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Abstract We give an overview on the quantization problem for fractal measures,
including some related results and methods which have been developed in the last
decades. Based on the work of Graf and Luschgy, we propose a three-step procedure
to estimate the quantization errors. We survey some recent progress, which makes
use of this procedure, including the quantization for self-affine measures, Markov-
type measures on graph-directed fractals, and product measures on multiscale
Moran sets. Several open problems are mentioned.

Keywords Quantization dimension • Quantization coefficient • Bedford-
McMullen carpets • Self-affine measures • Markov measures • Moran measures

Mathematics Subject Classification (2000). Primary 28A75, Secondary 28A80,
94A15

1 Introduction

The quantization problem for probability measures originated in information theory
and certain areas of engineering technology such as image compression and data
processing. In the past decades, this problem has been rigorously studied by
mathematicians and the field of quantization theory emerged. Recently, this theory
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has also been found to have promising applications in numerical integrations and
mathematical finance (see e.g. [22–24]). Mathematically we are concerned with the
asymptotics of the errors in the approximation of a given probability measure with
finitely supported probability measures in the sense of Lr-metrics. More precisely,
for every n 2 N, we set Dn WD f˛ � R

q W 1 � card.˛/ � ng. Let � be a Borel
probability measure on R

q, q 2 N, and let r 2 Œ0;1/. The n-th quantization error
for � of order r is given by [6]

en;r.�/ WD
(

inf˛2Dn

� R
d.x; ˛/r d�.x/

�1=r
; r > 0;

inf˛2Dn exp
R

log d.x; ˛/ d�.x/; r D 0:
(1.1)

According to [6], en;r.�/ equals the error with respect to the Lr-metrics in the
approximation of � with discrete probability measures supported on at most n
points. See [6, 13] for various equivalent definitions for the quantization error. In
the following we will focus on the Lr-quantization problem with r > 0. For the
quantization with respect to the geometric mean error, we refer to [8] for rigorous
foundations and [37, 41, 42, 44] for more related results.

The upper and lower quantization dimension for � of order r, as defined below,
characterize the asymptotic quantization error in a natural manner:

Dr.�/ WD lim sup
n!1

log n

� log en;r.�/
; Dr.�/ WD lim inf

n!1
log n

� log en;r.�/
:

If Dr.�/ D Dr.�/, we call the common value the quantization dimension of �
of order r and denote it by Dr.�/. To obtain more accurate information about
the asymptotic quantization error, we define the s-dimensional upper and lower
quantization coefficient (cf. [6, 26]):

Q
s
r.�/ WD lim sup

n!1
n1=sen;r.�/; Qs

r
.�/ WD lim inf

n!1 n1=sen;r.�/; s > 0:

By [6, 26], the upper (lower) quantization dimension is exactly the critical point at
which the upper (lower) quantization coefficient jumps from zero to infinity.

The following theorem by Zador is a classical result on quantization of absolutely
continuous measures. It was first proposed by Zador [32] and then generalized by
Bucklew and Wise [2]; we refer to [6, Theorem 6.2] for a rigorous proof.

Theorem 1.1 ([6]) Let � be absolutely continuous Borel probability measure on
R

q with density h with respect to the q-dimensional Lebesgue measure �q. Assume
that for some ı > 0, we have

R jxjrCı d� .x/ < 1. Then for all r > 0 we have

Qq
r
.�/ D Q

q
r .�/ D C.r; q/

� Z
h

q
qCr .x/ d�q .x/

� qCr
q

;

where C.r; q/ is a constant independent of �.
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While engineers are mainly dealing with absolutely continuous distributions, the
quantization problem is significant for all Borel probability measures satisfying the
moment condition

R jxjrd� .x/ < 1. For later use we define the subset of Borel
probabilities Mr WD ˚

� W � .R/ D 1;
R jxjrd� .x/ < 1�

and let M1 denote the set
of Borel probability measures with compact support. This condition ensures that
the set of n-optimal sets of order r denoted by Cn;r.�/ is non-empty. Also note that
M1 � Mr for all r > 0: The most prominent aspects in quantization of probability
measures are the following:

Find the exact value of the upper/lower quantization dimension for � of
order r: In the case where the quantization dimension does not exist, it is usually
difficult to obtain the exact value of the upper or lower one (cf. [30]). Up to now,
in such a situation, the upper and lower quantization dimension could only be
explicitly determined for very special cases.
Determine the s-dimensional upper and lower quantization coefficient: We
are mainly concerned about the finiteness and positivity of these quantities. This
question is analogous to the question of whether a fractal is an s-set. Typically,
this question is much harder to answer than finding the quantization dimension.
So far, the quantization coefficient has been studied for absolutely continuous
probability measures ([6]) and several classes of singular measures, including
self-similar and self-conformal [19, 29, 33, 39] measures, Markov-type measures
[16, 29, 44] and self-affine measures on Bedford-McMullen carpets [15, 38].
Properties of the point density measure �r: Fix a sequence of n-optimal sets
˛n 2 Cn;r.�/ of order r, n 2 N, and consider the weak limit of the empirical
measures, whenever it exists,

�r WD lim
n!1

1

n

X
a2˛n

ıa:

The point density measure characterizes the frequency at which optimal points
fall into a given open set. Up to now, the point density measure is determined
only for absolutely continuous measures [6, Theorem 7.5] and certain self-similar
measures [9, Theorem 5.5].
Local properties and Voronoi partitions: Fix a finite subset ˛ of Rq. A Voronoi
partition with respect to ˛ refers to a partition .Pa.˛//a2˛ of Rq such that

Pa.˛/ � fx 2 R
q W d.x; ˛/ D d.x; a/g ; a 2 ˛:
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It is natural to ask, if there exists constants 0 < C1 � C2 < 1 such that for all
˛n 2 Cn;r.�/ and n 2 N we have

C1er
n;r

n
� min

a2˛n

Z
Pa.˛n/

d.x; ˛n/
r d�.x/

� max
a2˛n

Z
Pa.˛n/

d.x; ˛n/
r d�.x/ � C2er

n;r

n
:

This question is essentially a weaker version of Gersho’s conjecture [5]. Graf,
Luschgy and Pagès proved in [10] that this is in fact true for a large class of
absolutely continuous probability measures. An affirmative answer is also given
for self-similar measures under the assumption of the strong separation condition
(SSC) for the corresponding iterated function system [39, 43].
In the final analysis, the study of the quantization problem addresses the optimal
sets. Where do the points of an optimal set lie? Unfortunately, it is almost
impossible to determine the optimal sets for a general probability measure. It
is therefore desirable to seek for an “approximately explicit” description of such
sets. In other words, even though we do not know exactly where the points of an
optimal set lie, we want to know how many points are lying in a given open set.
This would in return enable us to obtain precise estimates for the quantization
error.
Connection to fractal geometry: To this end, some typical techniques in fractal
geometry are often very helpful. In fact, the quantization problem is closely
connected with important notions in fractal geometry. One may compare the
upper (lower) quantization dimension for measures to the packing (Hausdorff)
dimension for sets; accordingly, the upper (lower) quantization coefficient may
be compared to the packing (Hausdorff) measure for sets. Although they
are substantially different, they do have some close connections, as all these
quantities can be defined in terms of coverings, partitions and packings. In fact,
we have

(1) dim�
H � � Dr.�/ � dim�

B� and dim�
P � � Dr.�/ � dim

�
B�, for r D 2 these

inequalities were presented in [26], and for measures with compact support and
all r 2 .0;1� they were independently proved in [6].

(2) In [14] we have studied the stability of the upper and lower quantization
dimension in some detail. In [14], for r 2 Œ1;1�, we proved the following
statements:

(i) For all � 2 Mr we have Dr .�/ D max
1�i�n

Dr .�i/ with �i 2 Mr, si > 0,

i D 1; : : : ; n, n 2 N and � D Pn
iD1 si�i.

