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Abstract We consider local finite energy coordinates associated with a strongly
local regular Dirichlet form on a metric measure space. We give coordinate formulas
for substitutes of tangent spaces, for gradient and divergence operators and for the
infinitesimal generator. As examples we discuss Euclidean spaces, Riemannian local
charts, domains on the Heisenberg group and the measurable Riemannian geometry
on the Sierpinski gasket.
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1 Introduction

Suitable coordinate maps are tools in many branches of geometry. For instance,
smooth coordinate changes are the crucial ingredient in the definition of a differ-
entiable structure on a manifold and therefore omnipresent in differential geometry
(e.g. [26, 29]). For a general metric measure space we can not expect to find local
coordinates that transform smoothly. However, in the field of analysis on fractals
Kusuoka [35, 36], Kigami [32, 34], Strichartz [42], Teplyaev [44], Hino [15, 16],
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Kajino [30, 31] and others have contributed to a concept that is now referred to
as ‘measurable Riemannian geometry’. This concept is based on Dirichlet forms
and involves the use of harmonic functions as ‘global coordinates’. In probability
similar ideas can already be found in works of Doob, Dynkin and Skorohod. On the
other hand there is recent progress in the studies of a first order calculus on fractals,
[8, 9, 19–22, 25, 28] again based on Dirichlet form theory, [6, 13], which allows to
discuss differential 1-forms and vector fields, partially based on [7, 40].

In the present note we consider metric measure spaces, equipped with a strongly
local Dirichlet form and consider associated local finite energy coordinates. Analo-
gously to Riemannian geometry, we provide coordinate expressions for the gradient
and divergence operators (derivation and coderivation) used in the first order theory,
and for the infinitesimal generator. The present paper is a brief introduction to
the subject. We hope to facilitate understanding of how the measurable first order
calculus is related to Euclidean, Riemannian, sub-Riemannian and measurable
Riemannian situations.

2 Preliminaries

Let X be a locally compact separable metric space and � a nonnegative Radon
measure on X such that �.U/ > 0 for all nonempty open U � X. Let .E ;F/ be
a strongly local regular Dirichlet form on L2.X; �/, that is:

(1) F is a dense subspace of L2.X; �/ and E W F �F ! R is a nonnegative definite
symmetric bilinear form; we denote E. f / WD E. f ; f /;

(2) F is a Hilbert space with the norm
pE1. f / WD �E. f /C k f k2L2.X;�/

�1=2
;

(3) For any f 2 F we have . f _ 0/ ^ 1 2 F and E.. f _ 0/ ^ 1/ � E. f /, where
f _ g WD max ff ; gg and f ^ g WD min f f ; gg;

(4) C WD F \ Cc.X/ is dense both in F with respect to the norm
pE1. f /, and in

the space Cc.X/ of continuous compactly supported functions with respect to
the uniform norm;

(5) If f ; g 2 C and g is constant on a neighborhood of supp f then E. f ; g/ D 0.

To each Dirichlet form .E ;F/ on L2.X; �/ there exists a unique non-positive self-
adjoint operator .L; dom L/, called the infinitesimal generator of .E ;F/, such that
dom L � F and

E. f ; g/ D � hLf ; giL2.X;�/

for all f 2 dom L and g 2 F . See [6, 13]. For pointwise products we have

E. fg/1=2 � E. f /1=2 kgkL1.X;�/ C E.g/1=2 k f kL1.X;�/ ; f ; g 2 F \ L1.X; �/;

(2.1)
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[5, Corollary I.3.3.2], and in particular, the space C WD F \ Cc.X/ is an algebra. For
any f ; g 2 C a signed Radon measure �. f ; g/ on X is defined by

Z

X
'd�. f ; g/ D 1

2

�E. f ; g'/C E.g; f'/ � E. fg; '/
�
; ' 2 C: (2.2)

By approximation in F we also define �. f ; g/ for any f ; g 2 F , referred to as the
(mutual) energy measure of f and g, see [13]. We denote the nonnegative measure
�. f / D �. f ; f /. Below it will be advantageous to consider functions that are only
locally of finite energy. We define Floc as the set of functions f 2 L2;loc.X; �/ such
that for any relatively compact open set V � X there exists some u 2 F such that
f jV D ujV �-a.e. Exhausting X by an increasing sequence of relatively compact
open sets and using related cut-off functions we can define �. f / for f 2 Floc. If V
is relatively compact open and u 2 F agrees with f �-a.e. on V then

�. f /jV D �.u/jV : (2.3)

Example 1 A prototype for a strongly local regular Dirichlet form is the Dirichlet
integral

E. f / D
Z

Rn
jrf j2 dx

on L2.Rn/, where F is the Sobolev space H1.Rn/ of functions f 2 L2.Rn/with @f
@xi

2
L2.Rn/ for all i. Note that C1

c.R
n/ is dense in H1.Rn/ and in Cc.R

n/. The generator
is the Laplacian L D � and the energy measures are given by �. f / D jrf j2 dx.

