
 123

LN
BI

P
21

2

16th International Conference, XP 2015
Helsinki, Finland, May 25–29, 2015
Proceedings

Agile Processes
in Software Engineering
and Extreme Programming

Casper Lassenius
Torgeir Dingsøyr
Maria Paasivaara (Eds.)

Lecture Notes
in Business Information Processing 212

Series Editors

Wil van der Aalst
Eindhoven Technical University, Eindhoven, The Netherlands

John Mylopoulos
University of Trento, Povo, Italy

Michael Rosemann
Queensland University of Technology, Brisbane, QLD, Australia

Michael J. Shaw
University of Illinois, Urbana-Champaign, IL, USA

Clemens Szyperski
Microsoft Research, Redmond, WA, USA

More information about this series at http://www.springer.com/series/7911

http://www.springer.com/series/7911

Casper Lassenius · Torgeir Dingsøyr
Maria Paasivaara (Eds.)

Agile Processes
in Software Engineering
and Extreme Programming
16th International Conference, XP 2015
Helsinki, Finland, May 25–29, 2015
Proceedings

ABC

Editors
Casper Lassenius
Aalto University
Espoo
Finland

Torgeir Dingsøyr
SINTEF
Trondheim
Norway

Maria Paasivaara
Aalto University
Espoo
Finland

ISSN 1865-1348 ISSN 1865-1356 (electronic)
Lecture Notes in Business Information Processing
ISBN 978-3-319-18611-5 ISBN 978-3-319-18612-2 (eBook)
DOI 10.1007/978-3-319-18612-2

Library of Congress Control Number: 2015938434

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information stor-
age and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

This volume contains the papers presented at XP 2015: the 16th International Con-
ference on Agile Software Development held during May 25–29, 2015 in Helsinki,
Finland.

While agile development already has become mainstream in industry, it is a field
that is constantly evolving and that continues to spur an enormous interest both in in-
dustry and academia. The XP conference series has, and continues to play, an important
role in bridging the academic and practitioner communities, providing a forum for both
formal and informal sharing and development of ideas, experiences, and opinions.

The theme of XP 2015 — Delivering value: Moving from Cyclic to Continuous
Value Delivery reflects the modern trend toward organizations that are simultaneously
very efficient and flexible in software development and delivery.

The XP 2015 program includes research papers, experience reports, industry and
practice sessions, scientific workshops, panels, lightning talks, technical demos, posters,
and a doctoral symposium. In total over all submission types, we received almost 300
proposals, showing that the XP community indeed is vibrant and active.

This proceedings volume contains the full research papers, short research papers,
and experience reports. In addition, we included the abstracts of select posters, extended
abstracts of the PhD symposium presentations, as well as the position statements of the
panel participants.

All of the submitted research papers went through a rigorous peer-review process.
Each paper was reviewed by three members of the Program Committee. We received
44 research papers, out of which 15 (34%) were accepted as full papers and 7 as short
papers.

We received 45 experience report proposals, out of which 11 (24%) were accepted
following the review process. Each accepted experience report proposal received the
guidance of an experienced shepherd in writing the final paper.

We would like to extend our thank you to all the people who have contributed to
XP 2015 and helped make it a success: the authors, the sponsors, the reviewers, the
volunteers, and the chairs. We hope you enjoy the conference!

March 2015 Casper Lassenius
Torgeir Dingsøyr
Maria Paasivaara

Organization

XP 2015 was organized by the Department of Computer Science, Aalto University,
Finland.

Organizing Committee

General Chair

Maria Paasivaara Aalto University, Finland

Academic Chairs

Torgeir Dingsøyr SINTEF, Norway
Casper Lassenius Aalto University, Finland

Scientific Workshops

Daniela S. Cruzes SINTEF, Norway
Casper Lassenius Aalto University, Finland

Industry and Practice Track

Jutta Eckstein IT Communications, Germany
Diana Larsen FutureWorks Consulting, USA

Experience Reports

Rebecca Wirfs-Brock Wirfs-Brock Associates, USA
Ken Power Cisco Systems, Ireland

Executives and Managers Track

Jaana Nyfjord Swedsoft SICS, Sweden
Henri Kivioja Ericsson, Finland
Paul D. Tolchinsky Performance Dev. Partners, USA

Bridging Research and Practice

Morten Elvang DELTA, Denmark
Nils Brede Moe SINTEF, Norway
Jaana Nyfjord Swedsoft SICS, Sweden

VIII Organization

Technical Demos

Kari Systä Tampere University of Technology, Finland

Short Talks and Lightning Talks

Johanna Hunt Aptivate, UK
Jussi Markula Prominda Revolution, Finland

Panels

Steve Fraser Independent Consultant, USA

Open Space

Charlie Poole Independent Consultant, USA

Doctoral Symposium

Peggy Gregory University of Central Lancashire, UK
Helen Sharp The Open University, UK

Posters

Andrey Maglyas Lappeenranta University of Technology, Finland
Ville T. Heikkilä Aalto University, Finland

Student Volunteer Coordination

Ville T. Heikkilä Aalto University, Finland
Pilar Rodriguez University of Oulu, Finland

Local Organization

Local Organizing Chair

Juha Itkonen Aalto University, Finland

Event Manager

Mary-Ann Wikström Aalto University, Finland

Web Masters

Ville T. Heikkilä Aalto University, Finland
Eero Laukkanen Aalto University, Finland

Organization IX

Program Committee (Research Papers)

Adolph, Steve Development Knowledge, Canada
Ali Babar, Muhammad The University of Adelaide, Australia
Aoyama, Mikio Nanzan University, Japan
Counsell, Steve Brunel University, UK
Desouza, Kevin Arizona State University, USA
Dorairaj, Siva Software Education, New Zealand
Dybå, Tore SINTEF, Norway
Ebert, Christof Vector Consulting
Erdogmus, Hakan Carnegie Mellon University Silicon Valley, USA
Garbajosa, Juan Universidad Politecnica de Madrid / Technical

University of Madrid (UPM), Spain
Goldman, Alfredo University of São Paulo - USP, Brazil
Greer, Des Queens University Belfast, UK
Hoda, Rashina The University of Auckland, New Zealand
Holmström Olsson, Helena Malmö University, Sweden
Iivari, Juhani University of Oulu, Finland
Kruchten, Philippe University of British Columbia, Canada
Madeyski, Lech Wroclaw University of Technology, Poland
Marchesi, Michele DIEE - University of Cagliari, Italy
Martin, Angela The University of Waikato, New Zealand
Mishra, Alok Atilim University, Turkey
Moe, Nils Brede SINTEF, Norway
Nerur, Sridhar University of Texas at Arlington, USA
Noble, James Victoria University of Wellington, New Zealand
Nyfjord, Jaana Swedsoft, Sweden
Prechelt, Lutz Freie Universitaet Berlin, Germany
Pries-Heje, Jan Roskilde University, Denmark
Prikladnicki, Rafael PUCRS, Brazil
Rodriguez, Pilar University of Oulu, Finland
Rolland, Knut The Norwegian School of IT, Norway
Rossi, Matti Aalto University School of Economics, Finland
Rumpe, Bernhard RWTH Aachen University, Germany
Schneider, Kurt Leibniz Universität Hannover, Germany
Sharp, Helen The Open University, UK
Sjøberg, Dag Department of Informatics, University of Oslo,

Norway
Tonelli, Roberto University of Cagliari, Italy
Van Solingen, Rini Delft University of Technology, Netherlands
Van Vliet, Hans VU University Amsterdam, Netherlands
Vidgen, Richard University of Hull, UK
Wang, Xiaofeng Free University of Bozen-Bolzano, Italy
Yague, Agustin Universidad Politecnica de Madrid, Spain

X Organization

Reviewers and Shepherds (Experience Reports)

Heikkilä, V.
Lassenius, C.
Paasivaara, M.
Power, K.

Wirfs-Brock, R.
Davies, R.
Eckstein, J.
Freudenberg, S.

Itkonen, J.
Lehtinen, T.
Soares Cruzes, D.

Reviewers (Industry and Practice)

Eckstein, J.
Larsen, D.
Andrea, J.
Asproni, G.
Bache, E.
Baldauf, C.
Bless, M.
Dorairaj, S.
Dubinsky, Y.
Favaro, J.
Freeman, S.

Freudenberg, S.
Garbajosa, J.
Hassa, C.
Holyer, S.
Hunt, J.
Juncu, O.
Kua, P.
Laing, S.
Light, A.
Little, T.
Moe, N.

North, D.
Norton, M.
Peraire, C.
Provaglio, A.
Putman, D.
Rose, S.
Sharp, H.
Trincardi, M.
Turhan, B.
Wild, W.

Organization XI

Sponsoring Institutions

Platinum Sponsors

Aalto University, Finland
Ericsson, Finland
Reaktor, Finland

Gold Sponsors

Nitor, Finland
Nokia, Finland
Omenia, Finland

Silver Sponsor

Agilefant, Finland

Contents

Full Research Papers

A Duplicated Code Refactoring Advisor . 3
Francesca Arcelli Fontana, Marco Zanoni, and Francesco Zanoni

Expectations and Challenges from Scaling Agile in Mechatronics-Driven
Companies – A Comparative Case Study. 15

Christian Berger and Ulrik Eklund

An Industrial Case Study on Test Cases as Requirements 27
Elizabeth Bjarnason, Michael Unterkalmsteiner, Emelie Engström,
and Markus Borg

What Do Practitioners Vary in Using Scrum? . 40
Philipp Diebold, Jan-Peter Ostberg, Stefan Wagner, and Ulrich Zendler

Key Challenges in Early-Stage Software Startups . 52
Carmine Giardino, Sohaib Shahid Bajwa, Xiaofeng Wang,
and Pekka Abrahamsson

Agile Challenges in Practice: A Thematic Analysis 64
Peggy Gregory, Leonor Barroca, Katie Taylor, Dina Salah,
and Helen Sharp

UX Work in Startups: Current Practices and Future Needs 81
Laura Hokkanen and Kaisa Väänänen-Vainio-Mattila

Why the Development Outcome Does Not Meet the Product
Owners’ Expectations? . 93

Timo O.A. Lehtinen, Risto Virtanen, Ville T. Heikkilä, and Juha Itkonen

Functional Size Measures and Effort Estimation in Agile Development:
A Replicated Study . 105

Valentina Lenarduzzi, Ilaria Lunesu, Martina Matta, and Davide Taibi

Software Development as an Experiment System: A Qualitative Survey
on the State of the Practice . 117

Eveliina Lindgren and Jürgen Münch

Would You Mind Fixing This Issue? An Empirical Analysis of Politeness
and Attractiveness in Software Developed Using Agile Boards 129

Marco Ortu, Giuseppe Destefanis, Mohamad Kassab, Steve Counsell,
Michele Marchesi, and Roberto Tonelli

Coordinating Expertise Outside Agile Teams . 141
Mawarny Md. Rejab, James Noble, and Stuart Marshall

Transitioning Towards Continuous Delivery in the B2B Domain:
A Case Study . 154

Olli Rissanen and Jürgen Münch

DevOps: A Definition and Perceived Adoption Impediments 166
Jens Smeds, Kristian Nybom, and Ivan Porres

Scaling Kanban for Software Development in a Multisite Organization:
Challenges and Potential Solutions . 178

Nirnaya Tripathi, Pilar Rodríguez, Muhammad Ovais Ahmad,
and Markku Oivo

Short Papers

The Two Faces of Uncertainty: Threat vs Opportunity Management
in Agile Software Development . 193

Denniz Dönmez and Gudela Grote

Management Ambidexterity: A Clue for Maturing in Agile
Software Development . 199

Rafaela Mantovani Fontana, Victor Meyer Jr., Sheila Reinehr,
and Andreia Malucelli

Towards Predictable B2B Customer Satisfaction and Experience
Management with Continuous Improvement Assets and Rich Feedback 205

Petri Kettunen, Mikko Ämmälä, and Jari Partanen

Dimensions of DevOps . 212
Lucy Ellen Lwakatare, Pasi Kuvaja, and Markku Oivo

Towards Introducing Agile Architecting in Large Companies:
The CAFFEA Framework . 218

Antonio Martini, Lars Pareto, and Jan Bosch

Optimal Refactoring . 224
Susanne Siverland, Roger C.S. Wernersson, and Charlotte Sennersten

Agile and the Global Software Leaders: A Perfect Match? 230
Stavros Stavru and Sylvia Ilieva

Experience Reports

High Level Test Driven Development – Shift Left 239
Kristian Bjerke-Gulstuen, Emil Wiik Larsen, Tor Stålhane,
and Torgeir Dingsøyr

XIV Contents

Shorter Feedback Loops By Means of Continuous Deployment 248
Arjan Claassen and Laurens Boekhorst

On a Different Level of Team . 254
Johanna Hunt

Applying Agile and Lean Elements to Accelerate Innovation Culture
in a Large Organization – Key Learnings After One Year Journey 262

Jari Partanen and Mari Matinlassi

It Has Been a Long Journey, and It Is Not Over Yet 270
Avraham Poupko

Organizational Culture Aspects of an Agile Transformation. 279
Shlomi Rosenberg

The Guide Board, an Artefact to Support the Continuous Improvement
of an Agile Team’s Culture . 287

Matti Schneider

Testing Modtalk . 294
Josh Fridstrom, Adam Jacques, Kurt Kilpela, and John Sarkela

Building Learning Organization Through Peer Hands-on Support
Community and Gamification. 302

Tomáš Tureček, Martin Chmelař, Roman Šmiřák, and Jan Krchňák

From Sprints to Lean Flow: Management Strategies
for Agile Improvement . 310

Marcelo Walter, Ramon Tramontini, Rafaela Mantovani Fontana,
Sheila Reinehr, and Andreia Malucelli

Mob Programming – What Works, What Doesn’t. 319
Alexander Wilson

Panels

Continuous Delivery – From Concept to Product: Trade-offs in Effectiveness
and Efficiency? . 329

Steven Fraser, Ismo Aro, Henri Kivioja, Erik Lundh, Ken Power,
Linda Rising, Werner Wild, and Rebecca Wirfs-Brock

Learning from Disaster and Experience: Evolving
Software Professionalism . 334

Steven Fraser, Janne Järvinen, Erik Lundh, Ken Power, Linda Rising,
Werner Wild, and Rebecca Wirfs-Brock

Contents XV

Practical Applications of the Agile Fluency Model 339
Diana Larsen, Steve Holyer, Jutta Eckstein, Antti Kirjavainen,
and Olli Sorje

Doctoral Symposium Abstracts

Improving Processes by Integrating Agile Practices 345
Philipp Diebold

Assurance Case Integration with An Agile Development Method 347
Osama Doss and Tim Kelly

Data-Driven Decision-Making in Product R&D . 350
Aleksander Fabijan, Helena Holmström Olsson, and Jan Bosch

Combining Kanban and FOSS: Can It Work? . 352
Annemarie Harzl and Wolfgang Slany

Paradigm Shift from Large Releases to Continuous Deployment
of Software: Designing a Reference Model for Continuous Deployment 354

Teemu Karvonen, Markku Oivo, and Pasi Kuvaja

How to Adopt Continuous Delivery? A Research Proposal 356
Eero Laukkanen and Casper Lassenius

Posters

Teaching Scrum – What We Did, What We Will Do and What Impedes Us 361
Emil Alégroth, Håkan Burden, Morgan Ericsson, Imed Hammouda,
Eric Knauss, and Jan-Philipp Steghöfer

Agility in Dynamic Environments: A Case Study for Agile Development . . . 363
Simon Brooke and Dina Allswang

Introducing SafeScrum . 365
Geir Kjetil Hanssen, Ingar Kulbrandstad, and Børge Haugset

Revisit – A Systematic Approach to Continuously Improve Agile Practices
in Large-scale and Fast-expanding R&D Center . 367

Peng Liu and Yuedong Zhao

Applying Randori-Style Kata and Agile Practices
to an Undergraduate-Level Programming Class . 369

Chitsutha Soomlek

XVI Contents

Continuous Strategy Process in the Context of Agile and Lean
Software Development . 371

Tanja Suomalainen and Jenni Myllykoski

Automatizing Android Unit and User Interface Testing 373
Juha-Matti Vanhatupa and Mikko Heikkinen

Author Index . 375

Contents XVII

Full Research Papers

A Duplicated Code Refactoring Advisor

Francesca Arcelli Fontana, Marco Zanoni(B), and Francesco Zanoni

University of Milano-Bicocca, Viale Sarca, 336, 20126, Milano, Italy
{arcelli,marco.zanoni}@disco.unimib.it,

f.zanoni1@campus.unimib.it

Abstract. Refactoring is one of the key practices in Extreme Program-
ming and other agile methods. Duplicated code is one of the most perva-
sive and pungent smells to remove from source code through refactoring.
Duplicated code has been largely studied in the literature, and differ-
ent types of duplications, or “clones”, have been identified. Some studies
analyzed in details the problems caused by clones in the code, others
outlined also the difficulties in removing clones, and the cases in which
it could be better not removing them. The refactoring cost for removing
clones can be very high, also due to the different choices on the possi-
ble refactoring steps. In this paper, we describe our approach and tool
developed with the aim to suggest the best refactorings to remove clones
in Java code. Our approach is based on the classification of the clones in
terms of their location in a class hierarchy, and allows to choose among
a restricted set of refactorings, which are then evaluated using multiple
criteria. We provide a validation of the effectiveness of the approach.

Keywords: Clone refactoring · Refactoring advisor · Empirical study

1 Introduction

Different tools and techniques can be used for agile development. In our work, we
focus our attention on the development of a tool to select and suggest the best
refactorings of duplicated code. Duplicated code involves all non-trivial software
systems; the percentage of involved duplicated lines is usually estimated between
5% and 20%, sometimes reaching even 50% [1,2]. Fowler [3] suggests that code
duplication is a bad smell and one of the major indicators of poor maintainability.

With the concept of “clone”we mean a code fragment duplicated in several
locations within a software system with several similarity degrees. We consider
“Cloning” as a synonym of “duplicating code”, both identifying the activity
of introducing clones of a code fragment within a software system. Anyway, a
shared definition of “similarity” does not exist, resulting in the lack of a rigorous
definition of clone [1,2]. Different types of cloned have been identified in the
literature, providing a clone classification involving the amount and the way a
code fragment is duplicated. The most commonly accepted classification is the
one of Roy et al. [4], which identifies four types of clones (we describe Type-1
and Type-3 of clones, the ones we detect through our approach, in Section 3.2).
c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 3–14, 2015.
DOI: 10.1007/978-3-319-18612-2 1

4 F.A. Fontana et al.

The main problems related to code duplication are, e.g., the uncontrolled
spread of yet-to-know bugs, resulting in heavy correction time cost when discov-
ered, and heavy update time cost, when modification of an important part of a
code fragment implies modification of all duplicated fragments.

Even if duplication may not always be avoided, it is considered a serious
problem, mainly from a maintenance perspective. Many works investigated in
depth the factors causing its insertion, or provided taxonomies according to
several criteria and detection techniques, but just few works examined its man-
agement procedures [1]. Many sources suggest to fully delegate correction activ-
ities to developers’ experience and judgement [1,2], and assert the importance
of the “human in the loop” concept [3,5]. These assertions follow the aware-
ness that every modification to a software system must consider and respect the
design choices of that system. Furthermore, design choices are not easily cap-
tured within automated procedures. During duplicated code management, two
main decisional steps involve design aspects:

1. the choice of which instances are worth to be refactored and which are not,
2. the choice of which technique should be applied to remove a duplication

instance, once the instance has been evaluated as refactoring-worthy.

In this paper, we introduce our approach and a tool developed to suggest
“the best” refactoring of Java code clones. The tool is called Duplicated Code
Refactoring Advisor (DCRA) and is composed of four modules. We use for clone
detection a well known tool, NiCad [6], and we define a post-processor for its out-
put, called Clone Detailer, which adds information characterizing every clone,
e.g., the location of the clone in the class hierarchy, its size and type. Then,
through the Refactoring Advisor module, we suggest the refactorings able to
remove the clones, and provide a ranking of their quality. Refactorings are cho-
sen by considering the location of the clone and the variables contained in the
clone; they are sorted by considering different features, i.e., the variation of Lines
of Code (LOC), and an evaluation of the quality resulting from its application, in
terms of the exploitation of OOP constructs. Finally, a module called Refactor-
ing Advice Aggregator provides a summary of the most interesting information
about clones, i.e., the clones having greater size, and the ones which should be
simpler or more convenient to remove.

Through our approach, we aim to filter clone pairs worthy of refactoring
from unworthy ones, and to suggest the best refactoring techniques for worthy
ones. We experimented the Clone Detailer module on 50 systems of the Qualitas
Corpus [7]. All the modules of our DCRA tool have been validated on 4 systems
of the Qualitas Corpus.

The paper is organized through the following Sections: Section 2 reports some
related works, pointing out the differences with our approach; Section 3 contains
a general description of DCRA’s features; Section 4 describes the architecture
of DCRA; Section 5 reports the validation of the tool on four systems; Section 6
makes an overall conclusion on DCRA, outlining some future developments.

A Duplicated Code Refactoring Advisor 5

2 Related Work on Code Clone Refactoring

In the literature, we can find many papers on clones and on clone detection
tools [8]. Here, we focus our attention only on some works which consider and
propose approaches or techniques for clone refactoring.

Fowler [3] provides a generic approach for duplicate code refactoring based on
the description of different refactoring steps. His approach is intentionally generic
and agrees with the common practice of delegating all solution choices and details
to developers. The same approach is summarized and slightly extended by Zibran
and Roy [1], by reporting many duplicated code classifications and taxonomies,
each considering different sets of duplication features. Their duplication clas-
sification is based on refactoring opportunities. A more detailed approach was
defined by Golomingi [5]: a precise and motivated set of locations (“scenarios”)
within class hierarchies is used to classify duplications, which are linked to a pre-
cise and motivated set of refactoring techniques. Only general refactoring selec-
tion criteria are then provided, committing further considerations to developers.
The strong point is the association of refactoring techniques to specific scenar-
ios, whereas Fowler favours a much more generic approach. The “human in the
loop” concept still holds, since no assessment is made on the actual techniques
applicability, but it provide more guidance than Fowler’s approach. The tool
implemented by Golomingi, called Supremo, provides further help to developers
through a graphical representations of all entities involved and their relation-
ships. At last, Giesecke [9,10] further generalizes several scenarios and selects
functions/methods as the best duplication granularity, reducing the number of
scenarios and refactoring techniques.

Our approach, implemented in DCRA, mainly draws inspiration from the
described works, by extending the duplication and classification categories of
Golomingi and by adapting the approach to Java. Furthermore, automated eval-
uation, classification and suggestion of refactoring techniques are added.

3 DCRA Approach

The main features characterizing our approach are the following:

– the extension of Golomingi’s [5] scenario set with further recurring locations,
– the analysis of the location of each clone pair, resulting in a specific set of

applicable refactoring techniques (see Tables 1 and 2),
– the ranking of the applicable refactoring techniques, based on a score weight-

ing different criteria,
– the aggregation of the information about clones and refactorings, on the

more critical clones, and on the best refactorings, according to numerical
criteria.

The automatic evaluation of the applicability of refactoring techniques is the
central point of this work, since it helps reducing the human involvement. The
evaluation is achieved by defining a specific set of criteria and by translating them

6 F.A. Fontana et al.

Table 1. DCRA refactoring techniques

Refactoring technique Description

Extract method (EM) [3] extract a subset of the statements of a method as
a new method

Replace method with method
object (RMMO) [3]

a.k.a. “Extract utility class” [1], considered in its
simplest version (private or protected class with
public attributes and only one method: the con-
structor)

Merge method (MM) delete one of the two identical copies of a method
Pull up method (PUM) [3] move a method to the superclass
Pull up method object (PUMO) combination of “Pull up method” and “Replace

method with method object”
Form template method (FTM)
[3]

introduce a Template Method design pattern to
manage behaviour variation in subclasses

Leave unchanged (LU) do not refactor at all

Table 2. DCRA locations and refactoring suggestions (remaining locations have only
the LU suggestion)

Location EM FTM LU MM PUM PUMO RMMO

SAME METHOD × · × · · · ×
SAME CLASS × · × × · · ×
SIBLING CLASS · × × · × × ·
SAME EXTERNAL SUPERCLASS · × × · × × ·

into suitable numeric values. Currently, DCRA evaluates refactoring techniques
according to the following two criteria: 1) lines of code variation and 2) OOP
principles compliance: encapsulation, inheritance and polymorphism.

3.1 Locations and Refactoring Techniques

In Table 1, we report the list of the refactorings we consider in DCRA with a
short description. Refactorings without a reference were defined by us during
the development of DCRA; the last one, “Leave unchanged”, is actually the
suggestion to avoid refactoring. Since locations are the starting point of the
whole procedure and refactoring techniques are the ending point, Table 2 outlines
these elements and the way they are related (refactorings listed in the headers of
the table are defined in Table 1). Some of Golomingi’s and Fowler’s refactoring
suggestions were not included: 1) “Substitute algorithm”, because Type-4 clones
(code fragments implementing the same algorithm in different ways) were not
considered, and 2) “Push down method”, because DCRA does not currently
manage the SUPERCLASS location.

We added to Golomingi’s location set [5] the SAME EXTERNAL SUPER-
CLASS location: it describes all clones located within sibling classes extending a

A Duplicated Code Refactoring Advisor 7

Table 3. Distribution of clone types and granularity in locations in 50 systems

Location Type-1 Type-3 Block Method Total
% # % # % # %

ancestor class 13 4.4 281 95.6 120 40.8 174 59.2 294
common hierarchy class 970 23.5 3,152 76.5 968 23.5 3,154 76.5 4,122
first cousin class 416 12.2 2,980 87.8 473 13.9 2,923 86.1 3,396
same class 5,645 9.9 51,308 90.1 17,096 30.0 39,857 70.0 56,953
same external superclass 4,384 6.2 66,391 93.8 31,534 44.6 39,241 55.4 70,775
same method 569 10.4 4,901 89.6 5,449 99.6 21 0.4 5,470
sibling class 2,721 16.4 13,868 83.6 2,830 17.1 13,759 82.9 16,589
superclass 91 8.4 981 91.6 431 40.2 641 59.8 1,072
unrelated class 2,758 7.3 35,035 92.7 23,103 61.1 14,690 38.9 37,793

Total 17,567 8.9 178,897 91.1 82,004 41.7 114,460 58.3 196,464

common external class, i.e., a class belonging to external libraries. This addition
is significant; in fact, our dedicated analysis reported in Section 3.2 revealed that
over 1/3 of all detected duplications is related to this location. Golomingi’s app-
roach classifies those instances as UNRELATED CLASS, therefore not manage-
able through an automatic procedure. SAME EXTERNAL SUPERCLASS and
SIBLING CLASS have similar characteristics, and share the same refactoring
suggestions. Anonymous classes are recurring examples of SAME EXTERNAL
SUPERCLASS instances, since they usually extend class Object.

3.2 Qualitas Corpus Analysis

To determine the most recurring characteristics featured by duplication instances,
a statistical assessment was achieved by analyzing 50 software projects, included
in the Qualitas Corpus [7] (v. 20120401). Software projects were analyzed by the
Clone Detector and the Clone Detailer modules of DCRA (see Section 4). This
assessment analyzed three aspects of duplicated code: clone pair types, clone
pair locations and clone pair granularity. Clones are grouped in pairs, and the
Clone Detector was configured to look for clones of blocks of code, which include
also clones of methods.

Table 3 counts the clone pairs found in the analyzed systems, classifying
them by location, type and granularity. Most (∼75%) clone pairs belong to
the locations listed in Table 2. Type-3 clone pairs (code fragments with added,
removed or modified statements) are the most recurrent because, intuitively,
when a code fragment is duplicated, it is also slightly modified, as it rarely
matches the functionalities needed in both positions.

As for the granularity of clones, we classified the detected clone pairs as
block-only or method clones (block clones contain both cases). On average, func-
tion/method clones are more respect to block clones, supporting the choice of
function/method granularity made by Giesecke [9,10]. Methods are also more

8 F.A. Fontana et al.

cohesive units than blocks, featuring higher reusability. As a result, the detection
procedure of DCRA was configured to detect:

– Type-1 (identical code fragments, only white space differences allowed) and
Type-3 clones (code fragments with added, removed or modified statements);

– block-level clones, for their diffusion, and because they include method-level
clones.

The design and implementation efforts were focused on the locations reported
in Table 2. Also Fowler’s suggestions are mainly related to these four locations.
For all other locations, only “Leave unchanged” is suggested.

3.3 Refactoring Technique Implementation

Refactoring techniques reported in Table 1 are terms naming the generic strategy
to apply to correct clone pairs. Some refactorings need a further customization,
to be applied to a particular case. For example, the “Extract method” refactoring
has a “Flag” strategy, applied to Type-3 clones: to create a method usable from
all original positions, a flag parameter is added to the extracted method signature
and is checked by conditional branches within the extracted method body. This
kind of refactoring approach is not described in the literature; Roy and Cordy’s
survey [2] implicitly reports only Type-1 clones may be refactored with the
“Extract method” technique, since, if a flag parameter is introduced, the class
interface actually changes, and the risk of encapsulation reduction increases.

Every refactoring was decomposed in one or more implementation steps,
to compute the change of the code size (LOC variation) when a refactoring is
applied. Every implementation step is associated to a function, which computes
the LOC resulting after the application of the step. By computing the LOC for
each implementation step belonging to a refactoring, it is possible to estimate
the size of a clone pair after the refactoring.

4 Duplicated Code Refactoring Advisor

DCRA outputs a suitable list of techniques to be applied on the most problematic
duplications. The tool consists of four components:

– Clone Detector : external tool detecting clone pairs;
– Clone Detailer : analyzes the Clone Detector output to add all necessary

clone pair details;
– Refactoring Advisor : chooses the possible refactoring techniques related to

each clone pair;
– Refactoring Advice Aggregator : aggregates the available information about

clones and refactorings, grouping by class or package, and sorting by refac-
toring significance or clone pair impact.

Before the execution of DCRA, the end of line characters of the analyzed
source code are standardized, to allow a precise line count, and a more correct
evaluation of the solutions. A “toy example” of a clone pair, shown in Listing 1,
will be used throughout the section to show how the analysis works.

A Duplicated Code Refactoring Advisor 9

Listing 1. DCRA toy example: clone pair

public class SuperClass {}

public class SubCls1

extends SuperClass {

public void method () {

int a = 0;

int b = 1;

a++;

b++;

System.out.print(a + b);

}

}

public class SubCls2

extends SuperClass {

public void method () {

int a = 0;

int b = 1;

a++;

b++;

System.out.print(a + b);

}

}

Listing 2. DCRA toy example: refactor-
ing preview of the clone pair

public class SuperClass {

public void method () {

int a = 0;

int b = 1;

a++;

b++;

System.out.print(a + b);

}

}

public class SubCls1

extends SuperClass {}

public class SubCls2

extends SuperClass {}

.

4.1 Clone Detector

NiCad [6] was chosen as the clone detector because it allows choosing between
function- and block-level clones. We setup the tool with these parameters:

– block-level granularity is chosen, since more manageable clones are detected;
– a minimum clone length of 5 lines, a commonly used value in the literature [2];
– a maximum dissimilarity percentage between code fragments of 30% (NiCad’s

default); no common agreement appears to exist yet [1] on this parameter;
– no renaming allowed, since a large set of unmanageable clone pairs would

result; only Type-1 and the consequent Type-3 subset are detected;
– clones grouped in pairs, since they are easier to manage than n-ary groups;

this is common in the literature [5,9] and in many clone detection tools.

4.2 Clone Detailer

This component adds to clone pairs all details needed to select refactoring tech-
niques. Some of the relevant details it adds are:

– variables used in each clone, labelled using their declaration position and
usage;

– length of each clone, cloned lines and different lines (NiCad only reports the
total length of the longest clone);

10 F.A. Fontana et al.

– clone pair location (introduced in Section 3.1);
– clone pair granularity: method or block;
– clone pair type: Type-1 or Type-3.

Regarding the first point, the declaration position was classified in the follow-
ing categories: 1) inside the clone, 2) outside the clone but within its container
method, 3) class attribute, 4) inherited attribute; the usage, instead, was clas-
sified using these other categories: 1) used after clone but within its container
method, 2) read within clone, 3) modified within clone. These criteria were taken
from Higo et al. [11], and applied to our location-based classification, obtaining
a more precise characterization of each clone pair.

4.3 Refactoring Advisor

The Refactoring Advisor uses the Clone Detailer output to choose the possible
refactoring techniques for each clone pair.

We introduce now the “coupled entity” concept: when clones access variables
or attributes from their local scope (e.g., their container class or method), and
the application of a refactoring would move the code in a different scope, the
reference to those variables or attributes may increase the coupling level of the
refactored clone. A coupled entity is any of these variable or attribute references.
They are evaluated differently for each refactoring kind, because each refactoring
applies different transformations to the code. Coupled entities make the applica-
tion of a refactoring more costly, or not possible without changing the visibility
or placement of variables in the system.

The Refactoring Advisor works independently on each clone pair. First, it
selects all refactoring techniques applicable to the clone pair on the base of
its location, granularity, type and coupled entities. Second, it ranks the selected
techniques, relying on a score based on two criteria: i) relative LOC variation, ii)
compliance to OOP (inheritance, polymorphism and encapsulation). The score
is calculated as the average of two weights, one for each criterion, evaluating the
compliance to each principle. In our example, “Pull up method” would modify
the code as shown in Listing 2. We compute the two weights by evaluating the
code after the refactoring w.r.t. the original. In the following, we explain how
the two weights, i.e., LOC variation and OOP compliance are computed.

Equation 1 defines the refactoring evaluation score. The LOC variation is
obtained (Equation 2) as the ratio of LOC before and after the application of
the refactoring, normalized to the [−1,+1] range. OOP compliance (Equation 3)
is calculated as the average of the values assigned to its three principles: encap-
sulation, inheritance, polymorphism; each value is in the [−1,+1] range, and
has been manually determined for each refactoring during the assessment phase
of the DCRA development. Values (−1, 0,+1) correspond respectively to: the
maximum possible deterioration, no variation, the maximum improvement.

A Duplicated Code Refactoring Advisor 11

Table 4. Refactoring Advisor computation example

PUM Evaluation: 0.66
OOP Compliance: 0.33

encapsulation: 0
inheritance: 1
polymorphism: 0

LOC Variation: 1
LOC before: 10
LOC after: 5

LU Evaluation: −0.33
OOP Compliance: −0.66

encapsulation: 0
inheritance: −1
polymorphism: −1

LOC Variation: 0
LOC before: 10
LOC after: 10

Evaluation =
LOCV ar + OOP

2
(1)

LOCV ar =
LOCBefore

LOCAfter
− 1 (2)

OOP =
Encap + Inh + Polym

3
(3)

In our clone pair example, the values assigned and derived for each variable of
the two refactorings are resumed in Table 4 (every value depends on the ones on
its right). Our approach allows to give different relative weights to the different
criteria used to produce an evaluation, allowing to tune the refactoring selection
towards, e.g., more OOP quality or more LOC saving.

4.4 Refactoring Advice Aggregator

This component summarizes all advices and clone pair details, providing to the
developers the selected sets of refactoring techniques or clone pairs, sorted by
their weight: techniques are sorted by effectiveness, clone pairs by length. Effec-
tiveness is measured by combining the evaluation of each technique with the
length of the clone pair. Grouping by package was considered because it can
help developers to quickly identify the most problematic subsystems. A class
or package is considered refactorable if it contains effective refactorings, and is
considered affected if it participates to clone pairs.

For each clone pair, only the first refactoring (the one with the higher eval-
uation) is considered, and its weight is normalized according to its clone pair
length (the maximum length of the clones in the pair), to make the comparison
of different refactoring applications coherent. For instance, if the first technique
for a 5 lines-long duplication is evaluated as 1, and the first technique for a
20 lines-long duplication is evaluated as 0.5, the second refactoring will better
improve system quality, since the respective weight values would be 5 and 10.

12 F.A. Fontana et al.

Table 5. Systems used for validation

Project LOC Pairs Cloned LOC Cloned LOC %

fitjava-1.1 3,643 27 218 5.98
jgrapht-0.8.1 9,086 53 736 8.10
nekohtml-1.9.14 6,149 81 1,130 18.38
oscache-2.4.1 5,786 70 982 16.97

Table 6. Assessment results for clones in the same class

Location Type EM RMMO MM LU Total

SAME METHOD
1 2/2 1/1 0/0 0/0 3/3

44/46
3 8/10 0/0 0/0 33/33 41/43

SAME CLASS
1 6/6 0/0 0/0 0/0 6/6

97/106
3 81/90 0/0 0/0 10/10 91/100

Total
1 8/8 1/1 0/0 0/0 9/9
3 89/100 0/0 0/0 43/43 132/143

97/108 1/1 0/0 43/43 141/152

The Refactoring Advice Aggregator provides as output the: top N most effec-
tive refactorings; top N most harmful clone pairs; top N most refactorable pack-
ages and classes; top N most affected packages and classes. The value of N is
currently set to 20.

5 Validation

DCRA was tested on four projects of different size belonging to the Qualitas
Corpus [7], reported in Table 51. The Refactoring Advisor provided advices for
more than 80% of clone pairs2. All refactoring suggestions were then assessed
by hand, to verify their usefulness. The results of the assessment are reported
in Table 6 and Table 7 for different locations, since different locations mean
different possible refactoring sets. In the tables, the number of advices is classified
by location, type, and refactoring suggestion. The shown numbers represent the
ratio of accepted advices (accepted/total), e.g., in Table 6, 81 suggestions out of
90 were accepted for clones in the SAME CLASS location, Type-3, and “Extract
method” suggestion.

The criteria producing the advices proved to be mostly effective, since mainly
refactoring-worthy duplications were proposed. The suggested refactorings were
accepted in most cases, in particular for “Extract method”, “Leave unchanged”,
“Replace method with method object”. Actually, we rejected only 8% of the
whole advices. This led to suitably refactor 66% of all duplications found in
1 LOC were computed by the tool CLOC 1.56.
2 The other ones are not managed in the current version of DCRA.

A Duplicated Code Refactoring Advisor 13

Table 7. Assessment results for clones in sibling classes

Location Type PUM PUMO FTM LU Total

SIBLING CLASS
1 2/2 0/0 0/0 0/0 2/2

3/6
3 0/2 0/0 1/2 0/0 1/4

SAME EXTERNAL SUPERCLASS
1 8/9 0/0 0/0 0/0 8/9

16/37
3 0/0 0/3 8/25 0/0 8/28

Total
1 10/11 0/0 0/0 0/0 10/11
3 0/2 0/3 9/27 0/0 9/32

10/13 0/3 9/27 0/0 19/43

the analyzed software systems. Refactoring suggestions in some categories were
less effective than others. For example, 9/32 refactoring advices regarding Type-
3 clone pairs between sibling classes (see Table 7), were actually not worth of
application. In particular, “Form template method” was often rejected because it
was suggested for too few cloned lines; “Pull up method” was usually preferred in
these cases. To prevent this issue, a higher lower bound to clone LOC is needed.
Another category of clone pairs having (minor) issues were the Type-3 ones
within the same class (see Table 6). In this case, the issue is that refactorings with
low rank were often application-unworthy, because of the small size of clones;
as in the previous consideration, a higher lower bound to cloned LOC is needed
for this scenario. Another result of the validation is that the “Replace method
with method object” and “Pull up method object” refactoring techniques were
suggested only a few times, as they are very line-expensive.

As a conclusion, our validation outlines that DCRA is effective for suggesting
refactorings in most cases. All the issues found during the validation can be
corrected by adjusting the thresholds of specific criteria.

6 Conclusions and Future Works

This work suggests it is possible to help developers towards the refactoring
of duplicated code, with the aim of improving the design quality, resulting in
increased manageability and consequently reducing valuable time spent in code
inspection phases. Our technique can be used to suggest the best refactoring to
apply to code clones, considering different properties of the code.

The proposed approach may be summarized as an automated technique
selecting the best refactorings, based on a classification of code clones, with the
aim to concretely reduce the human involvement during duplicated code refac-
toring procedures. We apply a scenario-based approach classifying clone pairs
by their location: a set of possible refactoring techniques is suggested for each
location, leaving only the other details to developers. Our approach extends an
existing set [5] of classification categories; the extension allows to automatically
suggest refactoring techniques for a large amount of duplications, which were
considered hardly manageable by the original approach.

14 F.A. Fontana et al.

In future work, we plan to extend DCRA to manage all remaining loca-
tions, and to refine the parameter settings, in particular the minimum clone
length and the minimum dissimilarity percentage. A planned enhancement of
the Clone Detailer is the tracking of read or modified coupled entities, to obtain
more detailed clues for the refactoring decision. Finally, we are investigating
an extension of the approach, allowing to consider clone groups in addition to
clone pairs. Another interesting topic of investigation regards the analysis of the
impact of refactoring of code clones on different software quality metrics. We
started a research in this direction [12] with the aim of prioritizing the clones to
remove.

References

1. Zibran, M.F., Roy, C.K.: The road to software clone management: A survey. Tech-
nical Report 2012–03, The Univ. of Saskatchewan, Dept. CS, February 2012

2. Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Technical
Report 2007–541, Sch. Computing, Queen’s Univ., Kingston, Canada, September
2007

3. Fowler, M.: Refactoring: Improving the Design of Existing Code. Addison-Wesley
Longman Publishing Co. Inc., Boston (1999)

4. Roy, C.K., Cordy, J.R., Koschke, R.: Comparison and evaluation of code clone
detection techniques and tools: A qualitative approach. Science of Computer Pro-
gramming 74(7), 470–495 (2009). Special Issue on ICPC 2008

5. Golomingi Koni-N’Sapu, G.: Supremo – a scenario based approach for refactoring
duplicated code in object oriented systems. Master’s thesis, Inst. of Computer
Science, Faculty of Sciences, Univ. of Bern, June 2001

6. Roy, C., Cordy, J.: NICAD: accurate detection of near-miss intentional clones using
flexible pretty-printing and code normalization. In: Proc. the 16th IEEE Int’l Conf.
Program Comprehension (ICPC 2008), pp. 172–181. IEEE CS, Amsterdam (2008)

7. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
Noble, J.: The qualitas corpus: a curated collection of java code for empirical
studies. In: Proc. the 17th Asia Pacific Software Eng. Conf., pp. 336–345. IEEE
CS, Sydney, December 2010

8. Rattan, D., Bhatia, R., Singh, M.: Software clone detection: A systematic review.
Information and Software Technology 55(7), 1165–1199 (2013)

9. Giesecke, S.: Clone-based Reengineering für Java auf der Eclipse-Plattform.
Diplomarbeit, Carl von Ossietzky Universität Oldenburg, Dept. für Informatik,
Abteilung Software Eng., Germany (2003)

10. Giesecke, S.: Generic modelling of code clones. In: Koschke, R., Merlo, E.,
Walenstein, A. (eds.) Duplication, Redundancy, and Similarity in Software.
Dagstuhl Seminar Proc., vol. 06301. Int’les Begegnungs- und Forschungszentrum
für Informatik (IBFI), Germany (2007)

11. Higo, Y., Kusumoto, S., Inoue, K.: A metric-based approach to identifying refac-
toring opportunities for merging code clones in a java software system. J. Software
Maintenance and Evolution: Research and Practice 20(6), 435–461 (2008)

12. Arcelli Fontana, F., Zanoni, M., Ranchetti, A., Ranchetti, D.: Software clone detec-
tion and refactoring. ISRN Software Eng. 2013, 8 (2013)

Expectations and Challenges from Scaling Agile
in Mechatronics-Driven Companies –

A Comparative Case Study

Christian Berger1(B) and Ulrik Eklund2(B)

1 Department of Computer Science and Engineering, University of Gothenburg,
Gothenburg, Sweden

christian.berger@gu.se
2 Department of Computer Science, Malmö University, Malmö, Sweden

ulrik.eklund@mah.se

Abstract. Agile software development is increasingly adopted by com-
panies evolving and maintaining software products to support better
planning and tracking the realization of user stories and features. While
convincing success stories help to further spread the adoption of Agile,
mechatronics-driven companies need guidance to implement Agile for
non-software teams. In this comparative case study of three companies
from the Nordic region, we systematically investigate expectations and
challenges from scaling Agile in organizations dealing with mechatronics
development by conducting on-site workshops and surveys. Our findings
show that all companies have already successfully implemented Agile in
their software teams. The expected main benefit of successfully scaling
agile development is a faster time-to-market product development; how-
ever, the two main challenges are: (a) An inflexible test environment that
inhibits fast feedback to changed or added features, and (b) the existing
organizational structure including the company’s mind-set that needs to
be opened-up for agile principles.

Keywords: Scaling agile · Agile · Software development process ·
Mechatronics · Comparative case study

1 Introduction

Developing high-quality software products that better match a customer’s expec-
tations is successfully supported by Agile [1]. Key advantages over other
development approaches are short and fixed periods consisting of development,
integration, and testing, small team sizes, and active communication within the
software team while also including the customer. A flexible development app-
roach allows a team to get frequent feedback to newly added features from the
end-user but also enables reprioritization of user stories and feature requests
whenever the stakeholders’ needs change over time.

c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 15–26, 2015.
DOI: 10.1007/978-3-319-18612-2 2

16 C. Berger and U. Eklund

The typical habitat for adopting Agile are pure software-driven companies
with prominent examples being Google and Amazon. Implementing Agile in envi-
ronments where the final product combines software, hardware, and mechanics
is more challenging considering the different nature of the involved artifacts.

1.1 Problem Domain and Motivation

In the mechatronics domain there are two opposing trends affecting R&D: Man-
ufacturing and hardware development is a mature domain, which has been
optimized for more than fifty years, but still having long lead-times, typically
years. Focus during R&D is on predictability, i.e. meeting the start-of-production
(SOP) with the required mechanical quality, which in practice is achieved by
stage-gate/waterfall processes. In contrast, software development today is char-
acterized by increasing speed and being more nimble while keeping quality. This
typically enables lead-times of weeks or months, and many agile methods are
a response to this. There are no established solutions to solve the intersection
between the aforementioned trends, but the necessity to resolve them in the
mechatronics domain motivates further studies.

1.2 Research Goal

The goal for this comparative study is to systematically investigate expectations
and challenges from scaling Agile outside software teams on the example of three
companies from the Nordic region developing and manufacturing embedded and
mechatronic products. Specifically, we are interested in the following subgoals:

1. Unveiling expectations and challenges originating between teams, depart-
ments, and divisions,

2. Unveiling challenges from mechatronics-related development-, project-, and
product-processes, and

3. Understanding expectations from key stakeholders like teams, managers, and
organizations at large.

1.3 Contributions and Scope

We designed and conducted a comparative case study at three companies and
report about our findings according to Runeson and Höst (cf. [2]). The main
contributions of this work are:

1. Defining a methodology to systematically unveil and compare expectations
and challenges for scaling Agile in mechatronics-driven organizations,

2. Presenting results from individual on-site workshops at the three different
mechatronics companies, and

3. Summarizing results from a joint follow-up survey at all companies based on
the results from the individual workshops.

Expectations and Challenges from Scaling Agile 17

1.4 Structure of the Article

The rest of the article is structured as follows: Section 2 presents related work
in this field. Section 3 describes the design of the comparative case study and
the embodied methods followed by the results from the comparative case study
in Section 4. Section 5 presents conclusions from our study.

2 Related Work

Originally, agile methods evolved to meet the needs of small and co-located
development teams [3]. They typically emphasize close customer collaboration,
iterative development, and small cross-functional development teams. Also, team
autonomy and end-to-end responsibility are reported as important characteris-
tics permeating the methods [4]. Most companies introduce agile methods to
increase the frequency in which they release new features and new products, and
as a way to improve their software engineering efficiency. According to Dingsøyr
et al. [5], agility embraces lean processes with an emphasis on realizing effec-
tive outcomes, and common for agile methods is that they entail the ability to
rapidly and flexibly create and respond to change in the business and technical
domains [5].

