AutoRef: Towards Real-Robot Soccer
Complete Automated Refereeing

Danny Zhu, Joydeep Biswas®™), and Manuela Veloso

School of Computer Science, Carnegie Mellon University,
Pittsburgh, PA 15213, USA
{dannyz, joydeepb,veloso}@cs.cmu.edu

Abstract. Preparing for robot soccer competitions by empirically evalu-
ating different possible game strategies has been rather limited in leagues
using real robots. Such limitation comes from factors related to the diffi-
culty of extensively experimenting with games with real robots, such as
their inevitable wear and tear and their usual limited number. RoboCup
real robot teams have therefore developed simulation environments to
enable experimentation. However, in order to run complete games in such
simulation environments, an automated referee is needed. In this paper,
we present AutoRef, as a contribution towards a complete automated
referee for the RoboCup Small-Size League (SSL). We have developed
and used AutoRef in an SSL simulation to run full games to evaluate dif-
ferent strategies, as we illustrate and show results. AutoRef is designed
as a finite-state machine that transitions between the states of the game
being either on or required to stop. AutoRef purposefully only uses the
same visual and game information provided in SSL games with physical
robots, which it uses to compute the features needed by the rules and
to make decisions to transition between its states. Due to this real input
to AutoRef, we have partially applied it to games of the physical robots.
As AutoRef does not include all the rules of the real SSL games, we
currently view it as an aid to human referees of SSL games, and discuss
the challenges in automating several specific SSL. game rules. AutoRef
could be extended to other RoboCup real soccer leagues if a combined
view of the game field, ball, and players is available.

1 Introduction

To date, the creation and evaluation of strategies in RoboCup SSL has tended
to be rather ad hoc: teams work on their code throughout the year; when the
tournament comes, they play a few games against other teams, and try to draw
conclusions based on that. An issue with this is that teams are very limited by
the small amount of time during which they can actually see the performance of
their strategies. This is, in large part, due to the need for refereeing when games
are played. A human must be present to set the game state and place the ball
when it leaves the field, or else robots are unable to play games autonomously.

Apart from this need, the difficulty of maintaining a large number of real
robots in the face of the normal wear and tear of the game is another significant

© Springer International Publishing Switzerland 2015
R.A.C. Bianchi et al. (Eds.): RoboCup 2014, LNAI 8992, pp. 419-430, 2015.
DOI: 10.1007/978-3-319-18615-3_34

420 D. Zhu et al.

limiting factor to adequate testing. Many teams have developed simulation envi-
ronments to overcome this limitation, but such environments still require the
full-time attention of a human to be fully useful.

In this paper, we focus on an automated referee, AutoRef, for the SSL. It is
capable of working with either real robots using the standard SSL vision sys-
tem [1], or with simulated robots using our team’s simulation system. Using
AutoRef, we have run many full games in simulation to demonstrate the evalu-
ation of different strategies.

The core of AutoRef is a finite state machine that tracks the state of the game
and determines whether play should be stopped or restarted at each moment.
For the most part, it takes the same input whether it is running with real or
simulated robots (the exception being the height of the ball, which is currently
difficult to reliably obtain outside of simulation). Based on this input, AutoRef
evaluates the rules of the game to determine how to advance at each timestep.
Because of the great similarity between the real and simulated inputs to AutoRef,
we are able to partially apply it to real games.

There are still two core challenges for an automated referee for a real robot
league, preventing a full application. First, the ball needs to be positioned by
the referee at specific positions after each stoppage of the game. Second, all of
the events of the game, particularly those centered on ball motion, need to be
checked for compliance with the rules based on real perception. For now, we
do not address the first challenge, and rely on a human to position the ball on
the field. (However, we do envision eventually having a mobile robot capable
of handling the ball, as any other real robot soccer player, to act as the ball
positioner.) In this work, we address the second challenge, but we do not yet
implement the detection of all the rules of the game, as some are particularly
challenging to identify from a perception point of view.

