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1 Foreword

This contribution deals with questions different from those considered by the
author in his talk, which concerned joint work in progress with Stéphane Seuret
on the multifractal nature of Choquet capacities obtained from Gibbs measures
via percolation. The results presented here concern the construction of measures
and functions with prescribed multifractal nature. Results for measures, the related
comments and the sketch of proof given in Sect. 2 are extracted from [3]. Their
application to multifractal analysis of functions constitutes the original part of the
present paper, developed in Sect. 3.

J. Barral (�)
Laboratoire d’Analyse, Géométrie et Applications (UMR 7539), Institut Galilée, Université Paris
13, Sorbonne-Paris-Cité, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France
e-mail: barral@math.univ-paris13.fr

© Springer International Publishing Switzerland 2015
C. Bandt et al. (eds.), Fractal Geometry and Stochastics V, Progress
in Probability 70, DOI 10.1007/978-3-319-18660-3_14

261

mailto:barral@math.univ-paris13.fr


262 J. Barral

2 Inverse Problems in Multifractal Analysis of Measures

2.1 Generalities About Multifractal Analysis

Let MC
c .R

d/ stand for the set of compactly supported Borel positive and finite
measures on R

d (d � 1/. The upper box dimension of a bounded set E � R
d will

be denoted dimBE, and its Hausdorff and packing dimensions will be denoted by
dimH E and dimP E respectively (see [20, 44, 52] for definitions).

Multifractal analysis is designed to finely describe geometrically the heterogene-
ity in the distribution at small scales of the elements of MC

c .R
d/. If � 2 MC

c .R
d/,

this heterogeneity can be described via the lower and upper local dimensions of �,
namely

d.�; x/ D lim inf
r!0C

log.�.B.x; r///

log.r/
and d.�; x/ D lim sup

r!0C

log.�.B.x; r///

log.r/
;

and the level sets

E.�; ˛/D
n
x 2 supp.�/ W d.�; x/ D ˛

o
; E.�; ˛/D

n
x 2 supp.�/ W d.�; x/ D ˛

o
;

and

E.�; ˛/ D E.�; ˛/ \ E.�; ˛/ .˛ 2 R [ f1g/;

where B.x; r/ and supp.�/ stand for the closed ball of radius r > 0 centered at x and
the topological support of � respectively.

The lower Hausdorff spectrum of � is the mapping defined as

f H
�

W ˛ 2 R [ f1g 7! dimH E.�; ˛/;

with the convention that dimH ; D �1, so that f H
�
.˛/ D �1 if ˛ < 0. This

spectrum provides a geometric hierarchy between the sets E.�; ˛/, which partition
supp.�/. Here, the lower local dimension is emphasized as it provides at any point
the best pointwise Hölder control one can have on the measure � at small scales.
However, the upper local dimension is of course of interest, and much attention is
paid in general, especially in ergodic theory, to the sets E.�; ˛/ of points at which
one has an exact local dimension. The Hausdorff spectrum of � is the mapping
defined as

f H
� W ˛ 2 R [ f1g 7! dimH E.�; ˛/:

After basic observations made by physicists [26, 27], mathematicians derived,
and in many cases justified, the heuristic according to which, for a measure
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possessing a self-conformal like property, f H
� should be the Legendre transform

of a kind of free energy function, called the Lq-spectrum. This led to an abundant
literature on what has become called multifractal formalism (see e.g. [12, 13, 39, 48,
49, 52]).

To be more specific we need some definitions. Given I 2 fR; R [ f1gg and
f W I ! R [ f�1g, the domain of f is defined as dom. f / D fx 2 I W f .x/ > �1g.
For � W R ! R [ f�1g, if dom.�/ ¤ ;, the concave Legendre-Fenchel transform
of � is the upper-semi continuous concave function defined as �� W ˛ 2 R 7!
inff˛q � �.q/ W q 2 dom.�/g (see [54]). If, moreover, 0 2 dom.�/, we define its
(extended) concave Legendre-Fenchel transform as

�� W ˛ 2 R [ f1g 7!
(

inff˛q � �.q/ W q 2 dom.�/g if ˛ 2 R;

inff˛q � �.q/ W q 2 dom.�/ \ R�g if ˛ D 1;

with the conventions 1 � q D �1 if q < 0 and 1 � 0 D 0. Consequently,
1 2 dom.��/ if and only if 0 D min.dom.�//, and in this case ��.1/ D ��.0/ D
max.��/. In any case, �� is upper semi-continuous over dom.��/, and concave over
the interval dom.��/ n f1g (here the notion of upper semi-continuous function is
relative to R [ f1g endowed with the topology generated by the open subsets of R
and the sets .˛;1/[ f1g, ˛ 2 R).

