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Preface

The first conference of the series “Fractal Geometry and Stochastics,” which took
place in 1994, was the first meeting in Europe devoted to the mathematics of
fractals. Since then, fractal structures and techniques have become well-established
in many fields of mathematics, and conferences in the area have been organized
in many countries. Held every 4 or 5 years, “Fractal Geometry and Stochastics” has
continued to be a leading meeting in the field, gathering together the world’s experts
to discuss current developments, new trends, and open problems. For each of these
conferences, the main contributions have been published by Birkhaeuser in their
series Progress in Probability.

“Fractal Geometry and Stochastics V,” with 123 participants from 23 countries,
took place in Tabarz, Thuringia, Germany, from March 24 to 29, 2014. As in the
previous meetings, we followed the principle of inviting representatives of very
active areas of research, including new, young, and promising researchers. The main
speakers were asked to write contributions for this volume. Most of them are nice
introductions to the subjects, in the form of surveys with selected proofs. Some
papers contain interesting original results. The volume is aimed both at newcomers
in the field and to specialists.

We express our gratitude to the Deutsche Forschungsgemeinschaft for their
financial support without which our conferences could not have been organized.
We also thank a number of referees for their help in preparing this volume.

Christoph Bandt
Kenneth Falconer

Martina Zähle
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Introduction

As a mathematical discipline, fractals have undergone a remarkable metamorphosis.
They arose as curious counterexamples in topology around 1900. When Hausdorff
defined fractal dimension in 1918, its significance was not understood by his
contemporaries. It took several decades to develop geometric measure theory, both
in its own right and as a tool for studying the geometry of highly irregular sets.
In the 1970s Mandelbrot coined the word “fractal” and highlighted the potential of
fractal structures for modeling nature. The advent of graphical computer interfaces
boosted the field by attracting the attention of scientists, social scientists, and the
general public but also by raising many deep mathematical questions. Thus, fractal
techniques continue to grow in importance in both pure and applied fields.

The contributions to this volume reflect different aspects of this development in
recent years. The authors are amongst the world’s leading experts in their fields, and
they present their topics in an attractive and comprehensible manner. The book is
divided into five parts, with papers ordered alphabetically within each part.

We begin with “Geometric Measure Theory”, a fundamental area. K. Falconer,
J. Fraser, and X. Jin review the diverse and continuing research which has grown
from Marstrand’s classical projection theorems from the 1950s. This survey is
complemented by the paper of P. Shmerkin which shows how new techniques yield
stronger projection results for classes of sets and measures with particular dynamical
or arithmetic structure. The closely related concepts of scenery flow, and tangent
distributions are used in A. Käenmäki’s paper to study questions of rectifiability and
conical densities of general sets. The use of Minkowski functionals for describing
anisotropy of fractals, motivated by needs of materials science, is discussed by
P. Schönhöfer and K. Mecke.

“Self-Similar Fractals and Recurrent Structures” contains papers on particular
recursive and self-similar constructions. K. Barański provides an accessible account
of the recent proof of many cases of the long-standing conjecture for the Hausdorff
dimension of Weierstrass functions and their generalizations. D. Feng and Y. Wang
prove a new result characterizing tilings of the plane using translates of four tiles.
M. Kesseböhmer and S. Zhu review recent results on the quantization dimension
of measures, that is, how well measures can be approximated by discrete measures,

ix



x Introduction

with particular reference to self-similar and self-affine measures. Apollonian circle
packings are discussed in M. Pollicott’s paper which covers both contemporary and
historical aspects, with particular emphasis on the rate of convergence of the circle
radii. On the dynamical side, M. Rams studies the entropies of the Mather sets,
defined in terms of Lyapunov exponents, for noncommutative dynamical systems.

Fractal structures in analysis and algebra are discussed in “Analysis and Algebra
on Fractals.” R. Grigorchuk, V. Nekrashevych, and Z. Šunić explain self-similar
groups, along with related automata and fractals, and investigate the spectra of
corresponding Schreier graphs. Self-similar graphs approximating certain fractals
are also studied by P. Grabner, who calculates associated spectra of Laplacians
by renormalization based on complex rational functions. This leads to fractal zeta
functions, which are also central in the survey of M.L. Lapidus, G. Radunović, and
D. Žubrinić, which introduces a new “distance” zeta function that extends the theory
of complex dimensions of fractals to the multidimensional case.

Multifractals are the theme of “Multifractal Theory.” Motivated by requirements
of signal and image processing, S. Jaffard, P. Abry, C. Melot, R. Leonarduzzi, and
H. Wendt introduce a new type of multifractal analysis, based on the concepts of
a local p-exponent and lacunarity exponent of functions. J. Barral reviews recent
work on the construction of measures and functions with prescribed multifractal
characteristics.

“Random Constructions” conclude the volume. M. and E. Järvenpää review
refined techniques to find the dimension of certain limsup sets defined by random
subsets of d-dimensional tori. Then A. Telcs and M.E.-Nagy consider isoperimetric
problems for random walks on weighted graphs.

Christoph Bandt
Kenneth Falconer

Martina Zähle
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Sixty Years of Fractal Projections

Kenneth Falconer, Jonathan Fraser, and Xiong Jin

Abstract Sixty years ago, John Marstrand published a paper which, among other
things, relates the Hausdorff dimension of a plane set to the dimensions of
its orthogonal projections onto lines. For a long time the paper attracted little
attention. But over the past 30 years, Marstrand’s projection theorems have become
the prototype for many results in fractal geometry with numerous variants and
applications and they continue to motivate leading research.

Keywords Fractals • Projections • Dimensions • Measure

Mathematics Subject Classification (2000). Primary 28A80; Secondary 28A78

1 Marstrand’s 1954 Paper

In 1954, John Marstrand’s paper [56] ‘Some fundamental geometrical properties
of plane sets of fractional dimensions’ was published in the Proceedings of the
London Mathematical Society, see Fig. 1. The paper was essentially the work for
his doctoral thesis at Oxford, which was heavily influenced by Abram Besicovitch, a
Russian born mathematician and pioneer of geometric measure theory. For 25 years
after its publication the paper attracted only limited attention, since then it has
become one of the most frequently cited papers in the area now referred to as fractal
geometry. Indeed, the paper was the first to consider the geometric properties of
fractal dimensions.
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4 K. Falconer et al.

Fig. 1 Proceedings of the
London Mathematical
Society(3),4 (1954), 257–302

The best-known results from the paper are the two Projection Theorems, stated
below in Marstrand’s wording, which relate the dimensions of sets in the plane
to those of their orthogonal projections onto lines. Note that ‘dimension’ refers
to Hausdorff dimension, and an ‘s-set’ is a set that is measurable and of positive
finite measure with respect to s-dimensional Hausdorff measure Hs. ‘Almost all
directions’ means all lines making angle � with the x-axis except for a set of
� 2 Œ0; �/ of Lebesgue measure 0.

Theorem 1.1 Any s-set whose dimension is greater than unity projects into a set of
positive Lebesgue measure in almost all directions.

Theorem 1.2 Any s-set whose dimension does not exceed unity projects into a set
of dimension s in almost all directions.

The statements are followed by a remark that, by a result of Roy Davies [9],
every Borel or analytic set of infinite s-dimensional Hausdorff measure contains an
s-set. This allows the theorems to be expressed in terms of Hausdorff dimension, and
this is the form in which they are now usually stated. We write dimH for Hausdorff
dimension, L for Lebesgue measure, and proj� for orthogonal projection of a set
onto the line at angle � to the x-axis, see Fig. 2.

Theorem 1.3 ([56]) Let E � R
2 be a Borel or analytic set. Then, for almost all

� 2 Œ0; �/,
(i) dimH proj�E D minfdimH E; 1g,

(ii) L.proj�E/ > 0 if dimH E > 1.

Since projection does not increase distances between points it follows easily
from the definition of Hausdorff measure and dimension that dimH proj�E �
minfdimH E; 1g for all � , but the opposite inequality is much more intricate.
Marstrand’s proofs depend heavily on plane geometry and measure theory, with, for
example, careful estimates of the measures of narrow strips in various directions. As
John Marstrand once remarked, analysis essentially consists of integrating functions



Sixty Years of Fractal Projections 5

Fig. 2 Projection of a set E
onto a line in direction �

in different ways and applying Fubini’s theorem – but it may be difficult to find an
appropriate function. The proofs in this paper illustrate this well.

It is worth mentioning that Marstrand’s paper [56] includes a nice, but often
forgotten, extension to the theorems, that the same exceptional directions can apply
to subsets of the given s-set that are of positive measure. In the following statement
from the paper j j denotes Lebesgue measure.

Proposition 1.4 If E is an s-set and s > 1, then for almost all angles � , all s-sets A
which are contained in E satisfy jproj�Aj > 0.

Although Marstrand’s paper is most often cited for the projection theorems, its
46 pages contain a great deal more, much of which anticipated other directions in
fractal geometry.

• Dimension of the intersection of sets with lines. E.g. Almost every line through
Hs-almost every point of an s-set E (s > 1) intersects E in a set of dimension
s � 1 and finite s � 1-dimensional measure.

• Construction of examples with particular projection properties. E.g. For 1 < s <
2 there exists an s-set which projects onto a set of dimension s � 1 in continuum
many directions in every sector.

• Dimension of exceptional sets. The dimension of the set of points from which
an irregular 1-set (see Sect. 4) has projection of positive Lebesgue measure is at
most 1.

• Densities of s-sets. The density limr!0Hs.E \ B.x; r//=.2r/s of an s-set E � R
2

can exist and equal 1 for Hs-almost all x only if s D 0; 1 or 2. (B.x; r/ denotes
the disc of centre x and radius r.)

• Angular densities. Bounds are given for densities defined in segments emanating
from points of an s-set.

• Weak tangents. For 1 < s < 2 an s-set fails to have a weak tangent (with an
appropriate definition) almost everywhere.

This area of research is a central part of what is now termed fractal geometry.
This paper will survey the vast range of mathematics related to projections of sets
that has developed over the past 60 years and which might be regarded as having its
genesis in Marstrand’s 1954 paper.
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2 The Potential-Theoretic Approach

By virtue of the fact that an orthogonal projection is a Lipschitz map, we invariably
have dimH projE � minfm; dimH Eg for every set E � R

n and projection proj W
R

n ! V onto every m-dimensional subspace V , a fact that should be borne in mind
throughout this article. It is inequalities in the opposite direction that require more
work to establish. (However, a particularly straightforward situation is that for a
connected set E � R

2, both dimH E � 1 and dimH projE D 1 for projections onto
lines in all directions with at most one exception.) Throughout this article we will
always assume that the sets E being projected are Borel or analytic – pathological
constructions show that dimension ceases to have useful geometric properties if
completely general sets are considered.

Marstrand’s proofs of his projection theorems were geometrically complicated
and not particularly conducive to extension or generalization. But in 1968 Kauf-
man [50] gave new proofs of Theorem 1.1(i) using potential theory and of
Theorem 1.1(ii) using a Fourier transform method. This provided a rather more
accessible approach, leading eventually to many generalizations and extensions.
Kaufman’s proofs depend on the following characterization of Hausdorff dimension
in terms of an energy integral:

dimH E D sup
n
s W E supports a positive finite measure

� such that
Z Z

d�.x/d�.y/

jx � yjs
< 1

o
: (2.1)

Thus if E � R
2 and s < dimH E where 0 < s < 1, we may find a measure �

supported by E such that
Z Z

d�.x/d�.y/

jx � yjs
< 1. Write �� for the projection of �

onto the line in direction � , so
R1

�1 f .t/d�� .t/ D R
E f .x � �/d�.x/ for continuous f ,

where we identify � with a unit vector in the direction � . Then

Z �

0

� Z 1

�1

Z 1

�1
d��.t/d��.u/

jt � ujs

�
d� D

Z �

0

� Z

E

Z

E

d�.x/d�.y/

jx � � � y � � js

�
d� (2.2)

D
Z

E

Z

E

Z �

0

d�

jux�y � � js

d�.x/d�.y/

jx � yjs

� c
Z

E

Z

E

d�.x/d�.y/

jx � yjs
< 1

where uw denotes the unit vector w=jwj and
R �
0

jux�y � � j�sd� D c < 1.

Hence for almost all � ,
Z 1

�1

Z 1

�1
d��.t/d�� .u/

jt � ujs
< 1, so, since �� is supported

by proj�E, we conclude from the characterization (2.1) that dimH proj�E � s. This
is true for all s < dimH E, so dimH proj�E � dimH E for almost all � .
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For the case where 1 < s < 2, a variant of this argument shows that

Z �

0

� Z 1

�1

Z 1

�1
jc��.u/j2

�
du < 1

where c�� is the Fourier transform of �� from which it follows that �� is absolutely
continuous with respect to Lebesgue measure with L2 density, so in particular has
support of positive Lebesgue measure.

In 1975 Mattila [57] used potential theoretic methods to obtain the natural
extension of these theorems to projections from higher dimensional spaces to
subspaces. For 1 � m < n, and V an m-dimensional subspace of Rn, let projV denote
orthogonal projection onto V . These subspaces form the Grassmanian G.n;m/, an
m.n � m/-dimensional compact manifold which carries a natural invariant measure,
locally equivalent to m.n � m/-dimensional Lebesgue measure.

Theorem 2.1 ([57]) Let E � R
n be a Borel or analytic set. Then, for almost all

V 2 G.n;m/,

(i) dimH projVE D minfdimH E;mg.
(ii) Lm.projVE/ > 0 if dimH E > m, where Lm denotes m-dimensional Lebesgue

measure on V.

3 Exceptional Sets of Projections

We can deduce rather more from Kaufman’s proof above. Let E � R
2 and 0 < s <

dimH E < 1. Let T D f� W dimH proj�E < sg. If dimH T > s then it can be shown
that we may find a measure � supported by T such that

R
T ju � � j�sd�.�/ � c < 1

for every unit vector u. If we integrate with respect to � instead of Lebesgue measure
in (2.2) we still get a finite triple integral, and so for �-almost all � 2 T the s-energy
of �� is finite and dimH proj�E � s, a contradiction. It follows that if E � R

2 and
0 � s < dimH E < 1 then

dimHf� W dimH proj�E < sg � s:

Thus the set of � for which the projections have much smaller dimension than
that of the set is correspondingly small. Indeed, the dimension of a projection is
rarely less than half that of the set. As Bourgain [8] and Oberlin [63] showed, again
when E � R

2 and dimH E < 1,

dimHf� W dimH proj�E < 1
2

dimH Eg D 0:
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For E � R
2 and dimH E > 1, the greater the ‘excess dimension’ dimH E � 1 the

smaller the set of � where Marstrand’s conclusion fails. To be more precise:

dimHf� W L.proj�E/ D 0g � 2 � dimH E:

This was first proved in [14] and all known proofs depend on Fourier transforms.
Not surprisingly there are higher dimensional analogues of these bounds on the

dimensions of the exceptional set, that is the set of V 2 G.n;m/ for which the
conclusions of Theorem 2.1 fail. These are summerised in the following inequalities,
written for comparison with m.n � m/, the dimension of the Grassmanian G.n;m/,
see [51, 57–59] for more details.

Theorem 3.1 Let E � R
n be a Borel or analytic set.

(i) If 0 < s < dimH E � m then

dimHfV 2 G.n;m/ W dimH projVE < sg � m.n � m/ � .m � s/I

(ii) If dimH E � m then

dimHfV 2 G.n;m/ W dimH projVE < sg � m.n � m/� .dimH E � s/I

(iii) If dimH E > m then

dimHfV 2 G.n;m/ W Lm.projV E/ D 0g � m.n � m/� .dimH E � m/I

(iv) If dimH E > 2m then

dimHfV 2 G.n;m/ W projVE has empty interiorg � m.n �m/� .dimH E �2m/:

4 Sets of Integer Dimension

Marstrand was the first person to consider the effect of projection on the numerical
value of the dimension, but his paper also includes a few results on projections of
s-sets in the ‘critical case’ where s D 1. This case had been studied in great detail
somewhat earlier by Besicovitch around the 1930s [5–7] who showed that 1-sets or
‘linearly-measurable sets’ in the plane could be decomposed into a regular part and
an irregular part, using local densities D.x/ D limr!0H1.E \ B.x; r//=2r.

The regular part consists of those x where the limit D.x/ exists with D.x/ D 1,
and the irregular part is formed by the remaining points. Besicovitch showed
that, to within a set of measure 0, the regular part is ‘curve-like’, that is a subset
of a countable collection of rectifiable curves. On the other hand, the irregular
part is ‘dust-like’ intersecting every rectifiable curve in length 0. Using intricate
geometrical arguments, Besicovitch obtained the following projection theorem.
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Theorem 4.1 ([7]) Let E � R
2 be a 1-set.

(i) If E is regular then L.proj�E/ > 0 for all � 2 Œ0; �/ except perhaps for a single
value of � .

(ii) If E is irregular then L.proj�E/ D 0 for almost all � 2 Œ0; �/.
The natural higher dimensional versions of Theorem 4.1, with appropriate

definitions of regular and irregular sets, were obtained by Federer [27, 28].
If E is measurable and of �-finite H1 measure, it follows from Theorem 4.1 that

L.proj�E/ is either 0 for almost all � or positive for almost all � , by decomposing E
into countably many 1-sets. However if dimH E D 1 but E is not �-finite then strange
things can occur: we can find a set E whose projections are, to within Lebesgue
measure 0, anything we like.

Theorem 4.2 ([9, 15]) For each � 2 Œ0; �/ let E� be a given subset of the line
through the origin of R2 in direction � , such that

S
0��<� E� is plane Lebesgue

measurable. Then there exists a Borel set E � R
2 such that, for almost all � ,

L.E� 4 proj�E/ D 0 where 4 denotes symmetric difference, in other words proj�E
differs from the prescribed set E� by a set of negligible length.

Theorem 4.2 may be obtained by dualising a result of Davies [9, 10] on
covering a plane set by lines without increasing its plane Lebesgue measure. It was
proved directly, along with the natural higher dimension analogues, in [15]. For
projections from R

3 to R
2 this has become known as the ‘digital sundial theorem’:

Given a subset EV of each 2-dimensional subspace V of R3 (with a measurability
condition), there exists a Borel set E � R

3 such that, for almost all subspaces V ,
L2.EV4projV E/ D 0. Thus, in theory at least, there is a set in space such that the
shadow cast by the sun gives the thickened digits of the time at any instant, see
Fig. 3.

5 Packing Dimensions

Packing measures and packing dimension were introduced by Tricot [84] in 1982 as
a sort of dual to their Hausdorff counterparts, see [17, 58]. Whilst packing measures
require an extra step in their definition, the gap of over 60 years between the two
concepts seems very surprising with hindsight. Nowadays, however, every problem
that involves Hausdorff dimension is almost routinely studied in terms of packing
dimension as well. Projection theorems are no exception, but the dimensional
relationships turn out to be more complicated in the packing dimension case.
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Fig. 3 A digital sundial – drawing by Andrew Christie

Järvenpää [43] constructed compact sets E � R
n with dimP E taking any

prescribed value in .0; n� such that dimP projVE D dimP E
ı�
1C.1=m�1=n/ dimP E

�
for all V 2 G.n;m/. This is essentially the least value that can be obtained, that is

dimP E

1C .1=m � 1=n/ dimP E
� dimP projVE � minfdimP E;mg

for almost all V 2 G.n;m/, see [19]. For packing dimensions of projections of
measures, rather than sets, this lower bound was refined to incorporate both the
Hausdorff and packing dimensions of the measure, see [23].

These inequalities raised the question of whether dimP projVE takes a common
value for almost all subspaces V and this was answered affirmatively with the
introduction of ‘dimension profiles’ [20]. The packing dimension profile dims

P E
of a set E � R

n reflects how E appears when viewed in an s-dimensional setting.
For s > 0 the s-dimensional packing dimension profile of a measure � on R

n with
bounded support is defined in terms of local densities of measures with respect to a
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kernel of the form minf1; rs=jx � yjsg:

dims
P � D sup

�
t � 0 W lim inf

r&0
r�t

Z
min

n
1;

rs

jx � yjs

o
d�.y/ < 1

for �-almost all x 2 R
n

�
:

This leads to the s-dimensional packing dimension profile of a set E � R
n

dims
P E D sup

˚
dims

P � W � is a finite compactly supported measure on Eg;

see [20]. The profiles generalize packing dimensions, since dimn
P E D dimP E for

E � R
n. The profiles may also be expressed in terms of measures defined by

weighted coverings, see [38, 53].

Theorem 5.1 ([20]) Let E � R
n be a Borel or analytic set. Then, for almost all

V 2 G.n;m/,

dimP projVE D dimm
P E:

There is a certain parallel with Hausdorff dimensions, where one might define
a dimension profile simply as dims

H E D minfs; dimH Eg which, by Marstrand’s
theorem, gives the Hausdorff dimension of projections onto almost all s-dimensional
subspaces.

As well as giving the almost sure packing dimension of the projections, the
profiles provide upper bounds for the dimension of the exceptional set of directions
for which the packing dimension falls below the almost sure value see [20] and also
[68].

Since their introduction, packing dimension profiles have cropped up in other
contexts, notably to give the almost sure packing dimension of images of sets under
fractional Brownian motion [53, 85].

6 Projections in Restricted Directions

A general question that has been around for many years is under what circumstances
we can get projection theorems for projections onto families of lines or subspaces
that form proper subsets of V.n;m/. For instance, if f�.t/ W t 2 Pg is a smooth curve
or submanifold of V.n;m/ smoothly parameterized by a set P � R

k, then what can
we conclude about dimH proj�.t/E forLk-almost all t 2 P, whereLk is k-dimensional
Lebesgue measure?

For a simple example, it follows easily from Theorem 3.1 (ii)–(iii) that if f�.t/ W
0 � t � 1g is a smoothly parameterized curve of directions in R

3 (i.e. a curve in
V.3; 1//, then for almost all 0 � t � 1 we have dimH proj�E � minfdimH E � 1; 1g
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and if dimH E > 2 then L1.proj�.t/E/ > 0, where proj�.t/ denotes projection onto
the line in direction �.t/.

The following lower bounds were obtained Järvenpää, Järvenpää and Keleti [44]
for parameterized families of projections from R

n to m-dimensional subspaces, see
also [45]. For 0 < k < m.n � m/ define the integers

p.l/ D n � m �
�

k � l.n � m/

m � l

	
.l D 0; 1; : : : ;m � 1/;

where the ‘floor’ symbol ‘bxc’ denotes the largest integer no greater than x.

Theorem 6.1 ([44]) Let P � R
k be an open parameter set and let E � R

n be
a Borel or analytic set. Let fV.t/ � G.n;m/ W t 2 Pg be a family of subspaces
such that V is C1 with the derivative DtV.t/ injective for all t 2 P. Then, for all
l D 0; 1; : : : ;m and Lk-almost all t 2 P,

dimH projV.t/E �
�

dimH E � p.l/ if p.l/C l� dimH E � p.l/C l C 1

l C 1 if p.l/C l C 1� dimH E � p.l C 1/C l C 1:

Moreover, if dimH E > p.m�1/Cm then Lm.projV.t/E/ > 0 for Lk-almost all t 2 P.

These are the best possible bounds for general parameterized families of pro-
jections. The same paper [44] includes generalizations of these results to smoothly
parameterized families of C2-mappings.

Better lower bounds may be obtained if there is curvature in the mapping s 7!
V.s/. This is a difficult area, and work to date mainly concerns projections from
R
3 to lines and planes. Let � W .0; 1/ ! S2 be a family of directions given by a

C3-function � , where S2 is the 2-sphere embedded in R
3. We say that the family of

directions is non-degenerate if

span f�.t/; � 0.t/; � 00.t/g D R
3 for all t 2 .0; 1/:

The following theorem was proved by recently by Fässler and Orponen [26].

Theorem 6.2 ([26]) Let E � R
3 be a Borel or analytic set, let �.t/ be a non-

degenerate family of directions, and let proj�.t/ denote projection onto the line in
direction � . Then, for almost all t 2 .0; 1/,

dimH proj�.t/E � minfdimH E; 1
2
g: (6.1)

It is conjectured that 1
2

can be replaced by 1 in (6.1) and this is verified where E
is a self-similar set without rotations in [26], a paper that also contains estimates for
packing dimensions of projections.

The following bounds have been established for projections onto planes in R
3

in the non-degenerate case. The conjectured lower bound is minfdimH E; 2g and the



Sixty Years of Fractal Projections 13

bound minfdimH E; 1g for all values of dimH E was obtained in [26]. The further
improvements stated below come from Fourier restriction methods [64, 65].

Theorem 6.3 ([26, 64, 65]) Let E � R
3 be a Borel or analytic set, let �.t/ be

a non-degenerate family of directions, and let projV� .t/ denote projection onto the
plane perpendicular to direction � . Then, for almost all t 2 .0; 1/,

dimH projV� .t/E �
8
<
:

minfdimH E; 1g if 0 � dimH E � 4
3

3
4

dimH E if 4
3

� dimH E � 2

minfdimH E � 1
2
; 2g if 2 � dimH E � 3

:

Orponen [71] also showed that there exist numbers �.�/ > 1 defined for � > 1,
and increasing with �, such that if dimH E > 1 then dimH projV� .t/E � �.dimH E/
for almost all t .

Estimates for packing dimensions of projections may be found in [26]. The
introduction of the paper [71] provides a recent overview of this area.

7 Generalized Projections

The projection theorems are a special case of much more general results. The
essential property in Kaufman’s proof in Sect. 2 is that the integral over the
parameter � satisfies

R jproj�x � proj�yj�sd� � cjx � yj�s; such a condition can
hold for many other parameterized families of mappings as well as for proj� .

Thus for X � R
n a compact domain, consider a family of maps �� W X ! R

m

for � in an open parameter set P � R
k. Assume that the derivatives with respect to

� , D��� .x/ exist and are bounded.
Let

ˆ�.x; y/ D j��.x/ � �� .y/j
jx � yj :

The family f�� W � 2 Pg is transversal if there is a constant c such that

jˆ�.x; y/j � c H) det
�
D�ˆ�.x; y/.D�ˆ�.x; y//

T
� � c

for � 2 P and x; y 2 X, where D� denotes the derivative with respect to � and
T denotes the transpose of a matrix. (A form of transversality was first introduced
in [75]). This condition implies that if � 2 P is such that ˆ�.x; y/ is small, then
ˆ�.x; y/ must be varying reasonably fast as � changes in a direction perpendicular
to the kernel of the derivative matrix.

By generalizing beyond recognition earlier arguments involving potential theory
and Fourier transforms, Peres and Schlag [72] obtained theorems such as the
following for a transversal family of generalized projections; compare Theorem 3.1.
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Theorem 7.1 ([72]) For X � R
n and P � R

k, let f�� W X ! R
m W � 2 Pg be a

transversal family and let E � X be a Borel set.

(i) If 0 < t < dimH E � m then

dimHf� 2 P W dimH ��E < tg � k � .m � t/I

(ii) If dimH E > m then

dimHf� 2 P W dimH ��E < tg � k � .dimH E � t/I

(iii) If dimH E > m then

dimHf� 2 P W Lm.��E/ D 0g � k � .dimH E � m/I

(iv) If dimH E > 2m then

dimHf� 2 P W ��E has empty interiorg � n � dimH E C 2:

This powerful result has been applied to many situations, including Bernoulli
convolutions, sums of Cantor sets and pinned distance sets, see [72]. For a recent
treatment of transversality, see [62].

Leikas [55] has used transversality to extend the packing dimension conclusions
of Sect. 5 to families of mappings between Riemannian manifolds where the
dimension profiles again play a central role.

8 Projections of Self-Similar and Self-Affine Sets

One of the difficulties with the projection theorems is that they tell us nothing about
the dimension or measure of the projection in any given direction. There has been
considerable recent interest in examining the dimensions of projections in specific
directions for particular sets or classes of sets, and especially in finding sets for
which the conclusions of Marstrand’s theorems are valid for all, or virtually all,
directions. Of particular interest are self-similar sets which we consider briefly here;
there is a very nice and much more detailed account of the area by Shmerkin [80]
elsewhere in this volume.

Recall that an iterated function system (IFS) is a family of contractions
ff1; : : : ; fkg with fi W R

n ! R
n. An IFS determines a unique non-empty compact

E � R
d such that

E D
k[

iD1
fi.E/; (8.1)
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called the attractor of the IFS, see [17, 42]. If the fi are all similarities, that is of the
form

fi.x/ D riOi.x/C ai; (8.2)

where 0 < ri < 1 is the similarity ratio, Oi is an orthonormal map, i.e. a rotation or
reflection, and ai is a translation, then E is termed self-similar. An IFS of similarities
satisfies the strong separation condition (SSC) if the union (8.1) is disjoint, and the
open set condition (OSC) if there is a non-empty open set U with [k

iD1fi.U/ � U
with this union disjoint. If either SSC or OSC hold then dimH E D s, where s is the
similarity dimension given by

Pk
iD1 rs

i D 1, where ri is the similarity ratio of fi, and
moreover 0 < Hs.E/ < 1. The rotation group G D hO1; : : : ;Oki generated by the
orthonormal components of the similarities plays a crucial role in the behaviour of
the projections of self-similar sets.

It is easy to construct self-similar sets with a finite rotation group G for which
the conclusions of Marstrand’s theorem fail in certain directions. For example, let
f1; : : : ; f4 be homotheties (that is similarities with Oi the identity in (8.2)) of ratio
0 < r < 1

4
that map the unit square S into itself, each fi fixing one of the four

corners. Then dimH E D � log 4= log r, but the projections of E onto the sides of the
square have dimension � log 2= log r and onto the diagonals of S have dimension
� log 3= log r, a consequence of the alignment of the component squares fi.S/ under
projection. There is a similar reduction in the dimension of projection in direction �
whenever proj� .fi1 ı � � � ı fik.S// D proj� .fj1 ı � � � ı fjk .S// for distinct words i1; : : : ; ik
and j1; : : : ; jk.

Kenyon [52] conducted a detailed investigation of the projections of the
1-dimensional Sierpiński gasket E � R

2, that is the self-similar set defined by
the similarities

f1.x; y/ D . 1
3
x; 1

3
y/; f2.x; y/ D . 1

3
x C 2

3
; 1
3
y/; f3.x; y/ D . 1

3
x; 1

3
y C 2

3
/:

He showed that the projection of E onto a line making an angle to the x-axis
with tangent p=q with has dimension strictly less than 1 if p C q 6� 0 .mod 3/,
but if p C q � 0 .mod 3/ then the projection has non-empty interior. For
irrational directions he proved that the projections have Lebesgue measure 0 and
Hochman [34] complemented this by showing that they nevertheless have Hausdorff
dimension 1.

In fact, when the rotation group is finite, there are always some projections
for which direct overlapping of the projection of components of the usual iterated
construction leads to a reduction in dimension, as the following theorem of Farkas
shows.

Theorem 8.1 ([25]) If E � R
n is self-similar with finite rotation group G and

similarity dimension s, then dimH projVE < s for some V 2 G.n;m/. In particular
if E satisfies OSC and 0 < dimH E < m then dimH projVE < dimH E for some V.
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A rather different situation occurs if the IFS has dense rotations, that is the
rotation group G is dense in the full group of rotations SO.n;R/ or in the group of
isometries O.n;R/. Note that an IFS of similarities of the plane has dense rotations
if at least one of the rotations in the group is an irrational multiple of � .

Theorem 8.2 ([35, 74]) If E � R
n is self-similar with dense rotations then

dimH projVE D minfdimH E;mg for all V 2 G.n;m/: (8.3)

More generally, dimH g.E/ D minfdimH E;mg for all C1 mappings g W E ! R
m

without singular points, that is maps with non-singular derivative matrix.

Peres and Shmerkin [74] proved (8.3) in the plane without requiring any
separation condition on the IFS. To show this they set up a discrete version of
Marstrand’s projection theorem to construct a tree of intervals in the subspace (line)
V followed by an application of Weyl’s equidistribution theorem. Hochman and
Shmerkin [35] proved the theorem in higher dimensions, including the extension
to C1 mappings, for E satisfying the open set condition. Their proof uses the CP-
chains of Furstenberg [31, 32], see also [33], and has three main ingredients: the
lower semicontinuity of the expected Hausdorff dimension of the projection of a
measure with respect to its ‘micromeasures’, Marstrand’s projection theorem, and
the invariance of the dimension of projections under the action of the rotation group.

That the open set condition is not essential follows since, for all 	 > 0, we
can use a Vitali argument to set up a new IFS, consisting of compositions of the
fi, that satisfies SSC, with attractor E0 � E such that dimH E0 > dimH E � 	; we
can also ensure that the new IFS has dense rotations if the original one has, see
[21, 25, 69, 74].

It is also natural to ask about the Lebesgue measures of the projections of self-
similar sets. We have seen examples of self-similar sets E of Hausdorff dimension
s < m with finite rotation group and satisfying SSC such that Hs.projVE/ is positive
for some subspaces V and 0 for others. For dense rotations, the situation is clear cut:
the following theorem was proved by Eroğlu [13] in the plane case for projections
when OSC is satisfied, and for more general mappings with the separation condition
removed by Farkas [25].

Theorem 8.3 ([25]) Let E � R
n be the self-similar attractor of an IFS with dense

rotations, with dimH E D s. Then Hs.projVE/ D 0 for all V 2 G.n;m/. More
generally, Hs.g.E// D 0 for all C1 mappings g W E ! R

n without singular points.

In the dense rotation case, if dimH E > m then dimH projVE D m for all V 2
G.n;m/ by Theorem 8.2, but we might hope from the second part of Marstrand’s
theorem that the projections also have positive Lebesgue measure. Shmerkin and
Solomyak showed that this is very nearly so in the plane.

Theorem 8.4 ([81]) Let E � R
2 be the self-similar attractor of an IFS with dense

rotations with 1 < dimH E < 2. Then L1.proj�E/ > 0 for all � except for a set of �
of Hausdorff dimension 0.
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Fig. 4 A Bedford McMullen self-affine carpet obtained by repeated substitution of the left-hand
pattern in itself

The proof depends on careful estimation of the decay of the Fourier transforms
of projections of a measure supported by E. The method can be traced back to a
study of Bernoulli convolutions by Erdős [12], which Kahane [49] pointed out gave
an exceptional set of Hausdorff dimension 0 rather than just Lebesgue measure 0,
see [73].

The attractor of an IFS is self-affine if (8.1) holds for affine contractions
ff1; : : : ; fkg. A plane self-affine set is a carpet if the contractions are of the form

fi.x; y/ D .aix C ci; biy C di/; (8.4)

i.e. affine transformations that leave the horizontal and vertical directions invariant,
see Fig. 4. For many self-affine carpets the dimensions of the projections behave
well except in directions parallel to the axes.

Theorem 8.5 ([30]) Let E � R
2 be a self-affine carpet in the Bedford-McMullen,

Gatzouras-Lalley or Barański class. If the defining IFS is of irrational type, then
dimH proj�E D minfdimH E; 1g for all � except possibly � D 0 and � D 1

2
�:

For definitions and details of these different classes of carpets, see [30]. The IFS
is of irrational type if, roughly speaking, log ai= log bi is irrational for at least one
of the fi in (8.4).

Along similar lines, for an integer n � 2, let Tn W Œ0; 1� ! Œ0; 1� (where 0
and 1 are identified) be given by Tn.x/ D nx .mod1/. In the 1960s Furstenberg
conjectured that if E and F are closed sets invariant under T2 and T3 respectively,
then dimH proj� .E � F/ should equal minfdimH.E � F/; 1g for all � except possibly
� D 0 and � D 1

2
�: This was proved by Hochman and Shmerkin [35] along with

more general results such as the following.

Theorem 8.6 ([35]) Let E and F be closed subsets of Œ0; 1� that are invariant
under Tm and Tn respectively, where m; n are not powers of the same integer. Then
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dimH proj� .E � F/ D minfdimH.E � F/; 1g for all � except possibly � D 0 and
� D 1

2
� .

Projection properties of self-affine measures underpin this work and there are
measure analogues of these theorems, see [29, 30, 35].

9 Projections of Random Sets

Fractal percolation provides a natural method of generating statistically self-similar
fractals, with the same random process determining the form of the fractals at both
small and large scales.

Best known is Mandelbrot percolation, based on repeated decomposition of
squares into smaller subsquares from which a subset is selected at random. Let D
denote the unit square in R

2. Fix an integer M � 2 and a probability 0 < p < 1. We
divide D into M2 closed subsquares of side 1=M in the obvious way, and retain each
subsquare independently with probability p to get a set D1 formed as a union of the
retained subsquares. We repeat this process with the squares of D1, dividing each
into M2 subsquares of side 1=M2 and choosing each with probability p to get a set
D2, and so on. This leads to the random percolation set E D \1

kD0Dk. If p > M�2
then there is a positive probability of non-extinction, i.e. that E ¤ ;, conditional on
which dimH E D 2C log p= log M almost surely.

The topological properties of Mandelbrot percolation have been studied exten-
sively, see [11, 17, 78] for surveys. In particular there is a critical probability pc with
1=M < pc < 1 such that if p > pc then, conditional on non-extinction, E contains
many connected components, so projections onto all lines automatically have
positive Lebesgue measure. If p � pc the percolation set E is totally disconnected,
and Marstrand’s theorems provide information on projections of E in almost all
directions. However, Rams and Simon [76–78] recently showed using a careful
geometrical analysis that, conditional on E ¤ ;, almost surely the conclusions of
Theorem 1.3 hold for all projections.

Theorem 9.1 ([77]) Let E be the random set obtained by the Mandelbrot percola-
tion process in the plane based on subdivision of squares into M2 subsquares, each
square being retained with probability p > 1=M2. Then, with positive probability
E ¤ ;, conditional on which:

(i) dimH proj�E D minfdimH E; 1g for all � 2 Œ0; �/,
(ii) If p > 1=M then for all � 2 Œ0; �/, proj�E contains an interval and in particular

L.proj�E/ > 0.

The natural higher dimensional analogues of this theorem for projections onto all
V 2 G.n;m/ are also valid, see [83]. There are also versions of this result when the
squares are selected using certain other probability distributions.

Statistically self-similar subsets of any self-similar set may be constructed using
a similar percolation process. Let ff1; : : : ; fmg be an IFS on R

n given by (8.2) and let
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Fig. 5 A self-similar set with dense rotations and a subset obtained by the percolation process

E0 be its attractor. Percolation on E0 may be performed by retaining or deleting
components of the natural hierarchical construction of E in a random but self-
similar manner. Let 0 < p < 1 and let D � R

n be a non-empty compact set
such that fi.D/ � D for all i. We select a subfamily of the sets ff1.D/; : : : ; fm.D/g
where each fi.D/ is selected independently with probability p and write D1 for
the union of the selected sets. Then, for each selected fi.D/, we choose sets from
ffif1.D/; : : : ; fifm.D/g independently with probability p independently for each i,
with the union of these sets comprising D2. Continuing in this way, we get a
nested hierarchy D 	 D1 	 D2 	 � � � of random compact sets, where Dk is the
union of the components remaining at the kth stage. The random percolation set is
E D \1

kD1Dk, see Fig. 5. When the underlying IFS has dense rotations, Falconer and
Jin [21] extended the ergodic theoretic methods of [35] to random cascade measures
to obtain a random analogue of Theorem 8.2.

Theorem 9.2 ([21]) Let E0 � R
n be a self-similar set with dense rotation group

and let E � E0 be the percolation set described above. If p > 1=m there is positive
probability that E ¤ ;, conditional on which,

dimH projVE D minfdimH E;mg for all V 2 G.n;m/:

More generally, conditional on E ¤ ;, dimH g.E/ D minfdimH E;mg for all C1

mappings g W E ! R
m without singular points.

Recently, Shmerkin and Suomala [82] have introduced a very general theory
showing that for a class of random measures, termed spatially independent mar-
tingales, very strong results hold for dimensions of projections and sections of the
measures, and thus of underlying sets, with the conclusions holding almost surely
for projections in all directions or onto all subspaces. Such conclusions are obtained
by showing that almost surely the total measures of intersections of the random
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measures with parameterized deterministic families of measures are absolutely
continuous with respect to the parameter. Spatially independent measures include
measures based on fractal percolation, random cascades and random cutout models.

10 Further Variations and Applications of Projections

This discussion has covered just a few of the numerous results which may be traced
back to Marstrand’s pioneering work. We end with an even briefer mention of some
further applications, with one or two references indicating where further information
may be found.

Visible parts of sets The visible part Vis�E of a compact set E � R
2 from direction

� is the set of x 2 E such that the half-line from x in direction � intersects E in
the single point x; thus Vis�E may be thought of as the part of E that can be ‘seen
from infinity’ in direction � . It is immediate from Marstrand’s Theorem 1.3 that, for
almost all � ,

dimH Vis�E D dimH E if dimH E � 1 and dimH Vis�E � 1 if dimH E � 1:

It has been conjectured that if dimH E � 1 then dimH Vis�E D 1 for almost all � , but
so far this has only been established for rather specific classes of E. The conjecture
is easily verified if E is the graph of a function (the only exceptional direction being
perpendicular to the x-axis), see [47]. It is also known for quasi-circles [47] and for
Mandelbrot percolation sets [1]. For self-similar sets, it holds if E is connected and
the rotation group is finite [1], and also if E satisfies the open set condition for a
convex open set such that proj�E is an interval for all � [18] (in this case E need not
be connected). The analogous conjecture in higher dimensions, that the dimension
of the visible part of a set E � R

n equals minfdimH E; n � 1g, is also unresolved if
dimH E > n � 1.

Projections in infinite dimensional spaces Infinite-dimensional dynamical systems
may have finite dimensional attractors. When they are studied experimentally what
is observed is essentially a projection or ‘embedding’ of the attractor into Euclidean
space and infinite-dimensional versions of the projection theorems can relate these
projections to the original attractor. Let E be a compact subset of a Banach space
X with box-counting (or Minkowski) dimension d. Hunt and Kaloshin [41] show
that for almost every projection or bounded linear function � W X ! R

m such that
m > 2d,

m � 2d

m.1C d/
dimH E � dimH �.E/ � dimH E:
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Here ‘almost every’ is interpreted in the sense of prevalence, which is a measure-
theoretic way of defining sparse and full sets for infinite-dimensional spaces. The
book by Robinson [79] provides a recent treatment of this important area.

Projections in Heisenberg groups The Heisenberg group H
n is the connected

and simply connected nilpotent Lie group of step 2 and dimension 2n C 1 with
1-dimensional center, which may be identified topologically with R

2nC1. However,
the Heisenberg metric dH, which is invariant under the group action, is very different
from the Euclidean metric, and in particular the Hausdorff dimension of subsets of
H

n depends on which metric is used in the definition. Despite the lack of isotropy,
there is enough geometric structure to enable families of projections to be defined,
and it is possible to get bounds for the dimensions of certain projections of a Borel
set E in terms of the dimension of E, where the dimensions are defined with respect
to dH, see [2, 3, 61].

Sections of sets Dimensions of sections or slices of sets, which go hand in hand
with dimensions of projections, also featured in Marstrand’s 1954 paper [56]. He
showed essentially that, if E � R

2 is a Borel or analytic set of Hausdorff dimension
s > 1, then for almost all directions � , dimH proj�1� x � s � 1 for almost all x 2 V� ,
with equality for a set of x 2 V� of positive Lebesgue measure. Here proj� W
R
2 ! V� is orthogonal projection onto V� , the line in direction � . The natural

higher dimensional analogues were obtained by Mattila [57, 58, 60] using potential
theoretic arguments. Most of the aspects discussed above for projections have
been investigated for sections, including packing dimensions [23, 48], exceptional
directions [70], self-similar sets [22, 31] and fractal percolation sets [22, 82].

Projections of measures For � a Borel measure on R
n with compact support such

that 0 < �.Rn/ < 1, the projection projV� of � onto a subspace V 2 G.n;m/ is
defined in the natural way, that is by .projV�/.A/ D �fx 2 R

n W projV.x/ 2 Ag
for Borel sets A or equivalently by

R
f .t/d.projV�/.t/ D R

f .projV.x//d�.x/ for
continuous f . The support of projV� is the projection onto V of the support of �,
so it is not surprising that many of the results for projection of sets have analogues
for projection of measures. Indeed many projection results for sets are obtained by
putting a suitable measure on the set and examining projections of the measure, as
in Kaufman’s proof in Sect. 2. There are many ways of quantifying the fine structure
of measures, and the way these behave under projections have been investigated in
many cases.

For example, the lower pointwise or local dimension of a Borel probability
measure� on R

n at x 2 R
n is given by dim�.x/ D limr!0 log�.B.x; r//= log r, with

a corresponding definition taking the upper limit for the upper pointwise dimension.
Then, for almost all every subspace V 2 G.n;m/ and �-almost all x 2 R

n,

dim�.projVx/ D minfdim�.x/;mg and dim�.projVx/ D minfdim�.x/;mg;

see [24, 35, 39, 40, 86]. The .lower/ Hausdorff dimension of a measure � is defined
as dimH � D inffdimH A W �.A/ > 0g. It follows easily from the projection
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properties of pointwise dimension that, for almost every V ,

dimH.projV�/ D minfdimH �.x/;mg:

The Lq-dimensions of projections are examined in [40], for the multifractal spectrum
see [4, 66, 67], and for packing dimension aspects see [23].

For a special case of projection of measures, let M be a compact Riemann surface
and proj W T1M ! M be the natural projection from the unit tangent bundle T1M
to M. Let � be a probability measure on T1M that is invariant under the geodesic
flow on T1M. Ledrappier and Lindenstrauss [54] showed that if dimH � � 2 then
dimH proj� D dimH �, and if dimH � > 2 then proj� is absolutely continuous
see also [36, 37]. However, the analogous conclusion fails if the base manifold has
dimension 3 or more, see [46].

Other results, such as Theorems 8.2 & 9.2 have natural measure analogues.

11 Conclusion

If this article does nothing else, it should demonstrate just how much of fractal
geometry has its roots in Marstrand’s 1954 paper. If further evidence is needed,
there are hundreds of citations of the paper in MathSciNet and Google Scholar,
despite these indexes only including relatively recent references.

This survey of projection results has been brief and far from exhaustive and there
are many more related papers. For a both broader and more detailed coverage of
various aspects of projections, the books by Falconer [16, 17] and Mattila [58, 62]
and the survey articles by Mattila [59–61] may be helpful.
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Scenery Flow, Conical Densities,
and Rectifiability

Antti Käenmäki

Abstract We present an application of the recently developed ergodic theoretic
machinery on scenery flows to a classical geometric measure theoretic problem in
Euclidean spaces. We also review the enhancements to the theory required in our
work. Our main result is a sharp version of the conical density theorem, which we
reduce to a question on rectifiability.

Keywords Scenery flow • Fractal distributions • Conical densities •
Rectifiability
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1 Introduction

We survey a recent advance in the study of scenery flows and show how it can be
applied in a classical question in geometric measure theory which a priori does not
involve any dynamics. The reader is prompted to recall the expository article of
Fisher [8] where it was discussed how the scenery flow is linked to rescaling on
several well-studied structures, such as geodesic flows, Brownian motion, and Julia
sets. The purpose of this note is to continue that line of introduction.

The idea behind the scenery flow has been examined in many occasions. Authors
have considered the scenery flow for specific sets and measures arising from
dynamics; see e.g. [1–3, 7, 21]. Abstract scenery flows have also been studied with
a view on applications to special sets and measures, again arising from dynamics
or arithmetic; see e.g. [11–13]. The main innovation of the recent article by
Käenmäki, Sahlsten, and Shmerkin [15] is to employ the general theory initiated by
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Furstenberg [10], greatly developed by Hochman [12] and extended by Käenmäki,
Sahlsten, and Shmerkin [16], to classical problems in geometric measure theory.

One of the most fundamental concepts of geometric measure theory is that of
rectifiability. It is a measure-theoretical notion for smoothness and to a great extend,
geometric measure theory is about studying rectifiable sets. The foundations of geo-
metric measure theory were laid by Besicovitch [4, 5]. For various characterizations
and properties of rectifiability the reader is referred to the book of Mattila [18].
In conical density results, the idea is to examine how a measure is distributed in
small balls. Finding conditions that guarantee the measure to be effectively spread
out in different directions is a classical question going back to Besicovitch [6] and
Marstrand [17]. For an account of the development on conical density results the
reader is referred to the survey of Käenmäki [14].

The scenery flow is a well-suited tool to address problems concerning conical
densities. The cones in question do not change under magnification and this allows
to pass information between the original measure and its tangential structure. In fact,
we will see that there is an intimate connection between rectifiability and conical
densities.

This exposition comes in two parts. In the first part, we review dynamical aspects
of the scenery flow and in the second part, we focus on geometric measure theory.

2 Dynamics of the Scenery Flow

Let .X;B;P/ be a probability space. We shall assume that X is a metric space and
B is the Borel �-algebra on X. Write RC D Œ0;1/. A (one-sided) flow is a family
.Ft/t2RC

of measurable maps Ft W X ! X for which

FtCt0 D Ft ı Ft0 ; t; t0 2 RC:

In other words, .Ft/t2RC
is an additiveRC action on X. We also assume that .x; t/ 7!

Ft.x/ is measurable.
We say that a set A 2 B is Ft invariant if P.F�1

t A4A/ D 0 for all t � 0. If
FtP D P for all t � 0, then we say that P is Ft invariant. In this case, we call
.X;B;P; .Ft/t2RC

/ a measure preserving flow. Furthermore, a measure preserving
flow is ergodic, if for all t � 0 the measure P is ergodic with respect to the
transformation Ft W X ! X, that is, for all Ft invariant sets A 2 B we have
P.A/ 2 f0; 1g.

Theorem 2.1 (Birkhoff ergodic theorem) If .X;B;P; .Ft/t2RC
/ is an ergodic

measure preserving flow, then for a P integrable function f W X ! R we have

lim
T!1

1

T

Z T

0

f .Ftx/ dt D
Z

f dP

for P-almost all x 2 X.
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We write ! 
 P to indicate that ! is chosen randomly according to the
measure P.

Theorem 2.2 (Ergodic decomposition) Any Ft invariant measure P can be
decomposed into ergodic components P! , ! 
 P, such that

P D
Z

P! dP.!/:

This decomposition is unique up to P measure zero sets.

Let us next define the scenery flow. We equip R
d with the usual Euclidean norm

and the induced metric. Denote the closed unit ball by B1. Let M1 WD P.B1/ be
the collection of all Borel probability measures on B1 and M�

1 WD f� 2 M1 W
0 2 spt.�/g. Here spt.�/ is the support of �. To avoid any confusion, measures on
measures will be called distributions. We define the magnification St� of � 2 M�

1

at 0 by setting

St�.A/ WD �.e�tA/

�.B.0; e�t//
; A � B1:

In other words, the measure St� is obtained by scaling �jB.0;e�t/ into the unit ball
and normalizing. Due to the exponential scaling, .St/t2RC

is a flow in the space
M�

1 and we call it the scenery flow at 0. An St invariant distribution P on M�
1 is

called scale invariant. Although the action St is discontinuous (at measures � with
�.@B.0; r// > 0 for some 0 < r < 1) and the set M�

1 � M1 is not closed, we shall
witness that the scenery flow behaves in a very similar way to a continuous flow on
a compact metric space.

With the scenery flow we are now able to define tangent measures and distri-
butions. Let � be a Radon measure and x 2 spt.�/. We want to consider the
scaling dynamics when magnifying around x. Let Tx�.A/ WD �.A C x/ and define
�x;t WD St.Tx�/. Then the one-parameter family .�x;t/t2RC

is called the scenery flow
at x. Accumulation points of this scenery in M1 will be called tangent measures of
� at x and the family of tangent measures of � at x is denoted by Tan.�; x/ � M1.
However, we are not interested in a single tangent measure, but the whole statistics
of the scenery �x;t as t ! 1. We remark that we have slightly deviated from Preiss’
original definition of tangent measures, which corresponds to taking weak limits of
unrestricted blow-ups; see [20].

Definition 2.3 (Tangent distributions) A tangent distribution of � at x 2 spt.�/
is any weak limit of

h�ix;T WD 1

T

Z T

0

ı�x;t dt
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as T ! 1. The family of tangent distributions of � at x is denoted by T D.�; x/ �
P.M�

1 /.

If the limit above is unique, then, intuitively, it means that the collection of
views �x;t will have well-defined statistics when zooming into smaller and smaller
neighbourhoods of x. The integration above makes sense since we are on a convex
subset of a topological linear space. We emphasize that tangent distributions are
measures on measures. Notice that the set T D.�; x/ is non-empty and compact at
x 2 spt.�/. Moreover, the support of each P 2 T D.�; x/ is contained in Tan.�; x/.

According to Preiss’ well-known principle, tangent measures to tangent mea-
sures are tangent measures; see [20, Theorem 2.12]. We shall define an analogous
condition for distributions. We say that a distribution P on M1 is quasi-Palm if for
any Borel set A � M1 with P.A/ D 1 it holds that for P-almost every � 2 A
and for �-almost every z 2 R

d there exists tz > 0 such that for t � tz we have
B.z; e�t/ � B1 and

�z;t 2 A:

This version of the quasi-Palm property actually requires that the unit sphere of the
norm is a C1 manifold and does not contain line segments; see [15, Lemma 3.23].
The Euclidean norm we use of course satisfies this requirement. If we were
considering unrestricted blow-ups, then the requirement for B.z; e�t/ to be contained
in B1 could be dropped. Roughly speaking, the quasi-Palm property guarantees that
the null sets of the distributions are invariant under translations to a typical point of
the measure.

Definition 2.4 (Fractal distributions) A distribution P on M1 is a fractal distri-
bution if it is scale invariant and quasi-Palm. A fractal distribution is an ergodic
fractal distribution if it is ergodic with respect to St.

It follows from the Besicovitch density point theorem that ergodic components
of a fractal distribution are ergodic fractal distributions; see [12, Theorem 1.3].

A general principle is that tangent objects enjoy some kind of spatial invariance.
For tangent distributions, a very powerful formulation of this principle is the
following theorem of Hochman [12, Theorem 1.7]. The result is analogous to a
similar phenomenon discovered by Mörters and Preiss [19, Theorem 1].

Theorem 2.5 For any Radon measure � and �-almost every x, all tangent distri-
butions of � at x are fractal distributions.

Notice that as the action St is discontinuous, even the scale invariance of tangent
distributions or the fact that they are supported on M�

1 are not immediate, though
they are perhaps expected. The most interesting part in the above theorem is that a
typical tangent distribution satisfies the quasi-Palm property.

Hochman’s result is proved by using CP processes which are Markov processes
on the dyadic scaling sceneries of a measure introduced by Furstenberg [9, 10]. Let
D be a partition of Œ�1; 1�d into 2d cubes of side length 1. Given x 2 Œ�1; 1�d,
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let D.x/ be the only element of D containing it. If D 2 D, then we write TD for
the orientation preserving homothety mapping from D onto Œ�1; 1�d. Define the CP
magnification M on� WD P.Œ�1; 1�d/ � Œ�1; 1�d by setting

M.�; x/ WD �
TD.x/�=�.D.x//;TD.x/.x/

�
:

This is well-defined whenever �.D.x// > 0. Note that, since zooming in is done
dyadically, it is important to keep track of the orbit of the point that is being zoomed
upon. A distribution Q on � is adapted if there is a disintegration

Z
f .�; x/ dQ.�; x/ D

ZZ
f .�; x/ d�.x/ dQ.�/

for all f 2 C.�/. Here Q is the projection of Q onto the measure component. In
other words, Q is adapted if choosing a pair .�; x/ according to Q can be done in a
two-step process, by first choosing � according to Q and then choosing x according
to �. A distribution on � is a CP distribution if it is M invariant and adapted.

The micromeasure distribution of � at x 2 spt.�/ is any weak limit of

h�; xiN WD 1

N

N�1X
kD0

ıMk.�;x/:

By compactness of P.�/, the family of micromeasure distributions is non-empty
and compact, and by [12, Proposition 5.4], each micromeasure distribution is
adapted. Furthermore, if the intensity measure of a micromeasure distribution Q
defined by

ŒQ�.A/ WD
Z
�.A/ dQ.�/; A � Œ�1; 1�d;

is the normalized Lebesgue measure, then Q is M invariant. By adaptedness,
this is the case for any weak limit of h� C z; x C ziN for Lebesgue almost all
z 2 Œ�1=2; 1=2�d; see [12, Proposition 5.5(2)]. In other words, by slightly adjusting
the dyadic grid, a micromeasure distribution can be seen to be a CP distribution.
The family of CP distributions having Lebesgue intensity is compact; see [16,
Lemma 3.4].

If Q is a CP distribution, then the system .�;M;Q/ is a stationary one-sided
process .�n/n2N with �1 
 Q and M�n D �nC1. Considering its two-sided extension,
we see that there exists a natural extension OQ supported on the Cartesian product of
all Radon measures and Œ�1; 1�d. A centering of OQ is a push-down of the suspension
flow of OQ under the unrestricted magnification of � at x. For a precise definition,
see [12, Definition 1.13]. By [12, Theorem 1.14], a centering of OQ is an unrestricted
fractal distribution. We remark that [12] and [16] use L1 norm to allow an easier
link between CP processes and fractal distributions. By [16, Appendix A], the results
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are independent of the choice of the norm and hence, our use of the Euclidean norm
is justified.

Relying on the above, we are now able to give an outline for the proof of
Theorem 2.5. If P D limk!1h�ix;Nk is a tangent distribution, then, passing to a
subsequence, define a micromeasure distribution Q D limi!1h�; xiNk.i/ . Slightly
adjusting the dyadic grid, we see that Q is a CP distribution with Lebesgue intensity.
Thus, by [12, Proposition 5.5(3)], P is the restriction of the centering of OQ and hence,
P is a fractal distribution.

Although fractal distributions are defined in terms of seemingly strong geometric
properties, the family of fractal distributions is in fact very robust. The following
theorem is due to Käenmäki, Sahlsten, and Shmerkin [16, Theorem A].

Theorem 2.6 The family of fractal distributions is compact.

The result may appear rather surprising since the scenery flow is not continuous,
its support is not closed, and, more significantly, the quasi-Palm property is not a
closed property. The proof of this result is also based on the interplay between fractal
distributions and CP processes. We have already seen that each CP distribution
defines a fractal distribution. The converse is also true. Let us first assume that P
is an ergodic fractal distribution. If f is a continuous function defined on P.M1/,
then, by the Birkhoff ergodic theorem, we have

lim
T!1

1

T

Z T

0

f .St�/ dt D
Z

f dP

for P-almost all �. Considering a countable dense set of continuous functions f and
applying the quasi-Palm property, it follows that

lim
T!1h�ix;T D P (2.1)

for P-almost all � and for �-almost all x; see [12, Theorem 3.9]. As we already have
seen, any tangent distribution can be expressed as the restriction of the centering
of an extended CP distribution having Lebesgue intensity. Thus, by (2.1), the
same holds for ergodic fractal distributions. Relying on the ergodic decomposition,
this observation can be extended to non-ergodic fractal distributions; see [12,
Theorem 1.15]. Therefore, since the family of CP distributions with Lebesgue
intensity is compact, to prove Theorem 2.6, it suffices to show that the centering
is a continuous operation. This is done in [16, Lemmas 3.5 and 3.6].

Together with convexity and the uniqueness of the ergodic decomposition,
Theorem 2.6 implies that the family of fractal distributions is a Choquet simplex.
Recall that a Poulsen simplex is a Choquet simplex in which extremal points are
dense. Note that the set of extremal points is precisely the collection of ergodic
fractal distributions. The following theorem is proved by Käenmäki, Sahlsten, and
Shmerkin [16, Theorem B].

Theorem 2.7 The family of fractal distributions is a Poulsen simplex.



Scenery Flow, Conical Densities, and Rectifiability 33

The proof is again based on the interplay between fractal distributions and CP
processes. We prove that ergodic CP processes are dense by constructing a dense
set of distributions of random self-similar measures on the dyadic grid. This is
done by first approximating a given CP process by a finite convex combination
of ergodic CP processes, and then, by splicing together those finite ergodic CP
processes, constructing a sequence of ergodic CP processes converging to the
convex combination. Roughly speaking, splicing of measures consists in pasting
together a sequence of measures along dyadic scales. Splicing is often employed
to construct measures with a given property based on properties of the component
measures. For details, the reader is referred to [16, §4].

In geometric considerations, we usually construct a fractal distribution satisfying
certain property. We often want to transfer that property back to a measure. This
leads us to the concept of generated distributions.

Definition 2.8 (Uniformly scaling measures) We say that a measure � generates
a distribution P at x if

T D.�; x/ D fPg:

If � generates P for �-almost all x, then we say that � is a uniformly scaling
measure.

One can think that the uniformly scaling property is an ergodic-theoretical notion
of self-similarity. Hochman proved the striking fact that generated distributions
are always fractal distributions. The following result of Käenmäki, Sahlsten, and
Shmerkin [16, Theorem C] is a converse to this.

Theorem 2.9 If P is a fractal distribution, then there exists a uniformly scaling
measure � generating P.

Recall that if P is an ergodic fractal distribution, then, by (2.1), P-almost every
measure is uniformly scaling. Thus, by Theorems 2.6 and 2.7, it suffices to show
that the collection of fractal distributions satisfying the claim is closed. Let .Pi/i be
a sequence of ergodic fractal distributions converging to P and let �i be a uniformly
scaling measure generating Pi. The proof is again based on the interplay between
fractal distributions and CP processes. The rough idea to obtain a uniformly scaling
measure generating P is to splice the measures �i together. For the full proof, the
reader is referred to [16, §5].

3 Geometry of Measures

Let G.d; d � k/ denote the set of all .d � k/-dimensional linear subspaces of Rd. For
x 2 R

d, r > 0, V 2 G.d; d � k/, and 0 < ˛ � 1 define

X.x; r;V; ˛/ D fy 2 B.x; r/ W dist.y � x;V/ < ˛jy � xjg:
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Conical density results aim to give conditions on a measure which guarantee that
the cones X.x; r;V; ˛/ contain a large portion of the mass from the surrounding
ball B.x; r/ for certain proportion of scales. For example, a lower bound on some
dimension often is such a condition. Recall that the lower local dimension of a
Radon measure � at x 2 R

d is

dimloc.�; x/ D lim inf
r#0

log�.B.x; r//

log r
(3.1)

and the lower Hausdorff dimension of � is

dimH.�/ D ess inf
x�� dimloc.�; x/

D inffdimH.A/ W A � R
d is a Borel set with �.A/ > 0g:

Here dimH.A/ is the Hausdorff dimension of the set A � R
d. A measure � is exact-

dimensional if the limit in (3.1) exists and is �-almost everywhere constant. In this
case, the common value is simply denoted by dim.�/.

Intuitively, the local dimension of a measure should not be affected by the
geometry of the measure on a density zero set of scales. Thus one could expect
that tangent distributions should encode all information on dimensions.

Definition 3.1 (Dimension of fractal distributions) The dimension of a fractal
distribution P is

dim.P/ D
Z

dim.�/ dP.�/:

The dimension above is well defined by the fact that if P is a fractal distribution,
then P-almost every measure is exact-dimensional; see [12, Lemma 1.18]. The
dimension of fractal distributions has also other convenient properties. While the
Hausdorff dimension is highly discontinuous on measures, the function P 7!
dim.P/ defined on the family of fractal distributions is continuous; see [15,
Lemma 3.20]. The usefulness of the definition is manifested in the following result
of Hochman [12, Proposition 1.19]. Recall Theorem 2.5.

Theorem 3.2 If � is a Radon measure, then

dimloc.�; x/ D inffdim.P/ W P 2 T D.�; x/g

for �-almost all x. Furthermore, if � is a uniformly scaling measure generating a
fractal distribution P, then � is exact-dimensional and dim.�/ D dim.P/.

It turns out that tangent distributions are well suited to address problems con-
cerning conical densities. The cones in question do not change under magnification
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and this allows to pass information between the original measure and its tangent
distributions. Let

A" WD f� 2 M1 W �.X.0; 1;V; ˛// � " for some V 2 G.d; d � k/g

for all " � 0. It is straightforward to see that A" is closed for all " � 0; see [15,
Lemma 4.2]. The key observation is that

A0 D f� 2 M1 W spt.�/ \ X.0; 1;V; ˛/ D ; for some V 2 G.d; d � k/g;

where the defining property concerns only sets, is St invariant.
The following conical density result is proved by Käenmäki, Sahlsten, and

Shmerkin [15, Proposition 4.3]. Roughly speaking, it claims that if the dimension
of the measure is large, then there are many scales in which the cones contain a
relatively large portion of the mass. A slightly more precise version is that there
exists " > 0 such that if dimH.�/ > k, then for many scales e�t > 0 we have

inf
V2G.d;d�k/

�.X.x; e�t;V; ˛//

�.B.x; e�t//
> "

for �-almost all x. The precise formulation of the theorem is as follows.

Theorem 3.3 If k 2 f1; : : : ; d � 1g, k < s � d, and 0 < ˛ � 1, then there exists
" > 0 satisfying the following: For every Radon measure� on R

d with dimH.�/ � s
it holds that

lim inf
T!1 h�ix;T.M1 n A"/ � s � k

d � k

for �-almost all x 2 R
d.

The proof is based on showing that there cannot be “too many” rectifiable tangent
measures. This means that, perhaps surprisingly, most of the known conical density
results are, in some sense, a manifestation of rectifiability.

Definition 3.4 (Rectifiability) A set E � R
d is called k-rectifiable if there are

countably many Lipschitz maps fi W Rk ! R
d so that

Hk



E n
[

i

fi.R
k/
�

D 0:

Here Hk is the k-dimensional Hausdorff measure. Observe that a k-rectifiable set
E has dimH.E/ � k. A sufficient condition for a set E � R

d to be k-rectifiable
is that for every x 2 E there are V 2 G.d; d � k/, 0 < ˛ < 1, and r > 0 such
that E \ X.x; r;V; ˛/ D ;; see [18, Lemma 15.13]. Thus, if a fractal distribution
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P satisfies P.A0/ D 1, then the quasi-Palm property implies that the support of
P-almost every � is k-rectifiable and hence dim.P/ � k.

To prove Theorem 3.3, let p; ı > 0 be such that p < .s � ı � k/=.d � k/ <
.s � k/=.d � k/. Suppose to the contrary that there is 0 < ˛ � 1 so that for each
" > 0 there exists a Radon measure � with dimH.�/ � s such that the claim fails to
hold for p, that is,

lim sup
T!1

h�ix;T.A"/ > 1 � p

on a set E" of positive � measure. By Theorems 2.5 and 3.2, we may assume that at
points x 2 E", all tangent distributions of � are fractal distributions and

inffdim.P/ W P 2 T D.�; x/g D dimloc.�; x/ > s � ı:

Fix x 2 E". For each " > 0, as A" is closed, we find a tangent distribution P" 2
T D.�; x/ so that P".A"/ � 1 � p. Since the sets A" are also nested, we get

P.A0/ D lim
"#0

P.A"/ � 1 � p;

where P is a weak limit of a sequence formed from P" as " # 0. Furthermore, since
the collection of all fractal distributions is closed by Theorem 2.6 and the dimension
is continuous, the limit distribution P is a fractal distribution with

dim.P/ � s � ı:

Let P! , ! 
 P, be the ergodic components of P. By the invariance of A0, we
have P!.A0/ 2 f0; 1g for P-almost all !. If P!.A0/ D 0, then we use the trivial
estimate dim.P!/ � d, and if P!.A0/ D 1, then the rectifiability argument gives
dim.P!/ � k. Since P.f! W P!.A0/ D 1g/ D P.A0/ � 1 � p we estimate

s � ı � dim.P/ D
Z

dim.P!/ dP.!/ � P.A0/k C .1 � P.A0//d � .1� p/k C pd

yielding p � .s � ı� k/=.d � k/. But this contradicts the choice of ı. Thus the claim
holds.

Relying on the existence of uniform scaling measures, we are able to study the
sharpness of Theorem 3.3. The following result is proved by Käenmäki, Sahlsten,
and Shmerkin [15, Proposition 4.4].
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Theorem 3.5 If k 2 f1; : : : ; d � 1g, k < s � d, and 0 < ˛ � 1, then there exists a
Radon measure � on R

d with dim.�/ D s such that

lim
T!1h�ix;T.M1 n A"/ D

(
.s � k/=.d � k/; if 0 < " < ".d; k; ˛/;

0; if " > ".d; k; ˛/;

for �-almost all x 2 R
d.

Here, for k 2 f1; : : : ; d � 1g, 0 < ˛ � 1, and V 2 G.d; d � k/, we have defined

".d; k; ˛/ WD Ld.X.0; 1;V; ˛//

Ld.B.0; 1//
:

It follows from the rotational invariance of the Lebesgue measure Ld that ".d; k; ˛/
does not depend on the choice of V .

The measure � above is just a uniform scaling measure generating

P D s � k

d � k
ıL C



1 � s � k

d � k

�
ıH;

where L is the normalization of LdjB1 and H is the normalization of HkjW\B1 for a
fixed W 2 G.d; k/. Since P is a convex combination of two fractal distributions, it
is a fractal distribution. The existence of � is guaranteed by Theorem 2.9. Recalling
Theorem 3.2, we see that � is exact-dimensional and

dim.�/ D dim.P/ D s � k

d � k
d C



1 � s � k

d � k

�
k D s:

The goal is to verify that � has the claimed properties.
Fix 0 < " < ".d; k; ˛/. Since L.X.0; 1;V; ˛// D ".d; k; ˛/ > " for all V 2

G.d; d � k/ and H.X.0; 1;W?; ˛// D 0 we have P.M1 n A"/ D .s � k/=.d � k/.
Thus, by the weak convergence, it follows that

lim
T!1h�ix;T.M1 n A"/ D s � k

d � k
:

In the case " > ".d; k; ˛/ we can reason similarly.
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The Shape of Anisotropic Fractals: Scaling
of Minkowski Functionals

Philipp Schönhöfer and Klaus Mecke

Abstract The shape of fractals can be characterized by intrinsic volumes, so-
called Minkowski functionals, which share with the common d-dimensional volume
of spatial structures the property of being additive. Here, we study the effects
of anisotropy on the scaling behavior beyond the fractal dimension by applying
tensorial functionals. It can be shown that Minkowski tensors of anisotropic pre-
fractals scale with additional subdimensions. In addition, for anisotropic pre-fractals
even scalar Minkowski functionals exhibit multiple edge subterms which merge for
the isotropic case.

Keywords Integral geometry • Fractals • Anisotropy • Minkowski functionals •
DLA

1 Introduction

The concept of fractal dimension is a standard method of characterizing complex
structures and processes [14]. This dimension df determines the scaling behavior
of the volume of a set embedded in d-dimensional Euclidean space [3]. Fractal
geometries are applied to all kind of spatially structured objects studied in geog-
raphy [13], economy [2], biology [7], medicine [9], and physics [15, 22]. In physics
especially phase transitions are determined by fractal dimensions – also called
critical exponents [21]. For example, networks of voids in a porous material such as
a sandstone exhibit fractal behaviour at the critical percolation density 
c of grains.
Since sandstones are made out of grains, there is a typical size l which can be used to
model the pore space by a grid of voxels as shown in Fig. 1. The shape of the fractal
pore space depends on the shape of the grains and can be characterized by a volume-
boundary ratio. Another example is shown in Fig. 2 from [8]: long chain alkanes
form two-dimensional domains at a solid/gas interface. Here, the characterization of
the spatial structure plays an important role in describing and modelling the relevant
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Fig. 1 Three percolating clusters of voids in a porous medium at the critical percolation threshold

c. The typical size l of the grains determines the grid size. The shapes of the grains differ (a:
squares, b: sticks, c: mixture of squares and sticks) which leads to different typical morphologies
and anisotropies of the fractal percolating clusters (for more examples see [17])

Fig. 2 Solid alkane domains (black area) at the surface of SiO2 substrate (from [8]): the structures
are fractal but the morphologies depend on the surface coverage (ranging between 24.9 % and
83.3 % in an area of typically 100� 100�m). The shape of the domains depends on the solidifica-
tion conditions, i.e. the surface coverage, the cooling rate, etc. Thus, a morphological analysis may
reveal the prevailing two-dimensional nucleation, transport, and solification processes. Typically,
dendritic or seaweed shapes will appear due to morphological instabilities of the growth fronts
which can be modelled by DLA-clusters shown in Fig. 3

physical and chemical processes. For instance, the morphology of the domains
reflects the aggregation process of the particles. A typical and widespread example is
the relation between diffusion-limited aggregation and fractal morphologies, which
can be modelled by the Witten and Sander algorithm shown in Fig. 3.

The fractal structures studied in these applied research areas have one crucial
issue in common: all objects in nature are built out from small elements of a certain
size l which determines a smallest scale. Thus, from a mathematical point of view
we deal with pre-fractals in these cases. It is, hence, “natural” to analyse the shape
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Fig. 3 The growth process of
a DLA cluster which is
modelled by the Witten and
Sander algorithm after 1,000
(black), 3,300 (grey), 6,600
(blue), and 10,000 (red)
particles of size l are added.
The shape of the cluster, in
particular, its anisotropy
depends on the specific
conditions of the growth
process, e.g., the transport
and solification of alkanes
shown in Fig. 2

of fractals by exploiting a smallest scale l first and only afterwards study the limit
l ! 0 – in contrast to the standard mathematical method [11, 18, 24], where the
fractal limit l ! 0 is performed – before an analysis of its shape is done. Taking a
finite value of l into account one can define scaling dimensions and amplitudes of
intrinsic volumes or Minkowski functionals, which characterize the shape of fractals
beyond the standard fractal dimension (see [16, 19]). Here, we study in particular
the anisotropy of fractals by tensorial shape descriptors and restrict the analysis to
two dimensions for the illustration of the technique.

1.1 Morphometry of Fractals

For most fractals the dimension df is indeed sufficient to characterize and thus to dis-
tinguish objects and processes. Nevertheless, sometimes more spatial information is
needed to characterize shape. The Vicsek box fractals are two examples shown in
Fig. 4 [4, 23]. Both fractals look similar: one is like the other but rotated by an angle
of 45ı. Thus in both cases the fractal dimension is df D ln 5

ln 3 . However, the apparent
shape is quite different because one is built out of crosses and one out of Xs. In order
to distinguish these features the concept of a fractal dimension has to be extended.
To differentiate the structures mathematically one may use intrinsic volumes and
their scaling behavior, e.g. the boundary length V1 and the Euler characteristics V2
of a fractal F in two dimensions.

In [16] it was shown that the scaling of the intrinsic volumes V1 and V2 of a fractal
F , when observed within an observation windows W with different edge length x,
exhibit subterms in addition to the fractal term visible in the 2-dimensional volume
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Fig. 4 Vicsek fractal constructed out of Xs (above) and out of crosses (below) in the zeroth, first,
second, and fourth iterated step, from left to right

V0, i.e.,

V0.F \ W/ D v0I0xdf

V1.F \ W/ D v1I0xdf C v1I1xd1

V2.F \ W/ D v2I0xdf C v2I1xd1 C v2I2xd2 :

(1.1)

The first exponent df is the conventional fractal dimension. The exponents d1 and d2
are called subdimensions and v�Ii are the corresponding amplitudes of the dimension
di. Here, we extend the analysis to anisotropic features of fractals by using tensorial
Minkowski functionals.

