systematic block code C is a code which is equivalent
to a narrow sense systematic code by blocks permutation (i.e. by permutation of
coordinates acting on Er).

One can remark that the Singleton bound for systematic block codes becomes
k + d ≤ r + 1 as usual for linear codes.

200 T.P. Berger and N. El Amrani

1.4 L-generator Matrix of a Systematic Block Code

Following the notations of Section 1.3, the linear applications Φi from Ek into
E can be decomposed in k elements of L: Φi(x) =

∑k
j=1 ϕi,j(xj), ϕi,j ∈ L.

If Mi,j ∈ Mm(GF (2)) denotes the m × m binary matrix corresponding to
the endomorphism ϕi,j (i.e. ϕi,j(a) = aMi,j for a ∈ E), the binary systematic
generator matrix of C is

G =

⎛
⎜⎜⎜⎜⎝

Im 0m · · · 0m M1,1 · · · M1,r−k

0m
. . .

. . .
...

...
...

...
. . .

. . . 0m
...

...
0m · · · 0m Im Mk,1 · · · Mk,r−k

⎞
⎟⎟⎟⎟⎠ ,

where Im and 0m are respectively the identity and the zero binary square ma-
trices of size m.

We can construct an L-generator matrix G ∈ Mk,r(L) in the following way:

G =

⎛
⎜⎜⎜⎜⎝

Id 0 · · · 0 ϕ1,1 · · · ϕ1,r−k

0
. . .

. . .
...

...
...

...
. . .

. . . 0
...

...
0 · · · 0 Id ϕk,1 · · · ϕk,r−k

⎞
⎟⎟⎟⎟⎠ ,

where Id and 0 are respectively the identity map and the zero map of L.
The codewords c of C are then c = xG, x = (x1, ..., xk) ∈ Ek. By convention,

and to be consistent with the matrix notations, for a ∈ E and ϕ ∈ L, we have
aϕ = ϕ(a). In addition, for ϕ and ψ in L, ϕψ denotes ψ ◦ ϕ.

This construction can be generalized to any general systematic block code
and to any binary generator matrix of such a code.

Definition 5. Let C be a general systematic block code over E. An L-generator
matrix for C is a k×r matrix G = (ϕi,j) over L such that the matrix G = (Mϕi,j)
of size km×rm is a binary generator matrix of the code C considered as GF (2)-
linear code of dimension km and length rm.

Following this definition, if G is an L-generator matrix of a code C, the L-
generator matrices of C are those of the form G′ = SG there S ∈ Mk(L) is an
invertible matrix.

1.5 Equivalence of Systematic Block Codes

In the classical situation of linear codes, two codes C and C′ are equivalent
if there exists an isometry Ψ (i.e. a linear endomorphism of Fn preserving the
Hamming distance) such that C′ = Ψ(C). A major result on isometries in the
context of linear codes over a finite field is the fact that isometries correspond
to monomial matrices, i.e. the n × n matrices with one and only one non-zero
element by row and by column (see [5] Ch.17 §1.5). In practice, such an isometry

Codes over L(GF (2)m, GF (2)m), MDS Diffusion Matrices 201

consists in multiplying each coordinate of a codeword by a non-zero scalar, and
then by permuting these coordinates.

These properties can be easily generalized to the case of block codes. First,
we will characterize some isometries on Er.

Let Sym(r) be the group of permutations acting on the set of indices [1; r]. A
permutation σ ∈ Sym(r) acts on Er in a natural way: if x = (x1, ..., xr) ∈ Er,
we define x′ = σ(x) = (xσ−1(1), ..., xσ−1(r)). Clearly, σ is an isometry of Er for
Hamming block distance. If Pσ is the permutation matrix associated to σ, one
have σ(x) = xPσ .

The scalar multiplication in the case of linear codes is replaced by the action
of invertible elements of L, i.e. elements of the linear group GL(m, 2). If λ =
(λ1, λ2, . . . , λr) is an r-tuple of elements of GL(m, 2), it acts on Er as follows:
λ(x) = (λ1(x1), ..., λr(xr)) = (x1λ1, ..., xrλr). Such an application is clearly an
isometry for the Hamming block distance over Er. Moreover, the diagonal matrix
Dλ with diagonal elements λi, is the matrix of this isometry: λ(x) = xDλ.

The following proposition gives the characterization of isometries of Er.

Proposition 2. The isometry group of Er for the Hamming block distance is
the monomial group constituted of square matrices of size r with one and only
one nonzero invertible elements on each row and each column.

Proof. The proof is similar to that in the case of linear codes. The monomial
group Mon(GL(m, 2)) is generated by the permutations and the diagonal in-
vertible matrices. The elements of this group are then isometries of Er.

Reciprocally, we look at the images of elements of Er of weight 1 by an

isometry ξ of Er. Let e(i) ∈ Er be the element of weight 1 such that e
(i)
i = 1.

The image of e(i) by ξ is of the form λje
(j) for a fixed index j and an element

λj ∈ E. The underlying permutation is entirely defined by σ(j) = i and the
element λj is necessarily invertible, otherwise we can construct a word of weight
1 having 0 ∈ Er for image.

If C is a code with L-generator matrix G and M is a monomial matrix in
Mon(GL(m, 2)), the matrix G′ = GM is an L-generator matrix of the image C′

of C by M.

Definition 6. Two block codes C and C′ are equivalent if there exists a mono-
mial transformation M ∈ Mon(GL(m, 2)) such that C′ is the image of C by
M.

1.6 MDS Systematic Block Codes and MDS Matrices

From Definition 1, if an additive block code C is MDS, then #C = 2m(r−d+1), so
its size is necessary a power of 2m. Moreover, following results of [8] Ch. 11 §2, it
can be shown that C admits a systematic L-generator matrix G. So #C = 2mk,
where k is the pseudo-dimension of C and the MDS condition becomes k + d =
r + 1.

202 T.P. Berger and N. El Amrani

In addition, C is MDS if and only if the restriction of G to any k columns
leads to an invertible matrix in Mk(L). For cryptographic applications, we are
particularly interested in the redundancy part of systematic L-generator matrices
of MDS block codes.

The following theorem is a generalization of the well-known Theorem 8 ([8]
Ch. 11 §4), in the case of codes over finite fields, or [1] Proposition 1 in the case
of commutative ring.

Theorem 1. An additive block code C is MDS if and only if it admits a sys-
tematic L-generator matrix G = (Ik |M) such that every e× e square submatrix
of M is a matrix of an automorphism of Ee.

Note that, since L is not a commutative ring we do not use the notion of
determinant for the square submatrices of M. However, the invertibility of an
e × e square matrix is directly related to the invertibility of the corresponding
me ×me binary matrix obtained by substituting to each entry ϕi,j the m ×m
binary matrix Mϕi,j .

Definition 7. A matrix M ∈ Mk,s(L) is MDS if the systematic block code C
with L-generator matrix G = (Ik |M) is an MDS block code of length r = k+ s.

The MDS matrices are those satisfying the conditions of Theorem 1.
In Section 1.5, we studied the action of isometries on additive block codes.

Following this approach, we are able to deduce a notion of equivalence for MDS
matrices.

Set s = r − k. Let C be a systematic block code with L-generator matrix
G = (Ik | M). In order to preserve the systematic structure of this matrix, we
apply to C a permutation which separately acts on the first k positions and on
the s last positions. Let σ = (σ1, σ2) ∈ Sym(r) such that σ1 ∈ Sym(k) and
σ2 ∈ Sym(s). Let C′ = σ(C) be the image of C by C′. If the systematic L-
generator matrix of C′ is G′ = (Ik | M′), one have M′ = Πσ−1

1
MΠσ2 , where

Πσ−1
1

and Πσ2 are respectively the k × k and (s) × (s) permutation matrices

associated to σ−1
1 and σ2.

Of this reasoning we deduce the following proposition:

Proposition 3. Let M ∈ Mk,s(L) be an MDS matrix. A matrix M′ obtained
by any permutation of the rows and the columns of M is MDS.

Similarly, suppose that λ = (λ1, ..., λr) ∈ GL(m, 2)r is an r-tuple of “non-zero
scalars” (i.e. invertible elements of L) acting on the code C. We decompose λ =
(λ(1)|λ(2)) into its first k components and its last s components. The systematic
L-generator matrix of the image C′ of C by the action of λ is G′ = (Ik | M′)
with M′ = Dλ−1

(1)
MDλ(2)

, where Dλ−1
(1)

and Dλ(2)
are respectively the k × k and

s× s diagonal matrices with diagonal λ−1
(1) and λ(2).

So we obtain the following proposition:

Proposition 4. Let M ∈ Mk,s(L) be an MDS matrix. A matrix M′ obtained
by multiplying on the left any row of M and multiplying on the right any column
of M by some elements of GL(m, 2) is MDS.

Codes over L(GF (2)m, GF (2)m), MDS Diffusion Matrices 203

Definition 8. Two MDS matrices M and M′ in Mk,s(L) are equivalent if M′

can be deduced from M by applying the transformations given in Propositions 3
and 4.

1.7 MDS Diffusion Matrices for Cryptographic Applications

Classically, symmetric cryptographic algorithms alternate confusion layers and
diffusion layers in their iterative cryptographic processes. The confusion layer
consists in the application of a non-linear function, called an S-box which acts
generally on r blocks of size m. The typical values of m are 4 or 8. The diffusion
layer ensures the dissemination of any difference in input between the different
r blocks. For efficiency this diffusion layer is in fact a linear application from Er

to Er.
The goal of this diffusion layer is not to ensure a diffusion inside each block,

but a diffusion between the blocks. In practice, as previously we denote by x =
(x1, ..., xr), the r input blocks and by y = xM the output blocks where M can
be viewed as an r × r L-matrix or an rm× rm binary matrix.

The main example of diffusion matrix is MixColumns, the AES diffusion layer
[3]. In this paper, the authors introduce the notion of branch number, which is
a measure of the resistance of a diffusion matrix against linear and differential
cryptanalysis in the context of SPN block ciphers.

We do not want to describe in detail the concepts of linear and differential
branch numbers and their links with cryptanalysis. We just give a definition of
these concepts adapted to our approach. For more details, the reader can refer
to [3].

We need some notations: let M be an element of Mk,s(L), M denotes the
corresponding km × ks binary matrix. The notation MT corresponds to the
transpose ofM in Mk,s(L), and the matrixMT∗ denotes the element ofMk,s(L)
associated to the binary matrix MT . Note that MT and MT∗ are not equal.

Definition 9. Let M ∈ Mk,s(L) be a diffusion matrix which takes as inputs k
blocks of m bits and outputs s blocks of m bits.
The differential branch number of M is the minimum distance of the additive
block code generated by (Ik | M).
The linear branch number of M is the minimum distance of the additive block
code generated by (Is | MT∗).

Note that, since we do not require that k = s, this definition is more general
than the usual one. However, even if k �= s, the differential branch number is
the minimum number of blocks in input and in output that are impacted by
a difference, which corresponds to a minimal word of the additive block code
since it is GF (2)-linear. Similarly, the linear branch number is the minimum of
blocks in input and in output that are impacted by a parity check equation, and
corresponds to the minimum block-weight of the binary dual of the previous

204 T.P. Berger and N. El Amrani

code. The following theorem is a direct generalization of a major result of [3] to
the case where k is not necessary equal to s.

Theorem 2. A binary diffusion matrix M of size km × sm (or equivalently a
diffusion matrix M ∈ Mk,s(L)) has a maximal differential branch number if
and only if it has a maximal linear branch number. In this situation, the both
matrices M and MT∗ are MDS.

Suppose now that k = s. Let C be an MDS block code with systematic L-
generator matrix G = (Ik | M). Obviously, since M is a square MDS matrix,
it is invertible. Moreover (M−1 | Ik) is another L-generator matrix of C. The
systematic block code C′ generated by the L-generator matrix G′ = (Ik | M−1)
is equivalent by block permutation to C, and so it is also an MDS block code.
We have proved the following proposition:

Proposition 5. If M is a square MDS matrix, then M−1 is also a square MDS
matrix.

We consider now a k × s matrix M such that the entries ϕi,j of M pairwise
commute. This is a classical requirement for the search of MDS diffusion matrices
(cf. [1,3,4]). In fact, we do not know in the literature an example of MDS diffusion
matrix M such that the entries do not commute.

The main reason for this restriction comes from the fact that it is possible to
compute the subdeterminants of M and to use these subdeterminants to test if
the matrix is MDS. In our context, we obtain the following result:

Proposition 6. Suppose that M is a (non necessary square) MDS matrix such
that the entries of M commute pairwise. The matrix MT is MDS.

Proof. Let M be the binary km × sm matrix associated to M. Let A be any
square submatrix of M and A its associated binary submatrix. The coefficients
of M are in fact in a commutative subring R of L. Let δ = Det(A) ∈ R be the
determinant of A computed in R. This makes sense since R is commutative. Let
Mδ be the binary matrix associated to δ ∈ L. From a result of Silvester [9], we
have det(A) = det(Mδ), where det is the determinant of binary matrices.

To conclude our proof, we remark that Det(A) = Det(AT). So the submatrix
A is invertible if and only if AT is invertible.

Note that this result is false in the general case.

1.8 Ring Structures over GF (2)m and Related Additive Block
Codes

A natural research direction is to explore potential mathematical structures of
E to provide additive codes with additional properties, or in order to decrease
an exhaustive search of good candidates for cryptographic applications.

Codes over L(GF (2)m, GF (2)m), MDS Diffusion Matrices 205

In this section, we will look at possible ring structures over E. The most basic
ring structure over E corresponds to the Hadamard product of m-tuples i.e.
the component by component product. Most of the other ring structures over E
consists in identifying E with the ring GF (2)[x]/f(x) for some polynomial f(x)
of degree m. In both cases, we can define the notion of linear-block codes, that
are not only additive block codes, but also submodules of Er.

In these situations, it is possible to determine the minimal ideals of R, which
leads to a natural projection of such linear codes into several linear codes over
finite fields.

Codes over (GF (2)m,+,×). In this section, we consider the ring R =
(GF (2)m,+,×) = (GF (2),+,×)m, where + and × are respectively the addi-
tion and multiplication of binary m-tuples coordinate by coordinate.

For i in [0;m− 1], we denote by ei ∈ GF (2)m the element such that ei,j = 0
except ei,i = 1 and πi the projection x = (x0, ..., xm−1) �→ xi.

If C is an additive code of length r over R, we consider the following derived
codes:

eiC = {eic = (eic0,, eicr−1) | c ∈ C} ⊂ Rr

and πi(C) = {πi(c) = (πi(c0),, πi(cr−1)) | c ∈ C} ⊂ GF (2)r.
It is easy to verify that the minimal ideals of R are exactly those generated

by the elements ei.
An R-linear code C of length r overR is then a submodule of Rr. An additive

code C is R-linear if and only if the codes eiC are subcodes of C.

Proposition 7. An additive code C of length r over R is an R-linear code if
and only if it is the direct sum of the codes eiC, for i in [0;m − 1]. In this
situation, it is isomorphic to the direct sum of the binary codes πi(C).

Corollary 1. The minimum block-weight distance of a linear code C is the min-
imum of the binary non-zero minimum distances of the binary codes πi(C).

In particular the only non trivial MDS linear codes over R are the repetition
block-code and the parity check block-code, with respective generator matrices:

G = (Im Im ... Im) and G′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Im 0 . . . 0 Im

0
. . .

. . .
...

...
...

. . .
. . . 0

...
...

. . .
. . .

...
0 0 Im

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

In addition, one can remark that if G = (Ik|M) is the L-generator matrix of
an additive block code, the code C is linear if and only if the binary matrices of
the coefficients ϕi,j of M are diagonal. In this situation, the two definitions of
duality given in Section 2.2 are the same.

Here is an example of such a code. We set m = 3, k = 2 and r = 5. The
binary image of the systematic L-generator matrix is:

206 T.P. Berger and N. El Amrani

G =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

This code is in fact the direct sums of the binary codes Ci, 1 ≤ i ≤ 3, generated

by G1 =

(
1 0 0 1 1
0 1 1 0 1

)
, G2 =

(
1 0 1 1 1
0 1 1 1 1

)
and G3 =

(
1 0 1 0 0
0 1 0 1 1

)
.

Since the codes C2 and C3 have a minimum distance equals to 2, the minimum
distance of the block code C is 2.

Codes over GF (2)[x]/f(x). Let R = GF (2)[x]/f(x) be the ring of binary
polynomials modulo a fixed polynomial f(x) of degreem. In addition, we require
that f(0) = 1 which is equivalent to say that x is invertible in R. This condition
discards some degenerated cases.

Let f(x) = fp1

1 (x)fp2

2 (x) . . . fps
s (x) be the factorization of f(x) into irreducible

polynomials. For i ∈ [1; s], we set hi(x) = f(x)/fi(x). The following properties
are basic polynomial algebra results: the ring R is a principal ring, moreover
the ideals of R are exactly those generated by the divisors of f(x). The minimal
ideals of R are those generated by the elements hi(x).

Suppose first that f(x) is irreducible, the ring R = GF (2)[x]/f(x) is then
isomorphic to GF (2m) and the notion of linear code over R is exactly those of
linear code of length r over GF (2m).

Suppose now that f(x) is square-free, i.e. pi = 1 for all i ∈ [1; s]. This con-
dition is equivalent to the fact that R is a semi-simple algebra. In other words
R is equivalent to the product of fields

∏s
i=1 Fi where Fi = GF (2)[x]/fi(x).

The minimal ideal generated by a polynomial hi(x) is simply the set of elements
with all its components equal to 0 except the i-th in the product representation∏s

i=1 Fi.
For i ∈ [1; s] we define the projection pi fromR into Fi by pi(g(x)) = g(x) mod

fi(x). We extend this projection to an application fromRr into Fr
i by applying pi

to each component. We obtain s linear codes Ci = pi(C), each of these codes is a
linear code over the finite field Fi. The following theorem is a direct consequence
of the isomorphism R =

∏s
i=1 Fi.

Theorem 3. Suppose that the polynomial f(x) is square free.
If f(x) = f1(x)f2(x) . . . fs(x) is its decomposition into irreducible factors, then
the linear code C over R is isomorphic to the direct sum

⊕s
i=1 Ci.

Note that, if C is a systematic code, all the codes Ci are distinct from {0}.
As a consequence, we obtain the following corollary:

Corollary 2. Suppose that f(x) satisfies the conditions of Theorem 3. If C is
a systematic linear code over R, its minimum distance d is the minimum of the

Codes over L(GF (2)m, GF (2)m), MDS Diffusion Matrices 207

minimum distances di of its projections Ci. In particular, C is MDS if and only
if all the codes Ci are MDS.

The most famous example of codes over such a ring R is those of quasi-cyclic
codes [6], where f(x) = xm − 1. In that situation, x − 1 is always a factor of
xm − 1, so one of the Ci is a binary code. This particular case does not allow to
build MDS block codes.

A generalization of results of [6] to any polynomial f(x) can be found in [2].
We will see in Section 4 that the particular case f(x) = f1(x)f2(x), deg(f1(x)) =
deg(f2(x)) = m/2 is an interesting way in order to construct MDS block codes
over E from MDS block codes over GF (2m/2).

We do not discuss the situation where f(x) is not square free. In this situation,
it is possible to decompose C in a similar way, but the projections are codes
defined over finite chain rings. The reader can refer to [7] for more details.

2 L-codes

2.1 Definition of L-codes

The set L is a non-commutative ring. Remember that, for consistency with
our previous notations and the underlying matrix approach, the product in L is
permuted with the composition: for a ∈ E, aϕψ = (ϕψ)(a) = ψ(ϕ(a)) = a(ψ◦ϕ).

Following the definition of L-generator matrix for a block code over E, we
define the notion of L-linear code.
Definition 10. An L-left-linear code C of length r over L is a left-submodule of
Lr.

Note that it is possible to define in the same way an L-right-linear code.
However, our definition of L-linear codes concerns only left-submodule since
there is a one to one correspondence between (left) L-linear codes and additive
block codes over E.

Theorem 4. Let C be an L-code of length r. The set
C = {aϕ = (ϕ1(a), ..., ϕr(a)) ∈ Er | ∀a ∈ E and ∀ϕ ∈ C} is an additive block
code. Reciprocally, if C is an additive block code, the set C = {ϕ = (ϕ1, ..., ϕr) ∈
Lr | ∀a ∈ E, aϕ ∈ C} is an L-code. Moreover the minimum distance of C and C

are the same.

Proof. The proof of this theorem is essentially direct verification. The only diffi-
cult point concerns the minimum distance. Clearly, we have dC ≤ dC. Indeed, if
ϕ ∈ C is a non-zero element of C of minimum weight dC, there exists an element
a ∈ E, a �= 0 and c = ϕ(a) �= 0, c ∈ C and wE(c) ≤ dC, so dC ≤ dC.

Reciprocally, suppose that c = (c1, ..., cr) ∈ C is a word of minimum weight
dC . We construct an element ϕ = (ϕ1, ..., ϕr) ∈ C as follows: the binary matrices
of the linear applications ϕi are those with the first row equals to ci and the
other rows equal to (0, .., 0). Such an element satisfy the property aϕ = a1c. In
other words, the images by ϕ of E is the GF (2)-vector space of dimension 1
generated by c. This implies ϕ ∈ C and w(ϕ) = dC , so dC = dC .

208 T.P. Berger and N. El Amrani

Following Definition 3 and Definition 4, a narrow sense (resp. general) sys-
tematic L-code C is a submodule of rank k such that C is a narrow sense (resp.
general) systematic additive block code.

In this situation the L-generator matrix of C is nothing else than a generator
matrix of C as left submodule.

2.2 Duality of L-codes

There is no natural notion of duality on additive block codes when they are con-
sidered as block codes and not as binary codes. The introduction of underlying
L-codes having a module structure leads us to study the concept of duality with
this approach.

L-duality. One can define a kind of scalar product on L in the following way: for
ϕ and ψ in Lr, we set < ϕ,ψ >=

∑r
i=1 ϕiψi =

∑r
i=1 ψi ◦ϕi ∈ L. Note that Lr is

a non commutative module over L. For λ ∈ L and ϕ ∈ L, we denote respectively
by λϕ = (λϕ1, ..., λϕr) and ϕλ = (ϕ1λ, ..., ϕrλ) the left and right product. The
bilinear map is linear as left module on the left component and linear as right
module on the right component. In particular < λϕ, ψ >= λ < ϕ, ψ > and
< ϕ,ψλ >=< ϕ,ψ > λ. Moreover this bilinear map is non degenerated in the
sense that if, for a fixed ϕ ∈ Lr, < ϕ,ψ >= 0 for all ψ ∈ Lr, then ϕ = 0.

We are able to define the dual of an L-code.

Definition 11. Let C be an L (left)-linear code. The dual C⊥ of C is the subset
of Lr defined by

C⊥ = {ψ ∈ Lr | < ϕ,ψ >= 0, ∀ϕ ∈ C}.

By adapting to the particular case of our non-commutative ring Lr the usual
demonstrations concerning the properties of the dual of a linear code, we obtain
the following theorem:

Theorem 5. Let C be a systematic linear code of rank k. The dual C⊥ of C is
an L right-linear submodule of Lr of rank r − k.

Note that, since C⊥ is not a left module, we cannot associate to this code
an additive block code. So, this notion of dual code cannot be extended to
additive block codes. However, it remains a lot of useful properties in relation
with this notion of duality. We can in particular define a generator matrix of C⊥

for its right-module structure. Moreover, if G is a generator matrix of C and H
a generator matrix of C⊥, then GHT = 0 (but not necessary HGT = 0).

An element c ∈ Er is in the additive block code C if and only if cHT = 0. So
the matrix H is also called an L-parity check matrix of the code C.

In addition, if G = (Ik |M) is a generator matrix of C under systematic form,
then H = (MT | Ir−k) is a (right) generator matrix of C⊥.

A particular care must be taken to the fact that MT denotes the transpose of
M at L level and does not correspond to the matrix obtained by the transpose
of its binary image M (i.e. the binary m(r − k)×mk matrix).

Codes over L(GF (2)m, GF (2)m), MDS Diffusion Matrices 209

In addition, there exists an equivalent to Theorem 10 of [8] Ch.1 §10 which
deals with the link between independence of columns of a parity check matrix
and minimum distance of a code.

Theorem 6. Let C be an additive block code and H be an L-parity check matrix
of C. The code C has minimum block distance d if and only if every d−1 columns
of H define a linear application of rank d − 1 and some d columns of H define
a linear application of rank strictly less than d.

Binary Duality for L-codes. Identifying Er and GF (2)mr, it is possible to
define the notion of binary dual of an additive block code. This approach can
be defined as in Section 2.2 using a kind of “Hermitian scalar product” on L.
We need to use the transpose of a linear application. If ϕ is an element of L
with associated binary matrix Mϕ, the transpose of ϕ is the linear application
ϕT ∈ L with binary matrix MT

ϕ .

We define a bilinear map < ϕ,ψ >T=
∑r

i=1 ϕiψ
T
i ∈ L. One can remark that

< λϕ, ψ >T= λ < ϕ, ψ >T and < ϕ, λψ >T=< ϕ,ψ >T λT .
We are able to define the binary dual of an L-code.

Definition 12. Let C be an L (left)-linear code. The binary dual C⊥∗ of C is
the subset of Lr defined by

C⊥∗ = {ψ ∈ Lr | < ϕ,ψ >T= 0 ∀ϕ ∈ C}.

Theorem 7. Let C be a systematic linear code of rank k. The binary dual C⊥∗

of C is an L left-linear submodule of Lr of rank r − k, i.e. a systematic L-code.

Proof. The proof of this theorem comes directly from the relation< ϕ, λψ >T=<
ϕ,ψ >T λT which implies in particular that, if < ϕ,ψ >T= 0, then < ϕ, λψ >T=
0 for all λ ∈ L, so C⊥∗ is a left submodule.

In order to clarify the relationship between the two types of duality, we in-
troduce the following notation: if M = (ϕi,j) is a matrix with entries in L, we
denote M∗ = (ϕT

i,j) obtained by replacing each entry of the matrix by its trans-
pose application. Note that we do not transpose the matrix itself. In particular,
if ϕ = (ϕ1, ..., ϕr), we set ϕ∗ = (ϕT

1 , ..., ϕ
T
r).

Proposition 8. An element ϕ ∈ L is in C⊥ if and only if ϕ∗ is in C⊥∗

Proof. It is a direct consequence of Definitions 11 and 12.

As a consequence of these results, H is a generator matrix of the right L-code
C⊥ if and only if the matrix H∗ is a generator matrix of the (left) L-code C⊥∗.
In particular, if G = (Ik | M) is a generator matrix of C under systematic form,
then H∗ = (MT∗ | Ir−k) is a generator matrix of C⊥∗.

The following proposition describes the link between the L-duality and the
binary duality and justify the name of binary dual for C⊥∗.

210 T.P. Berger and N. El Amrani

Proposition 9. Let C be a systematic block code of length r over E. Identifying
Er and GF (2)mr, we denote by C⊥ the usual binary dual of C. The L linear
code associated to C⊥ is C⊥∗.

Proof. This result comes from the remark that, for ϕ and ψ ∈ Lr, we have
M<ϕ,ψ>T =

∑r
i=1 MϕiM

T
ψi
.

Note that there is no analogue to Theorem 6 for the binary L-dual linear code.

3 Linear Codes over Subrings of L
3.1 Notations and Remarks

In this section, we focus on systematic additive block codes having a systematic
generator matrix with entries in a subringR of L. We denote these codes system-
atic R-codes. Following Section 2.2, we define in an obvious way the notions of
R-generator elements, R-parity check elements, R-generator matrices, R-parity
check matrices, and the left (resp. right) submodule CR (resp.C⊥

R, C⊥∗
R).

Suppose for instance that R is commutative, then the notions of left and right
submodule becomes the same, so the R-duality leads to the construction of R-
dual additive block codes. Under those hypothesis, we have two distinct notions
of dual block codes.

Another possibility is the fact that R is include in the ring of symmetric
endomorphisms, i.e. the elements ϕ ∈ L such that ϕT = ϕ. In that case, the
R-parity check matrix H = (MT |In−k) is an R-generator matrix of the dual
code C⊥∗

R .

3.2 Diagonal Endomorphisms

A diagonal endomorphism is an endomorphism such that its binary matrix is
diagonal. We denote by D the ring of diagonal endomorphisms, which is iso-
morphic to the ring GF (2)m. The D-codes are exactly those defined in Section
1.8.

The ring D is commutative, moreover the elements of D are symmetric, so
there is a single notion of duality. Moreover a code is MDS if and only if its dual
is MDS. However, due to Corollary 1, the search of MDS D-codes reduces to the
search of binary MDS codes that only leads to trivial cases.

3.3 Subrings with a Single Generator

Let ψ be an invertible element of L. Let P(ψ) = {P (ψ) =
∑deg(P (x))

i piψ
i}

be the subring of L generated by ψ. The ring P(ψ) is commutative and was
intensively studied to construct MDS matrices for cryptographic applications
(cf. e.g. [1,2]). Since this ring is commutative, there exists an intrinsic notion of
P(ψ)-duality.

Codes over L(GF (2)m, GF (2)m), MDS Diffusion Matrices 211

In that situation, if f(x) is the minimal polynomial of ψ, a P(ψ)-block code
is in fact isomorphic to a block code over GF (2)[x]/f(x) described in Section
1.8. If f(x) is irreducible, the P(ψ)-duality is equivalent to the duality of codes
over the finite field GF (2)[x]/f(x), which is distinct from the binary duality. If
f(x) is not irreducible, the P(ψ)-dual of a code is obtained by taking the dual
of each projection and reconstructing the codes from these projections.

A priori, as noticed in [1], in order to construct some MDS diffusion matrices
for cryptographic applications, it seems preferable to limit the search to codes
over finite fields. However, in order to obtain some MDS matrices suitable for
efficient implementation, it remains interesting to construct by this method some
MDS matrices of size m from MDS matrices from smaller size block m′ < m
(typically m = 2m′).

3.4 Block-Diagonal Subrings

Suppose that m = m′ + m′′ for some non-zero integers m′ and m′′. An ele-
ment x = (x1, ..., xm) can be identified to the couple x = (x′, x′′) with x′ =
(x1, ..., xm′) ∈ E′ = GF (2)m

′
and x′′ = (xm′+1, ..., xm) ∈ E′ = GF (2)m

′′
. We

denote by L′ and L′′ the rings of linear endomorphisms of E′ and E′′. Using
the previous identification, the ring Rm′,m′′ = L′ × L′′ can be considered as a
subring of L. The endomorphisms of Rm′,m′′ are those whose matrices are block
diagonal matrices with a first block of size m′ and a second of size m′′.

In practice, an Rm′,m′′-linear block code is constructed as a direct sum of
an L′-linear block code and an L′′-linear block code. Even if at bit level such a
code is clearly not very efficient, in the context of MDS diffusion matrices, this
method allows to build MDS matrices over large m from smaller MDS matrices
and it may be useful for some applications. The typical values of m′ and m′′ are
m′ = m′′, so m = 2m′.

4 Examples of Constructions

The aim of this section is not to present some optimized matrices for hardware or
dedicated embedded software implementations, but to explain how our approach
can be applied for a practical search of good candidates.

4.1 MDS Diffusion Matrices Derived from MDS Linear Codes over
a Finite Field

In this example, we set m = 3, k = 3 and r = 6. We denote by α a primitive
root of GF (8). From a Reed-Solomon code of parameters [6, 3, 4] over the finite

field GF (8), we obtain the following MDS matrix M =

⎛
⎝1 α α3

1 α6 α6

1 α4 α5

⎞
⎠.

There are different ways to build a binary MDS matrix from M.

212 T.P. Berger and N. El Amrani

Indifferently, we can consider α as a root of the primitive polynomial x3+x+1,
or the primitive polynomial x3 + x2 + 1. Replacing α by the companion matrix
of its minimal polynomial, we obtain two distinct MDS diffusion layers:

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 1 1 0
0 1 0 0 0 1 0 1 1
0 0 1 1 1 0 1 1 1
1 0 0 1 0 1 1 0 1
0 1 0 1 0 0 1 0 0
0 0 1 0 1 0 0 1 0
1 0 0 0 1 1 1 1 1
0 1 0 1 1 1 1 0 1
0 0 1 1 0 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and M ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0 1 0 1
0 1 0 0 0 1 1 1 1
0 0 1 1 0 1 1 1 0
1 0 0 0 1 1 0 1 1
0 1 0 1 0 0 1 0 0
0 0 1 0 1 0 0 1 0
1 0 0 1 1 1 1 1 0
0 1 0 1 1 0 0 1 1
0 0 1 0 1 1 1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In addition, one can notice that the minimal polynomial of theM ′′
α =

⎛
⎝1 0 1
0 0 1
1 1 1

⎞
⎠

is x2 + x + 1 and M ′′
α generates a ring which is isomorphic to GF (23). So the

following binary matrix is an MDS diffusion layer:

M ′′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 1 0 1 0 0 1
0 1 0 0 0 1 0 1 1
0 0 1 1 1 1 1 1 0
1 0 0 1 1 0 1 1 0
0 1 0 1 0 1 1 0 1
0 0 1 0 1 0 0 1 0
1 0 0 1 1 1 0 1 1
0 1 0 1 1 0 1 0 0
0 0 1 1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Note that, since this matrix M ′′
α is symmetric, all the blocks in M ′′ are also

symmetric matrices.

4.2 An Example of Symmetric Automorphisms

In this section, m = 3, k = 3 and r = 6. We set M1,1 = M2,1 = M3,1 = I3,

M1,2 =

⎛
⎝0 0 1
0 1 0
1 0 1

⎞
⎠, M1,3 =

⎛
⎝1 0 1
0 1 1
1 1 0

⎞
⎠, M2,2 = M3,3 =

⎛
⎝1 0 0
0 1 1
0 1 0

⎞
⎠, M2,3 =

⎛
⎝0 0 1
0 1 0
1 0 0

⎞
⎠

and M3,2 =

⎛
⎝1 0 1
0 0 1
1 1 1

⎞
⎠. The following matrix M is an MDS block diffusion matrix

M =

⎛
⎝I3 M1,2 M1,3

I3 M2,2 M2,3

I3 M3,2 M2,2

⎞
⎠

Codes over L(GF (2)m, GF (2)m), MDS Diffusion Matrices 213

All the submatrices Mi,j are symmetric. The matrix M2,3 is of order 2, its
minimal polynomial is x2 + 1. The matrices M1,2 and M2,2 are of order 3, with
the same minimal polynomial x3 + 1. The matrices M1,3 and M3,2 are of order
7, with respective minimal polynomials x3 + x2 + 1 and x3 + x + 1. None of
these 5 matrices pairwise commute. The ring generated by these matrices is
L � M3(GF (2)).

Clearly, this example cannot be obtained by usual methods derived from finite
fields or commutative subrings.

4.3 Iterative Constructions on m

From the examples given in Section 4.1, we are able to construct 3 × 3 MDS
matrices over blocks of size m = 6.

First, we follow the block-diagonal method presented in Section 3.4. From a bi-

nary matrixMαi ∈ M3(GF (2)), we construct the matrix I2⊗Mαi =

(
Mαi 0
0 Mαi

)

in M6(GF (2)).
From the MDS matrix M = (Mi,j), Mi,j ∈ M3(GF (2)), given in Section 4.1,

we construct the MDS matrix M (2) = (I2 ⊗Mi,j) which acts on 3 blocks of size
6.

Even if this matrix acts separately on the subblocks of 3 bits inside the blocks
of 6 bits, if this diffusion matrix is applied after a well-chosen Sbox over blocks
of 6 bits, this property is no more a cryptographic weakness.

Another possible combination of MDS matrices from finite field of smaller size
is those derived from Section 1.8. For example, the MDS matrix M over GF (8)
given in Section 4.1.

Recall that M =

⎛
⎝1 α α3

1 α6 α6

1 α4 α5

⎞
⎠.

Set f1(x) = x3 + x+ 1, f2(x) = x3 + x2 + 1 and f(x) = f1(x)f2(x). The cor-
responding polynomials rings are R1 = GF (2)[x]/f1(x), R2 = GF (2)[x]/f2(x)
and R = GF (2)[x]/f(x).

Since R1 and R2 are isomorphic to GF (8), the matrix M can be interpreted
as a matrix in R1 and R2, with

M1 =

⎛
⎝1 x x3

1 x6 x6

1 x4 x5

⎞
⎠ =

⎛
⎝1 x x+ 1
1 x2 + 1 x2 + 1
1 x2 + x x2 + x+ 1

⎞
⎠

and

M2 =

⎛
⎝1 x x3

1 x6 x6

1 x4 x5

⎞
⎠ =

⎛
⎝1 x x+ 1
1 x2 + x x2 + x
1 x2 + x+ 1 x+ 1

⎞
⎠ .

214 T.P. Berger and N. El Amrani

The isomorphismR � R1R2 able us to construct an MDS matrix with entries
in R using the Remainder Chinese Theorem.

If a1(x)f1(x)+a2(x)f2(x) = 1 is the Bézout identity, to (g1(x), g2(x)) ∈ R1R2

we associate the polynomial g(x) = a2f2g1(x) + a1f1g2(x) ∈ R. In our example,
a1(x) = x and a2(x) = x+ 1.

Our MDS matrix over R is then MR = xf1(x)M1 + (x + 1)f2(x)M2,
i.e.

MR =

⎛
⎝1 x x6 + x5 + x4 + 1
1 x5 + x4 + x3 + x2 x5 + x4 + x3 + x2

1 x4 + 1 x6 + x4 + x3 + x+ 1

⎞
⎠ .

The binary MDS matrix is obtained by substituting the companion matrixMx

of f(x) to x in the entries of MR. Indeed, Mx is the matrix of the multiplication
by x in R.

5 Conclusion

The goal of this paper was not to construct in practice some optimized MDS
matrices dedicated to specific applications, but to present a general framework
for such a research. In order to have a generic approach, we introduced the notion
of L-linear codes and R-linear codes for subrings R of L.

This approach allows us to recover most of the known methods used for the
construction of MDS diffusion matrices. We show that there exists some other
non-explored directions of search, in particular with the ring of symmetric en-
domorphisms and any non-commutative subring of L.

References

1. Augot, D., Finiasz, M.: Exhaustive search for small dimension recursive MDS diffu-
sion layers for block ciphers and hash functions. In: Proceedings of the 2013 IEEE
International Symposium on Information Theory, Istanbul, Turkey, July 7-12, pp.
1551–1555. IEEE (2013)

2. Berger, T.P., El Amrani, N.: Codes over finite quotients of polynomial rings. Finite
Fields and Their Applications 25, 165–181 (2014)

3. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard. Information Security and Cryptography. Springer (2002)

4. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash
functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239.
Springer, Heidelberg (2011)

5. Huffman, W.C.: Codes and groups. In: Huffman, W.C., Pless, V. (eds.) Handbook
of Coding Theory II, ch.17. Elsevier Science Inc., New York (1998)

6. Lally, K., Fitzpatrick, P.: Algebraic structure of quasicyclic codes. Discrete Applied
Mathematics 111(1-2), 157–175 (2001)

7. Ling, S., Niederreiter, H., Solé, P.: On the algebraic structure of quasi-cyclic codes
IV: repeated roots. Des. Codes Cryptography 38(3), 337–361 (2006)

8. MacWilliams, F.J., Sloane, N.J.A.: The theory of Error Correcting Codes. North-
Holland, Amsterdam (1986)

9. Silvester, J.R.: Determinants of block matrices. The Mathematical Gazette 84(3),
460–467 (2000)

A Higher Order Key Partitioning Attack

with Application to LBlock

Riham AlTawy, Mohamed Tolba, and Amr M. Youssef(�)

Concordia Institute for Information Systems Engineering,
Concordia University, Montréal, Québec, Canada

youssef@ciise.concordia.ca

Abstract. In this paper, we present a higher order key partitioning
meet-in-the-middle attack. Our attack is inspired by biclique cryptanaly-
sis combined with higher order partitioning of the key. More precisely, we
employ more than two equally sized disjoint sets of the key and drop the
restrictions on the key partitioning process required for building the ini-
tial biclique structure. In other words, we start the recomputation phase
of the attack from the input plaintext directly, which can be regarded
as a Meet-in-the-Middle-attack where the tested keys have a predefined
relation. Applying our approach on LBlock allows us to present a known
plaintext attack on the full thirty two round cipher with time complex-
ity of 278.338 and negligible memory requirements. The data complexity
of the attack is two plaintext-ciphertext pairs, which is the minimum
theoretical data requirements attributed to the unicity distance of the
cipher. Surprisingly, our results on the full LBlock are better, in terms of
both computational and data complexity, than the results of its biclique
cryptanalysis.

Keywords: Cryptanalysis · Meet-in-the-middle · Low data complexity ·
LBlock · Bicliques

1 Introduction

Bicliques are structures that provide a formal representation of the initial execu-
tion separation in MitM attacks [14]. These structures have become particularly
important after they have been used to present a key recovery attack on the
full round Advanced Encryption Standard (AES) [5]. Indeed, a biclique attack
is an optimized exhaustive search attack where the whole key space is tested effi-
ciently. Accordingly, this class of attacks is usually used to analyze the full round
cipher unlike various other attacks which can only be applied to reduced round
versions. As a result of the exhaustive search nature of biclique cryptanalysis,
attacks employing these structure are characterized by their high computational
complexity which can reach that of the brute force search. However, practical
gain has been shown in a dedicated FPGA implementation of the attack on AES
[4]. Most of the biclique attacks require high data complexity (depending on the
length of the employed biclique) which can sometimes reach the entire codebook.

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 215–227, 2015.
DOI: 10.1007/978-3-319-18681-8_17

216 R. AlTawy et al.

The need for efficient lightweight cryptography is on the rise due to the cur-
rent popularity of lightweight devices such as RFID chips and wireless sensor
networks. Indeed, these systems provide convenient affordable services on tiny
resource constrained environments. On the other hand, these systems must guar-
antee certain security and privacy requirements. More precisely, the adopted
primitives must fulfill the aggressive restrictions of the application environment
and at the same time maintain acceptable security margins. PRESENT [6],
KATAN and KTANTAN [13], LED [16], Zorro [15], and LBlock [26] are some
examples of cipher designs that have been proposed to address the needs of
lightweight cryptography. Most of the recent cryptanalytic attacks on lightweight
ciphers aim to analyze how some design concepts which are proposed for this
environments have weakened these ciphers and broadened the effect of certain
types of attacks. [20,2,19,7,23].

Recently, there has been an increased interest in adopting low data com-
plexity attacks for the analysis of ciphers. This motivation is backed by the
fact that security bounds are better perceived in a realistic model [8,10]. More
precisely, in a real life scenario, security protocols impose restrictions on the
amount plaintext-ciphertext pairs that can be eavesdropped and/or the number
of queries permitted under the same key. Given the fact that biclique cryptanal-
ysis is characterized by its high data complexity, it has been implicitly avoided
in the analysis of lightweight primitives.

In this work, we present a higher order key partitioning MitM attack. Our
approach adopts only the recomputation phase from the biclique attack and
does not require any specific initial biclique structure. Accordingly, we drop all
the restrictions imposed by the bicliques on how the key is partitioned, and
allow the use of related keys that would have been impossible otherwise. The
absence of the biclique results in a low data complexity related key MitM attack
in the single key setting in which the whole key space is searched efficiently
through partial matching by recomputation [5]. To minimize the computational
complexity of the recomputation, we employ a higher order number of disjoint
sets of the master key [24]. More precisely, we partition the key space into more
than two related keys (not necessarily independent related key differentials).
Adopting this divide and conquer approach means that we have to deal with
multiple small recomputed sets instead a dominating large set. We apply this
attack on the lightweight block cipher LBlock which, similar to other lightweight
ciphers, employs a simple key schedule with relatively slow diffusion to meet the
resources constraints. Additionally, it adopts round subkeys that are shorter
than the master key and a nibble-wise permutation. This fact allows our attack
to achieve more gain over its biclique cryptanalysis counterpart [25]. Moreover,
our attack on LBlock results in the minimum data requirements which makes it
valid on RFID-like systems where the attacker can only acquire a very limited
amount of plaintext-ciphertext pairs.

The rest of the paper is organized as follows. In the next section, we give a
brief overview on the basic biclique attack. Afterwards, in Section 3, we give the
specification of the lightweight block cipher LBlock. In Section 4, we provide the

A Higher Order Key Partitioning Attack with Application to LBlock 217

details of our approach and its application on LBlock. Specifically, we present
a low-data complexity attack on the full thirty two round cipher. Finally, the
paper is concluded in Section 5.

2 Biclique Cryptanalysis

Biclique cryptanalysis [5] was first used to present an accelerated exhaustive
search on the full round AES. The basic idea of bicliques is to increase the
number of rounds of the basic MitM attack by providing a formal representation
of the initial structure and recomputing only the updated parts of the state.
The key recovery attack starts by dividing the master key space into key sets
where each key set K, is used to build one biclique. As depicted in Figure 1,
a d -dimensional biclique is a structure of two sets of states Pi and Sj where
|Pi| = |Sj | = 2d states and a key set K where |K| = 22d keys which encrypt
each state in Pi to each state in Sj . K is partitioned into three disjoint sets of
key bits, i.e., K = {Ks,K1,K2}. Let Enc[u,i,j](P

u
i=0) and Dec[u,i,j](S

u
j=0) denote

the encryption and decryption of the states Pu
i=0 and Su

j=0 using the u, i, and j
values of Ks,K1, and K2, respectively. These key sets are chosen such that for
a given u of the 2|Ks| values and all of i and j of the 2|K1|, and 2|K2| values,
respectively, Su

j = Enc[u,i,j](P
u
i), where i, j ∈ {0, .., 2d − 1}.

The construction of bicliques imposes restrictions on the choices ofK1 and K2

as they must result in independent related key differentials. In other words, K1

and K2 must be chosen such that the state variables between Pu
i and Su

j that
are affected by a change in the value of K1 are different than those affected by
a change in the value of K2. In other words, a biclique can be constructed if for
all u, i, and j of the 2|Ks|, 2|K1|, and 2|K2| values, respectively, the computation
of Su

j = Enc[u,0,j](P
u
i=0) does not share any active nonlinear state variables with

the computation Pu
i = Dec[u,i,0](S

u
j=0).

The MitM key recovery attack using d -dimension bicliques starts with par-
titioning the master key space into 2|K|−2d groups, where each group K[u, i, j]
has a single value u of the 2|Ks| values and iterates over the 22d values of i and j
of the 2|K1|, and 2|K2| values, respectively. As depicted in Figure 1, usually the
constructed biclique is placed on the plaintext side. The attack is divided into
two main parts:

Fig. 1. Bicliques used in a MitM attack

218 R. AlTawy et al.

Biclique construction: at this stage, one searches for two independent related
key differentials to partition the key into key groups consisting of a given Ks

and all the values of K1 and K2. Since we do not use any biclique structures in
our attack, we refer the reader to [5] for the detailed procedure for building the
bicliques.

Recomputation for MitM partial matching: during this step, partial state knowl-
edge is computed from both the backward and forward directions to test each
key group in an efficient manner. More precisely, in what follows, we give the
steps performed for each key group K[u, i, j].

– Choose an appropriate matching variable v between the end of the biclique
and the ciphertext.

– Forward recomputation: for each j out of the 2d values, do the following:
• Compute the matching variable−→v u

0,j = Enc[u,0,j](S
u
j) and store all the

intermediate states.
• For all the 2d − 1 values of i, compute the matching variable −→v u

i,j by
recomputing only those variables that differ from those previously com-
puted using K[u, 0, j] due to the effect of i.

– Backward recomputation: for all the 2d values of Pu
i , ask the encryption

oracle for their corresponding ciphertexts Cu
i .

– For each i of the 2d values, do the following:
• Compute the matching variable←−v u

i,0 = Dec[u,i,0](C
u
i) and store all the

intermediate states.
• For all 2d− 1 values of j, compute the matching variable ←−v u

i,j by recom-
puting only those variables that differ from those previously computed
using K[u, i, 0] due to the effect of j.

The remaining candidate keys K[u, i, j] are those producing −→v u
i,j = ←−v u

i,j . The
surviving candidate keys should be further rechecked for full state matching as
some of them could be false positives.

Testing each key group by the previous procedure has proved to lead to
some improvements on the computational complexity. While all the 22d val-
ues of the key group are tested, we get three sets of computations. More pre-
cisely, the state variables that are affected by Ks only are computed once,
those affected by either K1 or K2 are computed 2d times, and the dominat-
ing large set is due to the variables that are influenced by both K1 and K2

which are recomputed 22d times. The data complexity of the attack is upper
bounded by all possible values of different plaintext produced by all the bi-
cliques = min(2|Ks|+|K1|, 2# of active bits in plaintext). The memory complexity is
upper bounded by the memory required to store the forward and backward 2d

intermediate states ≈ 2d+1.

3 Description of LBlock

LBlock [26] is a 64-bit lightweight cipher with an 80-bit master key. It employs
a 32-round Feistel structure and its internal state is composed of eight 4-bit

A Higher Order Key Partitioning Attack with Application to LBlock 219

nibbles. As depicted in Figure 2, the round function adopts three nibble oriented
transformations: subkey mixing, 4-bit Sboxes, and nibble permutation. The 80-
bit master key, K, is stored in a key register denoted by k = k79k78k77.......k1k0.
The leftmost 32 bits of the register k are used as ith round subkey Ski. The key
register is updated after the extraction of each Ski as follows:

1. k <<< 29.
2. [k79k78k77k76] = S9[k79k78k77k76].
3. [k75k74k73k72] = S8[k75k74k73k72].
4. [k50k49k48k47k46]⊕ [i]2,

where S8 and S9 are two 4-bit Sboxes. For further details, the reader is referred
to [26].

Fig. 2. The LBlock round function

LBlock [26] has been analyzed with respect to various types of attacks includ-
ing impossible differential [17,18,9], integral [23,22], MitM [1], boomerang [12],
and biclique cryptanalysis [25]. Particularly, the attack presented in [25] is a typ-
ical high data complexity biclique cryptanalysis where the authors presented an
attack with a time complexity = 278.4 and a data complexity of 252. Our result
for the 9th order key partitioning MitM cryptanalysis of the full round LBlock
has a better time complexity and is launched with only two known plaintext-
ciphertext pairs. In Table 1, we provide a summary of the current cryptanalytic
results on the LBlock cipher in the single key model. In what follows, we give
the notation used in our attack.

3.1 Notation

The following notation will be used throughout the remainder of the paper.

– K: The master key.
– Ski: i

th round sub key.
– Xi: The eight 4-bit nibble state at round i.
– Xi[j]: j

th nibble of the ith round state.
– K[i,j]: i

th and jth bits of master key K.

220 R. AlTawy et al.

Table 1. Summary of the current cryptanalytic results on LBlock. DC, CP, KP, and
FC stands for Differential Cryptanalysis, Chosen Plaintext, Known Plaintext, and Full
Computation, respectively

Attack #Rounds Time Memory Data Reference

Integral 22 270 263 261 CP [22]

Impossible DC
22 279.28 - 258 CP [17]

23 275.36 274 259CP [9]

Biclique cryptanalysis 32 278.4 28 252 CP [25]

Meet-in-the-middle 32 278.338 27 FC 2 KP This paper

4 Higher Order Key Partitioning MitM Attack

While most of the previous works [3,11,24] were trying to decrease the length
and/or dimension of the bicliques in order to reduce the data complexity, we
opted for removing the biclique structure completely from our attack. In the se-
quel, we turn the biclique attack into a MitM attack where the whole key space is
efficiently tested. However, in contrast to the basic MitM attack, the same tested
key is used to compute the matching variable from both the forward and back-
ward directions. Similar to MitM attacks, our attack is a known plaintext attack
where the number of required plaintext-ciphertext pairs is solely determined by
the relationship between the block length and key lengths. Hence, given its neg-
ligible memory complexity, this approach provides an actual computational gain
over exhaustive search as both of them have the same data requirements.

Our attack skips the independence requirements imposed on the choice of the
related keys in the biclique attack and starts the recomputation phase from the
plaintext. Thus, our approach is equivalent to a MitM attack where the tested
keys have a predefined relation. Moreover, we consider a divide and conquer
approach where higher order partitioning of the key space is adopted. In other
words, instead of dividing the key K into three disjoint sets, we divide it into
n+ 1 sets with n > 2 to minimize the complexity of the recomputation in both
directions. Given that the key is partitioned into a (|K|−nd)-bit set and n d-bit
sets, adopting this higher order partitioning shares the complexity of the attack
between n+1 sets of recomputations where Sboxes of the ith set are recomputed
2(i−1)d times, i ∈ {1, 2, ..., n+ 1}.

