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Abstract Many examples of signals and images cannot be modeled by locally
bounded functions, so that the standard multifractal analysis, based on the Hölder
exponent, is not feasible. We present a multifractal analysis based on another
quantity, the p-exponent, which can take arbitrarily large negative values. We
investigate some mathematical properties of this exponent, and show how it allows
us to model the idea of “lacunarity” of a singularity at a point. We finally adapt
the wavelet based multifractal analysis in this setting, and we give applications to a
simple mathematical model of multifractal processes: Lacunary wavelet series.

Keywords Scale Invariance • Fractal • Multifractal • Hausdorff dimension •
Hölder regularity • Wavelet • Lacunarity exponent • p-exponent

1 Introduction

The origin of fractal geometry can be traced back to the quest for non-smooth
functions, rising from a key question that motivated a large part of the progresses
in analysis during the nineteenth century: Does a continuous function necessarily
have points of differentiability? A negative answer to this question was supplied
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by Weierstrass when he built his famous counterexamples, now referred to as the
Weierstrass functions

Wa;b.x/ D
C1X

nD0
ancos.bn�x/ (1.1)

where 0 < a < 1, b was an odd integer and ab > 1 C 3�=2. The fact that
they are continuous and nowhere differentiable was later sharpened by Hardy in
a way which requires the notion of pointwise Hölder regularity, which is the most
commonly used notion of pointwise regularity in the function setting. We assume
in the following that the functions or distributions we consider are defined on R.
However, most results that we will investigate extend to several variables.

Definition 1.1 Let f W R ! R be a locally bounded function, x0 2 R and let
� � 0; f belongs to C� .x0/ if there exist C > 0, R > 0 and a polynomial P of degree
less than � such that:

for a.e. x such that jx�x0j � R; j f .x/�P.x�x0/j � Cjx�x0j� : (1.2)

The Hölder exponent of f at x0 is

hf .x0/ D sup f� W f is C� .x0/g : (1.3)

The Hölder exponent of Wa;b is a constant function, which is equal to H D
� log a= log b at every point (see e.g. [14] for a simple, wavelet-based proof);
since H < 1 we thus recover the fact that Wa;b is nowhere differentiable, but the
sharper notion of Hölder exponent allows us to draw a difference between each
of the Weierstrass functions, and classify them using a regularity parameter that
takes values in R

C. The graphs of Weierstrass functions supply important examples
of fractal sets that still motivate research (the determination of their Hausdorff
dimensions remains partly open, see [6]). In applications, such fractal characteristics
have been used for classification purposes. For instance, an unorthodox use was the
discrimination between Jackson Pollock’s original paintings and fakes using the box
dimension of the graph supplied by the pixel by pixel values of a high resolution
photograph of the painting, see [25].

The status of everywhere irregular functions was, for a long time, only the one
of academic counter-examples, such as the Weierstrass functions. This situation
changed when stochastic processes like Brownian motion (whose Hölder exponent
is H D 1=2 everywhere) started to play a key role in the modeling of physi-
cal phenomena. Nowadays, experimentally acquired signals that are everywhere
irregular are prevalent in a multitude of applications, so that the classification and
modeling of such data has become a key problem. However, the use of a single
parameter (e.g. the box dimension of the graph) is too reductive as a classification
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tool in many situations that are met in applications. This explains the success of
multifractal analysis, which is a way to associate a whole collection of fractal-based
parameters to a function. Its purpose is twofold: on the mathematical side, it allows
one to determine the size of the sets of points where a function has a given Hölder
exponent; on the signal processing side, it yields new collections of parameters
associated to the considered signal and which can be used for classification, model
selection, or for parameter selection inside a parametric setting. The main advances
in the subject came from a better understanding of the interactions between these
two motivations, e.g., see [3] and references therein for recent review papers.

Despite the fact that multifractal analysis has traditionally been based on the
Hölder exponent, it is not the only characterization of pointwise regularity that can
be used. Therefore, our goal in the present contribution is to analyze alternative
pointwise exponents and the information they provide.

In Sect. 2 we review the possible pointwise exponents of functions, and explain
in which context each can be used.

In Sect. 3 we focus on the p-exponent, derive some of its properties, and
investigate what information it yields concerning the lacunarity of the local behavior
of the function near a singularity.

In Sect. 4 we recall the derivation of the multifractal formalism and give
applications to a simple model of a random process which displays multifractal
behavior: Lacunary wavelet series.

We conclude with remarks on the relationship between the existence of
p-exponents and the sparsity of the wavelet expansion.

This paper partly reviews elements on the p-exponent which are scattered in
the literature, see e.g. [2, 8, 15, 16, 21]. New material starts with the introduction
and analysis of the lacunarity exponent in Sect. 2.3, the analysis of thin chirps in
Sect. 3.5, and all following sections, except for the brief reminder on the multifractal
formalism in Sect. 4.1.

2 Pointwise Exponents

In this section, unless otherwise specified, we assume that f 2 L1loc.R/. An important
remark concerning the definition of pointwise Hölder regularity is that if (1.2) holds
(even for � < 0), then f is bounded in any annulus 0 < r � jx � x0j � R. It
follows that, if an estimate such as (1.2) holds for all x0, then f will be locally
bounded, except perhaps at isolated points. For this reason, one usually assumes
that the considered function f is (everywhere) locally bounded. It follows that (1.2)
holds for � D 0 so that the Hölder exponent is always nonnegative.
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2.1 Uniform Hölder Regularity

An important issue therefore is to determine if the regularity assumption f 2 L1
loc

is satisfied for real life data. This can be done in practice by first determining their
uniform Hölder exponent, which is defined as follows.

Recall that Lipschitz spaces Cs.R/ are defined for 0 < s < 1 by

f 2 L1 and 9C; 8x; y; jf .x/� f .y/j � Cjx � yjs:

If s > 1, they are then defined by recursion on Œs� by the condition: f 2 Cs.R/ if f 2
L1 and if its derivative f 0 (taken in the sense of distributions) belongs to Cs�1.R/.
If s < 0, then the Cs spaces are composed of distributions, also defined by recursion
on Œs� as follows: f 2 Cs.R/ if f is a derivative (in the sense of distributions) of a
function g 2 CsC1.R/. We thus obtain a definition of the Cs spaces for any s … Z

(see [22] for s 2 Z, which we will however not need to consider in the following).
A distribution f belongs to Cs

loc if f' 2 Cs for every C1 compactly supported
function '.

Definition 2.1 The uniform Hölder exponent of a tempered distribution f is

Hmin
f D supfs W f 2 Cs

loc.R/g: (2.1)

This definition does not make any a priori assumption on f : The uniform Hölder
exponent is defined for any tempered distribution, and it can be positive or negative.
More precisely:

• If Hmin
f > 0, then f is a locally bounded function,

• if Hmin
f < 0, then f is not a locally bounded function.

In practice, this exponent is determined through the help of the wavelet coeffi-
cients of f . By definition, an orthonormal wavelet basis is generated by a couple of
functions .';  /, which, in our case, will either be in the Schwartz class, or smooth
and compactly supported (in that case, wavelets are assumed to be smoother than
the regularity exponent of the considered space). The functions '.x � k/; k 2 Z;

together with 2j=2 .2jx � k/; j � 0; k 2 Z; form an orthonormal basis of L2.R/.
Thus any function f 2 L2.R/ can be written

f .x/ D
X

k

ck '.x � k/C
X

j�0

X

k2Z
cj;k  .2

jx � k/;

where the wavelet coefficients of f are given by

ck D
Z
'.t � k/f .t/dt and cj;k D 2j

Z
 .2jt � k/f .t/dt: (2.2)
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An important remark is that these formulas also hold in many different functional
settings (such as the Besov or Sobolev spaces of positive or negative regularity),
provided that the picked wavelets are smooth enough (and that the integrals (2.2)
are understood as duality products).