Now, define the Lq-spectrum of � 2 MC
c .R

d/ as

�� W q 2 R 7! lim inf
r!0C

log sup
n P

i �.B.xi; r//q
o

log.r/
;

where the supremum is taken over all the centered packings of supp.�/ by closed
balls of radius r. The following properties are standard and proved for instance
in [39].

Proposition 2.1 Let � 2 MC
c .R

d/.

1. �� is concave and non-decreasing; ��.1/ D 0, �d � ��.0/ D �dimB supp.�/
� 0.

2. Either dom.��/ D R, or dom.��/ D RC, according to whether the exponent

lim supr!0C

log.inff�.B.x; r// W x 2 supp.�/g/
log.r/

is finite or not. Moreover ��
� is

non-negative on its domain, which is a closed subinterval of RC [ f1g.

For ˛ 2 R we always have (see [39, Section 3] or [49, Section 2.7])

f H
� .˛/ � f H

�
.˛/ � ��

�.˛/ � max.˛;���.0// � max.˛; d/I (2.1)

we also have

f H
� .1/ � ��

�.1/
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(see [3]), a dimension equal to �1 meaning that the set is empty. Notice that due to
(2.1), if f H

� .˛/ � ˛ at some ˛, then 0 � ˛ � d and f H
� .˛/ D ��

�.˛/ D ˛, so that ˛
is a fixed point of ��

� . Moreover, since ��.1/ D 0 and �� is concave, the set of fixed
points of ��

� is the interval Œ� 0
�.1

C/; � 0
�.1

�/�.
We say that � obeys the multifractal formalism at ˛ 2 R [ f1g if f H

�
.˛/ D

��
�.˛/, and that the multifractal formalism holds (globally) for � if it holds at all
˛ 2 R [ f1g. If f H

�
.˛/ can be replaced by f H

� .˛/ in the previous definition, we say

that the multifractal formalism holds strongly. In this case one has

dimH E.�; ˛/ D dimP E.�; ˛/ D dimH E.�; ˛/ D dimH E.�; ˛/ D ��
�.˛/:

The multifractal formalism turns out to hold globally, or on some non-trivial
subinterval of dom.��

�/, for some important classes of continuous measures, namely
some classes of self-conformal measures (including certain Bernoulli convolutions),
Gibbs and weak Gibbs measures on hyperbolic dynamical systems (see e.g. [13, 16,
21–25, 39, 42, 52, 53] and [3] for more references), and scale invariant limits of
certain multiplicative chaos [1, 6, 17, 29, 46]; in these cases it also holds strongly.
It also holds for some natural classes of discrete measures (see e.g. [2, 9, 34, 51] as
well as references in [3]). Other examples are special self-affine or Gibbs measures
on self-affine Sierpinski carpets [4, 7, 38, 50], or on almost all the attractors of
IFS associated with certain families of d � d invertible matrices with small enough
singular values [5, 18, 19], as well as generic probability measures on a compact
subset of Rd [11, 14].

The measures mentioned above share the geometric property of being exact
dimensional, i.e. for such a measure �, there exists D 2 Œ0; d� such that d.�; x/ D
d.�; x/ D D, �-almost everywhere. This implies D 2 Œ� 0

�.1
C/; � 0

�.1
�/� and �

strongly obeys the multifractal formalism at D. In fact, for any � 2 MC
c .R

d/,
for �-almost every x one has � 0

�.1
C/ � d.�; x/ � d.�; x/ � � 0

�.1
�/ ([48]), and

for most of the continuous measures mentioned above, � 0
�.1/ exists, hence equals

D; also, �� is piecewise C1, and even analytic in certain cases, a typical example
being Gibbs measures associated with Hölder potentials on repellers of C1C˛
conformal mappings. Another property of these measures is that, when they obey
the multifractal formalism globally, they are homogeneously multifractal (HM), in
the sense that the lower Hausdorff spectrum of the restriction of� to any closed ball
whose interior intersects supp.�/ is equal to the lower Hausdorff spectrum of �.

2.2 Full Illustration of the Multifractal Formalism

Theorem 2.2 ([3]) Let � W R ! R [ f�1g be a concave function satisfying the
necessary properties (see Proposition 2.1) to be the Lq-spectrum of some element of
MC

c .R
d/. Let D 2 Œ� 0.1C/; � 0.1�/�. There exists an (HM) measure � 2 MC

c .R
d/,
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exact dimensional with dimension D, and which strongly satisfies the multifractal
formalism with �� D � .

Remark 1 In [3] we develop much more general results by using a finer multifractal
formalism to prescribe and distinguish Hausdorff and packing dimensions of the
level sets fx 2 supp.�/ W d.�; x/ D ˛; d.�; x/ D ˇg, .˛ � ˇ � 1/. The
connection with Olsen’s multifractal formalism [49] is also studied.