In the sequel, we apply this technique on LBlock and present a low data
complexity key recovery attack on the full round cipher. In fact, our best obtained
result is a two known plaintext MitM attack where the key is partitioned into nine
4-bit sets (i.e., n=9). However, based on our trials with different values of n, we
expect that further reduction in the computational complexity can be obtained
with higher values of n, but given our available computational resources, the
complexity of finding the optimal attack parameters as n grows is not practical.
Our results are particularly interesting, because they show that removing the

A Higher Order Key Partitioning Attack with Application to LBlock 221

biclique structure from biclique-like attacks can have a good impact on both the
data and computational complexities in some cases as with the case of LBlock.

4.1 A Low Data Complexity Attack on LBlock

In this section, we present a low data complexity attack on the full round LBlock.
The attack exploits the weak diffusion of the key schedule. This fact enables us
to partition the master key into higher order related key partitions for our MitM
attack on the full cipher with some gain over the biclique attack [25]. With
the aim of minimizing the computational complexity, we used an exhaustive
search algorithm to test all possible 4-bit partitioning possibilities and different
matching variables. Our search algorithm shows that partitioningK intoKs,K1,
K2, K3, K4, K5, K6, K7, K8,and K9 (i.e., n = 9) results in a MitM attack with
a time complexity of 278.338 and a memory complexity of ≈ 27. The parameters
of our best case for the MitM key recovery attack are as follows:

– Matching round: 22.
– Matching values: X22[2] and X22[7].
– K1 = K[76,75,74,73]

– K2 = K[59,58,57,56]

– K3 = K[38,37,36,35].
– K4 = K[30,29,28,27].
– K5 = K[25,24,23,22].
– K6 = K[17,16,15,14].
– K7 = K[13,12,11,10].
– K8 = K[9,8,7,6].
– K9 = K[5,4,3,2].

MitM Attack with n=3. Due to the complexity of visualizing our best ob-
tained case (i.e., n = 9), in what follows, we demonstrate the details of the attack
in the simplest case when K is partitioned into three related partitions (n=3).
The algorithm indicates that the best partitioning of the master key for the case
of n = 3 is when K1 = K[25,24,23,22], K2 = K[13,12,11,10], K3 = K[3,2,1,0], and
Ks = K − {K1,K2,K3}.

Accordingly, in our attack we test 268 key groups where each group has 212

keys, all of which have one value of KS and differ in the values of K1, K2, and
K3. Figure 3 depicts the recomputation process adopted for our MitM attack for
each key group. Our search algorithm shows that choosing the matching variable
v as the two nibbles X22[2, 7] results in the best computational complexity for
our attack. In the sequel, given one known plaintext-ciphertext pair, we evaluate
the matching variable v from both the forward and backward directions with
the same key and discard keys that produce −→v �= ←−v .

The computational complexity of the LBlock round function is dominated by
the Sbox lookups. Consequently, to determine the gain of our approach, we use
the number of Sboxes that are calculated in both directions relative to the 318
Sbox lookups used in the full thirty two rounds computation. We distinguish the
color scheme used in Figure 3 as follows:

222 R. AlTawy et al.

Fig. 3. Third order partitioned MitM attack on the thirty two rounds LBlock

– Gray: input nibbles which are either plaintext or ciphertext and these nibbles
remain constant while testing the whole keyspace.

– Yellow: are the nibbles that are affected by changing the value of Ks only.
Accordingly, when testing the 212 keys within each key group, these nibbles
are evaluated once.

– Red, blue, and green: are those nibbles that are influenced by a change in
either K1, K2, or K3, respectively. In other words, for every tested value of
K1, the values of the red nibbles are updated while the values of the blue
and green nibbles remain unchanged. Same rationale applies for K2 and K3.
Consequently, these nibbles are computed 24 times for each key group.

– Purple: nibbles that are affected by changing any two keys. For example, if
K2 and K3 changed, then the values of all the blue and green nibbles, and

A Higher Order Key Partitioning Attack with Application to LBlock 223

the values of the purple nibbles that depend on both keys should be updated.
Purple nibbles are recomputed 28 times within one key group.

– Black: are the nibbles that are affected by a change in the values of all the
three keys and these are evaluated 212 times.

– White: are those nibbles whose values do not affect the value of the matching
variable and thus we do not need to compute them in our attack.

Since our gain is estimated based on the number of Sbox lookups, the six right-
most nibbles in the round subkeys are faded in color because only the two left-
most nibbles are the ones that count in our calculations. In what follows, we give
the details of the forward and backward recomputation used for testing the 212

keys within a given key group. However, since each key group has one value of
Ks and 24 values for each K1, K2, and K3, we denote the tested key by K[i, j, l]
where each i, j, and l is one of the 24 values of K1, K2, and K3, respectively.
We also denote the matching variable that is computed using K[i, j, l] as v[i,j,l].

Forward Recomputation: As depicted in Figure 3, the forward computation
spans over states Xf2 to Xf22. The 64-bit input plaintext P is loaded in states
Xf0 and Xf1. We now need to partially encrypt the plaintext P with all the
212 keys K[i, j, l] to derive 212 values for the matching variable −−→vi,j,l which is
the 8-bit output at Xf22[2, 7]. We first evaluate the matching variable −−−→v[0,0,0] =
EncK[0,0,0](P) and store the computations. Now we do the same for all the 24−1
values of each key partition at a time. More precisely, we compute −−−→v[i,0,0] =
EncK[i,0,0](P), −−−→v[0,j,0] = EncK[0,j,0](P), and −−−→v[0,0,l] = EncK[0,0,l](P) for all i,
j, and l ∈ {1, .., 24 − 1}, and store these computations as well. However, during
these three computations, we only evaluate the nibbles that are different from the
first stored computation using K[0, 0, 0] due to the effect of either i, j, or l. These
are the red, blue, green, purple, and black nibbles. Moreover, to test any two
key partitions combination, e.g., K[i, j, 0], we only recompute the values of the
purple and black nibbles that differ from that of the stored computations using
K[i, 0, 0] and K[0, j, 0] (i.e., where the effect of i and j overlap). Lastly, when
testing any three key partitions combination, we only recompute those nibbles
where the nibbles at their corresponding positions in the computations of −−−→v[i,0,0],−−−→v[0,j,0], and

−−−→v[0,0,l] overlap. As shown in Figure 3, the forward recomputation for
one key group requires computing 54 Sboxes once, 25 Sboxes 24 times, 21 Sboxes
28 times, and 86 Sboxes 212 times.

Backward Recomputation: The backward computation is depicted on the
right side of Figure 3, where states Xb31 to Xb22 are iteratively recomputed to
generate the matching variable. We use the ciphertext C corresponding to the
plaintext P in states Xb32 and Xb33. In the sequel, we proceed with partially
decrypting C using the 212 keys to evaluate the 212 matching variable values←−−vi,j,l
following the same procedure used in the forward recomputation. As depicted in
Figure 3, the backward recomputation for one key group requires computing 24
Sboxes once, 14 Sboxes 24 times, 18 Sboxes 28 times, and 24 Sboxes 212 times.

224 R. AlTawy et al.

Surviving Candidates: As we are testing 212 keys and the matching size is
8-bits, then for each key group we get 24 potential candidates, which need to be
further retested for full state matching. This process of retesting the surviving
candidates requires 24 full LBlock computations. Moreover, even after testing
the whole key space, the relation between the key size k and the state size b
determines the number of the remaining potentially right keys. If b = k, then
only the right key remains and no further testing is required. However, in LBlock,
the master key length is larger than the state size and hence, we end up with
2k−b = 216 potentially right keys. In this case, to recover the right key, the data
complexity of the MitM attack is �k

b 	 = 2 plaintext-ciphertext pairs. In other
words, these 216 keys must be further retested with an additional plaintext-
ciphertext pair.

Complexity: The computational complexity of the attack is evaluated based on
the number Sbox lookups that are required in the forward and backward recom-
putations and testing surviving keys within a key group. The whole attack tests
268 key groups, each requires the computations of 54+24(25)+28(21)+212(86) =
358086 Sboxes in the forward direction, 24+ 24(14)+ 28(18)+ 212(24) = 103160
Sboxes in the backward direction, and 24(318) Sboxes for retesting candidate
keys. Accordingly, the overall computational complexity of the attack is given
by 268((358086 + 103160)/318 + 24) ≈ 278.518. The memory complexity is up-
per bounded by storing 3 × 24 full LBlock computations, which is practically
negligible, and the data complexity is two known plaintext-ciphertext pairs.

Generally, when adopting n key partitions of dimension d bits and m-bit
matching variable, the same forward and backward recomputation procedures is
applied. However, in this case, we get n+ 1 recomputation sets. More formally,
let Sbi denote the number of Sboxes that belong to the ith recomputation set,
1 ≤ i ≤ n+ 1, the computational complexity of the attack is given by:

2|K|−nd(

∑n+1
i=1 (2

(i−1)d × Sbi)

318
+ 2nd−m),

and the memory complexity is given by n× 2d. Accordingly, given the parame-
ters of our best obtained result when n = 9, the time and memory complexity
of the MitM attack on the full LBlock is 278.338 and ≈ 27 full computations,
respectively.

5 Conclusion

In this work, we have presented a higher order key partitioning MitM attack.
Our technique adopts the recomputation phase from the biclique attack with-
out using its initial structure. We have shown that in some cases removing the
biclique structure from the MitM attack can lead to better computational and
data complexity as with the case of LBlock. This fact is attributed to the restric-
tions imposed by the biclique on how the master key can be partitioned. On the
other hand, if we search for the best key partitioning for a minimum complexity

A Higher Order Key Partitioning Attack with Application to LBlock 225

MitM attack and begin the recomputation phase from the first round, we can
get more savings. Moreover, we adopted a divide and conquer approach where
the key space is divided into more than two related key sets. Thus, the computa-
tional complexity of the forward and backward recomputations is shared among
multiple smaller sets and not being dominated by a large one. We applied our
approach on LBlock and presented a low data complexity MitM attack on the
full round cipher. Our best obtained result on the full round LBlock is a known
plaintext MitM attack where the key is partitioned into nine related key sets.
This attack has a time, memory, and data complexity of 278.338, 27 full compu-
tations, and 2 known plaintexts, respectively, which are better than the results
obtained by the biclique cryptanalysis of the cipher [25].

Inspired by biclique cryptanalysis, our attack can be described as a bruteforce-
like cryptanalysis [21] which is not able to conclude that a particular primitive
has some cryptanalytic weakness, as in general it covers the whole cipher. How-
ever it can help to better understand the real security provided by the primitive
when no attack tweaks are adopted. Most of the applications of bruteforce-like
cryptanalysis have an advantage that is sometimes much smaller than a fac-
tor of 2. Nevertheless, for lightweight ciphers with key sizes of 80 bits or less,
this is very useful to know, especially when the gain compared to the optimized
bruteforce search is even a factor 2. To this end, designers of lightweight sym-
metric primitives should be motivated to consider this class of attacks during
the assessment of any new proposed design.

Acknowledgment. The authors would like to thank the anonymous reviewers for

their valuable comments and suggestions that helped improve the quality of the paper.

This work is supported by the Natural Sciences and Engineering Research Council of

Canada (NSERC).

References

1. AlTawy, R., Youssef, A.M.: Differential sieving for 2-step matching meet-in-the-
middle attack with application to LBlock. In: Eisenbarth, T., Öztürk, E. (eds.)
LightSec 2014. LNCS, vol. 8898, pp. 126–139. Springer, Heidelberg (2015)

2. Bar-On, A., Dinur, I., Dunkelman, O., Lallemand, V., Tsaban, B.: Improved anal-
ysis of zorro-like ciphers. Cryptology ePrint Archive, Report 2014/228 (2014),
http://eprint.iacr.org/

3. Bogdanov, A., Chang, D., Ghosh, M., Sanadhya, S.K.: Bicliques with minimal
data and time complexity for AES (extended version). Cryptology ePrint Archive,
Report 2014/932 (2014), http://eprint.iacr.org/

4. Bogdanov, A., Kavun, E., Paar, C., Rechberger, C., Yalcin, T.: Better than brute-
force–optimized hardware architecture for efficient biclique attacks on AES-128.
In: ECRYPT Workshop, SHARCS-Special Purpose Hardware for Attacking Cryp-
tographic Systems (2012)

5. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full
AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp.
344–371. Springer, Heidelberg (2011)

http://eprint.iacr.org/
http://eprint.iacr.org/

226 R. AlTawy et al.

6. Bogdanov, A.,Knudsen,L.R., Leander,G., Paar, C., Poschmann,A., Robshaw,M.J.,
Seurin, Y., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In:
Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466.
Springer, Heidelberg (2007)

7. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: Cryptanalysis
of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson, D.R.
(eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011)

8. Bouillaguet, C., Derbez, P., Dunkelman, O., Fouque, P.-A., Keller, N., Rijmen, V.:
Low-data complexity attacks on AES. IEEE Transactions on Information The-
ory 58(11), 7002–7017 (2012)

9. Boura, C., Minier, M., Naya-Plasencia, M., Suder, V.: Improved impossible differ-
ential attacks against round-reduced LBlock. Cryptology ePrint Archive, Report
2014/279 (2014), http://eprint.iacr.org/

10. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: Improved
MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS,
vol. 8042, pp. 222–240. Springer, Heidelberg (2013)

11. Chang, D., Ghosh, M., Sanadhya, S.: Biclique cryptanalysis of full round AES with
reduced data complexity (2013)

12. Chen, J., Miyaji, A.: Differential cryptanalysis and boomerang cryptanalysis of
LBlock. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-
ARES 2013 Workshops. LNCS, vol. 8128, pp. 1–15. Springer, Heidelberg (2013)

13. De Cannière, C., Dunkelman, O., Knežević, M.: KATAN and KTANTAN — A
family of small and efficient hardware-oriented block ciphers. In: Clavier, C.,
Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 272–288. Springer, Heidelberg
(2009)

14. Diffie, W., Hellman, M.: Exhaustive cryptanalysis of the NBS data encryption
standard. Computer 10(6), 74–84 (1977)

15. Gérard, B., Grosso, V., Naya-Plasencia, M., Standaert, F.-X.: Block ciphers that
are easier to mask: How far can we go? In: Bertoni, G., Coron, J.-S. (eds.) CHES
2013. LNCS, vol. 8086, pp. 383–399. Springer, Heidelberg (2013)

16. Guo, J., Peyrin, T., Poschmann, A., Robshaw, M.: The LED block cipher. In:
Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 326–341. Springer,
Heidelberg (2011)

17. Karakoç, F., Demirci, H., Harmancı, A.E.: Impossible differential cryptanalysis of
reduced-round lBlock. In: Askoxylakis, I., Pöhls, H.C., Posegga, J. (eds.) WISTP
2012. LNCS, vol. 7322, pp. 179–188. Springer, Heidelberg (2012)

18. Liu, Y., Gu, D., Liu, Z., Li, W.: Impossible differential attacks on reduced-round
LBlock. In: Ryan, M.D., Smyth, B., Wang, G. (eds.) ISPEC 2012. LNCS, vol. 7232,
pp. 97–108. Springer, Heidelberg (2012)

19. Mendel, F., Rijmen, V., Toz, D., Varıcı, K.: Differential analysis of the LED block
cipher. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp.
190–207. Springer, Heidelberg (2012)

20. Nakahara Jr., J., Sepehrdad, P., Zhang, B., Wang, M.: Linear (Hull) and algebraic
cryptanalysis of the block cipher PRESENT. In: Garay, J.A., Miyaji, A., Otsuka,
A. (eds.) CANS 2009. LNCS, vol. 5888, pp. 58–75. Springer, Heidelberg (2009)

21. Rechberger, C.: On bruteforce-like cryptanalysis: New meet-in-the-middle attacks
in symmetric cryptanalysis. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012.
LNCS, vol. 7839, pp. 33–36. Springer, Heidelberg (2013)

22. Sasaki, Y., Wang, L.: Comprehensive study of integral analysis on 22-round
lblock. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839,
pp. 156–169. Springer, Heidelberg (2013)

http://eprint.iacr.org/

A Higher Order Key Partitioning Attack with Application to LBlock 227

23. Sasaki, Y., Wang, L.: Meet-in-the-middle technique for integral attacks against
Feistel ciphers. In: Knudsen, L.R., Wu, H. (eds.) SAC 2012. LNCS, vol. 7707, pp.
234–251. Springer, Heidelberg (2013)

24. Ahmadi, S., Ahmadian, Z., Mohajeri, J., Aref, M.R.: Low data complexity biclique
cryptanalysis of block ciphers with application to Piccolo and HIGHT. Cryptology
ePrint Archive, Report 2013/511 (2013), http://eprint.iacr.org/

25. Wang, Y., Wu, W., Yu, X., Zhang, L.: Security on LBlock against biclique crypt-
analysis. In: Lee, D.H., Yung, M. (eds.) WISA 2012. LNCS, vol. 7690, pp. 1–14.
Springer, Heidelberg (2012)

26. Wu, W., Zhang, L.: LBlock: a lightweight block cipher. In: Lopez, J., Tsudik, G.
(eds.) ACNS 2011. LNCS, vol. 6715, pp. 327–344. Springer, Heidelberg (2011)

http://eprint.iacr.org/

A Note on the Existence of Self-Dual Skew

Codes over Finite Fields

Delphine Boucher(�)

IRMAR, CNRS, Université de Rennes 1, UMR 6625,
Université européenne de Bretagne, 5 Bd Lannec, 35 000 Rennes, France

elphine.boucher@univ-rennes1.fr

Abstract. Conditions on the existence of self-dual θ-codes defined over
a finite field IFq are studied for θ automorphism of IFq . When q ≡ 1
(mod 4) it is proven that there always exists a self-dual θ-code in any
dimension and that self-dual θ-codes of a given dimension are either all
θ-cyclic or all θ-negacyclic. When q ≡ 3 (mod 4), there does not exist
a self-dual θ-cyclic code and a necessary and sufficient condition for the
existence of self-dual θ-negacyclic codes is given.

1 Introduction

Conditions for the existence of self-dual cyclic and negacyclic codes have been
widely studied ([4], [6]) as well as for quasi-cyclic codes ([11], [12], [7]). In [3]
a formula for the number of self-dual θ-cyclic codes and self-dual θ-negacyclic
codes is given over IFp2 where p is a prime number and θ is the Frobenius
automorphism. The aim of this text is to give conditions for the existence of
self-dual θ-cyclic codes and θ-negacyclic codes over any finite field IFq where θ
is an automorphism of IFq.

The text is organized as follows. In Section 2, some facts about self-dual skew
codes are recalled. In Section 3, the question of the existence of self-dual skew
codes generated by skew binomials (Proposition 1) is studied. One deduces from
this part that for q ≡ 1 (mod 4) there always exists a self-dual skew code in any
dimension. In Section 4, a construction of self-dual skew codes over IFq using
least common right multiples of skew polynomials and generalizing Proposition
28 of [2] is considered (Proposition 2). This proposition is used in Section 5 when
q ≡ 3 (mod 4) to prove that there does not exist a self-dual θ-cyclic code in any
dimension and to give a necessary and sufficient condition for the existence of self-
dual θ-negacyclic codes (Proposition 4). Lastly when q ≡ 1 (mod 4), one proves
that the sufficient conditions of existence of self-dual θ-cyclic and θ-negacyclic
codes given by Proposition 1 are also necessary (Proposition 5). The results of
Proposition 4 and Proposition 5 are summed up in Table 1.

2 Generalities on Self-dual Skew Codes

For a finite field IFq and θ an automorphism of IFq the ring R is defined by
R = IFq[X ; θ] = {anXn + . . .+ a1X + a0 | ai ∈ IFq and n ∈ IN} where addition

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 228–239, 2015.
DOI: 10.1007/978-3-319-18681-8_18

A Note on the Existence of Self-Dual Skew Codes over Finite Fields 229

is defined to be the usual addition of polynomials and where multiplication is
defined by the basic rule X · a = θ(a)X (a ∈ IFq) and extended to all elements
of R by associativity and distributivity. The noncommutative ring R is called
a skew polynomial ring or Ore ring (cf. [13]) and its elements are skew
polynomials. It is a left and right Euclidean ring whose left and right ideals are
principal. Left and right gcd and lcm exist in R and can be computed using the
left and right Euclidean algorithm. Recall that the center ofR is the commutative
polynomial ring Z(R) = IFθ

q [X
|θ|] where IFθ

q is the fixed field of θ and |θ| is the
order of θ. Below, module θ-codes are defined using the skew polynomial ring R.

Definition 1 (Definition 1 of [2]). A module θ-code (or module skew code)
C is a left R-submodule Rg/Rf ⊂ R/Rf in the basis 1, X, . . . , Xn−1 where g ∈
R = IFq[X ; θ] and f is a left multiple of g in R of degree n. If there exists an
a ∈ IFq \ {0} such that g divides Xn − a on the right, then the code C is (θ,a)-
constacyclic. If a = 1, the code is θ-cyclic and if a = −1, it is θ-negacyclic.
The skew polynomial g is called skew generator polynomial of C.

If θ is the identity then a θ-cyclic (resp. θ-negacyclic) code is a cyclic code
(resp. negacyclic) code. The (Euclidean) dual of a linear code C of length n
over IFq is defined with the Euclidean scalar product < x, y >=

∑n
i=1 xiyi

in IFn
q as C⊥ = {x ∈ IFn

q | ∀y ∈ C,< x, y >= 0}. A linear code C over IFq is

Euclidean self-dual or self-dual if C = C⊥. To characterize self-dual module
θ-codes, the skew reciprocal polynomial of a skew polynomial (Definition 3 of
[1]) and also the left monic skew reciprocal polynomial are used :

Definition 2 ([1], Definition 3). The skew reciprocal polynomial of h =∑m
i=0 hi X

i ∈ R of degree m is h∗ =
∑m

i=0 X
m−i · hi =

∑m
i=0 θ

i(hm−i) X
i. The

left monic skew reciprocal polynomial of h is h� := 1
θm(h0)

· h∗.

Since θ is an automorphism, the map ∗ : R → R given by h �→ h∗ is a bijection.
In particular for any g ∈ R there exists a unique h ∈ R such that g = h∗ and, if
g is monic, there exists a unique h ∈ R such that g = h�.

In order to describe some properties of the skew reciprocal polynomial, the
morphism of rings Θ : R → R given by

∑n
i=0 aiX

i �→
∑n

i=0 θ(ai)X
i ([1], Lemma

1) is useful:

Lemma 1 (See also Lemma 1 of [1]). Let f and g be skew polynomials in R
and n = deg(f). Then

1. (fg)∗ = Θn(g∗)f∗.
2. (f∗)∗ = Θn(f).

According to Proposition 5 of [2], a self-dual θ-code must be either θ-cyclic
or θ-negacyclic. Furthermore, according to Corollary 1 of [2], a module θ-code
with skew generator polynomial g ∈ IFq[X ; θ] of degree k is self-dual if and only
if there exists h ∈ R (called skew check polynomial of the code) such that
g = h� and

h�h = X2k − ε with ε ∈ {−1, 1}. (1)

230 D. Boucher

Self-dual cyclic codes exist over IFq if and only if the characteristic of q is 2
(Theorem 3.3 of [9] or Theorem 1 of [8]). Necessary and sufficient conditions for
the existence of self-dual negacyclic codes are given in [6] when q ≡ 1 (mod 4)
and in [4] when the dimension is a power of the characteristic of IFq.

According to Theorem 18 of [14], a θ-cyclic code of length n is equivalent to
a quasi-cyclic code of index � where � = gcd(|θ|, n). Therefore, as equivalence
preserves self-duality, if there exists a self-dual θ-cyclic code of length n then
there exists a self-dual quasi-cyclic code of length n and index � = gcd(|θ|, n).
According to Lemma 2.1 of [7], for m coprime with q, self-dual quasi-cyclic
codes of index � with length �m exist over a finite field IFq if and only if q is
of characteristic 2 and 2|� or q ≡ 1 (mod 4) and 2|� or q ≡ 3 (mod 4) and 4|�.
Therefore, if there exists a self-dual θ-cyclic code over IFq with n/gcd(|θ|, n)
coprime with q, then gcd(|θ|, n) must be even if q is a power of 2 or q ≡ 1
(mod 4) and it must be divisible by 4 if q ≡ 3 (mod 4). If the characteristic of
IFq is equal to 2, then for all nonnegative integer k there exists a self-dual θ-code
of length 2k. Namely, the code (Xk + 1)θ2k is such a code as the relation (1) is
satisfied for h = Xk + 1 :

(Xk + 1)�(Xk + 1) = (Xk + 1)(Xk + 1) = X2k + 1.

In next section, necessary and sufficient conditions for the existence of self-dual
codes generated by skew binomials are given when the characteristic of IFq is
odd.

3 Self-dual Skew Codes Generated by Skew Binomials

Over a finite field of odd characteristic, there is no self-dual cyclic code ([8]).
The example below shows that it is not the case for θ-cyclic codes when θ is not
the identity.

Example 1. Consider IF32 = IF3(a) with a2 − a− 1 = 0, α = a2 and θ : x �→ x3.
The skew polynomial X + α ∈ IF32 [X ; θ] is the skew check polynomial of a
self-dual θ-cyclic code : (X + α)� = 1

α3 (1 + α3X) = X + α and

(X + α)�(X + α) = (X + α)(X + α)
= X2 + (α+ α3)X + α2

= X2 − 1.

According to Section VI A of [11], this code is, up to equivalence, the unique
self-dual code of length 2 over IF32 , its generator matrix is (1, α).

The following proposition gives a necessary and sufficient condition for the
existence of self-dual θ-cyclic codes and self-dual θ-negacyclic codes defined over
finite fields of odd characteristic and generated by skew binomials.

Proposition 1. Assume that IFq is a finite field with q = pe, p odd prime
number, e ∈ IN∗. Consider r ∈ IN, θ the automorphism of IFq defined by θ : x �→
xpr

and k a nonnegative integer.

A Note on the Existence of Self-Dual Skew Codes over Finite Fields 231

1. There exists a self-dual θ-cyclic code over IFq of dimension k generated by a
skew binomial if and only if p ≡ 3 (mod 4), e is even and r × k is odd.

2. There exists a self-dual θ-negacyclic code over IFq of dimension k generated
by a skew binomial if and only if p ≡ 1 (mod 4) or p ≡ 3 (mod 4), e is even
and r × k is even.

Proof. – Consider h = Xk+α ∈ R = IFq[X ; θ] and ε = ±1. The skew binomial
h is the skew reciprocal polynomial of a self-dual (θ, ε)-constacyclic code if,
and only if, h satisfies the relation (1) i.e.

(
Xk +

1

θk(α)

)
·
(
Xk + α

)
= X2k − ε.

Developping this skew polynomial relation, one gets the equivalent conditions

θk(α) + εα = α2 + 1 = 0.

– One then proves that there exists α ∈ IFq such that θk(α) + α = α2 + 1 = 0
if and only if p ≡ 3 (mod 4), e is even, r and k are odd.
Let us assume that p ≡ 3 (mod 4), e ≡ 0 (mod 2) and r, k ≡ 1 (mod 2).
Then −1 is a square in IFq and one can consider α ∈ IFq such that α2 = −1.

As r and k are odd, pkr ≡ 3 (mod 4) so pkr − 1 ≡ 2 (mod 4) and pkr−1
2 ≡ 1

(mod 2). Therefore αpkr−1 = (α2)
pkr−1

2 = (−1)
pkr−1

2 = −1 i.e. θk(α)+α = 0.
Conversely, consider α in IFq such that θk(α)+α = α2+1 = 0. Assume that
p ≡ 1 (mod 4) then −1 is a square in IFp so α belongs to IFp and α is left fixed
by θ. The equality θk(α)+α = 0 implies that 2α = 0, which is impossible as p
is odd. Therefore p ≡ 3 (mod 4) and as −1 is a square in IFq, e must be even.

As θk(α) + α = 0 = α2 + 1, one gets −1 = αpkr−1 = (α2)
pkr−1

2 = (−1)
pkr−1

2

so pkr−1
2 is odd, and pkr − 1 ≡ 2 (mod 4). As p ≡ 3 (mod 4), kr must be

odd.
– Lastly one proves that there exists α ∈ IFq such that θk(α)−α = α2+1 = 0

if and only if p ≡ 1 (mod 4) or (p ≡ 3 (mod 4), e and r × k are even).
First if p ≡ 1 (mod 4) then −1 is a square in IFp. Consider α in IFp such
that α2 = −1, then θk(α)−α = 0 because α ∈ IFp is left fixed by θ. If p ≡ 3
(mod 4), e ≡ 0 (mod 2) and rk ≡ 0 (mod 2), then −1 has a square root in
IFq and pkr − 1 ≡ 0 (mod 4). Consider α ∈ IFq such that α2 = −1. Then

αpkr−1 = (α2)
pkr−1

2 = 1 because α2 = −1 and (pkr − 1)/2 is even.
Conversely, consider α ∈ IFq such that θk(α) − α = α2 + 1 = 0. Therefore
−1 is a square in IFq and either p ≡ 1 (mod 4) or p ≡ 3 (mod 4) and e ≡ 0
(mod 2). If p ≡ 3 (mod 4) and rk ≡ 1 (mod 2) then pkr − 1 ≡ 2 (mod 4)

so (pkr − 1)/2 would be odd and αpkr−1 would be equal to −1. As IFq has

an odd characteristic, this contradicts the hypothesis αpkr−1 = 1. Therefore
p ≡ 1 (mod 4) or p ≡ 3 (mod 4), e ≡ 0 (mod 2) and rk ≡ 0 (mod 2).

Corollary 1. Assume that IFq is a finite field with q = pe, p odd prime number,
e ∈ IN∗ and q ≡ 1 (mod 4). Consider r ∈ IN, θ the automorphism of IFq defined

232 D. Boucher

by θ : x �→ xpr

and k a nonnegative integer. Then there exists a self-dual θ-code
of dimension k.

Proof. According to Proposition 1, if p ≡ 1 (mod 4) there exists a self-dual θ-
negacyclic code of dimension k; if p ≡ 3 (mod 4) and e ≡ 0 (mod 2), then there
exists a self-dual θ-cyclic code of dimension k if r × k is odd and there exists a
self-dual θ-negacyclic code of dimension k if r × k is even.

Example 2. Consider IF32 = IF3(a) with a2 − a − 1 = 0 and θ : x �→ x3. For
k ∈ IN∗, there exists α such that Xk + α is the skew check polynomial of a
self-dual θ-cyclic code if and only if k is odd. In this case α satisfies α2 + 1 = 0
and θk(α)+α = 0 i.e. α2+1 = 0 and α(α2+1) = 0 (because θk = θ if k is odd).
So α must be equal to ±a2 (see Example 1).

Remark 1. When r = 0 (i.e. θ is the identity), Proposition 1 gives necessary
and sufficient conditions of existence of self-dual cyclic and negacyclic codes
generated by binomials over finite fields of odd characteristic. If p ≡ 1 (mod 4)
or p ≡ 3 (mod 4) and e ≡ 0 (mod 2), there always exists a self-dual negacyclic
code of any dimension (see also Corollary 3.3 of [4] when the dimension is ps

for s > 0). This seems to contradict Example 3.8 of [6] which states that a
”self-dual negacyclic code of length 70 over IF5 does not exist” and that there
”is no self-dual negacyclic code of length 30 over IF9”. Namely, over IF5, X

35+2
generates a self-dual negacyclic code of dimension 35 whereas over IF9, X

15 + a
(with a2 = −1) generates a self-dual negacyclic code of dimension 15.

4 Self-dual Skew Codes Generated by Least Common
Left Multiples of Skew Polynomials

The following Lemma is inspired from Theorem 16 and Theorem 18 of [14] which
state that a θ-cyclic code is either a cyclic code or a quasi-cyclic code.

Lemma 2. Consider IFq a finite field, θ ∈ Aut(IFq), R = IFq[X ; θ], n a non-
negative integer, � the greatest common divisor of n and of the order of θ,
a ∈ (IFq)

θ \ {0} and h a right divisor of Xn − a in R. Then X�h = hX� (which

means that the coefficients of h belong to the fixed field of θ�, (IFq)
θ�

).

Proof. Consider m the order of θ, u, v ∈ IN such that � = mu − nv. Consider
1
avX

muh ∈ Rh/R(Xn − a), one has 1
av X

muh = hXmu × 1
av = hX�Xnv × 1

av =
hX� in R/R(Xn − a), therefore hX� ∈ Rh/R(Xn − a) and there exists Q ∈ R
monic of degree � such that hX� = Qh. The constant coefficient Q0 of Q satisfies
Q0h0 = 0, as h0 	= 0, one gets Q0 = 0. Furthermore, from the coefficients of
degree 1, . . . , � − 1 of hX� − Qh, one gets that the terms of Q with degrees
≤ � − 1 all cancel, therefore hX� = X�h.

The following proposition is a generalization of Proposition 28 of [2] (where θ
was of order 2).

A Note on the Existence of Self-Dual Skew Codes over Finite Fields 233

Proposition 2. Consider IFq a finite field, θ ∈ Aut(IFq), R = IFq[X ; θ], k a
nonnegative integer and � the greatest common divisor of 2k and of the order of

θ, R̃ = (IFq)
θ�

[X ; θ̃] where θ̃ is the restriction of θ to (IFq)
θ�

. Consider s ∈ IN
and t ∈ IN not multiple of p, such that 2k = � × ps × t. Let ε ∈ {−1, 1} and
Y t − ε = f1(Y)f2(Y) · · · fm(Y) ∈ (IFq)

θ[Y], where fi(Y) are monic polynomials

that are pairwise coprime with the property that f �
i = fi. The equation h�h =

X2k − ε ∈ R is equivalent to h�h = X2k − ε ∈ R̃. Its solutions are the skew
polynomials h defined by h = lcrm(h1, . . . , hm) ∈ R̃ where for i = 1, . . . ,m,

h�
ihi = fps

i (X�) ∈ R̃.

Proof. According to Lemma 2, the equation h�h = X2k − ε in R = IFq[X ; θ] is

equivalent to h�h = X2k − ε in R̃ = (IFq)
θ�

[X ; θ̃] where (IFq)
θ�

is the fixed field

of θ� and θ̃ is the restriction of θ to (IFq)
θ�

. As θ̃� fixes (IFq)
θ�

, the order of θ̃
divides � and therefore it divides 2k.

Therefore in the following, without loss of generality, one can consider the
equation h�h = X2k − ε in R = IFq[X ; θ] with θ ∈ Aut(IFq) of order � dividing
2k. The proof of Proposition 28 of [2] can be adapted to this context and not all
details are given.

1. (⇐) From h = lcrm(h1, . . . , hm) one obtains that h = hiqi with qi ∈ R.

Lemma 1 shows that there exists q̃i ∈ R such that h� = q̃ih
�
i . Therefore h

�h =

q̃i(h
�
ihi)qi = q̃ifi

ps

(X�)qi = q̃iqifi
ps

(X�) (because fps

i (X�) ∈ (IFq)
θ[X�] is

central), showing that

lclm((f1)
ps

(X�), . . . , (fm)p
s

(X�)) = fps

1 (X�) · · · fps

m (X�) = Xn − ε is a right
divisor of h�h in R. Furthermore, the degree of h is equal to the sum of
the degrees of the skew polynomials hi (because they are pairwise coprime),
therefore the degree of h�h is equal to

∑m
i=1 deg((fi)

ps

(X�)) = 2k which
enables to conclude that h�h = X2k − ε.

2. (⇒): According to ([5], Theorem 4.1), h� = lclm(h�
1, . . . , h

�
m) where h�

i =

gcrd(fps

i (X�), h�) are pairwise coprime in R. In particular, according to [13],

deg(lclm(h�
i , h

�
j)) = deg(h�

i)+deg(h�
j) for i 	= j anddeg(h�) = deg(lclm(h�

i)) =∑
deg(h�

i).

Let us now show that hi divides fi
ps

(X�) and h on the left :

– Let δi be the degree of fi
ps

(X�) and di be the degree of hi. Applying

Lemma 1 to fi
ps

(X�) = qih
∗
i one obtains (fi

ps

(X�))∗ = Θδi−di(h∗
i
∗)q∗i =

Θδi−di(Θdi(hi))q
∗
i = Θδi(hi)q

∗
i = hiq

∗
i (because δi is a multiple of the

order � of θ). One concludes that hi divides on the left (fi
ps

(X�))∗ and

hi divides on the left (fi
ps

)�(X�) = fi
ps

(X�).

– Since h�
i divides h� on the right, h∗ = pih

∗
i for some pi in R. Using

Lemma 1, one obtains Θk(h) = h∗∗ = Θk−di (h∗
i
∗)p∗i . Therefore

Θk(h) = Θk−di(Θdi(hi))p
∗
i = Θk(hi)p

∗
i . Since Θ is a morphism of rings,

hi divides h on the left.

Since h�
i divides h� on the right and hi divides h on the left, there exist

gi, g̃i such that h�h = g̃ih
�
ihigi. Since two factors of a decomposition of

234 D. Boucher

the central polynomial h�h = g̃ih
�
ihigi into two factors commute, h�

ihi di-

vides h�h = Xn − ε on the right. According to Theorem 4.1 of [5], h�
ihi =

lclm(gcrd(h�
ihi, (fj)

ps

(X�)), j = 1, . . .m). As both h�
i and hi divide the cen-

tral polynomial fi
ps

(X�), the product h�
ihi divides (fi

ps

)2(X�). For j 	= i,

gcrd(h�
ihi, (fj)

ps

(X�)) = 1 and h�
ihi = gcrd(h�

ihi, fi
ps

(X�)), in particular,

h�
ihi divides fi

ps

(X�).

For i ∈ {1, . . . ,m} the polynomials fi
ps

(X�) are pairwise coprime, showing

that their divisors h�
ihi are also pairwise coprime. Therefore

deg(lclm(h�
ihi)) =

m∑
i=1

deg(h�
ihi) = 2 deg(h�) =

m∑
i=1

deg(fi
ps

(X�)).

From
∑m

i=1 deg(h
�
ihi) =

∑m
i=1 deg(fi

ps

(X�)) and the fact that h�
ihi divides

fi
ps

(X�), we obtain h�
ihi = fi

ps

(X�).
As hi divides h on the left, lcrm(hi, i = 1, . . . ,m) also divides h on the left.

Since gcrd(h�
i , h

�
j) = 1 implies gcld(hi, hj) = 1, one gets deg(lcrm(hi, i =

1, . . . ,m)) =
∑

deg(hi) = deg(h). Therefore h = lcrm(hi, i = 1, . . . ,m).

Corollary 2. Consider IFq a finite field with odd characteristic p, θ ∈ Aut(IFq),
R = IFq[X ; θ]. Consider � the greatest common divisor of 2× k and of the order
of θ, k ∈ IN∗, s ∈ IN and t ∈ IN not multiple of p such that 2× k = �× ps × t.

1. If the order of θ is odd then there does not exist a self-dual θ-cyclic code of
dimension k over IFq.

2. If the order of θ is odd and if Y t + 1 ∈ (IFq)
θ[Y] has a self-reciprocal irre-

ducible factor of degree > 1, then there does not exist a self-dual θ-negacyclic
code of dimension k over IFq.

Proof. 1. Assume that there is a self-dual θ-cyclic code of dimension k, then the
equation h�h = X2k−1 has a solution in R. Furthermore Y −1 divides Y t−1
and is self-reciprocal, therefore, according to Proposition 2, the intermediate
equation H�H = (X l − 1)p

s

has a solution. But the order of θ is odd so � is
odd, therefore the right hand side of this intermediate equation has an odd
degree which is impossible as the degree of the left hand side is even.

2. Consider f(Y) = f �(Y) ∈ (IFq)
θ[Y] irreducible dividing Y t + 1, then the

irreducible skew factors of f(X�) have the same degree as deg(f(Y)) and
therefore a factorization of f(X�)p

s

into irreducible skew polynomials has
� × ps factors of degree deg(f(Y)). As the order of θ is odd, � is odd and
�× ps is odd, therefore each factorization of f(X�)p

s

into the product of ir-
reducible factors has an odd number of irreducible factors with the same de-
gree. Consider H ∈ R satisfying the intermediate equation H�H = f(X�)p

s

.
The skew polynomials H and H� must have the same number of irreducible
factors, with the same degree and dividing f(X�)p

s

. This contradicts the
fact that f(X�)p

s

has an odd number of irreducible factors with the same
degree. Therefore, according to Proposition 2, the equation h�h = X2k + 1
has no solution in R.

A Note on the Existence of Self-Dual Skew Codes over Finite Fields 235

Remark 2. According to Theorem 2.2 of [6], there does not exist a self-dual nega-
cyclic code of length 2k over IFq, with IFq of odd characteristic, if the polynomial
X2k + 1 ∈ IFq[X] has an irreducible factor f such that f = f �.

From Proposition 1 one deduces that there cannot exist both a self-dual θ-
cyclic code generated by a binomial and a self-dual θ-negacyclic code generated
by a binomial and having the same dimension. The following proposition shows
that more generally there cannot exist both a self-dual θ-cyclic and a self-dual
θ-negacyclic code with the same dimension.

Proposition 3. Consider IFq a finite field with odd characteristic p and θ an
automorphism of IFq. There cannot exist both a self-dual θ-cyclic code and a
self-dual θ-negacyclic code with the same dimension over IFq.

Proof. Consider k ∈ IN, ε ∈ {−1, 1}. According to Lemma 2, the equation h�h =

X2k − ε in R = IFq[X ; θ] is equivalent to h�h = X2k − ε in R̃ = (IFq)
θ�

[X ; θ̃]

where (IFq)
θ�

is the fixed field of θ� and θ̃ is the restriction of θ to (IFq)
θ�

. As

θ̃� fixes (IFq)
θ�

, the order of θ̃ divides � and therefore it divides 2k. Therefore
in the following, without loss of generality, one can consider that the order � of
θ ∈ Aut(IFq) divides 2×k. Consider s ∈ IN and t ∈ IN such that 2×k = �×ps× t
where t is not a multiple of p.

1. One first considers the particular case when t = 1 i.e. 2×k = �×ps. Assume
that there exists a self-dual θ-cyclic code of dimension k. Consider h ∈ R
monic such that h�h = X2k−1 and α the constant coefficient of h. The skew
polynomial X� − ε belongs to (IFq)

θ[X�] therefore it is central of degree 1 in
X� and the skew factors of any of its factorizations are all of degree 1. The
skew polynomial X2k−ε = (X�−ε)p

s

shares the same property. As h divides
X2k − 1 and as X2k − 1 factors as a product of linear skew polynomials, a
factorization of h is h = (X − α1) · · · (X − αk) where αi ∈ IFq and X − αi

divides on the right X2k − 1 (because X2k − 1 is central). According to
Equation (11) of [10], one has N2k(αi) = 1 where for m ∈ IN∗ and u ∈ IFq,

Nm(u) := uθ(u) · · · θm−1(u) is the norm of u. As α = (−1)k
∏k

i=1 αi, one
gets N2k(α) = 1. Furthermore the constant term of h�h is equal to α/θk(α)
therefore, θk(α) = −α and 1 = N2k(α) = (−1)kNk(α)

2. Similarly if there
exists a self-dual θ-negacyclic code of dimension k, then there exists β in IFq

such that N2k(β) = (−1)k, θk(β) = β and Nk(β)
2 = (−1)k. If k is even then

Nk(α)
2 = 1, therefore Nk(α) = ±1 so α

pk−1
p−1 = ±1 and αpk−1 = (±1)p−1. As

p is odd, one gets αpk−1 = 1, which contradicts θk(α) = −α. If k is odd then
Nk(β)

2 = −1 = Nk(α)
2, so Nk(α) = ±Nk(β) and N2k(α) = Nk(β)

2 = −1,
which contradicts N2k(α) = 1. Therefore if t = 1, there cannot exist both
a self-dual θ-cyclic code and a self-dual θ-negacyclic code with dimension k
over IFq.

2. Consider now the case when t > 1. If t is even, then Y − 1 and Y + 1
divides Y t − 1 in (IFq)

θ[Y]. If there is a self-dual θ-cyclic code of dimension

k then according to Proposition 2, the intermediate skew equation h�
1h1 =

236 D. Boucher

X�ps − 1 and h�
2h2 = X�ps

+ 1 must have monic solutions h1, h2 ∈ R, which
is impossible according to the first part of the proof. Therefore no self-dual
θ-cyclic code of dimension k exists. If t is odd then Y − 1 divides Y t− 1 and
Y +1 divides Y t+1 in (IFq)

θ[Y]. According to Proposition 2, if there is a self-

dual θ-cyclic code of dimension k, then the skew equation h�
1h1 = X�ps − 1

must have a monic solution h1 ∈ R. If there is a self-dual θ-negacyclic code
of dimension k, then the skew equation h�

2h2 = X�ps

+ 1 must also have a
monic solution h2 ∈ R. This is impossible according to the first part of the
proof.

5 Existence of Self-dual Skew Codes over Finite Fields
with Odd Characteristic

According to Proposition 1, if q ≡ 3 (mod 4), then there is no self-dual θ-code
generated by skew binomials over IFq. The following proposition gives a necessary
and sufficient condition of existence of self-dual θ-codes when q ≡ 3 (mod 4).
The proof uses Corollary 2.

Proposition 4. Assume that IFq is a finite field of characteristic p with q ≡ 3
(mod 4). Consider θ an automorphism of IFq and μ ≥ 2 the biggest integer such
that 2μ divides p+ 1 (i.e. 2μ divides exactly p+ 1).

1. There does not exist a self-dual θ-cyclic code of dimension k over IFq.
2. There exists a self-dual θ-negacyclic code of dimension k over IFq if, and

only if, k ≡ 0 (mod 2μ−1).

Proof. Assume that q = pe ≡ 3 (mod 4) i.e. p ≡ 3 (mod 4) and e ≡ 1 (mod 2).
Consider r ∈ IN such that θ is defined by x �→ xpr

.

1. The order of θ is e/gcd(e, r), therefore as e is odd, the order of θ is also odd.
According to point 1. of Corollary 2, there cannot exist a self-dual θ-cyclic
code of dimension k over IFq.

2. Consider α the biggest integer such that 2α divides k and assume that α+1 ≥
μ. Therefore 2k is divisible by 2μ and the skew polynomial X2k + 1 is equal
to (Xk/2μ−1

)2
μ

+1. One proves that the polynomial Y 2μ +1 factors in IFp[Y]
as the product of two polynomials h(Y) and h�(Y). Namely, consider w a
primitive 2μ+1-th root of unity in IFp. As 2

μ divides p+1, 2μ+1 divides p2−1

and w belongs to IFp2 −IFp. The polynomial Y 2μ +1 = (Y 2μ+1 −1)/(Y 2μ −1)
factors in IFp2 [Y] as the product of Y −wi where i describes the odd numbers
of {0, . . . , 2μ+1 − 1}. This polynomial can also be written as the product of

the polynomials hi(Y)h�
i(Y) where hi(Y) = Y 2 − (wi + wip)Y + wi(p+1)

is in IFp[Y]. One concludes that Y 2μ + 1 factors in IFp[Y] as the product
of two polynomials h(Y) and h�(Y). From this factorization, one deduces

that X2k + 1 = H�(X)H(X) ∈ IFp[X] where H(X) = h(Xk/2μ−1

). So there
exists a [2k, k]p self-dual negacyclic code and as IFp is fixed by θ, the relation
X2k + 1 = H�(X)H(X) still holds in IFq[X ; θ].

A Note on the Existence of Self-Dual Skew Codes over Finite Fields 237

Conversely, assume that α < μ− 1. Consider � the greatest common divisor
of 2k and of the order of θ, and t, s such that 2k = �× t× ps where p does
not divide t. Let us prove that Y t + 1 ∈ (IFq)

θ[Y] has an irreducible factor

f(Y) such that f �(Y) = f(Y). Consider e′ = gcd(e, r) and q′ = pe
′
, then

(IFq)
θ = IFq′ . As e is odd, and as the order of θ is equal to e/ gcd(e, r), the

order of θ is odd and � is also odd. As p ≡ −1 (mod 2μ) and q′ = pe
′
with

e′ odd, q′ ≡ −1 (mod 2μ), furthermore α ≤ μ − 2, q′ ≡ −1 (mod 4 × 2α).
Let us consider w a primitive 4 × 2α-th root of unity in IFq′2 . Such an w

does exist as q′2 − 1 ≡ 0 (mod 4 × 2α), furthermore wq′ = w−1 because
4× 2α divides q′ + 1. As 2α+1 divides exactly 2k and as 2k = � × t × ps,
2α+1 divides exactly t, therefore 4 × 2α divides exactly 2t, w2t = 1 and
wt = −1. The minimal polynomial f ∈ IFq′ [Y] of w divides Y 2t − 1 but

not Y t − 1, so it divides Y t + 1. Furthermore f(wq′) = 0 and wq′ = w−1

therefore f(w−1) = 0 and f = f �. Therefore Y t+1 has an irreducible factor
f ∈ IFq′ [Y] = (IFq)

θ[Y] such that f = f �. Furthermore, the order of θ is odd,
so according to Corollary 2, there cannot exist a self-dual θ-negacyclic code
of dimension k.

Remark 3. Assume that p ≡ 3 (mod 4), e is odd. Consider μ ≥ 2 the biggest
integer such that 2μ divides p + 1. Consider k = ps with s ∈ IN, then k 	≡
0 (mod 2μ−1) and according to Proposition 4, there is no negacyclic code of
dimension k. This result was previously obtained in Corollary 3.3. of [4].

To conclude, it remains to decide, when q ≡ 1 (mod 4), if the existing self-
dual θ-codes are θ-cyclic or θ-negacyclic. According to Theorem 1 of [3], over
IFq = IFp2 with θ : x �→ xp and p prime number, there exists a self-dual θ-cyclic
code of length 2k if and only if k is an odd number and p ≡ 3 (mod 4) whereas
there exists a self-dual θ-negacyclic code of dimension k if and only if p ≡ 1
(mod 4) or p ≡ 3 (mod 4) and k is even. The following proposition generalizes
this result and states that the sufficient conditions of existence of self-dual skew
codes given in Proposition 1 for q ≡ 1 (mod 4) are also necessary. Its proofs
uses Proposition 3 which states that there cannot exist simultaneously a self-
dual θ-cyclic code and a self-dual θ-negacyclic code with the same dimension:

Proposition 5. Consider a finite field IFq with q = pe, p odd prime number,
e ∈ IN∗ and q ≡ 1 (mod 4) (i.e. p ≡ 3 (mod 4) and e even or p ≡ 1 (mod 4)).
Consider r ∈ IN, θ the automorphism of IFq defined by θ : x �→ xpr

and k a
nonnegative integer.

1. There exists a self-dual θ-cyclic code of dimension k over IFq if and only if
p ≡ 3 (mod 4), e is even and r × k is odd.

2. There exists a self-dual θ-negacyclic code of dimension k over IFq if and only
if p ≡ 1 (mod 4) or p ≡ 3 (mod 4), e is even and r × k is even.

Proof. 1. According to Proposition 1 point 1., if p ≡ 3 (mod 4), e is even and
r× k is odd, there exists a self-dual θ-cyclic code of dimension k (generated

238 D. Boucher

Table 1. Necessary and sufficient conditions for the existence of self-dual θ-cyclic and
θ-negacyclic codes of dimension k over IFq where IFq has odd characteristic p, μ ∈ IN
is such that 2µ divides exactly p+ 1 and θ : x �→ xpr

Self-dual Self-dual
θ-cyclic θ-negacyclic

q ≡ 1 (mod 4), p ≡ 3 (mod 4) r × k ≡ 1 (mod 2) r × k ≡ 0 (mod 2)

q ≡ 1 (mod 4), p ≡ 1 (mod 4) no k k ∈ IN∗

q ≡ 3 (mod 4) no k k ≡ 0 (mod 2µ−1)

by a skew binomial). Conversely, assume that there exists a self-dual θ-cyclic
code of dimension k, then according to Proposition 3, there is no θ-negacyclic
code with dimension k therefore according to Proposition 1 point 2., p ≡ 3
(mod 4), e ≡ 0 (mod 2) and r × k ≡ 1 (mod 2).