Instead of using the indices . j; k/, we will often use dyadic intervals: Let

� .D �. j; k// D
�

k

2j
;

k C 1

2j

�
(2.3)

and, accordingly: c� D cj;k and  �.x/ D  .2jx � k/. Indexing by dyadic intervals
will be useful in the sequel because the interval � indicates the localization of the
corresponding wavelet: When the wavelets are compactly supported, then, 9C > 0

such that when supp. / � Œ�C=2;C=2�, then supp. �/ � 2C�:
In practice, Hmin

f can be derived directly from the wavelet coefficients of f
through a simple regression in a log-log plot; indeed, it follows from the wavelet
characterization of the spaces Cs, see [22], that:

Hmin
f D lim inf

j!C1

log

�
sup

k
jcj;kj

�

log.2�j/
: (2.4)

This estimation procedure has been studied in more detail in [20]. Three examples
of its numerical application to real-world functions are provided in Fig. 1.

A multifractal analysis based on the Hölder exponent can only be performed
if f is locally bounded. A way to determine if this is the case consists in first
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Fig. 1 Real-world images (top row) of Romanesco broccoli (left column), fern leaves (center
column) and a patch of a hyperspectral image of the Moffett field, acquired by the AVIRIS
instrument (spectral band 90, right column). Bottom row: corresponding numerical estimation of
uniform Hölder exponents Hmin

f , wavelet scaling functions �f .p/ and critical Lebesgue indices p0,
respectively
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checking if Hmin
f > 0. This quantity is perfectly well-defined for mathematical

functions or stochastic processes; e.g. for Brownian motion, Hmin
f D 1=2, and for

Gaussian white noise, Hmin
f D �1=2. However the situation may seem less clear for

experimental signals; indeed any data acquisition device yields a finite set of locally
averaged quantities, and one may argue that such a finite collection of data (which,
by construction, is bounded) can indeed be modeled by a locally bounded function.
This argument can only be turned by revisiting the way that (2.4) is computed in
practice: Estimation is performed through a linear regression in log-log coordinates
on the range of scales available in the data and Hmin

f can indeed be found negative
for a finite collection of data. At the modeling level, this means that a mathematical
model which would display the same linear behavior in log-log coordinates at all
scales would satisfy Hmin

f < 0.
The quantity Hmin

f can be found either positive or negative depending on the
nature of the application. For instance, velocity turbulence data and price time series
in finance are found to always have Hmin

f > 0, while aggregated count Internet traffic
time series always have Hmin

f < 0. For biomedical applications (cf. e.g., fetal heart
rate variability) as well as for image processing, Hmin

f can commonly be found either
positive or negative (see Fig. 1) [1, 3, 19, 20, 28]. This raises the problem of using
other pointwise regularity exponents that would not require the assumption that the
data are locally bounded. We now introduce such exponents.

2.2 The p-Exponent for p � 1

The introduction of p-exponents is motivated by the necessity of introducing
regularity exponents that could be defined even when Hmin

f is found to be negative;
Tp
˛.x0/ regularity, introduced by A. Calderón and A. Zygmund in [8], has the

advantage of only making the assumption that f locally belongs to Lp.R/.

Definition 2.2 Let p � 1 and assume that f 2 Lp
loc.R/. Let ˛ 2 R; the function f

belongs to Tp
˛.x0/ if there exists C and a polynomial Px0 of degree less than ˛ such

that, for r small enough,

�
1

2r

Z x0Cr

x0�r
jf .x/� Px0.x/jpdx

�1=p

� Cr˛: (2.5)

Note that the Taylor polynomial Px0 of f at x0 might depend on p. However, one
can check that only its degree does (because the best possible ˛ that one can pick
in (2.5) depends on p so that its integer part may vary with p, see [2]). Therefore
we introduce no such dependency in the notation, which will lead to no ambiguity
afterwards.
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The p-exponent of f at x0 is defined as

hp
f .x0/ D supf˛ W f 2 Tp

˛.x0/g: (2.6)

The condition that f locally belongs to Lp.R/ implies that (2.5) holds for ˛ D
�1=p, so that hp

f .x0/ � �1=p.
We will consider in the following “archetypical” pointwise singularities, which

are simple toy-examples of singularities with a specific behavior at a point. They
will illustrate the new notions we consider and they will also supply benchmarks on
which we can compute exactly what these new notions allow us to quantify. These
toy-examples will be a test for the adequacy between these mathematical notions
and the intuitive behavior that we expect to quantify. The first (and most simple)
“archetypical” pointwise singularities are the cusp singularities.

Let ˛ 2 R � 2N be such that ˛ > �1. The cusp of order ’ at 0 is the function

C˛.x/ D jxj˛: (2.7)

The case ˛ 2 2N is excluded because it leads to a C1 function. However, if ˛ D 2n,
one can pick

C2n.x/ D xjxj2n�1;

in order to cover this case also.
If ˛ � 0, then the cusp C˛ is locally bounded and its Hölder exponent at 0 is

well-defined and takes the value ˛. If ˛ > �1=p, then its p-exponent at 0 is well-
defined and also takes the value ˛, as in the Hölder case. (Condition ˛ > �1=p is
necessary and sufficient to ensure that C˛ locally belongs to Lp.) Examples for cusps
with several different values of ˛ are plotted in Fig. 2.

If f 2 Lp
loc in a neighborhood of x0 for a p � 1, let us define the critical Lebesgue

index of f at x0 by

p0. f / D supf p W f 2 Lp
loc.R/ in a neighborhood of x0g: (2.8)

The importance of this exponent comes from the fact that it tells in practice for
which values of p a p-exponent based multifractal analysis can be performed.
Therefore, its numerical determination is an important prerequisite that should not
be bypassed in applications. In Sect. 3.1 we will extend the definition of p0. f / to
situations where f … L1loc and show how it can be derived from another quantity, the
wavelet scaling function, which can be effectively computed on real-life data.
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Fig. 2 Cusps with exponents ˛ D fC0:3; �0:2; �2g (from top to bottom row, respectively):
functions (left column) and estimation of p-exponents and lacunarity exponents (center and
right column, respectively). The critical Lebesgue indices are given by p0 D fC1; 5; 0:5g,
respectively

2.3 The Lacunarity Exponent

The p-exponent at x0 is defined on the interval Œ1; p0. f /� or Œ1; p0. f //; when the p-
exponent does not depend on p on this interval, we will say that f has a p-invariant
singularity at x0. Thus, cusps are p-invariant singularities.

This first example raises the following question: Is the notion of p-exponent only
relevant as an extension of the Hölder exponent to non-locally bounded functions?
Or can it take different values with p, even for bounded functions? And, if such is the
case, how can one characterize the additional information thus supplied? In order to
answer this question, we introduce a second type of archetypical singularities, the
lacunary singularities, which will show that the p-exponent may be non-constant.
We first need to recall the geometrical notion of accessibility exponent which
quantifies the lacunarity of a set at a point, see [17]. We denote by M.A/ the
Lebesgue measure of a set A.
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Definition 2.3 Let� � R. A point x0 of the boundary of� is ˛-accessible if there
exist C > 0 and r0 > 0 such that 8r � r0,

M .� \ B.x0; r// � Cr˛C1: (2.9)

The supremum of all values of ˛ such that (2.9) holds is called the accessibility
exponent of � at x0. We will denote it by Ex0.�/.

Note that Ex0 .�/ is always nonnegative. If it is strictly positive, then� is lacunary
at x0. The accessibility exponent supplies a way to estimate, through a log-log
plot regression, the “size” of the part of � which is contained in arbitrarily small
neighborhoods of x0. The following sets illustrate this notion.