A nonnegative Radon measure m on X is called energy dominant if all energy
measures �. f /, f 2 F , are absolutely continuous with respect to m, [15, 16, 18, 25].
By d�. f /

dm we denote the corresponding Radon-Nikodym densities.
Let ' 2 C, let V be a relatively compact open neighborhood V of supp' and

suppose . fn/n � Floc. We say that ' is locally approximated by the sequence . fn/n
on V if there is a sequence .un/n � F with limn E1.' � un/ D 0 and fnjV D unjV

�-a.e. for all n. The following lemma follows from (2.3), [13, Theorem 2.1.4 and
Lemma 3.2.4].

Lemma 2.1 Let ' 2 C and let V be a relatively compact open neighborhood V
of supp'. Suppose that ' is locally approximated by . fn/n � Floc on V. Then
limn �.' � fn/.V/ D 0. If the functions fn are continuous on V, then there is a
subsequence . fnk/k such that limk fnk D ' �. f /-a.e. on V for any f 2 Floc.
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3 Finite Energy Coordinates

Let y D . yi/i2I be a finite or countable collection of locally bounded functions yi.
Given a finite ordered subset J D .n1; : : : ; nk/ of I, the space of all functions of form
f D F. yn1 ; : : : ; ynk/, where the functions F are polynomials in k variables and such
that F.0/ D 0, will be denoted by PJ. y/. For a fixed collection . yi/i2I set

P. y/ WD
[

J�I

PJ. y/; (3.1)

the union taken over all ordered finite subsets J of I. Note that P. y/ is an algebra
of locally bounded functions. For any k we regard the space R

k as a subspace of
R

N containing .v1; v2; : : : ; vk; 0; 0; : : : / for .v1; v2; : : : ; vk/ 2 R
k. Similarly, we

consider .k � k/-matrices as linear operators from R
N to R

N.

Definition 3.1 Let m be an energy dominant measure for .E ;F/. A finite or
countable collection y D . yi/i2I of continuous and locally bounded functions
yi 2 Floc is called a coordinate sequence for .E ;F/ with respect to m if

(i) Any ' 2 C can locally be approximated on a relatively compact neighborhood
V of supp' by a sequence of elements of P. y/

(ii) For any i 2 I we have

d�. yi/

dm
2 L1.X;m/\ L1.X;m/;

and for any i and j

Zij.x/ WD d�. yi; yj/

dm
.x/

are Borel functions (versions) such that for m-a.e. x 2 X, Z.x/ WD .Zij.x//1ijD1
defines a bounded symmetric nonnegative definite linear operator Z.x/ W
l2 ! l2.

(iii) We say that the coordinates yi have finite energy if yi 2 F for all i 2 I.

A coordinate sequence y D . yi/i2I induces a mapping y W X ! R
N.

Remark 1 Condition (i) in Definition 3.1 makes sense because we have P. y/ �
Floc. If the coordinates yi have finite energy the inclusion P. y/ � F is clear
from (2.1). To see this inclusion in the general case it suffices to show that for
any continuous and locally bounded f ; g 2 Floc we have fg 2 Floc. Clearly
fg 2 L2;loc.X; �/. Further, given a relatively compact open set V � X we can find a
suitable cutoff function � 2 C with 0 � � � 1 and � � 1 on V , a relatively compact
open neighborhood of supp� and functions u; v 2 F such that f jU D ujU and
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gjU D vjU �-a.e. Clearly �u 2 L2.X; �/, and using locality, [13, Corollary 3.2.1],

E.�u/1=2 D
�Z

U
d�.�u/

�1=2
�
�Z

U
�2d�.u/

�1=2
C
�Z

U
Qu2d�.�/

�1=2
;

where Qu is a quasi-continuous version of u. See e.g. [13, Chapter II] for quasi-
continuity and the Appendix in [24] for comments on the formula (which also
follows from Cauchy-Schwarz applied to (4.5) below). Approximating u in E1=21 -

norm by a sequence from C we see that �u is the limit in E1=21 -norm of a sequence
from C, and by completeness �u is in F . Similarly for �v. Both functions are
bounded on U �-a.e. and vanish outside U, hence are also members of L2.X; �/.
Therefore �2uv 2 F by (2.1), what implies fg 2 Floc.

In Sect. 8 we show that (under an additional continuity assumption) it is
always possible to construct a finite energy dominant measure and a corresponding
coordinate sequence of finite energy coordinates. The following examples relate
Definition 3.1 to well known situations.

