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Abstract In 2009, the first author introduced a class of zeta functions, called
‘distance zeta functions’, which has enabled us to extend the existing theory of
zeta functions of fractal strings and sprays (initiated by the first author and his
collaborators in the early 1990s) to arbitrary bounded (fractal) sets in Euclidean
spaces of any dimensions. A closely related tool is the class of ‘tube zeta functions’,
defined using the tube function of a fractal set. These zeta functions exhibit deep
connections with Minkowski contents and upper box (or Minkowski) dimensions,
as well as, more generally, with the complex dimensions of fractal sets. In
particular, the abscissa of (Lebesgue, i.e., absolute) convergence of the distance
zeta function coincides with the upper box dimension of a set. We also introduce
a class of transcendentally quasiperiodic sets, and describe their construction based
on a sequence of carefully chosen generalized Cantor sets with two auxilliary
parameters. As a result, we obtain a family of “maximally hyperfractal” compact
sets and relative fractal drums (i.e., such that the associated fractal zeta functions
have a singularity at every point of the critical line of convergence). Finally, we
discuss the general fractal tube formulas and the Minkowski measurability criterion
obtained by the authors in the context of relative fractal drums (and, in particular, of
bounded subsets of RN).
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1 Introduction

This article provides a short survey of some of the recent advances in the theory
of fractal zeta functions and the associated higher-dimensional theory of complex
dimensions, valid for arbitrary bounded subsets of Euclidean spaces and developed
in the forthcoming research monograph [41], entitled Fractal Zeta Functions and
Fractal DrumsW Higher-Dimensional Theory of Fractal Dimensions. (See also the
research articles [42–46] and the survey article [47].)

The theory of zeta functions of fractal strings, initiated by the first author in
the early 1990s and described in an extensive research monograph [52], joint with
M. van Frankenhuijsen (see also the references therein), was given an unexpected
impetus in 2009, when a new class of zeta functions, called ‘distance zeta functions’,
was discovered (also by the first author).1 Since distance zeta functions are associ-
ated with arbitrary bounded (fractal) sets in Euclidean spaces of any dimension (see
Definition 2.1), they clearly represent a valuable tool connecting the geometry of
fractal sets with complex analysis. This interplay is described in [41–47], where the
foundations of the theory of fractal zeta functions have been laid. In this paper, by
‘fractal zeta functions’ we mean the following three classes of zeta functions: zeta
functions of fractal strings (and, more generally, of fractal sprays), distance zeta
functions and tube zeta functions of bounded subsets of RN , with N � 1, although
some other classes may appear as well, like zeta functions of relative fractal drums
in R

N and spectral zeta functions; see Sect. 6 below and [41, Chap. 4]. The theory
of fractal zeta functions exhibits very interesting connections with the Minkowski
contents and dimensions of fractal sets; see Theorems 2.3 and 2.5.

Like fractal string theory, which the present theory of fractal zeta functions
extends to arbitrary dimensions (as well as to “relative fractal drums” in R

N),
the work described here should eventually have applications to various aspects
of harmonic analysis, fractal geometry, dynamical systems, geometric measure
theory and analysis on nonsmooth spaces, number theory and arithmetic geometry,
mathematical physics and, more speculatively, to aspects of condensed matter

1For fractal string theory and the associated one-dimensional theory of complex dimensions, as
well as for the extensions to higher-dimensional fractal sprays (in the sense of [39]), we refer the
reader to the research monographs [50–52] along, for example, with the articles [5, 6, 12, 14–
16, 20–40, 48, 49, 53, 56, 60, 61]. We refer, in particular, to [52, §12.2.1 and Chap. 13] for a survey
of some of the recent developments of the theory, prior to [41–47].
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physics and cosmology. Some of the more mathematical applications of the theory
are described in [41], as well as in [42–47], but a variety of potential applications
remain to be explored or even imagined.

The basic property of the distance zeta function of a fractal set, described in
Theorem 2.2, is that its abscissa of (absolute or Lebesgue) convergence is equal to
the upper box dimension D of the set. Under some mild hypotheses, D is always
a singularity; see part .b/ of Theorem 2.2. Furthermore, assuming that D is a pole,
then it is simple. Moreover, the residue of the distance zeta function computed at
D is, up to a multiplicative constant, between the corresponding upper and lower
Minkowski contents. A similar statement holds for the tube zeta function. (See
Theorems 2.3 and 2.5, respectively.)

In addition, according to part .b/ of Theorem 2.2, under some mild assumptions
on a bounded set A, the abscissa of (Lebesgue, i.e., absolute) convergence of its
distance zeta function coincides not only with D, but also with the abscissa of
holomorphic continuation of the zeta function.

We stress that if D WD dimBA < N, all the results concerning the distance zeta
functions have exact counterparts for the tube zeta functions, and vice versa. In other
words, the fractal zeta functions introduced in [41–47] contain essentially the same
information. In practice, however, it is often the case that one of the fractal zeta
functions is better suited for the given situation under consideration.

In Sect. 3, we discuss the existence and the construction of a suitable meromor-
phic continuation of the distance (or tube) zeta function of a fractal set, both in the
Minkowski measurable case (Theorem 3.1) and a frequently encountered instance of
Minkowski nonmeasurable case (Theorem 3.2). We will illustrate the latter situation
by computing the fractal zeta function and the associated complex dimensions of the
Sierpiński carpet; see Proposition 3.3 and Example 4 when N D 2 or 3, respectively.
Many other examples are provided in [41] and [42–46], where are calculated, in
particular, the complex dimensions of the higher-dimensional Sierpiński gaskets and
carpets in R

N , for any N � 2.
In Sect. 4, we introduce the so-called transcendentally n-quasiperiodic sets, for

any integer n � 2 (that is, roughly speaking, the sets possessing n quasiperiods;
see Definition 4.4), and describe the construction of 2-quasiperiodic sets, based
on carefully chosen generalized Cantor sets with two parameters, introduced in
Definition 4.1; see Theorem 4.5. It is also possible to construct n-quasiperiodic sets,
for any n � 2, and even 1-quasiperiodic sets, that is, sets which possess infinitely
many quasiperiods; see Sect. 5 below and [41, §4.6].

In Sect. 6, we introduce the notion of a relative fractal drum .A; �/ (which
represents a natural extension of the notion of bounded fractal string and of bounded
set). We also introduce the corresponding relative distance and tube zeta functions
�A. � ; �/ and Q�A. � ; �/, and study their properties. It is noteworthy that the relative
box dimension dimB.A; �/ can be naturally defined as a real number, which may
also assume negative values, including �1.

In Sect. 7, we address the question of reconstructing the tube function t 7!
jAt \�j of a relative fractal drum .A; �/, and thereby of obtaining a general “fractal
tube formula” expressed in terms of the complex dimensions of .A; �/ (defined as
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the poles of a suitable meromorphic extension of the relative distance zeta function
�A. � ; �/). The corresponding tube formulas are obtained in [41, Chap. 5] and [46]
(announced in [45]), as well as illustrated by a variety of examples. The example of
the three-dimensional Sierpiński carpet is given in Example 4. Moreover, towards
the end of Sect. 7, we explain how to deduce from our general tube formulas (and
significantly extend) earlier results obtained for fractal strings (in [50–52]) and,
especially, for fractal sprays and self-similar tilings (in [35] and [36]).