Let ! and � be such that 0 < � � !; the set U!;� is defined as follows. Let

Ij
!;� D Œ2�!j; 2�!j C 2�� j�I then U!;� D

[

j�0
Ij
!;� : (2.10)

Clearly, at the origin,

E0.U!;� / D �

!
� 1: (2.11)

We now construct univariate functions F˛;� W R ! R which permit us to better
understand the conditions under which p-exponents will differ. These functions will
have a lacunary support in the sense of Definition 2.3.

Let  be the Haar wavelet:  D 1Œ0;1=2/ � 1Œ1=2;1/ and

�.x/ D  .2x/ �  .2x � 1/

(so that � has the same support as  but its two first moments vanish).

Definition 2.4 Let ˛ 2 R and � > 1. The lacunary comb F˛!;� is the function

F˛!;� .x/ D
1X

jD1
2�˛j�

�
2� j.x � 2�!j/

�
: (2.12)

Note that its singularity is at x0 D 0. Numerical examples of lacunary combs are
provided in Fig. 3.

Note that the support of F˛!;� is U!;� so that the accessibility exponent at 0 of
this support is given by (2.11). The function F˛!;� is locally bounded if and only if
˛ � 0. Assume that ˛ < 0; then F˛!;� locally belongs to Lp if and only if ˛ > ��=p.
When such is the case, a straightforward computation yields that its p-exponent at 0
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Fig. 3 Lacunary combs with p0 D C1 (top row) and p0 D 9:1 (bottom row): functions
(left column) and estimation of p-exponents and lacunarity exponents (center and right column,
respectively)

is given by

hp
F˛!;�

.x0/ D ˛

!
C
� �
!

� 1
� 1

p
: (2.13)

In contradistinction with the cusp case, the p-exponent of F˛!;� at 0 is not a constant
function of p. Let us see how the variations of the mapping p ! hp

f .x0/ are related
with the lacunarity of the support of f , in the particular case of F˛!;� . We note that
this mapping is an affine function of the variable q D 1=p (which, in this context, is
a more natural parameter than p) and that the accessibility exponent of the support
of F˛!;� can be recovered by a derivative of this mapping with respect to q. The next
question is to determine the value of q at which this derivative should be taken.
This toy-example is too simple to give a clue since any value of q would lead to the
same value for the derivative. We want to find if there is a more natural one, which
would lead to a canonical definition for the lacunarity exponent. It is possible to
settle this point through the following simple perturbation argument: Consider a new
singularity F that would be the sum of two functions F1 D F˛1!1;�1 and F2 D F˛2!2;�2
with

0 < ˛1 < ˛2 and �1 > �2: (2.14)

The p-exponent of F (now expressed in the q variable, where q D 1=p) is given by

q 7! h
1
q

f .x0/ D min
h˛1
!

C
��1
!

� 1
�

q ;
˛2

!
C
��2
!

� 1
�

q
i
: (2.15)
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The formula for the lacunarity exponent should yield the lacunarity of the most
irregular component of F; since F 2 L1

loc, the Hölder exponent is the natural way
to measure this irregularity. In this respect, the most irregular component is F1; the
lacunarity exponent should thus take the value

�
�1
!

� 1�. But, since (2.14) allows the
shift in slope of the function (2.15) from

� �1
!

� 1
�

to
� �2
!

� 1� to take place at a q
arbitrarily close to 0, the only way to obtain this desired result in any case is to pick
the derivative of the mapping q ! h1=q

f .x0/ precisely at q D 0.
A similar perturbation argument can be developed if p0. f / < 1 with the

conclusion that the derivative should be estimated at the smallest possible value
of q, i.e. for

q D q0. f / WD 1

p0. f /
I

hence the following definition of the lacunarity exponent.

Definition 2.5 Let f 2 Lp
loc in a neighborhood of x0 for a p > 1, and assume that the

p-exponent of f is finite in a left neighborhood of p0. f /. The lacunarity exponent of
f at x0 is

Lf .x0/ D @

@q

�
h1=q

f .x0/
�

qDq0. f /C
: (2.16)

Remarks

• Even if the p-exponent is not defined at p0. f /, nonetheless, because of the
concavity of the mapping q ! h1=q

f .x0/ (see Proposition 3.2 below), its right
derivative is always well-defined, possibly as a limit.

• As expected, the lacunarity exponent of a cusp vanishes, whereas the lacunarity
exponent of a lacunary comb coincides with the accessibility exponent of its
support.

• The condition Lf .x0/ ¤ 0 does not mean that the support of f (or of f � P) has a
positive accessibility exponent (think of the function F˛!;� C g where g is a C1
but nowhere polynomial function).

• The definition supplied by (2.16) bears similarity with the definition of the
oscillation exponent (see [4, 20] and ref. therein) which is also defined through
a derivative of a pointwise exponent; but the variable with respect to which the
derivative is computed is the order of a fractional integration. The relationships
between these two exponents will be investigated in a forthcoming paper [21].
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3 Properties of the p-Exponent

In signal and image processing, one often meets data that cannot be modeled by
functions f 2 L1loc, see Fig. 1. It is therefore necessary to set the analysis in a wider
functional setting, and therefore to extend the notion of Tp

˛.x0/ regularity to the case
p < 1.

3.1 The Case p < 1

The standard way to perform this extension is to consider exponents in the setting
of the real Hardy spaces Hp (with p < 1) instead of Lp spaces, see [15, 16]. First,
we need to extend the definitions that we gave to the range p 2 .0; 1�. The simplest
way is to start with the wavelet characterization of Lp spaces, which we now recall.

We denote indifferently by 	j;k or 	� the characteristic function of the interval
� .D �j;k/ defined by (2.3). The wavelet square function of f is

Wf .x/ D
0

@
X

. j;k/2Z2
jcj;kj2	j;k.x/

1

A
1=2

:

Then, for p > 1,

f 2 Lp.R/ ()
Z

R

�
Wf .x/

�p
dx < 1; (3.1)

see [22]. The quantity
�R �

Wf .x/
�p

dx
�1=p

is thus equivalent to k f kp. One can then
take the characterization supplied by (3.1) when p > 1 as a definition of the Hardy
space Hp (when p � 1); note that this definition yields equivalent quantities when
the (smooth enough) wavelet basis is changed, see [22]. This justifies the fact that
we will often denote by Lp the space Hp, which will lead to no confusion; indeed,
when p � 1 this notation will refer to Hp, and, when p > 1 it will refer to Lp.

Note that, if p D 1, (3.1) does not characterize the space L1 but a strict subspace
of L1 (the real Hardy space H1, which consists of functions of L1 whose Hilbert
transform also belongs to L1, see [22]).

Most results proved for the Lp setting will extend without modification to the
Hp setting. In particular, Tp

˛ regularity can be extended to the case p � 1 and has
the same wavelet characterization, see [13]. All definitions introduced previously
therefore extend to this setting.

The definition of Tp
˛.x0/ regularity given by (2.5) is a size estimate of an Lp norm

restricted to intervals Œx0 � r; x0 C r�. Since the elements of Hp can be distributions,
the restriction of f to an interval cannot be done directly (multiplying a distribution
by a non-smooth function, such as a characteristic function, does not always make



Multifractal Analysis Based on p-Exponents and Lacunarity Exponents 291

sense). This problem can be solved as follows: If I is an open interval, one defines
k f kHp.I/D inf k g kp, where the infimum is taken on the g 2 Hp such that f D g
on I. The Tp

˛ condition for p � 1 is then defined by:

f 2 Tp
˛.x0/ () k f kHp..x0�r;x0Cr//� C r˛C1=p;

also when p < 1. We will show below that the p-exponent takes values in
Œ�1=p;C1�.