(ii) dim�
P .�/ D inf

�
sup
i2N

Dr .�i/ W � D P
i2N si�i; �i 2 M1; si > 0

�
for all

� 2 M1.
(iii) There exists � 2 M1 such that Dr .�/ 6D dim�

P .�/.
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(iv) There exists � 2 M1 such that Dr.�/ > Dr.�/.
(v) There exists � 2 M1 such that Dr .�/ 6D max

1�i�n
Dr .�i/ for some �i 2

M1, si > 0, i D 1; : : : ; n, n 2 N with � D Pn
iD1 si�i.

(3) For certain measures arising from dynamical systems, the quantization dimen-
sion can be expressed within the thermodynamic formalism in terms of
appropriate temperature functions (see [15, 19, 27, 28]).

(4) The upper and lower quantization dimension of order zero are closely connected
with the upper and lower local dimension. As it is shown in [43], if �-almost
everywhere the upper and lower local dimension are both equal to s, then D0.�/

exists and equals s.

We end this section with Graf and Luschgy’s results on self-similar measures. These
results and the methods involved in their proofs have a significant influence on
subsequent work on the quantization for non-self-similar measures.

Let .Si/
N
iD1 be a family of contractive similitudes on R

q with contraction ratios
.si/

N
iD1. According to [12], there exists a unique non-empty compact subset E of

R
q such that E D SN

iD1 Si.E/. The set E is called the self-similar set associated
with .Si/

N
iD1. Also, there exists a unique Borel probability measure on R

q, such that
� D PN

iD1 pi� ı S�1
i , called the self-similar measure associated with .Si/

N
iD1 and

the probability vector . pi/
N
iD1. We say that .Si/

N
iD1 satisfies the strong separation

condition (SSC) if the sets Si.E/; i D 1; � � � ;N, are pairwise disjoint. We say that it
satisfies the open set condition (OSC) if there exists a non-empty open set U such
that Si.U/ \ Sj.U/ D ; for all i ¤ j and Si.U/ � U for all i D 1; � � � ;N. For
r 2 Œ0;1/, let kr be the positive real number given by

k0 WD
PN

iD1 pi log piPN
iD1 pi log si

;

NX
iD1
. pic

r
i /

kr
kr Cr D 1: (1.2)

Theorem 1.2 ([7, 8]) Assume that .Si/
N
iD1 satisfies the open set condition. Then for

all r 2 Œ0;1/, we have

0 < Qkr
r
.�/ � Q

kr

r .�/ < 1:

In particular, we have Dr.�/ D kr.

This is the first complete result on the quantization for (typically) singular
measures. In its proof, Hölder’s inequality with an exponent less than one plays
a crucial role, from which the exponent kr= .kr C r/ comes out in a natural manner.
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2 The Three-Step Procedure

Following the ideas of Graf-Luschgy we propose a three-step procedure for
the estimation of the quantization errors by means of partitions, coverings and
packings. This procedure is applicable to a large class of fractal measures, including
Moran measures, self-affine measures and Markov-type measures, provided that
some suitable separation condition is satisfied; it even allows us to obtain useful
information on the quantization for general Borel probability measures on R

q with
compact support.

Step 1 (Partitioning). For each n, we partition the (compact) support of � into 'n

small parts .Fnk/
'n
kD1, such that �.Fnk/jFnkjr are uniformly comparable, namely,

for some constant C > 1 independent of k; j 2 f1; : : : ; 'ng and n 2 N, we have

C�1�.Fnk/jFnkjr � �.Fnj/jFnjjr � C�.Fnk/jFnkjr;

where jAj denotes the diameter of a set A � R
d. This idea was first used by

Graf and Luschgy to treat the quantization problem for self-similar measures, we
refer to [6] for a construction of this type. The underlying idea is to seek for some
uniformity while � generally is not uniform.

