
Apollonian Circle Packings

Mark Pollicott

Abstract Circle packings are a particularly elegant and simple way to construct
quite complicated and elaborate sets in the plane. One systematically constructs a
countable family of tangent circles whose radii tend to zero. Although there are
many problems in understanding all of the individual values of their radii, there is
a particularly simple asymptotic formula for the radii of the circles, originally due
to Kontorovich and Oh. In this partly expository note we will discuss the history of
this problem, explain the asymptotic result and present an alternative approach.
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1 A Brief History of Apollonian Circles

Apollonius (c. 262–190 BC) was born in Perga (now in Turkey) and gave the names
to various types of curves still used: ellipse, hyperbola and parabola. However,
very little detail is known about his life and, although he wrote extensively on
many topics, rather little of his work has survived (perhaps partly because it was
considered too esoteric by his contemporaries). What has survived (partly in the
form of translations into arabic) includes seven of his eight books on “conics”. These
include problems on tangencies of circles.

I am very grateful to Richard Sharp for many discussions on this approach and the details. I would
also like to thank Christoph Bandt and the referee for many useful comments on the presentation.
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Fig. 1 The three initial circles C1, C2, C3, and the two mutually tangent circles C0 and C4

guaranteed by Apollonius’ theorem

The result of Apollonius which is of particular interest to us is the following.

Theorem 1.1 Given three mutually tangent circles C1; C2; C3 with disjoint interiors
there are precisely two circles C0; C4 which are tangent to each of the original three.

This result is illustrated in Fig. 1b. The proof is so easy and short that we
include it.

Proof We can apply a Möbius transformation which takes a point of tangency
between two of the initial circles to infinity. These two circles are then mapped to
two parallel lines, and the third initial circle to a circle between, and just touching,
these parallel lines. We can then construct the two new circles by translating the
middle circle between the parallel lines and then transforming back. Since a Möbius
transformation preserves circles and lines we are done. ut

In 1643, René Descartes (1596–1650) wrote to Princess Elizabeth of Bohemia
(1618–1680) stating a formula he had established on the radii a1; a2; a3; a4 of the
tangent circles, and for which she independently provided a proof. The radii are
related by the following formula.

Theorem 1.2 (Descartes-Princess Elizabeth) Assume that the radii of the orig-
inal circles are a1; a2; a3 > 0 and the fourth mutually tangent circle has radius
a4 > 0 then
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A simple proof appears in the notes of Sarnak [16].
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Fig. 2 (a) The initial circles with radii a1; a2; a3 and smaller choice of mutually tangent circle
with radius a4; (b) The initial circles with radii a1; a2; a3 and the larger choice of mutually tangent
circle with radius a0

Notation 1.3 The formula also applies where the radius a4 of the inner circle is
replaced by the radius of the outer circle a0. However, in this case we adopt the
convention that a0 < 0, where ja0j > 0 is the radius of the circle C0 (Fig. 2).

Princess Elizabeth was a genuine princess by virtue of being the daughter of
Queen Elizabeth (1596–1662) and King Frederick V of Bohemia (whose reign
lasted a brief 1 year and 4 days). Queen Elizabeth of Bohemia was in turn the
daughter of King James I of England (Fig. 3).

In 1605, King James was the target of an unsuccessful assassination plan
(the “gunpowder plot” of Guy Fawkes and co-conspirators, celebrated in England
annually on 5th November) and Queen Elizabeth of Bohemia would have become
Queen of England (aged 9) had the plot succeeded.

In 1646, Elizabeth’s brother Philip stabbed to death Monsieur L’Espinay, for
flirting with their mother and sister. In the ensuing family rift, Elizabeth wrote to
Queen Christina of Sweden for an audience and help reinstating her Father’s lands,
but Christina invited Descartes to Stockholm instead, which proved unfortunate for
him since he promptly died of pneumonia. Finally, Elizabeth entered a convent in
Germany for the last few years of her life, where she worked her way up to the top
job of abbess.