3.2 When Can One Use p-Exponents?

We already mentioned that, in order to use the Hölder exponent as a way to measure
pointwise regularity, we need to check that the data are locally bounded, a condition
which is implied by the criterion Hmin

f > 0, which is therefore used as a practical
prerequisite. Similarly, in order to use a p-exponent based multifractal analysis, we
need to check that the data locally belong to Lp or Hp, a condition which can be
verified in practice through the computation of the wavelet scaling function, which
we now recall.

The Sobolev space Lp;s is defined by

8s 2 R; 8p > 0; f 2 Lp;s () .Id �
/s=2f 2 Lp;

where the operator .Id � 
/s=2 is the Fourier multiplier by .1 C j�j2/s=2, and we
recall our convention that Lp denotes the space Hp when p � 1, so that Sobolev
spaces are defined also for p � 1.

Definition 3.1 Let f be a tempered distribution. The wavelet scaling function of f
is defined by

8p > 0; �f . p/ D p supfs W f 2 Lp;sg: (3.2)

Thus, 8p > 0:

• If �f . p/ > 0 then f 2 Lp
loc.

• If �f . p/ < 0 then f … Lp
loc.

The wavelet characterization of Sobolev spaces implies that the wavelet scaling
function can be expressed as (cf. [11])

8p > 0; �f . p/ D lim inf
j!C1

log

 
2�j

X

k

jcj;kjp

!

log.2�j/
: (3.3)
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This provides a practical criterion for determining if data locally belong to Lp,
supplied by the condition �f . p/ > 0. The following bounds for p0.f / follow:

supf p W �f . p/ > 0g � p0. f / � inff p W �f . p/ < 0g;

which (except in the very particular cases where �f vanishes identically on an
interval) yields the exact value of p0. f /.

In applications, data with very different values of p0. f / show up; therefore, in
practice, the mathematical framework supplied by the whole range of p is relevant.
As an illustration, three examples of real-world images with positive and negative
uniform Hölder exponents and with critical Lebesgue indices above and below p0 D
1 are analyzed in Fig. 1.

3.3 Wavelet Characterization of p-Exponents

In order to compute and prove properties of p-exponents we will need the exact
wavelet characterization of Tp

˛.x0/, see [13, 15]. Let � be a dyadic interval; 3� will
denote the interval of same center and three times wider (it is the union of � and its
two closest neighbors). For x0 2 R

d, denote by �j.x0/ the dyadic cube of width 2�j

which contains x0. The local square functions at x0 are the sequences defined for
j � 0 by

W j
f ;x0
.x/ D

0

@
X

��3�j.x0/

j c�j2	�.x/
1

A
1=2

:

Recall that (cf. [13])

f 2 Tp
˛.x0/ if and only if 9C > 0; 8j � 0

			W j
f ;x0

			
p

� C 2�.˛C1=p/j:

(3.4)

The following result is required for the definition of the lacunarity exponent
in (2.16) to make sense, and implies that Definition 2.5 also makes sense when
p0. f / < 1.

Proposition 3.2 Let p; q 2 .0;C1�, and suppose that f 2 Tp
˛.x0/ \ Tq

ˇ.x0/; let
� 2 Œ0; 1�. Then f 2 Tr

� .x0/, where

1

r
D �

p
C 1 � �

q
and � D �˛ C .1 � �/ˇ:

It follows that the mapping q ! h1=q
f .x0/ is concave on its domain of definition.
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Proof When p; q < 1, the result is a consequence of (3.4). Hölder’s inequality
implies that

			W j
f ;x0

			
r

�
			W j

f ;x0

			
�=p

p

			W j
f ;x0

			
.1��/=q

q
:

We thus obtain the result for p; q < 1. The case when p or q D C1 does not
follow, because there exists no exact wavelet characterization of C˛.x0/ D T1̨.x0/;
however, when p; q > 1, one can use the initial definition of Tp

˛.x0/ and C˛.x0/
through local Lp and L1 norms and the result also follows from Hölder’s inequality;
hence Proposition 3.2 holds.

If f 2 Hp, then k Wf kp� C. Since W j
f � Wf , it follows that k W j

f kp� C,
so that (3.4) holds with ˛ D �1=p. Thus p-exponents are always larger than �1=p
(which extends to the range p < 1 the result already mentioned for p � 1). Note
that this bound is compatible with the existence of singularities of arbitrary large
negative order (by picking p close to 0). The example of cusps will now show that
the p-exponent can indeed take values down to �1=p.

3.4 Computation of p-Exponents for Cusps

Typical examples of distributions for which the p-exponent is constant (see Propo-
sition 3.3 below) and equal to a given value ˛ < �1 are supplied by the cusps C˛ ,
whose definition can be extended to the range ˛ � �1 as follows: First, note that
cusps cannot be defined directly for ˛ � �1 by (2.7) because they do not belong
to L1loc so that they would be ill-defined even in the setting of distributions (their
integral against a C1 compactly supported function ' may diverge). Instead, we
use the fact that, if ˛ > 1, then C 00̨ D ˛.˛� 1/C˛�2, which indicates a way to define
by recursion the cusps C˛, when ˛ < �1 and ˛ … Z, as follows:

if ˛ < 0; C˛ D 1

.˛ C 1/.˛ C 2/
C 00̨C2;

where the derivative is taken in the sense of distributions. The C˛ are thus defined
as distributions when ˛ is not a negative integer. It can also be done when ˛ is a
negative integer, using the following definition for ˛ D 0 and �1:

C0 D log.jxj/ and C�1 D C 0
0 D P:V:

�
1

x

�
;

where P.V. stands for “principal value”.
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Proposition 3.3 If ˛ � 0, the cusp C˛ belongs to L1
loc and its p-exponent is ˛. If

˛ < 0, the cusp C˛ belongs to Lp
loc for p < �1=˛ and its p-exponent is ˛.

Proof of Proposition 3.3 The case ˛ � 0 and p � 1 has already been considered
in [17, 21]. In this case, the computation of the p-exponent is straightforward. Note
that, when ˛ 2 .�1; 0/ and p � 1 the computations are similar. We thus focus
on the distribution case, i.e. when p < 1. The global and pointwise regularity will
be determined through an estimation of the wavelet coefficients of the cusp. We
use a smooth enough, compactly supported wavelet basis and we denote by cj;k the
wavelet coefficients of the cusp

cj;k D 2jh j;kjC˛i:

The selfsimilarity of the cusp implies that

8j; k cj;k D 2�˛jc0;kI (3.5)

additionally, as soon as k is large enough so that the support of  .x � k/ does not
intersect the origin, the cusp is C1 in the support of  .x � k/ and coincides with
the function jxj˛. An integration by parts then yields that, for any N smaller than the
global regularity of the wavelet,

c0;k D .�1/N
Z
 .�N/.x � k/ ˛.˛ � 1/ � � � .˛ � N/jxj˛�Ndx;

so that the sequence c0;k satisfies

jc0;kj � CN

.1C jkj/N (3.6)

where N can be picked arbitrarily large. The estimation of the Lp norm of the wavelet
square function follows easily from (3.5) and (3.6), and so does the lower bound for
the p-exponent. The upper bound is obtained by noticing that one of the c0;k does not
vanish (otherwise, all cj;k would vanish, and the cusp would be a smooth function at
the origin). Therefore, there exists at least one k0 such that 8j, cj;k0 D C2�˛j, and
the wavelet characterization of Tp

˛ regularity then yields that hp.x0/ � ˛.

Three examples of cusps and numerical estimates of their p-exponents and
lacunarity exponents are plotted in Fig. 2.