2. According to Proposition 1 point 2., if p ≡ 3 (mod 4), e ≡ 0 (mod 2) and
r × k ≡ 0 (mod 2) or p ≡ 1 (mod 4), there exists a self-dual θ-negacyclic
code of dimension k (generated by a skew binomial). Conversely, assume that
there exists a self-dual θ-negacyclic code of dimension k, then according to
Proposition 3, there is no θ-cyclic code with dimension k therefore according
to Proposition 1 point 1., p ≡ 3 (mod 4), e ≡ 0 (mod 2) and r × k ≡ 0
(mod 2) or p ≡ 1 (mod 4).

To conclude, Proposition 4 (q ≡ 3 (mod 4)) andProposition 5 (q ≡ 1 (mod 4))
are summed up in Table 1 below.

References

1. Boucher, D., Ulmer, F.: A note on the dual codes of module skew codes. In: Chen, L.
(ed.) IMACC 2011. LNCS, vol. 7089, pp. 230–243. Springer, Heidelberg (2011)

2. Boucher, D., Ulmer, F.: Self-dual skew codes and factorization of skew polynomials.
Journal of Symbolic Computation 60, 47–61 (2014)

3. Boucher, D.: Construction and number of self-dual skew codes over IFp2 (2014),
https://hal.archives-ouvertes.fr/hal-01090922 (preprint)

4. Dinh Hai, Q.: Repeated-root constacyclic codes of length 2ps. Finite Fields and
Their Applications 18, 133–143 (2012)

5. Giesbrecht, M.: Factoring in skew-polynomial rings over finite fields. J. Symbolic
Comput. 26(4), 463–486 (1998)

6. Guenda, K., Gulliver, T.A.: Self-dual Repeated Root Cyclic and Negacyclic Codes
over Finite Fields. In: 2012 IEEE International Syposium on Information Theory
Proceedings (2012)

https://hal.archives-ouvertes.fr/hal-01090922

A Note on the Existence of Self-Dual Skew Codes over Finite Fields 239

7. Han, S., Kim, J.-L., Lee, H., Lee, Y.: Construction of quasi-cyclic self-dual codes.
Finite Fields and their Applications 18(3), 613–633 (2012)

8. Jia, S., Ling, S., Xing, C.: On Self-Dual Cyclic Codes Over Finite Fields. IEEE
Transactions on Information Theory 57(4) (2011)

9. Kai, X., Zhu, S.: On Cyclic Self-Dual Codes. Applicable Algebra in Engineering,
Communication and Computing 19(6), 509–525 (2008)

10. Lam, T.Y.: A general theory of Vandermonde matrices. Expositiones Mathemati-
cae 4, 193–215 (1986)

11. Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes. I. Finite fields.
IEEE Trans. Inform. Theory 47(7), 2751–2760 (2001)

12. Ling, S., Solé, P.: On the algebraic structure of quasi-cyclic codes. II. Chain rings.
Designs, Codes and Cryptography 30(1), 113–130 (2003)

13. Ore, O.: Theory of Non-Commutative Polynomials. The Annals of Mathematics,
2nd Ser. 34(3), 480–508 (1933)

14. Siap, I., Abualrub, T., Aydin, N., Seneviratne, P.: Skew cyclic codes of arbitrary
length. Int. J. Inf. Coding Theory 2(1), 10–20 (2011)

The Weight Distribution of a Family

of Lagrangian-Grassmannian Codes

Jesús Carrillo-Pacheco1(�), Gerardo Vega2, and Felipe Zald́ıvar3

1 Academia de Matemáticas, Universidad Autónoma de la Ciudad de México,
09790, México, D.F., México
jesus.carrillo@uacm.edu.mx

2 Dirección General de Cómputo y de Tecnoloǵıas de Información y Comunicación,
Universidad Nacional Autónoma de México,

04510 México D.F., México
gerardov@unam.mx

3 Departamento de Matemáticas, Universidad Autónoma Metropolitana-I,
09340 México D.F., México

fz@xanum.uam.mx

Abstract. Using Plücker coordinates we construct a matrix whose co-
lumns parametrize all projective isotropic lines in a symplectic space E of
dimension 4 over a finite field Fq. As an application of this construction
we explicitly obtain the smallest subfamily of algebro-geometric codes
defined by the corresponding Lagrangian-Grassmannian variety. Further-
more, we show that this subfamily is a class of three-weight linear codes
over Fq of length (q4 − 1)/(q− 1), dimension 5, and minimum Hamming
distance q3 − q.

Keywords: Algebraic geometry codes · Lagrangian-Grassmannian vari-
ety · Fp-rational points · Isotropic lines ·Lagrangian-Grassmannian codes ·
Three-weight linear codes

1 Introduction

We consider the subfamily CL(2,4)(Fq) of the class of algebraic-geometry codes
CL(m,2m)(Fq) defined in [1] using the Lagrangian-Grassmannian projective va-
riety L(m, 2m) of maximal isotropic subspaces of a symplectic vector space of
dimension 2m over a finite field Fq. Thus, as a set, L(2, 4) is the family of 2-
dimensional isotropic subspaces of a symplectic space E of dimension 4 over
any finite field Fq. By its definition, L(2, 4) is a subvariety of the Grassmannian
G(2, 4) of all 2-dimensional vector subspaces of the 4-dimensional vector space
E. Now, recall that the Plücker embedding π : G(2, 4) → P(∧2E) is given by
sending a 2-dimensional vector subspace W ⊆ E with basis u1, u2 to the point
in P(∧2E) � P

5(Fq) given by the wedge u1∧u2 ∈ ∧2(E). The map π is a closed
embedding that identifies the Grassmannian G(2, 4) with the closed subvariety
of P5(Fq) defined by the quadratic Plücker equations. Moreover, if e1, . . . , e4 is

G. Vega – Partially supported by PAPIIT-UNAM IN107515.

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 240–246, 2015.
DOI: 10.1007/978-3-319-18681-8_19

The Weight Distribution of a Family of Lagrangian-Grassmannian Codes 241

a basis of E, by choosing the standard basis B = {ei1∧ei2 : 1 ≤ i1 < i2 ≤ 4}
of ∧2E, given a 2-dimensional vector subspace W ⊆ E with basis u1, u2, the
coordinates of π(W) in the standard basis B are the (homogeneous) Plücker co-
ordinates of the point W . We label the coordinate corresponding to the vector
ei∧ej by Xij . Thus, the coordinates of P(∧2E) are X12, X13, X14, X23, X24 and
X34 . It is well known, see for example [2], that the Grassmannian variety G(2, 4)
corresponds to a hypersurface in P(∧2E), known as the Klein quadric, given by
the quadratic equation

X12X34 −X13X24 +X14X23 = 0, (1)

where X12, X13, X14, X23, X24 and X34 are the coordinates of P(∧2E).
Now, if ω is the non-degenerate skew-symmetric bilinear form of the sym-

plectic 4-dimensional space E, recall that a subspace W ⊆ E is isotropic iff
ω(u, v) = 0 for all u, v ∈ W . Then, the Lagrangian-Grassmannian L(2, 4) is
given by the set

L(2, 4) = {W ⊆ E : W is an isotropic 2-dimensional subspace of E}

and it is a non-singular projective variety of dimension 3. Now, for the contrac-
tion map f : ∧2E → ∧0E = Fq, given by wedging with the tensor corresponding
to the bilinear form, f(v1∧v2) := ω(v1, v2), it is shown in [1] that, as algebraic
varieties,

L(2, 4) = G(2, 4) ∩ P(ker f).

Observe now that f is surjective and hence dimker f = 5. As a direct application
of [1, Corollary 7] we have that P(ker f) is completely determined by the unique
homogeneous linear equation X14 +X23 = 0. From Equation (1) it follows that
L(2, 4) = G(2, 4)∩P(ker f) is the hypersurface given by the homogeneous quadric
equation

X12X34 −X13X24 −X2
14 = 0. (2)

Note that each Fq-rational solution to Equation 2 represents an isotropic line
in P(E). So to fully determine the set of isotropic lines in the projectiviza-
tion of a vector space of dimension 4 over a finite field Fq it is enough to give
all Fq-solutions to the quadratic equation 2. Lastly, since the symplectic group
Sp(4)(Fq) acts transitively [7] on L(2, 4)(Fq), then for any point X ∈ L(2, 4)(Fq)
we have that

n := |L(2, 4)(Fq)| =
|Sp(4)(Fq)|

|Stabilizer of X | = (1 + q)(1 + q2). (3)

In [1, Corollary 3] it is shown that L(2, 4)(Fq) is a non-degenerate projective
system in P(ker f) � P

4. Thus, following [8], see also [4,5], L(2, 4)(Fq) defines a
non-degenerate linear code CL(2,4)(Fq) by choosing for each point of L(2, 4)(Fq) ⊆
P
4(Fq) a representative in F

5, then the generator matrix M of the code is the
5×n matrix with columns the representatives of the n = (1+q)(1+q2) points in
L(2, 4)(Fq). Thus, CL(2,4)(Fq) is a 5-dimensional vector subspace of Fn and it is

242 J. Carrillo-Pacheco et al.

the image of the linear map from the dual space (F5)∗ to F
n given by evaluation

of each linear functional on the points of L(2, 4)(Fq). The length of CL(2,4)(Fq) is
n = |L(2, 4)(Fq)| = (1+ q)(1+ q2), its dimension is 5, and its minimum distance
is given by the formula

d(CL(2,4)(Fq)) = n−max{|L(2, 4)(Fq) ∩H | : H is a hyperplane of P4}.

Recall now, that since the family of codes CL(2,4)(Fq) is a particular case
of quadrics codes, their weight spectrum has been completely described in [3],
including the complete generalized spectrum.

Our main contribution in this paper is a different, explicit determination of
the weight distribution of the codes CL(2,4)(Fq). Specifically, we prove that these
codes are three-weight linear codes (over Fq) of length (q4−1)/(q−1), dimension
5 and minimum Hamming distance q3 − q. On the other hand, our contribution
can also be seen, in essence, as an algorithm to compute all Fq-rational points
in a special algebraic variety, for all finite fields Fq.

The paper is organized as follows. In Section 2 we determine the general
conditions under which the generator matrix for the code CL(2,4)(Fq), can be
constructed. In Section 3, we use this generator matrix in order to determine
the weight distribution for the code CL(2,4)(Fq). Finally, we devote Section 4 to
conclusions and point to further work.

2 Projective Isotropic Lines in a Symplectic Space of
Dimension 4 over any Finite Field

In this section we will give a general construction for L(2, 4)(Fp), giving a matrix
whose columns are the points of L(2, 4)(Fp).

Let γ be a primitive element of Fq and let α ∈ Fq be an arbitrary element.
Consider the following vectors Q and α in F

q
q given by Q := (0, γ0, γ1, · · · , γq−2)

and α := (α, · · · , α). For elements α, β ∈ Fq, and the corresponding vectors
α, β ∈ F

q
q, we define the vector εαβ ∈ F

q
q by

εαβ = α ∗Q+ β
2
, (4)

where ∗ denotes the componentwise product of two vectors in F
q
q and β

2
= β ∗β.

With this notation we now concatenate sets of q vectors in F
q
q, in order to

construct vectors in F
q2

q in the following way:

Aα = (1, · · · , 1) for each α ∈ Fq and A∞ = (0, · · · , 0) ,
Bα = (α, · · · , α) for each α ∈ Fq and B∞ = (1, · · · , 1) ,
Cα = (0, γ0, · · · , γq−2) for each α ∈ Fq and C∞ = (0, γ0, · · · , γq−2) ,

Dα = (Q, · · · , Q) for each α ∈ Fq and D∞ = (−0
2
,−γ0

2
, · · · ,−γq−2

2
) ,

Eα = (εα0 , ε
α
γ0, · · · , εαγq−2) for each α ∈ Fq and E∞ = (Q, · · · , Q) .

The Weight Distribution of a Family of Lagrangian-Grassmannian Codes 243

Finally, we construct the row vectors A, B, C, D and E in F
(q4−1)/(q−1)
q by

A = (A0,Aγ0 , · · · ,Aγq−2 ,A∞, 0, 0) ,

B = (B0,Bγ0, · · · ,Bγq−2 ,B∞, 0, 0) ,

C = (C0, Cγ0, · · · , Cγq−2 , C∞, 0, 0) ,

D = (D0,Dγ0 , · · · ,Dγq−2 ,D∞, 1, 0) ,

E = (E0, Eγ0 , · · · , Eγq−2 , E∞, Q, 1) .

Consider now the matrix G given by

G =

⎛
⎜⎜⎜⎜⎝

A
B
C
D
E

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

A0 Aγ0 · · · Aγq−2 A∞ 0 0
B0 Bγ0 · · · Bγq−2 B∞ 0 0
C0 Cγ0 · · · Cγq−2 C∞ 0 0
D0 Dγ0 · · · Dγq−2 D∞ 1 0
E0 Eγ0 · · · Eγq−2 E∞ Q 1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1 1 1 · · · 1 1 1 · · · 1 0 0 · · · 0 0 0

0 0 · · · 0 γ0 γ0 · · · γ0 γq−2 γq−2 · · · γq−2 1 1 · · · 1 0 0

0 γ0 · · · γq−2 0 γ0 · · · γq−2 · · · 0 γ0 · · · γq−2 0 γ0 · · · γq−2 0 0

Q Q · · · Q Q Q · · · Q Q Q · · · Q −0
2 −γ0

2 · · · −γq−2
2

1 0

ε00 ε0
γ0 · · · ε0

γq−2 εγ
0

0 εγ
0

γ0 · · · εγ
0

γq−2 εγ
q−2

0 εγ
q−2

γ0 · · · εγ
q−2

γq−2 Q Q · · · Q Q 1

⎞
⎟⎟⎟⎟⎟⎟⎠

whose columns correspond to points of the projective space P
4
Fq
. It is easily

verified that the entries of each column ci = (ci,1, ci,2, ci,3, ci,4, ci,5) of G satisfy
ci,1ci,5 = ci,2ci,4 + c2i,3, that is they are all solutions of the quadratic equation 2.
Hence, the matrix G parametrizes all projective isotropic lines on a symplectic
vector space of dimension 4 over Fq. In other words, this matrix gives a method to
determine all Fq-rational points in the projective variety L(2, 4), for an arbitrary
finite field.

Example 1. if q = 2, then F2 = {0, 1} and

G =

⎛
⎜⎜⎜⎜⎝

11 11 11 11 00 00 00 0
00 00 11 11 11 11 00 0
00 11 00 11 00 11 00 0
01 01 01 01 00 11 11 0
00 11 01 10 01 01 01 1

⎞
⎟⎟⎟⎟⎠ .

Example 2. If q = 3, then F3 = {0, 1, 2} and

G =

⎛
⎜⎜⎜⎜⎝

111 111 111 111 111 111 111 111 111 000 000 000 000 0
000 000 000 111 111 111 222 222 222 111 111 111 000 0
000 111 222 000 111 222 000 111 222 000 111 222 000 0
012 012 012 012 012 012 012 012 012 000 222 222 111 0
000 111 111 012 120 120 021 102 102 012 012 012 012 1

⎞
⎟⎟⎟⎟⎠ .

244 J. Carrillo-Pacheco et al.

3 CL(2,4)(Fq) is a Class of Three-Weight Linear Codes

If wH is the Hamming weight of a finite-length vector, then, from Equation 4, we
have that wH(ε00) = 0, wH(ε0α) = q and wH(εαβ) = q−1, for all α ∈ F

∗
q and β ∈ Fq.

Therefore, wH(A) = wH(B) = wH(D) = wH(E) = q3 and wH(C) = q3 − q.
Since G is the generator matrix for the code CL(2,4), then for each X ∈

CL(2,4) there must exist scalars a, b, c, d and e in the finite field Fq such that
X = aA+ bB+ cC+dD+eE . Clearly, if for each α ∈ Fq we construct the vectors

Xα = aAα + bBα + cCα + dDα + eEα ∈ F
q2

q , and if we take X∞ = aA∞ + bB∞ +

cC∞ + dD∞ + eE∞ ∈ F
q2

q , then X = (X0, Xγ0, · · · , Xγq−2 , X∞, d+ eQ, e).

Lemma 1. CL(2,4)(Fq) is a three-weight linear code over Fq of length (q4 −
1)/(q − 1) and dimension 5, with nonzero weights q3, q3 − q and q3 + q.

Proof. We must prove that wH(X) ∈ {0, q3, q3 − q, q3 + q}. With the previous
notation observe first that wH(aA+ bB+ cC) ∈ {0, q3, q3− q}. In fact, wH(aA+
bB+ cC) = wH(C) = q3 − q if and only if c
= 0. Thus, for any scalars a, b and c,
we may assume that d
= 0 or e
= 0.

First Case: d
= 0 and e = 0. Without loss of generality we may assume that
d = 1. For α, β ∈ Fq, let δαβ ∈ Fq such that δαβ = a + bα + cβ. Then, Xα =

(δα0 + Q, δαγ0 + Q, · · · , δαγq−2 + Q). Since Q = (0, γ0, γ1, · · · , γq−2), there must

exist permutations σ1, · · · , σq ∈ Sq (the symmetric group on q entries) such that
Xα = (σ1(Q), · · · , σq(Q)) and therefore wH(Xα) = q(q − 1), for each α ∈ Fq.
Now, let p1(z) ∈ Fq[z] be given by p1(z) = b + cz − z2. Since X∞ = (b + c0 −
0
2
, b+ cγ0 − γ0

2
, · · · , b+ cγq−2 − γq−2

2
), then

wH(X∞) =

⎧⎨
⎩

q2, if p1(z) has no roots in Fq,
q2 − q, if p1(z) has one root in Fq,
q2 − 2q, if p1(z) has two roots in Fq.

Clearly wH(1) = q and therefore wH(X) ∈ {q3, q3 − q, q3 + q}.
Second Case: e
= 0. Without loss of generality we may assume that e = 1. By
an argument similar to the previous case, we see that wH(X∞) = q(q − 1). For
α ∈ Fq, let ξα ∈ Fq such that ξα = a+ bα. Then, from Equation (4) we have

Xα = ((d+ α) ∗Q+ ξα + c0 + 0
2
, (d+ α) ∗Q+ ξα + cγ0 + γ0

2
, · · · ,

(d+ α) ∗Q+ ξα + cγq−2 + γq−2
2
).

Now, if d + α
= 0 there must exist permutations σ1, · · · , σq ∈ Sq such that
Xα = (σ1(Q), · · · , σq(Q)) and therefore wH(Xα) = q(q − 1). On the contrary, if
d+ α = 0, and if we take p2(z) ∈ Fq[z] such that p2(z) = ξα + cz + z2, then

wH(Xα) =

⎧⎨
⎩

q2, if p2(z) has no roots in Fq,
q2 − q, if p2(z) has one root in Fq,
q2 − 2q, if p2(z) has two roots in Fq.

The Weight Distribution of a Family of Lagrangian-Grassmannian Codes 245

Since there is just one α ∈ Fq such that d+ α = 0, and since wH(d+Q, 1) = q,
then wH(X) ∈ {q3, q3 − q, q3 + q}. ��

We now recall the following known identities: Let C be a linear code of length
n and dimension k over Fq. Let w1, w2, . . ., wN be the nonzero Hamming weights
of C, and suppose that the minimum Hamming distance of C⊥ (the dual of C)
is at least 3. For 1 ≤ i ≤ N , let Awi be the number of words of weight wi in C.
The set {Awi}Ni=1 is called the weight distribution of the linear code C. The first
three identities of Pless (see [6] for the general result, alternatively see [10]) for
the code C are:

1)
∑N

i=1 Awi = qk − 1,

2)
∑N

i=1 Awiwi = n(q − 1)qk−1,

3)
∑N

i=1 Awiw
2
i = n(q − 1)(n(q − 1) + 1)qk−2.

With the previous notation and identities, our main result is:

Theorem 1. CL(2,4)(Fq) is a three-weight linear code over Fq of length (q4 −
1)/(q − 1) and dimension 5, whose weight distribution is as follows:

Aq3 = q4 − 1,

Aq3−q = q2(q2 + 1)(q − 1)/2,

Aq3+q = q2(q2 − 1)(q − 1)/2.

Proof. As seen before, the generator matrix for the code CL(2,4)(Fq) corresponds
to the parity check matrix of a Hamming code of order 5 with some of its columns
deleted. Therefore this code is necessarily a projective one, which in turn means
(by definition) that the minimum Hamming distance of its dual code is at least 3.
The result now follows from Lemma 1 and a direct application of Pless identities
with n = (q4−1)/(q−1), k = 5,N = 3, w1 = q3, w2 = q3−q and w3 = q3+q. ��

Example 3. If q = 3, then CL(2,4)(Fq) is a three-weight linear code over F3 of
length 40, dimension 5 and minimum Hamming distance 24, whose weight dis-
tribution is A27 = 80, A24 = 90 and A30 = 72.

Remark 1. It is important to observe that the previous code has the best known
parameters according to the tables of linear codes [11] maintained by Markus
Grassl.

Remark 2. As pointed out by a referee, the weights of CL(2,4) are the cardinali-
ties of the complements of hyperplane sections of the non-degenerate parabolic
quadric 2 in P

4. These intersections have three possibilities: a cone, a hyperbolic
quadric or an elliptic quadric, which give the three non-zero weights of CL(2,4).

4 Conclusion

We provide a general method to construct all Fq-rational solutions of the Plücker
equation of the parabolic quadric L(2, 4). With this method, we studied the sub-
family of codes CL(2,4)(Fq) contained in the family of Lagrangian-Grassmannian

246 J. Carrillo-Pacheco et al.

codes CL(m,2m)(Fq). We have shown that such a subfamily is a class of three-
weight linear codes over Fq with parameters [(q4 − 1)/(q − 1), 5, q3 − q], whose
weight distribution is given by Theorem 1. An obvious open problem is to
find the parameters for other subfamilies of Lagrangian-Grassmannian codes
CL(m,2m)(Fq).

Acknowledgements. We would like to thank the referees for a careful reading of the

manuscript.

References

1. Carrillo-Pacheco, J., Zaldivar, F.: On Lagrangian-Grassmannian Codes. Des. Codes
and Cryptogr. 60, 291–298 (2011)

2. Fulton, W.: Young Tableaux, with Applications to Representation Theory and
Geometry. Cambridge University Press, Cambridge (1997)

3. Nogin, D.: Generalized Hamming Weights of Codes on Multi-Dimensional
Quadrics. Problems Inform. Transmission 29(3), 218–227 (1993)

4. Nogin, D.: Codes Associated to Grassmannians. In: Arithmetic Geometry and
Coding Theory (Luminy 1993), pp. 145–154. Walter de Gruyter, Berlin-New York
(1996)

5. Nogin, D.: The Spectrum of Codes Associated with the Grassmannian Variety
G(3, 6). Problems Inform. Transmission 33(3), 114–123 (1997)

6. Pless, V.: Power Moment Identities on Weight Distributions in Error-Correcting
Codes. Inf. Contr. 6, 147–152 (1962)

7. Suzuki, M.: Group Theory I. Springer, Berlin (1982)
8. Tsfasman. M. A., Vladut, S.G.: Algebraic-Geometric Codes. Kluwer, Dordrecht

(1991)
9. Wan, Z.X.: The Weight Hierarchies of the Projective Codes from Non-degenerate

Quadrics. Des. Codes Cryptogr. 4(3), 283–300 (1994)
10. Wolfmann, J.: Are 2-weight Projective Cyclic Codes Irreducible? IEEE Trans. In-

form. Theory 51, 733–737 (2005)
11. Code Tables, http://codetables.de

http://codetables.de

Algorithms of Constructing Linear

and Robust Codes Based on Wavelet
Decomposition and its Application

Alla Levina(�)and Sergey Taranov

ITMO University, 49 Kronverksky Pr., St. Petersburg,
197101 Russia

alla levina@mail.ru

Abstract. This article presents the algorithms of constructing error de-
tecting codes using wavelet decomposition. Linear code, presented in the
paper, based on the coefficients of scaling function of wavelet transfor-
mation. Constructed linear code was used for creation of robust codes
that have a smaller number of undetectable errors and have an abil-
ity to detect any error with a predetermined probability. Robust codes
are generated by applying a nonlinear function to the redundancy part
of the linear code. The article describes comparative characteristics be-
tween the proposed wavelet code constructions and other error detecting
codes. The paper proposes two constructions of robust code, first robust
code base on the multiplicative inverse in a finite field, redundancy part
of second code construction build as a cube in the field of the informa-
tion component. The paper describes a model of application proposed
code constructions in ADV612 system. Characteristics of robustness of
the described model for uniform and nonuniform codeword distribution
are also presented in the paper.

Keywords: Robust code · Linear code ·Wavelet decomposition · Scaling
function · Error masking probability

1 Introduction

Wavelet transformation has become well known and widely used for signal anal-
ysis in many fields of science. The basics of wavelet theory can be found in the
works of Daubechies [9,11]. Many types of wavelets provide quick but very inac-
curate compression. Methods of data compression using wavelet expansions are
described in [8,10]. This article discusses the use of wavelet decompositions in
coding theory and in the design of robust codes.

The paper presents an error-correcting coding scheme based on biorthogonal
wavelet transform. The second section of this article contains the basic theory
of wavelet decompositions. Also, this section reveals that the idea of multireso-
lution analysis is signal decomposition produced by the orthogonal basis formed
by shifts and multiresolution copies of wavelet function. In the third part, we
construct linear code based on matrix representation of wavelet decompositions.

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 247–258, 2015.
DOI: 10.1007/978-3-319-18681-8_20

248 A. Levina and S. Taranov

Next, we derive a generator and a check matrix for the proposed construction.
If we substitute the coefficients of wavelet scaling functions in the proposed
matrix, we obtain specific linear codes.

Based on linear wavelet codes, we develop two constructions of robust codes.
Robust codes are new nonlinear systematic error- detecting codes that provide
uniform protection against all errors, whereas linear error-detecting code detects
only a certain class of errors. Therefore, defence by the linear codes can be inef-
fective in many channels and environments when error distribution is unknown.
Constructions of systematic robust codes were first introduced in [5]. Different
types of robust codes, partially robust codes and minimum distance robust codes,
were offered in [2], [3] and [6]. For the construction of robust codes proposed in
this paper, we calculate the number of undetected errors and the error masking
probability.

The presented construction of codes may be used to achieve high efficiency
in the systems that use wavelet decompositions. Reuse of scaling function coef-
ficients can simplify and accelerate the encoding process in the proposed code.
We explore application of the proposed wavelet code in the ADV612 chip. We
present a model of the error-coding scheme by proposed wavelet code that allows
the detection of errors in the ADV612 chip even in cases of nonuniform code-
word distribution. Proposed wavelet codes provide greater benefit when using
the Gray mapping than the robust code from [2]. Also, without Gray mapping
the proposed wavelet codes are less susceptible to downward trend of the error
masking probability that are inherent to robust codes according to [2].

2 The Basic Tenets of the Wavelet Transform

The idea of the wavelet transform is a partition of the signal s(t) into two
components, approximating di(t) and detailing ai(t):

s(t) =
∑
i

di(t) +
∑
i

ai(t)

The basis of the wavelet transform is the use of two functions:
-wavelet function ψ(t): this function defines the details of the signal di(t) and
generates the detail coefficients:

di(t) =
∑
k

dikψik(t),

where dik are the detail coefficients.
-scaling function φ(t): this function defines the rough approximation of the signal
ai(t) and generates the coefficients of the approximation:

ai(t) =
∑
k

aikφik(t),

where aik is the coefficient of approximation.

Algorithms of Constructing Linear and Robust Codes 249

Function ψ is created on the basis of a particular basis function ψ0 that
determines the type of wavelet. A wavelet denoted as ψ0 is called the mother
wavelet, as it generates a certain class of wavelets. For given m and n, the
function ψ(t) is a wavelet:

ψm,n(t) = m−1/2ψ0(
t− n

m
);m,n ∈ R,

where ψm,n(t) is a certain wavelet function; ψ0 is a mother wavelet;m is a scaling
parameter; and n is a shift parameter.

An orthogonal property significantly simplifies the analysis, allows the recon-
struction of signals, and allows the implementation of fast wavelet transform
algorithms.

Multiresolution analysis is a description of the space L2(R) through hierar-
chically nested subspaces that are disjoint; their union gives all L2(R):

· · · ⊂ V2 ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ V−2 ⊂ · · ·

These space have the next properties:
1) ∩m∈ZVm = 0;
2) ∪m∈ZVm = L2(R);
3) Function f(t) ∈ Vm and its compressed version f(2t) must belong to sub-

space Vm−1;
4) Also, there is a function φ ∈ V0 such that its shift φ0,n = φ(x − n), where

n is a shift parameter, and n ∈ Z forms an orthonormal basis of the space V0.
The last property implies that the functions

φm,n(x) = 2−m/2, φ(2−mx− n)

form an orthonormal basis of the space Vm, where n is a shift parameter, 2−m/2

is a normalization factor, and n,m ∈ Z. These basis functions are called scaling
functions.

As V0 ⊂ V−1 and φ−1k(t) is an orthonormal basis of space V−1 therefore:

φ(t) = φ0,0(t) =
√
2
∑
n

hnφ−1,n(t) = 2
∑
n

hnφ(2t− n) (1)

where hn are the coefficients of scaling function φ(t), and n is a shift parameter.
We now derive the coefficient of the wavelet function. Consider the spaces

Wm, which is the orthogonal addition of spaces Vm and Vm−1:

Vm−1 = Vm ⊕Wm,∩m∈ZWm = 0,∩m∈ZWm = L2(R).

Denote ψ(t) = ψ0,0(t) as the basis function of space W0.
Then

ψ(t) = ψ0,0(t) =
√
2
∑
n

gnφ−1,n(t) = 2
∑
n

gnφ(2t− n), (2)

where gn are the wavelet coefficients, ψ(t) is a mother wavelet, and φ(t) is a
scaling function.

250 A. Levina and S. Taranov

3 The Construction of Linear Code Based on Wavelet
Transform

A linear codes is a separable code such that its redundancy part is a result of
linear operations over its information part.

Linear codes denote (n, k). Here n is the length of the codeword; k is the
number of information symbols; r = n−k is the number of redundant symbols. In
coding theory, the generator matrix is commonly used to find the corresponding
codeword.

For linear codes, multiplying the generator matrix by any combinations of the
information part obtains according to this message codeword. Let (x1, x2, · · · , xn)
be a codeword and (x1, x2, · · · , xk) denote all possible combinations of the in-
formation part for a specific code. Then generator matrix of the linear code has
the following form: ⎡

⎢⎢⎢⎣
x1

x2

...
xn

⎤
⎥⎥⎥⎦ = G

⎡
⎢⎢⎢⎣
x1

x2

...
xk

⎤
⎥⎥⎥⎦ ,

where G is the generator matrix of linear code. This generator matrix has size
k × n.

Check that the matrix has dimension ((n− k)× n) and associate it with the
linear code as follows:

HxT = 0,

where x is the received sequence, and H is the check matrix.
The check and generator matrices have a relationship. If we submit both

matrices in the canonical form, we get the following constructions that have the
coinciding matrix A:

G = [Ik| −AT], H = [A|In−k],

where I is the identity matrix.
We will represent the wavelet transform in a matrix form and prove that

the wavelet transform can be represented as a matrix consisting of the scaling
function coefficients.

Theorem 1. Wavelet function ψ(t) and scaling functions φ(t) are completely
defined by the scaling coefficients hn.

Proof:
Find a relationship between the wavelet coefficients gn and the scaling function
coefficients hn. Since Wm is the orthogonal complement Vm, then the functions
ψ(t) and φ(t) must be orthogonal. Hence, there is an inner product of these
functions:

〈ψ(t), φ(t)〉 = 0.

Algorithms of Constructing Linear and Robust Codes 251

Substituting (1) and (2) in the last expression, we obtain:

2
∑
n

∑
k

hngk〈φ−1n(t), ψ−1p(t)〉 = 0,

2
∑
n

hngn = 0

Also, comparing the equations (1) and (2), we see that:

gn = (−1)nh2m−1−n,

where m is a wavelet order.

Based on the above formula and the equations (1) and (2), it can be seen that
the wavelets ψ(t) are completely defined by the scaling function φ(t). In turn,
the scaling function φ(t) is completely determined by its scaling coefficient hn.�

For practical calculations of wavelet transform, it is not necessary to know
the wavelet structure; it is sufficient to know its coefficients hn. This set of
coefficients hn uniquely determines the scaling function φ(t) and wavelet ψ(t).
We will prove that wavelet transform can be represented as a multiplication of
vectors; on the matrix that correspond to this transformation.

Theorem 2. Any wavelet transform can be represented as a multiplication of the
input data vector s on the matrix A consisting of the scaling function coefficients
hn.

Proof:
A digital signal can be represented as a vector s = s1, ..., sN of the length N .

By definition, the wavelet transform of signal s(t) has the following form:

s(t) =
∑
k

amkφmk(t) +
∑
m

∑
k

dmkψmk(t), (3)

where ψ and φ are wavelet and scaling functions, respectively, m is the decom-
position level of the signal, and amk = 〈s(t), φmk(t)〉, dmk = 〈s(t), φmk(t)〉 are
the decomposition coefficients.

The wavelet transform is a linear transform, hence it can be associated with a
matrix. By the definition (3), there are two mappings, Vm−1 → Vm and Vm−1 →
Wm. Denote the matrix representations of this mapping as H and G.

Let h1, ..., hN denote the scaling function coefficients, and g1, ..., gN the wavelet
coefficients. Then matrix H is cyclic matrix with size N/2 × N and with shift
that is equal to the wavelet order:

H = cird(h1, h2, · · · , hN−1, hN),

where d - shift of matrix H .

252 A. Levina and S. Taranov

Matrix G is obtained in the same way from the wavelet coefficients g1, ..., gN .
However, this can be reduced to a form that will depend on the scaling function
coefficients h1, ..., hN . Using the equation that was obtained in Theorem 1

gn = (−1)nh2m−1−n,

we can replace the coefficients g1, ..., gN for coefficients h1, ..., hN .
As a result, the matrix representation of mapping Vm−1 → Vm and Vm−1 →

Wm can be represented by the scaling function coefficient hn. �
Now we will describe the requirements for the check and generator matrices

of the proposed construction of linear wavelet code.
Denote H and G as the check and generator matrices that are used for en-

coding process. In turn, let H and G denote matrices that are necessary for
decoding. The set of these matrices must satisfy the following conditions:
1) biorthogonality condition:

⎧⎪⎪⎨
⎪⎪⎩

HHT = I

GGT = I

HGT = O

GHT = O

2) condition of exact recovery:

HTH+GTG = I

We will describe the algorithm for obtaining the linear wavelet code. Error-
correcting linear code is defined by a single level of space decomposition, so the
dimension of the vectors can be any even number. The proposed linear code
is constructed as follows. The information part v = {v1, v2, · · · , vN/2} of the
codeword is a sequence of field elements GF (q); N is even. Hence, the redundant
part has the form w = {w1, w2, · · · , wN/2}. The set of all codewords can be
defined by the next generator matrix and check matrix:
1) generator matrix of wavelet linear code:

HT + aGT J

2) check matrix of wavelet linear code:

H
T
+ bJTG

T
,

where a, b are vectors of the field GF (q) with length N/2 and satisfying to
condition ab = (p − 1)modp, p ∈ GF (q), matrix J = cir(0, 1, 0, ..., 0) of size
N/2×N/2.

As can see from the above matrix that the resulting code is a linear cyclic code.
Hence, principles of syndrome decoding that use cyclic codes can be applied to
that proposed in this construction of linear wavelet code.

For storing or transferring all codewords, linear codes store significantly fewer
of them in the memory of the encoder or decoder; more precisely, only words

Algorithms of Constructing Linear and Robust Codes 253

that form the basis of linear space. This simplifies the implementation of encod-
ing and decoding devices and makes linear codes very attractive for practical
applications. Although linear codes effectively detect and correct few, but large,
error blocks, their effectiveness decreases if errors are frequent or controlled by
an attacker.

4 The Construction of Robust Code Based on Wavelet
Linear Code

In this section, we propose constructions of robust codes developed by wavelet
cyclic codes from the previous section.

Robust codes are nonlinear systematic error-detecting codes that provide uni-
form protection against all errors without any (or that minimize) assumptions
about the error and fault distributions, capabilities and methods of an attacker.

One of the main criteria for evaluating the effectiveness of a robust code is the
error masking probability. The error masking probability Q(e) can be defined as:

Q(e) =
|{x| ∈ C, x + e ∈ C}|

M
,

where C is the robust code, x is a codeword that belongs to the code C, e is an
error, and M is the number of codewords in the code C.

Robust codes for the same codeword length and number of redundant bits
have fewer undetectable errors and lower masking error probability than the
corresponding linear code.

The robustness of codes depends on the nonlinearity of functions. The function
nonlinearity Pf can be measured by using the directional derivative

Dlf(x) = f(x+ l)− f(x),

where l is a vector that define the direction.
Let

f : GF (qk) → GF (qr) : l → s = f(x).

then

Pf = maxl∈GF (qk)maxs∈GF (qr)Pr(Dlf(x) = s) (4),

where Pr(z) denotes the fractions of cases when z occurs, l, s - vectors of two
fields between which there is mapping f .

As shown in the paper [1], robust code can be constructed on the basis of
existing linear codes. Let C be a binary linear wavelet and (n, k) be a code over
GF (q) with generator matrix:

HT + aGJ.

Code C can be converted into a nonlinear systematic robust code CR by taking
the multiplicative inverse in GF (qr) of the r redundant bits.

254 A. Levina and S. Taranov

Fig. 1. The process of encoding by the wavelet robust code based on the multiplicative
inverse

Fig. 2. The process of encoding by the cube wavelet robust code, where v - information
part of codeword, r - redundancy part

Let v denote information part of codeword, r denote redundancy part, then
the process of encoding for wavelet robust code based on the multiplicative
inverse is shown in Figure 1.

Let x be a polynomial from GF (qk). Then x−1 is a polynomial from field
GF (2r=k). Then for error e = (e1, e2), where e1, e2 ∈ GF (2r=k), the condition
of error masking equals f(x1 + e1) = f(x1) + e2. Respectively to (4) we get
De1f(x1) = e2. For function f(x) = 1/x, we have Pf = 2−r. As a result, we
obtain the next parameters of wavelet code (2r, 2r, 2)2. Therefore, this robust
code construction has masking error probability 2−r and number of undetectable
errors 0.

Also, wavelet robust code CR can be obtained by a calculations cube inGF (qr)
of the r redundant bits. The process of encoding by the proposed wavelet robust
code is shown in Figure 2.

Table 1. Comparison of the optimum robust duplication code and Hamming linear
code with proposed construction. Q(e) is an error masking probability, k is the number
of information symbols in codewords, r is the number of redundant symbols.

Code Q(e)
Undetectable

errors

Hamming linear code 1 2k

Partially robust Hamming code 1 2k−r

Robust quadratic systematic code [2] 2−r 0

Robust duplication code [2] 2−k 0

Wavelet linear code 1 2k

Wavelet robust code
with encoding function 1/x

2−k 0

Wavelet robust code
with encoding function x3 2−k 0

Algorithms of Constructing Linear and Robust Codes 255

For function f(x) = x3, we also have Pf = 2−r. The robust wavelet code
based on the cube encoding function has masking error probability of 2−r, and
the number of undetectable errors equals 0. Comparison of the error masking
probability and the number of undetectable error for linear and robust wavelet
codes are shown in Table 1.

As we can see from Table 1, the proposed wavelet codes are not inferior to
the representatives of their code class. If linear codes are characterised by an
efficient encoding and decoding process, robust codes provide protection against
some side channel attacks. However, the speed of encoding and decoding for these
codes is significantly less than for linear codes, since robust code uses laborious
processes of finding multiplicative inverse elements and calculation of the cube
in the field GF (q).

As proposed in this paper, coding methods are useful in systems that use
wavelet transforms. These include systems that implements the digital signal
processing and analysis, image coding, or the construction of various filters,
because since in such systems, the coefficients of scaling functions can be used
in the check and generator matrices of the proposed constructions.

5 Implementation of Wavelet Robust Codes in ADV612
Chip

In particular, the proposed scheme of coding by the robust wavelet codes was
tested on the ADV612 chip. The ADV612 is wavelet-based single-chip system.
This system can implement the real-time compression and decompression of
digital video at very high image quality. The ADV612 system consists of three
main blocks: wavelet filter bank, quantizer, run length coder and Huffman coder.

Our method for modifying an ADV612 architecture is based on the method
proposed in [2]. The model architecture is based on adding redundancy around
an original device to create data redundancy that can be used to verify data
integrity and the correct operation of the ADV612 system. The architecture is
composed of three hardware components: original hardware, Encoder of wavelet
code for predicting the redundancy bits of the original device, and a check mech-
anism that verifies the predetermined relationship of the output of the original
device and the result of the Encoder work. By defining an appropriate code and
implementing the suitable function in the encoder, a desired level of robustness
can be guaranteed for the desired output of the ADV612 system. The model
describing this system is presented in Figure 3.

In our scheme, we applied wavelet codes presented in this paper to ensure the
integrity of the ADV612. The k bits of the ADV612 output and the r redundant
output bits of the Encoder of wavelet code form the n = k + r generalised
output of the device. The generalised output forms a codeword of the systematic
wavelet code that can be used to detect errors in the original hardware or in the
Encoder. It is the Check mechanism that verifies that the generalised output of
the ADV612 device belongs to the corresponding wavelet code. If it does not,
then the Check mechanism generates an error.

256 A. Levina and S. Taranov

Fig. 3. General architecture for protection of the ADV612 system with the wavelet
code

Table 2. Comparison of the four different classes of robust codes in cases of uniform
and nonuniform distribution

Code Distribution
Maximum of error
masking probability

without Gray mapping

Maximum of error
masking probability
with Gray mapping

(32,16) robust wavelet code
with encoding function x3

uniform 0.571 0.571
nonuniform 0.711 0.643

(32,16) robust code
based on scheme (x, (Px)3)

uniform 0.571 0.571
nonuniform 0.758 0.692

(24,16) robust quadratic code
based on x1x2 + x3x4 + ...

uniform 0.5 0.5
nonuniform 0.780 0.653

(32,16) robust code
based on scheme (x, (Px)−1)

uniform 0.724 0.724
nonuniform 0.945 0.825

The proposed scheme of coding by wavelet robust code yields higher gain com-
pared with other classes of robust codes [1,2,3] in the case of nonuniform code-
word distribution. The comparison of four robust code constructions is shown in
Table 2.

Detailed description of the constructions of robust (32,16) code based on
scheme (x, (Px)3), (24,16) robust quadratic code based on x1x2 + x3x4 + ...,
(32,16) robust code based on scheme (x, (Px)−1) can be find in [2]. In the case
of nonuniform codeword distribution, using Grey mapping of the most probable
codewords to a predefined set reduces the error masking probabilities of the ro-
bust codes. Also, this mechanism can be used for improving the characteristics
of the presented robust wavelet code. As we can see from Table 2, the proposed
wavelet codes provide greater benefit when using the Gray mapping than the
robust codes from [2]. Also, without Gray mapping, the proposed wavelet codes
are less susceptible to the downward trend of the error masking probability that
is inherent to all robust codes.

Algorithms of Constructing Linear and Robust Codes 257

6 Conclusion

In this paper, we have described a general algorithm for obtaining linear and
robust codes based on wavelet decompositions. For each algorithm, we derived
check and generator matrices. Interaction theory of wavelet decomposition and
coding theory can help optimise the transmitted information. For example, if one
plans to use robust code for transferring image and video information, one can
discard part of the redundant information, and then we have the opportunity to
restore the original sequence.

If the system uses wavelet decomposition, application of the codes proposed
in this paper can yield effective results. The scaling function coefficients of the
specific wavelet decompositions can be used to encode information by wavelet
linear code or if there is a need to ensure security by robust wavelet code. In
future works will be improved the proposed coding schemes and explore the error
masking probability in cases of using Daubechies wavelets, spline wavelets and
others.

References

1. Kulikowski, K.J., Karpovsky, M.G., Taubin, A.: Robust Codes and Robust, Fault
Tolerant Architectures of the Advanced Encryption Standard. Journal of System
Architecture (2007)

2. Karpovsky, M.G., Kulikowski, K., Wang, Z.: On-Line Self Error Detection with
Equal Protection Against All Errors. Int. Journal of Highly Reliable Electronic
System Design (2008)

3. Wang, Z., Karpovsky, M.G., Kulikowski, K.: Design of Memories with Concur-
rent Error Detection and Correction by Non-Linear SEC-DEC Codes. Journal of
Electronic Testing (2010)

4. Shumsky, I., Keren, O., Karpovsky, M.: Robustness of Security-Oriented Binary
Codes Under Non-Uniform Distribution of Codewords. In: Proc. Int. Depend Symp.
(2013)

5. Karpovsky, M.G., Taubin, A.: A New Class of Nonlinear Systematic Error Detect-
ing Codes. IEEE Trans. Info Theory (2004)

6. Karpovsky, M.G., Wang, Z.: Design of Strongly Secure Communication and Com-
putation Channels by Nonlinear Error Detecting Codes. IEEE Trans. Computers
(2013)

7. Karpovsky, M.G., Kulikowski, K.J., Taubin, A.: Robust protection against fault-
injection attacks on smart cards implementing the advanced encryption standart.
dsn (2004)

8. U. K. Demyanovich, Minimal splines and wavelets, Vestnik SPSU (2008)
9. Daubechies, I.: Ten lectures on wavelets, CBMS-NSF conference series in applied

mathematics. SIAM Ed. (1992)
10. Guha, S., Harb, B.: Approximation algorithms for wavelet transform coding of data

streams. Information Theory (2008)
11. Daubechies, I., Sweldens, W.: Factoring wavelet transforms into lifting steps. Jour-

nal of Fourier Analysis and Applications (1998)
12. Caire, G., Grossman, R.L., Poor, H.V.: Wavelet Transforms Associated with Finite

Cyclic Groups. IEEE Trans. Inf. Theory (1993)

258 A. Levina and S. Taranov

13. Fekri, F., Mersereau, R.M., Schafer, R.W.: Theory of wavelet transform over finite
fields. IEEE Trans. Inform. Theory (2002)

14. Fekri, F., McLaughlin, S.W., Mersereau, R.M., Schafer, R.W.: Double circulant
self-dual codes using finite-field wavelet transforms. In: Applied Algebra, Algebraic
Algorithms and Error Correcting Codes Conference (1999)

15. Louis, A.K., Rieder, A.: Wavelets Theory and Applications. JohnWiley Sons (1997)

Failure of the Point Blinding Countermeasure

Against Fault Attack
in Pairing-Based Cryptography

Nadia El Mrabet1,2(�) and Emmanuel Fouotsa3,4

1 LIASD – Université Paris 8, France
2 SAS - CMP Gardanne, France

elmrabet@ai.univ-paris8.fr, nadia.el-mrabet@emse.fr
3 Dep of Mathematics, Higher Teacher’s Training College,

University of Bamenda - Cameroun
4 LMNO – Université de Caen, France

emmanuelfouotsa@yahoo.fr

Abstract. Pairings are mathematical tools that have been proven to be
very useful in the construction of many cryptographic protocols. Some
of these protocols are suitable for implementation on power constrained
devices such as smart cards or smartphone which are subject to side chan-
nel attacks. In this paper, we analyse the efficiency of the point blinding
countermeasure in pairing based cryptography against side channel at-
tacks. In particular,we show that this countermeasure does not protect
Miller’s algorithm for pairing computation against fault attack. We then
give recommendation for a secure implementation of a pairing based pro-
tocol using the Miller algorithm.

Keywords: Miller’s algorithm · Identity Based Cryptography · Side
Channel Attacks · Fault Attacks · Countermeasure

1 Introduction

Pairings are bilinear maps defined on the group of rationals points of elliptic
or hyper elliptic curves [36]. Nowadays, more and more protocols using pair-
ings are proposed in the literature [10,21,6]. Among these protocols, only those
constructed on the identity based model involve a secret which is one of the
argument during the computation of a pairing. The implementation of a pairing
based protocol is efficient enough to allow the use of pairing based cryptography
on power constrained device such as smart cards and mobile phones [31,22,19].
Smart cards are by nature sensitive to side channel attacks. Side channel at-
tacks are powerful attacks that use the implementation of a protocol to obtain

This work was supported in part by the French ANR-12-INSE-0014 SIMPATIC
Project. The second author is supported by The Simons Foundations through Pole
of Research in Mathematics with applications to Information Security, Subsaharan
Africa.

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 259–273, 2015.
DOI: 10.1007/978-3-319-18681-8_21

260 N. El Mrabet and E. Fouotsa

information on the secret. They are divided into two families: invasive and non
invasive attacks. Invasive attacks are based on the model of fault attacks. The
execution of a protocol is disturbed, the result is then a faulty one and the anal-
ysis of this faulty result can provide information on the secret. In non invasive
attacks, the information can be leaked by the time of execution, the electric
consumption or the electromagnetic emission of the device. Several works have
investigated the robustness of identity based cryptography to side channel at-
tacks. They are mainly focused on fault attacks [27,37,11,2]. Few works consider
differential power analysis attack [27,13,5]. As the secret during an identity based
protocol can be recovered by side channel attacks, several countermeasures were
proposed. Those countermeasures are the same for invasive and non invasive
attacks [14]. In [16], Ghosh, Mulhopadhyay and Chowdhury proposed an analy-
sis of countermeasures to fault attack presented in [27]: the new point blinding
method and the alliterating point blinding method. They concluded that the
countermeasures are not sufficient and proposed new one. However, their expla-
nations on the non efficiency of the countermeasure are not convincing. Later,
Park et al. [28] clearly exposed the weaknesses of the point blinding technique
against fault attacks described by Page and Vercauteren [27].

In this article we analyze and extend the work in [16,28] on the efficiency of
the point blinding countermeasure in pairing based cryptography. Especially, we
generalize the attack of Park et al. [28] and expose its failure to protect the Miller
algorithm, main tool in pairing computation. As the most efficient pairings are
constructed on the model of the Tate pairing, we focus on the Miller algorithm,
used for the Tate pairing considering Weierstrass elliptic curve. Obviously, this
analysis is the same for the (optimal) Ate, twisted Ate or pairing lattices; and
for every model of elliptic curve or coordinates.

The rest of this paper is organized as follows: The Section 2 presents brief
concepts on pairings that are useful to understand this work. In Section 3 we
present side channel attacks with emphasis on fault attacks in pairing based
cryptography. In Section 4 we explicitly demonstrate that the point blinding
countermeasure fails to protect the Miller algorithm against fault attack. Finally
we conclude the work in Section 5.

2 Background on Pairings

In this section, we briefly recall basics on pairings and on the Miller algorithm
[25], main tool for an efficient computation of pairings. Let E be an elliptic curve
defined over a finite field Fq, with q a prime number or a power of a prime. The
neutral element of the additive group law defined on the set of rational points
of E is denoted P∞. Let r be a large prime divisor of the group order �E(Fq)
and k the embedding degree of E with respect to r, i.e. the smallest integer
k such that r divides qk − 1. The integer k is also the smallest integer such
that E

(
Fq

)
[r] ⊂ E(Fqk), where E

(
Fq

)
[r] = {P ∈ E

(
Fq

)
: [r]P = P∞} with

[r]P = P + P + . . .+ P︸ ︷︷ ︸
r times

and Fq is the algebraic closure of Fq.

Failure of the Point Blinding Countermeasure Against Fault Attack 261

In general , the sizes of r, q and k are dependent from the security level and the
currently recommendations are at least r > 2160 and qk > 22024 [15]. The recent
results for the discrete logarithm problem [20,3] imply that the number q must
be a large prime number. The security recommendations allow the choice of k to
be a product of power of 2 and 3. A consequence of the fact that k ≡ 0 mod 2
is the use of a twist representation for the point Q. This representation using a
twisted elliptic curve allow the denominator elimination optimization [23].

Definition of a Twisted Elliptic Curve. We explain here the concept of twist
of elliptic curve in the context of Weierstrass elliptic curve. This will help us to
understand the choice of the coordinates of points in Section 4. The quadratic
twist of the elliptic curve E : y2 = x3 + ax + b over Fpk is the elliptic curve

Ẽ : 1
ν y

2 = x3 + ax+ b where {1, ν} is a basis of Fqk as Fqk/2 vector space. The
two curves are isomorphic via

ψ : Ẽ(Fqk/2) −→ E(Fqk)

(x, y) �−→ (x, y
√
ν).