The formula of Descartes was subsequently rediscovered by Frederick Soddy
(1877–1956), which is the reason that the circles are sometimes called “Soddy
circles”. Frederick Soddy is more famous (outside of Mathematics) for having won
the Nobel Prize for Chemistry in 1921, and having introduced the terms “isotopes”
and “chain reaction”. However, most relevant to us, he rediscovered the formula of
Descartes and published it in the distinguished scientific journal Nature in the form
of a poem [18]:
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Mary, Queen of Scots

James I of England

Queen Elizabeth of Bohemia

Princess Elizabeth Sophia of Hanover

George I of England

Charles I of England

Charles II of England

Fig. 3 The family tree of Princess Elizabeth. Her uncle, Charles I of England, was executed during
the English revolution. Her nephew, George I, also became King of England and was the 6th Great-
Grandfather of the present Queen

The kiss precise

For pairs of lips to kiss maybe
Involves no trigonometry.
’Tis not so when four circles kiss
Each one the other three.
To bring this off the four must be
As three in one or one in three.
If one in three, beyond a doubt
Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance from the center.
Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

To spy out spherical affairs
An ocular surveyor
Might find the task laborious,
The sphere is much the gayer,
And now besides the pair of pairs
A fifth sphere in the kissing shares.
Yet, signs and zero as before,
For each to kiss the other four
The square of the sum of all five bends

Frederick Soddy (1877–1956)
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2 Circle Counting

2.1 The Asymptotic Formulae

Starting from mutually tangent circles we can inscribe new circles inductively to
arrive at what is known as an Apollonian circle packing consisting of infinitely many
circles. We denote by C the set of such circles (Fig. 4).1

We can order these circles by (the reciprocal of) their radii, which we shall denote
by an, for n � 0. It is easy to see that the sequence .1=an/ tends to infinity or,
equivalently, the sequence of radii .an/ tends to zero. This is because the total area
of the disjoint disks enclosed by the circles

P1
nD1 �a2

n which is in turn bounded by
the area inside the outer circle. A natural question is then to ask: How fast does the
sequence .1=an/ grow, or, equivalently, how fast do the radii .an/ tend to zero? We
begin with some notation.

Definition 2.1 Given, T > 0 we denote by N.T/ the finite number of circles with
radii greater than 1

T .

In particular, we see from our previous comments that N.T/ ! C1 as T ! 0.
A far stronger result is the following [5, 11].

Fig. 4 An Apollonian circle packing consisting of infinitely many circles. The closure of their
union is the Apollonian gasket denoted by ƒ

1For other aspects of the rich theory of circle packings, we refer the reader to [19].
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Theorem 2.2 (Kontorovich-Oh, 2009) There exists C > 0 and ı > 1 such that
the number N.T/ is asymptotic to CTı as T tends to infinity, i.e.,

lim
T!1

N.T/

Tı
D C:

It is the convention to write N.T/ � CTı as T ! 1 (Fig. 5).

We can illustrate Theorem 2.2 with two examples.

Example 1 Assume that we begin with four mutually tangent circles the reciprocals
of whose radii are a0 D � 1

3
, a1 D 1

5
, a2 D 1

8
and a3 D 1

8
. Using Theorem 1.2 we

can compute the following monotone increasing sequence of reciprocal radii:

�
1

an

�1

nD1

D 5; 8; 8; 12; 12; 20; 20; 21; 29; 29; 32; 32; � � �

We will return to this in Example 4 in the Appendix.

Example 2 Assume that we begin with four mutually tangent circles the reciprocals
of whose radii are a0 D � 1

2
, a1 D 1

3
, a2 D 1

6
and a3 D 1

7
. Using Theorem 1.2 we

can compute the following monotone increasing sequence of reciprocal radii:

�
1

an

�1

nD1

D 3; 6; 7; 7; 10; 10; 15; 15; 19; 19; 22; 22; � � �

We will return to this in Example 5 in the Appendix.

In the Appendix we also recall why the numbers in these sequences are all natural
numbers.
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Fig. 5 A plot of N.�/ against 1
�
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2.2 The Exponent ı in Theorem 2.2

Of particular interest is the value of ı which controls the rate of growth of the radii.
The next lemma provides an alternative characterisation of this number.

Lemma 2.3 The value ı in Theorem 2.2 has the following alternative characteri-
sation:

ı D inf

(
t > 0 :

1X
nD1

1

at
n

< C1
)

:

The expression for ı in Lemma 2.3 is usually called the packing exponent.

Notation 2.4 We can denote by ƒ the compact set given by the closure of the union
of the circles in the Apollonian circle packing.

This leads to a second useful alternative characterisation.

Lemma 2.5 The value ı in Theorem 2.2 is equal to the Hausdorff Dimension
dimH.ƒ/ of the limit set ƒ.