Step 2 (Covering). With a suitable separation condition, we may also assume that
for some ı > 0, we have that

d.Fnk;Fnj/ � ımaxfjFnkj; jFnjjg; k ¤ j; n � 1:

In this step, uniformity and separation allow us to verify that any 'n-optimal set
distributes its points equally among suitable neighborhoods of Fnk; 1 � k � 'n,
in other words, each Fnk “owns” a bounded number of points of the 'n-optimal
set. More precisely, we prove that there exists some constant L1, which is
independent of n, such that for every ˛ 2 C'n;r.�/, we have

max
1�k�'n

card
�
˛ \ .Fnk/4�1ıjFnkj

� � L1;

where As denotes the s-parallel set of A. This can often be done inductively by
means of contradiction.

Step 3 (Packing). In the last step we have to find a constant L2 and subsets ˇnk of
Fnk with cardinality at most L2 such that for all ˛ 2 C'n;r.�/ and x 2 Fnk we
have

d.x; ˛/ � d.x; .˛ \ .Fnk/4�1ıjFnk j/ [ ˇnk/:
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This reduces the global situation to a local one and enables us to restrict our
attention to an arbitrary small set Fnk. We have

er
'n;r.�/ �

'nX
kD1

Z
Fnk

d.x; .˛ \ .Fnk/4�1ıjFnkj/ [ ˇnk/
r d�.x/:

Note that card
�
.˛ \ .Fnk/4�1ıjFnkj/[ ˇnk

� � L1 C L2. For measures with explicit
mass distributions, we often haveZ

Fnk

d.x; � [ ˇk/
r d�.x/ � D�.Fnj/jFnjjr

for any subset � of Rq with cardinality not greater than L1CL2 and an appropriate
constant D. Thus, we get a lower estimate for the quantization error:

er
'n;r.�/ � D

'nX
kD1

�.Fnk/jFnkjr:

On the other hand, by choosing some arbitrary points bk 2 Fnk, k 2 f1; : : : ; 'ng,
one can easily see

er
'n;r.�/ �

'nX
kD1

Z
Fnk

d.x; bk/
rd�.x/ �

'nX
kD1

�.Fnk/jFnkjr:

After these three steps, for sufficiently “nice” measures, we may additionally
assume that 'n � 'nC1 � C'n for some constant C > 1 (cf. [34–36]). To determine
the dimension it is then enough to estimate the growth rate of 'n. Here, ideas from
Thermodynamic Formalism – such as critical exponents or zeros of some pressure
function – often come into play: E.g., for r > 0 we often have

Dr.�/

Dr.�/C r
D inf

�
t 2 R W

X
n2N

'nX
kD1

.�.Fnk/jFnkjr/t < 1
�

allowing us to find explicit formulae for the quantization dimension for a given
problem (see [15] for an instance of this). Typically, for a non-self-similar measure
such as a self-affine measures on Bedford-McMullen carpets, this requires a detailed
analysis of the asymptotic quantization errors. In order to formulate a rigorous
proof, we usually need to make more effort according to the particular properties
of the measures under consideration. As general measures do not enjoy strict
self-similarity, it seems unrealistic to expect to establish simple quantities for the
quantization errors as Graf and Luschgy did for self-similar measures [6, Lemma
14.10]. However, the above-mentioned three-step procedure often provides us with
estimates of the quantization errors which is usually a promising starting point.
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Moreover, in order to examine the finiteness or positivity of the upper and lower
s-dimensional quantization coefficient of order r, it suffices to check that (cf. [40])

0 < lim inf
n!1

'nX
kD1
.�.Fnj/jFnjjr/

s
sCr � lim sup

n!1

'nX
kD1
.�.Fnj/jFnjjr/

s
sCr < 1:

An effective way to do this is to construct some auxiliary probability measures.
Such a measure should closely reflect the information carried by .�.Fnj/jFnjjr/

s
sCr .

For a self-similar measure, as Graf-Luschgy’s work shows, an auxiliary probability
measure is the self-similar measure associated with .Si/

N
iD1 and the probability

vector .. picr
i /

kr
krCr /NiD1. It is interesting to note that this measure coincides with

the point density measure provided that the kr-dimensional quantization coefficient
exists. For a self-similar measure, as Graf and Luschgy showed, we can use the
above auxiliary probability measure and obtain the finiteness or positivity of the
upper and lower kr-dimensional quantization coefficient, which also implies that the
quantization dimension exists and equals kr. In the non-self-similar situation, due to
the complexity of the topological support, it is often not easy to construct a suitable
auxiliary probability measure to estimate the quantization coefficients.