Example 2

(1) Consider

E. f / WD
nX

i;jD1

Z

Rn
aij.x/

@f

@xi
.x/

@f

@xj
.x/dx; f 2 C1

c.R
n/;

where aij D aji are bounded Borel functions satisfying
Pn

i; jD1 aij.x/�i�j � cj�j2
with a universal constant c > 0 for any � 2 R

n and �n-a.e. x 2 R
n. Here �n

denotes the n-dimensional Lebesgue measure �n.dx/ D dx. Then .E ;C1
c .R

n//

is closable in the space L2.Rn/, and its closure .E ;H1.Rn// is a strongly local
regular Dirichlet form. Obviously �n is energy dominant for .E ;H1.Rn//. The
Euclidean coordinates yk.x/ D xk, k D 1; : : : ; n, form a coordinate sequence
for .E ;H1.Rn// with respect to �n. Note that ryk D ek is the k-th unit vector in
R

n, and we have

Zij.x/ D aij.x/ for �n-a.e. x 2 R
n

and i; j D 1; : : : n. This shows (ii). If ' 2 C1
c.R

n/ then we can find a
relatively compact open set V containing supp' on which the function ' can
be approximated it in C1-norm by a sequence of polynomials in the variables
x1; : : : ; xn, hence in the coordinates y1; : : : ; yn. Multiplying these polynomials
by a (nonnegative) C1-cut-off function supported in V and equal to one on
supp', the approximation is seen to take place in H1.Rn/. As C1

c.R
n/ is dense

in H1.Rn/, this implies (i). The coordinates yk do not have finite energy.
(2) Let .M; g/ be an n-dimensional Riemannian manifold, [26, 29], let .V; y/ be a

local chart with coordinates y D . y1; : : : ; yn/ and U a relatively compact open
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set with U � V . By dvol we denote the Riemannian volume (restricted to U).
The closure .E ; VH1.U// in L2.U; dvol/ of

E. f / WD
Z

U
hrf ;rf iTxM dvol.x/; f 2 C1

c.U/:

is a strongly local Dirichlet form. The reference measure dvol is energy
dominant, for any k D 1; : : : ; n we have

ryk D gkj @

@yj

and

Zkk D ˝ryk;ryk
˛
TM

D gkjgki

�
@

@yi
;
@

@yj

�

TM

D gkk

and therefore (ii). Recall that

rf D gij @f

@yi

@

@yj
; gij D

�
@

@yi
;
@

@yj

�

TM

and gkigij D ık
j . For a function f 2 C1

c.U/ the function f ı y�1 is a member of
C1.W/, and accordingly it can be approximated in C1.W/-norm by a sequence
.pm/m of polynomials in the variables y1; : : : ; yn. Consequently the functions
pm ı y approximate f in C1.U/-norm (note that the differentials d..pm ı y/ ı
y�1/. y.x// approximate d. f ı y�1/. y.x// uniformly in x 2 U). This implies
(i). Here the yi are not in F because they do not satisfy the Dirichlet boundary
conditions on @U.

(3) A sub-Riemannian example is given by the Heisenberg group H, [10, 27, 38,
41], realized as R3 together with the non-commutative multiplication

.�1; �1; 	1/ � .�2; �2; 	2/ WD .�1 C �2; �1 C �2; 	1 C 	2 C �1�2 � �1�2/:

Left multiplication by .�; 0; 0/ and .0; �; 0/ yields the left-invariant vector fields

X.q/ WD @

@�

ˇ
ˇ
ˇ
q

� 1

2
�
@

@	

ˇ
ˇ
ˇ
q

and Y.q/ WD @

@�

ˇ
ˇ
ˇ
q

C 1

2
�
@

@	

ˇ
ˇ
ˇ
q
;

and at each q D .�; �; 	/ 2 H the tangent vectors X.q/ and Y.q/ span a two-
dimensional subspace Vq of the tangent space TqH Š R

3. The sub-Riemannian
metric is given by the inner products h�; �iVq

on the spaces Vq that makes
.X.q/;Y.q// an orthonormal basis, respectively. We use the Haar measure on
H, which coincides with the Lebesgue measure �3 on R

3. Now let U � H be a
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connected bounded open set and consider the bilinear form

E. f / WD
Z

U
..Xf /2 C .Yf /2/ d�3; f 2 C1

c .U/:

Let .E ; VS1.U// denote the closure of .E ;C1
c .U// in L2.U/. Obviously �3 is

energy dominant. A coordinate sequence for .E ; VS1.U// and �3 is given by
y D . y1; y2; y3/ WD .�; �; 	/. Condition (i) follows again by polynomial
approximation in C1

c.U/. It is immediate that Xy1 D 1, Yy1 D 0, similarly
for y2, and Xy3 D � �

2
, Yy3 D �

2
, which yields the symmetric and nonnegative

definite matrices

Z.q/ D

0

B
@
1 0 � �

2

0 1
�

2

� �

2

�

2

�2C�2
4

1

C
A ;

so that (ii) is satisfied. For any q 2 H the matrix Z.q/ has rank 2. As in (2) the
coordinates are not in F .