In closing this introduction, we recall some basic notation and terminology which
will be needed in the sequel. First of all, in order to avoid trivial special cases,
we assume implicitly that all bounded subsets of R

N under consideration in the
statements of the theorems are nonempty. Assume that A is a given bounded subset
of RN and let r be a fixed real number. We define the upper and lower r-dimensional
Minkowski contents of A, respectively, by

M�r.A/ WD lim sup
t!0C

jAtj
tN�r

; Mr�.A/ WD lim inf
t!0C

jAtj
tN�r

;

where At denotes the Euclidean t-neighborhood of A (namely, At WD fx 2 R
N W

d.x;A/ < tg) and jAtj is the N-dimensional Lebesgue measure of At. The upper and
lower box .or Minkowski/ dimensions of A are then defined, respectively, by

dimBA WD inffr 2 R W M�r.A/ D 0g; dimBA WD inffr 2 R W Mr�.A/ D 0g:

It is easy to check that 0 � dimBA � dimBA � N. Furthermore, if A is such that
dimBA D dimBA, then this common value is denoted by dimB A and is called the box
.or Minkowski/ dimension of A. Moreover, if A is such that, for some D 2 Œ0;N�,
we have 0 < MD�.A/ � M�D.A/ < 1 (in particular, then dimB A exists and
D D dimB A), we say that A is Minkowski nondegenerate. If MD�.A/ D M�D.A/,
then this common value is denoted by MD.A/ and called the Minkowski content of
A. Finally, assuming that A is such that MD.A/ exists and 0 < MD.A/ < 1, we
say that A is Minkowski measurable.2

Throughout this paper, given ˛ 2 R [ f˙1g, we denote by fRe s > ˛g the
corresponding open right half-plane in the complex plane, defined by fs 2 C W
Re s > ˛g. (In particular, if ˛ D ˙1, fRe s > ˛g is equal to ; or C, respectively.)
Similarly, given any ˛ 2 R, we denote by fRe s D ˛g the corresponding vertical
line fs 2 C W Re s D ˛g.

2We note that the notion of Minkowski dimension was introduced (for noninteger values) by
Bouligand [3] in the late 1920s (without making a clear distinction between the lower and upper
limits), while the notions of (lower and upper) Minkowski content, Minkowski measurability and
Minkowski nondegeneracy were introduced, respectively, in [9, 59] and [67]. (See also [22, 24, 38]
and, especially, [39, 40], along with [52], for the latter notions.) For general references on the
notion of Minkowski (or box) dimension (from different points of view), we refer, for example, to
[7, 9, 54, 63] and [52].
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2 Distance and Tube Zeta Functions

Let us introduce a new class of zeta functions, defined by the first author in 2009,
which extends the notion of geometric zeta functions of bounded fractal strings to
bounded subsets of Euclidean spaces of arbitrary dimensions.

Definition 2.1 ([41, 42]) Let A be a bounded subset of R
N and let ı be a fixed

positive real number. Then, the distance zeta function �A of A is defined by

�A.s/ WD
Z

Aı

d.x;A/s�Ndx; (2.1)

for all s 2 C with Re s sufficiently large. Here, d.x;A/ WD inffjx � yj W y 2 Ag
denotes the usual Euclidean distance from x to A. Furthermore, the integral is taken
in the sense of Lebesgue, and hence, is absolutely convergent.3

Remark 1 Since the difference of any two distance zeta functions of the same set A
corresponding to two different values of ı is an entire function,4 it follows that the
dependence of the distance zeta function �A on ı > 0 is inessential, in the sense that
the poles (of meromorphic extensions) of �A, as well as their multiplicities, do not
depend on the choice of ı.

The key for understanding the behavior of the distance zeta function �A consists
in understanding the Lebesgue integrability of the function Aı 3 x 7! d.x;A/Re s�N ,
where s 2 C is fixed.5 (We shall soon see that Re s should be sufficiently large.)
More precisely, we are interested in the Lebesgue integrability of the function x 7!
d.x;A/�� defined on Aı, where � WD N � Re s and s is a fixed complex number.
Since the function is clearly bounded (and hence, integrable) for � � 0, it suffices
to consider the case when � > 0, that is, when Re s < N.

Let us recall a useful and little known result due to Harvey and Polking,
stated implicitly on page 42 of [13], in which a sufficient condition for Lebesgue
integrability is expressed in terms of the upper box dimension. If A is any nonempty
bounded subset of RN, then the following implication holds6:

� < N � dimBA H)
Z

Aı

d.x;A/��dx < 1: (2.2)

3For simplicity, we implicitly assume throughout this paper that jAj D 0; the case when jAj > 0 is
discussed in [41].
4This is an easy consequence of the fact that d.x;A/ 2 Œı1; ı2� for all x 2 Aı2 n Aı1 with 0 < ı1 <
ı2 < 1.
5Indeed, note that jd.x;A/s�N j D d.x;A/Re s�N for all x 2 Aı .
6Moreover, if we assume that D WD dimB A exists, D < N and MD

�.A/ > 0, then the converse
implication holds as well; see [67, Thm. 4.3]. (See also [68, Thm. 4.1(b)].)
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Remark 2 The sufficient condition for the Lebesgue (i.e., absolute) integrability of
the function Aı 3 x 7! d.x;A/s�N in the Harvey–Polking result in (2.2), becomes
� WD N � Re s < N � dimBA, that is, Re s > dimBA. In other words, �A.s/ is well
defined for all s 2 C in the open right half-plane fRe s > dimBAg.

The distance zeta function of a bounded set represents a natural extension of
the notion of geometric zeta function �L, associated with a bounded fractal string
L D .`j/j�1 (introduced by the first author and his collaborators7 in the early 1990s
and extensively studied in [50–52] and the relevant references therein):

�L.s/ WD
1X

jD1
.`j/

s; (2.3)

for all s 2 C with Re s sufficiently large. Here, a bounded fractal string L is defined
as a nonincreasing infinite sequence of positive real numbers .`j/j�1 such that ` WDP

j�1 `j < 1. Alternatively, L can be viewed as a bounded open subset � of R, in
which case the `js are the lengths of the connected components (open intervals) of
�, written in nonincreasing order (so that `j # 0 as j ! 1).

An important first result concerning �L (first observed in [23, 24], using a result
from [2]) is that its abscissa of (absolute) convergence coincides with QD (the inner
Minkowski dimension of L or, equivalently, of its fractal boundary @�), defined by
QD WD dimB.@�;�/; see definition (6.1) below. For a direct proof of this statement,
see [52, Thm. 1.10] or [52, Thm. 13.111] and [31]. In light of the next comment,
it can be readily shown that part .a/ of Theorem 2.2 below extends this result to
arbitrary compact subsets of Euclidean spaces in any dimension; see [41, 42].

It is easy to see that the distance zeta function �AL of the set

AL WD
�

ak WD
1X

jDk

`j W k � 1

�
� Œ0; `�;

associated with L, and the geometric zeta function �L are connected by the
following simple relation:

�AL.s/ D u.s/ �L.s/C v.s/; (2.4)

for all complex numbers s such that Re s is sufficiently large, where u and v are
holomorphic onCnf0g and u is nowhere vanishing. In particular, due to Theorem 2.2
below, it follows that the abscissae of convergence of the distance zeta function �A

and of the geometric zeta function �L coincide, and that the corresponding poles
located on the critical line fRe s D dimBALg (called principal complex dimensions
of L or, equivalently, of AL), as well as their multiplicities, also coincide. The exact

7See, especially, [23, 24, 32, 33, 38–40] and [14].
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same results hold if AL is replaced by @�, the boundary of �, where � is any
geometric realization of L by a bounded open subset of R. For more details, see
[41, 42].

Before stating Theorem 2.2, we need to introduce some terminology and
notation, which will also be used in the remainder of the paper.

Given a meromorphic function (or, more generally, an arbitrary complex-valued
function) f D f .s/, initially defined on some domain U � C, we denote by Dhol.f /
the unique extended real number (i.e., Dhol.f / 2 R [ f˙1g) such that fRe s >
Dhol.f /g is the maximal open right half-plane (of the form fRe s > ˛g, for some
˛ 2 R [ f˙1g) to which the function f can be holomorphically extended.8 This
maximal (i.e., largest) half-plane is denoted by H.f / and called the half-plane of
holomorphic continuation of f .

