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1 Introduction

In this paper we consider continuous real functions of the form

f �

�;b.x/ D
1X

nD0

�n�.bnx/ (1.1)

for x 2 R, where b > 1, 1=b < � < 1 and � W R ! R is a non-constant, Z-periodic,
Lipschitz continuous, piecewise C1 function. Probably the most famous function of
that form is the Weierstrass cosine function

W�;b.x/ D
1X

nD0

�n cos.2�bnx/;

introduced by Weierstrass in 1872 as one of the first examples of a continuous
nowhere differentiable function on the real line. In fact, Weierstrass proved the
non-differentiability for some values of the parameters �; b, while the complete
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Fig. 1 The graph of the Weierstrass cosine nowhere differentiable function

proof for b > 1, 1=b < � < 1 was given by Hardy [16] in 1916. Later, starting
from the work by Besicovitch and Ursell [8], the graphs of functions of the form
(1.1) and related ones have been studied from a geometric point of view as fractal
curves in the plane (Fig. 1).

In this paper we present a survey of recent results concerning various kinds of
dimensions of the graphs of functions of the form (1.1).

Since

�f �

�;b.bx/ D f �

�;b.x/ � �.x/;

the graph of f �

�;b exhibits a kind of approximate self-affinity with scales � and 1=b,
which suggests a candidate for its dimension to be

D D 2 C log �

log b
:

We will see that this is indeed the case for the box dimension of the graph
of f �

�;b (unless it is a piecewise C1 function with the graph of dimension 1), see
Theorem 2.4. For the Hausdorff dimension, the situation is not so simple – we
know some general lower estimates by constants smaller than D (see (3.1) and
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Theorem 3.4), while the Hausdorff dimension of the graph is known to be equal
to D only in some concrete cases (see Theorems 3.5 and 3.6), and for integer b and
generic smooth function � (see Theorem 4.2). On the other hand, we do not know
any example of a function of the form (1.1), where the Hausdorff dimension of the
graph is smaller than D.

Let us note that if b is an integer, then the graph of a function f �

�;b of the form
(1.1) is an invariant repeller for the expanding dynamical system

ˆ W R=Z � R ! R=Z � R; ˆ.x; y/ D
�

bx .mod 1/;
y � �.x/

�

�
(1.2)

with two different positive Lyapunov exponents � log � < log b, which allows to
use the methods of ergodic theory of smooth dynamical systems. In this case the
graph of f �

�;b is the common fractal boundary between the basins of attraction to
(vertical) C1 and �1 on the cylinder R=Z (see Fig. 2). Alternatively, the system

Fig. 2 The graph of the
Weierstrass function as the
boundary between two
attracting basins on the
cylinder
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can be treated as a nonlinear iterated function system (IFS) on Œ0; 1/ � R composed
of the maps

Si.x; y/ D
�

x

b
C i

b
; �y C �

�
x

b
C i

b

��
; i D 0; : : : ; b � 1:

Some results presented in this paper are valid also for a more general class of
functions

f �;‚

�;b .x/ D
1X

nD0

�n�.bnx C �n/; (1.3)

where ‚ D .�1; �2; : : :/ for �n 2 R is a sequence of phases (with the previous
assumptions on �, b and �).

We will consider the Hausdorff, packing and box dimension denoted, respec-
tively, by dimH , dimP and dimB. The upper and lower box dimension will be
denoted, respectively, by dimB and dimB. For an unbounded set, the (upper, lower)
box dimension is defined as the supremum of (upper, lower) box dimensions of its
bounded subsets.

For the definitions of the considered dimensions and their basic properties we
refer to [14, 28]. We only note that for a set X � R

k we have

dimH.X/ � dimB.X/ � dimB.X/

and

dimH.X/ � dimP.X/ � dimB.X/:

The plan of the paper is as follows. In Sect. 2 we determine the box and
packing dimension of the graphs of functions of the form (1.1). Results on
the Hausdorff dimension are presented in Sects. 3–4. In Sect. 5 we deal with a
randomization of functions of the form (1.3). Additional issues (complex extension
of the Weierstrass cosine function, non-exponential sequences of scalings) are
treated in Sects. 6–7.