(4) We consider a prototype of a finitely ramified fractal in finite energy coordi-
nates. Let K denote the Sierpinski gasket, seen as the post-critically self-similar
structure generated by the maps fj W R2 ! R

2, fj.x/ D 1
2
.x C pj/, j D 1; 2; 3,

where p1, p2 and p3 are the vertices of an equilateral triangle in R
2. Let

.E ;F/ be the standard resistance form on K, obtained as the rescaled limit of
discrete energy forms along a sequence of graphs with increasing vertex sets Vn

‘approximating K’,

E. f / D lim
n!1

�
5

3

�n X

p;q2Vn

. f . p/� f .q//2;

see e.g. [32, 33, 35, 36, 43] for details. With f p1; p2; p3g as boundary and with
Dirichlet boundary conditions there exist two harmonic functions y1; y2 2 F
with E. y1/ D E. y2/ D 1 and E. y1; y2/ D 0 such that the mapping y W K ! R

2

y.x/ WD . y1.x/; y2.x//; x 2 K; (3.2)

is a homeomorphism from K onto its image y.K/ � R
2. We consider K

endowed with the Kusuoka measure 
, defined as the sum


 WD �. y1/C �. y2/

of the energy measure �. y1/ and �. y2/ of y1 and y2, respectively. The
resistance form .E ;F/ induces a strongly local Dirichlet form on L2.K; 
/, for
which the finite measure 
 is energy dominant. The pair . y1; y2/ is a coordinate
sequence for this form: Condition (ii) is satisfied by construction, condition (i)



216 M. Hinz and A. Teplyaev

follows by polynomial approximation and the density of functions of type F ıy,
F 2 C1.R2/, in F , see e.g. [32, 35, 36, 45]. The operators Z.x/may be viewed as
.2�2/-matrices, and for 
-a.e. x 2 K the matrix Z.x/ is symmetric, nonnegative
definite and has rank 1.

4 Energy, Fibers and Bundles

In what follows we will assume throughout that .E ;F/ is a strongly local regular
Dirichlet form on L2.X; �/, m is an energy dominant measure and y D . yi/i2I be a
coordinate sequence for .E ;F/ with respect to m.

We would like to emphasize that unless stated otherwise we do not assume
that the reference measure itself is energy dominant or that the form .E ;F/ has
a restriction that is closable with respect to the energy dominant measure m under
consideration.

In Example 2 (4), a well known formula of Kusuoka [35] and Kigami [32] is

E. f ; g/ D
Z

K
hrF. y/;Z.x/rG. y/i

R2 
.dx/; (4.1)

for all f D F ı y and g D G ı y with F;G 2 C1.R2/. This identity expresses
the energy in terms of coordinates. As the matrix Z varies measurably in x, it has
been named a measurable Riemannian metric, [15, 30, 34]. The following is version
of (4.1) immediately following from the chain rule [13, Theorem 3.3.2].

Lemma 4.1 Let m be an energy dominant measure and . yi/i2I a coordinate
sequence. For all f D F ı y and g D G ı y from P. y/ we have

�. f ; g/.x/ D hrF. y/;Z.x/rG. y/il2 (4.2)

for m-a.e. x 2 X. If in addition f ; g 2 F , then

E. f ; g/ D
Z

X
hrF;ZrGil2 dm:

We rewrite (4.2) in a somewhat artificial way. For any x 2 X such that Z.x/ is
symmetric and nonnegative definite, the bilinear extension of

h f1 ˝ g1; f2 ˝ g2iHx
WD G1. y/G2. y/ hrF1. y/;Z.x/rF2. y/il2 ; (4.3)

where fi D Fi ı y and gi D Gi ı y are members of P. y/ with polynomials Fi and Gi,
i D 1; 2, defines a nonnegative definite symmetric bilinear form on the vector space
P. y/˝P. y/. Let k�kHx

denote the associated Hilbert seminorm. Factoring out zero
seminorm elements and completing, we obtain a Hilbert space .Hx; h�; �iH;x/. The
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Hx-equivalence class of an element f ˝ g of P. y/˝ P. y/ we denote by . f ˝ g/x.
Note that for m-a.e. x 2 X the expression in (4.3) equals

g1.x/g2.x/
�. f1; f2/

dm
.x/:

Example 3

(1) In the situation of Example 2 (1) we observe Hx Š R
n for �n-a.e. x 2 R

n and

h f1 ˝ g1; f2 ˝ g2iHx
D g1.x/g2.x/ hrf1.x/; a.x/rf2.x/iRn ;

where we write a D .aij/
n
i;jD1.

(2) For the Riemannian situation in Example 2 (2) we have

h f1 ˝ g1; f2 ˝ g2iHx
D g1.x/g2.x/ hdf1.x/; df2.x/iT�

x M

for dvol-a.e. x 2 U, where

f 7! df D
X

iD1

@f

@yi
dyi (4.4)

denotes the exterior derivation. Note that Hx Š T�
x M Š TxM Š R

n.
(3) For the Heisenberg group as in Example 2 (3),

h f1 ˝ g1; f2 ˝ g2iHq
D g1.q/g2.q/ ..X.q/f1/.X.q/f2/C .Y.q/f1/.Y.q/f2//

for �3-a.e. q 2 U. Here Hq is isometrically isomorphic to the horizontal
fiber Vq.

