Chapter 22
Lacunarity Analysis of Fracture Intensity
Maps: Are they Multifractals?

Ankur Roy and Edmund Perfect

Abstract Lacunarity (L) is a scale (r)-dependent parameter that was developed for
quantifying clustering in fractals and has subsequently been employed to charac-
terize various natural patterns. It has been further analytically proved that lacunarity
analysis invoking the gliding-box algorithm can find the correlation dimension, D,
of multifractals. The present research empirically tests this on a set of multifractal
models generated with known D, values. The log-transformed lacunarityvalues of
these models, log L were plotted as a function of the log-transformed box-size, log
r. The slopes of these linear relations, estimated using regression analysis, were
then used to calculate D, values that gave an approximately 1:1 relationship with
the known values. Multifractal behavior can therefore, be checked without having
to compute the whole spectrum of non-integer dimensions, D, (-0o < g < +00) that
typically characterize a multifractal. The technique thus developed was applied to
fracture intensity maps generated from a set of nested fracture networks from the
Devonian Sandstone, Hornelen Basin, Norway in order to test if such intensity
maps display multifractal behavior.
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22.1 INTRODUCTION

Lacunarity is a parameter that characterizes the distribution of spaces or gaps in a
pattern as a function of scale. Originally proposed for distinguishing between
monofractal patterns having the same fractal dimension but different degrees of
clustering [1], lacunarity has since been used for analyzing scale-dependent clus-
tering in natural binary data sets, both fractal and non-fractal. The gliding-box
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algorithm can be used to quantify the lacunarity, L, at a given scale (or box-size, r).
Since values vary with box-size the results are generally reported in terms of the
function: L(r). It has been theoretically established that when log-transformed
values of L(r) and r are plotted, both fractals and multifractals result in straight
lines such that the slope plus the known embedding dimension equals the box or
correlation dimension, respectively [2]. Although there have been a few lacunarity
studies of both synthetic and natural multifractal patterns [3, 4], there is not enough
evidence to unequivocally establish that lacunarity analysis can indicate
multifractal behavior in non-binary data, and that the true correlation dimension,
D, of a multifractal can be found by employing this technique. In the present paper,
we test Allan and Cloitre’s theory [2] using multifractal grayscale patterns with
known correlation dimensions. As an application, we focus on four fracture inten-
sity maps (grayscale / non-binary) that have been generated from a set of nested
fracture network maps (binary) from the Devonian sandstone of Hornelen Basin,
Norway [5]. Since this fracture network is fractal in nature [6] it can be hypothe-
sized that intensity maps generated from them can possibly display multifractal
properties.

22.2 GENERATING MULTIFRACTAL PATTERNS

A set of 2-dimensional multifractal grayscale patterns were constructed following
the steps outlined in [7]. The process is akin to generating a Sierpinski carpet, only
the zeros and ones in the pattern are replaced with fractional values. The algorithm
involves normalizing mass-fractions calculated from the truncated binomial distri-
bution for an average probability, p, of retaining a cell in the generator with a scale
factor, b, in successive iterations. As described in [8] the locations of the normal-
ized mass fractions can be spatially randomized so as to create a random geomet-
rical multifractal grayscale pattern. Eight different patterns were created from a
generator with a scale factor of » = 3 and probability values corresponding to p =1/
9, 2/9, 3/9, 4/9, 5/9, 6/9, 7/9, and 8/9 by iterating the system 5 times to produce
grayscale fields of size 3°x3° pixels. For each of the 8 models, 3 random realiza-
tions were constructed amounting to a total of 24 random multifractal grayscale
patterns. Fig. 22.1 shows patterns corresponding to p = 8/9, 7/9, 6/9 and 5/9.

22.3 LACUNARITY AND MULTIFRACTAL
BEHAVIOR

Lacunarity is a scale-dependent measure of textural heterogeneity that can be
quantified by employing the gliding-box algorithm [2]. Essentially, this method
involves sliding a window or an interrogator box of a given length, r, translated in
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Fig. 22.1 Grayscale random multifractal patterns: p = 8/9 to 5/9. Lighter phases have higher mass
fractions
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Fig. 22.2 (a) log L(r) vs. log r plot for pattern p = 8/9; (b) D-_estimated from lacunarity analysis
compared to theoretical D, _values for 8 random multifractal fields, each point is an average of
3 realizations with bars corresponding to the 95% confidence intervals