Due to many successful accounts [6,7], agile methods have become attractive
also to companies involved in large-scale development of embedded systems, and
several attempts to extend agile methods to include development of embedded
systems are seen [8–10].

While convincing success stories from industry help to further spread the adop-
tion of Agile, there are few studies of agile development focusing on the mecha-
tronics domain. There are examples of some companies successfully introducing
agile practices at the team level, typically characterized by individual teams defin-
ing their own ways-of-working to facilitate speed, short iterations, and delivery
quality when developing their components. The experiences thereof are generally
positive according to two literature reviews by [11] and [12]. There are also some
publications stating that a third of German and American automotive develop-
ment teams using agile practices reported in a commercial survey [13]. However,
with characteristics such as hardware-software interdependencies, heavy compli-
ance to standards and regulations, and limited flexibility due to real-time func-
tionality [14], the development of embedded and mechatronic systems seems to
challenge common practices of agile development.

3 Comparative Case Study Design

We addressed the aforementioned research goal by designing a comparative
case study, where we collected data from three different mechatronics-driven
companies.

18 C. Berger and U. Eklund

3.1 Research Questions

We derived the following research questions for the comparative case study:

RQ-1: Which practices from Agile are in use in a mechatronics-driven organi-
zation?

RQ-2: How is the current implementation of Agile perceived in a mechatronics-
driven organization?

RQ-3: What are the expectations from scaling Agile within a mechatronics-
driven organization?

RQ-4: What are the main foreseeable challenges when scaling Agile in mechatr-
onics-driven organizations to achieve the expected benefits?

3.2 Case and Subjects Selection

We conducted our research in the context of the Software Center1. The Software
Center is a cooperation environment where different companies from the Nordic
region collaborate with selected universities on research topics and technology
transfer from academia to industry. The participating companies in the Software
Center cover domains like Automotive, Telecommunication, Mobile Phones, and
Defense.

For our comparative case study, we selected three large companies who are
mainly mechatronics-driven in their business to which we are referring to as com-
pany A, B, and C. The companies employ between approximately 18, 000 and
93, 000 people and their respective yearly manufacturing of mechatronic prod-
ucts ranges from 0.4 to over 16 million units according to their respective annual
reports from 2013. These companies can be considered to be representative due to
their individual market shares. Furthermore, all companies have already adopted
Agile at team-level in their R&D departments and apply it since several years
during the software development of projects with varying sizes. For the work-
shops and surveys, participants covered experienced developers and managers
from software development, hardware development, integration, and testing.

3.3 Data Collection Procedure

The data collection was conducted threefold: (a) We planned and conducted
individual on-site workshops at the respective companies in the first phase; (b)
the collected data from these individual workshops was analyzed to design a joint
survey that was subsequently distributed to key stakeholders within the respec-
tive companies in a second phase to enlarge the population for data collection;
(c) the feedback from the survey was used to plan and conduct a joint workshop
with key representatives from all three companies in the third phase involving
an external expert on Agile practices to follow-up on selected key challenges for
scaling Agile and to identify topics where to proceed internally at the companies.

1 http://www.software-center.se

http://www.software-center.se

Expectations and Challenges from Scaling Agile 19

Individual On-Site Workshops. The individual workshops were conducted
separately for each company. The respective workshop’s duration was approxi-
mately 3 hours and was moderated by one researcher while the other researcher
took notes during the discussion phases. The workshop addressed in a qualitative
manner the following two main questions:

1. What would be the biggest benefits if your company successfully scales Agile?
2. What are the challenges for your organization to achieve these benefits?

The participants from different teams (software development, hardware
development, and testing) had approximately 20min to write their answers on
two-colored sticky notes. The notes were subsequently collected, presented to
the audience by the workshop moderator, and clustered during a joint discus-
sion about the respective matter. The resulting topic maps were summarized to
identify the key topics for the two aforementioned questions.

Survey. Afterwards, we designed a survey based on the results from three indi-
vidual on-site workshops according to the guidelines by from Singer et al. pub-
lished in Shull et al. [15]. The survey was realized as an online questionnaire to
reach out to more participants who could not join the on-site workshops2. The
questionnaire consisted of the following five sections:

1. General data about the role of the participant in the company
2. Use of Agile practices in the company
3. Evaluating the use of Agile in the company
4. Expectations from scaling Agile outside the software development teams
5. Expectations about challenges to be solved when scaling Agile

The first section contained three open-ended questions; the second section
contained eight questions to be ranked as Yes, No, and Not applicable and an
optional open-ended text field; the third section consisted of eight pairs that
needed to be weighted on a scale from 1 to 7, where 1 means that the entire
focus is on the left aspect of the pair and 7 that the entire focus is on the right
aspect of the pair; additionally, an optional comment field was available. The
fourth section consisted out of 16 expectations for benefits to be ranked on the
6-Likert-scale very important, important moderately important, of little impor-
tance, unimportant, and not relevant ; this section was complemented with two
optional questions asking for further benefits and drawbacks when scaling Agile.
The last section consisted of 21 potential challenges collected during the work-
shops to be ranked on the same 6-Likert-scale as before; this section was also
complemented with an optional question asking for further challenges.

The questionnaire was piloted with the single-points-of-contact (SPoC) from
the involved companies to improve its logical structure and the overall under-
standing. The target group for this study contains the attendees of the on-site
workshops extended in snowball manner (cf. Goodman [16]) by the SPoCs to
reach out to more employees who are affected when scaling Agile.
2 The survey can be found as supplementary material here: http://goo.gl/yJNez1

http://goo.gl/yJNez1

20 C. Berger and U. Eklund

Joint Workshop. After conducting on-site workshops and the survey, we orga-
nized a joint workshop where we invited delegates from all companies. These
delegates covered different departments not only focusing on software develop-
ment. The goal for the workshop was to present the findings from the separate
workshops and the survey, to jointly discuss and complement with missing chal-
lenges, and to identify first steps towards initiating initiatives for scaling Agile
outside software development teams. For the workshop, we invited an external
Agile expert as moderator so that we could follow the discussions among the par-
ticipants from an observer perspective according to the guidelines from Seaman
as published in Shull et al. [15].

3.4 Analysis Procedure

Individual On-Site Workshops. Notes were taken during the separate on-
site workshops alongside with capturing the resulting topic maps. The notes were
structured and summarized as separate reports that were sent to the SPoCs
afterwards. The collected clustered topics as well as key statements served as
basis for designing the survey.

Survey. The survey was realized as online questionnaire that allowed post-
processing of the data in the statistical environment R. The data was split
according to the different sections in the survey and open-ended responses were
separated. Likert-visualization was chosen for the range-, pair-focusing, and
Likert-scale answers; for the pair-focusing answers, Fisher’s exact test (cf. [17])
was chosen to test for differences pairwisely between all companies as this test
is robust and applicable even to smaller data sets.

Joint Workshop with External Agile Expert. During the joint work-
shop, notes were also taken to complement and structure the existing data. The
main results from the joined workshop were summarized and sent to attendees
afterwards.

3.5 Validity Procedure

To ensure validity in our comparative case study, we applied both, method and
data triangulation: For the former, (a) we initially conducted individual on-
site workshops to explore the topic at the three different sites, followed by (b)
separate surveys at the respective companies with a broad set of recipients, and
complemented by (c) a joint workshop from the observer perspective, where we
presented results from the first two steps. For the joint workshop, (a) we collected
input from different, independent companies, and (b) let the final workshop be
moderated by an external person to avoid influencing the workshop outcome.

Expectations and Challenges from Scaling Agile 21

4 Results

In the following, we are presenting the joint results from the three aforementioned
data sources. As the notes from the individual on-site workshops were used to
design and structure the survey, they are not reported here explicitly. The survey
was completed by 11 respondents from company A, 19 respondents from com-
pany B, and 16 respondents from company C resulting in 46 responses in total.

Fig. 1. Familiarity and usage of agile principles over all companies

Results to RQ-1: Fig. 1 depicts the familiarity and usage of agile principles
over all companies. While having small teams is apparently present to a large
extent, test-driven development is only applied at one third of the respondents.

Fig. 2. Where do companies put their emphasis on? Respondents could express their
emphasis on a scale from 1 to 7 to describe their level of favoring one topic over the
other

22 C. Berger and U. Eklund

Results to RQ-2: The survey’s next section asked to estimate where their own
company puts its emphasis regarding pairs from opposite aspects regarding agile
and non-agile values. Fig. 2 visualizes the responses.

We conducted a test to pairwisely compare the companies as shown in Tab. 1,
and we could not observe any pairwise difference in the responses from the three
different companies.

Table 1. Fisher’s exact test with a p-value of 0.05: There is no difference in perceiving
a company’s emphasis between the responses from pairwisely comparing the companies

Where does your organization put emphasis on? Companies
A/B A/C B/C

Individuals and interactions over processes and tools p = 0.691 p = 0.077 p = 0.072
Working implementation over comprehensive documentation p = 1.000 p = 0.400 p = 0.272

Customer collaboration over contract negotiation p = 0.433 p = 0.192 p = 0.694
Responding to change over following a plan p = 1.000 p = 0.666 p = 0.476

Product implementation over product delivery p = 0.380 p = 1.000 p = 0.440
Product implementation over product integration p = 0.354 p = 0.642 p = 0.054

Flexibility over predefined plan p = 0.679 p = 1.000 p = 0.452
Teams over overall enterprise p = 0.411 p = 1.000 p = 0.710

Results to RQ-3: The expected benefits when scaling Agile are presented in
the following. As shown in Fig. 3, all companies expect with almost 90% a higher
quality of the work products.

Fig. 3. Higher quality is expected from all companies

Fig. 4 depicts further expected benefits when scaling Agile where the top
responses expect faster time-to-market and shorter lead-times during the devel-
opment.

Results to RQ-4: The expected challenges when scaling Agile are depicted
in Fig. 5. The most difficulties are expected in the existing test facilities, which
is in line with the low adaptation rate for test-driven development, followed by
adapting the organizational structure.

The joint workshop with the external expert on Agile resulted after a discus-
sion phase among the involved companies in the following four cluster areas for

Expectations and Challenges from Scaling Agile 23

Fig. 4. Expected benefits from scaling agile over all companies

Fig. 5. Expected challenges when scaling Agile over all companies

24 C. Berger and U. Eklund

expected challenges when scaling Agile: Leadership, Collaboration, Focusing on
System, and Focusing on Customer. From these four topic areas where different
possible change initiatives were jointly identified, there was consensus between
all companies for (a) improving collaboration between all disciplines involved in
product development and (b) changing the overall mindset in the organization
as initial steps towards scaling Agile outside software development teams.

4.1 Threats to Validity

In the following, we are discussing threats to the validity of our comparative
case study. Considering construct validity, our method triangulation reduced
the risk of capturing incomplete data that would render in misleading results;
in this regard, the plausibility of the findings from the different stages was val-
idated with the SPoCs and the final joint workshop. A possible threat to the
construct validity is that the survey was based on the underlying assumption
that scaled agile development would actually have benefits for the organization,
and that assumption may not be shared by respondents to the survey. Further-
more, the authors had only limited influence on the selection of the participants
for the workshops.

Regarding internal validity, responses to the expected benefits from scaling
Agile were gathered without associating implementation costs to them and thus,
enforcing a prioritization. Thus, there might be a tendency from the respondents
to wish or hope for all benefits from scaling Agile. As for initial initiatives to
scale Agile, the most important challenges are of main interest, this risk, though,
can be neglected.

Considering external validity, the selected companies reflect large scale enter-
prises with more than 15, 000 employees and a volume-oriented production
process. Furthermore, these companies are leading in their respective market seg-
ments and thus, the findings can be generalized to other companies in the mecha-
tronics domains that have a lengthy and traditionally non-agile development
process; this observation is also supported by the results from Fisher’s exact test.

With respect to reliability, the iterative feedback of the company’s SPoCs as
well as the involvement of an external expert for Agile, the risk that the findings
depend on the involved researchers was tackled.

5 Conclusion and Future Work

We presented a comparative case study conducted at three large-scale, mecha-
tronics-driven enterprises to explore benefits and challenges from scaling Agile
to non-software teams. The study consisted of individual on-site workshops, a
large survey, and a joint workshop with all companies moderated by an external
expert on Agile. While all companies have implemented elements from Agile,
main findings are that (a) the expected main benefit is a faster time-to-market
product development, (b) an inflexible test environment, though, inhibits fast
feedback to changed or added features and thus, prevents scaling Agile outside

Expectations and Challenges from Scaling Agile 25

the software development team, and (c) the existing organizational structure
including the company’s mind-set needs to be adapted to beneficially scale Agile.

Relation to Existing Evidence. Our results of the need for an agile mindset
and the importance of the testing environment in mechatronics systems is con-
firmed by other studies. [18] concludes that observed resistance towards working
agile was partially based on a lack of an agile mindset, caused by extensive expe-
rience with non-agile methods, something also common among the companies
in our study. [19] also identified the challenge of realizing continuos integration
testing with a wide variety of platforms. One example they mention is the diffi-
culty to reproduce reported faults with the right testing environment including
released hardware.

The other main challenge on adjusting the organizational structure confirms
what many scaled methods aim for, and is also the topic of both recent research
(e.g. [18,20]) and of industrial frameworks such as Disciplined Agile Delivery [21].

Impact/Implications. This comparative case study is the first of its kind
reporting about explorative results regarding expected benefits and challenges
from scaling Agile at large scale, mechatronics-driven companies. Its findings
have an apparent impact to companies with a similar development and manu-
facturing structure.

Limitations. All involved companies are at an comparable stage regarding scal-
ing Agile. Thus, this comparative case study focuses primarily on the expected
benefits and the foreseeable challenges when initiating initiatives for scaling Agile
outside the software development teams.

Future Work. Future work needs to be done in continuously accompanying
the enterprises during their initiatives for scaling Agile to collect and analyze
more data towards guidelines and best practices for adopting and scaling Agile in
mechatronics companies. Furthermore, comparisons with other domains would
be possible to plan and guide such initiatives.

Acknowledgments. We are grateful to the companies who significantly supported
this study in the context of Software Center.

References

1. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mellor, S., Schwaber, K., Sutherland, J., Thomas, D.: Manifesto for the Agile
Software Development (2001)

2. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14(2), 131–164 (2008)

26 C. Berger and U. Eklund

3. Kettunen, P., Laanti, M.: Combining agile software projects and large-scale organi-
zational agility. Software Process: Improvement and Practice 13(2), 183–193 (2008)

4. Dyb̊a, T., Dingsøyr, T.: Empirical studies of agile software development: A sys-
tematic review. Information and Software Technology 50(9–10), 833–859 (2008)

5. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:
Towards explaining agile software development. Journal of Systems and Software
85(6), 1213–1221 (2012)

6. Abrahamsson, P., Warsta, J., Siponen, M., Ronkainen, J.: New directions on agile
methods: a comparative analysis. In: Proceedings of the International Conference
on Software Engineering, pp. 244–254 (2003)

7. Holmström Olsson, H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven”.
In: Proceeding of the Euromicro Conference on Software Engineering and Advanced
Applications, Cesme, Izmir, Turkey (2012)

8. Kerievsky, J.: Industrial XP: Making XP work in large organizations. Executive
Report, vol. 6, no. 2, Cutter Consortium (2005)

9. McMahon, P.: Extending agile methods: a distributed project and organizational
improvement perspective. In: Systems and Software Technology Conference (2005)

10. Lagerberg, L., Skude, T., Emanuelsson, P., Sandahl, K., Stahl, D.: The impact
of agile principles and practices on large-scale software development projects: a
multiple-case study of two projects at ericsson. In: ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, Baltimore, MD,
USA, pp. 348–356 (2013)

11. Albuquerque, C.O., Antonino, P.O., Nakagawa, E.Y.: An investigation into agile
methods in embedded systems development. In: Murgante, B., Gervasi, O., Misra,
S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012,
Part III. LNCS, vol. 7335, pp. 576–591. Springer, Heidelberg (2012)

12. Shen, M., Yang, W., Rong, G., Shao, D.: Applying agile methods to embedded
software development: a systematic review. In: Proceedings of the International
Workshop on Software Engineering for Embedded Systems, pp. 30–36. IEEE (2012)

13. Müller, M., Sazama, F., Debou, C., Dudzic, P., Abowd, P.: Survey - State of
Practice “Agile in Automotive”. Technical report, KUGLER MAAG CIE GmbH
(2014)

14. Kaisti, M., Mujunen, T., Mäkilä, T., Rantala, V., Lehtonen, T.: Agile principles in
the embedded system development. In: Cantone, G., Marchesi, M. (eds.) XP 2014.
LNBIP, vol. 179, pp. 16–31. Springer, Heidelberg (2014)

15. Shull, F., Singer, J., Sjøberg, D.I.K. (eds.): Guide to Advanced Empirical Software
Engineering. Springer London, London (2008)

16. Goodman, L.A.: Snowball Sampling. The Annals of Mathematical Statistics 32(1),
148–170 (1961)

17. Fisher, R.A.: On the Interpretation of χ2 from Contingency Tables, and the Cal-
culation of P. Journal of the Royal Statistical Society 85(1), 87 (1922)

18. van Manen, H., van Vliet, H.: Organization-wide agile expansion requires an
organization-wide agile mindset. In: Jedlitschka, A., Kuvaja, P., Kuhrmann, M.,
Männistö, T., Münch, J., Raatikainen, M. (eds.) PROFES 2014. LNCS, vol. 8892,
pp. 48–62. Springer, Heidelberg (2014)

19. Petersen, K., Wohlin, C.: A comparison of issues and advantages in agile and
incremental development between state of the art and an industrial case. Journal
of Systems and Software 82(9), 1479–1490 (2009)

20. van Waardenburg, G., van Vliet, H.: When agile meets the enterprise. Information
and Software Technology 55(12), 2154–2171 (2013)

21. Ambler, S.W., Lines, M.: Disciplined Agile Delivery. 1 edn. IBM Press (2012)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 27–39, 2015.
DOI: 10.1007/978-3-319-18612-2_3

An Industrial Case Study on Test Cases as Requirements

Elizabeth Bjarnason1(), Michael Unterkalmsteiner2,
Emelie Engström1, and Markus Borg1

1 Lund University, SE-221 00, Lund, Sweden
{elizabeth.bjarnason,emelie.engstrom,markus.borg}@cs.lth.se

2 Blekinge Institute of Technology, SE-371 79, Karlskrona, Sweden
mun@bth.se

Abstract. It is a conundrum that agile projects can succeed ‘without require-
ments’ when weak requirements engineering is a known cause for project fail-
ures. While Agile development projects often manage well without extensive
requirements documentation, test cases are commonly used as requirements.
We have investigated this agile practice at three companies in order to under-
stand how test cases can fill the role of requirements. We performed a case
study based on twelve interviews performed in a previous study. The findings
include a range of benefits and challenges in using test cases for eliciting, vali-
dating, verifying, tracing and managing requirements. In addition, we identified
three scenarios for applying the practice, namely as a mature practice, as a de
facto practice and as part of an agile transition. The findings provide insights
into how the role of requirements may be met in agile development including
challenges to consider.

Keywords: Agile development · Behaviour-driven development · Acceptance
test · Requirements and test alignment · Case study

1 Introduction

Agile development methods strive to be responsive to changing business requirements
by integrating requirements, design, implementation and testing processes [1][2]. Face-
to-face communication is prioritised over written requirements documentation and cus-
tomers are expected to convey their needs directly to the developers [3][4]. However,
weak customer communication in combination with minimal documentation is reported
to cause problems in scaling and evolving software for agile projects [4].

Requirements specifications fill many roles. They are used to communicate among
stakeholders within a software development project, to drive design and testing, and
to serve as a reference for project managers and in the evolution of the system [6].
Due to the central role of requirements in coordinating software development, there
exists a plethora of research on how to document requirements with varying degrees
of formality depending on its intended use. This spans from formal requirements
specifications [7] and requirements models [8], over templates [9] to user stories [10]
and requirements expressed using natural language. At the formal end of the spec-
trum, requirements specifications can be automatically checked for consistency [11]

28 E. Bjarnason et al.

and used to derive other artefacts, e.g. software designs [12] or test cases [13]. For the
less formal approaches, requirements documentation is driven by heuristics and best
practices for achieving high quality [14] requirements.

The coordination of evolving requirements poses a challenge in aligning these with
later development activities including testing [5]. In a previous study we identified the
use of test cases as requirements (TCR) as one of several industrial practices used to
address this challenge [5]. In this paper, we investigate this practice further by a more
detailed analysis of the interview data from the three case companies (of six) that
explicitly mentioned this practice. The case study presented in this paper investigates
how the practice may support the role of requirements engineering (RE) by investigat-
ing RQ1 How does the TCR practice fulfil the role of requirements? and RQ2 Why
and how is the TCR practice applied?

The rest of this paper is organized as follows. Section 2 describes related work.
Section 3 presents the case companies and Section 4 the applied research method. The
results are reported in Section 5, while the research questions are answered in Sec-
tions 6 and 7. The paper is concluded in Section 8.

2 Agile RE: Test Cases as Requirements Documentation

In agile software development requirements and tests can be seen as two sides of the
same coin. Martin and Melnik [15] hypothesize that as the formality of specifications
increases, requirements and tests become indistinguishable. This principle is taken to the
extreme by unit tests [16] where requirements are formalized in executable code. Practi-
tioners report using unit tests as a technical specification that evolves with the imple-
mentation [17]. However, unit tests may be too technical for customers and thereby lack
the important attribute of being understandable to all relevant stakeholders.

Acceptance tests are used to show customers that the system fulfils the require-
ments [18]. However, developing acceptance tests from requirements specifications is
a subjective process that does not guarantee that all requirements are covered [18].
This is further complicated by requirements documentation rarely being updated [19],
leading to potentially outdated acceptance tests. In agile development, automated
acceptance tests (AATs) drive the implementation and address these issues by docu-
menting requirements and expected outcomes in an executable format [4][20]. This
agile practice is known, among others, as customer tests, scenario tests, executa-
ble/automated acceptance tests, behaviour driven development and story test driven
development [21].

Some organisations view and use the AATs as requirements thereby fully integrat-
ing these two artefacts [15]. AATs are used to determine if the system is acceptable
from a customer perspective and used as the basis for customer discussions, thus re-
ducing the risk of building the wrong system. However, the communication might be
more technical and require more technical insight of the customer. Melnik et al. [22]
found that customers in partnership with software engineers could communicate and
validate business requirements through AATs, although there is an initial learning
curve.

 An Industrial Case Study on Test Cases as Requirements 29

The conceptual difficulty of specifying tests before implementation [23][24][25]
led to the conception of behaviour-driven development (BDD) [26]. BDD incorpo-
rates aspects of requirements analysis, requirements documentation and communica-
tion, and automated acceptance testing. The behaviour of a system is defined in a
domain-specific language (DSL); a common language that reduces ambiguities and
misunderstandings. This is further enhanced by including terms from the business
domain in the DSL.

Haugset and Hansen studied acceptance test driven development (ATDD) as an RE
practice and report on its benefits and risks [20]. Our work extends on this by also
investigating companies that use the TCR practice without applying ATDD princi-
ples.

3 Case Companies

The three case companies all develop software using an agile development model.
However, a number of other factors vary between the companies. These factors are
summarised in Table 1 and the interviewees are characterised in Table 2.

Table 1. Overview of the case companies

Company A B C

Type of company
Softw. develop.,
embedded products

Consulting
Softw. develop., embed-
ded products

#employees in
softw development

125-150 135 1,000

#employees in
typical project

10
Mostly 4-10, but varies
greatly

Previously:
800-1,000 person years

Distributed No No Yes
Domain / System
type

Computer network-
ing equipment

Advisory/technical ser-
vices, appl. management

Telecom

Source of reqts Market driven Bespoke Bespoke, market driven

Main quality focus
Availability, per-
formance, security

Depends on customer
focus

Performance, stability

Certification Not software related No ISO9001

Process Model Agile Agile in variants
Agile with gate decisions
Previous: Waterfall

Project duration 6-18 months No typical project Previously: 2 years
#requirements in
typical project

100 (20-30 pages
HTML)

No typical project
Previously:
14,000

#test cases in typi-
cal project

~1,000 test cases No typical project
Previously: 200,000 for
platform, 7,000 for system

Product Lines Yes No Yes
Open Source Yes Yes incl. contributions Yes (w agile dev model)

30 E. Bjarnason et al.

3.1 Company A

Company A develops network equipment consisting of hardware and software. The
software development unit covered by the interview study has around 150 employees.
The company is relatively young but has been growing fast during the past few years.
A typical software project has a lead time of 6-18 months, around 10 co-located
members and approximately 100 requirements and 1,000 system test cases. A market-
driven requirements engineering process is applied. The quality focus for the software
is on availability, performance and security. Furthermore, the company applies a
product-line approach and uses open-source software in their development.

A product manager, a project manager, and a tester were interviewed at Company
A, all of which described how the company manages requirements as test cases.

3.2 Company B

Company B is a consultancy firm that provides technical services to projects that vary
in size and duration. Most projects consist of one development team of 4-10 people
located at the customer site. The requirements are defined by a customer (bespoke).

The three consultants that were interviewed at Company B can mainly be charac-
terised as software developers. However, they all typically take on a multitude of
roles within a project and are involved throughout the entire lifecycle. All three of
these interviewees described the use of the TCR practice.

3.3 Company C

Company C develops software for embedded products in the telecommunications do-
main. The software development unit investigated in this study, consists of 1,000 people.
At the time of the interviews, the company was transitioning from a waterfall process to
an agile process. Projects typically run over 2 years and include 400-500 people. The
project size and lead time is expected to decrease with the agile process. The projects
handle a combination of bespoke and market-driven requirements. Including the product-
line requirements, they handle a very complex and large set of requirements.

Six of the interviewees (of 15) discussed the practice, namely one requirements
engineer, two project managers, two process managers and one tester.

Table 2. Interviewees per company. Experience in role noted as S(enior) = more than 3 years,
or J(unior) = up to 3 years. Interviewees mentioning the TCR practice are marked with bold.
Note: For Company B, software developers also perform RE and testing tasks.

Role A B C
Requirements engineer C1:S, C6:S, C7:S
Systems architect C4:S
Software developer B1:J, B2:S, B3:S C13:S
Test engineer A2:S C9:S, C10:S, C11:J, C12:S, C14:S
Project manager A1:J C3:J, C8:S
Product manager A3:S
Process manager C2:J, C5:S, C15:J

 An Industrial Case Study on Test Cases as Requirements 31

4 Method

We used a flexible exploratory case study design and process [27] consisting of four
stages: 1) Definition, 2) Evidence selection, 3) Data analysis and 4) Reporting.

Definition of Research Questions and Planning. Since we were interested in how
agile development can be successful ‘without requirements’ we selected to focus on
the practice of using test cases as requirements. We formulated the research questions,
(RQ1) How does the TCR practice fulfil the role of requirements? and (RQ2) Why
and how is the TCR practice applied?

Evidence Selection. We selected to use word-by-word transcriptions from our previ-
ous study of RE-Testing coordination. The research questions of this paper are within
the broader scope of the previous study [5], which also included agile processes. In
addition, the semi-structured interviews provided rich material since the interviewees
could freely describe how practices were applied including benefits and challenges.
Data selection was facilitated by the rigorous coding performed in the previous study.
We selected the interview parts coded for the TCR practice. In addition, the tran-
scripts were searched for key terms such as ‘acceptance test’, ‘specification’.

Data Analysis. The analysis of the selected interview data was performed in two
steps. First the transcripts were descriptively coded. These codes were then catego-
rised into benefits and challenges, and reported per case company in Section 5. The
analysis was performed by the first author. The results were validated independently
by the third author. The third author analysed and interpreted a fine-grained grouping
of the interview data produced in the previous study, and compared this against the
results obtained by the first researcher. No conflicting differences were found.

5 Results

Two of the investigated companies apply the TCR practice while the third company
plan to apply it. The maturity of the practice thus varied. The interviewees for Company
B provided the most in depth description of the practice, which is reflected in the
amount of results per company. Limitations of the findings are discussed in Section 5.4.

5.1 Company A: A De Facto Practice

Test cases have become the de facto requirements in company A due to weak RE
(A21), i.e. the RE maturity in the company is low while there is a strong competence
within testing. Formal (traditional) requirements are mainly used at the start of a pro-
ject. However, these requirements are not updated during the project and lack trace-
ability to the test cases. Instead, the test cases become the requirements in the sense
that they verify and ensure that the product fulfils the required behaviour.

1 Mentioned by this interviewee, see interviewee codes in Table 2.

32 E. Bjarnason et al.

Benefits. Efficient way of managing requirements in a small and co-located organisa-
tion that does not require managing and maintaining a formal requirements specifica-
tion once test design has been initiated (A1). In addition, the structure of the test
specifications is closer to the code simplifying navigation of these ‘requirements’
once the implementation has started (A1).

Challenges. As the company grows, the lack of traces to formal requirements is a
problem in communication of requirements changes to the technical roles (A1, A2)
and in ensuring correct test cases (A2). In addition, the test cases lack information
about requirements priority, stakeholders etc., needed by the development engineers
when a test case fails (A2) or is updated (A3). The untraced artefacts do not support
either ensuring test coverage of the formal requirements (A1, A3), or identifying the
test cases corresponding to the requirements re-used for a new project (A2).

5.2 Company B: An Established Practice

Company B actively applies the TCR practice through behaviour-driven development
supported by tools. The customer and the product owner define product and customer
requirements. Then, for each iteration, the development engineers produce acceptance
criteria (user scenarios) and acceptance test cases from these requirements. These
‘requirements test cases’ are iterated with the business roles to ensure validity (B1),
and entered into an acceptance test tool that produces an executable specification. The
interviewees described that the acceptance criteria can be used as a system specifica-
tion. However, interviewee B3 stated that the acceptance criteria can be read ‘to get
an impression. But, if you wonder what it means, you can look at the implementa-
tion’, i.e. this documentation is not fully stand-alone.

Benefits. The interviewees stated that the main benefits are improved customer col-
laboration around requirements, strengthened alignment of business requirements
with verification, and support for efficient regression testing. The customer collabora-
tion raises the technical discussion to a more conceptual level while also improving
requirements validity, since, as an engineer said, ‘we understand more of the require-
ments. They concretize what we will do.’ (B1) This alignment of business and techni-
cal aspects was experienced to also be supported when managing requirements
changes by the use of acceptance test cases as formal requirements (B2, B3). At the
end of a project the acceptance test cases show ‘what we’ve done’ (B2). Furthermore,
the executable specification provided by this practice, in combination with unit tests,
acts as a safety net that enables projects to ‘rebound from anything’ (B1) by facilitat-
ing tracking of test coverage, efficiently managing bugs and performance issues.

Challenges. The interviewees mentioned several challenges for the practice concerning
active customer involvement, managing complex requirements, balancing acceptance
vs. unit tests and maintaining the ‘requirements test cases’. Over time the company has
achieved active customer involvement in defining and managing requirements with this
practice, but it has been challenging to ensure that ‘we spoke the same language’ (B3).
The interviewees see that customer competence affects the communication and the out-
come. For example, interviewee B3 said that non-technical customers seldom focus on

 An Industrial Case Study on Test Cases as Requirements 33

quality requirements. Similarly, getting the customer to work directly with requirements
(i.e. the acceptance test cases) in the tool has not been achieved. This is further compli-
cated by issues with setting up common access across networks.

Complex interactions and dependencies between requirements, e.g. for user
interfaces (B1) and quality requirements (B2), are a challenge both to capture with
acceptance test cases and in involving the customer in detailing them. Furthermore,
automatically testing performance and other quality aspects on actual hardware and in a
live testing environment is challenging to manage with this approach.

All interviewees mentioned the challenge in balancing acceptance vs. unit test
cases. It can be hard to motivate engineers to write acceptance-level test cases. Fur-
thermore, maintenance of the acceptance test cases needs to be considered when ap-
plying this practice (B1, B2, B3). Interviewee B3 pointed out that test cases are more
rigid than requirements and thus more sensitive to change. There is also a risk of dete-
riorating test case quality when testers make frequent fixes to get the tests to pass
(B2).

5.3 Company C: Planned Practice as Part of Agile Transition

The agile transition at the company included introduction of this practice. Require-
ments will be defined by a team consisting of a product owner, developers and testers.
User stories will be detailed into requirements that specify ‘how the code should
work’ (C8). These will be documented as acceptance test cases by the testers and
traced to the user stories. Another team will be responsible for maintaining the soft-
ware including the user stories, test cases and traces between them. In the company’s
traditional process, test cases have been used as quality requirements, as a de facto
practice. Interviewee C1 describes an attempt to specify these as formal requirements
that failed due to not reaching an agreement on responsibility for the cross-functional
requirements within the development organisation.

Benefits. The practice is believed to decrease misunderstandings of requirements
between business and technical roles, improve on the communication of changes and
in keeping the requirements documentation updated (C5, C10).

Challenges. Integrating the differing characteristics and competences of the RE and
testing activities are seen as a major challenge (C5, C10) in the collaboration between
roles and in the tools. RE aspects that need to be provided in the testing tools include
noting the source of a requirement, connections and dependencies to other require-
ments and validity for different products (C5).

5.4 Limitations

We discuss limitations of our results using guidelines provided by Runeson et al. [27].

Construct Validity. A main threat to validity lies in that the analysed data stems from
interviews exploring the broader area of coordinating RE and testing. This limits the
depth and extent of the findings to what the interviewees spontaneously shared around
the practice in focus in this paper. In particular, the fact that the practice was not yet

34 E. Bjarnason et al.

fully implemented at Company C at the time of the interviews limits the insights
gained from those interviews. However, we believe that the broad approach of the
original study in combination with the semi-structured interviews provide valuable
insights, even though further studies are needed to fully explore the topic.

External Validity. The findings may be generalized to companies with similar char-
acteristics as the case companies (see Section 3), by theoretical generalization [27].

Reliability. The varying set of roles from each case poses a risk of missing important
perspectives, e.g. for Company B the product owner’s view would complement the
available interview data from the development team. There is a risk of researcher bias
in the analysis and interpretation of the data. This was partly mitigated by triangula-
tion; two researchers independently performing these steps. Furthermore, a rigorous
process was applied in the (original) data collection including researcher triangulation
of interviewing, transcription and coding, which increases the reliability of the se-
lected data.

6 Test Cases in the Role of Requirements (RQ1)

We discuss how the TCR practice supports the main roles of RE and the requirements
specification according to roles defined by Lauesen [28], i.e. the elicitation and vali-
dation of stakeholders’ requirements; software verification; tracing; and managing
requirements. The discussion is summarised in Table 3.

Table 3. Summary of benefits and challenges per role of RE

Benefits Challenges
Elicitation and Validation

Cross-functional communication Good Customer-Developer relationship
Align goals & perspectives between roles Active customer involvement
Address barrier of specifying solutions Sufficient technical and RE competence
 Complex requirements

Verification
Supports regression testing Quality requirements
Increased requirements quality
Test coverage

Tracing
Requirements - test case tracing in BDD Tool integration

Requirements Management
Maintaining RET alignment Locating impacted requirements
Requirement are kept updated Missing requirement context
Communication of changes Test case maintenance
Efficient documentation updates

 An Industrial Case Study on Test Cases as Requirements 35

6.1 Elicitation and Validation

The TCR practice supports elicitation and validation of requirements by its direct and
frequent communication between business and technical roles for all companies. The
customer involvement in combination with increased awareness of customer perspec-
tives among the technical roles supports defining valid requirements. This confirms
observations by Melnik and Maurer [29], Park and Maurer [30], Haugset and Hanssen
[20] and Latorre [31]. Furthermore, at Company B, the use of the acceptance criteria
format led to customers expressing requirements at a higher abstraction level instead
of focusing on technical details. Thus, this practice can address the elicitation barrier
of requesting specific solutions rather than expressing needs [28].

Nevertheless, the TCR practice requires good customer relations, as stated by in-
terviewees in Company B. Active customer involvement is a known challenge for
agile RE due to time and space restrictions for the customer, but also due to that this
role requires a combination of business and technical skills [4][31]. Business domain
tools can be used to facilitate the customers in specifying acceptance tests [30]. For
example, Haugset and Hanssen [20] report that customers used spread-sheets to
communicate information and never interacted directly with actual test cases.

Eliciting and validating requirements, in particular complex ones, relies on compe-
tence of the roles involved. At Company B limited technical knowledge affected the
customer’s ability to discuss quality requirements. This can lead to neglecting to elicit
them altogether [4]. Similarly, capturing complex requirements with acceptance test
cases is a challenge, in particular for user interactions and quality requirements.

6.2 Verification

The TCR practice supports verification of requirements by automating regression
tests as for Company B. The AATs act as a safety net that catches problems and en-
ables frequent release of product-quality code. This was also observed by Kongsli
[32], Haugset and Hanssen [20], and Latorre [31]. The practice ensures that all speci-
fied requirements (as test cases) are verified and test coverage can be measured by
executing the tests.

The verification effort relies on verifiable, clear and unambiguous require-
ments [6]. Test cases are per definition verifiable and the format used by Company B
supports defining clear requirements. Nevertheless, Company B mentioned quality
requirements as a particular challenge for embedded devices as this requires actual
hardware. This confirms previous findings by Ramesh [4] and Haugset and Hanssen
[20] that quality requirements are difficult to capture with AATs.

6.3 Tracing

Tracing of requirements and test cases is supported by the TCR practice, however the
benefits depend on the context. Merely using test cases as de facto requirements (as in
Company A) does not affect tracing. For the BDD approach applied at Company B,
the tools implicitly trace acceptance criteria and test cases, although there are no

36 E. Bjarnason et al.

traces between the original customer requirements and the acceptance criteria. Hence,
as the requirements evolve [33] this knowledge is reflected purely in the test cases.

At Company C, where user stories were to be detailed directly into acceptance test
cases, tracing remains a manual, albeit straight forward task of connecting acceptance
test cases to the corresponding user stories. Furthermore, the responsibility for these
traces is clearly defined in the development process, a practice identified by Uusitalo
[34] as supporting traceability. However, it is a challenge for the company to identify
tools which provide sufficient support for requirements and for testing aspects, and
for the integration of the two.

6.4 Requirements Management

The TCR practice provides benefits in managing requirements in an efficient way
throughout the life-cycle. As mentioned for Companies A and B, the practice facili-
tates a joint understanding of requirements that provides a base for discussing and
making decisions regarding changes. However, the practice also requires effort in
involving development engineers in the requirements discussion. The optimal balance
between involving these technical roles to ensure coordination of requirements versus
focusing on pure development activities remains as future work.

The challenge of keeping requirements updated after changes [5] is addressed by a
close integration with test cases, as for Company B, since the test cases are by neces-
sity updated throughout the project. Furthermore, since the requirements are docu-
mented in an executable format, conflicting new or changed requirements are likely to
cause existing test cases to fail. However, locating requirements in a set of test cases
was mentioned as a challenge for Company B due to badly structured test cases. The
difficulty of organizing and sorting automated tests has also been reported by
Park [21].

Contextual requirements information, e.g. purpose and priority [28], is seldom re-
tained in the test cases but can support, for example, impact analysis and managing
failed test cases. Without access to contextual information from the test cases, addi-
tional effort is required to locate it to enable decision making.

7 The Reasons for and Contexts of the Practice (RQ2)

Each case company applies the practice differently and for different reasons. At Com-
pany A it has become a de facto practice due to strong development and test compe-
tence, and weak RE processes. However, merely viewing test cases as requirements
does not fully compensate for a lack of RE. Company A faces challenges in managing
requirements changes and ensuring test coverage of requirements. The requirements
documentation does not satisfy the information needs of all stakeholders and staff
turnover may result in loss of (undocumented) product knowledge. As size and com-
plexity increase so does the challenge of coordinating customer needs with testing
effort [5].

 An Industrial Case Study on Test Cases as Requirements 37

Company B applies the practice consciously using a full BDD approach including
tool support. This facilitates customer communication through which the engineering
roles gain requirements insight. The AATs provide a feedback system confirming the
engineers’ understanding of the business domain [30]. However, it is a challenge to
get customers to specify requirements in the AAT tools. Letting domain experts or
customers provide information via e.g. spread-sheets may facilitate this [30].

The third practice variant is found at Company C, where it is consciously planned
as part of a transition to agile processes applying story test driven development [21].
The practice includes close and continuous collaboration around requirements be-
tween business and development roles. However, no specific language for expressing
the acceptance criteria or specific tools for managing these are planned. In contrast to
the de facto context, Company C envisions this practice as enabling analysis and
maintenance of requirements. To achieve this, requirements dependencies and priori-
ties need to be supported by the test management tools.

8 Conclusions and Future Work

Coordinating and aligning frequently changing business needs is a challenge in soft-
ware development projects. In agile projects this is mainly addressed through frequent
and direct communication between the customer and the development team, and the
detailed requirements are often documented as test cases.

Our case study provides insights into how this practice meets the various roles that
the requirements play. The results show that the direct and frequent communication of
this practice supports eliciting, validating and managing new and changing customer
requirements. Furthermore, specifying requirements as acceptance test cases allow the
requirements to become a living document that supports verifying and tracing re-
quirements through the life cycle. We have also identified three contexts for this prac-
tice; as a de facto practice, part of an agile transition and as a mature practice.

The results can aid practitioners in improving their agile practices and provide a
basis for further research. Future work includes investigating how to further improve
the RE aspects when documenting requirements as test cases.

Acknowledgement. We want to thank the interviewees. This work was funded by EASE
(ease.cs.lth.se).

References

1. Sommerville, I.: Integrated requirements engineering: a tutorial. IEEE Softw. 22, 16–23
(2005)

2. Layman, L., Williams, L., Cunningham, L.: Motivations and measurements in an agile
case study. J. Syst. Archit. 52, 654–667 (2006)

3. Beck, K.: Manifesto for Agile Software Development. http://agilemanifesto.org/
4. Ramesh, B., Cao, L., Baskerville, R.: Agile requirements engineering practices and

challenges: an empirical study. Inf. Syst. J. 20, 449–480 (2010)

38 E. Bjarnason et al.

5. Bjarnason, E., Runeson, P., Borg, M., et al.: Challenges and practices in aligning require-
ments with verification and validation: a case study of six companies. Empir. Softw. Eng.
19, 1809–1855 (2014)

6. Davis, A.M.: Just Enough Requirements Management: Where Software Development
Meets Marketing. Dorset House, New York (2005)

7. van Lamsweerde, A.: Formal specification: a roadmap. In: Conf. on The Future of Soft-
ware Engineering, pp. 147–159. ACM, Limerick (2000)

8. Pohl, K.: Requirements Engineering - Fundamentals, Principles, and Techniques. Springer,
Heidelberg (2010)

9. Mavin, A., Wilkinson, P.: Big ears (the return of “easy approach to requirements engineer-
ing”). In: 18th Int. Reqts. Engineering Conf., pp. 277–282. IEEE, Sydney (2010)

10. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley
Professional, Boston (2004)

11. Heitmeyer, C.L., Jeffords, R.D., Labaw, B.G.: Automated Consistency Checking of
Requirements Specifications. ACM Trans. Softw. Eng. Methodol. 5, 231–261 (1996)

12. Dromey, R.G.: From requirements to design: formalizing the key steps. In: 1st Int’l Conf.
on Software Engineering and Formal Methods, pp. 2–11. IEEE, Brisbane (2003)

13. Miller, T., Strooper, P.: A case study in model-based testing of specifications and imple-
mentations. Softw. Test. Verification Reliab. 22, 33–63 (2012)

14. Davis, A., Overmyer, S., Jordan, K., et al.: Identifying and measuring quality in a software
requirements specification. In: 1st Int. Softw. Metrics Symp., Baltimore, USA, pp. 141–152
(1993)

15. Martin, R.C., Melnik, G.: Tests and Requirements, Requirements and Tests: A Möbius
Strip. IEEE Softw. 25, 54–59 (2008)

16. Whittaker, J.A.: What is software testing? And why is it so hard? IEEE Softw. 17, 70–79
(2000)

17. Runeson, P.: A survey of unit testing practices. IEEE Softw. 23, 22–29 (2006)
18. Hsia, P., Kung, D., Sell, C.: Software requirements and acceptance testing. Ann. Softw.

Eng. 3, 291–317 (1997)
19. Lethbridge, T.C., Singer, J., Forward, A.: How software engineers use documentation: the

state of the practice. IEEE Softw. 20, 35–39 (2003)
20. Haugset, B., Hanssen, G.K.: Automated acceptance testing: a literature review and an in-

dustrial case study. In: Agile Conf., pp. 27–38. IEEE, Toronto (2008)
21. Park, S., Maurer, F.: A literature review on story test driven development. In: 11th Int.

Conf. on Agile Processes in Softw. Engin. and Extreme Progr., pp. 208–213 (2010)
22. Melnik, G., Maurer, F., Chiasson, M.: Executable acceptance tests for communicating

business requirements: customer perspective. In: IEEE Agile Conf., USA, pp. 35–46
(2006)

23. Causevic, A., Sundmark, D., Punnekkat, S.: Factors limiting industrial adoption of test dri-
ven development: a systematic review. In: 4th Int’l Conf. on Software Testing, Verifica-
tion and Validation, pp. 337–346. IEEE, Berlin (2011)

24. George, B., Williams, L.: A structured experiment of test-driven development. Inf. Softw.
Technol. 46, 337–342 (2004)

25. Janzen, D.S., Saiedian, H.: A leveled examination of test-driven development acceptance.
In: 29th Int’l Conf. on Software Engineering, pp. 719–722. IEEE, Minneapolis (2007)

26. North, D.: Behavior Modification: The evolution of behavior-driven development (2006)
27. Runeson, P., Höst, M., Rainer, A., Regnell, B.: Case Study Research in Software Engi-

neering: Guidelines and Examples. Wiley, Hoboken (2012)

 An Industrial Case Study on Test Cases as Requirements 39

28. Lauesen, S.: Software Requirements: Styles & Techniques. Addison-Wesley Professional,
Harlow (2002)

29. Melnik, G., Maurer, F.: Multiple perspectives on executable acceptance test-driven devel-
opment. In: Concas, G., Damiani, E., Scotto, M., Succi, G. (eds.) XP 2007. LNCS,
vol. 4536, pp. 245–249. Springer, Heidelberg (2007)

30. Park, S., Maurer, F.: Communicating domain knowledge in executable acceptance test dri-
ven development. In: Abrahamsson, P., Marchesi, M., Maurer, F. (eds.) Agile Processes in
Software Engineering and Extreme Programming. LNBIP, vol. 31, pp. 23–32. Springer,
Heidelberg (2009)

31. Latorre, R.: A successful application of a Test-Driven Development strategy in the indus-
trial environment. Empir. Softw. Eng. 19, 753–773 (2014)

32. Kongsli, V.: Towards agile security in web applications. In: 21st ACM SIGPLAN Symp.
on Object-oriented Progr. Systems, Languages, & Appl., Portland, USA, pp. 805–808
(2006)

33. Mugridge, R.: Managing Agile Project Requirements with Storytest-Driven Development.
IEEE Softw. 25, 68–75 (2008)

34. Uusitalo, E.J., Komssi, M., Kauppinen, M., Davis, A.M.: Linking requirements and testing
in practice. In: 16th Int. Conf. Reqts. Engineering, pp. 265–270. IEEE, Catalunya (2008)

What Do Practitioners Vary in Using Scrum?