We proceed to a more global perspective. A nonnegative definite symmetric
bilinear form on C ˝ C can be introduced by extending

h f1 ˝ g1; f2 ˝ g2iH WD
Z

X
g1.x/g2.x/ �. f1; f2/.x/m.dx/: (4.5)

The associated Hilbert seminorm is denoted by k�kH. Factoring out zero seminorm
elements and completing yields another Hilbert space H, usually referred to a the
Hilbert space of 1-forms associated with .E ;F/. This definition has some history,
see e.g. [11, 39, 40], and in the context of Dirichlet forms it was first introduced by
Cipriani and Sauvageot in [7]. Right and left actions of C on the space C ˝ C can be
defined by extending

. f ˝ g/h WD f ˝ .gh/ and h. f ˝ g/ D . fh/˝ g � h ˝ . fg/: (4.6)
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By strong locality they coincide. Moreover, they extend further to an action of C on
H and k!hkH � khkL1.X;m/ k!kH for any ! 2 H and h 2 C. A linear operator
@ W C ! H can be introduced by setting

@f WD f ˝ 1; f 2 C;

note that f ˝ 1 is a member of H, as can be seen from (4.5) by approximating 1
pointwise. The operator @ is a derivation, i.e.

@. fg/ D .@f /g C f@g; f ; g 2 C: (4.7)

It satisfies

k@f k2H D E. f /; f 2 C; (4.8)

and extends to a closed unbounded operator @ W L2.X; �/ ! H with domain F .
Since the left action in (4.6) is also well defined for bounded Borel functions,

approximation shows that . f ˝ g/1V D .@f /g1V is in H for any f ; g 2 F and
relatively compact open V . By locality, (2.3) and approximation (pointwise m-a.e.)
we then have . f ˝ g/1V 2 H even for locally bounded f ; g 2 Floc. Formulas (4.6)
and (4.7) have local versions valid for elements of P. y/. Note also that for m-a.e
x 2 X,

h.@f /x; .@g/xiHx
D d�. f ; g/

dm
.x/:

Let f�Ng1
ND1 be a family of bounded Lipschitz functions �N W R ! R such that

for all N we have �N.t/ D t on Œ�N;N�. Let QP. y/ denote the collection of functions
�N ı g for any g 2 P. y/ and N. The next lemma contains a version of Lemma 4.1.

Lemma 4.2 For fi D Fi ı y and gi D Gi ı y from P. y/, i D 1; 2, and any relatively
compact open V we have

h. f1 ˝ g1/1V ; f2 ˝ g2iH D
Z

V
h. f1 ˝ g1/x; . f2 ˝ g2/xiHx

m.dx/

D
Z

V
G1. y/G2. y/ hrF1. y/;Z.x/rF2. y/il2 m.dx/:

If in addition f ; g 2 F , then we can replace V by X. Moreover,

span
�˚
. f ˝ g/1V W f 2 P. y/; g 2 QP. y/; V � X relatively compact open

��

is a dense subspace of H. If the coordinates yi have finite energy, then P. y/˝ QP. y/
is a dense subspace of H.



Finite Energy Coordinates and Vector Analysis on Fractals 219

Proof The first statement is obvious. To see the second, let ' and  be functions
from C and U a relatively compact open set containing supp' on which ' is locally
approximated on U by a sequence . fn/n � P. y/. We have k' ˝  � fn ˝  k2H �
supx2X j .x/j2�.' � fn/.U/, which converges to zero by Lemma 2.1. Hence the
span of elements f ˝  with f 2 P. y/ and  2 C is dense in H. On the other
hand, if V is a relatively compact open set containing supp and .gn/n � P. y/
approximates locally on V , after replacing the sequence by a suitable subsequence
Lemma 2.1 implies k f ˝  � . f ˝ egn/1Vk2H D R

V. � egn/
2 d�. f / ! 0 by

bounded convergence, where egn D �N ı gn with fixed N � k ksup. ut
Example 4

(1) In Example 2(1) the space H is isometrically isomorphic to the space
L2.Rn;Rn/ of Rn-valued square integrable functions on R

n.
(2) For the Riemannian situation in Example 2(2) the space H is isometrically iso-

morphic to the space L2.U;T�M; dvol/ of L2-differential 1-forms on U � M.

Remark 2

(i) The spaces Hx may be seen as the fibers of the measurable L2-bundle H.
Formula (4.3) expresses the fibers in terms of coordinates.

(ii) The spaces Hx depend on the choice of m. However, the space H does not, as
follows from (2.2) and (4.5).