This isomorphism is particularly useful since it enables to take the point
Q ∈ E(Fqk) in the following manner Q = ψ(Q′) where Q′ = (xQ, yQ) with
xQ, yQ ∈ Fqk/2 . This ensures an efficient computation since many computations
will be consequently done instead in the subfield Fqk/2 and more interestingly, it
enables to avoid the inversions in the Miller algorithm. This elimination is the
denominator elimination [23].

Indeed, if P1(x1, y1) and P2(x2, y2) are two points of the elliptic curve in
Weierstrass form E : y2 = x3 + ax+ b then the function hP1,P2 with divisor

Div(hP1,P2) = (P1) + (P2)− (P1 + P2)− (P∞),

is hP1,P2 =
�P1,P2

vP1+P2
where �P1,P2 is the straight line defining P1 + P2 and vP1+P2

is the corresponding vertical line passing through P1 + P2. Explicitly, we have

hP1,P2(x, y) =
y − λx− α

x− x3
,

where x3 is the first coordinate of P1 + P2 and λ =
y2 − y1
x2 − x1

if P1 �= P2, λ =

3x2
1 + a

2y1
if P1 = P2 and α = y1 − λx1.

In the particular case of doubling (P1 = P2), a straightforward computation
gives, after changing to Jacobian coordinates (x1 = X1

Z2
1
, y1 = Y1

Z3
1
)

hP1,P1(Q)=hP1,P2(xQ, yQ
√
ν)=

2Y1Z
3
1yQ

√
ν − 2Y 2

1 − (3X2
1 + aZ4

1)(xQZ
2
1 −X1)

2Y1Z3
1 (xQ − x3)

,

We then remark that the denominator of the previous expression is an element
of Fqk/2 and consequently will be equal to 1 during the final exponentiation.

262 N. El Mrabet and E. Fouotsa

So the main expression that will be used in the Miller algorithm is:

hP1,P1(Q)=hP1,P2(xQ, yQ
√
ν)=2Y1Z

3
1yQ

√
ν − 2Y 2

1 − (3X2
1 + aZ4

1)(xQZ
2
1 −X1)

(1)

The expression given by equation 1 is used in algorithms 1 and 2 and will be
particularly useful in Section 4 to illustrate our attack.

The Tate Pairing. Consider a point P ∈ E(Fq)[r], the principal divisor
D = r(P) − r(P∞) and a function fr,P with divisor Div (fr,P) = D. Let
Q ∈ E(Fqk)[r]/E(Fq) and μr be the group of r-th roots of unity in F

∗
qk . The

reduced Tate pairing er is a bilinear and non degenerate map defined as

er : E(Fq)[m]× E(Fqk)[r] → μm

(P,Q) �→ fr,P (Q)
qk−1

r

The value fr,P (Q) can be determined efficiently using Miller’s algorithm [25].

Algorithm 1. Miller’s Algorithm

Input : P ∈ E(Fq)[r], Q ∈ E(Fqk)[r], m = (1, mn−2,m1,m0)2.
Output: fm,P (Q)

1: Set f ← 1 and T ← P
2: For i = n− 2 down to 0 do
3: f ← f2 · hT,T (Q), with hT,T the Equation (1) of the tangent to E at point T
4: T ← 2T
5: if mi = 1 then
6: f ← f · hT,P (Q), with hT,P the equation of the line (PT)
7: T ← T + P
8: end if
9: end for
10: return f

Fig. 1. The Miller algorithm

More information on pairings can be found in [9]. In order to obtain the result
of the Tate pairing, the output of Miller’s algorithm must be raised to the power
qk−1

r , this operation is called the final exponentiation.
We call a Tate-like pairing any pairing constructed on the following model: an

execution of the Miller algorithm followed by a final exponentiation. Every Tate-
like pairing was an improvement of the previous. The ate pairing [18] was an
improvement of the Tate pairing [29], the twisted ate pairing [18] an improvement
of the ate pairing, the notion of optimal pairings [35] an improvement of the ate
and twisted ate pairing and finally the pairing lattices [17] another way to deal
with optimal pairings. The algorithmic difference between the Tate pairing and

Failure of the Point Blinding Countermeasure Against Fault Attack 263

a Tate-like pairing is principally the number of iterations, sometimes it could
also be the role playing by P and Q. In Algorithm 1, we describe the Miller
algorithm. In order to keep our explanations general , the number of iterations
in the Miller algorithm is indexed over m. The integer m would be r for the
Tate pairing, or smaller than r for a Tate-like pairing. We describe the attack
considering that we are computing a pairing using fm,P (Q), for m the integer
giving the number of iterations of the pairing. Obviously, the discussion can be
straightforward adapted for the computation of fm,Q(P).

Obviously, the system of coordinates influences the equations of the Miller
algorithm, but if the attack is efficient over one model of elliptic curve for one
system of coordinates, then the same attack will be efficient over any other model
of elliptic curve and considering any other system of coordinates.

3 Side Channel Attacks on Pairing-Based Cryptography
and Countermeasures

In this section we briefly recall and describe existing side channel attacks and
countermeasures in the context of pairing-based cryptography. Especially, we
analyse the point blinding countermeasure presented in [27] and its weakness
exposed in [28].

3.1 Background on Side Channel Attacks

The first analysis of side channel attacks against a pairing was proposed by
Page and Vercauteren [27]. They attack the Duursma and Lee algorithm used to
compute a pairing over super singular elliptic curves. Page and Vercauteren de-
scribed a new fault attack model and mention without development the differen-
tial power analysis against pairings. The fault model consists in the modification
of the number of iterations of an algorithm. The fault attack was adapted by
further works on the Miller algorithm [37,11,2]. Whelan et Scott [37] highlighted
the fact that pairings without a final exponentiation are more sensitive to a sign
change fault attack. They analyzed the Weil, the Tate and Eta pairing. They
used a simplified version of Page and Vercauteren attack. After that, El Mra-
bet [11] generalized the attack of Page and Vercauteren to the Miller algorithm
used to compute all the recent optimizations of pairings. El Mrabet considered
only the Miller algorithm and did not take into account the final exponentia-
tion. The target of El Mrabet’s attack is the loop counter in the Miller algorithm.
The final exponentiation was attacked by Lasherme et al. [24]. They used three
faults to inverse the final exponentiation of the Tate pairing, which is the same
for Ate and twisted ate pairing. Recently, an attack against a whole pairing, i.e.
the Miller algorithm together with the final exponentiation, was published by
Blömer et al. in [4]. The attack consists in modifying the clock of the device and
as a consequence, the device returns intermediary results that allow to recover
the secret. Few works consider differential power analysis. In [13] El Mrabet et al.
highlight the fact that without protection the Miller algorithm is sensitive to a

264 N. El Mrabet and E. Fouotsa

differential power analysis attack. Their work was recalled in [5]. In practice, the
efficiency of side channel attacks does not lay on the choice of the characteristic,
neither on the choice of the elliptic curve, nor on the choice of the coordinates.
To each attack, several countermeasures were proposed. The countermeasures
rely on the bilinearity of pairings, or on the homogeneity of the coordinates [14].

3.2 Description of Fault Attack

In an Identity Based Encryption scheme [6], one argument of the pairing is
secret. So fault attacks can be performed to reveal the secret. We describe the
attack against the Miller algorithm. As stated in the introduction, fault attack
on pairing algorithm tries to corrupt the loop bound (which is log(m)) of the
Miller algorithm. The attacker injects fault repetitively in such a way that he
can obtain two consecutive loop bounds log(m− s) and log(m− s) + 1 and the
corresponding pairings em−s(P,Q) and em−s+1(P,Q), for a certain integer s. It
has been shown in [11] that it is possible to obtain such consecutive integers in
a finite number of fault injections.

The clock glitch attack described in [4] highlights the fact that in practice
a modification of the glitch can make the device stop and return intermediary
results, such as internal results of Miller’s algorithm. In order to explain how
the attacker can obtain the secret point from the erroneous pairings em−s(P,Q)
and em−s+1(P,Q) we consider the two following situations.

First Situation: Excluding the Final Exponentiation. Instead of obtain-
ing the values em−s(P,Q) and em−s+1(P,Q) after the final exponentiation, the
attacker tries to get the final values obtained after log(m− s) and log(m− s)+1
iterations, just before the final exponentiation. A method to obtain those inter-
mediary values is the use of a clock glitch attack [4]. We denote these values
by fm−s,P (Q) and fm−s+1,P (Q). Depending of the last bit corresponding to
each iteration, we have four possibilities for the expression of fm−s,P (Q) and
fm−s+1,P (Q).

Without lost of general ity, we can consider the case when

fm−s+1,P (Q) = (fm−s,P (Q))
2 × h[j]P,[j]P (Q),

with j the integer composed by the log2(m− s) most significant bits of m.
Consequently, the attacker knows

S =
fm−s+1,P

f2
m−s,P

(Q) = h[2j]P,[2j]P (Q).

The trick of the attacker is now to use the representation of S and h[2j]P,[2j]P (Q)
∈ Fqk in a basis of Fqk/Fq in order to obtain by identification, a system of linear
or non-linear equations. The resolution of this system leads to the obtention of the
coordinates of the secret point. A successful such attack has been mounted against
theMiller algorithm [12].We briefly recall the attack and refer to [11] for a complete
description of this attack.

Failure of the Point Blinding Countermeasure Against Fault Attack 265

We recall that the point Q is public, the point P is secret and R is random
in E(Fqk). For efficiency reasons, the embedding degree k is smooth and at least
divisible by 2, or 4 or for the best cases by 6. A smooth integer is a number that
admits a factorisation into small prime numbers. This condition on k enables
efficient computation of pairings and the denominator elimination thanks to the
twist of the elliptic curve. A consequence is that the points Q and R are seen
as images of points belonging to the twist. The coordinates of R are composed
by at most k values in Fqk/d , where d is the degree of the twist. The point
P could be given in affine, projective or Jacobian coordinates. The choice will
depend on the most efficient computation for the pairing. Whatever the choice
is, the coordinates of point P will always count as 2 unknown values XP and
YP . This is obvious if P is given in affine coordinates. If P is given in projective
or Jacobian coordinates, P would be characterized and gives improvement of
the pairing computations by 3 unknown values XP , YP and ZP . But, using the
homogeneity of projective and Jacobian coordinates, we could consider that the
point P is in fact X ′

P , Y
′
P and 1. Indeed, we know that for Z �= 0 in projective

coordinates (X,Y, Z) ∼= (X/Z, Y/Z, 1) and in Jacobian coordinates (X,Y, Z) ∼=
(X/Z2, Y/Z3, 1).

Putting all together one obtains a system of k + 2 polynomial equations in
k + 2 unknown values. This system admits solutions as it is derived from a
constructive algorithm. The points P and R are defined by construction. So,
we can use the Gröbner basis [8] for instance to solve the system and find the
coordinates of the point P . If the secret is the point Q, the attack is easier and
successful [11].

Second Situation: Including the Final Exponentiation. In this situation
we consider the values em−s(P,Q) and em−s+1(P,Q) obtained after the final
exponentiation. Then

em−s+1

e2m−s

=
[
h[2j]P,[2j]P (Q)

] (qk−1)
r

The aim here is, since it has been easy to obtain em−s(P,Q) and em−s+1(P,Q)

contrary to situation 1, to reverse the exponent (qk−1)
r , such that an application

of the method in situation 1 may lead to the obtaining of the secret. In secured

pairing based protocols, it has been shown that the exponent (qk−1)
r is difficult

to reverse mathematically [30,24]. So the attack in this situation requires a fault
model that would neutralize the final exponentiation, which is possible experi-
mentally. One possibility can be to combine two fault models to neutralize the
final exponentiation. For instance use a fault attack to reduce the number of
iterations as in [11] and a fault attack to reverse the exponentiation as in [24].
Another way would be to use a fault model that modifies the time of execution
as modification of the glitch or under voltage attack [4].

Remark 1. In the case of super singular elliptic curves, the final exponentiation
can be reversed by mathematical considerations, the form of the exponent com-
bined with a sparse decomposition in the basis of Fpk allow this operation [27].

266 N. El Mrabet and E. Fouotsa

This is specific to pairings over supersingular elliptic curves and cannot be ap-
plied to ordinary elliptic curves.

3.3 The Point Blinding Countermeasure and Weaknesses

In [16], Ghosh, Mulhopadhyay and Chowdhury proposed an analysis of counter-
measures to fault attack presented in [27]. They analyze what they called the
new point blinding technique:

e(P,Q) = e([x]P, [y]Q) for random x, y such that xy ≡ 1 mod (r)

and the altering traditional point blinding:

e(P,Q) =
e(P,Q +R)

e(P,R)
,

for R a random point in E(Fq) such that the pairings e(P,Q) and e(P,R) are
defined. They conclude that these two countermeasures are not sufficient against
the fault attack described in [27]. However their analysis was not convincing.
Concerning the new point blinding method, they claim that the intermediary
steps of a pairing computation are bilinear which is not the case. The ratio
obtained in the attack depends on the coordinates of the points [x]P and [y]Q,
with x and y unknown to the attacker. They do not explain how they can recover
the value of the secret point used during the pairing computation. Concerning the
altering traditional point blinding method, their analysis was not clear enough.
In [16] the explanation did not take into account the randomness induced by the
point R. We demonstrate in the next section that this countermeasure is not
efficient with a precise approach and we develop the corresponding equation.

In [28] Park et al. exposed the weaknesses of the point blinding technique
against fault attacks of Page and Vercauteren [27]. They presented an attack
where they omit the last iteration of the Duursma and Lee algorithm. We gen-
eralize their approach to the Miller algorithm and for every iteration not only
the last one.

4 Attack Against the Point Blinding Countermeasure
during Miller’s Algorithm

In this section, we first explain how the Miller algorithm can be implemented
with the point blinding technic. As far as we know, this is the first time that an
algorithm is proposed for the implementation of this counter measure. The aim
of point blinding method is to add randomness to the known entry of the pairing
computation. Indeed, a side channel attack is successful principally because the
attacker knows the value of data combined with the secret. The point blinding
countermeasure is made to blind the knowledge of the attacker. As the point R
is random, the point Q+R is also random. This countermeasure is considered as
sufficient to prevent any side channel attack against a pairing implementation.

Failure of the Point Blinding Countermeasure Against Fault Attack 267

We then show how this countermeasure does not really protect the algorithm
against fault attack.

4.1 Implementation of the Countermeasure

We discuss here the possible ways to implement the Miller algorithm using the

point blinding countermeasure: e(P,Q) = e(P,Q+R)
e(P,R) .

Case 1: We consider that the secret is the point P ∈ E(Fq). The point Q ∈
E(Fqk) is public. The countermeasure consists in adding randomness to the
point Q, expecting that it would be then impossible to perform the fault attack.
The randomness is the choice of a point R such that the pairings e(P,R) and
e(P,Q+R) are defined.

In practice, for optimization reason, k is smooth. In order to simplify the
explanation, we consider that k ≡ 0 mod 2. The point Q is represented as the
image of a point Q′ belonging to the twisted elliptic curve E′ of E and defined
over Fqk/2 . The coordinates of Q are Q = (xQ, yQ

√
ν), for a quadratic twist. If

another twist is used, the scenario is the same, but the equation must be adapted
in consequence.

The device is implemented to compute e(P,Q+R)
e(P,R) . For efficiency reasons, as

these two pairing computations are performed during the scalar multiplication
of the point P , the two computations e(P,Q+R) and e(P,R) would be done in
parallel. In order to compute only one exponentiation on the elliptic curve. The
inversion in the field Fqk and the final exponentiation are expensive operations.
So, once obtained the results fm,P (Q+R) and fm,P (R), it will be more efficient
to perform the inversion followed by the final exponentiation instead of two
final exponentiations followed by an inversion. In practice, the discussion about
inverting the final exponentiation is the same for the altering point blinding
countermeasure and the classical Miller algorithm recalled in Section 3.2. Given
these efficiency considerations, the Miller algorithm that would be used for the
point blinding countermeasure would likely to be as presented in Algorithm 2.
For clarity of explanations, we add the inversion at the end of Miller algorithm
(step 14), it could be performed outside the Miller algorithm and that would not
change our discussion.

Case 2: We consider that the point P ∈ E(Fq) is public and the secret is the
point Q ∈ E(Fqk). The randomness, considering the point blinding countermea-
sure would be added to the point P . The device would be implemented in order

to compute e(P+R,Q)
e(R,Q) . The implementations of the two Miller algorithms would

then be done either in parallel or consecutively. The choice would highly depend
on the target for the implementation. On a multiple processor device the par-
allel solution would be preferred. On a constrained device, as a smart card, the
computation would be done one after the other, or delegated to a more power-
ful device. Considering this hypothesis we do not try to give a general way to

268 N. El Mrabet and E. Fouotsa

Algorithm 1. Miller’s Algorithm with the point blinding countermeasure

Input : P ∈ E(Fq)[r], Q ∈ E(Fqk)[r] \E(Fq)[r], m = (1,mn−2,m1,m0)2.

Output:
fm,P (Q+R)

fm,P (R)

1: Choose R randomly in E(Fqk)[r] \E(Fq)[r]
2: If R = −Q, go to 1.
3: Set f ← 1, g ← 1 and T ← P
4: For i = n− 2 down to 0 do
5: f ← f2 · hT,T (Q+R)
6: g ← g2 · hT,T (R)
7: T ← 2T
8: if mi = 1 then
9: f ← f · hT,P (Q+R)
10: g ← g · hT,P (R)
11: T ← T + P
12: end if
13: end for

14: return f
g

Fig. 2. The modified Miller algorithm

perform the computation. Indeed, either the same counter will be used and if it
is modified once, it will be for the two computations. Either two counters will
be used and then two faults would be necessary to modify them. The case of a
delegation of the computation would require a whole article. We do not describe
it here.

4.2 Description of the Attacks

We describe here the fault attack against the Miller algorithm implemented using

the point blinding countermeasure e(P,Q) = e(P,Q+R)
e(P,R) .

Case 1: When the Secret is the Point P . We consider that the secret is
the point P , we can freely choose the point Q and the randomness is the point
R such that the pairings e(P,R) and e(P,Q + R) are defined. The device is

implemented to compute e(P,Q+R)
e(P,R) using the modified Miller algorithm described

in the Algorithm 2.
The target of the fault attack is the counter given the number of iterations in

the modified Miller algorithm. The aim of the fault is to reduce the number of
iterations performed during the execution of the Miller algorithm. For instance,
the fault can be induced by a laser [1,34] or a modification of the glitch [4]. The
probability to obtain two shortened Miller algorithms with consecutive number
of iterations is high enough to made this hypothesis realistic [11]. So, we suppose
that we have obtained the results of the modified Miller algorithm after the m′th

and the (m′ + 1)th iterations, for m′ an integer smaller than m the original
number of iterations. We exactly know what happens during the (m′ + 1)th

iteration.

Failure of the Point Blinding Countermeasure Against Fault Attack 269

Let f ′
m and g′m denote the results stored in f and g at the m′th iteration, let

mi be the value of the corresponding bit. Then, in order to express fm′+1 and
gm′+1 we must consider two possibilities, either the mi is 0, or 1.
If mi = 0, then fm′+1 = f ′2

m × hT,T (Q + R) and gm′+1 = g2m × hT,T (R), with
T = [1mn−1 . . .mi+1mi]P .
If mi = 1 then fm′+1 =

(
f ′2
m × hT,T (Q+R)

)
× h2T,P (Q + R) and gm′+1 =(

g′2m × hT,T (R)
)
× h2T,P (R). The attacker will receive the two values

f ′
m

g′
m

and
fm′+1

gm′+1
in Fqk . We could be tempted to follow the scheme of the attacks de-

scribed in [27,11], i.e. compute the exact value in Fqk of the ratio

f
m′+1

g
m′+1(
f′
m

g′m

)2 , use

its theoretical decomposition (if mi = 0 it is
hT,T (Q+R)
hT,T (R) or if mi = 1 it is

hT,T (Q+R)×h2T,P (Q+R)
hT,T (R)×h2T,P (R)) and after use the identification in the basis of Fqk in

order to obtain k equations depending on the coordinates or P , Q and R. The
equation of the elliptic curve gives two more equations as P and R are on the
curve.

But be careful! The point R is randomly chosen at each execution of the

Algorithm 2. So in practice, we obtain
f ′
m

g′
m
(P,Q,R1) and

fm′+1

gm′+1
(P,Q,R2), for

R1 and R2 two random points in E(Fqk)[r]\E(Fq)[r]. In this case, the theoretical

decomposition of the ratio

f
m′+1

g
m′+1

(P,Q,R2)

f′2
m

g′2m
(P,Q,R1)

would not admit any simplification and

the previous description inspired from [27,11] is no longer possible. We have to
describe a more painful and awful attack.

In this attack, we need only one faulty result
f ′
m

g′
m
(P,Q,R), for P secret, Q

chosen and R random. After one iteration of the Miller algorithm, assuming
that the corresponding bits of m are 0, we have f1 = hP,P (Q + R) and g1 =

hP,P (R). After two iterations, f2 = h[2]P,[2]P (Q + R) × (hP,P (Q+R))
2
and

g2 = h[2]P,[2]P (R)×(hP,P (R))
2
. We can express the equation of hP,P and h[2]P,[2]P

in terms of the coordinates of P . The evaluation of these functions at the points
Q+R and R will give a polynomial expression in the coordinates of P and R.

The theoretical description of the coordinates of R will admit a decomposition
in the basis of Fqk . If we are able to obtain the result of the Miller algorithm
after m′ iterations (denoted λ0 + λ1

√
ν, with λ0 and λ1 ∈ Fqk/2), we have on

one hand the theoretical description and on an other the value in Fqk of this
description:

fm′(P,Q,R)

gm′(P,Q,R)
= λ0 + λ1

√
ν. (2)

We know the value of λ0, λ1 and the theoretical description of fm′(P,Q,R) and
gm′(P,R). Exactly like at the end of the attack described in [11], by identification
in the basis of Fpk , we obtain a system of k polynomial equations with coordinates
of P and R as unknown. The degree of the polynomial depends on the number

270 N. El Mrabet and E. Fouotsa

of iterations. That is why an important step of the attack is to minimize the
number of iterations that are executed by the Miller algorithm.

As illustration we have for one iteration, fm′(P,Q,R) = hP,P (Q + R) and
gm′(P,R) = hP,P (R). The equation 2 gives hP,P (Q+R) = (λ0+λ1

√
ν)×hP,P (R)

which is a degree 3 polynomial in XP , a degree 2 in YP , a degree 6 for ZP and a
degree 1 polynomial in xR. We give the equations of hP,P (Q+ R) and hP,P (R)
(see section 2 for details) in order to illustrate an idea of the system.

P = (XP , YP , ZP), XP , YP , ZP ∈ Fq

Q +R = (xQ+R, yQ+R
√
ν), xQ+R, yQ+R ∈ Fqk/2

R = (xR, yR
√
ν), xR, yR ∈ Fqk/2

hP,P (Q+R) = 2YPZ
3
P yQ+R

√
ν − 2Y 2

P − (3X2
P + aZ4

P)(xQ+RZ
2
P −XP)

hP,P (R) = 2YPZ
3
P yR

√
ν − 2Y 2

P − (3X2
P + aZ4

P)(xRZ
2
P −XP)

The equation of the elliptic curve in P and R gives us 2 more equations and
we still have k + 2 unknown values in Fq. To conclude the attack, we will use
the Gröbner basis. In order to ensure the fact that the solution will be in Fq, we
have to add the equation ξp ≡ ξ mod p for each unknown value. We therefore
obtain a system of 2k + 2 polynomial equations for k+2 unknown values. The
Gröbner basis is the perfect tool for solving this system, that admits solutions
by construction.

Obviously for a greater number of iterations, by hand it is difficult to develop
the theoretical expression without any mistake. We do not describe it even for
one iteration. Fortunately, we have mathematical softwares that can help us, like
PariGP[33], Sage [32], Magma [7] or Maple [26].

If we consider that each iteration raise the degree of the polynomials in the
system by a power of 2, than after μ iterations, the degree of the polynomial
would be 2μ in the coordinates of P . In practice, the evaluation of the degree is
more complex. The degree of hP,P (R) is 6 in ZP . After 2 iterations, the degree
of g2,P (R) will be at the most 6× 2 + 6 for ZP and 3 for the coordinates of R.
(The degree of g and f are the same, we choose to describe it for g for clarity.
The degree of f depends on the coordinates of Q+ R.) For n iterations, n > 2,
we can estimate the degree of the polynomial with the formulas:

deg(n, ZP) = 2× deg(n− 1, ZP) + 6n−2 × 13

deg(n,R) = 2× deg(n− 1, R) + 1,

where deg(n, ZP) represents the degree of the polynomial system after n itera-
tions in the unknown value ZP and deg(n,R) is the degree in the coordinates of
R. The degree of the polynomial for XP and YP is smaller than the degree for
ZP .

The interesting question is how many iterations can we deal with? What would
be the maximum degree of the polynomial system that can be solved by Gröbner
basis in a reasonable time? We refer to [8] for more details on Gröbner basis.

Failure of the Point Blinding Countermeasure Against Fault Attack 271

Case 2: When the Secret is the Point Q. We consider that the secret is the
point Q, we can freely choose the point P , the randomness is the point R such
that the pairings e(P+R,Q) and e(R,Q) are defined. The device is implemented

to compute e(P+R,Q)
e(R,Q) using a modified version of the Miller algorithm. If the same

counter is used to perform the computation it would be modified once and used
for both computations. If two counters are used, as in [34] we need two faults
to modify the counters. After that, the scheme of the attack is the same. Once

we obtain the intermediate results
f ′
m

g′
m
(P,R,Q), for P public, R random and Q

secret. The theoretical expression of R, P + R and hT,T (Q) depending on the

coordinates of P , R and Q combined with the value of
f ′
m

g′
m
(P,R,Q) will give

a polynomial system in the unknown coordinates of R and Q. This polynomial
system would be solved using the Gröbner basis.

5 Conclusion

In this paper we analysed the efficiency of the point blinding countermeasure
in pairing based cryptography considering fault attacks in Miller’s algorithm.
We describe a theoretical fault attack. We highlighted the fact that the point
blinding countermeasure alone is not a protection in the case of pairing based
cryptography. Whenever the secret is the first or the second parameter, a fault
attack gives the coordinates of the secret.

In our opinion, we believe that the only way to provide a secure implementa-
tion of the pairing relies on the discrete logarithm problem. The computation of
e(P,Q), should be e([a]P, [b]Q), with a and b integers such that ab ≡ 1 mod r.
Of course, the computation of [a]P and [b]Q should be secured.

Acknowledgments.This work was supported by the French ANR-12-INSE-0014 SIM-

PATIC Project financed by the Agence National de Recherche (France). We would like

to thank the anonymous reviewers for their numerous suggestions and remarks which

have enables us to substantially improve the paper.

References

1. Anderson, R., Kuhn, M.: Tamper resistance – a cautionary note. In: The Second
USENIX Workshop on Electronic Commerce Proceedings, pp. 1–11 (1996)

2. Bae, K., Moon, S., Ha, J.: Instruction fault attack on the Miller algorithm in a
pairing-based cryptosystem. In: 2013 Seventh International Conference on Inno-
vative Mobile and Internet Services in Ubiquitous Computing (IMIS), pp. 167–174
(July 2013)

3. Barbulescu, R., Gaudry, P., Joux, A., Thomé, E.: A heuristic quasi-polynomial
algorithm for discrete logarithm in finite fields of small characteristic. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 1–16.
Springer, Heidelberg (2014)

272 N. El Mrabet and E. Fouotsa

4. Blömer, J., da Silva, R.G., Günther, P., Krämer, J., Seifert, J.-P.: A practical
second-order fault attack against a real-world pairing implementation. In: Pro-
ceedings of Fault Tolerance and Diagnosis in Cryptography (FDTC) (2014) (to
appear), Updated version at http://eprint.iacr.org/2014/543

5. Blömer, J., Günther, P., Liske, G.: Improved side channel attacks on pairing based
cryptography. In: Prouff, E. (ed.) COSADE 2013. LNCS, vol. 7864, pp. 154–168.
Springer, Heidelberg (2013)

6. Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil pairing. SIAM
J. of Computing 32(3), 586–615 (2003)

7. Bosma, J., Cannon, W., Playout, C.: The Magma algebra system I. the user
language. J. Symbolic Comput. 24(3-4), 235–265 (1997)

8. Buchberger, B.: An algorithm form finding the basis elements of the residue class
ring of a zero dimensional polynomial ideal (phd thesis 1965). In: Elsevier (eds.)
Journal of Symbolic Computation, vol. 41, pp. 475–511. Elsevier (2006)

9. Cohen, H., Frey, G. (eds.): Handbook of elliptic and hyperelliptic curve cryptog-
raphy. Discrete Math. Appl. Chapman & Hall/CRC (2006)

10. Dutta, R., Barua, R., Sarkar, P.: Pairing-based cryptography: A survey. Cryptol-
ogy ePrint Archive, Report 2004/064 (2004)

11. El Mrabet, N.: What about vulnerability to a fault attack of the Miller algorithm
during an Identity Based Protocol? In: Park, J.H., Chen, H.-H., Atiquzzaman, M.,
Lee, C., Kim, T.-h., Yeo, S.-S. (eds.) ISA 2009. LNCS, vol. 5576, pp. 122–134.
Springer, Heidelberg (2009)

12. El Mrabet, N: Fault attack against Miller’s algorithm. IACR Cryptology ePrint
Archive, 2011:709 (2011)

13. El Mrabet, N., Di Natale, G., Flottes, M.-L., Rouzeyre, B., Bajard, J.-C.: Differ-
ential Power Analysis against the Miller algorithm. Technical report. Published
in Prime 2009. IEEE Xplore (August 2008)

14. El Mrabet, N., Page, D., Vercauteren, F.: Fault attacks on pairing-based cryptog-
raphy. In: Joye, M., Tunstall, M. (eds.) Fault Analysis in Cryptography, Informa-
tion Security and Cryptography, pp. 221–236. Springer, Heidelberg (2012)

15. Freeman, D., Scott, M., Teske, E.: A taxonomy of pairing-friendly elliptic curves.
J. Cryptology 23(2), 224–280 (2010)

16. Chowdhury, D.R., Santosh, G., Debdeep, M.: Fault attack and countermeasures
on pairing based cryptography. International Journal of Network Security 12(1),
21–28 (2011)

17. Hess, F.: Pairing lattices. In: Galbraith, S.D., Paterson, K.G. (eds.) Pairing 2008.
LNCS, vol. 5209, pp. 18–38. Springer, Heidelberg (2008)

18. Hess, F., Smart, N., Vercauteren, F.: The Eta Pairing Revisited. IEEE Transac-
tions on Information Theory 52, 4595–4602 (2006)

19. Iyama, T., Kiyomoto, S., Fukushima, K., Tanaka, T., Takagi, T.: Efficient imple-
mentation of pairing on brewmobile phones. In: Echizen, I., Kunihiro, N., Sasaki, R.
(eds.) IWSEC 2010. LNCS, vol. 6434, pp. 326–336. Springer, Heidelberg (2010)

20. Joux, A.: A new index calculus algorithm with complexity l(1/4 + o(1)) in small
characteristic. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) SAC 2013. LNCS,
vol. 8282, pp. 355–379. Springer, Heidelberg (2014)

21. Joye, M., Neven, G.: Identity-based Cryptography. Cryptology and information
security series. IOS Press (2009)

22. Kawahara, Y., Takagi, T., Okamoto, E.: Efficient implementation of Tate pairing
on a mobile phone using java. In: 2006 International Conference on Computational
Intelligence and Security, vol. 2, pp. 1247–1252 (November 2006)

http://eprint.iacr.org/2014/543

Failure of the Point Blinding Countermeasure Against Fault Attack 273

23. Koblitz, N., Menezes, A.: Pairing-based cryptography at high security levels. In:
Smart, N.P. (ed.) Cryptography and Coding 2005. LNCS, vol. 3796, pp. 13–36.
Springer, Heidelberg (2005)

24. Lashermes, R., Fournier, J., Goubin, L.: Inverting the final exponentiation of Tate
pairings on ordinary elliptic curves using faults. In: Bertoni, G., Coron, J.-S. (eds.)
CHES 2013. LNCS, vol. 8086, pp. 365–382. Springer, Heidelberg (2013)

25. Miller, V.: The Weil pairing and its efficient calculation. Journal of Cryptology 17,
235–261 (2004)

26. Monagan, M.B., Geddes, K.O., Heal, K.M., Labahn, G., Vorkoetter, S.M.,
McCarron, J., DeMarco, P.: Maple 10 Programming Guide. Maplesoft, Water-
loo ON (2005)

27. Page, D., Vercauteren, F.: A fault attack on Pairing-Based Cryptography. IEEE
Transactions on Computers 55(9), 1075–1080 (2006)

28. Park, J., Sohn, G., Moon, S.: Fault attack on a point blinding countermeasure of
pairing algorithms. ETRI Journal 33(6) (2011)

29. Scott, M.: Computing the Tate pairing. In: Menezes, A. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 293–304. Springer, Heidelberg (2005)

30. Scott, M., Benger, N., Charlemagne, M., Dominguez Perez, L.J., Kachisa, E.J.: On
the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves.
In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS, vol. 5671, pp. 78–88.
Springer, Heidelberg (2009)

31. Scott, M., Costigan, N., Abdulwahab, W.: Implementing cryptographic pairings
on smartcards. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 134–147. Springer, Heidelberg (2006)

32. Stein, W.: Sage mathematics software (version 4.8). The Sage Group (2012),
http://www.sagemath.org

33. The PARI Group, Bordeaux. PARI/GP, version 2.7.0 (2014),
http://pari.math.u-bordeaux.fr/.

34. Trichina, E., Korkikyan, R.: Multi fault laser attacks on protected CRT-RSA. In:
2010 Workshop on Fault Diagnosis and Tolerance in Cryptography (FDTC), pp.
75–86. IEEE (2010)

35. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theor. 56(1), 455–461 (2010)
36. Washington, L.C.: Elliptic curves, number theory and cryptography. Discrete

Math. Aplli., Chapman and Hall (2008)
37. Whelan, C., Scott, M.: The importance of the final exponentiation in pairings

when considering Fault Attacks. In: Takagi, T., Okamoto, T., Okamoto, E.,
Okamoto, T. (eds.) Pairing 2007. LNCS, vol. 4575, pp. 225–246. Springer,
Heidelberg (2007)

http://www.sagemath.org
http://pari.math.u-bordeaux.fr/

Impossible Differential Properties

of Reduced Round Streebog

Ahmed Abdelkhalek, Riham AlTawy, and Amr M. Youssef(�)

Concordia Institute for Information Systems Engineering
Concordia University, Montréal, Québec, Canada

youssef@ciise.concordia.ca

Abstract. In this paper, we investigate the impossible differential prop-
erties of the underlying block cipher and compression function of the new
cryptographic hashing standard of the Russian federation Streebog . Our
differential trail is constructed in such a way that allows us to recover the
key of the underlying block cipher by observing input and output pairs
of the compression function which utilizes the block cipher in Miyaguchi-
Preneel mode. We discuss the implication of this attack when utilizing
Streebog to construct a MAC using the secret-IV construction. Moreover,
we present two versions of the attack with different time-data trade-offs.

Keywords: Cryptanalysis · Hash functions · MAC · Secret-IV · Miss in
the middle · Impossible Differential · GOST R 34.11-2012 · Streebog

1 Introduction

In late 2012, Streebog [2] was announced as the new Russian cryptographic
hashing standard GOST R 34.11-2012. It officially replaced GOST R 34.11-
94 which has been theoretically broken in [25] and further analyzed in [24,23].
The output length of the Streebog hash function can be either 512 or 256-bit.
Its compression function is based on a 12-rounds AES-like block cipher with
8 × 8-byte internal state, followed by an XOR operation with a whitening key.
The compression function operates in Miyaguchi-Preneel mode and is plugged
in Merkle-Damg̊ard domain extender with a finalization step [19]. Literature
related to the cryptanalysis of Streebog includes the analysis of the collision
resistance of its compression function and internal cipher by AlTawy et al. [3],
and Wang et al. [27]. An integral analysis of the compression function has been
presented by AlTawy and Youssef where integral distinguishers for the reduced
compression function was proposed [4]. Moreover, preimage attacks on the re-
duced hash function have been independently proposed by Altawy and Youssef
[5], and Zou et al. [28], and later the attacks were improved by Bingka et al.
[22]. Also, Kazymyrov and Kazymyrova presented an analysis of the algebraic
aspects of the function [19], and a long second preimage attack was proposed
by Guo et al. [17]. Finally, a malicious version of the whole hash function was
presented in [7], and a differential fault analysis of the function when used in
different MAC schemes was proposed [6].

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 274–286, 2015.
DOI: 10.1007/978-3-319-18681-8_22

Impossible Differential Properties of Reduced Round Streebog 275

A Message Authentication Code (MAC) [8] is a symmetric-key construction
that provides mutual entity authentication and data integrity. Two common
approaches are used to construct MAC schemes. The first approach employs a
block cipher or a permutation, e.g., Cipher Block Chaining (CBC)-MAC [1],
PELICAN-MAC [14], and ALPHA-MAC [13]. The second approach is based on
hash functions where a secret key shared between the communicating parties is
processed in a specific construction by the hash function which is consequently
viewed as a keyed hash function. Examples of this approach include simple prefix
MAC [26], secret-IV MAC [26], NMAC [8], and the internationally standardized
HMAC [8]. Attacks on MAC schemes usually aim to investigate their resistance
against forgery attacks and key recovery attacks. The latter attack is more dev-
astating since it directly grants the attacker the ability to impersonate any of the
communicating parties and consequently forge any given message. As a result,
analyzing hash-based MACs with respect to key recovery attacks has been the
main aspect of many proposed works [18,16].

When considering a hash function in a given MAC scheme, the first step is
to analyze the security of the underlying primitives operating in the secret key
model against key recovery attacks. Consequently, key recovery attacks on the
underlying primitives has been considered as a valuable analytic model for the
hash function. Such model has been adopted by Bouillaguet et al. in their analy-
sis of the SHA-3 submission Lesamnta [11], where they presented a key recovery
attack on the internal cipher reduced to 22 rounds. Additionally, the cryptanal-
ysis of the SHA-3 submission EDON-R [21], where Laurent presented a key
recovery attack on the function used in the Secret-IV MAC. One of the prospec-
tive applications of Streebog, as any other hash function, is using it in MAC
schemes. Though both the simple prefix and the secret-IV MACs are vulnerable
to length extension attacks, and the nested HMAC construction is internationally
standardized, Streebog is by design not vulnerable to length extension attacks.
This property may tempt users to adopt simpler MAC constructions such as
the secret-IV setting. In this approach, the standard initial value is replaced by
the secret key in the iterative construction of the hash function. More formally,
MAC(M) = H(K,M), where H(K,M) is the hash value of the message M
using the secret key K as the IV. Indeed, the designers of the NIST SHA-3 hash
function, keccak [9] [12], state on their website that since keccak is not vulnera-
ble to length extension attacks, it does not need HMAC and propose that MAC
computation can be done by concatenating the key with the message [20]. It
should also be noted that the proof of security of the Miyaguchi-Preneel mode
assumes that the underlying block cipher is ideal and must exhibit no distinguish-
ing property. Accordingly, the results presented in this work are also interesting
from this perspective since they are relevant to these indistinguishability claims.

In 2000, Biham and Keller presented a 4-round impossible differential property
of AES [10] was the basis for all the succeeding impossible differential attacks
on AES. This property specifies that given an input pair at round i which has
just one non-zero difference byte (in the literature, this is usually referred to as
an active byte), the corresponding pair at round i + 3 cannot be equal in any

276 A. Abdelkhalek et al.

of the four columns after applying the ShiftRow transformation. This 4-round
impossible differential property consists of two deterministic differentials; one 2-
round forward differential and the other is a 2-round backward differential that
contradict with each other.

In this work, we provide a security evaluation of the Streebog compression
function when used in the secret key model where the IV is replaced by a secret
key. More precisely, we present an impossible differential (ID) property of the
underlying block cipher and compression function and employ it to recover the
secret-IV of the compression function. We also present two versions of the attack
in a time-data trade-off approach where one version uses less message queries
but requires more time and memory complexity while the other needs less time
and memory complexity but requires more message queries. Table 1 provides a
summary of current cryptanalytic results on the Streebog hash function. The
rest of the paper is organized as follows. In the next section, the specification of
the Streebog hash function along with the notation used throughout the paper
are provided. A brief overview of impossible differential cryptanalysis is given

Table 1. Summary of the current cryptanalytic results on Streebog

Target #Rounds Time Memory Data Attack Reference

Internal cipher

5 28 28 - Free-start
[3]

8 264 28 - collision

3.75 - - - ID distinguisher Sec. 3

Internal permutation
6.5 264 - 264

Distinguisher [4]
7.5 2120 - 2120

Compression function

7.75 2184 28 - Semi free-start

[3]

4.75 28 - - collision

7.75 272 28 - Semi free-start

8.75 2128 28 - near collision

9.75 2184 28 -

6.75 2399.5 2349 2427.1 Secret-IV
Sec. 4

6.75 2261.5 2205 2495.5 recovery

6 264 - 264
Distinguisher [4]

7 2120 - 2120

Hash function

5 2122 264 - Collision [28]

6 2496 264 - Preimage [22]

12 - 214 -
Differential fault

[6]
analysis

12 2266 − -
Long second

[17]
preimage

Impossible Differential Properties of Reduced Round Streebog 277

in Section 3. Afterwards, in Section 4, we provide detailed description of the
impossible differential attack on the block cipher and the complexity of the
attack. Finally, the paper is concluded in Section 5.

2 Specification of Streebog

Streebog outputs a 512 or 256-bit hash value and can process up to 2512-bit
message. The compression function iterates over 12 rounds of an AES-like ci-
pher with an 8 × 8 byte internal state and a final round of key mixing. The
compression function operates in Miyaguchi-Preneel mode and is plugged in
Merkle-Damg̊ard domain extender with a finalization step. The input message
M is padded into a multiple of 512 bits by appending one followed by zeros.
Given M = mn‖..‖m1‖m0, the compression function gN is fed with three in-
puts: the chaining value hi−1, a message block mi−1, and the block size counter
Ni−1 = 512× i. (see Figure 1). Let hi be a 512-bit chaining variable. The first
state is loaded with the initial value IV and assigned to h0. The hash value of
M is computed as follows:

hi ← gN(hi−1,mi−1, Ni−1) for i = 1, 2, .., n+ 1

hn+2 ← g0(hn+1, |M |, 0)

h(M) ← g0(hn+2,
∑

(m0, ..,mn), 0),

where h(M) is the hash value of M . As depicted in Figure 1, the compression
function gN consists of:

– KN : a nonlinear whitening round of the chaining value. It takes a 512-bit
chaining variable hi−1 and the block size counter Ni−1 and outputs a 512-bit
key K.

– E: an AES-based cipher that iterates over the message for 12 rounds in
addition to a finalization key mixing round. The cipher E takes a 512-bit
key K and a 512-bit message block m as a plaintext. As shown in Figure
2, it consists of two similar parallel flows for the state update and the key
scheduling.

Fig. 1. Streebog’s compression function gN

278 A. Abdelkhalek et al.

Fig. 2. The internal block cipher (E)

Both KN and E operate on an 8× 8 byte key state K. E updates an additional
8× 8 byte message state M . In one round, the state is updated by the following
sequence of transformations

– AddKey(X): XOR with either a round key, a constant, or a block size counter
(N)

– SubBytes (S): A nonlinear byte bijective mapping.
– Transposition (P): Byte permutation.
– LinearTransformation (L): Left multiplication by an MDS matrix in GF(2).

Initially, state K is loaded with the chaining value hi−1 and updated by KN as
follows:

k0 = L ◦ P ◦ S ◦X(Ni−1)

Now K contains the key k0 to be used by the cipher E. The message state M is
initially loaded with the message block m and E(k0,m) runs the key scheduling
function on state K to generate 12 round keys k1, k2, .., k12 as follows:

ki = L ◦ P ◦ S ◦X(Ci−1), for i = 1, 2, .., 12,

where Ci−1 is the ith round constant. The state M is updated as follows:

Mi = L ◦ P ◦ S ◦X(ki−1), for i = 1, 2, ..., 12.

The final round output is given by E(k0,m) = M12 ⊕ k12. The output of gN
in the Miyaguchi-Preneel mode is E(KN(hi−1, Ni−1),mi−1)⊕mi−1 ⊕ hi−1. For
further details, the reader is referred to [2].

2.1 Notation

Let M be (8 × 8)-byte states denoting an input message state. The following
notation will be used throughout the paper:

– M I
i : A state at the beginning of round i.

– MX
i ,MS

i ,M
P
i andMO

i : The message state at round i after the application of
AddKey, SubBytes, Transposition and Linear Transformation, respectively.
intuitively, MO

i−1 = M I
i for i >= 2.

Impossible Differential Properties of Reduced Round Streebog 279

– Mi[r, c]: A byte at row r and column c of state Mi. Another representation
of state bytes is an enumeration 0, 1, 2, 3,, 63 as shown in Figure 3.

– Mi[row r]: Eight bytes located at row r of Mi state.

– Mi[col c]: Eight bytes located at column c of Mi state.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Row 0

Column 0

Fig. 3. The 8× 8 state of Streebog

3 Impossible Differential Cryptanalysis of the
Compression Function

Although the Streebog compression function employs an AES-like cipher, apply-
ing commonly used 4-round impossible differential of AES as is on the Streebog
compression function would not be of value as in this case, we would recover the
key of the last round of the block cipher masked by the chaining value (recall that
Streebog’s compression function works in Miyaguchi-Preneel mode). Therefore,
we opted to reverse the impossible differential as detailed below to help recover
the key of the first round, i.e., k0. Since the key scheduling is bijective, once k0
is recovered, we can recover the secret chaining value in the case of a secret-IV
MAC construction when applied only at the level of the compression function.
We note that the impossible differential property of the compression function
would be limited to 3.75-rounds because, unlike the AES, in the Streebog un-
derlying block cipher, the linear transformation in the last round is not omitted.
As depicted in Figure 4, this impossible differential property states that given
a pair of M I

i with any 7 active bytes in the same arbitrary row (row 0 is cho-
sen in the figure for illustration purposes), MP

i+3 cannot have only one active
byte (similarly, that active byte can be any byte out of the 64 bytes state).
The deterministic differentials in this property are different than those of the

280 A. Abdelkhalek et al.

X S P L

X-1 S-1 P-1 L-1

X-1 S-1 P-1

Contradiction

L-1

X-1 S-1 P-1

Fig. 4. Impossible differential property of the internal block cipher

AES property; on top of being swapped, the forward differential is just 1-round
while the backward differential is 2.75 rounds. The property is rationalized as
follows: any 7 active bytes in the same row of M I

i give 56 active bytes by MO
i

with one entire row being equal (which row will depend on the position of the
zero-difference byte in the input). On the other hand, one active byte in MP

i+3

leads to a full active state where all 64 bytes are active in M I
i+1, which means

that the middle states contradicts with each other as illustrated in Figure 4. As
explained above, this impossible differential holds regardless of the row and also
the positions within that row. Figure 5 gives an example for impossible input
and output patterns for the compression function. When the compression func-
tion message input has specific non-zero difference at bytes 0 to 6 (δ0 to δ6 in
the figure) and zero difference in all the other bytes, then after the feedforward
the output difference cannot have the same values as the input difference at
bytes 0 to 6 (δ0 to δ6) and a non-zero difference at byte 56 (δ7). Such input
and output difference patterns are impossible on the compression function level.
It is to be note that there exists 8 × 8 × 2557 such input patterns (the input
differences can be in any row and the inactive byte can be at any column of that
row and each of the differences can take 28 − 1 possible values. There are also
((7×8)+1)×255 = 57×255 contradicting output patterns (the non-zero output
difference byte can be at any column of 7 rows, i.e., all but the input differences
row and takes the position of the inactive byte on that row).

Impossible Differential Properties of Reduced Round Streebog 281

�

�� �� �� �� �� �� ��

Secret- IV

�� �� �� �� �� �� ��

��

Impossible
output

Fig. 5. Example of impossible differentials for the 3.75 round reduced compression
function

4 Impossible Differential Attack on 6.75 rounds of the
Compression Function

Considering the aforementioned impossible differential property, a 6.75-rounds
attack on the Streebog compression function can be mounted as detailed here-
after. In our attack model, we assume access to the keyed Streebog reduced
compression function oracle which allows us to query the keyed oracle with cho-
sen messages and get the corresponding compression function outputs. Later, we
show how the attack can be done in less time but at the expense of requiring
more message queries using a simple time-data trade-off approach.

4.1 Attack Algorithm

The first version of the attack is illustrated in Figure 6. In what follows, we give
its details.

1. The keyed compression function oracle is fed with 2n structures where each
structure consists of 2256 messages having the same value in columns 4, 5, 6 and
7 and assuming all possible 2256 values in columns 0, 1, 2 and 3. Accordingly,
each structure offers 2256 × 2256 × 1/2 � 2511 pairs of messages. Thus we have a
total of 2n+256 messages, and 2n+511 message pairs for the 2n structures.

2. Since we have access to the output of the compression function which
operates in Miyaguchi-Preneel mode as depicted in Figure 1, the output hi that
we observe is hi−1 ⊕ mi−1 ⊕ ci−1 where ci−1 is the corresponding output of
the reduced variant of the block cipher when its input is mi−1. Therefore, for
each message query, we first XOR the compression function output with the
corresponding input message, i.e., hi ⊕mi−1, to get ci−1 ⊕ hi−1 and keep only
the pairs that have non-zero difference in just one column. Consequently, it is
expected to have 2n+511 × 2−448 = 2n+63 pairs.

282 A. Abdelkhalek et al.

3. In the sequel, we randomly assume a 256-bit value of the first round key
at columns 0, 1, 2 and 3 i.e. k0[col 0, 1, 2, 3], partially encrypt these 4 columns
of the message pairs corresponding to the remaining ciphertext pairs i.e. we
compute MO

1 [row 0, 1, 2, 3] = L ◦ P ◦ S[M I
1 [col 0, 1, 2, 3] ⊕ k0[col 0, 1, 2, 3]] and

we choose the pairs which have only one non-zero difference byte at any column
coli of row 0 and just one non-zero difference byte at the same column coli
in the other 3 rows; rows 1, 2 and 3. The probability of such combination is
q1 = 8× (2−8)7 × (2−8)7 × (2−8)7 × (2−8)7 = 2−221. This is due to the fact that
the probability of a non-zero difference of just one byte in a given row is (2−8)7

and this byte can be in one of 8 possible positions in row 0. Then, in the other 3
rows the non-zero byte will be at a fixed position, i.e., the same position of the
non-zero difference byte in row 0. Accordingly, 2n+63 × 2−221 = 2n−158 message
pairs are expected to pass after this step.

4. Afterwards, we assume a 32-bit value for the bytes 0, 1, 2 and 3 of column
0 of the key k1 i.e. bytes 0, 8, 16, 24 as in Figure 3 (As discussed, this could have
been any other column as well), partially encrypt these bytes through the second
round to compute MO

2 [row 0] = L◦P ◦S[M I
2 [(0, 1, 2, 3), 0]⊕k1[(0, 1, 2, 3), 0]. We

choose the pairs which have only one zero-difference byte at any column of that
row. The probability of such pairs is q2 = 8× 2−8 = 2−5. So after this step, we
have 2n−158 × 2−5 = 2n−163 message pairs.

X0 S P L

Impossible Differential property

L-1

X6
-1 S-1 P-1

q1

X1 S P L
q2

p

X7
-1

Fig. 6. 6.75-rounds impossible differential attack on the compression function

5. Following on, we assume a 64-bit value for the last column of k7[col 0] ⊕
hi−1[col 0] so that we end up with the block cipher output (Note: hi−1 is the

Impossible Differential Properties of Reduced Round Streebog 283

targeted secret-IV to be recovered and it has the same value for all the pairs
we have). Specifically, we calculate MP

7 [col 7] = (ci−1[col 7] ⊕ hi−1[col 7]) ⊕
(k7[col 7]⊕ hi−1[col 7]) for all the pairs we have so far. The former value is the
output we get from step 2, while the latter is the value we just assumed.