Philipp Diebold1, Jan-Peter Ostberg2, Stefan Wagner2(B),
and Ulrich Zendler2

1 Fraunhofer Institute for Experimental Software Engineering IESE,
Kaiserslautern, Germany

philipp.diebold@iese.fraunhofer.de
2 University of Stuttgart, Stuttgart, Germany

{jan-peter.ostberg,stefan.wagner,ulrich.zendler}@iste.uni-stuttgart.de

Abstract. Background : Agile software development has become a pop-
ular way of developing software. Scrum is the most frequently used agile
framework, but it is often reported to be adapted in practice. Objective:
Thus, we aim to understand how Scrum is adapted in different contexts
and what are the reasons for these changes. Method : Using a structured
interview guideline, we interviewed ten German companies about their
concrete usage of Scrum and analysed the results qualitatively. Results:
All companies vary Scrum in some way. The least variations are in the
Sprint length, events, team size and requirements engineering. Many
users varied the roles, effort estimations and quality assurance. Conclu-
sions: Many variations constitute a substantial deviation from Scrum as
initially proposed. For some of these variations, there are good reasons.
Sometimes, however, the variations are a result of a previous non-agile,
hierarchical organisation.

Keywords: Agile processes · Scrum variations · Industrial case study

1 Introduction

Nowadays, agile software development has become a common way of develop-
ing software, especially in the information systems domain. A survey on agile
development [7] shows that, although there are many agile process frameworks,
only few are regularly used: Scrum, Extreme Programming (XP) and Kanban.
Scrum is the most frequently used agile process framework with more than 70%
of the answering companies using it [7]. Yet, only 55% use “pure” Scrum as it
has been initially described. Practitioners apply a combination of Scrum and
other approaches or processes, e.g. XP or Kanban, as well as adaptations. Ken
Schwaber, one of the Scrum inventors, states that around “75% of companies
that claim using Scrum, do not really use Scrum” [2].

Therefore, our research objective is to understand these variations in the
application of Scrum in practice. We investigate which variations were intro-
duced and why they are used. To do so, we interviewed employees of ten German
software companies from different domains and with different sizes and analysed
the answers qualitatively.
c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 40–51, 2015.
DOI: 10.1007/978-3-319-18612-2 4

What Do Practitioners Vary in Using Scrum? 41

2 Scrum Background

To be able to identify variations, we need to establish what the standard is. We
use the “Scrum Guide” [13] as our basis for comparison. Thus, we will summarise
the aspects that are most important for this paper:

The roles involved in Scrum are: Scrum Master, Product Owner and
Development Team. The Scrum Master is responsible for the team sticking to
the rules of Scrum and for organising the events. It is his or her task to introduce
changes to optimise the productivity of the Development Team. The Product
Owner is the interface between the Development Team and the stakeholders of
the project. It is his or her task to collect all requirements and add them to
the Product Backlog, the list of known requirements and related tasks. The
Product Owner has to prioritise the requirements in the Product Backlog. She or
he is the only one authorised to change the Product Backlog, and “the Product
Owner is one person, not a committee” [13]. The Development Team has a size
of three to nine developers who are self-organising and cross-functional.

The product is developed in iterations called Sprints taking two to four
weeks with a fixed length (that could vary over the teams). A Sprint can only
be abandoned by the Product Owner if the aim of the Sprint does not match
the aim of the project anymore. At the end of each Sprint, a releasable working
(software) product is available.

Each Sprint contains the following events:

– The Sprint Planning defines the aim of the Sprint: The Product Owner
presents the backlog items with the highest priority, and the Team estimates
how many of them can be accomplished in the next Sprint. This results in
the Sprint Backlog containing all requirements the team committed to
accomplish.

– During the Sprint, the Development Team holds a Daily Scrum of 15 minutes
maximum supervised by the Scrum Master. In this event three questions are
answered: What have I accomplished yesterday to fulfil the Sprint aim? What
will I do today to approach the Sprint aim? Did I encounter a problem which
could interfere with the progress?

– In the Sprint Review, at the end of each Sprint, the Sprint results are
presented to the stakeholders and accepted based on a common definition
of “Done”. The stakeholders give feedback about the new increment and
further progress is discussed.

– In the Sprint Retrospective, the Development Team reflects about the
Sprint to detect problems and develop solutions.

3 Case Study Design

3.1 Research Questions

Our research objective is to better understand the variations of Scrum in practice
and the reasons for these variations. Thus, our study goal is:

42 P. Diebold et al.

Analyse the Scrum framework to explore its industrial usage with respect
to its variations from the perspective of practitioners.

We broke down this research goal, which still covers a wide area, into research
questions (RQ) for a detailed analysis. Based on the description of Scrum (Sec-
tion 2) as the standard for comparison, we ended up with the following research
questions focusing on the variations and reasons of their application to Scrum:

– RQ1: What and why do they vary in the Development Team?
– RQ1.1: What and why do they vary in the role of Product Owner?
– RQ1.2: What and why do they vary in the role of Scrum Master?

– RQ2: What and why do they vary in the Sprints?
– RQ3: What and why do they vary in the events?
– RQ4: What and why do they vary in requirements engineering?
– RQ5: What and why do they vary in quality assurance?

3.2 Case and Subjects Selection

We selected the cases and subjects based on the availability and willingness of
the interview partners. The cases, the specific projects where Scrum is applied,
depend on the study subjects, the interview participants, because they can only
provide experience from their past or current projects. We also aimed to max-
imise variation by asking companies from different domains.

3.3 Data Collection Procedure

We conducted semi-structured interviews with the subjects about their most
recent projects in which they applied Scrum. The guiding questions we used in
the interviews are available in [4] and are aligned with common available Scrum
checklists [9]. Nonetheless, we did not use such checklists, because the reasoning
behind the variations of Scrum is not in their scope.

We conducted all interviews by one of the authors as interviewer together
with one company employee as interviewee. Within the interviews (1) we first
explained the idea behind this work to the participants. (2) We informed them
that we handle their answers anonymously. (3) We gave them the interview
questions and started discussing and answering. The result of the data collection
were the final notes from each interview.

3.4 Analysis Procedure

We analysed the notes of the interviews purely qualitatively. First, we distilled
categories with short answers into a table. For example, we collected the Sprint
length, the duration of the events or the team size for each case. Second, we

What Do Practitioners Vary in Using Scrum? 43

extracted and combined the answers for each of the research questions from the
notes. We discussed and refined these answers among all researchers. For further
discussion, we also checked possible connections between the asked questions
and a mapping study for the usage of agile practices [3].

3.5 Validity Procedure

Our main action was to build and use the structured interview guideline to
support the validity of the results. We selected the study subjects so as to avoid
any interference between them. At the beginning, we stated the purpose of the
interview, and we assured them that the results would be treated anonymously
which gave the interviewees the freedom to give honest and open answers. As
we did not record the interviews, we offered the interviewees the possibility to
check the notes after the interview.

All researchers read and discussed the interview notes as well as the extracted
answers. For part of the table presenting the results, an independent re-extraction
of the answers from the interview notes was conducted by two researchers to find
and resolve discrepancies in the interpretation.

4 Results

4.1 Case and Subject Description

We conducted 10 interviews. The German companies of our interviewees cover
a wide range from one very small start-up (4 employees) up to companies with
around 130,000 employees. Six of the companies had a size between 100 and
350 employees. The remaining three companies are large corporations with sev-
eral thousand employees. Most of the companies (except the smallest one) work
and sell their products or services internationally. Besides the size and interna-
tionality of the organisations, we were interested in the different domains they
were working in to further increase the variation. Yet, nine companies are work-
ing in different information systems domains and the other one in embedded
systems. Our interviewees were all developers or development managers but are
not necessarily representative for other Scrum teams in the same company.

4.2 Overview

We were able to give short answers for 14 aspects of the interview notes. These
are shown in Table 1. We provide the team size (excluding Scrum Master and
Product Owner), if tasks are outsourced, i.e. given to people outside of the team,
and if the team is at only one location. We show if there is a Scrum Master and
a Product Owner. For all the event types, we give the durations and, for the
Daily Scrums, also if discussions are allowed beyond the answers to the three
questions. For the Sprint planning, we report the Sprint lengths, if there is a
buffer in the plan, if there is a release plan and whether stories not completed in
a Sprint are put back into the Product Backlog, split or continued. If we could
not clearly determine the answer from the notes, we mark the cell with an “?”.

44 P. Diebold et al.

Table 1. Results of the Interviews

Team Tasks Team Scrum Product Daily Scrum
No. Size Out-

sourced
Local Master Owner Duration Discussions

1 3–7 yes yes yes, is also
project lead

no 15 min,
partly
every
second
day

no

2 5 yes yes yes, is also
developer

yes, but also
PO for the
whole system

30 min,
only
when
needed

brief

3 2–7 no (yes)1 yes yes 15 min,
but story
related

no

4 4–10 no ? yes, had
additional
tasks

no, divided
between
several people

15 min no

5 20–
25
split
into 2
teams

no yes no, divided
between 3
people

yes 30 min yes

6 10 yes yes yes, is also
developer

no 15 min yes

7 2–4 no yes yes yes, but is
also developer

? ?

8 5 +
tester

yes (yes)2 yes, is also
team-leader

no 15 min yes

9 10 yes yes no yes 15 min no
10 4 no (yes)3 no no, role split

between
architect and
customer

15 min yes

1 Two adjacent rooms 2 same floor 3 If everybody is present

Duration of Event Sprint Release Incomplete
No. Planning Review Retrospective Length Buffer Plan Stories4

1 30 min both together 1h 4 weeks 10% yes back/split
2 1 day both together 1 day 4 weeks none yes back/cont.
3 1 day 1h 1.5h 2 weeks none yes back
4 4–7h 30 min 1h 2 weeks none no split
5 3h 3h ? 3 weeks 20% yes cont.
6 ? ? ? 4 weeks,

3× 2 weeks
none yes ?

7 1 day 1 day ? 1–4 weeks 25% no split
8 1.5h 1.5h 1.5h 2 weeks no no split
9 4h 1h–1.5h 1h 2 weeks no yes split
10 all three together 3–4h 1–2 weeks yes yes split

4 back = Back to the Backlog; cont. = Continue in the next Sprint; split = story is
split up and unfinished work has to be planned again

What Do Practitioners Vary in Using Scrum? 45

4.3 Team, Product Owner, and Scrum Master

The team is a central part of Scrum and an important constraint is the size of
the team. We found that several of the companies stretch the team size below
and above the recommended 3–9 people. Two of the companies have teams with
only two members. Three companies work with teams of up to ten members; one
of these even with more than 10 members. The reason is that originally, there
was a classical team of 25 people.

Some teams have dedicated experts for specific topics while others are gener-
alists. The teams with experts explain their choice by the extraordinary technical
depth and higher efficiency. The oddest case was a “classical” Scrum team and
an additional team for writing specifications. The company considers this neces-
sary, because they implement the core of a very large project with many other
teams relying on them. The specifications team is responsible for acquiring infor-
mation about all interfaces and from all the other teams. On the other hand, the
teams with generalists argue that it reduces the problem of unavailable people
and allows the team balance responsibilities better.

Most of the companies run cross-functional teams with all expertise necessary
for the successful completion of the project. Two of the companies outsourced
some aspects, e.g. UI design or manual testing.

Ionel [8] found similar conclusions. He points out, as a possible cause for this,
that smaller teams might work more effectively due to better communication, but
the additional effort to coordinate a bunch of small teams increases significantly.
So companies tend to increase the team size instead.

Half of the companies follow the standard idea of a Product Owner in their
projects. Often, the Product Owner is a business analyst responsible for one or
more teams (to reduce effort for communication between them). One company
also had a hierarchy of Product Owners. Two companies even had a Product
Owner directly from the customer. In contrast, in one company, the Product
Owner was both, the business expert and the project manager. In one company,
there were two Product Owners: one being the internal software architect and
one being the external customer. Others reported that they either do not have
a dedicated Product Owner at all and receive requirements directly from stake-
holders or have a separate product management (department). Finally, in one
company, a developer took this role because of the company size of four people.

It is interesting that not all interviewed companies had a Product Owner,
as e.g. Moe and Dingsøyr [12] stress that the Product Owner is crucial for the
communication of the product vision.

Almost all interviewees stated that they use the role of the Scrum Master
in some way. However, the implementation differs: Companies fill this role with
an existing project manager or team lead, split it between project manager
and software architect or have one of the developers as Scrum Master. Thus,
the main difficulty seems to be that being Scrum Master for only one team is
not a full-time job. Two companies report that having one of the developers
as Scrum Master works well with a strong-minded and experienced developer,
because such a person has a better insight into the technicalities of the project.

46 P. Diebold et al.

This also increases his acceptance with the rest of the developers. In another
company, where the Scrum Master is mainly a developer, the role degenerated to
an event organiser. Only one company does not name a Scrum Master explicitly.
In all companies without a dedicated Scrum Master, the costs seem to play a
major role. They avoid reducing the overall capacity by assigning a developer
as full-time Scrum Master. Another possible cause for a “shared” Scrum Master
is presented by Moe and Dingsøyr [12]. The role is shifted in the direction of
a project manager, because the team members are working on many different
projects simultaneously, and so the Scrum Master is also in charge of managing
the progress of different projects.

4.4 Sprint

All interviewees reported that their companies run fixed-length Sprints. The
length of these Sprints is mostly four weeks but some also used two or three
weeks. The smallest company uses a fixed Sprint length in a project but varies
over projects. They sometimes even run one-week Sprints. One company reported
that they separate “normal” Sprints of four weeks from subsequent two-week
Sprints for clean-up work. All interviewees reported that exceptions are rare,
e.g. for public holidays. One company handles new product generations more
flexibly but has fixed-length Sprints for established products. One interviewee
reported that the Sprint is not shielded from outside changes to let the product
management remove stories from or push stories into ongoing Sprints.

Most companies do not calculate a buffer in the work assigned to a Sprint.
But two interviewees report that they only calculate with 80% workload for the
developers to account for sick leave or uncertainties. One company uses a fixed
10% buffer. Another reserves 25% for bug fixing, grooming and any unforeseen
work. Another company has a varying buffer for technological risks.

4.5 Events

Although the Daily Scrum is a central means of communication in Scrum,
we found that most of the companies do not follow [13]. Some companies hold
events of 30 minutes instead the 15 minutes. We also have results that the
event is done every other day or only once a week, if there are not enough
news. One company allows members and Scrum Masters of other teams, who
are responsible for interfaces, to be present at the Daily Scrum. This should make
agreements on these interfaces easier. Furthermore, several interviewees reported
that discussions are allowed during their Daily Scrums. The reason is that then
they discuss issues relevant for everyone on the team and decisions can be made.
One interviewee described that they hold the event structured according to the
currently relevant User Stories and discuss them one by one because of higher
efficiency.

A reason why the time span between Daily Scrums is increased might be the
increased team size. As Ionel [8] stated, the increased event time also holds the

What Do Practitioners Vary in Using Scrum? 47

risk of team members becoming uninterested. Companies might try to compen-
sate for that by not holding the events daily, thus increasing the information
content to keep it interesting for everyone.

All companies hold explicit Sprint planning events with varying topics from
the current Sprint up to several Sprints. Most companies also follow the proposed
structure of (1) fixing the stories for the Sprint and then (2) refining them into
tasks. Six companies reported that they use planning poker for estimating User
Stories. Sometimes, the planning poker sessions are held outside the planning.
If they have very unclear stories, one company inserts a pre-planning phase of
up to five days. Some companies skip the second part of the event. The small
company even does not define any acceptance criteria because of the vaguely
defined User Stories and the missing Product Owner taking care of that. Most
companies reserve a whole day for the event and report that this investment pays
off by accurate planning and estimates. One company reported only 30 minutes
but we assume that they do not perform a proper planning.

All interviewees reported that their companies hold some kind of Review
event. In several companies, other stakeholders are not always present at the
Review. In one company it is a means to get feedback about missing functionality
from the Product Owner. Two companies have the strategy to conduct two
Reviews: One Review is internal with other developers reviewing the results.
The second Review contains other stakeholders and in particular the customer.
The reason is that the team has the possibility to make smaller changes and
corrections based on first feedback before the customer sees the increment.

Finally, the Retrospective is held in most companies. We found only one
company that does not use Retrospectives at all. Another company holds them
only rarely. All interviewees report that the Retrospectives are held together or
at least on the same day as the Review. In this event, however, only the team
participates. The length of the combined Review and Retrospective events range
from 1 to 3.5 hours. Only the small company has a full day Review event.

4.6 Requirements

All interviewees use a Product Backlog as a central means of capturing require-
ments. As Scrum suggests, all companies keep the requirements in the Product
Backlog rather vague and high-level. One interviewee stated that one of the
aims is to give an overview of the project. Several of the projects use JIRA1 for
handling the Product Backlog. Microsoft Excel is in use alternatively.

The more concrete requirements in the Sprint Backlog are handled mostly
as proposed in the Scrum Guide. Almost all interviewees described that the team
selects and refines requirements from the prioritised list in the Product Backlog.
Only one company does not allow the team to decide on that but the Product
Owner, architect and project leader select and prioritise the requirements. This
is a relic from the older, hierarchical development process.

1 https://www.atlassian.com/software/jira

https://www.atlassian.com/software/jira

48 P. Diebold et al.

The common way to specify requirements is by User Stories. In most com-
panies, the team defines some more or less sharp acceptance criteria per User
Story. Only one team in our study had an actual Definition of Done in the Scrum
sense. In one company, the acceptance criteria are defined during Sprint plan-
ning. One company does not consequently use User Stories as means of describing
requirements. They state that they use them only for a better understanding but
not for all requirements. The reason is, again, the small size of the company and
the missing Product Owner. If a User Story cannot be completed in a Sprint,
there are two strategies in the analysed companies: Either the whole User Story
is pushed back to the Product Backlog and reprioritised, or the team tries to
split the User Story into something shippable now and tasks that are done in
the next Sprint. The effort for a User Story is estimated either in story points
or person-hours. The companies using person-hours argue that they found story
points too abstract and prefer to work with a more specific unit.

4.7 Quality Assurance

All interviewees described the usage of automated tests in their companies. They
are usually part of a continuous integration and nightly builds. Only four com-
panies explicitly mention additional code reviews and automated static analysis.
Four interviewees explicitly mentioned manual tests. One company emphasised
that they also do a review of each User Story they define. Scrum has no explicit
constraints on the used quality assurance techniques.

The work of Fontana, Reinehr and Malucelli [6] revealed that agile quality
assurance can be added at any level of maturity. It is possible that the companies
with less QA techniques in their development processes are at the beginning of
their personal development in the agile world and so focus first on the essential
parts, e.g. the involved customer or agile planning.

These quality assurance techniques are used to check the definition of done.
This is an important concept in Scrum. The acceptance of a User Story with
acceptance criteria and a definition of done is practiced in the analysed compa-
nies. It varies, however, how strictly the Definition of Done is defined and who is
deciding acceptance. Several interviewees stated that the acceptance criteria are
not clearly specified. In some companies, the Product Owner decides if the User
Story is accepted. If there is no Product Owner, the team makes this decision.

4.8 Evaluation of Validity

The interview guidelines proved to be helpful for focussing during the interviews
but even more so during analysis as the interviews were not audio taped. We
used the categories as a guiding structure in the analysis and write-up. Addi-
tionally, the interview guidelines reduced the risk of a misinterpretation and
increased the objectivity of the notes taken, because it was always possible to
fall back to the basic question in the guideline. The remaining threat of subjec-
tive filtering by the interviewers is in our opinion negligible. We did not notice
any major misunderstandings. For example, some interviewees were not directly

What Do Practitioners Vary in Using Scrum? 49

aware of what the three questions in the Daily Scrum are but a short explana-
tion could resolve this. Furthermore, we had the impression that the assurance
of anonymity led the interviewees to answer freely and openly.

The independent re-extraction of several of the answers in the main results
table (Table 1) revealed few differences in our interpretation. For example, we
judged differently under which circumstances we describe a case as having a
Scrum Master or Product Owner. A discussion resolved these differences. For the
roles, we decided to stick to the Scrum Guide and not accept a Scrum Master
or Product Owner, if the role is shared by several people. Therefore, we are
confident that the contents of the table are valid. For the further textual results
descriptions, we cannot rule out that there are smaller misinterpretations. Yet,
all researchers reviewed these parts and we discussed unclear issues.

Despite we only interviewed German development teams, we believe that
our qualitative results should be well generalisable for other companies applying
Scrum, especially in information systems. We expect the variations and reasons
will occur in other companies, maybe among others. Still, there might be a
cultural impact, which we are investigating in this study.

5 Related Work

In contrast to our purely outside view on the topic, Kniberg [10] reports from his
experience how Scrum and XP is used in the real world. He discusses essential
parts of the process in detail, including some of the alterations we have seen in
the interviews.

Kurapati, Manyam and Petersen [11] did an extensive survey of agile prac-
tices. Among other topics, they also looked into compliance to the Scrum frame-
work. But while Kurapati et al. stopped at the level of how many Scrum practices
were used, we go one step further and investigate in detail which practices are
used and how and why they are altered.

Moe and Dingsøyr [12] examined the team effectiveness effects of Scrum.
They formulated the alterations of the company involved in the case study as
problems. This is a different perspective compared to our work, but it still shows
which kind of alterations are made and why.

Dorairaj, Noble and Malik [5] studied the behaviour of distributed agile devel-
opment teams. They focused on the dynamics of cooperation in the teams and
presented six strategies the teams adopt to make up for the difficulties in com-
munication in distributed teams. Their data also provided support for our results
concerning the topic of team size as a frequently violated Scrum rule and the
almost complete commitment to the Sprint length of 2–4 weeks.

Barabino et al. [1] conducted a survey on the use of agile methodologies in
web development. From the Scrum practices, they found that the Daily Scrum
is used most often and that aspects connected to the releases, like continuous
delivery, are taken care of less. This matches our results, as we see that the daily
events are used by all of our interviewees with little changes and process parts,
e.g. the release plan, are used seldom and only in a very vague form.

50 P. Diebold et al.

Ionel [8] discusses key features of Scrum, like the team size or the Sprints, and
potential effects of deviations from these key features. For example, he states that
a team of more than 10 people will have increasing difficulties in communicating
and implementing changes. Yet, splitting a larger team into several smaller teams
leads to a large coordination effort (Scrum-of-Scrums).

Fontana, Reinehr and Malucelli [6] thought about what defines maturity in
agile development. They argue that maturity in agile is not about following a
predefined path but to find what fits your agile development style. They still see
some essential agile practices enforced by most of the mature agile users. While
this is on a higher abstraction level then our work, the effect of maturity stated
here might be the reason of some of the changes we see in Scrum.

6 Conclusions and Future Work

Based on the ten interviews performed with different companies about their
applications of Scrum, we can confirm the statement of Schwaber that most
often it is not used as proposed. Our results show that (1) none of the companies
conforms to the Scrum Guide (only one is close) and (2) there is at least one
company deviating from the standard for each aspect. Additionally, the results
of the interviews gave us several reasons for these variations. In some cases, we
found pragmatic justifications such as “the team found it more efficient”. For
example, short discussions during the Daily Scrum seem to be useful in some
companies. Other deviations seem more like a legacy from more hierarchical,
non-agile processes. For example, one company has a specification team and an
implementation team as well as the Scrum Master role split between a project
leader and a chief architect.

In addition to the comparison with related work, we conclude by relating
our results to the overall results of a mapping study on agile practices [3]. The
results concerning the Sprints and their lengths showed similar results as in the
literature: all companies are using a time box. The partial variation of the Sprint
length is also similar in literature. Of the events performed Sprint Planning
is most often mentioned in literature, followed by the Retrospective and less
often, the Review. In contrast, our results show the opposite: Retrospectives
are used less by the interview partners. The common use of Daily Scrums is
confirmed by our results and the mapping study and the few deviations in the
event durations can be found in literature too.

Regarding requirements, again a similarity to [3] can be seen, as User Sto-
ries are used by all of the interview partners. They only vary the way of writing.
Additionally, our results show the different variations of dealing with the con-
cepts of Product Backlog and Sprint Backlog. The mapping study covers all
agile methods, also XP including the on-site customer which is rarely used.
This explains the deviation from our Product Owner results. Product Owners
are often used but frequently in slightly adapted ways. The QA aspects show
the largest deviation between the mapping study and our interview results,
because literature often mentions explicit the absence of pair programming,

What Do Practitioners Vary in Using Scrum? 51

whereas our results give more details about which QA practices are used within
Scrum. This matches the partial usage of QA practices reported in [3].

Based on our results we would like to extend this case study to companies
with more varying background. Additionally, it would be helpful to interview
companies from different countries. Then a detailed comparison with domain
data of [3] would be possible, and we might be able to give practitioners guidance
on when to vary which aspects of Scrum.

References

1. Barabino, G., Grechi, D., Tigano, D., Corona, E., Concas, G.: Agile methodologies
in web programming: a survey. In: Cantone, G., Marchesi, M. (eds.) XP 2014.
LNBIP, vol. 179, pp. 234–241. Springer, Heidelberg (2014)

2. Callanan, M.: Ken schwaber on scrum (2010). http://blog.mattcallanan.net/2010/
02/ken-schwaber-on-scrum.html

3. Diebold, P., Dahlem, M.: Agile practices in practice: a mapping study. In: Proc.
18th International Conference on Evaluation and Assessment in Software Engi-
neering (EASE 2014). ACM (2014)

4. Diebold, P., Ostberg, J.-P., Wagner, S., Zendler, U.: Interview guidelines for “what
do practitioners vary in using Scrum?”. doi:10.5281/zenodo.12856

5. Dorairaj, S., Noble, J., Malik, P.: Understanding team dynamics in distributed
agile software development. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp.
47–61. Springer, Heidelberg (2012)

6. Fontana, R.M., Reinehr, S., Malucelli, A.: Maturing in agile: what is it about? In:
Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 94–109. Springer,
Heidelberg (2014)

7. VersionOne Inc. 8th annual state of agile survey (2013). http://stateofagile.
versionone.com/

8. Ionel, N.: Critical analysys of the Scrum project management methodology. Annals
of the University of Oradea, Economic Science Series 17(4), 435–441 (2008)

9. Kniberg, H.: The unofficial Scrum checklist (2011). https://www.crisp.se/
wp-content/uploads/2012/05/Scrum-checklist.pdf

10. Kniberg, H.: Scrum and XP from the trenches. Lulu.com (2007)
11. Kurapati, N., Manyam, V.S.C., Petersen, K.: Agile software development prac-

tice adoption survey. In: Wohlin, C. (ed.) XP 2012. LNBIP, vol. 111, pp. 16–30.
Springer, Heidelberg (2012)

12. Moe, N.B., Dingsøyr, S.: Scrum and team effectiveness: theory and practice. In:
Abrahamsson, P., Baskerville, R., Conboy, K., Fitzgerald, B., Morgan, L., Wang,
X. (eds.) XP 2008. LNBIP, vol. 9, pp. 11–20. Springer, Heidelberg (2008)

13. Sutherland, J., Schwaber, K.: The Scrum guide: The definitive guide to Scrum:
The rules of the game (2013). http://scrumguides.org

http://blog.mattcallanan.net/2010/02/ken-schwaber-on-scrum.html
http://blog.mattcallanan.net/2010/02/ken-schwaber-on-scrum.html
http://dx.doi.org/10.5281/zenodo.12856
http://stateofagile.versionone.com/
http://stateofagile.versionone.com/
https://www.crisp.se/wp-content/uploads/2012/05/Scrum-checklist.pdf
https://www.crisp.se/wp-content/uploads/2012/05/Scrum-checklist.pdf
http://scrumguides.org

Key Challenges in Early-Stage Software Startups

Carmine Giardino1(B), Sohaib Shahid Bajwa1, Xiaofeng Wang1,
and Pekka Abrahamsson2

1 Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100, Bolzano, Italy
cgiardino@unibz.it

http://www.unibz.it
2 Norwegian University of Science and Technology, NTNU, 7491 Trondheim, Norway

Abstract. Software startups are newly created companies designed to
grow fast. The uncertainty of new markets and development of cutting-
edge technologies pose challenges different from those faced by more
mature companies. In this study, we focus on exploring the key chal-
lenges that early-stage software startups have to cope with from idea
conceptualization to the first time to market. To investigate the key
challenges, we used a mixed-method research approach which includes
both a large-scale survey of 5389 responses and an in-depth multiple-case
study. The initial findings reveal that thriving in technology uncertainty
and acquiring the first paying customer are among the top challenges,
perceived and experienced by early-stage software startups. Our study
implies deeper issues that early-stage software startups need to address
effectively in validating the problem-solution fit.

Keywords: Software startups · Early-stage · Challenges · Validated
learning · Customer value

1 Introduction

Software startups are newly created companies with little or no operating his-
tory, producing cutting-edge products1. The environment of software startups is
extremely dynamic, unpredictable and even chaotic. A systematic mapping study
(SMS) [1] identifies the most frequently reported contextual features of a startup:
general lack of resources, high reactiveness and flexibility, intense time-pressure,
uncertain conditions and tackling fast growing markets. Even though startups
share several similar contexts (e.g. small and web companies), the co-existence
of all these features poses a new, unique series of challenges [2], especially in
their early stage (i.e. from idea conceptualization to first time to market).

Despite several studies reveal the need of early-stage startups to understand
the problem/solution fit [3,4], actual executions prioritize development. Results
in [5] show a necessity to improve practices for a more effective process to obtain
validated learning. However, to achieve this an understanding of the key chal-
lenges faced by startuppers is needed.
1 In this study we refer to products as software products or services.

c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 52–63, 2015.
DOI: 10.1007/978-3-319-18612-2 5

Key Challenges in Early-Stage Software Startups 53

This study aims at understanding the key challenges that are perceived and
experienced by software startuppers at the early stage of their startup initiatives.
The main research question asked in our study is:

RQ: what are the key challenges that early-stage software startups face?
To answer the research question, a mixed-method research approach was

employed, including both survey and case study. We first conducted a survey
to obtain a general overview of the challenges that early-stage software startups
face. A multiple case study was then undertaken to achieve a deeper contextual
understanding of the key challenges identified in the survey.

The rest of this paper is organized as follows: in Section 2, background and
related work are presented drawing upon relevant software engineering and busi-
ness literature. Section 3 presents the empirical research design. It is followed by
the presentation of the survey and case study findings in Section 4. The findings
are further discussed in Section 5, together with the limitations of the study.
The paper is summarized in Section 6 outlining the future research.

2 Background

Sixty percent of startups do not survive in the first five years, whilst 75 percent
of venture capital funded startups fail [6]. A study [5], trying to understand
the failure of two early-stage startups, presents some anecdotal challenges that
are posed to them due to neglecting learning processes. In the two case studies
presented in the paper, the startups invested in product/market fit strategies
prematurely given that users were not yet sold on the product. Involving the
customer to activate the learning process has also been discussed by Yogendra
[7] as an important factor to encourage an early alignment of business concerns to
technology strategies. Learning mechanisms (e.g. learning about one’s strengths,
weaknesses, skills etc.) have been widely researched by Cope [8], who reveals a
deeper conceptualization of the process of learning from venture failures.

However, a SMS [1] reveals that little rigor and relevance exist in the stud-
ies about software startups, and they are not focused on investigating issues
and challenges. Bosch et al. [9] claim that challenges in early-stage startups are
related to the decision of when to abandon an idea. However the focus of the
study shifts on methodologies to develop multiple products, rather than clarify-
ing the nature of the challenges.

Based on the observed knowledge gap that there is a scarcity in the literature
to investigate the challenges faced by early stage software startups, we focus
our study on discovering and understanding the key challenges, using the four
dimensions discussed in [10] and the product development and learning stages [3]
to make sense of them.

In order to classify the challenges we make use of a framework, draw upon
the study of MacMillan et al. [10], applied in startup contexts. Four holistic
dimensions are taken into consideration to present how the challenges impact
on the different development and learning stages. The first dimension is the
team, as the main driver of development. The product, as often startups are

54 C. Giardino et al.

developing technologically innovative solution [2]. The financial and the way it
evolves can set the company growth and its place in the market [11]. Ultimately
knowing the market is essential to evaluate the needs of the final customers [3].

In order to position the challenges we make use of the customer develop-
ment methodology stages. Blank [3] presents the objectives of scaling a business
concept, who discusses that the first learning process is concerned in under-
standing the problem/solution fit. The learning process is presented as follows:
defining or observing a problem; evaluating the problem; defining a solution; and
evaluating the solution. Also the product stages are defined as: conceptualiza-
tion phase; development phase; working prototype; full-functional product. It is
worth emphasizing that these stages are not linear.

3 Research Approach

We have employed a mixed-method research approach by combining both sur-
vey and case study, which provides more richness of data and more reliable
results [12]. Survey results can be greatly improved when combined with other
qualitative research methods (e.g. case study) [13].

We first conducted a web-based survey (available at www.leanstartup.bz)
advertised by means of blogs and attendance at workshops and competitions
related to software startups. The questionnaire contained four main parts. The
first part was introductory, providing a definition and examples of software star-
tups. In the second part, the respondents were asked to provide background
information about their organizations, including the principal domains, the coun-
tries they work in, and their roles within the organization. The third part
contained the questions related to learning processes and product development
status. The fourth part asked about their perceived challenges. The questions
were in the form of multiple choices, with one open-ended option. The partici-
pants were asked to provide the most significant perceived challenge. The termi-
nology used in the questionnaire is based on two exploratory studies [1,5]. The
participants were not obliged to answer all the questions, in order to maintain
response quality when they were not sure about the involved concepts. The data
collection lasted for approximately one year, from September 2013 until Septem-
ber 2014. In total 8240 responses were received, among which 5389 responses (i.e.
65,40%) have completely answered questions on background information and the
perceived challenges, which are mandatory for us. As the first step of analysis,
we obtained a list of key challenges by calculating the frequency of them in the
responses.

In the second phase, we conducted a qualitative study by means of two
cases, to provide a deeper contextual understanding of the key challenges iden-
tified in the large-scale survey. The case study approach improves the degree
of realism to the research phenomenon [14]. A multiple case design allows us
to apply literal and theoretical logic through the comparison and contrast of
multiple cases that are analyzed through the same lens [15]. For the purpose
of this study, we selected the two cases that represent two early stage software

Key Challenges in Early-Stage Software Startups 55

startups, EasyMedicine and MovyNext. The interviewees include the two CEOs
of the startups and a developer from EasyMedicine. First, we conducted a first
round of interviews as a pilot study in these two startups. The initial results of
the pilot study established the two startups as suitable cases for further investi-
gation. Then we conducted a second round of interviews. Both rounds of inter-
views were semi-structured with open-ended questions. They lasted between 30
minutes to 1 hour, and interviews were recorded and transcribed verbatim for
the analysis purpose. The specific data analysis technique, for within-case anal-
ysis, was coding using the identified challenges in the survey as seed categories.
An online tool2 was used to manage interview data and coding process. In the
cross-case comparison, the challenges that EasyMedicine and MovyNext face
were compared and contrasted.

4 Results

4.1 Key Challenges Perceived by Early-Stage Software Startups

Based on the frequency calculation of the challenges perceived by the respon-
dents, we obtained a list of top 10 challenges (contained in 4709 responses, i.e.
87,38% of the 5389 complete responses). The startups in the 4709 sample vary in
different market sectors (predominately in the consumer market, such as mobile
and Internet, i.e. 64,40%). They come from 90 countries around the world (the
majority is from United States 52,60%, Canada 7,94%, United Kingdom 6,71%,
Israel 5,30%, India 4,50%). These startups are young, on average 10 months,
and small in size, predominatly having 2 founding members.

The top 10 critical challenges are presented in Table 1.
To make better sense of the challenges, we plotted the occurrence of the top

10 challenges along the two stages [3]: product development stage and learning
process stage that the software startups were at when the survey was responded.
The result is shown in Figure 1. The Figure is a bubble chart (“x-y scatter
plots with bubbles in categories’ intersections”), where the size of the bubble is
determined by the number of challenges corresponding to the x-y coordinates.

Inspecting Figure 1, we can notice a malformed distribution: the respon-
dents perceive the importance of challenges during their problem evaluation
phase, however there is not a corresponding perception during the first phases of
product development (e.g. only 3 out of 10 before having a working prototype).

In order to enhance the granularity of the distributions of the challenges we
also present a multi-dimensional chart (see Figure 2) in which the 10 challenges
are grouped into four Macmillan et al. mentioned dimensions. A close look at
Figure 2 reveals that the most common perceived challenge is related to market
and product (both representing the 30% of the challenges).

While market and product related challenges are equally important in the
problem evaluation stage, in the mature stage of the product development the
market significantly impact their perception. This might be expected, however,

2 Dedoose is a tool for analyzing qualitative data, available at www.dedoose.com.

56 C. Giardino et al.

Table 1. The list of top 10 challenges

Challenge Description # Dimension

Thriving in
Technology
Uncertainty

developing technologically innovative products, which
require cutting-edge development tools and techniques

1132 Product

Acquiring First
Paying Customers

persuading a costumer to purchase the product, e.g. con-
verting traffic into paying accounts

870 Market

Acquiring Initial
Funding

acquiring the needed financial resources, e.g. from angel
investors or entrepreneurs’ family and friends

682 Financial

Building
Entrepreneurial
Teams

building and motivating a team with entrepreneurial char-
acteristics, such as the ability to evaluate and react to
unforeseen events

436 Team

Delivering
Customer Value

defining an appropriate business strategy to deliver value* 393 Market

Managing
Multiple Tasks

doing too much work in a relatively short time, e.g. duties
from business to technical concerns

351 Team

Defining
Minimum
Viable Product

capturing and evaluating the riskiest assumptions that
might fail the business concept

307 Product

Targeting
a Niche Market

focusing on specific needs of users willing to take risks on
a new product, such as early-adopters and innovators

212 Market

Staying Focused
and Disciplined

not being particularly sensitive to influences from differ-
ent stakeholders, such as customers, partners, investors
and competitors (both actual and potential)

165 Team

Reaching the
Break-even Point

balancing losses with enough profits to continue working
on the project

161 Financial

*The difference between what a customer gets from a product, and what he or she has to give in
order to get it (www.businessdictionary.com).

Fig. 1. Challenges map - learning and product stages

challenges related to the market, such as strategies to acquire the first customers
can reasonably be considered from the very early stages of a startup company.

In the following subsection, the top 10 perceived challenges are further illus-
trated in two real startup settings that were investigated in our multiple-case
study, to provide a richer and contextual description of the challenges.

Key Challenges in Early-Stage Software Startups 57

Fig. 2. Challenge map along the four dimensions

4.2 Key Challenges Experienced in Two Early-Stage Software
Startups

EasyMedicine is a software startup that offers a mobile app for travellers to
solve their health problems during their trips abroad. This app aims at helping
travellers to find medicine, that they normally take in their home country, when
abroad.

MovyNext is a software startup that has developed a web-based movie rec-
ommendation system as a “better movie filter”, customized according to viewers’
interests.

The profiles of the two cases are presented in Table 2

Table 2. Profile of two cases
Profile EasyMedicine MovyNext

Idea/Business domain Health Entertainment

When started Idea: July 2013, Development:
November 2013

Idea: July 2012, Development:
December 2013

No. of founding team members 4 4

Current composition of team 2 (Pharmacists), 2 (Business-
men)

1 mentor (from an incubator), 4
Software developers, 1 designer
(Free lancer)

Current Product
Development Stage

Mature Prototype

Current Learning Process Stage Solution evaluation Solution evaluation

Application Nature Android Mob app Website

Both EasyMedicine and MovyNext have experienced the key challenges iden-
tified in the survey. They are re-organized under the four dimensions of MacMillan
et al. [10] and presented with case contexts.

58 C. Giardino et al.

Product related challenges: The first product related challenge is thriving
in technology uncertainty. In the EasyMedicine case, it is manifested as a lack
of supporting technologies in collecting specific drug information from different
countries. In addition, the CEO of EasyMedicine commented on the lack of
resources to tackle this challenge:

“Our search criteria to find medicine was not efficient. We wanted to imple-
ment multiple search criteria with optimized search within the database, but we
were unable to implement it because of not enough resources available for these
problems.”

On the other hand, even though all of the founders of MovyNext were quite
experienced in developing recommendation systems, they still had issues in
adopting a new crawling algorithm for accurate information about movie trailers
and providing an effective user-interface design for their early adopters. More-
over, the implementation technologies were not flexible to adapt to unforeseen
changes or alternative breakthroughs.

Both EasyMedicine and MovyNext initially developed their MVPs based on
their own intuitions and experiences. In the case of MovyNext, as a consequence
of not properly defining MVP, the team spent a lot of time on developing the fea-
tures (e.g. server side optimization) that users were not interested in. They tried
by prototyping to gather early feedback and to address their technology uncer-
tainty, however the novel solutions had negative impact on the early adopters,
without engaging them effectively to obtain useful feedback.

Market related challenges: Attracting customers to buy a startup product is
a challenging endeavor. In the case of EasyMedicine, the travellers were treated
as paying customers initially. The CEO observed:

“There was positive feedback at the beginning. We got some downloads and
we were satisfied. But it became quite apparent after a while that we were not
making lots of progress. Lots of nice perks at the beginning, and lots of frustration
in weeks after, but as soon as you launch, you discover.”

Meanwhile the interviewed developer mentioned:
“If we are not getting users, we should analyze the reason. There can be

many reasons e.g. difficulty in using the application, application with low quality
etc.”

In the case of MovyNext, the team did not have a specific type of paying
customer in their mind when they developed their application. They did not
have a specific strategy to attract them, as illustrated by the comment from the
CEO:

“You think that your product is cool. Friends are using it, and that’s it.
Paying customers are not coming. How to get this? that’s a challenge.”

Targeting a niche market is particularly critical in the case of EasyMedicine.
The CEO commented:

“At this moment, pharmacies are not seeing big numbers (users). They are
saying, why should I invest, if you don’t have lots of users. This is a two sided
platform. If you don’t see people on the other side, you don’t want to be part
of it. Pharmacists want to see more users.”

Key Challenges in Early-Stage Software Startups 59

In terms of delivering customer value, both EasyMedicine and MovyNext did
not define and validate the needs of their potential customers. In the
EasyMedicine case, also their understanding of customers was changing. In a
similar manner, MovyNext did not have any customer acquisition strategy when
they started developing the application either.

Financial challenges: EasyMedicine was in critical need of initial funding to
continue their project, as the CEO commented:

“It’s a challenge especially in a small city. There are not so many people
to invest in startups if there is not a clear product/business plan. In software
business, it is more challenging. You can create, change, and revolutionize several
times. There were many apps similar to our app in our case.”

In contrast, since MovyNext grabbed the opportunity to work in an incubator
in Oxford, acquiring initial funding is less of an issue. The CEO said:

“The goal of startups should be to enter an incubator. Because this is kind of
validation of your idea that it works.”

Reaching the break-even point is important to keep the business running.
However, neither EasyMedicine nor MovyNext has enough customers yet to be
self-sustainable.

Team related challenges: Building an entrepreneurial team implies several
challenges related to teamwork and team motivation. It also includes appropriate
composition of the team. For example, in the case of EasyMedicine, it was about
keeping people involved. The CEO recalled:

”We did not update our developer for the past two months. We lost him and
he took another assignment. He is not available anymore”.

In comparison, the challenge in building an entrepreneurial team faced by
MovyNext is more related to a lack of diversity in the team composition. The
CEO described the situation:

“We are all computer scientists. There is no one, who work on user experi-
ence. To build product/feature, this is one part of the business. You need people,
that market it, sell it, reach to customer, perform user based experiment. In our
case, we don’t have them.”

Moreover the entrepreneurial teams in the two case studies are overburdened
with lots of activities in a short time. In the case of EasyMedicine, for example,
the team identified that they needed to conduct interviews with the stakeholders
e.g. pharmacists and practitioners. The data from these sources was needed
for the improvement of their business. However, all of the four founders were
doing this as a part-time job, and they did not have time to conduct interviews.
Similarly, MovyNext was also overburdened by various activities. There were
some features (e.g. movie recommendations according to users’ preferences) that
they wanted to add to their website, but they were unable to do so due to a lack
of time. As the CEO said:

“We know what we want to do, but we are overhelmed by other work. There
is no time. Everybody is extremely busy and no one would dedicate full time to
that.”

60 C. Giardino et al.

Staying focused and disciplined is not easy for these two startup teams. If any
team member were less focused or lacked self-discipline, he would have affected
the whole team, as the CEO of EasyMedicine commented:

“Two of the co-founding team members could not dedicate time to the project
for three months because of personal commitments. The issue is that you do not
only lose productivity. The remaining team becomes less motivated too.”

In the case of MovyNext, three of the co-founders were geographically distant.
Hence, this decreased coordination among the team members, and self-discipline
became even more crucial. Everyone needed to work hard and contribute, as the
CEO commented:

“Nobody respects you if you don’t do anything, especially in a startup where
the team is small. Everybody has to contribute.”

In summary, there are many challenges that are common to both the cases e.g.
acquiring first customers, building an entrepreneurial team, delivering customer
value, etc. MovyNext is fortunate enough that they do not have financial issues
being in an incubator, however they are not yet self-sustainable. In contrast,
EasyMedicine is in severe need of initial funding to continue operating.

5 Discussion

Among the challenges identified in our survey, the most prominent one is thriving
in technology uncertainty. This is consistent with the nature of software star-
tups, who are often chasing new technological changes, disrupting the software
industry. In turn, developing new technologies might require innovative tools and
techniques with little community support. EasyMedicine has evidenced such lack
of support.

However, focusing only on technological solutions will not guarantee survival
and success. In order to develop something valuable for customers, startups need
to understand their real problems [3]. However, startups are not consulting the
necessary processes for this need. Both EasyMedicine and MovyNext have not
obtained the necessary validated learning in this aspect. This can be a potential
root cause for other key challenges revealed in the survey, including acquir-
ing the first paying customers. As presented in Figure 2, often the concept of
product/market fit significantly impacts the operational decisions of early-stage
startups. During a previous study [5], we explored how rushing to market can
lead a startup to a misalignment between business and development activities,
without prioritizing the evaluation of the challenged problem.

In order to learn fast from failures, Ries [16] suggests: try an initial idea and
then measure it to validate the effect. This implies an evolutionary approach to
gather knowledge by feedback from stakeholders. He states “Validated learning
is a rigorous method for demonstrating progress when one is embedded in the soil
of extreme uncertainty in which startups grow. It is the process of demonstrating
empirically that a team has discovered valuable truths about a startup’s present
and future business prospects.” When uncertainty is high, startups should focus
on knowledge acquisition. As presented in Section 4.1, during the problem evalu-
ation stage, there is a relatively high number of perceived challenges. Yet, during

Key Challenges in Early-Stage Software Startups 61

the development of the product, the main challenges are predominantly present
in the mature stage.

Making use of user interface prototypes and technical spikes or experiments
are current practices for gathering knowledge and reducing risks. Many stud-
ies have been focusing on finding low footprint methodologies towards Lean
and Agile principles [17,18]. However, presenting just debt-laden features, as
discussed by Tom et al. [19], can frequently impact users, which will cost real
money in support (for motivated evaluators/customers), sales (through turned-
off evaluators), and renewals (through dissatisfied customers). Lack of structure
and time pressure lead startups to lose their focus, investing resources in ineffec-
tive practices. In the case of EasyMedicine, they were trying to get more users
showing prototypes without any strategy to persuade potential customers, and
get paid for their product. Similarly, MovyNext did not have validated learning
process, and spent huge amount of time on developing features that users were
not interested in.

Effective requirements elicitation would improve knowledge acquisition by
engaging stakeholders in understanding the product concept and underlying
problems that need to be addressed [20]. Besides specific features, requirements
elicitation would identify system boundaries and goals especially during the
early-stage of a startup. In this regard, studies about how to support effective
practices during or before development are still lacking and the topic requires
further investigation [1]. Examples of starting validating the problem statement
even before investing on development solutions are the use of pre-orders [21]
or evaluation techniques through crowd-funding projects (e.g. Kickstarter and
Indiegogo) [22]. Identifying the valuable but missing knowledge early in the
project and by defining/tailoring the SE processes to focus on getting/creating
the required knowledge can shift development paradigms in the early phases
and thus reduce the investment in developing ineffective solutions. It is critical
to investigate practices for knowledge acquisition. When uncertainty is reduced,
a startup can gradually focus more and more on customer value. By employing
learning process on the problem statement since the very early-stage, startuppers
can provide more value to their customers [23].