(ii) If the coordinates yi have finite energy then we may replace C by P. y/ in (4.5)
and the subsequent formulas. By Lemma 4.2, regularity and [13, Theorem
2.1.4] this yields the same space H.

(iii) We formulated (4.5) and (4.6) in terms of the algebra C in order to use the
same definition of the space of 1-forms as in [7, 23, 25, 28]. Alternatively –
and in view of Definition 3.1 this seems more appropriate – one can endow
P. y/ ˝ QP. y/ with a directed family of Hilbert seminorms determined by
k f ˝ gkH.V/ WD k. f ˝ g/1VkH, where the sets V are relatively compact and
open. This yields a presheaf of Hilbert spaces whose inverse limit is a locally
convex space Hloc. Details can be found in [24, Section 6]. Also Floc may be
viewed as a locally convex space, and the derivation @ may then be interpreted
as a continuous linear operator from Floc into Hloc, if (4.8) is replaced by
k@f k2H.V/ D �. f /.V/, f 2 P.V/.

5 Differential and Gradient in Coordinates

For any coordinate function yi and any relatively compact open set V the element
.@yi/1V is an element of H. This implies the identities

˝
.@yi/x; .@yj/x

˛
Hx

D Zij.x/
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for m-a.e. x 2 X. Moreover, the local version of (4.7) shows that for any function
f D F. yn1 ; : : : ; ynk/ from P. y/ we have on any locally compact open set V

@f D
kX

iD1

@F

@yni
@yni (5.1)

Example 5 In the Euclidean and Riemannian situations (1) and (2) in Examples 2
the operator @ may be identified with the exterior derivation and formula (5.1)
becomes the classical identity in (4.4).

The operator @ may be viewed as a generalization of the exterior derivation
and (5.1) may be viewed as a formula for the differential @f of f in terms of
coordinates.

On a general metric measure space a smooth theory of ordinary differential
equations is not available. On the other hand the spaces Hx are Hilbert, hence self-
dual. Therefore it seems artificial to rigorously distinguish between 1-forms and
vector fields. We interpret the elements of H also as (measurable) vector fields and
@ as a substitute for the gradient operator.

Recall the notation in (3.1). Given a finite ordered subset J of I let the collection
of Hx-equivalence classes of elements of PJ ˝ PJ. y/ be denoted by Hx;J . Clearly
this is a subspace of Hx, and we have

Hx D clos

 
[

J�I

Hx;J

!

;

the union taken over all finite ordered subsets J of I.
Now suppose J D .n1; : : : ; nk/. Formula (5.1) implies that the elements .@yn1 /x,

: : : , .@ynk/x span Hx;J . Let ZJ.x/ denote the matrix .Z.x/ninj/ki; jD1, clearly symmetric
and nonnegative definite. The preceding formulas yield another expression of the
gradient @f , now in terms of the Euclidean gradient and the measurable metric Z:
For any f D F ı y 2 PJ. y/ and any j D 1; : : : ; k we have

h.@f /x; .@ynj/xiHx
D

kX

iD1

@F

@yni
. y/Zninj.x/ D .ZJ.x/rF. y//j ; (5.2)

where rF is the gradient of F on R
k.

Example 6

(1) For Examples 2 (1) we obtain

˝
.@f /x; .@y j/x

˛
Hx

D
nX

iD1
aij.x/

@f

@yi
.x/ D .a.x/rf .x//j :
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(2) In the Riemannian case of Examples 2 (2) formula (5.2) gives

˝
.@f /x; .@y j/x

˛
Hx

D ˝
df ; dy j

˛
T�

x M D @f

@yi
.x/
˝
dyi; dy j

˛
T�

x M D gij.x/
@f

@yi
.x/:

This equals dy j.grad f / because grad f D gij @f

@yi

@

@y j
.

(3) Let hh�; �ii denote the cometric associated with the Heisenberg group H. Then

˝
.@f /q; .@y1/q

˛
Hq

D
3X

iD1

@f

@yi
.q/

˝hdyi; dy1
˛i D .Z.q/rf .q//1 D Xf .q/:

In a similar manner we obtain

˝
.@f /q; .@y2/q

˛
Hq

D .Z.q/rf .q//2 D Yf .q/

˝
.@f /q; .@y3/q

˛
Hq

D .Z.q/rf .q//3 D ��
2

Xf .q/C �

2
Yf .q/:

6 Divergence in Coordinates

By �@� we denote the adjoint of @, that is the unbounded linear operator �@� W H !
L2.X; �/ with dense domain dom @� and such that the integration by parts formula

hv; @uiH D � h@�v; uiL2.X;�/ (6.1)

holds for all v 2 dom @� and f 2 F . We view the operator �@� both ways, as
coderivation and as divergence operator.