Remark 1 (The numerical value of ı) Unfortunately, there is no explicit expression
for ı and it is rather difficult to estimate. The first rigorous estimates were due to
Boyd [3] who, using the definition above, estimated 1�300197 < ı < 1�314534: A
well known estimate is due to McMullen [10], who showed that ı D 1�30568 : : :

Perhaps a little surprisingly, the value of ı is independent of the particular
Apollonian circle packing being considered, as is shown by the next lemma.

Lemma 2.6 For different Apollonian circle packings exactly the same value of ı

arises (independently of the initial choices a0; a1; a2; a3; a4).

Again the idea of the proof is so simple that we recall the idea so as to dispel any
mystery.

Proof Let C1 and C2 be any two Apollonian circle packings and let ƒ1 and ƒ2 be the
associated Apollonian gaskets. By Lemma 2.5 it suffices to show that dimH.ƒ1/ D
dimH.ƒ2/. We can then deduce the independence of the value ı using the following
well known result: If there exists a smooth bijection T W C1 ! C2 then the sets share
the same Hausdorff Dimension. Let us identify the plane with C. Then it is a simple
exercise to show that there is a Möbius transformation g W OC ! OC of the form

g.z/ D az C b

bz C a
and a; b 2 C with jaj2 � jbj2 D 1;

such that T.C1/ D C2. In particular, this follows easily since Möbius transformations
necessarily take circles to circles. ut
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3 Some Preliminaries for a Proof

We will describe a proof which differs from the original proof of Kontorovich-Oh
and other subsequent proofs. This approach is more in the spirit of the classical
proof of the Prime Number Theorem, except we use approximating Poincaré series
in place of zeta functions.

3.1 An Analogy with the Prime Numbers

Purely for the purposes of motivation, we recall the classical Prime Number
Theorem. Consider the prime numbers

2; 3; 5; 7; 11; 13; 17; 19; 23; � � �

Let �.x/ denote the number of primes numbers between 1 and x. Since there are
infinitely many primes, we see that �.x/ ! 1 as x tends to infinity. This again
poses the natural question: How does �.x/ grow as x ! C1? The solution is the
classical prime number Theorem [4].

Theorem 3.1 (Prime Number Theorem: Hadamard, de la Vallée Poussin
(1896)) There is a simple asymptotic formula �.x/ � x

log x as x ! C1, i.e.,

lim
x!C1

�.x/
x

log x

D 1:

The essence of the proof of the Prime Number Theorem is to analyse the
associated complex function, the Riemann zeta function, defined formally by

�.s/ D
1X

nD1

1

ns
; s 2 C:

The Riemann zeta function has the following important basic properties [4].

Lemma 3.2 The Riemann zeta function �.s/ converges to a well defined function
for Re.s/ > 1. Moreover:

1. For Re.s/ > 1 we have that �.s/ is analytic and non-zero;
2. There exists a small neighbourhood of each 1 C it with t ¤ 0 on which �.s/ has

a non-zero analytic extension 2; and
3. �.s/ has a simple pole at s D 1.

2The zeta function �.s/ even has an analytic extension to C n f1g, but one does not need this to
prove Theorem 3.1.
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The result then follows by using a Tauberian theorem to convert this information
on the domain of �.s/ into information on prime numbers. For completeness, we
recall the statement of the Ikehara-Wiener Tauberian Theorem [4].

Theorem 3.3 (Ikehara-Wiener Tauberian Theorem) Assume that � W R ! R is
a monotone increasing function for which there exists c > 0, ı > 0 such that the
function

F.s/ WD
Z 1

0

t�sd�.t/ � c

s � ı

is analytic in a neighbourhood of Re.s/ � ı then limT!C1 �.T/

Tı D c.

Remark 2 The Prime Number Theorem easily follows from applying Theorem 3.3
to the auxiliary function �.T/ D P

pn�T log p and then relating the Stieltjes integral
to � 0.s/=�.s/. We refer the reader to [4] for further details of these now standard
manipulations.

To adapt the proof of the Prime Number Theorem to the present setting, suggests
considering a new complex function

�.s/ D
1X

nD1

as
n

where an are the radii of the circles in the Apollonian circle packing. In fact,
it is more convenient to study a related function (a Poincaré series) and use an
approximation argument to get the final result. However, to analyse such functions,
we first introduce a dynamical ingredient.