It is interesting to complete this statement by describing the possible behaviors of
.��; �

�
�/ (see Figs. 1–6). For this we need to extend the notion of Legendre-Fentchel

transform to functions f W R[f1g ! R[f�1g: for such an f , if dom. f /\R ¤ ;,
we define the concave Legendre-Fenchel transform of f as

f � W q 2 R 7! inffq˛ � f .˛/ W ˛ 2 dom. f /g;

with the conventions q � 1 D sign.q/� 1 if q ¤ 0 and 0� 1 D 0. Consequently,
if 1 2 dom. f / and f is bounded from above, then 0 D min.dom. f �// and
f �.0/ D � max.sup. f /jR/; f .1/); moreover, f � is concave over dom. f �/, upper
semi-continuous over dom. f �/ n f0g, and upper semi-continuous at 0 only if and
only if f .1/ D max. f /.

Proposition 2.3 ([3, 39]) Suppose that � W R ! R[ f�1g satisfies the properties
of the Lq-spectrum described in Proposition 2.1. One has .��/� D � on R, and:

1. If dom.�/ D R, then dom.��/ is the compact interval I D Œ� 0.1/; � 0.�1/�, ��
is concave and continuous on its domain.

Fig. 1 Illustration of Proposition 2.3.1. when the domain of �� is a non trivial interval and �� is
differentiable, with a second order phase transition at some qC > 1.
The case of a trivial interval f˛0g would correspond to a monofractal measure with 0 � ˛0 � d,
��.q/ D ˛0.q � 1/ for all q 2 R, ��

� .˛/ D ˛ if ˛ D ˛0 and ��
� .˛/ D �1 otherwise. (a) The Lq

spectrum of �. (b) Its Legendre transform
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Fig. 2 Illustration of Proposition 2.3.2(b) when � 0
�.0

C/ < 1, �� is differentiable, and it has
a second order phase transition at some qC > 1. (a) The Lq spectrum of �. (b) Its Legendre
transform

Fig. 3 Illustration of Proposition 2.3.2(b) when � 0
�.0

C/ < 1, �� is not differentiable at 1, and it
has a second order phase transition at some qC > 1. (a) The Lq spectrum of �. (b) Its Legendre
transform

2. If dom.�/ D RC, then 1 2 dom.��/ with ��.1/ D ��.0/ and:

(a) If �.0/ D 0 then � D 0 over RC, dom.��/ D RC [ f1g and �� D 0 over
RC [ f1g.

(b) If �.0/ < 0 and � is continuous at 0C, then dom.��/ D Œ� 0.1/;1�, �� is
concave, continuous, and increasing over Œ� 0.1/; � 0.0C//, ��.˛/ D ��.0/ D
��.1/ D ��.0/ for all ˛ 2 Œ� 0.0C/;1/ and �� is continuous at 1; there
are two distinct behaviors according to whether � 0.0C/ < 1 or not.

(c) If �.0/ < 0 and � is discontinuous at 0C, then dom.��/ D Œ� 0.1/;1�.
Moreover, for all ˛ 2 Œlimq!0C � 0.q�/;1/ one has ��.˛/ D ��.0C/ <
��.1/ D ��.0/, so that �� is concave and continuous on Œ� 0.1/;1/ and
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Fig. 4 Illustration of Proposition 2.3.2(b) when � 0
�.0

C/ D 1, �� is not differentiable at 1, and it
has a second order phase transition at some qC > 1. (a) The Lq spectrum of �. (b) Its Legendre
transform

Fig. 5 Illustration of Proposition 2.3.2(c) when � 0
�.0

C/ < 1, �� is not differentiable at 1, and it
has another first order phase transition at some qC > 1. (a) The Lq spectrum of �. (b) Its Legendre
transform

Fig. 6 Illustration of Proposition 2.3.2(c) when � 0
�.0

C/ D 1, �� is not differentiable at 1 and

� 0
�.1

C/ takes the minimal value 0. (a) The Lq spectrum of �. (b) Its Legendre transform

discontinuous at 1 (there are also two cases, according to limq!0C � 0.q�/
equals 1 or not).

Remark 2 The behavior described in Proposition 2.3.1 is illustrated, for instance, by
(weak) Gibbs measures on conformal repellers [25, 49, 52]. The behaviors described
by Proposition 2.3.2(b) are illustrated by some Gibbs measures on countable
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Markov shifts and their geometric realizations [30, 42, 43], which also obey the
multifractal formalism, though in [30, 43] the set E.�;1/ is not studied. The
fact that the behaviors described in Proposition 2.3.2(a) and (c) be illustrated by
measures obeying the mutifractal formalism seems to be new.

Remark 3 In [28], when d D 1, for each D 2 .0; 1/ one finds an exact dimensional
measure � with dimension D and Lq-spectrum equal to min.q � 1; 0/ over RC. It is
also worth mentioning that in [10] one finds examples of inhomogeneous Bernoulli
measures over Œ0; 1� with an Lq-spectrum presenting countably many points of non-
differentiability over Œ1;C1/.