With either simulated or real robots, automated referees have several advan-
tages over human ones. It can be difficult for a human referee to keep track of
the fast-moving robots and ball, whereas this is not a problem for an automated
referee. Similarly, an automated referee could enforce complicated rules such as
the offside rule, which has not been adopted in the SSL precisely because of the
burden it would place on the human referee.

2 Related Work

Automated online processing of RoboCup games has been addressed in several
contexts. Several teams have discussed automated refereeing for simulations:
Rocco [2], an early simulation commentator, uses a declarative event database
to transform the continuous inputs from the game into the discrete events on
which to comment. Réfer et al. [3] briefly discuss a simulator-based referee for
the Standard Platform League (SPL), which behaves similarly to AutoRef in
simulation, but the rule checking and state detection should be simpler due to
the slower pace of the game.

In terms of observing real games, RFC Stuttgart [4] presented an automated
cameramanthat could take a video of a complete game of the Middle Size League

AutoRef: Towards Real-Robot Soccer Complete Automated Refereeing 421

(MSL). The cameraman uses shared information from a team to keep an onboard
pan-tilt unit pointed toward the ball or other object of interest at all times.
Merely following the ball involves limited interpretation of the game, while com-
mentating involves some understanding of the elements of a game. Commentat-
ing is related to refereeing in terms of the real-time observation and analysis
of games, though the decisions that need to be made based on the observa-
tions are different. Veloso et al. have previously created CMCast [5], a pair of
humanoid robots (SONY QRIOs) that commentated a game of the RoboCup
four-legged league with the SONY AIBO robots. The two CMCast robots are
able to autonomously move along the field, localize themselves, and visually track
objects and detect predefined events, which they then announced with a rich set
of spoken utterancess. Tanaka-Ishii et al. presented Mike, a commentator for the
simulation league [6], which they later joined with the torso of a humanoid robot
to commentate on SSL games [7]. The commentators and referees face similar
event detection challenges, but differ in the referee’s physical embodiment and
the commentator’s desired interaction with spectators.

Two other projects to which this work is particularly comparable are the
open-source ssl-autonomous-refbox!, which provides rule checking based on
perception during an SSL game, and an automated referee presented by Tech
United Eindhoven for the MSL [8]. The work discussed here goes further than
the former by broadcasting appropriate commands to the competing teams in
response to its observations, and further than the latter, by incorporating more
rules and, at least in simulation, being able to run a game from start to finish.

3 SSL: A CMDragons Perspective

The RoboCup SSL promotes research in multi-agent coordination in real-world
adversarial domains. In this league, teams of six robots play soccer with a golf
ball in a field of size 6.05 m x 4.05 m. The robots are constrained to each be con-
tained entirely within a cylinder of diameter 180 mm and height 150 mm. The
robots are controlled via radio commands sent by its team’s offboard computer.
Overhead cameras observe the field, one for each half, and the vision data is
processed on a neutral computer by the SSL Vision System (SSL-Vision) [1]
based on the early successful CMVision [9]. SSL-Vision broadcasts the detected
locations and orientations of all the robots and the ball on the field to the team
computers via a wired Ethernet network. With the global vision and central-
ized planning, the teams focus on the hardware development and coordination
behaviors and high-level teamwork strategy. The SSL games are fast-paced, with
the robots travelling up to 3m/s and kicking the ball at speeds of up to 8m/s
(enforced by the rules). To illustrate the elements of an SSL team, we present
our CMDragouns [10], also built upon research used to create the previous CMU-
nited (1997-1999) and CMDragons teams (2001-2003, 2006-2010, 2013) and
CMRoboDragons joint team (2004-2005).

! https://code.google.com/p/ssl-autonomous-refbox.

https://code.google.com/p/ssl-autonomous-refbox

422 D. Zhu et al.

_____________________ ,
[fower] e

World Model | Playbook |
Y conec] L

1

i

. Strategy
: T Vision

1

Ll

1

1

l
i
Ll
' Tactics L, ;l ____ -
i
1

o A
| Radio }(—L Tracker Navigation | i ' | viewer |:
Server <—:—| E | Logging E

Server Soccer GUI

(b)

Fig. 1. (a) A CMDragons robot shown with and without a protective cover; (b) The
general architecture of the CMDragons offboard control.

