
Transitioning Towards Continuous Delivery
in the B2B Domain: A Case Study

Olli Rissanen1,2(B) and Jürgen Münch1

1 Department of Computer Science, University of Helsinki, P.O. Box 68,
FI-00014 Helsinki, Finland

{olli.rissanen,juergen.muench}@cs.helsinki.fi
2 Steeri Oy, Tammasaarenkatu 5, 00180 Helsinki, Finland

Abstract. Delivering value to customers in real-time requires compa-
nies to utilize real-time deployment of software to expose features to users
faster, and to shorten the feedback loop. This allows for faster reaction
and helps to ensure that the development is focused on features pro-
viding real value. Continuous delivery is a development practice where
the software functionality is deployed continuously to customer environ-
ment. Although this practice has been established in some domains such
as B2C mobile software, the B2B domain imposes specific challenges.
This article presents a case study that is conducted in a medium-sized
software company operating in the B2B domain. The objective of this
study is to analyze the challenges and benefits of continuous delivery
in this domain. The results suggest that technical challenges are only
one part of the challenges a company encounters in this transition. The
company must also address challenges related to the customer and proce-
dures. The core challenges are caused by having multiple customers with
diverse environments and unique properties, whose business depends on
the software product. Some customers require to perform manual accep-
tance testing, while some are reluctant towards new versions. By utilizing
continuous delivery, it is possible for the case company to shorten the
feedback cycles, increase the reliability of new versions, and reduce the
amount of resources required for deploying and testing new releases.

Keywords: Continuous delivery · Continuous deployment · Develop-
ment process · B2B · Case study

1 Introduction

To deliver value fast and to cope with the increasingly active business envi-
ronment, companies have to find solutions that improve efficiency and speed.
Agile practices [10] have increased the ability of software companies to cope
with changing customer requirements and changing market needs [9]. To even
further increase the efficiency, shortening the feedback cycle enables faster cus-
tomer feedback. Continuous delivery is a design practice that aims to shorten
the delivery cycles by developing software in a way that it is always ready for
releasing.
c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 154–165, 2015.
DOI: 10.1007/978-3-319-18612-2 13



Transitioning Towards Continuous Delivery in the B2B Domain 155

This study is an exploratory case study, which explores how continuous deliv-
ery can be applied in the case company that operates in the B2B domain. While
existing studies of applying the practice exist [1,2], none of the studies focuses
specifically in the B2B domain. This study specifically aims to identify the main
requirements, problems and key success factors with regards to continuous deliv-
ery in this domain. Extending the development process towards continuous deliv-
ery requires a deep analysis of the current development and deployment process,
seeking the current problems and strengths. Adopting continuous delivery also
requires understanding the requirements of continuous delivery, and restrictions
caused by the developed software products.

This study is organized as follows. The second chapter summarizes the rel-
evant literature and theories to position the research and to educate the reader
on the body of knowledge and where the contributions are intended. The third
chapter presents the research design. The findings are then presented in the
fourth chapter, organized according to the research questions. The fifth chapter
interprets the main results, and discusses the limitations of the study. Finally,
the sixth chapter summarizes the results of study and answers to the research
question, discusses the limitations of the study and introduces further research
avenues.

2 Background and Related Work

In the agile process software release is done in periodic intervals [10]. Compared
to waterfall model it introduces multiple releases throughout the development.
Continuous delivery, on the other hand, attempts to keep the software ready for
release at all times during development process [4]. Continuous delivery is an
extension to continuous integration, where the software functionality is kept in
a state where it can be deployed to production immediately. Production deploy-
ments are manually triggered, but the entire deployment process is otherwise
automated. While continuous integration defines a process where the work is
automatically built, tested and frequently integrated to mainline [12], often mul-
tiple times a day, continuous delivery adds automated acceptance testing and
deployment to a staging environment. The purpose of continuous delivery is that
as the deployment process is automated, it reduces human error and documents
required for the build, and increases confidence that the build works [4]. It there-
fore aims to solve the problem of how to deliver an idea to users as quickly as
possible.