If, in addition, the function f D f .s/ is assumed to be given by a tamed Dirichlet-
type integral (or DTI, in short),9 of the form

f .s/ WD
Z

E
'.x/sd�.x/; (2.5)

for all s 2 C with Re s sufficiently large, where � is a (positive or complex) local
(i.e., locally bounded) Borel measure on a given (measurable) space E and

0 � '.x/ � C for j�j -a.e. x 2 E; (2.6)

where C � 0,10 then D.f /, the abscissa of .absolute or Lebesgue/ convergence of f ,
is defined as the unique extended real number (i.e., D.f / 2 R [ f˙1g) such that
fRe s > D.f /g is the maximal open right half-plane (of the form fRe s > ˛g, for
some ˛ 2 R[ f˙1g) on which the Lebesgue integral initially defining f in (2.5) is
convergent (or, equivalently, is absolutely convergent), with � replaced by j�j, the
total variation measure of �. (Recall that j�j D � if � is positive.) In short, D.f / is
called the abscissa of convergence of f . Furthermore, the aforementioned maximal
right half-plane is denoted by ….f / and is called the half-plane of (absolute or
Lebesgue) convergence of (the Dirichlet-type integral) f . It is shown in [41, §2.1]

8By using the principle of analytic continuation, it is easy to check that Dhol.f / and H.f / are well
defined; see [41, §2.1].
9This is the case of the classic (generalized) Dirichlet series and integrals [55, 58], the classic
arithmetic zeta functions (see, e.g., [52, App. A] and [25, Apps. B, C & E]), as well as of the
geometric zeta functions of fractal strings studied in [50–52] and of all the fractal zeta functions
considered in this paper and in [41–47].
10Such functions f are called tamed DTIs in [41–47]; see esp. [41, App. A] for a development of
their general theory.
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that under mild hypotheses (which are always satisfied in our setting), D. f / is well
defined and (with the notation of (2.5) just above) we have, equivalently11:

D. f / D inf

�
˛ 2 R W

Z
E
'.x/˛dj�j.x/ < 1

�
; (2.7)

where (as above) j�j is the total variation (local) measure of �. Under the stated
conditions on f , we have…. f / � H. f /; that is, �1 � Dhol. f / � D. f / � C1.

Note that the distance zeta function �A, defined by (2.1), is a tamed DTI of the
form (2.5), with E WD Aı, '.x/ WD d.x;A/ and d�.x/ WD d.x;A/�Ndx. Furthermore,
we can clearly take C WD ı in (2.6).

The following key result describes some of the basic properties of distance zeta
functions.

Theorem 2.2 ([41, 42]) Let A be an arbitrary bounded subset of RN and let ı be a
fixed positive real number. ThenW
.a/ The distance zeta function �A is holomorphic on fRe s > dimBAg. Moreover,

….�A/ D fRe s > dimBAg; that is,

D.�A/ D dimBA: (2.8)

.b/ If the box .or Minkowski/ dimension D WD dimB A exists, D < N and MD�.A/ >
0, then �A.s/ ! C1 as s 2 R converges to D from the right. In particular,
H.�A/ D ….�A/ D fRe s > dimB Ag; that is,

Dhol.�A/ D D.�A/ D dimB A: (2.9)

Remark 3

.a/ It would be of interest to construct (if possible) a class of nontrivial bounded
subsets A of R

N such that Dhol.�A/ < D.�A/. A trivial example is given by
A D Œ0; 1�, since then Dhol.�A/ D 0 and D.�A/ D 1.

.b/ The analog of Theorem 2.2 holds for the tube zeta function Q�A (to be introduced
in Definition 2.4 below), except for the fact that in part .b/, one no longer needs
to assume that D < N.

Given a bounded set A, it is of interest to know the corresponding poles of the
associated distance zeta function �A, meromorphically extended (if possible) to a
neighborhood of the critical line fRe s D D.�A/g. Following the terminology of
[52], these poles are called the complex dimensions of A and we denote the resulting

11Let D WD dimBA, for brevity. In light of Theorem 2.2, for this alternative definition of D.�A/ (or
of D.Q�A/), with A � R

N bounded (as in the present situation), it would suffice to restrict oneself
to ˛ � 0 in the right-hand side of (2.7); this follows since D.�A/ D dimBA � 0 and (if D < N),
D.�A/ D D.Q�A/. Here, Q�A stands for the tube zeta function of A, defined by Eq. (2.12).
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set of complex dimensions by P.�A/.12 We pay particular attention to the set of
complex dimensions of A located on the critical line fRe s D D.�A/g, which we call
the set of principal complex dimensions of A and denote by dimPC A.

For example, it is well known that for the ternary Cantor set C.1=3/, dimB C.1=3/ D
log3 2 and, moreover (see [52, §1.2.2 and §2.3.1]), with � WD p�1,

dimPC C.1=3/ WD log3 2C 2�

log 3
�Z:

The following result provides an interesting connection between the residue of
the distance zeta function of a fractal set at D WD dimB A and its Minkowski contents.

Theorem 2.3 ([41, 42]) Assume that A is a bounded subset of R
N which is

nondegenerate .that is, 0 < MD�.A/ � M�D.A/ < 1 and, in particular,
dimB A D D/, and D < N. If the distance zeta function �A. � ;Aı/ WD �A, initially
defined by (2.1), can be meromorphically extended13 to a neighborhood of s D D,
then D is necessarily a simple pole of �A. � ;Aı/, and

.N � D/MD�.A/ � res.�A. � ;Aı/;D/ � .N � D/M�D.A/: (2.10)

Furthermore, the value of res.�A. � ;Aı/;D/ does not depend on ı > 0. In particular,
if A is Minkowski measurable, then

res.�A. � ;Aı/;D/ D .N � D/MD.A/: (2.11)

The distance zeta function defined by (2.1) is closely related to the tube zeta
function of a fractal set, which, in turn, is defined via the tube function t 7! jAtj, for
t > 0, of the fractal set A, as we now explain.

Definition 2.4 ([41, 42]) Let ı be a fixed positive number, and let A be a bounded
subset of RN . Then, the tube zeta function of A, denoted by Q�A, is defined (for all
s 2 C with Re s sufficiently large) by

Q�A.s/ WD
Z ı

0

ts�N�1jAtj dt: (2.12)

12Strictly speaking, one should talk about the set P.�A;U/ of visible complex dimensions relative
to a domain U � C to which �A can be meromorphically extended; see [41–44] (along with [52]).
In the examples described in this paper, we have U WD C.
13The existence and construction of meromorphic extensions of fractal zeta functions is discussed
in Sect. 3. It is studied in a variety of situations in [41–44, 46].
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For any fixed positive real number ı > 0, the distance and tube zeta functions
associated with a given fractal set A are connected as follows14:

�A.s;Aı/ D ıs�N jAıj C .N � s/ Q�A.s; ı/; (2.13)

for Re s > dimBA15; see [41, 42].16 Using this result, it is easy to obtain the analog
of Theorem 2.2 for Q�A (as was stated in Remark 3.b/ above) and to reformulate
Theorem 2.3 in terms of the tube zeta functions. In particular, we conclude that the
residue of the tube zeta function of a fractal set, computed at s D D, is equal to its
Minkowski content, provided the set is Minkowski measurable.

Theorem 2.5 ([41, 42]) Assume that A is a nondegenerate bounded subset of RN

.so that D WD dimB A exists/, and there exists a meromorphic extension of Q�A to a
neighborhood of D. Then, D is a simple pole of Q�A, and for any positive ı, res. Q�A;D/
is independent of ı. Furthermore, we have

MD�.A/ � res. Q�A;D/ � M�D.A/: (2.14)

In particular, if A is Minkowski measurable, then

res. Q�A;D/ D MD.A/: (2.15)

A class of fractal sets A for which we have strict inequalities in (2.14) (and hence
also in (2.10) of Theorem 2.3 above) is constructed in Theorem 3.2; see (3.8).

3 Meromorphic Extensions of Fractal Zeta Functions

Since the definition of the set of principal complex dimensions dimPC A of A requires
the existence of a suitable meromorphic extension of the distance zeta function �A, it
is natural to study this issue in more detail. For simplicity, we formulate the results
of this section for Q�A, but we note that the analogs of Theorems 3.1 and 3.2 also hold
for �A, provided D < N; see [41, §2.3.3] or [43].