The validity threats to our study design and findings are hereby discussed.
One threat to validity is the selection of subjects. We centered our results on
respondents’ opinions. In order to mitigate this threat, we selected interviewees
holding the position of CEO. Their broad perspectives on their startup orga-
nization were the only data taken into consideration in the study. In addition,
we employed a two-dimensional research approach by integrating on-line surveys
and multiple case studies. However, threats might be the bias by contextual fac-
tors, such as type of product, competitive landscape etc. To mitigate this threat,
we constructed the framework using Macmillan et al. dimensions, widely used
in previous software engineering studies [24,25], enabling a broader reasoning
related to the factors that hinder the success of software startups.

62 C. Giardino et al.

6 Conclusions

Software startups are able to produce cutting-edge software products with a wide
impact on the market, significantly contributing to the global economy. Software
development, especially in the early-stages, is at the core of the company’s daily
activities. Despite their severely high failure-rate, the quick proliferation of soft-
ware startups is not supported by a scientific body of knowledge [1]. This paper
provides an initial explanation of the perceived and experienced challenges by
means of an online survey and multiple-case studies based on two software star-
tups, focusing on early-stage activities, from the product, market, financial and
team perspectives.

A large-scale survey, with 5389 complete responses, shows that thriving in
technology uncertainty (21,01%) and acquiring first paying customers (16,14%)
are among the top challenges that most software startups are facing at their early
stage. In conjunction with the multiple-case study, we described how early-stage
startups are still too keen to develop mature products without understanding
the business problem. When it comes to validating the problem/solution fit, they
continue to develop software, with little focus on the learning process.

To continue the current study we will conduct a more in-depth analysis to
reveal the linkages among the described challenges and with other factors, such
as user growth rate. We call for further investigations on improving validated
learning processes for more accurate and comprehensive evaluation of business
problems from the first stages of product development.

References

1. Paternoster, N., Giardino, C., Unterkalmsteiner, M., Gorschek, T., Abrahamsson,
P.: Software development in startup companies: A systematic mapping study. Infor-
mation and Software Technology 56(10), 1200–1218 (2014)

2. Sutton, S.M.: The role of process in software start-up. IEEE Software 17(4), 33–39
(2000)

3. Blank, S.: The four steps to the epiphany, 1st edn. CafePress (2005)
4. Crowne, M.: Why software product startups fail and what to do about it. In:

Proceedings of International Engineering Management Conference (IEMC), pp.
338–343 (2002)

5. Giardino, C., Wang, X., Abrahamsson, P.: Why early-stage software startups fail: a
behavioral framework. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP,
vol. 182, pp. 27–41. Springer, Heidelberg (2014)

6. Nobel, C.: Why companies fail-and how their founders can bounce back. Working
Knowledge, Harvard Business School, Boston (2011). http://hbswk.hbs.edu/item/
6591.html (accessed August 29, 2013)

7. Yogendra, S.: Aligning business and technology strategies: a comparison of estab-
lished and start-up business contexts. In: Proceedings of Internal Engineering Man-
agement Conference (IEMC), pp. 2–7 (2002)

8. Cope, J.: Entrepreneurial learning from failure: An interpretative phenomenologi-
cal analysis. Journal of Business Venturing 26(6), 604–623 (2011)

http://hbswk.hbs.edu/item/6591.html
http://hbswk.hbs.edu/item/6591.html

Key Challenges in Early-Stage Software Startups 63

9. Bosch, J., Holmström Olsson, H., Björk, J., Ljungblad, J.: The early stage software
startup development model: a framework for operationalizing lean principles in
software startups. In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan,
L., Stol, K.-J. (eds.) LESS 2013. LNBIP, vol. 167, pp. 1–15. Springer, Heidelberg
(2013)

10. Macmillan, I.C., Zemann, L., Subbanarasimha, P.: Criteria distinguishing success-
ful from unsuccessful ventures in the venture screening process. Journal of Business
Venturing 2(2), 123–137 (1987)

11. Yu, Y.W., Chang, Y.S., Chen, Y.F., Chu, L.S.: Entrepreneurial success for high-
tech start-ups - case study of taiwan high-tech companies. In: Proceedings of the
Sixth International Conference on Innovative Mobile and Internet Services in Ubiq-
uitous Computing (IMIS), pp. 933–937 (2012)

12. Mingers, J.: Towards critical pluralism. John Wiley and Sons (1997)
13. Gable, G.G.: Integrating case study and survey research methods: an example in

information systems. European Journal of Information Systems 3, 112–126 (1994)
14. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research

in software engineering. Empirical Software Engineering 14(2), 131–164 (2009)
15. Yin, R.: Case Study Research: Design and Methods. SAGE Publications (2003)
16. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-

tion to Create Radically Successful Businesses. Crown Business (2011)
17. Coleman, G., O’Connor, R.: An investigation into software development process

formation in software start-ups. Journal of Enterprise Information Management
21(6), 633–648 (2008)

18. Kuvinka, K.: Scrum and the Single Writer. In: Proceedings of Technical Commu-
nication Summit, pp. 18–19 (2011)

19. Tom, E., Aurum, A., Vidgen, R.: An exploration of technical debt. Journal of
Systems and Software 86(6), 1498–1516 (2013)

20. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceed-
ings of the Conference on the Future of Software Engineering, pp. 35–46. ACM
(2000)

21. Walling, R.: Start Small, Stay Small: A Developer’s Guide to Launching a Startup.
The Numa Group LLC (2010)

22. Kuo, P.Y., Gerber, E.: Design principles: crowdfunding as a creativity support tool.
In: CHI 2012 Extended Abstracts on Human Factors in Computing Systems, pp.
1601–1606. ACM (2012)

23. Woodruff, R.B.: Customer value: the next source for competitive advantage. Jour-
nal of the Academy of Marketing Science 25(2), 139–153 (1997)

24. Kakati, M.: Success criteria in high-tech new ventures. Technovation 23(5), 447–
457 (2003)

25. Hui, A.: Lean change: Enabling agile transformation through lean startup, kotter
and kanban: An experience report. In: Proceedings of Agile Conference, pp. 169–
174 (2013)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 64–80, 2015.
DOI: 10.1007/978-3-319-18612-2_6

Agile Challenges in Practice: A Thematic Analysis

Peggy Gregory1(), Leonor Barroca2, Katie Taylor1, Dina Salah2, and Helen Sharp2

1 University of Central Lancashire, Preston PR1 2HE, UK
{ajgregory,kjtaylor}@uclan.ac.uk

2 The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
{leonor.barroca,dina.salah,helen.sharp}@open.ac.uk

Abstract. As agile is maturing and becoming more widely adopted, it is impor-
tant that researchers are aware of the challenges faced by practitioners and or-
ganisations. We undertook a thematic analysis of 193 agile challenges collected
at a series of agile conferences and events during 2013 and 2014. Participants
were mainly practitioners and business representatives along with some aca-
demics. The challenges were thematically analysed by separate authors, synthe-
sised, and a list of seven themes and 27 sub-themes was agreed. Themes were
Organisation, Sustainability, Culture, Teams, Scale, Value and Claims and Lim-
itations. We compare our findings against previous attempts to identify and cat-
egorise agile challenges. While most themes have persisted we found a shift of
focus towards sustainability, business engagement and transformation, as well
as claims and limitations. We identify areas for further research and a need for
innovative methods of conveying academic research to industry and industrial
problems to academia.

Keywords: Agile methods · Challenges: evidence-based software engineering

1 Introduction

Successfully adopting and using agile approaches within an organisation is challeng-
ing. As agile approaches mature and their use becomes more widespread [1], the na-
ture of the challenges that practitioners and organisations face is changing. New chal-
lenges are emerging and the focus of existing challenges is shifting, reflecting the
current state of practice. Some activities that used to be regarded as challenging, for
example setting up a Scrum team, are well understood, and are no longer regarded
that way. There is now a growing body of research literature, experience reports,
books and guidelines providing suggestions for those seeking help. Even so, some
known challenges still pose problems in practice. Additionally, new challenges are
emerging as organisations push the boundaries of existing techniques and try new
approaches or move into unknown territory.

The Agile Research Network (ARN), www.agileresearchnetwork.org, is a collabo-
ration between the authors’ institutions and an industry body, the DSDM Consortium.
We believe that in order for our research to have relevance, we need to work on prob-
lems that have been identified by practitioners. We work with organisations in the
following way: we identify a relevant challenge, conduct a case study to explore the

challenge within its organis
suggested solutions. We di
logue with them about m
made. We then publish our
[2-4] and as white papers f
what topics are most challe
Wall’ (see Figure 1), deploy
2013 and October 2014. W
from a range of attendees. I
analysis of our findings.

2 Related Work

A series of papers have cha
2003 Abrahamson et al fou
and a lack of empirical ev
stated that the primary cha
with industrial relevance, su
as action research as a way
in the same year, Dybå and
pirical research, and sugge
of agile adoption as well a
2009 by Abrahamson et al.
trial studies, as well as high
More recently the research
and Chuang et al in 2014 [
cating a maturing field.

Fig

Agile Challenges in Practice: A Thematic Analysis

sational context, and conduct a literature review to iden
iscuss our findings with the organisation, engage in a d

mitigation strategies and undertake research into chan
r findings as academic papers for the research commun
for the practitioner community [5, 6]. In order to find
enging for organisations, we have developed a ‘Challe
yed at five Agile Conferences and events between Octo

We have used this challenge wall to collect agile challen
In this paper we report our approach and present a them

arted the progress of agile research since its early days
und ‘a jungle of emerged software development metho
vidence to support ideas [7]. In 2008, Dingsøyr et al
allenge for agile research was to combine academic rig
uggesting that researchers could use research methods s
y to increase relevance and impact. In a systematic rev
d Dingsøyr concluded that there was a need for more e
sted that researchers should aim to understand the driv
as its effects [9]. The call for more research continued
[10], who also identified a need for more rigour and ind

hlighting a lack of clarity about what was meant by agil
landscape has changed. Both Dingsøyr et al in 2012 [

[12] have reported an increase in published research, in

g. 1. The Challenge Wall at ABC 2013

65

ntify
dia-

nges
nity
out

enge
ober
nges

matic

s. In
ds’,
[8],

gour
uch
iew
em-
vers
d in
dus-
lity.
[11]
ndi-

66 P. Gregory et al.

A number of systematic literature reviews have investigated specific topic areas
within agile: by reviewing the state of research, synthesising research themes and
identifying challenges. For example, a 2011 review of agile global software engineer-
ing literature [13] concluded that research was increasing but there was a predomi-
nance of industrial experience reports which report on modifications to practice based
on contextual factors. A 2014 review of communication in agile global software de-
velopment identified seven research themes, and reported that about half of the cho-
sen papers were experience reports [14]. Other systematic reviews have appraised
topics in agile software development such as user-centred design [15, 16], Scrum
challenges in global software engineering [17], governance [18] and embedded
software [19].

Research overviews and systematic literature reviews usually focus on the state of
research from an academic viewpoint, although in the agile field the importance of
industrial relevance and practical impact is widely acknowledged. However, academ-
ics and practitioners value different aspects of research. Academics tend to value
methodological rigour and the building of theory whereas practitioners look to re-
search to provide answers to specific practical problems and evidence to show which
approaches are most effective.

A number of authors have noted the predominance of industrial experience reports
in the agile literature [13, 14, 20]. Experience reports are extremely useful as they tell
a coherent and contextualised story about an organisation, and in doing so describe
practice, suggest practical techniques, and provide guidelines. However, one of the
limitations of this type of literature is that experience reports usually tell positive sto-
ries of problems solved rather than describing persistent difficulties, worsening situa-
tions or failures. As a result they give us snapshots of successful practice, but almost
certainly do not represent the state-of-the-practice. Indeed, few papers describe major
unresolved problems or failures, resulting in a general publication bias towards only
reporting success. Since many lessons are learnt in response to mistakes and failures,
this bias, although unsurprising, is not helpful. This problem is not specific to the
agile area, and has been noted in other disciplines [21].

During a panel discussion at XP2010 practitioners said that researchers did not al-
ways address questions they wanted answering. During the rest of the conference
delegates were asked to suggest and vote on topics that should be researched, in order
to create a prioritised list of ‘burning issues’ for the agile research community [22].
During an XP2013 workshop Dingsøyr and Moe elicited and ranked research chal-
lenges for large-scale agile software development [23] from a mixture of practitioners
and academics. Taking this approach to identifying research questions is a more direct
way of ensuring research relevance, but how relevant the challenges are to practice
depends on who is suggesting the challenges.

Several attempts have been made to categorise challenges faced in the application
of agile. Gandomani et al. [24] categorise the challenges faced by organisations when

 Agile Challenges in Practice: A Thematic Analysis 67

migrating to agile into four main categories: organisation and management; people;
process; and tools related challenges. This classification is based solely on existing
literature. Using grounded theory, van Waardenburg and van Vliet [25] investigated
the challenges caused by the co-existence of agile methods and plan-driven develop-
ment, and discussed mitigation strategies for those challenges. This work is based on
21 interviews with agile practitioners from two large enterprises in the Netherlands.
They organised the challenges under two categories: ‘increased landscape complexi-
ty’ and ‘lack of business involvement’. The paper exposes consequences of the former
category as ‘problems with communication’, ‘dependent definition of done’, and ‘dif-
ficulties to create change’. The consequences of the latter category are problems with
requirements gathering, slow reaction to change, problems with requirements prioriti-
sation and limited feedback from the business. For both challenge categories, mitiga-
tion strategies were proposed that focused on communication between the agile and
traditional part of the organisation, and the communication timing.

Conboy et al [26] identified nine themes for challenges experienced by 17 large
multinational organisations using agile methods. The research focused on challenges
encountered by people involved in the agile development process. The themes were:
developer fear as a result of the transparency of skill deficiencies; the need for devel-
opers to be “master of all trades”; dependency on social skills; deficiency of develop-
ers’ business knowledge; the need to understand and learn values and principles of
agile, not just the practices; lack of developer motivation to use agile methods;
implications of devolved decision-making; the need for agile compliant performance
evaluation; and absence of specific recruitment policies and absence of trained IT
graduates for agile. Cohn and Ford [27] focused on the challenges related to the tran-
sition from plan-driven processes to agile processes and the wider impact of this tran-
sition not only on the development team members, but also on management, other
departments, and other agile teams. They proposed several approaches for introducing
agile to organisations. These focused on recommendations related to the different
roles and factors impacting the transition to agile.

3 Method

The ARN deployed a ‘Challenge Wall’ at five Agile Conferences and events between
October 2013 and October 2014. This section discusses the challenges collected and
how they were analysed.

3.1 Data Collection

When we ran a challenge wall we positioned an ARN poster in a visible place in the
conference or event venue and provided a stack of pens and small cards on which

68 P. Gregory et al.

each challenge was written. Delegates were encouraged to fill out the cards anony-
mously (see Figure 2), and these were then attached to the wall next to the poster for
others to read. Delegates wrote one challenge per card, and could fill in as many cards
as they wished. The challenge wall gradually grew throughout the event, and became
a trigger for discussions between delegates and the ARN team about the nature and
context of the challenges identified. After each event the cards were removed from
the wall and the contents were typed up into a spreadsheet.

The first agile challenge wall was set up at the Agile Business Conference in 2013.
We soon realised that we had uncovered a powerful way of identifying issues of con-
cern. As a result, we subsequently ran the challenge wall at several agile events in
order to build up a larger set of data for analysis.

We collected challenges using the challenge wall at five different events during
2013 and 2014. These events were: the Agile Business Conference, London,
October 2013 (www.agileconference.org); DSDM Members Day, Manchester, No-
vember 2013 (www.dsdm.org); XP, Rome, May 2014 (www.xp2014.org);
AgileNorth, Preston, June 2014 (www.agilenorth.org); and the Agile Business Con-
ference, London, October 2014 (www.agileconference.org).

3.2 Participants

The attendees at the five events were mostly agile practitioners and business represen-
tatives rather than academics, except for the XP Conference in 2014 that was attended
by a mixture of practitioners and academics. Practitioner and business attendees rep-
resented a range of organisational roles. An analysis of attendance data from the 2014
ABC Conference (the only event about which we had access to such data), showed
that 34% of attendees were managers, 14% were from business roles, 12% were ex-
ecutive-level managers, 12% were developers, 8% were consultants, 8% were project

Fig. 2. A Challenge Card

 Agile Challenges in Practice: A Thematic Analysis 69

managers, 5% were analysts, 3% were coaches and 4% were from other roles (includ-
ing some students and academics). It is likely that ABC 2013 and the DSDM Mem-
bers day had a similar mix of attendees.

3.3 Data Analysis

We used a thematic analysis approach for data analysis. This is a data synthesis meth-
od that identifies, analyses and reports patterns (themes) within data. It describes and
organises the data set in rich detail and interprets different aspects related to the re-
search topic [28]. The data is first labeled and coded, and those codes are then in-
spected resulting in some relabeling, dropping and merging of codes. Finally, codes
are translated into themes.

Three of the authors, Salah, Gregory and Barroca each completed an independent
thematic analysis of the challenges, then Taylor and Sharp, reviewed these. They
verbally clarified the meaning of the descriptors used by the other authors, and cre-
ated a new spreadsheet with a merged list of sub-themes. Merging started by looking
at sub-theme names and their associated challenges, and went on to identify high-
level themes, which were used as grouping mechanisms for the more detailed
sub-themes. Discussion focussed on whether to merge or split sub-themes, finding
appropriate names for sub-themes, and identifying broad themes at the right level of
granularity. For example, ‘culture’ and ‘changing mindsets/culture’ had been identi-
fied as sub-themes by two of the independent analysts, but a distinction between or-
ganisational culture and national culture had not been made, so the reviewers created
these as themes. They regrouped the data into nine themes and 27 sub-themes. This
set of themes was revised again through discussions between all authors using Skype
calls and emails, and the final set of seven themes and 27 sub-themes was agreed. For
example, through group discussion at this final stage it was decided that ‘organisa-
tional culture’ and ‘national culture’ would be more appropriate as sub-themes
grouped under the broader theme of ‘Culture’.

4 Results

We collected 194 challenge cards, of which one was disregarded as inappropri-
ate. As a result of the thematic analysis described in Section 3.3 the remaining 193
challenges determined the seven themes and 27 sub-themes. Table 1 below shows
the themes and sub-themes along with a description and an example challenge from
each sub-theme. The table is ordered, largest first, by the number of challenges in
the themes and sub-themes, with the number of challenges in each group provided
in brackets.

70 P. Gregory et al.
T

ab
le

 1
. T

he
m

es
 a

nd
 S

ub
-T

he
m

es
 id

en
ti

fi
ed

 f
ro

m
 o

ur
 C

ha
ll

en
ge

 C
ar

ds

 Agile Challenges in Practice: A Thematic Analysis 71

T
ab

le
 1

. (
C

on
ti

nu
ed

)

72 P. Gregory et al.

5 Discussion

Research interest in agile has been growing steadily as indicated by the publication of
over 200 peer-reviewed journal articles in the period between 2001 and 2012 [12].
Amongst these many publications we have seen: a systematic literature review identi-
fying the areas being researched [9]; a prioritisation of research needed in the form of
a preliminary roadmap [8]; and a prioritised list of the areas of research that practitio-
ners would like to see addressed [22].

Here we discuss how the challenges we have gathered are related to previous lit-
erature reviews in the area. First we compare our themes and sub-themes with areas
identified in Dybå and Dingsøyr’s 2008 systematic literature review [9] and investi-
gate research on specific sub-themes by undertaking a title search of the papers listed
by Chuang et al [12] in their 2014 systematic literature review (section 5.1). Second,
we compare our findings with the research areas Dingsøyr et al [8] established as
goals for research achievements by 2015 (section 5.2). Third, we discuss how practi-
tioner concerns have evolved over time by comparing the challenges we have collect-
ed with those collected at XP2010 by Freudenberg and Sharp [22] (section 5.3).
Finally we discuss the limitations of our approach (section 5.4). All italicised quotes
in this section are verbatim transcriptions from challenge cards.

5.1 Are These Challenges Reflected in Research Literature?

The seven themes and 27 sub-themes identified in our challenge set represent a mix of
familiar and less familiar topics found in the literature.

Of the familiar topics, Organisation, Sustainability, Culture and Teams are themes
that have been subjects of research interest for some time. For example the topic
groupings identified in Dybå and Dingsøyr’s systematic review [9] are reflected in
these four themes from our challenge set (Table 2).

However some sub-themes within these four main themes, such as Business and IT
transformation, Fear, Contracts, Documentation and Leadership, do not seem very
evident in the literature searches we have conducted for our industrial partners. This
would, however, need to be confirmed by a more up-to-date systematic literature
review. The need for business as well as IT transformation, was of particular concern
in our challenge set, with 11 challenge cards identifying this topic. Examples of chal-
lenges identified included:

‘Its take up outside of the delivery function. That it is has been
coined by IT for IT without the business guys. Which organisa-
tional changes are triggered by IT without anybody notic-
ing/caring/managing those changes?’; and
‘That everyone seems to think that it starts and stops in software
development. How other disciplines blend in is a big challenge’.

Scaling is also a topic that has been written about and discussed by practitioners
[29, 30]. Through a title search of Chuang et al [12] we found seven papers on scal-
ing, including large or complex projects (searching on ‘scale’, ‘large’, ‘complex’) and
none on governance (searching on ‘governance’, ‘PMO’). Dingsøyr and Moe reported

 Agile Challenges in Practice: A Thematic Analysis 73

from an XP2013 Workshop at which research challenges in large-scale agile devel-
opment were discussed, that there were few research studies on the topic [23]. A re-
cent systematic literature review on agile governance, identified a small but growing
research base [18].

Table 2. Comparison of our themes and sub-themes with Dybå and Dingsøyr’s topics [9]*

Dybå and Dingsøyr top-
ics

Themes from this
study

Sub-themes from this study

Introduction and adop-
tion

Introduction and adoption Organisation Adoption
Development process (Not mentioned in our challenge

list)
Knowledge and project
management

Sustainability Knowledge sharing

Human and social fac-
tors

Organisational culture Culture Organisational culture
Collaborative work Teams Team practices
Team characteristics Teams Finding good people
Perceptions of agile

Customer perceptions Organisation Commitment/engagement
Developer perceptions Teams

Organisation
Individual motivation
Adoption

Student perceptions (Not mentioned in our challenge
list)

Comparative studies
Project management Organisation

Sustainability
Management buy-in and under-
standing
Process improvement

Productivity Sustainability Process Improvement
Product quality (Not mentioned in our challenge

list)
Work practices and job
satisfaction

Teams Team practices

* Dybå and Dingsøyr identify four topic groups and 13 topics, which we map to four of our themes and

nine of our sub-themes.

The two themes Value, and Claims and Limitations identified in our challenge set
are generally less commonly reported in the empirical research literature, although
some of the associated sub-themes are more researched. In a title search of Chuang et
al [12] we found no papers on the topic of business value (searching on ‘value’); eight
discussing measurement (‘metrics’, ‘measurement’); and none on claims or limita-
tions (‘misconception’, ‘shortcoming’, ‘fail’, ‘hype’, ‘lack’, ‘claim’, ‘limitation’).

74 P. Gregory et al.

Our participants identified 46 challenges on the theme of Claims and Limitations.
Comments indicate a certain amount of frustration, but range over a number of topics,
including:

‘Religious approach’;
‘Everyone wants to reinvent it’;
‘Throwing away some of the old useful ideas’; and
‘The lack of a project management framework for coordinating multiple
teams and or work.’

While there is some literature about the concept of agility [31, 32], there is very lit-
tle about misconceptions, hype and failure.

Agile hype is discussed by Janes and Succi [33] who suggest agile has followed the
Gartner Hype Cycle, and is stuck in the ‘Trough of Disillusionment’ as a result of
what they call the ‘guru phenomenon’. In a grounded theory study of agile practitio-
ners Hoda et al [34] identify agile hype and scepticism as factors that negatively af-
fected customer involvement in agile projects. There are some discussions in the con-
sultant literature [35], however we could find no empirical research that specifically
focussed on investigating this topic.

Additionally there is very little research into agile failure. McAvoy and Butler [36]
report the failure of a team to adopt an agile method, identifying ineffective decision-
making and actions, which occurred as a result of the team’s desire to become more
cohesive, as one of the key drivers of the failure. This is a gap, and has been men-
tioned by other researchers [12]. It is somewhat surprising as anecdotally it is not
uncommon to hear stories of failure and organisational abandonment of agile.

5.2 Challenges and the Goals Set for 2015

Dingsøyr et al in their preliminary roadmap [8] assess the state of agile research in
2008 and suggest a goal for agile research for 2015. They indicate some areas for
priority in research: maturity, coverage, understanding and impact. They assess that
research was having little impact on everyday practice in industry and suggest that
“increased application of research methods like action research [37] can be helpful
ensuring the relevance, and help provide a larger body of knowledge that can lead to a
broader impact on industry.”

Research has been growing significantly [12], action research is being used [2, 38]
and research may be getting more relevant and is definitely increasing the body of
knowledge. However, some perspectives from our challenge list are:

‘That there is no academic research supporting the claimed suc-
cess’; and,
‘It is isolated from many fields, e.g., a good research could be
about bringing information visualisation theory and methods into
agile project management in a systematic way.’

This suggests that even if research has been done, the gap between research and
what industry wants to know has not yet been bridged.

 Agile Challenges in Practice: A Thematic Analysis 75

5.3 Persistence of Challenges over Time

We discuss how Freudenberg and Sharp’s [22] top ten research questions from practi-
tioners feature in our challenge set; we start by looking at those that persist.

‘Agile and large projects’ was the top research question in the 2010 paper. Scaling
is still a theme for our challenges, not only in terms of large projects:

‘How do you scale up to a large project over many months or even years?’;
but also in relation to complexity and the size of the organisation:

‘Scaling due to complexity (rather than large projects)’; and
‘Scaling across a large enterprise/companies.’

Table 3. Comparison of our themes with practitioners’ top ten research questions from [22]

Freudenberg and Sharp top ten research
questions

Themes/Sub-themes

1. Agile and large projects Scaling
2. What factors can break self-organization? Culture/Organisational culture
3. Do teams really need to always be collocated

to collaborate effectively?
Culture/Distributed teams

4. Architecture and agile—how much design is
enough for different classes of problem?

Scaling/Large projects

5. Hard facts on costs of distribution (in $,£,€
and so on)

Culture/Distributed teams

6. The correlation between release length and
success rate

Claims and Limita-
tions/Shortcomings Sustainabil-
ity/Process Improvement

7. What metrics can we use with minimal side
effects?

Value/Measurement

8. Distributed agile and trust—what happens
around 8–12 weeks?

Culture/Distributed teams

9. Statistics and data about how much mon-
ey/time is saved by agile

(Time mentioned in several chal-
lenges from different themes)

10. Sociological studies—what were the per-
sonalities in successful/failed agile teams?

Teams/ Finding good people

Collocation and distribution appeared in 2010 related to: effective work e.g. ‘Do

teams really need to always be collocated to collaborate effectively?’; cost e.g. ‘Hard
facts on costs of distribution (in $, £, €, and so on)’; and trust e.g. ‘Distributed agile
and trust—what happens around 8–12 weeks?’.

Distributed teams appear in our challenges as a sub-theme still raising the issue of
trust:

‘Why does trust decline if people are not meeting in person for more than 12
weeks?’
and, to a lesser extent, the issue of cost (travel cost in one single challenge):

‘It requires co-location in a digital world, where travel is too expensive’.

76 P. Gregory et al.

However, distributed teams no longer seem to raise challenges of effective collabo-
ration. This may suggest that distributed teams are an accepted reality that has to be
dealt with rather than opposed.

Trust appears today under new contexts, not limited to distributed teams:

‘What is the cost for not investing in trust?’

One other research question that persists is that of metrics – ‘What metrics can
we use with minimal side-effects?’ The Value theme gathers challenges not so
much related to side effects but rather to what management wants and how to measure
value:

‘Agile is about measuring value, but management want efficiency,
defect metrics etc. How to demonstrate team is efficient and im-
proving efficiency?’;
‘Can be difficult to define a value metric’; and
‘The lack of well formulated and defined measurement practices.’

These challenges suggest a wider concern of agile within a large traditional enter-
prise, as agile is becoming more established and having to cohabit with more or less
hostile environments.

Some research questions do still appear as challenges, but with less frequency and
emphasis. That is the case of ‘What factors can break self-organisation?’:

‘Changing from a command and control/mechanistic worldview to
a future of autonomous, self-managed agents in a systemic organi-
sation is too much if the system does not change itself – including
leaders.’

The concern here seems also to be more about the context of the organisation
rather than the internal functioning of agile teams.

Also of less importance are the issues of more detailed agile practice such as ‘Ar-
chitecture and agile—how much design is enough for different classes of problem?’
with one single mention of architecture:

‘Dealing with emergent architecture which can be F*agile!’

Two other research issues appear only in one or two challenges. One is ‘The corre-
lation between release length and success rate’ with the two following challenges:

‘Cost of release, cannot release code easily’; and
‘Agile on aged technology, environment stacks -> prevents early
release to test and promotes waterfall of dev handing over to test
period.’

The other is ‘Sociological studies—what were the personalities in successful/failed
agile teams?’ with a single challenge mentioning personality:

‘Would like to understand the personality type of a coach in order
to make better hiring decisions.’

For the remaining research question – ‘Statistics and data about how much mon-
ey/time is saved by agile.’ – we didn’t encounter any mention of quantifying savings

 Agile Challenges in Practice: A Thematic Analysis 77

in time and cost. There are, however, several challenges mentioning the time it takes
for agile to get established:

‘It takes practice and time so needs some serious commitment’;
‘It is geriatric time to innovate’;
‘It takes practice and time so needs some serious commitment’;
‘Business managers only hearing on time delivery and not putting
time in to deliver/write stories’; and
‘I have been on a two day course. It is common scene, I am an ex-
pert. You are not. It takes time and experience’.

The discussion above suggests that the concerns of practitioners now are less about
moving into agile, or about how to do agile, but rather about sustaining agile. Agile is
here to stay, sometimes in environments that are not always supportive, but within
which agile development needs to coexist.

5.4 Limitations

Collecting challenges at these agile events was opportunistic. As a result the
data cannot be seen as fully representative of the community of agile practitioners.
The challenge cards were filled in anonymously so we cannot link each one with a
particular job role. We had conversations with a majority of respondents and although
some cards may have been completed by academics, practitioners completed most.
Most of the data comes from the UK, apart from that collected at the XP Conference
in Rome.

We are aware of some limitations in our comparison of themes from our data
with those found in previous literature. The Dybå and Dingsøyr systematic literature
review [9] is now six years old and reviewed publications up to and including 2005.
Although the Chuang et al [12] systematic literature review is recent, there is no the-
matic topic review in the paper, so we were not fully able to compare our findings
with those and had to rely on a review of titles. We believe, however, that these limi-
tations rather than invalidating some of the suggestions made in the discussion, point
to a need for more updated research in some areas.

6 Conclusions

If research is to have real impact in the practitioner community, researchers need to
understand and address the challenges that this community faces. However, it is not
simply a matter of identifying challenges and setting up research programmes to ad-
dress them. The landscape of practitioner challenges is complex and multi-faceted,
and while some challenge areas have persisted for many years, some have evolved,
and others are new.

78 P. Gregory et al.

Through its mission to bridge the gap between industry and academia, the ARN has
collected 193 challenges at practitioner-focused events during 2013 and 2014 and
analysed them. This analysis allows us to make four observations:

1. Some challenges areas have persisted for many years, and are just hard to address
successfully. These challenge areas would benefit from further research. For ex-
ample, identifying and measuring agile value, and understanding cultural change
are highly contextual and complex.

2. Some challenge areas appear to have persisted for many years, but our analysis
shows that the focus of the challenge has in fact shifted. For example, concerns
around scaling and distributed teams have changed. The agile field is maturing,
and practitioners are less concerned about adopting agile and more concerned
about sustaining agile. Research in these areas needs to have a specific and rele-
vant focus.

3. Some challenge areas have not been widely researched. These areas include:
sustainability, governance, business engagement and transformation, failure, and
the impact of claims and limitations. Future research would be beneficial in some
of these areas, but it is not the answer to all of them as some would best be ad-
dressed by further or different education and training – e.g. those challenges clas-
sified as misconceptions and hype.

4. Some challenge areas have been addressed by research but practitioners still see
them as a challenge. Although research is being done, it is still not having the ex-
pected impact. This means that either practitioners are not aware of this work and
it needs further dissemination, or the research is not ready for practitioner imple-
mentation.

The observations above point both to the need for further research and for improve-
ments in knowledge transfer. The ARN addresses the latter by developing more inno-
vative methods of conveying academic research to industry and industrial problems to
academia, bridging the gap between research and practice. We have developed a
model of collaboration [39] where researchers engage with collaborators in an in-
depth way, spending time in the organisation to understand the context, and suggest-
ing alternative ways of working. This promotes the transfer of knowledge in a way
that takes into account the context of each organisation individually, and requires an
in-depth knowledge of existing research. This approach also generates opportunities
to contribute to further research based on the data generated in the collaborations.

Acknowledgements. We would like to thank all those who contributed to our challenge walls
and to DSDM Consortium for supporting the Agile Research Network.

References

1. West, D.: Water-Scrum-Fall is the Reality of Agile for most Organizations Today, in, For-
rester Research Report (2011). http://www.cohaa.org/content/sites/default/files/water-
scrum-fall_0.pdf

 Agile Challenges in Practice: A Thematic Analysis 79

2. Gregory, P., Plonka, L., Sharp, H., Taylor, K.: Bridging the gap between research
and practice: the agile research network. In: European Conference on Research Methods,
London, UK (2014)

3. Sharp, H., Plonka, L., Taylor, K.J., Gregory, P.: Overcoming challenges in collaboration
between research and practice. In: Proceedings of the International Workshop on Software
Engineering Research and Industrial Practices at ICSE 2014, pp. 10–13, Hyderabad, India
(2014)

4. Plonka, L., Sharp, H., Gregory, P., Taylor, K.: UX design in agile: a DSDM case study.
In: Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 1–15. Springer,
Heidelberg (2014)

5. The Agile Research Network, LShift: Integrating UX Design into a DSDM Project:
Challenges, Working Practices and Lessons Learned (2013). http://agileresearchnetwork.
org/publications/

6. The Agile Research Network: Agile Projects in a Non-agile Environment: What is Your
Experience? (2014). http://agileresearchnetwork.org/publications/

7. Abrahamsson, P., Warsta, J., Siponen, M.T., Ronkainen, J.: New directions on agile meth-
ods: a comparative analysis. In: International Conference on Software Engineering. IEEE,
Portland (2003)

8. Dingsøyr, T., Dybå, T., Abrahamsson, P.: A preliminary roadmap for empirical research
on agile software development. In: Proceedings of AGILE, pp. 83–94. IEEE, Toronto
(2008)

9. Dybå, T., Dingsøyr, T.: Empirical Studies of Agile Software Development: A Systematic
Review. Information and Software Technology 50, 833–859 (2008)

10. Abrahamsson, P., Conboy, K., Wang, X.: “Lots Done, More To Do”: The Current State of
Agile Systems Development Research. European Journal of Information Systems 18,
281–284 (2009)

11. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A Decade of Agile Methodologies:
Towards Explaining Agile Software Development. The Journal of Systems and Software
82, 1213–1221 (2012)

12. Chuang, S., Luor, T., Lu, H.: Assessment of Institutions, Scholars, and Contributions on
Agile Software Development (2001-2012). Journal of Systems and Software 93, 84–101
(2014)

13. Jalili, S., Wohlin, C.: Global Software Engineering and Agile Practices: A Systematic
Review. Journal of Software Maintenance and Evolution: Research and Practice (2011)

14. Alzoubi, Y.I., Gill, A.Q.: Agile global software development communication challenges: a
systematic review. In: PACIS14 (2014)

15. Salah, D., Paige, R., Cairns, P.: A systematic literature review on agile development pro-
cesses and user centred design integration. In: EASE14. ACM, London (2014)

16. da Silva, T.S., Martin, A., Maurer, F., Silveira, M.: User-centered design and agile meth-
ods: a systematic review. In: Proceedings of AGILE, pp. 77–86 (2011)

17. Hossain, E., Babar, M.A., Paik, H.: Using scrum in global software development: a sys-
tematic literature review. In: International Conference on Global Software Engineering.
IEEE (2009)

18. de O. Luna, A.J.H., Kuruchten, P., de E. Pedrosa, M.L.G., de Almeida Neto, H.R.,
de Moura, H.P.: State of the Art of Agile Governance: A Systematic Review. International
Journal of Computer Science & information Technology 6, 121–141 (2014)

19. Shen, M., Yang, W., Rong, G., Shao, D.: Applying agile methods to embedded software
development: a systematic review. In: The 2nd International Workshop on Software Engi-
neering for Embedded Systems (SEES), pp. 30–36. IEEE, Zurich (2012)

80 P. Gregory et al.

20. Ferreira, J.: User Experience Design and Agile Development: Integration as an On-going
Achievement in Practice, in, Ph.D thesis. Open University (2011)

21. Dwan, K., Altman, D.G., Arnaiz, J.A., Bloom, J., Chan, A., Cronin, E., Decullier, E.,
Easterbrook, P.J., Von Elm, E., Gamble, C., Ghersi, D., Ioannidis, J.P.A., Simes, J.,
Williamson, P.R.: Systematic Review of the Empirical Evidence of Study Publication Bias
and Outcome Reporting Bias. PloS one 3, e3081 (2008)

22. Freudenberg, S., Sharp, H.: The Top 10 Burning Research Questions from Practitioners,
IEEE Software, 8–9 September/October 2010

23. Dingsøyr, T., Moe, N.B.: Research Challenges in Large-Scale Agile Software Develop-
ment. ACM SIGSOFT Software Engineering Notes 38, 38–39 (2013)

24. Gandomani, T.J., Zulzalil, H., Ghani, A.A.A., Sultan, A.B.M., Nafchi, M.Z.: Obstacles in
Moving to Agile Software Development Methods: At a Glance. Journal of Computer Sci-
ence 9, 620–625 (2013)

25. van Waardenburg, G., van Vliet, H.: When Agile meets the Enterprise. Information and
Software Technology 55, 2154–2171 (2013)

26. Conboy, K., Coyle, S., Wang, X., Pikkarainen, M.: People over Processes: Key Challenges
in Agile Development. IEEE Software 28, 48–57 (2011)

27. Cohn, M., Ford, D.: Introducing an Agile Process to an Organization. Computer 36, 74–78
(2003)

28. Braun, V., Clarke, V.: Using Thematic Analysis in Psychology. Qualitative Research in
Psychology 3, 77–101 (2006)

29. Eckstein, J.: Agile Software Development in the Large: Diving into the Deep. Dorset
House Publishing, New York (2004)

30. Sutherland, J.: Agile Can Scale: Inventing and Reinventing SCRUM in Five Companies.
Cutter IT Journal 14, 5–11 (2001)

31. Conboy, K.: Agility from First Principles: Reconstructing the Concept of Agility in Infor-
mation Systems Development. Information Systems Research 20, 329–354 (2009)

32. Lyytinen, K., Rose, G.M.: Information System Development Agility as Organisational
Learning. European Journal of Information Systems 15, 183–199 (2006)

33. Janes, A., Succi, G.: The darker side of agile software development. In: International Sym-
posium on New Ideas, New Paradigms, and Reflections on Programming and Software,
pp. 215–228. ACM (2012)

34. Hoda, R., Noble, J., Marshall, S.: The Impact of Inadequate Customer Collaboration on
Self-Organising Agile Teams. Information and Software Technology 53, 521–534 (2011)

35. Brousseau, J.: Beyond the hype of a new approach. In: Cutter IT Journal, Cutter Consorti-
um, pp. 25–30 (2004)

36. McAvoy, J., Butler, T.: A Failure to learn in a software development team: the unsuccess-
ful introduction of an agile method. In: Wojtkowski, W., Wojtkowski, G., Lang, M.,
Conboy, K., Barry, C. (eds.) Information Systems Development: Challenges in Practice,
Theory and Education. Springer US (2010)

37. Avison, D., Lau, F., Myers, M.D., Nielsen, P.A.: Action Research. Communications of the
ACM 1, 94–97 (1999)

38. Svejvig, P., Nielsen, A.D.F.: The dilemma of high level planning in distributed agile soft-
ware projects: an action research study in a danish bank. In: Agility Across Time and
Space, pp. 171–182. Springer (2010)

39. Barroca, L., Sharp, H., Salah, D., Taylor, K.J., Gregory, P.: Bridging the Gap between
Research and Agile Practice: An Evolutionary Model. International Journal of Systems
Assurance Engineering and Management 6 (2015), (in press)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 81–92, 2015.
DOI: 10.1007/978-3-319-18612-2_7

UX Work in Startups: Current Practices
and Future Needs

Laura Hokkanen() and Kaisa Väänänen-Vainio-Mattila

Department of Pervasive Computing, Tampere University of Technology,
Korkeakoulunkatu 1, 33720, Tampere, Finland

{laura.hokkanen,kaisa.vaananen-vainio-mattila}@tut.fi

Abstract. Startups are creating innovative new products and services while
seeking fast growth with little resources. The capability to produce software
products with good user experience (UX) can help the startup to gain positive
attention and revenue. Practices and needs for UX design in startups are not
well understood. Research can provide insight on how to design UX with little
resources as well as to gaps about what kind of better practices should be de-
veloped. In this paper we describe the results of an interview study with eight
startups operating in Finland. Current UX practices, challenges and needs for
the future were investigated. The results show that personal networks have a
significant role in helping startups gain professional UX advice as well as user
feedback when designing for UX. When scaling up startups expect usage data
and analytics to guide them towards better UX design.

Keywords: User experience · Startup · Lean

1 Introduction

A startup is a team of people that try to find a scalable business model, and is also
defined to be only a temporary organization [3, 17]. Startups are getting a lot of atten-
tion and are seen as a way to create new opportunities for work and business. Startups
offer an interesting domain for research to understand what methodologies and ways
of working are helping the success of these small teams with limited resources. Star-
tups work in a fast-changing environment and what matters to UX work is that they
do not have the possibility to spend a lot of time working on design when the whole
product might still change significantly.

Software development practices in startups have gained some attention [16] but re-
search on UX practices is lacking. The traditional approach to UX design based on the
principles of human-centered design [10] has a lot of upfront work before starting the
implementation. Some books [12, 8] have been written to offer tools for UX design in
lean startups but the past academic research is limited to some case descriptions with
UX practices [15, 18].

Research that would recognize the best practices for UX work in startups is miss-
ing. It could offer valuable information on how startups could optimize the resources
put to UX work for creating UX that would enable growth. It is also of interest to

82 L. Hokkanen and K. Väänänen-Vainio-Mattila

understand if these ways of working are transformable to be used in established com-
panies when they need to innovate fast. This paper presents the results of our research
that aimed to understand the role of UX work in startups developing ICT products.
UX work includes user needs gathering, designing UX and user tests for feedback
collection. Designing UX covers both choosing the right functionality and designing
the user interface for the product. In this research we wanted to understand (1) what
practices startups currently have for UX work, (2) what challenges startups have in
UX work and (3) what kind of needs the startups expect to have regarding UX re-
search and design in the future when they scale up.

To address these questions, we conducted an interview study with eight startups on
their approaches to UX work. As a conclusion, we will propose implications for star-
tups on how they could incorporate UX practices in their product development. The
results can be used to further investigate and develop UX practices that would help
startups succeed.

2 Related Work

Previous research on the specific topic of UX work in startups is very limited. In this
section we briefly go through the related work on UX practices in industry, lean UX
and product development in startups.

2.1 UX Practices in Industry

Practical work towards good user experience – often also referred to as usability –is
rooted in human-centered design (HCD) approach, as defined for example by the ISO
standard [10]. This approach emphasizes upfront user research and design activities,
strong user involvement, iterative design and multifunctional design teams. While
such approach has been well adopted in the research of user experience, industrial
product development projects have often used more limited practices.

In their survey of user-centered design practice in industry [20], Vredenburg et al.
found out that iterative design is a widely used approach and that usability evaluation
is the most commonly adopted user-centered method in industry. Analyzing user tasks
and conducting field studies were also often used in user-centered design. A survey
by Gulliksen et al. [9] conducted in Sweden revealed that usability professionals ap-
preciated low-fidelity prototyping, field studies and think-aloud tests with end-users
the best methods to use. The survey furthermore indicated that management support is
essential for the usability professionals and that user involvement often has low
priority in the projects. In a more recent study in Italy, Ardito et al. [1] found out that
that several companies still do not conduct any form of usability evaluation, because
they require a lot of resources in terms of cost, time and people. The advantage of
usability work for the usability of software was still clearly recognized in the studied
companies.

 UX Work in Startups: Current Practices and Future Needs 83

In summary, while the value of user experience work is in general well understood
also in industry, it is still often neglected when other pressures of product develop-
ment are considered to be more important.

2.2 Lean UX

Lean development is used to describe a philosophy that concentrates on removing
waste from the process while delivering value to customers. It started with manufac-
turing but has since been adapted to many other fields as well. One of these adapta-
tions is the concept of Lean Startup that emphasizes fast learning with small risks
while building new businesses [17]. Academic research on the topic is very scarce.

Lean UX book [8] identifies three parts for the Lean UX philosophy: the design
thinking movement, Lean startup method [17] and Agile software development. Lean
UX aims to produce a product extremely fast and with little resources but without
compromising the customer satisfaction. According to Gothelf [8], Lean UX applies
the four principles of Agile development to product design [2] and 15 principles for
Lean UX. The Lean UX Manifesto [19] was published in early 2014. It was com-
posed by collecting ideas from UX professionals including and forming them into a
list much like in the Agile manifesto [2]. The Lean UX manifesto [19] has six prin-
ciples: (1) Early customer validation over releasing products with unknown end-
user value, (2) Collaborative design over designing on an island, (3) Solving user
problems over designing the next “cool” feature, (4) Measuring KPIs over unde-
fined success metrics, (5) Applying appropriate tools over following a rigid plan
and (6) Nimble design over heavy wireframes, comps or specs.

The use of lean principles in UX work has been reported by [15], [14], [5]. [14]
and [5] report positive overall experiences when adapting lean philosophy in estab-
lished companies. May [15] reports a case of a startup where experienced UX design-
ers were involved. She emphasizes as one of the lessons learned the early planning of
UX, design and customer validation. May [15] also stresses continuous testing in
every step of business idea and product development.

Agile-UX methodologies have been studied more thoroughly [11] than Lean UX.
The academic research on Agile-UX serves as a basis for Lean UX research. Different
aspects such as making the UX work more efficient while also paying attention to
management and sales aspects [13] should also be understood in startup context.

2.3 Product Development in Startups

The term startup is used inconsistently [16] but some characteristics have been recog-
nized to be common in describing startups. Giardino et al [6] have listed recurring
themes in software startups such as lack of resources, innovation, rapidly evolving,
small and low-experienced team, and time pressure. The product development is there
by effected by these factors. The constant change makes the processes in startups
evolutionary and software development practices are adopted only partly and in later
stages [16]. Members of a startup team are often able to have different roles and affect
significantly the outcome of product development. The background of persons

84 L. Hokkanen and K. Väänänen-Vainio-Mattila

involved in creating the software development process influence the most the adopted
process [4].

The Lean Startup method [17] suggests startups should base their activities on va-
lidated learning with constant cycles of Build-Measure-Learn (BML). Experimenting
ideas with little risk involved helps the startup reach a sustainable business model.
With experimentation, a startup should be able to find the right problem/solution fit.
Giardino et al [7] report that the learning seems to slow down when awareness of
competitive environment increases.