3.5 Wavelet Characterization and Thin Chirps

In practice, we will derive Tp
˛ regularity from simpler quantities than the local square

functions. The p-leaders of f are defined by local lp norms of wavelet coefficients
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as follows:

dp
� D

 
X

�0�3�
jc�0 jp2�.j0�j/

!1=p

(3.7)

(they are finite if f 2 Lp
loc.R

d/, see [17]). Note that, if p D C1, the corresponding
quantity d1

� is usually denoted by d� and simply called the wavelet leaders; we
have

d� WD d1
� D sup

�0�3�
jc�0 j: (3.8)

The notion of Tp
˛ regularity can be related to p-leader coefficients (see [16, 17,

20]):

If �f .p/ > 0, then hp
f .x0/ D lim inf

j!C1
log

�
dp
�j.x0/

�

log.2�j/
: (3.9)

Our purpose in this section is to introduce new “archetypical” pointwise singu-
larities which will yield examples where the p-exponent and the lacunarity exponent
can take arbitrary values. Because of (3.9), it is easier to work with examples
that are defined directly by their wavelet coefficients on a smooth wavelet basis.
We therefore develop new examples rather than extending the lacunary combs of
Sect. 2.3.

Definition 3.4 Let a; b 2 .0; 1/ satisfying 0 < b < 1 � a, and let ˛ 2 R. The thin
chirp Ta;b;˛ is defined by its wavelet series

Ta;b;˛ D
X

j�0

X

k2Z
cj;k  j;k;

where

cj;k D 2�˛j if k 2 Œ2.1�a/j; 2.1�a/j C 2bj�

D 0 otherwise.

The following results are straightforward, using the wavelet characterization of
Lp and Tp

˛ regularity.

Proposition 3.5 The thin chirp Ta;b;˛ is bounded if and only if ˛ > 0.

If ˛ � 0; p0.Ta;b;˛/ D 1 � b

�˛ :
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Fig. 4 Thin chirps with p0 D 1 (top row) and p0 D 3:2 (bottom row): functions (left column)
and estimation of p-exponents and lacunarity exponents (center and right column, respectively)

The p-exponent of Ta;b;˛ at the origin is

hp
Ta;b;˛

.0/ D 1 � a � b

a
q C ˛

a
:

Note that, if the wavelets are compactly supported, then for j large enough the
pack of 2bj successive wavelets with non-vanishing coefficients covers an interval of
length 2�j2bj at a distance 2�aj from the origin, so that the accessibility exponent of
the support of Ta;b;˛ is .1�a �b/=a: Thus, it coincides with the lacunarity exponent
of Ta;b;˛ as expected.

Illustrations of thin chirps and the numerical estimation of their p-exponents and
lacunarity exponents are provided in Fig. 4.

3.6 p-Exponent Analysis of Measures

Several types of measures (such as multiplicative cascades) played a central role
in the development of multifractal analysis. Since measures (usually) are not L1

functions, their p-exponent for p � 1 is not defined. Therefore, it is natural
to wonder if it can be the case when p < 1. This is one of the purposes of
Proposition 3.6, which yields sufficient conditions under which a measure� satisfies
��. p/ > 0 for p < 1, which will imply that its p-exponent multifractal analysis can
be performed. An important by-product of using p-exponents for p � 1 is that it
offers a common setting to treat pointwise regularity of measures and functions.

Recall that dimB.A/ denotes the upper box dimension of the set A.
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Proposition 3.6 Let � be a measure; then its wavelet scaling function satisfies
��.1/ � 0. Furthermore, if � does not have a density which is an L1 function,
then ��.1/ D 0.

Additionally, if � is a singular measure whose support supp.�/ satisfies

ı� WD dimB.supp.�// < 1; (3.10)

then

8p < 1; ��. p/ � .1 � ı�/.1 � p/; (3.11)

and

8p > 1; ��. p/ � .1 � ı�/.1 � p/: (3.12)

Remarks

• (3.11) expresses the fact that, if � has a small support, then its Sobolev regularity
is increased for p < 1. This is somehow counterintuitive, since one expects a
measure to become more singular when the size of its support shrinks; on the
other hand (3.12) expresses that this is actually the case when p > 1.

• Condition ı� < 1 is satisfied if � is supported by a Cantor-like set, or by a
selfsimilar set satisfying Hutchinson’s open set condition.

• (3.11) has an important consequence for the multifractal analysis of measures:
Indeed, if ı� < 1, then ��. p/ > 0 for p < 1, so that the classical mathematical
results concerning the multifractal analysis based on the p-exponent apply, see
Sect. 4.

• A slightly different problem was addressed by H. Triebel: In [27], he determined
under which conditions the scaling functions commonly used in the multifractal
analysis of probability measures (see (4.4) below) can be recovered through
Besov or Triebel-Lizorkin norms (or semi-norms).

Proof of Proposition 3.6 If � is a measure, then for any continuous bounded
function f

jh�j f ij � C k f k1 : (3.13)

We pick

f D
X

k

"j;k j;k; where "j;k D ˙1;

so that f is continuous and satisfies k f k1� C, where C depends only on the
wavelet (but not on the choice of the "j;k). Denoting by cj;k the wavelet coefficients
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of �, we have

h�j f i D
X

k

"j;k

Z
 j;kd� D 2�j

X

k

"j;kcj;k:

Picking "j;k D sgn.cj;k/ it follows from (3.13) that

2�j
X

k

jcj;kj � C; (3.14)

or, in other words,� belongs to the Besov space B0;11 , which implies that ��.1/ � 0,
see [14, 22].

On other hand, if � … L1, then using the interpretation of the scaling function in
terms of Sobolev spaces given by (3.2), we obtain that ��.1/ � 0. Hence the first
part of the proposition holds.

We now prove (3.11). We assume that the used wavelet is compactly supported,
and that its support is included in the interval Œ�2l; 2l� for an l > 0 (we pick the
smallest l such that this is possible). Let ı > dimB.supp.�//; for j large enough,
supp.�/ is included in at most 2Œıj� intervals of length 2�j. It follows that, at scale j,
there exist at most 2Œıj� �2 �2l wavelets . j;k/k2Z whose support intersects the support
of �. Thus for j large enough, there are at most C2ıj wavelet coefficients that do not
vanish.

Let p 2 .0; 1/, q D 1=p and r be the conjugate exponent of q, i.e. such that
1=q C 1=r D 1. Using Hölder’s inequality,

X

k

jcj;kjp �
 
X

k

jcj;kjpq

!1=q  X

k

1r

!1=r

;

where the sums are over at most C2ıj terms; thus

X

k

jcj;kjp �
 
X

k

jcj;kj
!p

C 2ıj=r:

Using (3.14), we obtain that

2�j
X

k

jcj;kjp � C2�.1�ı/j=r;

so that ��. p/ � .1 � ı/.1 � p/. Since this is true 8ı > ı�, (3.11) follows.
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We now prove (3.12). Let p � 1 and let q be the conjugate exponent. Using
Hölder’s inequality,

X

k

jcj;kj �
 
X

k

jcj;kjp

!1=p  X

k

1q

!1=q

:

Let again ı > ı�; using the fact that the sums bear on at most 2ıj terms, and that the
left-hand side is larger than C2j, we obtain that

 
X

k

jcj;kjp

!1=p

� C 2j2�ıj=q;

which can be rewritten

2�j
X

k

jcj;kjp � C 2�j2pj2�ıjp=q;

so that ��. p/ � .1 � p/.1 � ı/; since this is true 8ı > ı�, (3.12) follows, and
Proposition 3.6 is completely proved.