1.2 Tensorial Minkowski Functionals

A spatial domain K with a smooth boundary contour @K can be characterized next to
its scalar properties such as volume and boundary length also by tensorial additive
valuations of its shape, the socalled tensorial Minkowski functionals or intrinsic
volumes [5, 20]. In two-dimensional Euclidean space E

2 the tensorial Minkowski
functionals are defined by [20]

Va;b
0 .K/ D

Z

K
Era ˝ Enbd2r

Va;b
1 .K/ D 1

2

Z

@K
Era ˝ Enbdr

Va;b
2 .K/ D 1

2

Z

@K
Era ˝ Enb �

�
dr : (1.2)
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where � denotes the local curvature at the point Er 2 @K of the contour @K. For the
normal vector En at the boundary point Er 2 @K the symmetric tensor products

Era ˝ Enb D Er ˝ � � � ˝ Er„ ƒ‚ …
a

˝ En ˝ � � � ˝ En„ ƒ‚ …
b

: (1.3)

are used with .Er ˝ En/ij D rinjCrjni

2
. The functionals V� WD V0;0

� and EV� WD V1;0
� are

called Minkowski scalars and Minkowski vectors, respectively. Thus, V0 WD V0;0
0

is the volume of the body, V1 WD V0;0
1 is proportional to the boundary length, and

V2 WD V0;0
2 describes the Euler characteristic. The Minkowski tensors are in general

motion covariant, i.e., an important property of the tensorial Minkowski functionals
is their behavior under translation [20]

Va;b
� .K ] Et/ D

aX
iD0

 
a

i

!
Eti ˝ Va�i;b

� .K/ (1.4)

where K ] Et is a translation of K by Et. Alesker’s theorem states [1], that the
Minkowski tensors are complete set of additive tensorial functionals. However, not
all possible rank-2 tensors has to be considered due to linear dependencies [5]

EdV� D �V0;2
� C .n � �/V1;1

�C1 (1.5)

where Ed denotes the rank-2 unit tensor in d dimensions. A list of the Minkowski
rank-2 tensors used here is given by Table 1.

Table 1 A set of linear independent Minkowski tensors is given which describe shape and
anisotropy of an object completely (see Eq. (1.5)) in regards to rank-2 tensors

Rank-2 Minkowski tensors 2D Rank-2 Minkowski tensors 3D

V0E2 V0E2
V1E2 V1E2
V2E2 V2E2
– V3E2
V0;2
1 V0;2

1

– V0;2
2

V2;0
0 V2;0

0

V2;0
1 V2;0

1

V2;0
2 V2;0

2

– V2;0
3
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2 Minkowski Functionals of Fractals

Let us consider iterated fractals F which are constructed by an iterated algorithm
[3, 6] with an initiator structure and an iterated function system (IFS) f
1; � � � ; 
Ng,
such that the contracting maps 
i obey

[
i


i.I/ � I 
i.I/\ 
j.I/ D ; for i ¤ j: (2.1)

The fractal set F is given after infinite steps

[
i


i.F/ D F : (2.2)

Then, Minkowski functionals V�.F ; 	/ of the fractal set are calculated not directly
of F but of the 	-neighborhood set [11, 18, 24]

F	.F/ D fx 2 R
d W dist.x;F/ < 	g (2.3)

and by applying Steiner’s formula [11]

V0.F	.F// WD
dX

�D0

 
d

�

!
V�.F ; 	/	k: (2.4)

In general, the Minkowski functionals V�.F ; 	/ oscillate with 	, but the limit
V�.F/ D lim

	!0
V�.F ; 	/ is well defined. However, the method has the disadvantages

that it cannot be applied to the physical structures shown above and that one looses
important information on the shape of the fractal structures found in Nature. Both is
related to the existence of a smallest length scale l which regularises the fractal but
does not exist for F	, where 	 can be chosen arbitrarily small.

2.1 Regularisation by Smallest Length Scale

In physics fractal-like structures are constructed out of single particles which exhibit
naturally a smallest length scale l. Therefore, we introduce an alternative method
based on pre-fractals, which seems to be more ’natural’ and allows for the definition
of scaling amplitudes which characterize the shape of a fractal structure beyond the
fractal dimension.

Let the initiator I � R
d be a closed hypercube around the origin 0d D

.0 0 � � � 0„ ƒ‚ …
d

/> 2 I. For the first iterated step a set of N functions Q
i W R
d ! R

d is
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defined, which scales I by a real factor si � 1 and translates it by the vector ti 2 R
d,

Q
i.x/ D si � x C ti 8i 2 f1; : : : ;Ng
Q
i.I/\ 
j.I/ D ; 8i; j W i ¤ j:

(2.5)

In addition we define a function ‰r W Rd ! R
d with ‰r.x/ D r � x and the zoom

factor or scaling factor

r WD inffs 2 R W
N[

iD1
Q
i.I/ � ‰s.I/g: (2.6)

Then, the functions of the n-th iterated step 
Œn�i are given by



Œn�
i W IŒn�1� ! IŒn� 


Œn�
i .x/ D si � x C rn�1ti (2.7)

where the sets IŒn� are defined as

IŒn� WD ‰Œn�
r D

n‚ …„ ƒ
‰r ı � � � ı‰r.I/ IŒ0�.I/ D id.I/ D I: (2.8)

For every iterated step the iterated function system is

IFSŒn� WD f
Œn�i W i 2 f1; : : : ;Ngg: (2.9)

The pre-fractal set Fn after n iterated steps is defined as the union Fn WDSN
iD1 ˆ

Œn�
i .I/ with

ˆ
Œn�
i .I/ D 


Œn�
i

 
N[

iD1
ˆ
Œn�1�
i .I/

!
ˆ
Œ0�
i .I/ D id.I/: (2.10)

The limit F D F1 D limn!1 Fn defines the fractal set F. Notice, that there is a
regularization for every iterated step and even after infinite steps a smallest length
scale is given by the size of the initiator I. This regularization ensures that the
Minkowski functional V�.F/ can be calculated without using neighborhood sets.
The fractal dimension df is determined by the scaling of the volume V0 with the
iterated steps n. This procedure corresponds to the Sandbox method where F is
investigated within different sized observation windows W of size x D rn with
a scaling factor r [8]. The oscillations of V�.F ; 	/ in the previous method using
Steiner’s formula (2.4) are suppressed here. This alternative method can be viewed
as an exchange of the limits 	 ! 0 and n ! 1. The advantage of doing 	 ! 0

first is that shape descriptors such as the Minkowski functionals Va;b
� .n/ exhibit a

well-defined scaling behavior.
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2.2 Isotropic Fractals

Minkowski functionals Va;b
� .Fn \ Wx/ of a pre-fractal Fn are calculated within a

centered observation windows Wx with different lengths x [8]. For iterated fractals
this corresponds to calculate the functionals for every iterated step n D logr x,
where the scaling factor is symbolized by r. The initiator determines here the
smallest scale size. The construction algorithm of the alternative, more ’natural’
method is explained in detail in [19]. As in [16] the Minkowski functionals indeed
reveal next to the fractal term additional subterms with subdimensions di and
intrinsic amplitudes va;b

�Ii . In general, the scalar functionals could be identified by
the Eqs. (1.2) and the tensors of rank 2 by

trŒV2;0
0 �.x/ D v2;00I0x

df C2 C v2;00I3x
d3C2

trŒV2;0
1 �.x/ D v

2;0
1I0x

df C2 C v
2;0
1I1x

d1C2 C v
2;0
1I3x

d3C2

trŒV2;0
2 �.x/ D v

2;0
2I0x

df C2 C v
2;0
2I1x

d1C2 C v
2;0
2I2x

d2C2 C v
2;0
2I3x

d3C2

trŒV0;2
1 �.x/ D v

0;2
1I0x

df C v
0;2
1I1x

d1 :

(2.11)

However, in [19] only fractals are considered which are isotropic, i.e., invariant
under rotation of 90ı. Here, we discuss the effects of anisotropy and analyse
anisotropic iterated fractals, where rotation by an angle of 90ı does not yield the
same set. This is the case, for instance, in sandstones where the gravitational field
breaks the orientational symmetry of the grains and thus of a percolating pore space
(see Fig. 1), as well as in the process of diffusion limited growth (see Figs. 2 and 3),
where patterned substrates or external fields may yield preferred orientations. The
notation of [19] is used in the following.

3 Anisotropic Fractals: Minkowski Tensors of U-Fractals

Effects of anisotropy can be illustrated by the so-called U-fractal shown in Fig. 5.
The initiator of this U-shaped fractal is the unit square K0 D Œ�0:5; 0:5�2 � R

2. The
initiator is mapped by seven functions 
i.x/ D six C ti with si D 1, where ti are the
seven different translation vectors with

ti 2
��
1

1



;

�
1

0



;

�
1

�1


;

�
0

�1


;

��1
1



;

��1
0



;

��1
�1

�

: (3.1)
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Fig. 5 The U-fractal in the zeroth, first, second, and fourth iterated step, from left to right

The scaling factor of the carpet is r D 3. The elements of IFSŒn� (see [19] Eq. (1.17))
for the n-th iterated step are



Œn�
i W Œ�3n � 0:5; 3n � 0:5�2 ! Œ�3n�1 � 0:5; 3n�1 � 0:5�2 


Œn�
i .x/ D x C 3n�1ti:

(3.2)

In the following, the Minkowski functionals V.a;b/
� are calculated for scalars (a; b D

0), vectors (a D 1; b D 0) and tensors of rank 2 (aCb D 2). Compared to isotropic
fractals we find additional subterms, which characterize the anisotopy of the fractal
structure.

3.1 Minkowski Scalars

The Minkowski functionals are calculated analytically for every iterated step. First,
we analyze the Minkowski scalars in dependence of the iterated step,

V0.n/ D 7n

V1.n/ D 7

10
7n C 1

2
3n C 4

5
2n

V2.n/ D � 2

15
7n C 4

5
2n C 1

3
:

(3.3)

The scaling behavior of the volume V0 yields the fractal dimension df D log3 7. The
other scalars, however, show deviations compared to the assumption of Eq. (1.2).
The anisotropy reveals already one additional subterm here in the scalar functionals.
This term can be identified as a second edge subterm which first occurs for V1. The
dimension of scaling terms can be identified by calculating the geometric or spectral
zeta functions �F .s/ and identify their singularities [10, 12]. Usually, the whole
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fractal structure F is considered to calculate �F .s/. Here, we apply the technique
also on subdimensional intersections, i.e., zeta functions of Fn \ E intersected with
a hyperplane E, and define so called edge zeta functions �E.s/ of the pre-fractal
Fn [19]. Then, it is immediately obvious why there are two subdimensions. For
isotropic fractals like the Sierpiński carpet or the Vicsek fractals (see Fig. 4) the
vertical and horizontal cutting lines where two maps 
Œn�i .x/ and 
Œn�j .x/ i ¤ j
intersect in edges yield the same one-dimensional fractal string. In the case of the
U-fractal two different fractal strings emerge (see Fig. 6). The first zeta function
�E1 D �.s/ corresponding to the vertical cut is the Riemann zeta function �.s/, so
that the first subdimension is the abscissa of convergence d1 D 1 of �.s/. The second
zeta function �E2 corresponding to the horizontal cut is

�e2.s/ D 3�s

1 � 2 � 3�s
: (3.4)

so that the second subdimension is consequently d2 D log3 2. In the isotropic case
these two dimensions merge. As expected the Euler characteristic V2 has another
subterm with d3 D 0 corresponding to the intersection of four maps 
Œn�i .x/ in
a vertex. Here, the isotropic and anisotropic fractal show no difference. Thus,
the subdimensions coincide with the fractal dimensions of the structure in lower
dimensional sections, i.e., of the pre-fractal edges and vertices, respectively.

Fig. 6 U-fractal in the fourth iterated step. Left: vertical cutting lines are indicated; right:
horizontal cutting lines are indicated
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3.2 Minkowski Vectors

Due to anisotropy the Minkowski vectors V1;0
� are nontrivial and not negligible any

more as in the isotropic case. The magnitudes of the vectors are

jV1;0
0 j.n/ D 1

14
21n � 1

14
7n

jV1;0
1 j.n/ D 1

20
21n � 3

4
9n C 3

2
7n � 4

5
6n

jV1;0
2 j.n/ D 1

105
21n � 11

28
7n C 4

5
6n � 5

12
3n :

(3.5)

The vectors scale as expected with the dimensions d0 C 1, d1 C 1, d2 C 1, d3 C 1,
and d0. The same effect was already calculated and explained for the rank-2 tensors
in [19]. The summand C1 is naturally due to the position vector Er in the integral
Eq. (1.2) defining V1;0

� and should be subtracted from the scaling exponent in
order to obtain the subdimensions. The vector V1;0

� , consequently, scales with the
subdimensions of V� and additionally with the vectorial dimension d4 D d0 � 1.

3.3 Minkowski Tensors

Finally, the tensors of rank 2 are calculated explicitly. The traces of the Minkowski
tensors read

trŒV2;0
0 �.n/ D 39

196
63n � 1

98
21n � 13

588
7n

trŒV2;0
1 �.n/ D 39

280
63n C 1

15
27n C 3

14
21n C 17

110
18n C 1;157

9;240
7n � 1

30
2n

trŒV2;0
2 �.n/ D � 13

490
63n C 11

196
21n C 17

110
18n C 3

4
9n � 2;879

5;390
7n C 1

10
2n

trŒV0;2
1 �.n/ D 1

20
21n � 3

4
9n C 3

2
7n � 4

5
6n:

(3.6)

Similar to the vectors the summand C2 has to be taken into account for the tensors
V2;0
� because of the tensor product Er ˝ Er in the integral in Eq. (1.2). Thus, the

dimensions d0, d1, d2, d3 and d5 D d0 � 2 can be identified with the dimension
which also occur in the isotropic case. In general, there are two additional tensorial
subdimensions d6 D d1 � 2 and d7 D d2 � 2. The subdimension d2 � 2 was already
observed for the three dimensional Menger’s sponge [19]. Since this subterm occurs
only if di ¤ d�1 it cannot be observed for the Sierpiński carpet studied in [19]. The
last dimension is the vectorial submission d4 D d0�1. Due to the covariant property
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Table 2 Minkowski functionals of the U-fractal up to tensors of rank 2 (see Eq. (4.1–4.3)): the
fractal dimension df D d0, the subdimensions d��1, and the corresponding amplitudes va;b

�I� are
obtained from Eqs. (3.3), (3.5), and (3.6), respectively

Scalars Vectors Rank-2 tensors

� 0 1 2 3 4 5 6 7

d� log3 7 1 log3 2 0 d0 � 1 d0 � 2 d1 � 2 d2 � 2

v0I� 1 – – – – – – –

v1I�
7
10

1
2

4
5

– – – – –

v2I� � 2
15

0 4
5

1
3

– – – –

v
1;0
0I�

1
14

– – – � 1
14

– – –

v
1;0
1I�

1
20

� 3
4

� 4
5

– 3
2

– – –

v
1;0
2I�

1
105

0 4
5

� 5
12

� 11
28

– – –

v
2;0
0I�

39
196

– – – � 1
98

� 13
588

– –

v
2;0
1I�

39
280

3
14

17
110

– 1
15

1;157
9;240

0 � 1
30

v
2;0
2I� � 13

490
0 17

110
3
4

11
196

� 2;879
5;390

0 1
10

v
0;2
1I�

7
10

1
2

4
5

– – – – –

(see Eq. (1.4)) the vectorial dimension also affects the tensors. Table 2 summarizes
all subterms for the U-fractal, the scaling dimensions d� and the corresponding
amplitudes va;b

�I� .

4 Conclusion

An alternative way of constructing and analyzing pre-fractals by Minkowski
functionals was introduced in [19]. Here, we extended the method towards tensorial
functionals and analyzed effects of anisotropy on the scaling behavior. To illustrate
the method we calculated explicitly for an U-shaped iterated fractal the Minkowski
functionals up to tensors of rank 2. In general, for anisotropic fractals the scaling
behavior are for the Minkowski scalars

V0.x/ D v0I0xdf

V1.x/ D v1I0xdf C v1I1xd1 C v1I2xd2

V2.x/ D v2I0xdf C v2I1xd1 C v2I2xd2 C v2I3xd3 ;

(4.1)

for the Minkowski vectors

jV1;0
0 j.x/ D v

1;0
0I0x

df C1 C v
1;0
0I4x

d4C1

jV1;0
1 j.x/ D v1;01I0x

df C1 C v1;01I1x
d1C1 C v1;01I2x

d2C1 C v1;01I4x
d4C1

jV1;0
2 j.x/ D v

1;0
2I0x

df C1 C v
1;0
2I1x

d1C1 C v
1;0
2I2x

d2C1 C v
1;0
2I3x

d3C1 C v
1;0
2I4x

d4C1;

(4.2)
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and for the Minkowski tensors of rank 2

trŒV2;0
0 �.x/ D v

2;0
0I0x

df C2 C v
2;0
0I4x

d4C2 C v
2;0
0I5x

d5C2

trŒV2;0
1 �.x/ D v2;01I0x

df C2 C v2;01I1x
d1C2 C v2;01I2x

d2C2 C v2;01I4xd4C2 C v2;01I5x
d5C2

C v
2;0
1I6x

d6C2 C v
2;0
1I7xd7C2

trŒV2;0
2 �.x/ D v

2;0
2I0x

df C2 C v
2;0
2I1x

d1C2 C v
2;0
2I2x

d2C2 C v
2;0
2I3xd3C2 C v

2;0
2I4x

d4C2

C v
2;0
2I5x

d5C2 C v
2;0
2I6xd6C2 C v

2;0
2I7x

d7C2

trŒV0;2
1 �.x/ D v1I0xdf C v1I1xd1 C v1I2xd2 :

(4.3)

The specific values of the scaling dimensions d� and the corresponding amplitudes
va;b
�I� are given in Table 2 for the U-fractal shown in Fig. 5.

In particular, the Minkowski scalars V� show next to the leading fractal scaling
two edge subterms and one vertex subterm, which are identical for isotropic fractals.
It is interesting to notice that the anisotropic fractal exhibits no further vertex
subterm. Consequently, we conclude that the number of different orientations of
�-dimensional boundary planes determine the maximal number of these subterms.
For example for three dimensional fractals there are maximally three face subdimen-
sions, three edge subdimensions, and one vertex subdimension. The triangular shape
of the set of equations in Eq. (1.2) becomes less visible: the number of subterms
admittedly increases with each equation, but the number does not increase by 1 for
the next highest intrinsic volume (see Eq. (4.1)).

The Minkowski vectors V1;0
� are nontrivial for the anisotropic case. The vector

V1;0
� scales with the subdimensions of the corresponding scalar V� and an vectorial

subdimension df �1. However, one has to add the summand C1 due to the definition
of the vectors (see Eq. (1.2)). The same holds for the Minkowski tensors of rank 2.
The scaling of the tensor V2;0

� is also determined by the scalar subdimensions and the
vectorial subdimension df � 1. But additionally there are tensorial subdimensions,
i.e., df � 2 based on the fractal dimension df , and di � 2 based on the edge
subdimensions di.

It would be interesting to apply this morphometric analysis on physical fractals
such as percolation clusters (Fig. 1) and diffusion limited aggregates shown in
Figs. 2 and 3.
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Projections of Self-Similar and Related Fractals:
A Survey of Recent Developments

Pablo Shmerkin

Abstract In recent years there has been much interest -and progress- in understand-
ing projections of many concrete fractals sets and measures. The general goal is to
be able to go beyond general results such as Marstrand’s Theorem, and quantify the
size of every projection – or at least every projection outside some very small set.
This article surveys some of these results and the techniques that were developed to
obtain them, focusing on linear projections of planar self-similar sets and measures.

Keywords Self-similar sets • Self-similar measures • Projections • Hausdorff
dimension • Lq dimensions

Mathematics Subject Classification (2000). Primary: 28A78, 28A80, Secondary:
37A99

1 Introduction

The study of the relationship between the Hausdorff dimension of a set and that of its
linear projections has a long history, dating back to Marstrand’s seminal projection
theorem [24]:

Theorem 1.1 Let A � R
2 be a Borel set. Let …˛ denote the orthogonal projection

onto a line making an angle ˛ with the x-axis.

(i) If dimH A � 1, then dimH…˛A D dimH A for almost every ˛ 2 Œ0; �/.
(ii) If dimH A > 1, then L.…˛A/ > 0 for almost every ˛ 2 Œ0; �/.
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Here dimH stands for Hausdorff dimension and L for one-dimensional Lebesgue
measure. Note that, in particular,

dimH.…˛A/ D min.dimH A; 1/ for almost all ˛ 2 Œ0; �/:

Although Marstrand’s Theorem is very general, unfortunately it does not give
information about what happens for a specific projection, and although the excep-
tional set is negligible in the sense of Lebesgue measure, it may still have large
Hausdorff dimension. A more recent, and very active, line of research is concerned
with gaining a better understanding of the size of projections of sets with some
dynamical or arithmetic structure. The goal of this article is to present an overview
of this area, focusing on projections of planar self-similar sets and measures
(projections of other fractals are briefly discussed in Sect. 7). For a wider view of
the many ramifications of Marstrand’s Projection Theorem, the reader is referred to
the excellent survey [7] in this volume.

2 Self-Similar Sets and Their Projections

We review some standard terminology and fix notation along the way. An iterated
function system (IFS) on R

d is a finite collection F D . fi/i2ƒ of strictly contractive
self-maps of R

d. As is well known, for any such IFS F , there exists a unique
nonempty compact set A (the attractor or invariant set of F ) such that A D
[i2ƒ fi.A/. We will repeatedly make use of the iterated IFS

F k D . fi/i2ƒk ; where fi1 ���ik D fi1 ı � � � ı fik ;

which has the same attractor as F . When the maps fi are similarities, the set A
is a self-similar set. From now on the maps fi will always be assumed to be
similarities, unless otherwise noted. For further background on self-similar sets and
fractal dimensions, see e.g. [6].

Although we will be concerned with projections of self-similar sets, it will
be useful to recall some ideas that apply to self-similar sets themselves. The
similarity dimension dimS.F/ of an IFS F D . fi/i2ƒ is the only positive root s
of
P

i2ƒ 
. fi/s D 1, where 
. f / is the contraction ratio of the similarity f . If A is
the attractor of F , then there is a natural family of covers of A, namely

f fi.A/ W i 2 ƒkg:

Using these families, one can easily check that dimH A � dimS.A/ (we follow a
standard abuse of notation and speak of the similarity dimension of a self-similar
set whenever the generating IFS is clear from context). Intuitively, it appears that
if the sets fi.A/; i 2 ƒ do not overlap much, then these covers should be close to
optimal, and one should have an equality dimH A D dimS A. Recall that the IFS
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F satisfies the open set condition (OSC) if there exists a nonempty open set O
such that fiO � O for all i, and the images fi.O/ are pairwise disjoint. The open
set condition ensures that the overlap between the pieces fi.A/ is negligible in a
certain sense, and it is well known that Hausdorff and similarity dimensions agree
whenever it holds. On the other hand, there are two trivial mechanisms that force
the Hausdorff dimension to drop below the similarity dimension:

1. If A � R
d and dimS.A/ > d, then certainly dimH.A/ � d < dimS.A/.

2. If fi D fj for some i ¤ j, then one can drop fj from the IFS, resulting in a
new generating IFS with strictly smaller similarity dimension. The same happens
if two maps of F k agree for some k, and in turn this happens if and only the
semigroup generated by the fi is not free. In this case we say that F has an exact
overlap.

When the open set condition fails, but there are no exact overlaps, the combinatorial
structure of the overlaps is very intricate, and calculating the dimension becomes
much more challenging. In dimension d D 1, a major conjecture in the field
is whether these are the only possible mechanisms for a drop in the Hausdorff
dimension of a self-similar set (in higher dimensions this is false, but there is an
analogous, albeit more complicated, conjecture).

We now turn our attention to projections of self-similar sets. Let A be a self-
similar set generated by . fi/i2ƒ. If the similarities fi are homotheties, i.e. fi.x/ D
�ix C ti for some contractions �i 2 .0; 1/ and translations ti 2 R

d, then for any
linear map … W Rd ! R

k, the image …A is also self-similar: it is the attractor of
.�ixC…ti/i2ƒ. We note that even if the original self-similar set satisfies the open set
condition, their projections need not satisfy it; some of them (albeit only countably
many) may have exact overlaps. In general, linear projections of self-similar sets
need not be self-similar.

From now on we settle on the case d D 2, k D 1. We will say that a planar IFS F
(or its attractor) is of irrational type if, for some k, F k contains a map of the form
�R�x C t with �=� irrational, where R� is rotation by � . Otherwise, we say that
the IFS is of rational type. We also say that F is algebraic if, when representing
fi.x/ D Six C ti for a matrix Si 2 R

2�2 and ti 2 R
2, all the entries of Si; ti are

algebraic for all i 2 ƒ. The following theorem summarizes the current knowledge
about the projections of planar self-similar sets.

Theorem 2.1 Let A be a planar self-similar set.

(i) If A is of irrational type, then dimH…˛A D min.dimH A; 1/ for all ˛.
(ii) If A is algebraic, then f˛ W dimH…˛A < min.dimH A; 1/g is countable.

(iii) dimH…˛A D min.dimH A; 1/ for all ˛ outside of a set of zero Hausdorff (and
even packing) dimension.

(iv) If dimH A > 1, then dimHf˛ W L.�˛A/ D 0g D 0.

Hence, without any assumptions, the exceptional set in Marstrand’s Theorem for
planar self-similar sets has zero Hausdorff dimension (rather than just zero Lebesgue
measure).
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Part (i) of Theorem 2.1 was proved by Peres and the author [29], with a different
proof yielding many generalizations obtained later in [20]. We discuss a different
approach in Sect. 4.

Claims (ii) and (iii) are consequences of some deep recent results of M. Hochman
[18]. We present their proof, modulo a major result from [18], in Sect. 5.

The last part, concerning positive Lebesgue measure, was recently obtained by
the author and B. Solomyak [33]. We will outline the proof in Sect. 6.

We will also discuss variants valid for (some) self-similar measures, which in
most cases are a necessary step towards the proof of the set statements.

In the algebraic, rational type case, the set of exceptional directions can some-
times be explicitly determined. In particular, this is the case for the one-dimensional
Sierpiński gasket, resolving a conjecture of Furstenberg. See Sect. 5.2 below.

We comment on the related natural question of what is the Hausdorff measure
of …˛A in its dimension. When dimH A > 1, a partial answer is provided by
Theorem 2.1(iv). When dimH A � 1, in the irrational type case the answer is zero
for all ˛. This was proved by Eroğlu [5] under the OSC (his result predates 2.1(i); he
actually proved that the dimH.A/-Hausdorff measure is zero), and recently extended
to the general case by Farkas [11].

3 Dimension and Projection Theorems for Measures

3.1 Dimensions of Measures

Even if one is ultimately interested in sets, the most powerful methods for studying
dimensions of projections involve measures in a natural way. Since a given set
may support many dynamically relevant measures (such as self-similar or Gibbs
measures) it is also useful to investigate measures for their own sake.

For sets, in this article we focus mostly on Hausdorff dimension. For measures,
there are many notions of dimension which are useful or tractable, depending on the
problem under consideration. We quickly review the ones we will need. From now
on, by a measure we always mean a Radon measure (that is, locally finite and Borel
regular) on some Euclidean space Rd.

Given x 2 supp�, we define the lower and upper local dimensions of � at x as

dim.�; x/ D lim inf
r&0

log�B.x; r/

log r
;

dim.�; x/ D lim sup
r&0

log�B.x; r/

log r
:

If dim.�; x/ D dim.�; x/, we write dim.�; x/ for the common value and call
it the local dimension at x. Local dimensions are functions; in order to obtain
a global quantity, one may look at the �-essential supremum or infimum of the
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local dimension. This yields four different notions of dimension, out of which the
following two are most relevant for studying the dimension of projections:

dim� � D supfs W dim.�; x/ � s for �-almost all xg
Dim� � D inffs W dim.�; x/ � s for �-almost all xg:

Note that the supremum and infimum in question are attained. In the literature,
dim� and Dim� are known as the lower Hausdorff dimension and (upper) packing
dimension of a measure, respectively. The terminology stems from the follow-
ing alternative characterization, which is closely related to the mass distribution
principle:

dim� � D inffdimH A W �.A/ > 0g;
Dim� � D supfdimP A W �.Rd n A/ D 0g:

Here dimP denotes packing dimension. The measure � is called exact dimensional
if dim� � D Dim� � or, alternatively, if dim.�; x/ exists and is �-a.e. constant.
Many dynamically defined measures are exact dimensional, but we note that, in
general, a fixed projection of an exact dimensional measure needs not be exact
dimensional.

A rather different notion of dimension (or rather, a one parameter family of
dimensions) is related to the scaling law of the moments of the measure. Namely,
given q � 0; q ¤ 1, write

Iq.�; r/ D
Z
�.B.x; r//q�1 d�.x/; (3.1)

Dq.�/ D lim inf
r&0

log Iq.�; r/

.q � 1/ log r
:

The numbers Dq are known as the Lq dimensions of the measure, and are an essential
ingredient of the multifractal formalism. The function q 7! Dq� is always non-
increasing, and

Dq.�/ � dim� � for all q > 1:

We refer to [10] for the proof of these facts, as well as further background on the
different notions of dimension of a measure and their relationships. We finish by
remarking that the value q D 2 is particularly significant, and D2.�/ is also known
as the correlation dimension of �.
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3.2 Dimensions of Self-Similar Measures

If � is a measure on R
d and g W Rd ! R

k is a map, we denote the push-forward of
� under g by g�, that is, g�.B/ D �.g�1B/ for all Borel sets B. If F D . fi/i2ƒ is an
IFS and p D . pi/i2ƒ is a probability vector, then there is a unique Borel probability
measure � D �.F ; p/ such that

� D
X
i2ƒ

pi fi�:

The measure � is called the self-similar measure associated to the IFS F and the
weight p. For convenience we always assume that pi > 0 for all i (otherwise one
may pass to the IFS formed by the maps . fi W pi > 0/). In this case, the topological
support of � is the self-similar set associated to F .

Self-similar measures are always exact dimensional; this is a rather deep fact
which (at least in some special cases) can be traced back to ideas of Ledrappier and
Furstenberg; see [12] for a detailed proof. As is the case for sets, dimensions of
self-similar measures are well understood under the open set condition. In this case,
one has

dim� D
P

i2ƒ pi log piP
i2ƒ pi log 
. fi/

: (3.2)

This is an instance of the heuristic formula “dimension=entropy/Lyapunov expo-
nent”, which often holds for measures invariant under some kind of conformal
dynamics.

Regarding Lq dimensions, under the OSC it holds that Dq� D �.q/=.q � 1/,
where �.q/ is the only real solution to

X
i2ƒ

pq
i 
. fi/

��.q/ D 1:

In the special case where pi D 
. fi/s (where s D dimS.F/), it can be easily checked
that dim� D Dq� D s for all q > 0. These are called the natural weights.

Just as for sets, the formulae for dim� and Dq� given above are expected to
“typically” hold even in the presence of overlaps. For this reason, we call the right-
hand side of (3.2) the similarity dimension of �, and denote it dimS �.

3.3 Projection Theorems for Measures

Theorem 1.1 has an analog for various notions of dimension of a measure.
The standard potential-theoretic proof of Marstrand’s Theorem (due to Kaufman)
immediately yields a projection theorem for the correlation dimension. Projection
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theorems for other notions of dimension of a measure were obtained by Hu and
Taylor [21, Theorem 6.1], and Hunt and Kaloshin [22, Theorem 1.1]; we remark
that they are still fairly straightforward deductions from the proof of Theorem 1.1
as presented in i.e. [25, Chapter 9].

Theorem 3.1 Let dim denote one of dim� or Dq where q 2 .1; 2�, and let � be a
measure on R

2. The following holds for almost all ˛:

1. If dim� � 1, then dim…˛� D dim�
2. If dim� > 1, then …˛� is absolutely continuous.

The theorem fails for Dim� and for Dq if q … .1; 2�, see [22]. When Dq� > 1, it
can be shown that in fact …˛� has an Lq density. There is an analogous result valid
in higher dimensions.

4 The Irrational Case: Dimension of Projections

4.1 Projections of Some Self-Similar Measures

In this section we discuss the main ideas behind a proof of Theorem 2.1(i). The
proof we sketch is based on ideas from [26], and is a particular case of more general
results in [17].

For the time being we assume that fi.x/ D �R�x C ti, i 2 ƒ, for some � 2 .0; 1/,
� 2 Œ0; �/ with �=� … Q, and ti 2 R

2 are translations. In this case, we say that
the IFS . fi/i2ƒ is homogeneous. In other words, in a homogeneous IFS, the linear
parts are the same for all maps. Fix a probability vector . pi/i2ƒ, and let � be the
corresponding self-similar measure. The key to our proof of Theorem 2.1(i) is the
following result.

Theorem 4.1 If � is as above, then for any q 2 .1; 2� and any ˛ 2 Œ0; 2�/,

Dq.…˛�/ D min.Dq�; 1/:

We indicate the main steps in the proof. The first main ingredient is the inequality

Iq.…˛�; �
kC`/ � Cq Iq.…˛�; �

k/ Iq.…˛Ck��; �
`/; (4.1)

valid for q > 1 for some constant Cq > 0. Recall (3.1). This is a consequence
of the self-similarity of �. A result of the same kind, for self-similar (and even
self-conformal) measures rather than their projections, was obtained by Peres and
Solomyak [30, Equation (3.2)], and the proof here is similar. The homogeneity of
the IFS is key in deriving this inequality.
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We can rewrite (4.1) as

'kC`.˛/ � 'k.˛/C '`.T
k˛/;

where T is the � rotation on the circle (identified with Œ0; 2�/), and

'k.˛/ D log Iq.P˛�; �
k/C log Cq:

In other words, 'k is a subadditive cocycle over T, which is a uniquely ergodic
transformation (this is where the irrationality of �=� gets used). A result of Furman
[16, Theorem 1] on subadditive cocycles over uniquely ergodic transformations
implies that for all ˛ 2 Œ0; 2�/ and almost all ˇ 2 Œ0; 2�/,

lim inf
k!1

'k.˛/

k.q � 1/ log�
� lim

k!1
'k.ˇ/

k.q � 1/ log�
:

The limit in the right-hand side exists and is a.e. constant from general consid-
erations (the subadditive ergodic theorem), but in this case we know it equals
min.Dq�; 1/ by Theorem 3.1 (it is easy to see that, in the definition of Dq, one
can take the limit along the sequence �k). This is the step of the proof that uses
that q � 2. It follows that Dq.…˛�/ � min.Dq�; 1/ for all ˛. The opposite
inequality is trivial since Dq does not increase under Lipschitz maps and cannot
exceed the dimension of the ambient space. This concludes the sketch of the proof
of Theorem 4.1.

We point out that the analog of Theorem 4.1 holds for arbitrary self-similar
measures (of irrational type) in the plane, at the price of replacing Lq dimension by
Hausdorff dimension. This is a particular case of [20, Theorem 1.6]. The problem
of whether Theorem 4.1 remains valid in this setting, for any values of q, remains
open.

4.2 Conclusion of the Proof

We can now finish the proof of Theorem 2.1(i). If A is a self-similar set for a
homogeneous IFS satisfying the open set condition, then we know that the self-
similar measure � with the natural weights satisfies D2� D dimS A D dimH A, and
hence, by Theorem 4.1,

dimH.…˛A/ � D2…˛� D min.D2�; 1/ D min.dimH.A/; 1/ � dimH.…˛A/:

This shows that the claim holds when A has this special structure. To conclude the
proof, we show that any self-similar set can be approximated in dimension from
inside by such a self-similar set; this essentially goes back to [29]. We include the
proof, since similar approximation arguments have turned to be useful in a variety
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of situations, see e.g. [27, Lemma 3.4], [11, Proposition 1.8], and [34, Section 9].
Recall that an IFS . fi/i2ƒ with attractor A satisfies the strong separation condition
(SSC) if the images fi.A/ are pairwise disjoint (this is stronger than the OSC).

Lemma 4.2 Let A be a self-similar set in R
2 with dimH A > 0. Then for any " > 0

there is a self-similar set A0 for a homogeneous IFS satisfying the strong separation
condition, such that A0 � A and dimH A0 � dimH A � ".
Proof Write s D dimH A. It is classical that self-similar sets can be approximated in
dimension from inside by self-similar sets satisfying the SSC. For completeness we
sketch the argument: given " > 0, we can find r > 0 arbitrarily small and a disjoint
collection of balls fB.xi; r/g centres in A, with at least r"=2�s elements. Since xi 2 A,
it is easy to see that for each i there is a word ji such that fji.A/ � B.xi; r/ and

. fji/ � ır, where ı is a positive constant that depends only on the IFS. Then . fji/
satisfies the strong separation condition, the attractor A00 is contained in A, and its
similarity dimension (equal to dimH A00) can be made larger than s � " by taking r
small enough. Hence, we may and do assume that A itself already satisfies the SSC.

A similarity f on R
2 can be written as �OR� C t, where � 2 .0; 1/, O is either

the identity or reflection around the x-axis, R� is rotation by angle � , and t 2 R
2

is a translation. Let Rot denote the similarities with O equal to the identity, and let
Ref be the remaining ones. We claim that A can be approximated from inside by
the attractor of an IFS with elements in Rot (that still satisfies the SSC). To see this,
assume without loss of generality that f1 2 Ref. Fix a large integer k, and consider
the IFS

F 0
k D .g 2 F k \ Rot/[ . f1g W g 2 F k \ Ref/:

A calculation shows that dimS.F 0
k/ can be made arbitrarily close to s by taking k

large enough, so this is the desired IFS.
Thus, we assume F satisfies the SSC and fi.x/ D �iR�i x C ti for suitable �i 2

.0; 1/, �i 2 Œ0; 2�/ and ti 2 R
2. Because the similarities �R� commute, if we write

F k D . fi.x/ D Six C tk;i/i2ƒk , then Si is determined by the number of times each
index ` 2 ƒ appears in i D .i1; : : : ; ik/, whence there are fewer than kjƒj different
possibilities for Si. Hence, there is some fixed similarity S, such that the IFS F 0

k D
.Six C tk;i W Si D S/ satisfies N
.S/s � k�jƒj, where N is the number of maps in F 0

k.
On the other hand, 
.S/ � �k

max, where �max D maxi2ƒ �i < 1. Hence, if we write
dimS.F 0

k/ D s � "k, then

1 D N
.S/s�"k � k�jƒj
.S/�"k � k�jƒj��"kk
max :

Thus .1=�max/
"kk � kjƒj, and therefore "k ! 0 as k ! 1. Since F 0

k is a
homogeneous IFS satisfying the SSC, whose attractor is contained in A (as it is
derived from F k by deleting some maps), this completes the proof. ut
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5 The Rational Rotation Case: Hochman’s Theorem
on Super Exponential Concentration

5.1 Hochman’s Theorem

In the introduction we briefly discussed the following conjecture:

Conjecture 5.1 If A is a self-similar set in R with dimH.A/ < min.dimS.A/; 1/,
then A has exact overlaps.

Although a full solution to the conjecture seems to be beyond reach of current
methods, a major breakthrough was recently achieved by M. Hochman [18].
Hochman proved a weaker form of the conjecture, which allows to establish the
full conjecture in a number of important special cases. In order to state his result,
we need some definitions. The separation constant of an IFS F D .�ix C ti/i2ƒ on
the real line is defined as

�.F/ D
� 1 if �i ¤ �j for all i ¤ j;

mini¤jfjti � tjj W �i D �jg otherwise
:

Although �.F/ may be infinite, we will only be interested in �.F k/ for large
values of k, and this is always finite (already for k D 2) due to the commutativity
of the contraction ratios. The sequence k 7! �.F k/ is always decreasing. Notice
also that there is an exact overlap if and only if �.F k/ D 0 for some (and hence
all sufficiently large) k. On the other hand, by pigeonholing it is easy to see that
�.F k/ decays at least exponentially fast in k. We say that F has superexponential
concentration of cylinders (SCC) if �.F k/ decays at superexponential speed or,
in other words, if

lim
k!1

� log�.F k/

k
D 1:

We can now state Hochman’s Theorem:

Theorem 5.2 If � D �.F ; p/ is a self-similar measure in R with dimH � <

min.dimS �; 1/, then F has super-exponential concentration of cylinders.
In particular, if A is a self-similar set in R with dimH.A/ < min.dimS.A/; 1/,

then (the IFS generating) A has super-exponential concentration of cylinders.

The proof of this result combines several major new ideas. A key ingredient is an
inverse theorem for the growth of entropy under convolutions, which belongs to the
field of additive combinatorics. See the survey [19] or the introduction of [18] for
an exposition of the main ideas in the proof.

In the remainder of this section, we explain how to apply Theorem 5.2 to the
calculation of the dimension of projections of planar self-similar sets and measures,
in the rational rotation case. In turn, this will be a key ingredient for establishing
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absolute continuity of projections. For many other applications of Theorem 5.2, see
[15, 28, 32, 33] in addition to [18].

5.2 Projections of the One-Dimensional Sierpiński Gasket,
and Theorem 2.1(ii)

The attractor S of the planar IFS


. x
3
; y
3
/; . xC1

3
; y
3
/; . x

3
; yC1

3
/
�

is known as the one-

dimensional Sierpiński Gasket, see Fig. 1. Since S satisfies the SSC, indeed
dimH.S/ D 1. Because the generating IFS has no rotations, the orthogonal
projections of S onto lines are again self-similar sets. Let Pu.x; y/ D x C uy. Then
Su WD PuS is homothetic to …tan�1 uS. This provides a smooth reparametrization of
the orthogonal projections of S, which has the advantage that Su is the attractor of
the simpler IFS

�
x
3
; xC1

3
; xCu

3

�
.

It is clear that Su has an exact overlap for some values of u, for example, for
u D 1. Kenyon showed that there is an exact overlap if and only if u D p=q in
lowest terms with pCq 6� 0 mod 3, see [23, Lemma 6], and provided an expression

Fig. 1 The one-dimensional Sierpiński gasket
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for the dimension of Su in this case. Hence, unlike the irrational rotation case, there
are exceptional directions, and an infinite number of them. Kenyon rounded off the
understanding of projections with rational slope by showing that if u D p=q in
lowest terms with p C q � 0 mod 3, then Su has positive Lebesgue measure (in
particular, dimension 1).

An old (unpublished) conjecture of H. Furstenberg states that dim Su D 1 for all
irrational u. Since Su has no exact overlap for u irrational, this is a particular case
of Conjecture 5.1. In the same article [23], Kenyon proved that Su has Lebesgue
measure zero for all irrational u (answering a question of Odlyzko), and exhibited
a dense Gı set of irrational u such that dimH Su D 1. It turns out that a positive
solution to Furstenberg’s conjecture follows rather easily from Theorem 5.2 (the
short deduction is due to Solomyak and the author). The argument is presented in
[18, Theorem 1.6] just for projections of the one-dimensional Sierpiński gasket. A
variant of the proof yields the following more general result.

Theorem 5.3 Let � 2 .0; 1/ be algebraic, and let ai; bi (i 2 ƒ) also be algebraic.
Suppose that the IFS

F D �
�.x C ai/; �.y C bi/

�
i2ƒ

does not have an exact overlap. Write s D dimS.F/ D log jƒj= log.1=�/. Let S be
the attractor of F , and let Su be the image of S under .x; y/ 7! x C uy.

Then dimH Su D min.s; 1/ for all u such that the Su does not have an exact
overlap, and in particular for all but countably many u.

In the proof we will need the following lemma, see [18, Lemma 5.10] for the
proof. Given a finite set B, the family of polynomial expressions in elements of B of
degree at most k will be denoted Pk.B/.

Lemma 5.4 Let B be a finite set of algebraic numbers. There is a constant ı D
ı.B/ > 0 such that if x 2 Pk.B/, then either x D 0 or jxj � ık.

Proof of Theorem 5.3 The projection Su is the attractor of

Fu D �
�.x C ai C ubi/

�
i2ƒ:

If u is algebraic, then Fu is algebraic (i.e. all the parameters are algebraic). As shown
in [18, Theorem 1.5], it follows easily from Theorem 5.2 and Lemma 5.4 that in this
case dimH Su D min.dimS Su; 1/ � min.s; 1/ if Fu does not have an exact overlap.
Hence from now on we assume that u is transcendental.

The IFS F k
u is given by .�kx CPk

`D1 �`.ai` C ubi`//i2ƒk . In particular, there are
i ¤ j 2 ƒk such that

�.F k
u / D xk C uyk;

where xk D Pk
`D1 �`.ai` � aj`/, yk D Pk

`D1 �`.bi` � bj`/. Since u is transcendental,
this can be zero only if xk and yk are both zero, but in this case F k can be seen to
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have an exact overlap, which contradicts our hypothesis. Hence for each k either
xk ¤ 0 or yk ¤ 0.

Note that xk; yk 2 PkC1.B/, where B D f�; ai � aj; bi � bj W i; j 2 ƒg. Let
ı D ı.B/ be the number given by Lemma 5.4. If xk D 0 or yk D 0, then j�.F k

u /j �
min.1; juj/ıkC1. If this happens for infinitely many k then, in light of Theorem 5.2,
dimH Su D min.dimH S; 1/ and we are done. Hence we may assume that xkyk ¤ 0

for all k � k0.
For any k � k0, we hence have

ˇ̌
ˇ̌�.F k

u /

yk
� �.F kC1

u /

ykC1

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌xk

yk
� xkC1

ykC1

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌ zk

ykykC1

ˇ̌
ˇ̌ ;

where zk 2 P2kC3.B/. Therefore, Lemma 5.4 yields that either zk D 0 or jzkj �
ı2kC3. Assume first that zk D 0 for all sufficiently large k, say for all k � k1 � k0.
Then

j�.Fk
u/j D jyk.xk1=yk1 C u/j � jxk1=yk1 C ujıkC1 for all k � k1;

so there is no SCC and the conclusion follows again from Theorem 5.2. Thus, we
may and do assume that zk ¤ 0 for infinitely many k. For any such k, since jykj is
bounded uniformly in k, we conclude that either

j�.F k
u /j � cı2kC3; or j�.F kC1

u /j � cı2kC3;

for some c > 0 independent of k. This shows that also in this case there is no SCC,
so a final application of Theorem 5.2 finishes the proof. ut

The same proof works for self-similar measures for Fu.
Part (ii) of Theorem 2.1 follows from Theorem 5.3 and Lemma 4.2: if A is of

irrational type there is nothing to do by part (i). If A is algebraic and of rational type
then, given " > 0, Lemma 4.2 provides us with an IFS F satisfying the hypotheses
of Proposition Theorem 5.3 such that dimS F > dimH A � " (it is clear from the
proof that F is still algebraic, and also has rational rotations, so after iterating we
may assume it has no rotations). To finish the proof we apply Theorem 5.3 to F and
let " & 0 along a sequence.

5.3 Dimension of Projections in the Rational Case

We now apply Theorem 5.2 to prove Theorem 2.1(iii). Since we already know that in
the irrational rotation case there are no exceptional directions at all, it remains to deal
with the rational rotation case. Once again, we will first establish a corresponding
result for measures, but imposing some additional structure on the IFS. Then we
will deduce the general case for sets from Lemma 4.2.
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Proposition 5.5 Let F D . fi/i2ƒ be a planar IFS satisfying the SSC, where fi.x/ D
�x C ti for all i, that is, the maps fi are homotheties with the same contraction ratio.
There exists a set E � Œ0; �/ of zero Hausdorff (and even packing) dimension, such
that if �p D �.F ; p/ denotes the self-similar measure for F and the weight p, then

dimH…˛�p D min.dimS �p; 1/ for all ˛ 2 Œ0; �/ n E:

In particular, if A is the attractor of F , then

dimH…˛A D min.dimH A; 1/ for all ˛ 2 Œ0; �/ n E:

Proof The latter claim follows by applying the first claim to the natural weights.
Once again, instead of working directly with orthogonal projections …˛ , we work
with the family Pu.x; y/ D xCuy; this makes no difference in the statement since the
reparametrization is smooth and hence preserves Hausdorff and packing dimension.

As before, write Fu for the projected IFS .�x C Puti/i2ƒ. Note that

�.F k
u / D min

j¤j02ƒk
�j;j0.u/;

where

�j;j0.u/ D
ˇ̌
ˇ̌
ˇ

k�1X
iD0

�iPutji �
k�1X
iD0

�iPutj0i

ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇPu

 
k�1X
iD0

�i.tji � tj0i /

!ˇ̌
ˇ̌
ˇ DW jPu.tj;j0/j:

Since F satisfies the SSC, jtj;j0 j > c > 0 for some c D c.F/. Let E denote the set of
u such that Fu has SCC. Then, by definition of SCC,

E �
\
">0

1[
KD1

1\
kDK

[

j¤j02ƒk

��1
j;j0 .�"k; "k/ DW

\
">0

E":

Fix an interval I D Œ�M;M�. We first note that, since jtj;j0 j > c, for large enough
k, the set I \ ��1

j;j0 .�"k; "k/ can be covered by an interval of length O."k/. HenceS
j¤j02ƒk ��1

j;j0 .�"k; "k/ can be covered by jƒj2k intervals of length O."k/, which
implies that

dimB

0
@

1\
kDK

[

j¤j02ƒk

��1
j;j0 .�"k; "k/

1
A � O

�j log "j�1� ;

with the implicit constant depending on jƒj, where dimB is upper box-counting (or
Minkowski) dimension. In turn, since packing dimension is �-stable and bounded
above by dimB, this shows that dimP.E" \ I/ D O

�j log "j�1�. Since I D Œ�M;M�
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was arbitrary, we conclude that dimP.E/ D 0. The claim now follows from
Theorem 5.2. ut

The above proposition is a particular case of [18, Theorem 1.8], which deals
with much more general analytic families of self-similar measures. The proof of the
more general result is similar, except that in order to show that ��1

j;j0 .�"k; "k/ can
be covered efficiently one needs to rely on “higher-order transversality” estimates
(which are trivial in our setting because �j;j0 is affine).

Claim (iii) of Theorem 2.1 follows from Proposition 5.5 and Lemma 4.2 in
exactly the same way as part (ii) followed from Theorem 5.3.

6 Absolute Continuity of Projections

The methods from [18, 20, 26, 29] that we have discussed so far appear to be
intrinsically about dimension (of sets or measures) and so far have not yielded
any new information about positive Lebesgue measure or absolute continuity when
the similarity dimension exceeds the dimension of the ambient space. Recently, in
[32, 33] these results on dimension have been combined with some new ideas to
yield absolute continuity outside a small set of parameters for many parametrized
families of self-similar (and related) measures. One particular application of these
ideas is the last claim of Theorem 2.1. In this section we discuss the main steps in
the proof, referring the reader to [33] for the details.

We start by describing the general scheme for proving absolute continuity outside
a small set of parameters. The measures �u to which the method applies have an
infinite convolution structure: they are the distribution of a random sum

1X
nD1

Xu;n;

where Xu;n are independent Bernoulli random variables, and kXu;nk1 decreases
exponentially uniformly in u, so that the series converges absolutely. Once a large
integer k is fixed, this allows as to express �u as a convolution �u � �u, where �u is
the distribution of

P
kjn Xu;n, and �u is the distribution of

P
k−n Xu;n. The dimension

results discussed in the previous sections can be applied to show that, in many cases,
�u has full dimension for all parameters u outside of a small set of exceptions (note
that, in the definition of �u, we are skipping every k-th term only, so �u should be
“almost as large” as �u). On the other hand, adapting a combinatorial method that
goes back to Erdős [4] and has become known as the “Erdős-Kahane” argument, it
is often possible to show that the Fourier transform

O�u.�/ D
Z

exp.2�ihx; �i/ d�u.x/
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has a power decay, again outside of a small set of possible exceptions (because �u

is defined by keeping only every k-th term, these measures will have very small
dimension and hence a very small power decay, but all that will matter is that it is
positive).

Recall that the Fourier dimension of a measure � is defined as

dimF.�/ D supf� � 0 W 9C; j O�.�/j � Cj�j��=2g:

Absolute continuity then follows from the following general fact:

Theorem 6.1 Let �; � be Borel probability measures on R
d.

(i) If dimH � C dimF � > d, then � � � has an absolutely continuous density.
(ii) If Dq� C dimF � > d for some q 2 .1; 2�, then � � � has a density in Lq.

The second part in the case q D 2 is a rather straightforward consequence of
well-known identities relating D2 to energies, and energies to the Fourier transform,
while the first part follows from the second for q D 2 (or any other value of
q); see [32, Lemma 2.1]. The second part for arbitrary values of q 2 .1; 2� is
somewhat more involved, and relies on the Littlewood-Paley decomposition; it is
proved in [33, Theorem 4.4] (where a version for q 2 .2;C1/ is also established).
The intuition behind the theorem is that convolving with a measure of positive
Fourier dimension is a smoothing operation (positive Fourier dimension is a kind
of “pseudo-randomness” indicator), which is enough to “upgrade” full or almost
full dimension to absolute continuity.

We now indicate how to implement the above strategy for projections of planar
self-similar measures �. We need to assume that the IFS is homogeneous; this is to
ensure that the measure we are projecting, and therefore also its projections, have
the desired convolution structure.

Theorem 6.2 Let .fi.x/ D Sx C ti/i2ƒ be a homogeneous IFS on R
2 satisfying

the SSC and dimS F > 1. Then there exists a set E � Œ0; �/ of zero Hausdorff
dimension, such that for all ˛ 2 Œ0; �/ n E the following holds:

(i) Let �p D �.F ; p/. If dimH�p > 1, then …˛�p is absolutely continuous.
(ii) In the irrational rotation case, if Dq�p > 1, then …˛�p has an Lq density.

(iii) Moreover, in the rational rotation case, if dimH �p > 1, then …˛�p has a
density in Lq for some q D q.F ; p; ˛/ > 1.

Note that, since F satisfies the SSC, there are explicit formulae for dimH �;Dq�,
and limq!1C Dq� D dimH �, and the set of p to which the theorem applies is
nonempty (it includes, for example, the natural weights). In particular, it follows
from the second part that, in the irrational rotation case, if dimH �p > 1 then …˛�p

has an Lq density for an explicit q > 1 that is independent of ˛ and p. Also, if
Dq�p < 1, then Dq…˛.�p/ < 1, and …˛.�p/ cannot have an Lq density, so the
second part is sharp up to the endpoint. Thus we know a lot less about the density
of the projections in the rational rotation case.
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Sketch of proof First of all, by replacing F by F k for suitable k, in the rational
rotation case we may assume that S is a homothety, i.e. there are no rotations at all.

The self-similar measure �p is the distribution of the random sum
P1

nD1 Xn,
where P.Xn D Snti/ D pi, and the Xn are independent. Indeed, this measure is
easily checked to satisfy the defining relation �p D P

i2ƒ pi fi�p. Since p is fixed in
the proof we drop any explicit reference to it from now on.

As indicated above, let k be a large integer to be determined later, and let �; � be
the distribution of the random sums

P
kjn Xn,

P
k−n Xn respectively, so that� D ���

and therefore…˛� D …˛��…˛�. This fits with the general description above, since
…˛� is the distribution of

P1
nD1 X˛;n, where P.X˛;n D …˛.Snti// D pi, and the X˛;n

are independent, and likewise with …˛�;…˛�.
Both �; � are again homogeneous self-similar measures of the same rotation type

(irrational or no rotation), which also satisfy the SSC. Moreover, a direct calculation
shows that

dimH � D .1� 1=k/ dimH �;

Dq� D .1� 1=k/Dq�:

Consider first the irrational rotation case, and suppose p is such that Dq� > 1.
Provided we chose k large enough, then also Dq� > 1. By Theorem 4.1, Dq…˛� D
1 for all ˛. On the other hand, a combinatorial argument similar to (although
slightly more involved than) the classical Erdős’ argument from [4], shows that
dimF…˛� > 0 outside of a possible exceptional set of zero Hausdorff dimension.
See [33, Proposition 3.3] (this also holds in the no rotation case). Claim (ii) then
follows from Theorem 6.1, and we have already seen that this implies (i) in the
irrational rotation case.

The first claim in the no-rotations case follows in the same way, using Proposi-
tion 5.5 instead of Theorem 4.1. A priori this gives no information whatsoever about
the densities (the reason being that Theorem 5.2 is about Hausdorff dimension and
it is unknown if it holds for Lq dimension for any q). However, in [33, Theorem 5.1]
we have shown that for any homogeneous self-similar measure � , and in particular
for � D …˛� in the no-rotations case,

lim
q!1C

Dq.�/ D dimH �:

(This is immediate from the explicit formulae under the OSC, the point is that
it holds regardless of overlaps.) Hence, if ˛ is such that dimH.…˛�/ D 1 and
dimF.…˛�/ > 0, there is a (non-explicit) q > 1 such that Dq.…˛�/CdimF.…˛�/ >

1. The third claim then follows again from Theorem 6.1. ut
Using Lemma 4.2 once again, we conclude the proof of Theorem 2.1(iv) in the

by now familiar way.
Unfortunately, the proof of Theorem 6.2 (and hence of Theorem 2.1(iv)) is

completely non-effective. The reason is that it seems very hard to prove that a given
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projection of a self-similar measure has power Fourier decay, even though we know
that all outside of a zero-dimensional set do!

7 Further Results

We briefly discuss projections of other natural classes of sets and measures. This
section has some overlap with [7, Sections 8 and 9].

7.1 Bernoulli Convolutions

Given � 2 .0; 1
2
/, the Bernoulli convolution �� is the self-similar measure for

the IFS .�x � 1; �x C 1/ with weights . 1
2
; 1
2
/. Alternatively, �� is the distribution

of the random sum
P1

nD0 ˙�n, where the signs are chosen independently with
equal probabilities; this explains the name. When � 2 .0; 1=2�, the generating IFS
satisfies the OSC and the measure �� is well understood; however, for � 2 . 1

2
; 1/,

surprisingly little is known. It is known since Erdős [3] that if ��1 is a Pisot number
(an algebraic integer larger than 1, all of whose algebraic conjugates are smaller than
1 in modulus), then �� is singular. It is not known if there are any other � 2 . 1

2
; 1/

for which �� is singular. Solomyak [35] proved that �� is absolutely continuous with
an L2 density for almost all � 2 . 1

2
; 1/. This is a kind of Marstrand Theorem for a

family of nonlinear projections. Using the method described in Sect. 6, the author
proved in [32] that �� is absolutely continuous for � outside of a zero Hausdorff
dimension set of exceptions, and in [33] we showed that, furthermore, outside this
exceptional set, �� has a density in Lq for some non-explicit q D q.�/ > 1. These
results rely heavily on Theorem 5.2.

7.2 Self-Similar Sets in Higher Dimension

Much less is known about projections of self-similar sets in higher dimensions.
In dimensions d � 3 there is no neat decomposition into “rational rotation” and
“irrational rotation” cases. In particular, if the orthogonal parts of all the maps in
the IFS coincide, then they cannot generate a dense subgroup of the orthogonal
group – this is problematic for generalizing Theorems 4.1 and 6.2. Also, the
lack of commutativity precludes approximation arguments such as Lemma 4.2.
Nevertheless, the more flexible approach of [20] yields the following, see [20,
Theorem 1.6 and Corollary 1.7].
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Theorem 7.1 Let A � R
d, d � 2, be the attractor of the IFS .�iOix C ti/i2ƒ, where

�i 2 .0; 1/, Oi 2 Od and ti 2 R
d. Assume the SSC holds. Fix 1 � k < d and let Gd;k

denote the Grassmanian of k-dimensional subspaces of Rd.
Suppose that the action of the semigroup generated by the Oi on Gd;k is transitive,

that is, fOi1 � � � Oin� W ij 2 ƒ; n 2 Ng is dense for some (and therefore all) � 2 Gd;k.
Then for all C1 maps g W Rd ! R

k without singular points,

dimH.gA/ D min.dimH A; k/

Note that in dimension d D 2, the transitivity condition is met precisely for self-
similar sets of irrational type. Once again, this follows from a corresponding result
for measures. Using an approximation argument, Farkas [11, Theorem 1.6] was able
to remove the SSC assumption.

7.3 Projections of Self-Affine Carpets

If the maps fi in an IFS are affine rather than similarities, the attractor is called a
self-affine set. Dimension problems for self-affine sets are notoriously difficult, and
almost nothing beyond the general results of Marstrand and others is known about
their orthogonal projections, outside of some special classes known as self-affine
carpets. Roughly speaking, a self-affine carpet is the attractor of an IFS of affine
maps that map the unit square onto non-overlapping rectangles with some special
pattern (generally speaking, it is required that when projecting these rectangles onto
either the x or y-axes, there are either no overlaps or exact overlaps).

In [14], it was proved that under a suitable irrationality condition, for many self-
affine carpets A � R

2 it holds that dimH…A D min.dimH.A/; 1/ for all projections
… other than the principal ones (which are always exceptional for carpets). The
proof was based on ideas of [29] and did not extend to measures. Recently,
based on the approach of [18], Ferguson, Fraser and Sahlsten [13] obtained the
corresponding results for Bernoulli measures for the natural Markov partition for the
.x; y/ 7! .px; qy/ mod 1 toral endomorphism. This was extended to Gibbs measures
by Almarza [1].

7.4 Sums of Cantor Sets

The arithmetic sum A C B of two sets A;B � R
d is fx C y W x 2 A; y 2 Bg.

Up to an homothety, this is the projection of A � B under a 45 degree projection.
More generally, the family A C uB is a reparametrization of the projections of
A � B (other than the horizontal projection). The methods discussed in the previous
sections can be applied (with suitable modifications) to yield the following analog
of Theorem 2.1. Following the terminology of [29], we say that the attractors of
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.�ix C ti/ and .�0
jx C t0j/ are algebraically resonant if log�i= log�0

j is rational for
all i; j.

Theorem 7.2 Let A;B � R be self-similar sets, and write s D dimH.A/ C
dimH.B/.

(i) If A and B are not algebraically resonant, then dimH.A C uB/ D min.s; 1/ for
all u 2 R n f0g.

(ii) If both A and B are given by algebraic parameters, then fu W dimH.A C uB/ <
min.s; 1/g is countable.

(iii) Without any assumptions, if s � 1, then dimHfu W dimH.A C uB/ < sg D 0.
(iv) If s > 1, then dimHfu W L.A C uB/ D 0g D 0.

Part (i) was proved in [29], (ii) and (iii) follow in a very similar manner to
the corresponding claims in Theorem 2.1, and the last claim is [33, Theorem E].
Measure versions of these results exist, see [20, Theorem 1.4] and [33, Theorem D].

Much is known for sumsets beyond self-similar sets and measures. One of the
first results in the area, due to Moreira, was a version of Theorem 7.2(i) for attractors
of nonlinear IFSs (under standard regularity assumptions). See [2]. A general
version of this (valid also for Gibbs measures) was obtained in [20, Theorem 1.4].
Furthermore, it follows from [20, Theorem 1.3] that if A;B � Œ0; 1� are closed and
invariant under x 7! px mod 1, x 7! qx mod 1 respectively, with log p= log q … Q,
then

dimH.A C uB/ D min.dimH.A/C dimH.B/; 1/ for all u 2 R n f0g:

For u D 1, this was another conjecture of Furstenberg.

7.5 Projections of Random Sets and Measures

There is a vast, and growing, literature on geometric properties of random sets and
measures of Cantor type, including the behavior of their projections. We do no more
than indicate some references for further reading. Generally speaking, there are two
main strands of research in this area. One concerns random sets and measures that
include deterministic ones as a special case. In this direction, Falconer and Jin [8,
9] investigated projections of random cascade measures (and related models) on
self-similar sets, obtaining generalizations of several of the results we discussed.
In [8], these results were applied in a clever way to study the dimension of linear
sections of deterministic self-similar sets. The second line of research concerns sets
and measures with a large degree of spatial independence; one of the most popular
such models is fractal percolation, consisting in iteratively selecting random squares
in the dyadic (or M-adic) grid. With stronger independence, one can typically say
a lot more, for example proving positive Lebesgue measure, and even nonempty
interior, for all projections simultaneously (compare with Theorem 2.1(iii)). See e.g.
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[31] for results of this type for fractal percolation. A general approach to the study
of measures with strong spatial independence was recently developed in [34]. We
refer the reader to this paper for many further references and detailed statements.
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1 Introduction

In this paper we consider continuous real functions of the form

f 
�;b.x/ D
1X

nD0
�n
.bnx/ (1.1)

for x 2 R, where b > 1, 1=b < � < 1 and 
 W R ! R is a non-constant, Z-periodic,
Lipschitz continuous, piecewise C1 function. Probably the most famous function of
that form is the Weierstrass cosine function

W�;b.x/ D
1X

nD0
�n cos.2�bnx/;

introduced by Weierstrass in 1872 as one of the first examples of a continuous
nowhere differentiable function on the real line. In fact, Weierstrass proved the
non-differentiability for some values of the parameters �; b, while the complete
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Fig. 1 The graph of the Weierstrass cosine nowhere differentiable function

proof for b > 1, 1=b < � < 1 was given by Hardy [16] in 1916. Later, starting
from the work by Besicovitch and Ursell [8], the graphs of functions of the form
(1.1) and related ones have been studied from a geometric point of view as fractal
curves in the plane (Fig. 1).

In this paper we present a survey of recent results concerning various kinds of
dimensions of the graphs of functions of the form (1.1).

Since

�f 
�;b.bx/ D f 
�;b.x/ � 
.x/;

the graph of f 
�;b exhibits a kind of approximate self-affinity with scales � and 1=b,
which suggests a candidate for its dimension to be

D D 2C log�

log b
:

We will see that this is indeed the case for the box dimension of the graph
of f 
�;b (unless it is a piecewise C1 function with the graph of dimension 1), see
Theorem 2.4. For the Hausdorff dimension, the situation is not so simple – we
know some general lower estimates by constants smaller than D (see (3.1) and
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Theorem 3.4), while the Hausdorff dimension of the graph is known to be equal
to D only in some concrete cases (see Theorems 3.5 and 3.6), and for integer b and
generic smooth function 
 (see Theorem 4.2). On the other hand, we do not know
any example of a function of the form (1.1), where the Hausdorff dimension of the
graph is smaller than D.

Let us note that if b is an integer, then the graph of a function f 
�;b of the form
(1.1) is an invariant repeller for the expanding dynamical system

ˆ W R=Z � R ! R=Z � R; ˆ.x; y/ D
�

bx .mod 1/;
y � 
.x/

�



(1.2)

with two different positive Lyapunov exponents � log� < log b, which allows to
use the methods of ergodic theory of smooth dynamical systems. In this case the
graph of f 
�;b is the common fractal boundary between the basins of attraction to
(vertical) C1 and �1 on the cylinder R=Z (see Fig. 2). Alternatively, the system

Fig. 2 The graph of the
Weierstrass function as the
boundary between two
attracting basins on the
cylinder
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can be treated as a nonlinear iterated function system (IFS) on Œ0; 1/ � R composed
of the maps

Si.x; y/ D
�

x

b
C i

b
; �y C 


�
x

b
C i

b




; i D 0; : : : ; b � 1:

Some results presented in this paper are valid also for a more general class of
functions

f 
;‚�;b .x/ D
1X

nD0
�n
.bnx C �n/; (1.3)

where ‚ D .�1; �2; : : :/ for �n 2 R is a sequence of phases (with the previous
assumptions on �, b and 
).

We will consider the Hausdorff, packing and box dimension denoted, respec-
tively, by dimH , dimP and dimB. The upper and lower box dimension will be
denoted, respectively, by dimB and dimB. For an unbounded set, the (upper, lower)
box dimension is defined as the supremum of (upper, lower) box dimensions of its
bounded subsets.

For the definitions of the considered dimensions and their basic properties we
refer to [14, 28]. We only note that for a set X � R

k we have

dimH.X/ � dimB.X/ � dimB.X/

and

dimH.X/ � dimP.X/ � dimB.X/:

The plan of the paper is as follows. In Sect. 2 we determine the box and
packing dimension of the graphs of functions of the form (1.1). Results on
the Hausdorff dimension are presented in Sects. 3–4. In Sect. 5 we deal with a
randomization of functions of the form (1.3). Additional issues (complex extension
of the Weierstrass cosine function, non-exponential sequences of scalings) are
treated in Sects. 6–7.

Note that the quoted results are not necessarily presented in the chronological
order and the formulation can be different from the original. Due to lack of space,
the proofs are generally not included and the reader is referred to original articles.

There are a number of related issues which are not discussed in this paper (e.g. the
case � D b, wider classes of functions 
, dimension of the graphs of self-affine
functions). The reader can find some information on these questions in the works
included in the bibliography and the references therein.
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2 Local Oscillations, Hölder Condition and Box Dimension

To determine the box dimension of the graphs of the considered functions, we
examine their local oscillations in terms of the Hölder condition. By I we denote
a non-trivial (not necessarily bounded) interval in R.

Definition 2.1 We say that a function f W I ! R is Hölder continuous with
exponent ˇ > 0, if there exist c; ı > 0 such that

jf .x/� f .y/j � cjx � yjˇ

for every x; y 2 I such that jx � yj < ı. Hölder continuous functions with exponent
1 are called Lipschitz continuous (with the Lipschitz constant c).

We say that f satisfies the lower Hölder condition with exponent ˇ > 0, if there
exist Qc; Qı > 0 such that the oscillation

oscJ.f / D sup
J

f � inf
J

f

of f on every interval J � I with jJj < Qı satisfies

oscJ.f / � QcjJjˇ

(where j � j denotes the length).

Note that the lower Hölder condition with exponent ˇ 2 .0; 1/ implies non-
differentiability (i.e. non-existence of a finite derivative) of the function at every
point.

The following proposition follows directly from the definitions of the upper and
lower box dimension.

Proposition 2.2 If f W I ! R is Hölder continuous with exponent ˇ 2 .0; 1�, then

dimB.graph f / � 2 � ˇ:
If a continuous function f W I ! R satisfies the lower Hölder condition with

exponent ˇ 2 .0; 1�, then

dimB.graph f / � 2 � ˇ:

Let

˛ D � log�

log b
D 2 � D:

Note that by definition, ˛ 2 .0; 1/ and � D b�˛. The following upper estimate
of the box dimension of the graphs of the considered functions is a consequence of
Proposition 2.2.
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Proposition 2.3 Every function f 
;‚�;b of the form (1.3) is Hölder continuous with

exponent ˛, and hence dimB.graph f 
;‚�;b / � D.

Proof Let c be a Lipschitz constant of 
. Take x; y 2 I such that 0 < jx � yj � 1.
Then, choosing N 2 N with 1=bN < jx � yj � 1=bN�1, we have

jf 
;‚�;b .x/� f 
;‚�;b .y/j � cjx � yj
N�1X
nD0
.�b/n C 2max


1X
nDN

�n

<

�
cb

�b � 1 C 2max


1 � �


�N <

�
cb

�b � 1 C 2max


1 � �



jx � yj˛:

ut
One cannot expect a non-trivial lower estimate for the dimension of the graph,

which holds for every function under consideration. Indeed, if


.x/ D g.x/� �g.bx/

for an integer b > 1 and a Z-periodic, Lipschitz continuous, piecewise C1 function
g, then f 
�;b has the form (1.1) and f 
�;b D g, so its graph is a piecewise smooth curve
of dimension 1. However, for functions of the form (1.1), the case of a piecewise C1

curve is the only possible exception, when the box dimension of the graph is smaller
than D. The following fact is a consequence of a result by Hu and Lau [18].

Theorem 2.4 For every function f 
�;b of the form (1.1), exactly one of the two
following possibilities holds.

(a) f 
�;b is piecewise C1 .and hence the dimension of its graph is 1/.

(b) f 
�;b satisfies the lower Hölder condition with exponent ˛ .in particular it is

nowhere differentiable/ and dimB.graph f 
�;b/ D D.

Proof Adding a constant to f 
�;b, we can assume 
.0/ D 0. In [18, Theorem 4.1] it
is proved that in this case, if the Weierstrass–Mandelbrot function

V.x/ D
1X

nD�1
�n
.bnx/ D f 
�;b C

1X
nD1

1

�n



 x

bn

�

is not identically zero, then f 
�;b satisfies the lower Hölder condition with exponent˛.
Hence, if V 6� 0, then we can use Propositions 2.2 and 2.3 to obtain the assertion (b).
On the other hand,

P1
nD1.1=�n/
.x=bn/ is a piecewise C1 function, so the condition

V � 0 implies that f 
�;b is piecewise C1, which is the case (a). ut
A consequence of Theorem 2.4 is that the graphs of functions of the form (1.1)

have packing dimension equal to box dimension.
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Proposition 2.5 For every function f 
�;b of the form (1.1), we have

dimP.graph f 
�;b/ D dimB.graph f 
�;b/:

Proof We can assume that we are in the case (b) of Theorem 2.4, i.e. f 
�;b satisfies the

lower Hölder condition with exponent ˛ and dimB.graph f 
�;b/ D D. It is a general
fact (see [14, Corollary 3.9]), that for every compact set X � R

k, if

dimB.X \ U/ D dimB.X/

for every open set U intersecting X, then dimP.X/ D dimB.X/. To prove the
proposition, we check this condition for X D graph f 
�;bjI , where I is an arbitrary
non-trivial compact interval in R.

By the continuity of f 
�;b, for an open set U intersecting graph f 
�;bjI , we can take

a non-trivial interval J � I such that graph f 
�;bjJ � graph f 
�;bjI \ U. Since f 
�;bjJ

satisfies the lower Hölder condition with exponent ˛, Proposition 2.2 implies

D � dimB.graph f 
�;bjJ/ � dimB.graph f 
�;bjI \ U/ � dimB.graph f 
�;bjI/ � D;

which ends the proof. ut
In particular, the Weierstrass cosine function W�;b satisfies the lower Hölder

condition with exponent ˛ and

dimP.graph W�;b/ D dimB.graph W�;b/ D D

for b > 1, 1=b < � < 1. Similar results for various classes of functions 
 were
obtained, among others, by Kaplan, Mallet-Paret and Yorke [24], Rezakhanlou [34],
Przytycki and Urbański [33] and Bousch and Heurteaux [9].

In [17], Heurteaux generalized the above results to the case of functions of the
form (1.3) with transcendental b.

Theorem 2.6 Every function f 
;‚�;b of the form (1.3), where b is a transcendental
number, satisfies the lower Hölder condition with exponent ˛ .in particular it is
nowhere differentiable/. Moreover,

dimP.graph f 
;‚�;b / D dimB.graph f 
;‚�;b / D D:

3 Hausdorff Dimension

The question of determining the Hausdorff dimension of the graphs of the con-
sidered functions is much more delicate and far from being completely solved.
Since the upper bound dimH � dimB � D is known, one looks for suitable lower
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estimates. A standard tool is to analyse local properties of a finite Borel measure on
the graph.