Continuous delivery differs from continuous deployment. Continuous deploy-
ment means that every change goes through the pipeline and automatically gets
put into production, resulting in many production deployments every day. Con-
tinuous delivery just means that you are able to do frequent deployments but may
choose not to do it, usually due to businesses preferring a slower rate of deploy-
ment [6]. An essential part of continuous delivery is the deployment pipeline,
which is an automated implementation of an applications build, deploy, test and
release process [5]. A deployment pipeline can be loosely defined as a consecu-
tively executed set of validations that a software has to pass before it can be



156 O. Rissanen and J. Münch

released. Common components of the deployment pipeline are a version control
system and an automated test suite.

Challenges in adopting continuous delivery have been researched in multiple
studies. Olsson et al. investigate the organization evolution path and the tran-
sition phase from continuous integration to continuous delivery [1]. The authors
define continuous delivery as one of the final steps in the organization evolution
path. The authors identify barriers that companies need to overcome to achieve
the transition. One such barrier is the custom configuration at customer sites.
Maintaining customized solutions and local configurations alongside the stan-
dard configurations creates issues. The second barrier is the internal verification
loop, that has to be shortened not only to develop features faster but also to
deploy fast. Finally, the lack of transparency and getting an overview of the
status of development projects is seen as a barrier.

One of the largest technical challenges is the test automation required for
rapid deployment [4,5]. Neely and Stolt found out that with a continuous flow,
Sales and Marketing departments lost the track of when features are released [2].
Implementing the deployment infrastructure also requires knowledge from the
development and operations team [5]. Another challenge is to sell the vision and
reasoning behind continuous delivery to the executive and management level [2].

3 Case Study

To provide insight into extending the development process towards continuous
delivery, the following research questions have been chosen:

RQ1: What are the B2B specific challenges of continuous delivery?

Software development practices and product characteristics vary based on the
domain and delivery model. Typical B2C applications are hosted as Software
as a Service (SaaS) applications, and accessed by users via a web browser. In
the B2B domain, applications installed to customer environments are very com-
mon. The purpose of this research question is to identify the challenges faced
in applying continuous delivery in the B2B environment. The research question
is answered by conducting interviews to discover the current development pro-
cess and its challenges in the case company, and using these findings and the
available literature on continuous delivery to map the initial set of challenges
these approaches will encounter in the case company. The available literature is
used to provide a thorough understanding of continuous delivery as a whole, so
that challenges can be identified in all aspects of the practice.

RQ2: How does continuous delivery benefit the case company?

To rationalize the decision to adopt continuous delivery in a company, the actual
benefits to the business have to be identified. This research question aims to
identify clear objectives for what is achieved by adopting continuous delivery.



Transitioning Towards Continuous Delivery in the B2B Domain 157

Sections of the interview aim to identify the current perceived problems of the
case company related to deployment, product development, collecting feedback
and guiding the development process. These problems are then compared to the
benefits of the approach found from the literature.

Research Design. In this research, the units under the study are two teams
within the case company, and the two software products developed by these
teams. By focusing on two different products, a broader view on the application
and consequences of the development approach can be gained. The first prod-
uct, a marketing automation called Dialog, is used through an extensive user
interface. The second product under inspection is a Master Data Management
[11] solution running as an integrated background application.

The primary source of information in this research are semi-structured inter-
views [8], performed within the two teams under study. The interview consists
of pre-defined themes focusing on current development process, current deploy-
ment process, current interaction with customers, the software products and
future ways with continuous delivery. Data is also collected through the prod-
uct description documents and development process documents to verifying and
supplementing the interview data.

The interview is a semi-structured interview with a standardized set of
open-ended questions, which allows deep exploration of studied objects [8]. The
interviews are performed once with every interviewee. There are a total of 12
interviewees: 6 in each team. The interviewees in the first team consist of 5
software designers and one team leader. In the second team, the interviewees
consist of 3 software designers, a quality assurance engineer, a manager for com-
mercialization and a team leader. Leading questions are avoided on purpose, and
different probing techniques such as “What?”-questions are used. The interviews
are performed in the native language of the interviewee if possible, otherwise in
English, and are recorded in audio format. The audio files are then transcribed
into text.