6. For each of the filtered pairs, we partially decrypt column 7. In other words,
we compute L−1 ◦ ((S−1 ◦ P−1(MP

7 [col 7]))⊕ (S−1 ◦ P−1(M∗P
7 [col 7])) and we

choose the pairs which have only one non-zero difference byte at any position of
row 7, which happens with probability p = 8× (2−8)7 = 2−53. This difference is
impossible, hence each key (or to be exact each k7 ⊕ hi−1 i.e., k7 ⊕ const) that
results with such a difference is a wrong key. Therefore, after analyzing 2n−163

pairs, only 264×(1−2−53)2
n−163 � 264×(e−1)2

n−216 � 264×2−1.4×(2n−216) wrong
values of the last column of k7 ⊕ hi−1 remains.

To be able to find the correct partial keys, we discard the 64-bit values for
k7 ⊕ hi−1 unless the initial guess of the 256-bit value of k0 and the 32-bit
value of k1 is correct. The wrong values (k0, k1, k7) remain with probability:

(28)(32+4) × 264 × 2−1.4×(2n−163) = 2352−1.4×(2n−163) which should be made as
small as possible, e.g., less than 2−30 (that value is chosen to maximize the
probability of finding the correct tuple without having a significant impact on
the number of messages needed) which means 2352−1.4×(2n−163) < 2−30 resulting
in n > 171.09. Accordingly, when we start with 2171.1 structures and there re-
mains a value of k7 ⊕ hi−1, we consider the assumed 256-bit value for k0 correct
and the probability of wrong values (k0, k1, k7) is 2

−32.1.

4.2 Attack Complexity

With n set to 171.1, the attack requires 2n+256 = 2427.1 chosen messages. The
time complexity of the attack is calculated as follows:

– In step 3, row 0 requires 2×264×2n+63×1/8 = 2n+125 one round encryptions,
row 1 requires 2×264×264×2n+10×1/8 = 2n+136 one round encryptions, row
2 requires 2× 264 × 264 × 264 × 2n−46 × 1/8 = 2n+144 one round encryptions
and row 3 requires 2 × 264 × 264 × 264 × 264 × 2n−102 × 1/8 = 2n+152 one
round encryptions.

– In step 4, row 0 requires 2× 2256 × 232 × 2n−158 × 1/16 = 2n+127 one round
encryptions.

– In step 6, column 7 decryption requires 2×2256×232×264×(1+(1−2−53)+

(1− 2−53)2 + ...+ (1− 2−53)2
n−163

)× 1/16 � 2402 one round encryptions.
– For n = 171.1, the overall complexity of the attack is about (2296.1+2307.1+

2315.1 + 2323.1 + 2298.1 + 2402)/6.75 � 2399.5 encryptions to recover 256 bits
of k0.

Then, the other half of k0 can be found by an exhaustive search. Hence the whole
k0 can be recovered with time complexity of 2399.5 +2256 � 2399.5 queries. Once
k0 is recovered, we can easily recover the secret-IV hi−1. Finally, the memory
requirements is dominated by the memory needed to store the list of the deleted
key tuples (k0,k1,k7), so we need 2352/23 = 2349 bytes.

284 A. Abdelkhalek et al.

4.3 Time-Data Trade-Off to Recover the Secret-IV

In the above variant of the attack, the attack is launched with 4 active columns
in the messages. However, if as illustrated in Figure 7, the messages are chosen
so that they have just 2 active columns, we will be able to launch the attack
successfully using a smaller number of queries but with more data. Indeed, in
such variant, we need 2495.5 messages, the time complexity drops to around 2261.5

and the memory requirement is reduced to 2208/23 = 2205 bytes. The change in
the messages will reflect on the attack algorithm details but no major changes
in the attack strategy.

X0 S P L

Impossible Differential property

L-1

X6
-1 S-1 P-1

q1

X1 S P L
q2

p

X7
-1

Fig. 7. Another 6.75-rounds impossible differential attack requiring less time and mem-
ory but more data

5 Conclusion

In this paper, we have analyzed the Streebog compression function in the secret
key model. More precisely, we have proposed Secret-IV recovery attack, at the
level of the compression function, based on impossible differential properties of
the compression function. The attack has a trade-off between data and time. One
variant of the attack requires 2427.1 messages, has a time complexity equivalent
to 2399.5 queries to the compression function reduced to 6.75 rounds and needs

Impossible Differential Properties of Reduced Round Streebog 285

2349 bytes of memory. If more data is permissible, the attack can be performed
with 2261.5 queries of the Streebog compression function reduced to 6.75 rounds
with 2495.5 messages and 2205 bytes of memory.

Finally, it should be noted that this attack does not directly contradict the
security claims of Streebog and does not present any immediate practical threat
to its security. However, it helps as a cautionary note for using Streebog in this
mode since it might be tempting to do so because the finalization stage of Stree-
bog is strengthened against length extension attacks which are the main reasons
for not using secret-IV or secret-prefix MAC constructions. It is interesting to
not that, while the results in [15] show that the modular sum finalization stage
weakens the function when used in HMAC construction, extending our attack
to the full hash function remains a challenge and requires further investigation
of the compression function one wayness properties.

Acknowledgment. The authors would like to thank the anonymous reviewers for

their valuable comments and suggestions that helped improve the quality of the paper.

This work is supported by the Natural Sciences and Engineering Research Council of

Canada (NSERC).

References

1. ISO/IEC 9797-1. Information technology-security techniques-data integrity mech-
anism using a cryptographic check function employing a block cipher algorithm.
international organizatoin for standards

2. The National Hash Standard of the Russian Federation GOST R 34.11-2012.
Russian Federal Agency on Technical Regulation and Metrology report (2012),
https://www.tc26.ru/en/GOSTR34112012/GOST R 34 112012 eng.pdf

3. AlTawy, R., Kircanski, A., Youssef, A.M.: Rebound attacks on stribog. In:
Lee, H.-S., Han, D.-G. (eds.) ICISC 2013. LNCS, vol. 8565, pp. 175–188. Springer,
Heidelberg (2014)

4. Altawy, R., Youssef, A.M.: Integral distinguishers for reduced-round Stribog. In-
formation Processing Letters 114(8), 426–431 (2014)

5. AlTawy, R., Youssef, A.M.: Preimage Attacks on Reduced-Round Stribog. In:
Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT. LNCS, vol. 8469, pp.
109–125. Springer, Heidelberg (2014)

6. AlTawy, R., Youssef, A.M.: Differential Fault Analysis of Streebog. In: Lopez, J.,
Wu, Y. (eds.) Information Security Practice and Experience. LNCS, vol. 9065, pp.
35–49. Springer, Heidelberg (2015)

7. Altawy, R., Youssef, A.M.: Watch your Constants: Malicious Streebog. IET Infor-
mation Security (2015) (to appear)

8. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

9. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function
family main document. Submission to NIST (Round 2) 3 (2009)

10. Biham, E., Keller, N.: Cryptanalysis of reduced variants of Rijndael. In: 3rd AES
Conference, New York, USA (2000)

https://www.tc26.ru/en/GOSTR34112012/GOST_R_34_112012_eng.pdf

286 A. Abdelkhalek et al.

11. Bouillaguet, C., Dunkelman, O., Leurent, G., Fouque, P.-A.: Attacks on hash func-
tions based on generalized feistel - application to reduced-round Lesamnta and
SHAvite-3512. Cryptology ePrint Archive, Report 2009/634 (2009),
http://eprint.iacr.org/2009/634.pdf .

12. Chang, S.-J., Perlner, R., Burr, W.E., Turan, M.S., Kelsey, J.M., Paul, S.,
Bassham, L.E.: Third-round report of the SHA-3 cryptographic hash algorithm
competition. Citeseer (2012)

13. Daemen, J., Rijmen, V.: A New MAC Construction ALRED and a Specific In-
stance ALPHA-MAC. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS,
vol. 3557, pp. 1–17. Springer, Heidelberg (2005)

14. Daemen, J., Rijmen, V.: The Pelican MAC function. Cryptology ePrint Archive,
Report 2005/088 (2005), http://eprint.iacr.org/2005/088.pdf

15. Dinur, I., Leurent, G.: Improved Generic Attacks against Hash-Based MACs
and HAIFA. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part I. LNCS,
vol. 8616, pp. 149–168. Springer, Heidelberg (2014)

16. Fouque, P.-A., Leurent, G., Nguyen, P.Q.: Full Key-Recovery Attacks on
HMAC/NMAC-MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007.
LNCS, vol. 4622, pp. 13–30. Springer, Heidelberg (2007)

17. Guo, J., Jean, J., Leurent, G., Peyrin, T., Wang, L.: The Usage of Counter Revis-
ited: Second-Preimage Attack on New Russian Standardized Hash Function. In:
Joux, A., Youssef, A. (eds.) SAC 2014. LNCS, vol. 8781, pp. 195–211. Springer,
Heidelberg (2014)

18. Handschuh, H., Preneel, B.: Key-Recovery Attacks on Universal Hash Function
Based MAC Algorithms. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 144–161. Springer, Heidelberg (2008)

19. Kazymyrov, O., Kazymyrova, V.: Algebraic aspects of the russian hash standard
GOST R 34.11-2012. In: CTCrypt, pp. 160–176 (2013),
http://eprint.iacr.org/2013/556

20. Keccak team. “Strengths of Keccak - Design and security”, http://keccak.
noekeon.org/ (last accessed February 20, 2014)

21. Leurent, G.: Practical key recovery attack against secret-IV edon-R. In:
Pieprzyk, J. (ed.) CT-RSA 2010. LNCS, vol. 5985, pp. 334–349. Springer,
Heidelberg (2010)

22. Ma, B., Li, B., Hao, R., Li, X.: Improved Cryptanalysis on Reduced-Round GOST
and Whirlpool Hash Function. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.)
ACNS 2014. LNCS, vol. 8479, pp. 289–307. Springer, Heidelberg (2014)

23. Matyukhin, D., Shishkin, V.: Some methods of hash functions analysis with appli-
cation to the GOST P 34.11-94 algorithm. Mat. Vopr. Kriptogr 3, 71–89 (2012)

24. Mendel, F., Pramstaller, N., Rechberger, C.: A (Second) Preimage Attack on
the GOST Hash Function. In: Nyberg, K. (ed.) FSE 2008. LNCS, vol. 5086, pp.
224–234. Springer, Heidelberg (2008)

25. Mendel, F., Pramstaller, N., Rechberger, C., Kontak, M., Szmidt, J.: Cryptanalysis
of the GOST Hash Function. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157,
pp. 162–178. Springer, Heidelberg (2008)

26. Preneel, B., van Oorschot, P.C.: On the security of iterated message authentication
codes. IEEE Transactions on Information Theory 45(1), 188–199 (1999)

27. Wang, Z., Yu, H., Wang, X.: Cryptanalysis of GOST R hash function. Information
Processing Letters 114(12), 655–662 (2014)

28. Zou, J., Wu, W., Wu, S.: Cryptanalysis of the Round-Reduced GOST Hash Func-
tion. In: Lin, D., Xu, S., Yung, M. (eds.) Inscrypt 2013. LNCS, vol. 8567, pp.
307–320. Springer, Heidelberg (2014)

http://eprint.iacr.org/2009/634.pdf
http://eprint.iacr.org/2005/088.pdf
http://eprint.iacr.org/2013/556
http://keccak.noekeon.org/
http://keccak.noekeon.org/

Security Issues on Inter-Domain Routing

with QoS-CMS Mechanism

Hafssa Benaboud1(�), Sara Bakkali1,
and José Johnny Randriamampionona1,2

1 LRI, Performance Evaluation Team, FS Rabat, Mohammed V University
2 Nokia Networks, Ankorondrano, Madagascar
benaboud@fsr.ac.ma, bakkalisara@gmail.com,

jose.randriamampionona@nsn.com

Abstract. Ensuring end-to-endQuality of Service for traffic that traverse
multiple Autonomous Systems (AS) is today a major challenge for ISPs.
theQoS requirement became inevitablewith the evolution of the amount of
traffic flowing over the Internet, and also of the important diversity of these
traffic types. Each type of traffic requires a specific QoS parameters. To re-
spond to this need,we proposed in a previous work a newmechanismwhich
is mainly based on Class Manager server set in eachAS and can provide the
same traffic QoS guarantees even during the passage through several ASs.
These Class Manager Servers collect information concerning quality of ser-
vice set up within the AS, and then they exchange them. This exchange
may present a serious security weakness of all the architecture, and it can
be an important vulnerability of the whole network. In this paper, we dis-
cuss the main security issues of the proposed mechanism, concerning the
communication between the CM server and the internal routers and also
the exchange between the CM Servers. We give an architecture to avoid
vulnerablity during the exchange of information.

Keywords: Inter-domain routing · QoS management · Class Manager
Server · Vulnerability

1 Introduction

Internet is an interconnection of multiple IP networks. Initially, an IP network
was conceived to route only the traffic data which requires a very limited QoS
constraints concerning a low loss ratio. So, the Internet network does not have
to provide any QoS and it’s named best effort network. However, with the per-
manent internet’s evolution due to the huge quatity and diversity of applications
and services offered to clients (voice over IP, streaming, ...), IP networks have
to route several types of traffic. Considering the wide diversity of traffic and the
limited network ressources, the best-effort IP network cannot route these traffic
in the appropriate conditions, since each type of traffic has its own QoS require-
ments. To solve this problem, several models and techniques have been proposed

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 287–296, 2015.
DOI: 10.1007/978-3-319-18681-8_23

288 H. Benaboud et al.

that ensure QoS in an IP network, and differentiate network behavior accord-
ing to each type of traffic ([3], [4], [5]). However, the problem remains unsolved
for any traffic crossing multiple domains. Therefore, some research is currently
focusing on how to ensure end-to-end QoS in an inter-domain environment and
the corresponding challenge is growing with the current Internet infrastructure.
([13],[14], [15]).

In order to ensure the real inter-domain end-to-end QoS, we proposed in
[1] a new method, which we call QoS-CMS in this paper, and is based on Class
Manager servers. These Class Manager Servers collect all the information related
to the QoS in each edge router in their own AS and exchange them to each other.
Each CM server has to communicate with every edge router in the AS in order
to fill its CT table. During these communications, routers send to the CM server
all the data in clear text which could cause an important security flaw. Also, the
exchange between neighboring CM Servers is transported using a regular TCP
session and this could present a vulnerability of the whole mechanism.

In this paper, we discuss these security weaknesses and we propose some
alternatives to secure the exchange, both between the Edge routers and the CM
Server, and between the CM servers themselves. We will show also that, the
vulnerability problem will be solved without degrading the performances of the
QoS-CMS mechanism in term of delay and loss rate.

This paper is organized as follows. We first recall the principle of our mecha-
nism in Section 2. Section 3 discusses the problem of security between the CM
server and edge routers, as well as between CM servers. Section 4 provides some
alternatives to overcome security problems. Finally, we conclude our paper in
section 5.

2 Mechanism Principle

Before giving a brief description of our mechanism principle, we present some
related works.

2.1 Related Works

Ensuring QoS for traffic circulating within the same AS, can be performed by
several solutions and technologies that have been proposed and implemented,
such as IntServ (Integrated Services) [3] model, DiffServ (Differentiated Ser-
vices) [4] model or even MPLS (Multi Protocol Label Switching) [5]. However,
traffic that crosses two different ASs is still facing a problem concerning routing
conditions. This problem is mainly due to the fact that QoS constraints, required
by the client and which the operator undertakes to provide (usually specified in
the Service Level Agreement, SLA [6]), are defined in the classes of service, while
the definition of the classes of service is assured by the domain administrator,
they are consequently specific to each domain, and are valid only within this
domain. Also, information concerning topology and available resources on the
links, that are necessary for ensuring QoS, cannot be communicated between the

Security Issues on Inter-Domain Routing with QoS-CMS Mechanism 289

various operators that are in competition. Thus, in this case, at the transition to
another domain, the QoS constraints offered to the traffic will not be the same as
in the source domain. Therefore the QoS required by the client at the beginning
will not be provided from the end-to-end until its destination.

Various studies have been conducted to propose solutions that solve the prob-
lem of inter-domain routing with QoS constraints. The proposed solutions can
be classified into two main classes:

– Theoretical (or analytical) solutions: mainly based on algorithms for com-
puting a path that satisfies the various constraints imposed by the different
traversed domains. Among these solutions, we cite the following. A reliable
routing with QoS guarantees for multi-domain IP/MPLS networks approach
presented in [14], a hybrid approach for the inter-domain multi-constraints
paths computation described in [15], and a multi-constraints end-to-end path
computation through several inter-domain routes presented in [16].

– Technical solutions: are mainly extensions or improvements of existing tech-
nologies. Indeed, several solutions that have been proposed are based on
operational technologies like MPLS or Border Gateway Protocol (BGP) [9].
In this context, we cite: the inter-domain MPLS Traffic Engineering [11],
a BGP extension presented in [10], and also other solutions that introduce
new principles like in [12] and [13].

All these inter-domain solutions do not provide to clients traffic the same QoS
required as in its source domain. In this context, we introduced a solution that
offers to client’s traffic the same QoS constraints even during the transition to
another domain. In the following section we remind briefly our solution.

2.2 Brief Description of the Proposed Solution

We introduced in [1] a new method that provides a new mechanism for inter-
domain traffic treatment. This mechanism ensures continuity of QoS constraints
offered to the client even after the transition to other domains. In this section
we remind the main points of the proposed method. The approach is based on
designing in each domain a server responsible for the management of the different
classes of service, named the Class Manager (CM). On this server a table named
Class Table (CT) is defined, and contains all information concerning the different
classes defined in this domain (such as bandwidth, loss rate, delay, etc.). Once
the CM of each domain fills its CT, it sends it to the neighboring domain. In
this way, each CM has all the information about its neighbors’ classes of service,
and then, upon receiving a packet from the neighboring domain, the router in
the current domain can classify it in a class that has the same characteristics as
the source class. In this manner, the client flow retains the same QoS constraints
throughout its path to the destination, and receives the same treatment from
end-to-end.

Our mechanism is studied in [2] using simulation of various scenarios. Simu-
lation results show that, using this mechanism, network performances in term of

290 H. Benaboud et al.

delay and loss rate are improved and also show a better optimization of network
resources by reducing the utilization rate of the end to end link.

However, the study carried out in [2] didn’t take into account security issues,
and hence, the impact of security mechanisms which could be implemented to
mitigate these problems. In the following section, we discuss some security issues
of our mechanism and we propose a solution which could be implemented to
overcome these problems.

3 Security Issues

As we mentioned previously and according to the mechanism principle, each CM
server communicates with each edge router in the AS to fill its CT table. Dur-
ing this communication the edge router sends to the CM server all information
concerning the QoS offered to client’s traffic. However, all communicated infor-
mation are sent in clear text, which means that they can easily be intercepted by
any unauthorized third parties. Also, the mechanism is based on the exchange
of CT tables between CM neighbors. The exchange is performed via a regular
TCP session without any authentication of the CM servers or any encryption
of exchanged data. So, the communication between CM servers is exposed to
a various security threats. Our objective is to study these security problems,
and to propose alternatives that may resolve them and secure the CM server
mechanism.

Because of the confidential and important information contained in CT tables,
the security issues of the CM server mechanism concerns two principal points:
the communication between edge routers and the CM server, and the exchange
between neighboring CM servers. In this section we discuss the security issues
observed at each point.

3.1 The Communication Between Edge Routers and CM Server

The vulnerabilities of the communication between edge routers and CM server
concern two parts : the first one is about the identity of both edge router and
the CM server, and the second one is about the integrity and authenticity of the
data sent by the routers.

Identity of the Nodes. CM server mechanism has to use a method to verify
the identity of the CM server and of the edge router sending the data. If not,
any outsider can spoof the IP address of the CM server to impersonate it, and
then, it can receive all information coming from edge routers and modify them
which can affect the clients’ traffic routing conditions. In the same way, any
unauthorized party can spoof an edge router’s IP address and send incorrect
data to the CM server, and this can also badly affect the routing conditions of
the clients’ traffic.

Security Issues on Inter-Domain Routing with QoS-CMS Mechanism 291

Authenticity of Data. In the other hand, the proposed method has to verify
the integrity and authenticity of data sent by the edge router. Indeed, an error in
data sent by an edge router can modify the treatment of traffic in terms of QoS.
Errors can be in any entry of the CT table corresponding to any field of this
table. Actually, any syntactic error or any wrong nature of an entry of CT table
may change the QoS allowed to a certain client traffic. Also, an unauthorized
person can easily modify the values of CT tables entries without being detected
which can damage the traffic routing conditions.

The two issues discussed previously are not so important as is the next one.
Indeed, the exchange between the CM and the router takes place in the same
domain. For the next issue, this exchange is between two different domains.

3.2 The Exchange Between Neighboring CM Servers

Another security problem of CM server mechanism concerns the exchange of
CT tables between CM servers. In fact, the exchange between neighboring CM
servers is done via a regular FTP transfer. So, the mechanism uses the protocol
TCP as a transport protocol, which means that the communication between
CMs is exposed to all attacks against TCP which are much more common in
Internet environment. Actually, the use of TCP may be a source of multiple vul-
nerabilities which concerns multiple TCP parameters including: synchronization,
acknowledgment and reset.

TCP Synchronization. Indeed, a synchronization message ”SYN” and syn-
chronization acknowledgment message ”SYN ACK” are sent during the TCP
session establishment. However, a CM server cannot verify the identity of the
CM server that is requesting the establishment of the TCP session. That is why,
any outsider can sent these packets to a CM server at the same time with another
CM server trusted node, so the first node may reject the trusted connection and
establish a session with the outsider, and this may prevent the achievement of
the mechanism and affect the traffic routing conditions.

TCP Acknowledgment. Also, the TCP acknowledgment message is used to
complete the establishment of the TCP session. It can also be spoofed by an
outsider to be connected with a CM server and receives all exchanged data of
the CT table, which must remain confidential and if its intercepted that may
negatively act on routing conditions of traffic.

TCP Reset. The receipt of a TCP reset message ”RST” causes immediately
the TCP session closure, which means the interruption of the exchange between
CM servers, and this way the CM server mechanism could not be performed. So,
it may present an important threat if an outsider can spoof this message.

292 H. Benaboud et al.

4 Proposed Solution

4.1 The Communication Between Edge Routers and CM Server

In order to authenticate both the router and the CM server, an authentication
server could be implemented; this could be done using a simple AAA (Authen-
tication, Authorization and Accounting) server [17] and Kerberos [18].

A direct transfer from the router to the CM server is not really recommended.
In order to add more security layer, using a secure file transport such as SCP is
recommended during the backup. The router configuration is then transferred
to a central backup server (using a secure transfer protocol), and all required
information are stripped from the configuration file and put in an encrypted
class file. The transfer from the CB (Central Backup) to the CM server could be
implemented using a simple secure file transport, such FTP over SSL/TLS [19]
or FTP over SSH, or SFTP over SSH.

Figure 1 illustrates a solution to secure communication between edge routers
and CM server.

Fig. 1. Securing communication between edge routers and CM server

Security Issues on Inter-Domain Routing with QoS-CMS Mechanism 293

As highlighted above, a direct transfer from the router to the CM server is not
recommended from a security point of view. Assuming that a backup policy is
in place, and the Edge router’s configuration file is pushed regularly to a backup
server. The first part of the idea is to define a high secure environment between
the Edge router and the central backup server, and then work on the transfered
configuration file in order to strip all QoS and Class related information. The
new output file will be formated as ”.CLASS” file, before it is pushed to the next
CM server.

How the security between the router and backup server should be imple-
mented? Two new servers come in the scenario: AAA server and the CA signing
sever. The second one is used ONLY to sign the certificate request (private key)
from the client and could/should be disconnected from the network. The first
one is to authenticate the temporary user that is being used to transfer the file
itself.

Router to the Backup Server

1. The private key and the signing request is generated on the client
2. The same is sent or shared to the signing server and signed - this is applicable

for all nodes within the same AS.
3. Since both routers and the backup server are in the same CA, they are

authorized to communicate to each other (hardware authentication - level
01)

4. During the handshake between the backup server and the router the cipher
to use is selected by both ends.

5. The secure channel is established and the credentials (username,password)
are sent towards the CM server and proxied to the Radius server

6. The access request response - ACCEPT is sent and the data (configuration
file) is sent.

In the Backup Server

1. The file is stripped by the mean of a simple script and all the lines containing
all critical information are removed.

2. The file is then encrypted using the same keys.

From the Backup Server to the CM Server

1. The scenario is same as the first one (router to the backup server) but this
time the data is encrypted (doubly).

4.2 The Exchange between Neighboring CM Servers

FTP or a simple synchronization is not a solution. The identity of both server
could be managed using a dual AAA server in both ends, the transfer could be
secured using one of the following flows:

294 H. Benaboud et al.

– FTP over SSL or SFTP or SCP (FTP over SSH is not safe as the data will
not be channelized correctly inside the SSH channel)

– The data is encrypted using an OTP (One Time Password) [20] and PGP
(Pretty Good Privacy) before it is transferred using the above flow.

Figure 2 illustrates a solution to secure communication between CM servers.

Fig. 2. Securing communication between CM servers

1. The encrypted file is then compared to the previous encrypted backup files
if any.

2. If it is the first time then it will be shared right away towards the 2nd CM
server (CLASS-SEND)

3. If different, the difference (plain text) is stripped from both files and en-
crypted again

4. The difference is then shared to the 2nd CM server if required, if not it will
not be transfered (CLASS-UPDATE)

Security Issues on Inter-Domain Routing with QoS-CMS Mechanism 295

5 Conclusion

In this paper, we first reminded the main points of the QoS-CMS mechanism pro-
posed in [1] to ensure end-to-end QoS in inter-domain. We then listed the various
security issues that could affect the network if a safety mechanism is not imple-
mented. Vulnerability risks are possible during communication between border
routers and CM servers in the same domain, as well as during the exchange
of CT between CM servers of different domains. To overcome this problem, we
discussed proposals to follow and we gave a solution for every level of risk. Note
that, by implementing the proposed security solution, the performance of our
mechanism will not be affected. Indeed, the exchange of data between border
routers and CM servers do not happen often, so the time factor has no impact on
delay or throughput. Similarly, exchange tables between CM servers of different
ASs is very rarely and happens only when there is a change of service classes in
an AS domain.

References

1. Bakkali, S., Benaboud, H., Ben Mamoun, M.: On Ensuring End-to-End Quality
of Service in Inter-Domain Environment. In: Gramoli, V., Guerraoui, R. (eds.)
NETYS 2013. LNCS, vol. 7853, pp. 326–330. Springer, Heidelberg (2013)

2. Bakkali, S., Benaboud, H., Ben Mamoun, M.: Management of Inter-domain Qual-
ity of Service Using DiffServ Model in Intra-domain. In: Swi ↪atek, J., Grzech, A.,
Swi ↪atek, P., Tomczak, J.M. (eds.) Advances in Systems Science. AISC, vol. 240,
pp. 727–736. Springer, Heidelberg (2014)

3. Braden, R., Clark, D., Shenker, S. : Integrated Services in the Internet Architecture:
an Overview. IETF Informational, RFC 1633 (1994)

4. Blake,S., Black,D., Carlson,M., Davies,E., Wang,Z., Weiss,W.: An Architecture for
Differentiated Services. IETF Informational, RFC 2475 (1998).

5. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol Label Switching Architec-
ture. IETF Standards Track, RFC 3031 (2001).

6. Bourasa, C., Sevasti, A.: Service level agreements for DiffServ-based services’ pro-
visioning. Journal of Network and Computer Applications 28(4), 285–302 (2005)

7. Van Mieghem, P., Kuipers, F.A.: Concepts of exact QoS routing algorithms.
IEEE/ACM Transaction on Networking 12(5), 851–864 (2004)

8. Korkmaz, T., Krunz, M.: Multi-constrained optimal path selection. In: INFOCOM
2001 Twentieth Annual Joint Conference of the IEEE Computer and Communica-
tions Societies, pp. 834–843 (2001)

9. Rekhter, Y., Li, T., Hares, S.: A Border Gateway Protocol 4 (BGP-4). IETF Stan-
dards Track, RFC 4271 (2006)

10. L. Xiao, Lui, K.-S., Wang, J., Nahrstedt, K.: QoS extension to BGP. In: Proceed-
ings of the 10th IEEE International Conference on Network Protocols, pp. 100–109
(2002)

11. Farrel, A., Vasseur, J.-P., Ayyangar, A. : A Framework for Inter-Domain Multipro-
tocol Label Switching Traffic Engineering.IETF Informational, RFC 4726 (2006).

12. Howartha, P., Boucadairb, M., Flegkasa, P., Wanga, N., Pavloua, G., Morandb,
P., Coadicb, T., Griffinc, D., Asgarid, A., Georgatsosen, P.: End-to-end quality of
service provisioning through inter-provider traffic engineering. Computer Commu-
nications 29, 683–702 (2006)

296 H. Benaboud et al.

13. Misseri, X., Rougier, J.-L., Moretti, S.: Auction-type framework for selling inter-
domain paths. In: Proceedings of The International Conference on Network and
Service Management (CNSM), pp. 284–291 (2013)

14. Sprintson, A., Yannuzzi, M., Orda, A., Masip-Bruin, X.: Reliable Routing with QoS
Guarantees for Multi-Domain IP/MPLS Networks. In: 26th IEEE International
Conference on Computer Communications IEEE INFOCOM 2007, pp. 1820–1828
(2007)

15. Frikha, A., Lahoud, S., Cousin, B.: A Hybrid End-to-End QoS Path Computa-
tion Algorithm for PCE-Based Multi-Domain Networks. Journal of Network and
Systems Management, 1–27 (2013)

16. Djarallah, N.B., Pouyllau, H., Lahoud, S., Cousin, B.: Multi-constrained path com-
putation for inter-domain QoS-capable services. International Journal of Commu-
nication Networks and Distributed Systems 12(4), 420–441 (2014)

17. Metz, C.: AAA protocols: authentication, authorization, and accounting for the
Internet. IEEE Internet Computing 3(6), 75–79 (1999)

18. Neuman, B.C.: Kerberos: an authentication service for computer networks. IEEE
Communications Magazine 32(9), 33–38 (1994)

19. Dierks, T., Allen, C.: The TLS Protocol. RFC 2246, IETF Network Working Group
(January 1999)

20. Haller, N., Metz, C., Nesser, P., Straw, M.: A One-Time Password System. RFC
2289, Internet Standard (February 1998)

Uncovering Self Code Modification in Android

Faisal Nasim, Baber Aslam(�), Waseem Ahmed(�), and Talha Naeem(�)

National University of Science and Technology, Islamabad, Pakistan
faisalnasimkhan445@gmail.com, ababer@mcs.edu.pk

http://www.nust.edu.pk/Pages/Home.aspx

Abstract. Android has proved itself to be the defacto standard for
smart phones. Today Android claims a major share of smart phones OS
market . The increasing popularity of Android has attracted attention
of developers from around the globe in a very short span of time. Con-
cerns and resultantly techniques involving code protection were evolved.
The techniques were focused to hide sensitive logic of important pieces of
code.These techniques were also used by malicious code writers to hide
the malicious functionality of their code. This paper will analyze the tech-
niques being employed in Android applications for code obfuscation. In
addition, one of obfuscation technique i.e. runtime code modification in
Android would be analyzed in detail.The major part of the paper would
focus on tools and techniques for extracting dex files from the memory
and analyzing them in order to recover code which has been injected in
application process during runtime and is actually being executed in the
memory.

Keywords: Android reverse engineering · Code modification · Obfus-
cation

1 Introduction

In recent years, an explosive growth for smart phones sale and usage has been ob-
served [5]. Increased processing and memory have transformed the smart phones
into a full fledged personnel computing device. Wide range of applications be-
longing to categories such as entertainment, lifestyle, education, business and
personalization etc are available on different Android markets. New and ad-
vanced applications for smart phones are being released on every passing day.
Smart phones have increased the dependence of users on them to very high
degree. This increased dependence on smart phones has created some serious
security concerns for the users. Despite the positive contributions which the ad-
vancing technology has imparted, some negative aspects in the form of malware
have also emerged.

Modern Android malware have not only inherited many of the code hiding
techniques from their x86 counterparts but have also taken tremendous advan-
tage of obfuscation techniques which were basically meant to protect the intel-
lectual rights of the application. Reversing these malware is important because
they reveal sensitive information such as the extent of damage they can do, the

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 297–313, 2015.
DOI: 10.1007/978-3-319-18681-8_24

298 F. Nasim et al.

method they have chosen to hide themselves from AV tools and the strategy they
have adopted to spread themselves etc. All this information contribute towards
a better and resilient AV product.

Android have inherited most of the code obfuscation techniques from their
x86 counterparts. Most of the techniques which were valid for x86 applications
are also effective in case of Android. These techniques are meant to disrupt static
and dynamic analysis and make reverse engineering as difficult as possible. Dy-
namic analysis is a relatively new analysis technique in which an analyst try to
understand the functionality of the code during runtime. Common examples of
code obfuscation techniques include string manipulation, identifier mangling and
dead code injection. These all techniques modify the source code in such a way
that efforts to analyze a software increases without disturbing the overall logic of
the application. Self code modification is another obfuscation technique in which
the source code is only modified during run time within the memory. Modifica-
tion in the memory does not leave any artifacts of code alteration on the disk.
Under Android, code modification during runtime is achieved by using Native
code (ARM ELF) which can be executed as part Android application as dynamic
library. Analyzing dynamically modified code with static analysis is extremely
difficult. Traditionally analysts make use of dynamic analysis tools to understand
the behavior of self code modification. This paper discusses techniques through
which dynamically modified code can be captured from the memory after which
it can be statically analyzed to reveal the functionality of the application. We
have analyzed the use of a tool named as Volatility for retrieving of dex file
from memory. In section 2 of our paper we will discusses different obfuscation
techniques used by Android application. Section 3 will delve on self code mod-
ification under Android. Section 4 will discuss techniques and tools designed to
uncover Self code modification.

2 Code Obfuscation

Code obfuscation is a technique that deliberately make such changes in the code
that it becomes difficult to understand it [6]. Although code obfuscation puts a
smoke screen around the code but retains the overall logic of the application.
Aim of obfuscation is to make reverse engineering computationally hard. Code
Obfuscation is used by the developers to protect their code from being reverse
engineered. The central theme of code obfuscation is security of the application
through obscurity. In Android, code obfuscation can be applied at both the
source and bytecode level. Tools that can perform code obfuscation for Android
bytecode include ProGuard, Dalvik-obfuscator, APKObfuscator and DexGuard.
In the upcoming sections few of the most commonly used techniques will be
discussed.

Code Modification 299

2.1 Identifier Mangling

Identifier Mangling involves replacing names of identifiers such as variable names,
method names and class names with meaning less identifiers that does not give
any meta information regarding the code associated with it [8] [18] [16]. In
case of ProGuard identifiers are replaced with minimal lexical sorted strings
i.e {a,b,c..aa,ab..ba,bc...}. Figure 1 shows the Casting class before obfuscation
whereas figure 2 shows the same Casting class after obfuscation. APKObfusca-
tor exploits Unix restriction that an identifier can be upto 255 characters. Since
strings in a Dex files are sorted in alphabetical order therefore APKObfuscator
appends extra data at the end of identifiers so that its position in the string table
inside Dex file does not change. Identifier Mangling hide the meta information
that can possibly reveal valuable information about the behaviour of the appli-
cation. This technique not only effectively obscures the functionality associated
with certain identifier but also drastically reduces the memory requirements of
the application.

Fig. 1. Before Obfuscation Fig. 2. After Obfuscation

2.2 String Obfuscation

Strings can be very useful in process of reverse engineering. They can, not only be
used to find the location of code of interest but also reveal sensitive information
such as passwords and cryptographic keys. String obfuscation involves changing
string to a value that can not be extracted simply by matching through regular
expression in some editor [18] [16]. This can be achieved through many methods
such as replacing the string with any non ASC-II combination, XORing the string
with some preset value or by using any encryption algorithm for encryption.
The process of string alteration must be reversible since it has to be reversed
to its original value before it can be used in the application or presented to
the user on some GUI. This constraint dictates the presence of decryption stub
within the code. Practically string obfuscation can be performed on source code
and bytecode level. Source code string obfuscation involves a custom decryption
method which can decrypt and handover the string to application when required.
Strings are entered in the source code in encrypted form. The disadvantage of
this technique is that encrypted string are present in string ids constant pool
and are visible to the analyst. APKProtect uses this technique. Theoretically
speaking bytecode string obfuscation is possible but practically it will become a
huge programming task due to following three reasons.

300 F. Nasim et al.

– Ordering of strings in string ids is alphanumeric
– String ids table does not contain repeating entries
– Fixing all references to string ids table across entire Dex file

This technique of obfuscation is effective only against static analysis and can
easily be defeated through dynamic analysis.

2.3 Dead Code Injection

Dead code injection injects code in an executable that will never be executed.
This is achieved by introducing non conditional and conditional branches. Con-
ditional branches will always be true so that execution-flow always follow the
valid code instead of dead code. Such conditions whose results are known in
advance are called Opaque Predicate. This approach will add extra nodes and
paths in the execution-flow diagram and thus add complexity in its analysis. Fur-
thermore, different techniques of adding dead code can also be used to break /
dodge disassemblers using different parsing algorithms. Adding non conditional
branches e.g goto, in front of dead code, make linear disassemblers disassemble
incorrect instructions but does not affect correct disassembling capability of dis-
assemblers using recursive traversal algorithm [10] [11]. In case of Android, dead
code can be introduced using pseudo instruction like fill-array-data-payload that
should never be encountered during normal flow of execution [9] beside other
traditional techniques.

2.4 Packing

Packing is the technique in which an executable is transformed in such a way
that it becomes impossible for an analyst to reverse engineer it [12]. This trans-
formation of an executable can achieved through variety of techniques. One such
technique can be the encryption of the executable and decrypting it just before
executing it. In this case there will be nothing available on the disk for the an-
alyst to analyze but in the memory. The decryption stub associated with such
an executable will have to perform four basic functions.

– Loading of encrypted file into the memory
– Decryption of the file
– Loading of decrypted file into the memory
– Execute the loaded file

Android packers encrypt the dex file in an APK which is decrypted by ARM
ELF file at runtime [13]. The decrypted version is then loaded and executed using
DexclassLoader. The packers applications usually have the capability to change
the structure and overall control flow of an APK which ultimately increases
the complexity to reverse engineer the application. HoseDex2Jar and Bangcle
are two such packers that encrypt the original dex file and decrypt them only
in memory for its execution[26]. HoseDex2Jar puts the encrypted dex in the
header of packing dex file and update its header length.

Code Modification 301

2.5 Dynamic Code Loading

Dynamic code loading gives an application the ability to load code at runtime
and execute [15]. This ability has been provided by the Android Platform itself
and is extensively used by malware to evade detection of malicious functionality
during off line application analysis. All applications submitted to google play
store are subject to off line application analysis before being accepted to the
store. This off line analysis is done by a software known as Bouncer. Bouncer
analyzes the submitted applications for any malicious functionality so that un-
desired applications can be filtered before admission [23]. Common technique for
a malware to evade detection by bouncer is to exclude malicious code altogether
once it is submitted to google. Once it makes its way to google play store and
installed on any user device, it download malicious piece of code at runtime and
execute it. An application cannot be declared malicious just due to the pres-
ence of runtime code loading functionality since many benign applications use
this capability for legitimate purposes. Android class DexClassLoader is used for
loading classes dynamically. DexClassLoader does not put restrictions on the lo-
cation of the code. It means that it can load and execute code from any location
over the Internet. This capability can prove harmful for benign applications if
they have instructions for loading code from location which can be written by
any other application i.e. writable location.

2.6 Self Modifying Code

Application code that can alter itself during run time is referred to as self modi-
fying code [4]. This implies that the code which is executed at run time may not
be the same code that form part of application on the disk. This technique is used
as an effective obfuscation measure to hide the functionality of the application.
Self code modification has many uses e.g run time code generation, patching of
subroutine address calling, prevent reverse engineering and evade detection by
virus / spyware scanning software [1]. It is an effective method to evade analysis
by static analysis tools. Injecting self code modification techniques in a mal-
ware code can increase cost and effort of static analysis to an undesirable value.
Footprints of self code modification can be detected by observing behavior of
an application during dynamic analysis. Since modern malware are capable of
detecting the environment in which they are running i.e actual physical device
or an emulator and can therefore decide at runtime whether to go for self code
modification or not[24]. Dynamic analysis tools can therefore be rendered useless
due to the fact that most of these tools make use of emulator as the base platform.

3 Android Self Code Modification

Most Android applications are written in Java and can use C/C++ code from
within the Java code. Java code is compiled into Java bytecode and packed in

302 F. Nasim et al.

a .class file format. This .class file is then transformed into Android specific
Dalvik bytecode in a .dex file. Google choice for a Dalvik .dex format instead
of Java .class format is based on the better performance results achieved using
register based Dalvik Virtual Machine. Dx tool, available with Android SDK,
is used for the conversion of .class to .dex format.This bytecode is interpreted
by the Dalvik Virtual Machine. Unlike Java .class file, all the bytecode of the
an Android application is packaged into a single .dex file. An Android applica-
tion besides using Java can also take advantage of Native code for performing
processor intensive tasks. Native code is the one which can be run directly by
the processor i.e. ARM assembly code in case of ARM devices. Native code is
compiled as a shared library and its functions can be called from within the Java
code in an Android application. All the code of an Android application whether
it is Dalvik bytecode or Native, lives with in the bounds of the same process
and therefore share the same privileges [2]. A typical cut out section of Android
process memory layout can be seen in figure 3.

Fig. 3. Android Process Map

In this section of Android application memory layout it can be seen that
classes.dex file (/data/dalvik-cache/data@app@com.example.hellondk-1.apk@
classes.dex)which contains the Dalvik bytecode of the application has been
mapped into the process memory as read-only. Dalvik virtual machine reads
the instructions, it comes across in the classes.dex file, and interprets them. In
the third line of the screen shot, data section of the native library (ARM ELF)
libhello.so can be seen. In the immediate next line the actual executable code of
the library libhello.so is mapped as read-execute.

Instruction set of Dalvik bytecode consists of limited number of instruction
(as compared to x86 or ARM) and does not contain any instructions that can be
used to modify bytecode within classes.dex file during execution. The classes.dex
file therefore cannot contain any code that can be used for self modification
[16]. Since, the Native library bundled together with the application is mapped
into the same address space as that of Dalvik bytecode and can access any
arbitrary address inside the process, it can therefore access and overwrite Dalvik
instructions. Self code modification with in classes.dex file would therefore need
the services of Native code.

Since classes.dex file is mapped as read-only into the application’s address
space therefore any attempt to alter it from within Native code would fail

Code Modification 303

and result in the termination of the process. Before attempting any tampering,
classes.dex file has to be remapped writable. Once memory pages containing
mapped classes.dex files is remapped writable, any type of modification can be
performed on it through the Native code.

Another technique for self code modification which is commonly used on x86
and ARM platform is to create a new mapping with read and execute permissions
in the virtual address space of the calling process using mmap system call. The
next step is to write the code into the newly created mapping and execute by
jumping to it.

4 Inspecting Self Modified Code in Android

As already discussed in section 3 that all Android applications have classes.dex
file mapped into the memory pages as read-only. We can confirm it from mem-
ory space layout of an Android application displayed in figure 3. If classes.dex
file is to be changed through the Native code, all or few pages in the memory
where classes.dex has been mapped will have to be mapped writable. The sys-
tem call which is used for changing the permissions of memory pages belonging
to certain application is mprotect. Four types of permissions which can be as-
signed to a memory page, as standalone or in combination, are PROT NONE
(The memory cannot be accessed at all), PROT READ (The memory can be
read), PROT WRITE (The memory can be modified) and PROT EXEC (The
memory can be executed). Figure 4 shows the cut out section of an Android
application in which code has been altered during the runtime.Here we see that,
classes.dex has been partitioned in three sections. The middle partition is read-
write. This is the partition where the code has been replaced with new one
during execution. Note that the malware writer changed memory permissions
of only those pages where he intended to perform code modification i.e from
memory address 0x47ee9000 till 0x47eea000. Permissions of the rest of the pages
were left unaltered. The two unaltered read-only sections of classes.dex extends
from 0x47ec2000 till 0x47ee9000 and from 0x47eea000 till 0x47f28000. Since the
smallest unit of memory where permission enforcement is possible is a memory
page therefore mprotect can alter the permission of the an entire page and not
some part of it. An application will always be allocated an entire page inside
memory. This is the reason why the size of all three sections of classes.dex are
the multiples of page size.

Fig. 4. Android Process Map

304 F. Nasim et al.

The fact which we will be exploiting in order to detect and inspect the self
code modification is that the classes.dex is a memory-mapped file. A memory-
mapped file is a segment of virtual memory which has been assigned a direct
byte-for-byte correlation with some portion of a file or file-like resource [14].
The general strategy for detecting self code modification would be comprising of
following steps.

– Obtaining memory dump of pages where classes.dex file has been mapped.
– Comparing the extracted classes.dex file with classes.dex present on the
Android file system (/data/dalvik-cache).

– Interpreting the bytecode which has been modified to figure out modified
instructions.

– Diagrammatically, the overall process can be seen in Figure 5

4.1 Obtainign Memory Dump

Traditionally memory dumps on Linux machines are obtained using /dev/mem
device. Using this method initial 896 MB of RAM can be read without the need
of loading any additional code into the kernel. Android does not add the ability
to expose physical memory through /dev/mem and therefore cannot be used
for physical RAM capture. Furthermore, using this technique, memory captures
over and above 896 MB is not possible on Linux machines. To work around this
limitation Ivor Kollar created fmem [22], a loadable kernel module, which sup-
ports memory captures on Linux machines. fmem uses page is ram function to
check the presence of page in the memory. fmem loadable kernel module cannot
be used on Android devices since page is ram function is absent on ARM ar-
chitecture. The other choice for obtaining memory dump on an Android device
is dmd module developed by Joe Sylve[25]. This is also a loadable kernel mod-
ule and offer memory acquisition over TCP and device SD card. This module
takes the approach of parsing the kernels iomem resource structure and obtain-
ing physical addresses of system RAM. We use dmd module for obtaining the
memory dump of an Android device and getting the memory contents of our
interest for our further analysis. One issue in using loadable kernel modules is
the enforcement of stringent sanity checks before loading of any module in the
kernel. The checks enforced by kernel ensures that the module has been compiled
for that very version of the kernel failing which results in loading error. Android
kernel is compiled with the options of loading and unloading the external ker-
nel modules as unchecked. With these options as unchecked we cannot load the
dmd module for obtaining Android RAM image. The general steps for obtaining
memory dump of Android device using dmd are enlisted below [19] [17].

– The first step is to build the kernel module with options for loading and
unloading the external kernel modules i.e. CONFIG MODULES, CON-
FIG MODULES UNLOAD, CONFIG MODULES FORCE UNLOAD as
checked.

– Cross compile dmd against the kernel built in the first step.

Code Modification 305

Fig. 5. Process of replacing and analysing tempered instructions

306 F. Nasim et al.

– Boot the Android device with the custom built kernel.
– Push the dmd module on SD card using adb command i.e. adb push dmd-
evo.ko /sdcard/dmd.ko

– Load dmd module into the kernel with following command.
insmod dmd path=/sdcard

– Last step is the dumping of Android memory contents on SD card and pull
it out of Android device using adb pull command or alternatively using TCP
dump feature of dmd module .

4.2 Extraction of Target Process Memory from the Dump

Once extraction of Android memory image using dmd module is complete, next
step would be getting the required memory pages where our target classes.dex file
has been mapped. This would be achieved using Volatility.Volatility is Volatile
Memory Artifact Extraction Utility Framework. This is an advanced framework
for performing forensic analysis of memory dumps [20]. The framework supports
various dump formats from Windows and Linux. In case of Android LIME for-
mat is supported [17]. Useful digital artifacts can be extracted out of memory
dump which can be of used for forensic examination. Most common functionali-
ties which can be performed with different sort of modules include enumeration
of processes running under the system at the time of dump collection, displaying
the complete address space of the memory, displaying address space of individual
processes. Another useful module which we will be using for this project is the
extraction of required memory segments from within a process and dump them
as single file. Various Volatility plug-ins which will be used for analyzing runtime
code modification are displayed in Table 1. Extraction of memory sections would
be achieved through following Volatility command.

Table 1. Volatility Plug-ins

Plugin Description

pslist List running process

memmap Print memory map

memdump Dump the addressable memory

python vol.py –profile=LinuxGoldfish-2 6 29ARM -f
/home/ram.lime linux dump map -s 0x47ec2000 -p <process id >

The above command would extract memory section starting from 0x47ec2000
till 0x47ee9000. The other required sections of memory would also be extracted
on the same lines. In our case, we have extracted the three sections of classes.dex
file visible in figure 4. The three extracted sections can be combined through any
hex editor to form a single file. This single file is classes.dex which was present in
the memory at the time when memory dump was created by dmd kernel module.

Code Modification 307

We call this file as classes.dex-M in the rest of the paper. Similarly the classes.dex
file present on Android file system i.e. /data/dalvik-cache would be referred to as
classes.dex-F in the text to follow. The third type of classes.dex file that would
be extracted from apk would be refered to as classes.dex-A. Since classes.dex-
M file is memory-mapped therefore there should be no difference between the
two classes.dex files i.e classes.dex-M and classes.dex-F. The two files will be
different in case where runtime code modification has been performed.

4.3 Analysis of classes.dex-M Files

At the beginning of this project it was visualized that the classes.dex-M will
be compared with classes.dex-F for analyzing the run time code modification.
But when the comparisons were done it was revealed that the similarity between
two types of files was ranging between 50% - 85%. These results were in con-
tradiction to our previous intuition that only a small percentage of the dex file
should change which represents the modified bytecode where run time code mod-
ification has been done. Applications where no dynamic code modification was
performed should have no difference between the two types of classes.dex files.
Graph displayed in figure 6 depicts the similarity percentage between classes.dex-
M and classes.dex-F of some commonly used applications available on Google
Play. Here classes.dex-M was obtained using dmd module. dmd was unable to
retrieve the classes.dex-M in case of App Lock and Hot Spot Shield.

Fig. 6. Similarity %

It was not possible to go ahead with run time code modification analysis
with the accuracy of results achieved using dmd for Android. In order to get
the reliable memory contents of classes.dex file, a tool was designed that was
capable of extracting memory contents of pages associated with the process
using ptrace system call. The tool made use of /proc/<pid >/maps to get the
memory addresses associated with the classes.dex of an Android application.
The ptrace system call provides a means by which one process (the ”Tracer”)
may observe and control the execution of another process (the ”Tracee”), and

308 F. Nasim et al.

can examine and change the Tracee’s memory and registers[21].The obtained
addresses were further used by ptrace utility to read the required contents. A
comparative analysis of the similarity results between Volatility and the designed
tool can be seen in Table 2

Table 2. *: Unable to retrieve image **: Unable to attach to process

Application Volatility Custom Tool

Whats App 49.5745 99.9997

Skype 76.2894 99.9994

Opera 83.5615 100

Viber 75.3598 99.9999

Instagram 71.5729 100

App Lock * 100

Hot Spot Shield * **

4.4 Comparison of classes.dex Files

In oder to explore the tampering done with the run time code modification it
would be necessary to compare classes.dex-M with classes.dex-F so that we can
find out what all has been tampered. Before comparing the two files we would
extract classes.dex-F file from the Android file system /data/dalvik-cache. Pres-
ence of classes.dex-F file at /data/dalvik-cache can be confirmed by using shell
on Android devices. File can be pulled out of device using adb pull /data/dalvik-
cache/data@app@com.example.ex.poc-1.apk@classes. File present on Android file
system is the optimized version of classes.dex-A file packed inside an APK file.