In the context of coordinates it is more suitable to deviate a bit from the Hilbert
space interpretation in (6.1). First assume that all coordinates yi have finite energy.
For an element .@f /g of H with f ; g 2 P. y/ we then set

@�..@f /g/.u/ WD � h.@f /g; .@u/iH ; u 2 P. y/:

By Cauchy-Schwarz j@�..@f /g/.u/j � k.@f /gkH E.u/, and therefore @�.@f /g may
be seen as a continuous linear functional on P.u/, and after a straighforward
extension by Definition 3.1 and regularity, on F .

As before let J D .n1; : : : ; nk/. Given functions polynomials F and G in yn1 , : : : ,
ynk and a function u D U ı y with U 2 C1.Rk/ put

divZJ .GrF/.U/ WD �
kX

i;jD1

Z

X
G. y/

@F

@yni
. y/Zni;nj.x/

@U

@ynj
. y/m.dx/:
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Then

@�..@f /g/.u/ D divZJ .GrF/.U/ (6.2)

provides a ‘distributional’ coordinate expression for the divergence. Of course this
is a naive definition by duality, and in particular we have @�..@f //.u/ D �E. f ; u/.
In general there is no integration by parts formula on the level of coordinates that
could permit a more interesting definition.

If the coordinates yi do not have finite energy, we view P. y/ as a locally
convex space, then @�.@f /g1V with relatively compact open V defines a continuous
linear functional on P. y/. Proceeding similarly as before one obtains local versions
of (6.2).

Example 7

(1) For Example 2 (1) we obtain

diva.grf /.u/ D �
nX

i;jD1

Z

Rn
g.x/

@f

@xi
.x/aij.x/

@u

@xj
.x/dx

for any u 2 C1
c .R

n/. If in addition the coefficients aij are C1, this is seen to equal

Z

Rn
div.a.grf //u dx:

(2) In the Riemannian situation of Examples 2 (ii) we have

divg.hrf /.u/ D
Z

W
gijh

@f

@yi

@u

@y j

p
gdy1 � � � dyn D

Z

U
div.h grad f / u dvol

for any u 2 C1
c .U/, where g WD det.gij/ and

div.h grad f / D 1p
g

@

@y j

�p
ggijh

@f

@yi

�

is the divergence of h grad f in the usual Riemannian sense. See [29, Section
2.1].

(3) In Example 2 (3) formula (6.2) yields

divZ.grf /.u/ D
3X

i;jD1

Z

U
Zijg

@f

@yi

@u

@y j
d�3 D

3X

i;jD1

Z

U

@

@y j

�
Zijg

@f

@yi

�
u d�3
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for any u 2 C1
c.U/, what equals

Z

U

�
@

@�
gXf C @

@�
gYf C @

@	

�
g.��

2
Xf C �

2
Yf /

��
u d�3 D

Z

U
div.Z.grf // u d�3;

where div is the ordinary divergence operator on R
3.

7 Generator in Coordinates

We consider the infinitesimal generator .L; dom L/ of .E ;F/. From (6.1) and the
definition of the adjoint we see that for any f 2 dom L we have @f 2 dom @� and

Lf D @�@f : (7.1)

Although in general a coordinate version of this formula may not be available, it can
be written in terms of coordinates for specific examples.

To express L in coordinates additional assumptions are inevitable. Even if yi 2
dom L for all i the inclusion P. y/ � dom L holds if and only if the reference
measure � itself is energy dominant, that is if .E ;F/ admits a carré du champ
in the sense of [5]. For Examples 2 (1)–(4) this is satisfied. However, the standard
resistance form on the Sierpinski gasket, considered as a Dirichlet form with respect
to the natural self-similar Hausdorff measure, does not have this property, and this
situation is typical for a large class of self-similar spaces, [4, 14, 17].

Assumption 1 The reference measure � itself is energy dominant.

Let .L; dom.1/ L/ denote the smallest closed extension of the restriction of L to

f f 2 dom L \ L1.X; �/ W Lf 2 L1.X; �/g :

Assumption 1 is known to be necessary and sufficient for dom.1/ L\L1.X; �/ to be
an algebra under pointwise multiplication. If it is in force, then f ; g 2 dom L implies
fg 2 dom.1/ L and we have

d�. f ; g/

d�
D L. fg/� fLg � gLf ; (7.2)

see [5, Theorems I.4.2.1 and I.4.2.2]. To formulate local conditions on the coor-
dinate functions we follow [37, Definition 4.2 (2)] and say that a function f 2
L2;loc.X; �/ belongs to the strong local domain domloc L of L if for any relatively
compact open set V there exists some u 2 F such that f jV D ujV �-a.e. Similarly
we define dom.1/; loc L. Then identity (7.2) holds for any f ; g 2 domloc L locally on
any relatively compact open set V .
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Assumption 2 The coordinates yi are members of domloc L.