Definition 3.1 Let � be a finite Borel measure in a metric space X. The upper and
lower local dimension of � at a point x 2 X are defined, respectively, as

dim �.x/ D lim sup
r!0C

log�.Br.x//

log r
; dim �.x/ D lim inf

r!0C

log�.Br.x//

log r
;

where Br.x/ denotes the ball of radius r centered at x. If for some d the upper and
lower local dimensions of � at x coincide and are equal to d for �-almost every x,
then we say that � has local dimension d and write dim� D d. Such measures are
also called exact-dimensional.

Estimating the Hausdorff dimension of a set, it is standard to use the following
fact (see [14, 28]).

Lemma 3.2 If for some d > 0 we have dim �.x/ � d for �-almost every x,
then every Borel set of positive measure � has Hausdorff dimension at least d. In
particular, this holds if dim� � d.

In [33], using Lemma 3.2 for the lift of the Lebesgue measure on Œ0; 1� to the
graph of the function, Przytycki and Urbański proved the following.

Theorem 3.3 If f W I ! R is Hölder continuous with exponent ˇ 2 .0; 1/ and
satisfies the lower Hölder condition with exponent ˇ, then

dimH.graph f / > C > 1;

where C depends only on ˇ and constants c, Qc in Definition 2.1.

This together with Proposition 2.3 and Theorem 2.4 implies that for every
function f 
�;b of the form (1.1), if f 
�;b is not piecewise C1, then

dimH.graph f 
�;b/ > 1: (3.1)

Better estimates can be obtained for large b, even in the presence of phases, as shown
by Mauldin and Williams [29].

Theorem 3.4 For every function f 
;‚�;b of the form (1.3), there exists a constant B >
0 depending only on � and 
, such that

dimH.graph f 
;‚�;b / > D � B

log b

for every sufficiently large b.

The result was obtained by using Lemma 3.2 for the lift of a measure supported
on a suitable Cantor set in Œ0; 1� to the graph of the function.



Dimension of the Graphs of the Weierstrass-Type Functions 85

The first example of a function of the form (1.1) with the graph of Hausdorff
dimension equal to D was given by Ledrappier [25], who proved the following
result, using the theory of invariant measures for non-uniformly hyperbolic smooth
dynamical systems (Pesin theory) on manifolds [26].

Theorem 3.5 For 
.x/ D dist.x;Z/ .the sawtooth function/ and b D 2,

dimH.graph f 
�;2/ D D

for Lebesgue almost all � 2 .1=2; 1/.
In fact, the assertion holds provided the infinite Bernoulli convolutionP1
nD0 ˙1=.2�/n, with ˙ chosen independently with probabilities .1=2; 1=2/, has

absolutely continuous distribution. As proved by Solomyak [39], the condition is
fulfilled for almost all � 2 .1=2; 1/. By a recent result by Shmerkin [38], in fact it
holds for all � 2 .1=2; 1/ except of a set of Hausdorff dimension 0.

In [40], Solomyak generalized the result from Theorem 3.5 to the case of some
functions 
 with discontinuous derivative (nonlinear sawtooth functions).

For the Weierstrass cosine function W�;b, the conjecture that the Hausdorff
dimension of its graph is equal to D was formulated by Mandelbrot [27] in 1977
(see also [7]) and then repeated in a number of subsequent papers. Recently, Bárány,
Romanowska and the author [5] proved the following result, showing that the
conjecture is true for every nonzero integer b and a large set of parameters �.

Theorem 3.6 For every integer b > 1 there exist �b; Q�b 2 .1=b; 1/, such that for
every � 2 .�b; 1/ and Lebesgue almost every � 2 . Q�b; 1/, we have dim��;b D D,
where ��;b is the lift of the Lebesgue measure on Œ0; 1� to graph W�;b. In particular,

dimH.graph W�;b/ D D

for every � 2 .�b; 1/ and almost every � 2 . Q�b; 1/. We have

�2 < 0:9352; �3 < 0:7269; �4 < 0:6083; �b < 0:5448 for every b � 5;

Q�2 < 0:81; Q�3 < 0:55; Q�4 < 0:44; Q�b < 1:04=
p

b for every b � 5

and

�b ! 1

�
; Q�b

p
b ! 1p

�
as b ! 1:

The proof uses the Ledrappier–Young theory from [26], Tsujii’s results [41] on
the Sinai–Bowen–Ruelle (SBR) measure for some smooth Anosov endomorphisms
of the cylinder and the Peres–Solomyak transversality methods developed under the
study of infinite Bernoulli convolutions (see e.g. [31, 32, 40]).
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4 Dimension of Graphs of Generic Functions

In mathematics there are a number of definitions of a generic (typical) property. A
topologically generic set in a space X is a set containing an open and dense set in X,
or a residual set (containing a countable intersection of open and dense sets in X).
A measure-theoretic generic set in R

k is a set of full Lebesgue measure. We use the
following infinite-dimensional analogue of this property, which is called prevalence
(see e.g. [30]).

Definition 4.1 A Borel set E in a real vector space V is prevalent, if there exists a
finite set fv1; : : : ; vkg � V (called the probe set), such that for every v 2 V , one has
v CPk

jD1 tjvj 2 E for Lebesgue almost every .t1; : : : ; tk/ 2 R
k. A non-Borel subset

of V is prevalent, if it contains a Borel prevalent set.

The topological and measure-theoretical genericity need not coincide. In fact, a
topologically typical (residual) continuous function on Œ0; 1� is nowhere differen-
tiable (this follows from the Baire Theorem, see [1]) and has the graph of lower
box dimension 1 (see [22]) and packing dimension 2 (see [19]), while a measure-
theoretic typical (prevalent) continuous function on Œ0; 1� is nowhere differentiable
(see [20]) and has the graph of Hausdorff dimension 2 (see [15]). In [12] (see
also [36]), using the wavelet technique, it was proved that functions with graphs
of Hausdorff dimension 2 � ˇ are prevalent within the space of Hölder continuous
functions on R with given exponent ˇ 2 .0; 1/.

In [5], Bárány, Romanowska and the author proved that for functions f 
�;b of the

form (1.1) with integer b, the Hausdorff dimension of graph f 
�;b is equal to D both
for topologically and measure-theoretic typical C3 function 
. To formulate the
result precisely, consider the space Cr.R=Z/, for r D 3; 4; : : : ;1, of Z-periodic
Cr real functions on R, treated as functions on R=Z. For b > 1 let

Fb D f.�; 
/ 2 .1=b; 1/� C3.R=Z/ W dim�
�;b D Dg;

where �
�;b is the lift of the Lebesgue measure on Œ0; 1� to graph f 
�;b. Recall that

dimH.graph f 
�;b/ D D for every .�; 
/ 2 Fb:

For � 2 .1=b; 1/, let

E�;b D f
 2 C3.R=Z/ W .�; 
/ 2 intFbg;
where int denotes the interior with respect to the product of the Euclidean and C3

topology in .1=b; 1/� C3.R=Z/. In [5], the following result was proved.

Theorem 4.2 For every integer b > 1 and � 2 .1=b; 1/, the set E�;b is prevalent
as a subset of C3.R=Z/, with a probe set contained in C1.R=Z/. Consequently, for
every r D 3; 4; : : : ;1, the set E�;b is an open and dense subset of Cr.R=Z/, and the
set Fb contains an open and dense subset of .1=b; 1/� C3.R=Z/.
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Similarly as for Theorem 3.6, the proof is based on the Ledrappier–Young theory
from [26] and a result by Tsujii [41] on the generic absolute continuity of the SBR
measure for some smooth Anosov endomorphisms of the cylinder.

5 Randomization

It is a well-known fact that introducing some additional parameters or stochastics
to a system can sometimes help to answer questions which could not be solved in a
standard setup. In studying dimension of the graphs of functions of the form (1.3),
a number of results were obtained by randomizing suitable parameters.

Concerning the box dimension, Heurteaux [17] proved the following.

Theorem 5.1 Let f 
;‚�;b be a function of the form (1.3). If one considers the phases
�n as independent random variables with uniform distribution on Œ0; 1�, then almost
surely, f 
;‚�;b satisfies the lower Hölder condition with exponent ˛C ", for arbitrarily
small " > 0 .in particular it is nowhere differentiable/. Moreover,

dimP.graph f 
;‚�;b / D dimB.graph f 
;‚�;b / D D almost surely:

An analogous result on the Hausdorff dimension can be obtained with stronger
assumptions on the function 
, as proved by Hunt [21].

Theorem 5.2 Let f 
;‚�;b be a function of the form (1.3), where 
 is a C1 function
with bounded set of orders of all its critical points. If one considers the phases �n as
independent random variables with uniform distribution on Œ0; 1�, then

dimH.graph f 
;‚�;b / D D almost surely:

This includes the case, when 
 is real-analytic, in particular .for 
.x/ D cos.2�x//,
when f 
;‚�;b is the Weierstrass cosine function with phases �n.

Similar results of that kind were obtained by Romanowska [35], using random-
ization of the parameter �.

6 Complex Extension of the Weierstrass Function

It is interesting to notice that if b is an integer, then the Weierstrass cosine function
W�;b is the real part of the lacunary (Hadamard gaps) complex power series

w.z/ D
1X

nD0
�nzbn

; z 2 C; jzj � 1



88 K. Barański

on the unit circle fjzj D 1g. In particular, W�;b has a harmonic extension
to the unit disc. This approach was already used by Hardy [16] to prove the
non-differentiability of W�;b in this case. The study of the boundary behaviour of the
holomorphic map w is itself an interesting question. Salem and Zygmund [37] and
Kahane, Weiss and Weiss [23] proved that for given b, if � is sufficiently close to 1,
then the image of the unit circle under w is a Peano curve, i.e. it covers an open
subset of the plane. In [2], the author showed that in this case the box dimension of
the graph of the function

x 7!
 1X

nD0
�n cos.2�bnx/;

1X
nD0

�n sin.2�bnx/

!

(which is a subset of R3), is equal to 3 � 2˛. Moreover, the author [3] (see also
Belov [6]) showed that for given b, if � is sufficiently close to 1, then the map w does
not preserve (forwardly) Borel sets on the unit circle. The boundary behaviour of w
from a topological point of view was studied by Dong, Lau and Liu [13] (Fig. 3).

Fig. 3 The image of the unit circle under the map w
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7 Other Sequences of Scalings

It is natural to study a generalization of functions of the forms (1.1) and (1.3),
replacing �n, bn by another sequences of scales �n, bn, which are not exponential.
More precisely, one can consider functions of the form

f .x/ D
1X

nD0
�n
.bnx C �n/ (7.1)

for �n; bn > 0,
P1

nD0 �n < 1, bnC1 > bn, bn ! 1 and a non-constant, Z-periodic,
Lipschitz continuous, piecewise C1 function 
 W R ! R.

It turns out that the case of rapidly (faster than exponential) growing scales
1=�n, bn is easier to handle than the exponential one. In 1937, Besicovitch and
Ursell [8] considered this case rather than the exponential one, and showed that
for the sawtooth function 
.x/ D dist.x;Z/, if �n D b�˛

n for some ˛ 2 .0; 1/

and bnC1=bn tends to 1 sufficiently slowly, then dimH.graph f / D 2 � ˛. The
Hausdorff, upper and lower box dimension of the graphs of functions of the general
form (7.1) for rapidly growing scales 1=�n, bn was computed by Carvalho [10] and
the author [4]. More precisely, the following result was proved in [4].

Theorem 7.1 For every function f of the form (7.1), if �nC1=�n ! 0, bnC1=bn !
1 as n ! 1, then

dimH.graph f / D dimB.graph f / D 1C lim inf
n!1

logC dn

log.bnC1dn=dnC1/
;

dimB.graph f / D 1C lim sup
n!1

logC dn

log bn
;

where logC D max.log; 0/ and dn D �1b1 C � � � C �nbn.
If additionally, �n D b�˛

n for some ˛ 2 .0; 1/ and log bnC1= log bn ! 1, then

dimH.graph f / D dimP.graph f / D dimB.graph f / D 2 � ˛:

In particular, this shows that in the case of rapidly growing scales, the dimensions
need not coincide. In fact, in [4] it is shown that for every H;B 2 Œ1; 2� with H � B
one can find a function f satisfying the assumptions of Theorem 7.1, such that

dimH.graph f / D dimB.graph f / D H; dimB.graph f / D B:

The case when the scales 1=�n, bn grow slower than exponentially is much more
difficult and almost nothing is known about the dimension of the graph of f . Some
work was done for

R.x/ D
1X

nD1

1

n2
sin.2�n2x/
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(called the Riemann example) and similar functions. In particular, Chamizo [11]
determined the box dimension of the graph of R to be equal to 5=4.

References

1. S. Banach, Über die Baire’sche Kategorie gewisser Funktionenmengen. Studia Math. 3, 174–
179 (1931)
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Tiling Z
2 by a Set of Four Elements

De-Jun Feng and Yang Wang

Abstract A finite subset D of Z2 is called a tile of Z2, if Z2 can be tiled by disjoint
translates of D. In this note, we give a simple characterization of tiles of Z2 with
cardinality 4.
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1 Introduction

Let D be a finite subset of Zd. We say that D tiles Zd or D is a tile of Zd, if Zd can
be written as a disjoint union of translates of D, i.e. there exists a subset C of Zd

such that each v 2 Z
d can be expressed uniquely as x C y with x 2 D and y 2 C;

in symbols, Zd D D ˚ C. For example, each two-element subset of Z is a tile of Z,
and the set f0; 3g tiles Z in two essentially different ways,

Z D f0; 3g ˚ .6Z [ .6Z C 1/[ .6Z C 2// D f0; 3g ˚ .2Z/:
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As an easy fact, D is a tile of Zd if and only if the set T WD S
a2D.Œ0; 1�d C a/ is a

tile of Rd, in the sense that there exists a set T � R
d such that

S
t2T .T C t/ D R

d

and the Lebesgue measure of .T C t1/\ .T C t2/ is zero for all different t1; t2 2 T .
One of the fundamental problems in the tiling theory is to characterise the

tiles of Zd (and generally, Rd) and their tiling structures. The problem is not only
interesting to mathematicians, but also to artists, physicists and engineerians (cf.
[4]). In mathematics, the classification of tiles of Zd is related to the theory of self-
similar tiles and self-affine tiles, see [1, 5, 8–13]. It is also related to the Fuglede
problem on the tiles and spectral sets which has been received a lot of attention
recently [3, 6, 7, 19].

The problem has been studied by many authors in the case when d D 1, see
[2, 14, 16, 17, 20]. In [14], Newman proved that any tile D of Z tiles Z periodically,
that is, if D ˚ C D Z then C D C C v for some v 2 Z. Furthermore, Newman gave
a simple characterization of tiles D of Z in the case that the cardinality of D is a
prime power. To state his result, let D D fa1; : : : ; akg with k D #D D p˛, where
p is a prime and ˛ 2 N. For any pair ai, aj, i ¤ j, let ti;j be the highest power of p
which divides ai � aj. Newman showed that D tiles Z if and only if there are at most
˛ distinct ti;j. Applying this criterion to the special case that #D D 3, we see that if
D tiles Z and if not all the difference of the numbers in D are divisible by 3, then no
difference could be a multiple of 3. Due to this, f0; 1; 3g and f0; 1; 4g do not tile Z.
Later, Coven and Meyerowitz [2] did the work in the case that the cardinality of D
has at most two prime factors. For arbitrary cardinality, the problem is still open.

The case d � 2 is much harder to study. One of the difficulties comes from the
possibility that a tile of Zd with d � 2, might admit a non-periodic tiling of Zd. In
[8], Lagarias and Wang conjectured that any tile D of Zd can tile Z

d periodically
when d � 2. However, this conjecture is still wide open. Using a group-theoretic
approach, Szegedy [18] proved the conjecture in the particular case that d D 2 and
#D is a prime or equals 4. Furthermore, he formulated two algorithms to check
whether a given D � Z

2 can tile Z2, in the two different situations: (i) D is a prime;
(ii) D D 4. His algorithm in dealing with the prime case was re-discovered by Rao
and Xue in [15] under an additional assumption of periodicity.

It is a simple fact that any two-element subset of Z2 tiles Z2. For the convenience
of the reader, we present here the simple classification for D D 3: each three-
element subset of Z2 that is not contained in a straight line always tiles Z2; and if
the subset is contained in a straight line, then it tiles Z

2 if and only if it tiles that
straight line. The second part of the classification is easy to see, and we may use
Newman’s criterion to check whether the set tiles the straight line. To see the first
part, we just take an example, say D D f.0; 0/; .m; 0/; .0; 1/g, to illustrate the idea.
Choose an integer n, different from 0;m, such that f0;m; ng tiles Z (the existence of
such n follows from Newman’s criterion). Take T � Z so that Z D f0;m; ng ˚ T .
Set

C D f.a � kn; k/ W a 2 T ; k 2 Zg:
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Then it is easy to check that Z2 D D ˚ C.
In this article, we give the following characterization of tiles of Z2 with cardinal-

ity 4, which looks much more intuitive and simpler than Szegedy’s algorithm.

Theorem 1.1 Let D � Z
2 with #D D 4. Then D is not a tile of Z2 if and only if D

is of the form fv1; v2; v3; v4g in which v2 � v1 D p
q .v4 � v3/ for some p 2 2Z n f0g

and q 2 2Z C 1.

According to the above theorem, D � Z
2 with cardinality 4 is not a tile of Z2 if

and only if one of the following two scenarios occurs: (1) D is the set of vertices of
a bilateral which contains two parallel edges with length ratio in 2Z=.2Z C 1/; (2)
D is contained in a straight line and satisfies the ratio condition in the theorem. See
Fig. 1 for their geometric pictures.

We remark that using Theorem 1.1 and the involved proofs, we can manage to
prove that Fuglede’s conjecture is true for the union of four integral unit squares in
R
2, that is, if� D S

v2DŒ0; 1�2 C v for some D � Z
2 with #D D 4, then� tiles R2

by translation if and only if L2.�/ has an orthogonal basis consisting of complex
exponentials. Details will be given somewhere else.

2 A Standard Form for D

First suppose that D is contained in a straight line in R
2. Without loss of generality,

we may just assume that D is on the x-axis, i.e. D � Z. In this case, it is clear that
D tiles Z2 if and only if D tiles Z. Write D D fv1; v2; v3; v4g. For 1 � i; j � 4 with
i ¤ j, let 2ei;j be the highest power of 2 which divides vi � vj, where 1 � i; j � 4

and i ¤ j. Newman [14] proved that D tiles Z if and only if there are at most 2
distinct ei;j. We will show that this criterion implies Theorem 1.1. For convenience,
we say that D has property (I) if there are at least 3 distinct ei;j, whilst we say
that D has property (II) if there is a partition fv0

1; v
0
2g [ fv0

3; v
0
4g of D such that

v0
2 � v0

1 D p
q .v

0
4 � v0

3/ for some p 2 2Z n f0g and q 2 2Z C 1. We claim that these
two properties are equivalent, from which Theorem 1.1 follows.

To see the claim, we notice that these two properties keep unchanged if we
replace D by an affine copy of D, provided that the latter is contained in Z. Hence
we may assume, without loss of generality, that D contains 0 and at least an odd
integer.

Property (II) H) property (I). Suppose that D has a partition fv1; v2g [ fv3; v4g
such that

v2 � v1 D p

q
.v4 � v3/

with p 2 2Z and q 2 2Z C 1. Equivalently, e1;2 > e3;4. Suppose that property
(I) does not hold, i.e., ei;j 2 fe1;2; e3;4g for all i ¤ j. We derive a contradiction as
follows. Notice that e1;3 ¤ e1;2 (since e1;3 D e1;2 implies that e2;3 > e1;2), and also
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e1;4 ¤ e1;2. Hence e1;3 D e3;4 and e1;4 D e3;4. But this is impossible since e1;3 D e1;4
implies that e3;4 > e1;3.

Property (I) H) property (II). Suppose that property (I) holds. When D contains
0 and three odd numbers, or D contains 0, one odd number and two non-zero even
numbers, it is easy to see that property (II) holds. The remaining case is that D D
f0; a; b; cg, where a is a non-zero even number, and b; c are two odd numbers. The
assumption that there are at least 3 distinct ei;j then implies that the highest power
of 2 dividing b � c is different from that dividing a � 0 D a, from which property
(I) follows. This completes the proof of the claim.

In what follows, we consider the case that D is not contained in a straight line. We
introduce a standard form for our set D and prove the following statement instead of
Theorem 1.1 (here and afterwards, we will use column vectors to express elements
in Z

2).

Theorem 2.1 Let D be a subset of Z2 with cardinality 4. Assume that D is not
contained in a line, and furthermore 0 2 D. Then a sufficient and necessary
condition for D not to tile Z

2 is that there exists a 2 � 2 matrix G so that

GD D
��

0

0



;

�
1

0



;

�
0

1



;

�
1

p=q


�

with p; q 2 Z n f0g and p C q 2 2Z C 1;

The equivalence of the above theorem with Theorem 1.1 comes from the
following simple fact: if D (which contains the origin) is the set of vertices of a
bilateral which contains two parallel edges with length ratio in 2Z=.2Z C 1/, then
there exists an invertible linear transformation G such that GD has the standard form
given in Theorem 2.1. To see this, let D D fA;B;C;Dg as shown in Fig. 1, where
the edge AB is parallel to CD, and assume A D 0. Let G be the linear transformation

so that GD D
�
1

0



and GB D

�
0

1



. Then GC has the desired form

�
1

p=q



with

p; q 2 Znf0g, and p C q 2 2Z C 1.
To prove Theorem 2.1, we need the following.

A

B

C

D

A

B

C

D

Fig. 1 Two general cases when D can not tile Z2
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Proposition 2.2 Let A be a finite subset of Zd. Then the following statements are
equivalent:

(i) There exists B � Z
d such that A ˚ B D Z

d.
(ii) There exist a non-singular d � d matrix G with rational entries and D � Q

d

such that .GA/˚ D is a lattice in R
d.

Proof The direction (i) H) (ii) is clear. Now we show the opposite direction.
Assume that .GA/˚D is a lattice in R

d, i.e. .GA/˚D D HZ
2 for some d�d matrix

H. Clearly H is rational. We may assume that H is non-singular (otherwise there
exists C � Q

d so that HZ
d ˚ C D QHZ

d for some non-singular d � d rational matrix
QH and .GA/˚D˚C D QHZ

2). Then .H�1GA/˚ .H�1D/ D Z
d. Choose an integer

p so that E WD pH�1G is an integral matrix. Note that .EA/ ˚ .pH�1D/ D pZd

and EA � Z
d. It follows that ƒ WD .pH�1D/ � Z

d . Since p is an integer, there
exists a finite set V � Z

d so that .pZd/˚ V D Z
d. Therefore .EA/˚ƒ˚ V D Z

d.
Note that Zd D .EZd/ ˚ U for some finite set U � Z

d with 0 2 U. We have
.EA/ ˚ ƒ ˚ V D .EZd/ ˚ U. Letting Qƒ D .EZd/ \ .ƒ ˚ V/, we obtain
.EA/˚ Qƒ D EZd. This implies A ˚ .E�1 Qƒ/ D Z

d. ut
As a direct corollary of the above proposition, we have

Corollary 2.3 Let A and B be two finite subsets of Zd. If A D GB for some non-
singular d � d rational matrix G, then A tiles Zd if and only if B tiles Zd.

3 Construction of Tilings

Lemma 3.1 Let

C D
��

0

0



;

�
p1

1
2

C p2



;

�
1
2

C p3
t C p4



;

�
1
2

C p5
1
2

C t C p6


�
(3.1)

for some t 2 Q and pj 2 Z (j D 1; : : : ; 6). Then there exists B � Q
2 such that C ˚B

is a lattice in R
2.

Proof Write t D m
n , where m 2 Z, n 2 N and gcd.m; n/ D 1. Define

B D
��

u
v C j

2n



W u; v; j 2 Z; 0 � j � n � 1

�
:

Then by direct calculation, we conclude

C ˚ B D
�
1
2
0

0 1
2n



Z
2:

This finishes the proof. ut
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Corollary 3.2 Let A be a subset of Z2 of cardinality 4. Assume 0 2 A. Then A can
tile Z

2 if A D GC for some 2 � 2 non-singular rational matrix G and some C � R
2

of the form as in (3.1).

Proof By Lemma 3.1, there exists B � Q
2 such that C ˚ B is a lattice in R

2. That
is, .G�1A/˚ B is a lattice. Hence by Proposition 2.2, A can tile Z

2. ut
Lemma 3.3 Let u; v 2 Q. Then at least one of the following three equations has a
solution .x; y; z/ 2 Z

3:

(i) . 1
2

C x/u C . 1
2

C y/v D z:
(ii) xu C . 1

2
C y/v D 1

2
C z:

(iii) . 1
2

C x/u C yv D 1
2

C z:

Proof We first show that if one of the equations has an integral solution .x0; y0; z0/
for u; v and p; q; p0; q0 are integers then there is an integral solution .x1; y1; z1/ for
Qu D u.2p C 1/=.2q C 1/ and Qv D v.2p0 C 1/=.2q0 C 1/: For brevity, we give the
proof only for equation (i). Take x1; y1 so that

.
1

2
C x1/ D .

1

2
C x0/.2q C 1/.2p0 C 1/; .

1

2
C y1/ D .

1

2
C y0/.2q0 C 1/.2p C 1/:

Then x1; y1 2 Z. Set z1 D z0.2p C 1/.2p0 C 1/. Then .x1; y1; z1/ satisfies

.
1

2
C x1/Qu C .

1

2
C y1/ Qv D z1:

This proves the claim.
Hence to prove the lemma, we can assume without loss of generality that u D 2m

and v D 2n for m; n 2 Z: This case is not difficult to check. ut
For convenience, set

Q1 D f p=q W p; q are odd integersg: (3.2)

Proposition 3.4 Let

D D
��

0

0



;

�
1

0



;

�
0

1



;

�
u
v


�

where u; v 2 Q. Then there exists a non-singular 2 � 2 rational matrix G such that
GD has the same form as C in Lemma 3.1 if the pair .u; v/ does not satisfy anyone
of the following conditions:

(i) u D 1 and v 62 Q1.
(ii) v D 1 and u 62 Q1.

(iii) u D �v and u 62 Q1.
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Proof We will prove the existence of G in each of the following scenarios:

1. u D 1 and v 2 Q1.
2. v D 1 and u 2 Q1.
3. u D �v and u 2 Q1.
4. u ¤ 1, v ¤ 1 and u ¤ �v.

In scenario (1), let v D 2qC1
2pC1 , where p; q 2 Z. We may take

G D
�
0 p C 1

2
1
2
2p C 1



:

Then GD D
��

0

0



;

�
0
1
2



;

�
1
2

C p
2p C 1



;

�
1
2

C q
1
2

C 2q C 1


�
:

In scenario (2), let u D 2qC1
2pC1 , where p; q 2 Z. We may take

G D
�

p C 1
2
0

2p C 1 1
2



:

Then GD has the same expression as that in scenario (1).
In scenario (3), let u D 2qC1

2pC1 , where p; q 2 Z. We may take

G D
�

1
2

1
2

2p C 1 p C 1
2



:

Then GD D
��

0

0



;

�
1
2

2p C 1



;

�
1
2

p C 1
2



;

�
0

q C 1
2


�
:

Now let us turn to the scenario (4). By Lemma 3.3, one of the following equations
has an integral solution .x; y; z/:

(e1) . 1
2

C x/u C . 1
2

C y/v D z:
(e2) xu C . 1

2
C y/v D 1

2
C z:

(e3) . 1
2

C x/u C yv D 1
2

C z:

Assume at first that (e1) has an integral solution .x; y; z/. Since u ¤ �v, there exists
t 2 Q such that

.t C x/u C .
1

2
C t C y/v D 1

2
C z:
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Take G D
�
1
2

C x 1
2

C y
t C x 1

2
C t C y



: Then

GD D
��

0

0



;

�
1
2

C x
t C x



;

�
1
2

C y
1
2

C t C y



;

�
z

1
2

C z


�
:

Now we assume (e2) has an integral solution .x; y; z/. Since v ¤ 1, there exists

t 2 Q so that 1
2
u C tv D 1

2
C t. Take G D

�
x 1
2

C y
1
2

t



: Then

GD D
��

0

0



;

�
x
1
2



;

�
1
2

C y
t



;

�
1
2

C z
1
2

C t


�
:

If (e3) has an integral solution, we may construct G in a similar way as above. ut

4 Nonexistence of Tilings

Proposition 4.1 Let

D D
��

0

0



;

�
1

0



;

�
0

1



;

�
u
v


�

where u; v 2 Q. Then there exists no C such that D˚C is a lattice if u; v does satisfy
one of the following conditions:

(i) u D 1 and v 62 Q1;
(ii) v D 1 and u 62 Q1;

(iii) u D �v and u 62 Q1;

where Q1 is defined by (3.2).

Proof Without loss of generality we may only consider case (ii), since the sets D in
cases (i) and (iii) differ from that in (ii) only by an affine map.

Assume u D p
q with p 2 Z, q 2 N and p C q 2 2Z C 1. Take G D

�
q 0
0 1



. Then

GD D
��

0

0



;

�
q
0



;

�
0

1



;

�
p
1


�

By Proposition 2.2, we only need to prove that GD can not tile Z
2.

Assume on the contrary that GD can tile Z
2, i.e., .GD/ ˚ ƒ D Z

2. Then any
x 2 Z

2 can be uniquely written as x D x1 C x2 with x1 2 GD and x2 2 ƒ. Define
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 W Z
2 ! GD by x 7! x1. Let fangn2Z be the sequence defined by

an D

8
ˆ̂̂̂
ˆ̂̂
ˆ̂̂
<̂
ˆ̂̂
ˆ̂̂
ˆ̂̂̂
:̂

1 if 
.n; 0/ D
�
0

0




2 if 
.n; 0/ D
�

q
0




3 if 
.n; 0/ D
�
0

1




4 if 
.n; 0/ D
�

p
1




:

We have the following observations:

(a) For any n 2 Z, anCp ¤ an and anCq ¤ an.
(b) If an D 1 then anCq D 2. If an D 2 then an�q D 1. If an D 3 then anCp D 4. If

an D 4 then an�p D 3.

Let us first prove (a). From .GD/˚ƒ D Z
2 we obtain .GD�GD/\.ƒ�ƒ/ D f0g.

Since

�
p
0



;

�
q
0



2 GD � GD, we have

�
p
0



;

�
q
0



62 ƒ�ƒ. Now assume (a) is

not true. Without loss of generality we assume anCp D an for some n. Then

�
n
0



D y C �1;

�
n C p
0



D y C �2

for some y 2 GD and �1;�2 2 ƒ. It implies that

�
p
0



D �2 � �1 2 ƒ�ƒ, which

leads to a contradiction. This proves (a). To prove (b) without loss of generality we

prove that anCq D 2 when an D 1. Since an D 1, we have

�
n
0



D
�
0

0



C � for

some � 2 ƒ. Therefore

�
n C q
0



D
�

q
0



C �, which implies anCq D 2. This

finishes the proof of (b).
According to (a) and (b), we have the following claims:

(c1) Assume p > 0. If an 2 f1; 3g, then anCpCq 2 f1; 3g.
(c2) Assume p < 0. If an 2 f1; 4g, then an�pCq 2 f2; 3g.

Without loss of generality we only prove (c1). First assume an D 1. Then by (b) we
have anCq D 2. Thus by (a) we have anCpCq ¤ 2. In the same time by (b) we have
anCpCq ¤ 4 since otherwise anCq D 3. Therefore we always have anCpCq 2 f1; 3g
when an D 1. Using an essentially identical argument, we can prove that anCpCq 2
f1; 3g when an D 3. This finishes the proof of (c1).
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Now assume p > 0. Then (c1) implies that the set f0; 1; : : : ; p C q � 1g can be
partitioned into two sets A and B such that there exists a large N 2 N so that for
n > N, an 2 f1; 3g if n.mod p C q/ 2 A, and an 2 f2; 4g if n.mod p C q/ 2 B.
That means the density of those n with an 2 f1; 3g in Z\ ŒN;1/ is #A=.p C q/, and
the density of the rest is #B=.p C q/. Since p C q 2 2Z C 1, these two densities are
different. However from (b), these two densities must be the same. This leads to a
contradiction.

Similarly we can derive a contradiction in the case when p < 0. This finishes the
proof of the proposition. ut

5 Proof of Theorem 2.1

Proof Since D is not contained in a straight line, there exists a non-singular rational
2 � 2 matrix A so that

AD D
��

0

0



;

�
1

0



;

�
0

1



;

�
u
v


�

with u; v 2 Q. Assume D can not tile Z
2. Then by Proposition 2.2, there is no non-

singular rational matrix G and C � Q
2 such that GD ˚ C is a lattice. Therefore by

Proposition 3.4 and Lemma 3.1, u; v do satisfy one of the following conditions:

(i) u D 1 and v 62 Q1;
(ii) v D 1 and u 62 Q1;

(iii) u D �v and u 62 Q1;

where Q1 is defined by (3.2). By taking B to be

�
1 0

0 1



;

�
0 1

1 0



and

�
1 1

0 �1=u




respectively, in the above 3 cases, we see that

BAD D
��

0

0



;

�
1

0



;

�
0

1



;

�
1

p=q


�

for some p; q 2 Z n f0g with p C q 2 2Z C 1. This proves the necessity. The
sufficiency is implied by Proposition 4.1. ut



Tiling Z
2 by a Set of Four Elements 103

References

1. C. Bandt, Self-similar sets. V. Integer matrices and fractal tilings of Rn. Proc. Am. Math. Soc.
112(2), 549–562 (1991)

2. E. Coven, A. Meyerowitz, Tiling the integers with translates of one finite set. J. Algebra 212,
161–174 (1999)

3. B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic
problem. J. Funct. Anal. 16, 101–121 (1974)

4. B. Grünbaum, G.C. Shephard, Tilings and Patterns. An Introduction. A Series of Books in the
Mathematical Sciences (W. H. Freeman, New York, 1989)

5. R. Kenyon, Self-replicating tilings, in Symbolic Dynamics and Its Applications, ed. by P.
Walters (American Mathematical Society, Providence, 1992), pp. 239–264

6. M. Kolountzakis, The study of translation tiling with Fourier analysis, in Fourier Analysis and
Convexity, ed. by L. Brandolini et al. Applied and Numerical Harmonic Analysis (Birkhäuser,
Boston, 2004), pp. 131–187

7. M. Kolountzakis, Periodicity of the spectrum of a finite union of intervals. J. Fourier Anal.
Appl. 18(1), 21–26 (2012)

8. J. Lagarias, Y. Wang, Tiling the line with translates of one tile. Invent. Math. 124, 341–365
(1996)

9. J. Lagarias, Y. Wang, Integral self-affine tiles in R
n. I. Standard and nonstandard digit sets. J.

Lond. Math. Soc. 54(1), 161–179 (1996)
10. J. Lagarias, Y. Wang, Self-affine tiles in R

n. Adv. Math. 121(1), 21–49 (1996)
11. J. Lagarias, Y. Wang, Integral self-affine tiles in R

n. II. Lattice tilings. J. Fourier Anal. Appl.
3(1), 83–102 (1997)

12. C.K. Lai, K.S. Lau, H. Rao, Spectral structure of digit sets of self-similar tiles on R
1. Trans.

Am. Math. Soc. 365(7), 3831–3850 (2013)
13. K.S. Lau, H. Rao, On one-dimensional self-similar tilings and the pq-tilings. Trans. Am. Math.

Soc. 355, 1401–1414 (2003)
14. D.J. Newman, Tesselation of integers. J. Number Theory 9, 107–111 (1977)
15. H. Rao, Y.M. Xue, Tiling Z

2 with translations of one set. Discret. Math. Theor. Comput. Sci.
8, 129–140 (2006)

16. A.D. Sands, On Keller’s conjecture for certain cyclic groups. Proc. Edinb. Math. Soc. 22, 17–21
(1979)

17. S. Szabó, A type of factorization of finite abelian groups. Discret. Math. 54, 121–124 (1985)
18. M. Szegedy, Algorithms to tile the infinite grid with finite clusters, in Proceedings of the 39th

Annual Symposium on the Foundations of Computer Science, Palo Alto, 1998, pp. 137–145
19. T. Tao, Fuglede’s conjecture is false in 5 or higher dimensions. Math. Res. Lett. 11, 251–258

(2004)
20. R. Tijdeman, Decomposition of the integers as a direct sum of two subsets, in Number Theory,

Paris, 1992–1993. London Mathematical Society Lecture Note Series, vol. 215 (Cambridge
University Press, Cambridge, 1995), pp. 261–276



Some Recent Developments in Quantization
of Fractal Measures

Marc Kesseböhmer and Sanguo Zhu

Abstract We give an overview on the quantization problem for fractal measures,
including some related results and methods which have been developed in the last
decades. Based on the work of Graf and Luschgy, we propose a three-step procedure
to estimate the quantization errors. We survey some recent progress, which makes
use of this procedure, including the quantization for self-affine measures, Markov-
type measures on graph-directed fractals, and product measures on multiscale
Moran sets. Several open problems are mentioned.

Keywords Quantization dimension • Quantization coefficient • Bedford-
McMullen carpets • Self-affine measures • Markov measures • Moran measures

Mathematics Subject Classification (2000). Primary 28A75, Secondary 28A80,
94A15

1 Introduction

The quantization problem for probability measures originated in information theory
and certain areas of engineering technology such as image compression and data
processing. In the past decades, this problem has been rigorously studied by
mathematicians and the field of quantization theory emerged. Recently, this theory
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has also been found to have promising applications in numerical integrations and
mathematical finance (see e.g. [22–24]). Mathematically we are concerned with the
asymptotics of the errors in the approximation of a given probability measure with
finitely supported probability measures in the sense of Lr-metrics. More precisely,
for every n 2 N, we set Dn WD f˛ � R

q W 1 � card.˛/ � ng. Let � be a Borel
probability measure on R

q, q 2 N, and let r 2 Œ0;1/. The n-th quantization error
for � of order r is given by [6]

en;r.�/ WD
(

inf˛2Dn

� R
d.x; ˛/r d�.x/

�1=r
; r > 0;

inf˛2Dn exp
R

log d.x; ˛/ d�.x/; r D 0:
(1.1)

According to [6], en;r.�/ equals the error with respect to the Lr-metrics in the
approximation of � with discrete probability measures supported on at most n
points. See [6, 13] for various equivalent definitions for the quantization error. In
the following we will focus on the Lr-quantization problem with r > 0. For the
quantization with respect to the geometric mean error, we refer to [8] for rigorous
foundations and [37, 41, 42, 44] for more related results.

The upper and lower quantization dimension for � of order r, as defined below,
characterize the asymptotic quantization error in a natural manner:

Dr.�/ WD lim sup
n!1

log n

� log en;r.�/
; Dr.�/ WD lim inf

n!1
log n

� log en;r.�/
:

If Dr.�/ D Dr.�/, we call the common value the quantization dimension of �
of order r and denote it by Dr.�/. To obtain more accurate information about
the asymptotic quantization error, we define the s-dimensional upper and lower
quantization coefficient (cf. [6, 26]):

Q
s
r.�/ WD lim sup

n!1
n1=sen;r.�/; Qs

r
.�/ WD lim inf

n!1 n1=sen;r.�/; s > 0:

By [6, 26], the upper (lower) quantization dimension is exactly the critical point at
which the upper (lower) quantization coefficient jumps from zero to infinity.

The following theorem by Zador is a classical result on quantization of absolutely
continuous measures. It was first proposed by Zador [32] and then generalized by
Bucklew and Wise [2]; we refer to [6, Theorem 6.2] for a rigorous proof.

Theorem 1.1 ([6]) Let � be absolutely continuous Borel probability measure on
R

q with density h with respect to the q-dimensional Lebesgue measure �q. Assume
that for some ı > 0, we have

R jxjrCı d� .x/ < 1. Then for all r > 0 we have

Qq
r
.�/ D Q

q
r .�/ D C.r; q/

�Z
h

q
qCr .x/ d�q .x/


 qCr
q

;

where C.r; q/ is a constant independent of �.
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While engineers are mainly dealing with absolutely continuous distributions, the
quantization problem is significant for all Borel probability measures satisfying the
moment condition

R jxjrd� .x/ < 1. For later use we define the subset of Borel
probabilities Mr WD ˚

� W � .R/ D 1;
R jxjrd� .x/ < 1�

and let M1 denote the set
of Borel probability measures with compact support. This condition ensures that
the set of n-optimal sets of order r denoted by Cn;r.�/ is non-empty. Also note that
M1 � Mr for all r > 0: The most prominent aspects in quantization of probability
measures are the following:

Find the exact value of the upper/lower quantization dimension for � of
order r: In the case where the quantization dimension does not exist, it is usually
difficult to obtain the exact value of the upper or lower one (cf. [30]). Up to now,
in such a situation, the upper and lower quantization dimension could only be
explicitly determined for very special cases.
Determine the s-dimensional upper and lower quantization coefficient: We
are mainly concerned about the finiteness and positivity of these quantities. This
question is analogous to the question of whether a fractal is an s-set. Typically,
this question is much harder to answer than finding the quantization dimension.
So far, the quantization coefficient has been studied for absolutely continuous
probability measures ([6]) and several classes of singular measures, including
self-similar and self-conformal [19, 29, 33, 39] measures, Markov-type measures
[16, 29, 44] and self-affine measures on Bedford-McMullen carpets [15, 38].
Properties of the point density measure �r: Fix a sequence of n-optimal sets
˛n 2 Cn;r.�/ of order r, n 2 N, and consider the weak limit of the empirical
measures, whenever it exists,

�r WD lim
n!1

1

n

X
a2˛n

ıa:

The point density measure characterizes the frequency at which optimal points
fall into a given open set. Up to now, the point density measure is determined
only for absolutely continuous measures [6, Theorem 7.5] and certain self-similar
measures [9, Theorem 5.5].
Local properties and Voronoi partitions: Fix a finite subset ˛ of Rq. A Voronoi
partition with respect to ˛ refers to a partition .Pa.˛//a2˛ of Rq such that

Pa.˛/ � fx 2 R
q W d.x; ˛/ D d.x; a/g ; a 2 ˛:



108 M. Kesseböhmer and S. Zhu

It is natural to ask, if there exists constants 0 < C1 � C2 < 1 such that for all
˛n 2 Cn;r.�/ and n 2 N we have

C1er
n;r

n
� min

a2˛n

Z

Pa.˛n/

d.x; ˛n/
r d�.x/

� max
a2˛n

Z

Pa.˛n/

d.x; ˛n/
r d�.x/ � C2er

n;r

n
:

This question is essentially a weaker version of Gersho’s conjecture [5]. Graf,
Luschgy and Pagès proved in [10] that this is in fact true for a large class of
absolutely continuous probability measures. An affirmative answer is also given
for self-similar measures under the assumption of the strong separation condition
(SSC) for the corresponding iterated function system [39, 43].
In the final analysis, the study of the quantization problem addresses the optimal
sets. Where do the points of an optimal set lie? Unfortunately, it is almost
impossible to determine the optimal sets for a general probability measure. It
is therefore desirable to seek for an “approximately explicit” description of such
sets. In other words, even though we do not know exactly where the points of an
optimal set lie, we want to know how many points are lying in a given open set.
This would in return enable us to obtain precise estimates for the quantization
error.
Connection to fractal geometry: To this end, some typical techniques in fractal
geometry are often very helpful. In fact, the quantization problem is closely
connected with important notions in fractal geometry. One may compare the
upper (lower) quantization dimension for measures to the packing (Hausdorff)
dimension for sets; accordingly, the upper (lower) quantization coefficient may
be compared to the packing (Hausdorff) measure for sets. Although they
are substantially different, they do have some close connections, as all these
quantities can be defined in terms of coverings, partitions and packings. In fact,
we have

(1) dim�
H � � Dr.�/ � dim�

B� and dim�
P � � Dr.�/ � dim

�
B�, for r D 2 these

inequalities were presented in [26], and for measures with compact support and
all r 2 .0;1� they were independently proved in [6].

(2) In [14] we have studied the stability of the upper and lower quantization
dimension in some detail. In [14], for r 2 Œ1;1�, we proved the following
statements:

(i) For all � 2 Mr we have Dr .�/ D max
1�i�n

Dr .�i/ with �i 2 Mr, si > 0,

i D 1; : : : ; n, n 2 N and � D Pn
iD1 si�i.

(ii) dim�
P .�/ D inf

�
sup
i2N

Dr .�i/ W � D P
i2N si�i; �i 2 M1; si > 0

�
for all

� 2 M1.
(iii) There exists � 2 M1 such that Dr .�/ 6D dim�

P .�/.
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(iv) There exists � 2 M1 such that Dr.�/ > Dr.�/.
(v) There exists � 2 M1 such that Dr .�/ 6D max

1�i�n
Dr .�i/ for some �i 2

M1, si > 0, i D 1; : : : ; n, n 2 N with � D Pn
iD1 si�i.

(3) For certain measures arising from dynamical systems, the quantization dimen-
sion can be expressed within the thermodynamic formalism in terms of
appropriate temperature functions (see [15, 19, 27, 28]).

(4) The upper and lower quantization dimension of order zero are closely connected
with the upper and lower local dimension. As it is shown in [43], if �-almost
everywhere the upper and lower local dimension are both equal to s, then D0.�/

exists and equals s.

We end this section with Graf and Luschgy’s results on self-similar measures. These
results and the methods involved in their proofs have a significant influence on
subsequent work on the quantization for non-self-similar measures.

Let .Si/
N
iD1 be a family of contractive similitudes on R

q with contraction ratios
.si/

N
iD1. According to [12], there exists a unique non-empty compact subset E of

R
q such that E D SN

iD1 Si.E/. The set E is called the self-similar set associated
with .Si/

N
iD1. Also, there exists a unique Borel probability measure on R

q, such that
� D PN

iD1 pi� ı S�1
i , called the self-similar measure associated with .Si/

N
iD1 and

the probability vector . pi/
N
iD1. We say that .Si/

N
iD1 satisfies the strong separation

condition (SSC) if the sets Si.E/; i D 1; � � � ;N, are pairwise disjoint. We say that it
satisfies the open set condition (OSC) if there exists a non-empty open set U such
that Si.U/ \ Sj.U/ D ; for all i ¤ j and Si.U/ � U for all i D 1; � � � ;N. For
r 2 Œ0;1/, let kr be the positive real number given by

k0 WD
PN

iD1 pi log piPN
iD1 pi log si

;

NX
iD1
. pic

r
i /

kr
kr Cr D 1: (1.2)

Theorem 1.2 ([7, 8]) Assume that .Si/
N
iD1 satisfies the open set condition. Then for

all r 2 Œ0;1/, we have

0 < Qkr
r
.�/ � Q

kr

r .�/ < 1:

In particular, we have Dr.�/ D kr.

This is the first complete result on the quantization for (typically) singular
measures. In its proof, Hölder’s inequality with an exponent less than one plays
a crucial role, from which the exponent kr= .kr C r/ comes out in a natural manner.
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2 The Three-Step Procedure

Following the ideas of Graf-Luschgy we propose a three-step procedure for
the estimation of the quantization errors by means of partitions, coverings and
packings. This procedure is applicable to a large class of fractal measures, including
Moran measures, self-affine measures and Markov-type measures, provided that
some suitable separation condition is satisfied; it even allows us to obtain useful
information on the quantization for general Borel probability measures on R

q with
compact support.

Step 1 (Partitioning). For each n, we partition the (compact) support of � into 'n

small parts .Fnk/
'n
kD1, such that �.Fnk/jFnkjr are uniformly comparable, namely,

for some constant C > 1 independent of k; j 2 f1; : : : ; 'ng and n 2 N, we have

C�1�.Fnk/jFnkjr � �.Fnj/jFnjjr � C�.Fnk/jFnkjr;

where jAj denotes the diameter of a set A � R
d. This idea was first used by

Graf and Luschgy to treat the quantization problem for self-similar measures, we
refer to [6] for a construction of this type. The underlying idea is to seek for some
uniformity while � generally is not uniform.

Step 2 (Covering). With a suitable separation condition, we may also assume that
for some ı > 0, we have that

d.Fnk;Fnj/ � ımaxfjFnkj; jFnjjg; k ¤ j; n � 1:

In this step, uniformity and separation allow us to verify that any 'n-optimal set
distributes its points equally among suitable neighborhoods of Fnk; 1 � k � 'n,
in other words, each Fnk “owns” a bounded number of points of the 'n-optimal
set. More precisely, we prove that there exists some constant L1, which is
independent of n, such that for every ˛ 2 C'n;r.�/, we have

max
1�k�'n

card
�
˛ \ .Fnk/4�1ıjFnkj

� � L1;

where As denotes the s-parallel set of A. This can often be done inductively by
means of contradiction.

Step 3 (Packing). In the last step we have to find a constant L2 and subsets ˇnk of
Fnk with cardinality at most L2 such that for all ˛ 2 C'n;r.�/ and x 2 Fnk we
have

d.x; ˛/ � d.x; .˛ \ .Fnk/4�1ıjFnk j/ [ ˇnk/:
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This reduces the global situation to a local one and enables us to restrict our
attention to an arbitrary small set Fnk. We have

er
'n;r.�/ �

'nX
kD1

Z

Fnk

d.x; .˛ \ .Fnk/4�1ıjFnkj/ [ ˇnk/
r d�.x/:

Note that card
�
.˛ \ .Fnk/4�1ıjFnkj/[ ˇnk

� � L1 C L2. For measures with explicit
mass distributions, we often have

Z

Fnk

d.x; � [ ˇk/
r d�.x/ � D�.Fnj/jFnjjr

for any subset � of Rq with cardinality not greater than L1CL2 and an appropriate
constant D. Thus, we get a lower estimate for the quantization error:

er
'n;r.�/ � D

'nX
kD1

�.Fnk/jFnkjr:

On the other hand, by choosing some arbitrary points bk 2 Fnk, k 2 f1; : : : ; 'ng,
one can easily see

er
'n;r.�/ �

'nX
kD1

Z

Fnk

d.x; bk/
rd�.x/ �

'nX
kD1

�.Fnk/jFnkjr:

After these three steps, for sufficiently “nice” measures, we may additionally
assume that 'n � 'nC1 � C'n for some constant C > 1 (cf. [34–36]). To determine
the dimension it is then enough to estimate the growth rate of 'n. Here, ideas from
Thermodynamic Formalism – such as critical exponents or zeros of some pressure
function – often come into play: E.g., for r > 0 we often have

Dr.�/

Dr.�/C r
D inf

�
t 2 R W

X
n2N

'nX
kD1

.�.Fnk/jFnkjr/t < 1
�

allowing us to find explicit formulae for the quantization dimension for a given
problem (see [15] for an instance of this). Typically, for a non-self-similar measure
such as a self-affine measures on Bedford-McMullen carpets, this requires a detailed
analysis of the asymptotic quantization errors. In order to formulate a rigorous
proof, we usually need to make more effort according to the particular properties
of the measures under consideration. As general measures do not enjoy strict
self-similarity, it seems unrealistic to expect to establish simple quantities for the
quantization errors as Graf and Luschgy did for self-similar measures [6, Lemma
14.10]. However, the above-mentioned three-step procedure often provides us with
estimates of the quantization errors which is usually a promising starting point.



112 M. Kesseböhmer and S. Zhu

Moreover, in order to examine the finiteness or positivity of the upper and lower
s-dimensional quantization coefficient of order r, it suffices to check that (cf. [40])

0 < lim inf
n!1

'nX
kD1
.�.Fnj/jFnjjr/

s
sCr � lim sup

n!1

'nX
kD1
.�.Fnj/jFnjjr/

s
sCr < 1:

An effective way to do this is to construct some auxiliary probability measures.
Such a measure should closely reflect the information carried by .�.Fnj/jFnjjr/

s
sCr .

For a self-similar measure, as Graf-Luschgy’s work shows, an auxiliary probability
measure is the self-similar measure associated with .Si/

N
iD1 and the probability

vector .. picr
i /

kr
krCr /NiD1. It is interesting to note that this measure coincides with

the point density measure provided that the kr-dimensional quantization coefficient
exists. For a self-similar measure, as Graf and Luschgy showed, we can use the
above auxiliary probability measure and obtain the finiteness or positivity of the
upper and lower kr-dimensional quantization coefficient, which also implies that the
quantization dimension exists and equals kr. In the non-self-similar situation, due to
the complexity of the topological support, it is often not easy to construct a suitable
auxiliary probability measure to estimate the quantization coefficients.

3 Recent Work on the Quantization for Fractal Measures

3.1 Self-Affine Measures on Bedford-McMullen Carpets

Fix two positive integers m; n with 2 � m � n and fix a set

G � ˚
0; 1; : : : ; n � 1

� � ˚0; 1; : : : ;m � 1�

with N WD card .G/ � 2. We define a family of affine mappings on R
2 by

fij W .x; y/ 7! �
n�1x C n�1i;m�1y C m�1j

�
; .i; j/ 2 G: (3.1)

By [12], there exists a unique non-empty compact set E satisfying E DS
.i;j/2G fij.E/, which is called the Bedford-McMullen carpet determined by

. fij/.i;j/2G. Given a probability vector . pij/.i;j/2G with pij > 0, for all .i; j/ 2 G,
the self-affine measure associated with . pij/.i;j/2G and . fij/.i;j/2G refers to the unique
Borel probability measure � on R

2 satisfying

� D
X
.i;j/2G

pij� ı f �1
ij : (3.2)
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Sets and measures of this form have been intensively studied in the past decades,
see e.g. [1, 4, 11, 17, 18, 21, 25] for many interesting results. We write

Gx WD fi W .i; j/ 2 G for some jg ; Gy WD f j W .i; j/ 2 G for some ig ;
Gx;j WD fi W .i; j/ 2 Gg ; qj WD

X
i2Gx;j

pij:

We carry out the three-step procedure and obtain an estimate for the quantization
errors. This allows us to conjecture that the quantization dimension exists and equals
sr, where

� X
.i;j/2G

. pijm
�r/

sr
srCr


��X
j2Gy

.qjm
�r/

sr
srCr


1��
D 1; � WD log m

log n
: (3.3)

However, it seems rather difficult to find a suitable auxiliary measure for a proof
of this conjecture. A cornerstone is the crucial observation that the number sr

coincide with a Poincare-like exponent [15]. Using the property of sup-additive
sequences, we are able to prove that Dr.�/ exists and also coincides with �r. Finally,
we consider the self-affine measure associated with .. pijm�r/

sr
srCr =Cr/.i;j/2G as an

auxiliary measure, where Cr WD P
.i;j/2G. pijm�r/

sr
srCr . This measure and the above-

mentioned estimate enable us to obtain sufficient conditions for the upper and lower
quantization coefficient to be both positive and finite. We have

Theorem 3.1 ([15]) Let � be as defined in (3.2). Then for each r 2 .0;1/ we have
that Dr.�/ exists and equals sr, Moreover, 0 < Qsr

r
.�/ � Q

sr

r .�/ < 1 if one of the
following conditions is fulfilled:

(A)
P

i2Gx;j
. pijq�1

j /
sr

srCr are identical for all j 2 Gy,
(B) qj are identical for all j 2 Gy.

Open problem: Is it true that 0 < Qsr
r
.�/ � Q

sr

r .�/ < 1 if and only if condition
(A) or (B) holds?

3.2 Quantization for Markov-Type Measures

3.2.1 Mauldin-Williams Fractals

Let Ji, non-empty compact subsets of Rd with Ji D cl.int.Ji//, 1 � i � N, where
cl.A/ and int.A/ denote the closure and interior in R

d of a set A � R
d. For the integer

N � 2 let P D . pij/1�i;j�N be a row-stochastic matrix, i.e., pij � 0; 1 � i; j � N,
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and
PN

jD1 pij D 1; 1 � i � N. Let � denote the empty word and set

�0 WD f�g; �1 WD f1; : : :Ng;
�k WD f� 2 �k

1 W p�1�2 � � � p�k�1�k > 0g; k � 2;

�� WD
[
k�0

�k; �1 WD f� 2 �N

1 W p�h�hC1
> 0 for all h � 1g:

We call Ji; 1 � i � N, cylinder sets of order one. For each 1 � i � N, let Jij; .i; j/ 2
�2, be non-overlapping subsets of Ji such that Jij is geometrically similar to Jj and
diam.Jij/=diam.Jj/ D cij. We call these sets cylinder sets of order two. Assume
that cylinder sets of order k are determined, namely, for each � 2 �k, we have a
cylinder set J� . Let J��ikC1

; � � ikC1 2 �kC1, be non-overlapping subsets of J� such
that J��ikC1

is geometrically similar to JikC1
. Inductively, cylinder sets of order k are

determined for all k � 1. The (ratio specified) Mauldin-Williams fractal is given by

E WD
\
k�1

[
�2�k

J� :

3.2.2 Markov-Type Measures

Let .�i/
N
iD1 be an arbitrary probability vector with min1�i�N �i > 0. By Kolmogorov

consistency theorem, there exists a unique probability measure Q� on �1 such that
Q�.Œ��/ WD ��1p�1�2 � � � p�k�1�k for every k � 1 and � D .�1; : : : ; �k/ 2 �k, where
Œ�� WD f! 2 �1 W !jj� j D �g. Let � denote the projection from�1 to E given by
� .�/ WD x, where

fxg WD
\
k�1

J� jk ; for � 2 �1:

Let us assume the following:

(A1) card.f j W pij > 0g/ � 2 for all 1 � i � N.
(A2) There exists a constant t 2 .0; 1/ such that for every � 2 �� and distinct

i1; i2 2 �1 with � � il 2 �j� jC1, l D 1; 2,

d.J��i1 ; J��i2 / � t maxfjJ��i1 j; jJ��i2 jg:

Under this assumption, � is a bijection. We consider the image measure of Q� under
the projection � given by � WD Q� ı ��1. We call � a Markov-type measure which
satisfies

�.J�/ D ��1p�1�2 � � � p�k�1�k for � D .�1 : : : �k/ 2 �k: (3.4)
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For 1 � i; j � N, we define aij.s/ WD . pijcr
ij/

s. Then we get an N � N matrix
A.s/ D .aij.s//N�N . Let  .s/ denote the spectral radius of A.s/. By [20, Theorem
2],  .s/ is continuous and strictly decreasing. Note that, by the assumption (A1),
the Perron-Frobenius theorem and intermediate-value theorem, there exists a unique
number � 2 .0; 1/ such that  .�/ D 1. Thus, for every r > 0, there exists a unique
positive number sr such that  . sr

srCr / D 1.
We consider the directed graph G associated with the transition matrix . pij/N�N .

Namely, G has vertices 1; 2; : : : ;N. There is an edge from i to j if and only if pij > 0.
In the following, we will simply denote by G D f1; : : : ;Ng both the directed graph
and its vertex sets. We also write

bij.s/ WD . pijc
r
ij/

s
sCr ; AG;s WD .bij.s//N�N ; ‰G.s/ WD  

�
s

s C r



:

Let SC.G/ denote the set of all strongly connected components of G. For H1;H2 2
SC.G/, we write H1 
 H2, if there is a path initiating at some i1 2 H1 and
terminating at some ik 2 H2. If we have neither H1 
 H2 nor H2 
 H1, then
we say H1;H2 are incomparable. For every H 2 SC.G/, we denote by AH;s the sub-
matrix .bij.s//i;j2H of AG.s/. Let ‰H.s/ be the spectral radius of AH;s and sr.H/ be
the unique positive number satisfying ‰H.sr.H// D 1.

Again, we apply the three-step procedure in Sect. 2 and obtain upper and lower
estimates for the quantization error. Using these estimates and auxiliary measures
of Mauldin-Williams type, we are able to prove that, when the transition matrix is
irreducible, the upper and lower quantization coefficient are both positive and finite.
This fact also leads to the positivity of the lower quantization coefficient in the
general case. Then, based on a detailed analysis of the corresponding directed graph
(not strongly connected) and some techniques in matrix theory, we are able to prove
the formula for the quantization dimension. Finally, by using auxiliary measures of
Mauldin-Williams type once more, we establish a necessary and sufficient condition
for the upper quantization coefficient to be finite as stated next.

Theorem 3.2 ([16]) Assume that (A1) and (A2) are satisfied. Let � be the Markov-
type measure as defined in (3.4) and sr the unique positive number satisfying
‰G.sr/ D 1. Then, Dr.�/ D sr and Qsr

r
.�/ > 0. Furthermore, Q

sr

r .�/ < 1 if
and only if M WD fH 2 SC.G/ W sr.H/ D srg consists of incomparable elements,
otherwise, we have Qsr

r
.�/ D 1.

3.3 Quantization for Moran Measures

3.3.1 Moran Sets

Let J be a non-empty compact subset of Rd with J D cl.int.J//. Let jAj denote the
diameter of a set A � R

d. Let .nk/
1
kD1 be a sequence of integers with mink�1 nk � 2
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and � denote the empty word. Set

�0 WD f�g; �k WD
kY

jD1
f1; 2; � � � ; njg; �� WD

1[
kD0

�k:

For � D �1 � � ��k 2 �k and j 2 f1; � � � ; nkC1g, we write � � j D �1 � � ��kj.
Set J� WD J and let J� for � 2 �1 be non-overlapping subsets of J� such that

each of them is geometrically similar to J� . Assume that J� is determined for every
� 2 �k. Let J��j; 1 � j � nkC1 be non-overlapping subsets of J� which are
geometrically similar to J� . Inductively, all sets J� ; � 2 �� are determined in this
way. The Moran set is then defined by

E WD
1\

kD1

[
�2�k

J� : (3.5)

We call J� ; � 2 �k, cylinders of order k. It is well known that the Moran sets E are
generally not self-similar (cf. [3, 31]). For k � 0 and � 2 �k, we set

j� j WD k; c�;j WD jJ��jj
jJ� j ; 1 � j � nkC1:

We assume that there exist some constants c; ˇ 2 .0; 1/ such that

(B1) inf
�2��

min
1�j�nj�jC1

c�;j D c > 0,

(B2) dist.J��i; J��j/ � ˇmaxfjJ��ij; jJ��jjg for 1 � i ¤ j � nj� jC1 and � 2 ��.

3.3.2 Moran Measures

For each k � 1, let . pkj/
nk
jD1 be a probability vector. By the Kolmogorov consistency

theorem, there exists a probability measure � on �1 WD Q1
kD1f1; 2; � � � ; nkg such

that

�.Œ�1; � � � ; �k�/ D p1�1 � � � pk�k ; �1 � � ��k 2 �k;

where Œ�1; � � � ; �k� D f� 2 �1 W �j D �j; 1 � j � kg. Let … W �1 ! E be defined
by ….�/ D T

k�1 J� jk with � jk D �1 � � ��k. Then, with the assumption (B2), … is a
continuous bijection. We define � WD � ı…�1. Then, we have

�.J/ D 1; �.J� / WD p1�1 � � � pk�k ; � D �1 � � ��k 2 �k; k � 1:
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We call the measure � the Moran measure on E. It is known that the quantization
dimension for � of order r does not necessarily exist. Let dk;r; dr; dr be given by

X
�2�k

. p�cr
� /

dk;r
dk;rCr D 1; dr WD lim sup

k!1
dk;r; dk;rdr WD lim inf

k!1 dk;r:

Open problem Is it true that Dr.�/ D dr;Dr.�/ D dr?

3.3.3 Multiscale Moran Sets

A multiscale Moran set is Moran set with some additional structure encoded in the
infinite sequence ! D .!l/

1
lD1 2 ‡ WD f1; : : : ;mgN for some m � 2. For this fix

some positive integers Ni � 2; 1 � i � m and for every 1 � i � m, let .gij/
Ni
jD1 be

the contraction vector with gij 2 .0; 1/ and . pij/
Ni
jD1 a probability vector with pij > 0

for all 1 � j � Ni. Now using the notation in the definition of Moran sets, we set

nlC1 WD N!lC1
;
�
c�;j
�N!lC1

jD1 WD .g!lC1j/
N!lC1

jD1 ; � 2 �l; l � 0: (3.6)

If, for some l � 0, we have !lC1 D i, then for every � 2 �l, we have a
continuum of choices of fJ��jgNi

jD1 fulfilling (B1),(B2) and (3.6), because we only fix
the contraction ratios of the similitudes. Hence, to every ! 2 ‡ , there corresponds
a class M! of Moran sets according to (3.5). We call these Moran sets multiscale
Moran sets.

For each ! 2 ‡ , we write

Nk;i.!/ WD cardf1 � l � k W !l D ig; 1 � i � m:

Fix a probability vector � D .�i/
m
iD1 with �i > 0 for all 1 � i � m and define

G.�/ WD f! 2 ‡ W lim
k!1 k�1Nk;i.!/ D �i; 1 � i � mg;

G0.�/ WD f! 2 ‡ W lim sup
k!1

ˇ̌
Nk;i.!/ � k�i

ˇ̌
< 1; 1 � i � mg:

3.3.4 Multiscale Moran Measures

Fix an ! 2 G.�/. According to Kolmogorov consistency theorem, there exists a
probability measure �! on the product space�1 WD Q1

kD1f1; 2; � � � ;N!k g such that

�!.Œ�1; � � � ; �k�/ D p!1�1 � � � p!k�k ; �1 � � � �k 2 �k;
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where Œ�1; � � � ; �k� D f� 2 �1 W �j D �j; 1 � j � kg. We define �! WD �! ı …�1.
Then, we have

�.J/ D 1; �!.J� / WD p!1�1 � � � p!k�k ; � D �1 � � ��k 2 �k; k � 1:

We call the measure�! the infinite product measure on E.!/ associated with ! and
. pij/

Ni
jD1; 1 � i � m.

For every ! 2 G.�/ and k 2 N, let sk;r.!/; sr and Hr.!/;Hr.!/ be defined by

mY
iD1

� NiX
jD1
. pijg

r
ij/

sk;r .!/
sk;r .!/Cr


Nk;i.!/

D 1;

mY
iD1

� NiX
jD1
. pijg

r
ij/

sr
srCr


�i

D 1; (3.7)

Hr.!/ WD lim inf
k!1 kjsk;r.!/ � srj; Hr.!/ WD lim sup

k!1
kjsk;r.!/� srj:

Compared with Mauldin-Williams fractals, the disadvantage is that we have more
patterns in the construction of multiscale Moran sets. However, the pattern we use at
the .k C1/-th step is independent of words of length k, which is an advantage. After
we carry out the three-step procedure in Sect. 2, we conveniently obtain the exact
value of the quantization dimension by considering some measure-like auxiliary
functions. This also enables us to transfer the question of the upper and lower
quantization coefficient to the convergence order of .sk;r.!//

1
kD1. For the latter, we

need a detailed analysis of some auxiliary functions related to (3.7). One may see
[40] for more details. Our main result is summarized in the following theorem.

Theorem 3.3 ([40]) For every ! 2 G.�/, we have

(i) Dr.�!/ exists and equals sr, it is independent of ! 2 G.�/,
(ii) If sk;r.!/ � sr for all large k, then Qsr

r
.�!/ > 0. If in addition Hr.!/ D 1,

then we have Q
sr

r .�!/ D 1,
(iii) If sk;r.!/ � sr for all large k, then Q

sr

r .�!/ < 1; if, in addition, Hr.!/ D 1,
then we have Qsr

r
.�!/ D 0,

(iv) If Hr.!/ < 1, then Qsr
r
.�!/ and Q

sr

r .�!/ are both positive and finite,
(v) If ! 2 G0.�/, then the assertion in (iv) holds.

Open problem: What can we say about necessary conditions for Qsr
r
.�!/ and

Q
sr

r .�!/ to be both positive and finite?
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Apollonian Circle Packings

Mark Pollicott

Abstract Circle packings are a particularly elegant and simple way to construct
quite complicated and elaborate sets in the plane. One systematically constructs a
countable family of tangent circles whose radii tend to zero. Although there are
many problems in understanding all of the individual values of their radii, there is
a particularly simple asymptotic formula for the radii of the circles, originally due
to Kontorovich and Oh. In this partly expository note we will discuss the history of
this problem, explain the asymptotic result and present an alternative approach.

Keywords Apollonian circle packings • Poincaré series • Transfer operators •
Asymptotic formulae

Mathematics Subject Classification (2000). Primary 52C26, 37C30; Secondary
11K55, 37F35, 37D35

1 A Brief History of Apollonian Circles

Apollonius (c. 262–190 BC) was born in Perga (now in Turkey) and gave the names
to various types of curves still used: ellipse, hyperbola and parabola. However,
very little detail is known about his life and, although he wrote extensively on
many topics, rather little of his work has survived (perhaps partly because it was
considered too esoteric by his contemporaries). What has survived (partly in the
form of translations into arabic) includes seven of his eight books on “conics”. These
include problems on tangencies of circles.

I am very grateful to Richard Sharp for many discussions on this approach and the details. I would
also like to thank Christoph Bandt and the referee for many useful comments on the presentation.
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C2 C3

C1
C4

C0

Fig. 1 The three initial circles C1, C2, C3, and the two mutually tangent circles C0 and C4
guaranteed by Apollonius’ theorem

The result of Apollonius which is of particular interest to us is the following.

Theorem 1.1 Given three mutually tangent circles C1;C2;C3 with disjoint interiors
there are precisely two circles C0;C4 which are tangent to each of the original three.

This result is illustrated in Fig. 1b. The proof is so easy and short that we
include it.

Proof We can apply a Möbius transformation which takes a point of tangency
between two of the initial circles to infinity. These two circles are then mapped to
two parallel lines, and the third initial circle to a circle between, and just touching,
these parallel lines. We can then construct the two new circles by translating the
middle circle between the parallel lines and then transforming back. Since a Möbius
transformation preserves circles and lines we are done. ut

In 1643, René Descartes (1596–1650) wrote to Princess Elizabeth of Bohemia
(1618–1680) stating a formula he had established on the radii a1; a2; a3; a4 of the
tangent circles, and for which she independently provided a proof. The radii are
related by the following formula.

Theorem 1.2 (Descartes-Princess Elizabeth) Assume that the radii of the orig-
inal circles are a1; a2; a3 > 0 and the fourth mutually tangent circle has radius
a4 > 0 then

2

�
1

a21
C 1

a22
C 1

a23
C 1

a24



D
�
1

a1
C 1

a2
C 1

a3
C 1

a4


2
:

A simple proof appears in the notes of Sarnak [16].
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a2 a3

a1

a4

a2 a3

a1

a0

(a) (b)

Fig. 2 (a) The initial circles with radii a1; a2; a3 and smaller choice of mutually tangent circle
with radius a4; (b) The initial circles with radii a1; a2; a3 and the larger choice of mutually tangent
circle with radius a0

Notation 1.3 The formula also applies where the radius a4 of the inner circle is
replaced by the radius of the outer circle a0. However, in this case we adopt the
convention that a0 < 0, where ja0j > 0 is the radius of the circle C0 (Fig. 2).

Princess Elizabeth was a genuine princess by virtue of being the daughter of
Queen Elizabeth (1596–1662) and King Frederick V of Bohemia (whose reign
lasted a brief 1 year and 4 days). Queen Elizabeth of Bohemia was in turn the
daughter of King James I of England (Fig. 3).

In 1605, King James was the target of an unsuccessful assassination plan
(the “gunpowder plot” of Guy Fawkes and co-conspirators, celebrated in England
annually on 5th November) and Queen Elizabeth of Bohemia would have become
Queen of England (aged 9) had the plot succeeded.

In 1646, Elizabeth’s brother Philip stabbed to death Monsieur L’Espinay, for
flirting with their mother and sister. In the ensuing family rift, Elizabeth wrote to
Queen Christina of Sweden for an audience and help reinstating her Father’s lands,
but Christina invited Descartes to Stockholm instead, which proved unfortunate for
him since he promptly died of pneumonia. Finally, Elizabeth entered a convent in
Germany for the last few years of her life, where she worked her way up to the top
job of abbess.

The formula of Descartes was subsequently rediscovered by Frederick Soddy
(1877–1956), which is the reason that the circles are sometimes called “Soddy
circles”. Frederick Soddy is more famous (outside of Mathematics) for having won
the Nobel Prize for Chemistry in 1921, and having introduced the terms “isotopes”
and “chain reaction”. However, most relevant to us, he rediscovered the formula of
Descartes and published it in the distinguished scientific journal Nature in the form
of a poem [18]:
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Mary, Queen of Scots

James I of England

Queen Elizabeth of Bohemia

Princess Elizabeth Sophia of Hanover

George I of England

Charles I of England

Charles II of England

Fig. 3 The family tree of Princess Elizabeth. Her uncle, Charles I of England, was executed during
the English revolution. Her nephew, George I, also became King of England and was the 6th Great-
Grandfather of the present Queen

The kiss precise

For pairs of lips to kiss maybe
Involves no trigonometry.
’Tis not so when four circles kiss
Each one the other three.
To bring this off the four must be
As three in one or one in three.
If one in three, beyond a doubt
Each gets three kisses from without.
If three in one, then is that one
Thrice kissed internally.

Four circles to the kissing come.
The smaller are the benter.
The bend is just the inverse of
The distance from the center.
Though their intrigue left Euclid dumb
There’s now no need for rule of thumb.
Since zero bend’s a dead straight line
And concave bends have minus sign,
The sum of the squares of all four bends
Is half the square of their sum.

To spy out spherical affairs
An ocular surveyor
Might find the task laborious,
The sphere is much the gayer,
And now besides the pair of pairs
A fifth sphere in the kissing shares.
Yet, signs and zero as before,
For each to kiss the other four
The square of the sum of all five bends

Frederick Soddy (1877–1956)
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2 Circle Counting

2.1 The Asymptotic Formulae

Starting from mutually tangent circles we can inscribe new circles inductively to
arrive at what is known as an Apollonian circle packing consisting of infinitely many
circles. We denote by C the set of such circles (Fig. 4).1

We can order these circles by (the reciprocal of) their radii, which we shall denote
by an, for n � 0. It is easy to see that the sequence .1=an/ tends to infinity or,
equivalently, the sequence of radii .an/ tends to zero. This is because the total area
of the disjoint disks enclosed by the circles

P1
nD1 �a2n which is in turn bounded by

the area inside the outer circle. A natural question is then to ask: How fast does the
sequence .1=an/ grow, or, equivalently, how fast do the radii .an/ tend to zero? We
begin with some notation.

Definition 2.1 Given, T > 0 we denote by N.T/ the finite number of circles with
radii greater than 1

T .

In particular, we see from our previous comments that N.T/ ! C1 as T ! 0.
A far stronger result is the following [5, 11].

Fig. 4 An Apollonian circle packing consisting of infinitely many circles. The closure of their
union is the Apollonian gasket denoted by ƒ

1For other aspects of the rich theory of circle packings, we refer the reader to [19].
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Theorem 2.2 (Kontorovich-Oh, 2009) There exists C > 0 and ı > 1 such that
the number N.T/ is asymptotic to CTı as T tends to infinity, i.e.,

lim
T!1

N.T/

Tı
D C:

It is the convention to write N.T/ 
 CTı as T ! 1 (Fig. 5).