3.2 An Iterated Function Scheme Viewpoint

Let us again identify the plane with the complex numbers C, then we can introduce
a transformation which preserves the circle packing C. We want to define the
“reflection” R in the circle C D C.z0; r/ of radius r centered at z0 (Fig. 6).

More precisely, let z0 2 C and radius r > 0 then we associate a transformation

R W C n fz0g ! C n fz0g

R.z/ D r2.z � z0/

jz � z0j2 C z0:
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z
R (z)

r

|z − z0 |

r
| z − z 0 | 2

z0

Fig. 6 Reflection in a circle

Rather than reflecting in the original Apollonian circles, we need to find four
“dual circles” which we will reflect in. This point of view has a nice historical
context. The original statement of the result was due to Philip Beecroft (1818–1862)
who was a school teacher in Hyde, near Manchester, in England, and was the son of
a miller and lived with his two elder sisters [1]. In his article he too had recovered
Theorem 1.2.

Theorem 3.4 (Philip Beecroft, from “Lady’s and Gentleman’s diary” in 1842)
“If any four circles be described to touch each other mutually, another set of four
circles of mutual contact may be described whose points of contact shall coincide
with those of the first four.”

As in [5], we associate to the four initial Apollonian circles a new family of
“dual” tangent circles (the dotted circles in Fig. 7). We can then consider the four
associated reflections Ri W OC ! OC in the four dual circles K1; K2; K3; K4 as shown
in Fig. 7 (i D 1; 2; 3; 4).

The aim is to associate to the Apollonian circle packings complex functions,
playing the rôle of the zeta function in number theory. These will be defined in
terms of a family of contractions (i.e., an associated iterated function scheme) built
out of the maps Ri on each of the four curvilinear triangles external to the initial four
circles. For definiteness, let us fix the central curvilinear triangle �, whose sides
are arcs from the circles C1, C2 and C3 (with the other cases being similar) and
let x1; x2; x3 denote the vertices. We can consider the three natural linear fractional
contractions f1; f2; f3 W � ! � defined by

fi D R4 ı Ri; i D 1; 2; 3;

each of which fixes the vertex xi of � (Fig. 8). A simple calculation gives that:

• j f 0
i .z/j < 1 for z 2 � n fxig for i D 1; 2; 3; and

• j f 0
i .xi/j D 1 for i D 1; 2; 3 (i.e., xi is a parabolic point at the point of contact of

K4 with K1, K2 and K3, respectively).

We recall the following explicit example from [7].



Apollonian Circle Packings 131

K 1

K 2

K 3

C1

R 1(C1)

(a)

(b)

Fig. 7 (a) The four dual (dotted) circles K1, K2, K3, K4 associated to the original four Apollonian
circles C1, C2, C3, C4; (b) The image of one of the original circles reflected in one of the dual
circles begins the next generation of the circle packing

T
C 4

f 1 (C 4 )

f 21 (C 4 )
f 3
1 (C 4 )

z 3z 2

z1

C 4

z 3z 2

z1

f 3 f
3
1 (C 4 )

f 3 f
2

1 (C 4 )
f 3 f 1 (C 4 )

(a) (b)

Fig. 8 (a) The central curvilinear triangle � and the images f n
1 .C4/ of C4 for n D 1; 2; 3; : : :;

(b) the images f3f n
1 .C4/ of C4 for n D 1; 2; 3; : : :

Example 3 In the case of the Apollonian circle packing C with a0 D �1 and a1 D
a2 D a3 we can explicitly write:

f1.z/ D az C b

bz C a
where a D �5

s
4
p

3 � 3

78
and b D

s
100

p
3 � 153

78

and f2.z/ D e�2� i=3f1.e2� i=3z/ and f3.z/ D e�2� i2=3f1.e2� i2=3z/.
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g −1 (∞)

C 4

z 3z 2

z 1

g(C 4 )

g(0)

0

Fig. 9 The radius of g.C4/ is related to the derivative jg0.0/j by the value of g�1.1/

In particular, one can easily check that:

1. For each i D 1; 2; 3 the iterates f k
i W � ! � (k � 1) have the effect of mapping

the central circle C4 on to a sequences of circles f f k
i .C4/g1

kD1 occurring in C
leading into the vertex xi (cf. Fig. 9a); and

2. Any sequence of compositions of these three maps can be naturally written in the
form f WD f nk

ik
� � � f n1

i1
W � ! �, for n1; � � � ; nk � 1 and i1; � � � ; ik 2 f1; 2; 3g with

il ¤ ilC1 for 1 � l � k � 1.