increments of a chosen unit length (usually that of a pixel) across the whole pattern
such that the total number of steps is given by (r— r+ 1)%, r-being the length of the
entire pattern. The details of this technique employed in analyzing binary patterns
can be found in [9]. In the case of grayscale patterns, the mass of all pixels, s(r),
contained within the interrogator box at each step is calculated and a distribution of
this mass at the scale r is obtained by gliding the box through all the steps. Finally,

the mean, s(r), and variance, ss°(r) of this distribution are used in calculating the

lacunarity, L(r), at the scale r as: L(r)=[ss°(r) / s(r)2 ]+ 1. Typically, L(r) is
calculated for a range of box-sizes, r and it has been theoretically demonstrated
in [15] that in the case of multifractals, L(r) is related to r by a power-law such that
the power-term equals D, — E, where D, is the correlation dimension and E the
Euclidean embedding dimension. Based on this result, it is expected that the
log-transformed lacunarity functions for the 2-dimensional multifractal patterns
described in the previous section can be fitted with a straight line, y =mx + c,
such that the slope is, m =D, — 2. For each of the 24 multifractal patterns, the log
L(r) vs. log r values were calculated and a subset of the array of points thus obtained
was fitted with a straight line. Fig. 22.2a shows one such plot for pattern p = 8/9
(random realization #3). In order to estimate the proper correlation dimension thus
meeting a condition for multifractal behavior [2], only the relatively “straight”
segment was considered for fitting a linear model to the points. For large r values,
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the local slope starts to fluctuate and increases abruptly and so the points
corresponding to box-sizes r>r, /2 were not included in the fitting. For smaller
r values, the coefficient of determination, RZ, of the fit improved when points were
sequentially excluded from the left. However, it is the first point at 7 = 1 that mostly
influences the change in slope such that there was a difference of ~4% in the estimated
slope if this point was excluded from the fit. If two or more additional points were
excluded there was no more than ~1% difference. This is mainly because the first few
points on the left hand side of the log L(r) vs. log r plot are sparsely distributed.
Therefore, from the lower end, only the first point in the plot was excluded from the
fitting. The points thus excluded from both ends are shown in grey. Correlation
dimensions for all 24 patterns were calculated from their log L(r) vs. log r plots by
employing the above protocol. An average estimated D, value from all three realiza-
tions of each model corresponding to a particular p-value was computed and compared
to the theoretical D, value [7]. The results are graphed in Fig. 22.2b. The 95%
confidence intervals in the computed D, values arising from the three random
realizations for each model are shown as vertical bars. As can be seen from the figure,
the computed D, values overlap the 1:1 line (45° slope) and are thus are statistically
equal to their theoretical counterparts. This analysis demonstrates empirically that an
almost exact value of the correlation dimension for multifractals can be found from
lacunarity analysis. It may therefore be concluded that lacunarity analysis can detect if
a grayscale pattern exhibits possible multifractal behavior (on the basis of log-log
linearity) and, if it does, provide an accurate estimate its correlation dimension.

22.4 FRACTURE INTENSITY MAPS

Fracture intensity may be defined as the summed fracture trace length per unit area
[10]. For this study, we created four intensity maps from a subset of seven nested
fracture networks that were mapped from the Devonian sandstones of Hornelen
Basin, Norway [5]. These seven nested fracture maps are well studied and have
been previously established as belonging to a fractal system [6]. Map 2,4, 5 and 7 at
length scales of 55m, 90m, 180m and 720m respectively, and represented by 1042 x
1042 pixels were chosen. These were converted into intensity maps by overlaying a
grid with cell size 20 x 20 pixels and counting the fracture length in each cell. The
bright areas indicate high fracture intensity as seen in Fig. 22.3.

22.5 RESULTS AND DISCUSSIONS

Figure 22.4 shows log L vs. log r plots for the intensity maps generated in the previous
section. As seen here, plots of all four maps can be fitted by straight lines over a
limited range thus confirming the hypothesis that they all display possible multifractal
behavior. While the maps have somewhat similar correlation dimensions, the general
trend is: larger the mapped area larger is the correlation dimension such that, map
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Fig. 22.3 Fracture intensity maps generated from fracture networks
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Fig. 22.4 log L vs. log r plots for intensity maps 2, 4, 5 and 7

7 (720m) has the highest dimension (least steep slope). This general observation is in
agreement with the trends in box-counting dimension values of the corresponding
original fractal-fracture network maps as reported in [6]. The results therefore show
that lacunarity analysis can delineate possible multifractal behavior in fracture inten-

sity maps that are associated with underlying fractal-fracture geometries.
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