We can illustrate Theorem 2.2 with two examples.

Example 1 Assume that we begin with four mutually tangent circles the reciprocals
of whose radii are a0 D � 1

3
, a1 D 1

5
, a2 D 1

8
and a3 D 1

8
. Using Theorem 1.2 we

can compute the following monotone increasing sequence of reciprocal radii:

�
1

an


1

nD1
D 5; 8; 8; 12; 12; 20; 20; 21; 29; 29; 32; 32; � � �

We will return to this in Example 4 in the Appendix.

Example 2 Assume that we begin with four mutually tangent circles the reciprocals
of whose radii are a0 D � 1

2
, a1 D 1

3
, a2 D 1

6
and a3 D 1

7
. Using Theorem 1.2 we

can compute the following monotone increasing sequence of reciprocal radii:

�
1

an


1

nD1
D 3; 6; 7; 7; 10; 10; 15; 15; 19; 19; 22; 22; � � �

We will return to this in Example 5 in the Appendix.

In the Appendix we also recall why the numbers in these sequences are all natural
numbers.

100 200 300 400

200

400

600

800

Fig. 5 A plot of N.	/ against 1
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2.2 The Exponent ı in Theorem 2.2

Of particular interest is the value of ı which controls the rate of growth of the radii.
The next lemma provides an alternative characterisation of this number.

Lemma 2.3 The value ı in Theorem 2.2 has the following alternative characteri-
sation:

ı D inf

(
t > 0 :

1X
nD1

1

at
n

< C1
)
:

The expression for ı in Lemma 2.3 is usually called the packing exponent.

Notation 2.4 We can denote byƒ the compact set given by the closure of the union
of the circles in the Apollonian circle packing.

This leads to a second useful alternative characterisation.

Lemma 2.5 The value ı in Theorem 2.2 is equal to the Hausdorff Dimension
dimH.ƒ/ of the limit set ƒ.

Remark 1 (The numerical value of ı) Unfortunately, there is no explicit expression
for ı and it is rather difficult to estimate. The first rigorous estimates were due to
Boyd [3] who, using the definition above, estimated 1�300197 < ı < 1�314534: A
well known estimate is due to McMullen [10], who showed that ı D 1�30568 : : :

Perhaps a little surprisingly, the value of ı is independent of the particular
Apollonian circle packing being considered, as is shown by the next lemma.

Lemma 2.6 For different Apollonian circle packings exactly the same value of ı
arises (independently of the initial choices a0; a1; a2; a3; a4).

Again the idea of the proof is so simple that we recall the idea so as to dispel any
mystery.

Proof Let C1 and C2 be any two Apollonian circle packings and letƒ1 andƒ2 be the
associated Apollonian gaskets. By Lemma 2.5 it suffices to show that dimH.ƒ1/ D
dimH.ƒ2/. We can then deduce the independence of the value ı using the following
well known result: If there exists a smooth bijection T W C1 ! C2 then the sets share
the same Hausdorff Dimension. Let us identify the plane with C. Then it is a simple
exercise to show that there is a Möbius transformation g W OC ! OC of the form

g.z/ D az C b

bz C a
and a; b 2 C with jaj2 � jbj2 D 1;

such that T.C1/ D C2. In particular, this follows easily since Möbius transformations
necessarily take circles to circles. ut
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3 Some Preliminaries for a Proof

We will describe a proof which differs from the original proof of Kontorovich-Oh
and other subsequent proofs. This approach is more in the spirit of the classical
proof of the Prime Number Theorem, except we use approximating Poincaré series
in place of zeta functions.

3.1 An Analogy with the Prime Numbers

Purely for the purposes of motivation, we recall the classical Prime Number
Theorem. Consider the prime numbers

2; 3; 5; 7; 11; 13; 17; 19; 23; � � �

Let �.x/ denote the number of primes numbers between 1 and x. Since there are
infinitely many primes, we see that �.x/ ! 1 as x tends to infinity. This again
poses the natural question: How does �.x/ grow as x ! C1? The solution is the
classical prime number Theorem [4].

Theorem 3.1 (Prime Number Theorem: Hadamard, de la Vallée Poussin
(1896)) There is a simple asymptotic formula �.x/ 
 x

log x as x ! C1, i.e.,

lim
x!C1

�.x/
x

log x

D 1:

The essence of the proof of the Prime Number Theorem is to analyse the
associated complex function, the Riemann zeta function, defined formally by

�.s/ D
1X

nD1

1

ns
; s 2 C:

The Riemann zeta function has the following important basic properties [4].

Lemma 3.2 The Riemann zeta function �.s/ converges to a well defined function
for Re.s/ > 1. Moreover:

1. For Re.s/ > 1 we have that �.s/ is analytic and non-zero;
2. There exists a small neighbourhood of each 1C it with t ¤ 0 on which �.s/ has

a non-zero analytic extension 2; and
3. �.s/ has a simple pole at s D 1.

2The zeta function �.s/ even has an analytic extension to C n f1g, but one does not need this to
prove Theorem 3.1.
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The result then follows by using a Tauberian theorem to convert this information
on the domain of �.s/ into information on prime numbers. For completeness, we
recall the statement of the Ikehara-Wiener Tauberian Theorem [4].

Theorem 3.3 (Ikehara-Wiener Tauberian Theorem) Assume that 
 W R ! R is
a monotone increasing function for which there exists c > 0, ı > 0 such that the
function

F.s/ WD
Z 1

0

t�sd
.t/� c

s � ı

is analytic in a neighbourhood of Re.s/ � ı then limT!C1 
.T/
Tı

D c.

Remark 2 The Prime Number Theorem easily follows from applying Theorem 3.3
to the auxiliary function 
.T/ D P

pn�T log p and then relating the Stieltjes integral
to � 0.s/=�.s/. We refer the reader to [4] for further details of these now standard
manipulations.

To adapt the proof of the Prime Number Theorem to the present setting, suggests
considering a new complex function

�.s/ D
1X

nD1
as

n

where an are the radii of the circles in the Apollonian circle packing. In fact,
it is more convenient to study a related function (a Poincaré series) and use an
approximation argument to get the final result. However, to analyse such functions,
we first introduce a dynamical ingredient.

3.2 An Iterated Function Scheme Viewpoint

Let us again identify the plane with the complex numbers C, then we can introduce
a transformation which preserves the circle packing C. We want to define the
“reflection” R in the circle C D C.z0; r/ of radius r centered at z0 (Fig. 6).

More precisely, let z0 2 C and radius r > 0 then we associate a transformation

R W C n fz0g ! C n fz0g

R.z/ D r2.z � z0/

jz � z0j2 C z0:
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z
R (z)

r

|z − z0 |

r
| z − z 0 | 2

z0

Fig. 6 Reflection in a circle

Rather than reflecting in the original Apollonian circles, we need to find four
“dual circles” which we will reflect in. This point of view has a nice historical
context. The original statement of the result was due to Philip Beecroft (1818–1862)
who was a school teacher in Hyde, near Manchester, in England, and was the son of
a miller and lived with his two elder sisters [1]. In his article he too had recovered
Theorem 1.2.

Theorem 3.4 (Philip Beecroft, from “Lady’s and Gentleman’s diary” in 1842)
“If any four circles be described to touch each other mutually, another set of four
circles of mutual contact may be described whose points of contact shall coincide
with those of the first four.”

As in [5], we associate to the four initial Apollonian circles a new family of
“dual” tangent circles (the dotted circles in Fig. 7). We can then consider the four
associated reflections Ri W OC ! OC in the four dual circles K1;K2;K3;K4 as shown
in Fig. 7 (i D 1; 2; 3; 4).

The aim is to associate to the Apollonian circle packings complex functions,
playing the rôle of the zeta function in number theory. These will be defined in
terms of a family of contractions (i.e., an associated iterated function scheme) built
out of the maps Ri on each of the four curvilinear triangles external to the initial four
circles. For definiteness, let us fix the central curvilinear triangle �, whose sides
are arcs from the circles C1, C2 and C3 (with the other cases being similar) and
let x1; x2; x3 denote the vertices. We can consider the three natural linear fractional
contractions f1; f2; f3 W � ! � defined by

fi D R4 ı Ri; i D 1; 2; 3;

each of which fixes the vertex xi of � (Fig. 8). A simple calculation gives that:

• j f 0
i .z/j < 1 for z 2 � n fxig for i D 1; 2; 3; and

• j f 0
i .xi/j D 1 for i D 1; 2; 3 (i.e., xi is a parabolic point at the point of contact of

K4 with K1, K2 and K3, respectively).

We recall the following explicit example from [7].
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K 1

K 2

K 3

C1

R 1(C1)

(a)

(b)

Fig. 7 (a) The four dual (dotted) circles K1, K2, K3, K4 associated to the original four Apollonian
circles C1, C2, C3, C4; (b) The image of one of the original circles reflected in one of the dual
circles begins the next generation of the circle packing

T
C 4

f 1 (C 4 )

f 21 (C 4 )
f 3
1 (C 4 )

z 3z 2

z1

C 4

z 3z 2

z1

f 3 f
3
1 (C 4 )

f 3 f
2

1 (C 4 )
f 3 f 1 (C 4 )

(a) (b)

Fig. 8 (a) The central curvilinear triangle � and the images f n
1 .C4/ of C4 for n D 1; 2; 3; : : :;

(b) the images f3f
n
1 .C4/ of C4 for n D 1; 2; 3; : : :

Example 3 In the case of the Apollonian circle packing C with a0 D �1 and a1 D
a2 D a3 we can explicitly write:

f1.z/ D az C b

bz C a
where a D �5

s
4
p
3 � 3
78

and b D
s
100

p
3 � 153

78

and f2.z/ D e�2� i=3f1.e2� i=3z/ and f3.z/ D e�2� i2=3f1.e2� i2=3z/.
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g −1 (∞)

C 4

z 3z 2

z 1

g(C 4 )

g(0)

0

Fig. 9 The radius of g.C4/ is related to the derivative jg0.0/j by the value of g�1.1/

In particular, one can easily check that:

1. For each i D 1; 2; 3 the iterates f k
i W � ! � (k � 1) have the effect of mapping

the central circle C4 on to a sequences of circles f f k
i .C4/g1

kD1 occurring in C
leading into the vertex xi (cf. Fig. 9a); and

2. Any sequence of compositions of these three maps can be naturally written in the
form f WD f nk

ik
� � � f n1

i1
W � ! �, for n1; � � � ; nk � 1 and i1; � � � ; ik 2 f1; 2; 3g with

il ¤ ilC1 for 1 � l � k � 1.

The relevance of these maps to our present study is that we see that we can
rewrite

�.s/ D
X

f

diam. f .C0//
s;

at least for the contribution of circles in �, the other cases being similar, where the
summation is over all such compositions f D f nk

ik
� � � f n1

i1
in item 2 above.

3.3 Contracting Maps and Poincaré Series

The maps described above can be conveniently regrouped as follows:

f WD f nk�1
ik

ı . fik ı f nk�2

ik�1
/ ı � � � ı . fik�2 ı f n2

i2
/ ı . fi2 ı f n1

i1
/: (3.1)

The advantage of this presentation is that at least part of this expression is
contracting, in the following sense (cf. [7]).
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Lemma 3.5 (After Mauldin-Urbanski) For the Apollonion circle packings we

have that the maps 
j D 

.ij;nj/

j WD fij�1 ı f
nj

ij
W � ! � are uniformly contracting

(i.e., supj supz2T j
0
j .z/j < 1).

This is illustrated in Fig. 9b with f n
3 f1, n � 1.

Unfortunately, considering only compositions of the uniform contractions 
j

leads only to some of the circles in the circle packing C. The rest of the circles
require the final application of the maps f nk�1

ik
in (3.1), which therefore also needs

addressing. Moreover, the counting function we will actually use is a more localized
version, which allows us to approximate the counting function for circles by a
counting function for derivatives – for which the associated complex functions are
easier to analyse. In particular, we want to analyse the following related complex
functions.

Definition 3.6 Given z0 2 � and an allowed word j D . j1; � � � ; jN/, with jr ¤ jrC1
for r D 1; � � � ;N � 1, we can associate a localised Poincaré function

� j.s/ D
1X

kD0

X




j. f k
i ı 
 ı 
j/

0.z0/js (3.2)

where:

1. We first apply a fixed contraction 
j D 
jN ı � � � ı 
j1 ;

2. We next sum over all subsequent allowed hyperbolic compositions 
 WD 
in ı
� � � ı 
iNC1

W � ! �; and, finally,
3. We sum over the “parabolic tails” f k

i (where i is associated to 
in D fi ı f n
l , say).

The need to consider the contribution from different 
j is an artefact of our
method of approximation in the proof.

Remark 3 Poincaré series are more familiar in the context of Kleinian groups
� acting on three dimensional hyperbolic space and its boundary, the extended
complex plane OC. Our analysis applies to the Poincaré series of many such groups.
In the particular case of classical Schottky groups the analysis is easier, since one
can dispense with the parabolic tail (i.e., item 3 above).

As we will soon see, each such Poincaré series satisfies the hypotheses of
Theorem 3.3, which allows us to estimate the corresponding counting function
defined as follows.

Definition 3.7 We define an associated counting function

Mj.T/ D #f f k
i ı 
 ı 
j : j. f k

i ı 
 ı 
j/
0.z0/j � Tg for T > 0:

Let † D f.in/1nD1 : in ¤ inC1 for n � 0g and consider the cylinder

Œ j� D f.in/1nD1 2 † : ir D jr; for 1 � r � Ng:
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In particular, in the next section we will use the Poincaré series to deduce the
following.

Proposition 3.8 There exists C > 0 and a measure � on † such that Mj.T/ 

C�.Œ j�/Tı as T ! C1, i.e.,

lim
T!C1

Mj.T/

Tı
D 1:

There may be some circles whose radii we don’t seem to capture with this coding,
but their contribution doesn’t effect the basic asymptotics.

4 The Proof of Theorem 2.2

To complete the proof of Theorem 2.2 we need to complete the proof of Proposi-
tion 3.8 (in Sect. 4.1 below) and then perform the approximation of the counting
functions for circles by those for derivatives (in Sect. 4.2 below).

4.1 Extending the Poincaré Series

By the chain rule we can write

. f k
i ı 
 ı 
j/

0.z0/ D . f k
i /

0.
 ı 
jz0/

0
.
jz0/


0
j .z0/

and, in particular, we can now rewrite the expression for �j.s/ in (3.2) as:

� j.s/ D j
0
j .z0/js

1X
nD0

X

j
jDn

1X
lD0
. f k

i /
0.
 ı 
jz0/


0
.
jz0/

D j
0
j .z0/js

1X
nD0

X

j
jDn

j
0
.z0/jshs.
.z0//

(4.1)

where the function hs W � ! C is defined by the summation

hs.z/ WD
1X

lD0
j. f l

i /
0.z/js 2 C1.�/

is analytic in s. In particular, we see from the following lemma that hs.z/ converges
to a well defined function for Re.s/ > 1

2
.
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Lemma 4.1 We can estimate jj. f l
i /

0j�jj1 D O.l�2/.

We recall the simple proof (cf. [8]).

Proof By a linear fractional change of coordinates (mapping the vertex of � to
infinity) the map fi becomes a translation. Transforming this back to convenient
coordinates we can write, say,

f l
i .z/ D .

p
3 � l/z C l

.�lz C l C p
3/
:

From this we see that

j. f l
i /

0.z/j D 1

j � lz C l C p
3j2

and the required estimate follows. ut
The Poincaré series have the useful feature that they can be expressed simply in
terms of linear operators on appropriate Banach spaces of functions.

Definition 4.2 Let C1.�/ be the Banach space of C1 functions on �. We can
consider the transfer operators Ls W C1.�/ ! C1.�/ (s 2 C) given by

Lsw.x/ D
X

l

j
0
l .x/jsw.
lx/

where w 2 C1.�/. This converges provided Re.s/ > 1
2
.

We are actually spoilt for choice of Banach spaces. Although the continuous
functions C0.�/ is too large a space for our purposes, we could also work with
Hölder continuous functions or suitable analytic functions (on some neighbourhood
of the complexification of � thought of as a subset of R2). The choice of C1.�/ is
perhaps the more familiar.

The approach in the rest of this subsection is now relatively well known (cf.
[6, 8, 13], for example) and is a variant on the symbolic approach to Poincaré series
and the hyperbolic circle problem [14, 15]. Recall that ı > 0 is the exponent in
Theorem 2.2.

Lemma 4.3 The operators are well defined provided Re.s/ > 1
2
. Moreover, for

Re.s/ > ı we have that the spectral radius satisfies


.Ls/ WD lim sup
n!C1

kLn
s k 1

n < 1:

In particular, we see from the definition of Ls that we can write

Ln
s w.z/ D

X




j
0
.z/jsw.
z/; for n � 2,
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where the summation is over allowed compositions of contractions 
 D 
in ı� � �ı
i1 .
We can now rewrite the expression for the Poincaré series in (4.1) more concisely as

� j.s/ D j
0
j .z0/js

1X
nD0

Ln
s hs.
jz0/:

In order to construct the required extension of � j.s/, we recall the following
simple lemma improving on the result in Lemma 4.3.

Lemma 4.4 Let Re.s/ D ı. Then

1. For s D ı C it with t ¤ 0 we have that the spectral radius satisfies 
.Ls/ < 1;
and

2. For s D ı we can write Lı D Q C U where

(a) Q is a (one dimensional) eigenprojection with QU D UQ D 0, Q2 D Q, and
(b) And lim supn!C1 kUnk1=n < 1:

Remark 4 The spectral properties of Ls can be seen when the operator acts on C1

functions. Alternatively, we could have looked at bounded analytic functions on a
small enough neighbourhood T � U � C

2 in the complexification (cf. [6]).

We can now deduce almost immediately from Lemmas 4.3 and 4.4 the following
corollary for this Poincaré series.

Corollary 4.5 The Poincaré series � j.s/ converges to a well defined function on
Re.s/ > ı. Moreover,

1. For Re.s/ > ı we have that � j.s/ is analytic;
2. There exists a small neighbourhood of each ıC it with t ¤ 0 on which � j.s/ has

an analytic extension; and
3. � j.s/ has a simple pole at s D ı.

Remark 5 In fact, we can deduce a little more which, if a little technical looking, is
needed in the approximation argument below. In particular, we can also show that
the simple pole for � j.s/ at s D ı has a residue of the form

Cj WD j.
j/
0.x0/jı�.hs/

�0.ı/

where:

(i) �.t/ is an isolated eigenvalue equal to the spectral radius of Lt (t 2 R); and
(ii) Q.h/ D �.h/k where k is an associated eigenfunction, i.e., L1k D k.

If we now write

� j.s/ D
Z 1

1

t�sdNj.t/
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then comparing Corollary 4.5 with Theorem 3.3 gives the asymptotic formula for
Nj.T/ in Proposition 3.8.

Let us now move on to the final step in the proof of Theorem 2.2.

4.2 The Approximation Argument

We can now approximate the radii rad.g.C4// of the circle g.C4/ by suitably scaled
values of 1=jg0.x0/j, where g D f l

i ı
 ı
j. Without loss of generality we can choose
coordinates in C so that C4 is the unit circle.

As a prelude to this we consider some simple geometric estimates on the sizes of
the images of circles.

Lemma 4.6 If g.z/ D .az C b/=.cz C d/, with ad � bc D 1 and a; b; c; d 2 C, then
the radius of the image circle C D g.C4/ is equal to

1

jjcj2 � jdj2j D jg0.0/j
jj c

d j2 � 1j

The proof is a reassuringly elementary exercise:

Proof For the first part, we see that the image circle g.C0/ has centre zc D .ac �
bd/=.jcj2 � jdj2/ and radius 1=.jjcj2 � jdj2j/ since we can check that for ei� 2 C4 D
fz 2 C : jzj D 1g:

jg.ei� / � zcj D
ˇ̌
ˇ̌aei� C b

cei� C d
� ac � bc

jcj2 � jdj2
ˇ̌
ˇ̌ D 1

jjcj2 � jdj2j :

We then observe that jg0.z/j D jcz C dj�2 and thus jg0.0/j D jdj�2. Thus by the
above we see that the radius of the image circle C is:

rad.C/ D 1

jjcj2 � jdj2j D jg0.0/jˇ̌
ˇ
ˇ̌

c
d

ˇ̌2 � 1
ˇ̌
ˇ
:

as claimed. ut
We can write g�1.z/ D .dz � b/=.�cz C a/ and thus g�1.1/ D d=c.
Finally, we come to the crux of the approximation argument. The essential idea

is to approximate the (technically more convenient) weighting of elements g by
jg0.z0/j, with a weighting by the more geometric weighting by reciprocals of the
radii rad.g.C4//. One simple approach is as follows. We are taking z0 D 0, for
definiteness, and then we want to use Proposition 3.8 to localise the counting to
regions where

jg0.0/j
rad.g.C4//

D
ˇ̌
ˇ̌
ˇ̌
ˇ c
d

ˇ̌
ˇ
2 � 1

ˇ̌
ˇ̌
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is close to constant, using Lemma 4.6. Given an allowed string . j1; � � � ; jN/ we can
write

g�1 D �
.R4 ı Rjk /

nk ı � � � ı .R4 ı RjNC1
/nNC1 ı .R4 ı RjN /

nN ı � � � ı .R4 ı Rj1 /
n1
��1

D .Rj1 ı R4/
n1 ı � � � ı .RjN ı R4/

nN ı .RjNC1
ı R4/

nNC1 ı � � � ı .Rjk ı R4/
nk

D f
nk

jk ı � � � ı f
n1
j1 ;

where we denote f j WD Rj ı R4 ( j D 1; 2; 3) acting on the complement of the disk
containing � (i.e., the dotted circle in Fig. 10). In particular, given � > 0, we can
choose N sufficiently large such that for each j jj D N we can choose Kj such that

for g D f l
i ı 
 ı 
j:

Kj � � � jg0.0/j
rad.g.C4//

� Kj C �: (4.2)

We can define a local version of N.T/, which is useful to compare with Mj.T/.

Definition 4.7 We define a restricted counting function

Nj.T/ D fg : rad.g.C4// � Tg;

for T > 0.

Fig. 10 Sequences of circles generated by reflections in disjoint circles. The three initial circles
are represented by solid lines and the first two generations of circles generated by reflections are
represented by dashed lines
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Using (4.2) we can write

Mj

 
T

Kj C �

!
� Nj.T/ � Mj

 
T

Kj � �

!
:

and observe that N.T/ D P
j jjDN Nj.T/. Using the asymptotic formula from

Proposition 3.8 and summing over allowed strings j of length N, we have that

C
X

j jjDN

�.Œ j�/

.Kj C �/ı
� lim inf

T!1
N.T/

Tı
� lim sup

T!1
N.T/

Tı
� C

X
j jjDN

�.Œ j�/

.Kj � �/ı

Letting N ! C1 (and thus 	 ! 0) gives the result in Theorem 2.2 with

K D lim
N!C1 C

X
j jjDN

�.Œ j�/

.Kj/ı
:

Remark 6 The existence of the limit, and its value K, can be understood in terms of
an integral related to the natural measure � on C. A modified argument leads to an
equidistribution result (expressed in terms of the measure �, of course).

4.3 Generalizations

The approach to counting circles is more analytical than geometrical, and thus is
somewhat oblivious to the specific setting of circle packings. In particular, the same
method of proof works in a number of related settings where we ask for the radii of
circles which are images under a suitable Kleinian group. For example:

1. Other circle packings for which the circles can be generated by the image of
circles under reflections;

2. The radii of the images g.C/ of a circle C, where � � SL.2;C/ is a Schottky
group (i.e., a convex cocompact Kleinian group generated by reflections in a
finite number of circles with disjoint interiors);

3. The radii of the images g.C/ of a circle C, where � � SL.2;C/ is a quasi-
Fuchsian group.

For more details of such examples, we refer the reader to [9].
The same basic method can also be used to prove other more subtle statistical

properties of the radii of the circles.
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Appendix: The Case of Reciprocal Integer Circles

The following is an interesting corollary to Descartes’ Theorem.

Corollary 4.8 If 1
a0
; 1a1
; 1a2
; 1a3

2 Z then 1
a4

2 Z.

Proof In particular, this is a quadratic polynomial in 1
a4
> 0, so given the radii of

the initial circles a1; a2; a3 we have two possible solutions

1

a1
C 1

a2
C 1

a3
˙ 2

s
1

a1a2
C 1

a2a3
C 1

a3a4
:

and we denote these 1
a4
> 0 (and 1

a0
< 0). We use the convention that the smaller

inner circle has radius a4 > 0 and the larger outer circle has a negative “radius” a4
(meaning its actually radius is ja4j > 0 and the negative sign just tells us it is the
outer circle). Adding these two solutions gives:

1

a0
C 1

a4
D 2

�
1

a1
C 1

a2
C 1

a3




from which we easily deduce the result. ut
Proceeding inductively, for any subsequent configuration of four circles with

radii an; anC1; anC2; anC3, for n � 0, we can similarly write

1

anC4
D 2

�
1

anC1
C 1

anC2
C 1

anC3



� 1

an
:

Proceeding inductively, then one gets infinitely many circles. Moreover, if the
reciprocals of the initial four circles are integers then we easily see that this is true
for all subsequence circles.

Corollary 4.9 If the four initial Apollonian circles have that their radii
a0; a1; a2; a3 are reciprocals of integers then all of the circles in C have that the
reciprocals of their radii an, n � 4, are integers.

Example 4 Let us consider the example starting with a0 D � 1
3
, a1 D 1

5
, a2 D 1

8
,

and a3 D 1
8
. In Fig. 11 below we illustrate the iterative process of inscribing circles

into each curved triangle formed by three previously constructed tangent circle and
write 1

an
inside the corresponding circle of radius an.

Example 5 Let us also consider the example with a0 D � 1
2
, a1 D 1

3
, a2 D 1

6
,

a3 D 1
7
. In Fig. 12 below we illustrate the iterative process of inscribing circles into

each curved triangle formed by three previously constructed tangent circle and write
1
an

inside the corresponding circle of radius an.



Apollonian Circle Packings 141

5
8

8 5
8

8

12

12

21
45 5

8

8

12

12

20

20

21

29

29

44

44
45

53

53

77

108

108

117

5
8

8

12

12

20

20

21

29

29

32

32

44

44
45

53

53

53

53

56

56

68

68

77

77

77

77

77

101

101

108

108

116

116

117

120

120

132

132

141

141

149

149

165

197

197

204

204

221
308

308

317

317

332

332

5
8

8

12

12

20

20

21

29

29

32

32

44

44
45

48

48

53

53

53

53

56

56

68

68

77

77

77

77

77

93

93

93

93

101

101

104

104

108

108

116

116

117

117

117

120

120

120

120

125

125

128

128

132

132

141

141

149

149

156

156

165

168

168

173

173

176

176

189

189

192

192

197

197

204

204

213

213

213

213

213

213

221

221

221

224

224

228

228

245

245

261

261

264

264

269

269

276

276

285

293

293

308

308

312

312

312

312
317

317

332

332

348

348

357

357

357

365

365

368

368

381

381

389

389

389

389

392

392

404

404

420

420

492

492

557

557

596

596

608

608

612

612

621

621

632

632

653

653

684

684
797

797

821

821

869

869

917

917

932

932

980

980

Fig. 11 We iteratively inscribe additional circles starting with circles of radii a0 D � 1
3
, a1 D 1

5
,

a2 D 1
8
, a3 D 1

8

3 6

7

3 6
7

7
10

19
34 3 6

7

7

10

1015

19

19

27

34

34
39

42 42

66

79

82
91 3 6

7

7

10

10

15

15

19

19

22

27

27

34

34

39

39

42

42

42

42

43
54

58

63

66

66

67

75

79

79

82

82

90

91

91

94

103

106

111

115

130

138

139

142

150

174

175

178

226

231

235

243

255

258 3 6
7

7

10

10

15

15

19

19

22

22

27

27

31

34

34

39

39

42

42

42

42

43

43

54

54

58

58

63

63

66

66

67

67

67

75

75

79

79

82

82

82

87

90

90

91

91

91

94

94

102

103

103

103

106

106

111

111

115

115

115

118
127

130

130

138

138

138

139

139

142

142

142

150

150

151

163

166

166

174

174

175

175

178

178

178

187

190

202

202

207

214

222

223

223

226

226

226

231

231

235

235

238

238

238

243

243

247

250

255

255

258

258

267

271

271

283

283

283
286

286

307
318

327

330

331

334

342

346
355

370

391

415

418

442

447

451

454

463

471

475

475

483

486

499

507

514

519

535

538

582

598

606

630

670

675

678

690

691

711

754

759

Fig. 12 We iteratively inscribe additional circles starting with circles with radii a0 D � 1
2
, a1 D 1

3
,

a2 D 1
6
, a3 D 1

7

Remark 7 An easy consequence of the fact ı > 1 is that then 1
an

2 N some value

must necessarily have high multiplicity (since we need to fit approximately C	�ı
inverse diameters into the first Œ	�1� natural numbers and the “pigeonhole principle”
applies). In subsequent work, Oh-Shah showed that similar results are true for
other sorts of circle packing [12]. Oh-Shah also gave an alternative approach to
the original proof of Kontorovich-Oh using ideas of Roblin.

Remark 8 Another question we might ask is: It we remove the repetitions in the
sequence .an/ then how many distinct diameters are greater than 	? The following
result was proved by Bourgain and Fuchs [2]: There exists C > 0 such that

#fdistinct diameters an : an � 	g � C

	

for all sufficiently large 	.s Previously, Sarnak [17] had proved the slightly weaker
result that there exists C > 0 such that

#fdistinct diameters an : an � 	g � C

	
p

log 	
:
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Entropy of Lyapunov-Optimizing Measures
of Some Matrix Cocycles

Michał Rams

Abstract This is an extended version of my talk at the Fractal Geometry and
Stochastic V conference in Tabarz. It is based on my joint paper (Bochi and Rams,
The entropy of Lyapunov-optimizing measures of some metric cocycles, preprint)
with Jairo Bochi (PUC Santiago). Compared with the paper, I’ll skip some details
of some proofs, but I’ll try to explain the main idea of our approach.

Keywords Joint spectral radius • Ergodic optimization • Barabanov norm •
Noncommutative multifractal formalism

Mathematics Subject Classification (1991). Primary 15B48 Secondary 37H15,
37D30, 93C30

1 Setting

The object we study is seemingly very simple. We are given a finite family of 2 �
2 matrices A1; : : : ;Ak 2 GL.2;R/. For any sequence ! 2 f1; : : : ; kgN we write
An.!/ D A!n�1 � : : : � A!0 and consider the Lyapunov exponent

�.!/ D lim
n!1

1

n
log jAn.!/j; (1.1)

whenever it exists. The maximum and minimum values �C; �� attained by the
Lyapunov exponent are called the joint spectral radius and joint spectral subradius,
respectively; those notions play a significant role in control theory, see for example
[11] and references therein.

The same object appears naturally in dynamical systems as well; let us explain
the relation. Let us start from the main object studied in the area of multifractal
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formalism: the Birkhoff average. Let T W X ! X be a topological dynamical system
(a continuous map of a compact space into itself) and let ˆ W X ! R

C be a
continuous function. We consider the cocycle OT W .X � R

C/ ! .X � R
C/ given

by the formula

QT.x; r/ D .T.x/; r �ˆ.x//:

The value

�.x/ D lim
n!1

1

n
log

�
ˆ.x/ �ˆ.Tx/ � : : : �ˆ.Tn�1x/

�

(whenever it is defined) is called the exponential rate of growth in the fiber fxg, or
the Birkhoff average of the potential logˆ at the point x.

Let us now consider a natural generalization of this object: noncommutative
Birkhoff averages. That is, we replace R

C by some noncommutative group, and
we calculate the fiber rate of growth of the corresponding cocycle using some
appropriate norm. In our case, the base dynamics is the full shift on k symbols,
the fiber action is given by the group GL.2;R/ and the norm is the usual matrix
norm:

QT.!;M/ D .�!;A.!/ � M/

(where A is a 2 � 2 matrix-valued potential), so

�.!/ D lim
n!1

1

n
log jA.�n�1!/ � : : : � A.�!/ � A.!/j: (1.2)

This system is quite complicated, so let us consider the special case: the one-step
cocycle, that is, let A.!/ depend only on !0. This takes us exactly to the situation
we considered in the beginning: denoting by A` the value of A on f!I!0 D `g, (1.2)
reduces to (1.1).

2 Domination

It turns out to be difficult to describe the product of matrices, in particular, the
norm of such a product can strongly depend on the order in which we multiply
the matrices. For this reason the usual dynamical approach is to forget about
the geometry of matrix product, and use only the subadditivity property of the
(logarithm of) norm. The theory of subadditive thermodynamical formalism has
recently developed strongly, let us just mention the book [3] and the papers [9, 10].

We will apply an alternative approach, coming from the paper [6]. That is, instead
of considering a product of matrices and asking how fast the norm grows, we will
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multiply this product by a given vector, and will ask how fast the length of the vector
grows:

�.!; v/ D lim
n!1

1

n
log jAn.!/ � vj :

The main difference is that we can write

log jAn.!/ � vj D
n�1X
`D0

log

ˇ̌
ˇ̌A!`

A`.!/v

jA`.!/vj
ˇ̌
ˇ̌ :

That is, we replace a noncommutative cocycle over a simple dynamical system (full
shift) by a commutative cocycle but over a considerably more complicated system
(action of matrices fAig on P

1). However, we need to explain why the growth rate of
the length of a vector is related to the growth rate of the matrix norm in our original
problem.

It will be more convenient for us to work with cocycles over the full shift on
bi-infinite sequences .†; �/, where † D f1; : : : ; kgZ and � is the usual left shift.
Naturally, the Lyapunov exponent �.!/ can be defined on this space as well; it will
only depend on the positive coordinates !C D f!i; i � 0g. We will distinguish
between the action of a matrix on R

2� D R
2 n f0; 0g and the action on P

1 by the
following notation: when we have A W R2� ! R

2�, we write A0 W P1 ! P
1. Similarly,

if M is a union of a family of lines in R
2� passing through the origin, we denote by

M0 the corresponding subset of P1.
We say that the 2 � 2 matrix cocycle is dominated (or exponentially separated)

if for each ! 2 † we are given a splitting of R2 as the sum of two one-dimensional
subspaces e1.!/, e2.!/ such that the following properties hold:

• Equivariance:

A.!/.ei.!// D ei.�!/ for all ! 2 † and i 2 f1; 2g; (2.1)

• Dominance: there are constants c > 0 and ı > 0 such that

jA.n/.!/e1.!/j
jA.n/.!/e2.!/j � ceın for all ! 2 † and n � 1. (2.2)

This definition works for general cocycles, in our case there exists another,
equivalent, definition. We define the standard positive cone in R

2� WD R
2 n f0g as

CC D f.x; y/ 2 R
2�I xy � 0g:

A cone in R
2� is an image of CC by a linear isomorphism. A multicone in R

2� is
a disjoint union of finitely many cones. It was proved in [1, 4] that the one-step
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cocycle generated by fA1; : : : ;Akg is dominated if and only if it has a forward-
invariant multicone, that is, when there exists a multicone M such that its imageS

i Ai.M/ is contained in the interior of M.
We can choose on M0 a generalization of the Hilbert metric, that is a bounded

metric d (depending on fA1; : : : ;Akg) in which all the maps A0
i are uniformly

contracting:

Lemma 2.1 Let fA1; : : : ;Akg be a dominated cocycle with forward-invariant mul-
ticone M. Then there exists a metric d on M0 and constants c0 > 1; 0 < � < 1 such
that for v0;w0 2 M0 we have

d
�
A0

iv
0;A0

iw
0� � �d

�
v0;w0� for all i 2 f1; : : : ; kg; (2.3)

c�1
0 † .v;w/ � d

�
v0;w0� � c0† .v;w/ : (2.4)

If M is forward-invariant for fA1; : : : ;Akg then Mc D .R2� n M/ is forward-
invariant for fA�1

1 ; : : : ;A
�1
k g. Moreover,

e0
1.!/ D

1\
nD1

A0
!�1

� : : : � A0
!�n
.M0/

and

e0
2.!/ D

1\
nD1
.A0

!n�1
� : : : � A0

!0
/�1.M0

c/:

Let ! D .!�; !C/, where !� D f!i; i � �1g. Then e1.!/ D e1.!�/, e2.!/ D
e2.!C/. We have e1.†/ � M, e2.†/ � Mc.

For 2 � 2 matrices �.!; v/ D �.!/ for all v … e2.!/. As e2.!/ � Mc for all
! 2 †, we get

�.!; v/ D �.!/

for all ! 2 † and v 2 M.
Given ! 2 †, consider the pair .e1.!/; e2.!//. This behaves very nicely under

action of the shift:

.e0
1.�!/; e

0
2.�!// D .A0

!0
e0
1.!/;A

0
!0

e0
2.!//: (2.5)

We say that the cocycle fA1; : : : ;Akg satisfies the forward non-overlapping con-
dition if we can choose a forward-invariant multicone M in such a way that
Ai.M/\ Aj.M/ D ; for i ¤ j. It satisfies the backward non-overlapping condition if
we can choose a forward-invariant multicone M such that A�1

i .Mc/\ A�1
j .Mc/ D ;
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for i ¤ j. If the cocycle satisfies both forward and backward non-overlapping
condition (not necessarily for the same multicone), we say it satisfies the non-
overlapping condition (NOC). The NOC is not only a geometric condition, it has
a dynamical meaning as well: it is a necessary and sufficient condition for the map
! ! .e1.!/; e2.!// to be a bijection.

3 Statement of Results

The paradigm of ergodic optimization (see [12]) says that for typical potentials the
optimizing orbits (sets f!I�.!/ D �˙g) should have low dynamical complexity.
This is true in the commutative case, see [8, 13]. In the noncommutative situation it
is probably not true in general, at least for the joint spectral subradius. However, in
the open set of cocycles dominating and satisfying NOC, it is satisfied for all (not
just typical) cocycles.

We will define upper and lower Mather sets KC;K� for a dominated cocycle
fA1; : : : ;Akg as follows: KC (resp. K�) is the union of supports of all �-invariant
measures � on † such that �.�/ D �C (resp. ��).

Theorem 3.1 For a dominated cocycle, the Mather sets KC;K� are compact,
nonempty, and invariant under � . Moreover, every measure � supported on KC
(resp. K�) satisfies �.�/ D �C (resp. ��).

Our main result is the following:

Theorem 3.2 For a dominated cocycle satisfying NOC, the Mather sets KC;K�
have zero topological entropy under � .

Both assumptions of Theorem 3.2 are necessary. For example, the cocycle

A1 D
�
3 0

0 1=3



; A2 D

�
3 0

1 1=3




satisfies domination and the forward NOC, but still it does not satisfy the assertion of
Theorem 3.2 (in this case, KC D K� D †). For cocycles not satisfying domination
the situation for joint spectral subradius is even worse: if we restrict our attention
to cocycles fA1; : : : ;Akg 2 SL.2;R/k, among cocycles not satisfying domination
one can find an open and dense subset for which there exists an invariant positive
topological entropy subset of† for which the norms jAn.!/j are uniformly bounded
for all n (this corresponds to �� D 0). That is, the ergodic optimization fails.

The behaviour of the joint spectral radius is unknown in this case, but by a long-
standing conjecture the ergodic optimization holds.
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4 Barabanov Functions and Proof of Theorem 3.1

If the cocycle fA1; : : : ;Akg is irreducible (has no nontrivial invariant subspace) then
one can construct a Barabanov norm, that is a norm j � jB on R

2 such that for any
v 2 R

2

max
i

jAivjB D e�
C � jvjB: (4.1)

In fact, such a norm can be defined in a much more general situation (i.e. for any
irreducible compact subset of GL.n;R/), see [2, 14].

Unfortunately, in general there cannot exist a norm satisfying the analogue
of (4.1) for the joint spectral subradius. However, we are able to construct a replace-
ment (based on a similar idea in [6]). Given a dominated cocycle fA1; : : : ;Akg with
a forward-invariant multicone M, a pair of functions pC; p� W M ! R will be called
Barabanov functions if they have the following properties:

• Extremality: for all v 2 M,

max
i2f1;:::;kg

pC.Aiv/ D pC.v/C �C ; (4.2)

min
i2f1;:::;kg

p�.Aiv/ D p�.v/C �� I (4.3)

• log-homogeneity: for all v 2 M, and t 2 R�,

p˙.tv/ D p˙.v/C log jtj I (4.4)

• Regularity: there exists c1 > 0 such that for all v1, v2 2 M,

p˙.v1/� p˙.v2/ � c1†.v1; v2/C log jv1j � log jv2j : (4.5)

Theorem 4.1 For any dominated cocycle fA1; : : : ;Akg there exist Barabanov
functions pC; p�.

Proof For each i let

hi.v/ D log
jAivj
jvj :

This function does not change under multiplying v by a scalar, hence it can be
defined on P

1. Let c2 be the common Lipschitz constant of all his:

ˇ̌
hi.v

0/� hi.w
0/
ˇ̌ � c2†.v;w/ for all i 2 f1; : : : ; kg, for all v, w 2 R

2�.
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Let c3 D c0c2=.1 � �/. Let K be the space of c3-Lipschitz functions (in d) from
M0 to R endowed with sup metric. For f 2 K let

.TCf /.v0/ D max
i2f1;:::;kg

�
f
�
A0

iv
0�C hi.v

0/
�
;

.T�f /.v0/ D min
i2f1;:::;kg

�
f
�
A0

iv
0�C hi.v

0/
�
:

One can check that TC;T� W K ! K. We also have

T˙. f C c/ D c C T˙f ;

hence we can define TC;T� on the quotient OK of K by the subspace of constant
functions. OK is convex and (by Arzela-Ascoli) compact, hence TC and T� have
fixed points in OK that we will denote by f C

0 ; f
�
0 . That is, there exist constants ˇC; ˇ�

such that

T˙f0̇ D f0̇ C ˇ˙:

This immediately implies that the functions

p˙.v/ D f0̇ .v
0/C log jvj

satisfy all the required properties of Barabanov functions, with ˇ˙ in place of �˙.
The only thing left is to check that ˇ˙ cannot be different from �˙.

Let us present this argument for ˇC. For any vector v 2 M there exists a (not
necessarily unique) !C

1 2 f1; : : : ; kg such that pC.A
!

C
1
v/ D pC.v/ C ˇC. We

can then find !C
2 such that pC.A

!
C
2

A
!

C
1
v/ D pC.v/ C 2ˇC, and so on. Thus, ˇC

is the maximal growth rate of pC for any vector v 2 M. At the same time, by
log-homogeneity of Barabanov functions, pC.v/ can differ from log jvj by at most
a constant. Hence, the growth rate of pC must be the same as the growth rate of
log j � j, and we are done. ut

The statement of Theorem 3.1 follows easily (once again, we will only construct
KC). Above we constructed for any vector v 2 M a set of infinite sequences
�C.v/ � f1; : : : ; kgN such that for every ! 2 �C.v/

pC .An.!/v/ D pC.v/C n�C:

Consider the set KC
0 � † of the following form: ! D .!�; !C/ belongs to KC

0 if
and only if !C 2 �C.e1.!�//. Clearly, �KC

0 � KC
0 . We define

KC D
1\

jD0
� jKC

0 :



150 M. Rams

This set is nonempty and compact, and has the following property: let ! 2 KC and
j 2 Z. Let � j! D .!. j/� ; !

. j/
C /. Then

!
. j/
C 2 �C.e1.!. j/� //:

It follows that every measure supported on KC has the maximal growth of pC. Vice
versa, every measure giving maximal growth of pC must for almost every past !�
give full probability to futures from �C.e1.!�//, hence it must be supported on
KC. As the growth of pC must be the same as the growth of the length of any vector
from M, this proves that the constructed set KC is the Mather set.

5 Proof of Theorem 3.2

The strategy of the proof is quite simple. We consider the space f.e1.!/; e2.!//I! 2
K˙g with the dynamics given by (2.5). We will use Barabanov functions and
geometric arguments to prove that this dynamical system has zero entropy (this
result does not use NOC, only domination). We will then use NOC to transport the
entropy result back to the full shift .†; �/.

Let us start with a simple lemma.

Lemma 5.1 Let ! D .!�; !C/ 2 K˙. Choose any x 2 e1.!�/. If y 2 M is such
that x � y 2 e2.!C/ then

pC.x/ � pC.y/ if ! 2 KC,

p�.x/ � p�.y/ if ! 2 K�.

Proof Consider the case ! 2 KC, the other is analogous. As y � x 2 e2.!C/,

pC.An.!/x/� pC.An.!/y/ ! 0:

At the same time,

pC.An.!/x/ � pC.x/ D n�C � pC.An.!/y/� pC.y/:

ut
Given vectors x1, y1, x2, y2 2 R

2�, no three of them collinear, we define their
cross-ratio

Œx1; y1I x2; y2� WD x1 � x2
x1 � y2

� y1 � y2
y1 � x2

2 R [ f1g ;
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where � denotes the cross-product in R
2, i.e. the determinant. The cross-ratio

depends only on the directions of the four vectors, hence we can define it on .P1/4.
See [7, Section 6].

Applying Lemma 5.1 twice, we get

Lemma 5.2 Let !; � 2 K˙. Then

jŒe1.!�/; e1.��/I e2.!C/; e2.�C/�j � 1 if !; � 2 KC,

jŒe1.!�/; e1.��/I e2.!C/; e2.�C/�j � 1 if !; � 2 K�.

Proof We will consider the case !; � 2 KC, the other one is analogous. We choose
x1 2 e1.!�/; x2 2 e2.!C/; y1 2 e1.��/; y2 2 e2.�C/. We can write

x1 D ˛x2 C ˇy1 and y1 D �y2 C ıx1:

Applying Lemma 5.1 twice, we get

pC.x1/ � pC.ˇy1/ � pC.ˇıx1/ D pC.x1/C log jˇıj:

Hence, jˇıj � 1. Substituting

ˇ D x1 � x2
y1 � x2

and ı D y1 � y2
x1 � y2

we obtain the assertion. ut
We now use the hyperbolic geometry representation of P1. We identify the point

.cos �; sin �/ 2 P
1 with e2� i on the boundary @D of the unit disk D. We endow D

with the Poincaré hyperbolic metric. Given two points x; y 2 @D, we consider their
connecting geodesic Exy 2 D.

There are three possible types of configurations of a 4-tuple of distinct points
.x1; y1I x2; y2/ in P

1 (see Fig. 1):

• Antiparallel: x1 < y2 < y1 < x2 < x1 for some cyclic order < on P
1;

• Coparallel: x1 < y1 < y2 < x2 < x1 for some cyclic order < on P
1;

• Crossing: x1 < y1 < x2 < y2 < x1 for some cyclic order < on P
1:

y 2y 1

x 2 x 1

y 1y 2

x 2 x 1

y 1x 2

y 2 x 1

Fig. 1 From left to right: antiparallel, coparallel, and crossing configuration
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Two geodesics ��!x2x1 and ��!y2y1 with distinct endpoints are called antiparallel,
coparallel, or crossing according to the configuration of the 4-tuple .x1; y1I x2; y2/.

In terms of the cross-ratio, configurations can be expressed as follows.

Lemma 5.3 The configuration of a 4-tuple .x1; y1I x2; y2/ in P
1 is

• Antiparallel iff Œx1; y1I x2; y2� < 0,
• Coparallel iff 0 < Œx1; y1I x2; y2� < 1,
• Crossing iff Œx1; y1I x2; y2� > 1.

Hence, Lemma 5.2 implies that for two sequences !; � 2 K˙ the corresponding
geodesics Ee1.!�/e2.!C/; Ee1.��/e2.�C/ cannot be in coparallel (if !; � 2 KC) or
crossing (if !; � 2 K�) configuration.

We will not formulate the last part of the proof for the dynamical system acting
on pairs .e1.!�/; e2.!C// but directly for .K˙; �/. We recall that NOC guarantees
that the two systems are conjugated. For KC;K� let us consider the sets of pasts
with more than one future and sets of futures with more than one past. Formally,
consider

NC
1 D f!�I there exists more than one !C such that .!�; !C/ 2 KCg; (5.1)

NC
2 D f!CI there exists more than one !� such that .!�; !C/ 2 KCg: (5.2)

We define N�
1 ;N

�
2 analogously.

Lemma 5.4 The sets NC
1 ;N

C
2 ;N

�
1 ;N

�
2 are countable.

Proof Consider NC
1 first (the case of NC

2 is analogous). Let !� 2 NC
1 . Denote

by IC.!�/ the convex hull (taken in P
1 n fe1.!�/g) of the points e2.!C/ for

!C such that .!�; !C/ 2 KC. Then for different !�; �� 2 NC
1 the intervals

IC.!/; IC.��/ have disjoint interiors. Indeed, otherwise some pairs of geodesics
Ee1.!�/e2.!C/; Ee1.��/e2.�C/ would be in coparallel configuration, see Fig. 2.

Fig. 2 Two cases in the proof of Lemma 5.4: disjoint arcs and disjoint geodesic triangles
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Consider now the case N�
1 (or N�

2 ). For any !� 2 N�
1 we construct I�.!�/

analogously to IC.!�/ above, and then we construct the geodesic triangle �.!�/
with vertices e1.!�/ and the two endpoints of I�.!�/. Then for any two sequences
!�; �� 2 N�

1 the triangles �.!�/;�.��/ have disjoint interiors (otherwise

some pair of geodesics Ee1.!�/e2.!C/; Ee1.��/e2.�C/ would have to be in crossing
configuration), see Fig. 2.

The assertion follows by the separability of @D and D. ut
Thus, in either KC or K� every past (except countably many) has a unique future

and every future (except countably many) has a unique past. Such sets have zero
topological entropy:

Lemma 5.5 Let K be a compact �-invariant subset of a two-sided shift. Define
N1;N2 as in (5.1), (5.2). If N1 and N2 are countable then K has zero topological
entropy.

Proof It is enough to prove that every ergodic invariant measure has zero metric
entropy. The atomic measures have entropy zero. The nonatomic measures do not
see N1;N2, hence the past uniquely determines the future (and vice versa). This
means that the conditional entropy of the generating partition with respect to the
past/future is zero. ut

6 Open Questions

There are many open questions. In particular:

• What happens for more general potentials (i.e. not piecewise constant)?
• What happens for more general base systems (for example, for subshifts of finite

type)?
• What happens for matrices of size greater than 2 � 2?
• What happens in the generic situation?
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Poincaré Functional Equations, Harmonic
Measures on Julia Sets, and Fractal Zeta
Functions

Peter J. Grabner

Abstract We collect results from earlier work with G. Derfel and F. Vogl, which
led to the proof of the existence of a meromorphic continuation of the fractal
zeta function for certain self-similar fractals admitting spectral decimation. We
explain the connection to classical functional equations occurring in the theory
of polynomial iteration, namely Poincaré’s and Böttcher’s equations, as well as
properties of the harmonic measure on the underlying Julia set. Furthermore, we
comment on some more recent developments based on the work of N. Kajino and
state a conjecture related to our approach via functional equations.

Keywords Fractal zeta function • Poincaré functional equation • Böttcher func-
tional equation

1 Introduction

Connections between the analysis on fractals and the iteration of rational functions
were discovered in the earliest publications on diffusion processes on certain self-
similar sets, such as the Sierpiński gasket (see, for instance [3, 38]). The connection
stems from the fact that time on the successive approximations of the fractal
is modelled by a branching process. The relation of branching processes to the
iteration of holomorphic functions is known for a long time (see [19]).

More precisely, in order to obtain a diffusion on a fractal, define a sequence of
random walks on approximating graphs and synchronise time so that the limiting
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Fig. 1 The Sierpiński graph G in black with the graph GF in grey. The corresponding set F consists
of the grey vertices

process is non-constant and continuous. This was the first approach to the diffusion
process on the Sierpiński gasket given in [3, 14, 26] and later generalised to other
“nested fractals” in [29]. In our description we will follow the lines of definition of
self-similar graphs given in [24, 25] and adapt it for our purposes.

We consider a graph G D .V.G/;E.G//with vertices V.G/ and undirected edges
E.G/ denoted by fx; yg. We assume throughout that G does not contain multiple
edges nor loops. For C � V.G/ we call @C the vertex boundary, which is given by
the set of vertices in V.G/ n C, which are adjacent to a vertex in C. For F � V.G/
we define the reduced graph GF by V.GF/ D F and fx; yg 2 E.GF/, if x and y are in
the boundary of the same component of V.G/ n F. This requires that removing the
set F disconnects the graph G into different components.

The following definition is taken from [25]. It is motivated by the properties
of the infinite Sierpiński gasket (see Fig. 1). Furthermore, it will turn out that this
definition of self-similarity of a graph is reflected by according functional equations
for the Green function (the generating function of the transition probabilities) and
by rational function relations between the eigenvalues of the transition Laplace
operator, which will be exploited later.

Definition 1.1 A connected infinite graph G is called self-similar with respect to
F � V.G/ and ' W V.G/ ! V.GF/, if

1. No vertices in F are adjacent in G,
2. The intersection of the boundaries of two different components of V.G/ n F does

not contain more than one point,
3. ' is an isomorphism of G and GF.

A random walk on G is given by transition probabilities p.x; y/, which are
positive, if and only if fx; yg 2 E.G/. For a trajectory .Yn/n2N0 of this random walk
with Y0 D x 2 F we define stopping times recursively by

TmC1 D min fk > Tm j Yk 2 F n fYTmgg ; T0 D 0:
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Then .YTm/m2N0 is a random walk on GF. Since the underlying graphs G and GF

are isomorphic, it is natural to require that .'�1.YTm//m2N0 is the same stochastic
process as .Yn/n2N0 . This requires the validity of equations for the basic transition
probabilities

P
�
YTnC1

D '.y/ j YTn D '.x/
� D P .YnC1 D y j Yn D x/ D p.x; y/: (1.1)

These are usually non-linear rational equations for the transition probabilities
p.x; y/. The existence of solutions of these equations has been the subject of several
investigations, and we refer to [31–33, 41] for further details.

The process .Yn/n2N0 on G and its “shadow” .YTn/n2N0 on GF are equal, but they
are on a different time scale. Every transition YTn ! YTnC1

on GF comes from a path
YTn ! YTnC1 � � � ! YTnC1�1 ! YTnC1

in a component of V.G/ n F. The time scaling
factor between these processes is given by

� D E.TnC1 � Tn/ D E.T1/:

This factor is � 2 by assumption (1) on F. More precisely, the relation between
the transition time on GF and the transition time on G is given by a super-critical
(� > 1) branching process, which replaces an edge f'.x/; '.y/g 2 GF by a path in
G connecting the points x and y without visiting a point in V.G/ n F (except for x,
and for y in the last step).

In order to obtain a process on a fractal in R
d, we assume further that G is

embedded in R
d (i.e. V.G/ � R

d). The self-similarity of the graph is carried over
to the embedding by assuming that there exists a ˇ > 1 (the space scaling factor)
such that F D V.GF/ D ˇV.G/. The fractal limiting structure is then given by

ZG D
1[

nD0
ˇ�nV.G/:

Iterating this graph decimation we obtain a sequence Gk D .ˇ�kV.G/;E.G// of
(isomorphic) graphs on different scales. The random walks .Y.k/n /n2N0 on Gk (see
Fig. 2) are connected by time scales with the scaling factor �. From the theory of
branching processes (cf. [19]) it follows that the time on level k scaled by ��k

tends to a random variable. From this it follows that ˇ�kYbt�kc weakly tends to a
(continuous time) stochastic process .Xt/t�0 on the fractal ZG. Notice, that ˇ has to
be chosen so that the limiting process .Xt/t�0 is continuous and not constant; thus
there is of course only one (intrinsic) choice for ˇ.

On the level of generating functions, the transition between the random walks on
the graphs Gk and GkC1 is encoded by the relation

G.x; y j z/ D g.z/G.'.x/; '.y/ j  .z// (1.2)
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Fig. 2 Transition between Y
.k/
m and Y

.kC1/
Tm

for the Green function

G.x; y j z/ D
1X

nD0
pn.x; y/z

n;

where pn.x; y/ denotes the n-step transition probability between x and y (cf. [15,
16, 25]). The generating function g encodes paths starting and ending in x without
visiting any other point of F, whereas  .z/ is the probability generating function of
all paths starting in a point of a 2 F, ending in a point of b 2 F, b ¤ a, without
visiting any point of F different from a, except for the last step.

The Laplace operator on ZG is then defined as the infinitesimal generator of the
semigroup of operators given by

At f .x/ D Ex f .Xt/;

namely

4 f D lim
t!0C

At f � f

t
; (1.3)

defined for functions f , for which the limit exists.
It has been first observed by Fukushima and Shima [13, 42, 43] that the

eigenvalues of the Laplacian on the Sierpiński gasket and its higher dimensional
analogues exhibit the phenomenon of spectral decimation (see also earlier work by
Bellissard [5, 6]). Later on, spectral decimation for more general fractals has been
studied by Malozemov, Strichartz, and Teplyaev [1, 2, 30, 45, 47, 48].

Definition 1.2 (Spectral decimation) The Laplace operator on a p. c. f. self-
similar fractal ZG admits spectral decimation, if there exists a rational function R, a
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finite set A and a constant � > 1 such that all eigenvalues of 4 can be written in the
form

�m lim
n!1�nR.�n/.fwg/; w 2 A; m 2 N (1.4)

where the preimages of w under n-fold iteration of R have to be chosen such that the
limit exists. Furthermore, the multiplicities ˇm.w/ of the eigenvalues depend only
on w and m, and the generating functions of these multiplicities are rational.

The fact that all eigenvalues of 4 are negative real implies that the Julia set of R
has to be contained in the negative real axis. We will exploit this fact later.

The function R occurring in the definition of spectral decimation is conjugate to
the function  occurring in (1.2) by a linear fractional transformation �, i.e. R D
� ı  ı ��1. In some cases such as the higher dimensional Sierpiński gaskets, the
rational function R is a polynomial. This is the case that will be discussed further in
this paper.

2 Polynomial Iteration

In order to discuss the consequences of spectral decimation further, we need to
introduce some concepts and notation from the iteration theory of polynomials.
Throughout, we will denote by p.n/ the n-fold iterate of the (polynomial) function p,
i.e.

p0.z/ D z; p.nC1/.z/ D p .p.n/.z//: (2.1)

Let p be a real polynomial of degree d. We always assume that p.0/ D 0 and
p0.0/ D a1 D � with j�j > 1. We refer to [4, 34] as general references for complex
dynamics.

We denote the Riemann sphere by C1 and consider p as a map on C1. We recall
that the Fatou set F. p/ is the set of all z 2 C1 which have an open neighbourhood
U such that the sequence . p.n//n2N is equicontinuous on U in the chordal metric on
C1. By definition F. p/ is open. We will especially need the component of 1 of
F. p/ given by

F1. p/ D
n
z 2 C j lim

n!1 p.n/.z/ D 1
o
; (2.2)

as well as the basin of attraction of a finite attracting fixed point w0 ( p.w0/ D w0,
jp0.w0/j < 1)

Fw0. p/ D
n
z 2 C j lim

n!1 p.n/.z/ D w0
o
: (2.3)
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The complement of the Fatou set is the Julia set J . p/ D C1 n F. p/.
The filled Julia set is given by

K. p/ D ˚
z 2 C1 j .p.n/.z//n2N is bounded

� D C1 n F1. p/: (2.4)

Furthermore, it is known that (cf. [12])

@K. p/ D @F1. p/ D J . p/: (2.5)

This relation only holds for polynomials; for the iteration of general rational
functions the situation is much more complicated.

3 Poincaré’s Functional Equation

We now want to analyse Eq. (1.4) further, assuming that R D p, a polynomial of
degree d with a fixed point at 0 with p0.0/ D � > 1. Let z be a complex number
obtained as a limit

lim
n!1�np.�n/.fwg/I (3.1)

this means that

lim
n!1 p.n/.��nz/ D w: (3.2)

It is a well known fact from the iteration theory of polynomials that the function
sequence . p.n/.��nz//n converges uniformly on compact sets to an entire function
ˆ.z/. This function satisfies the Poincaré functional equation

ˆ.�z/ D p.ˆ.z//; ˆ.0/ D 0; ˆ0.0/ D 1: (3.3)

The function ˆ provides a linearisation of the action of p around 0 and was studied
intensively since the fundamental work of H. Poincaré [36, 37]. The order of this
function and precise asymptotic information about its maximal function

Mˆ.r/ D max
jzjDr

jˆ.z/j (3.4)

were derived in [49, 50]. In [8, 9] a complete asymptotic expansion valid in certain
angular regions of the complex plane could be obtained. This was used in [10] to
give an analytic continuation of the spectral �-function

�4.s/ D
X

� 4 uD�u

��s (3.5)
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of the Laplace operator to the whole complex plane. For future reference, we denote
the abscissa of convergence of this Dirichlet series by 1

2
dS, the spectral dimension.

The factor 1
2

is added by convention so that the classical result of H. Weyl [51]
for the asymptotic expansion of the eigenvalue counting function on a compact
d-dimensional manifold�

N4.x/ D
X

� 4 uD�u
�<x

1; (3.6)

namely (!d is the volume of the d-dimensional unit ball)

N4.x/ 
 !d

.2�/d
vol.�/x

d
2

is reproduced as a special case.
The values z that can be obtained by (3.1) are exactly the solutions of the equation

ˆ.z/ D w. As is well known from the theory of entire functions (see [7]), the
behaviour of the counting function of the number of solutions of ˆ.z/ D w in a
circle of radius r is directly connected to the growth order of ˆ, or more precisely,
the maximal function Mˆ.r/ in (3.4).

4 Böttcher’s Functional Equation

As was pointed out in Sect. 3, the Poincaré-function ˆ.z/ given by (3.3) provides
a local linearisation of the polynomial function p around its fixed point z D 0.
The construction of this function as the limit (3.1) depends heavily on the fact that
j�j > 1 (repelling fixed point), where � D p0.0/. A similar linearisation can be
found for 0 < j�j < 1 (attracting fixed point); the case of an indifferent fixed point
(j�j D 1) is much more delicate and the existence of a local linearisation depends
heavily on Diophantine conditions on the argument of � (see [4, 34]). The case of
vanishing derivative � D 0 (hyper-attracting fixed point) leads to a different kind of
linearisation, which shall be the subject of this section. Notice, that z D 1 is such
a fixed point for a polynomial of degree d � 2, if considered as a function on the
Riemann sphere.

The Böttcher functional equation associated to the hyper-attracting fixed point
1 of a polynomial p.z/ D adzd C � � � C a0 of degree d � 2 is given by

ad.g.z//
d D g.p.z//: (4.1)
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The solution of this equation exists in some neighbourhood of 1 and can be
expressed as a Laurent series around 1

g.z/ D z C
1X

nD0

cn

zn
:

Furthermore, the sequence of functions .a
� 1

d�1

d .p.n/.z//d
�n
/n converges uniformly to

g on compact subsets of C1 contained in the domain of g (if the branches of the
d-th roots are chosen accordingly).

The Böttcher function g.z/ admits the integral representation, which also pro-
vides an analytic continuation of g to any simply connected subset of C n K. p/

g.z/ D exp

�Z

J . p/
log.z � x/ d�.x/



; (4.2)

where � denotes the harmonic measure on J . p/. The measure � is the unique
probability measure supported on J . p/ minimising the logarithmic energy

E.�/ D
Z

J . p/

Z

J . p/
log

1

jz � wj d�.z/ d�.w/

(see [39]). For the measure � the corresponding potential

U�.z/ D
Z

J . p/
log

1

jz � wj d�.w/

is constant on K. p/; this constant equals 1
d�1 log ad, the logarithm of the capacity

of J . p/. This is also the value of the energy E.�/.
The measure � can be obtained as the weak limit of the sequence of measures

1

dn

X

p.n/.�/Dx

ı� ; (4.3)

where x is an arbitrarily chosen point and ı� denotes a unit point mass at �. The fact
that (4.2) and (4.1) yield the same function, follows immediately from p�.�/ D d��.

Equation (4.2) can be used to obtain an analytic continuation of g.z/ to any
simply connected subset of C1 n K. p/. Furthermore, if K. p/ is connected,
1=.a1=.d�1/

d g.z// is the Riemann mapping, mapping C1 n K. p/ to the unit circle.
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The function log jg.z/j is the Green function for the logarithmic potential on F1. p/
and

lim
z!z0

z2F1. p/

jg.z/j D a
� 1

d�1

d , z0 2 J . p/:

In the case that K. p/ is not connected, the mapping g W C n K. p/ ! C is much
more complicated. For further details we refer to [28].

5 Asymptotic Behaviour of Poincaré Functions

Combining the solutions of the functional equations (3.3) and (4.1), we are now in
the position to obtain an asymptotic expansion of the Poincaré function ˆ for real
values of � inside angular regions, whereˆ tends to 1.

Consider the function h.z/ D g.ˆ.z// in an angular region

W˛;ˇ D fz 2 C n f0g j ˛ < arg.z/ < ˇg;

whereˆ tends to 1. Then h satisfies the functional equation

adh.z/d D h.�z/;

which has the solution

h.z/ D a
� 1

d�1

d exp .z
F.log� z// ; (5.1)

where 
 D log� d, and F is a periodic function of period 1, which is holomorphic
on the strip

fz 2 C j ˛

log�
< =.z/ < ˇ

log�
g:

Furthermore, the fact that ˆ tends to 1 in W˛;ˇ yields

8z 2 W˛;ˇ W <.z
F.log� z// > 0:

Writing

g.�1/.w/ D w C
1X

nD0

bn

wn
;
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we obtain the full asymptotic expansion

ˆ.z/ D a
� 1

d�1

d exp .z
F.log� z//C
1X

nD0
bna

n
d�1

d exp .�nz
F.log� z// (5.2)

valid for z 2 W˛;ˇ . This derivation is the content of [9, Theorem 2.1].
Taking the logarithm of (5.1) and using the fact thatˆ.z/ D zCO.z2/ for z ! 0,

we obtain

log g.z/ D
Z

J . p/
log.z � x/ d�.x/ 
 � 1

d � 1
log ad C z
F.log� z/C O.z2
/ (5.3)

for z ! 0 in W˛;ˇ . On the other hand, taking the logarithm of (5.2), we get

logˆ.z/ D � 1

d � 1 log ad C z
F.log� z/C O.exp.�z
F.log� z/// (5.4)

for z ! 1 again in W˛;ˇ . This means that the same periodic function F can be
observed in the asymptotic behaviour of log g for z ! 0 and logˆ for z ! 1. The
function F encodes properties of the Julia set J . p/ in the following sense.

Theorem 5.1 ([9, Theorem 2.2]) The periodic function F is constant, if and only
if the polynomial is either linearly conjugate to zd or to the Chebyshev polynomial
of the first kind Td.z/. In the first case the Julia set J . p/ is a circle, in the second
case the Julia set J . p/ is a closed interval.

Remark 1 It is known from [17] that the circle and the interval are the only cases
of smooth Julia sets; these occur precisely for the polynomials described in the
Theorem.

6 Fractal Zeta Functions

We now return to the study of the spectrum of the Laplacian 4 on a fractal admitting
spectral decimation with the polynomial p in the sense of Definition 1.2. In this
case the Julia set J . p/ is contained in the negative real axis, which implies that

 D log� d � 1

2
by [9, Theorem 4.1]. The Poincaré function ˆ is thus an entire

function of order 
 � 1
2
. Here, the case 
 D 1

2
can only occur, if J . p/ is an

interval, or equivalently p is a Chebyshev polynomial. In the context of fractals
with spectral decimation, this occurs, if the fractal is a compact interval viewed as
a self-similar fractal. If this case is ruled out, we have 
 < 1

2
. Functions of order

< 1
2

are unbounded on every ray (see [7]). Furthermore, this together with the fact
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that ˆ attains values in J . p/ D K. p/ only for negative real arguments yields that

lim
z!1

z2W��;�

ˆ.z/ D 1: (6.1)

Especially, this implies that limx!C1ˆ.x/ D 1 and thus (5.2) holds for z ! C1
along the positive real axis.

Let ��`.w/ (` D 1; 2 : : :) denote the solutions of ˆ.z/ D w; for w D 0, we set
�0.0/ D 0 and �`.0/ ¤ 0 for ` D 1; 2; : : :. Define

ˆ0.z/ D 1

z
ˆ.z/ and ˆw.z/ D 1 � 1

w
ˆ.z/:

Then we have the following Hadamard product expansion

ˆw.z/ D
1Y
`D1

�
1C z

�`.w/



: (6.2)

Taking the Mellin transform of the logarithm of (6.2) yields

Mw.s/ D
Z 1

0

log.ˆw.x//x
s�1 dx D �

s sin�s

1X
`D1

�`.w/
s (6.3)

for �1 < <.s/ < �
. The left inequality comes from the fact that log.ˆw.x// D
O.x/ for x ! 0, whereas the right inequality comes from the behaviour of ˆ for
x ! 1 given in (5.2): log.ˆw.x// D O.x
/.

The functions

�ˆ;w.s/ D
1X
`D1

�`.w/
�s (6.4)

will be used to derive an expression for �4 later. In order to obtain an analytic
continuation of �4 to the whole complex plane, we will need analytic continuations
of the functions �ˆ;w. We will follow the lines of [11]; similar, but slightly different
ideas were used in [10].

We consider the function

‰w.z/ D p.ˆ.z//� w

ad.ˆ.z/ � w/
D ˆw.�z/

ad.�w/d�1ˆw.z/d

for w ¤ 0. Taking the logarithm, we obtain

log‰w.z/ D logˆw.�z/ � d logˆw.z/ � log ad � .d � 1/ log.�w/I
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this function tends to 0 like exp.�cz
/ for z ! C1. Taking the Mellin transform
and using standard methods to obtain analytic continuations of such transforms, we
obtain (we indicate the region of validity of the equation in every line)

.��s � d/Mw.s/

D
Z 1

0

.logˆw.�x/ � d logˆw.x// xs�1 dx .for � 1 < <s < �
/

D
Z 1

0

.logˆw.�x/ � d logˆw.x// xs�1 dx � .log ad C .d � 1/ log.�w//
1

s

C
Z 1

1

.logˆw.�x/ � d logˆw.x/ � log ad � .d � 1/ log.�w// xs�1 dx .for <s > �1/

D
Z 1

0

log.‰w.x//x
s�1 dx .for <s > 0/:

The above computation shows that Mw.s/ has a simple pole at s D 0 with residue

Res
sD0 Mw.s/ D log ad

d � 1 C log.�w/:

Furthermore, it provides an analytic continuation of Mw.s/ to the half-plane <s > 0;
the second line also gives the analytic continuation to the half-plane <s > �1.
Using (6.3) gives an analytic continuation of �ˆ;w.s/ to the half-plane <s < 0

�ˆ;w.s/ D s sin�s

�.�s � d/

Z 1

0

log.‰w.x//x
�s�1 dx:

From this we derive the existence of “trivial zeros” �ˆ;w.�m/ D 0 (for m 2 N0).
Notice, that the simple pole of Mw.s/ at s D 0 is cancelled by the double zero of
s sin�s. Observing this, we also obtain

� 0̂
;w.0/ D � log ad

d � 1
� log.�w/:

Similar computations yield the analytic continuation of �ˆ;0 to the whole complex
plane; this function has “trivial” zeros �ˆ;0.�m/ D 0 (for m 2 N) and

�ˆ;0.0/ D 1; � 0̂
;0.0/ D � log ad

d � 1
:

Simple poles of �ˆ;w.s/ can occur only at the solutions of �s D d, namely s D

 C 2k�i= log� (k 2 Z). These poles are in correspondence with the growth order
of ˆ, which implies that there is a pole at s D 
. The other poles for k ¤ 0 only
occur, if the periodic function F in (5.2) is not constant. Theorem 5.1 characterises
the polynomials, for which the periodic function F is constant.
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We now use the assumption that the multiplicities ˇm.w/ of the eigenvalues
�m�`.w/ have a rational generating function (see Definition 1.2). Let

Bw.x/ D
1X

mD0
ˇm.w/x

m:

Then using our knowledge on the eigenvalues of 4 together with our assumptions
from the definition of spectral decimation, we obtain

�4.s/ D
X
w2A

Bw.�
�s/�ˆ;w.s/: (6.5)

This expression provides the analytic continuation of the spectral zeta function to
the whole complex plane.

If 
 < 1
2
dS then all the functions �ˆ;w.s/ are holomorphic in a half-plane <s >

1
2
dS � " for some " > 0. On the other hand, �4.s/ has a simple pole at s D 1

2
dS

by the fact that N4.x/ � x
1
2 dS (see [23]). Thus at least one of the rational functions

Bw.x/ has to have a pole at x D �� 1
2 dS . Since all the rational functions Bw have

positive power series coefficients (the multiplicities of the eigenvalues), there can
be no cancellation of poles, which implies that the functions Bw can have at most
a simple pole at x D �� 1

2 dS . Let W denote the set of all w 2 A, for which the
corresponding function Bw has a (simple) pole at x D �� 1

2 dS . Then we write the
Laurent expansion of Bw.x/ around x D �� 1

2 dS in the form

Bw.x/ D c1.w/

1 � x�
1
2 dS

C � � � :

This implies that c1.w/ > 0 by the combinatorial interpretation of Bw. Then the
Dirichlet series

�.s/ D
X
w2W

c1.w/�ˆ;w.s/

has positive coefficients. By [27, Theorem 9.5,p. 184] this implies that �. 1
2
dS C

ik�/ D 0 cannot hold for fixed � > 0 and all k 2 Z n f0g. Thus the function

X
w2W

Bw.�
�s/�ˆ;w.s/

has a simple pole at s D 1
2
dS and at least two non-real poles on the line <s D 1

2
dS.

The remaining summands in (6.5) do not have poles on the line <s D 1
2
dS; thus the

function �4.s/ has at least two non-real poles on this line.
As a conclusion, we have reached the following theorem (see [10, Theorem 9]).
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Theorem 6.1 Let ZG be a p. c. f. self-similar compact fractal, whose Laplace
operator 4 admits spectral decimation in the sense of Definition 1.2 with a
polynomial of degree d. Then the Dirichlet generating function of the eigenvalues
of 4

�4.s/ D
X

� 4 uD�u

1

�s
;

has a meromorphic continuation to the whole complex plane with poles contained
in a finite union of sets f
k C 2�im� j m 2 Zg, where � D 1

log� and � is the

parameter coming from spectral decimation. There is a simple pole at s D 1
2
dS. If

log� d < 1
2
dS then �4.s/ has at least two non-real poles on the line <s D 1

2
dS.

Remark 2 The case of G D Œ0; 1� which gives the Riemann zeta function and has
log� d D 1

2
dS shows that the condition log� d < 1

2
dS is needed for the last assertion.

The case log� d > 1
2
dS cannot occur.