Robot Hardware. Our team consists of six homogeneous robots (designed
and built by M. Licitra in 2006, and pursued and maintained by J. Biswas since
2010). Figure 1(a) shows an example robot with its omnidirectional drive with
four custom-built wheels. The main kicker is a solenoid attached directly to a
kicking plate; the chip-kicking device is implemented by a flat solenoid located
under the main kicker, which strikes an angled wedge to kick the ball at an

angle. Ball catching and handling are performed by a motorized rubber-coated
dribbling bar [11].

Robot Behavior Architecture Overview. Figurel(b) shows the behavior
architecture for our offboard control. The major architectural components are a
server system that performs vision and manages communication with the robots,
and two client programs, namely (i) a soccer program, which implements the indi-
vidual and team behavior strategy and robot navigation and control, and
(ii) a graphical interface program for monitoring, replaying, and testing the team.
The server acts as the central translation point between our team clients and the
external systems, namely SSL-Vision and the human-operated referee box.

Simulator. We use a high-fidelity 3D soccer simulator [12] based on the NVIDIA
PhysX engine?. Our simulator incorporates the exact geometric shapes of the
robots for accurate collision modelling. Kicking and dribbling are simulated by
directly imparting impulse linear or angular momentum to the ball. All The
values of the impulse momenta are calibrated to match the speed of the kicked
ball in the real world.

The simulator is a drop-in replacement for the soccer server. It accepts stan-
dard robot control messages from clients and sends vision messages back to them;
however, instead of generating the vision messages based on actual cameras, it
reports the positions of robots in the physical simulation [13], accounting for a
simulated communications delay approximately matching that encountered when

2 https://developer.nvidia.com /physx.

https://developer.nvidia.com/physx

AutoRef: Towards Real-Robot Soccer Complete Automated Refereeing 423

@e-ln SPSESY o gr i mry =z

Game On

o » start
Kickoff Stop
Direct

Indirect Indirect
Penalty Penalty Ready

I” Autoref

Halt

e 1t S|
(m)ode: (f)iltered speed —

Logging Options

Fig. 2. A snapshot of our sophisticated graphical visualization program used for sim-
ulation, monitoring the real robots, and replaying logged game data.

using real robots. The positions of the robots are drawn with the extra predicted
information. The recent speed or acceleration of the ball or any robot, and a text
log from the soccer The viewer displays a very extensive set of information, which
can be easily selected with multiple levels of detail (Fig. 2).

Over the several years that CMDragons has been competing, we have devel-
oped quite a complex set of algorithms for playing soccer and evaluating perfor-
mance, and as a result it is important to be able to reduce the amount of effort
and attention required to run test games with our robots; an automated referee,
as we contributed in this work, provides a valuable step in this direction.

4 AutoRef

We describe the implementation details of AutoRef. This includes the means by
which it communicates with the rest of the CMDragons codebase, the types of
rules present in the game, and the internal details of how it enforces those rules.

4.1 AutoRef Interface with the Game

AutoRef executes as a standalone program; it operates based solely on vision
information received from our main server, and sends commands to the server
in the same format as commands from the normal human-operated referee box.

In particular, the design of our system means that, at least on the protocol
level, AutoRef can be used nearly transparently with either the physical robots
or the simulation, and indeed we have used it in this fashion. Currently, it can
act as a sort of assistant to a human referee: it automatically signals a stoppage
when the ball has gone off the field, indicating which team was the last to touch
the ball. There are practical difficulties with using physical robots; for example,
since SSL-Vision provides only locations of the ball and robots, not raw video
feeds, it is impossible for teams to tell when the human referee has finished
placing the ball and stepped off the field, so AutoRef waits for the human’s

424 D. Zhu et al.

signal to restart play. In simulation, it can simply signal to the simulator that
the ball should be moved to a particular location; the simulator can then drag
the ball smoothly to the desired location.