3 Recent Work on the Quantization for Fractal Measures

3.1 Self-Affine Measures on Bedford-McMullen Carpets

Fix two positive integers m; n with 2 � m � n and fix a set

G � ˚
0; 1; : : : ; n � 1

� � ˚
0; 1; : : : ;m � 1�

with N WD card .G/ � 2. We define a family of affine mappings on R
2 by

fij W .x; y/ 7! �
n�1x C n�1i;m�1y C m�1j

�
; .i; j/ 2 G: (3.1)

By [12], there exists a unique non-empty compact set E satisfying E DS
.i;j/2G fij.E/, which is called the Bedford-McMullen carpet determined by

. fij/.i;j/2G. Given a probability vector . pij/.i;j/2G with pij > 0, for all .i; j/ 2 G,
the self-affine measure associated with . pij/.i;j/2G and . fij/.i;j/2G refers to the unique
Borel probability measure � on R

2 satisfying

� D
X
.i;j/2G

pij� ı f �1
ij : (3.2)
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Sets and measures of this form have been intensively studied in the past decades,
see e.g. [1, 4, 11, 17, 18, 21, 25] for many interesting results. We write

Gx WD fi W .i; j/ 2 G for some jg ; Gy WD f j W .i; j/ 2 G for some ig ;
Gx;j WD fi W .i; j/ 2 Gg ; qj WD

X
i2Gx;j

pij:

We carry out the three-step procedure and obtain an estimate for the quantization
errors. This allows us to conjecture that the quantization dimension exists and equals
sr, where

� X
.i;j/2G

. pijm
�r/

sr
srCr

��� X
j2Gy

.qjm
�r/

sr
srCr

�1��
D 1; � WD log m

log n
: (3.3)

However, it seems rather difficult to find a suitable auxiliary measure for a proof
of this conjecture. A cornerstone is the crucial observation that the number sr

coincide with a Poincare-like exponent [15]. Using the property of sup-additive
sequences, we are able to prove that Dr.�/ exists and also coincides with �r. Finally,
we consider the self-affine measure associated with .. pijm�r/

sr
srCr =Cr/.i;j/2G as an

auxiliary measure, where Cr WD P
.i;j/2G. pijm�r/

sr
srCr . This measure and the above-

mentioned estimate enable us to obtain sufficient conditions for the upper and lower
quantization coefficient to be both positive and finite. We have

Theorem 3.1 ([15]) Let � be as defined in (3.2). Then for each r 2 .0;1/ we have
that Dr.�/ exists and equals sr, Moreover, 0 < Qsr

r
.�/ � Q

sr

r .�/ < 1 if one of the
following conditions is fulfilled:

(A)
P

i2Gx;j
. pijq�1

j /
sr

srCr are identical for all j 2 Gy,
(B) qj are identical for all j 2 Gy.

Open problem: Is it true that 0 < Qsr
r
.�/ � Q

sr

r .�/ < 1 if and only if condition
(A) or (B) holds?

3.2 Quantization for Markov-Type Measures

3.2.1 Mauldin-Williams Fractals

Let Ji, non-empty compact subsets of Rd with Ji D cl.int.Ji//, 1 � i � N, where
cl.A/ and int.A/ denote the closure and interior in R

d of a set A � R
d. For the integer

N � 2 let P D . pij/1�i;j�N be a row-stochastic matrix, i.e., pij � 0; 1 � i; j � N,
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and
PN

jD1 pij D 1; 1 � i � N. Let � denote the empty word and set

	0 WD f�g; 	1 WD f1; : : :Ng;
	k WD f
 2 	k

1 W p
1
2 � � � p
k�1
k > 0g; k � 2;

	� WD
[
k�0

	k; 	1 WD f
 2 	N

1 W p
h
hC1
> 0 for all h � 1g:

We call Ji; 1 � i � N, cylinder sets of order one. For each 1 � i � N, let Jij; .i; j/ 2
	2, be non-overlapping subsets of Ji such that Jij is geometrically similar to Jj and
diam.Jij/=diam.Jj/ D cij. We call these sets cylinder sets of order two. Assume
that cylinder sets of order k are determined, namely, for each 
 2 	k, we have a
cylinder set J
 . Let J
�ikC1