7 Consequences and a Conjecture

We introduce one further notion in connection with the diffusion on a fractal, namely
the trace of the heat operator

P.t/ D Tr.At/ D Tr.et 4/ D
X

� 4 uD�u

e��t: (7.1)

In the classical case of a Riemannian manifold studied by H. Weyl [51], the
behaviour of this function for t ! 0C was used to prove asymptotic relations
for the eigenvalue counting function N4. Furthermore, precise information on the
asymptotic behaviour of P.t/ for t ! 0C can be used to prove that the spectral
zeta function of 4 on a Riemannian manifold has an analytic continuation to
the whole complex plane (see [35, 40]). In the case of a fractal with spectral
decimation, we proceed in the opposite direction; starting from precise information
on the eigenvalues we derive the existence of an analytic continuation of �4 to
the whole complex plane with the location of all poles, from which we conclude
asymptotic information about N4 and P.t/. We sum this up by citing the following
theorem.

Theorem 7.1 ([10, Theorem 10]) Let ZG be a p. c. f. self-similar compact fractal,
whose Laplace operator 4 admits spectral decimation in the sense of Definition 1.2.
Then the following are equivalent:
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1. �4.s/ has at least two non-real poles in the set 1
2
dS C 2� i

log�Z,

2. The limit limx!1 x� 1
2 dS N4.x/ does not exist, where N4.x/ denotes the eigen-

value counting function (3.6),
3. The limit limt!0C P.t/t

1
2 dS does not exist, where P.t/ denotes the trace of the heat

kernel (7.1).

Remark 3 Recently, N. Kajino [20–22] could prove an asymptotic expansion of the
trace of the heat kernel on a p. c. f. fractal and also on the generalised Sierpiński
carpet

P.t/ D
nX

kD0
t�˛k Gk.log t/C O .exp .�ct�� // fort ! 0C

for certain exponents ˛0 > ˛1 > � � � > ˛n � 0, periodic continuous functions Gk

(k D 0; : : : ; n), and c; � > 0. This result was obtained without precise knowledge of
the eigenvalues and properties of the zeta function. This was used in [44] to obtain
an analytic continuation of the zeta function �4 to the whole complex plane in these
cases.

Remark 4 Theorems 6.1 and 7.1 together show that the limit limx!1 x� 1
2 dS N4.x/

does not exist for fractals admitting spectral decimation with a polynomial of degree
d and log� d < 1

2
dS.

More precisely, in the case that log� d < 1
2
dS we obtain

N4.x/ D x
1
2 dS Q.log� x/C o



x
1
2 dS

�
forx ! 1

and

P.t/ D t� 1
2 dS R.log� t/C O



t� 1

2 dSC"� fort ! 0C

for some " > 0 and for continuous periodic functions with period 1, Q and R
(see [10, 11]).

Remark 5 In [18] it was shown that there exist gaps in the spectrum of the
Laplacian if and only if the Julia set of the spectral decimation function R is
totally disconnected. Spectral gaps (in the sense that there exists a subsequence,
along which the quotient of consecutive eigenvalues stays bounded away from 1)
yields uniform convergence of the Fourier series of continuous functions along the
subsequence mentioned above (see [46]).

In the context of fractals the polynomials occurring for spectral decimation have
a negative real Julia set J . p/ (which is a Cantor set, except for the case when J . p/
is an interval; this last case only occurs, if the underlying fractal itself is an interval).
Nevertheless, the Poincaré and Böttcher functions can be defined and studied for any
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polynomial p of degree d � 2. This was done in [9]. There the asymptotic behaviour
of the zero counting function of ˆ

Nˆ.x/ D
X
j�j<x
ˆ.�/D0

1 (7.2)

could be related to the behaviour of the harmonic measure of small balls around the
origin, namely

Theorem 7.2 ([9, Theorem 5.2]) Letˆ be the entire solution of (3.3), and let 
 D
log� d. Then the limit

lim
x!1 x�
Nˆ.x/ (7.3)

exists, if and only if the limit

lim
t!0

t�
�.B.0; t// (7.4)

exists.

We repeat the following conjecture about the existence of the limits (7.3)
and (7.4)

Conjecture 7.3 ([9]) The limits (7.3) and (7.4) exist, if and only if the polynomial
p is either linearly conjugate to a pure power or a Chebyshev polynomial of the first
kind.
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(ii) Study of the spectra of the Laplacian on Schreier graphs of self-similar groups
and on the associated fractals by appropriate limiting processes.

The presentation will be focused on a few representative examples for which
the “entire program” (going from a self-similar group to its associated self-similar
objects and calculation/description of their spectra) is successfully implemented,
such as the first Grigorchuk group1 G, the lamplighter group L2, the 3-peg Hanoi
Towers group H, and the tangled odometers group T , but also some examples
with only partial implementation, such as the Basilica group B and the iterated
monodromy group IMG

�
z2 C i

�
.

2 Self-Similar Groups and Their Schreier Graphs

2.1 Schreier Graphs

Let G be a finitely generated group, generated by a finite symmetric set S (S being
symmetric means S D S�1) acting on a set Y (all actions in this survey will be left
actions). The Schreier graph of the action of G on Y with respect to S is the oriented
graph �.G; S;Y/ defined as follows. The vertex set of the Schreier graph is Y and
the edge set is S � Y. For s 2 S and y 2 Y, the edge .s; y/ connects y to sy. When the
graph is drawn, the edge .s; y/ is usually labeled just by s, since its orientation from
y to sy uniquely indicates the correct “full label” .s; y/. In other words, one usually

draws y � s���! � sy instead of y � .s;y/���! � sy.

The Schreier graph �.G; S;Y/ is connected if and only if the action is transitive
(some authors define Schreier graphs only in the transitive/connected case).

Example 1 Let Y D f1; 2; 3; 4g and D4 be the subgroup of the symmetric group
on Y (with its usual left action) generated by S D h�; N�; �i, where � is the 4-cycle
� D .1234/, N� is its inverse N� D ��1 D .1432/, and � is the transposition � D .24/

(note that one can interpret D4 as the dihedral group of isometries of a square with
vertices 1,2,3,4; � is the rotation by �=2 and � the mirror symmetry with respect to
the line 13). The Schreier graph �.D4; S;Y/ is drawn on the left in Fig. 1.

The edge .s; y/ connects y to sy and the edge .s�1; sy/ goes in the opposite
direction and connects sy to y. In order to avoid clutter in the drawings, for each
pair of mutually inverse generators s; s�1 2 S that are not involutions, one usually
chooses one of them, say s, and only draws the oriented edges labeled by s, while
all edges labeled by s�1 are suppressed. Further, for an involution s 2 S and y 2 Y,
only one unoriented edge is drawn between y and sy (see the graph on the right in
Fig. 1 and note that � is not an involution, while � is).

1The second and the third author insist on the use of this terminology.
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Fig. 1 The Schreier graph �.D4; S; Y/, and its simplified drawing

2.2 Random Walk Operators on Schreier Graphs

The Schreier graph � D �.G; S;Y/ is regular with every vertex having both the out-
degree and the in-degree equal to jSj. The random walk operator on � (also known
as the Markov operator) is the operator

M W `2.�/ ! `2.�/

.Mf /.y/ D 1

jSj
X
s2S

f .sy/:

where `2.�/ D `2.Y/ is the Hilbert space of square summable functions on Y

`2.�/ D `2.Y/ D
8
<
: f W Y ! R j

X
y2Y

j f .y/j2 < 1
9
=
;:

Thus, given a function f W Y ! R on the vertex set Y, the operator M produces an
updated function Mf W Y ! R by replacing the value at each vertex y by the average
of the f -values at the neighbors of y in the Schreier graph.

For x 2 R, let M.x/ be the operator M.x/ D M � xI. The spectrum Sp.M/ of
M is the set of values of x for which the operator M.x/ from the pencil of operators
fM.x/ j x 2 Rg is not invertible. Note that the operator M is bounded (in fact
jjMjj � 1) and, since S is symmetric, it is self-adjoint. Therefore its spectrum is a
closed subset of the interval Œ�1; 1�. When Y is finite, the spectrum Sp.M/ is just the
set of eigenvalues of the operator M, but in general the spectrum only contains the set
of eigenvalues of M. Recall that � is an eigenvalue of M if and only if Mf D �f , for
some nonzero function f 2 `2.�/; such a nonzero function is called an eigenfunction
of M.

Let G D hSi act on two sets Y and QY and ı W QY ! Y be a surjective G-equivariant
map, that is, a surjective function ı such that gı.Qy/ D ı.gQy/, for g 2 G and Qy 2
QY (equivalently, sı.Qy/ D ı.sQy/, for s 2 S and Qy 2 QY). On the level of Schreier
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graphs ı induces a surjective graph homomorphism from �QY D �.G; S; QY/ to �Y D
�.G; S;Y/ preserving edge labels and sending the edge Qy s! sQy to the edge ı.Qy/ s!
sı.Qy/. We say that �QY is a covering of �Y and ı is a covering map.

Assume that both QY and Y are finite. For every function f 2 `2.�Y /, define the
lift Qf 2 `2.�QY/ by Qf .Qy/ D f .ı.Qy//, for Qy 2 QY. For all f 2 `2.�Y/, we have

.MQY Qf /.Qy/ D .MYf /.ı.Qy//:

If f is an eigenfunction of MY with eigenvalue �, then Qf is an eigenfunction of
MQY with the same eigenvalue. Therefore, whenever there exists a surjective G-
equivariant map ı W QY ! Y between two finite sets QY and Y, the spectrum of MY is
included in the spectrum of MQY , that is, Sp.MY/ � Sp.MQY/.

Let fYng1
nD0 be a sequence of finite G-sets (sets with a G-action defined on

them), fın W YnC1 ! Yng1
nD0 a sequence of surjective G-equivariant maps, Y be

a G-set, and f Qın W Y ! Yng1
nD0 a sequence of surjective G-equivariant maps such

that ın
QınC1 D Qın, for n � 0. Denote �n D �.G; S;Yn/, � D �.G; S;Y/, and the

corresponding random walk operators by Mn and M, respectively. The sequences of
equivariant maps fıng and f Qıng induce graph coverings between the corresponding
Schreier graphs such that the following diagram commutes

0

0

1

0 1 2

2

1 2

(2.1)

and we obtain an increasing sequence fSp.Mn/g1
nD0 of finite sets, each consisting

of the eigenvalues of Mn. We are interested in situations in which this sequence is
sufficient to determine the spectrum of M in the sense that

1[
nD0

Sp.Mn/ D Sp.M/:

Example 2 This example is relatively straightforward, but it illustrates the setup we
introduced above. Consider the infinite dihedral group D1 D ha; bi, generated by
two involutions a and b. We may think of it as the group of isometries of the set of
integer points on the real line, with the action of a and b given by a.n/ D 1 � n
and b.n/ D �n. Let Y D Z and � be the Schreier graph � D �.D1; S;Y/, drawn
in the bottom row in Fig. 2. For n � 0, let Yn D f0;˙1; : : : ;˙2n�1 � 1; 2n�1g.
Note that Yn is a set of unique representatives of the residue classes modulo 2n,
for n � 0: Thus we may think of Yn as Z=2n

Z. The action of D1 on Z induces a
well defined action on the set of residue classes Z=2n

Z, for n � 0, and we denote
�n D �.D1; S;Yn/: The sequence of Schreier graphs f�ng is indicated in the top
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Fig. 2 The Schreier graphs �0; �1; �2; : : : (top row) and � (bottom row) for the infinite dihedral
group D1 D ha; bi

row in Fig. 2. For n � 0, the maps ın W YnC1 ! Yn and Qın W Y ! Yn, given by
ın.y/ D mod.y; 2n/, for y 2 Z=2nC1

Z, and Qın.y/ D mod.y; 2n/, for y 2 Z, where
mod.y; 2n/ is the remainder obtained when y is divided by 2n, are D1-equivariant.

For n � 0, Sp.Mn/ consists of 2n distinct eigenvalues of multiplicity 1

Sp.Mn/ D f1g [ 1

2

n�1[
iD0

f �i.0/ D f1; 0g [ 1

2

8̂
ˆ̂̂<
ˆ̂̂̂
:

˙
r
2˙

q
2˙ � � � ˙ p

2
„ ƒ‚ …

i plus-minus signs

j iD1;:::;n�1

9>>>>=
>>>>;
;

where f .x/ D x2 � 2. On the other hand, the spectrum of the doubly infinite path �
is Œ�1; 1� and we have

Sp.M/ D Œ�1; 1� D 1

2

1[
nD0

f �n.0/ D
1[

nD0
Sp.Mn/:

2.3 Adjacency Operator on Schreier Graphs and Schreier
Spectrum

For the Schreier graph � D �.G; S;Y/ of the action of G D hSi on Y, the adjacency
operator on � is the operator A W `2.�/ ! `2.�/ defined by

.Af /.y/ D
X
s2S

f .sy/:

The random walk operator M D 1
jSj A is the normalized version of the adjacency

operator A and their spectra are just multiples of each other. Denote the spectrum of
A by Sp.�/ and call it the Schreier spectrum of � . This is the so called adjacency
spectrum, but we want to emphasize the scope of all our considerations, namely,
adjacency spectra of Schreier graphs of finitely generated groups. For the purposes
of our calculations, the Schreier spectra turn out to be the most convenient, but it is
easy to switch to their Markovian or Laplacian versions when needed (the Laplacian
operator is the operator L D I � M, where I is the identity operator).
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2.4 Rooted Regular Trees and Self-Similar Groups

We introduce the class of self-similar groups acting on regular rooted trees,
providing a framework for examples like Example 2, and a source of other examples.

Let X be a finite set, usually called the alphabet, of size k. The set of all finite
words over X is denoted by X�. The set X� can be naturally equipped with the
structure of a rooted k-regular tree as follows. The vertices of the tree are the words
in X�, the root is the empty word 	, the level n is the set Xn of words of length n
over X, and the children of each vertex u 2 X� are the k vertices of the form ux, for
x 2 X. We use X� to denote the set of finite words over X, the set of vertices of the
rooted tree we just described, as well as the tree itself.

The group Aut.X�/ of all automorphisms of the rooted k-regular tree X�
preserves the root and all levels of the tree. Every automorphism g 2 Aut.X�/
induces a permutation ˛g of X, defined by ˛g.x/ D g.x/, called the root permutation
of g. It represents the action of g at the first letter in each word. For every
automorphism g 2 Aut.X�/ and every vertex u 2 X�, there exists a unique tree
automorphism of X�, denoted by gu, such that, for all words w 2 X�,

g.uw/ D g.u/gu.w/:

The automorphism gu is called the section of g at u: It represents the action of g on
the tails of words that start with u. Every automorphism g is uniquely determined
by its root permutation ˛g and the k sections at the first level gx, for x 2 X. Indeed,
for every x 2 X and w 2 X� we have

g.xw/ D ˛g.x/gx.w/: (2.2)

When X D f0; 1; : : : ; k � 1g, a succinct representation, called wreath recursion,
of the automorphism g 2 Aut.X�/, describing its root permutation and its first level
sections is given by

g D ˛g.g0; g1; : : : ; gk�1/: (2.3)

In addition of being short and clear, it has many other advantages, not the
least of which is that it emphasizes the fact that Aut.X�/ is isomorphic to the
semidirect product Sym.X/ Ë .Aut.X�//X , that is, to the permutational wreath
product Sym.X/ oX Aut.X�/, where Sym.X/ is the group of all permutations of X.

A set S � Aut.X�/ of tree automorphisms is self-similar if it is closed under
taking sections, that is, every section of every element of S is itself in the set S.
Thus, for every word u, the action of every automorphism s 2 S on the tails of
words that start with u looks exactly like the action of some element of S. Note that
for a set S to be self-similar it is sufficient that it contains the first level sections of
all of its elements. Indeed, this is because guv D .gu/v , for all words u; v 2 X�. A
group G � Aut.X�/ of tree automorphisms is self-similar if it is self-similar as a
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set. Every group generated by a self-similar set is itself self-similar. This is because
“sections of the product are products of sections” and “sections of the inverse are
inverses of sections”. To be precise, for all tree automorphisms g and h and all words
u 2 X�,

.gh/u D gh.u/hu and
�
g�1�

u
D �

gg�1.u/

��1

The observation that groups generated by self-similar sets are themselves self-
similar enables one to easily construct many examples of finitely generated self-
similar groups, as demonstrated in the next subsection.

Remark 1 It should be clarified that when we speak of a subset S or a subgroup G of
Aut.X�/ as a self-similar set, we do not use this terminology in the, by now widely
accepted and used, sense of Hutchinson [28]. It would be more precise to say, and it
is often said, that the action is self-similar, that is, the action is adapted to the self-
similar nature of the rooted tree and its boundary, the Cantor set. Self-similar sets
in the sense of Hutchinson do play a role here, as such sets appear as limit spaces
of contracting self-similar groups (see Sect. 3) and our considerations lead to results
on Laplacians on such self-similar sets (see Sect. 7).

2.5 Automaton Groups

An automaton, in our context, is any finite self-similar set S of tree automorphisms.
The group G.S/ D hSi, called the automaton group over S (or of S), is a finitely
generated self-similar group. A simple way to define an automaton is by defining
the action of each of its elements recursively as in (2.2).

Example 3 Consider the binary rooted tree based on the alphabet X D f0; 1g�:
Define a finite self-similar set S D fa; bg of tree automorphisms recursively by

a.0u/ D 1a.u/ b.0u/ D 0b.u/;

a.1u/ D 0b.u/ b.1u/ D 1a.u/;

for every word u 2 X�, and a.	/ D b.	/ D 	. Evidently, the root permutations and
the sections of a and b are given in the following table.

s ˛s s0 s1
a .01/ a b
b ./ b a

where ./ and .01/ denote, respectively, the trivial and the nontrivial permutation of
X D f0; 1g. Calculating the action of any element of S on any word in X� by using
the recursive definition is straightforward. For instance,

a.10101/D 0b.0101/D 00b.101/D 001a.01/D 0011a.1/ D 00110:
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One may think of the elements of an automaton S as the states of a certain type
of transducer, a so-called Mealy machine. The recursive definition 2.2 of the action
of s 2 S is interpreted as follows. To calculate the action of the state s on some input
word xu starting with x, the machine first rewrites x into ˛s.x/, changes its state to sx,
and lets the new state handle the rest of the input u in the same manner. It reads the
first letter of u, rewrites it appropriately, then moves to an appropriate state, which
then handles the rest of the input, and so on, until the entire input word is read. It
is common to represent the automaton S by an oriented labeled graph as follows.
The vertex set is the set of states S, and each pair of a state s 2 S and a letter x 2 X
determines a directed edge from s to sx labeled by xj˛s.x/ (equivalently, by xjs.x/).
Example 4 Four examples of finite self-similar sets of tree automorphisms are given
in Fig. 3. The self-similar groups defined by these sets are the lamplighter group
L2 D Z Ë .˚ZZ=2Z/ (top left), the dihedral group D1 (top right), the binary
odometer group Z (bottom left), and the tangled odometers group T (bottom right).
In the last three automata the state e represents the trivial automorphism of the tree,
which does not change any input word. Thus, we use 	 for the empty word, that is,
the root of X�, ./ for the trivial permutation of X, and e for the trivial automorphism
of the tree X�. To avoid clutter, in the automaton for Z we used the convention that
the same edge may be used with several labels, while in the automaton for T the
convention that the loops associated to the trivial state e are not drawn. Note that the
first three automata are defined over the binary alphabet X D f0; 1g while the last
one is defined over the ternary alphabet X D f0; 1; 2g; hence that group acts on the
ternary rooted tree.

One can easily switch back and forth between the various representations of the
given automata. For instance, the recursive definition of the action of the dihedral
group D1 D ha; bi on the binary rooted tree is given by

a.0u/ D 1u; b.0u/ D 0a.u/;

a.1u/ D 0u; b.1u/ D 1b.u/;

a bL2 :
0|1

1|0

0|0
1|1

e a bD∞ :

0|0

1|1

0|1

1|0
0|0

1|1

e aZ :

0|0
1|1

0|1

1|0
a e bT :

1|0 0|1

2|2

0|2

1|1

2|0

Fig. 3 Automata defining L2, D1, Z, and T
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Tabular representation of the self-similar set defining T and the wreath recursion
describing the same set are given on the left and on the right, respectively in

s ˛s s0 s1 s2
a .01/ e a e
b .02/ e e b

a D .01/.e; a; e/
b D .02/.e; e; b/

(2.4)

It is clear that defining a finitely generated self-similar group is an easy task,
in particular for automaton groups (note that not all finitely generated self-similar
groups are automaton groups). One can methodically construct, one by one, all
automaton groups by constructing all automata with a given number of states over
an alphabet of a given size. However, it is not an easy task to recognize the group
that is generated by a given automaton. A full classification of all automaton groups
defined by automata with given number of states m and size of the alphabet k has
been achieved only for m D k D 2 [15], while for the next smallest case m D 3 and
k D 2 only a partial classification was obtained [6].

2.6 The Boundary Action and the Convergence �n ! �

Let G D hSi, with S symmetric and finite, be a finitely generated subgroup of
Aut.X�/ and, for n � 0, let �n D �.G; S;Xn/ be the corresponding Schreier graph
of the action on level n. The map ın W XnC1 ! Xn given by deleting the last letter in
each word is G-equivariant and induces a sequence of coverings of degree jXj

20 1

0 1 2

Under the covering ın each of the jXj edges ux � s���! � s.u/su.x/ in �nC1, for

x 2 X, is mapped to the edge u � s���! � s.u/ in �n.

Example 5 The first Grigorchuk group G is the self-similar group G D ha; b; c; di
generated by four involutions a, b, c, and d acting on the binary tree and given by
the wreath recursion

a D .01/.e; e/; b D ./.a; c/; c D ./.a; d/; d D ./.e; b/:

The Schreier graphs of its action on levels 0,1,2, and 3, are given in Fig. 4.
This group was constructed by the first author in [17] as a particularly simple
example of a finitely generated, infinite 2-group. It was the first example of a
group of intermediate growth and the first example of an amenable group that is
not elementary amenable [18] (we will get back to this aspect later).
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Fig. 4 The Schreier graphs �0, �1 , �2 (top row), and �3 (bottom row) for the first Grigorchuk
group G
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Fig. 5 The Schreier graphs �0, �1, �2 (top row), and �3 (bottom row) for the Basilica group B

Example 6 The Basilica group is the self-similar group B D ha; bi generated by the
binary tree automorphisms a and b given by the wreath recursion

a D .01/.e; b/; b D ./.e; a/:

The Schreier graphs of its action on levels 0,1,2, and 3, are given in Fig. 5.
The group B was first considered in [26] and [27] where it was proved that it is a

weakly branch, torsion free group which is not sub-exponentially amenable. It was
later proved by Bartholdi and Virág [5], using speed estimates for random walks,
that this group is amenable, thus providing the first example of an amenable group
that is not sub-exponentially amenable.

Example 7 The Hanoi Towers group is the self-similar group H D ha; b; ci
generated by three involutions acting on the ternary tree given by the wreath
recursion

a D .01/.e; e; a/; b D .02/.e; b; e/; c D .12/.c; e; e/:
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Fig. 6 The Schreier graphs �0, �1, and �2 for the Hanoi Towers group H

The Schreier graphs of its action on levels 0,1, and 2 are given in Fig. 6.
The group H was introduced in [21]. It models the well known Hanoi Towers

game on three pegs in such a way that the Schreier graph �n models the game for
n disks. It is the first example of a finitely generated branch group that admits a
surjective homomorphism onto the infinite dihedral group D1 (note that branch
groups can only have virtually abelian proper quotients [19], and any finitely
generated branch group that admits a surjective homomorphism to an infinite
virtually abelian group must map onto Z or onto D1 [8]).

The boundary X! of the tree X� is the space of ends of the tree X�. More
concretely, this is the space of all infinite rays

X! D f x1x2x3 : : : j x1; x2; x3; � � � 2 X g;

that is, infinite paths without backtracking that start at the root. It has the structure of
a metric space (in fact, ultrametric space) with metric defined by d.�; �/ D 1=2j�^�j,
where �^� denotes the longest common prefix of the infinite rays � and �, and j�^�j
denotes its length. Thus, the longer the common prefix the closer the rays are. The
induced topology is the product topology on

Q1
iD1 X, where the finite space X is

given the discrete metric, implying that, topologically, the boundary X! is a Cantor
set, and hence compact.

The action of any group of tree automorphisms G � Aut.X�/ naturally induces
an action on the boundary of the tree X�. The action of any automorphism g 2
Aut.X�/ on X! is given by (2.2) with the understanding that w in that formula now
applies to rays in X! , that is, to right-infinite words over X. If, for n � 0, we denote
by Qın W X! ! Xn the map that deletes the tail of any ray beyond the first n-letters
we obtain a sequence of G-equivariant maps. Thus we obtain the following diagram
of G-equivariant maps.
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0

0

1

0 1 2

2

1 2

(2.5)

Even if G D hSi acts level transitively on the tree X� (transitively on each
level Xn of the tree) and all Schreier graphs �n D �.G; S;Xn/ are connected,
the Schreier graph �.G; S;X!/ of the action of G on the tree boundary is not
connected. Indeed, since this graph is uncountable and the group G is countable,
each orbit of the action on the boundary is countable and there must be uncountably
many connected components (orbits) in the graph �.G; S;X!/. Picking a connected
component is equivalent to picking a point on the boundary that represents it, that
is, picking an infinite ray � D x1x2x3 � � � 2 X! . Choose such a ray � and let
� D �� D �.G; S;G�/ be the Schreier graph of the boundary action of G on the
orbit G� D fg.�/ j g 2 Gg. We call the Schreier graph � D �� the orbital Schreier
graph of G at �. It is a countable graph of degree jSj and, since the restrictions
of the maps Qın, for n � 0, to the orbit G� are G-equivariant, the induced maps
Qın W � ! �n are coverings. Therefore, we are precisely in the situation described by
the diagram (2.1). Moreover, we can now state a sufficient condition under which
the spectra of the sequence of finite graphs f�ng approximates the spectrum of � .

Theorem 2.1 (Bartholdi-Grigorchuk [3]) Let G D hSi � Aut.X�/ be a finitely
generated, self-similar, level-transitive group of automorphisms of the rooted tree
X� and let � 2 X! be a point on the tree boundary. For n � 0, let �n D �.G; S;Xn/

be the Schreier graph of the action of G on level n of the tree and let � D �� D
�.G; S;G�/ be the orbital Schreier graph of G at �. If the action of G on the orbit
G� is amenable, then

1[
nD0

Sp.�n/ D Sp.�/:

We recall the definition of an amenable action. The action of G on Y is amenable
if there exists a normalized, finitely additive, G-invariant measure � on all subsets
of Y, that is, there exists a function � W 2Y ! Œ0; 1� such that

• (Normalization) �.Y/ D 1,
• (Finite additivity) �.A t B/ D �.A/C �.B/, for disjoint subsets A;B � Y,
• (G-invariance) �.A/ D �.gA/, for g 2 G, A � Y.

For a finitely generated group G D hSi (with S finite and symmetric, as usual)
acting transitively on a set Y, the amenability of the action is equivalent to the
amenability of the Schreier graph � D �.G; S;Y/ of the action and one of the
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many equivalent ways to define/characterize the amenability of � is as follows. The
graph � is amenable if and only if

inf

� j@Fj
jFj j F finite and nonempty set of vertices of �

�
D 0;

where the boundary @F of the set F is the set of vertices in � that are not in F but
have a neighbor in F, that is, @F D f v 2 � j v 62 F and sv 2 F for some s 2 S g.

One sufficient condition for the amenability of the graph� is obtained by looking
at its growth. Let � be any connected graph of uniformly bounded degree. Choose
any vertex v0 2 � and, for n � 0, let �v0.n/ be the number of vertices in �
at combinatorial distance no greater than n from v0. If the growth of �v0.n/ is
subexponential (that is, lim supn!1 n

p
�v0 .n/ D 1), then � is an amenable graph.

By definition, a group G is amenable if its left regular action on itself is amenable.
In such a case, every action of G is amenable and Theorem 2.1 applies. The
class of amenable groups includes all finite and all solvable groups and is closed
under taking subgroups, homomorphic images, extensions, and directed unions. The
smallest class of groups that contains all finite and all abelian groups and is closed
under taking subgroups, homomorphic images, extensions, and directed unions is
known as the class of elementary amenable groups. There are amenable groups that
are not elementary amenable and many such examples came from the theory of
self-similar groups, starting with the first Grigorchuk group G. The amenability of
this group was proved by showing that it has subexponential (in fact intermediate,
between polynomial and exponential) growth [18]. Other examples of amenable
but not elementary amenable groups include Basilica group B [5], Hanoi Towers
group H, tangled odometers group T , and many other automaton groups. See [4]
and [1] for useful sufficient conditions for amenability of automaton groups based
on random walk considerations and the notion of activity growth introduced by
Sidki [41].

A large and interesting class of examples to which Theorem 2.1 applies is the
class of contracting self-similar groups.

Definition 2.2 Let G � Aut.X�/ be a self-similar group of automorphisms of the
rooted regular tree X�. The group G is said to be contracting if there exists a finite
set N � G such that, for every g 2 G, there exists n such that gv 2 N , for all words
v 2 X� of length at least n. The smallest set N satisfying this property is called the
nucleus of the group.

Since the growth of each orbital Schreier graph � of a finitely generated, self-
similar, contracting group is polynomial [3], such a graph � is amenable and,
therefore, its spectrum can be approximated by the spectra of the finite graphs in
the sequence f�ng, as in Theorem 2.1. Note that it is not known yet whether all
finitely generated contracting groups are amenable.
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3 Iterated Monodromy Groups

The content of this section is not necessary in order to follow the rest of the survey,
but it provides excellent examples, motivation, and context for our considerations.

3.1 Definition

Let M be a path connected and locally path connected topological space, and let
f W M1 ! M be a finite degree covering map, where M1 is a subset of M. The
main examples for us are post-critically finite complex rational functions. Namely,
a rational function f 2 C.z/ is said to be post-critically finite if the forward orbit
Ox D f f ın.x/gn�1 of every critical point x of f (seen as a self-map of the Riemann
sphere OC) is finite. Let P be the union of the forward orbits Ox, for all critical points.
Denote M D OC n P and M1 D f �1.M/. Then M1 � M and f W M1 ! M is a
finite degree covering map.

Let t 2 M, and consider the tree of preimages Tf whose set of vertices is the
disjoint union of the sets f �n.t/, where f �0.t/ D ftg. We connect every vertex v 2
f �n.t/ to the vertex f .v/ 2 f �.n�1/.t/. We then obtain a tree rooted at t.

If � is a loop in M starting and ending at t then, for every v 2 f �n.t/, there exists
a unique path �v starting at v such that f ın ı �v D � . Denote by �.v/ the end of
the path �v . Then v 7! �.v/ is an automorphism of the rooted tree Tf . We get in
this way an action (called the iterated monodromy action) of the fundamental group
�1.M; t/ on the rooted tree Tf . The quotient of the fundamental group by the kernel
of the action is called the iterated monodromy group of f , and is denoted IMG . f /.
In other words, IMG . f / is the group of all automorphisms of Tf that are equal to a
permutation of the form v 7! �.v/ for some loop � .

3.2 Computation of IMG . f/

Let X be a finite alphabet of size deg f , and let ƒ W X ! f �1.t/ be a bijection. For
every x 2 X, choose a path `.x/ starting at t and ending at ƒ.x/. Let � 2 �1.M; t/.
Denote by �x the path starting at ƒ.x/ such that f ı �x D � , and let ƒ.y/ be the end
of �x. Then the paths `.x/, �x, and `.y/�1 form a loop, which we will denote � jx (see
Fig. 7).

Proposition 3.1 (Nekrashevych [35]) Let X be an alphabet in a bijection ƒ W
X �! f �1.t/. Let `.x/, y, and � jx be as above. Then ƒ can be extended to an
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Fig. 7 Computation of IMG . f /

isomorphism of rooted treesƒ W X� �! Tf that conjugates the iterated monodromy
action of �1.M; t/ on Tf with the action on X� defined by the recursive rule:

�.xv/ D y� jx.v/:

In particular, IMG . f / is a self-similar group.

The self-similar action of IMG . f / on X� described in the last proposition is
called the standard action. It depends on the choice of the connecting paths `.x/, for
x 2 X, and the bijectionƒ W X ! f �1.t/. Changing the connecting paths amounts to
post-composition of the wreath recursion with an inner automorphism of the wreath
product Sym.X/ oX IMG . f /.

Example 8 (Basilica group B D IMG
�
z2 � 1�) The polynomial z2 � 1 is post-

critically finite with P D f0;�1;1g. The fundamental group of OC n P is generated
by two loops a; b going around the punctures 0 and �1, respectively. With an
appropriate choice of the connecting paths (see [35, Subsection 5.2.2.]), the wreath
recursion for IMG

�
z2 � 1

�
is exactly the same as the one in Example 6. Thus,

B D IMG
�
z2 � 1

�
.

Example 9 (Tangled odometers group T D IMG


� z3

2
C 3z

2

�
) The polynomial

f .z/ D �z3=2C 3z=2 has three critical points: 1, �1, and 1. All of them are fixed
points of f , hence P D f1;�1;1g, and the fundamental group of is generated by
loops around 1 and �1. The corresponding iterated monodromy group is defined by
the wreath recursion (2.4), and this is the tangled odometers group T .

Example 10 (Hanoi Towers group H D IMG



z2 � 16
27z

�
) The iterated monodromy

group of the rational function z2 � 16=.27z/ is conjugate in Aut.X�/ to the Hanoi
Towers group H (see [22]).

Example 11 (Dihedral group D1 D IMG
�
z2 � 2� and binary odometer group Z D

IMG
�
z2
�
) The iterated monodromy group of the polynomial z2 � 2 is the dihedral

group D1 and of the polynomial z2 is the binary odometer group Z (infinite cyclic
group) from Example 4.
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3.3 Limit Spaces of Contracting Self-Similar Groups

Suppose that G is a contracting self-similar group. Let X�! be the space of all left-
infinite sequences : : : x2x1 of elements of X with the direct product topology. We
say that two sequences : : : x2x1 and : : : y2y1 in X�! are asymptotically equivalent
if there exists a sequence fgkg1

kD1 of elements in G, taking a finite set of values,
such that gk.xk : : : x1/ D yk : : : y1, for all k � 1. It is easy to see that this is an
equivalence relation. The limit space of G is the quotient of the topological space
X�! by the asymptotic equivalence relation. It is always a metrizable space of finite
topological dimension (if G is contracting). Note that the asymptotic equivalence
relation is invariant with respect to the shift : : : x2x1 7! : : : x3x2. Consequently, the
shift induces a continuous self-map on the limit space of G. The obtained map is
called the limit dynamical system of the group G.

Theorem 3.2 (Nekrashevych [35]) Suppose that f is a post-critically finite com-
plex rational function. Then IMG . f / is a contracting self-similar group with respect
to any standard action. The limit dynamical system of IMG . f / is topologically
conjugate to the restriction of f onto its Julia set.

The Julia set of a complex rational function f can be defined as the closure of the

set of points c such that there exists n such that f n.c/ D c and
ˇ̌
ˇ d

dz f n.z/
ˇ̌
ˇ
zDc

ˇ̌
ˇ > 1.

The Julia sets of z 7! z2 � 1, z 7! � z3

2
C 3z

2
, and z 7! z2 � 16

27z are given in Fig. 8.
Theorem 3.2 provides context and explanation for the striking similarity between
the structure of the Schreier graphs of the Basilica group in Fig. 5 and the Basilica
fractal in Fig. 8, as well as between the structure of the Schreier graphs of the Hanoi
Towers group in Fig. 6 and the Sierpiński gasket in Fig. 8.

Fig. 8 Julia set of z 7! z2 � 1 (top left), z 7! � z3

2
C 3z

2
(bottom left), and z 7! z2 � 16

27z (right)
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4 Relation to Other Operators and Spectra

4.1 Hecke Type Operators

Let G D hSi, with S finite and symmetric, be a finitely generated group and � W
G ! U.W/ a unitary representation of G on a Hilbert space W . To each element
m D Pn

iD1 ˛i � gi of the group algebra CŒG� one can associate the operator

�.m/ D
nX

iD1
˛i�.gi/:

In particular, we consider the Hecke type operator H� on the Hilbert space W
associated to the group algebra element h D 1

jSj
X
s2S

s and given by

H� D 1

jSj
X
s2S

�.s/:

4.2 Koopman Representation and Hecke Type Operators

Let G be a countable group acting on a measure space .Y; �/ by measure-preserving
transformations. The Koopman representation � is the unitary representation of G
on the Hilbert space L2.Y; �/ given by

.�.g/f /.y/ D f .g�1y/

for f 2 L2.Y; �/ and y 2 Y.
Let G D hSi � Aut.X�/ be a finitely generated, self-similar, level-transitive

group of automorphisms of the rooted regular tree X�. Note that the boundary X! ,
which has the structure of a Cantor set

Q1
iD1 X, is a measure space with respect to the

product of uniform measures on X (for the cylindrical set uX�, we have �.uX�/ D
1

jXjjuj
). The group G acts on X! by measure-preserving transformations and we may

consider the Koopman representation� of G on L2.X!; �/ and the associated Hecke
type operator H� on L2.X!; �/, given by

H� D 1

jSj
X
s2S

�.s/:
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For every n � 0, we may also consider the representation �n on L2.Xn; �n/ on the
finite probability space Xn with uniform probability measure �n, corresponding to
level n of the tree, and the associated Hecke type operator

H�n D 1

jSj
X
s2S

�n.s/:

Denote Sp.H�/ D Sp.�/ and Sp.H�n/ D Sp.�n/, for n � 0.

Theorem 4.1 (Bartholdi-Grigorchuk [3]) Let G be a finitely generated, self-
similar, level-transitive group of automorphisms of the rooted regular tree X�. Then

Sp.�/ D
1[

nD0
Sp.�n/:

Note that, unlike in Theorem 2.1, no additional requirements (such as amenabil-
ity of the action) are needed in the last result.

4.3 Quasi-Regular Representations and Hecke Type Operators

It is well known that every transitive left action of a group G on any set Y is
equivalent to the action of G on the left coset space G=P, where P D StabG.y/
is the stabilizer of the point y 2 Y (since the action is transitive this point may be
chosen arbitrarily). In fact, Schreier graphs originate as the graphs of the action of
groups on their coset spaces.

For a countable group G and any subgroup P � G, the quasi-regular representa-
tion is the unitary representation 
G=P of G on the Hilbert space `2.G=P/ given by

.
G=P.g/f /.hP/ D f .g�1hP/;

for f 2 `2.G=P/ and h 2 G. When P is the trivial group we obtain the left regular
representation 
G defined by

.
G.g/f /.h/ D f .g�1h/;

for f 2 `2.G/ and h 2 G.
Let G D hSi � Aut.X�/ be a finitely generated, self-similar, level-transitive

group of automorphisms of the rooted regular tree X� and let � D x1x2x3 : : : be a
point on the boundary X! . For n � 0, the point x1x2 : : : xn is the unique point at level
n on the ray �. Let

Pn D StabG.x1x2 : : : xn/; for n � 0; and

P D StabG.�/:

Note that
T1

nD0 Pn D P� .
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Denote by 
n the quasi-regular representation 
G=Pn corresponding to the sub-
group Pn (thus, to the action of G on level n of the tree) and by 
� the representation

G=P� . We consider the Hecke type operator H
� on `2.G=P�/

H
� D 1

jSj
X
s2S


�.s/

and, for n � 0, the Hecke type operator

H
n D 1

jSj
X
s2S


n.s/:

Denote Sp.H
� / D Sp.
�/ and Sp.H
n/ D Sp.
n/, for n � 0.
The following result extends Theorem 2.1 and compares the Schreier spectrum

to the spectrum of the Hecke type operators H� and H
� associated to the Koopman
representation � and the quasi-regular representation 
� , respectively.

Theorem 4.2 (Bartholdi-Grigorchuk [3])

(a) Let G D hSi � Aut.X�/ be a finitely generated, self-similar, level-transitive
group of automorphisms of the rooted regular tree X� and let � 2 X! . Then, for
n � 0,

1

jSjSp.�n/ D Sp.
n/ D Sp.�n/

and

1

jSjSp.��/ D Sp.
�/ � Sp.�/:

(b) If the action of G on the orbit G� is amenable, then

1

jSj
1[

nD0
Sp.�n/ D 1

jSjSp.��/ D Sp.
�/ D Sp.�/:

(c) If the group P� is amenable, then

1

jSjSp.��/ D Sp.
�/ � Sp.
G/;

where 
G is the left-regular representation of G (and Sp.
G/ is the spectrum of
the corresponding Hecke type operator H
G ).

By part (b) in the last result, if the group G is amenable, then all orbital Schreier
graphs have the same spectrum (there is no dependence on the choice of the point
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� 2 X! , since the representation � does not depend on it). More generally, if all
orbital Schreier graphs �� , for � 2 X! are amenable, as it happens in the case of
contracting self-similar groups, then they all have the same spectrum. Examples
of nonamenable groups with amenable orbital Schreier graphs �� were provided
in [13] (thus, part (b) applies to some nonamenable groups).

We point out that part (b) is mistakenly stated in [3] under the assumption that
either the action of G on the orbit G� is amenable or P� is amenable. The assumption
that P� is amenable only applies in part (c), and this part of Theorem 4.2 follows
from [3, Proposition 3.5].

5 Method of Computation

The method of computation of spectra, introduced in [3] and further implemented
and refined in [14, 16, 23, 25] is based on the use of invariant sets of multidimen-
sional rational maps and the Schur complement. We will present the approach in the
next two subsections, one addressing the global picture, and the other the details.

5.1 A Global Preview of the Method

Let A be an operator for which we would like to calculate the spectrum. Include A
and the entire pencil fA.x/ j x 2 Cg with A.x/ D A � xI into a multidimensional
pencil of operators

f A.d/.x1; x2; : : : ; xd/ j x1; : : : ; xd 2 C g

such that

A.x/ D A.d/.x; x.0/2 ; x
.0/
3 ; : : : ; x

.0/
d /;

for some particular values x.0/2 ; x
.0/
3 ; : : : ; x

.0/
d 2 C. Define the joint spectrum by

Sp.A.d// D ˚
.x1; x2; : : : ; xd/ 2 C

d j A.d/.x1; x2; : : : ; xd/ is not invertible
�
:

Then

Sp.A/ D Sp.A.d//\ `;

where ` is the line

` D
n
.x1; x2; : : : ; xd/ 2 C

d j x2 D x.0/2 ; x3 D x.0/3 ; : : : ; xd D x.0/d

o

in the d-dimensional space C
d.
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In the case of a self-adjoint operator A, which is always our case, we can use the
field R instead of C.

The problem naturally splits into three steps:

(i) Determine a suitable higher-dimensional pencil containing fA.x/ j x 2 Rg.
(ii) Determine the joint spectrum Sp.A.d//.

(iii) Determine the intersection Sp.A/ D Sp.A.d//\ `.

In the examples that were successfully treated by this approach, the joint
spectrum Sp.A.d// is an invariant set under some rational d-dimensional map
F W Rd ! R

d. Thus, in practice, the step (ii) is understood as

(ii)0 Determine the joint spectrum Sp.A.d// as an F-invariant set for a suitable
d-dimensional rational map F W Rd ! R

d.

It may be somewhat counterintuitive why one should “increase the dimension
of the problem in order to solve it”, but the method has worked well in situations
were direct approaches have failed. What happens is that the joint spectrum in R

d,
corresponding to the d-fold pencil of operators, is sometimes well behaved and
easier to describe than the spectrum of the original 1-fold pencil. On the other hand,
even when appropriate A.d/ and F are found, the structure of the F-invariant set can
be quite complicated and have the shape of a “strange attractor”.

5.2 More Details

Let G D hSi be an automaton group generated by the elements of the finite and
symmetric self-similar set S. For n � 0, the representations �n and 
n are equivalent
and may be viewed as representations on the jXjn-dimensional vector space `2.Xn/.
The jXjn � jXjn adjacency matrix An (the rows and the columns are indexed by the
words over X of length n) of �n is given by

An D
X
s2S

�n.s/:

The jXjn � jXjn matrix �n.s/ is given recursively, for n > 0, by blocks of size
jXjn�1 � jXjn�1

�n.s/ D �
By;x.s/

�
y;x2X

(5.1)

corresponding to the decomposition

`2.Xn/ D
M
x2X

`2.xXn�1/;
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and the block By;x.s/ is given by

Byx.s/ D
(
�n�1.sx/; s.x/ D y

0; otherwise

For n D 0, the space `2.X0/ corresponding to the root of the tree is 1-dimensional
and �0.s/ is the 1 � 1 identity matrix �0.s/ D Œ1�. We call (5.1) the matrix wreath
recursion of S (it directly corresponds to the wreath recursion that defines the
generators s 2 S).

From now on, we use the notation sn D �n.s/.

Example 12 For the first Grigorchuk group G the matrix wreath recursion gives

a0 D b0 D c0 D d0 D Œ1�

and for n > 0,

an D
�
0 1

1 0

�
bn D

�
an�1 0

0 cn�1

�
cn D

�
an�1 0

0 dn�1

�
dn D

�
1 0

0 bn�1

�
;

where, in each case, 0 and 1 denote the zero matrix and the identity matrix,
respectively, of appropriate size (2n�1 � 2n�1). Therefore, A0 D Œ4� and, for n > 0,

An D
�
2an�1 C 1 1

1 bn�1 C cn�1 C dn�1

�
:

Example 13 For the tangled odometers group T the matrix wreath recursion gives

a0 D b0 D a�1
0 D b�1

0 D Œ1�

and for n � 0,

anC1 D
2
4
0 an 0

1 0 0

0 0 1

3
5 .a�1/nC1 D

2
4

0 1 0

.a�1/n 0 0
0 0 1

3
5

bnC1 D
2
4
0 0 bn�1
0 1 0

1 0 0

3
5 .b�1/nC1 D

2
4

0 0 1

0 1 0

.b�1/n 0 0

3
5 :
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Therefore, A0 D Œ4� and, for n � 0,

AnC1 D
2
4

0 1C an 1C bn

1C .a�1/n 2 0

1C .b�1/n 0 2

3
5 :

Once the recursive definition of the adjacency operator An is established we
consider the matrix

An.x/ D An � xI D
 X

s2S

sn

!
� xI;

and more generally, a matrix of the form

A.d/n .x1; : : : ; xd/ D An � x1I �
 

dX
iD2

xi � gi

!
D
 X

s2S

sn

!
� x1I �

 
dX

iD2
xi � gi

!
;

for some auxiliary operators g2; : : : ; gd. There is no known general approach how to
choose appropriate auxiliary operators. In practice, one needs to come up with good
choices that make the subsequent calculations feasible.

We then calculate, by using elementary column and row transformations and the
Schur complement, the determinant of A.d/n in terms of the determinant of A.d/n�1 and
obtain a recursive expression of the form

det.A.d/n .x1; : : : ; xd// D Pn.x1; : : : ; xd/ det.A.d/n�1.F.x1; : : : ; xd///; (5.2)

where Pn.x1; : : : ; xd/ is a polynomial function and F W R
d ! R

d is a rational
function in the variables x1; : : : ; xd. Clearly, if the point .x0

1; : : : ; x
0
d/ is in the zero

set of det.A.d/n�1.x1; : : : ; xd//, then any point in F�1.x0
1; : : : ; x

0
d/ is in the zero set of

det.A.d/n .x1; : : : ; xd//. Thus, describing the joint spectrum through iterations of the
recursion (5.2) leads to iterations of the rational map F.

Understanding the structure of the zero sets of det.A.d/n .x1; : : : ; xd//, for n � 0,
and relating them to the zero sets of det.An.x// is accomplished, in the situations
when we are able to resolve this problem, by finding a function  W Rd ! R and a
polynomial function f W R ! R such that

 .F.x1; : : : ; xd// D f . .x1; : : : ; xd//;

that is, by finding a semi-conjugacy from the d-dimensional rational function F to a
polynomial function f in a single variable. Since we have

 .Fım.x1; : : : ; xd// D f ım. .x1; : : : ; xd//;

the iterations of F are related to the iterations of f and then the desired spectrum is
described through the iterations of the latter.
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6 Concrete Examples and Computation Results

In this section we present several concrete examples of calculations of spectra based
on the method suggested in the Sect. 5. All groups in this section are amenable. By
Theorem 4.2, the choice of the point on the boundary is irrelevant for the Schreier
spectrum and this is why no such choice is discussed in these examples.

One of the examples, the Hanoi Towers group H, leads to results on the
Sierpiński gasket. The spectrum of Sierpiński gasket goes back to the work of
the physicists Rammal and Toulouse [38]. It was turned into a mathematical
framework by Fukushima and Shima [9]. Note that, in these works, the Sierpiński
gasket was approximated by a sequence of graphs that are 4-regular (with the
exception of the three corner vertices, which have degree 2), while our approach
yields an approximation through a different, but related, sequence of 3-regular
graphs. A method for spectra calculations in more general cases, called spectral
decimation, was developed by Kumagai, Malozemov, Shima, Teplyaev, Strichartz
and others [31, 33, 34, 40, 42, 43]. Connections with Julia sets are well-known, as
for instance given by Teplyaev [44].

6.1 The First Grigorchuk Group G

As was already mentioned, the method sketched above was introduced in [3] in order
to compute the spectrum of the sequence of Schreier graphs f�ng and the boundary
Schreier graph � for the case of the first Grigorchuk group G, as well as several
other examples, including the Gupta-Sidki 3-group [20].

Theorem 6.1 (Bartholdi-Grigorchuk [3]) For n � 1, the spectrum of the graph
�n, as a set, has 2n elements (thus, all eigenvalues are distinct) and is equal to

Sp.�n/ D
(
1˙

r
5C 4 cos

2k�

2n
j k D 0; : : : ; 2n�1

)
n f�2; 0g:

The spectrum of � (the Schreier spectrum of G), as a set, is equal to

Sp.�/ D Œ�2; 0� [ Œ2; 4�:

Remark 2 There is a different way in which the spectrum of �n can be written.
Namely, for n � 2,

Sp.�n/ D f4; 2g [
0
@1˙

vuut5˙ 2

n�2[
iD0

f �i.0/

1
A ;
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where

f .x/ D x2 � 2:

Note that

f �k.0/ D ˙
s

2˙
r
2˙

q
2˙ � � � ˙ p

2;

where the root sign appears exactly k times. The closure
S1

iD0 f �i.0/ is equal to the
interval Œ�2; 2� and is the Julia set of the polynomial f , Therefore,

Sp.�/ D f4; 2g [


1˙p

5˙ 2 � Œ�2; 2�
�

D f4; 2g [


1˙p

Œ1; 9�
�

D f4; 2g [ .1˙ Œ1; 3�/ D Œ�2; 0� [ Œ2; 4�:

For the calculations in this example, we may use the 2-dimensional auxiliary
pencil of operators defined by

A.2/n .x; y/ D an C bn C cn C dn � .1C x/I C .y � 1/an:

The recursive formula for the determinant of An.x; y/ is, for n � 2,

det.A.2/n .x; y// D �
x2 � 4

�2n�2

det.A.2/n�1.F.x; y///;

where F W R2 ! R
2 is given by

F.x; y/ D
�

x � xy2

x2 � 4
;
2y2

x2 � 4


:

The map  W R2 ! R that semi-conjugates F to f .x/ D x2 � 2 is

 .x; y/ D x2 � 4 � y2

2y
:

The 2-dimensional joint spectrum of An.x; y/ is a family of hyperbolae and
intersecting this family with the line y D 1 gives the desired spectrum.

The more general problem of determining the spectrum of the operator associated
to any element of the form taCubCvcCwd in the group algebra RŒG� is considered
in [11], where it is shown that, apart from few exceptions (such as the case u D v D
w considered above), the spectrum is always a Cantor set.
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6.2 The Hanoi Towers Group H D IMG
�

z2 � 16
27z

�

and Sierpiński Gasket

Theorem 6.2 (Grigorchuk-Šunić [21, 23]) For n � 1, the spectrum of the graph
�n, as a set, has 3 � 2n�1 � 1 elements and is equal to

f3g [
n�1[
iD0

f �i.0/ [
n�2[
jD0

f �j.�2/;

where

f .x/ D x2 � x � 3:

The multiplicity of the 2i eigenvalues in f �i.0/, i D 0; : : : ; n � 1, is an�i, and the
multiplicity of the 2j eigenvalues in f �j.�2/, j D 0; : : : ; n � 2, is bn�j, where, for
m � 1,

am D 3m�1 C 3

2
and bm D 3m�1 � 1

2
:

The spectrum of � (the Schreier spectrum of H), as a set, is equal to

1[
iD0

f �i.0/:

It consists of a set of isolated points, the backward orbit I D S1
iD0 f �i.0/ of 0

under f , and the set J of accumulation points of I. The set J is a Cantor set and is
the Julia set of the polynomial f .

The KNS spectral measure is concentrated on the union of the backward orbits

 1[
iD0

f �i.0/

!
[
 1[

iD0
f �i.�2/

!
:

The KNS measure of each eigenvalue in f �if0;�2g, for i D 0; 1; : : : , is 1

2�3iC1 .

Remark 3 The Kesten-von-Neumann-Serre measure (KNS measure for short) is the
weak limit of the counting spectral measures �n associated to the graph �n, for
n � 0 (�n.B/ D mn.B/=jXjn), where mn.B/ counts, including multiplicities, the
eigenvalues of �n in B.
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For the calculations in this example, the auxiliary pencil of operators used in [23]
is 2-dimensional and given by

A.2/n .x; y/ D an C bn C cn C �xI C .y � 1/dn;

where the block structure of dn is

dn D
2
4
0 1 1

1 0 1

1 1 0

3
5 :

The recursive formula for the determinant of A.2/n .x; y/ is, for n � 2,

det.A.2/n .x; y// D �
x2 � .1C y/2

�3n�2

.x2 � 1C y � y2/2�3n�2

det.A.2/n�1.F.x; y///;

where F W R2 ! R
2 is given by

F.x; y/ D
�

x C 2y2.�x2 C x C y2/

.x � 1 � y/.x2 � 1C y � y2/
;

y2.x � 1C y/

.x � 1 � y/.x2 � 1C y � y2/



:

The map  W R2 ! R that semi-conjugates F to f .x/ D x2 � x � 3 is

 .x; y/ D x2 � 1 � xy � 2y2

y
:

6.3 The Tangled Odometers Group T D IMG
�

� z3

2
C 3z

2

�

and the First Julia Set

Theorem 6.3 (Grigorchuk-Nekrashevych-Šunić [16]) For n � 0, the spectrum
of the graph �n, as a set, has 2nC1 � 1 elements and is equal to

f4g [
n�1[
iD0

f �i.2/ [
n�1[
jD0

f �j.�2/;

where

f .x/ D x2 � 2x � 4:



202 R. Grigorchuk et al.

The multiplicity of the 2i eigenvalues in f �i.2/, i D 0; : : : ; n � 1, is 3n�1�i,
the multiplicity of the 2j eigenvalues in f �j.�2/, j D 0; : : : ; n � 1, is 1, and the
multiplicity of the eigenvalue 4 is 1.

The spectrum of � (the Schreier spectrum of T ), as a set, is equal to

1[
iD0

f �i.2/:

It consists of a set of isolated points, the backward orbit I D S1
iD0 f �i.2/ of 2

under f , and the set J of accumulation points of I. The set J is a Cantor set and is
the Julia set of the polynomial f .

The KNS spectral measure is concentrated on the backward orbit

I D
1[

iD0
f �i.2/

of f . The KNS measure of each eigenvalue in f �if2g, for i D 0; 1; : : : , is 1

3iC1 .

For the calculations in this example, the auxiliary pencil of operators used in [16]
is 3-dimensional and given by

A.3/n .x; y; z/ D an C bn C a�1
n C b�1

n � xcn � .z C 2/dn C .y � 1/gn;

where the block structure of cn, dn and gn is

cn D
2
4
1 0 0

0 0 0

0 0 0

3
5 ; dnC1 D

2
4
0 0 0

0 1 0

0 0 1

3
5 ; enC1 D

2
4
0 1 1

1 0 0

1 0 0

3
5 :

6.4 Lamplighter Group L2 D Z Ë ˚ZZ=2Z

Theorem 6.4 (Grigorchuk-Żuk [25]) For n � 0, the spectrum of the graph �n, as
a set, is equal to

Sp.�n/ D f4g [
�
4 cos

p

q
� j 1 � p < q � n C 1 and p and q relatively prime

�
:

The multiplicity of the eigenvalue 4 cos p
q� , for 1 � p < q � n C 1, and p and q

relatively prime is equal to

2n � 2mod.n;q/

2q � 1
C 1fq divides nC1g;
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where mod.n; q/ is the remainder obtained when n is divided by q, and 1fq divides nC1g
is the indicator function equal to 1 when q divides n C 1 and to 0 otherwise. The
multiplicity of the eigenvalue 4 is 1.

The spectrum of � (the Schreier spectrum of L2), as a set, is equal to

Sp.�/ D Œ�4; 4�:

The KNS spectral measure is discrete and, for the eigenvalue 4 cos p
q� , with 1 �

p < q and p and q relatively prime, is equal to 1
2q�1 .

The above result has several interesting corollaries. First, note that there exist
an infinite ray � 2 @X� for which the corresponding parabolic subgroup P� D
StL2 .�/ is trivial [25] (in fact, this is true for all infinite rays that are not eventually
periodic [10, 36]). For such a ray �, the Schreier graph �� D �.L2;P�; S/ and the
Cayley graph �.L2; S/ are isomorphic. The calculation of the spectrum of L2 led to
a counterexample of the Strong Atiyah Conjecture. The Strong Atiyah Conjecture
states that if M is a closed Riemannian manifold with fundamental group G, then
its L2-Betti numbers come from the following subgroup of the additive group of
rational numbers

fin�1
.G/ D

��
1

jHj j H a finite subgroup of G

��
� Q:

This is contradicted by the following result.

Theorem 6.5 (Grigorchuk, Linnell, Schick, Żuk [12]) There exists a closed
Riemannion 7-dimensional manifoldM such that all finite groups in its fundamental
group G are elementary 2-abelian, fin�1.G/ D ZŒ 1

2
�, but its third L2-Betti number

is ˇ3.2/.M/ D 1
3
.

Note that other versions of Atiyah Conjecture were later also disproved by using
examples based on lamplighter-like groups [2, 32].

6.5 Basilica Group B D IMG
�
z2 � 1

�
and IMG

�
z2 C i

�

We do not have complete results for these two examples, but some progress was
achieved.

The Schreier spectrum of Basilica group B was considered in [27], using the
auxiliary 2-dimensional pencil of operators given by

A.2/n .x; y/ D an C a�1
n C y.b�1

n C b�1
n / � xI:

Partial results were also obtained by Rogers and Teplyaev by using the spectral
decimation method [39].
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The group K D IMG
�
z2 C i

�
of binary tree automorphisms is generated by three

involutions defined by the wreath recursion

a D .01/.e; e/ b D ./.a; c/ c D ./.b; e/:

The Schreier spectrum of IMG
�
z2 C i

�
was considered in [24], using the auxiliary

3-dimensional pencil of operators given by

A.3/n .x; y; z/ D an C ybn C zcn � xI:

In both cases, the corresponding multi-dimensional map F W Rd ! R
2 was found,

but the shape of the corresponding F-invariant subset (that is, the joint spectrum) is
unknown.

7 Laplacians on the Limit Fractals

For some contracting self-similar groups G, the Hecke type operators H�n , when
appropriately rescaled, converge to a well defined Laplacian on the limit space.
The process of finding the rescaling coefficient and proving existence of the limit
Laplacian has much in common with the process of computing the spectra of
operators H�n , as described in Sect. 5. A general theory, working for all contracting
groups is still missing, but many interesting examples can be analyzed.

The technique in the known examples is based on the theory of Dirichlet forms
on self-similar sets, see [29]. A connection of this theory with self-similar groups,
and the examples described in this section are discussed in more detail in [37].

Let G be a self-similar group generated by a finite symmetric set S and, for n � 0,
let Ln D 1 � H�n be the corresponding Laplacian on the Schreier graph �n. Let En

be the quadratic form with matrix Ln, that is, the form given by En.x; y/ D hLnx; yi.
Choose a letter x0 2 X, and consider for every n � 1 the subset Vn D x�!

0 Xn of
the space X�! encoding the limit space of G. We have Vn � VnC1, and we naturally
identify Vn with Xn by the bijection v 7! x�!

0 v. We also consider En as a form on
`2.Vn/ D `2.Xn/.

The trace E 0
nC1 of EnC1 on Vn is the quadratic form E such that for f 2 `2.Vn/ the

value of E. f ; f / is equal to the infimum of values of EnC1.g; g/ over all functions
g 2 `2.VnC1/ such that gjVn D f .

The matrix of E 0
nC1 is found as the Schur complement of the matrix LnC1 of EnC1.

Namely, decompose the matrix LnC1 into the block form

�
A B
C D

�
according to the

decomposition of `2.XnC1/ into the direct sum `2.x0Xn/˚ `2..X n fx0g/Xn/ (so that
A, B, C, and D are of sizes kn�kn, kn�.k�1/kn, .k�1/kn�kn, and .k�1/kn�.k�1/kn,
respectively, where k D jXj is the size of the alphabet). Then the matrix of E 0

nC1 is
A � BD�1C.
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Let us consider some examples. Let G D IMG
�
z2 � 1

�
be the Basilica group.

Consider the Laplacian 1�˛.aCa�1/�ˇ.bCb�1/, and the corresponding Dirichlet
forms En. Then it follows from the recursive definition of the generators a and b that

the decomposition of LnC1 into blocks

�
A B
C D

�
(for x0 D 1) is

�
1 � ˇ.a C a�1/ �˛.1C b�1/

�˛.1C b/ 1 � 2ˇ

�
;

hence the matrix of EnC1;x0 is
�
1 � ˛

2

���ˇ.a C a�1/C ˛
2

�
. Consequently, if we take

˛ D 2�p
2

2
, and ˇ D

p
2�1
2

, then we have E 0
nC1 D �En for � D 1p

2
. It follows then

from the general theory, see [30], that the forms ��nEn converge to a Laplacian on
the limit space of G, that is, on the Julia set of z2 � 1.

In some cases one needs to take slightly bigger sets Vn. For example, consider the
Hanoi Towers group H. Let Vn be the set of sequences of the form 0�1Xn, 1�1Xn,
and 2�1Xn. Let a D .01/.e; e; a/, b D .02/.e; b; e/, and c D .12/.c; e; e/, and
consider, for positive real numbers x, y, the form En on `2.Vn/ given by the matrix

2
4

y.1 � a/� 2x �x �x
�x y.1 � b/� 2x �x
�x �x y.1 � c/� 2x

3
5

with respect to the decomposition `2.Vn/ D `2.0�!Xn/˚ `2.1�!Xn/˚ `2.2�!Xn/,
where a; b; c act on the corresponding subspaces `2.x�!Xn/ using the representation
�n (after we identify x�!Xn with Xn in the natural way).

Then a direct computation using the recursive definition of the generators a; b; c,
and the Schur complement shows that trace of EnC1 on Vn is given by the same

matrix where .x; y/ is replaced by



3
5C3x=y x; y

�
. Passing to the limit y ! 1, and

restricting to functions on which the limit of the quadratic form is finite (which
will correspond to identifying sequences : : : x�!v representing the same points of
the limit space), we get rescaling x 7! 3

5
x, hence convergence of .5=3/nEn to a

Laplacian on the limit space of H, which is the Sierpiński gasket.
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Finite Energy Coordinates and Vector Analysis
on Fractals

Michael Hinz and Alexander Teplyaev

Abstract We consider local finite energy coordinates associated with a strongly
local regular Dirichlet form on a metric measure space. We give coordinate formulas
for substitutes of tangent spaces, for gradient and divergence operators and for the
infinitesimal generator. As examples we discuss Euclidean spaces, Riemannian local
charts, domains on the Heisenberg group and the measurable Riemannian geometry
on the Sierpinski gasket.
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1 Introduction

Suitable coordinate maps are tools in many branches of geometry. For instance,
smooth coordinate changes are the crucial ingredient in the definition of a differ-
entiable structure on a manifold and therefore omnipresent in differential geometry
(e.g. [26, 29]). For a general metric measure space we can not expect to find local
coordinates that transform smoothly. However, in the field of analysis on fractals
Kusuoka [35, 36], Kigami [32, 34], Strichartz [42], Teplyaev [44], Hino [15, 16],
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Kajino [30, 31] and others have contributed to a concept that is now referred to
as ‘measurable Riemannian geometry’. This concept is based on Dirichlet forms
and involves the use of harmonic functions as ‘global coordinates’. In probability
similar ideas can already be found in works of Doob, Dynkin and Skorohod. On the
other hand there is recent progress in the studies of a first order calculus on fractals,
[8, 9, 19–22, 25, 28] again based on Dirichlet form theory, [6, 13], which allows to
discuss differential 1-forms and vector fields, partially based on [7, 40].

In the present note we consider metric measure spaces, equipped with a strongly
local Dirichlet form and consider associated local finite energy coordinates. Analo-
gously to Riemannian geometry, we provide coordinate expressions for the gradient
and divergence operators (derivation and coderivation) used in the first order theory,
and for the infinitesimal generator. The present paper is a brief introduction to
the subject. We hope to facilitate understanding of how the measurable first order
calculus is related to Euclidean, Riemannian, sub-Riemannian and measurable
Riemannian situations.

2 Preliminaries

Let X be a locally compact separable metric space and � a nonnegative Radon
measure on X such that �.U/ > 0 for all nonempty open U � X. Let .E ;F/ be
a strongly local regular Dirichlet form on L2.X; �/, that is:

(1) F is a dense subspace of L2.X; �/ and E W F �F ! R is a nonnegative definite
symmetric bilinear form; we denote E. f / WD E. f ; f /;

(2) F is a Hilbert space with the norm
p
E1. f / WD �

E. f /C k f k2L2.X;�/
�1=2

;
(3) For any f 2 F we have . f _ 0/ ^ 1 2 F and E.. f _ 0/ ^ 1/ � E. f /, where

f _ g WD max ff ; gg and f ^ g WD min f f ; gg;
(4) C WD F \ Cc.X/ is dense both in F with respect to the norm

p
E1. f /, and in

the space Cc.X/ of continuous compactly supported functions with respect to
the uniform norm;

(5) If f ; g 2 C and g is constant on a neighborhood of supp f then E. f ; g/ D 0.

To each Dirichlet form .E ;F/ on L2.X; �/ there exists a unique non-positive self-
adjoint operator .L; dom L/, called the infinitesimal generator of .E ;F/, such that
dom L � F and

E. f ; g/ D � hLf ; giL2.X;�/

for all f 2 dom L and g 2 F . See [6, 13]. For pointwise products we have

E. fg/1=2 � E. f /1=2 kgkL1.X;�/ C E.g/1=2 k f kL1.X;�/ ; f ; g 2 F \ L1.X; �/;

(2.1)
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[5, Corollary I.3.3.2], and in particular, the space C WD F \ Cc.X/ is an algebra. For
any f ; g 2 C a signed Radon measure �. f ; g/ on X is defined by

Z

X
'd�. f ; g/ D 1

2

�
E. f ; g'/C E.g; f'/ � E. fg; '/

�
; ' 2 C: (2.2)

By approximation in F we also define �. f ; g/ for any f ; g 2 F , referred to as the
(mutual) energy measure of f and g, see [13]. We denote the nonnegative measure
�. f / D �. f ; f /. Below it will be advantageous to consider functions that are only
locally of finite energy. We define Floc as the set of functions f 2 L2;loc.X; �/ such
that for any relatively compact open set V � X there exists some u 2 F such that
f jV D ujV �-a.e. Exhausting X by an increasing sequence of relatively compact
open sets and using related cut-off functions we can define �. f / for f 2 Floc. If V
is relatively compact open and u 2 F agrees with f �-a.e. on V then

�. f /jV D �.u/jV : (2.3)

Example 1 A prototype for a strongly local regular Dirichlet form is the Dirichlet
integral

E. f / D
Z

Rn
jrf j2 dx

on L2.Rn/, where F is the Sobolev space H1.Rn/ of functions f 2 L2.Rn/with @f
@xi

2
L2.Rn/ for all i. Note that C1

c.R
n/ is dense in H1.Rn/ and in Cc.R

n/. The generator
is the Laplacian L D � and the energy measures are given by �. f / D jrf j2 dx.

A nonnegative Radon measure m on X is called energy dominant if all energy
measures �. f /, f 2 F , are absolutely continuous with respect to m, [15, 16, 18, 25].
By d�. f /

dm we denote the corresponding Radon-Nikodym densities.
Let ' 2 C, let V be a relatively compact open neighborhood V of supp' and

suppose . fn/n � Floc. We say that ' is locally approximated by the sequence . fn/n
on V if there is a sequence .un/n � F with limn E1.' � un/ D 0 and fnjV D unjV

�-a.e. for all n. The following lemma follows from (2.3), [13, Theorem 2.1.4 and
Lemma 3.2.4].

Lemma 2.1 Let ' 2 C and let V be a relatively compact open neighborhood V
of supp'. Suppose that ' is locally approximated by . fn/n � Floc on V. Then
limn �.' � fn/.V/ D 0. If the functions fn are continuous on V, then there is a
subsequence . fnk/k such that limk fnk D ' �. f /-a.e. on V for any f 2 Floc.
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3 Finite Energy Coordinates

Let y D . yi/i2I be a finite or countable collection of locally bounded functions yi.
Given a finite ordered subset J D .n1; : : : ; nk/ of I, the space of all functions of form
f D F. yn1 ; : : : ; ynk/, where the functions F are polynomials in k variables and such
that F.0/ D 0, will be denoted by PJ. y/. For a fixed collection . yi/i2I set

P. y/ WD
[
J	I

PJ. y/; (3.1)

the union taken over all ordered finite subsets J of I. Note that P. y/ is an algebra
of locally bounded functions. For any k we regard the space R

k as a subspace of
R

N containing .v1; v2; : : : ; vk; 0; 0; : : : / for .v1; v2; : : : ; vk/ 2 R
k. Similarly, we

consider .k � k/-matrices as linear operators from R
N to R

N.

Definition 3.1 Let m be an energy dominant measure for .E ;F/. A finite or
countable collection y D . yi/i2I of continuous and locally bounded functions
yi 2 Floc is called a coordinate sequence for .E ;F/ with respect to m if

(i) Any ' 2 C can locally be approximated on a relatively compact neighborhood
V of supp' by a sequence of elements of P. y/

(ii) For any i 2 I we have

d�. yi/

dm
2 L1.X;m/\ L1.X;m/;

and for any i and j

Zij.x/ WD d�. yi; yj/

dm
.x/

are Borel functions (versions) such that for m-a.e. x 2 X, Z.x/ WD .Zij.x//1ijD1
defines a bounded symmetric nonnegative definite linear operator Z.x/ W
l2 ! l2.

(iii) We say that the coordinates yi have finite energy if yi 2 F for all i 2 I.

A coordinate sequence y D . yi/i2I induces a mapping y W X ! R
N.

Remark 1 Condition (i) in Definition 3.1 makes sense because we have P. y/ �
Floc. If the coordinates yi have finite energy the inclusion P. y/ � F is clear
from (2.1). To see this inclusion in the general case it suffices to show that for
any continuous and locally bounded f ; g 2 Floc we have fg 2 Floc. Clearly
fg 2 L2;loc.X; �/. Further, given a relatively compact open set V � X we can find a
suitable cutoff function � 2 C with 0 � � � 1 and � � 1 on V , a relatively compact
open neighborhood of supp� and functions u; v 2 F such that f jU D ujU and
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gjU D vjU �-a.e. Clearly �u 2 L2.X; �/, and using locality, [13, Corollary 3.2.1],

E.�u/1=2 D
�Z

U
d�.�u/


1=2
�
�Z

U
�2d�.u/


1=2
C
�Z

U
Qu2d�.�/


1=2
;

where Qu is a quasi-continuous version of u. See e.g. [13, Chapter II] for quasi-
continuity and the Appendix in [24] for comments on the formula (which also
follows from Cauchy-Schwarz applied to (4.5) below). Approximating u in E1=21 -

norm by a sequence from C we see that �u is the limit in E1=21 -norm of a sequence
from C, and by completeness �u is in F . Similarly for �v. Both functions are
bounded on U �-a.e. and vanish outside U, hence are also members of L2.X; �/.
Therefore �2uv 2 F by (2.1), what implies fg 2 Floc.

In Sect. 8 we show that (under an additional continuity assumption) it is
always possible to construct a finite energy dominant measure and a corresponding
coordinate sequence of finite energy coordinates. The following examples relate
Definition 3.1 to well known situations.

Example 2

(1) Consider

E. f / WD
nX

i;jD1

Z

Rn
aij.x/

@f

@xi
.x/

@f

@xj
.x/dx; f 2 C1

c.R
n/;

where aij D aji are bounded Borel functions satisfying
Pn

i; jD1 aij.x/�i�j � cj�j2
with a universal constant c > 0 for any � 2 R

n and �n-a.e. x 2 R
n. Here �n

denotes the n-dimensional Lebesgue measure �n.dx/ D dx. Then .E ;C1
c .R

n//

is closable in the space L2.Rn/, and its closure .E ;H1.Rn// is a strongly local
regular Dirichlet form. Obviously �n is energy dominant for .E ;H1.Rn//. The
Euclidean coordinates yk.x/ D xk, k D 1; : : : ; n, form a coordinate sequence
for .E ;H1.Rn// with respect to �n. Note that ryk D ek is the k-th unit vector in
R

n, and we have

Zij.x/ D aij.x/ for �n-a.e. x 2 R
n

and i; j D 1; : : : n. This shows (ii). If ' 2 C1
c.R

n/ then we can find a
relatively compact open set V containing supp' on which the function ' can
be approximated it in C1-norm by a sequence of polynomials in the variables
x1; : : : ; xn, hence in the coordinates y1; : : : ; yn. Multiplying these polynomials
by a (nonnegative) C1-cut-off function supported in V and equal to one on
supp', the approximation is seen to take place in H1.Rn/. As C1

c.R
n/ is dense

in H1.Rn/, this implies (i). The coordinates yk do not have finite energy.
(2) Let .M; g/ be an n-dimensional Riemannian manifold, [26, 29], let .V; y/ be a

local chart with coordinates y D . y1; : : : ; yn/ and U a relatively compact open
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set with U � V . By dvol we denote the Riemannian volume (restricted to U).
The closure .E ; VH1.U// in L2.U; dvol/ of

E. f / WD
Z

U
hrf ;rf iTxM dvol.x/; f 2 C1

c.U/:

is a strongly local Dirichlet form. The reference measure dvol is energy
dominant, for any k D 1; : : : ; n we have

ryk D gkj @

@yj

and

Zkk D ˝ryk;ryk
˛
TM

D gkjgki

�
@

@yi
;
@

@yj

�

TM

D gkk

and therefore (ii). Recall that

rf D gij @f

@yi

@

@yj
; gij D

�
@

@yi
;
@

@yj

�

TM

and gkigij D ık
j . For a function f 2 C1

c.U/ the function f ı y�1 is a member of
C1.W/, and accordingly it can be approximated in C1.W/-norm by a sequence
.pm/m of polynomials in the variables y1; : : : ; yn. Consequently the functions
pm ı y approximate f in C1.U/-norm (note that the differentials d..pm ı y/ ı
y�1/. y.x// approximate d. f ı y�1/. y.x// uniformly in x 2 U). This implies
(i). Here the yi are not in F because they do not satisfy the Dirichlet boundary
conditions on @U.