3 An Interview Study of UX Work in Startups

The aim of this research was to gain insights of the current practices and future needs
of startups in their UX work. We interviewed 11 participants from eight startups. The
qualitative research was conducted in Finland over a period of two months (October-
November 2014). In this section we first describe the startups that participated in the
interviews and then the research methods used.

3.1 Participating Startups

Eight startups operating from Finland participated in study. Two of the startups had
team members also in other countries. Altogether 11 persons were interviewed - in
three startups two persons participated in the interviews. The interviews were
semi-structured. We aimed at having startups at different stages, and with different
products and markets. The participating startups were required to have a software
component in the product or service they were developing. The startups were found
through a local startup community by advertising the interview request them and by
asking the participating startups to recommend other teams that might be willing to
take part in the interviews. A summary of the startups is presented in Table 1.

Table 1. Summary of the startups

Startup Interviewees Company established Size of startup Product

SU1 H1 (CEO), H2 2014 3 Web service
SU2 H3 2014

(To be established)
3 Mobile app

SU3 H4 (CEO) 2013 3 Mobile app
SU4 H5 2013 5 SaaS
SU5 H6 (CEO), H7 2014 3 Web service
SU6 H8 (CEO), H9 2014 3 Web service
SU7 H10 (CEO) 2014 4 Software
SU8 H11 (CEO) 2013 3 Mobile app

We interviewed CEOs from six startups (SU1, SU3, SU5, SU6, SU7, SU8). From

SU4 we interviewed the person responsible for online marketing, user analytics and
customer acquisition. SU2 was not yet officially founded and we interviewed the
inventor of the business idea. Four startups had people with experience or training in

 UX Work in Startups: Current Practices and Future Needs 85

human-centered design (SU3, SU4, SU6, SU8). The size of startups varied between
3-5 people and five startups (SU1, SU4, SU5, SU6, SU8) had had someone leave the
company since they started. Startups were small enough for everyone to know what
others were doing and interviewees were able to answer questions about all the activi-
ties of the startup, not just about their own.

All the startups but SU8 had started with a different product idea than the one they
were currently developing. Startups SU2, SU3 and SU8 had a mobile application as
their product. Startup SU7 offered a technical solution that did not yet have a visible
user interface. Other startups (SU1, SU4, SU5, SU6) were offering SaaS or web ap-
plications.

3.2 Method

The semi-structured interviews consisted of three parts. The first part was about un-
derstanding the business and product ideas, the team structure and the current stage of
the startup. The second part of the interview was about the practices involving under-
standing the end user, user data collection and designing UX. This part also covered
the challenges they had in these fields. The last part of the interview was about the
future of UX practices and needs when scaling up. The interviews lasted 45-90 mi-
nutes. The interviews were done by one researcher and they were all recorded. One of
the interviews (SU3) was conducted over Skype using a webcam. The recordings
were then transcribed for analysis. Altogether, the data consisted of 71 pages of tran-
scribed interviews. The analysis was done by iterative thematic coding of the qualita-
tive data. The themes were formed into the main sections of the results, and populated
with subtopics and individual findings from the data.

4 Results

The results are presented in three parts. The first part describes the current practices
the startups have regarding understanding user needs, collecting user feedback and
designing UX. The second part presents the challenges the startups have faced when
collecting meaningful information about end users and designing for them. The last
part addresses the needs that startups have for future and their plans for UX work.

4.1 Current Practices

Understanding User Needs. Interviewees from five startups described the product to
be a direct solution to their personal needs (SU1, SU3, SU4, SU6, SU8). One startup
(SU5) based their design on what they assumed the average user of the product to
expect.

Startups used personal contacts and unofficial discussions to gain feedback about
the product idea and the product design. Friends were mentioned as a reliable source
of feedback (SU2, SU3, SU4) since the interviewees believed them to give honest
feedback instead of only complimenting out of courtesy. The problem with testing the
product and seeking feedback from friends was that they were not always the real
users of the product so their opinions of the content were not seen as important. Other
startups, investors and experts of various fields, including UX design were part of the

86 L. Hokkanen and K. Väänänen-Vainio-Mattila

local startup community and were used to get feedback and ideas. Discussions about
how other people perceived UX of competitors’ products also motivated some star-
tups (SU1, SU2, SU5) to put effort in differentiating with better UX.

Interviews to understand the needs of users and the context of use were conducted
by five startups (SU02, SU04, SU05, SU06, SU08). The interviews were done for
different purposes. Startup number SU2 had interviewed friends in a very light way to
understand their current use of possible competing products whereas startups SU4 and
SU8 had done thorough interviews with 15 potential users. Startups SU6 and SU7 had
interviewed possible business partners but had not reached end-user customers before
starting the implementation.

Gaining Feedback. Startups used a wide variety of practices to gain feedback. The
summary of used practices is presented in Table 2. Three startups (SU3, SU4, SU8)
had test users for their prototype or beta version. Test users used the product the way
they wanted or with some instructions but specific tasks were not given to them. Star-
tup SU3 used friends (15 people) and potential end-users (15 people) found by visit-
ing Meetup.com group meetings as test users. Startup SU8 had two test users who had
the health condition their application was designed for. They were found from a sup-
port group. Startup SU6 had made a pilot with a partner that provided users for their
online training. They collected feedback of the content with a survey but were not
able to interview the participants. They also did a pilot with a master of psychology
thesis worker who did research with real users and provided more qualitative feed-
back with open answers of a survey.

Startup SU4 had started by creating a paper prototype of their product that other
startups could use in the common space the startups worked in. When they had a
working prototype had made a campaign on betalist.com, a site for finding new star-
tups. Through their campaign they got 500 signups for their beta version. Also startup
SU6 had used paper prototypes to present their idea when interviewing potential busi-
ness partners. Startups collected feedback from test users by email, surveys, Facebook
page created for test users and informal discussions.

Log data and statistics collection was implemented in the product by startups
SU1, SU4 and SU6. They all used Google analytics. Startups SU4 and SU6 used also
Mixpanel. Analytics was used to understand from where people came to their site and
how they interacted with the product. Startups SU4 and SU6 utilized data systemati-
cally during their product pilots. SU4 also followed how the behavior changed when
the product version changed. SU6 had analyzed what kind of behavior lead to a posi-
tive feedback from users. Startup SU1 followed analytics occasionally.

Startup SU5 used market research to understand the target market and the ex-
pected users. They had read about statistics from other countries on services that were
similar to theirs. The assumption was that Finland, as a market would be following
the same trends. They did a survey with potential partners about the concept they had
planned. They estimated the average user to be similar to whom it was in other coun-
tries’ markets but did not conduct any user research. “Until we have a working proto-
type of our product no-one is interested in us and we can’t get useful feedback.” (H6)

 UX Work in Startups: Current Practices and Future Needs 87

Table 2. Practices used to gain user information and feedback

Practice or method Startups utilizing the practice

User interviews SU2, SU4, SU5, SU6, SU8
Surveys SU4, SU6
Paper prototypes SU4
Personal need for the product SU1, SU3, SU4, SU6, SU8
Test users SU3, SU4, SU8
Expert advice SU6
Online user communities
(eg. forums, Facebook groups)

SU7, SU8

Log data and analytics SU1, SU4, SU6

Startup SU6 had strong background in research on interactive technology and online
training from which the product idea had come from. They also had experts of psy-
chology working part time in their team. Experts gave advice and reviewed the prod-
uct from a non-technical viewpoint.

Startups SU1 and SU8 had people who were very interested in their product and
wanted to help them in making it better. SU8 had recently created a Facebook page
for these people to share ideas on features and give comments on design ideas. SU1
was planning how to connect with these people and make it possible for them to help
improve the product but also market it.

Practices for Turning User Feedback to UX design. The roles of team members
were mostly described to be vague and that they evolved. Tasks were divided among
team members based on skills and personal interests. The product development
processes were different and not systematic for the startups. Startups SU4 and SU6
described having a leader for the product development. Two startups described having
two week sprints. Four startups (SU1, SU3, SU6, SU8) described using a backlog to
collect their ideas and tasks. The startups did not have a specific process for making
design decisions or transforming user feedback into design rationale.

Startup SU4 was the only startup that had clear UX goals. They had used the in-
formation gained from interviews to create user journey maps. They had defined emo-
tions that the user should get from the product and design was made to meet those
goals. Other startups could describe a vision for the UX they were aiming at but had
not written them down. The common idea was to build something and then collect
feedback or log data to see if the product was good. “Now we try to only do the things
that either totally make sense or that people are complaining about.“ (H1) Startups
SU1, SU2 and SU5 used UX designers from outside the startup to get feedback and
ideas for the user interface. These UX designers were acquaintances of startup found-
ers and helped them for free. “We are such a homogenous team that we need to seek
advice from people from other fields.” (H7) Interviewee H7 mentioned that even
though not all the ideas from designers were realistic to implement they helped in
thinking differently and in gaining new perspective.

88 L. Hokkanen and K. Väänänen-Vainio-Mattila

All the startups had had a lot of ideas for the product they were developing. They
needed to decide what they would be able to implement with the current resources.
Prioritization of features was discussed with the whole team. Ideas and issues that
were commented on repeatedly by users caused four of the startups (SU1, SU3, SU4,
SU6) to modify the product. Interviewee H11 said that in the end he decided what
was implemented to the product based on what was important to him as a user. Star-
tups SU6 and SU8 described the qualitative data from interviews and surveys to be
very valuable although they did not use it continuously when developing the product.
They described returning to it occasionally.

Startups SU3 and SU4 were implementing in their pilot only the features that
enabled the user to do two core actions while leaving everything else to later versions.
Prioritization was done by intuition and not by systematically evaluating which fea-
tures produce most value to users. “Basically what we’re working for now is the
launch. And anything that gets us closer to that is our priority. Unless there’s a fix or
a fire we have to put out.” (H4)

4.2 Challenges with Gaining Feedback and Using It

All startups told they had had challenges in collecting meaningful information from
users or customers. Interviewees from startup SU4 said that they would not know
what to ask from people. Startup SU4 was receiving positive feedback from discus-
sions with users but they were not gaining many new users. ”I don’t know what data
we need and I don’t know how to ask questions. So I think there is a bit of chal-
lenge.“(H1) Interviewees from SU6 wondered if they were getting overly positive
feedback since their product was the first one to help the users with the specific prob-
lem. They would have wanted constructive feedback to be able to improve the UX.
Startups SU3, SU4 and SU5 said that they needed more users to be able to collect
meaningful feedback and data about their current version of the product. SU8 told that
they had gained 80 people signed up to be interested about their product but they were
not prepared for it and could not utilize this user pool due to being so busy with other
things. Limited resources affected all the startups and they needed to divide their time
to balance between product development and business creation while still trying to
learn if their focus was on the right product and market.

The product concept had changed for startups SU4 and SU6 after they had already
conducted user research. The target market and end-users changed which resulted in
them having user information that was not valid anymore.

Reaching the potential end-users in the planning phase was difficult for startups
SU4, SU6 and SU7. Startups SU4 and SU7 were aiming to B2B markets so they were
mainly discussing with customer representatives. Startup SU6 had problems to reach
end-users because the product was targeted for people suffering from social anxieties
and they did not want to be interviewed. Even though SU6 could not directly reach
the end-users, they managed to get feedback with a survey and through people who
worked with the people from the challenging target group.

Startup SU3 described having major technical challenges in getting test users to
download their application. The tool they used to distribute the application that was

 UX Work in Startups: Current Practices and Future Needs 89

not published required multiple steps from them and from users. The interviewee H4
estimated having lost hundreds of test users due to technical difficulties after having
personally asked them to become test users. He also described that while some users
gave in depth feedback with some test users he had to remind them to keep using the
application and give feedback more than once. “Especially the friends, they use it
once and then I have to prompt them to try it again.” (H4) SU8 mentioned that if they
had found the online forum where their users interacted earlier it would have saved a
lot of time.

The use of log data and analytics was challenging for startups SU1 and SU6. They
had implemented the collection of statistics but were not gaining as much insight from
it as they would have wanted. Startup SU4 was using data systematically to evaluate
the behavior of users but they still found it difficult sometimes. “The most challeng-
ing part is finding the meaning of data when it does not explain the reasons [behind
actions]. And if we make wrong guesses then we won’t learn.” (H5)

The challenges included finding relevant users for user research and testing, and
having the right methods to get meaningful information. The interviewees did not
mention having special difficulties in the actual UX design. In user tests, the product
and UX need to be good enough for people to get some value. Startups SU1, SU2,
SU3 and SU4 needed users and user-generated content in their product or service for
it to bring value to users. This proposed a problem on how to generate enough content
for the launch so that even the early adopters would gain enough value to keep using
the product or the service. When the product relies on user-generated content it makes
user testing difficult since the users might not be patient enough to wait for content to
be created. Startups may not have enough resources to drive the creation of such con-
tent in the early phases of product launch.

4.3 Needs for UX Work When Scaling Up

Startups that participated in the interviews were in different stages in their business
and product development. When talking about the needs for UX work they would
have in the future the answers varied. Startups SU3 and SU5 were preparing to launch
the first public version of their product within a month and it was their first priority.
They both mentioned that having perhaps one more person working on development
and UX would be helpful but that they could also manage without one. They trusted
that they would get enough user data after the launch which would then help them to
improve the product. However, they did not have a clear plan on how to collect and
analyze the feedback and data. “The challenge with end-users might be that they just
leave the site if they don’t like it. We would need to know what made them
leave.”(H6)

All the startups that currently did not collect log data and analytics (SU2, SU3,
SU5, SU7) were planning to collect it from the upcoming versions of their product.
They believed that it would enable them to understand users and react to it by improv-
ing the product. None of them had clear plans on how to gain insight from data but
they trusted the tools available to help in it.

90 L. Hokkanen and K. Väänänen-Vainio-Mattila

Startups SU4 and SU7 were preparing for a pilot with a B2B customer. They were
expecting to get a better understanding of their customers and the user groups with the
pilot. Since they had no direct contact to the end-users, the collection of usage data
was seen as the best way to learn from the users. Startup SU7 hoped to build trust
with customer so they could later be in contact with end-users.

Startup SU6 was next planning to build a product for a new market outside of
Finland. They estimated needing more background information of their users to un-
derstand them in the new market. This information would be, for example, the socio-
economic background, how they heard about the product and what motivated them to
come to the site.

The most common future vision regarding understanding users was collecting log
data and analytics. Primary reason to collect data for SU3 was creating revenue with it
by selling the data. As for feedback channels, SU4 was planning to implement a user
support portal. SU1, SU3 and SU8 wanted to better utilize the people interested in
developing the product with them. None of the startups mentioned currently having
plans to conduct end-user interviews. Surveys were seen as a possible way to collect
feedback in the future but none of the startups had planned them for now. In general,
the startups did not have a clear strategy for future UX work.

5 Discussion and Conclusions

The eight startups that were interviewed provided valuable insights of UX work prac-
tices that can be useful and feasible to conduct in the startup context. The startups that
had human-centered-design knowledge used a variety of ways to collect information
on end-users. Some of them had conducted interviews, surveys and experimented
with paper prototypes. This is in line with Coleman’s [4] observation of software
development processes which concludes that the background of people inside the
startup has the biggest influence on how processes are formatted. These startups
sometimes felt that they were not using the information as systematically as they
could have but it still provided them support when they needed it. According to the
interviewees, going back and reading the qualitative data was a good way to find
ideas. Startups with no knowledge of human-centered design reported having difficul-
ties in collecting meaningful information about users due to not knowing what to ask
from users. Since the developers in startups are empowered to affect the UX design,
one option could be educating them to basic user research methods like in [14].

UX work in startups needs to balance with different aspects. On one side, user re-
search and testing need to be done as early as possible while at the same time the
product, users and market might still change. In addition, the product that is tested
should be minimally implemented but have enough features and UX design to keep
the test users motivated to use it. This is relevant especially in products that require
many users or user-generated content to provide value.

The limited sample of startups in this study does not represent all kinds of startups.
From the interviewed startups, four had an international team working for them but
they were still operating from Finland. Also, all but one (SU3) were interacting and

 UX Work in Startups: Current Practices and Future Needs 91

exchanging ideas with the same experts and investors within the local startup com-
munity. For more thorough understanding and generalization of the results, more
startups should be investigated from different market sectors and locations. Further
research with a larger number of startups over a longer period will help determining
more profoundly what kind of UX practices best serve startups. Still, this study has
provided new knowledge on how the startups approach different aspects of UX work
and what challenges they face.

Startups should recognize the importance of UX when they are planning to enter
markets with new, innovative products. Based on our research we suggest that star-
tups would benefit from:
1. Having skills for user information gathering and analysis. This enables them to get

more meaningful information and see past the generic feedback.
2. Applying lightweight methods for quick interviews, surveys and user tests that

address questions arising in different stages of the startup’s product development.
3. Putting effort in finding the right users for research and testing purposes, beyond

the personal networks. This user base should be heterogeneous enough to present
the user group and not just the early adopters. The size of the user base should be
manageable to keep contact for a longer period of time and different product ver-
sions.

4. Preparing for the feedback and data that they will get. Log data and statistics
might be challenging to analyze. Resources should be targeted in collecting what
can be used afterwards, and for the analysis itself.

5. Creating UX strategy that would help keep focus and steer the product towards the
wanted UX.

Addressing these issues from the very early phases of the product design and devel-
opment will help startups create successful products with delightful user experience.

References

1. Ardito, C., Buono, P., Caivano, D., et al.: Investigating and Promoting UX Practice in
Industry: An Experimental Study. International Journal of Human-Computer Studies 72,
542–551 (2014)

2. Beck, K., Beedle, M., Van Bennekum, A., et al.: Manifesto for Agile Software Develop-
ment (2001)

3. Blank, S.: Why the Lean Start-Up Changes Everything. Harv. Bus. Rev. 91, 63–72 (2013)
4. Coleman, G., O’Connor, R.V.: An Investigation into Software Development Process

Formation in Software Start-Ups. Journal of Enterprise Information Management 21,
633–648 (2008)

5. Gasik, V., Lamas, D.: Lean design for good user experience. In: CHI 2013 Workshop
“Made for Sharing: HCI Stories for Transfer, Triumph and Tragedy”, p. 10 (2013)

6. Giardino, C., Unterkalmsteiner, M., Paternoster, N., et al.: What do we Know about Soft-
ware Development in Startups? IEEE Software 31, 28–32 (2014)

7. Giardino, C., Wang, X., Abrahamsson, P.: Why early-stage software startups fail: a beha-
vioral framework. In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP,
vol. 182, pp. 27–41. Springer, Heidelberg (2014)

92 L. Hokkanen and K. Väänänen-Vainio-Mattila

8. Gothelf, J.: Lean UX: Applying lean principles to improve user experience. O’Reilly
Media, Inc. (2013)

9. Gulliksen, J., Boivie, I., Persson, J., et al.: Making a difference: a survey of the usability
profession in sweden. In: Proc. of the Third Nordic Conference on HCI, pp. 207–215.
ACM (2004)

10. ISO: 9241-210:2010. Ergonomics of Human System Interaction-Part 210: Human-Centred
Design for Interactive Systems. International Standardization Organization (ISO),
Switzerland (2009)

11. Jurca, G., Hellmann, T.D., Maurer, F.: Integrating agile and user-centered design: a
systematic mapping and review of evaluation and validation studies of agile-ux. In: Agile
Conference (AGILE), pp. 24–32. IEEE (2014)

12. Klein, L.: UX for lean startups: Faster, smarter user experience research and design.
O’Reilly Media, Inc. (2013)

13. Kuusinen, K., Väänänen-Vainio-Mattila, K.: How to make agile UX work more efficient:
management and sales perspectives. In: Proc. of the 7th Nordic Conference on HCI:
Making Sense Through Design, pp. 139–148. ACM (2012)

14. Liikkanen, L.A., Kilpiö, H., Svan, L., et al.: Lean UX: the next generation of user-centered
agile development?. In: Proc. of the 8th Nordic Conference on HCI: Fun, Fast,
Foundational, pp. 1095–1100. ACM (2014)

15. May, B.: Applying lean startup: an experience report: lessons learned in creating
& launching a complex consumer app. In: Agile Conference (AGILE), pp. 141–147. IEEE
(2012)

16. Paternoster, N., Giardino, C., Unterkalmsteiner, M., et al.: Software Development in Star-
tup Companies: A Systematic Mapping Study. Information and Software Technology
(2014)

17. Ries, E.: The lean startup: How today’s entrepreneurs use continuous innovation to create
radically successful businesses. Random House LLC (2011)

18. Taipale, M.: Huitale – a story of a finnish lean startup. In: Abrahamsson, P., Oza, N. (eds.)
LESS 2010. LNBIP, vol. 65, pp. 111–114. Springer, Heidelberg (2010)

19. Vivianto, A.: The Lean UX Manifesto: Principle-Driven Design. http://www.
smashingmagazine.com/2014/01/08/lean-ux-manifesto-principle-driven-design/ (2014)

20. Vredenburg, K., Mao, J., Smith, P.W., et al.: A survey of user-centered design practice. In:
Proc. of the SIGCHI Conference on Human Factors in Computing Systems, pp. 471–478.
ACM (2002)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 93–104, 2015.
DOI: 10.1007/978-3-319-18612-2_8

Why the Development Outcome Does Not
Meet the Product Owners’ Expectations?

Timo O.A. Lehtinen(), Risto Virtanen, Ville T. Heikkilä, and Juha Itkonen

Department of Computer Science, Aalto University School of Science,
P.O. BOX 15400 Fl-00076, Aalto, Finland

{timo.o.lehtinen,risto.virtanen,
ville.t.heikkila,juha.itkonen}@aalto.fi

Abstract. Many software development projects fail due to problems in
requirements, scope, and collaboration. This paper presents a case study of the
mismatch between the expectations of Product Owners and the outcome of the
development in a large distributed Scrum organization. The data was collected
in retrospective meetings involving a team of Product Owners and two software
development teams. A focused root cause analysis of the problem “Why the ex-
pectations of Product Owners do not meet the outcome of development teams?”
was conducted. The analysis aimed at explaining why the problem occurred and
how the causes were related to one another. The outcomes were analyzed both
quantitatively and qualitatively. Our results illustrate the challenges of imple-
menting the Product Owner role in the context of complex, high-variability
requirements and distributed development. We highlight the importance of true
collaboration, effective requirements specification activities, and sufficient re-
sources for the Product Owner role.

Keywords: Scrum · Product owner · Root cause analysis · Software process
improvement · Requirements engineering · Global software development

1 Introduction

Matching the expectations of customers and software development outcomes is a
fundamental business issue and research objective in the software engineering do-
main. The mismatch between customer expectations and software development out-
comes has caused many software projects to fail, see e.g. [1].

The identified key factors of successful software product development [2] include
the good requirements and flexible collaboration between the customers and develop-
ers. Respectively, the common factors of software project failures [3] include the
difficulties with the customers, requirements specifications, and collaboration over the
stakeholders. Most of the underlying causes of the success and failure have also been
presented to be context dependent [3] and thus the in-depth analysis and dissemina-
tion of each new case is important in order to create generalizable knowledge of soft-
ware engineering problem causes. Prior studies have mostly ignored the contextual
differences in software projects [4].

94 T.O.A. Lehtinen et al.

This paper disseminates a case study on the problems in the collaboration between
Product Owners (PO) and software development teams in a large distributed Scrum
organization. The problems are analyzed from both the customer and development
perspective. The main objective is to disseminate the causes of the mismatch between
the software development outcomes and POs’ expectations. In addition, the solutions
to identified causes are proposed and evaluated. This study answers the following two
research questions:

RQ1: Why the expectations of Product Owners do not meet the outcome of develop-
ment work?

RQ2: What problems were perceived the most important to control in order to minim-
ize the risk for a failure in the Product Owner expectations?

2 Background and Related Work

The way the expectations of a PO are communicated to the developers in a Scrum
team is well-documented [5]. The PO creates and prioritizes the product backlog
items. During the sprint planning meeting, the team creates a feasible sprint backlog
for the following sprint. During the sprint, the team and the PO have a constant dialo-
gue regarding the implementation of the backlog items. At the end of the sprint, the
Scrum team and relevant stakeholders review the sprint outcome. Thus, the PO com-
municates her expectations to the team at the beginning, during and at the end of the
sprint. Any mismatches are identified easily and amended quickly.

Although the PO is extremely important for the success of Scrum development,
there has been little research on the causes of failed expectations in Scrum. Some
studies exist on the topic of implementing Scrum in global software development. Lee
and Yong [6] found that the distribution of development created misunderstandings
between stakeholders and difficulties in adjusting priorities. They suggested on-site
customer representatives as a solution for those problems. Paasivaara et al. [7] studied
the challenges in scaling the PO role in globally distributed Scrum projects. They
identified on-site PO representatives, teaming POs, frequent communication, and
clearly communicated priorities as the means for a successful PO function in large
distributed settings.

Moe et al. [8] studied teamwork in a Scrum project. They found that developers
expected the PO to be able to provide answers to their questions on short notice.
However, the PO lacked clear understanding of what the system was supposed to do
and he was not always able to answer the developers’ questions. Subsequently, the
developers were often unsure of what they were supposed to do. The lack of planning
and a rapidly changing environment were also identified as causes for the developers
working on tasks that did not originate from the sprint backlog. Moe et al. identified
the insufficient coordination of information dissemination and the lack of responsi-
bility for the overall technical solution as the causes of failed PO expectations.

Strode et al. [9] propose that having an on-site customer representative leads to
highly efficient coordination, but a team-external customer representative leads to
more complex coordination needs. They suggest that a team member should take the
role of an explicit coordinator if an on-site customer representative is not available.

 Why the Development Outcome Does Not Meet the Product Owners’ Expectations? 95

According to Bjarnason et al. [10], overscoping refers to setting a larger iteration
scope than the available resources allow. They identified the following causes of
overscoping in large-scale software engineering [10]: Continuous requirements inflow
from multiple channels, no overview of available resources, low development team
involvement in the early planning phases, unclear vision of the overall goal and scope,
and deadlines dictated by the management. They also found that overscoping caused
failures to meet the customers’ or clients’ expectations.

3 Methodology

The overall research method was a case study [11]. Root cause analysis [12] was used
in the data collection and analysis.

3.1 Case Company

The case company was a large distributed software development company which
employed approximately 800 employees. The company developed complex systems
that were integrated into customer specific systems with varying business logic. The
company representatives reported that they had started to use the Scrum method [5]
about a year prior to this study. The organization had 30 members who were software
developers, Scrum Masters, or POs. The developers were split into two software de-
velopment teams. Both teams developed independent sub-systems for the software
product. The teams followed two-week development sprints, conducted daily stand-
ups, sprint demonstrations and retrospectives.

Four POs conveyed the customer needs to the development teams. The organiza-
tion was divided into three European countries, each having one local PO and mem-
bers from both teams. The fourth PO was responsible for quality assurance. Both
teams worked with all four POs. One reason for this was the regulatory localization:
The product needed to fulfill country specific regulations and therefore it was useful
to have multiple POs, each being responsible for a different set of regulations.

The case was purposively selected [13] as it was a rich source of data. It enabled us
to accumulate understanding about the reasons for failed PO expectations in a large,
distributed Scrum organization.

3.2 Data Collection with Root Cause Analysis

The data collection was made by focused retrospective meetings following the ARCA
root cause analysis (RCA) method [14] and tool [12]. The organization had used such
an approach in retrospectives preceding our case study, which enabled us to collect
the data and observe the analysis in the real context of use.

The case study was based on on-going research collaboration including frequent
knowledge sharing. The case study started with a 60-minute focus group meeting with
one PO and one Scrum Master. The goal was to define the main problem in the soft-
ware development activities. These discussions resulted in understanding that the
expectations of POs did not meet the outcome of the development work.

96 T.O.A. Lehtinen et al.

The formal data was collected in three face-to-face retrospective meetings (3 x 60
minutes in total). Each retrospective meeting considered the following question: “Why
expectations of Product owners do not meet with the implemented functionality?” The
first and second retrospective meetings were conducted with a development team
(three and five participants, respectively). The third meeting was conducted with the
POs (four participants). One of the Scrum Masters chaired all of the retrospective
meetings. All three retrospectives were conducted in succession during one day and
the participants did not communicate between the retrospective meetings.

The teams used the RCA method and software tool in the retrospective meetings to
detect the causes of the main problem and collaboratively create a cause-effect dia-
gram that expresses the problem causes and their causal relationships in an electronic
format. The method was used in the following way. First, the retrospective partici-
pants were given 5 minutes to individually write down causes related to the main
problem. Thereafter, they presented their findings to others. Then, the participants
were given another 5 minutes to add additional causes and sub-causes for the pre-
viously detected problems, followed by discussion. During the discussion, further
additional causes were entered to the cause-effect diagram when detected. The partic-
ipants also considered how the causes were related to one another. This helped them
to express how the conflicts between the POs’ expectations and the development
work outcomes came to be. At the end of each retrospective, the participants voted on
the causes that needed immediate corrective actions and were also feasible to solve.

The case analyses resulted in four corrective actions. These actions were evaluated
by the organization members during the “improved” software development activities.
In order to evaluate the process improvement impact, the company representatives
conducted three 60 minutes interviews. One Product Owner and two developers, one
from each team, were interviewed.

3.3 Data Analysis

The data analysis was conducted with the company representatives. The raw data
from each retrospective meeting was analyzed separately first. The detected causes
were classified applying the process area and problem type classifications proposed
by Lehtinen et al. [3]. This made it possible to generalize the causes and map them to
software development process areas, which helped to express what happened in the
affected software processes.

After the detected causes were classified, the process interconnections were ana-
lyzed. A new modularized cause-effect diagram was made from each retrospective
data separately. The diagram included process areas and cause types separated into
“local causes” and “bridge causes” [3]. The bridge causes explain the external causal
relationship between two process areas and the local causes explain the outcomes of a
process area internally. The most controllable problems, voted by the retrospective
participants, were also emphasized in the modularized diagram. This helped to com-
municate the analysis results to the members of the organization and decision makers,
which was considered highly important because the aim of the company was to rec-
ognize feasible targets for process improvement, develop action proposals, and finally
implement the corrective actions.

 Why the Development Outcome Does Not Meet the Product Owners’ Expectations? 97

After the results from each retrospective were analyzed, the results were synthe-
sized into a combined analysis. This made it possible to conclude the common prob-
lems and generalize the results to cover the whole organization. The reliability of the
combined results was expected to be high because they were identified in each retros-
pective meeting separately. Corrective action interview results were analyzed by
dividing the answers into “positive comments” and “comments why the corrective
action should be improved”.

4 Results

This section presents the results of the case study. First, the analysis outcomes from
the retrospective meetings are presented. Thereafter, we describe the synthesis of the
results analyzing similarities and differences between the outcomes of the different
teams.

4.1 Retrospective Outcomes of Development Team 1

Development Team 1 (D1) concluded that the main problem was caused by insuffi-
cient requirements, which were not specific enough to be understood correctly. They
were made with insufficient guidance from the customers. The requirements were
also affected by the lack of collaboration, the lack of values and taking responsibility,
and the lack of available resources.

D1 explicated causes from the development work. The team members did not
communicate actively enough during the sprints. They did not ask for clarifications to
unclear requirements. The team members also explained that they did not communi-
cate enough directly with the POs, but too much thorough the Scrum Master.
Additionally, the team members reported that development work usually included
challenging tasks.

Furthermore, D1 presented that the software testing suffered from missed deadlines
and insufficient requirements. Third parties provided test data for software testing
activities. Occasionally, the third parties provide the data too late, which caused de-
lays in the software testing. Insufficient requirements caused inaccurate workload
estimates, which caused missed deadlines in software testing.

The lack of information flow between the sales & requirements and development
work was identified as an important target for process improvement. Similarly, the
collaboration practices were emphasized important to be solved.

4.2 Retrospective Outcomes of Development Team 2

Development Team 2 (D2) identified many similar causes than D1. D2 concluded that
the main problem was affected by insufficient communication between POs and de-
velopers, which caused unclear specifications with vague priorities. The lack of
knowledge, lack of values and taking responsibility, lack of collaboration between
Product Owners and developers, lack of processes for communication, and lack of

98 T.O.A. Lehtinen et al.

resources explained why the requirements were insufficient. In addition to D1 find-
ings, D2 members explained that it was also the work practices of prioritizing every-
thing as “must have” which caused the main problem.

The inactive communication between the POs and developers during the sprints
was also elaborated as one of the important causes of the main problem. One team
member found that “Dialogue might be missing during sprint”, which was then ex-
plained by stating “No tradition in ongoing communication between POs and Devel-
opers” and “Product Owners [are] not involved as much as they should”.

 The lack of collaboration between the sales and requirements process and devel-
opment work was concluded as an important target for process improvement. Fur-
thermore, D2 proposed that the collaboration and development process needed to be
improved.

4.3 Retrospective Outcomes of Product Owner Team

Similarly to both development teams, the POs concluded that the requirements were
insufficient. They explained that the problems in the sales and requirements process
were caused by the lack of knowledge, lack of values and taking responsibility, lack
of collaboration, lack of work practices, lack of communication processes, and lack of
resources. The POs thought that creating good requirements was difficult. The organi-
zation employed third parties to create the requirements and occasionally the POs
could not understand those requirements.

The POs detected the causes of the main problem similar to the ones detected by
the development teams. These included the lack of knowledge, lack of collaboration,
and task difficulty. In contradiction, they explained that the quality of the develop-
ment work outcome was occasionally insufficient. The POs emphasized that the lack
of collaboration with the developers was the most important cause in explaining why
the main problem occurred. They claimed that the organization members were inac-
tive in collaboration. The POs stated that “Developers have not asked for meetings”
and “No initiatives from POs or Scrum Masters to have meetings and discuss complex
use cases”. They also stated that the language barrier and geographical distances ne-
gatively affected the collaboration activity. The POs elaborated that the development
work was not properly monitored during the sprints.

The POs stated that the main problem was also caused by management problems
and the organization in general. They claimed that the knowledge of managers was
limited and that the management suffered from the lack of collaboration, lack of
communication processes, and lack of resources. The POs also identified problems in
the whole organization. They claimed that the organization members did not know
how to do Scrum. Finally, they explained that the complexity of the product caused
problems for most members of the organization.

 Insufficient requirements were identified as the most important targets for process
improvement. Similarly, the lack of processes, insufficient task outcomes, the lack of
taking responsibility, and the lack of resources in sales & requirements were impor-
tant to be improved. The POs also emphasized organization-wide problems for
process improvement activities. These included the lack of instructions and expe-
rience, and the complexity of the existing product.

 Why the Development Outcome Does Not Meet the Product Owners’ Expectations? 99

4.4 Synthesis of the Individual Retrospective Results

Fig. 1 summarizes the causes that were identified in all retrospective meetings. It also
shows the causes that were perceived as feasible targets for process improvement. The
missing collaboration during the software development activities is one of the main
problem causes in the organization. The output from the sales and requirements
process was also found to be insufficient. Following from these causes, the developers
did not know what to do and what to test. The members of the organization perceived
that they did not receive enough instructions.

Furthermore, the participants presented that the lack of values and taking responsi-
bility was a problem in the sales and requirements process area. The sales & require-
ments process area also suffered from the lack of resources. The feasible process im-
provement targets were mostly similar among the teams. Requirements understanding
needed to be increased. The collaboration was also a feasible target for process im-
provement. A total of four corrective actions were finally developed. First, the POs
were asked to participate in the teams’ daily stand-up meetings. Second, the organiza-
tion hired two new employees to work with the requirements specifications and
usability designs. Third, the POs increased their mutual collaboration during the de-
velopment sprints. Fourth, the POs started to regularly participate in sprint planning
activities.

Only the first corrective action was not implemented. In the interviews, the impact
of the other corrective actions was concluded as significant. On the other hand, it was
noted that these corrective actions do not solve the main problem completely.

5 Discussion

This section answers our research questions and considers the implications for practi-
tioners. At the end of the section, we also discuss the limitations of this case study.

5.1 Answers to the Research Questions

The main research objective of this case study was to conclude the problems between
the outcome of Scrum teams and POs in large distributed Scrum organization. Table 1
summarizes the problems and detected causes including their solutions in relation to
the related work.

RQ1: Why the expectations of Product Owners do not meet the outcome of devel-
opment work? The first research question contributes to prior studies on software
project failures by considering the problems to meet the expectations of customers.
Regarding our results, the lack of collaboration between the customers and software
development teams causes such failures. In the case organization, the POs had diffi-
culties communicating and prioritizing the requirements to the development teams
because the requirements were not clear for the POs themselves. This was caused by
the lack of PO resources and the use of third parties in eliciting and defining the re-
quirements. The geographical distance, language barriers, and inactive software de-
velopers exacerbated the problems. Clarifications for the requirements were neither
requested during the development work.

100 T.O.A. Lehtinen et al

Fig. 1. Synthesis

The problems of the case
method, but problems in i
problems and corrective ac
implemented. The POs did
representatives occasionall
They did not actively part
retrospective meetings. The
company representatives co
teams and subsequently the
which requirements.

RQ2: What problems we
nimize the risk for a failure
question contributes to the
quirements and communica
tions and experience, value
sources and schedules are a

The case organization m
tion between the POs and
sales and requirements proc
in the methods used by th
teams more often. Especiall
ning meetings, as was prop
tionally, the POs should hav
them to review the requir
teams. Furthermore, sharing
the organization were perc
the expectations of the POs

l.

s of the causes detected in the retrospective meetings

e organization do not seem to be problems with the Scr
mplementing it. The in-depth data analysis including
ctions of the case revealed that the PO role was not fu
not belong to the Scrum teams, but were isolated custom

ly participating in sprint planning and review meetin
ticipate in the sprint planning, daily stand-up, and sp
ese causes partially explain the failed PO expectations. T
oncluded that the POs were not parts of the developm
e developers did not know which PO was responsible

ere perceived the most important to control in order to
e in the Product Owner expectations? The second resea

research problem of how to successfully describe the
ate them to the Scrum teams. In our result, lacking instr
es and responsibility, collaboration, methodology, and
all important targets for process improvement.

members perceived that increasing the amount of collabo
software developers would improve the outcome of

cess. They also concluded that this would require chan
he POs. The POs should have met with the developm
ly they should have actively participated in the sprint pl

posed in the corrective actions developed in the case. Ad
ve had frequent meetings together. This would have hel
ements before they were introduced to the developm
g instructions and project experiences over the member

ceived as important for increasing the match-rate betw
 and outcomes of the development teams.

rum
the

ully
mer
ngs.

print
The

ment
for

mi-
arch
 re-
ruc-

re-

ora-
the

nges
ment
lan-
ddi-
lped

ment
s of

ween

 Why the Development Outcome Does Not Meet the Product Owners’ Expectations? 101

Table 1. Comparison with the related work

Problem Causes in this study Causes in related work

Insufficient colla-

boration between

the PO and the

team(s).

• The distribution of development

and heavy PO workload caused

inactive collaboration during the

sprints, which led to misunders-

tandings between the stakehold-

ers.

• The distribution of development created

communication misunderstandings between

stakeholders [6].

• Low development team involvement in

early planning phases [10] caused overscop-

ing.

Challenges in

adjusting the

priorities.

• POs’ heavy workload caused

lack of resources to do prioritiza-

tion.

• POs’ lack of knowledge caused

unclear understanding in the

development teams.

• Difficulties in adjusting priorities [6].

• The continuous requirements inflow from

multiple channels [10].

• PO lack of understanding of product

features [8].

• No overview of software development

resource availability [10].

Developers work-

ing on the wrong

tasks

• The development work was not

properly monitored.

• Rapid change and lack of planning [8].

• Insufficient coordination of information

dissemination and the lack of responsibility

for the overall technical solution [8].

Lacking under-

standing of re-

quirements.

• The third parties provided

unclear requirements for the POs

which caused problems reaching a

consensus with the developers.

• Unclear vision of the overall goal, and

scope and deadlines dictated by the man-

agement [10].

Solutions Solutions in this study Solutions in related work
Local customer
representatives

• On-site customer representa-
tives.

• On-site customer representatives [6], [7].

Product Owner
resources

• A PO team.
• PO meetings.
• Increasing the number of POs.
• Active PO participation in sprint
planning.

• A PO team [7].
• Team internal coordinator if an on-site PO
not available [7], [8].
• Frequent communication [7].
• Clearly communicated priorities [7].
• POs with technical background [7].
• PO pairwork [7].

Additionally, the organization needed more human resources. The POs were far

too busy to handle the stream of all customer requirements and to communicate them
in the large-scale distributed organization. Therefore, two new employees were ac-
quired to the software organization. A new PO was hired to manage the product back-
log, including the requirements elicitation, tracking, and prioritization. This was an
improvement towards proper Scrum implementation. It also improved the software
development outcomes. The organization members explained that the new PO had a
positive effect on the clarity of requirements. The requirements were also provided
well in time. Furthermore, a new employee was hired to ensure that the user interface
was designed according to the requirements. This helped the organization to increase
the match-rate between the implemented user interface and the customer expectations.
This was a “great help” as was concluded in the post-interviews.

102 T.O.A. Lehtinen et al.

5.2 Implications for Practitioners

In a large distributed software organization, implementing Scrum successfully is chal-
lenging. It requires a fit between the customers and software development teams,
which is highly dependent on the success of implementing the PO role. Scrum may
also require heavy investments in collaboration, knowledge sharing, organization
culture, and motivation.

We see that our analysis contributes to prior works on Scrum by considering the
causes and possible solutions for the mismatch in the expectations of POs, proxies
between the customers and development work. Our analysis studied why the expecta-
tions of POs did not meet the development work outcome, a gap in the existing stu-
dies. The prior works (see Table 1) have studied Scrum related problems, in general,
and found that insufficient collaboration [6], [10], challenges adjusting priorities [6],
[10], [8], developers working on the wrong tasks [8], and lacking understanding of
requirements [10] are common challenges. Respectively, solutions to these problems
have been presented, which include local customer representatives [6], [7] and PO
resources [7], [8]. Our case organization suffered with similar problems and they also
resulted in similar solutions. Therefore, our findings consolidate the prior works and
make a contribution by showing how these problems and solutions are related to
failed PO expectations.

We hypothesize that in a large distributed software organization, implementing
Scrum is a longitudinal process which could be very time-consuming and difficult to
implement fully. Our case organization had gone through an agile transformation
about a year before our study was conducted. The Scrum roles were assigned to the
employees and the Scrum rituals were conducted. However, despite the effort and
time used to implement Scrum, our case analysis revealed that Scrum was not com-
pletely implemented. For example, the PO was not present at the daily stand-up meet-
ings.

A PO needs to have both team-facing and business-facing expertise. Ideally, there
is a single PO who works within one development team. This means that other human
resources are needed when customer needs are highly variable and difficult due to, for
example, complex country specific regulations. Scrum provides little help to increase
the match between the highly variable expectations of multitude of customers and
software development outcomes in a complex software engineering context. In addi-
tion to Scrum, effort in creating specific and clear requirements and in guiding the
teams is required. POs cannot be solely responsible for the requirements elicitation.
Instead, third parties, country specific experts, a lot of collaboration, and explicit pri-
oritization decisions are needed in a domain such as in our case.

In our case, the POs were shared by the teams. This way the organization tried to
manage the complexity of the country specific regulations and decrease the problems
from the geographical distribution. It enabled the developers to communicate with at
least one PO face-to-face during the development sprints. However, having a PO
accessible was not enough. The POs did not have enough time to meet the developers
during the development sprints because they had to work with highly varying custom-
er requirements. This also caused insufficient requirements communication with the
development teams. The case organization decided to increase the number of POs in
order to solve these problems.

 Why the Development Outcome Does Not Meet the Product Owners’ Expectations? 103

We also hypothesize that analyzing the causes of the match-rate between the PO
expectations and development work outcome helps in adopting Scrum. Analyzing
“Why expectations of Product Owners do not meet with the implemented functionali-
ty?” helped the case organization to understand what improvements are feasible for
their needs. The root cause analysis approach was also well-liked in the case organi-
zation [12]. It helped them to develop corrective actions. They continued using it in
their sprint retrospectives.

5.3 Limitations

The validity of the output of a root cause analysis method relates to human factors
[15]. The problems and their underlying causes were detected in public retrospective
meetings. Thus, our results may have been affected by group pressure and insufficient
knowledge. The following measures were taken in order to mitigate these risks. First,
our results are based on triangulation, the collective findings of three individual
groups. Second, we asked the organization members to evaluate the “correctness” and
“impact” of the detected problems, and both got good evaluations. Third, the main
parts of the analysis were conducted by the company representatives who were ex-
perts of their domain. To mitigate the risk for reliability, the data was re-analyzed by
the authors. All analyzers came to similar conclusions on the detected problems, their
underlying causes, and the feasible targets for process improvement.

6 Conclusions and Future Work

Our results from a large-size distributed agile software organization, which claimed to
follow the Scrum method, indicate that the lack of collaboration between the customer
representatives and software development teams caused the mismatch of expectations
between them. We found that the problems in the collaboration escalated during the
software development activities. The outcome of the sales and requirements process
was insufficient and caused the developers not knowing what to do and what to test.
The members of the organization did not receive enough useful instructions for the
customer collaboration and for the whole software organization.

Increasing the amount of collaboration between the customer representatives and
software developers was perceived as a feasible target for process improvement. In
the case organization, making an improvement to the collaboration required changes
in the methodologies used by the customer representatives. Additionally, it required
hiring more human resources. The customer representatives were far too busy to han-
dle the stream of the customer requests and to communicate them in the large-scale
distributed software organization.

In a large and distributed software organization working with a high number of
country specific regulations and customers, converting the customer needs to satisfac-
tory solutions is a complicated challenge. Scrum provides only a partial solution to
this puzzle. In our case, the POs struggled with the heavy communication needs with
the customers and the third parties. They had no time to participate in the daily stand-
up meetings. Thus, we conclude the following research problem for future work:

104 T.O.A. Lehtinen et al.

“How to successfully improve the match between customer needs and Scrum devel-
opment outcomes in the context of complex, high-variability requirements and distri-
buted development?”