; 
 � ikC1 2 	kC1, be non-overlapping subsets of J
 such
that J
�ikC1

is geometrically similar to JikC1
. Inductively, cylinder sets of order k are

determined for all k � 1. The (ratio specified) Mauldin-Williams fractal is given by

E WD
\
k�1

[

2	k

J
 :

3.2.2 Markov-Type Measures

Let .�i/
N
iD1 be an arbitrary probability vector with min1�i�N �i > 0. By Kolmogorov

consistency theorem, there exists a unique probability measure Q� on 	1 such that
Q�.Œ
�/ WD �
1p
1
2 � � � p
k�1
k for every k � 1 and 
 D .
1; : : : ; 
k/ 2 	k, where
Œ
� WD f! 2 	1 W !jj
 j D 
g. Let � denote the projection from	1 to E given by
� .
/ WD x, where

fxg WD
\
k�1

J
 jk ; for 
 2 	1:

Let us assume the following:

(A1) card.f j W pij > 0g/ � 2 for all 1 � i � N.
(A2) There exists a constant t 2 .0; 1/ such that for every 
 2 	� and distinct

i1; i2 2 	1 with 
 � il 2 	j
 jC1, l D 1; 2,

d.J
�i1 ; J
�i2 / � t maxfjJ
�i1 j; jJ
�i2 jg:

Under this assumption, � is a bijection. We consider the image measure of Q� under
the projection � given by � WD Q� ı ��1. We call � a Markov-type measure which
satisfies

�.J
/ D �
1p
1
2 � � � p
k�1
k for 
 D .
1 : : : 
k/ 2 	k: (3.4)
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For 1 � i; j � N, we define aij.s/ WD . pijcr
ij/

s. Then we get an N � N matrix
A.s/ D .aij.s//N�N . Let  .s/ denote the spectral radius of A.s/. By [20, Theorem
2],  .s/ is continuous and strictly decreasing. Note that, by the assumption (A1),
the Perron-Frobenius theorem and intermediate-value theorem, there exists a unique
number  2 .0; 1/ such that  ./ D 1. Thus, for every r > 0, there exists a unique
positive number sr such that  . sr

srCr / D 1.
We consider the directed graph G associated with the transition matrix . pij/N�N .

Namely, G has vertices 1; 2; : : : ;N. There is an edge from i to j if and only if pij > 0.
In the following, we will simply denote by G D f1; : : : ;Ng both the directed graph
and its vertex sets. We also write

bij.s/ WD . pijc
r
ij/

s
sCr ; AG;s WD .bij.s//N�N ; ‰G.s/ WD  

�
s

s C r

�
:

Let SC.G/ denote the set of all strongly connected components of G. For H1;H2 2
SC.G/, we write H1 	 H2, if there is a path initiating at some i1 2 H1 and
terminating at some ik 2 H2. If we have neither H1 	 H2 nor H2 	 H1, then
we say H1;H2 are incomparable. For every H 2 SC.G/, we denote by AH;s the sub-
matrix .bij.s//i;j2H of AG.s/. Let ‰H.s/ be the spectral radius of AH;s and sr.H/ be
the unique positive number satisfying ‰H.sr.H// D 1.

Again, we apply the three-step procedure in Sect. 2 and obtain upper and lower
estimates for the quantization error. Using these estimates and auxiliary measures
of Mauldin-Williams type, we are able to prove that, when the transition matrix is
irreducible, the upper and lower quantization coefficient are both positive and finite.
This fact also leads to the positivity of the lower quantization coefficient in the
general case. Then, based on a detailed analysis of the corresponding directed graph
(not strongly connected) and some techniques in matrix theory, we are able to prove
the formula for the quantization dimension. Finally, by using auxiliary measures of
Mauldin-Williams type once more, we establish a necessary and sufficient condition
for the upper quantization coefficient to be finite as stated next.