Theorem 3.1 (Minkowski measurable case, [41, 43]) Let A be a bounded subset
of RN such that there exist ˛ > 0, M 2 .0;C1/ and D � 0 satisfying

jAtj D tN�D .M C O.t˛// as t ! 0C: (3.1)

14We write here �A. � ;Aı/ WD �A and Q�A. � ; ı/ WD Q�A, for emphasis.
15In light of the principle of analytic continuation, one deduces that identity (2.13) continues to
hold whenever one (and hence, both) of the fractal zeta functions �A and Q�A is meromorphic on a
given domain U � C.
16The case when D D N in Theorem 2.5 must be treated separately.
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Then, dimB A exists and dimB A D D. Furthermore, A is Minkowski measurable
with Minkowski content MD.A/ D M. Moreover, the tube zeta function Q�A has
for abscissa of convergence D. Q�A/ D dimB A D D and possesses a .necessarily
unique/ meromorphic continuation .still denoted by Q�A/ to .at least/ the open right
half-plane fRe s > D � ˛g. The only pole of Q�A in this half-plane is s D D; it is
simple and, moreover, res. Q�A;D/ D M.

Next, we deal with a useful class of Minkowski nonmeasurable sets. Before
stating Theorem 3.2, let us first introduce some notation. Given a locally integrable
T-periodic function G W R ! R, with T > 0, we denote by G0 its truncation to
Œ0;T�, while the Fourier transform of G0 is denoted by OG0: for all t 2 R,

OG0.t/ WD
Z C1

�1
e�2��t�G0.�/ d� D

Z T

0

e�2��t�G.�/ d�: (3.2)

Theorem 3.2 (Minkowski nonmeasurable case, [41, 43]) Let A be a bounded
subset of RN such that there exist D � 0, ˛ > 0, and G W R ! .0;C1/ a
nonconstant periodic function with period T > 0, satisfying

jAtj D t N�D
�
G.log t�1/C O.t˛/

�
as t ! 0C: (3.3)

Then G is continuous, dimB A exists and dimB A D D. Furthermore, A is Minkowski
nondegenerate, with upper and lower Minkowski contents respectively given by

MD�.A/ D min G; M�D.A/ D max G: (3.4)

Moreover, the tube zeta function Q�A has for abscissa of convergence D. Q�A/ D D and
possesses a .necessarily unique/ meromorphic extension .still denoted by Q�A/ to (at
least) the half-plane fRe s > D � ˛g.

In addition, the set of principal complex dimensions of A is given by

dimPC A D
�

sk D D C 2�

T
�k W OG0

� k

T

�
¤ 0; k 2 Z

�
(3.5)

(see (3.2)) and there are no other complex dimensions in fRe s > D � ˛g; they are
all simple, and the residue at each sk 2 dimPCA, with k 2 Z, is given by

res. Q�A; sk/ D 1

T
OG0

� k

T

�
: (3.6)

If sk 2 dimPC A, then s�k 2 dimPC A .in agreement with the ‘reality principle’/, and
j res. Q�A; sk/j � 1

T

R T
0

G.�/ d�; furthermore, limk!˙1 res. Q�A; sk/ D 0.
Moreover, the set of principal complex dimensions of A contains s0 D D, and

res. Q�A;D/ D 1

T

Z T

0

G.�/ d�: (3.7)
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In particular, A is not Minkowski measurable and

MD�.A/ < res. Q�A;D/ <M�D.A/: (3.8)

Example 1 (a-strings) The compact set A WD fj�a W j 2 Ng [ f0g, where a > 0, is
Minkowski measurable and

MD.A/ D 21�D

1 � D
aD; D WD dimB A D 1

1C a
: (3.9)

(See [22, Exple. 5.1 and App. C].) The associated fractal string L D .`j/j�1, defined
by `j D j�a � .j C 1/�a for all j � 1 (or, equivalently, by � WD Œ0; 1� n A � R,
so that @� D A), is called the a-string; see [14, 22–24, 38, 39] and [52, §6.5.1]. In
light of (2.11) and (2.15), we then know that res.�A. � ;Aı/;D/ D .1 � D/MD.A/
and res. Q�A;D/ D MD.A/.

Example 2 (fractal nests) Let a > 0 and let A be the countable union of concentric
circles in R

2, centered at the origin and of radii r D k�a, where k 2 N. According
to the terminology introduced in [41–44], A is called the fractal nest of inner type
generated by the a-string from the preceding example. Then, using the distance zeta
function of A it is possible to show that

D WD dimBA D max
n
1;

2

1C a

o
: (3.10)

(See [41, Chap. 3] and [42–44].) The set A is closely related to the planar spiral 	
defined in polar coordinates by r D 
�a, 
 � 
0, where 
0 > 0, and the value of
dimB 	 is the same as for A; see [63]. We mention in passing that for a ¤ 1, the
fractal nest A (as well as the corresponding spiral 	) is Minkowski measurable and
for every a 2 .0; 1/, the value of its Minkowski content is independent of 
0 and
given by

MD.A/ D �.2=a/2a=.1Ca/ 1C a

1� a
: (3.11)

Using (3.11), along with Eq. (2.11) from Theorem 2.3, we conclude that the residue
of the distance zeta function �A, computed at s D D, is given by

res.�A;D/ D �.2=a/2a=.1Ca/ 2a

1 � a
; (3.12)

provided a 2 .0; 1/. For a D 1, we have M1.A/ D M1.	/ D C1. These and
related results are useful in the study of fractal properties of spiral trajectories of
planar vector fields; see, e.g., [69].
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More generally, if we consider the fractal nest AN defined as the countable union
of concentric spheres in R

N , centered at the origin and of radii r D k�˛ , where
k 2 N, then using the distance zeta function �AN , it can be shown (see [41, §3.4] and
[42–44]) that

dimBAN D max
n
N � 1; N

1C a

o
: (3.13)

Note that for N D 1 and N D 2, we recover the box dimension of the a-string and
of the fractal nest, respectively; see [42–44] and Eqs. (3.9)–(3.10) above.

In the following result, we provide the distance zeta function of the Sierpiński
carpet and the corresponding principal complex dimensions. It is well known that
the Sierpiński carpet is not Minkowski measurable. See, e.g., [52], as well as [17]
for explicit values of its upper and lower Minkowski contents. A similar result can
be obtained for the Sierpiński gasket (and its higher-dimensional analogs); see [41,
§3.2.2] and [42–44].

Proposition 3.3 (Distance zeta function of the Sierpiński carpet) Let A be the
Sierpiński carpet in R

2, constructed in the usual way inside the unit square. Let ı
be a fixed positive real number. We assume without loss of generality that ı > 1=6

.so that for this choice of ı, Aı coincides with the ı-neighborhood of the unit square
Œ0; 1�2/. Then, for all s 2 C, the distance zeta function �A of the Sierpiński carpet is
given by

�A.s/ D 8

2ss.s � 1/.3s � 8/
C 2�

ıs

s
C 4

ıs�1

s � 1 ; (3.14)

which is meromorphic on the whole complex plane. In particular, the set of complex
dimensions and of principal complex dimensions of the Sierpiński carpet are given,
respectively, by

P.�A/ D f0; 1g [ dimPC A; dimPC A D log3 8C 2�

log 3
�Z: (3.15)

Furthermore, each of the complex dimensions .i.e., each of the poles of �A/ is simple.
Moreover, the residues of the distance zeta function �A computed at the principal
poles sk WD log3 8C 2�

log 3k�, with k 2 Z, are given by

res.�A; sk/ D 2�sk

.log 3/sk.sk � 1/ : (3.16)

Finally, the approximate values of the lower and upper D-dimensional Minkowski
contents are given by MD�.A/ � 1:350670 and M�D.A/ � 1:355617. .The precise
values can be found in [17]:/
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Sketch of the proof In order to compute the distance zeta function

�A.s/ WD
Z

Aı

d..x; y/;A/s�2dx dy

of the Sierpiński carpet A, we first have to calculate

�Ak.s; �k/ WD
Z
�k

d..x; y/;Ak/ dx dy; (3.17)

where �k is a square of the k-th generation (of side lengths ak D 3�k) and Ak is its
boundary. (Here, we deal in fact with ‘relative distance zeta functions’, which are
discussed in Remark 4 just below; see (6.2) and [41–44].) This can be easily done
by splitting �k into the disjoint union of eight congruent right-angle triangles, and
we obtain after a short computation that �Ak.s; �k/ D 8 � 2�sas

ks�1.s � 1/�1. Since
the k-th generation consists of 8k�1 squares congruent to �k, we deduce that