The optimized or odex file is different from normal classes.dex file packed
inside an APK. In odex or optimized Dex, method indexes are replaced with
vtable indexes and filed indexes are replaced with memory offsets [3]. There are
other differences as well between two types of classes.dex besides the ones stated
previously. At this stage we are having two types of classes.dex files available
with us i.e. classes.dex-M with classes.dex-F. The next step would involve the
comparison of two available files. Here we would perform analysis on a POC
application developed by Patrick Schulza of Bluebox Mobile Security [2]. For
this purpose we used vbindiff available for Linux platform. Figure 7 shows the
difference of dex bytecode between the two type of classes.dex files of the POC
application in different colour. The upper half of the screen shot shows the dex
bytecode retrieved from classes.dex-F file whereas the lower half shows the dex
bytecode of classes.dex-M file. Note that we see the different byte code at the
same addresses of POC application. This difference in color shows the tempered
bytecode inside the memory.

Code Modification 309

Fig. 7. The Difference between classes.dex files

4.5 Interpreting Bytecode

At this moment it can not be figured out what the tempered bytecode actually
refers to in classes.dex. This bytecode can belong to any section of classes.dex file
e.g data area or it can be bytecode representing the instructions of any method.
There can be two approaches to figure out the bytecode which is actually being
executed. One approach can be manual parsing of dex file. Manual parsing for
figuring out the exact code being executed is practically not feasible since the
size of dex file can be in MBs. One variant of this approach is to make use of
available tools that parse the dex file e.g. 010 Editor. This can be very useful as
the editor would parse the entire dex file for you and we can exactly pin point
the target bytecode. In this case it would be required to disassemble the dex
instructions by the user himself. The other more practical approach would be to
disassemble the entire dex file using disassemblers like IDA Pro, dexdump etc.
This would straight away present you with the disassembled bytecode in Smali
format. Both of the previously stated approaches can be effective as long as the
dex file presented to the previously stated tools is valid. But a small invalid
modification of the dex file would crash all these tools leaving the user with the
only approach of manually parsing the dex file and figuring out the tampered
bytecode which practically speaking is cumbersome.

Under normal circumstances, when an application is installed on an Android
device its dex file is optimized and verified for the validity of the dex bytecode
it contains. A verified and optimized version of the dex file will be stored on the
system, protected by file system permission (you cannot change it afterwards
unless you have rooted your device). Once the bytecode modification takes place
during runtime inside the memory, verifier does not comes in the loop for verifi-
cation of tempered bytecode. It is therefore much easier to inject bytecode that
can make reverse engineering tools to crash.

310 F. Nasim et al.

The same happened in case of the POC application. When different reverse
engineering tools including IDA Pro, Dexdump, 010 Editor etc were used to dis-
assemble classes.dex-M, they all crashed. The only tool that hinted towards the
cause of crash was IDA Pro. In case of our POC classes.dex-M file, the number
of tries size in code item of Ljava/lang/String;->append method was more than
the permitted 128. This number was injected during runtime and verifier was
unable to validate it. It is important to mention that code item data can only
be tempered in case where the method under consideration has not been called
during the course of execution of the application. In our case Ljava/lang/String;-
>append was never called from anywhere inside the classes.dex file. The number
of tries in method can be seen in figure 7 with in black rectangles. The figure 7
show the difference between two files from in vbindiff.

Fig. 8. Instructions from classes.dex-M

Due to the failure of current reverse engineering tools in parsing and analyzing
classes.dex-M, an automated approach is required for the automatic analysis of
dex files altered in memory. With this in mind we have developed a tool in
Python which made use of Androguard Library. This tool is capable of parsing
and analyzing the runtime modified bytecode. The algorithm used by this tool
is explained below.

– Classes.dex-M and classes.dex-F are input to the Python script.
– Both files are compared byte by byte to figure out the difference in bytes along
with their address.

– Make DalvikOdexVMFormat object of classes.dex-F. Any such attempt on
classes.dex-M would fail (In case where meta information of some method
has been altered to unauthorized value).

– Get the starting and ending addresses of all the methods in classes.dex-M.
– Compare the addresses obtained in step 2 for presence between starting and
ending address of all the methods. This would pinpoint the methods that are
modified in the memory.

– Addresses that are not matched with addresses of any of the methods do not
form part of any method.

Code Modification 311

– Based on starting and ending addresses of altered methods, extract the com-
plete byte code of these methods from classes.dex-M.

– Extracted bytecode would be replaced with the bytecode of modified methods
at the same addresses in classes.dex-F.

– The previous step will replace the original bytecode with modified bytecode in
classes.dex-F while keeping the meta information of the code intact.

– In the last step, the classes.dex-F would be analyzed using any dex file dis-
assembler to figure out the actual instructions being executed from memory.

Fig. 9. Instructions from classes.dex-F

The modified instructions in case of the POC application can be seen in figure
8. The actual instructions which were present in classes.dex on disk are visible
in figure 9. We can clearly see that that instructions in memory are altogether
different from instructions on disk. As an example we can see that bytecode for
classes.dex-F present at memory address 0x27698 is 0a04 whereas bytecode for
the same location in case of classes.dex-M is 5bb0 fc02.

5 Conclusion

This paper has proposed two tools. One tool for retrieving the dex file from the
memory using system call Ptrace and the other tool for analyzing the retrieved
dex file for code modification during the runtime. The dex file analysis tool can
detect the modified bytecode and disassemble it for easy comprehension of an
analyst. The output classes.dex file can be used as an input into many of static
analysis systems for further analysis. In addition, this paper has also analyzed
different code obfuscation techniques which are relevant in case of Android.
These techniques included static techniques which can be applied on the source
code or byte code present on the disk and dynamic techniques which includes
self code modification and dynamic code loading.

312 F. Nasim et al.

References

1. Uses of Self Modifying Code, http://stackoverflow.com/questions/516688/what-
are-the-uses-of-self-modifying-code

2. Android Security Analysis Challenge, https://bluebox.com/technical/android-
security-analysis-challenge-tampering-dalvik-bytecode-during-runtime

3. My Life with Android,
http://mylifewithandroid.blogspot.com/2009/02/optimized-dex-files.html

4. Self Modifying code, http://tibasicdev.wikidot.com/selfmodify
5. Smartphone OS Market Share, Q2 2014,

http://www.idc.com/prodserv/smartphone-os-market-share.jsp
6. How obfuscation helps protect Java from reverse engineering,

http://www.techrepublic.com/blog/software-engineer/how-obfuscation-
helps-protect-java-from-reverse-engineering/

7. Android Bytecode Obfuscation,
http://www.dexlabs.org/blog/bytecode-obfuscation

8. How obfuscation helps protect Java from reverse engineering,
http://www.techrepublic.com/blog/software-engineer/how-obfuscation-
helps-protect-java-from-reverse-engineering/

9. Bytecode for the Dalvik VM,
http://s.android.com/tech/dalvik/dalvik-bytecode.html

10. Linear Sweep vs Recursive Disassembling Algorithm, http://resources.
infosecinstitute.com/linear-sweep-vs-recursive-disassembling-algorithm/

11. What is the algorithm used in Recursive Traversal disassembly?
http://reverseengineering.stackexchange.com/questions/2347/what-is-
the-algorithm-used-in-recursive-traversal-disassembly

12. What are Suspicious Packers?
http://www.kaspersky.com/internet-security-center/threats/suspicious-packers

13. Android packer: facing the challenges, building solutions,
https://www.virusbtn.com/conference/vb2014/abstracts/Yu.xml

14. Memory-Mapped files,
https://msdn.microsoft.com/en-us/library/dd997372(v=vs.110).aspx

15. Custom Class Loading in Dalvik, http://android-developers.blogspot.com/2011/
07/custom-class-loading-in-dalvik.html

16. Patrick, S.: Code Protection in Android. Communication and Communicating De-
vices (2012)

17. Joe, S.: LiME - Linux Memory Extractor, Instructions v1.1
18. Alexandrina, K.: Efficient Code Obfuscation for Android. University of Luxem-

bourg (2013)
19. Holger, M.: Live Memory Forensics on Android with Volatility. Friedrich Alexander

University (2013)
20. The Volatility Framework, https://code.google.com/p/volatility/
21. Ptrace, http://linux.die.net/man/2/ptrace
22. How to acquire memory from a running Linux system,

https://gist.github.com/adulau/5094750
23. Sebastian, P., Yanick, F., Antonio, B., Christopher, K., Giovanni, V.: Execute This!

Analyzing Unsafe and Malicious Dynamic Code Loading in Android Applications.
In: Network and Distributed System Security Symposium (2014)

24. Thanasis, P., Giannis, V., Elias, A., Michalis, P., Sotiris, I.: Rage Against the
Virtual Machine:Hindering Dynamic Analysis of Android Malware. In: European
Workshop on Systems Security (2014)

http://stackoverflow.com/questions/516688/what-are-the-uses-of-self-modifying-code
http://stackoverflow.com/questions/516688/what-are-the-uses-of-self-modifying-code
https://bluebox.com/technical/android-security-analysis-challenge-tampering-dalvik-bytecode-during-runtime
https://bluebox.com/technical/android-security-analysis-challenge-tampering-dalvik-bytecode-during-runtime
http://mylifewithandroid.blogspot.com/2009/02/optimized-dex-files.html
http://tibasicdev.wikidot.com/selfmodify
http://www.idc.com/prodserv/smartphone-os-market-share.jsp
http://www.techrepublic.com/blog/software-engineer/how-obfuscation-helps-protect-java-from-reverse-engineering/
http://www.techrepublic.com/blog/software-engineer/how-obfuscation-helps-protect-java-from-reverse-engineering/
http://www.dexlabs.org/blog/bytecode-obfuscation
http://www.techrepublic.com/blog/software-engineer/how-obfuscation-helps-protect-java-from-reverse-engineering/
http://www.techrepublic.com/blog/software-engineer/how-obfuscation-helps-protect-java-from-reverse-engineering/
http://s.android.com/tech/dalvik/dalvik-bytecode.html
http://resources.infosecinstitute.com/linear-sweep-vs-recursive-disassembling-algorithm/
http://resources.infosecinstitute.com/linear-sweep-vs-recursive-disassembling-algorithm/
http://reverseengineering.stackexchange.com/questions/2347/what-is-the-algorithm-used-in-recursive-traversal-disassembly
http://reverseengineering.stackexchange.com/questions/2347/what-is-the-algorithm-used-in-recursive-traversal-disassembly
http://www.kaspersky.com/internet-security-center/threats/suspicious-packers
https://www.virusbtn.com/conference/vb2014/abstracts/Yu.xml
https://msdn.microsoft.com/en-us/library/dd997372(v=vs.110).aspx
http://android-developers.blogspot.com/2011/07/custom-class-loading-in-dalvik.html
http://android-developers.blogspot.com/2011/07/custom-class-loading-in-dalvik.html
https://code.google.com/p/volatility/
http://linux.die.net/man/2/ptrace
https://gist.github.com/adulau/5094750

Code Modification 313

25. Joe, S., Andrew, C., Lodovico, M., Golden, G.R.: Acquisition and analysis of
volatile memory from android devices. Elsevier 8(3-4), 175–184 (2012)

26. Axelle, A., Ruchna, N.: Obfuscation in Android Malware and how to fight back.
Virus Bulletin (2014)

27. Yury, Z., Maqsood, A., Olga, G., Bruno, C., Fabio, M.: StaDynA: Addressing the
Problem of Dynamic Code. In: ACM Conference on Data and Application Security
and Privacy (2015)

Performance of LDPC Decoding Algorithms

with a Statistical Physics Theory Approach

Manel Abdelhedi1(�), Omessaad Hamdi2, and Ammar Bouallegue1

1 Syscom Lab, National Engineering School of Tunis, ENIT, Tunisia
abdelhedi manel@yahoo.fr, ammar.bouallegue@enit.rnu.tn

2 University of Cartage, Supcom, Tunisia
omessaad.hamdi@gmail.com

Abstract. In 1989, N.Sourlas used the parallel that exists between the
information theory and the statistical physics to bring out that low den-
sity parity check (LDPC) codes correspond to spins glass models. Such
a correspondence is contributing nowadays to the similarity between the
statistical physics and the error correcting codes. Hence, the statisti-
cal physics methods have been applied to study the properties of these
codes. Among these methods the Thouless-Anderson-Palmer (TAP) is
an approach which is proved to be similar to the Belief Propagation
(BP) algorithm. Unfortunately, there are no studies made for the other
decoding algorithms.

The main purpose of this paper is to provide a statistical physics anal-
ysis of LDPC codes performance. First, we investigate the Log-Likelihood
Ratios-Belief Propagation (LLR-BP) algorithm as well as its simplified
versions the BP-Based algorithm and the λ-min algorithm with the TAP
approach. Second, we evaluate the performances of these codes in terms
of a statistical physics parameter called the magnetization on the Addi-
tive White Gaussian Noise (AWGN) channel. Simulation results obtained
in terms of the magnetization show that the λ-min algorithm reduces the
complexity of decoding and gets close to LLR-BP performance. Finally,
we compare our LLR-BP results with those of the replica method.

Keywords: LDPC codes · Ising spin · LLR-BP algorithm · BP-Based ·
λ-min · TAP approach

1 Introduction

Nowadays, the Low-Density Parity-Check (LDPC) codes have become a part of
essentially all new communication standards such as DSB-S2, DVB-S2X, DVB-
T2 [1]. Actually, these codes can get very close to the Shannon limit by the mean
of an iterative decoding algorithm called Belief-Propagation (BP) algorithm [2].
The implementation of the BP algorithm is a difficult task. In order to overcome
this difficulty, all these standards use reduced-complexity decoding algorithm
such as the BP-Based [3] algorithm and the λ-min algorithm [4].

In 1989, N.Sourlas established that the LDPC codes and the spin glass models
are equivalent [5]. Since then, the statistical physics methods initially developed

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 314–330, 2015.
DOI: 10.1007/978-3-319-18681-8_25

Performance of LDPC Decoding Algorithms 315

for the study of disordered systems have also been applied to analyze the proper-
ties of these codes. Nowadays, this result has become a common tool to study the
properties of LDPC codes in a wide range of channel such as Binary Symmet-
ric Channel (BSC) [6,7,8], asymmetric channel [9], binary memory asymmetric
channel [10], but only for the BP algorithm.

Motivated by this fact, we propose to analyze the decoding algorithms of
LDPC codes by statistical physics methods. Actually, the main objective is to
develop the Log-Likelihood Ratios-Belief Propagation (LLR-BP) algorithm and
its simplified versions i.e. the BP-Based algorithm and the λ-min algorithm with
the TAP approach. We evaluate the mentioned decoding algorithms performance
in terms of a statistical physics parameter called magnetization in the case of an
additive white Gaussian noise (AWGN) channel.

Our paper is organized as follows. Section 2 introduces the LDPC codes and
their BP decoding algorithm. Section 3 briefly introduces some tools relative to
statistical physics. Section 4 demonstrates the similarity between LDPC codes
and spin glass models. In Sect. 5, we develop the LLR-BP algorithm and its
simplified versions the BP-Based algorithm and the λ-min algorithm with the
TAP approach. Simulation results in terms of the magnetization are presented in
Sect. 6. The performance of the LLR-BP algorithm is compared to the results of
the replica method. Finally, we end this paper with a conclusion and we propose
some directions of future work in Sect. 7.

2 LDPC Codes and Decoding Algorithm

2.1 Low-Density Parity Check Codes

Let M and N be two integers. The binary LDPC code is a linear block code
described by its parity check matrix A, with N columns denoting the codeword
length and M rows denoting the parity-check equations.

In the following, we will use notations adapted from [3]. Let L(μ) = {j/Aμj =
1} be the set of bits j that involve in check μ. Similarly, let M(j) = {μ/Aμj = 1}
be the set of checks in which bit j involves. Finally, z = s+ζ denotes the received
word.

2.2 Belief Propagation Algorithm

The objective of the decoding algorithm is to get the most probable codeword ŝ
that have been transmitted over the channel when given the channel output. This
section gives a summary of the iterative decoding of LDPC codes based on the
BP algorithm according to [2]. In the following, we will denote qaμ j the probability
that bit sj of s is equal to a = {0, 1}, when the information obtained by checks
rather than the μ check is known. The quantity raμ j denotes the probability
of check μ is satisfied when the bit sj is fixed at a and the other bits have a
separable distribution following the probabilities {qμ l : l ∈ L(μ)\j} [3].

The following steps describe the standard iterative decoding algorithm based
on the BP approach.

316 M. Abdelhedi et al.

– Initialization: The variables q0μ j and q1μ j are initialized respectively to the

values p0j = P (sj = 0\zj) and p1j = P (sj = 1\zj).
– Iterative processing: For each i = 1 to the maximum number of iterations

1. Define δqμ j = q0μ j − q1μ j and for each μ, j ∈ L(μ), and for a = {0, 1},
compute

δrμ j =
∏

l∈L(μ)\j
δqμ l ,

raμ j =
1

2
(1 + (−1)aδrμ j) .

2. For each j and μ ∈ M(j), and for a = {0, 1} update

qaμ j = αμ jp
a
j

∏
ν ∈M(j)\μ

raν j ,

qaj = αjp
a
j

∏
μ∈M(j)

raμ j .

where αμ j and αj are chosen such that

q0μ j + q1μ j = 1 and q0j + q1j = 1 .

3. Create the detection word ŝ = (ŝ1...ŝN) of the transmitted codeword
such that:

ŝj = 0 if δqj > 0 ,

ŝj = 1 if δqj ≤ 0 .

This process of decoding ends if A.ŝT = 0. Otherwise, a next BP iteration
is performed. When the maximum number of iterations is reached and ŝ
is not a valid codeword, the algorithm stops with a failure result.

3 Overview of Statistical Physics

N.Sourlas showed that there is a similarity between statistical physics and error
correcting codes [5]. Our aim is to use this fact to analyze LDPC codes. In this
section, we give an overview of some statistical physics tools we need in the
development of this work.

Statistical physics is a part of physics devoted to understand the behavior
of physical systems with a large number of components that interact together.
Initially, statistical physics dealt with a solid or a liquid material having a large
number of atoms, ions or molecules. Nowadays, one can consider macroscopic
items such as cars on a road, matrices and graphs, etc. [7]. To understand the
properties of these physical systems, the theorists have developed physical mod-
els like Ising model among others.

Performance of LDPC Decoding Algorithms 317

ijJi j

Fig. 1. A two dimensional Ising model

3.1 Ising Model

The Ising model describes the magnetic moments by Ising spins that are localized
at the vertices of a certain region of the d-dimensional cubic lattice [7]. Figure 1
depicts an Ising model with d = 2.

There is an Ising spin σi on each vertex i. Each spin is modeled by an arrow
that points up if σi = +1 and points down if σi = −1. The coupling Jij represents
interaction between pairs of spins.

– If Jij = J > 0 then this model represents a ferromagnetic Ising model.
– If Jij > 0 or Jij < 0 then this model represents an Ising spin glass.

A configuration σ = (σ1 . . . σN) of the system is obtained by assigning the
values of all the spins in the system. The energy or the Hamiltonian of a config-
uration is defined as follows [7] :

H(σ) = −
∑
(ij)

Jijσiσj −B
∑
i

σi . (1)

The RHS of (1) is composed of two types of contributions :

– A term −Jijσiσj for each edge (ij) of the graph.
– A term −Bσi for each spin σi, due to an external magnetic field applied to

the system.

The Boltzmann distribution gives the probability to find the system in the
configuration σ [7]:

Pβ(σ) =
1

Z(β)
exp [−βH(σ)] ,

Z(β) =
∑
σ

exp [−βH(σ)] ,

where the parameter β = 1/T is the inverse of the temperature. The normaliza-
tion constant Z(β) is called the partition function.

318 M. Abdelhedi et al.

3.2 Magnetization

The behavior of the system depends on external parameters (temperature, mag-
netic field, etc.) and a phase transition occurs when this parameter achieves a
threshold value. An example is the magnetic behavior transformation of a metal
from a paramagnetic behavior to a ferromagnetic behavior. To describe a system
behavior, the concept of an order parameter was introduced. For appropriate val-
ues of external parameters, the order parameter is nonzero and it indicates an
ordered state. In other words, the order parameter is a measure of the order
degree of the system [7]. The order parameter of the Ising model is the average
value of the spins for all configurations, called magnetization.

– Ifm = 1 the system is in an ordered phase called ferromagnetic phase. Figure
2 shows a simple example of this behavior. All spins are in the same state.

Fig. 2. A ferromagnetic phase

– If m = 0 the system is in a disordered phase called paramagnetic phase.
Figure 3 shows a simple example of this behavior. All spins are independent.

Fig. 3. A paramagnetric phase

To conclude this section, we shall remark that all these concepts are not
common on the field of information theory. How these tools can be used to
analyze the LDPC codes will be the subject of the next sections.

Performance of LDPC Decoding Algorithms 319

4 Decoding Problem from Statistical Physics Point of
View

4.1 Statistical Physics Analogy

We have described in the previous section the LDPC codes using the additive
boolean group ({0, 1},+). For convenience, we introduce a multiplicative binary
group ({+1,−1},×) which is more suitable for the statistical physics methods
[5].

Each code can be considered as a spin system from the statistical physics
description. Each bit Sj = (−1)sj is called a spin and is equal to {±1}. The
word S = ((−1)s1 , ..., (−1)sN) is a collection of N spins called a configuration.
The parity-check matrix performs the interactions between the spins [5].

The decoding problem depends on a posteriori probability P (S\J) where J
is the evidence (received message or syndrome vector) and S is an estimation of
the original codeword (or an estimation of the noise vector) [5]. In this section,
J represents the syndrome vector and S represents an estimation of the noise
vector. By applying Bayes’ theorem the a posteriori probability can be written
in the following form [5]

P (S\J) = P (J\S)P (S)∑
S

P (J\S)P (S)
(2)

=
1

Z
exp [lnP (J\S) + lnP (S)] .

From a statistical physics point of view, the probability (2) can be seen as a
Boltzmann distribution at inverse temperature β [11].

P (S\J) = 1

Z
exp [−βH(S\J)] , (3)

where H(S\J) denotes the Hamiltonian of the system. The inverse temperature
in (3) don’t has any relationship with the temperature of the communication
device. It is simply an auxiliary parameter in the decoding process.

In this Hamiltonian, we identify two essential components in the analysis of
the LDPC codes.

– A first term that ensures that all parity checks are fulfilled. It can be repre-
sented by the Kronecker’s delta δ [5].

P (J\S) =
M∏
μ=1

P
(
Jμ\S

)

=
M∏
μ=1

δ

⎡
⎣Jμ, ∏

j∈L(μ)

Sj

⎤
⎦ .

320 M. Abdelhedi et al.

Note that Jμ represents the μ-th component of the syndrome vector J , there-
fore Jμ =

∏
j∈L(μ)

ζj . Thus,

P (Jμ\S) =
{
1 if Jμ =

∏
j∈L(μ)

Sj

0 otherwise .

According to [11], the δ’s can be substituted by a soft constraint

P (J | S) = exp

⎡
⎣β

M∑
μ=1

Jμ
∏

j∈L(μ)

Sj

⎤
⎦ ,

where β → ∞.

– A prior term that yields some statistical information on the dynamical vari-
ables S. It can be written with the prior distribution

P (S) =

exp

(
F

N∑
j=1

Sj

)

(2 coshF)
N

,

where F is the external field that depends on the transmission channel. For
a BSC channel, characterized by the error probability p, it’s equal to

F =
1

2
ln

1− p

p
.

Therefore, the Hamiltonian H(S\J) can be expressed as follows:

H(S\J) = −
M∑
μ=1

Jμ
∏

j∈L(μ)

Sj −
F

β

N∑
j=1

Sj .

According to the final form of the Hamiltonian, we conclude that LDPC codes
are similar to a spin glass system with muti-spin coupling Jμ in an external
field F .

4.2 Decoding with the Statistical Physics

The decoding technique consists of finding local magnetization at inverse temper-
ature β, mj = 〈Sj〉β. After that, the estimates of the codeword bit is calculated

as in [5].

Ŝj = sign(mj) . (4)

Performance of LDPC Decoding Algorithms 321

The magnetization value allows the measure of the decoding performance in
the statistical physics approach [5]. This magnetization is defined by the overlap
between the transmitted codeword S and its estimated word Ŝ:

m =
1

N

〈
N∑
j=1

SjŜj

〉

A,ζ

. (5)

Let us notice that the average 〈· · ·〉 is performed over the disorder defined by
the noise ζ and the matrices A of a particular LDPC code. This value gives
information about the performance of the code. Indeed, N.Sourlas [5] has shown
that the bit error probability is given by :

pb =
1−m

2
.

In order to compute the value of the magnetization, two main methods can
be used: the replica method [11] and the TAP approach [12]. We will focus only
on the TAP approach in this paper.

4.3 TAP Approach

Kabashima et al. [12] have shown that there exists a similarity between the
equations obtained by the TAP approach [13] and those derived from BP. In the
statistical physics language, the field qaμj corresponds to the mean influence of
sites other than the site j and the field raμj represents the influence of j back
over the system (reaction fields) [14].

This connection can be highlighted by the proportionality observed between
the likelihood P (Jμ\S) and the Boltzmann weight [14] :

ωB(Jμ\{Sj : j ∈ L(μ)}) = exp

(
− βJμ

∏
j∈L(μ)

Sj

)
.

The conditional probability r
Sj

μj can be thought as a normalized effective Boltz-
mann weight (effective Boltzmann probability) deduced when the bit Sj is kept
fixed [14]

r
Sj

μj = αμj ωeff (Jμ | Sj)

= αμj

∑
Sl:l∈L(μ)\j

ωB(Jμ | {Sl : l ∈ L(μ)})
∏

l∈L(μ)|j
q
(Sl)
μl .

Since spin variable Sj takes only two values ±1, it is convenient to express

the BP/TAP algorithm using spin averages
∑

Sj=±1

Sjq
Sj

μj and
∑

Sj=±1

Sjr
Sj

μj rather

than the distributions q
Sj

μj and r
Sj

μj themselves.

322 M. Abdelhedi et al.

We denote
∑

Sj=±1

Sjq
Sj

μj = δqμj = mμj . Similarly, we denote δrμj = m̂μj =

∑
Sj=±1

Sjr
Sj

μj . Further, it was shown in [14] that the following statements hold

m̂μj = tanh(βJμ)
∏

l∈L(μ)\j
mμl , (6)

mμj = tanh

(∑
ν∈M(j)\μ

tanh−1(m̂νj) + βF

)
. (7)

Then, the pseudo-posteriori might be computed

mj = tanh

(∑
μ∈M(j)

tanh−1(m̂μj) + βF

)
, (8)

which gives a way to calculate the Bayes optimal decoding as follows:

Ŝj = sign(δqj) = sign(mj) . (9)

The equality δqj = mj is proved as follows:

mj = 〈Sj〉β

=
1

Z

∑
S

Sj exp [−βH(S | J)]

=
∑
S

SjP (S | J)

=
∑
Sj

Sj

∑
S|Sj

P (S | J)

=
∑
Sj

SjP (Sj | J)

= P (Sj = +1 | J)− P (Sj = −1 | J)
= q+1

j − q−1
j

= δqj .

5 LLR-BP Algorithm and Its Simplified Version with
TAP Approach

5.1 LLR-BP Algorithm with TAP Approach

Instead of using probabilities as in [2], we prefer to deal with the LLRs in the
LLR-BP algorithm since it yields more in implementation advantages [3].

Performance of LDPC Decoding Algorithms 323

In this section, our first contribution is the development of the LLR-BP with
the TAP approach. Let xμj be the LLR of the probability sent from bit Sj to
check node μ and yμj be the LLR of the probability sent from the check node μ
to bit node Sj . According to the statistical physics definition, the LLR is defined
as follows [7]:

xμj =
1

2β
ln

q+1
μj

q−1
μj

=
x

′
μj

2β
, (10)

and

yμj =
1

2β
ln

r+1
μj

r−1
μj

=
y

′
μj

2β
. (11)

The following result is helpful

tanh (βxμj) = tanh

(
1

2
ln

(
q+1
μj

q−1
μj

))
(12)

= q+1
μj − q−1

μj = mμj .

From (12), the variable m̂μj can be written as

m̂μj = tanh(βyμj) . (13)

From equations (6), (12) and (13) we get

xμj =
1

β
tanh−1 tanh

(∑
ν∈M(j)\μ

tanh−1(m̂νj) + βF

)

=
∑

ν∈M(j)\μ
yνj + F . (14)

Besides, the extrinsic information yμj can be written as

yμj =
1

β
tanh−1(m̂μj) (15)

=
1

β
tanh−1

(
tanh(βJμ)

∏
l∈L(μ)\j

tanh(βxμl)

)
.

Finally, the a posteriori information of bit Sj can be expressed as:

xj =
∑

μ∈M(j)

yμj + F . (16)

It’s not simple to implement (15) due to the product form. Our idea is to split
the extrinsic information into sign and magnitude processing as in [4]. We get
from (15)

tanh(βyμj) = tanh(βJμ)
∏

l∈L(μ)\j
tanh(βxμl) . (17)

324 M. Abdelhedi et al.

Replacing (βJμ) by sign (βJμ)× |βJμ| and (βxμl) by sign (βxμl)× |βxμl| in (17)
yields

sign (βyμj) =
∏

l∈L(μ)\j
sign(Jμxμl) , (18)

tanh |βyμj | = tanh |βJμ|
∏

l∈L(μ)\j
tanh |βxμl|

tanh

∣∣∣∣∣
y

′
μj

2

∣∣∣∣∣ = tanh

∣∣∣∣2βJμ2
∣∣∣∣

∏
l∈L(μ)\j

tanh

∣∣∣∣∣
x

′
μl

2

∣∣∣∣∣ . (19)

Let f(t) be defined by

f(t) = − ln

(
tanh

(
t

2

))
= ln

et + 1

et − 1
. (20)

Applying the logarithm to the inverse of both sides of (19) yields

− ln tanh

∣∣∣∣∣
y

′
μj

2

∣∣∣∣∣ = − ln tanh

∣∣∣∣2βJμ2
∣∣∣∣+

∑
l∈L(μ)\j

− ln tanh

∣∣∣∣∣
x

′
μl

2

∣∣∣∣∣
f
(∣∣∣y′

μj

∣∣∣) = f (|2βJμ|) +
∑

l∈L(μ)\j
f
(∣∣∣x′

μl

∣∣∣) . (21)

The equation (20) verifies

f (f (t)) = t . (22)

Hence, (21) can expressed as

∣∣∣y′
μj

∣∣∣ = f

⎛
⎝f (|2βJμ|) +

∑
l∈L(μ)\j

f
(∣∣∣x′

μl

∣∣∣)
⎞
⎠ . (23)

Using (10) and (11), (23) can be written as

|2βyμj| = f

⎛
⎝f (|2βJμ|) +

∑
l∈L(μ)\j

f (|2βxμl|)

⎞
⎠ . (24)

From (18) and (24), one can finally deduce the extrinsic information

yμj =
∏

l∈L(μ)\j
sign (Jμxμl)×

1

2β
× f

⎛
⎝f (|2βJμ|) +

∑
l∈L(μ)\j

f (|2βxμl|)

⎞
⎠ . (25)

Performance of LDPC Decoding Algorithms 325

5.2 BP-Based with TAP Approach

In this section, we detail our second contribution which consists of develop-
ing the BP-Based algorithm [3] with the TAP approach. The key idea of this
algorithm is based on the fact that

∑
t f(t) ≤ f(min

t
t). The equation (24) is

then approximated by

|2βyμj| = f

⎛
⎝f (|2βJμ|) +

∑
l∈L(μ)\j

f (|2βxμl|)

⎞
⎠ (26)

� f

(
f

(
min

l∈L(μ)\j
(|2βJμ| , |2βxμl|)

))

= min
l∈L(μ)\j

(|2βJμ| , |2βxμl|) .

Thus, the extrinsic information in the BP-Based algorithm written with the TAP
equation can be expressed as

yμj =
∏

l∈L(μ)\j
sign (Jμxμl)× min

l∈L(μ)\j
(|Jμ| , |xμl|) . (27)

The equation (27) reinterpret the BP-Based algorithm when using the TAP
approach. This latter allows to replace check node update by a selection of
the minimum input value. The other steps of the LLR-BP algorithm remain
unchanged.

5.3 λ-min Algorithm with TAP Approach

In this section, we introduce our third contribution which is the development
of the λ-min algorithm [4] with the TAP approach. In the extrinsic information
(25), the magnitude processing is run using the function f defined by (20).
Looking closer, Fig. 4 clearly shows that

∑
t f(t) can be approached by the

maximal values of f(t) which is obtained for the minimal values of | t |.
Following Guilloud et al. [4] we compute (24) with only the λ bits involving

in check μ and having the minimum magnitude.

|2βyμj | = f

⎛
⎝f (|2βJμ|) +

∑
l∈Lλ(μ)\j

f (|2βxμl|)

⎞
⎠ , (28)

with Lλ(μ) = {j0, . . . , jλ−1} be the subset of L(μ) which contains the λ bits of
check μ which have the smallest magnitude of xμl.

The extrinsic information in the λ-min algorithm written with the TAP equa-
tion is given by (29)

yμj =
∏

l∈L(μ)\j
sign (Jμxμl)×

1

2β
×f

⎛
⎝f (|2βJμ|) +

∑
l∈Lλ(μ)\j

f (|2βxμl|)

⎞
⎠ . (29)

326 M. Abdelhedi et al.

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3

t

f(
t)

f(t)=−ln(tanh(|t/2|))

Fig. 4. Shape of the function f

Two cases are possible:

1. If the bit j belongs to the subset Lλ(μ), then yμj are processed over (λ− 1)
values of Lλ(μ)\j.

2. Otherwise, yμj are processed over the λ values of Lλ(μ). Notice that in this
case, the computation have to be performed only once [4].

6 Performance of LDPC Decoding Algorithms

In this section, we evaluate the performance of LDPC codes from statistical
physics point of view. Actually, the performance of these codes are presented
in terms of the magnetization parameter rather than the usual Bit Error Rate
parameter (BER) commonly used in information theory. As mentioned in Sect.
4.2, the magnetization is defined by the overlap between the transmitted code-
word and its estimated value which is averaged over the noise ζ and the matrices
A of a particular LDPC code.

m =
1

N

〈
N∑
j=1

SjŜj

〉

A,ζ

.

In order to evaluate the performance of LDPC decoding algorithms in terms
of the magnetization, we proceed in three steps :

1. Generate the check matrices A defined for a particular LDPC(N,C,K) code.
2. Decode the received codeword for each parity check matrix A.
3. Average over the results.

Performance of LDPC Decoding Algorithms 327

6.1 Proposed Method to Create Matrices

The proposed method aims at swapping the elements of the matrix A in order
to create a set of LDPC code. We choose to perform ten regular LDPC codes.
The algorithm of this method is the following:

1. Define LDPC(N,C,K) code from the Mackay’s online database [15]. The
parity check matrix A corresponding to this code will be set as the initial
matrix on which the random swap will be performed.

2. Initialize A1 = A. Then, generate a random integer representing the number
of matrix elements permutations. For each permutation do
(a) Choose randomly tow rows i and j from the matrix A then compute:

α(n) = A(i, n) +A(j, n) (mod 2) with 1 ≤ n ≤ N .

(b) Choose randomly two distinct variables k and l for which α(k) and α(l)
are non zero. If A(i, k) 	= A(i, l) and A(j, k) 	= A(j, l) then do

A1(i, k) = A(i, k), A1(i, l) = A(i, l) ,

A1(j, k) = A(j, k), A1(j, l) = A(j, l) .

3. Repeat step 2 as much as needed (ten times in our case) to obtain the sought
LDPC(N,C,K) codes.

6.2 Simulation Results

We have performed our simulations using regular (3, 6) LDPC code of length
N = 1008 and with 20 decoding iterations. The results are averaged over ten
codes randomly generated. This set of LDPC codes shares the same block length,
three ones in each column and six ones in each row. A predefined code have
been used to generate 1008 bit codewords from 504 bit message for each run.
The received codewords are then decoded with LLR-BP, BP-Based and λ-min
decoding algorithms.

In Fig. 5 we compared the magnetization performance for the three decoding
algorithms LLR-BP, BP-Based and the λ-min in the case of AWGN channel.

According to Fig. 5, one can conclude that λ-min algorithm is more efficient
than the BP-Based algorithm and is closer to the LLR-BP algorithm. At a
magnetization value 0.9, the BP-Based algorithm introduces a degradation of
0.5 dB when performing 20 iterations, while the 2-min algorithm leads to a
degradation of 0.3 dB only. The 3-min algorithm is more accurate than the
previous ones, but is slightly less accurate than the LLR-BP algorithm with a
small degradation equal to 0.08 dB.

Figure 5 shows also that all algorithms tend to the value m = 1 at high signal
to noise ratio. This magnetization value is expected since it characterized the
ferromagnetic state in the statistical physics and a very low BER i.e. a reliable
communication in the information theory.

328 M. Abdelhedi et al.

1 1.5 2 2.5 3 3.5 4
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

E
b
/N

0

m

LLR−BP
3−min
2−min
BP−Based

Fig. 5. Magnetization performance function of signal to noise ratio for different LDPC
decoding algorithms

6.3 Comparison of Performance

This section is devoted to the comparison of the performance of the LLR-BP
algorithm versus the replica method results [14]. Our simulations are evaluated in
the case of transmission over an AWGN channel. Nevertheless, almost all results
in the literature are given in the case of BSC. Thus, we choose to evaluate the
magnetization as a function of signal to noise ratio for both channels in order
to make the comparison. Indeed, for the BSC channel the error probability p of
the channel is :

p =
1

2
erfc

√
REb

N0
,

where Eb is the energy per information bit, N0 is the power spectral density and
R is the code rate.

In Fig. 6, we depict a comparison between the magnetization performance
of the LLR-BP algorithm in the case of AWGN channel and the magnetization
performance given by the replica method in the case of BSC channel.

The simulation results show the efficiency of transmission over an AWGN
channel comparative to the BSC channel for the LDPC codes having C = 3
and K = 6. For low signal to noise ratio and at m = 0.95, the performance
evaluated by the replica method in the case of a BSC channel brings a loss of
0.4 dB compared to the LLR-BP algorithm in the case of an AWGN channel.
This result is expected since the Shannon limit on AWGN channel is lower than
the Shannon limit on a BSC channel when dealing with the same rate R. On the

Performance of LDPC Decoding Algorithms 329

1 1.5 2 2.5 3 3.5 4 4.5
0.8

0.85

0.9

0.95

1

1.05

E
b
/N

0

m

LLR−BP
Replica method

Fig. 6. Magnetization performance of the LLR-BP algorithm in the case of AWGN
channel and by replica method in the case of BSC channel with C = 3 and K = 6

other hand, we notice that for both types of channels, our simulations become
similar to those of the replica method when the signal to noise ratio exceeds
3.4 dB.

7 Conclusion

The study of LDPC codes performance by the statistical physics methods have
been developed only for the BP algorithm. However, to our knowledge, no stud-
ies have been made for the other decoding algorithms. We adapted in this paper
a new method based on statistical physics in the development of the LLR-BP
algorithm and its simplified versions, the BP-Based algorithm and the λ-min al-
gorithm. We proposed a new method to swap the parity check matrix elements
and to create a set of regular LDPC codes having the same number of ones by
columns as well as by rows. This intermediate step is necessary in order to eval-
uate the average value of the overlap between the transmitted codeword ant its
estimation. This average parameter, called the magnetization, allows us to eval-
uate the performance of the decoding algorithms as a function of signal to noise
ratio. Simulation results show that the BP-Based algorithm tends to reduce the
complexity of updating extrinsic information, with degradation in performance
compared to the LLR-BP algorithm. The same conclusion remains valid when
using the λ-min algorithm but with more efficient performances compared to
the LLR-BP algorithm, especially in the case when λ increases. These results

330 M. Abdelhedi et al.

are in adequacy with those of the information theory. Finally, we compared our
LLR-BP algorithm simulations with those of the replica method.

A possible continuation to this work is the computation of the magnetization
value of the different LDPC decoding algorithms with the replica method. Such
a study would be interesting as it allows the evaluation of the system phase tran-
sitions for different signal to noise ratio and therefore the definition of the noise
threshold that should not be exceeded. Another alternatives is the comparison
of the noise threshold given by information theory with those obtained by the
replica method.

References

1. European Telecommunications Standards Institude (ETSI). Digital Video Broad-
casting (DVB) Second generation framing structure for broadband satellite
applications; Part2: DVB-S2 Extensions (DVB-S2X), EN 302 307-2 (V1.1.1),
https://www.dvb.org/standards/dvb-s2x

2. Mackay, D.J.C.: Good error-correcting codes based on very sparse matrices. IEEE
Trans. Inform. Theory 45, 399–431 (1999)

3. Fossorier, M.P.C., Mihaljevic, M., Imai, I.: Reduced complexity iterative decod-
ing of low density parity check codes based on belief propagation. IEEE Trans.
Commun. 47, 673–680 (1999)

4. Guilloud, F., Boutillon, E., Danger, J.L.: λ-min decoding algorithm of regular and
irregular LDPC codes. In: Proc. 3rd Int. Symp. on Turbo Codes & Related Topics
(ISTC 2003), pp.451–454. Brest (2003)

5. Sourlas, N.: Spin glass models as error correcting codes. Nature 339, 693–695 (1989)
6. Skantzos, N.S., Van Mourik, J., Saad, D.: Magnetization enumerator of real-valued

symmetric channels in Gallager error-correcting codes. Phys. Rev. E 67, 037101
(2003)

7. Mezard, M., Montanari, A.: Information, Physics and Computation. Oxford uni-
versity Press (2009)

8. Huang, H.: Code optimization, frozen glassy phase and improved decoding al-
gorithms for low-density parity-check codes. Commun. Theor. Phys. 63, 115–127
(2015)

9. Neri, I., Skantzos, N.S., Boll, D.: Gallager error-correcting codes for binary asym-
metric channels. J. Stat. Mech. 2008, P10018 (2008)

10. Neri, I., Skantzos, N.S.: On the equivalence of Ising models on small-world networks
and LDPC codes on channels with memory. J. Phys. A: Math and Theor. 47, 385002
(2014)

11. Murayama, T., Kabashima, Y., Saad, D., Vicente, R.: Statistical physics of regular
low-density parity-check error-correcting codes. Phys. Rev. E 62, 1577–1591 (2000)

12. Kabashima, Y., Saad, D.: Belief propagation vs TAP for decoding corrupted mes-
sages. Eurphys. Lett. 44, 668–674 (1998)

13. Thouless, D.J., Anderson, P.W., Palmer, R.G.: Solution of solvable model of a spin
glass. Phil. Mag. 35, 593–601 (1977)

14. Vicente, R., Saad, D., Kabashima, Y.: Finite-connectivity systems as error-
correcting codes. Phys. Rev. E 60, 5352–5366 (1999)

15. Mackay, D.J.C.: Ldpc database,
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

https://www.dvb.org/standards/dvb-s2x
http://www.inference.phy.cam.ac.uk/mackay/codes/data.html

Representation of Dorsal Hand Vein Pattern

Using Local Binary Patterns (LBP)

Maleika Heenaye Mamode Khan(�)

Department of Computer Science and Engineering,
University of Mauritius, Mauritius

m.mamodekhan@uom.ac.mu

http://www.uom.ac.mu

Abstract. In this revolutionized and digital world, the increasing need
of security to protect individuals and information has led to a rise in de-
veloping biometric systems over traditional security systems such as pin-
code and password. Finding more reliable, practical and more acceptable
biometrics and techniques are attracting the attention of researchers. Re-
cently, hand vein pattern biometrics has gained increasing interest from
both research communities and industries. Researchers are exploiting
the different biometric phases by applying existing techniques or devis-
ing new ones to develop enhanced biometric systems. Up to now, most
researchers have thinned the dorsal hand vein pattern and apply corre-
sponding techniques for feature representation and matching. However,
not many techniques have been explored with relation to considering the
whole hand vein image. In this research work, local binary pattern, which
is a powerful technique for representing texture description of an image,
have been applied on dorsal hand vein images. This method outperforms
existing vein representation techniques by having a recognition rate of
98.4% on a database of more than 1000 images. In addition, this pro-
posed method has no effect on rotated images, which is desirable in any
biometric security system.

Keywords: Dorsal hand vein · Biometrics · Local binary pattern

1 Introduction

Biometric access control system measures the physiological or behavioral char-
acteristics of an individual and is replacing traditional methods of security such
as pincodes and passwords. Popular biometrics, viz, fingerprints, face recogni-
tion and iris have been explored and efficient solutions have been commercialised.
However, in this technological era, hackers are devising new ways of manipulating
these existing biometrics, urging researchers to come up with new characteristics
to be used as biometric. A practical biometric should meet the specified recogni-
tion accuracy, speed and resource requirement, be harmless to users, be accepted
by intended population and be sufficiently robust to various fraudulent methods
and attacks to the system [1]. Factors that may influence the popularity, ap-
plicability and performance of biometric verification techniques are uniqueness,

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 331–341, 2015.
DOI: 10.1007/978-3-319-18681-8_26

332 M.H. Mamode Khan

repeatability, maximum throughput, whether operable under controlled light or
not, invasiveness or non- invasiveness, immunity from forgery, successful identi-
fication of dark- skinned subjects, ease of use, user cooperation, cleanliness and
so on. Dorsal hand vein pattern is a quite new characteristic that is proving to
be a potential candidate for developing biometric security system. Dorsal hand
vein pattern is a unique network of blood vessels found below the skin at the
back of the hand and is capable of identifying a person. The pattern is invisible
to the naked eye and the superficial veins have higher temperature than the
surrounding tissues. The vein pattern is best defined when the fist is clenched
and can only be captured by using a CCD camera or a thermal camera. The
vein pattern is stable, unique and has repeatable features. Up to now, there is
no vein pattern database that is available to the research community and thus,
researchers have to build their own database [2,3]. A typical hand vein pattern
biometric consists of the following five processing stages namely image acquisi-
tion, image enhancement, vein segmentation, vein extraction and matching [3,4].
Different researchers explore these different phases. While the concepts of bio-
metrics appear to be simple, there are many challenges in the implementation
of biometric systems.

2 Research Gap

In biometric security system, images obtained at image capture are subject to
preprocessing to enhance their quality. In most dorsal hand vein biometric system
deployed so far, vein patterns are aligned, normalized, thresholded, filtered and
thinned [5,3,6]. Consequently processing methods like correlations that require
squeletonised version has been adopted [7,8]. The idea of using the whole hand
with the vein patterns have not explored. Currently, there is no literature which
demarcates techniques that can be applied on raw biometric images captured and
enhanced biometric images, hence clearly denoting a research gap. There seems
to be a lot of scope for further improvement of existing techniques in addition
to finding more reliable biometric and techniques for using them for security
purposes. In addition, researchers have not paid much attention on methods
that can be adopted to overcome the problem of translated images.

3 Proposed Vein Biometric Security System

In this research work, a dorsal hand vein pattern database is built. The Vein
images are preprocessed to enhance the quality of the images. Local Binary
Pattern (LBP) which is a rotation invariant method has been applied on the
vein patterns to extract and represent key features. The extracted features are
then concatenated to form a histogram which is considered as the feature vector.

3.1 Image Acquisition and Vein Database

Up to now, there is no dorsal hand vein database available for research. Thus,
each researcher has to acquire their own vein images. Since veins are found

Representation of Dorsal Hand Vein Pattern Using LBP 333

beneath the skin, they can only be captured using infrared light. In the ex-
perimental setup of this research, images were obtained with a digital camera
with infrared filters using an appropriate setup. To build the vein database, a
Nikon digital camera D3100, a Hoya R-72 infrared filter, LED lights and dif-
fusing papers have been used. The camera and lights were carefully mounted
using a closed wooden box with one open side. The infrared light improved the
contrast of the hand vein images. The diffusing papers used during the image
capture process were to reduce scattering effects and to attenuate the intensity
of infrared. Subjects were requested to hold a removable wooded handle specifi-
cally mounted to avoid any large image translation. This also helped to obtain a
clenched fist which provides a better definition of the vein. Four LED bulbs were
mounted in the top surface of the box and are used as sources of near infrared
radiation to illuminate the interior of the box. To minimize the reflection of the
near infrared lights within the setup, the interior surfaces of the closed box was
covered with plain black Bristol paper sheets. A DSLR camera (Nikon D3100)
connected with an infrared filter (Hoya R72) are used for image acquisition. The
camera was solidly mounted on top of the wooden box with its lens constantly
pointing inside the box via another specific opening in the boxs top surface.
To minimize any disturbances of the setup during subsequent capture of image
instances, the camera was accessed via a remote control (MC-DC2) and pho-
tographs acquired were regularly transferred to a computer via a UC-E4 USB
cable. During the experimentation, the ideal placement of the hand is deduced
after various positioning and orientation. A database of 3000 images has been
obtained from 300 subjects. The following diagram illustrates the experiment
setup:

Fig. 1. Image Setup

Subjects involved in image capture were from different ethnic groups, age
ranging from 19 years old to 65 years old and have different skin colour. Dur-
ing image capture, various factors namely the positions of the light, the light

334 M.H. Mamode Khan

intensity, background light, the arrangement of the light positions, the angle of
orientation of the hand, the distance between the camera and the hand were con-
sidered. During the experimentation, the ideal placement of the hand is deduced
after various positioning and orientation.

3.2 Vein Preprocessing

In previous research, vein patterns need to be aligned before applying any other
processing techniques [7,2]to ensure that the same pattern is obtained each time
the processing is carried out. In this work, the vein is not aligned since the pro-
posed local binary pattern technique is a rotation invariant method. The vein
images were first normalized so that all the pixel intensities were converted to a
domain of [0, 255]. The normalized image was then equalized using the adaptive
histogram. The function adaptivehisteq() in Matlab was used. This function en-
hances the contrast of the normalized image. The next step was to obtain the
vein from the hand background. Thus, adaptive thresholding was been used. In
adaptive thresholding, each pixel was compared to an average of the surround-
ing pixels. The mean value and the threshold value were set. If the value of the
current pixel is lower than the mean, it is set to black else it is set to white.
These values were obtained after many tests carried out on the vein images. To
eliminate remaining noise and to obtain an enhanced image, different filters were
applied on the vein images. The first filter applied, that is, 2-D median filtering
performs median filtering of the image in two dimensions. Each output pixel con-
tained the median value in the M-by-N neighborhood around the corresponding
pixel in the thresholded vein image. This filtering padded the image with zeros
on the edges, so the median values for the points within [MN]/2 of the edges
might appear distorted. This technique is also known as linear Gaussian filtering.
To further enhance the vein images, the Gaussian smoothing was applied. The
operator is a 2-D convolution operator that was used to blur images and remove
detail and noise. The filter uses a different kernel that represents the shape of a
Gaussian hump, also known as bell-shape. The idea of Gaussian smoothing is to
use this 2-D distribution which can be achieved by convolution. Since the image
was stored as a collection of discrete pixels was required to produce a discrete
approximation to the Gaussian function before convolution can be performed.
The effect of Gaussian smoothing was to blur an image. The degree of smoothing
was determined by the standard deviation of the Gaussian. The Gaussian out-
put a ‘weighted average’ of each pixel’s neighborhood, with the average weighted
more towards the value of the central pixels. This was in contrast to the mean
filter’s uniformly weighted average. Because of this, a Gaussian provides gentler
smoothing and preserves edges better than a similarly sized mean filter. Wiener
filter was the third filter applied to obtain a better image. The Wiener filter was
a stationary linear filter for images degraded by additive noise and blurring. Cal-
culation of the Wiener filter required the assumption that the signal and noise
processes are second-order stationary. Wiener filters were usually applied in the
frequency domain. Wiener filter was based on a statistical approach. It reduced

Representation of Dorsal Hand Vein Pattern Using LBP 335

the amount of noise present in a signal by comparing it with an estimation of
the desired noiseless signal.