References

1. Verner, J.M., Abdullah, L.M.: Exploratory case study research: Outsourced project failure.
Information and Software Technology 54, 866–886 (2012)

2. Moløkken-Østvold, K., Jørgensen, M.: A comparison of software project overruns - flexi-
ble versus sequential development models. IEEE Transactions on Software Engineering
31(9), 754–766 (2005)

3. Lehtinen, T.O.A., Mäntylä, M.V., Vanhanen, J., Lassenius, C., Itkonen, J.: Perceived
Causes of Software Project Failures – An Analysis of their Relationships. Information and
Software Technology 56(6), 623–643 (2014)

4. McLeod, L., MacDonell, S.G.: Factors that affect Software Systems Development Project
Outcomes: A Survey of Research. ACM Computing Surveys 43, 24–55 (2011)

5. Schwaber, K., Sutherland, J.: Scrum guide. Scrum Alliance (2011)
6. Lee, S., Yong, H.: Distributed agile: project management in a global environment. Empiri-

cal Software Engineering 15, 204–217 (2010)
7. Paasivaara, M., Heikkila, V.T., Lassenius, C.: Experiences in scaling the product owner

role in large-scale globally distributed scrum. In: Seventh International Conference
On Global Software Engineering (ICGSE), pp. 174–178. IEEE (2012)

8. Moe, N.B., Dingsøyr, T., Dybå, T.: A teamwork model for understanding an agile team: A
case study of a Scrum project. Information and Software Technology 52, 480–491 (2010)

9. Strode, D.E., Huff, S.L., Hope, B., Link, S.: Coordination in co-located agile software
development projects. J. Syst. Software 85, 1222–1238 (2012)

10. Bjarnason, E., Wnuk, K., Regnell, B.: Are you biting off more than you can chew? A case
study on causes and effects of overscoping in large-scale software engineering. Informa-
tion and Software Technology 54, 1107–1124 (2012)

11. Yin, R.K. (ed.): Case Study Research: Design and Methods. SAGE Publications, United
States of America (1994)

12. Lehtinen, T.O.A., Virtanen, R., Viljanen, J.O., Mäntylä, M.V., Lassenius, C.: A tool Sup-
porting root cause analysis for synchronous retrospectives in distributed software teams.
Information and Software Technology 56(4), 408–437 (2014)

13. Patton, M.Q.: Qualitative Research. Sage (2002)
14. Lehtinen, T.O.A., Mäntylä, M.V., Vanhanen, J.: Development and evaluation of a

lightweight root cause analysis method (ARCA method) – field studies at four software
companies. Information and Software Technology 53(10), 1045–1061 (2011)

15. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering 14(2), 131–164 (2008)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 105–116, 2015.
DOI: 10.1007/978-3-319-18612-2_9

Functional Size Measures and Effort Estimation
in Agile Development: A Replicated Study

Valentina Lenarduzzi1, Ilaria Lunesu2, Martina Matta2(), and Davide Taibi3

1 Università degli Studi dell'Insubria, 21100, Varese, Italy
valentina.lenarduzzi@gmail.com

2 Università degli Studi di Cagliari, Piazza d'Armi 09123, Cagliari, Italy
{ilaria.lunesu,martina.matta}@diee.unica.it

3 Free University of Bolzano, Piazza Domenicani 3 39100, Bolzano, Italy
davide.taibi@unibz.it

Abstract. To help developers during the Scrum planning poker, in our previous
work we ran a case study on a Moonlight Scrum process to understand if it is
possible to introduce functional size metrics to improve estimation accuracy
and to measure the accuracy of expert-based estimation. The results of this orig-
inal study showed that expert-based estimations are more accurate than those
obtained by means of models, calculated with functional size measures. To va-
lidate the results and to extend them to plain Scrum processes, we replicated the
original study twice, applying an exact replication to two plain Scrum develop-
ment processes. The results of this replicated study show that the accuracy of
the effort estimated by the developers is very accurate and higher than that ob-
tained through functional size measures. In particular, SiFP and IFPUG Func-
tion Points, have low predictive power and are thus not help to improve the es-
timation accuracy in Scrum.

1 Introduction

In projects developed with Scrum [19], effort estimations are carried out at the begin-
ning of each sprint, based on developer experience. However, as reported by several
empirical studies, developers, involved in agile processes, usually underestimate their
effort in agile processes [5, 6, 7, 8 and 13].

In order to understand if functional size measures allow for more accurate effort es-
timates, a case study on a Moonlight Scrum process was conducted in our previous
work [1]. There we investigated whether functional size measures can help to improve
the effort estimation accuracy of Scrum user stories and compared the accuracy of the
resulting effort model with the developers estimated effort. The study shows that, in
Moonlight Scrum, the estimation of developers is more accurate than estimation
based on functional measurement and therefore functional measures do not help de-
velopers in improving the accuracy of effort estimation in Moonlight Scrum.

Since the case study was applied to a slightly modified version of Scrum, we ex-
pect that different results might be obtained when applying the approach to a plain
Scrum process.

106 V. Lenarduzzi et al.

Thus, we investigate these two research questions:

RQ1: Can we extend the results obtained to the original case study to plain Scrum
processes?

RQ2: Does IFPUG Function Points help to increase the effort estimation, compared to
SiFP?

In order to answer to our research questions, in this work we performed two exact
replications of the original case study [4], directly involving the original authors of
the original case study, together with those responsible for the development of the
new two development processes.

No changes to the original study design were applied, except for the context in
which the study was executed. In this case, the development process changed from
Moonlight Scrum to a plain Scrum process.

The result of this work will provide input for future research directions over than
the validation of existing results.

The information reported in this paper is organized as suggested by the guidelines
for replicating controlled experiments [3]. Section 2 describes the original case study.
Section 3 presents the new study contexts and design, highlighting the similarities and
differences with the original design. Section 4 presents the results of the study and
compares them with the original study. Section 5 discusses results and describes the
threats to validity and finally, Section 6 draws conclusions.

2 The Original Case Study

In this section, we will describe the original study [1], providing information on the
study design and describing the research questions, the goal of the study, the measures
identified, and the protocol adopted. Then we will describe the study context, hig-
hlighting the variables that affected the design of the study, and finally we will pro-
vide a brief overview of the major findings.

2.1 Study Design

The goal of the original study was formulated by means of the Goal Question Metric
approach [2] as: analyze the development process for the purpose of evaluating the
effectiveness of functional measures for effort estimation from the viewpoint of the
developers in the context of a Scrum development process.

One of the most important requirements was that measures must be collected within a
maximum of five minutes per user story at the end of the usual Scrum planning game, so
as to not influence the normal execution of the required Scrum practices.

For this purpose, we identified a set of measures to be collected for each user story
at the end of every sprint meeting.

To measure user stories, we first investigated the feasibility of existing functional
size measures. Since standard Function Points such as IFPUG [15] or FISMA require
a lot of effort to be collected, and most of the required information was not available
in our context, we opted for Simplified Function Points (SiFP) [12]. We collected
SiFP instead of IFPUG Function Points because SiFP provides an “agile”, simplified
and alternative measure that is compatible with IFPUG Function Points [15, 17].

SiFP are calculated as SiFP= 7 * #DF + 4.6 * #TF, where #DF is the number of da-
ta functions (also known as logic data files) and #TF is the number of elementary

 Functional Size Measures and Effort Estimation in Agile Development 107

processes (also known as transactions). For this reason, we collected information for
DF and TF separately. Moreover, we also split TF into two sub-processes: input
processes iTF (data received from the server) and output processes oTF (data sent to
the server). TF was finally calculated as (iTF+oTF)/2.

Then, before running this study, we asked our developers what information they
take into account when estimating a user story. All developers answered that they
consider four pieces of information, based on the complexity of implementing the
GUI and the number of functionalities to be implemented. They usually consider each
GUI component as a single functionality that requires sending or receiving informa-
tion to/from the database. The complexity of the communication is related to the
number of tables involved in the SQL query.

For these reasons, we also considered the following measures:

• GUI Impact: null, low, medium, high: complexity of the GUI implementation iden-
tified by the developers.

• # GUI components added: number of data fields added (e.g., HTML input fields)
• # GUI components modified: number of data fields modified.

Finally, we also collected some context information, such as the story type (new
features or maintenance), so as to understand whether new development tasks should
be estimated differently from maintenance tasks.

2.2 Study Context

The case study was applied in the context of the development of a web-based applica-
tion [14] developed in C#/Asp.net with a simple 3-tier architecture that allows the
development of independent features among developers.

The application developed is a relatively small application, composed of 12,500 ef-
fective lines of code developed using a Moonlight Scrum process [11], a special ver-
sion of Scrum.

The development was carried out by four part-time developers (Master’s students)
with 2 to 3 years’ of experience in software development and was organized as follows:

• The duration of each sprint is three weeks.
• Daily meetings are replaced by reporting on an online forum twice a week.
• Only one developer can work on a user story.
• Each developer works 8 hours per week.
• Every developer works in isolation during non-overlapping hours.
• The work is coordinated by the Scrum master via the weekly meetings.

2.3 Study Results

The project was analyzed for four months. A total of 136 user stories were examined,
of which 65% were related to the development of new features, while only 35% were
related to maintenance. Moreover, in this process, most of the user stories were re-
lated to the development of graphical features with high or medium complexity.

Functional measures were collected only for 55 user stories (40.4%) since the re-
maining user stories did not contain enough information for functional size measure-
ment (e.g., GUI features that do not deal with data transactions).

108 V. Lenarduzzi et al.

The analysis of correlations between SiFP and effort reported in all user stories did
not provide any statistically significant result showing very low goodness of fit. Even
when we tried to cluster the user stories by story type and GUI impact, the results
showed the same behavior.

A similar pattern was shown for the correlation between the number of GUI com-
ponents added or modified and the multivariate correlations among GUI components
added, GUI components modified and Data Files provided statistically significant
results paired with low correlation.

The results finally showed that functional measures are not applicable to a Moon-
light Scrum process.

Since the study focused on Moonlight Scrum, a slightly modified version of
Scrum, we expected some variations in applying the same approach to a full-time
development team working on a plain Scrum process.

3 Study Context and Design

Our studies are designed so as to accurately replicate the original study conducted in
[1] by using the same research goals and study design as reported in Section 2.

In this section, we will describe the contexts of both studies. Then we will high-
light similarities and differences of the context and the design of the new studies with,
respectively to, the context of the original study.

The projects analyzed in the new study were developed at the Software Factory lab
of the University of Cagliari (Italy).

The development process was Scrum, with the support of a Kanban board [16],
without tight WIP limits, in order to visualize in each instant the work in flow.

The development processes were organized as follows:

• The duration of each sprint is two weeks.
• Daily meetings must last at most 10 minutes.
• Developers work two days per week for eight hours a day (16 hours per

week).
• A user story can be developed only by one developer (no pair programming).
• Every developer works in the same room during the same hours in order to

improve collaboration and communication.
• The development is coordinated by a coach with perfect knowledge of the

project and the technologies, who is also involved in the development.
• All developers are actively involved in Sprint retrospectives, planning, and

retrospective discussions, making important contributions in order to obtain a
good final result.

As in the original case study, the project was developed using a 3-tier architecture,

which allowed the development of independent features among developers.

3.1 Case Study 1: Matchall2

In the first case study, we monitored the development of a module for Matchall2, an
industrial web-based application aimed at providing labeling facilities (namely a

 Functional Size Measures and Effort Estimation in Agile Development 109

bookmarklet) that allow classifying and categorizing pictures and videos with custom
tags. The project was developed from March 2013 to May 2013 for a total of nine
weeks (4 sprints).

The team was composed of eight students participating in the course: two graduate
students, four undergraduates, and two PhD students. One of the PhD students had a
good level of knowledge of the project and all the relevant technologies. Therefore, he
played the role of team coordinator/coach. A local entrepreneur played the role of the
product owner.

3.2 Case Study 2: Serts

The Serts project aimed at implementing a semi-automatic tool, called SERTS (Software
Engineering Research Tool Suite) with the goal of simplifying the analysis of data col-
lected in software repositories such as Bugzilla, CVS, SVN, Git, and Jira. The project
allowed navigating through versions and releases, storing the data in an internal database,
so as to speed up subsequent analysis of the software, such as the calculation of metrics
and the extraction of software graphs. The project was developed from September 2013
to November 2013 during a period of eight weeks (3 sprints).

The team was composed of six students, one undergraduate and five PhD students.
Like in the Matchall2 project, one of the PhD students had a good level of know-

ledge of the project and played the role of team coordinator/coach.

3.3 Commonalities and Differences to the Original Case Study

The original study design and procedure were strictly followed. The only difference
of the new studies is related to the development processes applied and the develop-
ment teams and the new measure investigated (IFPUG Function Points).

In the replicated studies, the process was plain Scrum instead of Moonlight Scrum.
For this reason, developers in the original study worked in non-collocated spaces and
during non-overlapping hours, whereas in these replications, the developers worked in
the same space during the same timeframe.

A detailed comparison of the studies is available in Table 1.

Table 1. Context comparison among the three studies

 Original Case Study Matchall2 Case Study Serts Case Study
Development Process Moonlight Scrum Scrum Scrum
Reporting Online Forum Kanban Board Kanban Board
Developers’ location Distributed Collocated Collocated
Overlapping hours No Yes Yes
Working hours/week 8 16 16
#developers 4 8 6
#weeks 18 9 8
#sprints 6 4 3
Project Type Client-Server

(web app.)
Client-Server

(web app.)
Client-Server
(desktop app.)

110 V. Lenarduzzi et al.

4 Results

In this section, we report the results of our two case studies. In both cases, we first
analyzed the results for the functional measures (SiFP and IFPUG Function points). In
order to understand if a different definition of SiFP can be adapted in our study to
increase the accuracy of the effort estimation, we analyzed further correlations among
the factors considered for the calculation of SiFP (#DF # iTF, and #oTF).

Then, we analyzed results of the correlations among the factors considered by our
developers when they need to estimate a user story (GUI Components Added, Mod-
ified and Data Files).

Finally, we compared the accuracy of effort estimation predicted by our developers
to the actual effort estimation.

Table 4, Table 5 and Table 6 in Appendix A report detailed results of the analysis.

4.1 Matchall2 Case Study Results

The Matchall2 project was composed of 81 user stories collected in 4 sprints in a total
of 408 working hours. 75 user stories were related to the development of new features,
five to refactoring, and one to bug fixing. All user stories had low GUI impact.

Since the number of user stories related to refactoring and bug fixing is not statisti-
cally relevant, and all user stories had the same GUI impact, we only analyzed the
results for the new development user stories, without cluster results for story type or
GUI impact.

After eliminating three outliers – identified according to Cook’s distance [18], we
reduced the number of user stories considered to 78. Table 2 shows descriptive statis-
tics for the attributes analyzed in the Matchall2 case study.

The analysis of correlations between SiFP and effort does not provide any statisti-
cally significant result (see Fig. 1). A Pearson correlation coefficient of 0.121 (p-
value =0.140 and r2=0.015) was calculated for the 78 data pairs as presented in the
scatter graph in Fig. 1. As a consequence of the low correlation, the accuracy is not
acceptable (MMRE=66%, MdMRE=66%). The multivariate correlation analysis
among the factors considered for the calculation of SiFP shows a similar trend as for
the SiFP analysis, indicating that this information is also not significant for improving
effort estimation in Scrum (see Table 5).

As expected, also the analysis of correlations among IFPUG Function Points and
effort has a similar trend as these obtained with SiFP with no statistically significant
results, as shown in Fig. 2 (Pearson=0.145, p-value =0.099 and r2=0.021). For this
reason, the accuracy is also not acceptable (MMRE=116% and MdMRE=53%).

Taking into account the information considered by the developer to estimate the
user stories, the univariate correlation between the sum of GUI Components Added
and Modified and the effort, the correlation is very low and accuracy is not acceptable
(Pearson= -0.017, p-value=0.440, r2=0, MMRE=109% and MdMRE=76%). Moreo-
ver, also considering the results of the multivariate correlation among effort and GUI
Components Added, GUI Components Modified, and DF, (Fig. 3) the results are still
not statistically significant and accuracy is still not acceptable (MMRE=135% and
MdMRE=93%).

Finally, as in our original study, we compared the accuracy of effort estimation
predicted by our developers to the actual effort estimation (Fig. 4). The results show
that expert-based effort estimation is much better than estimation predicted by means
of functional size measurement, reporting an MMRE of 39% and an MdMRE of 25%.

 Functional Size Measures and Effort Estimation in Agile Development 111

Table 2. Descriptive statistics for the Matchall2 case study

Variable Avg Min Max Std. Dev.
Actual Effort (hours) 2.33 1 8 1.50
SiFP 6.11 4.6 7.20 0.64
IFPUG 13.64 6 60 17.23
GUI Components Added 0.55 0 3 0.69
GUI Components Modified 0.51 0 5 0.99
input Transactions (iTF) 1.32 0 8 2.84
output Transactions (oTF) 0.54 0 3 1.15
Data Files (DF) 0.87 0 3 1.26

Fig. 1. Actual Effort vs Estimated Effort with
SiFP

Fig. 2. Actual Effort vs Estimated Effort with
IFPUG Function Points

Fig. 3. GUI Components added, modified and
DF

Fig. 4. Actual Effort vs Developers’ estimated
effort

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

E
st

im
at

ed
 (S

iF
P

)

Actual Effort

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

E
st

im
at

ed
 (I

F
P

U
G

)

Actual Effort

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

E
st

im
at

ed
 (G

C
a,

 G
C

m
, D

F
)

Actual Effort

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

E
st

im
at

ed
 (E

xp
er

t)

Actual Effort

112 V. Lenarduzzi et al.

4.2 Serts Case Study Results

The Serts project was composed of 25 user stories, collected in three sprints, for a
total of 832 working hours. All stories are related to the development of new features.
No stories were related to refactoring or bug fixing.
As for the Matchall2 project, GUI impact was always low for all user stories. There-
fore, we do not cluster results for story type or GUI impact.

Table 3 reports descriptive statistics for the attributes analyzed in the Serts case
study. In this case, no outliers have been identified by means of the Cook’s distance.

Table 3. Descriptive statistics for the Serts case study

Variable Avg Min Max Std. Dev.
Actual Effort 33.28 1 120.00 33.74
SiFP 4.93 4.6 5.60 0.51
IFPUG Function Points 37.38 4 67 16.03
GUI ComponentsAdded 1.92 1 6.00 2.13
GUI Components Modified 0.04 1 1.00 0.19
iTF 1.88 1 6.00 2.17
oTF 0.77 1 6.00 1.36
DF 2.65 1 4.00 1.62

As for the Matchall2 case study and for the original case study, the analysis of cor-

relations between SiFP and effort did not provide any statistically significant results. A
Pearson correlation coefficient of 0.411 (p-value =0.019 and R2=0.169) was calculated
for the 25 data pairs as presented in the scatter graph in Fig. 5. As a consequence of
low correlation, even though the p-value is within an acceptable range, accuracy is still
not acceptable (MMRE=120.00%, MdMRE=76.00%). As for the Matchall2 case
study, we analyzed further correlations among the factors considered for the calcula-
tion of SiFP. The results show a similar trend as for the previous data (MMRE=93.00%
and MdMRE=54.00%), indicating that this information is also not significant for im-
proving effort estimation in Scrum (see Table 5).

Also in this case, as expected, the analysis of correlations between IFPUG Function
Points and effort reports a similar trend to the one obtained with SiFP (Pearson =0.444,
p-value=0.013 and r2=0.197, MMRE=145.00% and MdMRE=119.00%) confirming
that functional size measures are not suitable for supporting developers in predicting
the effort of the user stories in Scrum.

Taking into account the information considered by the developer to estimate the us-
er stories, the results confirm those obtained in the other case studies both when consi-
dering the univariate correlation between GUI Components Added and Modified and
when considering the multivariate correlation among GUI Components Added, Mod-
ified and DF, reporting very low correlation and a not acceptable goodness of fit (see
Table 6 for detailed results).

Finally, as in our original study, we compared the accuracy of effort estimation pre-
dicted by our developers to the actual effort estimation (Fig. 8). The results show again
that expert-based effort estimation, even if it is not very accurate, is still better than
estimation predicted by means of functional size measurement, reporting an MMRE of
52% and an MdMRE of 58%.

 Functional Size Measures and Effort Estimation in Agile Development 113

Fig. 5. Actual Effort vs Estimated Effort with
SiFP

Fig. 6. Actual Effort vs Estimated Effort with
IFPUG Function Points

Fig. 7. GUI Components Added, Modified
and DF

Fig. 8. Actual Effort vs Developers’ Estimated
Effort

5 Discussion

Based on the results obtained in the data analysis, we can answer our research ques-
tions.

As for the RQ1, on the extension of the results obtained to the original case study to
plain Scrum, the analysis confirms the results obtained in our previous study. The main
outcome of this replication is the confirmation of the low predictive power of SiFP in
Scrum and that there are no correlations among the information considered by our
developers and the actual effort. Moreover, also the analysis of the information needed
to calculate SiFP do not help to improve the accuracy.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

E
st

im
at

ed
 (S

iF
P

)

Actual Effort

0

20

40

60

80

100

120

0 20 40 60 80 100 120

E
st

im
at

ed
 (I

F
P

U
G

)

Actual Effort

0
10
20
30
40
50
60
70
80
90

100
110
120

0 20 40 60 80 100 120

E
st

im
at

ed
 (G

C
a,

 G
C

m
, D

F
)

Actual Effort

0

20

40

60

80

100

120

0 20 40 60 80 100 120

E
st

im
at

ed
 (E

xp
er

t)

Actual Effort

114 V. Lenarduzzi et al.

The analysis of the correlations among IFPUG Function Points (RQ2) and effort,
show a similar trend of the one obtained with SiFP confirming that functional size
measures are not suitable for predicting effort in either Moonlight Scrum or plain
Scrum.

As side result of this work, we also confirm the accuracy of the conversion among
SiFP and IFPUG reported in [17], reporting a MMRE= 27% and MdMRE=24%.

Results also confirm that, as in previous studies [5, 6, 7, 8, 13], developers usually
underestimate the effort.

The original case study had been developed with a special version of Scrum, which
is why we expected that the low prediction accuracy of functional measures was due to
the nature of the project and not to the process.

Concerning the internal validity of the study, the developers were Master’s and PhD
students with experience in software development ranging from two to five years.
Moreover, the identified functional size measures are designed to estimate complete
projects or components while in this case studies we applied it to Scrum user stories
and not to the whole project.

As for external validity, this study focused on two Scrum processes, with part-time
developers who work only two days per week. We expect some variations in applying
the same approach to a full-time development team working on a plain Scrum process.

Regarding the reliability of this study, the results are not dependent on the subjects
or on the application developed. We expect similar results for the replication of this
study with other Scrum processs.

6 Conclusions

In this work, we replicated a case study with the goal of understanding if it is possible
to introduce functional size metrics to the Scrum planning game.

With this study, we contribute to the body of knowledge by providing an empirical
study on the investigation of functional size measures for effort estimation in agile
processes, and in particular in Scrum.

To achieve this purpose, we first gave an overview of the previous study and then
we described the difference with the case study we ran.

The results of our study confirm that functional size measures, and in particular
SiFP and IFPUG Function points, do not help to improve estimation accuracy in
Scrum. Moreover, even trying to re-compute the formula for the calculation of SiFP
does not help to improve the accuracy of effort estimation.

Accuracy does not increase when considering other measures usually considered by
developers when they evaluate the effort required to develop a user story.

As side result of this work, we also confirm the accuracy of the conversion among
SiFP and IFPUG reported in [17], with an MMRE= 27% and MdMRE=24%.

Future works will include studies to better understand the information considered by
the developers when they estimate user stories and the replication of this study in
another industrial context.

Acknowledgments. This research is supported by Regione Autonoma della Sardegna (RAS),
Regional Law No. 7-2007, project CRP-17938 LEAN 2.0.

 Functional Size Measures and Effort Estimation in Agile Development 115

References

1. Lenarduzzi, V., Taibi, D.: Can functional size measure improve effort estimation in
SCRUM?. In: ICSEA - International Conference on Software Engineering and Advances,
Nice, France (2014)

2. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. Encyclope-
dia of Software Engineering, 528–532 (1994)

3. Carver, J.: Towards reporting guidelines for experimental replications: a proposal. In: Pro-
ceedings of the 1st International Workshop on Replication in Empirical Software Engi-
neering Research (RESER) (Held during ICSE 2010), Cape Town, South Africa, May 4,
2010

4. Shull, F., Carver, J., Vegas, S., Juristo, N.: The role of replications in empirical software
engineering. Empirical Software Engineering 13(2), 211–218 (2008)

5. Jamieson, D., Vinsen, K., Callender, G.: Agile procurement to support agile software de-
velopment. In: Proceedings of the 35th IEEE International Conference on Industrial Infor-
matics, pp. 419–424 (2005)

6. Sulaiman, T., Barton, B., Blackburn, T.: AgileEVM - earned value management in
SCRUM projects. In: Proceedings of AGILE Conference, pp. 10–16 (2006)

7. Haugen, N.C.: An empirical study of using planning poker for user story estimation. In:
Proceedings of AGILE Conference, pp. 9–34 (2006)

8. Cao, L.: Estimating agile software project effort: an empirical study. In: Americas Confe-
rence on Information Systems (AMCIS), p. 401 (2008)

9. Basili, V.R., Caldiera, G., Rombach, H.D.: The goal question metric approach. Encyclope-
dia of Software Engineering, 528–532 (1994)

10. Buglione, L., Abran, A.: Improving estimations in agile projects: issues and avenues. In:
Proceedings of the 4th Software Measurement European Forum (SMEF) Rome, Italy
(2007)

11. Taibi, D., Diebold, P., Lampasona, C.: Moonlighting SCRUM: an agile method for distri-
buted teams with part-time developers working during non-overlapping hours. In: Proceed-
ings of the Eighth International Conference on Software Engineering (ICSEA), pp. 318–
323 (2013)

12. Meli, R.: Simple function point: a new functional size measurement method fully com-
pliant with IFPUG 4.x. In: Software Measurement European Forum (2011)

13. Mahnic, V.: A case study on agile estimating and planning using SCRUM. In: Americas
Conference on Information Systems (AMCIS), pp 123–128 (2008)

14. Diebold, P., Dieudonné, L., Taibi, D.: Process configuration framework tool. In: Euromi-
cro Conference on Software Engineering and Advanced Applications (2014)

15. International Function Point Users Group. Function Point Counting Practices Manual
(2004)

16. Willeke, M.H.H.: Agile in academics: applying agile to instructional design. In: Agile
Conference (AGILE). IEEE (2011)

17. Lavazza, L., Meli, R.: An evaluation of simple function point as a replacement of IFPUG
function point. In: IWSM - Mensura 2014, Rotterdam, October 2014

18. Cook, R.D., Weisberg, S.: Residuals and Influence in Regression. Chapman and Hall,
London (1982)

19. Schwaber, K., Sutherland, J.: The Scrum guide (2001). www.scrumguides.org
20. Huijgens, H., Solingen, R.V.: A replicated study on correlating agile team velocity meas-

ured in function and story points. In: Proceedings of the 5th International Workshop on
Emerging Trends in Software Metrics (WETSoM 2014) (2014)

116 V. Lenarduzzi et al.

Appendix: Detailed Results

In this section we report detailed results of the correlation analysis carried out in both
studies.

Table 4. Univariate Correlation Analysis Results

 Matchall2 Serts

 SiFP IFPUG
GUI

(a+m)
SiFP IFPUG

GUI
(a+m)

Pearson 0.121 0.145 -0.017 0.411 0.444 0.422
p-value 0.140 0.099 0.440 0.019 0.013 0.016
r2 0.015 0.021 0.000 0.169 0.197 0.178
MMRE 0.660 1.160 1.090 1.200 1.450 0.970
MdMRE 0.660 0.530 0.760 0.760 1.190 0.760

Table 5. Multivariate correlation between Actual Effort and iTF, oTF and DF

 Matchall2 Serts
 iTF oTF DF iTF oTF DF
Pearson 0.422 -0.063 -0.042 0.250 0.266 0.382

p-value 0.000 0.288 0.355 0.109 0.094 0.027

R2 0.241 0.306
MMRE 1.210 0.930
MdMRE 0.580 0.540

Table 6. Multivariate correlation between GUI Components Added, Modified and DF

 Matchall2 Serts
 GUIa GUIm DF GUIa GUIm DF
Pearson 0.114 -0.097 -0.042 0.438 -0.153 0.382
p-value 0.155 -0.423 0.033 0.013 0.228 0.027
R2 0.018 0.265
MMRE 1.350 0.950
MdMRE 0.930 0.640

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 117–128, 2015.
DOI: 10.1007/978-3-319-18612-2_10

Software Development as an Experiment System:
A Qualitative Survey on the State of the Practice

Eveliina Lindgren() and Jürgen Münch

Department of Computer Science, University of Helsinki,
P.O. Box 68 FI-00014, Helsinki, Finland

{eveliina.lindgren,juergen.muench}@cs.helsinki.fi

Abstract. An experiment-driven approach to software product and service de-
velopment is gaining increasing attention as a way to channel limited resources
to the efficient creation of customer value. In this approach, software function-
alities are developed incrementally and validated in continuous experiments
with stakeholders such as customers and users. The experiments provide factual
feedback for guiding subsequent development. Although case studies on exper-
imentation in industry exist, the understanding of the state of the practice and
the encountered obstacles is incomplete. This paper presents an interview-based
qualitative survey exploring the experimentation experiences of ten software
development companies. The study found that although the principles of con-
tinuous experimentation resonated with industry practitioners, the state of the
practice is not yet mature. In particular, experimentation is rarely systematic
and continuous. Key challenges relate to changing organizational culture, accel-
erating development cycle speed, and measuring customer value and product
success.

Keywords: Continuous experimentation · Experiment-driven software devel-
opment · Customer feedback · Qualitative survey

1 Introduction

New possibilities to observe customers and collect customer feedback allow software-
centric companies to shorten learning cycles and improve their understanding of
customer value. A potential approach is to build software products and services
(henceforth, products) by continuously deploying new versions to customers. Instead
of relying on pre-defined requirements or opinion-based assumptions, the customer
value of products, functionalities, and features is validated in their actual marketplace
by conducting a constant series of experiments. This experiment-driven approach is
currently most prevalent in the cloud computing environment, but it is beginning to
affect the development of all Internet-connected software products [1].

Despite the recent interest in experimentation as an integral part of software devel-
opment, industrial experimentation experiences have not been studied widely: most
examples come from eminent web-facing companies. There has also been relatively
little discussion about the obstacles faced by practitioners in this respect.

118 E. Lindgren and J. Münch

This paper presents an interview-based qualitative survey that aims at developing an
understanding of the state of the practice of using an experiment system approach to
software development. Key challenges related to the approach are also identified.

The paper is organized as follows. Section 2 presents the problem background and
related work. Section 3 defines the research questions and describes how the study
was designed and executed. The results of the study are presented in Section 4, fol-
lowed by a discussion in Section 5. Finally, the paper is concluded in Section 6.

2 Background and Related Work

During the last decades, agile software development methods have permeated the
industry [2]. Agile development has changed the way software is developed for in-
stance by advocating iterative and incremental development, embracing changing
requirements, and highlighting the importance of customer feedback. However,
Holmström Olsson et al. [3] suggest that the application of agile methods within the
research and development (R&D) organization is only one stage on the maturation
path of companies’ software engineering practices. The following stages are the con-
tinuous integration and deployment of R&D output, and finally, R&D as an experi-
ment system. At this stage, development is based on rapid experiments that utilize
instant customer feedback and product usage data to identify customer needs.

This final stage is further systematized by Bosch [1]. He emphasizes constantly
generating new ideas to test with customers, suggesting that the approach is best de-
scribed as an innovation experiment system. Bosch proposes using 2–4 week R&D
iterations followed by exposing the product to customers in order to collect feedback
either directly or implicitly by observing product usage. Various experiment tech-
niques can be used throughout development. Experimentation does not necessarily
require functioning software. Furthermore, the scope of experiment-driven develop-
ment can vary from new products to new features and feature optimization.

Fagerholm et al. [4] combine the above-mentioned ideas with key elements from
the lean startup methodology [5] and propose a framework for continuous experimen-
tation. Continuous experimentation refers to the constant testing of the value of prod-
ucts as an integral part of the development process in order to evolve the products
towards high-value creation. Consecutive iterations of the Build-Measure-Learn feed-
back loop structure the development process. Within each Build-Measure-Learn
block, “assumptions for product and business development are derived from the busi-
ness strategy, systematically tested, and the results used to inform further develop-
ment of the strategy and product” [4]. This experiment-driven learning process is
supported by a technical infrastructure that 1) enables the lightweight releasing of
minimum viable products (MVP), 2) provides means for advanced product instrumen-
tation, and 3) supports the design, execution, and analysis of experiments. Fagerholm
et al. also provide a description of the roles, tasks, and information artefacts that are
required to run a system of continuous experimentation.

Several case studies on companies’ experimentation experiences have recently
been published. Microsoft’s experiences with systematic large-scale online controlled

 Software Development as an Experiment System 119

experiments have been recounted in numerous reports, for instance [6]. Google pur-
ports to experimentally evaluate almost every change that has the potential to affect
user experience [7]. Supporting and fostering continuous innovation is a key element
of the Google experiment system [8]. The Netflix “consumer data science” approach
is two-staged [9]: experiments are first conducted offline, and if they succeed, an
online customer experiment is executed to provide definitive validation.

Adobe’s “Pipeline” innovation process attempts to maximize the learning about a
given problem through rapid prototyping and frequent customer evaluation [10]. eBay
uses a multitude of experimental techniques in addition to online controlled experi-
ments, such as usability testing, focus groups, and diary studies [11]. The diverse
experimentation practices of Intuit are described in [1].

The use of product usage data in the embedded systems domain is examined in
[12,13]. The papers conclude that product usage data is not utilized efficiently as a
basis for product improvements and innovations. Finally, examples of successful
experimentation experiences in an academia-industry collaboration setting are de-
scribed in [4], [14].

The above-mentioned studies portray different approaches to experimentation. In
the context of this paper, the following criteria are used as requirements for systematic
experimentation: 1) the business-driven definition of explicit assumptions, 2) the de-
sign and conducting of experiments to test those assumptions, 3) the analysis of ex-
periment data, and 4) the use of experiment results as input for decision making and
follow-up action. Continuous experimentation is achieved if these steps are a perma-
nent part of the development process.

3 Study Approach

Research Questions. Based on the study goals, the following research questions were
defined:

RQ1: How is continuous experimentation applied in software development
companies?
RQ1.1: How is customer feedback concerning the software product collected?
RQ1.2: How is the collected customer feedback used in the software product

development process?
RQ2: What challenges are associated with continuous experimentation?

Study Design. The study was founded on a qualitative survey design, using inter-
views with industry practitioners to collect data [15,16]. Methodologically, qualitative
surveys resemble multiple case studies [16,17]. However, while multiple case studies
aim to produce an in-depth analysis of particular cases, the focus of qualitative sur-
veys is less specific and more concerned with providing a multifaceted, diverse view
of the topic of interest [15,16].

Semi-structured individual interviews were used to collect data, since they enable
focusing on predefined research topics while also being highly flexible to allow for
unforeseen information [18]. To structure the interviews, an interview guide was de-

120 E. Lindgren and J. Münch

veloped, outlining the key topics, questions, and prompts. Easy “warm up” and “cool
down” questions were asked at the beginning and end of the interviews. The main
topics of the interviews, along with example questions, are defined below (the com-
plete interview guide is available in the Figshare repository [19]):

1. Current software development practices
a. What kind of software development process do you use?

2. Current practices of customer feedback elicitation and use
a. How do you make sure that you are building the right product?
b. How do you collect customer feedback?
c. Do you collect data about customer behavior, for example in the

form of product usage data?
d. How do you use the collected customer feedback and other data?

3. Future practices of customer feedback elicitation and use
a. Do you think your current practices of customer feedback collection

and customer involvement are adequate?
b. Are there any obstacles to obtaining deeper customer insights?

The interview data was examined through thematic coding analysis [18]. The anal-
ysis was based on an iterative coding process, during which a hierarchical codebook
was developed inductively based on the interview data. Descriptive, analytic, or cate-
gory marker codes were generated depending on the analytic needs. The codebook is
also available in the Figshare repository [19]. The codes were then combined to iden-
tify common themes, or patterns, within the data.

A purposive, non-probability sample [15,16] was chosen for the study. Software
development companies of various sizes, domains of operation, and stages of life
cycle were sought to achieve a diverse set of participants. Furthermore, interviewees
from different roles and with solid experience in the software industry were sought.

Study Execution. Study participants were recruited among the affiliates of the Need
for Speed research program [20] and, outside the research program, through the pro-
fessional contacts of the authors. Due to practical constraints, only companies operat-
ing in Finland were considered. Gatekeepers were contacted at each company, who
either participated in the study themselves or suggested a suitable interviewee. In
accordance with ethical guidelines [21], the purpose and procedures of the study were
shared with the participants via an information sheet, in addition to which they were
asked to give voluntary informed consent to partake in the study.

The recruitment resulted in the participation of ten software companies, represent-
ed by thirteen interviewees. The individual interviews were conducted in Finland
between February and April 2014. The average length of the interviews was 48
minutes, with the range spanning between 36 and 64 minutes. All interviews were
conducted in English and audio-recorded to allow for accurate, detailed data analysis.
Eleven interviews were conducted by one researcher, and in the remaining two cases
two researchers were present. Eleven interviews were performed face to face on the
interviewees’ company premises, one via video conferencing, and one as a VoIP call.

To facilitate data analysis, interview recordings were transcribed verbatim shortly
after each interview. The transcripts were coded and analyzed using ATLAS.ti [22].

 Software Development as an Experiment System 121

4 Results

This section first gives an overview of the study participants. It then outlines the soft-
ware development practices of the participating companies. The companies’ practices
of eliciting and using customer feedback are considered next, after which the chal-
lenges with relation to continuous experimentation are presented.

4.1 Overview of Participants

Ten ICT companies operating in Finland participated in the study. The focus was on
their software product development functions. Table 1 gives a characterization of the
companies by size, domain, and product orientation (more details are not disclosed
due to confidentiality reasons). Three of the companies can be described as startups.

Most interviewees held either senior management (31%) or middle management
(54%) positions in their companies. Consultant and senior software architect roles
were also represented (15%). The interviewees’ length of employment in their current
company varied between 1 and 26 years, with the average being 7.7 years.

Unlike the other companies who only had one representative, company C was rep-
resented by four interviewees. Their answers were merged together to form an overall
impression of the company. As regards company E, their software development prac-
tices were not discussed during the interview since the interviewee was not actively
involved in this part of the company’s operations. Input from company E is therefore
only included in the results presented in Section 4.4.

Table 1. Participating companies (size classification: small < 50, medium ≤ 250, large > 250)

Company Company size by
no. of employees

Company domain Product
orientation

A Small Gaming B2C
B Small ICT services B2B
C Large ICT services B2B
D Small Sports B2B, B2C
E Medium ICT services B2B
F Small Software development tools B2B
G Medium Software development tools B2B, B2C
H Large Security B2B, B2C
I Large Telecom B2B
J Small Multimedia B2B

4.2 Software Development Practices

All companies mentioned that they utilize agile methods such as Scrum, Kanban, and
Lean. All companies also stated that they use continuous integration (CI) but, con-
sistent with previous research [23], there was variability in how CI was interpreted
and implemented. These findings are based on the interviewees’ informal descriptions

122 E. Lindgren and J. Münch

of their development approach rather than a formal questionnaire or definition provid-
ed by the researchers. The general impression of the companies’ development practic-
es was similar to a recent survey [2], although the prevalence of lean-inspired practic-
es and CI appeared to be higher.

Release cycle length ranged from under one month (56%) to less than three months
(33%) or more (11%). Interviewees often made remarks on constantly having a de-
ployable product version available, working in a production-like environment to sim-
plify deployments, and pursuing a DevOps mode of operation. The overall impression
was that deployments were quite lightweight and flexible, except for on-premises
installations in business-to-business (B2B) environments.

4.3 Practices of Eliciting and Using Customer Feedback

The companies used a wide array of techniques to learn about customer needs. Most
techniques were based on eliciting direct customer feedback through familiar means
such as stakeholder interviews and surveys, prototypes, usability and user experience
testing, and other forms of user testing. Bug reports and feature voting were also used
as a way to guide development.

Implicit customer feedback in the form of product usage data was collected by five
companies (55%). In many cases the product instrumentation covered performance
data and basic user demographics. However, some companies also had more sophisti-
cated, feature-level instrumentation. Seven companies (78%) had plans either to begin
collecting product usage data or to improve current practices in the future. The key
motivation behind these plans was the possibility to assess customer value and enable
data-driven decision making. Product usage data was considered “an excellent tool
[…] to see in which features to invest [and] how to improve them […]. And also for
[…] directly guid[ing] our development efforts.”

Despite the wealth of techniques used to collect customer feedback, their use in
systematic, continuous experimentation with customers was rare. Experimentation
based on explicit, business-driven assumptions only appeared to be an integral devel-
opment practice in one (startup) company. Four companies (44%) used A/B or multi-
variate testing, but most only used it occasionally and not necessarily in a systematic
way. Additionally, three companies (33%) had plans to begin using A/B testing or to
improve current practices. The unsystematic approach to experimentation was also
acknowledged by some of the interviewees: “Whether we are systematic and very
good, I have some doubts. It’s a little bit ad hoc. So ‘Let’s have a tagline like this, and
maybe like that. Okay, let’s put it up there [to production] and let’s see’. […] So[…]
it is not very thorough and not very scientific.”

The collected customer feedback was typically analyzed to extract work items
which were then prioritized into a product backlog. There was some variation in how
the interviewees described their approach to feedback processing. Particularly the
startup representatives emphasized the need to explore the feedback beyond face val-
ue in order to generate new ideas and innovations: “The interesting thing is their [the
customers’] complaint, not the solution that they are providing.”

 Software Development as an Experiment System 123

The level of involvement of different stakeholders in analyzing customer feedback
varied: in some cases, both management and the development team were heavily in-
volved with analyzing the feedback and the responsibility was shared. In other cases,
the responsibility was on management roles but all the feedback was reviewed togeth-
er with the team. Lastly, particularly in the larger companies, the process was man-
agement-led and the development team mainly based their work on a ready-made
product backlog. Some interviewees considered this problematic since it may lead to
the loss of valuable insights: “[T]here is still a lot [of room] for improvement in that
area [sharing customer information with the development team].”

Two divergent approaches emerged regarding the influence of customer feedback
on business strategy and goals. First, some company representatives considered that
the strategy is continuously being revised based on the feedback. This approach was
predominant among the startup companies. As one interviewee said: “Our strategy is
to experiment.” In the second approach, business strategy and goals were considered
more stable and therefore not directly influenced by the customer feedback. This ap-
proach appeared to be more typical to established companies.

4.4 Challenges with Respect to Continuous Experimentation

Fig. 1 gives an overview of the key domain-independent challenges that were identi-
fied in this study. Half of the company representatives considered organizational cul-
ture a major obstacle to moving towards an experimental mode of operation: “I would
say that the technical things are not […] even close to the weight of the cultures’
obstacles.” Another interviewee agreed that trouble in embracing experimentation
“has nothing to do with technology”. The overarching issues with respect to organiza-
tional culture included a perceived lack of agility, proactivity, and transparency –
either within the company or in relation to the company’s customers. While cultural
challenges were remarked upon by the representatives of both established and startup
companies, the general impression was that the more fundamental issues were
brought up by the established companies.

Concern over slow release cycles was one of the central themes in terms of product
management. Reasons for this perceived sluggishness included R&D task overload
and bottlenecks in the development process. Focusing on products and features that
create the most customer value was seen as a way to speed up development: “I don’t
think you can accelerate anything. What you can do is do less.”

Identifying the metrics to evaluate created customer value and product success was
a challenge both in relation to dedicated experiments and to the general observation of
product usage. In the words of one interviewee: “To measure the right thing is the
hard thing, to know […] what is relevant. I think you can easily measure such a lot of
things that you […] lose sight of the forest for all the trees. And then you just optimize
irrelevant things.” Particular challenges related to which metrics and techniques of
customer feedback collection to use when scaling up a product: “You can’t throw big
data analytics on this [product] with a few thousand people, but you can’t really
[…]interview each […] one of them […] either.”

124 E. Lindgren and J. Münch

Fig. 1. The key domain-independent challenges with frequency of occurrence by participating
company (outer circle) sorted by topic areas (inner circle).

A further set of issues was related to defining the product roadmap. Identifying a
truly viable MVP was considered “very easy to say, very hard to do.” As regards
established products, one interviewee described formulating a product backlog as
“black magic” as it could be so challenging to combine both the product vision and
the requests and demands of various customer organizations.

Interviewees also expressed concern over deficiencies in the analysis of collected
customer feedback and other data: “There’s too little analysis of available data, we
should actually utilize […] the existing data more in our decision making so that the
element of gut feeling or some kind of intuition would be minimized.” Lack of time
and analytic expertise emerged as possible reasons for inadequate data analysis. Ob-
stacles were also encountered in the availability and sharing of data with all relevant
stakeholders. As one interviewee said: “The data is scattered all over the place. […]
[W]e are quite far from providing [a] really convenient, broad spectrum of data to all
of the employees.”

Limited resources were a recurrent theme in the interviews. On the other hand,
some interviewees emphasized the potential long-term benefits of investing in exper-
imentation. Technical obstacles to experimentation were barely featured in the inter-
viewees’ commentaries; there were only three cases in which technical concerns
restricted experimentation or had done so in the past. Moreover, these concerns

 Software Development as an Experiment System 125

appeared to be primarily linked to insufficient resources rather than insurmountable
technical problems.

In addition to the domain-independent issues discussed above, obstacles specific to
the B2B domain emerged. Five B2B company representatives considered the custom-
er organizations’ culture a challenge to experimentation. For instance, customers were
not always able to give feedback or participate in development and experiments:
“[I]t’s more like we pull the feedback from them, not that they push it to us. So people
are very reluctant […] [t]o give feedback.” Lack of time was the main supposed rea-
son for the customers’ disinclination to participate more. A second obstacle, cited by
four companies, was limited access to end users. Some interviewees considered that
improving product usage data collection would alleviate these challenges. However,
customer consent could not be taken for granted: “[I]t might be difficult to get some
of the customers to agree that we can monitor their users and what they do.” This
issue was mentioned by three B2B company representatives.

5 Discussion

The study found that the principles of continuous experimentation resonated well
within the software industry: there was a wish to focus on customer value creation
and data-driven decision making. Many of the contributing companies’ current prac-
tices supported these aspirations: agile development was prevalent, continuous inte-
gration was utilized, and release cycles were reasonably short. Companies were
attempting to further shorten release cycles for instance by focusing on key function-
alities – a goal which experimentation may help to achieve.

Companies collected a wide range of direct customer feedback, but the collection
of implicit customer feedback in the form of product usage data was not ubiquitous
and was often hampered by insufficient product instrumentation. However, the poten-
tial in product usage data had been acknowledged and most companies had plans to
develop their procedures in this respect. These findings are in line with [12,13], sug-
gesting that there is untapped learning potential in product usage data. On a related
note, identifying which product metrics to follow and how to analyze the results re-
mained a major challenge.

The present study found experimentation to be systematic and continuous in only
one startup company. In addition, several companies expressed interest in A/B testing.
This suggests that many practitioners are aware of the possible benefits of embracing
an experimental approach to software development. It is also noteworthy that besides
controlled experiments, a wide array of customer feedback collection techniques can
be used systematically (for examples, see [1], [12]).

The connection between product vision, business strategy, and technological prod-
uct development is central to continuous experimentation [4] and business alignment
[24]. Experiments integrate these aspects by providing empirical data to support both
product-level and strategic decision making. This study found a highly flexible ap-
proach to business strategy management to only be typical of startups. As Fagerholm
et al. [4] note, the continuous experimentation model is derived from a startup envi-

126 E. Lindgren and J. Münch

ronment, and different variants of the model may be required to support other scenar-
ios, possibly in a domain-specific manner.

Innovation is a key feature of a well-functioning experiment system [1]. The pre-
sent results suggest that the collaboration between the R&D organization, product
management, and customers is sometimes insufficient to fully support innovation.
There were challenges in sharing and reviewing the collected customer feedback and
product usage data with all necessary stakeholders. In particular, the development
team was not always involved enough in the process. Furthermore, obtaining relevant
customer and end user feedback was often a challenge in B2B environments. These
factors may result in innovation potential being lost.

To summarize, it appears that although the majority of companies have not yet
reached the stage of continuous experimentation, many are proceeding towards it as
outlined by the “Stairway to Heaven” model [3]. Organizational culture has a major
role in this transformation. Since an experiment-driven approach to software devel-
opment is still relatively new [1], companies have had little time to transform their
culture and practices accordingly. On the other hand, agile development is a well-
established practice, but organizational culture is still cited as the key barrier to fur-
ther agile adoption, as well as a leading cause of failed agile projects [2]. Similarly,
the present study indicates that in many cases, further efforts are required to promote
an experimental organizational culture.

Threats to Validity. In accordance with Easterbrook et al. [25], four commonly used
criteria for validity are discussed below in the context of this study.

Construct validity was mainly threatened by possible misunderstandings between
researchers and interviewees. To diminish this risk, the overall goals of the study and
the central concept of continuous experimentation were shared with participants prior
to the interviews. Furthermore, the use of semi-structured interviews enabled the ask-
ing of clarifying questions for all involved parties. Clarifications were also requested
afterwards from the interviewees via email when necessary.