Theorem 3.2 ([16]) Assume that (A1) and (A2) are satisfied. Let � be the Markov-
type measure as defined in (3.4) and sr the unique positive number satisfying
‰G.sr/ D 1. Then, Dr.�/ D sr and Qsr

r
.�/ > 0. Furthermore, Q

sr

r .�/ < 1 if
and only if M WD fH 2 SC.G/ W sr.H/ D srg consists of incomparable elements,
otherwise, we have Qsr

r
.�/ D 1.

3.3 Quantization for Moran Measures

3.3.1 Moran Sets

Let J be a non-empty compact subset of Rd with J D cl.int.J//. Let jAj denote the
diameter of a set A � R

d. Let .nk/
1
kD1 be a sequence of integers with mink�1 nk � 2



116 M. Kesseböhmer and S. Zhu

and � denote the empty word. Set

	0 WD f�g; 	k WD
kY

jD1
f1; 2; � � � ; njg; 	� WD

1[
kD0

	k:

For 
 D 
1 � � �
k 2 	k and j 2 f1; � � � ; nkC1g, we write 
 � j D 
1 � � �
kj.
Set J� WD J and let J
 for 
 2 	1 be non-overlapping subsets of J� such that

each of them is geometrically similar to J� . Assume that J
 is determined for every

 2 	k. Let J
�j; 1 � j � nkC1 be non-overlapping subsets of J
 which are
geometrically similar to J
 . Inductively, all sets J
 ; 
 2 	� are determined in this
way. The Moran set is then defined by

E WD
1\

kD1

[

2	k

J
 : (3.5)

We call J
 ; 
 2 	k, cylinders of order k. It is well known that the Moran sets E are
generally not self-similar (cf. [3, 31]). For k � 0 and 
 2 	k, we set

j
 j WD k; c
;j WD jJ
�jj
jJ
 j ; 1 � j � nkC1:

We assume that there exist some constants c; ˇ 2 .0; 1/ such that

(B1) inf

2	�

min
1�j�nj
jC1

c
;j D c > 0,

(B2) dist.J
�i; J
�j/ � ˇmaxfjJ
�ij; jJ
�jjg for 1 � i ¤ j � nj
 jC1 and 
 2 	�.

3.3.2 Moran Measures

For each k � 1, let . pkj/
nk
jD1 be a probability vector. By the Kolmogorov consistency

theorem, there exists a probability measure � on 	1 WD Q1
kD1f1; 2; � � � ; nkg such

that

�.Œ
1; � � � ; 
k�/ D p1
1 � � � pk
k ; 
1 � � �
k 2 	k;

where Œ
1; � � � ; 
k� D f� 2 	1 W �j D 
j; 1 � j � kg. Let … W 	1 ! E be defined
by ….
/ D T

k�1 J
 jk with 
 jk D 
1 � � �
k. Then, with the assumption (B2), … is a
continuous bijection. We define � WD � ı…�1. Then, we have

�.J/ D 1; �.J
 / WD p1
1 � � � pk
k ; 
 D 
1 � � �
k 2 	k; k � 1:
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We call the measure � the Moran measure on E. It is known that the quantization
dimension for � of order r does not necessarily exist. Let dk;r; dr; dr be given by

X

2	k

. p
cr

 /

dk;r
dk;rCr D 1; dr WD lim sup

k!1
dk;r; dk;rdr WD lim inf

k!1 dk;r:

Open problem Is it true that Dr.�/ D dr;Dr.�/ D dr?