�A.s; Œ0; 1�
2/ D

1X
kD1

8k�1�Ak.s; �k/ D 8

2ss.s � 1/.3s � 8/
; (3.18)

for Re s > log3 8. The last expression in (3.18) is meromorphic in all of C. Hence,
upon analytic continuation, �A.s; Œ0; 1�2/ is given by that expression for all s 2 C.
Note that the value of �A.s; Œ0; 1�2/ is precisely equal to the first term on the right-
hand side of (3.14). The remaining two terms are obtained by considering �A.s;Aı n
Œ0; 1�2/, which can be easily reduced to considering a disk Bı.0/ of radius ı with
respect to its origin 0 2 R

2, and two rectangles that are congruent to�0 WD .0; 1/	
.�ı; ı/ with respect to its middle section A0 WD .0; 1/	 f0g. ut
Remark 4 Equation (3.17) is a very special case of the zeta function of a relative
fractal drum .A; �/ in R

N , a notion which will be briefly discussed in Sect. 6 and is
the object of [44] and [41, Chap. 4]; see the first equality in Eq. (6.2) below.

4 Transcendentally Quasiperiodic Sets

In this section, we define a class of quasiperiodic fractal sets. The simplest of such
sets has two incommensurable periods. Moreover, using suitable generalized Cantor
sets, it is possible to ensure that the quotient of their periods be a transcendental real
number. Our construction of such sets is based on a class of generalized Cantor sets
with two parameters, which we now introduce.

Definition 4.1 ([41, 42]) The generalized Cantor sets C.m;a/ are determined by an
integer m � 2 and a real number a 2 .0; 1=m/. In the first step of the analog
of Cantor’s construction, we start with m equidistant, closed intervals in Œ0; 1� of
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length a, with m � 1 ‘holes’, each of length .1 � ma/=.m � 1/. In the second step,
we continue by scaling by the factor a each of the m intervals of length a; and so
on, ad infinitum. The .two-parameter/ generalized Cantor set C.m;a/ is then defined
as the intersection of the decreasing sequence of compact sets constructed in this
way. It is easy to check that C.m;a/ is a perfect, uncountable compact subset of R;
furthermore, C.m;a/ is also self-similar. For m D 2, the sets C.m;a/ are denoted by
C.a/. The classic ternary Cantor set is obtained as C.2;1=3/. In order to avoid any
possible confusion, we note that the generalized Cantor sets introduced here are
different from the generalized Cantor strings introduced and studied in [52, Chap.
10], as well as used in a key manner in [52, Chap. 11].

We collect some of the basic properties of generalized Cantor sets in the
following proposition.

Proposition 4.2 (Generalized Cantor sets, [41, 42]) If A WD C.m;a/ is the gener-
alized Cantor set introduced in Definition 4.1, where m is an integer larger than 1,
and a 2 .0; 1=m/, then

D WD dimB A D D.�A/ D log1=a m: (4.1)

Furthermore, the tube formula associated with A is given by

jAtj D t1�DG.log t�1/ for all t 2 .0; t0/; (4.2)

where t0 is a suitable positive constant and G D G.�/ is a continuous, positive and
nonconstant periodic function, with minimal period T D log.1=a/.

Moreover, A is Minkowski nondegenerate and Minkowski nonmeasurable; that
is, 0 <MD�.A/ <M�D.A/ < 1.17

Finally, the distance zeta function of A admits a meromorphic continuation to all
of C and the set of principal complex dimensions of A is given by

dimPC A D D C 2�

T
�Z: (4.3)

Besides .dimPC A/ [ f0g, there are no other poles, and all of the poles of �A are
simple. In particular, P.�A/ D .D C 2�

T �Z/ [ f0g.

The definition of quasiperiodic sets is based on the following notion of quasiperi-
odic functions, which will be useful for our purposes.18

17The periodic function G D G.�/, as well as the values of MD
�.A/ and M�D.A/, can be explicitly

computed; see [41, §3.1.1].
18We note that Definition 4.3, although rather close to the one provided in [64], is very different
from the usual definition of Bohr-type quasiperiodic functions.
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Definition 4.3 ([41, 42]) We say that a function G D G.�/ W R ! R is transcen-
dentally n-quasiperiodic, with n � 2, if it is of the form G.�/ D H.�; : : : ; �/,
where H W R

n ! R is a function that is nonconstant and Tk-periodic in its k-th
component, for each k D 1; : : : ; n, and the periods T1; : : : ;Tn are algebraically
(and hence, rationally) independent.19 The positive numbers Ti (i D 1; : : : ; n) are
called the quasiperiods of G. If, instead, the set of quasiperiods fT1; : : : ;Tng is
rationally independent and algebraically dependent, we say that G is algebraically
n-quasiperiodic.

Definition 4.4 ([41, 42]) Given a bounded subset A of RN , we say that a function
G W R ! R is associated with the set A (or corresponds to A) if it is nonnegative
and A has the following tube formula:

jAtj D tN�D.G.log.1=t//C o.1// as t ! 0C; (4.4)

with 0 < lim inf�!C1 G.�/ � lim sup�!C1 G.�/ < 1. In addition, we say that
A is a transcendentally .resp., algebraically/ n-quasiperiodic set if the function
G D G.�/ is transcendentally .resp., algebraically/ n-quasiperiodic. The smallest
possible value of n is called the order of quasiperiodicity of A.

The following result, which has a variety of generalizations as will be briefly
explained below, provides a construction of transcendentally 2-quasiperiodic fractal
sets. Its proof is based on the classical Gel’fond–Schneider theorem (as described
in [10]) from transcendental number theory.

Theorem 4.5 ([41, 42]) Let C.m1;a1/ and dimB C.m2;a2/ be two generalized Cantor
sets such that their box dimensions coincide and are equal to D 2 .0; 1/. Assume
that I1 and I2 are two unit closed intervals of R, with disjoint interiors, and
define A1 WD .min I1/ C C.m1;a1/ � I1 and A2 WD .min I2/ C C.m2;a2/ � I2. Let
fp1; p2; : : : ; pkg be the set of all distinct prime factors of m1 and m2, and write

m1 D p˛11 p˛22 : : : p
˛k
k ; m2 D pˇ11 pˇ22 : : : p

ˇk
k ;

where ˛i; ˇi 2 N [ f0g for i D 1; : : : ; k. If the exponent vectors e1 and e2 of,
respectively, m1 and m2, defined by

e1 WD .˛1; ˛2; : : : ; ˛k/ and e2 WD .ˇ1; ˇ2; : : : ; ˇk/;

are linearly independent over the field of rational numbers, then the compact set
A WD A1 [ A2 � R is transcendentally 2-quasiperiodic.

Moreover, the distance zeta function �A can be meromorphically extended to the
whole complex plane, and we have that D.�A/ D D. The set dimPC A of principal

19That is, linearly independent over the field of algebraic numbers.
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complex dimensions of A is given by

dimPC A D D C
�2�

T1
Z [ 2�

T2
Z

�
�: (4.5)

Besides .dimPC A/ [ f0g, there are no other poles of the distance zeta function �A

and they are all simple. In particular,

P.�A/ D
 

D C
�2�

T1
Z [ 2�

T2
Z

�
�

!
[ f0g: (4.6)

Remark 5 This result can be considerably extended by using Baker’s theorem
[1, Thm. 2.1] which, in turn, is a far-reaching extension of the aforementioned
Gel’fond–Schneider’s theorem. Indeed, for any fixed integer n � 2, using Baker’s
theorem and n generalized Cantor sets, an explicit construction of a class of
transcendentally n-quasiperiodic fractal sets is given in [42] and [41, §3.1]. In
[43, 44] and [41, Chap. 4], we even construct a set which is transcendentally 1-
quasiperiodic; see Sect. 5.