Note that the quoted results are not necessarily presented in the chronological
order and the formulation can be different from the original. Due to lack of space,
the proofs are generally not included and the reader is referred to original articles.

There are a number of related issues which are not discussed in this paper (e.g. the
case � D b, wider classes of functions �, dimension of the graphs of self-affine
functions). The reader can find some information on these questions in the works
included in the bibliography and the references therein.
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2 Local Oscillations, Hölder Condition and Box Dimension

To determine the box dimension of the graphs of the considered functions, we
examine their local oscillations in terms of the Hölder condition. By I we denote
a non-trivial (not necessarily bounded) interval in R.

Definition 2.1 We say that a function f W I ! R is Hölder continuous with
exponent ˇ > 0, if there exist c; ı > 0 such that

jf .x/ � f .y/j � cjx � yjˇ

for every x; y 2 I such that jx � yj < ı. Hölder continuous functions with exponent
1 are called Lipschitz continuous (with the Lipschitz constant c).

We say that f satisfies the lower Hölder condition with exponent ˇ > 0, if there
exist Qc; Qı > 0 such that the oscillation

oscJ.f / D sup
J

f � inf
J

f

of f on every interval J � I with jJj < Qı satisfies

oscJ.f / � QcjJjˇ

(where j � j denotes the length).

Note that the lower Hölder condition with exponent ˇ 2 .0; 1/ implies non-
differentiability (i.e. non-existence of a finite derivative) of the function at every
point.

The following proposition follows directly from the definitions of the upper and
lower box dimension.

Proposition 2.2 If f W I ! R is Hölder continuous with exponent ˇ 2 .0; 1�, then

dimB.graph f / � 2 � ˇ:

If a continuous function f W I ! R satisfies the lower Hölder condition with
exponent ˇ 2 .0; 1�, then

dimB.graph f / � 2 � ˇ:

Let

˛ D � log �

log b
D 2 � D:

Note that by definition, ˛ 2 .0; 1/ and � D b�˛. The following upper estimate
of the box dimension of the graphs of the considered functions is a consequence of
Proposition 2.2.
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Proposition 2.3 Every function f �;‚

�;b of the form (1.3) is Hölder continuous with

exponent ˛, and hence dimB.graph f �;‚

�;b / � D.

Proof Let c be a Lipschitz constant of �. Take x; y 2 I such that 0 < jx � yj � 1.
Then, choosing N 2 N with 1=bN < jx � yj � 1=bN�1, we have

jf �;‚

�;b .x/ � f �;‚

�;b .y/j � cjx � yj
N�1X

nD0

.�b/n C 2 max �

1X

nDN

�n

<

�
cb

�b � 1
C 2 max �

1 � �

�
�N <

�
cb

�b � 1
C 2 max �

1 � �

�
jx � yj˛:

ut
One cannot expect a non-trivial lower estimate for the dimension of the graph,

which holds for every function under consideration. Indeed, if

�.x/ D g.x/ � �g.bx/

for an integer b > 1 and a Z-periodic, Lipschitz continuous, piecewise C1 function
g, then f �

�;b has the form (1.1) and f �

�;b D g, so its graph is a piecewise smooth curve
of dimension 1. However, for functions of the form (1.1), the case of a piecewise C1

curve is the only possible exception, when the box dimension of the graph is smaller
than D. The following fact is a consequence of a result by Hu and Lau [18].

Theorem 2.4 For every function f �

�;b of the form (1.1), exactly one of the two
following possibilities holds.

(a) f �

�;b is piecewise C1 .and hence the dimension of its graph is 1/.

(b) f �

�;b satisfies the lower Hölder condition with exponent ˛ .in particular it is

nowhere differentiable/ and dimB.graph f �

�;b/ D D.