Let Assumptions 1 and 2 be in force. This implies P. y/ � domloc L. Suppose
f D F ı y 2 P. y/, where again J D .n1; : : : ; nk/. Using (7.2) on the coordinates yi

and iterating, we inductively arrive at a coordinate formula for the generator

Lf .x/ D
kX

i;jD1

@2F

@ynj@ynj
. y/Zninj.x/C

kX

iD1

@F

@yni
. y/Lyni.x/;

valid locally on any relatively compact open V . This is a version of a well known
identity, see e.g. [12, Lemma 6.1] or [11].

Example 8

(1) For Example 2 (1) with C1-coefficients aij we have

Lf D div.arf / D
nX

i;jD1

@2f

@xi@xj
aij C

nX

iD1

@f

@xi

nX

jD1

@aij

@xj
:

(2) For Example 2 (2) we observe

�f D div.grad f / D 1p
g

@

@y j

�p
ggij @f

@yi

�
;

what differs by a minus sign from the Laplace-Beltrami operator (convention).
(3) For Example 2 (3) arrive at the Heisenberg sub-Laplacian,

Lf D div.Zrf / D @2f

@�2
C @2f

@�2
C �

@2f

@�@	
C �

@2f

@�@	
C �2 C �2

4

@2f

@	2
D �

X2 C Y2
�

f :

(4) In Example 2 (4) the Dirichlet form generator of .E ;F/ on L2.K; 
/ is the
Kusuoka Laplacian .�
; dom �
/. The coordinate functions yi are harmonic,
that is yi 2 dom �
 and�
yi D 0, i D 1; 2. Accordingly we have

�
 f .x/ D
2X

i;jD1

@2F

@yi@y j
. y/Zij.x/

for any f D F ı y 2 P. y/. This can be rewritten as tr.Z.x/D2F. y//, where D2F
is the Hessian of F and tr the trace operator, see [45, Theorem 8].
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8 Constructing Coordinate Sequences

Let .E ;F/ be a strongly local regular Dirichlet form. Under some continuity
condition it is always possible to simultaneously construct an energy dominant
measure and a corresponding coordinate sequence. The latter may be designed to
have nice decay properties. Let .Pt/t>0 denote the Markovian semigroup uniquely
associated with .E ;F/, [6, 13]. If it is also a strongly continuous semigroup of
contractions Pt W C0.X/ ! C0.X/ on the space C0.X/ of continuous functions
vanishing at infinity, then it is called a Feller semigroup.

Example 9 The transition semigroups of many diffusion processes of Euclidean
domains or manifolds are Feller semigroups. Also the semigroups of many diffu-
sions on fractals are known to be Feller, see for instance [1–3, 33].

Lemma 8.1 Assume that the semigroup .Pt/t>0 is a Feller semigroup. Then there
exist a finite energy dominant measure Qm and a coordinate sequence . yi/i2I �
dom L for .E ;F/ with respect to Qm such that

(i) span.
˚
yi
�

i2I
/ is dense in F ,

(ii) For any i also the functions Lyi are continuous,

(iii) We have
1X

iD1

	
	yi
	
	2

sup < C1 and
1X

iD1

	
	Lyi

	
	2

sup < C1:

Proof Let ffigi � Cc.X/ be a countable family of nonzero functions that is
dense in L2.X; �/. By the Feller property, the resolvent functions G1 fi.x/ WDR1
0

e�tPt f .x/dt, are continuous and G1fi 2 dom L. Set

yi WD 2�nG1 fi
.�kG1 fiksup C k fiksup C E.G1 fi/

1=2
�
:

Then (ii) and (iii) are satisfied. The range Im G1 of G1 W L2.X; �/ ! L2.X; �/
is dense in F and any element of Im G1 can be approximated in F by linear
combinations of the functions G1 fi, what implies (i). Now set Qm WD P1

iD1 2i�. yi/.

Because the energy measures �. yi/ satisfy �. yi/ � �.G1 fi/

22nE.G1 fi/
� 2�2i, we

have Qm.X/ � P1
iD1 2�i < C1. For the densities we observe Zii D d�. yi/

d Qm �
d�. yi/

2id�. yi/
� 2�i Qm � a:e: Polarizing and choosing appropriate Qm-versions of the

functions Zij, we may assume that for m-a.e. x 2 X and any N 2 N the matrix
.Zij.x//Ni;jD1 is symmetric and nonnegative definite. To do so it suffices to note that

given v1; : : : ; vN 2 R, 0 � �

PN

iD1 viyi
�
.A/ D R

A

PN
iD1 Zij.x/vivj Qm.dx/ is a

nonnegative Radon measure, hence its density must be nonnegative Qm-a.e. By letting
N go to infinity we can finally obtain

kZ.x/vk2l2 �
X

i;j

jZij.x/j2jvjj2 �
X

i;j

jZii.x/jjZjj.x/jjvjj2 �
X

i;j

2�i�jjvjj2 � kvk2l2



226 M. Hinz and A. Teplyaev

for any v D .v1; v2; : : : / 2 l2, what allows to conclude that Z.x/ is bounded,
symmetric and nonnegative definite on l2 for �-a.e. x 2 X. ut
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