5 Maximally Hyperfractal 1-Quasiperiodic Sets

It is possible to construct a bounded subset A of the real line, such that the
corresponding distance zeta function �A has for abscissa of (Lebesgue, i.e., absolute)
convergence D.�A/ any prescribed real number D 2 .0; 1/ and A is maximally
hyperfractal; that is, any point on the critical line fRe s D Dg is a nonremovable
singularity of the corresponding distance zeta function �A. In particular, there is no
meromorphic continuation of �A to any open and connected neighborhood of the
critical line (and, moreover, not even to any open and connected neighborhood of
an arbitrary point on the critical line). Furthermore, it is possible to construct a
maximally hyperfractal set which is 1-transcendentally quasiperiodic as well. A
construction of such sets is described in detail in [41, Chap. 4] or in [44]. In the
sequel, we provide a rough sketch of this construction.

The set A � R which is a maximal hyperfractal and 1-transcendentally
quasiperiodic set, can be constructed as the nonincreasing sequence

A D AL D
�

ak WD
1X

jDk

`j W k 2 N

�
(5.1)

of positive real numbers ak converging to zero as k ! 1, generated by a suitable
bounded fractal string L D .`j/j�1. Roughly speaking, the fractal string L is
obtained as a (suitably defined) union of an infinite sequence of bounded fractal
strings Lk WD .`kj/j�1, corresponding to generalized Cantor sets of the form
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ck � C.mk;ak/, for k 2 N, with carefully chosen values of the parameters mk and ak

appearing in Definition 4.1, and where .ck/k�1 is an appropriate summable sequence
of positive real numbers.

More precisely, the union L WD F1
kD1 Lk of the sequence of bounded fractal

strings Lk is defined as the set-theoretic union of the elements of the strings, but by
definition, each of its elements has for multiplicity the sum of the corresponding
multiplicities from all of the fractal strings Lk to which belongs the element in
question. Note that the multiplicity of an element of L is well defined since this
element must belong to at most finitely many bounded fractal strings Lk, which
follows from the fact that the sequence ck converges to 0 as k ! 1. Moreover, we
must assume that

P1
kD1 ck < 1, so that the string L be bounded (i.e.,

P1
jD1 `j <

1). We can also ensure that for each positive integer k, the corresponding upper
box dimension of Lk (that is, of the set ALk ) be equal to a fixed value of D 2 .0; 1/,
prescribed in advance. (Note that the set AL is distinct from [1

kD1ALk .)
Recall that the oscillatory period of Lk (in the sense of [52]), which is defined

by pk WD 2�
log.1=ak/

, provides valuable information about the density of the set of
principal complex dimensions of Lk on the critical line fRe s D Dg. More precisely,
by choosing the coefficient ak 2 .0; 1=mk/ so that ak ! 0 as k ! 1, we see that for
the set of principal complex dimensions of the generalized Cantor string Lk (i.e., the
set of the principal poles of �Lk ), dimPC Lk D dimPC C.mk;ak/ D D C pk�Z, becomes
denser and denser on the critical line, as k ! 1, since then the oscillatory period pk

tends to zero. Therefore, the distance zeta function of the fractal string L WD t1
kD1Lk

will have D C
�S1

kD1 pkZ

�
� as a set of singularities, which is densely packed on

the critical line fRe s D Dg D D C R�, since the set [1
kD1pkZ is clearly dense

in R. In conclusion, the whole critical line fRe s D Dg consists of nonremovable
singularities of �L,20 which by definition means that the fractal stringL is maximally
hyperfractal. Hence, the corresponding set A WD AL is also maximally hyperfractal.

Since the coefficients ak, appearing in the definition of the generalized Cantor
set (see Definition 4.1), have been chosen above so that ak ! 0 as k ! 1, it is
clear that mk ! 1, because D D dimB C.mk;ak/ D mk

log.1=ak/
, where D 2 .0; 1/ is

given in advance and independent of k. This enables us to use our result mentioned
in Remark 5, obtained by means of Baker’s theorem from transcendental number
theory [1], in order to ensure that the sequence of quasiperiods Tk WD log.1=ak/, k 2
N, is algebraically independent (that is, any finite subset of this set of quasiperiods
is linearly independent over the field of algebraic real numbers).21 According to

20In light of the discussion surrounding Eq. (2.4) above, the same is true if �L is replaced by
�AL or, more generally, by the relative distance zeta function �A. � ; �/ defined by �A.s; �/ WDR
� d.x;A/s�N dx (see Sect. 6 and [44] or [41, Chap. 4]), where A D @� is the boundary of any

geometric realization of L by a bounded open subset � of R.
21The algebraic independence of the set of quasiperiods fTk W k � 1g, with k � 1, can be deduced
(using the aforementioned Baker’s theorem, [1]) if we assume, in addition, that the sequence
.ek/k�1 (suitably redefined), corresponding to the sequence .mk/k�1, is rationally independent.
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Definition 4.3, this means that L is 1-transcendentally quasiperiodic, and so is the
corresponding bounded subset A WD AL of the real line.

As we see from the above rough description, the nature of a subset A WD AL of
the real line which is maximally hyperfractal and 1-transcendentally quasiperiodic,
is in general extremely complex, although it is, in fact, ‘just’ defined in terms of a
nonincreasing sequence of positive real numbers converging to zero.

In closing this discussion, we mention that this construction (as well as Theo-
rem 4.5 and its generalization mentioned in Remark 5), extends to any N � 2, by
letting B WD A 	 Œ0; 1�N�1 � R

N ; see [41, 42, 44].

6 Fractal Zeta Functions of Relative Fractal Drums

In this section, we survey some of the definitions and results from [41, Chap. 4]; see
also [44]. Let A be a (possibly unbounded) subset of RN and let � be a (possibly
unbounded) Borel subset of RN of finite N-dimensional Lebesgue measure. We say
that the ordered pair .A; �/ is a relative fractal drum (or RFD, in short) if there
exists a positive real number ı such that � � Aı. It is easy to see that for every
ı > 0, any bounded subset A can be identified with the relative fractal drum .A;Aı/.
Furthermore, any bounded fractal string L D .`j/

1
jD1 can be identified with the

relative fractal drum .[1
jD1@Ij;[1

jD1Ij/, where .Ij/
1
jD1 is a family of pairwise disjoint

open intervals in R such that jIjj1 D `j for all j � 1.
Given a relative fractal drum .A; �/ in R

N and for a fixed real number r, we
define the relative upper and relative lower r-dimensional Minkowski contents of
.A; �/, respectively, by

M�r.A; �/ WD lim sup
t!0C

jAt \�j
tN�r

; Mr�.A/ WD lim inf
t!0C

jAt \�j
tN�r

:

The relative upper and relative lower box .or Minkowski/ dimensions of .A; �/ are
then defined, respectively, by

dimB.A; �/ WD inffr 2 R W M�r.A; �/ D 0g;
dimB.A; �/ WD inffr 2 R W Mr�.A; �/ D 0g:

(6.1)

It is easy to check that �1 � dimB.A; �/ � dimB.A; �/ � N, and it is shown in
[41, 44] that the relative box dimensions can indeed attain arbitrary negative values
as well, including �1 (an obvious example is when Aı \� D ; for some ı > 0).
Intuitively, negative relative box dimensions correspond to the property of flatness
of the RFD under consideration. If dimB.A; �/ D �1, then the RFD .A; �/ is said
to be infinitely flat. A nontrivial example of an infinitely flat RFD .A; �/ in R

2 is
given by A WD f.0; 0/g and � WD f.x; y/ 2 .0; 1/2 W 0 < y < e�1=xg. Other examples
of flat RFDs can be found in [41, 44].
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If .A; �/ is such that dimB.A; �/ D dimB.A; �/, then this common value is
denoted by dimB.A; �/ and is called the box .or Minkowski/ dimension of .A; �/.
Moreover, if .A; �/ is such that, for some D 2 .�1;N�, we have 0 <MD�.A; �/ �
M�D.A; �/ < 1 (in particular, then dimB.A; �/ exists and D D dimB.A; �/), we
say that .A; �/ is Minkowski nondegenerate. If MD�.A; �/ D M�D.A; �/, then the
common value is denoted byMD.A; �/ and called the Minkowski content of .A; �/.
Finally, assuming that .A; �/ is such that MD.A; �/ exists and 0 < MD.A; �/ <
1, we say that the RFD .A; �/ is Minkowski measurable.