The data analysis is based on template analysis, which is a way of themat-
ically analysing qualitative data [7]. The initial template was first formed by
exploring the qualitative data for two themes: development process and deploy-
ment of software. Through multiple iterations of the data, multiple subthemes
were then added to the two existing themes by further coding the data. Attention
was paid to different roles of the interviewees.

4 Results

This section is structured according to the research questions. The challenges
regarding continuous delivery are analyzed in three areas: technical, procedural
and customer. Technical aspect includes the environmental challenges, configural
challenges and other challenges related to the software product and its usage.
Procedural aspect includes the challenges regarding the software development
process. Customer aspect consists of the customer interaction process and cus-
tomer commitment.



158 O. Rissanen and J. Münch

4.1 Technical Challenges

The technical challenges for continuous delivery are derived from the interviews.
A part of the interview focuses on the current deployment process and cus-
tomer interaction of the case company. The current deployment process, cus-
tomer interaction and challenges related to them are then used as a basis for
analysing challenges that influence continuous delivery.

Table 1. Technical challenges in continuous delivery

Specific problem

Downtime is critical for certain customers

Automated testing has to be built on top of a matured software product

Software is often integrated to multiple third party applications

Software is often accompanied by multiple external components

There exists multiple different configurations due to having multiple customers with
different specifications

Transferring the software product to diverse customer-owned environments requires
different deployment configurations

Downtime of the case company’s products can be fatal. According to the
Dialog product owner, downtime causes end-users being unable to perform their
job. Downtime can also interrupt ongoing customer tasks, possibly losing critical
data in the progress. Currently the deployment time for both projects is negoti-
ated with the customer to prevent these cases, and the version deployments are
done when the system can be closed for a short period of time.

The developers perceive automated testing and test environments to be the
largest technical task. The developers state that building a sufficient test automa-
tion is a very laborious process especially due to the maturity of the software,
and are concerned with the maintainability of the test suite. The management
is not sure what to test with automatic acceptance testing to validate a version.

Both of the case company’s software products are integrated to various third
party applications and APIs. Changes to the interfaces communicating with
these applications must be planned and discussed in advance. Based on the
interview results, automatically updating the integrations requires an unduly
amount of work considering the results.

It is also common for B2B applications to have external components that
have to be configured when the software is installed or the APIs to these com-
ponents changed. The configurations for these external components either have
to be manually updated, or automated as well. One of the main differences
between B2B and B2C domains is the production environment. Both of the
case company’s products are used in multiple different customer environments.
This introduces a problem of managing different configurations per customer
environment and software instance.



Transitioning Towards Continuous Delivery in the B2B Domain 159

4.2 Procedural Challenges

The procedural challenges are analyzed based on the development process doc-
umentations of the company and the interviews. In the interviews, a section is
dedicated to the current development process of the case company. The develop-
ment process and its challenges are then used to analyse and identify challenges
that influence continuous delivery.

Table 2. Procedural challenges in continuous delivery

Specific problem

User acceptance testing environment is a requisite for production release

The development process drifts towards small feature branches from long-lived feature
branches

Triggering the compilation and deployment of a modular project to maintain integrity
is hard

The software has to be deployed to multiple customers

Versioning is affected by having different customer profiles of the product

Responsibility of deploying moves towards developers

Management and sales loses track of versions

The basic deployment pipeline in the case company first includes a deploy
to a user acceptance testing server, which is then tested manually by either the
team or the customer. Only after the version has been acceptance tested and
validated to work properly, can the production version be released. Continuous
deployment to production is seen very risky due to the applications playing a
major role in running the customers business.

Both of the case company’s products are developed with a branching model,
where feature branches are first thoroughly developed and then integrated to the
master branch. With continuous delivery the long-lived feature branches should
be changed to short-lived and relatively small feature branches to allow exposing
new functionality faster to the customers, and receive feedback faster. While the
small feature branches might be common for companies with a relatively new
software products, companies that have been developing products for a long time
might be more devoted to the practice of long-lived feature branches.