4.2 Types of Game Rules

The rules of the SSL fall into a few main categories, some of which are easier
than others to handle with AutoRef.

Time-Related Rules. The conceptually simplest rules are those relating to
game time. Each half of the game lasts ten minutes; AutoRef keeps track of
the elapsed time in the game and ends the current half when appropriate. Time
starts counting when the ready command is sent to teams at the beginning of a
half, and each half is ten minutes long. At the end of the second half, AutoRef
can either signal for a new game to begin or simply leave the robots halted.
Timeouts are not currently handled.

Ball-Related Rules. The ball-related rules are primarily those that call for a
game stoppage when the ball goes out of bounds.

— When the ball enters one of the goals, a goal is awarded to the appropriate
team, the ball is placed in the center of the field, and a kickoff is signaled.

— When the ball leaves the field without entering a goal, a free kick is awarded to
the team which touched the ball less recently. If the ball passes over a touch
boundary, a throw-in is awarded. If the ball passes over a goal boundary,
a corner kick is awarded if the defending team touched the ball more recently,
or a goal kick otherwise. In each of these cases, the ball is reset to a particular
position near the boundary of the field: throw-ins are taken from a point
100 mm from the point where the ball exited the field, while corner kicks and
goal kicks are taken 100 mm from the nearest touch boundary and 100 mm or
500 mm, respectively, from the goal boundary that was crossed.

Either in simulation or with physical robots, AutoRef can track the ball position
and signal a stop when the ball leaves the field. In simulation, it can also restart
gameplay at an appropriate time (once all robots have stopped moving, with a
fixed timeout to avoid waiting forever).

Other ball-related rules are that an indirect free kick is awarded to the oppos-
ing team if a robot either kicks the ball faster than 8 m/s or kicks it into the air
and directly into the goal. The former has not currently been implemented in
AutoRef, but it would be easy to do so, given that the server provides filtered
velocity estimates of the ball at each frame. The latter is more problematic,
owing to the difficulty of implementing a robust chip kick detector.

Robot-Related Rules. Each robot must be at least 200 mm away from the
opposing team’s defense area, or an indirect free kick is awarded to the opposing
team. AutoRef handles this rule.

AutoRef: Towards Real-Robot Soccer Complete Automated Refereeing 425

Table 1. The values used as input by AutoRef. The time is given in seconds since
the Unix epoch. All locations are given in millimeters, in a coordinate system with its
origin at the center of the field, positive z-axis pointing toward a goal, and positive
y-axis pointing 90° counterclockwise of the positive z-axis.

Name | Description

t the current time

n the number of robots on the field

0 r{? | 2- and y-coordinates of the i" robot

r
be, by x- and y-coordinates of the ball
c the last team to touch the ball

A robot which touches the ball while partially or totally in its own team’s
defense area triggers a yellow card or penalty kick, respectively; this rule is not
currently implemented but could be easily added.

A team may also be shown yellow or red cards for a variety of other offenses,
such as if it “is guilty of unsporting behaviour,” “is guilty of serious and violent
contact,” “persistently infringes the Laws of the Game,” or several others [14].
These conditions are all somewhat subjective, so they are not handled.

4.3 AutoRef Input and State Machine

Once per camera frame, AutoRef receives as input the values in Table 1.

We devised a finite state machine with transitions governed by the input
values, which allows the AutoRef to keep track of the current state of the game
as described by the game rules. The machine updates once for each vision frame
received from SSL-Vision. The two primary states are as follows.

— RUN: This is the state that occurs while normal gameplay is happening. In this
state, AutoRef observes the state of the game until a condition is met that
means that play should be stopped.

— WAIT_STOP: In this state, AutoRef waits for all robots to stop moving. This
usually occurs after AutoRef has sent a “stop” or similar command to the
server, to allow the robots to reach their final positions before another com-
mand is sent.

The other states, which occur less frequently, are as follows.

— INIT: This state occurs only once, immediately after execution begins. AutoRef
simply saves the current positions of the robots and goes to WAIT_START.