External validity in the sense of statistical generalizability is not the aim of qualita-
tive surveys [15,16]. However, despite the limited scope of the study, a variety of
companies represented by interviewees from different roles contributed to it. The
authors therefore consider the results to be well grounded in actual practice.

Steps taken to improve the study’s reliability included the development and review
among the researchers of the interview guide and the analytic codebook. Finally, in-
ternal validity, with its focus on causal relationships, was not highly relevant to the
present, mainly descriptive study.

6 Conclusions

This paper presented a qualitative survey on companies’ experiences of software de-
velopment as an experiment system. The study found that while many of the current
development practices supported experimentation, the state of the practice is not yet
mature. Although a broad array of techniques was employed to collect customer feed-
back, systematic experiments with customers are rare. Moreover, many companies do

 Software Development as an Experiment System 127

not use product usage data to learn about customer needs, and product instrumentation
is often inadequate. Finally, the collaboration between the R&D organization, product
management, and customers sometimes appear insufficient for supporting an innova-
tive, experimental approach.

Key challenges in embracing experimentation are related to transforming organiza-
tional culture, achieving sufficiently rapid release cycles, identifying metrics for eval-
uating customer value and product success, and ensuring that the collected customer
and product data is carefully analyzed by relevant stakeholders. Adequate resources
also need to be secured. Additional challenges are faced by business-to-business
companies.

Acknowledgements. We wish to thank the participants of the study for their time and contribu-
tions and the reviewers for their valuable comments. We would also like to thank the Finnish
technology agency, Tekes, for funding the Cloud Software Factory project, and the Need for
Speed program, under which the proposed study was undertaken. This paper is based on thesis
work [26] completed at the University of Helsinki.

References

1. Bosch, J.: Building products as innovation experiment systems. In: Cusumano, M.A., Iyer,
B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39. Springer,
Heidelberg (2012)

2. Version One: The 8th Annual “State of Agile” Survey. http://www.versionone.
com/pdf/2013-state-of-agile-survey.pdf

3. Holmström Olsson, H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven”: a mul-
tiple-case study exploring barriers in the transition from agile development towards con-
tinuous deployment of software. In: 38th EUROMICRO Conference on Software Engi-
neering and Advanced Applications SEAA, pp. 392–399. IEEE Press (2012)

4. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: Building blocks for continuous ex-
perimentation. In: 1st International Workshop on Rapid Continuous Software Engineering,
pp. 26–35. ACM, New York (2014)

5. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innovation to
Create Radically Successful Businesses. Crown Business, New York (2011)

6. Kohavi, R., Deng, A., Frasca, B., Walker, T., Xu, Y., Pohlmann, N.: Online controlled ex-
periments at large scale. In: 19th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 1168–1176. ACM, New York (2013)

7. Tang, D., Agarwal, A., O’Brien, D., Meyer, M.: Overlapping experiment infrastructure:
more, better, faster experimentation. In: 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 17–26. ACM, New York (2010)

8. Steiber, A., Alänge, S.: A Corporate System for Continuous Innovation: The Case of
Google Inc. European Journal of Innovation Management 16(2), 243–264 (2013)

9. Amatriain, X.: beyond data: from user information to business value through personalized
recommendations and consumer science. In: 22nd ACM International Conference on In-
formation and Knowledge Management, pp. 2201–2208. ACM, New York (2013)

10. Adams, R.J., Evans, B., Brandt, J.: Creating small products at a big company: adobe’s
pipeline innovation process. In: CHI 2013 Extended Abstracts on Human Factors in Com-
puting Systems, pp. 2331–2332. ACM, New York (2013)

128 E. Lindgren and J. Münch

11. Davenport, T.H.: How to Design Smart Business Experiments. Harvard Business Review
87(2), 68–77 (2009)

12. Holmström Olsson, H., Bosch, J.: Post-deployment data collection in software-intensive
embedded products. In: Herzwurm, G., Margaria, T. (eds.) ICSOB 2013. LNBIP, vol. 150,
pp. 79–89. Springer, Heidelberg (2013)

13. Holmström Olsson, H., Bosch, J.: Towards data-driven product development: a multiple
case study on post-deployment data usage in software-intensive embedded systems. In:
Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS
2013. LNBIP, vol. 167, pp. 152–164. Springer, Heidelberg (2013)

14. Münch, J., Fagerholm, F., Johnson, P., Pirttilahti, J., Torkkel, J., Jäarvinen, J.: Creating
minimum viable products in industry-academia collaborations. In: Fitzgerald, B., Conboy,
K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS 2013. LNBIP, vol. 167,
pp. 137–151. Springer, Heidelberg (2013)

15. Fink, A.: Analysis of qualitative surveys. In: Fink, A. (ed.) The survey handbook,
pp. 61–78. SAGE Publications, California (2003)

16. Jansen, H.: The Logic of Qualitative Survey Research and its Position in the Field of So-
cial Research Methods. Forum: Qualitative Social Research 11(2), 1–21 (2010)

17. Runeson, P., Höst, M.: Guidelines for Conducting and Reporting Case Study Research.
Empirical Software Engineering 14(2), 131–164 (2009)

18. Robson, C.: Real World Research: A Resource for Users of Social Research Methods in
Applied Settings. Wiley, Chichester (2011)

19. Lindgren, E., Münch, J.: Interview guide and codebook for the paper “Software Develop-
ment as an Experiment System”. http://dx.doi.org/10.6084/m9.figshare.1254619

20. Need for Speed research program (N4S). http://www.n4s.fi
21. Vinson, N., Singer, J.: A practical guide to ethical research involving humans. In: Shull, F.,

Singer, J., Sjøberg, D.I.K. (eds.) Guide to Advanced Empirical Software Engineering, pp.
229–256. Springer, London (2008)

22. ATLAS.ti Scientific Software Development GmbH, http://www.atlasti.com
23. Ståhl, D., Bosch, J.: Modeling Continuous Integration Practice Differences in Industry

Software Development. Journal of Systems and Software 87, 48–59 (2014)
24. Basili, V., Heidrich, J., Lindvall, M., Münch, J., Regardie, M., Rombach, D., Seaman, C.,

Trendowicz, A.: GQM+Strategies: a comprehensive methodology for aligning business
strategies with software measurement. In: DASMA Software Metric Congress (MetriKon
2007): Magdeburger Schriften Zum Empirischen Software Engineering, Kaiserslautern,
Germany, pp. 253–266 (2007)

25. Easterbrook, S., Singer, J., Storey, M., Damian, D.: Selecting empirical methods for soft-
ware engineering research. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to Ad-
vanced Empirical Software Engineering, pp. 285–311. Springer, London (2008)

26. Lindgren, E., Münch, J., Männistö, T.: Exploring Software Development as an Experiment
System. Master’s Thesis. University of Helsinki (2015)

Would You Mind Fixing This Issue?

An Empirical Analysis of Politeness and Attractiveness
in Software Developed Using Agile Boards

Marco Ortu1(B), Giuseppe Destefanis2, Mohamad Kassab3, Steve Counsell4,
Michele Marchesi1, and Roberto Tonelli1

1 DIEE, University of Cagliari, Cagliari, Italy
{marco.ortu,michele,roberto.tonelli}@diee.unica.it

2 CRIM, Computer Research Institute of Montreal, Montreal, Canada
giuseppe.destefanis@crim.ca

3 The Pennsylvania State University, Penn State Great Valley, Malvern, PA, USA
muk36@psu.edu

4 Brunel University, Kingston Lane, Uxbridge, UK
steve.counsell@brunel.ac.uk

Abstract. A successful software project is the result of a complex process
involving, above all, people. Developers are the key factors for the success
of a software development process and the Agile philosophy is developer-
centred. Developers are not merely executors of tasks, but actually the
protagonists and core of the whole development process. This paper aims
to investigate social aspects among developers working together and the
appeal of a software project developed with the support of Agile tools
such as Agile boards. We studied 14 open source software projects devel-
oped using the Agile board of the JIRA repository. We analysed all the
comments committed by the developers involved in the projects and we
studied whether the politeness of the comments affected the number of
developers involved over the years and the time required to fix any given
issue. Our results show that the level of politeness in the communication
process among developers does have an effect on the time required to fix
issues and, in the majority of the analysed projects, it has a positive corre-
lation with attractiveness of the project to both active and potential devel-
opers. The more polite developers were, the less time it took to fix an issue,
and, in the majority of the analysed cases, the more the developers wanted
to be part of project, the more they were willing to continue working on
the project over time.

Keywords: Agile · Kanban board · Data mining · Social and human
aspect

1 Introduction

According to the 8th Annual State of Agile survey report1, “more people are
recognising that agile development is beneficial to business, with an 11% increase
1 http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf

c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 129–140, 2015.
DOI: 10.1007/978-3-319-18612-2 11

http://www.versionone.com/pdf/2013-state-of-agile-survey.pdf

130 M. Ortu et al.

over the last 2 years in the number of people who say agile helps organisations
complete projects faster.” A main priority reported by users was to accelerate
time to market, more easily manage changing priorities, and to better align IT
and business objectives.

Agile project management tools and Kanban boards experienced the largest
growth in popularity of all the agile tool categories, with use or planned use
increasing by 6%. In addition, one of the top five ranked tools was Atlassian
JIRA2, with an 87% recommendation.

How does one classify a software as agile? The process of defining a software
as “Agile” is not simple. Over the years, a variety of tools have been developed
in order to help developers, team managers and other parties involved in the
development process of a software system. These tools each constitute a specific
aspect of the Agile world. The Agile boards, for example, represent the central
aspect of communication in the Agile philosophy. As Perry wrote [7] “the task
board is one of the most important radiators used by an agile team to track their
progress.” The communication aspect is central and is the key to fast develop-
ment. When a new developer joins a development team, the better the commu-
nication process works, the faster the new developer can become productive and
the learning curve can be reduced. The know-how and the shared-knowledge of
a project should always be easily accessible for the development team during the
development process. Fast releases, continuos integration and testing activities
are directly connected to the knowledge of the system under development and
hence the communication process is crucial.

Tools such as the JIRA board are a good solution to bridge the gap between
open source software development and the Agile world. It is the view of many
that agile development requires a physical aspect, i.e. developers working to-
gether in the same room or building, or at the same desk because the pair pro-
gramming paradigm requires at least two people working simultaneously on the
same piece of code, but can the developers work remotely? Is it possible to apply
Agile methodologies even for open source software developed by a community
which is spread out around the globe?

By using tools such as the JIRA board, it is indeed possible to apply the
theoretical approach of the Agile board for a software project being developed
by developers working in different physical places.

Working remotely, in different time zones and with different time schedules,
with developers from around the world, requires coordination and communica-
tion. The communication process in this context becomes more difficult (if com-
pared to the communication process used by developers sharing the same office)
and the politeness, the mood and the social dynamics of the developers are
important factors for the success of the project.

These days, even in the software development process, the social and human
aspects of the development process are becoming more and more important. The
Google style has become a model for many software start-ups. A pleasant work
environment is important and affects the productivity of employees. Is politeness

2 https://www.atlassian.com/software/jira

https://www.atlassian.com/software/jira

Would You Mind Fixing This Issue? 131

important in a software development process? “Politeness is the practical appli-
cation of good manners or etiquette. It is a culturally defined phenomenon and
therefore what is considered polite in one culture can sometimes be quite rude
or simply eccentric in another cultural context. The goal of politeness is to make
all of the parties relaxed and comfortable with one another.”3 The last part of
the definition is what we are considering in our analysis. In this specific work we
did not take different cultures into account (although developers involved in a
specific project could be from all around the world); we focused on the politeness
of the comment-messages written by the developers.

This paper aims to show how project management tools such as Agile boards
can directly affect the productivity of a software development team and the health
of a software project. We studied the relationship among global project metrics
(magnetism and stickiness) and affective metrics (politeness) by analysing the
communication among developers. We considered 14 open source projects from
the Apache Software Foundation’s JIRA repositories.

This paper aims to answer the following research questions:

– Does the politeness among developers affect the issues fixing time?
– Does the politeness among developers affect the attractiveness of

a project?

2 Related Works

Several researchers have analysed [6] [5] [10] [14] [11] the effect of politeness.
Gupta et al. [2] presented POLLy (Politeness for Language Learning), a sys-
tem which combines a spoken language generator with an artificial intelligence
planner to model Brown and Levinson’s theory of politeness in collaborative
task-oriented dialogue, with the ultimate goal of providing a fun and stimulat-
ing environment for learning English as a second language. An evaluation of
politeness perceptions of POLLy’s output shows that: perceptions are generally
consistent with Brown and Levinson’s predictions for choice of form and for dis-
course situation, i.e. utterances to strangers need to be much more polite than
those to friends; (2) our indirect strategies which should be the politest forms,
are seen as the rudest; and (3) English and Indian native speakers of English
have different perceptions of politeness.

Pikkarainen et al. [8] showed that agile practices improve both informal
and formal communication. The studies indicates that, in larger development
Situations involving multiple external stakeholders, a mismatch of adequate
communication mechanisms can sometimes even hinder communication. The
study highlights the fact that hurdles and improvements in the communication
process can both affect the feature requirements and task subtask dependen-
cies as described in coordination theory. While the use of SCRUM and some
XP practices facilitate team and organizational communication of the depen-
dencies between product features and working tasks, the use of agile practices

3 en.wikipedia.org/wiki/Politeness

132 M. Ortu et al.

requires that the team and organization use also additional plan-driven prac-
tices to ensure the efficiency of external communication between all the actors
of software development.

Korkala et al. [3] showed that effective communication and feedback are cru-
cial in agile development. Extreme programming (XP) embraces both commu-
nication and feedback as interdependent process values which are essential for
projects to achieve successful results. The research presents the empirical results
from four different case studies. Three case studies had partial onsite customers
and one had an onsite customer. The case studies used face-to-face communi-
cation to different extents along with email and telephone to manage customer-
developer communication inside the development iterations. The results indicate
that an increased reliance on less informative communication channels results
in higher defect rates. These results suggest that the selection of communica-
tion methods, to be used inside development iterations, should be a factor of
considerable importance to agile organizations working with partially available
customers.

3 Experimental Setup

3.1 Dataset

We built our dataset collecting data from the Apache Software Foundation Issue
Tracking system, JIRA4. An Issue Tracking System (ITS) is a repository used
by software developers as a support for the software development process. It
supports corrective maintenance activity like Bug Tracking systems, along with
other types of maintenance requests. We mined the ITS of the Apache Software
Foundation collecting issues from 2002 to December 2013. In order to create our
dataset, since the focus of our study was about the usefulness of Agile boards,
we selected projects for which the JIRA Agile board contained a significant
amount of activity. Table 1 shows the corpus of 14 projects selected for our
analysis, highlighting the number of comments recorded for each project and the
number of developers involved. We selected projects with the highest number of
comments.

3.2 Magnet and Sticky Metrics

Yamashita et al. [15] introduced the concepts of magnetism and stickiness for
a software project. A project is classified as Magnetic if it has the ability to
attract new developers over time. Stickiness is the ability of a project to keep its
developers over time. We measured these two metrics by considering an obser-
vation time of one year. Figure 1 shows an example of the evaluation of Magnet
and Sticky metrics. In this example, we were interested in calculating the value
of Magnetism and Stickiness for 2011. From 2010 to 2012 we had a total of
10 active5 developers. In 2011, there were 7 active developers and 2 of them
4 https://www.atlassian.com/software/jira
5 We consider active all developers that posted/commented/resolved/modified an issue

during the observed time (from dev 1 to dev 10)

https://www.atlassian.com/software/jira

Would You Mind Fixing This Issue? 133

Table 1. Selected Projects Statistics

Project # of comments # of developers

HBase 91016 951
Hadoop Common 61958 1243
Derby 52668 675
Lucene Core 50152 1107
Hadoop HDFS 42208 757
Cassandra 41966 1177
Solr 41695 1590
Hive 39002 850
Hadoop Map/Reduce 34793 875
Harmony 28619 316
OFBiz 25694 578
Infrastructure 25439 1362
Camel 24109 908
ZooKeeper 16672 495

(highlighted with black heads) were new. Only 3 (highlighted with grey heads)
of the 7 active developers in 2011 were also active in 2012. We can then calculate
the Magnetism and Stickiness as follows:

– Magnetism is the portion of new active developers during the observed time
interval, in our example 2/10 (dev 6 and dev 7 were active in 2011 but not
in 2010).

– Stickiness is the portion of active developers that were also active during
next time interval, in our example 3/7 (dev 1, dev 2, dev 3 were active in
2011 and in 2012).

Fig. 1. Example of Magnet and Sticky in 2011

134 M. Ortu et al.

3.3 Politeness

Danescu et al. [1] proposed a machine learning approach for evaluating the polite-
ness of a request posted in two different web applications: Wikipedia6 and Stack-
overflow7. Stackoverflow is well known in the software engineering field and is
largely used by software practitioners; hence, the model that authors used in [1]
was suitable for our domain based on Jira issues, where developers post and dis-
cuss about technical aspects of issues. The authors provide a Web application8

and a library version of their tool.
Given some text, the tool calculates the politeness of its sentences providing

as result one of two possible labels: polite or impolite. Along with the polite-
ness label, the tool provides a level of confidence related to the probability of
a politeness class being assigned. We thus considered comments whose level of
confidence was less than 0.5 as neutral (namely the text did not convey either
politeness or impoliteness). Table 2 and 3 show some examples of polite and
impolite comments as classified by the tool9.

Table 2. Examples of polite comments

Comment Confidence Level

Hey <dev name a>,

Would you be i n t e r e s t e d in con t r i bu t ing a f i x and a t e s t

case f o r t h i s as we l l ?

Thanks ,

<dev name b>

0.7236

<dev name>, can you open a new JIRA fo r those sugge s t i on s ?

I ’ l l be happy to review .
0.919

<dev name>, the l a t e s t patch isn ’ t apply ing c l e an l y to trunk

− could you resubmit i t p l e a s e ?

Thanks . 0.806

<dev name>,

S ince you can reproduce , do you s t i l l want the l o g s ? I think

I s t i l l have them i f needed . 0.803

We evaluated the average politeness per month considering all comments
posted in a certain month. For each comment we assigned a value according to
the following rules:
6 https:\/\/en.wikipedia.org\/wiki\/Main Page
7 http:\/\/stackoverflow.com
8 http://www.mpi-sws.org/∼cristian/Politeness.html
9 User’s names are reported as <dev name a> for the sake of privacy.

https://en.wikipedia.org/wiki/Main_Page
http://stackoverflow.com
http://www.mpi-sws.org/~cristian/Politeness.html

Would You Mind Fixing This Issue? 135

Table 3. Examples of impolite comments

Comment Confidence Level

Why are you c l on ing t i c k e t s ? Don ’ t do that .
0.816

shouldnt i t check f o r e x i s t e n c e o f t a r b a l l even be f o r e i t

t r i e s to a l l o c a t e and e r r o r out ??? 0.701

<dev name a>, why no uni t t e s t ?

<dev name b>, why didn ’ t you wait f o r +1 from Hudson??? 0.942

> t h i s i sn ’ t the forum to c l a r i f y

Why not ? The ques t ion i s whether t h i s i s redundant with

Cascading , so comparisons are c e r t a i n l y re l evant , no?
0.950

– Value of +1 for those comments marked as polite by the tool;
– Value of 0 for those comments marked as neutral (confidence level<0.5);
– Value of -1 for those comments marked as impolite.

We finally averaged the assigned values for a certain month. We analyzed the
politeness of about 500K comments.

4 Result and Discussion

4.1 Does the Politeness among Developers Affect the Issues Fixing
Time?

Motivation. Murgia et al. [4] demonstrated the influence of maintenance type
on the issue fixing time, while Zhang et al. [16] developed a prediction model for
bug fixing time for commercial software. There are many factors able to influence
the issues fixing time; in this case we were interested in finding out if politeness
expressed by developers in comments had an influence on the issues fixing time.

Approach. In order to detect differences among the fixing time of polite and
impolite issues, we used the Wilcoxon rank sum test. Such a test is non paramet-
ric and unpaired, and [9] [13] [12]. The test is non-parametric and can be used
with no restrictions or hypotheses on the statistical distribution of the sample
populations. The test is suitable for comparing differences among the averages
or the medians of two populations when their distributions are not gaussian.
For the analysis, we used the one-sided Wilcoxon rank sum test using the 5%
significance level (i.e., p-value<0.05) and we compared issue fixing time between
polite and impolite issues.

We grouped issues together as follows:

– we first divided comments in two sets: polite and impolite, ignoring neutral
comments;

136 M. Ortu et al.

Fig. 2. Box-plot of the fixing-time expressed in Hours. The number in parenthesis next
to polite/impolite indicates the percentage of impolite and polite issues.

– we divided issues in two sets: polite issues, commented only with polite
comments, and impolite issues, commented only by impolite comments.

– we ignored issues with both polite and impolite comments, and ignored issues
with neutral comments.

For each issue we evaluated the politeness expressed in its comments (removing
neutral comments as discussed in section 3.3) and we then divided issues in two
groups: polite issues containing polite comments and impolite issues containing
impolite comments. For each of this two groups of issues we evaluated the issue
fixing time as the difference between resolution and creation time. Findings.
Issue fixing time for polite issues is faster than issue fixing time for
impolite issues for 10 out of 14 analysed projects.

Figure 2 shows the box-plot of the issues fixing time for the two groups of
issues considered (polite and impolite) in four projects Harmony,Derby, Hadoop
HDFS and Hadoop Common. The issues fixing time is expressed in hours on a
logarithmic scale. As we can see for the four projects in the example, the median
of the issues fixing time for polite issues is smaller than that for impolite issues.

Table 4 shows the Wilcoxon test results. Test’s column indicates if the median
of the first group (group of polite issues containing polite comments) is greater
or lesser than the second group (group of impolite issues containing impolite
comments).

Would You Mind Fixing This Issue? 137

Table 4. Wilcoxon test results

Project Test p-value effect size

ZooKeeper lesser *** 0.14
Camel greater *** 0.089
Infrastructure lesser 0.67 0.007
OFBiz lesser *** 0.15
Harmony lesser *** 0.133
Hive lesser *** 0.061
Solr lesser *** 0.089
Cassandra lesser 0.51 0.012
Hadoop HDFS lesser *** 0.192
Lucene Core lesser 0.492 0.01
Derby lesser *** 0.15
Hadoop Common lesser *** 0.11
HBase lesser *** 0.144
Hadoop Map/Reduce lesser *** 0.11

Table 4 shows that for 10 of the 14 projects analysed the issues fixing time of
polite issues is faster than the issue fixing time of impolite issues. Camel behaved
differently, in this case the issues fixing time for impolite issues is faster than the
issues fixing time of polite issues. Furthermore for Infrastructure, Lucene Core
and Cassandra projects the Test value indicates that polite issues fixing time is
still lesser than the impolite issues fixing time but the p-value>0.05 and thus
for these projects we cannot conclude that the two distribution are statistically
different. We can see that the size effect is generally small with a maximum of
0.19 for Hadoop HDFS and a minimum of 0.007 for Infrastructure.

Figure 3 shows the the average politeness per month, calculated as described
in section 3.3. We used the same four project depicted in Figure 2. It is interesting
to note that there are variations in the average politeness over time. This is by
no mean a representation of a time dynamics, but simply the representation of
random variation of average politeness over time. In Hadoop HDFS for example,
we can see how the average politeness is negative (namely majority of comments
are impolite) for some time interval and positive of some others. As we have
seen, for those projects polite issues are solved faster, so monitoring the average
politeness over time can be helpful during software development. If there is a
time period with a negative politeness, then the community may take action to
drive the average politeness back to positive values.

4.2 Does the Politeness among Developers Affect the Attractiveness
of a Project?

Motivation. Magnetism and Stickiness are two interesting metrics able to de-
scribe the general health of a project; namely, if a project is able to attract new
developers and to keep them over time we can then conclude that the project is
healthy. On the contrary, if a project is not magnetic and is not sticky we can

138 M. Ortu et al.

Fig. 3. Average Politeness per month

conclude that the project is losing developers and is not attracting new develop-
ers over time. Although there may be many factors influencing magnetism and
stickiness, we were interested in analysing the correlation between politeness
expressed by developers in their comments and these two metrics.

Approach. In order to detect if there was a direct correlation between mag-
netism and stickiness of a project and politeness, we considered an observation
time of one year. During this time interval we measured magnetism, stickiness
and percentage of comments classified as polite by the tool. Since we had no
evidence that the politeness in the observed time could affect magnetism and
stickiness in the same time interval or in the next observation time, we evaluated
the Pearson’s correlation coefficient and the cross-correlation coefficient.

Findings. In the majority of projects Magnet and Sticky are positively
correlated with Politeness. Table 5 shows the Pearson’s correlation and cross-
correlation coefficient between the percentage of polite comments and magnetism
and stickiness during an observation time of one year. The first two columns
represent Pearson’s correlation coefficient between Magnetism and Stickiness
and the percentage of politeness comments during the same observation time
(one year in our case). The second two columns represent the cross-correlation
coefficient between the same metrics. The Pearson’s correlation revealed that
9 out of 14 project have a positive correlation between Magnetism, Stickiness
and Politeness. In the 5 projects where Pearson’s correlation is negative we can
see that when considering the cross correlation coefficient is positive in all cases.
Although Pearson’s correlation is not always positive, we can conclude
that Politeness is positively correlated with Magnetism and Stickiness
metrics in the subsequent years.

Would You Mind Fixing This Issue? 139

Table 5. Politeness Vs Magnet and Sticky Pearson’s and Cross-Correlation Coefficient

Project Pearson’s Correlation Cross-Correlation
Magnet Sticky Magnet Sticky

HBase 0.672 0.667 0.581 0.667
Hadoop Common 0.848 0.641 0.848 0.641
Derby -0.830 -0.804 0.126 0.240
Lucene Core -0.399 0.705 0.494 0.705
Hadoop HDFS 0.716 0.526 0.716 0.627
Cassandra 0.876 0.631 0.876 0.631
Solr 0.602 0.773 0.602 0.773
Hive 0.372 0.802 0.714 0.802
Hadoop Map/Reduce 0.631 0.697 0.631 0.697
Harmony -0.730 -0.784 0.142 0.372
OFBiz 0.692 0.498 0.692 0.498
Infrastructure 0.1 -0.112 0.479 0.610
Camel -0.576 -0.67 0.120 0.293
ZooKeeper -0.535 0 0.319 0.497

5 Threats to Validity

Threats to external validity are related to generalisation of our conclusions. With
regard to the system studied in this work we considered only open source systems
and this could affect the generality of the study; our results are not meant to
be representative of all environments or programming languages. Commercial
software is typically developed using different platforms and technologies, with
strict deadlines and cost limitation and by developers with different experiences.

6 Conclusion

Software engineers have been trying to measure software to gain quantitative
insights into its properties and quality since its inception. In this paper,
we present the results about politeness and attractiveness on 14 open source
software projects developed using the Agile board of the JIRA repository. Our
results show that the level of politeness in the communication process among
developers does have an effect on both the time required to fix issues and the
attractiveness of the project to both active and potential developers. The more
polite developers were, the less time it took to fix an issue and, in the majority
of the analysed cases, the more the developers wanted to be part of project, the
more they were willing to continue working on the project over time. This work
is a starting point and further research on a larger number of projects is needed
to prove and validate our findings especially considering proprietary software
developed by companies. The takeaway message is that politeness can only have
positive effect on a project and on the development process. Be polite!

140 M. Ortu et al.

References

1. Danescu-Niculescu-Mizil, C., Sudhof, M., Jurafsky, D., Leskovec, J., Potts., C.: A
computational approach to politeness with application to social factors. In: Pro-
ceedings of ACL (2013)

2. Gupta, S., Walker, M.A., Romano, D.M.: How rude are you?: Evaluating politeness
and affect in interaction, pp. 203–217 (2007)

3. Korkala, M., Abrahamsson, P., Kyllonen, P.: A case study on the impact of cus-
tomer communication on defects in agile software development. In: Agile Confer-
ence, 2006, p. 11. IEEE (2006)

4. Murgia, A., Concas, G., Tonelli, R., Ortu, M., Demeyer, S., Marchesi, M.: On the
influence of maintenance activity types on the issue resolution time. In: Proceedings
of the 10th International Conference on Predictive Models in Software Engineering,
pp. 12–21. ACM (2014)

5. Murgia, A., Tourani, P., Adams, B., Ortu, M.: Do developers feel emotions? an
exploratory analysis of emotions in software artifacts. In: Proceedings of the 11th
Working Conference on Mining Software Repositories, pp. 262–271. ACM (2014)

6. Novielli, N., Calefato, F., Lanubile, F.: Towards discovering the role of emotions
in stack overflow. In: Proceedings of the 6th International Workshop on Social
Software Engineering, pp. 33–36. ACM (2014)

7. Perry, T.: Drifting toward invisibility: The transition to the electronic task board.
In: Agile Conference, AGILE 2008, pp. 496–500. IEEE (2008)

8. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact
of agile practices on communication in software development. Empirical Software
Engineering 13(3), 303–337 (2008)

9. Siegel, S.: Nonparametric statistics for the behavioral sciences (1956)
10. Tan S., Howard-Jones P.: Rude or polite: do personality and emotion in an artificial

pedagogical agent affect task performance? In: 2014 Global Conference on Teaching
and Learning with Technology (CTLT 2014) Conference Proceedings, p. 41 (2014)

11. Tsay, J., Dabbish, L., Herbsleb, J.: Lets talk about it: Evaluating contributions
through discussion in: github. FSE. ACM (2014)

12. Weiss, C., Premraj, R., Zimmermann, T., Zeller, A.: How long will it take to fix this
bug? In: Proceedings of the Fourth International Workshop on Mining Software
Repositories, p. 1. IEEE Computer Society (2007)

13. Wilcoxon, F. Wilcox, R.A.: Some rapid approximate statistical procedures. Lederle
Laboratories (1964)

14. Winschiers, H., Paterson, B.: Sustainable software development. In: Proceedings
of the 2004 Annual Research Conference of the South African Institute of Com-
puter Scientists and Information Technologists on IT Research in Developing Coun-
tries, pp. 274–278. South African Institute for Computer Scientists and Information
Technologists (2004)

15. Yamashita, K., McIntosh, S., Kamei, Y., Ubayashi, N.: Magnet or sticky? an oss
project-by-project typology. In: MSR, pp. 344–347 (2014)

16. Zhang, H, Gong, L., Versteeg, S.: Predicting bug-fixing time: an empirical study of
commercial software projects. In: Proceedings of the 2013 International Conference
on Software Engineering, pp. 1042–1051. IEEE Press (2013)

Coordinating Expertise Outside Agile Teams

Mawarny Md. Rejab(B), James Noble(B), and Stuart Marshall(B)

School of Engineering and Computer Science, Victoria University of Wellington,
Wellington, New Zealand

{Mawarny.Md.Rejab,kjx,stuart.marshall}@ecs.vuw.ac.nz

Abstract. Agile software development projects depend upon roles
located outside Agile teams such as User Experience Designers and Soft-
ware Architects to support teams. As external specialists’ expertise is
valuable to Agile teams, further investigation is needed to explore the
relationships between Agile teams and external specialists in coordinat-
ing external expertise. Through a Grounded Theory study involving 47
Agile practitioners and external specialists, we discovered five factors
that Agile teams and external specialists need to consider when coordi-
nating external expertise: Availability, Agile Mindset, Stability, Knowl-
edge Retention and Effective Communication. We present strategies for
each factor as a guideline for coordinating external expertise in teams.
This study helps Agile teams to manage and utilize external expertise
resources effectively.

Keywords: Expertise coordination · External specialists · Agile soft-
ware development projects · Grounded theory

1 Introduction

An Agile team is intended to be a cross-functional team that includes all the
expertise necessary for every phase involved in developing software [22]. In prac-
tice, it is not feasible for all the individuals with relevant expertise to be part of
the team [20]. Agile teams normally consist of common Agile roles such as team
lead, team members, and product owner [22], therefore, Agile teams often need to
rely on other expertise which is located outside the team such as User Experience
Designers, Database Administrators (DBAs), and Software Architects [11][20].

An external specialist is responsible for supporting Agile teams by bring-
ing specialized skills into teams. There are various types of external specialists
that support Agile teams: technical experts, domain experts and independent
testers [11]. Each Agile project requires different types and numbers of external
specialists depending on the project size and team composition.

Agile teams and external specialists depend on each other in managing and
utilizing external expertise through external expertise coordination. External
expertise coordination requires Agile teams to recognize external specialists,
when and where the external specialists’ expertise is needed, and how to access
their expertise effectively [7].
c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 141–153, 2015.
DOI: 10.1007/978-3-319-18612-2 12

142 M. Md. Rejab et al.

According to Sharp and Robinson, further investigation is needed to explore
the interaction between Agile teams and roles outside the teams [20]. Their study
has motivated us to explore the interaction between Agile teams and exter-
nal specialists in coordinating external expertise. Through a Grounded Theory
study, we discovered how Agile teams and external specialists depend on each
other to manage and utilize the external expertise. This paper aims to discuss
factors of external expertise coordination in Agile teams. We also present several
strategies for each factor to ensure Agile teams and external specialists take into
account the emerging factors.

The rest of this paper is structured as follows: the next section describes
Grounded Theory; the third section presents the findings of this study; the fourth
section discusses these findings; and the last section puts forward conclusions.

2 Grounded Theory

Grounded Theory is an inductive research method that aims to infer new the-
ories from observed data [9]. There are several reasons why Grounded Theory
is applicable as a research method for this study. Firstly, Grounded Theory
is appropriate for exploring human behaviour and social interactions [8]. This
study focuses on how Agile teams and external specialists rely on each other in
coordinating external expertise. Secondly, Grounded Theory is appropriate to
be used in areas that are under-explored which require further investigation [2].
Further investigation is needed to conceptualize and theorise about the under-
pinnings of external expertise coordination in Agile teams. Finally, Grounded
Theory is applicable for a study that emphasizes processes [4]. The aim of this
study is to explore external expertise coordination in Agile software projects,
which is aligned with the characteristic of Grounded Theory.

2.1 Data Collection

Semi-structured interviews have been carried out with 42 Agile practitioners
and five external specialists from different software organizations mainly based
in New Zealand and United States, as depicted in Table 1. Interviews provide
reliable data sources because the researcher has direct contact with participants
during data collection [4]. This situation enables us to gain a deeper understand-
ing of participants’ concerns.

This study requires a broad range of Agile roles including external special-
ists in order to enable the triangulation of findings. Theoretical sampling is a
way to ensure the validity of this study by selecting subsequent participants for
data collection based on existing data analysis [16]. Theoretical sampling should
ensure that other perspectives are gained from the identified participants and
drawn indirectly from a broad range of other participants [16]. Different roles
provide different insights and perspectives toward external expertise coordina-
tion. We interviewed Agile team members as well as User Experience Design-
ers, Software Architects, and DevOps (Development and Operation) as external

Coordinating Expertise Outside Agile Teams 143

Table 1. Summary of Research Participants and Agile Projects

Person Location Agile Role Agile Methods Project Domain

P1 New Zealand Developer XP and Scrum Mobile application

P2 New Zealand Agile Coach XP, Scrum, Kanban Not disclosed

P3 Australia Agile Consultant Not disclosed Not disclosed

P4 New Zealand Agile Coach Scrum and XP Education

P5 New Zealand Software Tester Not disclosed Printing

P6 Australia Team leader Not disclosed Accounting

P7 New Zealand Agile Consultant Scrum and XP Financial

P8 Australia Agile Coach Scrum, XP, Kanban, Lean Human resources

P9 New Zealand Business Analyst Not disclosed Insurance

P10 New Zealand Software Tester Scrum Education

P11 New Zealand Project Manager Scrum Education

P12 New Zealand Agile Coach Scrum and Kanban Not disclosed

P13 New Zealand Agile Coach Scrum and Kanban Government application

P14 New Zealand Product Owner Not disclosed Not disclosed

P15 New Zealand Agile Coach Scrum and Kanban Government application

P16 New Zealand Agile Coach Scrum and Kanban Government application

P17 New Zealand Tester Scrum Education

P18 New Zealand Developer Scrum Education

P19 New Zealand Business Analyst Scrum Education

P20 New Zealand User Experience

Designer

Scrum Not disclosed

P21 New Zealand Agile Coach Scrum and Kanban Mobile Application

P22 New Zealand Scrum Master Scrum, Kanban, XP Web-based Application

P23 New Zealand Developer Scrum and XP Dataware house

P24 New Zealand Scrum Master Scrum and Kanban Banking

P25 New Zealand Developer Scrum and Kanban Financial

P26 New Zealand Team Leader Scrum and XP Goverment Application

P27 New Zealand Developer Scrum and XP Fishery

P28 Sweden Developer Kanban Telecommunication

P29 Denmark Developer Scrum Medical

P30 India Business Analyst Scrum and Kanban Not disclosed

P31 Malaysia Scrum Master Scrum and Kanban Broadcast

P32 Malaysia Scrum Master Scrum, Kanban, XP Enterprise

P33 Malaysia Project Manager Scrum and Kanban Security Application

P34 United States Agile Coach Scrum Financial

P35 United States Developer Scrum Financial

P36 United States Developer Scrum E-commerce

P37 United States DevOps Not disclosed Not disclosed

P38 United States User Experience

Designer

Not disclosed Not disclosed

P39 United States Agile Coach Scrum and XP Not disclosed

P40 United States Stakeholder Not disclosed Not disclosed

P41 United States Agile Coach Scrum and XP Biotechnology

P42 United States Tester Scrum and XP Retail

P43 Wellington DevOps Scrum Not disclosed

P44 Wellington Architect Scrum Oil Retail

P45 Wellington Tester Scrum and Kanban Financial

P46 Wellington Agile Coach Scrum, Kanban and XP E-commerce

P47 Wellington Developer Scrum, Kanban and XP E-commerce

144 M. Md. Rejab et al.

specialists. We will stop the data collection once we reached theoretical satura-
tion, i.e when no new data emerged [9].

2.2 Data Analysis

Data analysis begins as soon as the first interview has been conducted and con-
tinues until the emergence of a core category [5]. We used key point coding to
analyze the interview transcripts in detail. We collate the key points by exam-
ining phrases, words, and sentences from the interview transcripts [1]. Then, we
construct codes by rephrasing key points with meaningful labels. In order to
look for similarities and differences, we continuously compare every emerging
code with the previous codes. We group together similar codes with common
themes to form a concept. Many concepts emerge, and constant comparison is
repeated until concepts form a category. A category is a group of similar concepts
that is used to generate a theory. To date, several categories have emerged from
our data analysis such as “locating expertise”[18] and“distributing expertise”[17].
This paper presents the category “coordinating external expertise” which is dis-
cussed in the next section.

3 Research Findings

The category “Coordinating External Expertise” describes how Agile teams and
external specialists depend on each other to manage and utilize the external spe-
cialists’ expertise in Agile teams. Our findings revealed five factors that Agile
teams and external specialists need to consider in coordinating external exper-
tise: Availability (F1), Agile Mindset (F2), Knowledge Retention (F3), Stability
(F4) and Effective Communication (F5). There are strategies for each factor in
coordinating external expertise in Agile teams. The relationships between the

Fig. 1. The relationships between factors of external expertise coordination

Coordinating Expertise Outside Agile Teams 145

factors of external expertise coordination are summarised in figure 1. The square
shapes represent factors, and arrows represent relationships between factors.

3.1 Factor 1: Availability

Availability (F1) refers to the ability of external specialists to be present in
Agile teams when their expertise is needed. The majority of our participants
claimed that they had to rely on external specialists who were involved in multi-
ple projects at one time. It was very hard for the external specialists to allocate
their effort, responsibility, and time to the Agile teams. The external specialists
were sometimes unable to present when their expertise was needed. Such delays
caused bottlenecks that affected the performance of teams:

“We have difficulties such as the DBA is very busy and handles multi-
ple projects. So to get his time can be more challenging.”- P33, Project
Manager.

Strategy 1: Planning Ahead. Our findings revealed planning ahead is used
by teams to address by Availability (F1). Planning ahead is needed for external
specialists to decide which project to be involved in at which time, without
affecting other projects.

“Usually, what we do is we plan ahead of the release. For example,
we needed a solution architect for 2 or 3 months. So we tried to get
them involved before that. We told them earlier when we needed them
to be involved. During planning, we get everyone to be involved.” - P33,
Project Manager.

Planning ahead relies on prioritizing tasks. The value of the task should be
the most important criterion when deciding which project needs to be worked
on:

“Even they are outside resources that we depend on, they need to figure
out what is the priority of the task compared to the other tasks.” - P36,
Developer.

Figure 1 shows the relationship between Availability (F1) and Effective Com-
munication (F5). Availability (F1) depends on the Effective Communication
(F5) between Agile teams and external specialists. This relationship is discussed
in subsection 3.5.

3.2 Factor 2: Agile Mindset

Agile Mindset (F2) is one of the factors that external specialists need to consider
when engaging in Agile teams. Agile teams depend on a variety of external spe-
cialists who have different software development backgrounds including Agile and

146 M. Md. Rejab et al.

non-Agile approaches. Some participants reported that they have to deal with
external specialists who are unfamiliar with Agile methods. Indeed, some exter-
nal specialists refused to learn and apply Agile practices. Presumably because
they do not see the importance of Agile values. This leads to Agile teams facing
many problems when dealing with non-Agile external specialists. For instance,
external specialists were unable to align work with the sprints which required
continuous value delivery at the end of each sprint. As a result, the external
specialists failed to produce what they were expected to deliver for Agile teams
on time:

“They [external specialists] didn’t go to the same Agile training that
we went through. We started doing our project, and we called our Data-
base Administrator. We need these tables to be set up. We need it to be
done in two weeks. But it didn’t go very well.” - P35, Developer.

Consequently, external specialists had to carry over the unfinished tasks to
the next sprint and this delayed the next tasks. This situation became worse
when the Agile teams could not continue their work due to dependencies on
external expertise. Therefore, the Agile teams faced a problem in managing and
coordinating rescheduled tasks. Without proper organization of tasks, it was
hard to keep track of the tasks progress:

“Then, the way we receive the requirements is like a waterfall model.
They won’t accept iterative release for the product. We quite often post-
pone and move the current stuff to the next sprint. Sometimes we also
couldn’t believe what we had achieved or what we don’t achieve for the
last sprint. That’s the problem of continuity.” - P27, Developer.

User Experience Designers are another kind of external specialists that typ-
ically prefer to produce a comprehensive user interface design before implemen-
tation begins. As Agile practices undertake relatively little up-front design, this
has a big impact on the Agile teams, particularly the lack of feedback from the
development side in improving the design:

“The User Experience Designer is the last batch of the waterfall approach
[sic]. They don’t know about the Agile method. They prefer the up-front
[design] and not to share their work until it is finished [sic]. We have
problems with that.” - P12, Agile Coach.

Agile approaches are very personality driven and require particular person-
ality traits in Agile teams. Several participants claimed that they struggled to
deal with external specialists’ misbehaviours, which very difficult to tolerate:

“We invited one of the DBAs for our stand-up. But he just came once a
week. It was because of personality of the guy, who was quite difficult to
deal with.” - P27, Developer.

Coordinating Expertise Outside Agile Teams 147

Struggling with misbehaviours also happens the other way around. In certain
circumstances, external specialists also have to deal with personality conflicts of
Agile team members:

“I can’t stand some [Agile team members’] behaviours. There is a situ-
ation where a person holds a position for so long. There is no give and
take.”- P44, Architect.

External expertise coordination relies on the ability of Agile teams and exter-
nal specialists to work in a cooperative manner. The progress of the project will
suffer when the cooperation is disrupted. It is impossible to develop good coop-
eration between Agile teams and external specialists when personality conflicts
happen in Agile projects.

Strategy 2: Understanding Agile Methods. Agile Mindset (F2) requires
a strategy of being familiar with and understanding Agile values and practices
helps external specialists to work with the expectation of Agile teams:

“We discussed with them what and how we’re doing in Agile [ways]. So
they knew what they are responsible for and when it needs to be done. So
once we started doing that, they got more ideas about the Agile (method).”
- P44, Architect.

Educating external specialists to act in an Agile way requires a willingness
from both parties, Agile teams and external specialists. The Agile teams need
to understand the Agile method and behave in an Agile way. They also need to
educate the external specialists about Agile values and practices. The Agile
teams need to know and apply suitable methods for educating the external spe-
cialists about Agile methods. The perception and willingness of the external
specialists to shift their paradigm into the Agile way, however, determines the
success of educating external specialists about Agile methods.

As depicted in figure 1, Agile Mindset (F2) is interrelated with Effective
Communication(F5) in coordinating external expertise. Failure to understand
Agile values and practices hinders external specialists communicating and col-
laborating effectively with Agile teams. As a result, external specialists don’t
realize the importance of Agile meetings such as daily stand-up meetings or ret-
rospectives in establishing effective communication and collaboration with Agile
teams.

3.3 Factor 3: Stability

Stability (F3) refers to keeping Agile teams stable with a low rate of team mem-
bers and external specialists turnover. Stability (F3) is an important factor that
tends to affect expertise coordination in Agile teams. Many problems arise when
there is high flunctuation in Agile teams composition, or in external specialists.

148 M. Md. Rejab et al.

Some external specialists reported that they have to change to another team
while they are still working on on-going Agile projects. They have had to adapt
to a new environment with different specifications once they move to a new team.
It takes time for them to cope with the new team and indirectly affects their
progress:

“Changing teams happens all the time. Frequent changes in the (Agile)
project requires me to be flexible.” - P38, User Experience Designer.

Involvement in unstable Agile teams has a negative impact on the exter-
nal specialists. For instance, one of the participants, a software architect (P44)
claimed that he didn’t see the benefit of his presence in the Agile team. It was
impossible to get support from Agile team members to accomplish his tasks
while the team was struggling to solve their internal problems:

“People move to another team regularly. Teams need to recover from the
changes. The team can’t get stable. They are busy with other stuff, and
they don’t engage. So my role becomes irrelevant because [the project] it
is not progressing well.” - P44,Software architect.

Strategy 3: Ensuring Consistency. Ensuring consistency is a way to estab-
lish Stability (F3) in Agile teams. Coping with frequent turnover of external
specialists requires a consistent standard of work to enable external specialists
to adapt easily to the new team and work:

“Frequent changes in the [Agile] project requires me to be very flexible. I
have to familiarize myself as quickly as possible. So, we make sure that
we do things more consistent. It is not difficult for someone to pick up
the work.” - P38, User Experience Designer.

Figure 1 shows a relationship between Stability (F3) and Effective Communi-
cation (F5). Communication will be disrupted when existing external specialists
leave Agile teams and new specialists join teams.

3.4 Factor 4: Knowledge Retention

In coordinating external expertise, Knowledge Retention (F4) involves captur-
ing external specialists’ knowledge and preserving the knowledge in Agile teams.
Knowledge retention should be extended to every segment of Agile teams, includ-
ing external specialists:

“The things that got my bear there is a sustainability [sic]. How can the
team learn from the person who comes in and then disappears? How can
we extract the knowledge and learn from them?” - P16, Agile Coach.

Coordinating Expertise Outside Agile Teams 149

Retaining external specialists’ expertise depends on the project’s needs and
requirements. Agile teams need to decide which external specialists’ expertise
has a significant impact on other roles. For instance, sharing software design
ideas with developers assists developers to implement the software. This tends
to speed up the development of software project:

“We help developers to understand the design principles and get them to
sketch with us.” - P38, User Experience Designer.

Agile teams depend too much on external specialists when they are unable
to retain external specialists’ knowledge. Thus, it is essential to transfer external
specialists’ knowledge to Agile team members. If external specialists are unable
to be available, at least someone in the teams can troubleshoot simple and routine
problems.

Strategy 4: Sustaining External Expertise. External specialists’ have sev-
eral mechanisms for transferring and sustaining their knowledge to Agile teams
such as collaboration, documentation, and coaching. The ideal mechanisms, how-
ever, depend on external specialists’ roles and interactions between both parties:

“We have to make sure the knowledge can be passed to the team. We
have person to person, pair-programming and peer review. They [also]
pass the knowledge by mentoring and documentation.” - P27, Developer.