The relevance of these maps to our present study is that we see that we can
rewrite

�.s/ D
X

f

diam. f .C0//s;

at least for the contribution of circles in �, the other cases being similar, where the
summation is over all such compositions f D f nk

ik
� � � f n1

i1
in item 2 above.

3.3 Contracting Maps and Poincaré Series

The maps described above can be conveniently regrouped as follows:

f WD f nk�1
ik

ı . fik ı f nk�2

ik�1
/ ı � � � ı . fik�2 ı f n2

i2
/ ı . fi2 ı f n1

i1
/: (3.1)

The advantage of this presentation is that at least part of this expression is
contracting, in the following sense (cf. [7]).
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Lemma 3.5 (After Mauldin-Urbanski) For the Apollonion circle packings we

have that the maps �j D �
.ij;nj/

j WD fij�1 ı f
nj

ij
W � ! � are uniformly contracting

(i.e., supj supz2T j�0
j .z/j < 1).

This is illustrated in Fig. 9b with f n
3 f1, n � 1.

Unfortunately, considering only compositions of the uniform contractions �j

leads only to some of the circles in the circle packing C. The rest of the circles
require the final application of the maps f nk�1

ik
in (3.1), which therefore also needs

addressing. Moreover, the counting function we will actually use is a more localized
version, which allows us to approximate the counting function for circles by a
counting function for derivatives – for which the associated complex functions are
easier to analyse. In particular, we want to analyse the following related complex
functions.

Definition 3.6 Given z0 2 � and an allowed word j D . j1; � � � ; jN/, with jr ¤ jrC1

for r D 1; � � � ; N � 1, we can associate a localised Poincaré function

	 j.s/ D
1X

kD0

X
�

j. f k
i ı � ı �j/

0.z0/js (3.2)

where:

1. We first apply a fixed contraction �j D �jN ı � � � ı �j1 ;

2. We next sum over all subsequent allowed hyperbolic compositions � WD �in ı
� � � ı �iNC1

W � ! �; and, finally,
3. We sum over the “parabolic tails” f k

i (where i is associated to �in D fi ı f n
l , say).

The need to consider the contribution from different �j is an artefact of our
method of approximation in the proof.

Remark 3 Poincaré series are more familiar in the context of Kleinian groups

 acting on three dimensional hyperbolic space and its boundary, the extended
complex plane OC. Our analysis applies to the Poincaré series of many such groups.
In the particular case of classical Schottky groups the analysis is easier, since one
can dispense with the parabolic tail (i.e., item 3 above).

As we will soon see, each such Poincaré series satisfies the hypotheses of
Theorem 3.3, which allows us to estimate the corresponding counting function
defined as follows.

Definition 3.7 We define an associated counting function

Mj.T/ D #f f k
i ı � ı �j : j. f k

i ı � ı �j/
0.z0/j � Tg for T > 0:

Let † D f.in/1
nD1 : in ¤ inC1 for n � 0g and consider the cylinder

Œ j� D f.in/1
nD1 2 † : ir D jr; for 1 � r � Ng:
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In particular, in the next section we will use the Poincaré series to deduce the
following.

Proposition 3.8 There exists C > 0 and a measure � on † such that Mj.T/ �
C�.Œ j�/Tı as T ! C1, i.e.,

lim
T!C1

Mj.T/

Tı
D 1:

There may be some circles whose radii we don’t seem to capture with this coding,
but their contribution doesn’t effect the basic asymptotics.

4 The Proof of Theorem 2.2

To complete the proof of Theorem 2.2 we need to complete the proof of Proposi-
tion 3.8 (in Sect. 4.1 below) and then perform the approximation of the counting
functions for circles by those for derivatives (in Sect. 4.2 below).

4.1 Extending the Poincaré Series

By the chain rule we can write

. f k
i ı � ı �j/

0.z0/ D . f k
i /0.� ı �jz0/�

0
.�jz0/�

0
j .z0/

and, in particular, we can now rewrite the expression for 	j.s/ in (3.2) as:

	 j.s/ D j�0
j .z0/js

1X
nD0

X
j�jDn

1X
lD0

. f k
i /0.� ı �jz0/�

0
.�jz0/

D j�0
j .z0/js

1X
nD0

X
j�jDn

j�0
.z0/jshs.�.z0//

(4.1)

where the function hs W � ! C is defined by the summation

hs.z/ WD
1X

lD0

j. f l
i /

0.z/js 2 C1.�/

is analytic in s. In particular, we see from the following lemma that hs.z/ converges
to a well defined function for Re.s/ > 1

2
.
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Lemma 4.1 We can estimate jj. f l
i /

0j�jj1 D O.l�2/.