To any given RFD .A; �/ in R
N , we can associate the corresponding relative

distance zeta function and the relative tube zeta function defined, respectively, by

�A.s; �/ WD
Z
�

d.x;A/s�Ndx; Q�A.s; �/ WD
Z ı

0

ts�N�1jAt \�j dt; (6.2)

for all s 2 C with Re s sufficiently large, where ı is a fixed positive real number.
They are a valuable theoretical and technical new tool in the study of fractals.

The basic result dealing with relative distance zeta functions, analogous to
Theorem 2.2 of §2, is provided by the following theorem.

Theorem 6.1 ([41, 44]) Let .A; �/ be an arbitrary RFD. ThenW
.a/ The distance zeta function �A. � ; �/ is holomorphic on fRe s > dimB.A; �/g.

Moreover, ….�A. � ; �// D fRe s > dimB.A; �/g; that is,

D.�A. � ; �// D dimB.A; �/: (6.3)

.b/ If the box .or Minkowski/ dimension D WD dimB.A; �/ exists, D < N, and
MD�.A; �/ > 0, then �A.s; �/ ! C1 as s 2 R converges to D from the right.
In particular, H.�A. � ; �// D ….�A. � ; �// D fRe s > dimB.A; �/g; that is,

Dhol.�A. � ; �// D D.�A. � ; �// D dimB.A; �/: (6.4)

An entirely analogous result holds for the tube zeta function Q�A. � ; �/, except for
the fact that the hypothesis D < N is no longer needed in the counterpart of part .b/
of Theorem 6.1.

A very useful property of relative distance zeta functions is the following scaling
property: for any RFD .A; �/ and for any positive real number �, we have

��A.s; ��/ D �s�A.s; �/: (6.5)

We refer the interested reader to [41, Chap. 4] and [44–47] for many other related
results, examples and comments. We mention, in particular, that ‘fractal drums’ (that
is, ‘drums with fractal boundary’, in the sense of [22–24], for example)22 correspond

22See also [52, §12.5], [27] and [47] for many other references on fractal drums.
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to RFDs of the form .@�;�/, where � is a nonempty bounded open subset of
R

N , and that the results discussed in Sect. 5 above are applied in a crucial way in
order to show the optimality of certain inequalities pertaining to the meromorphic
continuations of the spectral zeta functions of fractal drums (viewed as RFDs); see
[41, §4.3] and [47].

7 Fractal Tube Formulas and a Minkowski Measurability
Criterion

In this section, we briefly explain how under suitable growth conditions on the
relative distance (or tube) zeta function (see a variant of the languidity (resp., of
the strong languidity) condition of [52, §5.3] given in [45, 46]), it is possible to
recover a pointwise or distributional fractal tube formula for a relative fractal drum
.A; �/ in R

N , expressed as a sum of residues over its visible complex dimensions.
These fractal tube formulas, along with a Tauberian theorem due to Wiener and
Pitt (which generalizes Ikehara’s Tauberian theorem, see [19, 55]) make it possible
to derive a Minkowski measurability criterion for a large class of relative fractal
drums (and compact subsets) of RN . These results generalize to higher dimensions
the corresponding ones obtained for fractal strings (that is, when N D 1) in [52,
§8.1 and §8.3].

The results of this section are announced in [45] and fully proved in [46]. (See
also [41, Chap. 5].) Furthermore, we refer the interested reader to [41, 46] and
[52, §8.2 and §13.1] for additional references on tube formulas in various settings,
including [4, 8, 11, 18, 29–31, 34–37, 50, 51, 57, 65, 66]. (See also [52, §13.1, §13.2
and §13.4].)

In order to be able to state the fractal tube formulas, we introduce the following
notions, adapted from [52] to the present much more general context. The screen S
is the graph of a bounded, real-valued, Lipschitz continuous function S.�/, with the
horizontal and vertical axes interchanged: S WD fS.�/ C �� W � 2 Rg and we let
sup S WD sup�2R S.�/ 2 R. Given a relative fractal drum .A; �/ of RN , we always
assume that the screen S lies to the left of the critical line fRe s D dimB.A; �/g, i.e.,
that sup S � dimB.A; �/. Furthermore, the window W is defined as W WD fs 2 C W
Re s � S.Im s/g. The relative fractal drum .A; �/ is said to be admissible if its tube
(or distance) zeta function can be meromorphically extended to an open connected
neighborhood of some window W.

Assume now that .A; �/ is an admissible relative fractal drum of RN for some
screen S such that its distance zeta function satisfies appropriate growth conditions
(see [45, 46] for details).23 Then its relative tube function satisfies the following

23Roughly speaking, �.A;�/ WD �A. � ; �/ is assumed to grow at most polynomially along the vertical
direction of the screen and along suitable horizontal directions (avoiding the poles of �.A;�/); see
[52, Def. 5.2] for the so-called “languidity condition”.
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identity, for all positive real numbers t sufficiently small24:

jAt \�j D
X

!2P.�A. � ;�/;W/
res

�
tN�s

N � s
�A.s; �/; !

	
C R.t/: (7.1)

The above fractal tube formula is interpreted pointwise or distributionally,
depending on the growth properties of �A. � ; �/ and then, R.t/ is a pointwise or
distributional25 asymptotic error term of order at most O.tN�sup S/ as t ! 0C.
Moreover, if S lies strictly to the left of the vertical line fRe s D sup Sg (that is,
if S.�/ < sup S, for all � 2 R), then R.t/ is o.tN�sup S/, pointwise or distributionally,
as t ! 0C. In the case when �A. � ; �/ satisfies stronger growth assumptions (i.e.,
the analog of the “strong languidity condition” of [52, Def. 5.3]), we obtain a tube
formula without an error term (i.e., R.t/ 
 0) and with W D C. Following [52], the
resulting formula is then called an exact fractal tube formula.

The tube formula (7.1) can also be expressed in terms of the relative tube zeta
function when analogous growth conditions are imposed on Q�A. � ; �/26:

jAt \�j D
X

!2P.Q�A. � ;�/;W/
res
�

t N�s Q�A.s; �/; !
�

C R.t/: (7.2)

In fact, the key observation for deriving the above formula is the fact that

Q�A.s; �/ D
Z C1

0

ts�N�1�.0;ı/.t/jAt \�j dt D fMf g.s/; (7.3)

where �E is the characteristic function of the set E, fM g.s/ WD R C1
0

ts�1 .t/ dt
is the Mellin transform of the function , and f .t/ WD t�N�.0;ı/.t/jAt \�j. One then
applies the inverse Mellin transform (see [62]) to recover the relative tube function
t 7! jAt \ �j and proceeds in a similar manner as in [52, Chap. 5] for the case of
fractal strings.

As an application, the following result generalizes the Minkowski measurability
criterion given in [52, Thm. 8.15] for fractal strings to the present case of relative
fractal drums.

Theorem 7.1 (Minkowski measurability criterion, [45, 46]) Let .A; �/ be an
admissible relative fractal drum of RN such that D WD dimB A exists and D < N.
Furthermore, assume that its relative distance .or tube/ zeta function satisfies

24The ranges within which the formulas are valid are fully specified in [45, 46].
25For the precise definition of distributional asymptotics, see [52, §5.4.2], [45, 46] and the relevant
references therein.
26Note that in light of the functional equation (2.13), assuming growth conditions for �A is
essentially equivalent to assuming them for Q�A (and vice versa).



Fractal Zeta Functions and Complex Dimensions 251

appropriate growth conditions27 for a screen passing between the critical line
fRe s D Dg and all the complex dimensions of A with real part strictly less than
D. Then, the following statements are equivalentW
.a/ A is Minkowski measurable.
.b/ D is the only pole of the distance zeta function �A located on the critical line

fRe s D Dg, and it is simple.