— WAIT_START: This state occurs only near the beginning of execution, when
waiting for clients to connect to the server. While in this state, AutoRef peri-
odically compares the positions of the robots to the saved positions; once all
robots have moved, it signals a kickoff and enters WAIT_STOP.

— DELAY WAIT: This state only occurs for one frame at a time; it occurs when
AutoRef needs to set the game state to a value which is only transmitted

426 D. Zhu et al.

briefly. This includes the command indicating that a goal has been scored, as
well as the command to indicate that a half is starting.

See Fig.3 for a graphical depiction of the state machine. Each transition is
labeled with its preconditions (above the line) and the assignments that occur
when it is taken (below the line). An empty condition indicates that the transi-
tion is always taken one frame after entering the source state. An assignmnent
to refstate indicates the sending of a referee command to the server; next is an
auxiliary variable within AutoRef. Not depicted is the handling of game time,
which operates outside this diagram, since the end of a half can occur at any
point relative to these states.

start —|

refstate := STOP

a robot on each team moves all robots stop moving
next == INDIRECT,READY

next := KICKOFF

refstate := next

all robots stop moving

next —— KICKOFF ball leaves the field

refstate := STOP
next := INDIRECT

refstate := next
next := READY

ball enters a goal
refstate := next

refstate := GOAL
next := KICKOFF

Fig. 3. The finite state machine describing AutoRef.

4.4 Calculations

AutoRef performs several kinds of numerical calculations in order to keep a game
running. Primarily, it estimates when all robots on the field are ready for play
to resume, by noting when they have all come more or less to a stop, and it
computes not only when but where the ball exits the field, so that AutoRef can
properly replace the ball afterward.

AutoRef: Towards Real-Robot Soccer Complete Automated Refereeing 427

Robot Positions. When entering the WAIT_STOP state, AutoRef saves the cur-

1 .1 n)

rent positions of the robots <Tm STy e ,rg(cn),ré > While remaining in that

state, it periodically compares its saved values against the most recently received

values <r1§1)/,rél)/, e ,r@(,n)/, qun)/> to check whether all the robots have nearly

stopped moving; that is, whether, for a small distance € and every 4,

\/(’f’g(ci) - Tg(j)l)z + (réi) — rg(f)/)2 < €.

Currently, € is set to 15 mm, but that choice is somewhat arbitrary. If some 4
violates this condition, then AutoRef judges that the robots have not come to
a stop yet and saves the new positions for later comparison. If all robots have
come to a stop, AutoRef transitions out of WAIT_STOP.

AutoRef behaves similarly in WAIT_START, except that it the condition is
inverted: it leaves the state when at least one robot on each team has moved a
distance greater than e.

Ball Position. When the ball goes outside the field, AutoRef needs to determine
whether it has entered a goal, crossed a goal boundary without entering a goal,
or crossed a touch boundary.

Define the following values:

— F: the shortest distance from the center of the field to the outside edge of a
goal boundary

— Fy: the shortest distance from the center of the field to the outside edge of a
touch boundary

— b,: the radius of the ball

— Gy half of the width of the opening of the goal

— G the height of the opening of the goal

— bl, and by: the previous coordinates of the ball

In order to distinguish the two boundaries when the ball is near a corner, it is
necessary to compare the current and last positions of the ball to determine where
it first was located entirely outside the field. This is the geometrical problem of
finding the intersection between one line which is parallel to an axis and another
line determined by two points. The intersection of the line between the points
(b, by) and (b, b)) with the line defined by x = [, is given by (I, ¢y), where

x) Yy
byl = ba) + by (8, — L)
W, — by ’

Cy

and a similar equation applies to a line which is defined by a constant y value.
(This expression can be derived by finding the equation of the line defined by
the two points and substituting z = [,.)

AutoRef judges that the ball is out of the field if b, > b, + F, or b, > b, + F,,.
In fact, this definition ignores a small region at each corner, but the difference
is very small.