2.3 Measures with prescribed lower Hausdorff spectrum

In general, dom. f H
�
/ D f˛ 2 R [ f1g W E.�; ˛/ ¤ ;g is not a closed subinterval

of Œ0;1�, and even when it is the case, the restriction of f H
�

to dom. f H
�
/\RC is not

necessarily concave. Consequently, it is also natural to study the inverse problem
consisting of associating to a function f W R[ f1g ! Œ0; d�[ f�1g whose domain
is a subset of RC [ f1g and such that f .˛/ � ˛ for all ˛ � 0, an (HM) measure
whose lower Hausdorff spectrum is equal to f . In [3] we construct such a measure
�, exact dimensional, when f shares important properties with ��

� ; specifically, f is
taken in the family:

F.d/ D

8
ˆ̂<
ˆ̂:

f W R [ f1g ! Œ0; d� [ f�1g W

8
ˆ̂<
ˆ̂:

dom. f / is a closed subset of Œ0;1�

f is u.s.c.; Fix. f / ¤ ;
f .˛/ � ˛ for all˛ 2 dom. f /

9
>>=
>>;
;

where Fix. f / (� Œ0; d�) stands for the set of fixed points of f .

Theorem 2.4 ([3]) Let f 2 F.d/. For each D 2 Fix. f /, there exists an (HM)
measure � 2 MC

c .R
d/, exact dimensional with dimension D, such that f H

�
D f .

Remark 4

(1) The measures constructed in the proofs of Theorems 2.2 and 2.4 are continuous
and supported on Cantor sets.

(2) Our approach does not make it possible to replace f H
�

D f by f H
� D f in the

previous statement unless dom. f / D Fix. f / or dom. f / is an interval and f
is concave over dom. f / \ RC. It turns out that the proof given in [3] can be
slightly improved so that � is absolutely continuous with respect to Lebesgue
measure when D D d.
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Remark 5 (Related result by Z. Buczolich and S. Seuret) The prescription of the
lower Hausdorff spectrum has also been studied in [15]. The authors work on R

and construct (HM) continuous measures, not exact dimensional, but with upper
Hausdorff dimension equal to 1, and whose support is equal to Œ0; 1�. Moreover,
the lower Hausdorff spectrum is prescribed in the class F of functions f W RC !
Œ0; 1�[f�1g which satisfy: f .1/ D 1, dom. f / is a closed subinterval of Œ0; 1� of the
form Œ˛; 1� such that ˛ > 0, and fjŒ˛;1/ D max.gjŒ˛;1/; 0/, where the function g has
the following properties: (i) g is the supremum of a sequence of functions .gn/n�1,
such that each gn is constant over its domain supposed to be a closed subinterval
of Œ0; 1� and gn.ˇ/ � ˇ for all ˇ 2 Œ0; 1�; (ii) Œ˛; 1� is the smallest closed interval
containing the support of g.

It is also shown that for an (HM) measure to be supported by the whole interval
Œ0; 1�, it is necessary that the support of its lower Hausdorff spectrum contains an
interval of the form Œ˛; 1�, (0 � ˛ � 1).

The authors also study the case of non-(HM) measures. They construct measures
that are non exact dimensional with upper Hausdorff dimension 1 whose support is
equal to Œ0; 1�, with a prescribed lower Hausdorff spectrum in the broader class QF
of functions f which satisfy that f .1/ D 1, 0 < inf.dom. f //, and fjdom. f /nf1g D
gjdom. f /nf1g, where g satisfies property (i). This includes all such functions f for
which g is lower semi-continuous. Simultaneously, they also construct a non-(HM)
measure with lower Hausdorff spectrum given by g.

Remark 6 The spectra previously defined make sense if measures are replaced by
non-negative functions of subsets of Rd to which a notion of support is associated.
This is the case for instance for Choquet capacities. In [40], the prescription of
˛ 7! dimH E.C; ˛/ is studied, where C is a (HM) Choquet capacity on subsets of
Œ0; 1� but not a positive measure, which makes the situation easier to study; spectra
are prescribed in a broader class than QF, but defined in a similar spirit.

In [41], one finds non-(HM) non-negative functions C of subsets of Œ0; 1�, which
are not measures, for which the spectrum ˛ 7! lim�!0C dimH

S
s>0

T
0<r<sfx 2

supp.C/ W r˛C� � C.B.x; r// � r˛��g is prescribed in the class of upper semi-
continuous functions f W RC 7! Œ0; 1� [ f�1g with non-empty compact domain.

2.4 Outline of the Proof of Theorem 2.4

Let us sketch the main ideas leading to the construction of the measure � provided
by Theorem 2.4. To establish Theorem 2.2 one must improve this approach in order
to control both the finer level sets E.�; ˛/ and the upper large deviations spectrum

f
LD
� of � when f D ��

� , and the relation �� D f
LD
�

�
.