We recall the simple proof (cf. [8]).

Proof By a linear fractional change of coordinates (mapping the vertex of � to
infinity) the map fi becomes a translation. Transforming this back to convenient
coordinates we can write, say,

f l
i .z/ D .

p
3 � l/z C l

.�lz C l C p
3/

:

From this we see that

j. f l
i /0.z/j D 1

j � lz C l C p
3j2

and the required estimate follows. ut
The Poincaré series have the useful feature that they can be expressed simply in
terms of linear operators on appropriate Banach spaces of functions.

Definition 4.2 Let C1.�/ be the Banach space of C1 functions on �. We can
consider the transfer operators Ls W C1.�/ ! C1.�/ (s 2 C) given by

Lsw.x/ D
X

l

j�0
l .x/jsw.�lx/

where w 2 C1.�/. This converges provided Re.s/ > 1
2
.

We are actually spoilt for choice of Banach spaces. Although the continuous
functions C0.�/ is too large a space for our purposes, we could also work with
Hölder continuous functions or suitable analytic functions (on some neighbourhood
of the complexification of � thought of as a subset of R2). The choice of C1.�/ is
perhaps the more familiar.

The approach in the rest of this subsection is now relatively well known (cf.
[6, 8, 13], for example) and is a variant on the symbolic approach to Poincaré series
and the hyperbolic circle problem [14, 15]. Recall that ı > 0 is the exponent in
Theorem 2.2.

Lemma 4.3 The operators are well defined provided Re.s/ > 1
2
. Moreover, for

Re.s/ > ı we have that the spectral radius satisfies

�.Ls/ WD lim sup
n!C1

kLn
s k 1

n < 1:

In particular, we see from the definition of Ls that we can write

Ln
s w.z/ D

X
�

j�0
.z/jsw.�z/; for n � 2,
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where the summation is over allowed compositions of contractions � D �in ı� � �ı�i1 .
We can now rewrite the expression for the Poincaré series in (4.1) more concisely as

	 j.s/ D j�0
j .z0/js

1X
nD0

Ln
s hs.�jz0/:

In order to construct the required extension of 	 j.s/, we recall the following
simple lemma improving on the result in Lemma 4.3.

Lemma 4.4 Let Re.s/ D ı. Then

1. For s D ı C it with t ¤ 0 we have that the spectral radius satisfies �.Ls/ < 1;
and

2. For s D ı we can write Lı D Q C U where

(a) Q is a (one dimensional) eigenprojection with QU D UQ D 0, Q2 D Q, and
(b) And lim supn!C1 kUnk1=n < 1:

Remark 4 The spectral properties of Ls can be seen when the operator acts on C1

functions. Alternatively, we could have looked at bounded analytic functions on a
small enough neighbourhood T � U � C2 in the complexification (cf. [6]).

We can now deduce almost immediately from Lemmas 4.3 and 4.4 the following
corollary for this Poincaré series.

Corollary 4.5 The Poincaré series 	 j.s/ converges to a well defined function on
Re.s/ > ı. Moreover,

1. For Re.s/ > ı we have that 	 j.s/ is analytic;
2. There exists a small neighbourhood of each ı C it with t ¤ 0 on which 	 j.s/ has

an analytic extension; and
3. 	 j.s/ has a simple pole at s D ı.

Remark 5 In fact, we can deduce a little more which, if a little technical looking, is
needed in the approximation argument below. In particular, we can also show that
the simple pole for 	 j.s/ at s D ı has a residue of the form

Cj WD j.�j/
0.x0/jı�.hs/


0.ı/

where:

(i) 
.t/ is an isolated eigenvalue equal to the spectral radius of Lt (t 2 R); and
(ii) Q.h/ D �.h/k where k is an associated eigenfunction, i.e., L1k D k.

If we now write

	 j.s/ D
Z 1

1

t�sdNj.t/
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then comparing Corollary 4.5 with Theorem 3.3 gives the asymptotic formula for
Nj.T/ in Proposition 3.8.