Proof Adding a constant to f �

�;b, we can assume �.0/ D 0. In [18, Theorem 4.1] it
is proved that in this case, if the Weierstrass–Mandelbrot function

V.x/ D
1X

nD�1
�n�.bnx/ D f �

�;b C
1X

nD1

1

�n
�
� x

bn

�

is not identically zero, then f �

�;b satisfies the lower Hölder condition with exponent ˛.
Hence, if V 6� 0, then we can use Propositions 2.2 and 2.3 to obtain the assertion (b).
On the other hand,

P1
nD1.1=�n/�.x=bn/ is a piecewise C1 function, so the condition

V � 0 implies that f �

�;b is piecewise C1, which is the case (a). ut
A consequence of Theorem 2.4 is that the graphs of functions of the form (1.1)

have packing dimension equal to box dimension.
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Proposition 2.5 For every function f �

�;b of the form (1.1), we have

dimP.graph f �

�;b/ D dimB.graph f �

�;b/:

Proof We can assume that we are in the case (b) of Theorem 2.4, i.e. f �

�;b satisfies the

lower Hölder condition with exponent ˛ and dimB.graph f �

�;b/ D D. It is a general
fact (see [14, Corollary 3.9]), that for every compact set X � R

k, if

dimB.X \ U/ D dimB.X/

for every open set U intersecting X, then dimP.X/ D dimB.X/. To prove the
proposition, we check this condition for X D graph f �

�;bjI , where I is an arbitrary
non-trivial compact interval in R.

By the continuity of f �

�;b, for an open set U intersecting graph f �

�;bjI , we can take

a non-trivial interval J � I such that graph f �

�;bjJ � graph f �

�;bjI \ U. Since f �

�;bjJ

satisfies the lower Hölder condition with exponent ˛, Proposition 2.2 implies

D � dimB.graph f �

�;bjJ/ � dimB.graph f �

�;bjI \ U/ � dimB.graph f �

�;bjI/ � D;

which ends the proof. ut
In particular, the Weierstrass cosine function W�;b satisfies the lower Hölder

condition with exponent ˛ and

dimP.graph W�;b/ D dimB.graph W�;b/ D D

for b > 1, 1=b < � < 1. Similar results for various classes of functions � were
obtained, among others, by Kaplan, Mallet-Paret and Yorke [24], Rezakhanlou [34],
Przytycki and Urbański [33] and Bousch and Heurteaux [9].

In [17], Heurteaux generalized the above results to the case of functions of the
form (1.3) with transcendental b.

Theorem 2.6 Every function f �;‚

�;b of the form (1.3), where b is a transcendental
number, satisfies the lower Hölder condition with exponent ˛ .in particular it is
nowhere differentiable/. Moreover,

dimP.graph f �;‚

�;b / D dimB.graph f �;‚

�;b / D D:

3 Hausdorff Dimension

The question of determining the Hausdorff dimension of the graphs of the con-
sidered functions is much more delicate and far from being completely solved.
Since the upper bound dimH � dimB � D is known, one looks for suitable lower
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estimates. A standard tool is to analyse local properties of a finite Borel measure on
the graph.

Definition 3.1 Let � be a finite Borel measure in a metric space X. The upper and
lower local dimension of � at a point x 2 X are defined, respectively, as

dim �.x/ D lim sup
r!0C

log �.Br.x//

log r
; dim �.x/ D lim inf

r!0C

log �.Br.x//

log r
;

where Br.x/ denotes the ball of radius r centered at x. If for some d the upper and
lower local dimensions of � at x coincide and are equal to d for �-almost every x,
then we say that � has local dimension d and write dim � D d. Such measures are
also called exact-dimensional.

Estimating the Hausdorff dimension of a set, it is standard to use the following
fact (see [14, 28]).

Lemma 3.2 If for some d > 0 we have dim �.x/ � d for �-almost every x,
then every Borel set of positive measure � has Hausdorff dimension at least d. In
particular, this holds if dim � � d.

In [33], using Lemma 3.2 for the lift of the Lebesgue measure on Œ0; 1� to the
graph of the function, Przytycki and Urbański proved the following.