For simplicity, we assume that dom. f / is a non-trivial interval Œ˛min; ˛max� �
RC, f is continuous over Œ˛min; ˛max�, 0 � f .˛/ � min.˛; d/ over Œ˛min; ˛max�, and
f .D/ D D for a unique point D in Œ˛min; ˛max�. The homogeneity of the construction
of the measure � automatically implies that the measure is (HM).
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At first one shows (independently of f ) that for each � 2 Œ0; d� and ˛ � � , one
can find two Borel probability measures �˛;� and �˛;� supported on Œ0; 1�d such that
��;� D ��;� , �˛;� is exact dimensional with dimension � , and �˛;� is concentrated
on E.�˛;� ; ˛/, as well as on the set defined similarly but with ˛.�; x/ replaced by
limn!1 log.�.In.x///

�n log.2/ , where In.x/ stands for the closure of dyadic cube semi-open to
the right containing x.

Set A1 D f˛1 D Dg, and for each integer m � 1, define AmC1 D Am [ f˛mC1g,
where ˛mC1 2 Œ˛min; ˛max� n Am, in such a way that the set f˛m W m � 1g is dense
in Œ˛min; ˛max�. By using the previous property with � D f .˛/, for all m � 1 one
gets an integer nm such that for all ˛ 2 Am, for all n � nm, there is a collection
Gm;n.˛/ of about 2nf .˛/ dyadic subcubes of Œ0; 1�d such that for all I 2 Gm;n.˛/ one
has �˛; f .˛/.I/ � 2�n˛, �˛; f .˛/.I/ � 2�nf .˛/, and

P
I2Gm;n.˛/

�˛; f .˛/.I/ 2 Œ1=2; 1�.
For every integer m � 2, one considers m dyadic closed subcubes L˛1 ; : : : ;L˛m

of Œ0; 1�d, of the same generation n0
m, so that the 2�n0

m=5 neighborhood of each L˛i

does not intersect any of the other L˛j .
The measure � is constructed on a Cantor set K D T

m�1
S

I2Gm
, where the Gm

are families of closed dyadic subcubes of Œ0; 1�d of generation gm tending to 1 as
m ! 1, constructed recursively according to a scheme roughly as follows:

One obtains G1 by considering the measure �˛1; f .˛1/ D �D;D, an integer N1 �
n1 much bigger than n0

2 and setting G1 D G1;N1 .˛1/ D G1;N1 .D/. This yields the
probability measure �1 defined on G1 as

�1.I/ D �D;D.I/P
I02G1

�D;D.I0/
:

This measure satisfies �1.I/ � 2�N1D. Suppose now that the set Gm has been
constructed, as well as a probability measure�m on its elements. One takes NmC1 �
nmC1 an integer much bigger than max.gm; n0

mC2/, and for each 1 � i � m C 1, one
considers the measure �˛i ; f .˛i/ and the associated set GmC1.˛i/ WD GmC1;NmC1

.˛i/.
For each 1 � i � m C 1 and Im 2 Gm, one defines the set of the elements of GmC1
contained in Im as

SmC1
iD1 GmC1.Im; ˛i/, where GmC1.Im; ˛i/ D fIm � L˛i � I W I 2

GmC1.˛i/g, and the concatenation J � J0 of two closed subcubes of Œ0; 1�d is obtained
as the cube fJ.J0/, where fJ is the natural contracting similitude mapping Œ0; 1�d onto
J (this operation is associative). One gets a probability measure �mC1 on GmC1 by
setting, for I 2 GmC1.˛i/:

�mC1.Im � L˛i � I/ D �m.Im/
�˛i ; f .˛i/.I/P

˛2AmC1

P
I02GmC1.˛/

�˛; f .˛/.I0/
: (2.2)

This makes it possible to define a Borel probability measure carried on K and
coinciding with �m over Gm for all m � 1.

Since f .˛/ < ˛ except for ˛ D ˛1 D D, if NmC1 is taken big enough, in (2.2)
for each i > 1 the contribution of the elements of GmC1.˛/ is roughly 2NmC1. f .˛/�˛/
hence is negligible so that the denominator is equivalent to the single contribution
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of
P

I02GmC1.D/
�D;D.I0/ 2 Œ1=2; 1�. Consequently, for ImC1 2 GmC1 of the form

Im � L˛i � I, I 2 GmC1.˛i/, we have the following estimate:

�.ImC1/ � �m.Im/�˛i; f .˛i/.I/ � �m.Im/2
�˛iNmC1 � 2�˛igmC1 (2.3)

because gm 	 NmC1. Also, we have that #GmC1.˛i/ � 2f .˛i/NmC1 , hence

#fI 2 GmC1 W I 2 GmC1.Im; ˛i/ with Im 2 Gmg
D .#Gm/.#GmC1.˛i// � 2f .˛i/gmC1 ;

again because gm 	 NmC1. The previous estimate and the continuity of f
essentially yield that f is an upper bound for f H . Combined with (2.3), it shows
that at generation m C 1, the mass of � is essentially carried by the intervals
Im � LD � I, I 2 GmC1.D/, since we have 1 D k�k � PmC1

iD1 2f .˛i/gmC12�˛igmC1 DPmC1
iD1 2. f .˛i/�˛i/gmC1 � 2. f .˛1/�˛1/gmC1 D 1 (recall that ˛1 D f .˛1/ D D). This can

be strengthened to show that � is exact D-dimensional.
Another important fact is the natural existence of a family of auxiliary measures

used to find a sharp lower bound for f H : with each Ǒ D .ˇm/m�1 2 Q1
mD1 Am is

associated the Cantor subset of K defined as K Ǒ D T
m�1

S
I2G Ǒ;m

I; where G Ǒ;m
is the subset of Gm obtained by selecting only the intervals of the construction for
which one considers the exponent ˇi 2 Ai at step i for all 1 � i � m. Using (2.3)
and finer properties of the measures �˛;� one can show that K Ǒ � E.�; ˇ/, where
ˇ D lim infm!1 ˇm. Moreover, the measures �ˇm; f .ˇm/ can be used to construct a
nice auxiliary probability measure � Ǒ carried by K Ǒ . At first one defines recursively
a sequence of measures .� Ǒ;m/m�1 on the atoms of the sets G Ǒ;m, m � 1, as follows:
� Ǒ;1 is the restriction of �D;D to G Ǒ;1.D G1/, and assuming that � Ǒ;m is constructed
on G Ǒ;m, if Im 2 G Ǒ;m, for I 2 GmC1.ˇmC1/ one sets

� Ǒ;mC1.Im � LˇmC1
� I/ D � Ǒ;m.Im/

�ˇmC1; f .ˇmC1/.I/P
I02GmC1.ˇmC1/

�ˇmC1; f .ˇmC1/.I
0/
:

This yields a Borel probability measure � Ǒ supported on K Ǒ such that � Ǒ.Im �
LˇmC1

� I/ D � Ǒ;mC1.Im � LˇmC1
� I/ � � Ǒ;m.Im/�ˇmC1; f .ˇmC1/.I/, so that � Ǒ.Im �

LˇmC1
� I/ � �ˇmC1; f .ˇmC1/.I/ � 2�f .ˇmC1/gmC1 (again since gm 	 NmC1). This

can be strengthened to dimH.� Ǒ/ D lim infm!1 f .ˇm/, which yields dimH K Ǒ �
lim infm!1 f .ˇm/ by the mass distribution principle (see [20]). Finally, if ˇ 2
Œ˛min; ˛max� and limm!1 ˇm D ˇ, we get f H.ˇ/ D dimH E.�; ˇ/ � f .ˇ/ by
continuity of f .
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3 Application to Multifractal Analysis of Hölder Continuous
Functions

Multifractal analysis of functions has developed in parallel to multifractal analysis
of measures, mainly under the impulse of Frisch and Parisi’s note about multifrac-
tality in fully developed turbulence [26], and with its own multifractal formalisms
[33, 35–37, 47]. These are based on the link between pointwise Hölder regularity
and the wavelet expansions of Hölder continuous functions [31].

Theorems 2.2 and 2.4 can be used to construct Hölder continuous wavelet series
with prescribed upper semi-continuous lower Hausdorff spectra, and also to give
a full illustration of the multifractal formalism for Hölder continuous functions
based on the wavelet leaders [36], according to the bridge made in [8] between this
formalism and the multifractal formalism for measures. We will restrict ourselves
to the case d D 1.

To be more specific, recall first that if F W R ! R is a bounded Hölder continuous
function, for each x0 2 R, one defines the pointwise Hölder exponent of f at x0 as

hF.x0/ D supfh � 0 W for some polynomial P;

jF.x/� P.x � x0/j D O.jx � x0jh/ as jx � x0j ! 0g;

where jx � x0j stands for the Euclidean norm of x � x0. This exponent is the
counterpart for functions of the lower local dimension for measures.

One usually calls the mapping

h 7! dimHfx 2 R W hF.x/ D hg .h 2 R [ f1g/

the singularity spectrum of F (we keep the terminology lower Hausdorff spectrum
for a slightly different spectrum defined below). Notice that if f is � -Hölder, then
fx 2 R W hF.x/ D hg D ; if h < � .

We are going to restrict the study to Œ0; 1�. We fix a wavelet basis f Ig (I
describing all the dyadic subintervals of R), so that the mother wavelet is in the
Schwartz class (see [45, Ch. 3]) and the  I are normalized to have the same
supremum norm.