3.3.3 Multiscale Moran Sets

A multiscale Moran set is Moran set with some additional structure encoded in the
infinite sequence ! D .!l/

1
lD1 2 ‡ WD f1; : : : ;mgN for some m � 2. For this fix

some positive integers Ni � 2; 1 � i � m and for every 1 � i � m, let .gij/
Ni
jD1 be

the contraction vector with gij 2 .0; 1/ and . pij/
Ni
jD1 a probability vector with pij > 0

for all 1 � j � Ni. Now using the notation in the definition of Moran sets, we set

nlC1 WD N!lC1
;

�
c
;j

�N!lC1

jD1 WD .g!lC1j/
N!lC1

jD1 ; 
 2 	l; l � 0: (3.6)

If, for some l � 0, we have !lC1 D i, then for every 
 2 	l, we have a
continuum of choices of fJ
�jgNi

jD1 fulfilling (B1),(B2) and (3.6), because we only fix
the contraction ratios of the similitudes. Hence, to every ! 2 ‡ , there corresponds
a class M! of Moran sets according to (3.5). We call these Moran sets multiscale
Moran sets.

For each ! 2 ‡ , we write

Nk;i.!/ WD cardf1 � l � k W !l D ig; 1 � i � m:

Fix a probability vector � D .�i/
m
iD1 with �i > 0 for all 1 � i � m and define

G.�/ WD f! 2 ‡ W lim
k!1 k�1Nk;i.!/ D �i; 1 � i � mg;

G0.�/ WD f! 2 ‡ W lim sup
k!1

ˇ̌
Nk;i.!/ � k�i

ˇ̌
< 1; 1 � i � mg:

3.3.4 Multiscale Moran Measures

Fix an ! 2 G.�/. According to Kolmogorov consistency theorem, there exists a
probability measure �! on the product space	1 WD Q1

kD1f1; 2; � � � ;N!k g such that

�!.Œ
1; � � � ; 
k�/ D p!1
1 � � � p!k
k ; 
1 � � � 
k 2 	k;
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where Œ
1; � � � ; 
k� D f� 2 	1 W �j D 
j; 1 � j � kg. We define �! WD �! ı …�1.
Then, we have

�.J/ D 1; �!.J
 / WD p!1
1 � � � p!k
k ; 
 D 
1 � � �
k 2 	k; k � 1:

We call the measure�! the infinite product measure on E.!/ associated with ! and
. pij/

Ni
jD1; 1 � i � m.

For every ! 2 G.�/ and k 2 N, let sk;r.!/; sr and Hr.!/;Hr.!/ be defined by

mY
iD1

� NiX
jD1
. pijg

r
ij/

sk;r .!/
sk;r .!/Cr

�Nk;i.!/

D 1;

mY
iD1

� NiX
jD1
. pijg

r
ij/

sr
srCr

��i

D 1; (3.7)

Hr.!/ WD lim inf
k!1 kjsk;r.!/ � srj; Hr.!/ WD lim sup

k!1
kjsk;r.!/� srj:

Compared with Mauldin-Williams fractals, the disadvantage is that we have more
patterns in the construction of multiscale Moran sets. However, the pattern we use at
the .k C1/-th step is independent of words of length k, which is an advantage. After
we carry out the three-step procedure in Sect. 2, we conveniently obtain the exact
value of the quantization dimension by considering some measure-like auxiliary
functions. This also enables us to transfer the question of the upper and lower
quantization coefficient to the convergence order of .sk;r.!//

1
kD1. For the latter, we

need a detailed analysis of some auxiliary functions related to (3.7). One may see
[40] for more details. Our main result is summarized in the following theorem.

Theorem 3.3 ([40]) For every ! 2 G.�/, we have

(i) Dr.�!/ exists and equals sr, it is independent of ! 2 G.�/,
(ii) If sk;r.!/ � sr for all large k, then Qsr

r
.�!/ > 0. If in addition Hr.!/ D 1,

then we have Q
sr

r .�!/ D 1,
(iii) If sk;r.!/ � sr for all large k, then Q

sr

r .�!/ < 1; if, in addition, Hr.!/ D 1,
then we have Qsr

r
.�!/ D 0,

(iv) If Hr.!/ < 1, then Qsr
r
.�!/ and Q

sr

r .�!/ are both positive and finite,
(v) If ! 2 G0.�/, then the assertion in (iv) holds.

Open problem: What can we say about necessary conditions for Qsr
r
.�!/ and

Q
sr

r .�!/ to be both positive and finite?
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