Theorem 3.3 If f W I ! R is Hölder continuous with exponent ˇ 2 .0; 1/ and
satisfies the lower Hölder condition with exponent ˇ, then

dimH.graph f / > C > 1;

where C depends only on ˇ and constants c, Qc in Definition 2.1.

This together with Proposition 2.3 and Theorem 2.4 implies that for every
function f �

�;b of the form (1.1), if f �

�;b is not piecewise C1, then

dimH.graph f �

�;b/ > 1: (3.1)

Better estimates can be obtained for large b, even in the presence of phases, as shown
by Mauldin and Williams [29].

Theorem 3.4 For every function f �;‚

�;b of the form (1.3), there exists a constant B >

0 depending only on � and �, such that

dimH.graph f �;‚

�;b / > D � B

log b

for every sufficiently large b.

The result was obtained by using Lemma 3.2 for the lift of a measure supported
on a suitable Cantor set in Œ0; 1� to the graph of the function.
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The first example of a function of the form (1.1) with the graph of Hausdorff
dimension equal to D was given by Ledrappier [25], who proved the following
result, using the theory of invariant measures for non-uniformly hyperbolic smooth
dynamical systems (Pesin theory) on manifolds [26].

Theorem 3.5 For �.x/ D dist.x;Z/ .the sawtooth function/ and b D 2,

dimH.graph f �

�;2/ D D

for Lebesgue almost all � 2 .1=2; 1/.

In fact, the assertion holds provided the infinite Bernoulli convolutionP1
nD0 ˙1=.2�/n, with ˙ chosen independently with probabilities .1=2; 1=2/, has

absolutely continuous distribution. As proved by Solomyak [39], the condition is
fulfilled for almost all � 2 .1=2; 1/. By a recent result by Shmerkin [38], in fact it
holds for all � 2 .1=2; 1/ except of a set of Hausdorff dimension 0.

In [40], Solomyak generalized the result from Theorem 3.5 to the case of some
functions � with discontinuous derivative (nonlinear sawtooth functions).

For the Weierstrass cosine function W�;b, the conjecture that the Hausdorff
dimension of its graph is equal to D was formulated by Mandelbrot [27] in 1977
(see also [7]) and then repeated in a number of subsequent papers. Recently, Bárány,
Romanowska and the author [5] proved the following result, showing that the
conjecture is true for every nonzero integer b and a large set of parameters �.

Theorem 3.6 For every integer b > 1 there exist �b; Q�b 2 .1=b; 1/, such that for
every � 2 .�b; 1/ and Lebesgue almost every � 2 . Q�b; 1/, we have dim ��;b D D,
where ��;b is the lift of the Lebesgue measure on Œ0; 1� to graph W�;b. In particular,

dimH.graph W�;b/ D D

for every � 2 .�b; 1/ and almost every � 2 . Q�b; 1/. We have

�2 < 0:9352; �3 < 0:7269; �4 < 0:6083; �b < 0:5448 for every b � 5;

Q�2 < 0:81; Q�3 < 0:55; Q�4 < 0:44; Q�b < 1:04=
p

b for every b � 5

and

�b ! 1

�
; Q�b

p
b ! 1p

�
as b ! 1:

The proof uses the Ledrappier–Young theory from [26], Tsujii’s results [41] on
the Sinai–Bowen–Ruelle (SBR) measure for some smooth Anosov endomorphisms
of the cylinder and the Peres–Solomyak transversality methods developed under the
study of infinite Bernoulli convolutions (see e.g. [31, 32, 40]).
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4 Dimension of Graphs of Generic Functions

In mathematics there are a number of definitions of a generic (typical) property. A
topologically generic set in a space X is a set containing an open and dense set in X,
or a residual set (containing a countable intersection of open and dense sets in X).
A measure-theoretic generic set in R

k is a set of full Lebesgue measure. We use the
following infinite-dimensional analogue of this property, which is called prevalence
(see e.g. [30]).