Denoting f�Ig the collection of the wavelet coefficients of F in the basis f Ig,
let LI D supfj�I0 jg, the supremum being taken over all the dyadic intervals included
either in I or in the two dyadic intervals of the same generation as I neighboring I.
Then, let supp.F/ be the closed set of those x 2 Œ0; 1� such that jL.In.x//j > 0 for
all n � 1, where In.x/ stands for the closure of the unique semi-open to the right
dyadic cube of generation n which contains x. According to [36], this set does not
depend on  ; moreover, for x 2 supp.F/, one has

hF.x/ D lim inf
n!1

log2.jL.In.x//j/
�n

:
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For h 2 R [ f1g, we set

E.F; h/ D fx 2 supp.F/ W hF.x/ D hg:

The lower Hausdorff spectrum of F is the mapping

f H
F

W h 7! dimH E.F; h/ .h 2 R [ f1g/:

We say that F is homogeneously multifractal (HM) if for all h 2 R [ f1g, the
Hausdorff dimension of E.F; h/ \ B does not depend on the ball B whose interior
intersects supp.F/.

A basic idea [8] to relate multifractal analysis of functions to that of measures is
to consider wavelet series of the form

F�;�1;�2 D
X

I�Œ0;1�
jIj�1�.I/�2 I ;

where jIj stands for the diameter of I, �1 � 0, �2 > 0, � 2 MC
c .R/ with supp.�/ �

Œ0; 1�, and

� D �1 C �2 lim inf
n!1

log2.maxf�.I/ W I dyadic � Œ0; 1�; jIj D 2�ng/
�n

> 0;

so that the function F�;�1;�2 is ˇ-Hölder continuous for all 0 < ˇ < � . Then, the
study achieved in [8] yields

E.F�;�1;�2 ; h/ D E
�
�;

h � �1
�2

�
(3.1)

for all h 2 R [ f1g, so that any information about the multifractal structure
of measures should transfer to a similar one for this class of wavelet series. In
particular, it is clear from (3.1) that dimH E.F�;�1;�2 ; h/ � h��1

�2
.

3.1 Prescription of the Lower Hausdorff Spectrum

Theorem 3.1 Let f W RC [ f1g ! Œ0; 1� [ f�1g be upper semi-continuous.
Suppose that dom. f / is a closed subset I of Œ0;1� such that 0 < min.I/ < 1.
There exists an (HM) Hölder continuous function F such that f H

F
D f .

Proof For � > 0 set 	.�/ D supf f .h/=�h W h 2 Ig, with the convention x=1 D 0

for all x � 0. Since f is upper semi-continuous and bounded over its domain, 	.�/
is reached at some h < 1. Moreover, the mapping 	 is continuous, and we have
	.1=min.I// � 1 by definition of f . Now we distinguish two cases.
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If f 6
 0 over I, then 	.�/ tends to 1 as � tends to 0C, so the continuity of 	
yields 0 < �0 � 1=min.I/ such that 	.�0/ D 1, hence f .h/ � �0h for all h 2 I,
with equality at some h. Let Qf D f .��1

0 �/. By construction we have Qf 2 F.1/. Put Qf
in Theorem 2.4 to get an (HM) measure in MC

c .R/ supported on Œ0; 1� whose lower
Hausdorff spectrum is given by Qf . Then F D F�;0;��1

0
is Hölder continuous and has

f as lower Hausdorff spectrum by (3.1).
If f 
 0 on I, then Qf D f .� � min.I// belongs to F.1/ (with 0 as unique fixed

point). Put Qf in Theorem 2.4 to get an (HM) measure in MC
c .R/ supported on Œ0; 1�

whose lower Hausdorff spectrum is given by Qf . Then F D F�;min.I/;1 is Hölder
continuous and has f as lower Hausdorff spectrum.

Remark 7 In [15], the measures described in Remark 5(1) are used to construct
(HM) functions of the form F D F�;�1;�2 with supp.F/ D Œ0; 1�. Previously in
[32], S. Jaffard constructed non-(HM) wavelet series with prescribed spectrum in
the class of functions f W .0;1/ ! Œ0; 1� which are representable as the supremum
of a countable collection of step functions.

3.2 Full Illustration of the Multifractal Formalism

Our results also yield a full illustration of the multifractal formalism for Hölder
continuous functions whose support is a subset of Œ0; 1�. This requires some
preliminary definitions and facts.

If F D P
I �I I is a non-trivial such function, i.e. ; ¤ supp.F/ � Œ0; 1�,

denote by T.q/ the Lq-spectrum associated with the wavelet leaders .LI/I�Œ0;1�, i.e.
the concave non-decreasing function

TF.q/ D lim inf
n!1

�1
n

log2
X
I2G�

n

Lq
I .q 2 R/;

where G�
n stands for the set of dyadic cubes I of generation n for which LI > 0.