Since p D 1 is a borderline case for the use of the 1-exponent one may expect
that picking p < 1 would yield ��. p/ > 0 (in which case one would be on the
safe side in order to recover mathematical results concerning the p-spectrum, see
[2, 15]). However, this is not the case, since there exist even continuous functions f
that satisfy 8p > 0, �f . p/ D 0. An example is supplied by

f D
X

j�0

X

k2Z

1

j2
 j;k:

4 Multifractal Analysis of Lacunary Wavelet Series

Multifractal analysis is motivated by the observation that many mathematical
models have an extremely erratic pointwise regularity exponent which jumps
everywhere; this is the case e.g. of multiplicative cascades or of Lévy processes,
whose exponents h satisfy that

a.s. 8x0; lim sup
x!x0

h.x/� lim inf
x!x0

h.x/ (4.1)

is bounded from below by a fixed positive quantity (we will see that this is also the
case for lacunary wavelet series). This clearly excludes the possibility of any robust
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direct estimations of h. The driving idea of multifractal analysis is that one should
rather focus on alternative quantities that

• are numerically computable on real life data in a stable way,
• yield information on the erratic behavior of the pointwise exponent.

Furthermore, for standard random models (such as the ones mentioned above) we
require these quantities not to be random (i.e. not to depend on the sample path
which is observed) but to depend on the characteristic parameters of the model
only. The relationship between the multifractal spectrum and scaling functions
(initially pointed out by U. Frisch and G. Parisi in [23]; see (4.6) below) satisfies
these requirements.

We now recall the notion of multifractal spectrum. We denote by dim.A/ the
Hausdorff dimension of the set A.

Definition 4.1 Let h.x/ denote a pointwise exponent. The multifractal spectrum
d.H/ associated with this pointwise exponent is

d.H/ D dimfx W h.x/ D Hg:

In the case of the p-exponent, the sets of points with a given p-exponent will be
denoted by Fp

f .H/:

Fp
f .H/ D fx0 W hp

f .x0/ D Hg; (4.2)

and the corresponding multifractal spectrum (referred to as the p-spectrum) is
denoted by dp.H/; in the case of the lacunarity exponent, we denote it by dL.L/.

4.1 Derivation of the Multifractal Formalism

We now recall how d.H/ is expected to be recovered from global quantities
effectively computable on real-life signals (following the seminal work of G. Parisi
and U. Frisch [23] and its wavelet leader reinterpetation [14]). A key assumption
is that this exponent can be derived from nonnegative quantities (which we denote
either by ej;k or e�), which are defined on the set of dyadic intervals, by a log-log
plot regression:

h.x0/ D lim inf
j!C1

log
�
e�j.x0/

�

log.2�j/
: (4.3)

It is for instance the case of the p-exponent, as stated in (3.4) or (3.9), for which the
quantities e� are given by the p-leaders dp

�.
In the case of the lacunarity exponent, quantities e� can be derived as follows:

Let 
q > 0 small enough be given. If f has a 1=q-exponent H and a lacunarity
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exponent L at x0 then its 1=q-leaders satisfy

d1=q
j .x0/ � 2�Hj;

and its 1=.q C
q/-leaders satisfy

d1=.qC
q/
j .x0/ � 2�.HC
qL/jI

we can eliminate H from these two quantities by considering the L-leaders:

dL
� WD

 
d1=.qC
q/

j

d1=q
j

!1=
q

� 2�Lj:

(this argument follows a similar one developed in [20, Ch. 4.3] for the derivation of
a multifractal analysis associated with the oscillation exponent).

The multifractal spectrum will be derived from the following quantities, referred
to as the structure functions, which are similar to the ones that come up in the
characterization of the wavelet scaling function in (3.3):

Sf .r; j/ D
 
2�j

X

k

jej;kjr

!
:

The scaling function associated with the collection of .e�/ is

8r 2 R; f .r/ D lim inf
j!C1

log
�
Sf .r; j/

�

log.2�j/
: (4.4)

Let us now sketch the heuristic derivation of the multifractal formalism; (4.4) means
that, for large j,

Sf .r; j/ � 2�.r/j:

Let us estimate the contribution to Sf .r; j/ of the dyadic intervals � that cover the
points of EH. By definition of EH, they satisfy e� � 2�HjI by definition of d.H/,
since we use cubes of the same width 2�j to cover EH , we need about 2d.H/j such
cubes; therefore the corresponding contribution is of the order of magnitude of

2�j2d.H/j2�Hrj D 2�.1�d.H/CHr/j:

When j ! C1, the dominant contribution comes from the smallest exponent, so
that

.r/ D inf
H
.1 � d.H/C Hr/: (4.5)
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By construction, the scaling function .r/ is a concave function on R, see
[14, 23, 24] which is in agreement with the fact that the right-hand side of (4.5)
necessarily is a concave function (as an infimum of a family of linear functions)
no matter whether d.H/ is concave or not. If d.H/ also is a concave function, then
the Legendre transform in (4.5) can be inverted (as a consequence of the duality of
convex functions), which justifies the following assertion.

Definition 4.2 A nonnegative sequence .e�/, defined on the dyadic intervals,
follows the multifractal formalism if the associated multifractal spectrum d.H/
satisfies

d.H/ D inf
r2R.1 � .r/C Hr/: (4.6)

The derivation given above is not a mathematical proof, and the determination of
the range of validity of (4.6) (and of its variants) is one of the main mathematical
problems concerning multifractal analysis. If it does not hold in complete generality,
the multifractal formalism nevertheless yields an upper bound of the spectrum of
singularities, see [14, 23, 24]: As soon as (4.3) holds,

d.H/ � inf
r2R.1 � .r/C Hr/:

In applications, multifractal analysis is often used only as a classification tool
in order to discriminate between several types of signals; then, one is not directly
concerned with the validity of (4.6) but only with a precise computation of the
new multifractal parameters supplied by the scaling function, or equivalently its
Legendre transform. Note that studies of multifractality for the p-exponent have
been performed by A. Fraysse who proved genericity results of multifractality for
functions in Besov or Sobolev spaces in [10].

4.2 Description of the Model and Global Regularity

In this section, we extend to possibly negative exponents the model of lacunary
wavelet series introduced in [12]. We assume that  is a wavelet in the Schwartz
class (see however the remark after Theorem 4.6, which gives sufficient conditions
of validity of the results of this section when wavelets of limited regularity are
used). Lacunary wavelet series depend on a lacunarity parameter � 2 .0; 1/ and a
regularity parameter ˛ 2 R. At each scale j � 0, the process X˛;� has exactly Œ2�j�

nonvanishing wavelet coefficients on each interval Œl; l C 1/ (l 2 Z), their common
size is 2�˛j, and their locations are picked at random: In each interval Œl; l C 1/

(l 2 Z), all drawings of Œ2�j� among the 2j possibilities k
2j 2 Œl; l C 1/ have the

same probability. Such a series is called a lacunary wavelet series of parameters
.˛; �/. Note that, since ˛ can be arbitrarily negative, X˛;� can actually be a random
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distribution of arbitrary large order. By construction

Hmin
X˛;� D ˛;

and, more precisely, the sample paths of X˛;� are locally bounded if and only if
˛ > 0. The case considered in [12] dealt with ˛ > 0, and was restricted to the
computation of Hölder exponents. Considering p-exponents allows us to extend the
model to negative values of ˛, and also to see how the global sparsity of the wavelet
expansion (most wavelet coefficients vanish) is related with the pointwise lacunarity
of the sample paths. Note that extensions of this model in different directions have
been worked out in [5, 9].

Since we are interested in local properties of the process X, we restrict our
analysis to the interval Œ0; 1/ (the results proved in the following clearly do not
depend on the particular interval which is picked); we can therefore assume that
k 2 f0; � � � 2j � 1g.