(3) A sub-Riemannian example is given by the Heisenberg group H, [10, 27, 38,
41], realized as R3 together with the non-commutative multiplication

.�1; �1; �1/ � .�2; �2; �2/ WD .�1 C �2; �1 C �2; �1 C �2 C �1�2 � �1�2/:

Left multiplication by .�; 0; 0/ and .0; �; 0/ yields the left-invariant vector fields

X.q/ WD @

@�

ˇ̌
ˇ
q

� 1

2
�
@

@�

ˇ̌
ˇ
q

and Y.q/ WD @

@�

ˇ̌
ˇ
q

C 1

2
�
@

@�

ˇ̌
ˇ
q
;

and at each q D .�; �; �/ 2 H the tangent vectors X.q/ and Y.q/ span a two-
dimensional subspace Vq of the tangent space TqH Š R

3. The sub-Riemannian
metric is given by the inner products h�; �iVq

on the spaces Vq that makes
.X.q/;Y.q// an orthonormal basis, respectively. We use the Haar measure on
H, which coincides with the Lebesgue measure �3 on R

3. Now let U � H be a
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connected bounded open set and consider the bilinear form

E. f / WD
Z

U
..Xf /2 C .Yf /2/ d�3; f 2 C1

c .U/:

Let .E ; VS1.U// denote the closure of .E ;C1
c .U// in L2.U/. Obviously �3 is

energy dominant. A coordinate sequence for .E ; VS1.U// and �3 is given by
y D . y1; y2; y3/ WD .�; �; �/. Condition (i) follows again by polynomial
approximation in C1

c.U/. It is immediate that Xy1 D 1, Yy1 D 0, similarly
for y2, and Xy3 D � �

2
, Yy3 D �

2
, which yields the symmetric and nonnegative

definite matrices

Z.q/ D

0
B@
1 0 � �

2

0 1
�

2

� �

2

�

2

�2C�2
4

1
CA ;

so that (ii) is satisfied. For any q 2 H the matrix Z.q/ has rank 2. As in (2) the
coordinates are not in F .

(4) We consider a prototype of a finitely ramified fractal in finite energy coordi-
nates. Let K denote the Sierpinski gasket, seen as the post-critically self-similar
structure generated by the maps fj W R2 ! R

2, fj.x/ D 1
2
.x C pj/, j D 1; 2; 3,

where p1, p2 and p3 are the vertices of an equilateral triangle in R
2. Let

.E ;F/ be the standard resistance form on K, obtained as the rescaled limit of
discrete energy forms along a sequence of graphs with increasing vertex sets Vn

‘approximating K’,

E. f / D lim
n!1

�
5

3


n X
p;q2Vn

. f . p/� f .q//2;

see e.g. [32, 33, 35, 36, 43] for details. With f p1; p2; p3g as boundary and with
Dirichlet boundary conditions there exist two harmonic functions y1; y2 2 F
with E. y1/ D E. y2/ D 1 and E. y1; y2/ D 0 such that the mapping y W K ! R

2

y.x/ WD . y1.x/; y2.x//; x 2 K; (3.2)

is a homeomorphism from K onto its image y.K/ � R
2. We consider K

endowed with the Kusuoka measure �, defined as the sum

� WD �. y1/C �. y2/

of the energy measure �. y1/ and �. y2/ of y1 and y2, respectively. The
resistance form .E ;F/ induces a strongly local Dirichlet form on L2.K; �/, for
which the finite measure � is energy dominant. The pair . y1; y2/ is a coordinate
sequence for this form: Condition (ii) is satisfied by construction, condition (i)
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follows by polynomial approximation and the density of functions of type F ıy,
F 2 C1.R2/, in F , see e.g. [32, 35, 36, 45]. The operators Z.x/may be viewed as
.2�2/-matrices, and for �-a.e. x 2 K the matrix Z.x/ is symmetric, nonnegative
definite and has rank 1.

4 Energy, Fibers and Bundles

In what follows we will assume throughout that .E ;F/ is a strongly local regular
Dirichlet form on L2.X; �/, m is an energy dominant measure and y D . yi/i2I be a
coordinate sequence for .E ;F/ with respect to m.

We would like to emphasize that unless stated otherwise we do not assume
that the reference measure itself is energy dominant or that the form .E ;F/ has
a restriction that is closable with respect to the energy dominant measure m under
consideration.

In Example 2 (4), a well known formula of Kusuoka [35] and Kigami [32] is

E. f ; g/ D
Z

K
hrF. y/;Z.x/rG. y/i

R2 �.dx/; (4.1)

for all f D F ı y and g D G ı y with F;G 2 C1.R2/. This identity expresses
the energy in terms of coordinates. As the matrix Z varies measurably in x, it has
been named a measurable Riemannian metric, [15, 30, 34]. The following is version
of (4.1) immediately following from the chain rule [13, Theorem 3.3.2].

Lemma 4.1 Let m be an energy dominant measure and . yi/i2I a coordinate
sequence. For all f D F ı y and g D G ı y from P. y/ we have

�. f ; g/.x/ D hrF. y/;Z.x/rG. y/il2 (4.2)

for m-a.e. x 2 X. If in addition f ; g 2 F , then

E. f ; g/ D
Z

X
hrF;ZrGil2 dm:

We rewrite (4.2) in a somewhat artificial way. For any x 2 X such that Z.x/ is
symmetric and nonnegative definite, the bilinear extension of

h f1 ˝ g1; f2 ˝ g2iHx
WD G1. y/G2. y/ hrF1. y/;Z.x/rF2. y/il2 ; (4.3)

where fi D Fi ı y and gi D Gi ı y are members of P. y/ with polynomials Fi and Gi,
i D 1; 2, defines a nonnegative definite symmetric bilinear form on the vector space
P. y/˝P. y/. Let k�kHx

denote the associated Hilbert seminorm. Factoring out zero
seminorm elements and completing, we obtain a Hilbert space .Hx; h�; �iH;x/. The
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Hx-equivalence class of an element f ˝ g of P. y/˝ P. y/ we denote by . f ˝ g/x.
Note that for m-a.e. x 2 X the expression in (4.3) equals

g1.x/g2.x/
�. f1; f2/

dm
.x/:

Example 3

(1) In the situation of Example 2 (1) we observe Hx Š R
n for �n-a.e. x 2 R

n and

h f1 ˝ g1; f2 ˝ g2iHx
D g1.x/g2.x/ hrf1.x/; a.x/rf2.x/iRn ;

where we write a D .aij/
n
i;jD1.

(2) For the Riemannian situation in Example 2 (2) we have

h f1 ˝ g1; f2 ˝ g2iHx
D g1.x/g2.x/ hdf1.x/; df2.x/iT�

x M

for dvol-a.e. x 2 U, where

f 7! df D
X
iD1

@f

@yi
dyi (4.4)

denotes the exterior derivation. Note that Hx Š T�
x M Š TxM Š R

n.
(3) For the Heisenberg group as in Example 2 (3),

h f1 ˝ g1; f2 ˝ g2iHq
D g1.q/g2.q/ ..X.q/f1/.X.q/f2/C .Y.q/f1/.Y.q/f2//

for �3-a.e. q 2 U. Here Hq is isometrically isomorphic to the horizontal
fiber Vq.

We proceed to a more global perspective. A nonnegative definite symmetric
bilinear form on C ˝ C can be introduced by extending

h f1 ˝ g1; f2 ˝ g2iH WD
Z

X
g1.x/g2.x/ �. f1; f2/.x/m.dx/: (4.5)

The associated Hilbert seminorm is denoted by k�kH. Factoring out zero seminorm
elements and completing yields another Hilbert space H, usually referred to a the
Hilbert space of 1-forms associated with .E ;F/. This definition has some history,
see e.g. [11, 39, 40], and in the context of Dirichlet forms it was first introduced by
Cipriani and Sauvageot in [7]. Right and left actions of C on the space C ˝ C can be
defined by extending

. f ˝ g/h WD f ˝ .gh/ and h. f ˝ g/ D . fh/˝ g � h ˝ . fg/: (4.6)
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By strong locality they coincide. Moreover, they extend further to an action of C on
H and k!hkH � khkL1.X;m/ k!kH for any ! 2 H and h 2 C. A linear operator
@ W C ! H can be introduced by setting

@f WD f ˝ 1; f 2 C;

note that f ˝ 1 is a member of H, as can be seen from (4.5) by approximating 1
pointwise. The operator @ is a derivation, i.e.

@. fg/ D .@f /g C f@g; f ; g 2 C: (4.7)

It satisfies

k@f k2H D E. f /; f 2 C; (4.8)

and extends to a closed unbounded operator @ W L2.X; �/ ! H with domain F .
Since the left action in (4.6) is also well defined for bounded Borel functions,

approximation shows that . f ˝ g/1V D .@f /g1V is in H for any f ; g 2 F and
relatively compact open V . By locality, (2.3) and approximation (pointwise m-a.e.)
we then have . f ˝ g/1V 2 H even for locally bounded f ; g 2 Floc. Formulas (4.6)
and (4.7) have local versions valid for elements of P. y/. Note also that for m-a.e
x 2 X,

h.@f /x; .@g/xiHx
D d�. f ; g/

dm
.x/:

Let f�Ng1
ND1 be a family of bounded Lipschitz functions �N W R ! R such that

for all N we have �N.t/ D t on Œ�N;N�. Let QP. y/ denote the collection of functions
�N ı g for any g 2 P. y/ and N. The next lemma contains a version of Lemma 4.1.

Lemma 4.2 For fi D Fi ı y and gi D Gi ı y from P. y/, i D 1; 2, and any relatively
compact open V we have

h. f1 ˝ g1/1V ; f2 ˝ g2iH D
Z

V
h. f1 ˝ g1/x; . f2 ˝ g2/xiHx

m.dx/

D
Z

V
G1. y/G2. y/ hrF1. y/;Z.x/rF2. y/il2 m.dx/:

If in addition f ; g 2 F , then we can replace V by X. Moreover,

span
�˚
. f ˝ g/1V W f 2 P. y/; g 2 QP. y/; V � X relatively compact open

��

is a dense subspace of H. If the coordinates yi have finite energy, then P. y/˝ QP. y/
is a dense subspace of H.
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Proof The first statement is obvious. To see the second, let ' and  be functions
from C and U a relatively compact open set containing supp' on which ' is locally
approximated on U by a sequence . fn/n � P. y/. We have k' ˝  � fn ˝  k2H �
supx2X j .x/j2�.' � fn/.U/, which converges to zero by Lemma 2.1. Hence the
span of elements f ˝  with f 2 P. y/ and  2 C is dense in H. On the other
hand, if V is a relatively compact open set containing supp and .gn/n � P. y/
approximates locally on V , after replacing the sequence by a suitable subsequence
Lemma 2.1 implies k f ˝  � . f ˝ egn/1Vk2H D R

V. � egn/
2 d�. f / ! 0 by

bounded convergence, where egn D �N ı gn with fixed N � k ksup. ut
Example 4

(1) In Example 2(1) the space H is isometrically isomorphic to the space
L2.Rn;Rn/ of Rn-valued square integrable functions on R

n.
(2) For the Riemannian situation in Example 2(2) the space H is isometrically iso-

morphic to the space L2.U;T�M; dvol/ of L2-differential 1-forms on U � M.

Remark 2

(i) The spaces Hx may be seen as the fibers of the measurable L2-bundle H.
Formula (4.3) expresses the fibers in terms of coordinates.

(ii) The spaces Hx depend on the choice of m. However, the space H does not, as
follows from (2.2) and (4.5).

(ii) If the coordinates yi have finite energy then we may replace C by P. y/ in (4.5)
and the subsequent formulas. By Lemma 4.2, regularity and [13, Theorem
2.1.4] this yields the same space H.

(iii) We formulated (4.5) and (4.6) in terms of the algebra C in order to use the
same definition of the space of 1-forms as in [7, 23, 25, 28]. Alternatively –
and in view of Definition 3.1 this seems more appropriate – one can endow
P. y/ ˝ QP. y/ with a directed family of Hilbert seminorms determined by
k f ˝ gkH.V/ WD k. f ˝ g/1VkH, where the sets V are relatively compact and
open. This yields a presheaf of Hilbert spaces whose inverse limit is a locally
convex space Hloc. Details can be found in [24, Section 6]. Also Floc may be
viewed as a locally convex space, and the derivation @ may then be interpreted
as a continuous linear operator from Floc into Hloc, if (4.8) is replaced by
k@f k2H.V/ D �. f /.V/, f 2 P.V/.

5 Differential and Gradient in Coordinates

For any coordinate function yi and any relatively compact open set V the element
.@yi/1V is an element of H. This implies the identities

˝
.@yi/x; .@yj/x

˛
Hx

D Zij.x/



220 M. Hinz and A. Teplyaev

for m-a.e. x 2 X. Moreover, the local version of (4.7) shows that for any function
f D F. yn1 ; : : : ; ynk/ from P. y/ we have on any locally compact open set V

@f D
kX

iD1

@F

@yni
@yni (5.1)

Example 5 In the Euclidean and Riemannian situations (1) and (2) in Examples 2
the operator @ may be identified with the exterior derivation and formula (5.1)
becomes the classical identity in (4.4).

The operator @ may be viewed as a generalization of the exterior derivation
and (5.1) may be viewed as a formula for the differential @f of f in terms of
coordinates.

On a general metric measure space a smooth theory of ordinary differential
equations is not available. On the other hand the spaces Hx are Hilbert, hence self-
dual. Therefore it seems artificial to rigorously distinguish between 1-forms and
vector fields. We interpret the elements of H also as (measurable) vector fields and
@ as a substitute for the gradient operator.

Recall the notation in (3.1). Given a finite ordered subset J of I let the collection
of Hx-equivalence classes of elements of PJ ˝ PJ. y/ be denoted by Hx;J . Clearly
this is a subspace of Hx, and we have

Hx D clos

 [
J	I

Hx;J

!
;

the union taken over all finite ordered subsets J of I.
Now suppose J D .n1; : : : ; nk/. Formula (5.1) implies that the elements .@yn1 /x,

: : : , .@ynk/x span Hx;J . Let ZJ.x/ denote the matrix .Z.x/ninj/ki; jD1, clearly symmetric
and nonnegative definite. The preceding formulas yield another expression of the
gradient @f , now in terms of the Euclidean gradient and the measurable metric Z:
For any f D F ı y 2 PJ. y/ and any j D 1; : : : ; k we have

h.@f /x; .@ynj/xiHx
D

kX
iD1

@F

@yni
. y/Zninj.x/ D .ZJ.x/rF. y//j ; (5.2)

where rF is the gradient of F on R
k.

Example 6

(1) For Examples 2 (1) we obtain

˝
.@f /x; .@y j/x

˛
Hx

D
nX

iD1
aij.x/

@f

@yi
.x/ D .a.x/rf .x//j :
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(2) In the Riemannian case of Examples 2 (2) formula (5.2) gives

˝
.@f /x; .@y j/x

˛
Hx

D ˝
df ; dy j

˛
T�

x M D @f

@yi
.x/
˝
dyi; dy j

˛
T�

x M D gij.x/
@f

@yi
.x/:

This equals dy j.grad f / because grad f D gij @f

@yi

@

@y j
.

(3) Let hh�; �ii denote the cometric associated with the Heisenberg group H. Then

˝
.@f /q; .@y1/q

˛
Hq

D
3X

iD1

@f

@yi
.q/

˝hdyi; dy1
˛i D .Z.q/rf .q//1 D Xf .q/:

In a similar manner we obtain

˝
.@f /q; .@y2/q

˛
Hq

D .Z.q/rf .q//2 D Yf .q/

˝
.@f /q; .@y3/q

˛
Hq

D .Z.q/rf .q//3 D ��
2

Xf .q/C �

2
Yf .q/:

6 Divergence in Coordinates

By �@� we denote the adjoint of @, that is the unbounded linear operator �@� W H !
L2.X; �/ with dense domain dom @� and such that the integration by parts formula

hv; @uiH D � h@�v; uiL2.X;�/ (6.1)

holds for all v 2 dom @� and f 2 F . We view the operator �@� both ways, as
coderivation and as divergence operator.

In the context of coordinates it is more suitable to deviate a bit from the Hilbert
space interpretation in (6.1). First assume that all coordinates yi have finite energy.
For an element .@f /g of H with f ; g 2 P. y/ we then set

@�..@f /g/.u/ WD � h.@f /g; .@u/iH ; u 2 P. y/:

By Cauchy-Schwarz j@�..@f /g/.u/j � k.@f /gkH E.u/, and therefore @�.@f /g may
be seen as a continuous linear functional on P.u/, and after a straighforward
extension by Definition 3.1 and regularity, on F .

As before let J D .n1; : : : ; nk/. Given functions polynomials F and G in yn1 , : : : ,
ynk and a function u D U ı y with U 2 C1.Rk/ put

divZJ .GrF/.U/ WD �
kX

i;jD1

Z

X
G. y/

@F

@yni
. y/Zni;nj.x/

@U

@ynj
. y/m.dx/:
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Then

@�..@f /g/.u/ D divZJ .GrF/.U/ (6.2)

provides a ‘distributional’ coordinate expression for the divergence. Of course this
is a naive definition by duality, and in particular we have @�..@f //.u/ D �E. f ; u/.
In general there is no integration by parts formula on the level of coordinates that
could permit a more interesting definition.

If the coordinates yi do not have finite energy, we view P. y/ as a locally
convex space, then @�.@f /g1V with relatively compact open V defines a continuous
linear functional on P. y/. Proceeding similarly as before one obtains local versions
of (6.2).

Example 7

(1) For Example 2 (1) we obtain

diva.grf /.u/ D �
nX

i;jD1

Z

Rn
g.x/

@f

@xi
.x/aij.x/

@u

@xj
.x/dx

for any u 2 C1
c .R

n/. If in addition the coefficients aij are C1, this is seen to equal

Z

Rn
div.a.grf //u dx:

(2) In the Riemannian situation of Examples 2 (ii) we have

divg.hrf /.u/ D
Z

W
gijh

@f

@yi

@u

@y j

p
gdy1 � � � dyn D

Z

U
div.h grad f / u dvol

for any u 2 C1
c .U/, where g WD det.gij/ and

div.h grad f / D 1p
g

@

@y j

�p
ggijh

@f

@yi




is the divergence of h grad f in the usual Riemannian sense. See [29, Section
2.1].

(3) In Example 2 (3) formula (6.2) yields

divZ.grf /.u/ D
3X

i;jD1

Z

U
Zijg

@f

@yi

@u

@y j
d�3 D

3X
i;jD1

Z

U

@

@y j

�
Zijg

@f

@yi



u d�3
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for any u 2 C1
c.U/, what equals

Z

U

�
@

@�
gXf C @

@�
gYf C @

@�

�
g.��

2
Xf C �

2
Yf /




u d�3 D

Z

U
div.Z.grf // u d�3;

where div is the ordinary divergence operator on R
3.

7 Generator in Coordinates

We consider the infinitesimal generator .L; dom L/ of .E ;F/. From (6.1) and the
definition of the adjoint we see that for any f 2 dom L we have @f 2 dom @� and

Lf D @�@f : (7.1)

Although in general a coordinate version of this formula may not be available, it can
be written in terms of coordinates for specific examples.

To express L in coordinates additional assumptions are inevitable. Even if yi 2
dom L for all i the inclusion P. y/ � dom L holds if and only if the reference
measure � itself is energy dominant, that is if .E ;F/ admits a carré du champ
in the sense of [5]. For Examples 2 (1)–(4) this is satisfied. However, the standard
resistance form on the Sierpinski gasket, considered as a Dirichlet form with respect
to the natural self-similar Hausdorff measure, does not have this property, and this
situation is typical for a large class of self-similar spaces, [4, 14, 17].

Assumption 1 The reference measure � itself is energy dominant.

Let .L; dom.1/ L/ denote the smallest closed extension of the restriction of L to

f f 2 dom L \ L1.X; �/ W Lf 2 L1.X; �/g :

Assumption 1 is known to be necessary and sufficient for dom.1/ L\L1.X; �/ to be
an algebra under pointwise multiplication. If it is in force, then f ; g 2 dom L implies
fg 2 dom.1/ L and we have

d�. f ; g/

d�
D L. fg/� fLg � gLf ; (7.2)

see [5, Theorems I.4.2.1 and I.4.2.2]. To formulate local conditions on the coor-
dinate functions we follow [37, Definition 4.2 (2)] and say that a function f 2
L2;loc.X; �/ belongs to the strong local domain domloc L of L if for any relatively
compact open set V there exists some u 2 F such that f jV D ujV �-a.e. Similarly
we define dom.1/; loc L. Then identity (7.2) holds for any f ; g 2 domloc L locally on
any relatively compact open set V .
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Assumption 2 The coordinates yi are members of domloc L.

Let Assumptions 1 and 2 be in force. This implies P. y/ � domloc L. Suppose
f D F ı y 2 P. y/, where again J D .n1; : : : ; nk/. Using (7.2) on the coordinates yi

and iterating, we inductively arrive at a coordinate formula for the generator

Lf .x/ D
kX

i;jD1

@2F

@ynj@ynj
. y/Zninj.x/C

kX
iD1

@F

@yni
. y/Lyni.x/;

valid locally on any relatively compact open V . This is a version of a well known
identity, see e.g. [12, Lemma 6.1] or [11].

Example 8

(1) For Example 2 (1) with C1-coefficients aij we have

Lf D div.arf / D
nX

i;jD1

@2f

@xi@xj
aij C

nX
iD1

@f

@xi

nX
jD1

@aij

@xj
:

(2) For Example 2 (2) we observe

�f D div.grad f / D 1p
g

@

@y j

�p
ggij @f

@yi



;

what differs by a minus sign from the Laplace-Beltrami operator (convention).
(3) For Example 2 (3) arrive at the Heisenberg sub-Laplacian,

Lf D div.Zrf / D @2f

@�2
C @2f

@�2
C �

@2f

@�@�
C �

@2f

@�@�
C �2 C �2

4

@2f

@�2
D �

X2 C Y2
�

f :

(4) In Example 2 (4) the Dirichlet form generator of .E ;F/ on L2.K; �/ is the
Kusuoka Laplacian .��; dom ��/. The coordinate functions yi are harmonic,
that is yi 2 dom �� and��yi D 0, i D 1; 2. Accordingly we have

�� f .x/ D
2X

i;jD1

@2F

@yi@y j
. y/Zij.x/

for any f D F ı y 2 P. y/. This can be rewritten as tr.Z.x/D2F. y//, where D2F
is the Hessian of F and tr the trace operator, see [45, Theorem 8].
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8 Constructing Coordinate Sequences

Let .E ;F/ be a strongly local regular Dirichlet form. Under some continuity
condition it is always possible to simultaneously construct an energy dominant
measure and a corresponding coordinate sequence. The latter may be designed to
have nice decay properties. Let .Pt/t>0 denote the Markovian semigroup uniquely
associated with .E ;F/, [6, 13]. If it is also a strongly continuous semigroup of
contractions Pt W C0.X/ ! C0.X/ on the space C0.X/ of continuous functions
vanishing at infinity, then it is called a Feller semigroup.

Example 9 The transition semigroups of many diffusion processes of Euclidean
domains or manifolds are Feller semigroups. Also the semigroups of many diffu-
sions on fractals are known to be Feller, see for instance [1–3, 33].

Lemma 8.1 Assume that the semigroup .Pt/t>0 is a Feller semigroup. Then there
exist a finite energy dominant measure Qm and a coordinate sequence . yi/i2I �
dom L for .E ;F/ with respect to Qm such that

(i) span.
˚
yi
�

i2I
/ is dense in F ,

(ii) For any i also the functions Lyi are continuous,

(iii) We have
1X

iD1

��yi
��2

sup < C1 and
1X

iD1

��Lyi
��2

sup < C1:

Proof Let ffigi � Cc.X/ be a countable family of nonzero functions that is
dense in L2.X; �/. By the Feller property, the resolvent functions G1 fi.x/ WDR1
0

e�tPt f .x/dt, are continuous and G1fi 2 dom L. Set

yi WD 2�nG1 fi
.�kG1 fiksup C k fiksup C E.G1 fi/

1=2
�
:

Then (ii) and (iii) are satisfied. The range Im G1 of G1 W L2.X; �/ ! L2.X; �/
is dense in F and any element of Im G1 can be approximated in F by linear
combinations of the functions G1 fi, what implies (i). Now set Qm WD P1

iD1 2i�. yi/.

Because the energy measures �. yi/ satisfy �. yi/ � �.G1 fi/

22nE.G1 fi/
� 2�2i, we

have Qm.X/ � P1
iD1 2�i < C1. For the densities we observe Zii D d�. yi/

d Qm �
d�. yi/

2id�. yi/
� 2�i Qm � a:e: Polarizing and choosing appropriate Qm-versions of the

functions Zij, we may assume that for m-a.e. x 2 X and any N 2 N the matrix
.Zij.x//Ni;jD1 is symmetric and nonnegative definite. To do so it suffices to note that

given v1; : : : ; vN 2 R, 0 � �

PN

iD1 viyi
�
.A/ D R

A

PN
iD1 Zij.x/vivj Qm.dx/ is a

nonnegative Radon measure, hence its density must be nonnegative Qm-a.e. By letting
N go to infinity we can finally obtain

kZ.x/vk2l2 �
X

i;j

jZij.x/j2jvjj2 �
X

i;j

jZii.x/jjZjj.x/jjvjj2 �
X

i;j

2�i�jjvjj2 � kvk2l2
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for any v D .v1; v2; : : : / 2 l2, what allows to conclude that Z.x/ is bounded,
symmetric and nonnegative definite on l2 for �-a.e. x 2 X. ut
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in probability theory: stochastic models and diffusions on fractals (Sanda/Kyoto, 1990), 201–
218, Pitman Res. Notes Math. Ser., 283, (Longman Sci. Tech., Harlow, 1993)

33. J. Kigami, Analysis on Fractals (Cambridge University Press, Cambridge, 2001)
34. J. Kigami, Measurable Riemannian geometry on the Sierpinski gasket: the Kusuoka measure

and the Gaussian heat kernel estimate. Math. Ann. 340(4), 781–804 (2008)
35. S. Kusuoka, Dirichlet forms on fractals and products of random matrices. Publ. Res. Inst. Math.

Sci. 25, 659–680 (1989)
36. S. Kusuoka, Lecture on diffusion process on nested fractals, in Statistical Mechanics and

Fractals. Lecture Notes in Mathematics, vol. 1567 (Springer, Berlin, 1993), pp. 39–98
37. D. Lenz, A. Teplyaev, Expansion in generalized eigenfunctions for Laplacians on graphs and

metric measure spaces. Trans. Am. Math. Soc. (To appear). arXiv:1310.5650
38. R. Montgomery, A Tour of Sub-Riemannian Geometries, Their Geodesics and Applications.

Mathematical Surveys and Monographs, vol. 91 (American Mathematical Society, Providence,
2002)

39. S. Nakao, Stochastic calculus for continuous additive functionals. Z. Wahrsch. verw. Geb. 68,
557–578 (1985)

40. J.-L. Sauvageot, Quantum differential forms, differential calculus and semigroups, in Quantum
Probability and Applications V. Lecture Notes in Mathematics, vol. 1442 (Springer, New York,
1990), pp. 334–346

41. R.S. Strichartz, Sub-Riemannian geometry. J. Diff. Geom. 24(2), 221–263 (1986)
42. R.S. Strichartz, Taylor approximations on Sierpinski type fractals. J. Funct. Anal. 174, 76–127

(2000)
43. R.S. Strichartz, Differential Equations on Fractals: A Tutorial (Princeton University Press,

Princeton, 2006)
44. A. Teplyaev, Gradients on fractals. J. Funct. Anal. 174, 128–154 (2000)
45. A. Teplyaev, Harmonic coordinates on fractals with finitely ramified cell structure. Canad. J.

Math. 60, 457–480 (2008)

http://arxiv.org/abs/1309.5937
http://arxiv.org/abs/1403.0142
http://arxiv.org/abs/1310.5650


Fractal Zeta Functions and Complex
Dimensions: A General Higher-Dimensional
Theory

Michel L. Lapidus, Goran Radunović, and Darko Žubrinić

Abstract In 2009, the first author introduced a class of zeta functions, called
‘distance zeta functions’, which has enabled us to extend the existing theory of
zeta functions of fractal strings and sprays (initiated by the first author and his
collaborators in the early 1990s) to arbitrary bounded (fractal) sets in Euclidean
spaces of any dimensions. A closely related tool is the class of ‘tube zeta functions’,
defined using the tube function of a fractal set. These zeta functions exhibit deep
connections with Minkowski contents and upper box (or Minkowski) dimensions,
as well as, more generally, with the complex dimensions of fractal sets. In
particular, the abscissa of (Lebesgue, i.e., absolute) convergence of the distance
zeta function coincides with the upper box dimension of a set. We also introduce
a class of transcendentally quasiperiodic sets, and describe their construction based
on a sequence of carefully chosen generalized Cantor sets with two auxilliary
parameters. As a result, we obtain a family of “maximally hyperfractal” compact
sets and relative fractal drums (i.e., such that the associated fractal zeta functions
have a singularity at every point of the critical line of convergence). Finally, we
discuss the general fractal tube formulas and the Minkowski measurability criterion
obtained by the authors in the context of relative fractal drums (and, in particular, of
bounded subsets of RN).
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Keywords Fractal set • Fractal zeta functions • Distance zeta function • Tube
zeta function • Geometric zeta function of a fractal string • Minkowski content •
Minkowski measurability • Upper box (or Minkowski) dimension • Complex
dimensions of a fractal set • Holomorphic and meromorphic functions • Abscissa
of convergence • Quasiperiodic function • Quasiperiodic set • Relative fractal
drum • Fractal tube formulas

1 Introduction

This article provides a short survey of some of the recent advances in the theory
of fractal zeta functions and the associated higher-dimensional theory of complex
dimensions, valid for arbitrary bounded subsets of Euclidean spaces and developed
in the forthcoming research monograph [41], entitled Fractal Zeta Functions and
Fractal DrumsW Higher-Dimensional Theory of Fractal Dimensions. (See also the
research articles [42–46] and the survey article [47].)

The theory of zeta functions of fractal strings, initiated by the first author in
the early 1990s and described in an extensive research monograph [52], joint with
M. van Frankenhuijsen (see also the references therein), was given an unexpected
impetus in 2009, when a new class of zeta functions, called ‘distance zeta functions’,
was discovered (also by the first author).1 Since distance zeta functions are associ-
ated with arbitrary bounded (fractal) sets in Euclidean spaces of any dimension (see
Definition 2.1), they clearly represent a valuable tool connecting the geometry of
fractal sets with complex analysis. This interplay is described in [41–47], where the
foundations of the theory of fractal zeta functions have been laid. In this paper, by
‘fractal zeta functions’ we mean the following three classes of zeta functions: zeta
functions of fractal strings (and, more generally, of fractal sprays), distance zeta
functions and tube zeta functions of bounded subsets of RN , with N � 1, although
some other classes may appear as well, like zeta functions of relative fractal drums
in R

N and spectral zeta functions; see Sect. 6 below and [41, Chap. 4]. The theory
of fractal zeta functions exhibits very interesting connections with the Minkowski
contents and dimensions of fractal sets; see Theorems 2.3 and 2.5.

Like fractal string theory, which the present theory of fractal zeta functions
extends to arbitrary dimensions (as well as to “relative fractal drums” in R

N),
the work described here should eventually have applications to various aspects
of harmonic analysis, fractal geometry, dynamical systems, geometric measure
theory and analysis on nonsmooth spaces, number theory and arithmetic geometry,
mathematical physics and, more speculatively, to aspects of condensed matter

1For fractal string theory and the associated one-dimensional theory of complex dimensions, as
well as for the extensions to higher-dimensional fractal sprays (in the sense of [39]), we refer the
reader to the research monographs [50–52] along, for example, with the articles [5, 6, 12, 14–
16, 20–40, 48, 49, 53, 56, 60, 61]. We refer, in particular, to [52, §12.2.1 and Chap. 13] for a survey
of some of the recent developments of the theory, prior to [41–47].
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physics and cosmology. Some of the more mathematical applications of the theory
are described in [41], as well as in [42–47], but a variety of potential applications
remain to be explored or even imagined.

The basic property of the distance zeta function of a fractal set, described in
Theorem 2.2, is that its abscissa of (absolute or Lebesgue) convergence is equal to
the upper box dimension D of the set. Under some mild hypotheses, D is always
a singularity; see part .b/ of Theorem 2.2. Furthermore, assuming that D is a pole,
then it is simple. Moreover, the residue of the distance zeta function computed at
D is, up to a multiplicative constant, between the corresponding upper and lower
Minkowski contents. A similar statement holds for the tube zeta function. (See
Theorems 2.3 and 2.5, respectively.)

In addition, according to part .b/ of Theorem 2.2, under some mild assumptions
on a bounded set A, the abscissa of (Lebesgue, i.e., absolute) convergence of its
distance zeta function coincides not only with D, but also with the abscissa of
holomorphic continuation of the zeta function.

We stress that if D WD dimBA < N, all the results concerning the distance zeta
functions have exact counterparts for the tube zeta functions, and vice versa. In other
words, the fractal zeta functions introduced in [41–47] contain essentially the same
information. In practice, however, it is often the case that one of the fractal zeta
functions is better suited for the given situation under consideration.

In Sect. 3, we discuss the existence and the construction of a suitable meromor-
phic continuation of the distance (or tube) zeta function of a fractal set, both in the
Minkowski measurable case (Theorem 3.1) and a frequently encountered instance of
Minkowski nonmeasurable case (Theorem 3.2). We will illustrate the latter situation
by computing the fractal zeta function and the associated complex dimensions of the
Sierpiński carpet; see Proposition 3.3 and Example 4 when N D 2 or 3, respectively.
Many other examples are provided in [41] and [42–46], where are calculated, in
particular, the complex dimensions of the higher-dimensional Sierpiński gaskets and
carpets in R

N , for any N � 2.
In Sect. 4, we introduce the so-called transcendentally n-quasiperiodic sets, for

any integer n � 2 (that is, roughly speaking, the sets possessing n quasiperiods;
see Definition 4.4), and describe the construction of 2-quasiperiodic sets, based
on carefully chosen generalized Cantor sets with two parameters, introduced in
Definition 4.1; see Theorem 4.5. It is also possible to construct n-quasiperiodic sets,
for any n � 2, and even 1-quasiperiodic sets, that is, sets which possess infinitely
many quasiperiods; see Sect. 5 below and [41, §4.6].

In Sect. 6, we introduce the notion of a relative fractal drum .A; �/ (which
represents a natural extension of the notion of bounded fractal string and of bounded
set). We also introduce the corresponding relative distance and tube zeta functions
�A. � ; �/ and Q�A. � ; �/, and study their properties. It is noteworthy that the relative
box dimension dimB.A; �/ can be naturally defined as a real number, which may
also assume negative values, including �1.

In Sect. 7, we address the question of reconstructing the tube function t 7!
jAt \�j of a relative fractal drum .A; �/, and thereby of obtaining a general “fractal
tube formula” expressed in terms of the complex dimensions of .A; �/ (defined as
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the poles of a suitable meromorphic extension of the relative distance zeta function
�A. � ; �/). The corresponding tube formulas are obtained in [41, Chap. 5] and [46]
(announced in [45]), as well as illustrated by a variety of examples. The example of
the three-dimensional Sierpiński carpet is given in Example 4. Moreover, towards
the end of Sect. 7, we explain how to deduce from our general tube formulas (and
significantly extend) earlier results obtained for fractal strings (in [50–52]) and,
especially, for fractal sprays and self-similar tilings (in [35] and [36]).

In closing this introduction, we recall some basic notation and terminology which
will be needed in the sequel. First of all, in order to avoid trivial special cases,
we assume implicitly that all bounded subsets of R

N under consideration in the
statements of the theorems are nonempty. Assume that A is a given bounded subset
of RN and let r be a fixed real number. We define the upper and lower r-dimensional
Minkowski contents of A, respectively, by

M�r.A/ WD lim sup
t!0C

jAtj
tN�r

; Mr�.A/ WD lim inf
t!0C

jAtj
tN�r

;

where At denotes the Euclidean t-neighborhood of A (namely, At WD fx 2 R
N W

d.x;A/ < tg) and jAtj is the N-dimensional Lebesgue measure of At. The upper and
lower box .or Minkowski/ dimensions of A are then defined, respectively, by

dimBA WD inffr 2 R W M�r.A/ D 0g; dimBA WD inffr 2 R W Mr�.A/ D 0g:

It is easy to check that 0 � dimBA � dimBA � N. Furthermore, if A is such that
dimBA D dimBA, then this common value is denoted by dimB A and is called the box
.or Minkowski/ dimension of A. Moreover, if A is such that, for some D 2 Œ0;N�,
we have 0 < MD�.A/ � M�D.A/ < 1 (in particular, then dimB A exists and
D D dimB A), we say that A is Minkowski nondegenerate. If MD�.A/ D M�D.A/,
then this common value is denoted by MD.A/ and called the Minkowski content of
A. Finally, assuming that A is such that MD.A/ exists and 0 < MD.A/ < 1, we
say that A is Minkowski measurable.2

Throughout this paper, given ˛ 2 R [ f˙1g, we denote by fRe s > ˛g the
corresponding open right half-plane in the complex plane, defined by fs 2 C W
Re s > ˛g. (In particular, if ˛ D ˙1, fRe s > ˛g is equal to ; or C, respectively.)
Similarly, given any ˛ 2 R, we denote by fRe s D ˛g the corresponding vertical
line fs 2 C W Re s D ˛g.

2We note that the notion of Minkowski dimension was introduced (for noninteger values) by
Bouligand [3] in the late 1920s (without making a clear distinction between the lower and upper
limits), while the notions of (lower and upper) Minkowski content, Minkowski measurability and
Minkowski nondegeneracy were introduced, respectively, in [9, 59] and [67]. (See also [22, 24, 38]
and, especially, [39, 40], along with [52], for the latter notions.) For general references on the
notion of Minkowski (or box) dimension (from different points of view), we refer, for example, to
[7, 9, 54, 63] and [52].
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2 Distance and Tube Zeta Functions

Let us introduce a new class of zeta functions, defined by the first author in 2009,
which extends the notion of geometric zeta functions of bounded fractal strings to
bounded subsets of Euclidean spaces of arbitrary dimensions.

Definition 2.1 ([41, 42]) Let A be a bounded subset of R
N and let ı be a fixed

positive real number. Then, the distance zeta function �A of A is defined by

�A.s/ WD
Z

Aı

d.x;A/s�Ndx; (2.1)

for all s 2 C with Re s sufficiently large. Here, d.x;A/ WD inffjx � yj W y 2 Ag
denotes the usual Euclidean distance from x to A. Furthermore, the integral is taken
in the sense of Lebesgue, and hence, is absolutely convergent.3

Remark 1 Since the difference of any two distance zeta functions of the same set A
corresponding to two different values of ı is an entire function,4 it follows that the
dependence of the distance zeta function �A on ı > 0 is inessential, in the sense that
the poles (of meromorphic extensions) of �A, as well as their multiplicities, do not
depend on the choice of ı.

The key for understanding the behavior of the distance zeta function �A consists
in understanding the Lebesgue integrability of the function Aı 3 x 7! d.x;A/Re s�N ,
where s 2 C is fixed.5 (We shall soon see that Re s should be sufficiently large.)
More precisely, we are interested in the Lebesgue integrability of the function x 7!
d.x;A/�� defined on Aı, where � WD N � Re s and s is a fixed complex number.
Since the function is clearly bounded (and hence, integrable) for � � 0, it suffices
to consider the case when � > 0, that is, when Re s < N.

Let us recall a useful and little known result due to Harvey and Polking,
stated implicitly on page 42 of [13], in which a sufficient condition for Lebesgue
integrability is expressed in terms of the upper box dimension. If A is any nonempty
bounded subset of RN, then the following implication holds6:

� < N � dimBA H)
Z

Aı

d.x;A/��dx < 1: (2.2)

3For simplicity, we implicitly assume throughout this paper that jAj D 0; the case when jAj > 0 is
discussed in [41].
4This is an easy consequence of the fact that d.x;A/ 2 Œı1; ı2� for all x 2 Aı2 n Aı1 with 0 < ı1 <
ı2 < 1.
5Indeed, note that jd.x;A/s�N j D d.x;A/Re s�N for all x 2 Aı .
6Moreover, if we assume that D WD dimB A exists, D < N and MD

�.A/ > 0, then the converse
implication holds as well; see [67, Thm. 4.3]. (See also [68, Thm. 4.1(b)].)
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Remark 2 The sufficient condition for the Lebesgue (i.e., absolute) integrability of
the function Aı 3 x 7! d.x;A/s�N in the Harvey–Polking result in (2.2), becomes
� WD N � Re s < N � dimBA, that is, Re s > dimBA. In other words, �A.s/ is well
defined for all s 2 C in the open right half-plane fRe s > dimBAg.

The distance zeta function of a bounded set represents a natural extension of
the notion of geometric zeta function �L, associated with a bounded fractal string
L D .`j/j�1 (introduced by the first author and his collaborators7 in the early 1990s
and extensively studied in [50–52] and the relevant references therein):

�L.s/ WD
1X

jD1
.`j/

s; (2.3)

for all s 2 C with Re s sufficiently large. Here, a bounded fractal string L is defined
as a nonincreasing infinite sequence of positive real numbers .`j/j�1 such that ` WDP

j�1 `j < 1. Alternatively, L can be viewed as a bounded open subset � of R, in
which case the `js are the lengths of the connected components (open intervals) of
�, written in nonincreasing order (so that `j # 0 as j ! 1).

An important first result concerning �L (first observed in [23, 24], using a result
from [2]) is that its abscissa of (absolute) convergence coincides with QD (the inner
Minkowski dimension of L or, equivalently, of its fractal boundary @�), defined by
QD WD dimB.@�;�/; see definition (6.1) below. For a direct proof of this statement,
see [52, Thm. 1.10] or [52, Thm. 13.111] and [31]. In light of the next comment,
it can be readily shown that part .a/ of Theorem 2.2 below extends this result to
arbitrary compact subsets of Euclidean spaces in any dimension; see [41, 42].

It is easy to see that the distance zeta function �AL of the set

AL WD
�

ak WD
1X

jDk

`j W k � 1

�
� Œ0; `�;

associated with L, and the geometric zeta function �L are connected by the
following simple relation:

�AL.s/ D u.s/ �L.s/C v.s/; (2.4)

for all complex numbers s such that Re s is sufficiently large, where u and v are
holomorphic onCnf0g and u is nowhere vanishing. In particular, due to Theorem 2.2
below, it follows that the abscissae of convergence of the distance zeta function �A

and of the geometric zeta function �L coincide, and that the corresponding poles
located on the critical line fRe s D dimBALg (called principal complex dimensions
of L or, equivalently, of AL), as well as their multiplicities, also coincide. The exact

7See, especially, [23, 24, 32, 33, 38–40] and [14].
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same results hold if AL is replaced by @�, the boundary of �, where � is any
geometric realization of L by a bounded open subset of R. For more details, see
[41, 42].

Before stating Theorem 2.2, we need to introduce some terminology and
notation, which will also be used in the remainder of the paper.

Given a meromorphic function (or, more generally, an arbitrary complex-valued
function) f D f .s/, initially defined on some domain U � C, we denote by Dhol.f /
the unique extended real number (i.e., Dhol.f / 2 R [ f˙1g) such that fRe s >
Dhol.f /g is the maximal open right half-plane (of the form fRe s > ˛g, for some
˛ 2 R [ f˙1g) to which the function f can be holomorphically extended.8 This
maximal (i.e., largest) half-plane is denoted by H.f / and called the half-plane of
holomorphic continuation of f .

If, in addition, the function f D f .s/ is assumed to be given by a tamed Dirichlet-
type integral (or DTI, in short),9 of the form

f .s/ WD
Z

E
'.x/sd�.x/; (2.5)

for all s 2 C with Re s sufficiently large, where � is a (positive or complex) local
(i.e., locally bounded) Borel measure on a given (measurable) space E and

0 � '.x/ � C for j�j -a.e. x 2 E; (2.6)

where C � 0,10 then D.f /, the abscissa of .absolute or Lebesgue/ convergence of f ,
is defined as the unique extended real number (i.e., D.f / 2 R [ f˙1g) such that
fRe s > D.f /g is the maximal open right half-plane (of the form fRe s > ˛g, for
some ˛ 2 R[ f˙1g) on which the Lebesgue integral initially defining f in (2.5) is
convergent (or, equivalently, is absolutely convergent), with � replaced by j�j, the
total variation measure of �. (Recall that j�j D � if � is positive.) In short, D.f / is
called the abscissa of convergence of f . Furthermore, the aforementioned maximal
right half-plane is denoted by ….f / and is called the half-plane of (absolute or
Lebesgue) convergence of (the Dirichlet-type integral) f . It is shown in [41, §2.1]

8By using the principle of analytic continuation, it is easy to check that Dhol.f / and H.f / are well
defined; see [41, §2.1].
9This is the case of the classic (generalized) Dirichlet series and integrals [55, 58], the classic
arithmetic zeta functions (see, e.g., [52, App. A] and [25, Apps. B, C & E]), as well as of the
geometric zeta functions of fractal strings studied in [50–52] and of all the fractal zeta functions
considered in this paper and in [41–47].
10Such functions f are called tamed DTIs in [41–47]; see esp. [41, App. A] for a development of
their general theory.



236 M.L. Lapidus et al.

that under mild hypotheses (which are always satisfied in our setting), D. f / is well
defined and (with the notation of (2.5) just above) we have, equivalently11:

D. f / D inf

�
˛ 2 R W

Z

E
'.x/˛dj�j.x/ < 1

�
; (2.7)

where (as above) j�j is the total variation (local) measure of �. Under the stated
conditions on f , we have…. f / � H. f /; that is, �1 � Dhol. f / � D. f / � C1.

Note that the distance zeta function �A, defined by (2.1), is a tamed DTI of the
form (2.5), with E WD Aı, '.x/ WD d.x;A/ and d�.x/ WD d.x;A/�Ndx. Furthermore,
we can clearly take C WD ı in (2.6).

The following key result describes some of the basic properties of distance zeta
functions.

Theorem 2.2 ([41, 42]) Let A be an arbitrary bounded subset of RN and let ı be a
fixed positive real number. ThenW
.a/ The distance zeta function �A is holomorphic on fRe s > dimBAg. Moreover,

….�A/ D fRe s > dimBAg; that is,

D.�A/ D dimBA: (2.8)

.b/ If the box .or Minkowski/ dimension D WD dimB A exists, D < N and MD�.A/ >
0, then �A.s/ ! C1 as s 2 R converges to D from the right. In particular,
H.�A/ D ….�A/ D fRe s > dimB Ag; that is,

Dhol.�A/ D D.�A/ D dimB A: (2.9)

Remark 3

.a/ It would be of interest to construct (if possible) a class of nontrivial bounded
subsets A of R

N such that Dhol.�A/ < D.�A/. A trivial example is given by
A D Œ0; 1�, since then Dhol.�A/ D 0 and D.�A/ D 1.

.b/ The analog of Theorem 2.2 holds for the tube zeta function Q�A (to be introduced
in Definition 2.4 below), except for the fact that in part .b/, one no longer needs
to assume that D < N.

Given a bounded set A, it is of interest to know the corresponding poles of the
associated distance zeta function �A, meromorphically extended (if possible) to a
neighborhood of the critical line fRe s D D.�A/g. Following the terminology of
[52], these poles are called the complex dimensions of A and we denote the resulting

11Let D WD dimBA, for brevity. In light of Theorem 2.2, for this alternative definition of D.�A/ (or
of D.Q�A/), with A 
 R

N bounded (as in the present situation), it would suffice to restrict oneself
to ˛ � 0 in the right-hand side of (2.7); this follows since D.�A/ D dimBA � 0 and (if D < N),
D.�A/ D D.Q�A/. Here, Q�A stands for the tube zeta function of A, defined by Eq. (2.12).
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set of complex dimensions by P.�A/.12 We pay particular attention to the set of
complex dimensions of A located on the critical line fRe s D D.�A/g, which we call
the set of principal complex dimensions of A and denote by dimPC A.

For example, it is well known that for the ternary Cantor set C.1=3/, dimB C.1=3/ D
log3 2 and, moreover (see [52, §1.2.2 and §2.3.1]), with � WD p�1,

dimPC C.1=3/ WD log3 2C 2�

log 3
�Z:

The following result provides an interesting connection between the residue of
the distance zeta function of a fractal set at D WD dimB A and its Minkowski contents.

Theorem 2.3 ([41, 42]) Assume that A is a bounded subset of R
N which is

nondegenerate .that is, 0 < MD�.A/ � M�D.A/ < 1 and, in particular,
dimB A D D/, and D < N. If the distance zeta function �A. � ;Aı/ WD �A, initially
defined by (2.1), can be meromorphically extended13 to a neighborhood of s D D,
then D is necessarily a simple pole of �A. � ;Aı/, and

.N � D/MD�.A/ � res.�A. � ;Aı/;D/ � .N � D/M�D.A/: (2.10)

Furthermore, the value of res.�A. � ;Aı/;D/ does not depend on ı > 0. In particular,
if A is Minkowski measurable, then

res.�A. � ;Aı/;D/ D .N � D/MD.A/: (2.11)

The distance zeta function defined by (2.1) is closely related to the tube zeta
function of a fractal set, which, in turn, is defined via the tube function t 7! jAtj, for
t > 0, of the fractal set A, as we now explain.

Definition 2.4 ([41, 42]) Let ı be a fixed positive number, and let A be a bounded
subset of RN . Then, the tube zeta function of A, denoted by Q�A, is defined (for all
s 2 C with Re s sufficiently large) by

Q�A.s/ WD
Z ı

0

ts�N�1jAtj dt: (2.12)

12Strictly speaking, one should talk about the set P.�A;U/ of visible complex dimensions relative
to a domain U 
 C to which �A can be meromorphically extended; see [41–44] (along with [52]).
In the examples described in this paper, we have U WD C.
13The existence and construction of meromorphic extensions of fractal zeta functions is discussed
in Sect. 3. It is studied in a variety of situations in [41–44, 46].
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For any fixed positive real number ı > 0, the distance and tube zeta functions
associated with a given fractal set A are connected as follows14:

�A.s;Aı/ D ıs�N jAıj C .N � s/ Q�A.s; ı/; (2.13)

for Re s > dimBA15; see [41, 42].16 Using this result, it is easy to obtain the analog
of Theorem 2.2 for Q�A (as was stated in Remark 3.b/ above) and to reformulate
Theorem 2.3 in terms of the tube zeta functions. In particular, we conclude that the
residue of the tube zeta function of a fractal set, computed at s D D, is equal to its
Minkowski content, provided the set is Minkowski measurable.

Theorem 2.5 ([41, 42]) Assume that A is a nondegenerate bounded subset of RN

.so that D WD dimB A exists/, and there exists a meromorphic extension of Q�A to a
neighborhood of D. Then, D is a simple pole of Q�A, and for any positive ı, res. Q�A;D/
is independent of ı. Furthermore, we have

MD�.A/ � res. Q�A;D/ � M�D.A/: (2.14)

In particular, if A is Minkowski measurable, then

res. Q�A;D/ D MD.A/: (2.15)

A class of fractal sets A for which we have strict inequalities in (2.14) (and hence
also in (2.10) of Theorem 2.3 above) is constructed in Theorem 3.2; see (3.8).

3 Meromorphic Extensions of Fractal Zeta Functions

Since the definition of the set of principal complex dimensions dimPC A of A requires
the existence of a suitable meromorphic extension of the distance zeta function �A, it
is natural to study this issue in more detail. For simplicity, we formulate the results
of this section for Q�A, but we note that the analogs of Theorems 3.1 and 3.2 also hold
for �A, provided D < N; see [41, §2.3.3] or [43].

Theorem 3.1 (Minkowski measurable case, [41, 43]) Let A be a bounded subset
of RN such that there exist ˛ > 0, M 2 .0;C1/ and D � 0 satisfying

jAtj D tN�D .M C O.t˛// as t ! 0C: (3.1)

14We write here �A. � ;Aı/ WD �A and Q�A. � ; ı/ WD Q�A, for emphasis.
15In light of the principle of analytic continuation, one deduces that identity (2.13) continues to
hold whenever one (and hence, both) of the fractal zeta functions �A and Q�A is meromorphic on a
given domain U 
 C.
16The case when D D N in Theorem 2.5 must be treated separately.



Fractal Zeta Functions and Complex Dimensions 239

Then, dimB A exists and dimB A D D. Furthermore, A is Minkowski measurable
with Minkowski content MD.A/ D M. Moreover, the tube zeta function Q�A has
for abscissa of convergence D. Q�A/ D dimB A D D and possesses a .necessarily
unique/ meromorphic continuation .still denoted by Q�A/ to .at least/ the open right
half-plane fRe s > D � ˛g. The only pole of Q�A in this half-plane is s D D; it is
simple and, moreover, res. Q�A;D/ D M.

Next, we deal with a useful class of Minkowski nonmeasurable sets. Before
stating Theorem 3.2, let us first introduce some notation. Given a locally integrable
T-periodic function G W R ! R, with T > 0, we denote by G0 its truncation to
Œ0;T�, while the Fourier transform of G0 is denoted by OG0: for all t 2 R,

OG0.t/ WD
Z C1

�1
e�2��t�G0.�/ d� D

Z T

0

e�2��t�G.�/ d�: (3.2)

Theorem 3.2 (Minkowski nonmeasurable case, [41, 43]) Let A be a bounded
subset of RN such that there exist D � 0, ˛ > 0, and G W R ! .0;C1/ a
nonconstant periodic function with period T > 0, satisfying

jAtj D t N�D
�
G.log t�1/C O.t˛/

�
as t ! 0C: (3.3)

Then G is continuous, dimB A exists and dimB A D D. Furthermore, A is Minkowski
nondegenerate, with upper and lower Minkowski contents respectively given by

MD�.A/ D min G; M�D.A/ D max G: (3.4)

Moreover, the tube zeta function Q�A has for abscissa of convergence D. Q�A/ D D and
possesses a .necessarily unique/ meromorphic extension .still denoted by Q�A/ to (at
least) the half-plane fRe s > D � ˛g.

In addition, the set of principal complex dimensions of A is given by

dimPC A D
�

sk D D C 2�

T
�k W OG0


 k

T

�
¤ 0; k 2 Z

�
(3.5)

(see (3.2)) and there are no other complex dimensions in fRe s > D � ˛g; they are
all simple, and the residue at each sk 2 dimPCA, with k 2 Z, is given by

res. Q�A; sk/ D 1

T
OG0


 k

T

�
: (3.6)

If sk 2 dimPC A, then s�k 2 dimPC A .in agreement with the ‘reality principle’/, and
j res. Q�A; sk/j � 1

T

R T
0

G.�/ d�; furthermore, limk!˙1 res. Q�A; sk/ D 0.
Moreover, the set of principal complex dimensions of A contains s0 D D, and

res. Q�A;D/ D 1

T

Z T

0

G.�/ d�: (3.7)
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In particular, A is not Minkowski measurable and

MD�.A/ < res. Q�A;D/ <M�D.A/: (3.8)

Example 1 (a-strings) The compact set A WD fj�a W j 2 Ng [ f0g, where a > 0, is
Minkowski measurable and

MD.A/ D 21�D

1 � D
aD; D WD dimB A D 1

1C a
: (3.9)

(See [22, Exple. 5.1 and App. C].) The associated fractal string L D .`j/j�1, defined
by `j D j�a � .j C 1/�a for all j � 1 (or, equivalently, by � WD Œ0; 1� n A � R,
so that @� D A), is called the a-string; see [14, 22–24, 38, 39] and [52, §6.5.1]. In
light of (2.11) and (2.15), we then know that res.�A. � ;Aı/;D/ D .1 � D/MD.A/
and res. Q�A;D/ D MD.A/.

Example 2 (fractal nests) Let a > 0 and let A be the countable union of concentric
circles in R

2, centered at the origin and of radii r D k�a, where k 2 N. According
to the terminology introduced in [41–44], A is called the fractal nest of inner type
generated by the a-string from the preceding example. Then, using the distance zeta
function of A it is possible to show that

D WD dimBA D max
n
1;

2

1C a

o
: (3.10)

(See [41, Chap. 3] and [42–44].) The set A is closely related to the planar spiral �
defined in polar coordinates by r D ��a, � � �0, where �0 > 0, and the value of
dimB � is the same as for A; see [63]. We mention in passing that for a ¤ 1, the
fractal nest A (as well as the corresponding spiral �) is Minkowski measurable and
for every a 2 .0; 1/, the value of its Minkowski content is independent of �0 and
given by

MD.A/ D �.2=a/2a=.1Ca/ 1C a

1� a
: (3.11)

Using (3.11), along with Eq. (2.11) from Theorem 2.3, we conclude that the residue
of the distance zeta function �A, computed at s D D, is given by

res.�A;D/ D �.2=a/2a=.1Ca/ 2a

1 � a
; (3.12)

provided a 2 .0; 1/. For a D 1, we have M1.A/ D M1.�/ D C1. These and
related results are useful in the study of fractal properties of spiral trajectories of
planar vector fields; see, e.g., [69].
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More generally, if we consider the fractal nest AN defined as the countable union
of concentric spheres in R

N , centered at the origin and of radii r D k�˛ , where
k 2 N, then using the distance zeta function �AN , it can be shown (see [41, §3.4] and
[42–44]) that

dimBAN D max
n
N � 1; N

1C a

o
: (3.13)

Note that for N D 1 and N D 2, we recover the box dimension of the a-string and
of the fractal nest, respectively; see [42–44] and Eqs. (3.9)–(3.10) above.

In the following result, we provide the distance zeta function of the Sierpiński
carpet and the corresponding principal complex dimensions. It is well known that
the Sierpiński carpet is not Minkowski measurable. See, e.g., [52], as well as [17]
for explicit values of its upper and lower Minkowski contents. A similar result can
be obtained for the Sierpiński gasket (and its higher-dimensional analogs); see [41,
§3.2.2] and [42–44].

Proposition 3.3 (Distance zeta function of the Sierpiński carpet) Let A be the
Sierpiński carpet in R

2, constructed in the usual way inside the unit square. Let ı
be a fixed positive real number. We assume without loss of generality that ı > 1=6

.so that for this choice of ı, Aı coincides with the ı-neighborhood of the unit square
Œ0; 1�2/. Then, for all s 2 C, the distance zeta function �A of the Sierpiński carpet is
given by

�A.s/ D 8

2ss.s � 1/.3s � 8/
C 2�

ıs

s
C 4

ıs�1

s � 1 ; (3.14)

which is meromorphic on the whole complex plane. In particular, the set of complex
dimensions and of principal complex dimensions of the Sierpiński carpet are given,
respectively, by

P.�A/ D f0; 1g [ dimPC A; dimPC A D log3 8C 2�

log 3
�Z: (3.15)

Furthermore, each of the complex dimensions .i.e., each of the poles of �A/ is simple.
Moreover, the residues of the distance zeta function �A computed at the principal
poles sk WD log3 8C 2�

log 3k�, with k 2 Z, are given by

res.�A; sk/ D 2�sk

.log 3/sk.sk � 1/ : (3.16)

Finally, the approximate values of the lower and upper D-dimensional Minkowski
contents are given by MD�.A/ � 1:350670 and M�D.A/ � 1:355617. .The precise
values can be found in [17]:/
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Sketch of the proof In order to compute the distance zeta function

�A.s/ WD
Z

Aı

d..x; y/;A/s�2dx dy

of the Sierpiński carpet A, we first have to calculate

�Ak.s; �k/ WD
Z

�k

d..x; y/;Ak/ dx dy; (3.17)

where �k is a square of the k-th generation (of side lengths ak D 3�k) and Ak is its
boundary. (Here, we deal in fact with ‘relative distance zeta functions’, which are
discussed in Remark 4 just below; see (6.2) and [41–44].) This can be easily done
by splitting �k into the disjoint union of eight congruent right-angle triangles, and
we obtain after a short computation that �Ak.s; �k/ D 8 � 2�sas

ks�1.s � 1/�1. Since
the k-th generation consists of 8k�1 squares congruent to �k, we deduce that

�A.s; Œ0; 1�
2/ D

1X
kD1

8k�1�Ak.s; �k/ D 8

2ss.s � 1/.3s � 8/
; (3.18)

for Re s > log3 8. The last expression in (3.18) is meromorphic in all of C. Hence,
upon analytic continuation, �A.s; Œ0; 1�2/ is given by that expression for all s 2 C.
Note that the value of �A.s; Œ0; 1�2/ is precisely equal to the first term on the right-
hand side of (3.14). The remaining two terms are obtained by considering �A.s;Aı n
Œ0; 1�2/, which can be easily reduced to considering a disk Bı.0/ of radius ı with
respect to its origin 0 2 R

2, and two rectangles that are congruent to�0 WD .0; 1/�
.�ı; ı/ with respect to its middle section A0 WD .0; 1/� f0g. ut
Remark 4 Equation (3.17) is a very special case of the zeta function of a relative
fractal drum .A; �/ in R

N , a notion which will be briefly discussed in Sect. 6 and is
the object of [44] and [41, Chap. 4]; see the first equality in Eq. (6.2) below.

4 Transcendentally Quasiperiodic Sets

In this section, we define a class of quasiperiodic fractal sets. The simplest of such
sets has two incommensurable periods. Moreover, using suitable generalized Cantor
sets, it is possible to ensure that the quotient of their periods be a transcendental real
number. Our construction of such sets is based on a class of generalized Cantor sets
with two parameters, which we now introduce.

Definition 4.1 ([41, 42]) The generalized Cantor sets C.m;a/ are determined by an
integer m � 2 and a real number a 2 .0; 1=m/. In the first step of the analog
of Cantor’s construction, we start with m equidistant, closed intervals in Œ0; 1� of
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length a, with m � 1 ‘holes’, each of length .1 � ma/=.m � 1/. In the second step,
we continue by scaling by the factor a each of the m intervals of length a; and so
on, ad infinitum. The .two-parameter/ generalized Cantor set C.m;a/ is then defined
as the intersection of the decreasing sequence of compact sets constructed in this
way. It is easy to check that C.m;a/ is a perfect, uncountable compact subset of R;
furthermore, C.m;a/ is also self-similar. For m D 2, the sets C.m;a/ are denoted by
C.a/. The classic ternary Cantor set is obtained as C.2;1=3/. In order to avoid any
possible confusion, we note that the generalized Cantor sets introduced here are
different from the generalized Cantor strings introduced and studied in [52, Chap.
10], as well as used in a key manner in [52, Chap. 11].

We collect some of the basic properties of generalized Cantor sets in the
following proposition.

Proposition 4.2 (Generalized Cantor sets, [41, 42]) If A WD C.m;a/ is the gener-
alized Cantor set introduced in Definition 4.1, where m is an integer larger than 1,
and a 2 .0; 1=m/, then

D WD dimB A D D.�A/ D log1=a m: (4.1)

Furthermore, the tube formula associated with A is given by

jAtj D t1�DG.log t�1/ for all t 2 .0; t0/; (4.2)

where t0 is a suitable positive constant and G D G.�/ is a continuous, positive and
nonconstant periodic function, with minimal period T D log.1=a/.

Moreover, A is Minkowski nondegenerate and Minkowski nonmeasurable; that
is, 0 <MD�.A/ <M�D.A/ < 1.17

Finally, the distance zeta function of A admits a meromorphic continuation to all
of C and the set of principal complex dimensions of A is given by

dimPC A D D C 2�

T
�Z: (4.3)

Besides .dimPC A/ [ f0g, there are no other poles, and all of the poles of �A are
simple. In particular, P.�A/ D .D C 2�

T �Z/ [ f0g.

The definition of quasiperiodic sets is based on the following notion of quasiperi-
odic functions, which will be useful for our purposes.18

17The periodic function G D G.�/, as well as the values of MD
�.A/ and M�D.A/, can be explicitly

computed; see [41, §3.1.1].
18We note that Definition 4.3, although rather close to the one provided in [64], is very different
from the usual definition of Bohr-type quasiperiodic functions.
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Definition 4.3 ([41, 42]) We say that a function G D G.�/ W R ! R is transcen-
dentally n-quasiperiodic, with n � 2, if it is of the form G.�/ D H.�; : : : ; �/,
where H W R

n ! R is a function that is nonconstant and Tk-periodic in its k-th
component, for each k D 1; : : : ; n, and the periods T1; : : : ;Tn are algebraically
(and hence, rationally) independent.19 The positive numbers Ti (i D 1; : : : ; n) are
called the quasiperiods of G. If, instead, the set of quasiperiods fT1; : : : ;Tng is
rationally independent and algebraically dependent, we say that G is algebraically
n-quasiperiodic.

Definition 4.4 ([41, 42]) Given a bounded subset A of RN , we say that a function
G W R ! R is associated with the set A (or corresponds to A) if it is nonnegative
and A has the following tube formula:

jAtj D tN�D.G.log.1=t//C o.1// as t ! 0C; (4.4)

with 0 < lim inf�!C1 G.�/ � lim sup�!C1 G.�/ < 1. In addition, we say that
A is a transcendentally .resp., algebraically/ n-quasiperiodic set if the function
G D G.�/ is transcendentally .resp., algebraically/ n-quasiperiodic. The smallest
possible value of n is called the order of quasiperiodicity of A.

The following result, which has a variety of generalizations as will be briefly
explained below, provides a construction of transcendentally 2-quasiperiodic fractal
sets. Its proof is based on the classical Gel’fond–Schneider theorem (as described
in [10]) from transcendental number theory.

Theorem 4.5 ([41, 42]) Let C.m1;a1/ and dimB C.m2;a2/ be two generalized Cantor
sets such that their box dimensions coincide and are equal to D 2 .0; 1/. Assume
that I1 and I2 are two unit closed intervals of R, with disjoint interiors, and
define A1 WD .min I1/ C C.m1;a1/ � I1 and A2 WD .min I2/ C C.m2;a2/ � I2. Let
fp1; p2; : : : ; pkg be the set of all distinct prime factors of m1 and m2, and write

m1 D p˛11 p˛22 : : : p
˛k
k ; m2 D pˇ11 pˇ22 : : : p

ˇk
k ;

where ˛i; ˇi 2 N [ f0g for i D 1; : : : ; k. If the exponent vectors e1 and e2 of,
respectively, m1 and m2, defined by

e1 WD .˛1; ˛2; : : : ; ˛k/ and e2 WD .ˇ1; ˇ2; : : : ; ˇk/;

are linearly independent over the field of rational numbers, then the compact set
A WD A1 [ A2 � R is transcendentally 2-quasiperiodic.

Moreover, the distance zeta function �A can be meromorphically extended to the
whole complex plane, and we have that D.�A/ D D. The set dimPC A of principal

19That is, linearly independent over the field of algebraic numbers.
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complex dimensions of A is given by

dimPC A D D C

2�

T1
Z [ 2�

T2
Z

�
�: (4.5)

Besides .dimPC A/ [ f0g, there are no other poles of the distance zeta function �A

and they are all simple. In particular,

P.�A/ D
 

D C

2�

T1
Z [ 2�

T2
Z

�
�

!
[ f0g: (4.6)

Remark 5 This result can be considerably extended by using Baker’s theorem
[1, Thm. 2.1] which, in turn, is a far-reaching extension of the aforementioned
Gel’fond–Schneider’s theorem. Indeed, for any fixed integer n � 2, using Baker’s
theorem and n generalized Cantor sets, an explicit construction of a class of
transcendentally n-quasiperiodic fractal sets is given in [42] and [41, §3.1]. In
[43, 44] and [41, Chap. 4], we even construct a set which is transcendentally 1-
quasiperiodic; see Sect. 5.

5 Maximally Hyperfractal 1-Quasiperiodic Sets

It is possible to construct a bounded subset A of the real line, such that the
corresponding distance zeta function �A has for abscissa of (Lebesgue, i.e., absolute)
convergence D.�A/ any prescribed real number D 2 .0; 1/ and A is maximally
hyperfractal; that is, any point on the critical line fRe s D Dg is a nonremovable
singularity of the corresponding distance zeta function �A. In particular, there is no
meromorphic continuation of �A to any open and connected neighborhood of the
critical line (and, moreover, not even to any open and connected neighborhood of
an arbitrary point on the critical line). Furthermore, it is possible to construct a
maximally hyperfractal set which is 1-transcendentally quasiperiodic as well. A
construction of such sets is described in detail in [41, Chap. 4] or in [44]. In the
sequel, we provide a rough sketch of this construction.

The set A � R which is a maximal hyperfractal and 1-transcendentally
quasiperiodic set, can be constructed as the nonincreasing sequence

A D AL D
�

ak WD
1X

jDk

`j W k 2 N

�
(5.1)

of positive real numbers ak converging to zero as k ! 1, generated by a suitable
bounded fractal string L D .`j/j�1. Roughly speaking, the fractal string L is
obtained as a (suitably defined) union of an infinite sequence of bounded fractal
strings Lk WD .`kj/j�1, corresponding to generalized Cantor sets of the form
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ck � C.mk;ak/, for k 2 N, with carefully chosen values of the parameters mk and ak

appearing in Definition 4.1, and where .ck/k�1 is an appropriate summable sequence
of positive real numbers.

More precisely, the union L WD F1
kD1 Lk of the sequence of bounded fractal

strings Lk is defined as the set-theoretic union of the elements of the strings, but by
definition, each of its elements has for multiplicity the sum of the corresponding
multiplicities from all of the fractal strings Lk to which belongs the element in
question. Note that the multiplicity of an element of L is well defined since this
element must belong to at most finitely many bounded fractal strings Lk, which
follows from the fact that the sequence ck converges to 0 as k ! 1. Moreover, we
must assume that

P1
kD1 ck < 1, so that the string L be bounded (i.e.,

P1
jD1 `j <

1). We can also ensure that for each positive integer k, the corresponding upper
box dimension of Lk (that is, of the set ALk ) be equal to a fixed value of D 2 .0; 1/,
prescribed in advance. (Note that the set AL is distinct from [1

kD1ALk .)
Recall that the oscillatory period of Lk (in the sense of [52]), which is defined

by pk WD 2�
log.1=ak/

, provides valuable information about the density of the set of
principal complex dimensions of Lk on the critical line fRe s D Dg. More precisely,
by choosing the coefficient ak 2 .0; 1=mk/ so that ak ! 0 as k ! 1, we see that for
the set of principal complex dimensions of the generalized Cantor string Lk (i.e., the
set of the principal poles of �Lk ), dimPC Lk D dimPC C.mk;ak/ D D C pk�Z, becomes
denser and denser on the critical line, as k ! 1, since then the oscillatory period pk

tends to zero. Therefore, the distance zeta function of the fractal string L WD t1
kD1Lk

will have D C

S1

kD1 pkZ

�
� as a set of singularities, which is densely packed on

the critical line fRe s D Dg D D C R�, since the set [1
kD1pkZ is clearly dense

in R. In conclusion, the whole critical line fRe s D Dg consists of nonremovable
singularities of �L,20 which by definition means that the fractal stringL is maximally
hyperfractal. Hence, the corresponding set A WD AL is also maximally hyperfractal.

Since the coefficients ak, appearing in the definition of the generalized Cantor
set (see Definition 4.1), have been chosen above so that ak ! 0 as k ! 1, it is
clear that mk ! 1, because D D dimB C.mk;ak/ D mk

log.1=ak/
, where D 2 .0; 1/ is

given in advance and independent of k. This enables us to use our result mentioned
in Remark 5, obtained by means of Baker’s theorem from transcendental number
theory [1], in order to ensure that the sequence of quasiperiods Tk WD log.1=ak/, k 2
N, is algebraically independent (that is, any finite subset of this set of quasiperiods
is linearly independent over the field of algebraic real numbers).21 According to

20In light of the discussion surrounding Eq. (2.4) above, the same is true if �L is replaced by
�AL or, more generally, by the relative distance zeta function �A. � ; �/ defined by �A.s; �/ WDR
� d.x;A/s�N dx (see Sect. 6 and [44] or [41, Chap. 4]), where A D @� is the boundary of any

geometric realization of L by a bounded open subset � of R.
21The algebraic independence of the set of quasiperiods fTk W k � 1g, with k � 1, can be deduced
(using the aforementioned Baker’s theorem, [1]) if we assume, in addition, that the sequence
.ek/k�1 (suitably redefined), corresponding to the sequence .mk/k�1, is rationally independent.
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Definition 4.3, this means that L is 1-transcendentally quasiperiodic, and so is the
corresponding bounded subset A WD AL of the real line.

As we see from the above rough description, the nature of a subset A WD AL of
the real line which is maximally hyperfractal and 1-transcendentally quasiperiodic,
is in general extremely complex, although it is, in fact, ‘just’ defined in terms of a
nonincreasing sequence of positive real numbers converging to zero.

In closing this discussion, we mention that this construction (as well as Theo-
rem 4.5 and its generalization mentioned in Remark 5), extends to any N � 2, by
letting B WD A � Œ0; 1�N�1 � R

N ; see [41, 42, 44].