4 Representing Vein Characteristics Using Local Binary
Patterns

4.1 Concept Behind Local Binary Pattern

Local Binary Pattern (LBP) is a powerful technique for representing texture
description of an image [9,10]. LBP uses an operator which is defined as a gray
scale invariant texture measure. This method is termed as a rotation invariant
texture classification technique. It works by dividing the image into small regions
and features are extracted. These features are then concatenated to form a his-
togram which is considered as the feature vector. Images are then recognized by
comparing the feature vectors obtained. This first operator of LBP introduced
works with eight-neighbors, that is, the 3x3 neighborhood of each pixel, that
is, with the eight neighbors with reference to the centre value. Each pixel value
is compared with all its neighboring pixel value. If a pixel has a greater value
compared to the centre value, then a 1 is assigned to that cell else a 0 is assigned.
The LBP code is then obtained by concatenating all the 0s and 1s. For ease of
use, the decimal value of the binary codes is then obtained. A histogram over
the cell is then built on the frequency of the numbers occurring. A feature vec-
tor is then formed by concatenating all the histograms generated from the cells.
This approach has many advantages, that is, it is very tolerant to illumination
changes, perspective distortions, image blur and image zoom [10]. In another
work conducted by Ojala [11], the extended binary operator images was used
with textures of different scales to use neighborhoods of different sizes. Instead
of choosing a window of 3 × 3, the local neighborhood was taken as a set of
sampling points on a circle. This method allowed the authors to use any radius
and number of sampling points in the neighborhood. Bilinear interpolation was
applied to ensure that the sampling point does not fall in the centre of a pixel.
Thus, the notation LBP (P, R) is used where P represents the sampling points
and R as the radius. An example is illustrated below:

LBP4, 1 (P=4, R=1) LBP8, 2 (P=8, R=2)

Fig. 2. LBP

336 M.H. Mamode Khan

Ojala [11] explored the local binary pattern and discovered the uniform pat-
terns. A local binary pattern is termed as uniform if it contains at most two
bitwise transitions from 0 to 1 or vice- versa when the bit pattern is considered
circular. For example, 0000 0000, 0111 0000 and 1100 1111 are uniform [9]. Us-
ing this approach for the computation of the LBP histogram, uniform patterns
has a separate bin and all non- uniform patterns are represented as a single
bin. Recently, in an initial research work, Wang [12] have used partition LBP to
represent vein patterns. The image is divided into non- overlapping rectangular
or circular regions. The hand dorsal vein image is divided into 64 rectangular
region and 16 circular regions. The texture contained in each subimage is then
represented using a histogram by grouping the LBP patterns into categories. The
feature vector is formed by concatenating the non- overlapping sub- images. The
work was further extended to represent the fifth and sixth binary patterns hav-
ing much higher occurrences than other binary patterns [12]. LBP has not yet
been explored on dorsal hand vein patterns. Thus, in this research work, LBP is
applied on dorsal hand vein features to determine whether it can be used as a
method to develop hand biometrics like face biometrics.

4.2 Vein Representation

The vein representation is constructed by taking a vein image Xi(x, y) to be a
2-dimensional M × M array of 8-bit intensity values for an individual i where
i = 1, 2, 3, ..., I. This image is further represented as a vector of dimension M2

by concatenating the rows. For instance, a vein image for a particular individual
of size 256 x 256 becomes a vector of dimension 65,536. Note that this vein image
is for a single individual i. Thus, for a set of I individuals, the dimension of the
overall vein matrix space X can be represented as

X = [X1, X2, . . . , XI]M2×I (1)

4.3 Application of LBP on Hand Vein Features

The dorsal hand vein patterns are considered as an image having circular neigh-
bor sets. Neighborhood with varying number of sample termed as P and radius
termed as R can be used. Bilinear interpolation is applied to the samples that
do not fall exactly on the pixels. The center pixel is taken as threshold value
to obtain the P value. The local pattern in the texture is then obtained by the
P -bit binary code. Only uniform LBP codes can be considered to reduce the
number of bins for the LBP distributions. The following operator is used:

LBP ri
P,R = min (ROR [LBPP,Ri|i = 0, 1, 2, . . . , P − 1]) (2)

where ROR(x, i) performs the circular bitwise right shift i times on the P -bit
binary number denoted by x.

In this work, LBP riu2
8,2 has been used. From literature, it was found that (8, 2)

neighborhood accounts for more patterns compared to (16, 2) neighborhood.

Representation of Dorsal Hand Vein Pattern Using LBP 337

The texture contained in each sub image is obtained by grouping LBP patterns
produced into 10 texture categories and 9 rotations.

Let the number of occurrence of a texture category in the sub image be Xi,j ,
where j = 1, . . . , 10, the histogram is generated as follows:

Hi = [xi,1, xi,2, . . . , xi,10] (3)

Let the vein pattern be divided into N rectangular regions, then the texture
feature is represented by a Vector V of 10 ∗N dimensions. Concatenation of the
LBP feature histograms is then as follows:

V = [H1, H2, . . . , HN] (4)

Every bin in the histogram represents a pattern. For every region of the im-
age, the non- uniform patterns are represented as a single bin. Every regional
histograms consists of P (P −1)+3 bins, where P represents the number of sam-
pling points. The total feature vectors contains k2 [P (P − 1) + 3] bins, where k2

is the number of regions in which the image has been broken into.

5 Recognition of Veins

To recognize an image, the feature vector is used. Let the test image be T and
the sample image is S. The difference between the feature vectors is computed by
using dissimilarity measures for histograms. Histogram intersection, Log- likeli-
hood statistics or Chi square statistic can be used. The equations are as follows:
Let T be the test image and S be the template sample, For Histogram intersec-
tion:

D(T, S) =
k2∑
j=1

P (P−1)+3∑
i=1

min(Ti,j, Si,j) (5)

Table 1. Recognition Rate

Number of Images RR using Histogram RR using Log-likelihood RR using Chi square

200 93.2 92.4 93.7

400 94.9 93.6 94.9

600 92.5 92.4 94.9

800 92.3 92.7 93.5

1000 92.9 93.2 94.9

Table 2. Performance of biometric system using dorsal hand vein patterns

Recognition Rate False Acceptance Rate False Rejection Rate

100 94.1 0 5.9

200 93.9 0 6.1

500 95.6 0 4.4

338 M.H. Mamode Khan

Table 3. Recognition rate on varied images

Angle of deviation (100 test images considered) Recognition Rate using LBP

2(Right) 96.4

5(Right) 92.5

8(Right) 94.3

8(Right) 92.3

15(Right) 95.6

20(Right) 94.8

25(Right) 98.2

30(Right) 95.5

35(Right) 91.9

40(Right) 97.1

45(Right) 95.7

2(left) 96.6

5(left) 95.3

8(left) 96.2

10(left) 94.7

15(left) 97.1

20(left) 94.2

25(left) 94.8

30(left) 94.4

35(left) 93.2

40(left) 92.9

40(left) 95.2

For Log- likelihood statistics:

L(T, S) = −
k2∑
j=1

P (P−1)+3∑
i=1

Ti,j logMi,j (6)

For Chi-squared statistics

χ2(T, S) =

k2∑
j=1

P (P−1)+3∑
i=1

(Ti,j − Si,j)
2

(Ti,j + Si,j)
(7)

The three distance measures were used for testing. A test set of 100 images are
used and a sample set of 1000 images are used. The experiments were conducted
20 times and the average was computed. A sample of the results is displayed be-
low: From the experiment results, chi square statistics works slightly better than
histogram intersection and log likelihood statistics by having a better recogni-
tion rate. Thus, chi test is adopted for the implementation of the local binary
pattern technique.

Representation of Dorsal Hand Vein Pattern Using LBP 339

Table 4. Comparison of Proposed Method with Existing Research

Research Imaging Technology Method Images Performance in percent

Lin and Fan [2] Thermal Imaging Multi-resolution 32 FAR 1.5, FRR 3.5

Wang and Leedham [3] Thermal Camera Hausdorff Distance 12 FAR 0, FRR 0

Deepika et al. [14] Near IR Imaging Fusion 74 FAR 0, FRR 0.01

Heenaye- Mamode Khan et al. [15] Near IR Imaging Dimension Reduction 300 FAR 0, FRR 95.9

Proposed Method (LBP) Near IR Imaging LBP 300 FAR 0, FRR 98.4

5.1 Performance of Biometric System Using Dorsal Hand Vein
Pattern

To determine the maximum allowable acceptable distance using chi test, different
instances of a subject is placed in the test set and sample set. It was found that
images captured in a controlled environment do not have many intensity changes.
However, in an environment where there is varying lighting and intensity, the
pixel values in different instances of an image vary as well. The experiment was
conducted using chi test and images captured in a controlled environment. The
sample set is varied and the RR, FAR and FRR expressed in percentages are
captured.

The RR, FAR and FRR are obtained for both databases. An average RR of
95% is obtained. 0 %FAR is obtained is both cases.

5.2 Experiments on Rotated Images

LBP is termed as a rotation invariant method. To test this concept, oriented
dorsal hand vein patterns and palmprints are subject to LBP. 22 varied images
were taken for each instance. 100 test images were considered.

On average, the recognition rate is above 90% for images rotated at any angle.
Hand images were made to rotate from 20 to 450 to the right and left. The RR
proved that LBP was not affected by rotation.

6 Analysis of Results and Conclusion

In this paper, LBP has been applied on dorsal hand vein patterns. LBP is a
method that represents texture description of an image and is considered as a
rotation invariant texture classification technique. Using LBP, the dorsal hand
vein patterns are divided into small regions. Each pixel value is then compared
to its neighbors and a binary pattern is generated. The binary pattern is then
represented as a decimal value. The number of occurrences of these values is
then concatenated to form a histogram which is considered as the feature vec-
tor. Images are then recognized by comparing the feature vectors obtained. From
the experimental results, it is concluded that this method works well on biomet-
ric features and produce a good recognition rate. This method has also been
applied on oriented images. Compared to dimensional reduction techniques like

340 M.H. Mamode Khan

principle component analysis (PCA)[13], LBP is a rotation invariant method.
The following table provides a summary of comparison of LBP with existing
methods.

Though techniques are applied to orient the hand in the same position each
time processing takes place, there might be slight difference between instances.
This powerful rotation invariant texture classification was applied for the first
time on hand images. The system then computed the closest distance and an
average recognition rate of 95% was obtained for dorsal hand vein patterns.

References

1. Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric
systems. The Journal of Pattern Recognition 8, 2270–2285 (2005)

2. Lin, C.L., Fan, L.C.: Biometric Verification Using Thermal Images of Palm- Dorsa
Vein Patterns. IEEE Transactions on Circuit and Systems for Video Technol-
ogy 14(2), 199–213 (2004)

3. Wang, L., Leedham, W., Wang, L.: Near- and- Far- Infrared Imaging for Vein
Pattern Biometrics. In: Proceedings of the IEEE International Conference on Video
and Signal Based Surveillance (2006)

4. Wang, L., Leedham, W., Cho, D.: Minutiae feature analysis for infrared hand vein
pattern biometrics. The Journal of the Pattern Recognition Society 41(3), 920–929
(2008)

5. Wang, L., Leedham, W., Cho, D.: Infrared imaging of hand vein patterns for bio-
metric purposes. IET Computer Vision 1(3-4), 113–122 (2007)

6. Soni, M., Gupta, S., Rao, M.S., Gupta, P.: A New Vein Pattern-based Verifica-
tion System. (IJCSIS) International Journal of Computer Science and Information
Security 8(1) (2010)

7. Badawi, A.: Hand Vein Biometric Verification Prototype: A Testing Performance
and Patterns Similarity. In: Proceedings of the 2006 International Conference on
Image Processing, Computer Vision, and Pattern Recognition, IPCV 2006, USA,
June 26-29 (2006)

8. Shahin, M., Badawi, A., Kamel, M.: Biometric Authentication Using Fast Corre-
lation of Near Infrared Hand Vein Patterns. International Journal of Biomedical
Sciences 2(3) (2007)

9. Ahonen, T., Hadid, A., Pietikainen, M.: Description with Local Binary Pat-
terns:Analysis, Application to Face Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence 28(12) (December 2006)

10. Heikkila, M., Pietikainen, M., Schmid, C.: Description of Interest Regions with
Local Binary Patterns. Pattern Recognition 42(3), 425–436 (2009)

11. Ojala, T., Pietinainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rotation
Invariant Texture Classification with Local Binary Patterns. IEEE Transactions
on Pattern Analysis and Machine Intelligence 24(7), 971–987 (2002)

12. Wang, W., Li, K., Shark, L., Verley, R.: Hand-Dorsa Vein Recognition Based on
Coded and Weighted Partition Local Binary Patterns. In: 2011 International Con-
ference on Hand-Based Biometrics (ICHB), pp. 1– 5 (2011)

13. Turk, M., Pentland, A.: Face Recognition using Eigenfaces. In: The Proceedings of
IEEE Computer Society Conference on Computer Vision and pattern Recognition,
June 3-6, pp. 586–591 (1991)

Representation of Dorsal Hand Vein Pattern Using LBP 341

14. Deepika, L., Kansaswamy, A., Vimal, C.: Protection of patient identity and privacy
using vascular biometrics. International Journal of Security 4(5) (2010)

15. Heenaye-Mamode Khan, M., Subramaniam, R.K., Mamode Khan, N.: Low Dimen-
sional Representation of Dorsal Hand Vein Features Using Principle Component
Analysis (PCA). The Proceedings of World Academy of Science and Technology 3
(2009)

Watermarking Based Multi-biometric

Fusion Approach

Sanaa Ghouzali(�)

Information Technology Department,
College of Computer and Information Sciences,
King Saud University, Riyadh, Saudi Arabia

sghouzali@ksu.edu.sa

Abstract. In this paper we present a watermarking based multi-
biometric fusion method that can embed fingerprint minutia information
into host face images in the DCT (Discrete Cosine Transform) domain.
This scheme has the advantage that in addition to prevent unautho-
rized biometric data manipulations, the biometric authentication can be
performed efficiently using the fused biometric data without the need
to extract the watermark. Orthogonal Locality Preserving Projections
(OLPP) method is used in this approach to extract the most perti-
nent features which are beneficial to identification of the watermarked
face images. Preliminarily results using ORL and Yale face databases,
and FVC2002 DB2 fingerprint database show the effectiveness of the
proposed approach in achieving good authentication performance while
preventing unauthorized manipulations of biometric data.

Keywords: Biometric authentication · Watermarking · Data fusion

1 Introduction

Biometrics based authentication has attracted researchers’ attention in the com-
puter community for its many applications specially related to security and ac-
cess control. Since biometric modalities are associated permanently with a unique
person and cannot be modified, biometrics techniques offer a reliable method for
user authentication/identification. However several security breaches have been
discovered [1] and more specifically security and integrity of biometric data pose
new challenges. For example, if this biometric data is compromised through a
biometric attack, either by theft or modification, it is lost forever. In [2], authors
provide a critical survey about how watermarking technology can either help to
cope with security threats in biometric systems or help to enhance biometric
schemes in some other way.

Several studies have been published in the area of using watermarking to en-
able a multi-biometric approach by embedding a biometric data into another
biometric sample of different biometric modalities. Jain et al. [3] proposed a
blind watermarking technique which uses a bit stream of eigenface coefficients
as a watermark to be embedded into randomly selected fingerprint image pixels

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 342–351, 2015.
DOI: 10.1007/978-3-319-18681-8_27

Watermarking Based Multi-biometric Fusion Approach 343

using a secret key. In [4], face and text information are embedded in texture re-
gions of fingerprint image using Discrete Wavelet Transform (DWT). Moon et al.
[5] presented various watermarking techniques for secure multimodal biometric
systems using both fingerprint and face information. In their experimental re-
sults, it has been shown that embedding fingerprint features into a face image
provides superior performance than embedding facial features into a fingerprint
image in terms of user verification accuracy. In [6], a technique based on block-
wise image watermarking and cryptography is proposed to embed fingerprint
templates into facial images. Their scheme allows to maintain image quality.
Park et al. [7] suggest to use robust embedding of iris templates into face image
data. In [8] an encrypted palmprint template is embedded into a fingerprint im-
age. The encryption key is derived from palmprint classes. Vatsa et al. [9] employ
robust embedding techniques where they embed voice features in color facial im-
ages. Kim et al. [10] propose a blind and robust spread spectrum watermarking
technique for embedding face template data into fingerprint sample. Authors in
[11] propose a block pyramid based adaptive quantization watermarking scheme
to embed fingerprint minutiae into face images. Numeric watermark bits with
higher priority are embedded into upper pyramid level with a larger embedding
strength using first-order statics QIM (quantization index modulation) method.
However, in all these different approaches the additional biometric data are not
used in multi-biometric fusion scheme but serve as an independent second bio-
metric modality resulting in a two-factor authentication technique.

In this paper we propose a watermarking based multi-biometric fusion ap-
proach aiming to protect biometric templates from unauthorized manipulations
in addition to provide a good recognition performance. First bits stream of fin-
gerprint minutia is embedded into face image using a block-wise DCT based
watermarking approach. The objective of using watermarking in this paper is to
develop a multi-biometric fusion technique. Orthogonal Locality preserving pro-
jections (OLPP) [12] are then applied on the watermarked face images to extract
the most pertinent features which are beneficial to identification. Finally, the co-
sine distances between feature vectors are calculated to match watermarked face
images.

The remainder of this paper is organized as follows. The proposed multi-
biometric fusion approach is described in Section 2. Section 3 addresses the
experimentations, and Section 4 concludes the paper.

2 Proposed Watermarking Based Multi-biometric Fusion
Approach

The proposed multi-biometric authentication system includes two stages, en-
rollment stage and verification stage. A user presents his/her biometric traits,
e.g. face and fingerprint, during the enrollment stage. Then the watermark em-
bedding process is applied and the resulting watermarked image is stored in
the database instead of the original templates. Next, we applied OLPP on the
watermarked face images to get a low-dimensional subspace.

344 S. Ghouzali

During the verification stage, the biometric traits are acquired and the same
process of watermark embedding is applied. The watermarked face image is then
sent to the OLPP projection subspace. Finally, if a matching is found between
feature vectors of stored and tested watermarked face images then the user is
granted permission to access otherwise he/she will be rejected.

2.1 Watermark Embedding Process

In the literature there exist multiple image watermarking techniques which can
be divided into various categories in various ways. The watermark can be ap-
plied in spatial domain and frequency domain. In frequency domain, it has been
observed that coefficients are slightly modified which makes some unnoticeable
changes in the whole image and makes it more robust to attacks compared to
spatial based watermarking techniques [13]. In this work we propose to use a
watermarking technique based on block-wise Discrete Cosine Transform (DCT)
to insert the fingerprint minutia (watermark, W) in the face image (cover, C). To
achieve our research objectives stated in this work, the watermarking technique
should have the following properties:

1. When acquiring biometric data (face image), these are watermarked, such
that sniffed/stollen data cannot be used to fool the system pretending these
to be real data. Hence watermarking should be robust against image manip-
ulations (such as compression, noise, etc.).

2. The capacity requirement of the watermarking techniques is very important
and should allow carrying the fingerprint template (minutiae points) by the
host image (face template).

3. Embedding watermark may result in changing the information of the host
image. Therefore, the verification performance based on watermarked im-
ages should not be inferior compared to the verification performance of non-
watermarked images.

In block-wise DCT based image watermarking, the host image is divided into
different blocks. A block size of 8x8, which ideally matches JPEG compression,
can be used to provide least distortion of the image against JPEG compression
attack [14]. Then DCT of each block is evaluated. Since embedding the water-
mark may change the inherent characteristics of the cover image, care should
be paid not to affect the performance accuracy of the watermarked images au-
thentication. In addition, the DC coefficient should not be modified due to its
perceptible effect in the whole image brightness. On the other hand, high frequen-
cies are easily changed under common attacks such as compression. To maintain
a good tradeoff between performance accuracy, robustness and imperceptibility,
the proposed technique embeds watermark in medium frequency coefficients of
the DCT block as shown in Figure 1.

In the proposed approach, first we extract the minutia of the fingerprint image
denoted as W = (W1, ..WN) where N is the total number of minutia points.
Wi is a minutia point represented by the minutia coordinates and orientation.

Watermarking Based Multi-biometric Fusion Approach 345

Fig. 1. 8x8 DCT block where medium-frequency coefficients are shown in gray color

Every fingerprint minutia point Wi is converted to a bit stream and randomly
embedded at a different DCT block in the host face image. Selected medium-
frequency coefficients are modified according to the following equation [15]:

W ′ = C + (2.b− 1).α.C (1)

where W ′ is the watermarked coefficient, C is the DCT coefficient, α represents
the watermarking strength, and b is the watermark bit (b ∈ [0, 1]).

The resulting system is vulnerable in principle against all types of attacks
in the classical unimodal systems. In particular, an attacker who previously
intercepts user biometric data (fingerprint and face image) can embed stollen
fingerprint data into stollen face image. In order to prevent this attack, water-
mark embedding in the proposed approach will be performed using a user key.
A random number generator initialized with the user secret key determines the
DCT blocks of the image to be watermarked. The block diagram of the proposed
approach is given in Figure 2.

Fig. 2. The proposed DCT Watermarking based multi-biometric approach

2.2 OLPP-Based Feature Extraction and Matching

To extract pertinent information from large volumes of data, it is wise to use
methods of dimensionality reduction. These methods can detect and analyze

346 S. Ghouzali

possible structures present but hidden in multidimensional data. Similar to other
linear dimensionality reduction methods such as Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA), Locality Preserving Projection
(LPP) has been recently proposed as a way to transform samples into a new small
subspace. These methods are theoretically related with different weight matrix.
The main objective of LPP is to preserve the local structure of the samples, i.e.,
samples that were close neighbors in the original space remain so as well in the
new space [16]. LPP has been widely used in different applications of pattern
recognition [17,18,19].

However, the basis functions obtained by the LPP method are non-orthogonal
making it difficult to reconstruct the data. Orthogonal Locality Preserving Pro-
jection (OLPP) method called also Orthogonal Laplacianface has been proposed
with the same theoretical foundation of LPP method except that it requires the
basis functions to be orthogonal. OLPP has been used for face representation
and recognition and proven to consistently outperform the Eigenface, Fisherface,
and Laplacianface methods [12].

In the proposed approach OLPP is applied on watermarked face images to
get a projection matrix. The objective function is as follows:

min
∑
ij

(yi − yj)
2Sij (2)

where yi is the l-dimensional representation of xi and the matrix S is a similarity
matrix defined as follows when the cosine distance is used to measure the relation
between any two points:

Sij =

⎧⎪⎪⎨
⎪⎪⎩

xixj

||xi||||xj|| xi is among k nearest neighbors of xj or

xj is among k nearest neighbors of xi

0 otherwise

(3)

Minimizing the objective ensures that if xi and xj are ”close” then yi and yj
are close as well. Suppose V is a transformation vector, that is, yi = V Txi, the
minimization problem reduces to finding:

argminV V TXLXTV

s.t. V TXDXTV = 1
(4)

whereDii =
∑

j Sji is a diagonal matrix which measures the local density around
xi, L = D − S is the Laplacian matrix.

Solution to this problem is to compute the eigenvectors V = (v0, v1, . . . , vl−1)
associated with the smallest eigenvalues (Λ, λ0 ≤ λ1 . . . ≤ λl−1) of the following
generalized eigen problem:

XLXTV = ΛXDXTV (5)

Watermarking Based Multi-biometric Fusion Approach 347

Thus the projection of a testing sample xi is yi = V Txi. If V is an orthogonal
matrix, then V V T = I and the metric structure is preserved. Figure 3 shows the
first 10 Orthogonal Laplacianfaces.

Fig. 3. The first 10 Orthogonal Laplacianfaces obtained from the face images in the
ORL database

The training and testing watermarked face images are respectively projected
onto the subspace V . The matching is proceeded by calculating the cosine dis-
tance between feature vectors yi and yj as follows:

d =
yiyj

||yi||||yj ||
(6)

If d is greater than a predetermined threshold value T , the two watermarked
face images belong to the same person.

3 Experimentations

To give a first insight of the effectiveness of the proposed approach, we consider
in this paper two biometric modalities face and fingerprint. For experimenta-
tion, we used ORL and Yale face databases. All the face images in the ORL
face database1 were captured against a dark homogeneous background. These
images contain various facial expressions (smiling/not smiling, open/closed eyes)
and facial details. The subjects were in an upright, frontal position but there was
a tolerance for some tilting and rotation of up to about 20 degrees. Ten different
images were obtained for each of the 40 subjects. The Yale face database2 con-
tains 165 gray scale images of 15 individuals. The images demonstrate variations
in lighting condition, facial expression (normal, happy, sad, sleepy, surprised, and
wink). For both databases, the first five face images of each subject were used
as training samples, and the remaining images were used as testing samples.

The fingerprints samples are obtained from FVC2002 DB2 [20] fingerprint
database which contains 800 fingerprint impressions of size 300x480 pixels cap-
tured at a resolution of 512 dpi, from 100 distinct fingers (i.e. each person is

1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2 http://vision.ucsd.edu/content/yale-face-database

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://vision.ucsd.edu/content/yale-face-database

348 S. Ghouzali

represented by 8 impressions, 4 images are used for training and the remaining
4 are used for testing). The trial version of the commercial software VeriFinger
SDK 6.03 has been used to extract the minutiae points. Individual minutia data
sets contain between 20 and 40 minutia points.

To apply the block-wise DCT based watermarking, we used small subsets of
the FVC2002 DB2 fingerprint database with 40 and 15 users, respectively. The
original face images in ORL and Yale are resized to 64x64 in order to implement
OLPP algorithm at a lower computational cost. We assigned each sample of
fingerprint (extracted minutia vector) with different face samples of a user. So,
we have 20 different combinations for each user in the training databases of
ORL and Yale. First, a user key, generated as a random number, is used in
selecting the blocks of the face image to be watermarked. The user key can be
derived from a password in real-world applications. Then the watermarking of
the selected blocks by the bit stream of the fingerprint minutia is performed
as described in the previous section. The resulting watermarked face images
are stored in the database for further processing, for example, the extracted
watermark (fingerprint minutia) can be used as a second source of authenticity
or to prove the ownership of the host face image based on fingerprint verification
by comparing the request fingerprint and the extracted watermark.

Next, we applied OLPP on the watermarked face images in the ORL and
Yale training databases, which contain 800 and 300 images respectively, to get
the low-dimensional subspaces. Then the watermarked face images in the ORL
and Yale test databases, which contain 800 and 360 images respectively, to be
identified are projected into the low-dimensional subspaces to extract the feature
vectors. Finally, the matching of projected watermarked face images is performed
by a nearest neighbor classifier based on the cosine distance between training
and test feature vectors.

The Receiver Operating Characteristic (ROC) curves given in Figure 4 and
Figure 5 show the error rate versus the dimensionality reduction (number of
eigenvectors) corresponding to face recognition (1) without watermarking and
(2) with minutiae- based watermarking for both ORL and Yale face databases
respectively. As can be seen, the similarity of the ROC curves indicates that the
proposed watermarking based multi-biometric fusion approach does not intro-
duce any significant degradation in the face recognition accuracy.

To measure the effectiveness of the watermarking approach against compres-
sion attack, we have calculated the watermark extraction bit error rate (BER)
as:

BER =
Number of error bits

Total number of embedded bits
(7)

In this experiment, the percentage BER is less than 5% even for compression
up to 50%. This result confirms the effectiveness of the use of the medium fre-
quency DCT coefficients in the proposed watermarking approach. Moreover, it

3 http://www.neurotechnology.com/licensing verifinger 6.html

http://www.neurotechnology.com/licensing_verifinger_6.html

Watermarking Based Multi-biometric Fusion Approach 349

Fig. 4. ROC curves of ORL face database.

Fig. 5. ROC curves of Yale face database.

350 S. Ghouzali

confirms that the use of block size of 8x8 provides least distortion of the image
against JPEG compression attack as stated in [14]. However more experiments
are needed to validate the robustness of the proposed approach against different
types of attacks (e.g. noise, filtering).

4 Conclusion

The paper presented a watermarking based multi-biometric fusion approach,
with an objective to protect biometric data without affecting the authentication
performance given the fusion of two biometric modalities (face and fingerprint).
The preliminary results revealed that the proposed approach is effective in au-
thentication and does not degrade the performance of the original face recog-
nition approach. Moreover, the watermark data which consists of the minutiae
of a user’s fingerprint, if extracted, can be used as a ”second line of defense” in
authenticating the host face image.

The next step of this research work will consist in performing extensive exper-
imentations with existing benchmark databases of different biometric modalities
(face, fingerprint, iris, etc . . .). Selecting the best image blocks and DCT co-
efficients to embed the bit stream of the watermark can be enhanced using an
optimization technique. In addition, robustness of the watermarking approach
needs to be assessed against unintentional/non-malicious image manipulations.

References

1. Ratha, N.K., Connell, J.H., Bolle, R.M.: An analysis of minutiae matching strength.
In: Bigun, J., Smeraldi, F. (eds.) AVBPA 2001. LNCS, vol. 2091, pp. 223–228.
Springer, Heidelberg (2001)

2. Hämmerle-Uhl, J., Raab, K., Uhl, A.: Watermarking as a means to enhance bio-
metric systems: A critical survey. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.)
IH 2011. LNCS, vol. 6958, pp. 238–254. Springer, Heidelberg (2011)

3. Jain, A.K., Uludag, U., Hsu, R.L.: Hiding a face in a fingerprint image. In: Inter-
national Conference on Pattern Recognition, pp. 756–759. IEEE Press, New York
(2002)

4. Noore, A., Singh, R., Vatsa, M., Houck, M.M.: Enhancing security of fingerprints
through contextual biometric watermarking. Forensic Science International 169,
188–194 (2007)

5. Moon, D., Kim, T., Jung, S.-H., Chung, Y., Moon, K., Ahn, D., Kim, S.K.: Per-
formance evaluation of watermarking techniques for secure multimodal biometric
systems. In: Hao, Y., et al. (eds.) CIS 2005. LNCS (LNAI), vol. 3802, pp. 635–642.
Springer, Heidelberg (2005)

6. Komninos, N., Dimitriou, T.: Protecting biometric templates with image water-
marking techniques. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp.
114–123. Springer, Heidelberg (2007)

7. Park, K.R., Jeong, D.S., Kang, B.J., Lee, E.C.: A study on iris feature watermark-
ing on face data. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B.
(eds.) ICANNGA 2007. LNCS, vol. 4432, pp. 415–423. Springer, Heidelberg (2007)

Watermarking Based Multi-biometric Fusion Approach 351

8. Rajibul, M.I., Shohel, M.S., Andrews, S.: Biometric template protection using wa-
termarking with hidden password encryption. In: International Symposium on In-
formation Technology, pp. 296–303. IEEE Press, New York (2008)

9. Vatsa, M., Singh, R., Noore, A.: Feature based RDWT watermarking for multi-
modal biometric system. Image and Vision Computing 27(3), 293–304 (2009)

10. Kim, W.-G., Lee, H.K.: Multimodal biometric image watermarking using two- stage
integrity verification. Signal Processing 89(12), 2385–2399 (2009)

11. Ma, B., Li, C., Wang, Y., Zhang, Z., Wang, Y.: Block Pyramid Based Adaptive
Quantization Watermarking for Multimodal Biometric Authentication. In: Interna-
tional Conference on Pattern Recognition, pp. 1277–1280. IEEE Press, New York
(2010)

12. Cai, D., He, X., Han, J., Zhang, H.: Orthogonal Laplacianfaces for Face Recogni-
tion. IEEE Transactions on Image Processing 15(11), 3608–3614 (2006)

13. Aslantas, V.: A singular value decomposition-based image watermarking using ge-
netic algorithm. International Journal of Electronic Communications 62, 386–394
(2008)

14. Barni, M., Bartolini, F.: Watermarking Systems Engineering. Marcel Dekker Inc.,
Italy (2004)

15. Cox, J., Kilian, J., Leighton, F.T., Shamoon, T.: Secure spread spectrum water-
marking for multimedia. IEEE Transactions on Image Processing 6(12), 1673–1687
(1997)

16. He, X., Niyogi, P.: Locality Preserving Projections. In: Conference on Advances in
Neural Information Processing Systems (2003)

17. Cheng, J., Liu, Q., Lu, H., Chen, Y.-W.: Supervised kernel locality preserving
projections for face recognition. Neurocomputing 67, 443–449 (2005)

18. Yang, J., Zhang, D., Yang, J.-Y., Niu, B.: Globally maximizing, locally minimiz-
ing: unsupervised discriminant projection with applications to face and palm bio-
metrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 29(4),
650–664 (2007)

19. He, X., Yan, S., Hu, Y., Niyogi, P., Zhang, H.-J.: Face recognition using Lapla-
cianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 27,
328–340 (2005)

20. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of fingerprint recog-
nition. Springer, Heidelberg (2009)

New Attacks on RSA with Moduli N = prq

Abderrahmane Nitaj1(�) and Tajjeeddine Rachidi2

1 Laboratoire de Mathématiques Nicolas Oresme,
Université de Caen Basse Normandie, France

abderrahmane.nitaj@unicaen.fr
2 School of Science and Engineering

Al Akhawayn University in Ifrane, Morocco
T.Rachidi@aui.ma

Abstract. We present three attacks on the Prime Power RSA with mod-
ulus N = prq. In the first attack, we consider a public exponent e sat-
isfying an equation ex − φ(N)y = z where φ(N) = pr−1(p − 1)(q − 1).
We show that one can factor N if the parameters |x| and |z| satisfy

|xz| < N
r(r−1)

(r+1)2 thereby extending the recent results of Sakar [16]. In
the second attack, we consider two public exponents e1 and e2 and their
corresponding private exponents d1 and d2. We show that one can fac-
tor N when d1 and d2 share a suitable amount of their most significant

bits, that is |d1 − d2| < N
r(r−1)

(r+1)2 . The third attack enables us to fac-
tor two Prime Power RSA moduli N1 = pr1q1 and N2 = pr2q2 when p1
and p2 share a suitable amount of their most significant bits, namely,
|p1 − p2| < p1

2rq1q2
.

Keywords: RSA ·Cryptanalysis ·Factorization ·Coppersmith’smethod ·
Prime Power RSA

1 Introduction

The RSA public-key cryptosystem, invented in 1978 by Rivest, Shamir and Adle-
man [15], is one of the most popular systems in use today. In the RSA cryp-
tosystem, the public key is (N, e) where the modulus N = pq is a product of two
primes of the same bitsize, and the public exponent is a positive integer satisfy-
ing ed ≡ 1 (mod φ(N)). In RSA, encryption and decryption require executing
heavy exponential multiplications modulo the large integer N . To reduce the
decryption time, one may be tempted to use a small private exponent d. How-
ever, in 1990 Wiener [18] showed that RSA is insecure if d < 1

3N
0.25, and Boneh

and Durfee [2] improved the bound to d < N0.292. In 2004, Blömer and May [1]
combined both Wiener’s method and Boneh and Durfee’s method to show that
RSA is insecure if the public exponent e satisfies an equation ex + y = kφ(N)

with x < 1
3N

1
4 and |y| ≤ N− 3

4 ex.

Partially supported by the French SIMPATIC (SIM and PAiring Theory for
Information and Communications security).

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 352–360, 2015.
DOI: 10.1007/978-3-319-18681-8_28

New Attacks on RSA with Moduli N = prq 353

Concurrent to these efforts, many RSA variants have been proposed in order
to ensure computational efficiency while maintaining the acceptable levels of
security. One such important variant is the Prime Power RSA. In Prime Power
RSA the modulus N is in the form N = prq for r ≥ 2. In [17], Takagi showed
how to use the Prime Power RSA to speed up the decryption process when the
public and private exponents satisfy an equation ed ≡ 1 (mod (p − 1)(q − 1)).
As in the standard RSA cryptosystem, the security of the Prime Power RSA
depends on the difficulty of factoring integers of the form N = prq.

Therefore, a Prime Power RSA modulus must be appropriately chosen, since
it has to resist factoring algorithms such as the Number Field Sieve [10] and the
Elliptic Curve Method [9]. Table 1, shows the suggested secure Power RSA forms
as a function of the size of the modulus back in 2002 (see [4]). Note that, due
to the ever increasing development of computing hardware, the form N = p2q is
no longer recommended for 1024 bit modulus.

Table 1. Optimal number of prime factors of a Prime Power RSA modulus [4]

Modulus size (bits) 1024 1536 2048 3072 4096 8192

Form of the modulus N pq, p2q pq, p2q pq, p2q pq, p2q pq, p2q, p3q pq, p2q, p3q, p4q

In 1999, Boneh, Durfee, and Howgrave-Graham [3] presented a method for
factoring N = prq when r is large. Furthermore, Takagi [17] proved that one

can factor N if d < N
1

2(r+1) , and May [13] improved the bound to d < N
r

(r+1)2

or d < N
(r−1)2

(r+1)2 . Very recently, Lu, Zhang and Lin [12] improved the bound to

d < N
r(r−1)

(r+1)2 , and Sarkar [16] improved the bound for N = p2q to d < N0.395

and gave explicit bounds for r = 3, 4, 5.
In this paper, we focus on the Prime Power RSA with a modulus N = prq,

and present three new attacks: In the first attack we consider a public exponent
e satisfying an equation ex − φ(N)y = z where x and y are positive integers.
Using a recent result of Lu, Zhang and Lin [12], we show that one can factor N in

polynomial time if |xz| < N
r(r−1)

(r+1)2 . In the standard situation z = 1, the condition

becomes d = x < N
r(r−1)

(r+1)2 which improves the bound of May [13] for r ≥ 3 and
retrieves the bound of Lu, Zhang and Lin [12]. Note that unlike Sarkar [16] who
solves ex− φ(N)y = 1, we solve a more general equation ex− φ(N)y = z. This
leads to less constraints on the solution space, which in turn leads to an increase
in the number of solutions to the equation. Intuitively speaking, our method has
higher likelihood of finding solutions; that is, factoring RSA. In section 3, we
shall present an example supporting this claim.

In the second attack, we consider an instance of the Prime Power RSA with
modulus N = prq. We show that one can factor N if two private keys d1 and d2
share an amount of their most significant bits, that is if |d1−d2| is small enough.

More precisely, we show that if |d1 − d2| < N
r(r−1)

(r+1)2 , then N can be factored in

354 A. Nitaj and T. Rachidi

polynomial time. The method we present is based on a recent result of [12] with
Coppersmith’s method for solving an univariate linear equation.

In the third attack, we consider two instances of the Prime Power RSA with
two moduli N1 = pr1q1 and N2 = pr2q2 such that the prime factors p1 and p2
share an amount of their most significant bits, that is |p1 − p2| is small. More
precisely, we show that one can factor the RSA moduli N1 and N2 in polynomial
time if |p1 − p2| < p1

2rq1q2
. The method we use for this attack is based on the

continued fraction algorithm.
The rest of this paper is organized as follows: In Section 2, we briefly review

the preliminaries necessary for the attacks, namely Coppersmith’s technique
for solving linear equations and the continued fractions theorem. In Section 3,
we present the first attack on the Prime Power RSA, which is valid with no
conditions on the prime factors. In Section 4, we present the second attack in
the situation where two decryption exponents share an amount of their most
significant bits. In Section 5, we present the third attack on the Prime Power
RSA when the prime factors share an amount of their most significant bits. We
then conclude the paper in Section 6.

2 Preliminaries

In this section, we present some basics on Coppersmith’s method for solving
linear modular polynomial equations and an overview of the continued fraction
algorithm. Both techniques are used in the crafting of our attacks.

First, observe that if N = prq with q < p, then pr+1 > prq = N , and

p > N
1

r+1 . Hence throughout this paper, we will use the inequality p > Nβ

where β = 1
r+1 .

2.1 Linear Modular Polynomial Equations

In 1995, Coppersmith [5] developed powerful lattice-based techniques for solving
both modular polynomial diophantine equations with one variable and two vari-
ables. These techniques have been generalized to more variables, and have served
for cryptanalysis of many instances of RSA. More on this can be found in [14,8].
In [7], Herrmann and May presented a method for finding the small roots of a
modular polynomial equation f(x1, . . . , xn) ≡ 0 (mod p) where f(x1, . . . , xn) ∈
Z[x1, . . . , xn] and p is an unknown divisor of a known integer N . Their method
is based on the seminal work of Coppersmith [5]. Very recently, Lu, Zhang and
Lin [12] presented a generalization for finding the small roots of a modular
polynomial equation f(x1, . . . , xn) ≡ 0 (mod pv), where pv is a divisor of some
composite integer N . For the bivariate case, they proved the following result,
which we shall use in the crafting of our attacks.

Theorem 1 (Lu, Zhang and Lin). Let N be a composite integer with a
divisor pu such that p ≥ Nβ for some 0 < β ≤ 1. Let f(x, y) ∈ Z[x, y] be
a homogenous linear polynomial. Then one can find all the solutions (x, y) of

New Attacks on RSA with Moduli N = prq 355

the equation f(x, y) = 0 mod pv with gcd(x, y) = 1, |x| < Nγ1 , |y| < Nγ2 , in
polynomial time if

γ1 + γ2 < uvβ2.

2.2 The Continued Fractions Algorithm

We present here the well known result of Legendre on convergents of a continued
fraction expansion of a real number. The details can be found in [6]. Let ξ
be a positive real number. Define ξ0 = ξ and for i = 0, 1, . . . , n, ai = �ξi�,
ξi+1 = 1/(ξi − ai) unless ξi is an integer. This expands ξ as a continued fraction
in the following form:

ξ = a0 +
1

a1 +
1

.. . +
1

an +
1

.. .

, a0 ∈ N, and ai ∈ N
∗ for i ≥ 1,

which is often rewritten as ξ = [a0, a1, . . . , an, . . .]. For i ≥ 0, the rational num-
bers [a0, a1, . . . , ai] are the convergents of ξ. If ξ = a

b is a rational number, then
ξ = [a0, a1, . . . , an] for some positive integer n, and the continued fraction ex-
pansion of ξ is finite with the total number of convergents being polynomial in
log(b). The following result enables one to determine if a rational number a

b is a
convergent of the continued fraction expansion of a real number ξ (see Theorem
184 of [6]).

Theorem 2 (Legendre). Let ξ be a positive real number. Suppose gcd(a, b) = 1
and ∣∣∣ξ − a

b

∣∣∣ < 1

2b2
.

Then a
b is one of the convergents of the continued fraction expansion of ξ.

Note that the continued fractions expansion process is polynomial in time.

3 The First Attack on Prime Power RSA with Modulus
N = prq

In this section, we present an attack on the Prime Power RSA when the public
key (N, e) satisfies an equation ex−φ(N)y = z with small parameters x and |z|.

Theorem 3. Let N = prq be a Prime Power RSA modulus and e a public
exponent satisfying the equation ex − φ(N)y = z with 1 < e < φ(N) and
gcd(e, φ(N)) = 1. Then one can factor N in polynomial time if

|xz| < N
r(r−1)

(r+1)2 .

356 A. Nitaj and T. Rachidi

Proof. Suppose that e < N satisfies an equation ex− φ(N)y = z with |x| < N δ

and |z| < Nγ . Then, since φ(N) = pr−1(p − 1)(q − 1), we get ex − z ≡ 0
(mod pr−1). Applying Theorem 1 with u = r, v = r − 1 and β = 1

r+1 , we can
solve the equation in polynomial time if

δ + γ < uvβ2 =
r(r − 1)

(r + 1)2
,

that is |xz| < N
r(r−1)

(r+1)2 . Since e
φ(N) < 1, then, using x and z in the equation

ex− φ(N)y = z, we get for sufficiently large N comparatively to r,

y =
ex− z

φ(N)
<

e|x|
φ(N)

+
|z|

φ(N)
< |x|+ |z| ≤ 1 + |xz| < 1 +N

r(r−1)

(r+1)2 < N.

Hence
gcd(ex− z,N) = gcd(pr−1(p− 1)(q − 1)y, prq) = g,

with g = pr−1, g = pr or g = pr−1q. If g = pr−1, then p = g
1

r−1 , if g = pr, then
p = g

1
r and if g = pr−1q, then p = N

g . This leads to the factorization of N . �	
Example 1. For r = 2 and N = prq, let us take for N and e the 55 digit numbers

N = 8138044578297117319482018441148072252199996769522371021,

e = 1199995230601021126201343651611107957480251354355883029.

In order to solve the diophantine equation ex−φ(N)y = z, we transformed it
into the equation ex− z ≡ 0 (mod pr−1) using Theorem 3. To be able to apply
Coppersmith’s technique via Theorem 1, we chose the parameters m = 7, t = 6

so that the dimension of constructed the lattice is 36, and X =

[
N

r(r−1)

(r+1)2

]
=

1592999974064. We built the lattice using the polynomial f(x1, x2) = x1 + ex2,
then applied the LLL algorithm [11], and used Gröbner basis method to find
the smallest solution x1 = −11537 and x2 = 7053 to f(x1, x2) ≡ 0 (mod pr−1)
in 174 seconds using an off-the-shelf computer. From this solution, we deduced
p = gcd(x1 + ex2, N) = 2294269585934949239, and finally recovered q = N

p2 =

1546077175000723901. We then computed φ(N) and d ≡ e−1 (mod φ(N)) as
follows:

φ(N) = 8138044578297117310671227668089561946257896925261579800,

d = 2015994747748388772982436393811213317361971865510756269.

Observe that d ≈ N0.98 which is out of range of Sarkar’s bound [16] which can
only retrieve private keys d < N0.395 for r = 2.

4 The Second Attack on Prime Power RSA Using Two
Decryption Exponents

In this section, we present an attack on the Prime Power RSA when two private
exponents d1 and d2 share an amount of their most significant bits, that is
|d1 − d2| is small.

New Attacks on RSA with Moduli N = prq 357

Theorem 4. Let N = prq be an RSA modulus and d1 and d2 be two private
exponents. Then, one can factor N in polynomial time, if

|d1 − d2| < N
r(r−1)

(r+1)2 .

Proof. Suppose that e1d1 − k1φ(N) = 1 and e2d2 − k2φ(N) = 1 with e1 > e2.
Hence e1d1 ≡ 1 (mod φ(N)) and e2d2 ≡ 1 (mod φ(N)). Multiplying the first
equation by e2 and the second by e1 and subtracting, we get

e1e2(d1 − d2) ≡ e2 − e1 (mod φ(N)).

Since φ(N) = pr−1(p − 1)(q − 1), we get e1e2(d1 − d2) ≡ e2 − e1 (mod pr−1).
Now, consider the modular linear equation

e1e2x− (e2 − e1) ≡ 0 (mod pr−1),

d1 − d2 is a root of such equation. Suppose further that |d1 − d2| < N δ, then
applying Theorem 1 with u = r, v = r− 1 and β = 1

r+1 will lead to the solution
x = d1 − d2 obtained in polynomial time if

δ < uvβ2 =
r(r − 1)

(r + 1)2
.

That is if |d1 − d2| < N
r(r−1)

(r+1)2 . Computing

gcd(e1e2x− (e2 − e1), N) = gcd
(
pr−1(p− 1)(q − 1)y, prq

)
= g,

will lead to determining p, hence factoringN as follows: p = g
1

r−1 when g = pr−1,
or p = g

1
r when g = pr, or p = N

g if g = pr−1q. �	

Example 2. Let us present an example corresponding to Theorem 4. Consider
N = p2q with

N = 6093253851486120878859471958399737725885946526553626219,

e1 = 2749600381847487389715964767235618802529675855606377411,

e2 = 3575081244952414009316396501512372226545892558898276551.

The polynomial equation is f(x) = e1e2x− (e2− e1) ≡ 0 (mod pr−1), which can
be transformed into g(x) = x− a ≡ 0 (mod pr−1) where a ≡ (e2 − e1)(e1e2)

−1

(mod N). Using m = 8 and t = 6, we built a lattice with dimension ω = 9. Ap-
plying the LLL algorithm [11] and solving the first reduced polynomials, we get
the solution x0 = 1826732340.Hence gcd(f(x0), N) = p = 1789386140116417697
and finally q = N

p2 = 1903010275819064491. The whole process took less than

4 seconds using an off-the-shelf computer. Then, using φ(N) = p(p − 1)(q −
1), we retrieved the private exponents d1 ≡ e−1

1 (mod φ(N)) and d2 ≡ e−1
2

(mod φ(N)). Note that again d1 ≈ d2 ≈ N0.99 which Sarkar’s method with the
bound d < N0.395 could not possibly retrieve.

358 A. Nitaj and T. Rachidi

5 The Third Attack on Prime Power RSA with Two
RSA Moduli

In this section, we consider two Prime Power RSA moduli N1 = pr1q1 and N2 =
pr2q2, where p1 and p2 share an amount of their most significant bits.

Theorem 5. Let N1 = pr1q1 and N2 = pr2q2 be two RSA moduli with p1 > p2. If

|p1 − p2| <
p1

2rq1q2
,

then, one can factor N in polynomial time.

Proof. Suppose thatN1 = pr1q1 andN2 = pr2q2 with p1 > p2. Then q2N1−q1N2 =
q1q2 (p

r
1 − pr2). Hence ∣∣∣∣N2

N1
− q2

q1

∣∣∣∣ = q1q2 |pr1 − pr2|
q21p

r
1

.

In order to apply Theorem 2, we need that
q1q2|pr

1−pr
2|

q21p
r
1

< 1
2q21

, or equivalently

|pr1 − pr2| <
pr1

2q1q2
. (1)

Observe that

|pr1 − pr2| = |p1 − p2|
r−1∑
i=0

pr−1−i
1 pi2 < r|p1 − p2|pr−1

1 .

Then (1) is fulfilled if r|p1 − p2|pr−1
1 <

pr
1

2q1q2
, that is if

|p1 − p2| <
p1

2rq1q2
.

Under this condition, we get q2
q1

among the convergents of the continued fraction

expansion of N2

N1
. Using q1 and q2, we get p1 =

(
N1

q1

) 1
r

and p2 =
(

N2

q2

) 1
r

. �	

Example 3. We present here an example corresponding to Theorem 5. Consider
N1 = p21q1 and N2 = p22q2 with

N1 = 170987233913769420505896917437304719816691353833034482461,

N2 = 120532911819726882881630714003135237766675602824250965921.

We applied the continued fraction algorithm to compute the first 40 convergents
of N2

N1
. Every convergent is a candidate for the ratio q2

q1
of the prime factors. One

of the convergents is 36443689
51698789 leading to q2 = 36443689 and q1 = 51698789. This

gives the prime factors p1 and p2

p1 =

√
N1

q1
= 1818618724382942951460443,

p2 =

√
N2

q2
= 1818618724382943035672683.

New Attacks on RSA with Moduli N = prq 359

6 Conclusion

In this paper, we have considered the Prime Power RSA with modulus N = prq
and public exponent e. We presented three new attacks to factor the modulus
in polynomial time. The first attack can be applied if small parameters x, y and
z satisfying the equation ex− φ(N)y = z can be found . The second attack can
be applied when two private exponents d1 and d2 share an amount of their most
significant bits. The third attack can be applied when two Prime Power RSA
moduli N1 = pr1q1 and N2 = pr2q2 are such that p1 and p2 share an amount of
their most significant bits.

References

1. Blömer, J., May, A.: A Generalized Wiener Attack on RSA. In: Bao, F., Deng, R.,
Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 1–13. Springer, Heidelberg (2004)

2. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg
(1999)

3. Boneh, D., Durfee, G., Howgrave-Graham, N.: Factoring tex2html wrap inline127
for Large r. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 326–337.
Springer, Heidelberg (1999)

4. Compaq Computer Corperation. Cryptography using Compaq multiprime technol-
ogy in a parallel processing environment (2002),
ftp://ftp.compaq.com/pub/solutions/CompaqMultiPrimeWP.pdf

5. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

6. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford
University Press, London (1975)

7. Herrmann, M., May, A.: Solving linear equations modulo divisors: On factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

8. Hinek, M.J.: Cryptanalysis of RSA and its variants. Chapman & Hall/CRC Cryp-
tography and Network Security. CRC Press, Boca Raton (2010)

9. Lenstra, H.: Factoring integers with elliptic curves. Annals of Mathematics 126,
649–673 (1987)

10. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve.
Lecture Notes in Mathematics, vol. 1554. Springer, Heidelberg (1993)

11. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261, 513–534 (1982)

12. Lu, Y., Zhang, R., Lin, D.: New Results on Solving Linear Equations Modulo Un-
known Divisors and its Applications, Cryptology ePrint Archive, Report 2014/343
(2014), https://eprint.iacr.org/2014/343

13. May, A.: Secret Exponent Attacks on RSA-type Schemes with Moduli N = prq.
In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 218–230.
Springer, Heidelberg (2004)

14. May, A.: Using LLL-reduction for solving RSA and factorization problems: a sur-
vey. In: LLL+25 Conference in Honour of the 25th Birthday of the LLL Algorithm.
Springer, Heidelberg (2007)

ftp://ftp.compaq.com/pub/solutions/CompaqMultiPrimeWP.pdf
https://eprint.iacr.org/2014/343

360 A. Nitaj and T. Rachidi

15. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

16. Sarkar, S.: Small secret exponent attack on RSA variant with modulus N = prq.
Designs, Codes and Cryptography 73(2), 383–392 (2015)

17. Takagi, T.: Fast RSA-type cryptosystem modulo pkq. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 318–326. Springer, Heidelberg (1998)

18. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36, 553–558 (1990)

Factoring RSA Moduli

with Weak Prime Factors

Abderrahmane Nitaj1(�) and Tajjeeddine Rachidi2

1 Laboratoire de Mathématiques Nicolas Oresme,
Université de Caen Basse Normandie, France

abderrahmane.nitaj@unicaen.fr
2 School of Science and Engineering,

Al Akhawayn University in Ifrane, Morocco
T.Rachidi@aui.ma

Abstract. In this paper, we study the problem of factoring an RSA
modulus N = pq in polynomial time, when p is a weak prime, that is, p
can be expressed as ap = u0 +M1u1 + . . . + Mkuk for some k integers
M1, . . . ,Mk and k+2 suitably small parameters a, u0, . . . uk. We further
compute a lower bound for the set of weak moduli, that is, moduli made
of at least one weak prime, in the interval [22n, 22(n+1)] and show that
this number is much larger than the set of RSA prime factors satisfying
Coppersmith’s conditions, effectively extending the likelihood for factor-
ing RSA moduli. We also prolong our findings to moduli composed of
two weak primes.