We first determine how ˛ and � are related with the global regularity of the
sample paths. The characterization (3.3) implies that the wavelet scaling function is
given by

8p > 0; �X˛;�. p/ D ˛p � �C 1: (4.7)

It follows that

p0 WD p0.X˛;�/ D
(
��1
˛

if ˛ < 0

C1 if ˛ > 0:

Note that p0 always exists and is strictly positive, even if ˛ takes arbitrarily
large negative values. We recover the fact that p-exponents allow us to deal with
singularities of arbitrarily large negative order. We will see that this is a particular
occurrence of a general result, see Proposition 5.2; the key property here is the
sparsity of the wavelet series.

4.3 Estimation of the p-Leaders of X˛;�

An important step in the determination of the p-exponent of sample paths of X˛;�
at every point is the estimation of their p-leaders. We now assume that p < p0,
so that the sample paths of X˛;� locally belong to Lp and the p-exponent of X˛;� is
well-defined everywhere. Recall that the p-leaders are defined by

l� D
 
X

�0�3�
jc�0 jp2�.j0�j/

!1=p

: (4.8)
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The derivation of the p-exponent of X˛;� everywhere will be deduced from the
estimation of the size of the p-leaders of X˛;�. A key result is supplied by the
following proposition, which states that the size of the p-leaders of a lacunary
wavelet series is correctly estimated by the size of the first nonvanishing wavelet
coefficient of smaller scale that is met in the set f�0 W �0 � 3�g.

Proposition 4.3 Let ˛ 2 R, � 2 .0; 1/ and let X˛;� be a lacunary wavelet series of
parameters .˛; �/; for each dyadic interval � (of width 2�j), we define j0 ( D j0.�/)
as the smallest random integer such that

9�0 � 3� such that j�0j D 2�j0 and c�0 ¤ 0:

Then, a.s. 9J, 9C;C0 > 0 such that 8j � J, 8� of scale j

C2�˛j02�.j0�j/=p � l� � C02�˛j02�.j0�j/=pj2=p

Proof This result will be implied by the exponential decay rate 2�.j0�j/ that appears
in the definition of p-leaders together with the lacunarity of the construction; we will
show that exceptional situations where this would not be true (as a consequence
of local accumulations of nonvanishing coefficients) have a small probability and
ultimately will be excluded by a Borel-Cantelli type argument. We now make
this argument precise. For that purpose, we will need to show that the sparsity of
wavelet coefficients is uniform, which will be expressed by a uniform estimate on
the maximal number of nonvanishing coefficients c�0 that can be found for �0 (at a
given scale j0) included in a given interval 3�. Such an estimate can be derived by
interpreting the choice of the nonvanishing wavelet coefficients in the construction
of the model as a coarsening (on the dyadic grid) of an empirical process. Let us
now recall this notion, and the standard estimate on the increments of the empirical
process that we will need.

Let Nj D Œ2�j� denote the number of nonvanishing wavelet coefficients at scale j.
We can consider that the corresponding dyadic intervals � have been obtained
first by picking at random Nj points in the interval Œ0; 1� (these points are now
Nj independent uniformly distributed random variables on Œ0; 1�), and then by
associating to each point the unique dyadic interval of scale j to which it belongs.
Let P j

t be the process starting from 0 at t D 0, which is piecewise constant and
which jumps by 1 at each random point thus determined. The family of processes

˛
j
t D p

Nj

 
P j

t

Nj
� t

!
(4.9)

is called an empirical process on Œ0; 1�. The size of the increments of the empirical
process on a given interval yields information on the number of random points
picked in this interval. If it is of length l, then the expected number of points is lŒ2�j�,
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and the deviation from this average can be uniformly bounded using the following
result of W. Stute which is a particular case of Lemma 2.4 of [26].

Lemma 4.4 There exist two positive constants C0
1 and C0

2 such that, if 0 < l < 1=8,
Njl � 1 and 8 � A � C0

1

p
Njl,

P

 
sup

jt�sj�l
j˛ j

t � ˛j
sj > A

p
l

!
� C0

2

l
e�A2=64:

Rewritten in terms of P j
t , this means that

P

 
sup

jt�sj�l
jP j

t � P j
s � Nj.t � s/j > A

p
Njl

!
� C0

2

l
e�A2=64: (4.10)

Recall that the assumption �0 � 3� implies that 3 � 2�j � 2�j0 . We will
apply Lemma 4.4 differently for small values of j0 where the expected number of
nonvanishing coefficients c�0 that can be found for �0 (at a given scale j0) included in
a given interval � is very small, and the case of large j0 where this number increases
geometrically.

We first assume that

2�j0 � j22�j=�: (4.11)

We pick intervals of length l D j022��j0 and, for the constant A in Stute’s lemma, we
pick A D j. Then (4.10) applied with N D Œ2�j0 � yields that, with probability at least
1 � e�j2 , the number of intervals �0 of scale j0 picked in such intervals is

2�j0 l C O. j2/ D O. j2/:

We now assume that

2�j0 � j22�j=�: (4.12)

Then we pick intervals of length l D 3 �2�j, and A D jC j0. Then (4.10) applied with
N D Œ2�j0 � yields that, with probability at least 1 � e�.jCj0/2 , the number of intervals
�0 of scale j0 picked in such intervals is

2�j0 l C O..j C j0/2
p
2�j0 l/ � 2 � 2�j0 l: (4.13)

We are now ready to estimate the size of l�, assuming that all events described
above happen (indeed, we note that the probabilities such that these events do not
happen have a finite sum, so that, by the Borel-Cantelli lemma, they a.s. all occur
for j large enough).
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At scales j0 which satisfy (4.11), if at least one of the �0 � 3� does not
vanish, then there are at most j2 of them, and the corresponding contribution to
the sum in (4.8) lies between j.c�0/p2�. j�j0/j and j2j.c�0/p2�. j�j0/j. At scales j0 which
satisfy (4.12), the contribution of the wavelet coefficients of scale j0 to the sum
lies between 2�j0 lj.c�0/p2�. j�j0/j and its double. Since c�0 D 2�˛j0 , the condition
p < p0 implies that these quantities decay geometrically, so that the order of
magnitude of the p-leader is given by the first non-vanishing term in the sum. Hence
Proposition 4.3 holds.

4.4 p-Exponents and Lacunarity

We now derive the consequences of Proposition 4.3 for the determination of the p-
exponents of X˛;� at every point. We first determine the range of p-exponents. First,
note that all p-leaders have size at most 2�˛j, so that the p-exponent is everywhere
larger than ˛. In the opposite direction, as a consequence of (4.13), every interval
3� of scale j includes at least one nonvanishing wavelet coefficient at scale j=� C
.log j/2; therefore, all p-leaders have size at least

2
�˛

�
j
�Clog j

�2� 1
p

�
j
��jC.log j/2

�

:

It follows that the p-exponents are everywhere smaller than

Hmax WD ˛

�
C
�
1

�
� 1

�
1

p
: (4.14)

We have thus obtained that

a.s. 8p < p0; 8x0 2 R; ˛ � hp
X˛;�
.x0/ � Hmax:

For each j, let Ej
! denote the subset of Œ0; 1� composed of intervals 3� (� 2 ƒj)

inside which the first nonvanishing wavelet coefficient is attained at a scale l � Œ!j�,
and let

E! D lim sup Ej
!:

Proposition 4.3 implies that, if x0 … E! , then, for j large enough, all wavelet leaders
l�j.x0/ are bounded by

j22�˛ j
�� 1

p

�
j
��j

�

;
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so that:

if x0 … E! , then hp
X˛;�
.x0/ � ˛! C ! � 1

p
: (4.15)

On other hand, if x0 2 E! , then there exists an infinite number of p-leaders l�j.x0/

larger than

2
�˛ j

�� 1
p

�
j
��j

�

;

so that:

if x0 2 E! , then hp
X˛;�
.x0/ � ˛! C ! � 1

p
: (4.16)

It follows from (4.15) and (4.16) that the sets of points where the p-exponent takes
the value

H D ˛! C ! � 1

p

are the sets

H! D
\

!0>!