The software applications in B2B often are large and modular applications,
as is the case in the case company. The point when a deployment is triggered has
to be designed to maintain the integrity of the application. As the deployment
process is currently manually triggered by first releasing a version, a suitable
time can be chosen each time. When a production deployment is triggered in
continuous delivery, each module has to be in the correct state in order to produce
a coherent version.

Both of the case company’s products are used by multiple customers, each
having their own environments. As the deployments are currently done manually,
the customers receiving each deployment can be manually chosen.However, with



160 O. Rissanen and J. Münch

a continuous delivery process whenever a feature or a new release is ready to be
delivered, it can either be deployed to a single customer or to every customer.

Multiple customer environments affects versioning of the software product.
In the case company, each customer has a unique configuration of the product,
with possibly different versions of certain components. According to Jan Bosch,
in an Innovation Experiment System environment only a single version exists:
the currently deployed one. Other versions are retired and play no role [3]. How-
ever, with multiple environments, multiple different versions of the software are
necessary at least in the early phase.

Continuous delivery also drifts response towards the developer, and the devel-
opers decide what is ready to be released. Currently in the case company the
product owners and team leaders are responsible for negotiating the deployment
date with the customer, and they also inform the developers that a new version is
required. If the developer can single-handedly deploy a feature, the management
can quickly lose track on the features available to customers. This also requires
the developers to deeply understand the details of the version control system
and automated testing.

Due to increased developer responsibility and varying interval of version
updates continuous delivery causes, a team leader expresses concern that the
delivery process complicates tracking when deployments are performed, and
when features are finished. This also concerns other parties working in the cus-
tomer interface, such as sales.

4.3 Customer Challenges

The customer challenges are analyzed based on two sections of the interview:
customer interaction and the deployment process.

Table 3. Customer challenges in continuous delivery

Specific problem

Some customers are reluctant towards new versions

Customers are trained to use a certain version, and modifications confuse the users

Changelogs are especially important, since as versions are released faster the cus-
tomers become less aware on what has changed

Pilot customer is required for developing the continuous delivery process

Acceptance testing is performed by both the company and the customers, and requires
a lot of resources from the customers

Production deployment schedule has to be negotiated with the customer

Ongoing critical tasks by users cannot be interrupted by downtime

Some customers of the case company are reluctant towards new releases. One
of the reasons for this reluctancy is that new releases occasionally contain new
bugs. In the case company, customers have been trained to perform certain tasks
with a certain user interface. The customer might perform these tasks daily, once



Transitioning Towards Continuous Delivery in the B2B Domain 161

every two weeks or even less frequently. If the UI changes often, the customers feel
lost and initially take more time to perform the tasks. This causes frustration in
the users, and visible changes generally increases the reluctancy customers have
towards new versions, unless the changes are significantly improving the user
experience.

“The user interface should be easy to use. Now it’s relatively hard to
learn. If customers have just learned to perform a task, and we change
the UI, the feedback is terrible.”

Product owner

Listing the changed features in changelog entries is especially important when
releases are made more often. While the changes become smaller the faster ver-
sions are released, customers become less aware of when the version will be
updated and when features have changed. Currently the version deployments
are negotiated with the customers, and when the deployments are made more
often, discussions regarding version releases may be reduced or even ceased.

A way to identify the best practices in continuous delivery is to develop the
continuous delivery process with a pilot customer. Pilot customer is a company
willing to help the company to quickly learn what works and what needs to be
improved. The interviewees expressed a desire to first test the continuous delivery
process with a single customer that is willing to receive updates in a continuous
manner, since the engagement model inevitably differs from the current model.

The acceptance testing is performed in varying ways. Some customers require
to perform manual acceptance testing before the product can be deployed into
production. Other customers trust the developers to perform the acceptance
testing. The technical implementation therefore should make it possible to con-
tinuously deploy versions to the user acceptance testing environment, and by the
push of a button to the production environment. However, if the versions are
deployed to user acceptance testing environment very often, customers might
feel encumbered by the amount of required testing. The customers also have to
be informed whenever a new version is available to the user acceptance test-
ing environment. Customers might be using the software when a new version is
deployed, and the deployment process shouldn’t interfere with ongoing usage.