Keywords: RSA · Cryptanalysis · Factorization · LLL algorithm · Weak
primes

1 Introduction

The RSA cryptosystem, invented in 1978 by Rivest, Shamir and Adleman [17]
is undoubtedly one of the most popular public key cryptosystems. In the stan-
dard RSA [17], the modulus N = pq is the product of two large primes of the
same bit-size. The public exponent e is an integer such that 1 ≤ e < φ(N) and
gcd(e, φ(N)) = 1 where φ(N) = (p − 1)(q − 1) is the Euler totient function. The
corresponding private exponent is the integer d such that ed ≡ 1 (mod φ(N)).
In RSA, the encryption, decryption, signature generation, and signature verifica-
tion require substantial CPU cycles because the time to perform these operations
is proportional to the number of bits in public or secret exponents [17]. To reduce
CPU time necessary for encryption and signature verification, onemay be tempted
to use a small public exponent e. This situation has been proven to be insecure
against some small public exponent attacks (see [8] and [9]). To reduce the decryp-
tion and signature generation time, onemay also be tempted to use a small private

Partially supported by the French SIMPATIC (SIM and PAiring Theory for
Information and Communications security).

c© Springer International Publishing Switzerland 2015
S. El Hajji et al. (Eds.): C2SI 2015, LNCS 9084, pp. 361–374, 2015.
DOI: 10.1007/978-3-319-18681-8_29

362 A. Nitaj and T. Rachidi

exponent d. Unfortunately, RSA is also vulnerable to various powerful short secret
exponent attacks such as, the attack of Wiener [20], and the attack of Boneh and
Durfee [4] (see also [3]). An alternate way for increasing the performance of encryp-
tion, decryption, signature generation, and signature verification, without revert-
ing to small exponents, is to use the multi-prime variant of RSA. The multi-prime
RSA is a generalization of the standard RSA cryptosystem in which the modulus
is in the formN = p1p2 · · · pk where k ≥ 3 and the pi’s are distinct prime numbers.
Combinedwith theChineseRemainder Theorem, amulti-primeRSA ismuchmore
efficient than the standard RSA (see [5]).

In Section 4.1.2 of theX9.31-1998 standard for public key cryptography [1], some
recommendations are presented regarding the generation of the prime factors of
an RSA modulus. For example, it is recommended that the modulus should have
1024+256xbits forx ≥ 0.This requirement deters some factorization attacks, such
as the Number Field Sieve (NFS) [12] and the Elliptic Curve Method (ECM) [11].
Another recommendation is that the prime difference |p− q| should be large, and
p
q should not be near the ratio of two small integers. These requirements guard

against Fermat factoring algorithm [19], as well as Coppersmith’s factoring attack
on RSA [6] when one knows half of the bits of p. For example, if N = pq and p, q

are of the same bit-size with |p − q| < N1/4, then
∣∣∣p− [√

N
]∣∣∣ < N1/4 (see [16])

where
[√

N
]
is the nearest integer to

√
N , which means that half of the bits of p

are those of [
√
N] which leads to the factorization ofN (see [6] and [19]). Observe

that the factorization attack of Coppersmith applies provided that one knows half
of the bits of p, that is p is in one of the forms

p =

{
M1 + u0 with known M1 and unknown u0 ≤ N

1
4 ,

M1u1 +M0 with known (M1,M0) and unknown u1 ≤ N
1
4 .

Such primes are called Coppersmith’s weak primes. In the case of p = M1u1+M0

with known M1 and M0, the Euclidean division of q by M1 is in the form
q = M1v1+v0. Hence N = pq = (M1u1+M0)(M1v1+v0) which gives M0v0 ≡ N
(mod M1). Hence, since gcd(M0,M1) = 1, then v0 ≡ NM−1

0 (mod M1). This
means that when p is in the form p = M1u1+M0 with known M and u0, then q
is necessarily in the form q = M1v1+ v0 with known v0. Coppersmith’s attack is
therefore applicable only when small enough parametersM0 and v0 can be found
such that p = M1u1 +M0 and q = M1v1 + v0. This reduces the applicability of
the attack to the set of moduli such that p and q are of the form defined above.

In this paper, we consider the generalization of Coppersmith’s attack by con-
sidering a more satisfiable decomposition of any of the multipliers of p or q,
i.e., ap or aq not just p or q, effectively leading to an increased set of moduli
that can be factored. We describe two new attacks on RSA with a modulus
N = pq. The first attack applies in the situation that, for given positive in-
tegers M1, . . . ,Mk, one of the prime factors, p say, satisfies a linear equation
ap = u0 + M1u1 + . . . + Mkuk with suitably small integers a and u0, . . . , uk.
We call such prime factors weak primes for the integers M1, . . . ,Mk. The second
attack applies when both factors p and q are weak for the integers M1, . . . ,Mk.

Factoring RSA Moduli with Weak Prime Factors 363

We note that, for k = 1, the weak primes are such that ap = u0 +M1u1. This
includes the class of Coppersmith’s weak primes. For both attacks, we give an
estimation of the RSA moduli N = pq with a prime factor p ∈

[
2n, 2n+1

]
which

is weak for the integers M,M2, . . . ,Mk where M =
⌈
2

n
2k

⌉
. We show that the

number of moduli with a weak prime factor is much larger than the number of
moduli with a Coppersmith’s weak prime factor.

The rest of the paper is organized as follows. In Section 2, we give some basic
concepts on integer factorization and lattice reduction as well as an overview of
Coppersmith’s method. In Section 3, we present an attack on an RSA modulus
N = pq with one weak prime factor. In Section 4, we present the second attack
an RSA modulus N = pq with two weak prime factors. We conclude the paper
in Section 5.

2 Preliminaries

In this section we give the definitions and results that we need to perform our
attacks. These preliminaries include basic concepts on integer factorization and
lattice reduction techniques.

2.1 Integer Factorization: The State of the Art

Currently, the most powerful algorithm for factorizing large integers is the Num-
ber Field Sieve (NFS) [12]. The heuristic expected time TNFS(N) of the NFS
depends on the bitsize of the integer N to be factored:

TNFS(N) = exp
(
(1.92 + o(1))(logN)1/3(log logN)2/3

)
.

If the integer N has small factors, the Elliptic Curve Method (ECM) [11] for
factoring is substantially faster than the NFS. It can compute a non-trivial factor
p of a composite integer N in an expected runtime TECM :

TECM (p) = exp
((√

2 + o(1)
)
(log p)1/2(log log p)1/2

)
,

which is sub-exponential in the bitsize of the factor p. The largest factor found
so far with the ECM is a 83 decimal digits (275 bits) prime factor of the special
number 7337 + 1 (see [18]).

2.2 Lattice Reduction

Let m and n be positive integers with m ≤ n. Let u1, . . . , um ∈ R
n be m linearly

independent vectors. The lattice L spanned by u1, . . . , um is the set

L =

{
m∑
i=1

aiui | ai ∈ Z

}
.

364 A. Nitaj and T. Rachidi

The set {u1, . . . , um} is called a lattice basis for L. The dimension (or rank)
of the lattice L is dim(L) = m, and L is called full rank if m = n. It is often
useful to represent the lattice L by the m × n matrix M whose rows are the
coefficients of the vectors u1, . . . , um. The determinant (or volume) of L is defined
as det(L) =

√
M ·M t. When L is full rank, the determinant reduces to det(L) =

| det(M)|. The Euclidean norm of a vector v =
∑m

i=1 aiui ∈ L is defined as

‖v‖ =
√∑m

i=1 a
2
i . As a lattice has infinitely many bases, some bases are better

than others, and a very important task is to find a basis with small vectors
{b1, . . . , bm} called the reduced basis. This task is very hard in general, however,
the LLL algorithm proposed by Lenstra, Lenstra, and Lovász [13] finds a basis of
a lattice with relatively small vectors in polynimial time. The following theorem
determines the sizes of the reduced basis vectors obtained with LLL (see [15] for
more details).

Theorem 1. Let L be a lattice spanned by a basis {u1, . . . , um}. The LLL algo-
rithm applied to L outputs a reduced basis {b1, . . . , bm} with

‖b1‖ ≤ ‖b2‖ ≤ . . . ≤ ‖bi‖ ≤ 2
m(m−1)

4(m−i+1) det(L)
1

m+i−1 , for i = 1, 2, . . . ,m.

The existence of a short nonzero vector in a lattice is guaranteed by a result of
Minkowski stating that every m-dimensional lattice L contains a non-zero vector
v with ‖v‖ ≤

√
m det(L)

1
m . On the other hand, the Gaussian Heuristic asserts

that the norm γ1 of the shortest vector of a random lattice satisfies

γ1 ≈
√

dim(L)
2πe

det(L)
1

dim(L) .

Hereafter, we will use this result as an estimation for the expected minimum
norm of a non-zero vector in a lattice.

2.3 Coppersmith’s Method

In 1996, Coppersmith [6] presented two techniques based on LLL to find small
integer roots of univariate modular polynomials or of bivariate integer polyno-
mials. Coppersmith showed how to apply his technique to factorize an RSA
modulus N = pq with q < p < 2q when half of the least or the most significant
bits of p is known.

Theorem 2. Let N = pq be an RSA modulus with q < p < 2q. Let M0 and M1

be two positif integers. If p = M1 + u0 with u0 < N
1
4 or if p = M1u1 +M0 with

u1 < N
1
4 , then N can be factored in time polynomial in logN .

Coppersmith’s technique extends to polynomials in more variables, but the
method becomes heuristic. The problem of finding small roots of linear mod-
ular polynomials f(x1, . . . , xn) = a1x1 + a2x2 + + anxn + an+1 (mod p) for
some unknown p that divides the known modulus N has been studied using
Coppersmith’s technique by Herrmann and May [10]. The following result, due
to Lu, Zhang and Lin [14] gives a sufficient condition under which modular roots
can be found efficiently.

Factoring RSA Moduli with Weak Prime Factors 365

Theorem 3 (Lu, Zhang, Lin). Let N be a composite integer with a divi-
sor pu such that p ≥ Nβ. Let f(x1, . . . , xn) ∈ Z[x1, . . . , xn] be a homogenous
linear polynomial. Then one can find all the solutions (y1, . . . , yn) of the equa-
tion f(x1, . . . , xn) = 0 mod pv, v ≤ u with gcd(y1, . . . , yn) = 1 and |y1| <
N δ1 , . . . , |yn| < N δn if

n∑
i=1

δi ≤
u

v

(
1−

(
1− u

v
β
) n

n−1 − n

(
1− n−1

√
1− u

v
β

)(
1− u

v
β
))

.

The time complexity of the algorithm for finding such sulution (y1, . . . , yn) is
polynomial in logN .

3 The Attack with One Weak Prime Factor

3.1 The Attack

In this section, we present an attack to factor an RSA modulus N = pq when
p satisfies a linear equation in the form ap = u0 +M1u1 + . . .Mkuk for a suit-
ably small positive integer a and suitably small integers u0, u1, . . . , uk where
M1, . . . ,Mk are given positive integers. Such prime factor p is called a weak
prime for the integers M1, . . . ,Mk.

Theorem 4. Let N = pq be an RSA modulus such that p > Nβ and M1, . . . ,Mk

be k positive integers with M1 < M2 < . . . < Mk. Suppose that there exists a
positive integer a, and k+1 integers ui, i = 0, . . . , k such that ap = u0+M1u1+
. . .+Mkuk with max(ui) < N δ and

δ <
1

k + 1

(
1− (1− β)

k+1
k − (k + 1)

(
1− k

√
1− β

)
(1− β)

)
.

Then one can factor N in polynomial time.

Proof. Let M1, . . . ,Mk be k positive integers such that M1 < M2 < . . . < Mk.
Suppose that ap = u0 +M1u1 + . . .+Mkuk, that is (u0, . . . , uk) is a solution of
the modular polynomial equation

x0 +M1x1 + . . .+Mkxk = 0 (mod p). (1)

Suppose that |ui| < N δ for i = 0, . . . , k. Using n = k + 1, u = 1 and v = 1 in
Theorem 3, means that the equation (1) can be solved in polynomial time, i.e.,
finding (u0, . . . , uk) if

(k + 1)δ <
(
1− (1− β)

k+1
k − (k + 1)

(
1− k

√
1− β

)
(1− β)

)
,

which gives the bound

δ <
1

k + 1

(
1− (1− β)

k+1
k − (k + 1)

(
1− k

√
1− β

)
(1− β)

)
.

This terminates the proof. 	

366 A. Nitaj and T. Rachidi

Remark 1. For a balanced RSA modulus, the prime factors p and q are of the
same bit size. Then p > Nβ with β = 1

2 . Hence, the condition on δ becomes

δ <
1

k + 1

(
1−

(
1

2

) k+1
k

)
− 1

2

(
1−

(
1

2

) 1
k

)
. (2)

In Table 1, we give the bound for δ for given β and k.

Table 1. Upper bounds for δ by Theorem 4

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10

β = 0.5 0.125 0.069 0.047 0.036 0.029 0.024 0.021 0.018 0.016 0.015

β = 0.6 0.180 0.101 0.071 0.054 0.044 0.037 0.032 0.028 0.025 0.022

β = 0.7 0.245 0.142 0.100 0.077 0.063 0.053 0.046 0.046 0.036 0.032

Remark 2. We note that Coppersmith’s weak primes correspond to moduli N =
pq with q < p < 2q where one of the prime factors is of the form p = M1 + u0 or
p = M1u1 +M0 with u0, u1 < N0.25 as mentioned in Theorem 2. This a special
case of the equation of Theorem 4. Indeed, we can solve the equations p = M1+u0

and p = M1u1 + M0 when |u0|, |u1| < N
1
4 . Alternatively, Coppersmith’s weak

primes correspond to the cell (k, 2β) = (1, 0.25) in Table 1.

3.2 Numerical Examples

Example 1. Let

N =10009752886312109988022778227550577837081215192005129864784685

185744046801879577421186031638557426812962407688357511963709141,

be a 412-bit RSA modulus with N = pq where q < p < 2q. Then p and q are
balanced and p ≈ N

1
2 ≈ 2206. Hence for β = 0.5, we have p > Nβ . Suppose

that p satisfies an equation of the form ap = u0 + Mu1 + M2u2. Typically,
M2 ≈ N

1
2 , that is M ≈ N

1
4 . So let M = 2100. For β = 0.5 and k = 2,

Table (1) gives the bound δ < 0.069. Assume therefore that the parameters ui

satisfy |ui| < N0.069 ≈ 228 for i = 0, 1, 2. By applying Theorem 4 we should
find u0, u1 and u2 as long as u0, u1, u2 < 228. We apply the method of Lu et
al. [14] with m = 4 and t = 1. This gives a 35-dimensional lattice. Applying
the LLL algorithm [13], we find a reduced basis with multivariate polynomials
fi(x1, x2, x3) ∈ Z[x1, x2, x3], i = 1, . . . , 3. Applying the Gröbner basis technique
for solving a system of polynomial equations, we get u0 = 9005, u1 = 7123,
u2 = 3915. Using these values, we can compute ap = u0 + Mu1 + M2u2 from
which we deduce p = gcd(u0 +Mu1 +M2u2, N), that is

p = 123356126338704841740132972382836883609800988209539117002682143.

Factoring RSA Moduli with Weak Prime Factors 367

Finally, we can compute q = N
p , that is

q = 81145162250214072465980396192562821802697970661432623765038987.

Note here that there is no linear decomposition of p in the form p = M1 + u0

nor p = M1u1 +M0 with u0, u1 < N0.25 that makes p vulnerable to the attack
of Coppersmith. This shows that the modulus N is vulnerable to our attack,
while it is not vulnerable to Coppersmith’s attack. Finally, the overall recorded
execution time for our attack using an off-the-shelf computer was 17 seconds.

Example 2. In [2], Bernstein et al. discovered many prime factors with special
forms. Many of these primes were found by computing the greatest common
divisor of a collection of RSA moduli. Others were found by applying Copper-
smith’s technique. We show below that our attack can find some primes among
the list of Bernstein et al. One of these primes is

p =0xc00

002f9,

=10055855947456947824680518748654384595609524365444295033292671082

79132302255516023260140572362517757076752389363986453814031541210

8959927459825236754563833.

Using M = 2510, we get p = 3M +761 = Mu1 + u0 where u1 = 3 and u0 = 761.
We have u1, u0 < N δ with δ ≈ 0.007 which is less than the bound 0.125 in
Table 1 for a 1024 bit-size RSA modulus N with β = 0.5, and k = 1. This
implies that the conditions for Theorem 4 are satisfied and our method finds p
when used in any RSA modulus.

Example 3. Now, consider this other example from the list of Bernstein et al. [2]

p =0xc000b800

000006800251

=1005600299430066190917858574741029677291519034741120712409376115

2520749216065545598886037221777994938111659319232428746318812487

609513837263772711701709393

Then p has the form p = 3145774M7+27262976M3+593 = M7u7+M3u3+u0

where M = 270. The coefficients u7, u3 and u0 satisfy u7, u3, u0 < N δ with
δ ≈ 0.016 while the bound of Theorem 4 is 0.021 (see Table 1 for k = 7 and
β = 0.5). Again, this shows that our method will find the factorization of any
RSA modulus that is a multiple of p.

3.3 The Number of Single Weak Primes in an Interval

In this section, we consider two positive integers n and M and present a study
of the weak primes with M , that is the primes p ∈

[
2n, 2n+1

]
such that there

368 A. Nitaj and T. Rachidi

exists a positive integer a that gives the decomposition

ap =

k∑
i=0

M iui

where |ui| < N δ and δ satisfies Theorem 4. We show that the number of the RSA
moduli N in the interval [22n, 22(n+1)] with a weak prime factor p ∈

[
2n, 2n+1

]
is polynomial in 2n. That is, this number is lower bounded by 2η where η > 1

2 .

We call such a class weak RSA Moduli in the interval [22n, 22(n+1)].

Theorem 5. Let n be a positive integer. For k ≥ 1, define M =
⌈
2

n
k

⌉
. Let N

be the set of the weak RSA moduli N ∈
[
22n, 22(n+1)

]
such that N = pq, p and

q are of the same bitsize, p > q, and p =
⌊∑k

i=0 Miui

a

⌋
+ b ∈

[
2n, 2n+1

]
for some

small integers b, a < N δ and |ui| < N δ for i = 0, . . . , k with

δ =
1

k + 1

(
1−

(
1

2

) k+1
k

)
− 1

2

(
1−

(
1

2

) 1
k

)
.

Then the cardinality of N satisfies #N ≥ 2η where

η = (1 + 2(k + 1)δ)n+ log2

(
(n− 1)

n(n+ 1) log(2)

)
.

Proof. Let N be an RSA moduli. Suppose that N ∈
[
22n, 22(n+1)

]
with N = pq

where p and q are of the same bitsize. Since p ≈ N
1
2 , then p ∈

[
2n, 2n+1

]
.

Suppose further that for some positive integer a, we have ap =
∑k

i=0 M
iui.

Then

Mk =
ap−

∑k−1
i=0 M iui

uk
≈ a

uk
p,

which implies M ≈ p
1
k ≈ N

1
2k . Now, define

M =
⌈
N

1
2k

⌉
=
⌈
2

n
k

⌉
,

where �x� is the integer greater or equal to x. This yields 2n ≤ Mk ≤ 2n+1.
Consider the set

P =

{
p =

⌊∑k
i=0 M

iui

a

⌋
+ b, p is prime, | p ∈

[
2n, 2n+1] , a < Nδ , |ui| < Nδ

}
,

where δ satisfies (2). Here b is as small as possible so that
⌊∑k

i=0 Miui

a

⌋
+ b is

prime. Also, since Mk is the leading term, then observe that

∑k
i=0 M

iui

a
−Mk =

uk − a

a
Mk +

∑k
i=1 M

iui

a
.

Factoring RSA Moduli with Weak Prime Factors 369

To ensure p ∈
[
2n, 2n+1

]
, we consider only the situation where uk ≥ a. Hence,

using the bounds a < N δ and |ui| < N δ for i = 0, . . . , k − 1, we get a lower
bound for the number of possibilities for a and for ui, which themselves set a
lower bound for the cardinality of P as follows:

#P ≥
⌊
N δ

⌋ ⌊
N δ

⌋k ≈ N (k+1)δ ≈ 22(k+1)nδ. (3)

On the other hand, the prime number theorem asserts that the number π(x) of
the primes less than x is

π(x) ≈ x

log(x)
.

Hence, the number of primes in the interval
[
2n, 2n+1

]
is approximately

π
(
2n+1

)
− π (2n) ≈ 2n+1

log (2n+1)
− 2n

log (2n)
=

(n− 1)2n

n(n+ 1) log(2)
. (4)

It follows that the number of RSA moduli N = pq ∈
[
22n, 22(n+1)

]
with a weak

factor p ∈ P and q ∈
[
2n, 2n+1

]
is at least #(N) ≥ #P ×

(
π
(
2n+1

)
− π (2n)

)
.

Using 3 and 4, we get

#(N) ≥ 22(k+1)nδ × (n− 1)2n

n(n+ 1) log(2)

=
(n− 1)

n(n+ 1) log(2)
× 2(1+2(k+1)δ)n

= 2η,

where

η = (1 + 2(k + 1)δ)n+ log2

(
(n− 1)

n(n+ 1) log(2)

)
.

This terminates the proof. 	

Table 2 presents a list of values of the bound η in terms of k and n. In Table 2,

Table 2. Lower bounds for η under Theorem 5

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

n = 1
2
log2(N) = 512 759 715 698 689 684 680 677

n = 1
2
log2(N) = 1024 1526 1438 1404 1386 1375 1368 1362

n = 1
2
log2(N) = 2048 3061 2885 2818 2782 2759 2744 2733

we see that in the situation (β, k) = (0.5, 1), the number #(N) of 1024-bits RSA
moduli N = pq ∈

[
21024, 21026

]
with a weak factor p is at least #(N) ≥ 2759.

This is much larger than the number of RSA moduli with a weak Coppersmith
prime factor in the same interval, which is actually N0.25 ≈ 2256. This remark
is also valid for 2048-bits and 4096-bits RSA moduli.

370 A. Nitaj and T. Rachidi

4 The Attack with Two Weak Prime factors

4.1 The Attack

In this section, we present an attack on RSA with a modulus N = pq when both
the prime factors p and q are weak primes.

Theorem 6. Let N = pq be an RSA modulus and M be a positive integer. Let
k ≥ 1. Suppose that there exist integers a, b, ui and vi, i = 1, . . . , k such that
ap =

∑k
i=0 M

iui and bq =
∑k

i=0 M
ivi with |ui|, |vi| < N δ and

δ <
1

2k + 1
+

log
(
2k3

)
2(2k + 1) log(N)

+
log(2k + 1)− log(2πe)

4 log(N)
−

log
(
4k3

)
4 log(N)

.

Then one can factor N in polynomial time.

Proof. Suppose that ap =
∑k

i=0 M
iui and bq =

∑k
i=0 M

ivi. Then multiplying
ap and bq, we get

abN =

2k∑
i=0

M iwi, with wi =

i∑
j=0

ujvi−j .

This can be transformed into the equation

M2kx2k +M2k−1x2k−1 + . . .+Mx1 − yN = −x0, (5)

with the solution (x2k, x2k−1, . . . , x1, y, x0) = (w2k, w2k, . . . , w1, ab, u0v0). For
i = 0, . . . , k, suppose that |ui|, |vi| < N δ. Since for i = 0, . . . , 2k, the maximal
number of terms in wi is k, we get

|xi| = |wi| ≤ kmax
j

(|uj|) ·max
j

(|vj |) < kN2δ. (6)

Let C be a constant to be fixed later. Consider the lattice L generated by the
row vectors of the matrix

M(L) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0 CM2k

0 1 . . . 0 0 CM2k−1

...
...
. . .

...
...

...

0 0 0 . . . 1 CM

0 0 0 . . . 0 −CN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

The dimension of the lattice L is dim(L) = 2k+1 and its determinant is det(L) =
CN . According to the Gaussian Heuristic, the length of the shortest non-zero
vector of the lattice L is approximately σ(L) with

σ(L) ≈
√

dim(L)
2πe

det(L)
1

dim(L) =

√
2k + 1

2πe
(CN)

1
2k+1 .

Factoring RSA Moduli with Weak Prime Factors 371

Consider the vector v = (x2k, x2k−1, . . . , x1,−Cx0). Then, using (5), we get

(x2k, x2k−1, . . . , x1,−Cx0) = (x2k, xk−1, . . . , x1, y) ·M(L).

This means that v ∈ L. Consequently, if C satisfies ‖v‖ ≤ σ(L), then, by the
Gaussian Heuristic, v is the shortest vector of L. Using the bound (6), the length
of the vector v satisfies

‖v‖2 = C2x2
0 +

2k∑
i=1

x2
i ≤

(
C2 +

2k∑
i=1

k2

)
N4δ =

(
C2 + 2k3

)
N4δ.

Let C be a positive integer satisfying C ≤
√
2k3. Then the norm of the vector

v satisfies ‖v‖2 < 4k3N4δ. Hence, using the Gaussian approximation σ(L), the
inequality ‖v‖ ≤ σ(L) is satisfied if

2k
3
2N2δ ≤

√
2k + 1

2πe

(
2

1
2 k

3
2N

) 1
2k+1

.

Solving for δ, we get

δ <
1

2k + 1
+

log
(
2k3

)
2(2k + 1) log(N)

+
log(2k + 1)− log(2πe)

4 log(N)
−

log
(
4k3

)
4 log(N)

.

If δ satisfies the former bound, then the LLL algorithm, applied to the lattice L
will output the vector v = (x2k, x2k−1, . . . , x1,−Cx0) from which, we deduce

w2k = |x2k|, w2k−1 = |x2k−1|, . . . , w1 = |x1|, w0 =
| − Cx0|

C
.

Using the coefficients wi, i = 1, . . . , 2k, we construct the polynomial P (X) =
w2kX

2k + w2k−1X
2k−1 + . . .+ w1X + w0. Factoring P (X), we get

P (X) =

(
k∑

i=0

M iui

)(
k∑

i=0

M ivi

)
,

from which we deduce all the values ui and vi for i = 1, . . . , k. Using each
ui and vi for i = 1, . . . , k, we get ap =

∑k
i=0 M

iui and finally obtain p =

gcd
(∑k

i=0 M
iui, N

)
which in turn gives q = N

q . This terminates the proof. 	

In Table 3, we give the bound for δ for a given k and a given size of the RSA
modulus.

4.2 Examples

Example 4. Consider the 234 bits RSA modulus

N = 18128727522177729435347634587168292968987318316812435932174117774340029.

372 A. Nitaj and T. Rachidi

Table 3. Upper bounds for δ with Theorem 6

k = 1 k = 2 k = 3 k = 4 k = 5

log2(N) = 1024 0.332 0.199 0.141 0.109 0.089

log2(N) = 2048 0.333 0.199 0.142 0.110 0.090

Let M = 250. Suppose further that the prime factors p and q are such that
ap = M2u2 + Mu1 + u0 and bq = M2v2 + Mv1 + v0, that is k = 2 with the

notation of Theorem 6. We built the matrix (7) with C =
√
2k3 = 4 and applied

the LLL algorithm [13]. We got a new basis, where the last row is:

(w4, w3, w2, w1,−Cw0) = (30223231819936, 68646317659290, 109044283791446,

80821741694637, −162291153390444).

From this, we form the polynomial P (X) = w4X
4+w3X

3+w2X
2+w1X

1+w0.
which factors as:

P (X) =
(
4678994X2 + 5832048X + 4871673

) (
6459344X2 + 6620037X + 8328307

)
.

From this, we deduce

u2 = 4678994, u1 = 5832048, u0 = 4871673,

v2 = 6459344, v1 = 6620037, v0 = 8328307.

Using these values, we compute

ap = M2u2 +Mu1 + u0 = 5931329552564290566528965219451557369,

bq = M2v2 +Mv1 + v0 = 8188191298680619668680362464158618739.

and obtain

p = gcd(ap,N) = 126198501118389160989977983392586327,

q = gcd(bq,N) = 143652478924221397696146709897519627.

This leads to the factorization of N = pq. We note that the first attack described

in Section 3 does not succeed to factor N . Indeed, we have log(maxi(|vi|))
logN ≈ 0.098

which is larger than the value δ = 0.069 for k = 2 and β = 0.5 in Table 1.
Finally, the overall recorded execution time for our attack using an off-the-shelf
computer was 12 seconds.

4.3 The Number of Double Weak Primes in an Interval

In this section, we consider two positive integers n and M and present a study
of the double weak primes with M , that is the primes p, q ∈

[
2n, 2n+1

]
such that

there exists positive integer a and b that give the decompositions:

ap =

k∑
i=0

M iui, bq =

k∑
i=0

M ivi

Factoring RSA Moduli with Weak Prime Factors 373

where |ui| < N δ, |vi| < N δ and δ satisfies Theorem 6. We show that the number
of the RSA moduli N in the interval [22n, 22(n+1)] with a weak prime factors
p, q ∈

[
2n, 2n+1

]
is lower bounded by 2η2 where η2 > 1

2 .

Theorem 7. Let n be a positive integer. For k ≥ 1, define M =
⌈
2

n
k

⌉
. Let N

be the set of the weak RSA moduli N ∈
[
22n, 22(n+1)

]
such that N = pq with

p =
⌊∑k

i=0 Miui

a

⌋
+ u, q =

⌊∑k
i=0 Mivi

b

⌋
+ v, p, q ∈

[
2n, 2n+1

]
for some small

integers u, v, a < N δ, b < N δ, |ui| < N δ and |vi| < N δ for i = 0, . . . , k with

δ =
1

k + 1

(
1−

(
1

2

) k+1
k

)
− 1

2

(
1−

(
1

2

) 1
k

)
.

Then the cardinality of N is at least #N ≥ 2η2 where η2 = 4(k + 1)nδ.

Proof. As in the proof of Theorem 5, the number of prime numbers p ∈
[
2n, 2n+1

]
such that p =

∑k
i=0 Miui

a + u with |ui| < 22nδ is

#P ≥ 22(k+1)nδ.

Then, the number N2 of RSA modulus N ∈
[
22n, 22(n+1)

]
with N = pq, where

both p and q are weak primes is at least

#N2 ≥ 24(k+1)nδ = 2η2 ,

where η2 = 4(k + 1)nδ. This terminates the proof. 	

In Table 3, we present a list of values of the bound η2 in terms of k and n.

Table 4. Lower bounds for η2 under Theorem 7

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7

n = 512 512 424 390 372 361 353 348

n = 1024 1024 848 780 744 722 707 696

n = 2048 2048 1696 1560 1489 1444 1414 1392

5 Conclusions

In this paper we presented and illustrated two attacks based on factoring RSA
moduli with weak primes. We further computed lower bounds for the sets of weak
moduli -that is, moduli made of at least one or two weak prime respectively- in
the interval [22n, 22(n+1)] and showed that these sets are much larger than the
set of RSA prime factors satisfying Coppersmith’s conditions, which effectively
extending the likelihood for factoring RSA moduli.

374 A. Nitaj and T. Rachidi

References

1. ANSI Standard X9.31-1998, Digital Signatures Using Reversible Public Key Cryp-
tography for the Financial Services Industry (rDSA)

2. Bernstein, D.J., Chang, Y.-A., Cheng, C.-M., Chou, L.-P., Heninger, N., Lange, T.,
van Someren, N.: Factoring RSA keys from certified smart cards: Coppersmith in the
wild. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp.
341–360. Springer, Heidelberg (2013)

3. Boneh, D.: Twenty years of attacks on the RSA cryptosystem. Notices Amer. Math.
Soc. 46(2), 203–213 (1999)

4. Boneh, D., Durfee, G.: Cryptanalysis of RSA with private key d less than N0.292. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 1–11. Springer, Heidelberg
(1999)

5. Compaq Computer Corperation. Cryptography using Compaq multiprime technol-
ogy in a parallel processing environment (2002),
ftp://ftp.compaq.com/pub/solutions/CompaqMultiPrimeWP.pdf

6. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA
vulnerabilities. Journal of Cryptology 10(4), 233–260 (1997)

7. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers. Oxford
University Press, London (1975)

8. H̊astad, J.: On Using RSA with Low Exponent in a Public Key Network. In:
Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 403–408. Springer,
Heidelberg (1986)

9. Hastad, J.: Solving simultaneous modular equations of low degree. SIAM J. of
Computing 17, 336–341 (1988)

10. Herrmann, M., May, A.: Solving linear equations modulo divisors: On factoring
given any bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

11. Lenstra, H.: Factoring integers with elliptic curves. Annals of Mathematics 126,
649–673 (1987)

12. Lenstra, A.K., Lenstra Jr., H.W.: The Development of the Number Field Sieve.
Lecture Notes in Mathematics, vol. 1554. Springer, Berlin (1993)

13. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational co-
efficients. Mathematische Annalen 261, 513–534 (1982)

14. Lu, Y., Zhang, R., Lin, D.: New Results on Solving Linear Equations Modulo Un-
known Divisors and its Applications, Cryptology ePrint Archive, Report 2014/343
(2014), https://eprint.iacr.org/2014/343

15. May, A.: New RSA Vulnerabilities Using Lattice Reduction Methods. PhD thesis,
University of Paderborn (2003)

16. Nitaj, A.: Another generalization of wiener’s attack on RSA. In: Vaudenay, S. (ed.)
AFRICACRYPT 2008. LNCS, vol. 5023, pp. 174–190. Springer, Heidelberg (2008)

17. Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining digital signatures
and public-key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

18. Zimmermann, P.: 50 largest factors found by ECM,
http://www.loria.fr/∼zimmerma/records/top50.html

19. de Weger, B.: Cryptanalysis of RSA with small prime difference. Applicable Alge-
bra in Engineering, Communication and Computing 13(1), 17–28 (2002)

20. Wiener, M.: Cryptanalysis of short RSA secret exponents. IEEE Transactions on
Information Theory 36, 553–558 (1990)

ftp://ftp.compaq.com/pub/solutions/CompaqMultiPrimeWP.pdf
https://eprint.iacr.org/2014/343
http://www.loria.fr/~zimmerma/records/top50.html

Author Index

Abdelhedi, Manel 314
Abdelkhalek, Ahmed 274
Ahmed, Waseem 297
AlTawy, Riham 215, 274
Arnault, François 3
Aslam, Baber 297
Atif, Yacine 14

Bakkali, Sara 287
Barka, Ezedine 14
Batoul, Aicha 119
Benaboud, Hafssa 287
Benmohammed, Mohamed 162
Berger, Thierry P. 89, 197
Bouallegue, Ammar 314
Boucher, Delphine 228
Buchmann, Johannes 27

Canteaut, Anne 45
Carlet, Claude 63
Carrillo-Pacheco, Jesús 240
Cayrel, Pierre-Louis 162
Cherif, Foudil 162
Chikouche, Noureddine 162

Demirel, Denise 27

El Amrani, Nora 197
El Hajji, Said 149
El Idrissi, Noreddine El Janati 149
El Mrabet, Nadia 259

Fouotsa, Emmanuel 259
Francq, Julien 89

Geihs, Matthias 27
Ghouzali, Sanaa 342

Guenda, Kenza 119
Gulliver, T. Aaron 119

Hamdi, Omessaad 314

Kalachi, Hervé Talé 173
Khan, Maleika Heenaye Mamode 331

Lanet, Jean-Louis 74, 149
Levina, Alla 247

Mathew, Sujith Samuel 14
Mejri, Mohamed 133
Minier, Marine 89

Naeem, Talha 297
Nasim, Faisal 297
Nitaj, Abderrahmane 352, 361

Oleshchuk, Vladimir A. 106
Otmani, Ayoub 173

Rachidi, Tajjeeddine 352, 361
Randriamampionona, José Johnny 287
Roué, Joëlle 45

Taranov, Sergey 247
Tolba, Mohamed 215

Ulmer, Felix 83

Vega, Gerardo 184, 240

Yang, Huihui 106
Youssef, Amr M. 215, 274

Zald́ıvar, Felipe 240
Ziadia, Marwa 133

	Preface
	Organization

	Contents

	Invited Papers
	Multidimensional Bell Inequalities
and Quantum Cryptography

	1 Local Realism and CHSH Inequalities
	1.1 Local Realism
	1.2 CHSH Inequalities
	1.3 Quantum World
	1.4 Complete Set of Inequalities
	1.5 Generalization to

	2 Multidimensional Inequalities
	2.1 Discrete Fourier Transform
	2.2 Homogeneous Inequalities

	3 Violation by Quantum Systems
	3.1 Measurements with Tritters

	4 Quantum Keys Exchange
	4.1 Ekert’91 Protocol
	4.2 The Inequality CHSH-3
	4.3 The 3DEB Protocol
	4.4 The Homogeneous Qutrits Protocol

	5 Conclusion
	References

	Securing the Web of Things with Role-Based
Access Control

	1 Introduction
	2 Overview of WoT
	2.1 Representation of Things on WoT
	2.2 Ambient Space Stakeholders
	2.3 WoT Framework
	2.4 WoT Security Challenges

	3 Overview of Role Based Access Control (RBAC) Model
	4 Security Architecture for WoT
	4.1 Integrating RBAC in WoT
	4.2 Policy Enforcement Facitilies
	4.3 Areas of Control Architecture

	5 WOT Resources Protection
	5.1 Documents and Views
	5.2 Key Generation and Encryption

	6 Conclusion and Future Work
	References

	On the Security of Long-Lived Archiving
Systems Based on the Evidence Record Syntax

	1 Introduction
	2 ERS Archiving System
	2.1 Setup
	2.2 ERS Specification

	3 Security Framework
	3.1 Task-PIOAs
	3.2 Longterm Implementation Relation
	3.3 CIS System Model

	4 ERS System Model
	4.1 Construction Overview
	4.2 Signature Service
	4.3 Timestamp Service
	4.4 Hash Service
	4.5 Service Times
	4.6 Dispatcher
	4.7 ERS Service

	5 ERSSecurityProof
	6 Conclusions
	References

	Differential Attacks Against SPN: A Thorough Analysis
	1 Introduction
	2 Differential Attacks Against Substitution-Permutation Networks
	2.1 Substitution-Permutation Networks
	2.2 Differential Cryptanalysis
	2.3 Expected Probability of a Differential Characteristic

	3 From Characteristics to Differentials
	3.1 Expected Probability of a 2-round Differential
	3.2 Influence of the Weight of the Differential
	3.3 Number of Characteristics Within a Given 2-round Differential

	4 SPNwithanAPNSbox
	4.1 APN Sboxes over F8
	4.2 APN Sboxes over F32

	5 MEDP2 can be Tight for a Differential of Non-minimal Weight
	5.1 Examples where MEDP2 is Tight for a Differential of Weight (
	5.2 Example where MEDP2 is Tight for a Differential of Weight (

	6 Conclusions
	References

	On the Properties of Vectorial Functions
with Plateaued Components
and Their Consequences on APN Functions

	1 Introduction
	2 Preliminaries
	3 Characterizations of Plateaued Boolean and Vectorial Functions
	3.1 Characterization by Means of the Derivatives
	3.2 Characterization by Means of Power Moments of the Walsh Transform

	4 Characterizations of the APN-ness of Componentwise Plateaued Vectorial Functions
	4.1 Characterization by the Derivatives
	4.2 Characterization by the Walsh Transform
	4.3 The Case of Unbalanced Component Functions

	References

	Beyond Cryptanalysis Is Software Security
the Next Threat for Smart Cards

	1 Introduction
	2 Smart Card Security
	3 Some Software Attacks Again Java Card
	3.1 Ambiguity in the Specification: The Type Confusion
	3.2 Weakness in the Linker Process
	3.3 Dumping the EEPROM
	3.4 Dumping the ROM
	3.5 A Complete Methodology to Attack Smart Card

	4 Conclusion and Future Works
	References

	Extended Abstract: Codes as Modules over
Skew Polynomial Rings

	References

	Regular Papers
	CUBE Cipher: A Family of Quasi-Involutive
Block Ciphers Easy to Mask

	Introduction
	1 Specifications
	1.1 Key Schedule
	1.2 Instantiations

	2 Design Rationale
	3 Security Analysis
	4 Implementation Aspects
	4.1 Theoretical Implementation Results
	4.2 Implementation Results and Comparisons

	5 Conclusion
	References

	A Dynamic Attribute-Based Authentication
Scheme

	1 Introduction
	2 ABA Scheme Introduction
	2.1 Scheme Structure and Workflow
	2.2 Security Requirements

	3 Construction of the Dynamic ABA Scheme
	3.1 Down-to-Top Attribute Tree Construction
	3.2 Construction Algorithms

	4 Analysis of the Dynamic ABA Scheme
	4.1 Correctness Analysis
	4.2 Security Requirements Analysis
	4.3 Efficiency Analysis

	5 Conclusions
	References

	Repeated-Root Isodual Cyclic Codes over Finite Fields

	1 Introduction
	2 Preliminaries
	3 Cyclic Codes of Length 2amps over
	4 Construction of Cyclic Isodual Codes of Length 2amps over
	5 Cyclic Isodual Codes of Length 2amps over
	References

	Formal Enforcement of Security Policies
on Parallel Systems with Risk Integration

	1 Introduction
	2 State of the Art
	3
The Specification Logic of Security Policy
	3.1 Syntax of a Logic
	3.2 Semantics of

	4
The Specification Language of Program
	4.1 Syntax
	4.2 Semantic

	5 Formal Enforcement of Security Policies with Risk Integration
	6 Example
	7 Conclusion and Future Work
	References

	Countermeasures Mitigation for Designing Rich
Shell Code in Java Card

	1 Introduction
	2 JavaCardSecurity
	3 Embedded Countermeasures
	3.1 State of the Art of Attacks Against Java Cards
	3.2 Mitigating the Attacks with Affordable Countermeasures
	3.3 Checking the Jump Boundaries

	4 Mitigating the Control Flow Countermeasures
	4.1 Principle of the Control Flow Extraction
	4.2 Parameters Exchange between the Controller and the Shell Code

	5 Experiments: The Java Self Modifying Code Revisited
	5.1 Type Confusion Exploitation
	5.2 Completeness of the Countermeasure

	6 Conclusion and Future Works
	References

	Weaknesses in Two RFID Authentication
Protocols

	1 Introduction
	2 Preliminaries
	2.1 Code-Based Cryptography
	2.2 Randomized McEliece Cryptosystem
	2.3 McEliece Cryptography Based on QC-MDPC Codes
	2.4 Notations

	3 Malek and Miri’s Protocol
	3.1 Review of the Malek and Miri’s Protocol
	3.2 Desynchronization Attack

	4 Li et al.’s Protocol
	4.1 Review of the Li et al.’s Protocol
	4.2 Traceability Attack

	5 Improved Protocol
	5.1 Algorithm of Compute
	5.2 Description of Improved Protocol

	6 Conclusion
	References

	Square Code Attack on a Modified Sidelnikov
Cryptosystem

	1 Introduction
	2 Preliminary Facts
	3 Code-Based Public-Key Encryption Schemes
	3.1 McEliece Encryption Scheme
	3.2 Niederreiter Encryption Scheme

	4 Wieschebrink’s Masking Technique
	4.1 Modified McEliece Scheme
	4.2 Modified Niederreiter Scheme

	5 Recovering the Random Columns in Polynomial Time
	5.1 Reed-Muller Based Encryption Scheme
	5.2 Description of the Attack
	5.3 Complexity of the Attack

	6 Conclusion
	References

	A Family of Six-Weight Reducible Cyclic Codes
and their Weight Distribution

	1 Introduction
	2 Definitions, Notation and Main Assumption
	3 Some Preliminary Results
	4 AFormalProofofTheorem1
	5 Conclusion
	References

	Codes over L(GF(2)m,GF(2)m), MDS Diffusion
Matrices and Cryptographic Applications

	1 Additive Block Codes over
	1 Additive Block Codes over GF(2)m and MDS Diffusion
Matrices

	1.1 Codes over a Finite Alphabet
	1.2 Block Codes over
	1.3 Systematic Block Codes
	1.4
generator Matrix of a Systematic Block Code
	1.5 Equivalence of Systematic Block Codes
	1.6 MDS Systematic Block Codes and MDS Matrices
	1.7 MDS Diffusion Matrices for Cryptographic Applications
	1.8 Ring Structures over

	2 L-codes

	2.1 Definition of
	2.2 Duality of

	3 Linear Codes over Subrings of
	3.1 Notations and Remarks
	3.2 Diagonal Endomorphisms
	3.3 Subrings with a Single Generator
	3.4 Block-Diagonal Subrings

	4 Examples of Constructions
	4.1 MDS Diffusion Matrices Derived from MDS Linear Codes over
	4.2 An Example of Symmetric Automorphisms
	4.3 Iterative Constructions on

	5 Conclusion
	References

	A Higher Order Key Partitioning Attack
with Application to LBlock

	1 Introduction
	2 Biclique Cryptanalysis
	3 Description of LBlock
	3.1 Notation

	4 Higher Order Key Partitioning MitM Attack
	4.1 A Low Data Complexity Attack on LBlock

	5 Conclusion
	References

	A Note on the Existence of Self-Dual Skew
Codes over Finite Fields

	1 Introduction
	2 Generalities on Self-dual Skew Codes
	3 Self-dual Skew Codes Generated by Skew Binomials
	4 Self-dual Skew Codes Generated by Least Common Left Multiples of Skew Polynomials
	5 Existence of Self-dual Skew Codes over Finite Fields with Odd Characteristic
	References

	The Weight Distribution of a Family
of Lagrangian-Grassmannian Codes

	1 Introduction
	2 Projective Isotropic Lines in a Symplectic Space of Dimension 4 over any Finite Field
	3
is a Class of Three-Weight Linear Codes
	4 Conclusion
	References

	Algorithms of Constructing Linear
and Robust Codes Based on Wavelet
Decomposition and its Application

	1 Introduction
	2 The Basic Tenets of the Wavelet Transform
	3 The Construction of Linear Code Based on Wavelet Transform
	4 The Construction of Robust Code Based on Wavelet Linear Code
	5 Implementation of Wavelet Robust Codes in ADV612 Chip
	6 Conclusion
	References

	Failure of the Point Blinding Countermeasure
Against Fault Attack
in Pairing-Based Cryptography

	1 Introduction
	2 Background on Pairings
	3 Side Channel Attacks on Pairing-Based Cryptography and Countermeasures
	3.1 Background on Side Channel Attacks
	3.2 Description of Fault Attack
	3.3 The Point Blinding Countermeasure and Weaknesses

	4 Attack Against the Point Blinding Countermeasure during Miller’s Algorithm
	4.1 Implementation of the Countermeasure
	4.2 Description of the Attacks

	5 Conclusion
	References

	Impossible Differential Properties
of Reduced Round Streebog

	1 Introduction
	2 Specification of Streebog
	2.1 Notation

	3 Impossible Differential Cryptanalysis of the Compression Function
	4 Impossible Differential Attack on 6.75 rounds of the Compression Function
	4.1 Attack Algorithm
	4.2 Attack Complexity
	4.3 Time-Data Trade-Off to Recover the Secret-IV

	5 Conclusion
	References

	Security Issues on Inter-Domain Routing
with QoS-CMS Mechanism

	1 Introduction
	2 Mechanism Principle
	2.1 Related Works
	2.2 Brief Description of the Proposed Solution

	3 Security Issues
	3.1 The Communication Between Edge Routers and CM Server
	3.2 The Exchange Between Neighboring CM Servers

	4 ProposedSolution
	4.1 The Communication Between Edge Routers and CM Server
	4.2 The Exchange between Neighboring CM Servers

	5 Conclusion
	References

	Uncovering Self Code Modification in Android
	1 Introduction
	2 Code Obfuscation
	2.1 Identifier Mangling
	2.2 String Obfuscation
	2.3 Dead Code Injection
	2.4 Packing
	2.5 Dynamic Code Loading
	2.6 Self Modifying Code

	3 Android Self Code Modification
	4 Inspecting Self Modified Code in Android
	4.1 Obtainign Memory Dump
	4.2 Extraction of Target Process Memory from the Dump
	4.3 Analysis of
	4.4 Comparison of
	4.5 Interpreting Bytecode

	5 Conclusion
	References

	Performance of LDPC Decoding Algorithms
with a Statistical Physics Theory Approach

	1 Introduction
	2 LDPC Codes and Decoding Algorithm
	2.1 Low-Density Parity Check Codes
	2.2 Belief Propagation Algorithm

	3 Overview of Statistical Physics
	3.1 Ising Model
	3.2 Magnetization

	4 Decoding Problem from Statistical Physics Point of View
	4.1 Statistical Physics Analogy
	4.2 Decoding with the Statistical Physics
	4.3 TAP Approach

	5 LLR-BP Algorithm and Its Simplified Version with TAP Approach
	5.1 LLR-BP Algorithm with TAP Approach
	5.2 BP-Based with TAP Approach
	5.3
min Algorithm with TAP Approach

	6 Performance of LDPC Decoding Algorithms
	6.1 Proposed Method to Create Matrices
	6.2 Simulation Results
	6.3 Comparison of Performance

	7 Conclusion
	References

	Representation of Dorsal Hand Vein Pattern
Using Local Binary Patterns (LBP)

	1 Introduction
	2 Research Gap
	3 Proposed Vein Biometric Security System
	3.1 Image Acquisition and Vein Database
	3.2 Vein Preprocessing

	4 Representing Vein Characteristics Using Local Binary Patterns
	4.1 Concept Behind Local Binary Pattern
	4.2 Vein Representation
	4.3 Application of LBP on Hand Vein Features

	5 Recognition of Veins
	5.1 Performance of Biometric System Using Dorsal Hand Vein
	5.2 Experiments on Rotated Images

	6 Analysis of Results and Conclusion
	References

	Watermarking Based Multi-biometric
Fusion Approach

	1 Introduction
	2 Proposed Watermarking Based Multi-biometric Fusion Approach
	2.1 Watermark Embedding Process
	2.2 OLPP-Based Feature Extraction and Matching

	3 Experimentations
	4 Conclusion
	References

	New Attacks on RSA with Moduli N = prq

	1 Introduction
	2 Preliminaries
	2.1 Linear Modular Polynomial Equations
	2.2 The Continued Fractions Algorithm

	3 The First Attack on Prime Power RSA with Modulus
	4 The Second Attack on Prime Power RSA Using Two Decryption Exponents
	5 The Third Attack on Prime Power RSA with Two RSA Moduli
	6 Conclusion
	References

	Factoring RSA Moduli
with Weak Prime Factors

	1 Introduction
	2 Preliminaries
	2.1 Integer Factorization: The State of the Art
	2.2 Lattice Reduction
	2.3 Coppersmith’s Method

	3 The Attack with One Weak Prime Factor
	3.1 The Attack
	3.2 Numerical Examples
	3.3 The Number of Single Weak Primes in an Interval

	4 The Attack with Two Weak Prime factors
	4.1 The Attack
	4.2 Examples
	4.3 The Number of Double Weak Primes in an Interval

	5 Conclusions
	References

	Author Index