E!0 �
[

!0<!

E!0 :

We have thus obtained the following result.

Proposition 4.5 Let ˛ 2 R, � 2 .0; 1/ and let X˛;� be a lacunary wavelet series of
parameters .˛; �/. Let p < p0; the sets of points with a given p-exponent are the sets

Fp
X˛;�
.H/ D H! for ! D H C 1=p

˛ C 1=p
I

and additionally, if x0 2 H! , then

LX˛;�.x0/ D ! � 1:

Remark We actually do not need the wavelet used to be in the Schwartz class for
Theorem 4.6 to be true. One can verify that, if the uniform regularity of the wavelet
is larger than max.j˛j; jHmaxj/, then all previous computations remain valid.

In order to determine the p-spectra and the lacunarity spectrum, one has to
determine the Hausdorff dimensions of the sets H! . We note that these sets do not
depend on ˛ and on p, but only on the parameter! and on the random drawing of the
locations of the non-vanishing wavelet coefficients. When ˛ > 0, the dimensions of
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these sets (expressed in a slightly different way) were determined in [12], where it
is shown that

dim.H!/ D �!:

The following result follows.

Theorem 4.6 Let ˛ 2 R, � 2 .0; 1/ and let X˛;� be a lacunary wavelet series of
parameters .˛; �/; the p-spectrum of X˛;� is supported by the interval Œ˛;Hmax� and,
on this interval,

a.s. 8p < p0; 8H; dp.H/ D �
H C 1=p

˛ C 1=p
:

Furthermore, its lacunarity spectrum is given by

a.s. 8L 2 Œ0; 1=�� 1�; dL.L/ D �.L C 1/:

Remark It is also shown in [12] that all the sets H! are everywhere dense, so that
the quantity (4.1) is equal everywhere to Hmax � ˛.

For the sake of completeness, we now sketch how these dimensions can be
computed. We start by estimating the size of E! . Note that the number of intervals
3� which comprise Ej

! is bounded by

Œ2�j�C Œ2�. jC1/�C � � � C Œ2�Œ!j�� � C2�!j:

Using these intervals for j � J as an "-covering, we obtain the following bound for
the Hausdorff dimension of E!

dim.E!/ � �!: (4.17)

We now consider the sets H! ; it follows from (4.15) and (4.16) that

H! D
\

!0>!

E!0 �
[

!0<!

E!0 :

Since 8!0 < !, H! � E!0 , it follows from (4.16) that

dim.H!/ � �!:

In order to get a lower bound on the Hausdorff dimension of H! , we will need
the following (slightly) modified notion of ı-dimensional Hausdorff measure.
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Definition 4.7 Let A � R. For " > 0 and ı 2 Œ0; 1�, let

Mı;�
" .A/ D inf

R

 
X

i

jAijıj log.jAij/j�
!
;

where R denotes an "-covering of A, and where the infimum is taken on all "-
coverings. The .ı; �/-dimensional Hausdorff measure of A is

Mı;� .A/ D lim
"!0

Mı;�
"; .A/: (4.18)

Since Ej
! is composed of � C2�!j randomly located intervals of length 3 � 2�j,

standard ubiquity arguments (such as in [7, 12]) yield that

M�!;2.G!/ > 0I

(4.16) implies that
S
!0<! E!0 (which can be rewritten as a countable union) has a

vanishing .�!; 2/-dimensional Hausdorff measure. Thus

M�!;2

 
E! �

[

!0<!

E!0

!
> 0:

Since this set is included in H! , we obtain that

dim.H!/ � �!:

It suffices now to rewrite these dimensions as a function of the p-exponent to
obtain Theorem 4.6.

Numerical examples for the estimation of dp.H/ and dL.H/ of a lacunary wavelet
series are given in Fig. 5. As predicted by theory, the numerical estimates of the
p-exponent multifractal spectra are not invariant with p but follow the evolution
with p of the theoretical spectra dp.H/. The positions of the mode of the estimated
spectra have a constant negative bias; yet, quantitatively, they very well reproduce
the shift of the mode of the theoretical spectra to smaller values of H for increasing
p, revealing the lacunary nature of the function. A refined analysis is possible with
the estimated lacunarity exponent multifractal spectrum dL.H/, which has been
computed here for several values of p for illustration purposes. The mode of the
spectrum is estimated at H � 0:2 (instead of the theoretical H D 0:25). This
clearly indicates the existence of positive lacunarity exponents. While the estimates
for small values of p fall short of revealing the full support of the theoretical
multifractal spectrum, they still enable one to identify a relatively large interval
of positive lacunarity exponent values. The best estimate of dL.H/ is obtained
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Fig. 5 Lacunary wavelet series: A typical sample path of a lacunary wavelet series (˛ D 0:3,
� D 0:8, top row) and estimated structure functions (center row) and multifractal spectra (bottom
row) for p-exponents (left column) and lacunarity exponents (right column) obtained with different
values of p. The dashed lines indicate the theoretical multifractal spectra

for the canonical value p D p0 D C1 (q D q0 D 0) in this example and
produces a satisfactory concave envelope of the theoretical multifractal spectrum
that provides clear evidence for ensembles of lacunary singularities with a range of
positive exponents.

5 Concluding Remarks

The analysis that we developed is based on the assumption that p0. f / > 0, or that
�f . p/ > 0 for p small enough, so that p-exponents can be defined, at least, for
p � p0; we saw that this assumption allows us to deal with distributions of arbitrarily
large order and, equivalently, to model pointwise singularities with arbitrarily large
negative exponent. However, this does not imply that any tempered distribution
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satisfies these assumptions. Simple counterexamples are supplied by the Gaussian
fractional noises B˛ for ˛ < 0 whose sample paths can be seen as fractional
derivatives of order 1

2
�˛ of the sample paths of a Brownian motion on R (Gaussian

white noise corresponds to ˛ D �1=2, in which case it is a derivative, in the sense of
distributions, of Brownian motion). In [18] the wavelet and leader scaling functions
are derived, and it is proved that �B˛ D �˛p, hence always is negative. However, the
following result shows that, as soon as the wavelet expansion of the data has some
sparsity, then this phenomenon no more occurs, and p0 is always strictly positive
(note that this situation is quite common in practice since sparse wavelet expansions
are often met in applications).

Definition 5.1 A wavelet series
P

j;k cj;k j;k is sparse if there exist C > 0 and � < 1
such that, on any interval Œl; l C 1�,

Cardfk W cj;k ¤ 0g � C2�j:

Typical examples of sparse wavelet series are supplied by lacunary wavelet series
or by the measures which satisfy (3.10). The following proposition implies that
multifractal analysis based on p-exponents is always possible for data with a sparse
wavelet expansion.

Proposition 5.2 Let f be a tempered distribution, which has a sparse wavelet
expansion, then �f . p/ > 0 for p small enough, so that p0. f / > 0:

Proof Since f is a tempered distribution, it has a finite order, and thus it is a
derivative of order A of a continuous function. Therefore f belongs to C�A.R/, so
that

jcj;kj � C2Aj:

Using again compactly supported wavelets, the same argument as in the proof of
Proposition 3.6 yields that there are at most C2�j nonvanishing wavelet coefficients
at scale j; it follows that

2�j
X

k

jcj;kjp � C2�j2�j2Apj

so that �f . p/ � 1 � � � Ap, and �f . p/ > 0 for p < .1 � �/=A.
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