Due to [36] again, this function does not depend on the choice of f Ig if the mother
wavelet is in the Schwartz class. Moreover, if F takes the form F�;�1;�2 , one has
almost immediately

�F.q/ D ��.�2q/� �1q .q 2 R/: (3.2)

From now on we discard the trivial case of limn!1 log2.maxfLI WI2G�
n g/

�n D 1, so
that TF D �dimB supp.F/1f0g C .�1/1R�

�
C .1/1R

�
C

and supp.F/ D E.F;1/.

Now we have lim infn!1 log2.maxfLI WI2G�
n g/

�n < 1, so there exists ˇ � 0 such that
TF.q/ � ˇq for all q � 0, which ensures that TF takes values in R [ f�1g.

We say that F satisfies the multifractal formalism if dimH E.F; h/ D T�
F .h/ for all

h 2 RC[f1g. This is essentially the multifractal formalism considered in [36]. One
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simple, but important, observation in [8] is that from (3.1) and (3.2) follows the fact
that if � 2 MC

c .R/ is supported on Œ0; 1� and obeys the multifractal formalism for
measures, then if F�;�1;�2 is Hölder continuous, it obeys the multifractal formalism
just defined above.

Let us now examine some features of the Lq-spectrum when the multifractal
formalism holds. We distinguish three important properties denoted .i/–.iii/: since
LI D O.jIj˛/ for some ˛ > 0 by the Hölder continuity assumption, we have

.i/ There exists ˛ > 0 and c 2 Œ0; 1� (here c D dimB supp.F/ D �TF.0/) such
that TF.q/ � ˛q � c for all q � 0. Moreover,

.ii/ TF satisfies the same properties as � in Proposition 2.1.2, in particular T�
F is

non-negative over its domain.
Due to .i/, we can define q0 D inffq � 0 W TF.q/ > 0g: If F satisfies the
multifractal formalism, we must have the third property:

.iii/ Either q0 > 0, or T 0
F.0

C/ > 0 and TF.q/ D T 0
F.0

C/q for all q > 0.

Let us justify this fact. If q0 D 0, there exists c0 2 RC such that TF.q/ D
T 0

F.0
C/q C c0 for all q > 0, for otherwise by concavity of TF one has �1 <

T�
F .T

0
F.q

�// < 0 for all q > 0 large enough so that T 0
F.q

�/ < T 0
F.0

C/, while T�
F

must be non-negative over its domain. Also, since there exists ˇ > 0 such that
0 < TF.q/ � ˇq for q > 0, we have c0 D 0. If, moreover, F satisfies the multifractal
formalism, we must have T 0

F.0
C/ > 0, otherwise TF D �dimB supp.F/ over R�C,

and no Hölder continuous function F can fulfill the multifractal formalism with
TF as Lq-spectrum; indeed, this would imply T�

F .0/ D dimB supp.F/ � 0 hence
E.F�; 0/ ¤ ;.

Theorem 3.2 Suppose that a non-decreasing concave function T satisfies the above
properties .i/–.iii/ necessary to be the Lq-spectrum of a Hölder continuous function
whose support is a non-empty subset of Œ0; 1�. Then there exists an (HM) Hölder
continuous function F with supp.F/ � Œ0; 1�, which satisfies the multifractal
formalism with TF D T.

Proof Let q0 D inffq � 0 W T.q/ > 0g. If q0 > 0, then �.q/ D T.q0q/
satisfies the properties of Proposition 2.1, so that it is the Lq-spectrum of an exact
dimensional measure � of dimension D, for any D 2 Œq0T 0.qC

0 /; q0T
0.q�

0 /� �
Œ0; 1� by Theorem 2.2. Moreover, the inequality ��.q/ � ˛q0q � c implies that
��
�.ˇ/ D �1 for all ˇ < ˛q0. Consequently, the function F D F�;0;1=q0 is .˛ � �/-

Hölder continuous for all � > 0, and due to (3.1) and (3.2) it fulfills the multifractal
formalism for wavelet leaders with TF W q 7! ��.q=q0/ D T.q/.

If q0 D 0, the function defined as �.q/ D T.q/� T 0.0C/q satisfies the conditions
required by Proposition 2.1. Take the (HM) measure � associated with this function
� by Theorem 2.2. Then, the function F�;T0.0C/;1 is .T 0.0C/� �/-Hölder continuous
for all � > 0 and due to (3.1) and (3.2) it fulfills the multifractal formalism for
wavelet leaders, with TF W q 7! ��.q/C T 0.0C/q D T.q/.

Remark 8 In [35], S. Jaffard uses a multifractal formalism associated with wavelet
coefficients (not leaders). He introduces a class of concave functions such that to
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each element � of this class he can associate a Baire space V built from Besov
spaces, so that generically an element of V has a non-decreasing Hausdorff spectrum
obtained as the Legendre transform of � computed by taking the infimum over a
subdomain of RC.
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