Definition 4.1 A Borel set E in a real vector space V is prevalent, if there exists a
finite set fv1; : : : ; vkg � V (called the probe set), such that for every v 2 V , one has
v CPk

jD1 tjvj 2 E for Lebesgue almost every .t1; : : : ; tk/ 2 R
k. A non-Borel subset

of V is prevalent, if it contains a Borel prevalent set.

The topological and measure-theoretical genericity need not coincide. In fact, a
topologically typical (residual) continuous function on Œ0; 1� is nowhere differen-
tiable (this follows from the Baire Theorem, see [1]) and has the graph of lower
box dimension 1 (see [22]) and packing dimension 2 (see [19]), while a measure-
theoretic typical (prevalent) continuous function on Œ0; 1� is nowhere differentiable
(see [20]) and has the graph of Hausdorff dimension 2 (see [15]). In [12] (see
also [36]), using the wavelet technique, it was proved that functions with graphs
of Hausdorff dimension 2 � ˇ are prevalent within the space of Hölder continuous
functions on R with given exponent ˇ 2 .0; 1/.

In [5], Bárány, Romanowska and the author proved that for functions f �

�;b of the

form (1.1) with integer b, the Hausdorff dimension of graph f �

�;b is equal to D both
for topologically and measure-theoretic typical C3 function �. To formulate the
result precisely, consider the space Cr.R=Z/, for r D 3; 4; : : : ; 1, of Z-periodic
Cr real functions on R, treated as functions on R=Z. For b > 1 let

Fb D f.�; �/ 2 .1=b; 1/ � C3.R=Z/ W dim �
�

�;b D Dg;

where �
�

�;b is the lift of the Lebesgue measure on Œ0; 1� to graph f �

�;b. Recall that

dimH.graph f �

�;b/ D D for every .�; �/ 2 Fb:

For � 2 .1=b; 1/, let

E�;b D f� 2 C3.R=Z/ W .�; �/ 2 intFbg;
where int denotes the interior with respect to the product of the Euclidean and C3

topology in .1=b; 1/ � C3.R=Z/. In [5], the following result was proved.

Theorem 4.2 For every integer b > 1 and � 2 .1=b; 1/, the set E�;b is prevalent
as a subset of C3.R=Z/, with a probe set contained in C1.R=Z/. Consequently, for
every r D 3; 4; : : : ; 1, the set E�;b is an open and dense subset of Cr.R=Z/, and the
set Fb contains an open and dense subset of .1=b; 1/ � C3.R=Z/.
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Similarly as for Theorem 3.6, the proof is based on the Ledrappier–Young theory
from [26] and a result by Tsujii [41] on the generic absolute continuity of the SBR
measure for some smooth Anosov endomorphisms of the cylinder.

5 Randomization

It is a well-known fact that introducing some additional parameters or stochastics
to a system can sometimes help to answer questions which could not be solved in a
standard setup. In studying dimension of the graphs of functions of the form (1.3),
a number of results were obtained by randomizing suitable parameters.

Concerning the box dimension, Heurteaux [17] proved the following.

Theorem 5.1 Let f �;‚

�;b be a function of the form (1.3). If one considers the phases
�n as independent random variables with uniform distribution on Œ0; 1�, then almost
surely, f �;‚

�;b satisfies the lower Hölder condition with exponent ˛ C ", for arbitrarily
small " > 0 .in particular it is nowhere differentiable/. Moreover,

dimP.graph f �;‚

�;b / D dimB.graph f �;‚

�;b / D D almost surely:

An analogous result on the Hausdorff dimension can be obtained with stronger
assumptions on the function �, as proved by Hunt [21].

Theorem 5.2 Let f �;‚

�;b be a function of the form (1.3), where � is a C1 function
with bounded set of orders of all its critical points. If one considers the phases �n as
independent random variables with uniform distribution on Œ0; 1�, then

dimH.graph f �;‚

�;b / D D almost surely:

This includes the case, when � is real-analytic, in particular .for �.x/ D cos.2�x//,
when f �;‚

�;b is the Weierstrass cosine function with phases �n.