Let us now move on to the final step in the proof of Theorem 2.2.

4.2 The Approximation Argument

We can now approximate the radii rad.g.C4// of the circle g.C4/ by suitably scaled
values of 1=jg0.x0/j, where g D f l

i ı � ı �j. Without loss of generality we can choose
coordinates in C so that C4 is the unit circle.

As a prelude to this we consider some simple geometric estimates on the sizes of
the images of circles.

Lemma 4.6 If g.z/ D .az C b/=.cz C d/, with ad � bc D 1 and a; b; c; d 2 C, then
the radius of the image circle C D g.C4/ is equal to

1

jjcj2 � jdj2j D jg0.0/j
jj c

d j2 � 1j

The proof is a reassuringly elementary exercise:

Proof For the first part, we see that the image circle g.C0/ has centre zc D .ac �
bd/=.jcj2 � jdj2/ and radius 1=.jjcj2 � jdj2j/ since we can check that for ei� 2 C4 D
fz 2 C : jzj D 1g:

jg.ei� / � zcj D
ˇ̌̌
ˇaei� C b

cei� C d
� ac � bc

jcj2 � jdj2
ˇ̌̌
ˇ D 1

jjcj2 � jdj2j :

We then observe that jg0.z/j D jcz C dj�2 and thus jg0.0/j D jdj�2. Thus by the
above we see that the radius of the image circle C is:

rad.C/ D 1

jjcj2 � jdj2j D jg0.0/jˇ̌
ˇˇ̌ c

d

ˇ̌2 � 1
ˇ̌
ˇ :

as claimed. ut
We can write g�1.z/ D .dz � b/=.�cz C a/ and thus g�1.1/ D d=c.
Finally, we come to the crux of the approximation argument. The essential idea

is to approximate the (technically more convenient) weighting of elements g by
jg0.z0/j, with a weighting by the more geometric weighting by reciprocals of the
radii rad.g.C4//. One simple approach is as follows. We are taking z0 D 0, for
definiteness, and then we want to use Proposition 3.8 to localise the counting to
regions where

jg0.0/j
rad.g.C4//

D
ˇ̌
ˇ̌ˇ̌ˇ c

d

ˇ̌
ˇ2 � 1

ˇ̌
ˇ̌
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is close to constant, using Lemma 4.6. Given an allowed string . j1; � � � ; jN/ we can
write

g�1 D �
.R4 ı Rjk /

nk ı � � � ı .R4 ı RjNC1
/nNC1 ı .R4 ı RjN /nN ı � � � ı .R4 ı Rj1 /

n1
��1

D .Rj1 ı R4/
n1 ı � � � ı .RjN ı R4/

nN ı .RjNC1
ı R4/

nNC1 ı � � � ı .Rjk ı R4/
nk

D f
nk

jk ı � � � ı f
n1

j1 ;

where we denote f j WD Rj ı R4 ( j D 1; 2; 3) acting on the complement of the disk
containing � (i.e., the dotted circle in Fig. 10). In particular, given 	 > 0, we can
choose N sufficiently large such that for each j jj D N we can choose Kj such that

for g D f l
i ı � ı �j:

Kj � 	 � jg0.0/j
rad.g.C4//

� Kj C 	: (4.2)

We can define a local version of N.T/, which is useful to compare with Mj.T/.

Definition 4.7 We define a restricted counting function

Nj.T/ D fg : rad.g.C4// � Tg;

for T > 0.

Fig. 10 Sequences of circles generated by reflections in disjoint circles. The three initial circles
are represented by solid lines and the first two generations of circles generated by reflections are
represented by dashed lines
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Using (4.2) we can write

Mj

 
T

Kj C 	

!
� Nj.T/ � Mj

 
T

Kj � 	

!
:

and observe that N.T/ D P
j jjDN Nj.T/. Using the asymptotic formula from

Proposition 3.8 and summing over allowed strings j of length N, we have that

C
X

j jjDN

�.Œ j�/

.Kj C 	/ı
� lim inf

T!1
N.T/

Tı
� lim sup

T!1
N.T/

Tı
� C

X
j jjDN

�.Œ j�/

.Kj � 	/ı

Letting N ! C1 (and thus � ! 0) gives the result in Theorem 2.2 with

K D lim
N!C1 C

X
j jjDN

�.Œ j�/

.Kj/ı
:

Remark 6 The existence of the limit, and its value K, can be understood in terms of
an integral related to the natural measure � on C. A modified argument leads to an
equidistribution result (expressed in terms of the measure �, of course).