428 D. Zhu et al.

(ba; by)

(Casly)

(07, b))

Fig. 4. Tllustrations of the computation performed by AutoRef when the ball’s tra-
jectory intersects the field boundary. The thick lines depict the boundary of the field,
expanded by a distance equal to the radius of the ball, and the arrow depicts the tra-
jectory of the ball between two frames. In (a), since |cz| < |lz], the intersection is on a
touch boundary. In (b), that condition does not hold, so the intersection is on a goal
boundary; the point (¢, l,) is farther to the right.

When the ball leaves the field, in order to determine how to respond, AutoRef
computes the intersection points of the ball trajectory with the field boundaries
as follows. Set I, = (Fy + b,) - sgn(b,) and I, = (Fy + b,) - sgn(b,); these repre-
sent the coordinates of the goal and touch boundaries closest to the ball, with
the addition of b, in order to capture the fact that the ball’s coordinates describe
the center of the ball, while the entirety of the ball must be past the lines to be
counted as off the field.

Let ¢, be the x-coordinate of the intersection of the trajectory with the line
y = ly, and let ¢, be the y-coordinate of the intersection of the trajectory with
the line x = [,,. I |¢;| < |lz|, then the ball must have crossed a touch boundary,
so a throw-in is awarded. See Fig. 4 for a graphical depiction of the process.

AutoRef judges that the ball is in a goal if the following conditions hold:

|bs| > Fy + by,
lby| < Gy, and
b, < Gy

These conditions simply specify that the ball is contained entirely inside the
volume defined by the walls of the goal.

5 Demonstrations

To demonstrate the collection of statistics, we played repeated games between
two instances of our own team code where one instance was handicapped in some
way, either by having the acceleration and top speed of its robots reduced by
some factor, or by having fewer robots on the field (Fig. 5). This resulted in a gap
in scores that increased with the magnitude of the handicap. These results are
unsurprising, but the collection of data across hundreds of realistically simulated
full games is novel, as far as the authors are aware.

AutoRef: Towards Real-Robot Soccer Complete Automated Refereeing 429

T T T T
I—I Normal team ||
T Handicapped team

T Normal team

T Handicapped team

T
T Y 9 o ©
T

Goals per game
O = N W e Ot o O
T
.
Goals per game

T
!
(=R CRNICIINS
T
!

S . S r
04 05 06 07 08 09 1.0 2 3 4 5
Slowdown factor Number of robots

Fig. 5. The mean and standard deviation of the scores of games in which one team had
its acceleration and top speed (left; 20 games per value) or number of robots (right; 60
games per value) reduced.

We also tested a limited version of AutoRef with the real robots. With a
human referee present to position the ball and restart play after a stoppage,
AutoRef observed the game and emitted referee commands as normal. It was
able to immediately stop play when the ball left the field, as well as run a kickoff,
which involves two transitions in the game state.

There are rules in SSL, which are important but not yet handled by AutoRef,
including the conditions for fouls, as well as restrictions on goals scored by chip
kicks. Some rules are difficult to implement due to an element of subjectivity by
the referee, such as the condition of “deliberately” entering the referee walking
area; some because positions alone may not give enough information to determine
whether they have ben triggered, such as the rule against “serious and violent
conduct”; and some because we lack a reliable chip kick detector. We aim at
including all the rules in AutoRef and run it on real games, but until then we
envision AutoRef acting in support of human referees, and including a dedicated
ball-positioning robot referee.

6 Conclusion

We presented an autonomous referee system for reasoning about rule-related
events in SSL games. It is capable of operating with the CMDragons soccer
simulator, in which case it can run whole games automatically, and with real
robots and vision, in which case it can support a human referee. This work
may eventually be extended to a complete referee for real games; for now,
we have created a framework for observing reasoning about high-level game
state that may be used to fill either role. We also categorized the main rules of
the game according to their impact on an automated referee, and demonstrated
preliminary results from recording scores in automatically run games. We believe
AutoRef can be extended to other RoboCup real soccer leagues if a combined
view of the game field, ball, and players is available.

430

D. Zhu et al.

References

10.

11.

12.

13.

14.