Similar results of that kind were obtained by Romanowska [35], using random-
ization of the parameter �.

6 Complex Extension of the Weierstrass Function

It is interesting to notice that if b is an integer, then the Weierstrass cosine function
W�;b is the real part of the lacunary (Hadamard gaps) complex power series

w.z/ D
1X

nD0

�nzbn
; z 2 C; jzj � 1
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on the unit circle fjzj D 1g. In particular, W�;b has a harmonic extension
to the unit disc. This approach was already used by Hardy [16] to prove the
non-differentiability of W�;b in this case. The study of the boundary behaviour of the
holomorphic map w is itself an interesting question. Salem and Zygmund [37] and
Kahane, Weiss and Weiss [23] proved that for given b, if � is sufficiently close to 1,
then the image of the unit circle under w is a Peano curve, i.e. it covers an open
subset of the plane. In [2], the author showed that in this case the box dimension of
the graph of the function

x 7!
 1X

nD0

�n cos.2�bnx/;

1X

nD0

�n sin.2�bnx/

!

(which is a subset of R3), is equal to 3 � 2˛. Moreover, the author [3] (see also
Belov [6]) showed that for given b, if � is sufficiently close to 1, then the map w does
not preserve (forwardly) Borel sets on the unit circle. The boundary behaviour of w
from a topological point of view was studied by Dong, Lau and Liu [13] (Fig. 3).

Fig. 3 The image of the unit circle under the map w
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7 Other Sequences of Scalings

It is natural to study a generalization of functions of the forms (1.1) and (1.3),
replacing �n, bn by another sequences of scales �n, bn, which are not exponential.
More precisely, one can consider functions of the form

f .x/ D
1X

nD0

�n�.bnx C �n/ (7.1)

for �n; bn > 0,
P1

nD0 �n < 1, bnC1 > bn, bn ! 1 and a non-constant, Z-periodic,
Lipschitz continuous, piecewise C1 function � W R ! R.

It turns out that the case of rapidly (faster than exponential) growing scales
1=�n, bn is easier to handle than the exponential one. In 1937, Besicovitch and
Ursell [8] considered this case rather than the exponential one, and showed that
for the sawtooth function �.x/ D dist.x;Z/, if �n D b�˛

n for some ˛ 2 .0; 1/

and bnC1=bn tends to 1 sufficiently slowly, then dimH.graph f / D 2 � ˛. The
Hausdorff, upper and lower box dimension of the graphs of functions of the general
form (7.1) for rapidly growing scales 1=�n, bn was computed by Carvalho [10] and
the author [4]. More precisely, the following result was proved in [4].

Theorem 7.1 For every function f of the form (7.1), if �nC1=�n ! 0, bnC1=bn !
1 as n ! 1, then

dimH.graph f / D dimB.graph f / D 1 C lim inf
n!1

logC dn

log.bnC1dn=dnC1/
;

dimB.graph f / D 1 C lim sup
n!1

logC dn

log bn
;

where logC D max.log; 0/ and dn D �1b1 C � � � C �nbn.
If additionally, �n D b�˛

n for some ˛ 2 .0; 1/ and log bnC1= log bn ! 1, then

dimH.graph f / D dimP.graph f / D dimB.graph f / D 2 � ˛:

In particular, this shows that in the case of rapidly growing scales, the dimensions
need not coincide. In fact, in [4] it is shown that for every H; B 2 Œ1; 2� with H � B
one can find a function f satisfying the assumptions of Theorem 7.1, such that

dimH.graph f / D dimB.graph f / D H; dimB.graph f / D B:

The case when the scales 1=�n, bn grow slower than exponentially is much more
difficult and almost nothing is known about the dimension of the graph of f . Some
work was done for

R.x/ D
1X

nD1

1

n2
sin.2�n2x/
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(called the Riemann example) and similar functions. In particular, Chamizo [11]
determined the box dimension of the graph of R to be equal to 5=4.
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