4.3 Generalizations

The approach to counting circles is more analytical than geometrical, and thus is
somewhat oblivious to the specific setting of circle packings. In particular, the same
method of proof works in a number of related settings where we ask for the radii of
circles which are images under a suitable Kleinian group. For example:

1. Other circle packings for which the circles can be generated by the image of
circles under reflections;

2. The radii of the images g.C/ of a circle C, where 
 � SL.2;C/ is a Schottky
group (i.e., a convex cocompact Kleinian group generated by reflections in a
finite number of circles with disjoint interiors);

3. The radii of the images g.C/ of a circle C, where 
 � SL.2;C/ is a quasi-
Fuchsian group.

For more details of such examples, we refer the reader to [9].
The same basic method can also be used to prove other more subtle statistical

properties of the radii of the circles.
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Appendix: The Case of Reciprocal Integer Circles

The following is an interesting corollary to Descartes’ Theorem.

Corollary 4.8 If 1
a0

; 1
a1

; 1
a2

; 1
a3

2 Z then 1
a4

2 Z.

Proof In particular, this is a quadratic polynomial in 1
a4

> 0, so given the radii of
the initial circles a1; a2; a3 we have two possible solutions

1

a1

C 1

a2

C 1

a3

˙ 2

s
1

a1a2

C 1

a2a3

C 1

a3a4

:

and we denote these 1
a4

> 0 (and 1
a0

< 0). We use the convention that the smaller
inner circle has radius a4 > 0 and the larger outer circle has a negative “radius” a4

(meaning its actually radius is ja4j > 0 and the negative sign just tells us it is the
outer circle). Adding these two solutions gives:

1

a0

C 1

a4

D 2

�
1

a1

C 1

a2

C 1

a3

�

from which we easily deduce the result. ut
Proceeding inductively, for any subsequent configuration of four circles with

radii an; anC1; anC2; anC3, for n � 0, we can similarly write

1

anC4

D 2

�
1

anC1

C 1

anC2

C 1

anC3

�
� 1

an
:

Proceeding inductively, then one gets infinitely many circles. Moreover, if the
reciprocals of the initial four circles are integers then we easily see that this is true
for all subsequence circles.

Corollary 4.9 If the four initial Apollonian circles have that their radii
a0; a1; a2; a3 are reciprocals of integers then all of the circles in C have that the
reciprocals of their radii an, n � 4, are integers.

Example 4 Let us consider the example starting with a0 D � 1
3
, a1 D 1

5
, a2 D 1

8
,

and a3 D 1
8
. In Fig. 11 below we illustrate the iterative process of inscribing circles

into each curved triangle formed by three previously constructed tangent circle and
write 1

an
inside the corresponding circle of radius an.

Example 5 Let us also consider the example with a0 D � 1
2
, a1 D 1

3
, a2 D 1

6
,

a3 D 1
7
. In Fig. 12 below we illustrate the iterative process of inscribing circles into

each curved triangle formed by three previously constructed tangent circle and write
1
an

inside the corresponding circle of radius an.
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Fig. 11 We iteratively inscribe additional circles starting with circles of radii a0 D � 1
3
, a1 D 1

5
,

a2 D 1
8
, a3 D 1
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Fig. 12 We iteratively inscribe additional circles starting with circles with radii a0 D � 1
2
, a1 D 1

3
,

a2 D 1
6
, a3 D 1

7

Remark 7 An easy consequence of the fact ı > 1 is that then 1
an

2 N some value

must necessarily have high multiplicity (since we need to fit approximately C��ı

inverse diameters into the first Œ��1� natural numbers and the “pigeonhole principle”
applies). In subsequent work, Oh-Shah showed that similar results are true for
other sorts of circle packing [12]. Oh-Shah also gave an alternative approach to
the original proof of Kontorovich-Oh using ideas of Roblin.

Remark 8 Another question we might ask is: It we remove the repetitions in the
sequence .an/ then how many distinct diameters are greater than �? The following
result was proved by Bourgain and Fuchs [2]: There exists C > 0 such that

#fdistinct diameters an : an � �g � C

�

for all sufficiently large �.s Previously, Sarnak [17] had proved the slightly weaker
result that there exists C > 0 such that

#fdistinct diameters an : an � �g � C

�
p

log �
:
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