6 Fractal Zeta Functions of Relative Fractal Drums

In this section, we survey some of the definitions and results from [41, Chap. 4]; see
also [44]. Let A be a (possibly unbounded) subset of RN and let � be a (possibly
unbounded) Borel subset of RN of finite N-dimensional Lebesgue measure. We say
that the ordered pair .A; �/ is a relative fractal drum (or RFD, in short) if there
exists a positive real number ı such that � � Aı. It is easy to see that for every
ı > 0, any bounded subset A can be identified with the relative fractal drum .A;Aı/.
Furthermore, any bounded fractal string L D .`j/

1
jD1 can be identified with the

relative fractal drum .[1
jD1@Ij;[1

jD1Ij/, where .Ij/
1
jD1 is a family of pairwise disjoint

open intervals in R such that jIjj1 D `j for all j � 1.
Given a relative fractal drum .A; �/ in R

N and for a fixed real number r, we
define the relative upper and relative lower r-dimensional Minkowski contents of
.A; �/, respectively, by

M�r.A; �/ WD lim sup
t!0C

jAt \�j
tN�r

; Mr�.A/ WD lim inf
t!0C

jAt \�j
tN�r

:

The relative upper and relative lower box .or Minkowski/ dimensions of .A; �/ are
then defined, respectively, by

dimB.A; �/ WD inffr 2 R W M�r.A; �/ D 0g;
dimB.A; �/ WD inffr 2 R W Mr�.A; �/ D 0g:

(6.1)

It is easy to check that �1 � dimB.A; �/ � dimB.A; �/ � N, and it is shown in
[41, 44] that the relative box dimensions can indeed attain arbitrary negative values
as well, including �1 (an obvious example is when Aı \� D ; for some ı > 0).
Intuitively, negative relative box dimensions correspond to the property of flatness
of the RFD under consideration. If dimB.A; �/ D �1, then the RFD .A; �/ is said
to be infinitely flat. A nontrivial example of an infinitely flat RFD .A; �/ in R

2 is
given by A WD f.0; 0/g and � WD f.x; y/ 2 .0; 1/2 W 0 < y < e�1=xg. Other examples
of flat RFDs can be found in [41, 44].
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If .A; �/ is such that dimB.A; �/ D dimB.A; �/, then this common value is
denoted by dimB.A; �/ and is called the box .or Minkowski/ dimension of .A; �/.
Moreover, if .A; �/ is such that, for some D 2 .�1;N�, we have 0 <MD�.A; �/ �
M�D.A; �/ < 1 (in particular, then dimB.A; �/ exists and D D dimB.A; �/), we
say that .A; �/ is Minkowski nondegenerate. If MD�.A; �/ D M�D.A; �/, then the
common value is denoted byMD.A; �/ and called the Minkowski content of .A; �/.
Finally, assuming that .A; �/ is such that MD.A; �/ exists and 0 < MD.A; �/ <
1, we say that the RFD .A; �/ is Minkowski measurable.

To any given RFD .A; �/ in R
N , we can associate the corresponding relative

distance zeta function and the relative tube zeta function defined, respectively, by

�A.s; �/ WD
Z

�

d.x;A/s�Ndx; Q�A.s; �/ WD
Z ı

0

ts�N�1jAt \�j dt; (6.2)

for all s 2 C with Re s sufficiently large, where ı is a fixed positive real number.
They are a valuable theoretical and technical new tool in the study of fractals.

The basic result dealing with relative distance zeta functions, analogous to
Theorem 2.2 of §2, is provided by the following theorem.

Theorem 6.1 ([41, 44]) Let .A; �/ be an arbitrary RFD. ThenW
.a/ The distance zeta function �A. � ; �/ is holomorphic on fRe s > dimB.A; �/g.

Moreover, ….�A. � ; �// D fRe s > dimB.A; �/g; that is,

D.�A. � ; �// D dimB.A; �/: (6.3)

.b/ If the box .or Minkowski/ dimension D WD dimB.A; �/ exists, D < N, and
MD�.A; �/ > 0, then �A.s; �/ ! C1 as s 2 R converges to D from the right.
In particular, H.�A. � ; �// D ….�A. � ; �// D fRe s > dimB.A; �/g; that is,

Dhol.�A. � ; �// D D.�A. � ; �// D dimB.A; �/: (6.4)

An entirely analogous result holds for the tube zeta function Q�A. � ; �/, except for
the fact that the hypothesis D < N is no longer needed in the counterpart of part .b/
of Theorem 6.1.

A very useful property of relative distance zeta functions is the following scaling
property: for any RFD .A; �/ and for any positive real number �, we have

��A.s; ��/ D �s�A.s; �/: (6.5)

We refer the interested reader to [41, Chap. 4] and [44–47] for many other related
results, examples and comments. We mention, in particular, that ‘fractal drums’ (that
is, ‘drums with fractal boundary’, in the sense of [22–24], for example)22 correspond

22See also [52, §12.5], [27] and [47] for many other references on fractal drums.
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to RFDs of the form .@�;�/, where � is a nonempty bounded open subset of
R

N , and that the results discussed in Sect. 5 above are applied in a crucial way in
order to show the optimality of certain inequalities pertaining to the meromorphic
continuations of the spectral zeta functions of fractal drums (viewed as RFDs); see
[41, §4.3] and [47].

7 Fractal Tube Formulas and a Minkowski Measurability
Criterion

In this section, we briefly explain how under suitable growth conditions on the
relative distance (or tube) zeta function (see a variant of the languidity (resp., of
the strong languidity) condition of [52, §5.3] given in [45, 46]), it is possible to
recover a pointwise or distributional fractal tube formula for a relative fractal drum
.A; �/ in R

N , expressed as a sum of residues over its visible complex dimensions.
These fractal tube formulas, along with a Tauberian theorem due to Wiener and
Pitt (which generalizes Ikehara’s Tauberian theorem, see [19, 55]) make it possible
to derive a Minkowski measurability criterion for a large class of relative fractal
drums (and compact subsets) of RN . These results generalize to higher dimensions
the corresponding ones obtained for fractal strings (that is, when N D 1) in [52,
§8.1 and §8.3].

The results of this section are announced in [45] and fully proved in [46]. (See
also [41, Chap. 5].) Furthermore, we refer the interested reader to [41, 46] and
[52, §8.2 and §13.1] for additional references on tube formulas in various settings,
including [4, 8, 11, 18, 29–31, 34–37, 50, 51, 57, 65, 66]. (See also [52, §13.1, §13.2
and §13.4].)

In order to be able to state the fractal tube formulas, we introduce the following
notions, adapted from [52] to the present much more general context. The screen S
is the graph of a bounded, real-valued, Lipschitz continuous function S.�/, with the
horizontal and vertical axes interchanged: S WD fS.�/ C �� W � 2 Rg and we let
sup S WD sup�2R S.�/ 2 R. Given a relative fractal drum .A; �/ of RN , we always
assume that the screen S lies to the left of the critical line fRe s D dimB.A; �/g, i.e.,
that sup S � dimB.A; �/. Furthermore, the window W is defined as W WD fs 2 C W
Re s � S.Im s/g. The relative fractal drum .A; �/ is said to be admissible if its tube
(or distance) zeta function can be meromorphically extended to an open connected
neighborhood of some window W.

Assume now that .A; �/ is an admissible relative fractal drum of RN for some
screen S such that its distance zeta function satisfies appropriate growth conditions
(see [45, 46] for details).23 Then its relative tube function satisfies the following

23Roughly speaking, �.A;�/ WD �A. � ; �/ is assumed to grow at most polynomially along the vertical
direction of the screen and along suitable horizontal directions (avoiding the poles of �.A;�/); see
[52, Def. 5.2] for the so-called “languidity condition”.
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identity, for all positive real numbers t sufficiently small24:

jAt \�j D
X

!2P.�A. � ;�/;W/
res

�
tN�s

N � s
�A.s; �/; !



C R.t/: (7.1)

The above fractal tube formula is interpreted pointwise or distributionally,
depending on the growth properties of �A. � ; �/ and then, R.t/ is a pointwise or
distributional25 asymptotic error term of order at most O.tN�sup S/ as t ! 0C.
Moreover, if S lies strictly to the left of the vertical line fRe s D sup Sg (that is,
if S.�/ < sup S, for all � 2 R), then R.t/ is o.tN�sup S/, pointwise or distributionally,
as t ! 0C. In the case when �A. � ; �/ satisfies stronger growth assumptions (i.e.,
the analog of the “strong languidity condition” of [52, Def. 5.3]), we obtain a tube
formula without an error term (i.e., R.t/ � 0) and with W D C. Following [52], the
resulting formula is then called an exact fractal tube formula.

The tube formula (7.1) can also be expressed in terms of the relative tube zeta
function when analogous growth conditions are imposed on Q�A. � ; �/26:

jAt \�j D
X

!2P.Q�A. � ;�/;W/
res



t N�s Q�A.s; �/; !
�

C R.t/: (7.2)

In fact, the key observation for deriving the above formula is the fact that

Q�A.s; �/ D
Z C1

0

ts�N�1�.0;ı/.t/jAt \�j dt D fMf g.s/; (7.3)

where �E is the characteristic function of the set E, fM g.s/ WD R C1
0

ts�1 .t/ dt
is the Mellin transform of the function , and f .t/ WD t�N�.0;ı/.t/jAt \�j. One then
applies the inverse Mellin transform (see [62]) to recover the relative tube function
t 7! jAt \ �j and proceeds in a similar manner as in [52, Chap. 5] for the case of
fractal strings.

As an application, the following result generalizes the Minkowski measurability
criterion given in [52, Thm. 8.15] for fractal strings to the present case of relative
fractal drums.

Theorem 7.1 (Minkowski measurability criterion, [45, 46]) Let .A; �/ be an
admissible relative fractal drum of RN such that D WD dimB A exists and D < N.
Furthermore, assume that its relative distance .or tube/ zeta function satisfies

24The ranges within which the formulas are valid are fully specified in [45, 46].
25For the precise definition of distributional asymptotics, see [52, §5.4.2], [45, 46] and the relevant
references therein.
26Note that in light of the functional equation (2.13), assuming growth conditions for �A is
essentially equivalent to assuming them for Q�A (and vice versa).
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appropriate growth conditions27 for a screen passing between the critical line
fRe s D Dg and all the complex dimensions of A with real part strictly less than
D. Then, the following statements are equivalentW
.a/ A is Minkowski measurable.
.b/ D is the only pole of the distance zeta function �A located on the critical line

fRe s D Dg, and it is simple.

There exist relative fractal drums which do not satisfy the hypothesis of
Theorem 7.1 concerning the screen; see [52, Exple. 5.32]. We point out that the
fractal tube formula (7.1) can be used to recover (or obtain for the first time) the
(relative) fractal tube formulas for a variety of well-known (and not necessarily
self-similar) fractal sets, as is illustrated by the following examples.

Example 3 Recall from Proposition 3.3 that the distance zeta function of the
Sierpiński carpet A is given for all s 2 C by

�A.s/ D 8

2ss.s � 1/.3s � 8/
C 2�

ıs

s
C 4

ıs�1

s � 1 ;

for ı > 1=6, and is meromorphic on all of C. It is easy to check that �A satisfies
growth conditions which are good enough for (7.1) to hold pointwise without an
error term and for all t 2 .0; 1=2/:

jAtj D
X

!2P.�A;C/

res

�
t2�s

2 � s
�A.s/; !



: (7.4)

Now, also recall from Proposition 3.3 that P.�A;C/ D f0; 1g [ fsk W k 2 Zg,
where sk D log3 8 C 2�

log 3k� for all k 2 Z. Furthermore, res.�A; 0/ D 2� C 8=7,
res.�A; 1/ D 16=5 and the residues at sk are given in (3.16); so that (7.4) becomes
the following exact, pointwise fractal tube formula, valid for all t 2 .0; 1=2/:

jAtj D t2�log3 8

log 3

C1X
kD�1

2�sk t�
2�

log 3 k�

sk.sk � 1/.2 � sk/
C 16

5
t C

�
2� C 8

7



t2: (7.5)

The above example can be generalized to an N-dimensional analog of the
Sierpiński carpet (see [41, 46]). We next establish the special case of this assertion
for the relative 3-dimensional Sierpiński carpet.

Example 4 Let A be the three-dimensional analog of the Sierpiński carpet and �
the closed unit cube in R

3. More precisely, we construct A by dividing � into 27
congruent cubes and remove the open middle cube, then we iterate this step with
each of the 26 remaining smaller closed cubes; and so on, ad infinitum. By choosing

27See [45, 46] for details about these growth conditions.
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ı > 1=6, we deduce that �A is meromorphic on C and given for all s 2 C by
(see [41, 46])

�A.s; �/ D 48 � 2�s

s.s � 1/.s � 2/.3s � 26/
: (7.6)

In particular, P.�A. � ; �/;C/ D f0; 1; 2g [ � log3 26C p�Z
�
, where p WD 2�= log 3.

Furthermore, we have that

res.�A. � ; �/; 0/ D �24
25
; res.�A. ��/; 1/ D 24

23
; res.�A. � ; �/; 2/ D � 6

17

and, by letting !k WD log3 26C pk� for all k 2 Z,

res.�A. � ; �/; !k/ D 24 � 2�!k

13 � !k.!k � 1/.!k � 2/ log 3
:

Again, the relative distance zeta function �A. � ; �/ satisfies sufficiently good growth
conditions, which enables us to obtain the following exact pointwise relative tube
formula, valid for all t 2 .0; 1=2/:

jAt \�j D 24 t3�log3 26

13 log 3

C1X
kD�1

2�!k t�pk�

.3 � !k/.!k � 1/.!k � 2/!k
� 6

17
t C 12

23
t2 � 8

25
t3:

In particular, we conclude that dimB.A; �/ D log3 26 and, by Theorem 7.1, that, as
expected, .A; �/ is not Minkowski measurable.

One can similarly recover the well-known fractal tube formula for the Sierpiński
gasket obtained in [35] (and also, more recently, by a somewhat different method,
in [4]), as well as a tube formula for its N-dimensional analog described in [41,
Chap. 5].28 We also point out that, in light of the functional equation (2.4), the above
fractal tube formulas (7.1) and (7.2) generalize the corresponding ones obtained for
fractal strings (i.e., when N D 1) in [52, §8.1]. Furthermore, these tube formulas can
also be applied to a variety of fractal sets that are not self-similar, including ‘fractal
nests’ and ‘geometric chirps’ (see [41, Chaps. 3 and 4] for the definitions of these
notions and [46] along with [41, Chap. 5] for the actual fractal tube formulas).

We conclude this section by briefly explaining how these results can also be
applied in order to recover (and extend) the tube formulas for self-similar sprays
generated by a suitable bounded open set G � R

N . (See [35, 36].) A self-similar
spray is a collection .Gk/k2N of pairwise disjoint sets Gk � R

N , with G0 WD G and
such that Gk is a scaled copy of G by some factor �k > 0. The sequence .�k/k2N is

28We can also recover and extend the significantly more general fractal tube formulas obtained (for
fractal sprays and self-similar tilings) in [36] and used, in particular, in [37].
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called the scaling sequence associated with the spray and is obtained from a “ratio
list” fr1; r2; : : : ; rJg, with 0 < rj < 1 for each j 2 f1; 2; : : : ; Jg, by building all
possible words based on the ratios rj. Let now .A; �/ be the relative fractal drum
such that A WD @.[k2NGk/ and � WD [k2NGk, with dimB.@G;G/ < N. Then,
it is clear that its relative distance zeta function �A. � ; �/ satisfies the following
functional equation, for all s 2 C with Re s sufficiently large:

�A.s; �/ D �@G.s;G/C �r1A.s; r1�/C � � � C �rJA.s; rJ�/; (7.7)

where .rjA; rj�/ denotes the relative fractal drum .A; �/ scaled by the factor
rj. Furthermore, by using the scaling property (6.5) of the relative distance zeta
function, the above equation becomes

�A.s; �/ D �@G.s;G/C rs
1�A.s; �/C � � � C rs

J�A.s; �/; (7.8)

which yields that

�A.s; �/ D �@G.s;G/

1 �PJ
jD1 rs

j

: (7.9)

It is now enough to assume that the relative distance zeta function �@G.s;G/ of the
generating relative fractal drum .@G;G/ satisfies suitable growth conditions in order
to obtain the following formula for the ‘inner’ volume of At D .@�/t relative to
� WD [k2NGk, for all positive t sufficiently small:

jAt \�j D
X

!2D.W/[P.�@G. � ;G/;W/
res

0
@ tN�s�@G.s;G/

.N � s/


1 �PJ

jD1 rs
j

� ; !
1
AC R.t/; (7.10)

where D.W/ denotes the set of all visible complex solutions of
PJ

jD1 rs
j D 1

(in W) and W is the window defined earlier. It is easy to check that (at least)
in the case of monophase or pluriphase generators (in the sense of [35] and
[36, 37]), these growth conditions are satisfied, so that one obtains exactly the same
distributional or pointwise fractal tube formulas as in [35] or [36], respectively, after
having calculated the distance zeta function �@G. � ;G/ of the generator. Moreover,
if �@G. � ;G/ is strongly languid, we can let R.t/ � 0 and W D C in (7.10) and
therefore obtain exact fractal tube formulas.

We conclude this survey by pointing out that a broad variety of open problems
and suggestions for directions for future research in this area are proposed in [41,
Chap. 6].
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68. D. Žubrinić, Hausdorff dimension of singular sets of Sobolev functions and applications, in

More Progress in Analysis; Proceedings of the 5th International ISAAC Congress, ed. by
H.G.W. Begher, F. Nicolosi (World Scientific, Singapore, 2009), pp. 793–802
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2 Inverse Problems in Multifractal Analysis of Measures

2.1 Generalities About Multifractal Analysis

Let MC
c .R

d/ stand for the set of compactly supported Borel positive and finite
measures on R

d (d � 1/. The upper box dimension of a bounded set E � R
d will

be denoted dimBE, and its Hausdorff and packing dimensions will be denoted by
dimH E and dimP E respectively (see [20, 44, 52] for definitions).

Multifractal analysis is designed to finely describe geometrically the heterogene-
ity in the distribution at small scales of the elements of MC

c .R
d/. If � 2 MC

c .R
d/,

this heterogeneity can be described via the lower and upper local dimensions of �,
namely

d.�; x/ D lim inf
r!0C

log.�.B.x; r///

log.r/
and d.�; x/ D lim sup

r!0C

log.�.B.x; r///

log.r/
;

and the level sets

E.�; ˛/D
n
x 2 supp.�/ W d.�; x/ D ˛

o
; E.�; ˛/D

n
x 2 supp.�/ W d.�; x/ D ˛

o
;

and

E.�; ˛/ D E.�; ˛/ \ E.�; ˛/ .˛ 2 R [ f1g/;

where B.x; r/ and supp.�/ stand for the closed ball of radius r > 0 centered at x and
the topological support of � respectively.

The lower Hausdorff spectrum of � is the mapping defined as

f H
�

W ˛ 2 R [ f1g 7! dimH E.�; ˛/;

with the convention that dimH ; D �1, so that f H
�
.˛/ D �1 if ˛ < 0. This

spectrum provides a geometric hierarchy between the sets E.�; ˛/, which partition
supp.�/. Here, the lower local dimension is emphasized as it provides at any point
the best pointwise Hölder control one can have on the measure � at small scales.
However, the upper local dimension is of course of interest, and much attention is
paid in general, especially in ergodic theory, to the sets E.�; ˛/ of points at which
one has an exact local dimension. The Hausdorff spectrum of � is the mapping
defined as

f H
� W ˛ 2 R [ f1g 7! dimH E.�; ˛/:

After basic observations made by physicists [26, 27], mathematicians derived,
and in many cases justified, the heuristic according to which, for a measure
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possessing a self-conformal like property, f H
� should be the Legendre transform

of a kind of free energy function, called the Lq-spectrum. This led to an abundant
literature on what has become called multifractal formalism (see e.g. [12, 13, 39, 48,
49, 52]).

To be more specific we need some definitions. Given I 2 fR; R [ f1gg and
f W I ! R [ f�1g, the domain of f is defined as dom. f / D fx 2 I W f .x/ > �1g.
For � W R ! R [ f�1g, if dom.�/ ¤ ;, the concave Legendre-Fenchel transform
of � is the upper-semi continuous concave function defined as �� W ˛ 2 R 7!
inff˛q � �.q/ W q 2 dom.�/g (see [54]). If, moreover, 0 2 dom.�/, we define its
(extended) concave Legendre-Fenchel transform as

�� W ˛ 2 R [ f1g 7!
(

inff˛q � �.q/ W q 2 dom.�/g if ˛ 2 R;

inff˛q � �.q/ W q 2 dom.�/ \ R�g if ˛ D 1;

with the conventions 1 � q D �1 if q < 0 and 1 � 0 D 0. Consequently,
1 2 dom.��/ if and only if 0 D min.dom.�//, and in this case ��.1/ D ��.0/ D
max.��/. In any case, �� is upper semi-continuous over dom.��/, and concave over
the interval dom.��/ n f1g (here the notion of upper semi-continuous function is
relative to R [ f1g endowed with the topology generated by the open subsets of R
and the sets .˛;1/[ f1g, ˛ 2 R).

Now, define the Lq-spectrum of � 2 MC
c .R

d/ as

�� W q 2 R 7! lim inf
r!0C

log sup
nP

i �.B.xi; r//q
o

log.r/
;

where the supremum is taken over all the centered packings of supp.�/ by closed
balls of radius r. The following properties are standard and proved for instance
in [39].

Proposition 2.1 Let � 2 MC
c .R

d/.

1. �� is concave and non-decreasing; ��.1/ D 0, �d � ��.0/ D �dimB supp.�/
� 0.

2. Either dom.��/ D R, or dom.��/ D RC, according to whether the exponent

lim supr!0C

log.inff�.B.x; r// W x 2 supp.�/g/
log.r/

is finite or not. Moreover ��
� is

non-negative on its domain, which is a closed subinterval of RC [ f1g.

For ˛ 2 R we always have (see [39, Section 3] or [49, Section 2.7])

f H
� .˛/ � f H

�
.˛/ � ��

�.˛/ � max.˛;���.0// � max.˛; d/I (2.1)

we also have

f H
� .1/ � ��

�.1/
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(see [3]), a dimension equal to �1 meaning that the set is empty. Notice that due to
(2.1), if f H

� .˛/ � ˛ at some ˛, then 0 � ˛ � d and f H
� .˛/ D ��

�.˛/ D ˛, so that ˛
is a fixed point of ��

� . Moreover, since ��.1/ D 0 and �� is concave, the set of fixed
points of ��

� is the interval Œ� 0
�.1

C/; � 0
�.1

�/�.
We say that � obeys the multifractal formalism at ˛ 2 R [ f1g if f H

�
.˛/ D

��
�.˛/, and that the multifractal formalism holds (globally) for � if it holds at all
˛ 2 R [ f1g. If f H

�
.˛/ can be replaced by f H

� .˛/ in the previous definition, we say

that the multifractal formalism holds strongly. In this case one has

dimH E.�; ˛/ D dimP E.�; ˛/ D dimH E.�; ˛/ D dimH E.�; ˛/ D ��
�.˛/:

The multifractal formalism turns out to hold globally, or on some non-trivial
subinterval of dom.��

�/, for some important classes of continuous measures, namely
some classes of self-conformal measures (including certain Bernoulli convolutions),
Gibbs and weak Gibbs measures on hyperbolic dynamical systems (see e.g. [13, 16,
21–25, 39, 42, 52, 53] and [3] for more references), and scale invariant limits of
certain multiplicative chaos [1, 6, 17, 29, 46]; in these cases it also holds strongly.
It also holds for some natural classes of discrete measures (see e.g. [2, 9, 34, 51] as
well as references in [3]). Other examples are special self-affine or Gibbs measures
on self-affine Sierpinski carpets [4, 7, 38, 50], or on almost all the attractors of
IFS associated with certain families of d � d invertible matrices with small enough
singular values [5, 18, 19], as well as generic probability measures on a compact
subset of Rd [11, 14].

The measures mentioned above share the geometric property of being exact
dimensional, i.e. for such a measure �, there exists D 2 Œ0; d� such that d.�; x/ D
d.�; x/ D D, �-almost everywhere. This implies D 2 Œ� 0

�.1
C/; � 0

�.1
�/� and �

strongly obeys the multifractal formalism at D. In fact, for any � 2 MC
c .R

d/,
for �-almost every x one has � 0

�.1
C/ � d.�; x/ � d.�; x/ � � 0

�.1
�/ ([48]), and

for most of the continuous measures mentioned above, � 0
�.1/ exists, hence equals

D; also, �� is piecewise C1, and even analytic in certain cases, a typical example
being Gibbs measures associated with Hölder potentials on repellers of C1C˛
conformal mappings. Another property of these measures is that, when they obey
the multifractal formalism globally, they are homogeneously multifractal (HM), in
the sense that the lower Hausdorff spectrum of the restriction of� to any closed ball
whose interior intersects supp.�/ is equal to the lower Hausdorff spectrum of �.

2.2 Full Illustration of the Multifractal Formalism

Theorem 2.2 ([3]) Let � W R ! R [ f�1g be a concave function satisfying the
necessary properties (see Proposition 2.1) to be the Lq-spectrum of some element of
MC

c .R
d/. Let D 2 Œ� 0.1C/; � 0.1�/�. There exists an (HM) measure � 2 MC

c .R
d/,
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exact dimensional with dimension D, and which strongly satisfies the multifractal
formalism with �� D � .

Remark 1 In [3] we develop much more general results by using a finer multifractal
formalism to prescribe and distinguish Hausdorff and packing dimensions of the
level sets fx 2 supp.�/ W d.�; x/ D ˛; d.�; x/ D ˇg, .˛ � ˇ � 1/. The
connection with Olsen’s multifractal formalism [49] is also studied.

It is interesting to complete this statement by describing the possible behaviors of
.��; �

�
�/ (see Figs. 1–6). For this we need to extend the notion of Legendre-Fentchel

transform to functions f W R[f1g ! R[f�1g: for such an f , if dom. f /\R ¤ ;,
we define the concave Legendre-Fenchel transform of f as

f � W q 2 R 7! inffq˛ � f .˛/ W ˛ 2 dom. f /g;

with the conventions q � 1 D sign.q/� 1 if q ¤ 0 and 0� 1 D 0. Consequently,
if 1 2 dom. f / and f is bounded from above, then 0 D min.dom. f �// and
f �.0/ D � max.sup. f /jR/; f .1/); moreover, f � is concave over dom. f �/, upper
semi-continuous over dom. f �/ n f0g, and upper semi-continuous at 0 only if and
only if f .1/ D max. f /.

Proposition 2.3 ([3, 39]) Suppose that � W R ! R[ f�1g satisfies the properties
of the Lq-spectrum described in Proposition 2.1. One has .��/� D � on R, and:

1. If dom.�/ D R, then dom.��/ is the compact interval I D Œ� 0.1/; � 0.�1/�, ��
is concave and continuous on its domain.

Fig. 1 Illustration of Proposition 2.3.1. when the domain of �� is a non trivial interval and �� is
differentiable, with a second order phase transition at some qC > 1.
The case of a trivial interval f˛0g would correspond to a monofractal measure with 0 � ˛0 � d,
��.q/ D ˛0.q � 1/ for all q 2 R, ��

� .˛/ D ˛ if ˛ D ˛0 and ��
� .˛/ D �1 otherwise. (a) The Lq

spectrum of �. (b) Its Legendre transform
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Fig. 2 Illustration of Proposition 2.3.2(b) when � 0
�.0

C/ < 1, �� is differentiable, and it has
a second order phase transition at some qC > 1. (a) The Lq spectrum of �. (b) Its Legendre
transform

Fig. 3 Illustration of Proposition 2.3.2(b) when � 0
�.0

C/ < 1, �� is not differentiable at 1, and it
has a second order phase transition at some qC > 1. (a) The Lq spectrum of �. (b) Its Legendre
transform

2. If dom.�/ D RC, then 1 2 dom.��/ with ��.1/ D ��.0/ and:

(a) If �.0/ D 0 then � D 0 over RC, dom.��/ D RC [ f1g and �� D 0 over
RC [ f1g.

(b) If �.0/ < 0 and � is continuous at 0C, then dom.��/ D Œ� 0.1/;1�, �� is
concave, continuous, and increasing over Œ� 0.1/; � 0.0C//, ��.˛/ D ��.0/ D
��.1/ D ��.0/ for all ˛ 2 Œ� 0.0C/;1/ and �� is continuous at 1; there
are two distinct behaviors according to whether � 0.0C/ < 1 or not.

(c) If �.0/ < 0 and � is discontinuous at 0C, then dom.��/ D Œ� 0.1/;1�.
Moreover, for all ˛ 2 Œlimq!0C � 0.q�/;1/ one has ��.˛/ D ��.0C/ <
��.1/ D ��.0/, so that �� is concave and continuous on Œ� 0.1/;1/ and
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Fig. 4 Illustration of Proposition 2.3.2(b) when � 0
�.0

C/ D 1, �� is not differentiable at 1, and it
has a second order phase transition at some qC > 1. (a) The Lq spectrum of �. (b) Its Legendre
transform

Fig. 5 Illustration of Proposition 2.3.2(c) when � 0
�.0

C/ < 1, �� is not differentiable at 1, and it
has another first order phase transition at some qC > 1. (a) The Lq spectrum of �. (b) Its Legendre
transform

Fig. 6 Illustration of Proposition 2.3.2(c) when � 0
�.0

C/ D 1, �� is not differentiable at 1 and

� 0
�.1

C/ takes the minimal value 0. (a) The Lq spectrum of �. (b) Its Legendre transform

discontinuous at 1 (there are also two cases, according to limq!0C � 0.q�/
equals 1 or not).

Remark 2 The behavior described in Proposition 2.3.1 is illustrated, for instance, by
(weak) Gibbs measures on conformal repellers [25, 49, 52]. The behaviors described
by Proposition 2.3.2(b) are illustrated by some Gibbs measures on countable
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Markov shifts and their geometric realizations [30, 42, 43], which also obey the
multifractal formalism, though in [30, 43] the set E.�;1/ is not studied. The
fact that the behaviors described in Proposition 2.3.2(a) and (c) be illustrated by
measures obeying the mutifractal formalism seems to be new.

Remark 3 In [28], when d D 1, for each D 2 .0; 1/ one finds an exact dimensional
measure � with dimension D and Lq-spectrum equal to min.q � 1; 0/ over RC. It is
also worth mentioning that in [10] one finds examples of inhomogeneous Bernoulli
measures over Œ0; 1� with an Lq-spectrum presenting countably many points of non-
differentiability over Œ1;C1/.

2.3 Measures with prescribed lower Hausdorff spectrum

In general, dom. f H
�
/ D f˛ 2 R [ f1g W E.�; ˛/ ¤ ;g is not a closed subinterval

of Œ0;1�, and even when it is the case, the restriction of f H
�

to dom. f H
�
/\RC is not

necessarily concave. Consequently, it is also natural to study the inverse problem
consisting of associating to a function f W R[ f1g ! Œ0; d�[ f�1g whose domain
is a subset of RC [ f1g and such that f .˛/ � ˛ for all ˛ � 0, an (HM) measure
whose lower Hausdorff spectrum is equal to f . In [3] we construct such a measure
�, exact dimensional, when f shares important properties with ��

� ; specifically, f is
taken in the family:

F.d/ D

8
ˆ̂<
ˆ̂:

f W R [ f1g ! Œ0; d� [ f�1g W

8
ˆ̂<
ˆ̂:

dom. f / is a closed subset of Œ0;1�

f is u.s.c.; Fix. f / ¤ ;
f .˛/ � ˛ for all˛ 2 dom. f /

9
>>=
>>;
;

where Fix. f / (� Œ0; d�) stands for the set of fixed points of f .

Theorem 2.4 ([3]) Let f 2 F.d/. For each D 2 Fix. f /, there exists an (HM)
measure � 2 MC

c .R
d/, exact dimensional with dimension D, such that f H

�
D f .

Remark 4

(1) The measures constructed in the proofs of Theorems 2.2 and 2.4 are continuous
and supported on Cantor sets.

(2) Our approach does not make it possible to replace f H
�

D f by f H
� D f in the

previous statement unless dom. f / D Fix. f / or dom. f / is an interval and f
is concave over dom. f / \ RC. It turns out that the proof given in [3] can be
slightly improved so that � is absolutely continuous with respect to Lebesgue
measure when D D d.
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Remark 5 (Related result by Z. Buczolich and S. Seuret) The prescription of the
lower Hausdorff spectrum has also been studied in [15]. The authors work on R

and construct (HM) continuous measures, not exact dimensional, but with upper
Hausdorff dimension equal to 1, and whose support is equal to Œ0; 1�. Moreover,
the lower Hausdorff spectrum is prescribed in the class F of functions f W RC !
Œ0; 1�[f�1g which satisfy: f .1/ D 1, dom. f / is a closed subinterval of Œ0; 1� of the
form Œ˛; 1� such that ˛ > 0, and fjŒ˛;1/ D max.gjŒ˛;1/; 0/, where the function g has
the following properties: (i) g is the supremum of a sequence of functions .gn/n�1,
such that each gn is constant over its domain supposed to be a closed subinterval
of Œ0; 1� and gn.ˇ/ � ˇ for all ˇ 2 Œ0; 1�; (ii) Œ˛; 1� is the smallest closed interval
containing the support of g.

It is also shown that for an (HM) measure to be supported by the whole interval
Œ0; 1�, it is necessary that the support of its lower Hausdorff spectrum contains an
interval of the form Œ˛; 1�, (0 � ˛ � 1).

The authors also study the case of non-(HM) measures. They construct measures
that are non exact dimensional with upper Hausdorff dimension 1 whose support is
equal to Œ0; 1�, with a prescribed lower Hausdorff spectrum in the broader class QF
of functions f which satisfy that f .1/ D 1, 0 < inf.dom. f //, and fjdom. f /nf1g D
gjdom. f /nf1g, where g satisfies property (i). This includes all such functions f for
which g is lower semi-continuous. Simultaneously, they also construct a non-(HM)
measure with lower Hausdorff spectrum given by g.

Remark 6 The spectra previously defined make sense if measures are replaced by
non-negative functions of subsets of Rd to which a notion of support is associated.
This is the case for instance for Choquet capacities. In [40], the prescription of
˛ 7! dimH E.C; ˛/ is studied, where C is a (HM) Choquet capacity on subsets of
Œ0; 1� but not a positive measure, which makes the situation easier to study; spectra
are prescribed in a broader class than QF, but defined in a similar spirit.

In [41], one finds non-(HM) non-negative functions C of subsets of Œ0; 1�, which
are not measures, for which the spectrum ˛ 7! lim	!0C dimH

S
s>0

T
0<r<sfx 2

supp.C/ W r˛C	 � C.B.x; r// � r˛�	g is prescribed in the class of upper semi-
continuous functions f W RC 7! Œ0; 1� [ f�1g with non-empty compact domain.

2.4 Outline of the Proof of Theorem 2.4

Let us sketch the main ideas leading to the construction of the measure � provided
by Theorem 2.4. To establish Theorem 2.2 one must improve this approach in order
to control both the finer level sets E.�; ˛/ and the upper large deviations spectrum

f
LD
� of � when f D ��

� , and the relation �� D f
LD
�

�
.

For simplicity, we assume that dom. f / is a non-trivial interval Œ˛min; ˛max� �
RC, f is continuous over Œ˛min; ˛max�, 0 � f .˛/ � min.˛; d/ over Œ˛min; ˛max�, and
f .D/ D D for a unique point D in Œ˛min; ˛max�. The homogeneity of the construction
of the measure � automatically implies that the measure is (HM).
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At first one shows (independently of f ) that for each � 2 Œ0; d� and ˛ � � , one
can find two Borel probability measures �˛;� and �˛;� supported on Œ0; 1�d such that
��;� D ��;� , �˛;� is exact dimensional with dimension � , and �˛;� is concentrated
on E.�˛;� ; ˛/, as well as on the set defined similarly but with ˛.�; x/ replaced by
limn!1 log.�.In.x///

�n log.2/ , where In.x/ stands for the closure of dyadic cube semi-open to
the right containing x.

Set A1 D f˛1 D Dg, and for each integer m � 1, define AmC1 D Am [ f˛mC1g,
where ˛mC1 2 Œ˛min; ˛max� n Am, in such a way that the set f˛m W m � 1g is dense
in Œ˛min; ˛max�. By using the previous property with � D f .˛/, for all m � 1 one
gets an integer nm such that for all ˛ 2 Am, for all n � nm, there is a collection
Gm;n.˛/ of about 2nf .˛/ dyadic subcubes of Œ0; 1�d such that for all I 2 Gm;n.˛/ one
has �˛; f .˛/.I/ � 2�n˛, �˛; f .˛/.I/ � 2�nf .˛/, and

P
I2Gm;n.˛/

�˛; f .˛/.I/ 2 Œ1=2; 1�.
For every integer m � 2, one considers m dyadic closed subcubes L˛1 ; : : : ;L˛m

of Œ0; 1�d, of the same generation n0
m, so that the 2�n0

m=5 neighborhood of each L˛i

does not intersect any of the other L˛j .
The measure � is constructed on a Cantor set K D T

m�1
S

I2Gm
, where the Gm

are families of closed dyadic subcubes of Œ0; 1�d of generation gm tending to 1 as
m ! 1, constructed recursively according to a scheme roughly as follows:

One obtains G1 by considering the measure �˛1; f .˛1/ D �D;D, an integer N1 �
n1 much bigger than n0

2 and setting G1 D G1;N1 .˛1/ D G1;N1 .D/. This yields the
probability measure �1 defined on G1 as

�1.I/ D �D;D.I/P
I02G1

�D;D.I0/
:

This measure satisfies �1.I/ � 2�N1D. Suppose now that the set Gm has been
constructed, as well as a probability measure�m on its elements. One takes NmC1 �
nmC1 an integer much bigger than max.gm; n0

mC2/, and for each 1 � i � m C 1, one
considers the measure �˛i ; f .˛i/ and the associated set GmC1.˛i/ WD GmC1;NmC1

.˛i/.
For each 1 � i � m C 1 and Im 2 Gm, one defines the set of the elements of GmC1
contained in Im as

SmC1
iD1 GmC1.Im; ˛i/, where GmC1.Im; ˛i/ D fIm � L˛i � I W I 2

GmC1.˛i/g, and the concatenation J � J0 of two closed subcubes of Œ0; 1�d is obtained
as the cube fJ.J0/, where fJ is the natural contracting similitude mapping Œ0; 1�d onto
J (this operation is associative). One gets a probability measure �mC1 on GmC1 by
setting, for I 2 GmC1.˛i/:

�mC1.Im � L˛i � I/ D �m.Im/
�˛i ; f .˛i/.I/P

˛2AmC1

P
I02GmC1.˛/

�˛; f .˛/.I0/
: (2.2)

This makes it possible to define a Borel probability measure carried on K and
coinciding with �m over Gm for all m � 1.

Since f .˛/ < ˛ except for ˛ D ˛1 D D, if NmC1 is taken big enough, in (2.2)
for each i > 1 the contribution of the elements of GmC1.˛/ is roughly 2NmC1. f .˛/�˛/
hence is negligible so that the denominator is equivalent to the single contribution
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of
P

I02GmC1.D/
�D;D.I0/ 2 Œ1=2; 1�. Consequently, for ImC1 2 GmC1 of the form

Im � L˛i � I, I 2 GmC1.˛i/, we have the following estimate:

�.ImC1/ � �m.Im/�˛i; f .˛i/.I/ � �m.Im/2
�˛iNmC1 � 2�˛igmC1 (2.3)

because gm � NmC1. Also, we have that #GmC1.˛i/ � 2f .˛i/NmC1 , hence

#fI 2 GmC1 W I 2 GmC1.Im; ˛i/ with Im 2 Gmg
D .#Gm/.#GmC1.˛i// � 2f .˛i/gmC1 ;

again because gm � NmC1. The previous estimate and the continuity of f
essentially yield that f is an upper bound for f H . Combined with (2.3), it shows
that at generation m C 1, the mass of � is essentially carried by the intervals
Im � LD � I, I 2 GmC1.D/, since we have 1 D k�k � PmC1

iD1 2f .˛i/gmC12�˛igmC1 DPmC1
iD1 2. f .˛i/�˛i/gmC1 � 2. f .˛1/�˛1/gmC1 D 1 (recall that ˛1 D f .˛1/ D D). This can

be strengthened to show that � is exact D-dimensional.
Another important fact is the natural existence of a family of auxiliary measures

used to find a sharp lower bound for f H : with each Ǒ D .ˇm/m�1 2 Q1
mD1 Am is

associated the Cantor subset of K defined as K Ǒ D T
m�1

S
I2G Ǒ;m

I; where G Ǒ;m
is the subset of Gm obtained by selecting only the intervals of the construction for
which one considers the exponent ˇi 2 Ai at step i for all 1 � i � m. Using (2.3)
and finer properties of the measures �˛;� one can show that K Ǒ � E.�; ˇ/, where
ˇ D lim infm!1 ˇm. Moreover, the measures �ˇm; f .ˇm/ can be used to construct a
nice auxiliary probability measure � Ǒ carried by K Ǒ . At first one defines recursively
a sequence of measures .� Ǒ;m/m�1 on the atoms of the sets G Ǒ;m, m � 1, as follows:
� Ǒ;1 is the restriction of �D;D to G Ǒ;1.D G1/, and assuming that � Ǒ;m is constructed
on G Ǒ;m, if Im 2 G Ǒ;m, for I 2 GmC1.ˇmC1/ one sets

� Ǒ;mC1.Im � LˇmC1
� I/ D � Ǒ;m.Im/

�ˇmC1; f .ˇmC1/.I/P
I02GmC1.ˇmC1/

�ˇmC1; f .ˇmC1/.I
0/
:

This yields a Borel probability measure � Ǒ supported on K Ǒ such that � Ǒ.Im �
LˇmC1

� I/ D � Ǒ;mC1.Im � LˇmC1
� I/ � � Ǒ;m.Im/�ˇmC1; f .ˇmC1/.I/, so that � Ǒ.Im �

LˇmC1
� I/ � �ˇmC1; f .ˇmC1/.I/ � 2�f .ˇmC1/gmC1 (again since gm � NmC1). This

can be strengthened to dimH.� Ǒ/ D lim infm!1 f .ˇm/, which yields dimH K Ǒ �
lim infm!1 f .ˇm/ by the mass distribution principle (see [20]). Finally, if ˇ 2
Œ˛min; ˛max� and limm!1 ˇm D ˇ, we get f H.ˇ/ D dimH E.�; ˇ/ � f .ˇ/ by
continuity of f .
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3 Application to Multifractal Analysis of Hölder Continuous
Functions

Multifractal analysis of functions has developed in parallel to multifractal analysis
of measures, mainly under the impulse of Frisch and Parisi’s note about multifrac-
tality in fully developed turbulence [26], and with its own multifractal formalisms
[33, 35–37, 47]. These are based on the link between pointwise Hölder regularity
and the wavelet expansions of Hölder continuous functions [31].

Theorems 2.2 and 2.4 can be used to construct Hölder continuous wavelet series
with prescribed upper semi-continuous lower Hausdorff spectra, and also to give
a full illustration of the multifractal formalism for Hölder continuous functions
based on the wavelet leaders [36], according to the bridge made in [8] between this
formalism and the multifractal formalism for measures. We will restrict ourselves
to the case d D 1.

To be more specific, recall first that if F W R ! R is a bounded Hölder continuous
function, for each x0 2 R, one defines the pointwise Hölder exponent of f at x0 as

hF.x0/ D supfh � 0 W for some polynomial P;

jF.x/� P.x � x0/j D O.jx � x0jh/ as jx � x0j ! 0g;

where jx � x0j stands for the Euclidean norm of x � x0. This exponent is the
counterpart for functions of the lower local dimension for measures.

One usually calls the mapping

h 7! dimHfx 2 R W hF.x/ D hg .h 2 R [ f1g/

the singularity spectrum of F (we keep the terminology lower Hausdorff spectrum
for a slightly different spectrum defined below). Notice that if f is � -Hölder, then
fx 2 R W hF.x/ D hg D ; if h < � .

We are going to restrict the study to Œ0; 1�. We fix a wavelet basis f Ig (I
describing all the dyadic subintervals of R), so that the mother wavelet is in the
Schwartz class (see [45, Ch. 3]) and the  I are normalized to have the same
supremum norm.

Denoting f�Ig the collection of the wavelet coefficients of F in the basis f Ig,
let LI D supfj�I0 jg, the supremum being taken over all the dyadic intervals included
either in I or in the two dyadic intervals of the same generation as I neighboring I.
Then, let supp.F/ be the closed set of those x 2 Œ0; 1� such that jL.In.x//j > 0 for
all n � 1, where In.x/ stands for the closure of the unique semi-open to the right
dyadic cube of generation n which contains x. According to [36], this set does not
depend on  ; moreover, for x 2 supp.F/, one has

hF.x/ D lim inf
n!1

log2.jL.In.x//j/
�n

:



Inverse Problems in Multifractal Analysis 273

For h 2 R [ f1g, we set

E.F; h/ D fx 2 supp.F/ W hF.x/ D hg:

The lower Hausdorff spectrum of F is the mapping

f H
F

W h 7! dimH E.F; h/ .h 2 R [ f1g/:

We say that F is homogeneously multifractal (HM) if for all h 2 R [ f1g, the
Hausdorff dimension of E.F; h/ \ B does not depend on the ball B whose interior
intersects supp.F/.

A basic idea [8] to relate multifractal analysis of functions to that of measures is
to consider wavelet series of the form

F�;�1;�2 D
X

I	Œ0;1�
jIj�1�.I/�2 I ;

where jIj stands for the diameter of I, �1 � 0, �2 > 0, � 2 MC
c .R/ with supp.�/ �

Œ0; 1�, and

� D �1 C �2 lim inf
n!1

log2.maxf�.I/ W I dyadic � Œ0; 1�; jIj D 2�ng/
�n

> 0;

so that the function F�;�1;�2 is ˇ-Hölder continuous for all 0 < ˇ < � . Then, the
study achieved in [8] yields

E.F�;�1;�2 ; h/ D E


�;

h � �1
�2

�
(3.1)

for all h 2 R [ f1g, so that any information about the multifractal structure
of measures should transfer to a similar one for this class of wavelet series. In
particular, it is clear from (3.1) that dimH E.F�;�1;�2 ; h/ � h��1

�2
.

3.1 Prescription of the Lower Hausdorff Spectrum

Theorem 3.1 Let f W RC [ f1g ! Œ0; 1� [ f�1g be upper semi-continuous.
Suppose that dom. f / is a closed subset I of Œ0;1� such that 0 < min.I/ < 1.
There exists an (HM) Hölder continuous function F such that f H

F
D f .

Proof For � > 0 set �.�/ D supf f .h/=�h W h 2 Ig, with the convention x=1 D 0

for all x � 0. Since f is upper semi-continuous and bounded over its domain, �.�/
is reached at some h < 1. Moreover, the mapping � is continuous, and we have
�.1=min.I// � 1 by definition of f . Now we distinguish two cases.
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If f 6� 0 over I, then �.�/ tends to 1 as � tends to 0C, so the continuity of �
yields 0 < �0 � 1=min.I/ such that �.�0/ D 1, hence f .h/ � �0h for all h 2 I,
with equality at some h. Let Qf D f .��1

0 �/. By construction we have Qf 2 F.1/. Put Qf
in Theorem 2.4 to get an (HM) measure in MC

c .R/ supported on Œ0; 1� whose lower
Hausdorff spectrum is given by Qf . Then F D F�;0;��1

0
is Hölder continuous and has

f as lower Hausdorff spectrum by (3.1).
If f � 0 on I, then Qf D f .� � min.I// belongs to F.1/ (with 0 as unique fixed

point). Put Qf in Theorem 2.4 to get an (HM) measure in MC
c .R/ supported on Œ0; 1�

whose lower Hausdorff spectrum is given by Qf . Then F D F�;min.I/;1 is Hölder
continuous and has f as lower Hausdorff spectrum.

Remark 7 In [15], the measures described in Remark 5(1) are used to construct
(HM) functions of the form F D F�;�1;�2 with supp.F/ D Œ0; 1�. Previously in
[32], S. Jaffard constructed non-(HM) wavelet series with prescribed spectrum in
the class of functions f W .0;1/ ! Œ0; 1� which are representable as the supremum
of a countable collection of step functions.

3.2 Full Illustration of the Multifractal Formalism

Our results also yield a full illustration of the multifractal formalism for Hölder
continuous functions whose support is a subset of Œ0; 1�. This requires some
preliminary definitions and facts.

If F D P
I �I I is a non-trivial such function, i.e. ; ¤ supp.F/ � Œ0; 1�,

denote by T.q/ the Lq-spectrum associated with the wavelet leaders .LI/I	Œ0;1�, i.e.
the concave non-decreasing function

TF.q/ D lim inf
n!1

�1
n

log2
X
I2G�

n

Lq
I .q 2 R/;

where G�
n stands for the set of dyadic cubes I of generation n for which LI > 0.

Due to [36] again, this function does not depend on the choice of f Ig if the mother
wavelet is in the Schwartz class. Moreover, if F takes the form F�;�1;�2 , one has
almost immediately

�F.q/ D ��.�2q/� �1q .q 2 R/: (3.2)

From now on we discard the trivial case of limn!1 log2.maxfLI WI2G�
n g/

�n D 1, so
that TF D �dimB supp.F/1f0g C .�1/1R�

�
C .1/1R

�
C

and supp.F/ D E.F;1/.

Now we have lim infn!1 log2.maxfLI WI2G�
n g/

�n < 1, so there exists ˇ � 0 such that
TF.q/ � ˇq for all q � 0, which ensures that TF takes values in R [ f�1g.

We say that F satisfies the multifractal formalism if dimH E.F; h/ D T�
F .h/ for all

h 2 RC[f1g. This is essentially the multifractal formalism considered in [36]. One
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simple, but important, observation in [8] is that from (3.1) and (3.2) follows the fact
that if � 2 MC

c .R/ is supported on Œ0; 1� and obeys the multifractal formalism for
measures, then if F�;�1;�2 is Hölder continuous, it obeys the multifractal formalism
just defined above.

Let us now examine some features of the Lq-spectrum when the multifractal
formalism holds. We distinguish three important properties denoted .i/–.iii/: since
LI D O.jIj˛/ for some ˛ > 0 by the Hölder continuity assumption, we have

.i/ There exists ˛ > 0 and c 2 Œ0; 1� (here c D dimB supp.F/ D �TF.0/) such
that TF.q/ � ˛q � c for all q � 0. Moreover,

.ii/ TF satisfies the same properties as � in Proposition 2.1.2, in particular T�
F is

non-negative over its domain.
Due to .i/, we can define q0 D inffq � 0 W TF.q/ > 0g: If F satisfies the
multifractal formalism, we must have the third property:

.iii/ Either q0 > 0, or T 0
F.0

C/ > 0 and TF.q/ D T 0
F.0

C/q for all q > 0.

Let us justify this fact. If q0 D 0, there exists c0 2 RC such that TF.q/ D
T 0

F.0
C/q C c0 for all q > 0, for otherwise by concavity of TF one has �1 <

T�
F .T

0
F.q

�// < 0 for all q > 0 large enough so that T 0
F.q

�/ < T 0
F.0

C/, while T�
F

must be non-negative over its domain. Also, since there exists ˇ > 0 such that
0 < TF.q/ � ˇq for q > 0, we have c0 D 0. If, moreover, F satisfies the multifractal
formalism, we must have T 0

F.0
C/ > 0, otherwise TF D �dimB supp.F/ over R�C,

and no Hölder continuous function F can fulfill the multifractal formalism with
TF as Lq-spectrum; indeed, this would imply T�

F .0/ D dimB supp.F/ � 0 hence
E.F�; 0/ ¤ ;.

Theorem 3.2 Suppose that a non-decreasing concave function T satisfies the above
properties .i/–.iii/ necessary to be the Lq-spectrum of a Hölder continuous function
whose support is a non-empty subset of Œ0; 1�. Then there exists an (HM) Hölder
continuous function F with supp.F/ � Œ0; 1�, which satisfies the multifractal
formalism with TF D T.

Proof Let q0 D inffq � 0 W T.q/ > 0g. If q0 > 0, then �.q/ D T.q0q/
satisfies the properties of Proposition 2.1, so that it is the Lq-spectrum of an exact
dimensional measure � of dimension D, for any D 2 Œq0T 0.qC

0 /; q0T
0.q�

0 /� �
Œ0; 1� by Theorem 2.2. Moreover, the inequality ��.q/ � ˛q0q � c implies that
��
�.ˇ/ D �1 for all ˇ < ˛q0. Consequently, the function F D F�;0;1=q0 is .˛ � 	/-

Hölder continuous for all 	 > 0, and due to (3.1) and (3.2) it fulfills the multifractal
formalism for wavelet leaders with TF W q 7! ��.q=q0/ D T.q/.

If q0 D 0, the function defined as �.q/ D T.q/� T 0.0C/q satisfies the conditions
required by Proposition 2.1. Take the (HM) measure � associated with this function
� by Theorem 2.2. Then, the function F�;T0.0C/;1 is .T 0.0C/� 	/-Hölder continuous
for all 	 > 0 and due to (3.1) and (3.2) it fulfills the multifractal formalism for
wavelet leaders, with TF W q 7! ��.q/C T 0.0C/q D T.q/.

Remark 8 In [35], S. Jaffard uses a multifractal formalism associated with wavelet
coefficients (not leaders). He introduces a class of concave functions such that to
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each element � of this class he can associate a Baire space V built from Besov
spaces, so that generically an element of V has a non-decreasing Hausdorff spectrum
obtained as the Legendre transform of � computed by taking the infimum over a
subdomain of RC.
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Multifractal Analysis Based on p-Exponents
and Lacunarity Exponents

Patrice Abry, Stéphane Jaffard, Roberto Leonarduzzi, Clothilde Melot,
and Herwig Wendt

Abstract Many examples of signals and images cannot be modeled by locally
bounded functions, so that the standard multifractal analysis, based on the Hölder
exponent, is not feasible. We present a multifractal analysis based on another
quantity, the p-exponent, which can take arbitrarily large negative values. We
investigate some mathematical properties of this exponent, and show how it allows
us to model the idea of “lacunarity” of a singularity at a point. We finally adapt
the wavelet based multifractal analysis in this setting, and we give applications to a
simple mathematical model of multifractal processes: Lacunary wavelet series.

Keywords Scale Invariance • Fractal • Multifractal • Hausdorff dimension •
Hölder regularity • Wavelet • Lacunarity exponent • p-exponent

1 Introduction

The origin of fractal geometry can be traced back to the quest for non-smooth
functions, rising from a key question that motivated a large part of the progresses
in analysis during the nineteenth century: Does a continuous function necessarily
have points of differentiability? A negative answer to this question was supplied
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by Weierstrass when he built his famous counterexamples, now referred to as the
Weierstrass functions

Wa;b.x/ D
C1X
nD0

ancos.bn�x/ (1.1)

where 0 < a < 1, b was an odd integer and ab > 1 C 3�=2. The fact that
they are continuous and nowhere differentiable was later sharpened by Hardy in
a way which requires the notion of pointwise Hölder regularity, which is the most
commonly used notion of pointwise regularity in the function setting. We assume
in the following that the functions or distributions we consider are defined on R.
However, most results that we will investigate extend to several variables.

Definition 1.1 Let f W R ! R be a locally bounded function, x0 2 R and let
� � 0; f belongs to C� .x0/ if there exist C > 0, R > 0 and a polynomial P of degree
less than � such that:

for a.e. x such that jx�x0j � R; j f .x/�P.x�x0/j � Cjx�x0j� : (1.2)

The Hölder exponent of f at x0 is

hf .x0/ D sup f� W f is C� .x0/g : (1.3)

The Hölder exponent of Wa;b is a constant function, which is equal to H D
� log a= log b at every point (see e.g. [14] for a simple, wavelet-based proof);
since H < 1 we thus recover the fact that Wa;b is nowhere differentiable, but the
sharper notion of Hölder exponent allows us to draw a difference between each
of the Weierstrass functions, and classify them using a regularity parameter that
takes values in R

C. The graphs of Weierstrass functions supply important examples
of fractal sets that still motivate research (the determination of their Hausdorff
dimensions remains partly open, see [6]). In applications, such fractal characteristics
have been used for classification purposes. For instance, an unorthodox use was the
discrimination between Jackson Pollock’s original paintings and fakes using the box
dimension of the graph supplied by the pixel by pixel values of a high resolution
photograph of the painting, see [25].

The status of everywhere irregular functions was, for a long time, only the one
of academic counter-examples, such as the Weierstrass functions. This situation
changed when stochastic processes like Brownian motion (whose Hölder exponent
is H D 1=2 everywhere) started to play a key role in the modeling of physi-
cal phenomena. Nowadays, experimentally acquired signals that are everywhere
irregular are prevalent in a multitude of applications, so that the classification and
modeling of such data has become a key problem. However, the use of a single
parameter (e.g. the box dimension of the graph) is too reductive as a classification
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tool in many situations that are met in applications. This explains the success of
multifractal analysis, which is a way to associate a whole collection of fractal-based
parameters to a function. Its purpose is twofold: on the mathematical side, it allows
one to determine the size of the sets of points where a function has a given Hölder
exponent; on the signal processing side, it yields new collections of parameters
associated to the considered signal and which can be used for classification, model
selection, or for parameter selection inside a parametric setting. The main advances
in the subject came from a better understanding of the interactions between these
two motivations, e.g., see [3] and references therein for recent review papers.

Despite the fact that multifractal analysis has traditionally been based on the
Hölder exponent, it is not the only characterization of pointwise regularity that can
be used. Therefore, our goal in the present contribution is to analyze alternative
pointwise exponents and the information they provide.

In Sect. 2 we review the possible pointwise exponents of functions, and explain
in which context each can be used.

In Sect. 3 we focus on the p-exponent, derive some of its properties, and
investigate what information it yields concerning the lacunarity of the local behavior
of the function near a singularity.

In Sect. 4 we recall the derivation of the multifractal formalism and give
applications to a simple model of a random process which displays multifractal
behavior: Lacunary wavelet series.

We conclude with remarks on the relationship between the existence of
p-exponents and the sparsity of the wavelet expansion.

This paper partly reviews elements on the p-exponent which are scattered in
the literature, see e.g. [2, 8, 15, 16, 21]. New material starts with the introduction
and analysis of the lacunarity exponent in Sect. 2.3, the analysis of thin chirps in
Sect. 3.5, and all following sections, except for the brief reminder on the multifractal
formalism in Sect. 4.1.

2 Pointwise Exponents

In this section, unless otherwise specified, we assume that f 2 L1loc.R/. An important
remark concerning the definition of pointwise Hölder regularity is that if (1.2) holds
(even for � < 0), then f is bounded in any annulus 0 < r � jx � x0j � R. It
follows that, if an estimate such as (1.2) holds for all x0, then f will be locally
bounded, except perhaps at isolated points. For this reason, one usually assumes
that the considered function f is (everywhere) locally bounded. It follows that (1.2)
holds for � D 0 so that the Hölder exponent is always nonnegative.
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2.1 Uniform Hölder Regularity

An important issue therefore is to determine if the regularity assumption f 2 L1
loc

is satisfied for real life data. This can be done in practice by first determining their
uniform Hölder exponent, which is defined as follows.

Recall that Lipschitz spaces Cs.R/ are defined for 0 < s < 1 by

f 2 L1 and 9C; 8x; y; jf .x/� f .y/j � Cjx � yjs:

If s > 1, they are then defined by recursion on Œs� by the condition: f 2 Cs.R/ if f 2
L1 and if its derivative f 0 (taken in the sense of distributions) belongs to Cs�1.R/.
If s < 0, then the Cs spaces are composed of distributions, also defined by recursion
on Œs� as follows: f 2 Cs.R/ if f is a derivative (in the sense of distributions) of a
function g 2 CsC1.R/. We thus obtain a definition of the Cs spaces for any s … Z

(see [22] for s 2 Z, which we will however not need to consider in the following).
A distribution f belongs to Cs

loc if f' 2 Cs for every C1 compactly supported
function '.

Definition 2.1 The uniform Hölder exponent of a tempered distribution f is

Hmin
f D supfs W f 2 Cs

loc.R/g: (2.1)

This definition does not make any a priori assumption on f : The uniform Hölder
exponent is defined for any tempered distribution, and it can be positive or negative.
More precisely:

• If Hmin
f > 0, then f is a locally bounded function,

• if Hmin
f < 0, then f is not a locally bounded function.

In practice, this exponent is determined through the help of the wavelet coeffi-
cients of f . By definition, an orthonormal wavelet basis is generated by a couple of
functions .';  /, which, in our case, will either be in the Schwartz class, or smooth
and compactly supported (in that case, wavelets are assumed to be smoother than
the regularity exponent of the considered space). The functions '.x � k/; k 2 Z;

together with 2j=2 .2jx � k/; j � 0; k 2 Z; form an orthonormal basis of L2.R/.
Thus any function f 2 L2.R/ can be written

f .x/ D
X

k

ck '.x � k/C
X
j�0

X
k2Z

cj;k  .2
jx � k/;

where the wavelet coefficients of f are given by

ck D
Z
'.t � k/f .t/dt and cj;k D 2j

Z
 .2jt � k/f .t/dt: (2.2)
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An important remark is that these formulas also hold in many different functional
settings (such as the Besov or Sobolev spaces of positive or negative regularity),
provided that the picked wavelets are smooth enough (and that the integrals (2.2)
are understood as duality products).

Instead of using the indices . j; k/, we will often use dyadic intervals: Let

� .D �. j; k// D
�

k

2j
;

k C 1

2j



(2.3)

and, accordingly: c� D cj;k and  �.x/ D  .2jx � k/. Indexing by dyadic intervals
will be useful in the sequel because the interval � indicates the localization of the
corresponding wavelet: When the wavelets are compactly supported, then, 9C > 0

such that when supp. / � Œ�C=2;C=2�, then supp. �/ � 2C�:
In practice, Hmin

f can be derived directly from the wavelet coefficients of f
through a simple regression in a log-log plot; indeed, it follows from the wavelet
characterization of the spaces Cs, see [22], that:

Hmin
f D lim inf

j!C1

log

�
sup

k
jcj;kj




log.2�j/
: (2.4)

This estimation procedure has been studied in more detail in [20]. Three examples
of its numerical application to real-world functions are provided in Fig. 1.

A multifractal analysis based on the Hölder exponent can only be performed
if f is locally bounded. A way to determine if this is the case consists in first

7 6 5 4 3 2 1 0
4.5

5

5.5

6
H
f
min=0.16

j

0 1 2

0

0.5

1

p
0
=Inf p

f
(p)

7 6 5 4 3 2 1 0
4

5

6

7

8
H
f
min= 0.27

j

0 1 2
0.1

0.05

0

0.05

0.1

p
0
=2.26

p

f
(p)

6 5 4 3 2 1 0
6

4

2

0
H
f
min= 0.89

j

0 1 2

0.4

0.3

0.2

0.1

0

0.1

p
0
=0.69

p

f
(p)

Fig. 1 Real-world images (top row) of Romanesco broccoli (left column), fern leaves (center
column) and a patch of a hyperspectral image of the Moffett field, acquired by the AVIRIS
instrument (spectral band 90, right column). Bottom row: corresponding numerical estimation of
uniform Hölder exponents Hmin

f , wavelet scaling functions �f .p/ and critical Lebesgue indices p0,
respectively
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checking if Hmin
f > 0. This quantity is perfectly well-defined for mathematical

functions or stochastic processes; e.g. for Brownian motion, Hmin
f D 1=2, and for

Gaussian white noise, Hmin
f D �1=2. However the situation may seem less clear for

experimental signals; indeed any data acquisition device yields a finite set of locally
averaged quantities, and one may argue that such a finite collection of data (which,
by construction, is bounded) can indeed be modeled by a locally bounded function.
This argument can only be turned by revisiting the way that (2.4) is computed in
practice: Estimation is performed through a linear regression in log-log coordinates
on the range of scales available in the data and Hmin

f can indeed be found negative
for a finite collection of data. At the modeling level, this means that a mathematical
model which would display the same linear behavior in log-log coordinates at all
scales would satisfy Hmin

f < 0.
The quantity Hmin

f can be found either positive or negative depending on the
nature of the application. For instance, velocity turbulence data and price time series
in finance are found to always have Hmin

f > 0, while aggregated count Internet traffic
time series always have Hmin

f < 0. For biomedical applications (cf. e.g., fetal heart
rate variability) as well as for image processing, Hmin

f can commonly be found either
positive or negative (see Fig. 1) [1, 3, 19, 20, 28]. This raises the problem of using
other pointwise regularity exponents that would not require the assumption that the
data are locally bounded. We now introduce such exponents.

2.2 The p-Exponent for p � 1

The introduction of p-exponents is motivated by the necessity of introducing
regularity exponents that could be defined even when Hmin

f is found to be negative;
Tp
˛.x0/ regularity, introduced by A. Calderón and A. Zygmund in [8], has the

advantage of only making the assumption that f locally belongs to Lp.R/.

Definition 2.2 Let p � 1 and assume that f 2 Lp
loc.R/. Let ˛ 2 R; the function f

belongs to Tp
˛.x0/ if there exists C and a polynomial Px0 of degree less than ˛ such

that, for r small enough,

�
1

2r

Z x0Cr

x0�r
jf .x/� Px0.x/jpdx


1=p

� Cr˛: (2.5)

Note that the Taylor polynomial Px0 of f at x0 might depend on p. However, one
can check that only its degree does (because the best possible ˛ that one can pick
in (2.5) depends on p so that its integer part may vary with p, see [2]). Therefore
we introduce no such dependency in the notation, which will lead to no ambiguity
afterwards.
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The p-exponent of f at x0 is defined as

hp
f .x0/ D supf˛ W f 2 Tp

˛.x0/g: (2.6)

The condition that f locally belongs to Lp.R/ implies that (2.5) holds for ˛ D
�1=p, so that hp

f .x0/ � �1=p.
We will consider in the following “archetypical” pointwise singularities, which

are simple toy-examples of singularities with a specific behavior at a point. They
will illustrate the new notions we consider and they will also supply benchmarks on
which we can compute exactly what these new notions allow us to quantify. These
toy-examples will be a test for the adequacy between these mathematical notions
and the intuitive behavior that we expect to quantify. The first (and most simple)
“archetypical” pointwise singularities are the cusp singularities.

Let ˛ 2 R � 2N be such that ˛ > �1. The cusp of order ’ at 0 is the function

C˛.x/ D jxj˛: (2.7)

The case ˛ 2 2N is excluded because it leads to a C1 function. However, if ˛ D 2n,
one can pick

C2n.x/ D xjxj2n�1;

in order to cover this case also.
If ˛ � 0, then the cusp C˛ is locally bounded and its Hölder exponent at 0 is

well-defined and takes the value ˛. If ˛ > �1=p, then its p-exponent at 0 is well-
defined and also takes the value ˛, as in the Hölder case. (Condition ˛ > �1=p is
necessary and sufficient to ensure that C˛ locally belongs to Lp.) Examples for cusps
with several different values of ˛ are plotted in Fig. 2.

If f 2 Lp
loc in a neighborhood of x0 for a p � 1, let us define the critical Lebesgue

index of f at x0 by

p0. f / D supf p W f 2 Lp
loc.R/ in a neighborhood of x0g: (2.8)

The importance of this exponent comes from the fact that it tells in practice for
which values of p a p-exponent based multifractal analysis can be performed.
Therefore, its numerical determination is an important prerequisite that should not
be bypassed in applications. In Sect. 3.1 we will extend the definition of p0. f / to
situations where f … L1loc and show how it can be derived from another quantity, the
wavelet scaling function, which can be effectively computed on real-life data.
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Fig. 2 Cusps with exponents ˛ D fC0:3; �0:2; �2g (from top to bottom row, respectively):
functions (left column) and estimation of p-exponents and lacunarity exponents (center and
right column, respectively). The critical Lebesgue indices are given by p0 D fC1; 5; 0:5g,
respectively

2.3 The Lacunarity Exponent

The p-exponent at x0 is defined on the interval Œ1; p0. f /� or Œ1; p0. f //; when the p-
exponent does not depend on p on this interval, we will say that f has a p-invariant
singularity at x0. Thus, cusps are p-invariant singularities.

This first example raises the following question: Is the notion of p-exponent only
relevant as an extension of the Hölder exponent to non-locally bounded functions?
Or can it take different values with p, even for bounded functions? And, if such is the
case, how can one characterize the additional information thus supplied? In order to
answer this question, we introduce a second type of archetypical singularities, the
lacunary singularities, which will show that the p-exponent may be non-constant.
We first need to recall the geometrical notion of accessibility exponent which
quantifies the lacunarity of a set at a point, see [17]. We denote by M.A/ the
Lebesgue measure of a set A.
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Definition 2.3 Let� � R. A point x0 of the boundary of� is ˛-accessible if there
exist C > 0 and r0 > 0 such that 8r � r0,

M .� \ B.x0; r// � Cr˛C1: (2.9)

The supremum of all values of ˛ such that (2.9) holds is called the accessibility
exponent of � at x0. We will denote it by Ex0.�/.

Note that Ex0 .�/ is always nonnegative. If it is strictly positive, then� is lacunary
at x0. The accessibility exponent supplies a way to estimate, through a log-log
plot regression, the “size” of the part of � which is contained in arbitrarily small
neighborhoods of x0. The following sets illustrate this notion.

Let ! and � be such that 0 < � � !; the set U!;� is defined as follows. Let

Ij
!;� D Œ2�!j; 2�!j C 2�� j�I then U!;� D

[
j�0

Ij
!;� : (2.10)

Clearly, at the origin,

E0.U!;� / D �

!
� 1: (2.11)

We now construct univariate functions F˛;� W R ! R which permit us to better
understand the conditions under which p-exponents will differ. These functions will
have a lacunary support in the sense of Definition 2.3.

Let  be the Haar wavelet:  D 1Œ0;1=2/ � 1Œ1=2;1/ and

�.x/ D  .2x/ �  .2x � 1/

(so that � has the same support as  but its two first moments vanish).

Definition 2.4 Let ˛ 2 R and � > 1. The lacunary comb F˛!;� is the function

F˛!;� .x/ D
1X

jD1
2�˛j�

�
2� j.x � 2�!j/

�
: (2.12)

Note that its singularity is at x0 D 0. Numerical examples of lacunary combs are
provided in Fig. 3.

Note that the support of F˛!;� is U!;� so that the accessibility exponent at 0 of
this support is given by (2.11). The function F˛!;� is locally bounded if and only if
˛ � 0. Assume that ˛ < 0; then F˛!;� locally belongs to Lp if and only if ˛ > ��=p.
When such is the case, a straightforward computation yields that its p-exponent at 0
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Fig. 3 Lacunary combs with p0 D C1 (top row) and p0 D 9:1 (bottom row): functions
(left column) and estimation of p-exponents and lacunarity exponents (center and right column,
respectively)

is given by

hp
F˛!;�

.x0/ D ˛

!
C

 �
!

� 1
� 1

p
: (2.13)

In contradistinction with the cusp case, the p-exponent of F˛!;� at 0 is not a constant
function of p. Let us see how the variations of the mapping p ! hp

f .x0/ are related
with the lacunarity of the support of f , in the particular case of F˛!;� . We note that
this mapping is an affine function of the variable q D 1=p (which, in this context, is
a more natural parameter than p) and that the accessibility exponent of the support
of F˛!;� can be recovered by a derivative of this mapping with respect to q. The next
question is to determine the value of q at which this derivative should be taken.
This toy-example is too simple to give a clue since any value of q would lead to the
same value for the derivative. We want to find if there is a more natural one, which
would lead to a canonical definition for the lacunarity exponent. It is possible to
settle this point through the following simple perturbation argument: Consider a new
singularity F that would be the sum of two functions F1 D F˛1!1;�1 and F2 D F˛2!2;�2
with

0 < ˛1 < ˛2 and �1 > �2: (2.14)

The p-exponent of F (now expressed in the q variable, where q D 1=p) is given by

q 7! h
1
q

f .x0/ D min
h˛1
!

C

�1
!

� 1
�

q ;
˛2

!
C

�2
!

� 1
�

q
i
: (2.15)
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The formula for the lacunarity exponent should yield the lacunarity of the most
irregular component of F; since F 2 L1

loc, the Hölder exponent is the natural way
to measure this irregularity. In this respect, the most irregular component is F1; the
lacunarity exponent should thus take the value

�
�1
!

� 1�. But, since (2.14) allows the
shift in slope of the function (2.15) from

� �1
!

� 1
�

to
� �2
!

� 1� to take place at a q
arbitrarily close to 0, the only way to obtain this desired result in any case is to pick
the derivative of the mapping q ! h1=q

f .x0/ precisely at q D 0.
A similar perturbation argument can be developed if p0. f / < 1 with the

conclusion that the derivative should be estimated at the smallest possible value
of q, i.e. for

q D q0. f / WD 1

p0. f /
I

hence the following definition of the lacunarity exponent.

Definition 2.5 Let f 2 Lp
loc in a neighborhood of x0 for a p > 1, and assume that the

p-exponent of f is finite in a left neighborhood of p0. f /. The lacunarity exponent of
f at x0 is

Lf .x0/ D @

@q



h1=q

f .x0/
�

qDq0. f /C
: (2.16)

Remarks

• Even if the p-exponent is not defined at p0. f /, nonetheless, because of the
concavity of the mapping q ! h1=q

f .x0/ (see Proposition 3.2 below), its right
derivative is always well-defined, possibly as a limit.

• As expected, the lacunarity exponent of a cusp vanishes, whereas the lacunarity
exponent of a lacunary comb coincides with the accessibility exponent of its
support.

• The condition Lf .x0/ ¤ 0 does not mean that the support of f (or of f � P) has a
positive accessibility exponent (think of the function F˛!;� C g where g is a C1
but nowhere polynomial function).

• The definition supplied by (2.16) bears similarity with the definition of the
oscillation exponent (see [4, 20] and ref. therein) which is also defined through
a derivative of a pointwise exponent; but the variable with respect to which the
derivative is computed is the order of a fractional integration. The relationships
between these two exponents will be investigated in a forthcoming paper [21].
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3 Properties of the p-Exponent

In signal and image processing, one often meets data that cannot be modeled by
functions f 2 L1loc, see Fig. 1. It is therefore necessary to set the analysis in a wider
functional setting, and therefore to extend the notion of Tp

˛.x0/ regularity to the case
p < 1.

3.1 The Case p < 1

The standard way to perform this extension is to consider exponents in the setting
of the real Hardy spaces Hp (with p < 1) instead of Lp spaces, see [15, 16]. First,
we need to extend the definitions that we gave to the range p 2 .0; 1�. The simplest
way is to start with the wavelet characterization of Lp spaces, which we now recall.

We denote indifferently by �j;k or �� the characteristic function of the interval
� .D �j;k/ defined by (2.3). The wavelet square function of f is

Wf .x/ D
0
@ X

. j;k/2Z2
jcj;kj2�j;k.x/

1
A
1=2

:

Then, for p > 1,

f 2 Lp.R/ ()
Z

R

�
Wf .x/

�p
dx < 1; (3.1)

see [22]. The quantity
�R �

Wf .x/
�p

dx
�1=p

is thus equivalent to k f kp. One can then
take the characterization supplied by (3.1) when p > 1 as a definition of the Hardy
space Hp (when p � 1); note that this definition yields equivalent quantities when
the (smooth enough) wavelet basis is changed, see [22]. This justifies the fact that
we will often denote by Lp the space Hp, which will lead to no confusion; indeed,
when p � 1 this notation will refer to Hp, and, when p > 1 it will refer to Lp.

Note that, if p D 1, (3.1) does not characterize the space L1 but a strict subspace
of L1 (the real Hardy space H1, which consists of functions of L1 whose Hilbert
transform also belongs to L1, see [22]).

Most results proved for the Lp setting will extend without modification to the
Hp setting. In particular, Tp

˛ regularity can be extended to the case p � 1 and has
the same wavelet characterization, see [13]. All definitions introduced previously
therefore extend to this setting.