There exist relative fractal drums which do not satisfy the hypothesis of
Theorem 7.1 concerning the screen; see [52, Exple. 5.32]. We point out that the
fractal tube formula (7.1) can be used to recover (or obtain for the first time) the
(relative) fractal tube formulas for a variety of well-known (and not necessarily
self-similar) fractal sets, as is illustrated by the following examples.

Example 3 Recall from Proposition 3.3 that the distance zeta function of the
Sierpiński carpet A is given for all s 2 C by

�A.s/ D 8

2ss.s � 1/.3s � 8/
C 2�

ıs

s
C 4

ıs�1

s � 1 ;

for ı > 1=6, and is meromorphic on all of C. It is easy to check that �A satisfies
growth conditions which are good enough for (7.1) to hold pointwise without an
error term and for all t 2 .0; 1=2/:

jAtj D
X

!2P.�A;C/

res

�
t2�s

2 � s
�A.s/; !

	
: (7.4)

Now, also recall from Proposition 3.3 that P.�A;C/ D f0; 1g [ fsk W k 2 Zg,
where sk D log3 8 C 2�

log 3k� for all k 2 Z. Furthermore, res.�A; 0/ D 2� C 8=7,
res.�A; 1/ D 16=5 and the residues at sk are given in (3.16); so that (7.4) becomes
the following exact, pointwise fractal tube formula, valid for all t 2 .0; 1=2/:

jAtj D t2�log3 8

log 3

C1X
kD�1

2�sk t�
2�

log 3 k�

sk.sk � 1/.2 � sk/
C 16

5
t C

�
2� C 8

7

	
t2: (7.5)

The above example can be generalized to an N-dimensional analog of the
Sierpiński carpet (see [41, 46]). We next establish the special case of this assertion
for the relative 3-dimensional Sierpiński carpet.

Example 4 Let A be the three-dimensional analog of the Sierpiński carpet and �
the closed unit cube in R

3. More precisely, we construct A by dividing � into 27
congruent cubes and remove the open middle cube, then we iterate this step with
each of the 26 remaining smaller closed cubes; and so on, ad infinitum. By choosing

27See [45, 46] for details about these growth conditions.
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ı > 1=6, we deduce that �A is meromorphic on C and given for all s 2 C by
(see [41, 46])

�A.s; �/ D 48 � 2�s

s.s � 1/.s � 2/.3s � 26/
: (7.6)

In particular, P.�A. � ; �/;C/ D f0; 1; 2g [ � log3 26C p�Z
�
, where p WD 2�= log 3.

Furthermore, we have that

res.�A. � ; �/; 0/ D �24
25
; res.�A. ��/; 1/ D 24

23
; res.�A. � ; �/; 2/ D � 6

17

and, by letting !k WD log3 26C pk� for all k 2 Z,

res.�A. � ; �/; !k/ D 24 � 2�!k

13 � !k.!k � 1/.!k � 2/ log 3
:

Again, the relative distance zeta function �A. � ; �/ satisfies sufficiently good growth
conditions, which enables us to obtain the following exact pointwise relative tube
formula, valid for all t 2 .0; 1=2/:

jAt \�j D 24 t3�log3 26

13 log 3

C1X
kD�1

2�!k t�pk�

.3 � !k/.!k � 1/.!k � 2/!k
� 6

17
t C 12

23
t2 � 8

25
t3:

In particular, we conclude that dimB.A; �/ D log3 26 and, by Theorem 7.1, that, as
expected, .A; �/ is not Minkowski measurable.

One can similarly recover the well-known fractal tube formula for the Sierpiński
gasket obtained in [35] (and also, more recently, by a somewhat different method,
in [4]), as well as a tube formula for its N-dimensional analog described in [41,
Chap. 5].28 We also point out that, in light of the functional equation (2.4), the above
fractal tube formulas (7.1) and (7.2) generalize the corresponding ones obtained for
fractal strings (i.e., when N D 1) in [52, §8.1]. Furthermore, these tube formulas can
also be applied to a variety of fractal sets that are not self-similar, including ‘fractal
nests’ and ‘geometric chirps’ (see [41, Chaps. 3 and 4] for the definitions of these
notions and [46] along with [41, Chap. 5] for the actual fractal tube formulas).

We conclude this section by briefly explaining how these results can also be
applied in order to recover (and extend) the tube formulas for self-similar sprays
generated by a suitable bounded open set G � R

N . (See [35, 36].) A self-similar
spray is a collection .Gk/k2N of pairwise disjoint sets Gk � R

N , with G0 WD G and
such that Gk is a scaled copy of G by some factor �k > 0. The sequence .�k/k2N is

28We can also recover and extend the significantly more general fractal tube formulas obtained (for
fractal sprays and self-similar tilings) in [36] and used, in particular, in [37].
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called the scaling sequence associated with the spray and is obtained from a “ratio
list” fr1; r2; : : : ; rJg, with 0 < rj < 1 for each j 2 f1; 2; : : : ; Jg, by building all
possible words based on the ratios rj. Let now .A; �/ be the relative fractal drum
such that A WD @.[k2NGk/ and � WD [k2NGk, with dimB.@G;G/ < N. Then,
it is clear that its relative distance zeta function �A. � ; �/ satisfies the following
functional equation, for all s 2 C with Re s sufficiently large:

�A.s; �/ D �@G.s;G/C �r1A.s; r1�/C � � � C �rJA.s; rJ�/; (7.7)

where .rjA; rj�/ denotes the relative fractal drum .A; �/ scaled by the factor
rj. Furthermore, by using the scaling property (6.5) of the relative distance zeta
function, the above equation becomes

�A.s; �/ D �@G.s;G/C rs
1�A.s; �/C � � � C rs

J�A.s; �/; (7.8)

which yields that

�A.s; �/ D �@G.s;G/

1 �PJ
jD1 rs

j

: (7.9)

It is now enough to assume that the relative distance zeta function �@G.s;G/ of the
generating relative fractal drum .@G;G/ satisfies suitable growth conditions in order
to obtain the following formula for the ‘inner’ volume of At D .@�/t relative to
� WD [k2NGk, for all positive t sufficiently small:

jAt \�j D
X

!2D.W/[P.�@G. � ;G/;W/
res

0
@ tN�s�@G.s;G/

.N � s/
�
1 �PJ

jD1 rs
j

� ; !
1
AC R.t/; (7.10)

where D.W/ denotes the set of all visible complex solutions of
PJ

jD1 rs
j D 1

(in W) and W is the window defined earlier. It is easy to check that (at least)
in the case of monophase or pluriphase generators (in the sense of [35] and
[36, 37]), these growth conditions are satisfied, so that one obtains exactly the same
distributional or pointwise fractal tube formulas as in [35] or [36], respectively, after
having calculated the distance zeta function �@G. � ;G/ of the generator. Moreover,
if �@G. � ;G/ is strongly languid, we can let R.t/ 
 0 and W D C in (7.10) and
therefore obtain exact fractal tube formulas.

We conclude this survey by pointing out that a broad variety of open problems
and suggestions for directions for future research in this area are proposed in [41,
Chap. 6].
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42. M.L. Lapidus, G. Radunović, D. Žubrinić, Distance and tube zeta functions of fractals and
arbitrary compact (2015, preprint)
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69. D. Žubrinić, V. Županović, Fractal analysis of spiral trajectories of some planar vector fields.
Bulletin des Sciences Mathématiques 129(6), 457–485 (2005)

www.encyclopediaofmath.org

	Fractal Zeta Functions and Complex Dimensions: A General Higher-Dimensional Theory
	1 Introduction
	2 Distance and Tube Zeta Functions
	3 Meromorphic Extensions of Fractal Zeta Functions
	4 Transcendentally Quasiperiodic Sets
	5 Maximally Hyperfractal ∞-Quasiperiodic Sets
	6 Fractal Zeta Functions of Relative Fractal Drums
	7 Fractal Tube Formulas and a Minkowski Measurability Criterion
	References