4.4 Benefits of Continuous Delivery

A major problem found in the interviews is that currently the reliability towards
new versions is low. The low reliability both increases customers reluctancy
towards version updates, and increases the amount of user acceptance test-
ing that is performed after version release. Versions are occasionally forgotten
from the UAT phase due to the lack of comprehensive automated testing and the
broad scale of features in both software products. These features can then remain
broken or contain bugs when the users start using the new version. This is fun-
damentally caused by the lack of quality assurance before the release. Adopting
a test automation solves this issue, as long as tests are written for every feature.



162 O. Rissanen and J. Münch

The case company has had problems with the human error factors in manual
build processes. Essentially, every each deployment is a new error-prone exper-
iment. This increases the duration required for deploying, and lessens both the
reliability and confidence in builds. The human error factor is increased by lack-
ing documentation and parts of the deployment being memorized by developers.
With continuous delivery, only a handful of developers might have knowledge
of the entire build deployment configuration, but everyone is able to trigger the
deployment process.

The management considers improving the deployment process to be one of
the most important improvements. According to the findings, continuous delivery
mainly increases the speed, quality, and capacity of the development. Speed and
capacity are ensured by automated deployment, while quality is increased by the
automated testing and faster feedback. Smaller problems can be quickly fixed
without spending unnecessary time on manually deploying a new version to the
customer, and bigger changes only take as long as the implementation requires.
After the initial investment, the practice will eventually allow the company to
spend less money on management and operations, because unnecessary repetitive
work and bugs caused by manual building can be eliminated.

5 Discussion

The results suggest that the challenges faced in continuous delivery in the B2B
context are multidimensional, and related to the technical, procedural and cus-
tomer aspects. The major difference a company operating in the B2B domain
faces in the transition as compared to the B2C domain is that there are plenty
of customers with unique properties, whose business relies on the software. The
primary issues causing these challenges are the diverse customer owned environ-
ments and the importance of the software product for the customer.

Figure 1 visualizes the challenges the case company faces in transition towards
continuous delivery. Multiple challenges are related to two or more aspects, and
the problems affecting all aspects can be seen as the core challenges. Acceptance
testing is related to all aspects, since customers want to perform acceptance test-
ing with new versions, automated acceptance testing has to be implemented and
the user acceptance testing is required before a production release can be made.
Another challenge related to all aspects is the diversity of customer environments.
It affects the technical implementation, as software has to be transferred to diverse
environments. The procedural challenge is that the software has to be deployed
to multiple customers, and it has to be decided whether each version is always
released to every customer.

The issues into which the benefits are mapped were found by researching the
current deployment process and challenges faced in the development process. An
unexpectedly large part of the major issues stated by the interviewees are related
to deploying the software, and it was identified as one of the major challenges in
the current product development. The benefits found from continuous delivery,
which were sought from existing literature [2,4,5], matched the challenges very
well.



Transitioning Towards Continuous Delivery in the B2B Domain 163

Fig. 1. Case company’s challenges in continuous delivery

The study also suggests that continuous delivery corresponds to many of the
case company’s primary needs. The issues related to the deployment process
are considered very important by both of the teams. The issues include low
reliability of new versions, human error factors when performing version releases
and deployments, and long feedback cycles. Additionally, a very large part of the
case company’s resources are spent on both deploying and testing new versions.
One of the main benefits of continuous delivery is that the software is kept in a
state where it is always ready for deployment [4], and that no manual work from
the company is required to produce a new version.

The findings are in align with and could be considered as extending some
of the theoretical contributions by Olsson et al. [1], who researched the transition
towards continuous delivery. Identifying that transitioning towards continuous



164 O. Rissanen and J. Münch

delivery requires a company to address issues in multiple aspects of the company
also benefits companies in practice.

5.1 Limitations

Since case studies only allow analytic generalisations instead of statistical gen-
eralisations, the findings cannot be directly generalised to other cases. However,
the phenomena was deeply understood through gathering a large amount of qual-
itative data and systematically analysing it. Therefore the core findings should
be applicable to similar research problems outside of the empirical context of this
study. This means that the B2B challenges and benefits of continuous delivery
can be considered as a starting point for further studies in other contexts where
this development model takes place.