. Zickler, S., Laue, T., Birbach, O., Wongphati, M., Veloso, M.: SSL-Vision: The

shared vision system for the RoboCup small size league. In: Baltes, J., Lagoudakis,
M.G., Naruse, T., Ghidary, S.S. (eds.) RoboCup 2009. LNCS, vol. 5949, pp. 425—
436. Springer, Heidelberg (2010)

Voelz, D., André, E., Herzog, G., Rist, T.: Rocco: A robocup soccer commentator
system. In: Asada, M., Kitano, H. (eds.) RoboCup 1998. LNCS (LNAI), vol. 1604,
pp. 50-60. Springer, Heidelberg (1999)

Rofer, T., Laue, T., Miiller, J., Graf, C., Bockmann, A., Miinder, T.: B-human
team description for RoboCup 2012. In: RoboCup 2012: Robot Soccer World Cup
XVI Preproceedings, Mexico City, Mexico, RoboCup Federation (2012)
Képpeler, U., Zweigle, O., Rajaie, H., Haussermann, K., Tamke, A., Koch, A.,
Eckstein, B., Aichele, F., DiMarco, D., Berthelot, A., et al.: 1. rfc stuttgart team
description 2010. RoboCup Team Description Papers (2010)

Veloso, M., Armstrong-Crews, N., Chernova, S., Crawford, E., McMillen, C., Roth,
M., Vail, D., Zickler, S.: A team of humanoid game commenters. Int. J. Hum.
Robot. 5, 457-480 (2008)

Tanaka, K., Nakashima, H., Noda, 1., Hasida, K., Frank, 1., Matsubara, H.: Mike:
An automatic commentary system for soccer. In: Proceedings of the International
Conference on Multi Agent Systems 1998, 285-292. IEEE (1998)

Frank, I., Tanaka-Ishii, K., Okuno, H.G., Akita, J., Nakagawa, Y., Maeda, K.,
Nakadai, K., Kitano, H.: And the fans are going wild! sig plus mike. In: Stone, P.,
Balch, T., Kraetzschmar, G.K. (eds.) RoboCup 2000. LNCS (LNATI), vol. 2019, pp.
139-148. Springer, Heidelberg (2001)

Schoenmakers, F., Koudijs, G., Martinez, C.L., Briegel, M., van Wesel, H.,
Groenen, J., Hendriks, O., Klooster, O., Soetens, R., van de Molengraft, M.: Tech
united eindhoven team description 2013. In: Proceedings of the 17th RoboCup
International Symposium, May 2013

Bruce, J., Balch, T., Veloso, M.: Fast and inexpensive color image segmentation
for interactive robots. In: Proceedings of IROS-2000, Japan, October 2000
Biswas, J., Mendoza, J.P., Zhu, D., Etling, P.A., Klee, S., Choi, B., Licitra,
M., Veloso, M.: CMDragons 2013 team description. In: Proceedings of the 17th
RoboCup International Symposium, May 2013

Bruce, J., Zickler, S., Licitra, M., Veloso, M.: CMDragons 2007 Team Description.
Technical report, Technical report CMU-CS-07-173, Carnegie Mellon University,
School of Computer Science (2007)

Zickler, S.: Physics-based robot motion planning in dynamic multi-body environ-
ments. Ph.D. thesis, Carnegie Mellon University, Thesis Number: CMU-CS-10-115,
May 2010

Zickler, S.; Vail, D., Levi, G., Wasserman, P., Bruce, J., Licitra, M., Veloso, M.:
CMDragons 2008 team description. In: Proceedings of RoboCup (2008)

Small Size League Technical Committee: Laws of the RoboCup Small Size League
2013 (2013)

	AutoRef: Towards Real-Robot Soccer Complete Automated Refereeing
	1 Introduction
	2 Related Work
	3 SSL: A CMDragons Perspective
	4 AutoRef
	4.1 AutoRef Interface with the Game
	4.2 Types of Game Rules
	4.3 AutoRef Input and State Machine
	4.4 Calculations

	5 Demonstrations
	6 Conclusion
	References