The definition of Tp
˛.x0/ regularity given by (2.5) is a size estimate of an Lp norm

restricted to intervals Œx0 � r; x0 C r�. Since the elements of Hp can be distributions,
the restriction of f to an interval cannot be done directly (multiplying a distribution
by a non-smooth function, such as a characteristic function, does not always make
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sense). This problem can be solved as follows: If I is an open interval, one defines
k f kHp.I/D inf k g kp, where the infimum is taken on the g 2 Hp such that f D g
on I. The Tp

˛ condition for p � 1 is then defined by:

f 2 Tp
˛.x0/ () k f kHp..x0�r;x0Cr//� C r˛C1=p;

also when p < 1. We will show below that the p-exponent takes values in
Œ�1=p;C1�.

3.2 When Can One Use p-Exponents?

We already mentioned that, in order to use the Hölder exponent as a way to measure
pointwise regularity, we need to check that the data are locally bounded, a condition
which is implied by the criterion Hmin

f > 0, which is therefore used as a practical
prerequisite. Similarly, in order to use a p-exponent based multifractal analysis, we
need to check that the data locally belong to Lp or Hp, a condition which can be
verified in practice through the computation of the wavelet scaling function, which
we now recall.

The Sobolev space Lp;s is defined by

8s 2 R; 8p > 0; f 2 Lp;s () .Id ��/s=2f 2 Lp;

where the operator .Id � �/s=2 is the Fourier multiplier by .1 C j�j2/s=2, and we
recall our convention that Lp denotes the space Hp when p � 1, so that Sobolev
spaces are defined also for p � 1.

Definition 3.1 Let f be a tempered distribution. The wavelet scaling function of f
is defined by

8p > 0; �f . p/ D p supfs W f 2 Lp;sg: (3.2)

Thus, 8p > 0:

• If �f . p/ > 0 then f 2 Lp
loc.

• If �f . p/ < 0 then f … Lp
loc.

The wavelet characterization of Sobolev spaces implies that the wavelet scaling
function can be expressed as (cf. [11])

8p > 0; �f . p/ D lim inf
j!C1

log

 
2�j

X
k

jcj;kjp

!

log.2�j/
: (3.3)
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This provides a practical criterion for determining if data locally belong to Lp,
supplied by the condition �f . p/ > 0. The following bounds for p0.f / follow:

supf p W �f . p/ > 0g � p0. f / � inff p W �f . p/ < 0g;

which (except in the very particular cases where �f vanishes identically on an
interval) yields the exact value of p0. f /.

In applications, data with very different values of p0. f / show up; therefore, in
practice, the mathematical framework supplied by the whole range of p is relevant.
As an illustration, three examples of real-world images with positive and negative
uniform Hölder exponents and with critical Lebesgue indices above and below p0 D
1 are analyzed in Fig. 1.

3.3 Wavelet Characterization of p-Exponents

In order to compute and prove properties of p-exponents we will need the exact
wavelet characterization of Tp

˛.x0/, see [13, 15]. Let � be a dyadic interval; 3� will
denote the interval of same center and three times wider (it is the union of � and its
two closest neighbors). For x0 2 R

d, denote by �j.x0/ the dyadic cube of width 2�j

which contains x0. The local square functions at x0 are the sequences defined for
j � 0 by

W j
f ;x0
.x/ D

0
@ X
�	3�j.x0/

j c�j2��.x/
1
A
1=2

:

Recall that (cf. [13])

f 2 Tp
˛.x0/ if and only if 9C > 0; 8j � 0

���W j
f ;x0

���
p

� C 2�.˛C1=p/j:

(3.4)

The following result is required for the definition of the lacunarity exponent
in (2.16) to make sense, and implies that Definition 2.5 also makes sense when
p0. f / < 1.

Proposition 3.2 Let p; q 2 .0;C1�, and suppose that f 2 Tp
˛.x0/ \ Tq

ˇ.x0/; let
� 2 Œ0; 1�. Then f 2 Tr

� .x0/, where

1

r
D �

p
C 1 � �

q
and � D �˛ C .1 � �/ˇ:

It follows that the mapping q ! h1=q
f .x0/ is concave on its domain of definition.
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Proof When p; q < 1, the result is a consequence of (3.4). Hölder’s inequality
implies that

���W j
f ;x0

���
r

�
���W j

f ;x0

���
�=p

p

���W j
f ;x0

���
.1��/=q

q
:

We thus obtain the result for p; q < 1. The case when p or q D C1 does not
follow, because there exists no exact wavelet characterization of C˛.x0/ D T1̨.x0/;
however, when p; q > 1, one can use the initial definition of Tp

˛.x0/ and C˛.x0/
through local Lp and L1 norms and the result also follows from Hölder’s inequality;
hence Proposition 3.2 holds.

If f 2 Hp, then k Wf kp� C. Since W j
f � Wf , it follows that k W j

f kp� C,
so that (3.4) holds with ˛ D �1=p. Thus p-exponents are always larger than �1=p
(which extends to the range p < 1 the result already mentioned for p � 1). Note
that this bound is compatible with the existence of singularities of arbitrary large
negative order (by picking p close to 0). The example of cusps will now show that
the p-exponent can indeed take values down to �1=p.

3.4 Computation of p-Exponents for Cusps

Typical examples of distributions for which the p-exponent is constant (see Propo-
sition 3.3 below) and equal to a given value ˛ < �1 are supplied by the cusps C˛ ,
whose definition can be extended to the range ˛ � �1 as follows: First, note that
cusps cannot be defined directly for ˛ � �1 by (2.7) because they do not belong
to L1loc so that they would be ill-defined even in the setting of distributions (their
integral against a C1 compactly supported function ' may diverge). Instead, we
use the fact that, if ˛ > 1, then C 00̨ D ˛.˛� 1/C˛�2, which indicates a way to define
by recursion the cusps C˛, when ˛ < �1 and ˛ … Z, as follows:

if ˛ < 0; C˛ D 1

.˛ C 1/.˛ C 2/
C 00̨C2;

where the derivative is taken in the sense of distributions. The C˛ are thus defined
as distributions when ˛ is not a negative integer. It can also be done when ˛ is a
negative integer, using the following definition for ˛ D 0 and �1:

C0 D log.jxj/ and C�1 D C 0
0 D P:V:

�
1

x



;

where P.V. stands for “principal value”.
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Proposition 3.3 If ˛ � 0, the cusp C˛ belongs to L1
loc and its p-exponent is ˛. If

˛ < 0, the cusp C˛ belongs to Lp
loc for p < �1=˛ and its p-exponent is ˛.

Proof of Proposition 3.3 The case ˛ � 0 and p � 1 has already been considered
in [17, 21]. In this case, the computation of the p-exponent is straightforward. Note
that, when ˛ 2 .�1; 0/ and p � 1 the computations are similar. We thus focus
on the distribution case, i.e. when p < 1. The global and pointwise regularity will
be determined through an estimation of the wavelet coefficients of the cusp. We
use a smooth enough, compactly supported wavelet basis and we denote by cj;k the
wavelet coefficients of the cusp

cj;k D 2jh j;kjC˛i:

The selfsimilarity of the cusp implies that

8j; k cj;k D 2�˛jc0;kI (3.5)

additionally, as soon as k is large enough so that the support of  .x � k/ does not
intersect the origin, the cusp is C1 in the support of  .x � k/ and coincides with
the function jxj˛. An integration by parts then yields that, for any N smaller than the
global regularity of the wavelet,

c0;k D .�1/N
Z
 .�N/.x � k/ ˛.˛ � 1/ � � � .˛ � N/jxj˛�Ndx;

so that the sequence c0;k satisfies

jc0;kj � CN

.1C jkj/N (3.6)

where N can be picked arbitrarily large. The estimation of the Lp norm of the wavelet
square function follows easily from (3.5) and (3.6), and so does the lower bound for
the p-exponent. The upper bound is obtained by noticing that one of the c0;k does not
vanish (otherwise, all cj;k would vanish, and the cusp would be a smooth function at
the origin). Therefore, there exists at least one k0 such that 8j, cj;k0 D C2�˛j, and
the wavelet characterization of Tp

˛ regularity then yields that hp.x0/ � ˛.

Three examples of cusps and numerical estimates of their p-exponents and
lacunarity exponents are plotted in Fig. 2.

3.5 Wavelet Characterization and Thin Chirps

In practice, we will derive Tp
˛ regularity from simpler quantities than the local square

functions. The p-leaders of f are defined by local lp norms of wavelet coefficients
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as follows:

dp
� D

 X
�0	3�

jc�0 jp2�.j0�j/

!1=p

(3.7)

(they are finite if f 2 Lp
loc.R

d/, see [17]). Note that, if p D C1, the corresponding
quantity d1

� is usually denoted by d� and simply called the wavelet leaders; we
have

d� WD d1
� D sup

�0	3�
jc�0 j: (3.8)

The notion of Tp
˛ regularity can be related to p-leader coefficients (see [16, 17,

20]):

If �f .p/ > 0, then hp
f .x0/ D lim inf

j!C1
log



dp
�j.x0/

�

log.2�j/
: (3.9)

Our purpose in this section is to introduce new “archetypical” pointwise singu-
larities which will yield examples where the p-exponent and the lacunarity exponent
can take arbitrary values. Because of (3.9), it is easier to work with examples
that are defined directly by their wavelet coefficients on a smooth wavelet basis.
We therefore develop new examples rather than extending the lacunary combs of
Sect. 2.3.

Definition 3.4 Let a; b 2 .0; 1/ satisfying 0 < b < 1 � a, and let ˛ 2 R. The thin
chirp Ta;b;˛ is defined by its wavelet series

Ta;b;˛ D
X
j�0

X
k2Z

cj;k  j;k;

where

cj;k D 2�˛j if k 2 Œ2.1�a/j; 2.1�a/j C 2bj�

D 0 otherwise.

The following results are straightforward, using the wavelet characterization of
Lp and Tp

˛ regularity.

Proposition 3.5 The thin chirp Ta;b;˛ is bounded if and only if ˛ > 0.

If ˛ � 0; p0.Ta;b;˛/ D 1 � b

�˛ :
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Fig. 4 Thin chirps with p0 D 1 (top row) and p0 D 3:2 (bottom row): functions (left column)
and estimation of p-exponents and lacunarity exponents (center and right column, respectively)

The p-exponent of Ta;b;˛ at the origin is

hp
Ta;b;˛

.0/ D 1 � a � b

a
q C ˛

a
:

Note that, if the wavelets are compactly supported, then for j large enough the
pack of 2bj successive wavelets with non-vanishing coefficients covers an interval of
length 2�j2bj at a distance 2�aj from the origin, so that the accessibility exponent of
the support of Ta;b;˛ is .1�a �b/=a: Thus, it coincides with the lacunarity exponent
of Ta;b;˛ as expected.

Illustrations of thin chirps and the numerical estimation of their p-exponents and
lacunarity exponents are provided in Fig. 4.

3.6 p-Exponent Analysis of Measures

Several types of measures (such as multiplicative cascades) played a central role
in the development of multifractal analysis. Since measures (usually) are not L1

functions, their p-exponent for p � 1 is not defined. Therefore, it is natural
to wonder if it can be the case when p < 1. This is one of the purposes of
Proposition 3.6, which yields sufficient conditions under which a measure� satisfies
��. p/ > 0 for p < 1, which will imply that its p-exponent multifractal analysis can
be performed. An important by-product of using p-exponents for p � 1 is that it
offers a common setting to treat pointwise regularity of measures and functions.

Recall that dimB.A/ denotes the upper box dimension of the set A.
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Proposition 3.6 Let � be a measure; then its wavelet scaling function satisfies
��.1/ � 0. Furthermore, if � does not have a density which is an L1 function,
then ��.1/ D 0.

Additionally, if � is a singular measure whose support supp.�/ satisfies

ı� WD dimB.supp.�// < 1; (3.10)

then

8p < 1; ��. p/ � .1 � ı�/.1 � p/; (3.11)

and

8p > 1; ��. p/ � .1 � ı�/.1 � p/: (3.12)

Remarks

• (3.11) expresses the fact that, if � has a small support, then its Sobolev regularity
is increased for p < 1. This is somehow counterintuitive, since one expects a
measure to become more singular when the size of its support shrinks; on the
other hand (3.12) expresses that this is actually the case when p > 1.

• Condition ı� < 1 is satisfied if � is supported by a Cantor-like set, or by a
selfsimilar set satisfying Hutchinson’s open set condition.

• (3.11) has an important consequence for the multifractal analysis of measures:
Indeed, if ı� < 1, then ��. p/ > 0 for p < 1, so that the classical mathematical
results concerning the multifractal analysis based on the p-exponent apply, see
Sect. 4.

• A slightly different problem was addressed by H. Triebel: In [27], he determined
under which conditions the scaling functions commonly used in the multifractal
analysis of probability measures (see (4.4) below) can be recovered through
Besov or Triebel-Lizorkin norms (or semi-norms).

Proof of Proposition 3.6 If � is a measure, then for any continuous bounded
function f

jh�j f ij � C k f k1 : (3.13)

We pick

f D
X

k

"j;k j;k; where "j;k D ˙1;

so that f is continuous and satisfies k f k1� C, where C depends only on the
wavelet (but not on the choice of the "j;k). Denoting by cj;k the wavelet coefficients
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of �, we have

h�j f i D
X

k

"j;k

Z
 j;kd� D 2�j

X
k

"j;kcj;k:

Picking "j;k D sgn.cj;k/ it follows from (3.13) that

2�j
X

k

jcj;kj � C; (3.14)

or, in other words,� belongs to the Besov space B0;11 , which implies that ��.1/ � 0,
see [14, 22].

On other hand, if � … L1, then using the interpretation of the scaling function in
terms of Sobolev spaces given by (3.2), we obtain that ��.1/ � 0. Hence the first
part of the proposition holds.

We now prove (3.11). We assume that the used wavelet is compactly supported,
and that its support is included in the interval Œ�2l; 2l� for an l > 0 (we pick the
smallest l such that this is possible). Let ı > dimB.supp.�//; for j large enough,
supp.�/ is included in at most 2Œıj� intervals of length 2�j. It follows that, at scale j,
there exist at most 2Œıj� �2 �2l wavelets . j;k/k2Z whose support intersects the support
of �. Thus for j large enough, there are at most C2ıj wavelet coefficients that do not
vanish.

Let p 2 .0; 1/, q D 1=p and r be the conjugate exponent of q, i.e. such that
1=q C 1=r D 1. Using Hölder’s inequality,

X
k

jcj;kjp �
 X

k

jcj;kjpq

!1=q  X
k

1r

!1=r

;

where the sums are over at most C2ıj terms; thus

X
k

jcj;kjp �
 X

k

jcj;kj
!p

C 2ıj=r:

Using (3.14), we obtain that

2�j
X

k

jcj;kjp � C2�.1�ı/j=r;

so that ��. p/ � .1 � ı/.1 � p/. Since this is true 8ı > ı�, (3.11) follows.
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We now prove (3.12). Let p � 1 and let q be the conjugate exponent. Using
Hölder’s inequality,

X
k

jcj;kj �
 X

k

jcj;kjp

!1=p  X
k

1q

!1=q

:

Let again ı > ı�; using the fact that the sums bear on at most 2ıj terms, and that the
left-hand side is larger than C2j, we obtain that

 X
k

jcj;kjp

!1=p

� C 2j2�ıj=q;

which can be rewritten

2�j
X

k

jcj;kjp � C 2�j2pj2�ıjp=q;

so that ��. p/ � .1 � p/.1 � ı/; since this is true 8ı > ı�, (3.12) follows, and
Proposition 3.6 is completely proved.

Since p D 1 is a borderline case for the use of the 1-exponent one may expect
that picking p < 1 would yield ��. p/ > 0 (in which case one would be on the
safe side in order to recover mathematical results concerning the p-spectrum, see
[2, 15]). However, this is not the case, since there exist even continuous functions f
that satisfy 8p > 0, �f . p/ D 0. An example is supplied by

f D
X
j�0

X
k2Z

1

j2
 j;k:

4 Multifractal Analysis of Lacunary Wavelet Series

Multifractal analysis is motivated by the observation that many mathematical
models have an extremely erratic pointwise regularity exponent which jumps
everywhere; this is the case e.g. of multiplicative cascades or of Lévy processes,
whose exponents h satisfy that

a.s. 8x0; lim sup
x!x0

h.x/� lim inf
x!x0

h.x/ (4.1)

is bounded from below by a fixed positive quantity (we will see that this is also the
case for lacunary wavelet series). This clearly excludes the possibility of any robust
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direct estimations of h. The driving idea of multifractal analysis is that one should
rather focus on alternative quantities that

• are numerically computable on real life data in a stable way,
• yield information on the erratic behavior of the pointwise exponent.

Furthermore, for standard random models (such as the ones mentioned above) we
require these quantities not to be random (i.e. not to depend on the sample path
which is observed) but to depend on the characteristic parameters of the model
only. The relationship between the multifractal spectrum and scaling functions
(initially pointed out by U. Frisch and G. Parisi in [23]; see (4.6) below) satisfies
these requirements.

We now recall the notion of multifractal spectrum. We denote by dim.A/ the
Hausdorff dimension of the set A.

Definition 4.1 Let h.x/ denote a pointwise exponent. The multifractal spectrum
d.H/ associated with this pointwise exponent is

d.H/ D dimfx W h.x/ D Hg:

In the case of the p-exponent, the sets of points with a given p-exponent will be
denoted by Fp

f .H/:

Fp
f .H/ D fx0 W hp

f .x0/ D Hg; (4.2)

and the corresponding multifractal spectrum (referred to as the p-spectrum) is
denoted by dp.H/; in the case of the lacunarity exponent, we denote it by dL.L/.

4.1 Derivation of the Multifractal Formalism

We now recall how d.H/ is expected to be recovered from global quantities
effectively computable on real-life signals (following the seminal work of G. Parisi
and U. Frisch [23] and its wavelet leader reinterpetation [14]). A key assumption
is that this exponent can be derived from nonnegative quantities (which we denote
either by ej;k or e�), which are defined on the set of dyadic intervals, by a log-log
plot regression:

h.x0/ D lim inf
j!C1

log
�
e�j.x0/

�

log.2�j/
: (4.3)

It is for instance the case of the p-exponent, as stated in (3.4) or (3.9), for which the
quantities e� are given by the p-leaders dp

�.
In the case of the lacunarity exponent, quantities e� can be derived as follows:

Let �q > 0 small enough be given. If f has a 1=q-exponent H and a lacunarity
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exponent L at x0 then its 1=q-leaders satisfy

d1=q
j .x0/ 
 2�Hj;

and its 1=.q C�q/-leaders satisfy

d1=.qC�q/
j .x0/ 
 2�.HC�qL/jI

we can eliminate H from these two quantities by considering the L-leaders:

dL
� WD

 
d1=.qC�q/

j

d1=q
j

!1=�q


 2�Lj:

(this argument follows a similar one developed in [20, Ch. 4.3] for the derivation of
a multifractal analysis associated with the oscillation exponent).

The multifractal spectrum will be derived from the following quantities, referred
to as the structure functions, which are similar to the ones that come up in the
characterization of the wavelet scaling function in (3.3):

Sf .r; j/ D
 
2�j

X
k

jej;kjr

!
:

The scaling function associated with the collection of .e�/ is

8r 2 R; �f .r/ D lim inf
j!C1

log
�
Sf .r; j/

�

log.2�j/
: (4.4)

Let us now sketch the heuristic derivation of the multifractal formalism; (4.4) means
that, for large j,

Sf .r; j/ 
 2��.r/j:

Let us estimate the contribution to Sf .r; j/ of the dyadic intervals � that cover the
points of EH. By definition of EH, they satisfy e� 
 2�HjI by definition of d.H/,
since we use cubes of the same width 2�j to cover EH , we need about 2d.H/j such
cubes; therefore the corresponding contribution is of the order of magnitude of

2�j2d.H/j2�Hrj D 2�.1�d.H/CHr/j:

When j ! C1, the dominant contribution comes from the smallest exponent, so
that

�.r/ D inf
H
.1 � d.H/C Hr/: (4.5)



302 P. Abry et al.

By construction, the scaling function �.r/ is a concave function on R, see
[14, 23, 24] which is in agreement with the fact that the right-hand side of (4.5)
necessarily is a concave function (as an infimum of a family of linear functions)
no matter whether d.H/ is concave or not. If d.H/ also is a concave function, then
the Legendre transform in (4.5) can be inverted (as a consequence of the duality of
convex functions), which justifies the following assertion.

Definition 4.2 A nonnegative sequence .e�/, defined on the dyadic intervals,
follows the multifractal formalism if the associated multifractal spectrum d.H/
satisfies

d.H/ D inf
r2R.1 � �.r/C Hr/: (4.6)

The derivation given above is not a mathematical proof, and the determination of
the range of validity of (4.6) (and of its variants) is one of the main mathematical
problems concerning multifractal analysis. If it does not hold in complete generality,
the multifractal formalism nevertheless yields an upper bound of the spectrum of
singularities, see [14, 23, 24]: As soon as (4.3) holds,

d.H/ � inf
r2R.1 � �.r/C Hr/:

In applications, multifractal analysis is often used only as a classification tool
in order to discriminate between several types of signals; then, one is not directly
concerned with the validity of (4.6) but only with a precise computation of the
new multifractal parameters supplied by the scaling function, or equivalently its
Legendre transform. Note that studies of multifractality for the p-exponent have
been performed by A. Fraysse who proved genericity results of multifractality for
functions in Besov or Sobolev spaces in [10].

4.2 Description of the Model and Global Regularity

In this section, we extend to possibly negative exponents the model of lacunary
wavelet series introduced in [12]. We assume that  is a wavelet in the Schwartz
class (see however the remark after Theorem 4.6, which gives sufficient conditions
of validity of the results of this section when wavelets of limited regularity are
used). Lacunary wavelet series depend on a lacunarity parameter � 2 .0; 1/ and a
regularity parameter ˛ 2 R. At each scale j � 0, the process X˛;� has exactly Œ2�j�

nonvanishing wavelet coefficients on each interval Œl; l C 1/ (l 2 Z), their common
size is 2�˛j, and their locations are picked at random: In each interval Œl; l C 1/

(l 2 Z), all drawings of Œ2�j� among the 2j possibilities k
2j 2 Œl; l C 1/ have the

same probability. Such a series is called a lacunary wavelet series of parameters
.˛; �/. Note that, since ˛ can be arbitrarily negative, X˛;� can actually be a random
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distribution of arbitrary large order. By construction

Hmin
X˛;� D ˛;

and, more precisely, the sample paths of X˛;� are locally bounded if and only if
˛ > 0. The case considered in [12] dealt with ˛ > 0, and was restricted to the
computation of Hölder exponents. Considering p-exponents allows us to extend the
model to negative values of ˛, and also to see how the global sparsity of the wavelet
expansion (most wavelet coefficients vanish) is related with the pointwise lacunarity
of the sample paths. Note that extensions of this model in different directions have
been worked out in [5, 9].

Since we are interested in local properties of the process X, we restrict our
analysis to the interval Œ0; 1/ (the results proved in the following clearly do not
depend on the particular interval which is picked); we can therefore assume that
k 2 f0; � � � 2j � 1g.

We first determine how ˛ and � are related with the global regularity of the
sample paths. The characterization (3.3) implies that the wavelet scaling function is
given by

8p > 0; �X˛;�. p/ D ˛p � �C 1: (4.7)

It follows that

p0 WD p0.X˛;�/ D
(
��1
˛

if ˛ < 0

C1 if ˛ > 0:

Note that p0 always exists and is strictly positive, even if ˛ takes arbitrarily
large negative values. We recover the fact that p-exponents allow us to deal with
singularities of arbitrarily large negative order. We will see that this is a particular
occurrence of a general result, see Proposition 5.2; the key property here is the
sparsity of the wavelet series.

4.3 Estimation of the p-Leaders of X˛;�

An important step in the determination of the p-exponent of sample paths of X˛;�
at every point is the estimation of their p-leaders. We now assume that p < p0,
so that the sample paths of X˛;� locally belong to Lp and the p-exponent of X˛;� is
well-defined everywhere. Recall that the p-leaders are defined by

l� D
 X
�0	3�

jc�0 jp2�.j0�j/

!1=p

: (4.8)
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The derivation of the p-exponent of X˛;� everywhere will be deduced from the
estimation of the size of the p-leaders of X˛;�. A key result is supplied by the
following proposition, which states that the size of the p-leaders of a lacunary
wavelet series is correctly estimated by the size of the first nonvanishing wavelet
coefficient of smaller scale that is met in the set f�0 W �0 � 3�g.

Proposition 4.3 Let ˛ 2 R, � 2 .0; 1/ and let X˛;� be a lacunary wavelet series of
parameters .˛; �/; for each dyadic interval � (of width 2�j), we define j0 ( D j0.�/)
as the smallest random integer such that

9�0 � 3� such that j�0j D 2�j0 and c�0 ¤ 0:

Then, a.s. 9J, 9C;C0 > 0 such that 8j � J, 8� of scale j

C2�˛j02�.j0�j/=p � l� � C02�˛j02�.j0�j/=pj2=p

Proof This result will be implied by the exponential decay rate 2�.j0�j/ that appears
in the definition of p-leaders together with the lacunarity of the construction; we will
show that exceptional situations where this would not be true (as a consequence
of local accumulations of nonvanishing coefficients) have a small probability and
ultimately will be excluded by a Borel-Cantelli type argument. We now make
this argument precise. For that purpose, we will need to show that the sparsity of
wavelet coefficients is uniform, which will be expressed by a uniform estimate on
the maximal number of nonvanishing coefficients c�0 that can be found for �0 (at a
given scale j0) included in a given interval 3�. Such an estimate can be derived by
interpreting the choice of the nonvanishing wavelet coefficients in the construction
of the model as a coarsening (on the dyadic grid) of an empirical process. Let us
now recall this notion, and the standard estimate on the increments of the empirical
process that we will need.

Let Nj D Œ2�j� denote the number of nonvanishing wavelet coefficients at scale j.
We can consider that the corresponding dyadic intervals � have been obtained
first by picking at random Nj points in the interval Œ0; 1� (these points are now
Nj independent uniformly distributed random variables on Œ0; 1�), and then by
associating to each point the unique dyadic interval of scale j to which it belongs.
Let P j

t be the process starting from 0 at t D 0, which is piecewise constant and
which jumps by 1 at each random point thus determined. The family of processes

˛
j
t D p

Nj

 
P j

t

Nj
� t

!
(4.9)

is called an empirical process on Œ0; 1�. The size of the increments of the empirical
process on a given interval yields information on the number of random points
picked in this interval. If it is of length l, then the expected number of points is lŒ2�j�,
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and the deviation from this average can be uniformly bounded using the following
result of W. Stute which is a particular case of Lemma 2.4 of [26].

Lemma 4.4 There exist two positive constants C0
1 and C0

2 such that, if 0 < l < 1=8,
Njl � 1 and 8 � A � C0

1

p
Njl,

P

 
sup

jt�sj�l
j˛ j

t � ˛j
sj > A

p
l

!
� C0

2

l
e�A2=64:

Rewritten in terms of P j
t , this means that

P

 
sup

jt�sj�l
jP j

t � P j
s � Nj.t � s/j > A

p
Njl

!
� C0

2

l
e�A2=64: (4.10)

Recall that the assumption �0 � 3� implies that 3 � 2�j � 2�j0 . We will
apply Lemma 4.4 differently for small values of j0 where the expected number of
nonvanishing coefficients c�0 that can be found for �0 (at a given scale j0) included in
a given interval � is very small, and the case of large j0 where this number increases
geometrically.

We first assume that

2�j0 � j22�j=�: (4.11)

We pick intervals of length l D j022��j0 and, for the constant A in Stute’s lemma, we
pick A D j. Then (4.10) applied with N D Œ2�j0 � yields that, with probability at least
1 � e�j2 , the number of intervals �0 of scale j0 picked in such intervals is

2�j0 l C O. j2/ D O. j2/:

We now assume that

2�j0 � j22�j=�: (4.12)

Then we pick intervals of length l D 3 �2�j, and A D jC j0. Then (4.10) applied with
N D Œ2�j0 � yields that, with probability at least 1 � e�.jCj0/2 , the number of intervals
�0 of scale j0 picked in such intervals is

2�j0 l C O..j C j0/2
p
2�j0 l/ � 2 � 2�j0 l: (4.13)

We are now ready to estimate the size of l�, assuming that all events described
above happen (indeed, we note that the probabilities such that these events do not
happen have a finite sum, so that, by the Borel-Cantelli lemma, they a.s. all occur
for j large enough).
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At scales j0 which satisfy (4.11), if at least one of the �0 � 3� does not
vanish, then there are at most j2 of them, and the corresponding contribution to
the sum in (4.8) lies between j.c�0/p2�. j�j0/j and j2j.c�0/p2�. j�j0/j. At scales j0 which
satisfy (4.12), the contribution of the wavelet coefficients of scale j0 to the sum
lies between 2�j0 lj.c�0/p2�. j�j0/j and its double. Since c�0 D 2�˛j0 , the condition
p < p0 implies that these quantities decay geometrically, so that the order of
magnitude of the p-leader is given by the first non-vanishing term in the sum. Hence
Proposition 4.3 holds.

4.4 p-Exponents and Lacunarity

We now derive the consequences of Proposition 4.3 for the determination of the p-
exponents of X˛;� at every point. We first determine the range of p-exponents. First,
note that all p-leaders have size at most 2�˛j, so that the p-exponent is everywhere
larger than ˛. In the opposite direction, as a consequence of (4.13), every interval
3� of scale j includes at least one nonvanishing wavelet coefficient at scale j=� C
.log j/2; therefore, all p-leaders have size at least

2
�˛



j
�Clog j

�2� 1
p



j
��jC.log j/2

�
:

It follows that the p-exponents are everywhere smaller than

Hmax WD ˛

�
C
�
1

�
� 1



1

p
: (4.14)

We have thus obtained that

a.s. 8p < p0; 8x0 2 R; ˛ � hp
X˛;�
.x0/ � Hmax:

For each j, let Ej
! denote the subset of Œ0; 1� composed of intervals 3� (� 2 ƒj)

inside which the first nonvanishing wavelet coefficient is attained at a scale l � Œ!j�,
and let

E! D lim sup Ej
!:

Proposition 4.3 implies that, if x0 … E! , then, for j large enough, all wavelet leaders
l�j.x0/ are bounded by

j22�˛ j
�� 1

p



j
��j

�
;



Multifractal Analysis Based on p-Exponents and Lacunarity Exponents 307

so that:

if x0 … E! , then hp
X˛;�
.x0/ � ˛! C ! � 1

p
: (4.15)

On other hand, if x0 2 E! , then there exists an infinite number of p-leaders l�j.x0/

larger than

2
�˛ j

�� 1
p



j
��j

�
;

so that:

if x0 2 E! , then hp
X˛;�
.x0/ � ˛! C ! � 1

p
: (4.16)

It follows from (4.15) and (4.16) that the sets of points where the p-exponent takes
the value

H D ˛! C ! � 1

p

are the sets

H! D
\
!0>!

E!0 �
[
!0<!

E!0 :

We have thus obtained the following result.

Proposition 4.5 Let ˛ 2 R, � 2 .0; 1/ and let X˛;� be a lacunary wavelet series of
parameters .˛; �/. Let p < p0; the sets of points with a given p-exponent are the sets

Fp
X˛;�
.H/ D H! for ! D H C 1=p

˛ C 1=p
I

and additionally, if x0 2 H! , then

LX˛;�.x0/ D ! � 1:

Remark We actually do not need the wavelet used to be in the Schwartz class for
Theorem 4.6 to be true. One can verify that, if the uniform regularity of the wavelet
is larger than max.j˛j; jHmaxj/, then all previous computations remain valid.

In order to determine the p-spectra and the lacunarity spectrum, one has to
determine the Hausdorff dimensions of the sets H! . We note that these sets do not
depend on ˛ and on p, but only on the parameter! and on the random drawing of the
locations of the non-vanishing wavelet coefficients. When ˛ > 0, the dimensions of
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these sets (expressed in a slightly different way) were determined in [12], where it
is shown that

dim.H!/ D �!:

The following result follows.

Theorem 4.6 Let ˛ 2 R, � 2 .0; 1/ and let X˛;� be a lacunary wavelet series of
parameters .˛; �/; the p-spectrum of X˛;� is supported by the interval Œ˛;Hmax� and,
on this interval,

a.s. 8p < p0; 8H; dp.H/ D �
H C 1=p

˛ C 1=p
:

Furthermore, its lacunarity spectrum is given by

a.s. 8L 2 Œ0; 1=�� 1�; dL.L/ D �.L C 1/:

Remark It is also shown in [12] that all the sets H! are everywhere dense, so that
the quantity (4.1) is equal everywhere to Hmax � ˛.

For the sake of completeness, we now sketch how these dimensions can be
computed. We start by estimating the size of E! . Note that the number of intervals
3� which comprise Ej

! is bounded by

Œ2�j�C Œ2�. jC1/�C � � � C Œ2�Œ!j�� � C2�!j:

Using these intervals for j � J as an "-covering, we obtain the following bound for
the Hausdorff dimension of E!

dim.E!/ � �!: (4.17)

We now consider the sets H! ; it follows from (4.15) and (4.16) that

H! D
\
!0>!

E!0 �
[
!0<!

E!0 :

Since 8!0 < !, H! � E!0 , it follows from (4.16) that

dim.H!/ � �!:

In order to get a lower bound on the Hausdorff dimension of H! , we will need
the following (slightly) modified notion of ı-dimensional Hausdorff measure.
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Definition 4.7 Let A � R. For " > 0 and ı 2 Œ0; 1�, let

Mı;�
" .A/ D inf

R

 X
i

jAijıj log.jAij/j�
!
;

where R denotes an "-covering of A, and where the infimum is taken on all "-
coverings. The .ı; �/-dimensional Hausdorff measure of A is

Mı;� .A/ D lim
"!0

Mı;�
"; .A/: (4.18)

Since Ej
! is composed of 
 C2�!j randomly located intervals of length 3 � 2�j,

standard ubiquity arguments (such as in [7, 12]) yield that

M�!;2.G!/ > 0I

(4.16) implies that
S
!0<! E!0 (which can be rewritten as a countable union) has a

vanishing .�!; 2/-dimensional Hausdorff measure. Thus

M�!;2

 
E! �

[
!0<!

E!0

!
> 0:

Since this set is included in H! , we obtain that

dim.H!/ � �!:

It suffices now to rewrite these dimensions as a function of the p-exponent to
obtain Theorem 4.6.

Numerical examples for the estimation of dp.H/ and dL.H/ of a lacunary wavelet
series are given in Fig. 5. As predicted by theory, the numerical estimates of the
p-exponent multifractal spectra are not invariant with p but follow the evolution
with p of the theoretical spectra dp.H/. The positions of the mode of the estimated
spectra have a constant negative bias; yet, quantitatively, they very well reproduce
the shift of the mode of the theoretical spectra to smaller values of H for increasing
p, revealing the lacunary nature of the function. A refined analysis is possible with
the estimated lacunarity exponent multifractal spectrum dL.H/, which has been
computed here for several values of p for illustration purposes. The mode of the
spectrum is estimated at H � 0:2 (instead of the theoretical H D 0:25). This
clearly indicates the existence of positive lacunarity exponents. While the estimates
for small values of p fall short of revealing the full support of the theoretical
multifractal spectrum, they still enable one to identify a relatively large interval
of positive lacunarity exponent values. The best estimate of dL.H/ is obtained
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Fig. 5 Lacunary wavelet series: A typical sample path of a lacunary wavelet series (˛ D 0:3,
� D 0:8, top row) and estimated structure functions (center row) and multifractal spectra (bottom
row) for p-exponents (left column) and lacunarity exponents (right column) obtained with different
values of p. The dashed lines indicate the theoretical multifractal spectra

for the canonical value p D p0 D C1 (q D q0 D 0) in this example and
produces a satisfactory concave envelope of the theoretical multifractal spectrum
that provides clear evidence for ensembles of lacunary singularities with a range of
positive exponents.

5 Concluding Remarks

The analysis that we developed is based on the assumption that p0. f / > 0, or that
�f . p/ > 0 for p small enough, so that p-exponents can be defined, at least, for
p � p0; we saw that this assumption allows us to deal with distributions of arbitrarily
large order and, equivalently, to model pointwise singularities with arbitrarily large
negative exponent. However, this does not imply that any tempered distribution
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satisfies these assumptions. Simple counterexamples are supplied by the Gaussian
fractional noises B˛ for ˛ < 0 whose sample paths can be seen as fractional
derivatives of order 1

2
�˛ of the sample paths of a Brownian motion on R (Gaussian

white noise corresponds to ˛ D �1=2, in which case it is a derivative, in the sense of
distributions, of Brownian motion). In [18] the wavelet and leader scaling functions
are derived, and it is proved that �B˛ D �˛p, hence always is negative. However, the
following result shows that, as soon as the wavelet expansion of the data has some
sparsity, then this phenomenon no more occurs, and p0 is always strictly positive
(note that this situation is quite common in practice since sparse wavelet expansions
are often met in applications).

Definition 5.1 A wavelet series
P

j;k cj;k j;k is sparse if there exist C > 0 and � < 1
such that, on any interval Œl; l C 1�,

Cardfk W cj;k ¤ 0g � C2�j:

Typical examples of sparse wavelet series are supplied by lacunary wavelet series
or by the measures which satisfy (3.10). The following proposition implies that
multifractal analysis based on p-exponents is always possible for data with a sparse
wavelet expansion.

Proposition 5.2 Let f be a tempered distribution, which has a sparse wavelet
expansion, then �f . p/ > 0 for p small enough, so that p0. f / > 0:

Proof Since f is a tempered distribution, it has a finite order, and thus it is a
derivative of order A of a continuous function. Therefore f belongs to C�A.R/, so
that

jcj;kj � C2Aj:

Using again compactly supported wavelets, the same argument as in the proof of
Proposition 3.6 yields that there are at most C2�j nonvanishing wavelet coefficients
at scale j; it follows that

2�j
X

k

jcj;kjp � C2�j2�j2Apj

so that �f . p/ � 1 � � � Ap, and �f . p/ > 0 for p < .1 � �/=A.
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Abstract In this overview we discuss recent results on dimensional properties of
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1 Introduction

1.1 Limsup Sets

Various types of limsup sets defined in a natural manner as upper limits of sequences
of sets play an important role in many fields of mathematics. One of the well-known
examples of such sets is related to the Diophantine approximation. According to the
Dirichlet’s approximation theorem, for all real numbers x 2 R, there are infinitely
many positive integers q 2 N satisfying jx� p.q/

q j < 1
q2

for some p.q/ 2 Z. Replacing
1
q2

with a general function 
.q/, leads to the following type of extension which has
been extensively investigated in the literature:

jx � p.q/

q
j < 
.q/: (1.1)
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The natural questions addressed in this context are as follows: Which properties of

 guarantee that for all or for almost all x 2 R there are infinitely many q 2 N

satisfying (1.1) for some p.q/ 2 Z? Given 
, what is the size of the set of points x 2
R for which there exist infinitely many q 2 N satisfying (1.1) for some p.q/ 2 Z?
Alternatively, one may study simultaneous approximations for x1; : : : ; xn 2 R. We
refer to the work of Beresnevich and Velani [2] for a breakthrough in this direction.

Multiplying (1.1) by q gives the inequality

jxq � p.q/j < Q
.q/ (1.2)

which can be interpreted by means of rotations. Indeed, denoting by Rx W T1 ! T
1

the rotation by the angle x on the circle T
1 WD R=Z, inequality (1.2) is satisfied if

and only if the distance between zero and the q-th iterate of zero Rq
x.0/ is less than

Q
.q/. Hence, the above mentioned problems are equivalent to the investigation of
the size of the set

fx 2 R j jRq
x.0/j < Q
.q/ for infinitely many q 2 Ng

which can be regarded as a special case of the shrinking target problem or the
dynamical Diophantine approximation formulated in full generality as follows:
given a dynamical system T W X ! X on a metric space X, a point x0 2 X and
a sequence .rn/ of positive real numbers tending to zero, determine the size of the
set

fx 2 X j Tn.x/ 2 B.x0; rn/ for infinitely many n 2 Ng;

where B.x; r/ is the open ball with radius r centred at x 2 X. A variant of this
question is the moving target problem concerning the study of the following limsup
set

lim sup
n!1

B.Tn.x0/; rn/ D
1\

nD1

1[
kDn

B.Tn.x0/; rn/

D fx 2 X j x 2 B.Tn.x0/; rn/ for infinitely many n 2 Ng:

We refer to [12] for a recent account on this line of research.
An interesting relation between limsup sets and Brownian motion was discovered

by Khoshnevisan, Peres and Xiao in [23]. They defined a class of limsup random
fractals for the purpose of characterising the sets which intersect the set of fast points
almost surely. The notion of fast points was introduced by Orey and Taylor [28] as
the set of times where the increments of the Brownian motion are exceptionally
large.
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1.2 Random Covering Sets

Random covering sets are a class of limsup sets defined by means of a family
of randomly distributed subsets of the d-dimensional torus T

d D R
d=Zd. More

precisely, letting .An/
1
nD1 be a sequence of non-empty subsets of T

d and letting
x D .xn/

1
nD1 be a sequence of independent random variables which are uniformly

distributed on T
d, define the random covering set E D E.x/ by

E.x/ D lim sup
n!1

.xn C An/ D
1\

nD1

1[
kDn

.xk C Ak/;

where x C A WD fx C y j y 2 Ag. In the case Ak D B.0; rk/ the study of random
covering sets may be interpreted as a moving target problem for the random walk
on T

d.
Denoting the Lebesgue measure on T

d by L, it follows from the Borel-Cantelli
lemma and Fubini’s theorem that, almost surely, either L.E/ D 0 or L.E/ D 1

depending on whether the series
P1

kD1L.Ak/ converges or diverges, respectively,
that is, almost all or almost no points of the torus are covered, depending on whether
or not the series of the Lebesgue measures of the generating sets diverges.

The case of full Lebesgue measure has been extensively studied. Even in the
simplest case when d D 1 and the generating sets are intervals of length ln it was a
long-standing problem to find conditions which guarantee that the whole circle T1 is
covered almost surely. This problem, known in literature as the Dvoretzky covering
problem, was first posed by Dvoretzky [6] in 1956. After substantial contributions of
many authors, including Billard [3], Erdős [8], Kahane [19] and Mandelbrot [26],
the full answer to the Dvoretzky covering problem was given in this context by
Shepp [30] in 1972. He verified that E D T

1 almost surely if and only if

1X
nD1

1

n2
exp.l1 C � � � C ln/ D 1;

where the lengths .ln/ are in decreasing order.
In the higher dimensional case the Dvoretzky covering problem has been studied

by El Hélou [7] and Kahane [21] among others. In [21] Kahane gave a complete
solution for the problem when the generating sets are similar simplexes. However,
in the general case the covering problem is still unsolved.

For an overview on various results concerning random covering sets and related
topics, we refer to [20, Chapter 11] and [22] and the references therein. We briefly
mention a few modifications to the random covering model. As a generalisation of
the Dvoretzky covering problem one can consider the number of covering times for
a given set K � T

d, or whether K � E almost surely. For different approaches
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to related questions, see [1, 7, 9, 10, 14, 16, 20] and [21]. The Dvoretzky covering
problem can be formulated in terms of Mandelbrot cutout sets [27]. For the solution
of the covering problem in this setting, see Shepp [31]. In metric spaces the random
coverings by balls have been studied in [15]. Recent contributions to the topic
include various types of dynamical models, see [12, 18] and [25], and projections of
random covering sets [4].

2 Dimension Results in the Torus

From now on we focus on the natural problem of determining the almost sure value
of the Hausdorff dimension of the covering set E in the case of zero Lebesgue
measure. The investigation of dimensional properties of covering sets was pioneered
by Fan and Wu [11]. They gave a formula for the almost sure Hausdorff dimension,
denoted by dimH, of the limsup set in the circle T

1 provided that each generating
set An is an open interval of length ln D 1=n˛ for ˛ > 1. Using different methods,
Durand [5] studied the case of arbitrary decreasing sequences of lengths .ln/1nD1 and
proved the following generalisation of the dimension formula: almost surely

dimH E D infft � 0 j
1X

nD1
ltn < 1g D lim sup

n!1
log n

� log ln
: (2.1)

Note that here the covering set E is almost surely a dense Gı-set in T
1 since An D

�0; lnŒ is an open interval. This implies that both packing and Minkowski dimensions
of E are equal to 1. When considering hitting probabilities of random covering sets
in the circle, Li, Shieh and Xiao [24] gave an alternative proof of the dimension
result (2.1) under additional assumptions.

The various methods used in the proofs of the above results rely heavily on the
facts that the ambient space is 1-dimensional or the generating sets are ball like. The
natural question of calculating the almost sure dimension value of the covering set
in the d-dimensional torus Td was first addressed in [17] for generating sets of the
form An D ….Ln.R//, where… W Rd ! T

d is the natural covering map, R is a subset
of the closed unit cube Œ0; 1�d with non-empty interior and the map Ln W Rd ! R

d is
a contractive linear injection such that for all i D 1; : : : ; d the sequence of singular
values .�i.Ln//

1
nD1 decreases to 0 as n tends to infinity. Recall that �i.Ln/ is the

length of i-th longest semiaxis of Ln.B.0; 1//. It turns out that, almost surely, the
Hausdorff dimension of E can be calculated in terms of the singular value functions

ˆt.Ln/ WD �1.Ln/ � � ��m�1.Ln/�m.Ln/
t�mC1
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where m is an integer with m � 1 < t � m and 0 < �d.Ln/ � � � � � �1.Ln/ < 1.
More precisely, almost surely

dimH E D inff0 < t � d j
1X

nD1
ˆt.Ln/ < 1g (2.2)

with the interpretation inf ; D d, see [17].
Recently, Persson [29] showed that for open generating sets An � T

d, almost
surely,

dimH E � inff0 < t � d j
1X

nD1
gt.An/ < 1g; (2.3)

where

gt.A/ D L.A/2
It.A/

for all Lebesgue measurable sets A � T
d. Here

It.A/ D
“

A�A

jx � yj�t dL.x/ dL.y/ (2.4)

is the t-energy of A. Note that, for simplicity, we use the notation jx � yj for both the
Euclidean distance and the natural distance in T

d.
It is straightforward to see that inequality (2.3) gives a generalisation of (2.2).

Indeed, it follows easily that the lower bound in (2.3) equals the right-hand side
of (2.2) under the assumption that the generating sets An are open rectangles. The
fact that in [17] the monotonicity assumption �i.Ln/ # 0 as n ! 1 is not needed
for the purpose of verifying the upper bound of the Hausdorff dimension in (2.2)
implies that (2.2) is valid for generating sets of the form An D ….Ln.R// without
the convergence assumption. To conclude, the results of this section cover the case
of An � T

d being box-like, that is, linear images of a set having non-empty interior,
and moreover, give a lower bound for general open sets.

3 Dimension Results in Riemann Manifolds

In this section we concentrate on dimensional properties of random covering sets in
a d-dimensional Riemann manifold. The setting we are dealing with is quite general:
the generating sets are Lebesgue measurable, and moreover, instead of the uniform
distribution L we consider any non-singular measure. This section is based on our
recent joint work with De-Jun Feng and Ville Suomala [13].
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We begin by introducing the notation. Let U;V � R
d be open, simply connected

and bounded sets, and let „ W U � V ! R
d be a C1-map such that the maps

„.�; y/ W U ! „.U; y/ and „.x; �/ W V ! „.x;V/ are diffeomorphisms for all
.x; y/ 2 U � V . Denoting the derivatives of „.�; y/ and „.x; �/ by D1„ and D2„,
respectively, we assume that there are constants Cl;Cu > 0 such that the singular
values satisfy

Cl � �i.D1„.x; y//; �i.D2„.x; y// � Cu (3.1)

for all .x; y/ 2 U � V and for all i D 1; : : : ; d.
Let � be a Radon probability measure on U which is not purely singular with

respect to the Lebesgue measure L. We consider the probability space .UN;F ;P/
which is the completion of the infinite product of .U;B; �/, where B is the Borel
�-algebra on U. Assuming that An � V for all n 2 N, define the random covering
set E.x/ for all x D .xn/n2N 2 UN by

E.x/ WD lim sup
n!1

„.xn;An/ D
1\

nD1

1[
kDn

„.xk;Ak/:

Note that, choosing U D V D T
d and „.x; y/ D x C y, gives the setting of Sect. 2.

For the purpose of computing the almost sure value of the Hausdorff dimension
of covering sets, we need the following quantities. For 0 � t < 1, the t-dimensional
Hausdorff content of a set A � R

d is denoted by

Ht1.A/ D inff
1X

nD1
.diam Bn/

t j A �
1[

nD1
Bng;

where diam B is the diameter of a set B � R
d. Define

t0 WD inff0 � t � d j
1X

nD1
Ht1.An/ < 1g (3.2)

with the interpretation inf ; D d. For Lebesgue measurable sets An � R
d, we set

s0 WD supf0 � s � d j
1X

nD1
Gs.An/ D 1g; (3.3)

where

Gs.B/ WD supfgs.A/ j A � B; A is Lebesgue measurable and L.A/ > 0g
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with the interpretation sup ; D 0. Finally, we say that a point x 2 A � R
d has

positive density if

lim inf
r!0

L.A \ B.x; r//

L.B.x; r// > 0:

Now we are ready to state our main theorem from [13].

Theorem 3.1 Suppose that K � V is compact and the generating sets .An/
1
nD1 are

subsets of K. Then

(a) dimH E.x/ � t0 for all x 2 UN,
(b) dimH E.x/ � s0 for P-almost all x 2 UN provided that An is Lebesgue

measurable for all n 2 N,
(c) dimH E.x/ D s0 D t0 for P-almost all x 2 UN provided that for all n 2 N the

set An is analytic and all points in An have positive density,
(d) dimp E.x/ D d for P-almost all x 2 UN provided that An is Lebesgue

measurable and L.An/ > 0 for all n 2 N.

As a consequence of Theorem 3.1 we obtain the following dimension result
for random covering sets in compact Riemann manifolds [13]. Note that in
Corollary 3.2 the quantities t0 and s0 are defined similarly as in (3.2) and (3.3) by
using the distance function induced by the Riemann metric and by replacing L by
the Riemann volume.

Corollary 3.2 Let M1, M2 and N be d-dimensional compact Riemann manifolds.
Suppose that „ W M1 � M2 ! N is a C1-map such that „.x; �/ and„.�; y/ are local
diffeomorphisms satisfying (3.1). Let .An/

1
nD1 be a sequence of analytic subsets of

M2 such that all points in every An have positive density with respect to the Riemann
volume on M2. Assume that� is a Radon measure on M1 which is not purely singular
with respect to the Riemann volume on M1. Then for P-almost every x 2 .M1/

N, we
have dimH E.x/ D t0 D s0 and dimp E.x/ D d.

In Corollary 3.2 the compactness assumption guarantees that the random cov-
ering set is non-empty. The claim is valid for compact subsets of non-compact
Riemann manifolds as well. Note that Corollary 3.2 is sharp in the sense that, almost
surely, dimH E.x/ may be strictly between s0 and t0 if we only assume that for all
n 2 N we have L.An \ B.x; r// > 0 for all x 2 An and r > 0. Moreover, even for
open generating sets the quantity s0 may be strictly larger than the right hand side
of (2.3). In particular, the lower bound in (2.3) is not the best possible one. Finally,
Theorem 3.1 may fail if the distribution � is singular with respect to the Lebesgue
measure. We refer to [13] for details of these facts.
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Expected Lifetime and Capacity

András Telcs and Marianna E.-Nagy

Abstract We investigate sharp isoperimetric problems for random walks on
weighted graphs. Symmetric weights on edges determine the one step transition
probabilities for the random walk, measure of sets and capacity between sets. In
that setup one can be interested in the exit time of the random walk from a set, i.e.
to find for a fixed starting point the “optimal” set of given volume which maximizes
the expected time when the walk leaves the set. A strongly related problem is to
find a set of fixed volume which has minimal conductance with respect to a given
set. In both problems the answer is less appealing than in the case of Euclidean
space. As demonstrated by a simple counterexample, there is no unique optimal set.
The Berman-Konsowa principle is used in the search for optimal sets. It allows to
construct a new graph on which the calculation of conductance and mean exit time
is tractable.

Keywords Isoperimetric inequality • Random walks • Berman-Konsowa
principle

1 Introduction

Isoperimetric problems have a long and shining history in mathematics as well
as in human culture. Pappus credited to Zenodorus the first statement of the
two dimensional isoperimetric problem. Several other isoperimetric problems were
formulated in the course of time. One can find a classical introduction in Polya’s
and Szegő’s book [9] and further references in the nice survey of Caroll [5]. We are
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not going to present a review here. To find the optimal set for the maximal expected
lifetime of a planar Brownian motion in a finite closed, connected domain of fixed
area is a naturally arising similar problem (cf. [1, 5] and their references). In the
light of recent developments in the study of diffusion processes in measure metric
Dirichlet spaces (cf. [3, 7]) it is natural to rise the same question on such spaces.

Let us imagine that we have a sheep, a piece of grassland, and an electric fence
of a given length. The sheep starts at a given point at time zero and performs a
diffusion according to a fixed measure and a local, regular, Markovian Dirichlet
form. We want to enclose the sheep with the fence in such a way that the sheep
is hit by electricity as late as possible, in expectation. This scenario inspired Erin
Pearse to coin the name “Brownian sheep” at the Cornell Conference on Analysis
and Probability on Fractals in 2005.

In the present paper we make a very first step towards the solution of the
Brownian sheep problem. We consider a discrete space-time counterpart of the
problem, given by random walks on weighted graphs (for general introduction and
background c.f. [6, 10]).

We provide a characterization of the optimal solution for:

1. The minimal capacity problem: given two sets � and F � � and a constant M,
find a set D � F with volume not larger than M such that the capacity between
D and �nF is minimal.

2. The maximal lifetime problem: given a starting point of the walk and a constant
M; find a set F of volume not larger than M such that the expected exit time of
the walk is maximal.

The key tool for us is the Berman-Konsowa (B-K in the sequel) principle [4]
(see also [8] for a nice interpretation), by which the problem can be reduced to star
graphs.

The paper is organized as follows. In Sect. 2 we introduce basic notation and
facts. In Sect. 3 we present the Berman-Konsowa principle, in Sect. 4 we discuss the
problem of capacity and in Sect. 5 the problem of Brownian Sheep. Some technical
details are collected in an Appendix.

2 Foundations

Let .�;Q�; �/ be a connected weighted undirected graph with vertex set � , edge
set Q� and a symmetric weight on edges �x;y D �y;x. The corresponding resistance
is Rx;y D 1=�x;y. For x 2 � let �.x/ D P

y �x;y.
For sake of simplicity we will solve the problem on the cable system of the graph,

i.e., all edges are considered as copies of the unit interval [2]. For an edge .x; y/ and
˛ 2 Œ0; 1� let .˛; x; y/ denote the point which splits the edge into ˛; 1 � ˛ parts. We
write w0 D .0; x; y/ for x; w1 D .1; x; y/ for y; and w˛ D .˛; x; y/ for points on the
edge. Resistance and weight are proportional to the length of a subinterval:

Rw0;w˛ D ˛Rx;y and �w0;w˛ D ˛�x;y:
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The basic space for our study is the set of all points of the unit intervals
representing edges. It is denoted by W. We consider subsets A � W which are
unions of subintervals where adjacent endpoints are identified. We assume that such
a set A is convex in the following sense: if w N̨ D . N̨ ; x; y/ 2 A then at least one of
the vertices x and y is in A, and if lets say x 2 A, then w˛ D .˛; x; y/ 2 A for all
˛ 2 Œ0; N̨ � as well.

In the sequel the investigated sets A � W are assumed to be open and
precompact. Let A denote the closure of the set and @A D AnA the boundary of
A: The boundary of a set is a discrete set of points on intervals. The set of edges
crossing @A will be denoted by cA:

The weights on edges define a measure d� .˛; x; y/ D �x;yd˛, with

� .A/ D
X

x;y2A\�
�x;y C

X
.˛;x;y/2@A
x2A;y…A

˛�x;y:

We consider the usual random walk Xn 2 � on .�; �/ defined by the transition
probability P .x; y/ D �x;y=�.x/: We assume that there is a p0 > 0 such that for all
.x; y/ 2 Q�

P .x; y/ � p0: (2.1)

As a consequence deg .x/ � 1=p0 for all x 2 � , i.e. the graph has bounded degree.
� can be infinite, however.

Now we define the killed random walk for a set A which contains a finite number
of vertices. We assign to A a corresponding graph with vertex set �A D � \ A [ @A
and the induced edges. On this graph we have a random walk which we will start
at an interior vertex and kill at the first boundary vertex. The transition probabilities
PA .x; y/ are equal to P .x; y/ for x; y 2 � \ A: If x 2 � \ A is adjacent with one
boundary point w˛ D .˛; x; y/ 2 @A then the interval .x; y/ is splitted into two parts
and the transition probability modified accordingly:

PA .x;w˛/ D
1
˛
�x;yP

z¤y �x;z C 1
˛
�x;y

;

In other words new points are introduced as edge splitting points on the boundary
of A and the walk is defined inside A as usual, choosing a neighbor proportional to
the conductance. On vertices next to the boundary the walk tends to choose short
edges with small ˛; which get bigger weights by 1=˛. The walk is killed as soon as
it reaches a boundary point. The exit time of the random walk is

TA D min fn W Xn 2 �nAg ;
and the mean exit time for the walk starts in x 2 � is defined as

Ex .A/ D E
A .TAjX0 D x/ ;
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where E
A is the expected value with respect to the probability measure PA induced

by the random walk Xn starting at X0 D x 2 � and killed when it leaves A.

Remark 1 The notions of weight, capacity and resistance need a bit of explanation.
Capacity is the reciprocal of resistance, shorter subintervals have smaller resistance
and bigger capacity, while the weight assigned to the subinterval is proportional to
its length. In that sense weight and capacity are not the same on subintervals while
they numerically coincide on full intervals.

One can assume that the resistance is not uniform along the edges but there is a
resistivity 
 .s/ along it and

Rw0;w˛ D
Z ˛

0


 .s/ ds:

This extension is not discussed here, but seems tractable and the whole machinery
can be generalized to it without essential change.

Problem 1 (Maximal exit time) Let x 2 � and M > 0 be given. Find a set F 3 x;
F � W with volume � .F/ � M and maximal expected exit time Ex .F/.

Problem 2 (Minimal capacity) Let F � W be a fixed set and M > 0 be given. Let
Cap .D;F/ denote the capacity of the ‘annulus’ FnD for D � F; more precisely

Cap .D;F/ D inf
f 2H

X
w;w02F[@F[@D

�
f .w/ � f

�
w0��2 �w;w0 ;

where H D H .D;F/ is the set of functions f W W ! R; f jD � 1 and f j�nF D 0.

Here again the boundary crossing edges are splitted and only the parts in FnD is
considered. We seek for a set D such that D � F, � .D/ � M and the capacity
Cap .D;F/ is minimal.

3 The Berman-Konsowa Principle

The other model that we will use is the path system of the graph. Consider a pair of
sets .D;F/, where D � F. Denote L D LD;F the set of all finite paths connecting
@iD and @oF cropped at the boundary of the sets. Denote the ends of a path l 2 LD;F

by dl and zl, respectively. The path-graph on Fn@iD will be defined between y’s and
�nF and completed with common, unsplitted edges .d; y/ reaching @D, see Fig. 1.
(If y 2 @0D but y … F we consider the single edge .d; y/ as a path.)

We introduce PD;F as the set of all probability measures on LD;F , and let QD;F be
the edge set induced on FnD by the original graph.

Definition 3.1 A flow between D and �nF is a function on QD;F . A flow function
ˆ is nonnegative and satisfies the following rules.
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Fig. 1 Paths starting inside
F n D

1. ˆ.x; y/ˆ .y; x/ D 0 8 .x; y/ 2 QD;F , i.e. the flow is one-directional,
2. for x 2 FnD

X
yW.x;y/2QD;F

ˆ.x; y/ D 0;

3.

X
d2D;yW.d;y/2QD;F

ˆ.d; y/ D
X

z2@F;yW.y;z/2QD;F

ˆ.y; z/ ; (3.1)

4. ˆ.x; d/ D ˆ.z; y/ D 0 for all x; y 2 FnD; d 2 D; z 2 @F: In addition we say
that ˆ is a unit flow if

P
d2D;yW.d;y/2QD;F

ˆ.d; y/ D 1.

We define a new network .�L;QL; �L/ based on the path system L D LD;F . That
will be the set of paths connecting D and �nF with vertex and edge replicas of
the original graph, to ensure that the path have no common vertices except at their
endpoints. The objects of the new graph will be labeled by l 2 L. Each l 2 L is a
sequence of edges. We redefine the vertex set. For each x 2 FnD let xl be a vertex in
�L if x 2 l \ .FnD/, formally: �L D fxl W x 2 FnD \ l and l 2 Lg : Edges are kept
along the paths. We associate a new resistance Rl

x;y to each edge on l with respect
to a probability measure P 2 PD;F . If .x; y/ 2 QD;F the flow can be decomposed
into separate flows along disjoint paths

ˆP .x; y/ D
X

l0Wl03.x;y/
P
�
l0
�

�l
x;y D �x;y

P .l/

ˆP .x; y/

Rl
x;y D �

�l
x;y

��1 D Rx;y
ˆP .x; y/

P .l/
: (3.2)
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The path l has resistance rl D P
.x;y/2l Rl

x;y and its conductance is CapP .l/ D 1=rl.
Finally the capacity or conductance determined by P between D and @F is

CapP .D;F/ D
X

l2LD;F

CapP .l/ :

Remark 2 Let us observe that the edge weights are shared between the paths, it is
contained proportional to the probability measure. For each edge

�l
x;y D �x;y

P .l/P
l0Wl03.x;y/ P .l0/

;

and consequently
X

lWl3.x;y/
�l

x;y D �x;y:

Theorem 3.2 (Berman-Konsowa principle)

Cap .D;F/ D max
P2PD;F

CapP .D;F/ :

In what follows this nice path system will play a particular role. Let us mention
that the capacity potential defines an important unit flow which minimizes the
energy dissipation of the network. Let �C D min fk W Xk 2 Cg be the hitting time
of the set C and v .y/ D P

�
�D < ��nFjX0 D y

�
. The natural flow generated by the

properly adjusted external source is

ˆ.x; y/ D .v .x/� v .y//C �x;y; (3.3)

where aC D max fa; 0g.

4 Sets with Minimal Capacity

Let D be an optimal solution of Problem 2. Then we may assume that for all w 2 @D;
w D .˛; x; y/ with ˛ 2 .0; 1/ ; i.e., the boundary points of D are internal points of
edges. We can assume even more, that there is a small " > 0 such that

˛ 2 ."; 1� "/ :

If it is not the case, given that @D is finite, with an arbitrary small change of the
volume M that can be ensured.

Consider the Berman-Konsowa path system L@oD;F and let us extend each path l
which connect yl 2 @oD to F with the edge segment .dl; yl/ ; where dl 2 @D and
dl D .˛l; xl; yl/ for some 0 � ˛l � 1. Then the resistance from dl can be calculated
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as follows. We have

CapL .yl; @F/ D
X
QlWyl2Ql

Cap
�
yl; fQl

�
;

where fl 2 @F \ l and RL .yl; @F/ D 1=CapL .yl; @F/

RL .dl; @F/ D Rdl;yl C RL .yl; @F/ :

Finally, CapL .dl; @F/ D 1=RL .dl; @F/ and we have

Cap .D;F/ D
X
d2@D

CapL .d; @F/ :

Let us recognize, that the path system we have used here is smaller than the path
system in the original B-K construction, since the border crossing edges are not
split. For that reason we will refer to this construction as reduced B-K path system.

In order to investigate the optimal set of Problem 2 we use the Lagrange method
and consider small perturbations of the optimal set. Let us consider a function
� W cD ! .0; 1/which defines the boundary of the set D� with w D .� .x; y/ ; x; y/ 2
@D� .

We consider the reduced B-K path system over .D;F/ and fix the resistances
Rl

x;y defined in (3.2) by the capacity potential and optimal flow (3.3) . We reserve

P for the optimal distribution and QP will denote an arbitrary other one on the fixed
set of paths L. We shall consider in many cases a fixed set of paths L with different
weights, in that case the resistances, conductances on the path system with respect
to the probability P; QP will be denoted by R;Cap, and QR D QRL D RQP

L;
eCap D

eCapL D CapQP
L , respectively. We shall drop the sub and superscripts if it does not

cause ambiguity.

Remark 3 The Berman-Konsowa principle says that for any set D � F and any
weight system QP with the correspondingeCapL

Cap .D;F/ D max
P

CapP

L .D;F/ � eCapL .D;F/ :

In particular if D is optimal, and QD is another set in F then

Cap
� QD;F� � Cap .D;F/ � eCapL .D;F/ :

Lemma 4.1 If D � F; � .D/ � M minimizes the capacity on the path system LD;F

(with weights defined by the optimal P) then D is optimal for Problem 2.

Proof Let QD � F; �
� QD� � M be another set and QL be the path system defined by

. QD;F/. Then from

CapP

L

� QD;F� � CapPL .D;F/
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and from the capacity definition and Remark 3, we have the statement:

Cap
� QD;F� D eCapQL

� QD;F� � CapPL
� QD;F� � CapP

L .D;F/ D Cap .D;F/ :

ut
For each path l 2 L, we introduce the resistance rl and the weight�l of the whole

path:

rl D
X
.z;v/2l

Rl
z;v and �l D

X
.z;v/2l

�l
z;v;

where .z; v/ 2 l are the edges of path l.
The proof of the following statement is given in the Appendix.

Proposition 4.2 If D is optimal, then in the path system for each l 2 LD;F

�l .xl; yl/ rl D const; (4.1)

where .xl; yl/ 2 cD denotes the crossing edge of l.

Remark 4

1. The simplest case is to fix x 2 � and look for a set D with x 2 D � F; � .D/ � M
which minimizes Cap .x;D/.

2. The following example shows that an optimal set D need not be unique. Consider
two copies of Li D f0i; 1i; 2i; 3i; 4i; 5ig ; i D 1; 2 with edges between direct
neighbours and join them by setting 01 D 02. We switch to continuous setup.
Let

mi .s/ D
8
<
:
2 if s 2 Œ0; 1�
4 if s 2 .1; 2�
3 if s 2 .2; 5�

be the mass density along Li: Denote the mass and resistance of the ray from 0

to a point x 2 Œ0; 5� by m and r. Then

m.x/ D
8<
:

2x if 0 � x < 1
2C 4 .x � 1/ if 1 < x � 2

6C 3 .x � 2/ if 2 < x � 5

r.x/ D
8
<
:

x
2

if 0 � x < 1
1=2C 1

4
.x � 1/ if 1 < x � 2

3
4

C 1
3
.x � 2/ if 2 < x � 5

:
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For the calculation of capacity we pick a point x on the first ray for which m .x/
is the total mass from 0 to it. We allocate the rest of the mass to the point y on the
second ray, that is m .y/ D 12� m .x/ if M D 12. We define the inverse function
p of the function m:

p .t/ D
8
<
:

t=2 if 0 � t < 2
1
4
.t C 2/ if 2 < t � 6

t=3 if 6 < t � 15

:

The capacity is Cap .x;D/ D g .t/ D 1=r . p .t// C 1=r . p .12� t// expressed
in the mass t used on the first ray, namely t D m.x/. It is easy to see, that this
function has two global minimal solutions.

3. This example shows that no unique optimal solution can be guaranteed. The last
resort is provided by the observation made in Lemma 4.1. If a set is optimal
on its own B-K path system, it can be found by the Lagrange method, and it is
optimal with respect to the original problem. Also let us recall Remark 3 which
helps to sort out non-optimal sets. Since if we find a weight system P

0 over L on
which the candidate set D� is not optimal then it can not be optimal.

5 The Exit Time

We are going to find optimal sets which maximize Ex .F/ with x 2 F, where
x 2 � and � .F/ � M fixed. In order to find an optimal set we try to maximize
simultaneously R .Dm;F/ where Dm is the level set of the Green function GF .x; y/
of volume m, 0 � m � M. We defer the statement of the result to the end of this
section to avoid repetition of technical notation. As in Sect. 4 we assume that the
boundary points of the optimal set are inside the edges, i.e., "-separated from the
endpoints.

From now on we work on the reduced path system and weights are defined by
the optimal flow. The path system is flign

iD1 ; denote zi D li \ @F. Let

eli D Ei .zi/ D E .Tzi jZ0 D x/

the exit time on the path li of the random walk Zn on li determined by the weights
on li. Denote mi D mli the volume of the path li and Ri D Rli the resistance of it.

Definition 5.1 The local Green function (Green kernel) GF
�
gF .x; y/

�
is defined

by the transition probabilities PF
n .x; y/ of the random walk, killed on exiting the set

F � � is the following:

GF .x; y/ D
1X

nD1
PF

n .x; y/ ;
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gF .x; y/ D GF .x; y/ =� .y/ :

In the following we summarize some known facts about the Green function and
the exit time of random walks (for more details see [11]). It is know that

Ex .F/ D
X
y2F

gF .x; y/ � .y/ :

Furthermore, on the graph and on the cable system for any w 2 F

GF .x;w/ D gF .x;w/ d� .w/ ;

Ex .F/ D
Z

F
gF .x;w/ d� .w/ ; (5.1)

where

gF .x;w/ D R .Hw; @F/ ;

where Hw D ˚
v W gF .x; v/ > gF .x;w/

�
is the super-level set with boundary of

the equipotential surface Bw. (Let us remark here that gF on the cable system is
linear extension of gF on the graph.) On the other hand we know that in the path
decomposition we have for a given li that the Green kernel gzi

i .x;w/ D gzi
li
.x;w/ D

Ri .w; zi/ and similarly to (5) we have that

eli D
Z

li

gzi
i .x;w/ d� .w/ D

Z

li

Ri .w; zi/ d� .w/ ;

R

Ri
D R .x;F/

Ri .x; zi/
D R .Bw; @F/

Ri .w; zi/

consequently for all path li

gF .x;w/ D R .Bw;F/ D R

Ri
ri .w; zi/ D R

Ri
gzi

i .x;w/ : (5.2)

Since the path system splits each edge, we have

d� .w/ D
X

iW w2li

d�i .w/ ; (5.3)

where in general d�i D P .li/ d� and in particular P .li/ D R
Ri

. Here zi’s are not
necessarily different. In the next step we shall join the paths which have common
endpoints, i.e., the boundary crossing edge is shared by them.

Ex .F/ D
Z

F
gF .x; y/ d� .y/ D

X
i

Z

li

gF .x; y/ d�i .y/ (5.4)

D
X

z

X
li3z

Z

li

gF .x; y/ d�i .y/
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As earlier we should handle with care the paths ending at the same vertex (sharing
a boundary crossing edge). The weights split on edges and hence the measure on
vertexes add up as in (5.3)

d�z .y/ D
X

iW z2By\li

d�i .z/ ;

while for z 2 By \ li

gF .x; y/ D gF .y; x/ D R

Ri
gz .y; x/

D R

Ri
gz

i .y; x/ D R

Ri
gz

i .x; y/ :

As a consequence of (5.4), (5.2) and the notation

el D
Z

l
gz

l .x; y/ d�z .y/ ;

we have that

Ex .F/ D
X
z2@F

X
iWz2li

Z

li

gF
li .x; y/ d�i .y/ D

X
l

R

Rl
el:

As a result we have the following observation.

Lemma 5.2 For the set F the exit time Ex .F/ has the form

Ex .F/ D R
X

l

el

Rl
:

We introduce the following notations: C D Cap .x;F/ D 1=R .x;F/

Cl D 1

Rl
; �l D Cl

C
; Qe D

X
l

�lel; 'z D ılel

Qe ;

where ız is such that �lRl D .1C ıl/ el holds.

Theorem 5.3 If F is optimal for Problem 1, then it satisfies for all the B-K path l
and its endpoint z 2 l \ @F that

Rl .x; z/ � .z/

.1C 'l/
1=2

D const:

The proof is deferred to the Appendix.
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As in case of the capacity problem, the obtained solution is not necessarily
optimal or unique, since it is only a necessary and not a sufficient condition for
optimality in general (see Remark 4 2. and 3.).

Appendix

Proof of Proposition 4.2 Let us recall that we assume that D is an optimal set and
slightly change its boundary along the border crossing edges. We consider the
Lagrange function with multiplier � 2 R W

CapP

L

�
D� ;F

�C ��
�
D�

�
:

Denote �l D �l .x; y/ W wl D .�l; x; y/ 2 @D forming the perturbation vector � D Œ�l� :

Let zl D @F \ l be the endpoint of the path l at the boundary of F.

@

@�l

"X
l

CapP

L .wl; zl/C ��
�
D�

�#
:

Setting the derivative zero and using rl D Rl .wl; zl/ we have that

0 D @

@�l

"X
l

CapP

L .wl; zl/C ��
�
D�

�# D

D @

@�l

�
1

rl
C ��l

�

D �Rl .xl; yl/

r2l
C ��l .xl; yl/

for all path l 2 L and

�l .xl; yl/ rl D const

is a necessary condition for the optimality. �

Proof of Theorem 5.3 We consider the variational problem

max
F0W�.F0/�M

Ex
�
F0� :

Assume that F is optimal with a path system L and the probability P on it. As in the
case of the capacity we perturb F in a small neighborhood. The maximal solution
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should satisfy for a suitable � and for all path l that

@

@sl
ŒEx .F/C �� .F/� D 0

@

@sl

"
R
X

p

ep

Rp
C �� .F/

#
D @

@sl

"
R
X

p

�
ep

Rp
C ��p


#
D 0;

where sl is the length of l and we use �l for the volume of the path l. Let E D P el
Rl

,

the density of � is � .zl/ D d�
ds jsl ; where s is the arc length parametrization of

lz W w .sl/ D zl. Furthermore, �l D � .zl/ and the density of resistance is 
 .zl/ D
1=�.zl/, then the derivative is as follows

@

@sl

"
R
X

p

�
ep

Rp
C ��p


#
D
�
@

@sl
R



E C R

@

@sl
E C �� .zl/ :

One can find that
�
@

@sl
R



D @

@sl

1P
p
1

Rp

D R2

 .zl/

R2l

and

@

@sl
el D @

@sl

Z
r .ws; zl/ � .w .s// ds

D @

@sl

Z sl

0

Z sl

s

 .w .t// dt� .w .s// ds

D 
 .zl/ �l;

@

@sl
E D @

@sl

el

Rl
D 
 .zl/

�lRl � el

R2l
:

It is trivial that el � �lRl, so the defined ıl is nonnegative. Furthermore,

@

@sl
E D 
 .zl/

R2l
ılel:

@

@sl
Ex .F/ D R2


 .zl/

R2l
E C R


 .zl/

R2l
ılel C �� .zl/ D 0

R

 .zl/

2

R2l
E C 
 .zl/

2

R2l
ılel D const:

�
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