Two types of triangulation were used: data triangulation by including per-
sons with different roles into the interviews, and methodological triangulation
by collecting documentary data and observations by the author. However, the
reliability of the results could have been increased by employing observer trian-
gulation and theory triangulation.

6 Summary

This study was motivated due to lack of studies in continuous delivery focusing
on companies operating in the B2B environment. Understanding the central
aspects of continuous delivery will be a must for software companies willing
to stay ahead of its competitors in the current rapidly moving industry. The
findings provide insights into the challenges a company faces in the transition in
this domain, and the benefits a company can gain from adopting this practice.

This study has identified the main requirements a company operating in the
B2B domain has to address when applying continuous delivery. The challenges
can be divided into technical challenges, procedural challenges and challenges
related to the customer. These challenges are mostly caused by having multi-
ple customers with diverse environments and unique properties, whose business
depends on the software product. While continuously deploying versions to a
user acceptance testing environment requires a company to address multiple
challenges, continuously deploying to production is even more difficult, since
some customers want to perform manual acceptance testing before production
releases can be made.

The benefits of continuous delivery matched to many business problems found
in the case company, and a company operating in similar domain with similar
products can use them as a basis when considering applying this practice. By
utilizing continuous delivery, the case company can solve problems such as long
feedback cycles, low reliability in new versions, human error factors and high
amount of resources required for deploying and testing new releases.

Acknowledgments. We wish to thank the participants of the study for their time
and contributions and the reviewers for their valuable comments. We also thank the



Transitioning Towards Continuous Delivery in the B2B Domain 165

Finnish technology agency, Tekes, for funding the Cloud Software Factory project, and
the Need for Speed program, under which the proposed study was undertaken. This
paper is based on thesis work [13] completed at the University of Helsinki.

References

1. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven”-a
multiple-case study exploring barriers in the transition from agile development
towards continuous deployment of software. In: 2012 38th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications (SEAA), pp. 392–399.
IEEE, September 2012

2. Neely, S., Stolt, S.: Continuous delivery? easy! just change everything (well, maybe
it is not that easy). In: Agile Conference (AGILE), pp. 121–128. IEEE, August 2013

3. Bosch, J.: Building products as innovation experiment systems. In: Cusumano,
M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39.
Springer, Heidelberg (2012)

4. Humble, J., Farley, D.: Continuous delivery: reliable software releases through
build, test, and deployment automation. Pearson Education (2010)

5. Humble, J., Read, C., North, D.: The deployment production line. In: Agile Con-
ference, p. 6. IEEE, July 2006

6. Fowler, M.: ContinuousDelivery (January 2015). http://martinfowler.com/bliki/
ContinuousDelivery.html

7. King, N.: Template analysis. In: Qualitative Methods and Analysis in Organiza-
tional Research: A Practical Guide, pp. 118–134. Sage Publications Ltd (1998)

8. Runeson, P., Hst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical software engineering 14(2), 131–164 (2009)

9. Dzamashvili Fogelstrm, N., Gorschek, T., Svahnberg, M., Olsson, P.: The impact of
agile principles on marketdriven software product development. Journal of Software
Maintenance and Evolution: Research and Practice 22(1), 53–80 (2010)

10. Cockburn, A.: Agile software development. Cockburn* Highsmith Series Editor
(2000)

11. Loshin, D.: Master data management. Morgan Kaufmann (2010)
12. Duvall, P. M., Matyas, S., Glover, A.: Continuous integration: improving software

quality and reducing risk. Pearson Education (2007)
13. Rissanen, O., Münch, J., Männistö, T.: Extending the Development Process

Towards Continuous Delivery and Continuous Experimentation in the B2B
Domain: A Case Study. Master’s Thesis. University of Helsinki (2015)

http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/ContinuousDelivery.html

	Transitioning Towards Continuous Delivery in the B2B Domain: A Case Study
	1 Introduction
	2 Background and Related Work
	3 Case Study
	4 Results
	4.1 Technical Challenges
	4.2 Procedural Challenges
	4.3 Customer Challenges
	4.4 Benefits of Continuous Delivery

	5 Discussion
	5.1 Limitations

	6 Summary
	References