Figure 1 shows the relationship between Knowledge Retention (F4) and Effec-
tive Communication (F5). Knowledge Retention (F4) depends on Effective Com-
munication (F5) between Agile teams and external specialists. This relationship
is discussed in subsection 3.5.

3.5 Factor 5: Effective Communication

In the context of this study, Effective Communication (F5) is defined as the
activity of conveying sufficient information between Agile teams and external
specialists through verbal and non-verbal mediums. Effective communication
enables good cooperation between Agile teams and external specialists. Poor
communication leads to failure in coordinating external expertise in Agile teams.
Consequently, Agile teams and external specialists tend to point the finger and
place blame on each other instead of finding solutions:

“The developer and the operation staff didn’t talk to each other. This
operation team did the deployment. Sometimes, there was failure, and
we found that the development team blamed the operation team. The
operation team blamed the development team.” - P15, Agile Coach.

It is difficult to coordinate external expertise when Agile teams convey incor-
rect and insufficient information to external specialists. Agile teams need to pro-
vide clear goals for the Agile software project at the beginning of the project. A
lack of mutual goals drives the external specialists to work in their own direction
without considering the whole project:

150 M. Md. Rejab et al.

“It is hard because they have their ways and we have our ways in doing
the tasks. We try to coordinate, but it is quite difficult.” - P18, Developer.

Conveying insufficient information about task descriptions causes external
specialists to be unable to align work with Agile teams’ needs and expectations.
External specialists fail to perform when they are not really clear about their
roles and responsibilities:

“They didn’t know what is happening if they don’t have the project’s
visibility. They didn’t know when they are needed, and they didn’t have
a feeling of being involved” - P16, Agile Coach.

Agile teams should provide sufficient information to external specialists ver-
bally or in writing. On the other hand, external specialists also need to provide
Agile teams with necessary information such as their availability, needs, and
expectations when dealing with Agile teams.

Strategy 5: Keeping Everyone on the Same Page. As depicted in figure
1, our findings revealed keeping everyone on the same page is a strategy for
establishing effective communication.

Through Agile meetings, Agile teams have opportunities to show their con-
cerns, awareness and appreciation to external specialists. Indirectly, this could
remind Agile teams of the value of the external specialists’ expertise and their
availability:

“For every project, we have a different databases and architecture. So
we get somebody, and we pull them into a sprint. We make them a part
of the team. Bringing them to the daily meetings, reinforcing them and
making them realize ‘Aah, this guy is true. He is waiting for me. That’s
why he keeps reminding me.”’ - P35, Developer.

Working closely together depends on the workload that external specialists
need to contribute to Agile teams. It is better for the external specialists to work
closely with the Agile team if the workload is high. For a minimal workload, the
external specialist needs to figure out how long they need to allocate their time
with Agile teams:

“Depends on how much the work is [sic]. If there is a lot of work, we
ask them to move their stuff and computer, and come over to us.” - P12,
Agile Coach.

Agile teams should provide necessary information without overwhelming the
external specialists with an overload of information. Too much information may
lead to more confusion than clarity and cause misunderstanding between external
specialists and Agile teams.

Our findings indicated that Effective Communication (F5) is the centre of
the factors’ relationships. Figure 1 shows the relationships between Effective

Coordinating Expertise Outside Agile Teams 151

Communication (F5) and other factors. Effective Communication (F5) tends to
indirectly increase Availability (F1) and Knowledge Retention (F4). Conveying
sufficient information to external specialists assists them to bring the right and
relevant expertise to teams in a timely manner. Effective communication also
facilitates knowledge transfer from external specialists to Agile teams.

Effective Communication (F5) depends on Agile Mindset (F2) and Stability
(F3). Failure to understand Agile values and practices hinders Effective Com-
munication (F5) between Agile teams and external specialists. Effective com-
munication also affects the Stability (F3) because it is impossible to establish
effective communication if Agile teams or external specialists change often.

4 Discussion

Availability (F1) is one of the factors that influence expertise coordination in
Agile teams. Strode et al. [21] revealed that availability is a coordination strategy
component in Agile teams. Engaging in multiple projects at a time causes coor-
dination problems in Agile teams and affects the availability. Strode et al. [21]
discussed coordination problems in general without specifying expertise coordi-
nation. Our findings, however, revealed the implications of external specialists’
availability in coordinating expertise in Agile teams.

Adopting an Agile Mindset (F2) helps external specialists to work with
the expectation of Agile teams. Our findings confirmed Kollmann and Sharp’s
study [10], when a good understanding of Agile is perceived to facilitate User
Experience Designers’ ability to work in an Agile context. Adopting an Agile
mindset requires external specialists to believe the usefulness of Agile meth-
ods [10], so that they value the importance of Agile practices and principles in
their work.

Stability (F3) also has impact on relationships between Agile teams and
external specialists. Task reallocation and work disruption occur when there is a
high rate of team member turnover [6][14]. Our finding indicated that unstable
Agile teams hinder external specialists from allocating their expertise in teams.
Thus, flexibility is essential for Agile teams and external specialists to adapt to
new environments. Agile teams usually expect the new team member or external
specialist to adapt to their fast-paced work [6]. In order to speed up the flexibility,
the team members also need to quickly adapt to the new members or external
specialists.

Knowledge Retention (F4) aligns with Moe et al.’s study [13] when they
mentioned that knowledge retention requires identifying the location of external
specialists and distributing their expertise. Our previous findings revealed how
Agile team members locate and distribute expertise in teams [17][18]. Through
our data analysis, we believe our previous findings are relevant as a basis to
locate and distribute external expertise in Agile teams. Based on our findings
here we now believe it is impossible to retain all external specialists’ expertise
in teams. This accords to Moe et al. [13] who claimed that there is a need to
explore how to define which external specialists’ knowledge needs to be retained
in teams.

152 M. Md. Rejab et al.

Effective Communication (F5) is the central factor for coordinating external
expertise in Agile teams. As previously mentioned, our findings showed rela-
tionships between emerging factors. Much existing literature has discussed the
relationships between these factors [15][12]. There is a paucity of studies, how-
ever, that focus on these factors in the context of interaction between Agile
teams and external specialists.

There are possible factors’ relationships which we did not find in our study.
For instance, Melo and his colleagues [6] posited personality causes team mem-
bers turnover in Agile teams. As Agile mindset is very personality driven [3][19],
we classified personality under Agile Mindset (F2). However, we did not find a
relationship between Agile Mindset (F2) and Stability (F3).

It is hard to avoid expertise dependencies in Agile teams, including depen-
dencies on roles outside teams. This study has provided a positive insight into
what factors Agile teams and external specialists need to consider when dealing
with each other. These factors are basis of managing and utilizing the external
expertise resources in Agile teams.

5 Conclusion

This paper presents five factors that Agile teams and external specialists need to
consider when coordinating external expertise in Agile teams: Availability (F1),
Agile Mindset (F2), Stability (F3), Knowledge Retention (F4), and Effective
Communication (F5). These factors require strategies to assist Agile teams and
external specialists depend on each other to manage and utilize external exper-
tise resources. In the future, we intend to determine the relationships between
the category “Coordinating External Expertise” and other categories that have
emerged from our study.

References

1. Allan, G.: A critique of using grounded theory as a research method. Electronic
Journal of Business Research Methods 2(1), 1–10 (2003)

2. Birks, M., Mills, J.: Grounded Theory: a Practical Guide. Sage Publications Lim-
ited (2011)

3. Chao, J., Atli, G.: Critical personality traits in successful pair programming. In:
Agile Conference, p. 5. IEEE (2006)

4. Charmaz, K.: Constructing Grounded Theory: A Practical Guide Through Quali-
tative Analysis. Sage Publications Limited (2006)

5. Corbin, J.M., Strauss, A.: Grounded theory research: Procedures, canons, and
evaluative criteria. Qualitative Sociology 13(1), 3–21 (1990)

6. de O Melo, C., S Cruzes, D., Kon, F., Conradi, R.: Interpretative case studies on
agile team productivity and management. Information and Software Technology
55(2), 412–427 (2013)

7. Faraj, S., Sproull, L.: Coordinating expertise in software development teams. Man-
agement Science, 1554–1568 (2000)

Coordinating Expertise Outside Agile Teams 153

8. Glaser, B.G.: Emergence vs Forcing: Basics of Grounded Theory Analysis. Sociol-
ogy Press (1992)

9. Glaser, B.G., Strauss, A.L.: The Discovery of Grounded Theory: Strategies for
Qualitative Research. Aldine de Gruyter (1967)

10. Kollmann, J., Sharp, H., Blandford, A.: The importance of identity and vision to
user experience designers on agile projects. In: Agile Conference, pp. 11–18. IEEE
(2009)

11. Martin, A., Biddle, R., Noble, J.: An ideal customer: a grounded theory of require-
ments elicitation, communication and acceptance on agile projects. In: Agile Soft-
ware Development, pp. 111–141. Springer (2010)

12. Martini, A., Pareto, L., Bosch, J.: Teams interactions hindering short-term and
long-term business goals. In: Continuous Software Engineering, pp. 51–65. Springer
(2014)

13. Moe, N.B., Šmite, D., Šāblis, A., Börjesson, A.-L., Andréasson, P.: Networking in
a large-scale distributed agile project. In: International Symposium on Empirical
Software Engineering and Measurement. ACM (2014)

14. Narayanan, S., Balasubramanian, S., Swaminathan, J.M.: A matter of balance:
Specialization, task variety, and individual learning in a software maintenance envi-
ronment. Management Science 55(11), 1861–1876 (2009)

15. Nuwangi, S.M., Sedera, D., Murphy, G.: Multi-level knowledge transfer in software
development outsourcing projects: the agency theory view. In: Proceedings of the
33rd International Conference Systems, Orlando, Florida (2012)

16. Parry, K.W.: Grounded theory and social process: A new direction for leadership
research. The Leadership Quarterly 9(1), 85–105 (1998)

17. Rejab, M.M., Noble, J., Allan, G.: Distributing expertise in agile software devel-
opment projects. In: Agile Conference, pp. 33–36. IEEE (2014)

18. Rejab, M.M., Noble, J., Allan, G.: Locating expertise in agile software develop-
ment projects. In: Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179,
pp. 260–268. Springer, Heidelberg (2014)

19. Salleh, N., Mendes, E., Grundy, J., Burch, G.S.J.: An empirical study of the effects
of conscientiousness in pair programming using the five-factor personality model.
In: Proceedings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1, pp. 577–586. ACM (2010)

20. Sharp, H., Robinson, H.: Three ‘C’s of agile practice: collaboration, coordination
and communication. In: Dingsyr, Torgeir and Dyb, Tore and Moe, Nils Brede,
Agile Software Development: Current Research and Future Directions. Springer
Publishing Company, Incorporated (2010)

21. Strode, D., Huff, S., Hope, B., Link, S.: Coordination in co-located agile software
development projects. Journal of Systems and Software 85(6), 1222–1238 (2012)

22. Sutherland, J.: Scrum handbook. http://jeffsutherland.com/scrumhandbook.
pdf(12-03-25) (2010)

http://jeffsutherland.com/scrumhandbook.pdf(12-03-25)
http://jeffsutherland.com/scrumhandbook.pdf(12-03-25)

Transitioning Towards Continuous Delivery
in the B2B Domain: A Case Study

Olli Rissanen1,2(B) and Jürgen Münch1

1 Department of Computer Science, University of Helsinki, P.O. Box 68,
FI-00014 Helsinki, Finland

{olli.rissanen,juergen.muench}@cs.helsinki.fi
2 Steeri Oy, Tammasaarenkatu 5, 00180 Helsinki, Finland

Abstract. Delivering value to customers in real-time requires compa-
nies to utilize real-time deployment of software to expose features to users
faster, and to shorten the feedback loop. This allows for faster reaction
and helps to ensure that the development is focused on features pro-
viding real value. Continuous delivery is a development practice where
the software functionality is deployed continuously to customer environ-
ment. Although this practice has been established in some domains such
as B2C mobile software, the B2B domain imposes specific challenges.
This article presents a case study that is conducted in a medium-sized
software company operating in the B2B domain. The objective of this
study is to analyze the challenges and benefits of continuous delivery
in this domain. The results suggest that technical challenges are only
one part of the challenges a company encounters in this transition. The
company must also address challenges related to the customer and proce-
dures. The core challenges are caused by having multiple customers with
diverse environments and unique properties, whose business depends on
the software product. Some customers require to perform manual accep-
tance testing, while some are reluctant towards new versions. By utilizing
continuous delivery, it is possible for the case company to shorten the
feedback cycles, increase the reliability of new versions, and reduce the
amount of resources required for deploying and testing new releases.

Keywords: Continuous delivery · Continuous deployment · Develop-
ment process · B2B · Case study

1 Introduction

To deliver value fast and to cope with the increasingly active business envi-
ronment, companies have to find solutions that improve efficiency and speed.
Agile practices [10] have increased the ability of software companies to cope
with changing customer requirements and changing market needs [9]. To even
further increase the efficiency, shortening the feedback cycle enables faster cus-
tomer feedback. Continuous delivery is a design practice that aims to shorten
the delivery cycles by developing software in a way that it is always ready for
releasing.
c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 154–165, 2015.
DOI: 10.1007/978-3-319-18612-2 13

Transitioning Towards Continuous Delivery in the B2B Domain 155

This study is an exploratory case study, which explores how continuous deliv-
ery can be applied in the case company that operates in the B2B domain. While
existing studies of applying the practice exist [1,2], none of the studies focuses
specifically in the B2B domain. This study specifically aims to identify the main
requirements, problems and key success factors with regards to continuous deliv-
ery in this domain. Extending the development process towards continuous deliv-
ery requires a deep analysis of the current development and deployment process,
seeking the current problems and strengths. Adopting continuous delivery also
requires understanding the requirements of continuous delivery, and restrictions
caused by the developed software products.

This study is organized as follows. The second chapter summarizes the rel-
evant literature and theories to position the research and to educate the reader
on the body of knowledge and where the contributions are intended. The third
chapter presents the research design. The findings are then presented in the
fourth chapter, organized according to the research questions. The fifth chapter
interprets the main results, and discusses the limitations of the study. Finally,
the sixth chapter summarizes the results of study and answers to the research
question, discusses the limitations of the study and introduces further research
avenues.

2 Background and Related Work

In the agile process software release is done in periodic intervals [10]. Compared
to waterfall model it introduces multiple releases throughout the development.
Continuous delivery, on the other hand, attempts to keep the software ready for
release at all times during development process [4]. Continuous delivery is an
extension to continuous integration, where the software functionality is kept in
a state where it can be deployed to production immediately. Production deploy-
ments are manually triggered, but the entire deployment process is otherwise
automated. While continuous integration defines a process where the work is
automatically built, tested and frequently integrated to mainline [12], often mul-
tiple times a day, continuous delivery adds automated acceptance testing and
deployment to a staging environment. The purpose of continuous delivery is that
as the deployment process is automated, it reduces human error and documents
required for the build, and increases confidence that the build works [4]. It there-
fore aims to solve the problem of how to deliver an idea to users as quickly as
possible.

Continuous delivery differs from continuous deployment. Continuous deploy-
ment means that every change goes through the pipeline and automatically gets
put into production, resulting in many production deployments every day. Con-
tinuous delivery just means that you are able to do frequent deployments but may
choose not to do it, usually due to businesses preferring a slower rate of deploy-
ment [6]. An essential part of continuous delivery is the deployment pipeline,
which is an automated implementation of an applications build, deploy, test and
release process [5]. A deployment pipeline can be loosely defined as a consecu-
tively executed set of validations that a software has to pass before it can be

156 O. Rissanen and J. Münch

released. Common components of the deployment pipeline are a version control
system and an automated test suite.

Challenges in adopting continuous delivery have been researched in multiple
studies. Olsson et al. investigate the organization evolution path and the tran-
sition phase from continuous integration to continuous delivery [1]. The authors
define continuous delivery as one of the final steps in the organization evolution
path. The authors identify barriers that companies need to overcome to achieve
the transition. One such barrier is the custom configuration at customer sites.
Maintaining customized solutions and local configurations alongside the stan-
dard configurations creates issues. The second barrier is the internal verification
loop, that has to be shortened not only to develop features faster but also to
deploy fast. Finally, the lack of transparency and getting an overview of the
status of development projects is seen as a barrier.

One of the largest technical challenges is the test automation required for
rapid deployment [4,5]. Neely and Stolt found out that with a continuous flow,
Sales and Marketing departments lost the track of when features are released [2].
Implementing the deployment infrastructure also requires knowledge from the
development and operations team [5]. Another challenge is to sell the vision and
reasoning behind continuous delivery to the executive and management level [2].

3 Case Study

To provide insight into extending the development process towards continuous
delivery, the following research questions have been chosen:

RQ1: What are the B2B specific challenges of continuous delivery?

Software development practices and product characteristics vary based on the
domain and delivery model. Typical B2C applications are hosted as Software
as a Service (SaaS) applications, and accessed by users via a web browser. In
the B2B domain, applications installed to customer environments are very com-
mon. The purpose of this research question is to identify the challenges faced
in applying continuous delivery in the B2B environment. The research question
is answered by conducting interviews to discover the current development pro-
cess and its challenges in the case company, and using these findings and the
available literature on continuous delivery to map the initial set of challenges
these approaches will encounter in the case company. The available literature is
used to provide a thorough understanding of continuous delivery as a whole, so
that challenges can be identified in all aspects of the practice.

RQ2: How does continuous delivery benefit the case company?

To rationalize the decision to adopt continuous delivery in a company, the actual
benefits to the business have to be identified. This research question aims to
identify clear objectives for what is achieved by adopting continuous delivery.

Transitioning Towards Continuous Delivery in the B2B Domain 157

Sections of the interview aim to identify the current perceived problems of the
case company related to deployment, product development, collecting feedback
and guiding the development process. These problems are then compared to the
benefits of the approach found from the literature.

Research Design. In this research, the units under the study are two teams
within the case company, and the two software products developed by these
teams. By focusing on two different products, a broader view on the application
and consequences of the development approach can be gained. The first prod-
uct, a marketing automation called Dialog, is used through an extensive user
interface. The second product under inspection is a Master Data Management
[11] solution running as an integrated background application.

The primary source of information in this research are semi-structured inter-
views [8], performed within the two teams under study. The interview consists
of pre-defined themes focusing on current development process, current deploy-
ment process, current interaction with customers, the software products and
future ways with continuous delivery. Data is also collected through the prod-
uct description documents and development process documents to verifying and
supplementing the interview data.

The interview is a semi-structured interview with a standardized set of
open-ended questions, which allows deep exploration of studied objects [8]. The
interviews are performed once with every interviewee. There are a total of 12
interviewees: 6 in each team. The interviewees in the first team consist of 5
software designers and one team leader. In the second team, the interviewees
consist of 3 software designers, a quality assurance engineer, a manager for com-
mercialization and a team leader. Leading questions are avoided on purpose, and
different probing techniques such as “What?”-questions are used. The interviews
are performed in the native language of the interviewee if possible, otherwise in
English, and are recorded in audio format. The audio files are then transcribed
into text.

The data analysis is based on template analysis, which is a way of themat-
ically analysing qualitative data [7]. The initial template was first formed by
exploring the qualitative data for two themes: development process and deploy-
ment of software. Through multiple iterations of the data, multiple subthemes
were then added to the two existing themes by further coding the data. Attention
was paid to different roles of the interviewees.

4 Results

This section is structured according to the research questions. The challenges
regarding continuous delivery are analyzed in three areas: technical, procedural
and customer. Technical aspect includes the environmental challenges, configural
challenges and other challenges related to the software product and its usage.
Procedural aspect includes the challenges regarding the software development
process. Customer aspect consists of the customer interaction process and cus-
tomer commitment.

158 O. Rissanen and J. Münch

4.1 Technical Challenges

The technical challenges for continuous delivery are derived from the interviews.
A part of the interview focuses on the current deployment process and cus-
tomer interaction of the case company. The current deployment process, cus-
tomer interaction and challenges related to them are then used as a basis for
analysing challenges that influence continuous delivery.

Table 1. Technical challenges in continuous delivery

Specific problem

Downtime is critical for certain customers

Automated testing has to be built on top of a matured software product

Software is often integrated to multiple third party applications

Software is often accompanied by multiple external components

There exists multiple different configurations due to having multiple customers with
different specifications

Transferring the software product to diverse customer-owned environments requires
different deployment configurations

Downtime of the case company’s products can be fatal. According to the
Dialog product owner, downtime causes end-users being unable to perform their
job. Downtime can also interrupt ongoing customer tasks, possibly losing critical
data in the progress. Currently the deployment time for both projects is negoti-
ated with the customer to prevent these cases, and the version deployments are
done when the system can be closed for a short period of time.

The developers perceive automated testing and test environments to be the
largest technical task. The developers state that building a sufficient test automa-
tion is a very laborious process especially due to the maturity of the software,
and are concerned with the maintainability of the test suite. The management
is not sure what to test with automatic acceptance testing to validate a version.

Both of the case company’s software products are integrated to various third
party applications and APIs. Changes to the interfaces communicating with
these applications must be planned and discussed in advance. Based on the
interview results, automatically updating the integrations requires an unduly
amount of work considering the results.

It is also common for B2B applications to have external components that
have to be configured when the software is installed or the APIs to these com-
ponents changed. The configurations for these external components either have
to be manually updated, or automated as well. One of the main differences
between B2B and B2C domains is the production environment. Both of the
case company’s products are used in multiple different customer environments.
This introduces a problem of managing different configurations per customer
environment and software instance.

Transitioning Towards Continuous Delivery in the B2B Domain 159

4.2 Procedural Challenges

The procedural challenges are analyzed based on the development process doc-
umentations of the company and the interviews. In the interviews, a section is
dedicated to the current development process of the case company. The develop-
ment process and its challenges are then used to analyse and identify challenges
that influence continuous delivery.

Table 2. Procedural challenges in continuous delivery

Specific problem

User acceptance testing environment is a requisite for production release

The development process drifts towards small feature branches from long-lived feature
branches

Triggering the compilation and deployment of a modular project to maintain integrity
is hard

The software has to be deployed to multiple customers

Versioning is affected by having different customer profiles of the product

Responsibility of deploying moves towards developers

Management and sales loses track of versions

The basic deployment pipeline in the case company first includes a deploy
to a user acceptance testing server, which is then tested manually by either the
team or the customer. Only after the version has been acceptance tested and
validated to work properly, can the production version be released. Continuous
deployment to production is seen very risky due to the applications playing a
major role in running the customers business.

Both of the case company’s products are developed with a branching model,
where feature branches are first thoroughly developed and then integrated to the
master branch. With continuous delivery the long-lived feature branches should
be changed to short-lived and relatively small feature branches to allow exposing
new functionality faster to the customers, and receive feedback faster. While the
small feature branches might be common for companies with a relatively new
software products, companies that have been developing products for a long time
might be more devoted to the practice of long-lived feature branches.

The software applications in B2B often are large and modular applications,
as is the case in the case company. The point when a deployment is triggered has
to be designed to maintain the integrity of the application. As the deployment
process is currently manually triggered by first releasing a version, a suitable
time can be chosen each time. When a production deployment is triggered in
continuous delivery, each module has to be in the correct state in order to produce
a coherent version.

Both of the case company’s products are used by multiple customers, each
having their own environments. As the deployments are currently done manually,
the customers receiving each deployment can be manually chosen.However, with

160 O. Rissanen and J. Münch

a continuous delivery process whenever a feature or a new release is ready to be
delivered, it can either be deployed to a single customer or to every customer.

Multiple customer environments affects versioning of the software product.
In the case company, each customer has a unique configuration of the product,
with possibly different versions of certain components. According to Jan Bosch,
in an Innovation Experiment System environment only a single version exists:
the currently deployed one. Other versions are retired and play no role [3]. How-
ever, with multiple environments, multiple different versions of the software are
necessary at least in the early phase.

Continuous delivery also drifts response towards the developer, and the devel-
opers decide what is ready to be released. Currently in the case company the
product owners and team leaders are responsible for negotiating the deployment
date with the customer, and they also inform the developers that a new version is
required. If the developer can single-handedly deploy a feature, the management
can quickly lose track on the features available to customers. This also requires
the developers to deeply understand the details of the version control system
and automated testing.

Due to increased developer responsibility and varying interval of version
updates continuous delivery causes, a team leader expresses concern that the
delivery process complicates tracking when deployments are performed, and
when features are finished. This also concerns other parties working in the cus-
tomer interface, such as sales.

4.3 Customer Challenges

The customer challenges are analyzed based on two sections of the interview:
customer interaction and the deployment process.

Table 3. Customer challenges in continuous delivery

Specific problem

Some customers are reluctant towards new versions

Customers are trained to use a certain version, and modifications confuse the users

Changelogs are especially important, since as versions are released faster the cus-
tomers become less aware on what has changed

Pilot customer is required for developing the continuous delivery process

Acceptance testing is performed by both the company and the customers, and requires
a lot of resources from the customers

Production deployment schedule has to be negotiated with the customer

Ongoing critical tasks by users cannot be interrupted by downtime

Some customers of the case company are reluctant towards new releases. One
of the reasons for this reluctancy is that new releases occasionally contain new
bugs. In the case company, customers have been trained to perform certain tasks
with a certain user interface. The customer might perform these tasks daily, once

Transitioning Towards Continuous Delivery in the B2B Domain 161

every two weeks or even less frequently. If the UI changes often, the customers feel
lost and initially take more time to perform the tasks. This causes frustration in
the users, and visible changes generally increases the reluctancy customers have
towards new versions, unless the changes are significantly improving the user
experience.

“The user interface should be easy to use. Now it’s relatively hard to
learn. If customers have just learned to perform a task, and we change
the UI, the feedback is terrible.”

Product owner

Listing the changed features in changelog entries is especially important when
releases are made more often. While the changes become smaller the faster ver-
sions are released, customers become less aware of when the version will be
updated and when features have changed. Currently the version deployments
are negotiated with the customers, and when the deployments are made more
often, discussions regarding version releases may be reduced or even ceased.

A way to identify the best practices in continuous delivery is to develop the
continuous delivery process with a pilot customer. Pilot customer is a company
willing to help the company to quickly learn what works and what needs to be
improved. The interviewees expressed a desire to first test the continuous delivery
process with a single customer that is willing to receive updates in a continuous
manner, since the engagement model inevitably differs from the current model.

The acceptance testing is performed in varying ways. Some customers require
to perform manual acceptance testing before the product can be deployed into
production. Other customers trust the developers to perform the acceptance
testing. The technical implementation therefore should make it possible to con-
tinuously deploy versions to the user acceptance testing environment, and by the
push of a button to the production environment. However, if the versions are
deployed to user acceptance testing environment very often, customers might
feel encumbered by the amount of required testing. The customers also have to
be informed whenever a new version is available to the user acceptance test-
ing environment. Customers might be using the software when a new version is
deployed, and the deployment process shouldn’t interfere with ongoing usage.

4.4 Benefits of Continuous Delivery

A major problem found in the interviews is that currently the reliability towards
new versions is low. The low reliability both increases customers reluctancy
towards version updates, and increases the amount of user acceptance test-
ing that is performed after version release. Versions are occasionally forgotten
from the UAT phase due to the lack of comprehensive automated testing and the
broad scale of features in both software products. These features can then remain
broken or contain bugs when the users start using the new version. This is fun-
damentally caused by the lack of quality assurance before the release. Adopting
a test automation solves this issue, as long as tests are written for every feature.

162 O. Rissanen and J. Münch

The case company has had problems with the human error factors in manual
build processes. Essentially, every each deployment is a new error-prone exper-
iment. This increases the duration required for deploying, and lessens both the
reliability and confidence in builds. The human error factor is increased by lack-
ing documentation and parts of the deployment being memorized by developers.
With continuous delivery, only a handful of developers might have knowledge
of the entire build deployment configuration, but everyone is able to trigger the
deployment process.

The management considers improving the deployment process to be one of
the most important improvements. According to the findings, continuous delivery
mainly increases the speed, quality, and capacity of the development. Speed and
capacity are ensured by automated deployment, while quality is increased by the
automated testing and faster feedback. Smaller problems can be quickly fixed
without spending unnecessary time on manually deploying a new version to the
customer, and bigger changes only take as long as the implementation requires.
After the initial investment, the practice will eventually allow the company to
spend less money on management and operations, because unnecessary repetitive
work and bugs caused by manual building can be eliminated.

5 Discussion

The results suggest that the challenges faced in continuous delivery in the B2B
context are multidimensional, and related to the technical, procedural and cus-
tomer aspects. The major difference a company operating in the B2B domain
faces in the transition as compared to the B2C domain is that there are plenty
of customers with unique properties, whose business relies on the software. The
primary issues causing these challenges are the diverse customer owned environ-
ments and the importance of the software product for the customer.

Figure 1 visualizes the challenges the case company faces in transition towards
continuous delivery. Multiple challenges are related to two or more aspects, and
the problems affecting all aspects can be seen as the core challenges. Acceptance
testing is related to all aspects, since customers want to perform acceptance test-
ing with new versions, automated acceptance testing has to be implemented and
the user acceptance testing is required before a production release can be made.
Another challenge related to all aspects is the diversity of customer environments.
It affects the technical implementation, as software has to be transferred to diverse
environments. The procedural challenge is that the software has to be deployed
to multiple customers, and it has to be decided whether each version is always
released to every customer.

The issues into which the benefits are mapped were found by researching the
current deployment process and challenges faced in the development process. An
unexpectedly large part of the major issues stated by the interviewees are related
to deploying the software, and it was identified as one of the major challenges in
the current product development. The benefits found from continuous delivery,
which were sought from existing literature [2,4,5], matched the challenges very
well.

Transitioning Towards Continuous Delivery in the B2B Domain 163

Fig. 1. Case company’s challenges in continuous delivery

The study also suggests that continuous delivery corresponds to many of the
case company’s primary needs. The issues related to the deployment process
are considered very important by both of the teams. The issues include low
reliability of new versions, human error factors when performing version releases
and deployments, and long feedback cycles. Additionally, a very large part of the
case company’s resources are spent on both deploying and testing new versions.
One of the main benefits of continuous delivery is that the software is kept in a
state where it is always ready for deployment [4], and that no manual work from
the company is required to produce a new version.

The findings are in align with and could be considered as extending some
of the theoretical contributions by Olsson et al. [1], who researched the transition
towards continuous delivery. Identifying that transitioning towards continuous

164 O. Rissanen and J. Münch

delivery requires a company to address issues in multiple aspects of the company
also benefits companies in practice.

5.1 Limitations

Since case studies only allow analytic generalisations instead of statistical gen-
eralisations, the findings cannot be directly generalised to other cases. However,
the phenomena was deeply understood through gathering a large amount of qual-
itative data and systematically analysing it. Therefore the core findings should
be applicable to similar research problems outside of the empirical context of this
study. This means that the B2B challenges and benefits of continuous delivery
can be considered as a starting point for further studies in other contexts where
this development model takes place.

Two types of triangulation were used: data triangulation by including per-
sons with different roles into the interviews, and methodological triangulation
by collecting documentary data and observations by the author. However, the
reliability of the results could have been increased by employing observer trian-
gulation and theory triangulation.

6 Summary

This study was motivated due to lack of studies in continuous delivery focusing
on companies operating in the B2B environment. Understanding the central
aspects of continuous delivery will be a must for software companies willing
to stay ahead of its competitors in the current rapidly moving industry. The
findings provide insights into the challenges a company faces in the transition in
this domain, and the benefits a company can gain from adopting this practice.

This study has identified the main requirements a company operating in the
B2B domain has to address when applying continuous delivery. The challenges
can be divided into technical challenges, procedural challenges and challenges
related to the customer. These challenges are mostly caused by having multi-
ple customers with diverse environments and unique properties, whose business
depends on the software product. While continuously deploying versions to a
user acceptance testing environment requires a company to address multiple
challenges, continuously deploying to production is even more difficult, since
some customers want to perform manual acceptance testing before production
releases can be made.

The benefits of continuous delivery matched to many business problems found
in the case company, and a company operating in similar domain with similar
products can use them as a basis when considering applying this practice. By
utilizing continuous delivery, the case company can solve problems such as long
feedback cycles, low reliability in new versions, human error factors and high
amount of resources required for deploying and testing new releases.

Acknowledgments. We wish to thank the participants of the study for their time
and contributions and the reviewers for their valuable comments. We also thank the

Transitioning Towards Continuous Delivery in the B2B Domain 165

Finnish technology agency, Tekes, for funding the Cloud Software Factory project, and
the Need for Speed program, under which the proposed study was undertaken. This
paper is based on thesis work [13] completed at the University of Helsinki.

References

1. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “stairway to heaven”-a
multiple-case study exploring barriers in the transition from agile development
towards continuous deployment of software. In: 2012 38th EUROMICRO Confer-
ence on Software Engineering and Advanced Applications (SEAA), pp. 392–399.
IEEE, September 2012

2. Neely, S., Stolt, S.: Continuous delivery? easy! just change everything (well, maybe
it is not that easy). In: Agile Conference (AGILE), pp. 121–128. IEEE, August 2013

3. Bosch, J.: Building products as innovation experiment systems. In: Cusumano,
M.A., Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39.
Springer, Heidelberg (2012)

4. Humble, J., Farley, D.: Continuous delivery: reliable software releases through
build, test, and deployment automation. Pearson Education (2010)

5. Humble, J., Read, C., North, D.: The deployment production line. In: Agile Con-
ference, p. 6. IEEE, July 2006

6. Fowler, M.: ContinuousDelivery (January 2015). http://martinfowler.com/bliki/
ContinuousDelivery.html

7. King, N.: Template analysis. In: Qualitative Methods and Analysis in Organiza-
tional Research: A Practical Guide, pp. 118–134. Sage Publications Ltd (1998)

8. Runeson, P., Hst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical software engineering 14(2), 131–164 (2009)

9. Dzamashvili Fogelstrm, N., Gorschek, T., Svahnberg, M., Olsson, P.: The impact of
agile principles on marketdriven software product development. Journal of Software
Maintenance and Evolution: Research and Practice 22(1), 53–80 (2010)

10. Cockburn, A.: Agile software development. Cockburn* Highsmith Series Editor
(2000)

11. Loshin, D.: Master data management. Morgan Kaufmann (2010)
12. Duvall, P. M., Matyas, S., Glover, A.: Continuous integration: improving software

quality and reducing risk. Pearson Education (2007)
13. Rissanen, O., Münch, J., Männistö, T.: Extending the Development Process

Towards Continuous Delivery and Continuous Experimentation in the B2B
Domain: A Case Study. Master’s Thesis. University of Helsinki (2015)

http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/ContinuousDelivery.html

DevOps: A Definition and Perceived
Adoption Impediments

Jens Smeds(B), Kristian Nybom(B), and Ivan Porres(B)

Åbo Akademi University, Joukahaisenkatu 3-5 A, 20520, Turku, Finland
{jens.smeds,kristian.nybom,ivan.porres}@abo.fi

Abstract. As the interest in DevOps continues to grow, there is an
increasing need for software organizations to understand how to adopt
it successfully. This study has as objective to clarify the concept and
provide insight into existing challenges of adopting DevOps. First, the
existing literature is reviewed. A definition of DevOps is then formed
based on the literature by breaking down the concept into its defining
characteristics. We interview 13 subjects in a software company adopt-
ing DevOps and, finally, we present 11 impediments for the company’s
DevOps adoption that were identified based on the interviews.

1 Introduction

DevOps has become a vividly discussed phenomenon within software engineer-
ing during the recent years. DevOps addresses the challenge of what is often
described as a gap between development and operations personnel. Reports (e.g.
[18,19]) bring positive expectations of DevOps and organizations are becoming
increasingly interested in the phenomenon and how to tap the potential bene-
fits of it. Still, the term itself is surrounded by ambiguity. While the purpose
is clear, “bridging the gap between development and operations” [28], there are
still many interpretations of what DevOps actually means.

Adopting DevOps may not be an easy or straightforward task since it may
require that an organization introduces process, personnel and technological
changes and innovations. As in any software process improvement initiative,
the path to a successful DevOps adoption is unique to each organization. Still,
it is possible to learn from challenges experienced during DevOps adoptions in
order to plan future DevOps adoption initiatives.

In this article, we tackle these two challenges as follows. We provide a definition
of DevOps that can be used as a list of characteristics that an organization needs to
adopt or exhibit in order to work according to the DevOps thinking. We continue
by providing a list of possible impediments to the adoption of DevOps that can
be helpful for other organizations when planning their adoption initiatives.

2 Research Questions and Study Design

The concept of DevOps has been claimed to be ambiguous and to lack a common
definition [14,21]. The interest in DevOps, and how to adopt it, creates a need
c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 166–177, 2015.
DOI: 10.1007/978-3-319-18612-2 14

DevOps: A Definition and Perceived Adoption Impediments 167

for a clear definition of the concept. As the concept of DevOps is relatively
new, not many studies on the challenges that organizations face when adopting
DevOps exist yet. To clarify what adopting DevOps means and to provide some
insight into what people perceive as impediments at the initial stage of adopting
DevOps, this study addresses the following research questions:

RQ1: What are the main defining characteristics of DevOps?
RQ2: What are the perceived impediments to DevOps adoption?

To answer RQ1 we conducted a literature review, which presents what has
been published about DevOps and how the term is used and defined. Based on
the existing literature, we break down DevOps into a set of defining character-
istics. As not much literature addressing RQ2 exists, we conducted an empirical
study of our own. The social and organizational aspects of DevOps make qual-
itative interviews the preferred data collection method. Semi-structured inter-
views offer rich enough data without making the data handling too cumbersome.
Therefore, we conducted semi-structured interviews for answering RQ2.

2.1 Threats to Validity

The main threat to the validity of our study of RQ1 is that the literature regard-
ing DevOps is still scarce. A significant part of the available information about
DevOps comes from blogs and other informal publication channels. To avoid the
risk of missing important sources, we thus included publications that apparently
are not peer reviewed but that we consider being of high enough quality or that
have already been cited by peer reviewed publications. While this introduces a
subjective quality assessment step that has the risk of being biased, it gives us
the possibility to provide a definition of DevOps according to how the term is
currently being used by multiple authors.

The validity of our study of RQ2 is threatened by limiting our study to
one company. Including several companies could result in a more diverse list of
impediments. Moreover, including only one company prevents us from studying
the frequency of these impediments and from concluding how common they
are. However, we consider our results valid and valuable to other organizations
since we do not claim that the provided list of impediments is complete and we
encourage each organization to assess how likely these impediments can become
an actual problem in the adoption of DevOps in their particular case.

2.2 Conducting the Literature Review

A literature review was conducted to identify the main defining characteristics of
DevOps. The following sources were used: ACM Digital Library, DBLP, EBSCO
Academic Search Premier, Google Scholar, IEEE Explore, Springer Link and
Web of Science. As a quality precaution, blog posts were deliberately not con-
sidered, although they do contain a significant amount of information related to
DevOps. The word ’DevOps’ was used as the search string. To filter out irrelevant

168 J. Smeds et al.

results, the Springer Link search was limited to only articles and books, and the
Google Scholar search was limited to work containing the search string in the
title. The results were further filtered to only include English texts. Our inclusion
criterion was that included literature must both refer to DevOps and provide a
description of what DevOps is. Duplicates were excluded so that only the most
comprehensive version of the text was included.

The search was performed on October 27, 2014 and resulted in 126 results.
After excluding the duplicates, 99 unique results remained. The inclusion was
then judged based on personal perception. Firstly, the decision was based on
the abstract if one was available. If needed, the introduction and all sections
containing the term ’DevOps’ were read. We finally selected 27 publications.

The literature was categorized into five topic areas, as shown in Table 1. The
first category contains only one article, a literature review of DevOps. DevOps
guidelines, consists of five works that cover how to do DevOps. The third cat-
egory, DevOps success story, consists of three studies describing how DevOps
has been a success in certain organizations. The fourth category, explaining
DevOps, consists of literature that discusses, focuses on describing, or explores
new aspects of DevOps. It is the most popular category and comprises 11 publi-
cations. The last category, specific DevOps practice(s), consists of 7 publications
that present some specific technologies or practices that support DevOps. While
a part of the literature discusses certain issues when adopting DevOps, perceived
issues when adopting DevOps have not yet been the main subject of any study.

2.3 Conducting the Interviews

The selected organization is an international IT company with a long history
and over 1000 employees. This study was carried out in a business unit that
develops and operates in the cloud services area. At the time we conducted the
interviews, their DevOps adoption process was at an initial stage. Motivations
for the adoption were to make software deployments faster and more frequent
and to share knowledge between development and operations.

Table 1. Publications selected in the literature review

Topic n Author and Year

Literature review 1 Erich et al. [9]
DevOps guidelines 5 Hüttermann [14], Sacks [22], Swartout [24], Walls [26],

Harvey [11]
DevOps success story 3 Cukier [5], Feitelson et al. [10], Yuhong et al. [30]
Explaining DevOps 11 DeGrandis [7], Humble and Molesky [13], Limoncelli and

Hughes [15], Loukides [16], Bang et al. [2], Roche [21],
Davis [6], Economou et al. [8], Preimesberger [17], Taft
[25], Wettinger et al. [28]

Specific practice(s) 7 Azoff [1], Hosono and Shimomura [12], Spinellis [23],
Wettinger [27], Ragan [20], Borgenholt et al. [3], Bru-
neo et al. [4]

DevOps: A Definition and Perceived Adoption Impediments 169

A total of 13 experienced employees were selected by the company so they
would represent different work areas, e.g. development, quality assurance, oper-
ations, and management. Their familiarity with DevOps prior to the interviews
varied from understanding the basics of the concept to having previous profes-
sional experience of successfully adopting DevOps.

The interviews were conducted at the end of May 2014. Before the inter-
views, the participants were informed about the study, that the interviews will
be recorded and that the answers will be handled anonymously. The interviews
lasted roughly 45 minutes on average. An interview guide containing a broad
field of questions was used. Many of the questions were open and the inter-
view guide was not strictly followed. The recordings of the interviews were tran-
scribed. Based on the transcriptions, the researchers individually identified what
was perceived as challenges for adopting DevOps. The individual lists were then
compared, discussed and merged into our final list of impediments.

3 What Is DevOps?

The retrieved DevOps literature clearly shows that providing a complete and
clear definition of the term is a challenge. The definitions provided in the liter-
ature are usually vague or limited to a certain context.

What is DevOps? by [16] is an example of how difficult it is to define DevOps.
Loukides tries to clarify the concept of DevOps by explaining the past and
current nature of the work of IT operations. He describes how the work of IT
operations has changed over the years and discusses challenges that IT operations
face today. However, no final definition of DevOps is provided.

Roche [21] notes that, among blog posts, there are two stances on what
DevOps means. Some bloggers support the notion of DevOps being a specific
job position that requires both software development and IT operations skills.
The other, opposing, stance is that DevOps cannot be summarized into a job
description and that it is not a specific role. When browsing the current literature
on DevOps, the second stance seems to be dominating. Hüttermann [14] is among
those who strongly support the view of DevOps being more than a new job title
and that you cannot hire a “DevOp”. Hütterman also claims that the same
applies not only on an individual scale, but also on an organizational scale:
DevOps cannot be a department or a unit in the organizational structure.

Before listing what DevOps is not, Hütterman stresses the difficulty is to
define DevOps and mentions that the term is multifaceted. He mentions four key
aspects of DevOps described in a blog post by Willis [29]: culture, automation,
measurement and sharing. Willis’ blog post is also referred to in other studies
(e.g. [2,13]) that use these four aspects as the defining characteristics of DevOps.
Hütterman also states that “DevOps describes practices that streamline the
software delivery process, emphasizing the learning by streaming feedback from
production to development and improving the cycle time” [14]. This definition
is, however, incomplete, since cultural aspects of DevOps are not mentioned, and
it does not describe the actual DevOps practices.

170 J. Smeds et al.

DeGrandis [7] implies that adopting DevOps is an organizational revolution:
“The ’revolution in the making’ is a shift from a focus on separate departments
working independently to an organization-wide collaboration – a ’systems think-
ing’ approach.” However, DevOps as such cannot be defined as a revolution, in
the sense of a disruptive change, since it is a way of working. Adopting DevOps
may still require a disruptive change in an organization.

Walls [26] looks at DevOps from a cultural perspective and states that
DevOps is a “cultural movement combined with a number of software related
practices that enable rapid development.” Later in the book, Walls [26] describes
the DevOps culture with the following four “key cultural characteristics”: open
communication, incentive and responsibility alignment, respect, and trust. He
continues by describing how to reach the so-called DevOps culture. According
to him, the term was introduced to define a desired culture that organizations
can aim for. He presumes that the culture of an organization can be changed
towards a target culture intentionally by following a set of steps. Walls [26] also
notes that only the term itself is new, DevOps has been around before the term
existed. The fact that only the term itself is new could be a reason for the
different interpretations and vague definitions.

In our opinion, most of the existing literature focuses on the novel or differen-
tiating aspects of DevOps. Cultural aspects of DevOps seem of key importance,
but they cannot be defining aspects by themselves, since concepts such as open
communication, respect, and trust can be applied to any kind of organization
with people of different background or skills meet. Because of this, we feel that
a definition of DevOps should not only be based on its cultural aspects but it
should also include the engineering practices influenced by these cultural aspects.

3.1 DevOps Capabilities and Enablers

We define DevOps as a set of engineering process capabilities supported by cer-
tain cultural and technological enablers. Capabilities define processes that an
organization should be able to carry out, while the enablers allow a fluent, flex-
ible, and efficient way of working. Adopting DevOps in an organization requires
an integration of the three core aspects of DevOps listed in Table 2.

The DevOps capabilities include the basic activities in software and service
engineering: planning, development, testing, and deployment. These activities
should be carried out continuously using feedback from the other activities.

In this context, the term continuously means in small increments and without
delay. For example, the continuous deployment capability allows an organization
to deploy new features in a service as soon as they have been integrated and
tested successfully. For doing this efficiently, an organization should have auto-
mated its testing and deployment tool chain and streamlined the collaboration
between the engineers creating new software releases and those deploying them.

According to DevOps, feedback is understood as using data collected from
operating the service as input in the planning and development. The feedback
data contains data on performance of the service infrastructure, and data on
how and when the users interact with the service. This data collection is covered

DevOps: A Definition and Perceived Adoption Impediments 171

Table 2. DevOps Capabilities and Enablers

Capabilities

Continuous planning
Collaborative and continuous development
Continuous integration and testing
Continuous release and deployment
Continuous infrastructure monitoring and optimization
Continuous user behavior monitoring and feedback
Service failure recovery without delay

Cultural Enablers

Shared goals, definition of success, incentives
Shared ways of working, responsibility, collective ownership
Shared values, respect and trust
Constant, effortless communication
Continuous experimentation and learning

Technological Enablers

Build automation
Test automation
Deployment automation
Monitoring automation
Recovery automation
Infrastructure automation
Configuration management for code and infrastructure

by the two capabilities of infrastructure monitoring and user behavior monitor-
ing, which traditionally might not be considered within software development.
These two capabilities provide feedback loops for the planning and development
processes to improve and optimize the service. These feedback loops allow for
true experimentation within the engineering process.

Finally, a DevOps organization should have the capability to recover from
service failures without delay. Service failures can be caused by the service infras-
tructure or by software defects. The organization should have the necessary mon-
itoring infrastructure to detect these failures immediately and there should be
contingency plans for reacting to the failures.

The cultural enablers list traits that DevOps teams should exhibit. These
behaviors will contribute to the DevOps-capabilities in a positive way. The cul-
tural enablers mainly emphasize the need for extensive collaboration, a support-
ive working environment, a climate for learning, and awareness of the common
goals among all teams and engineers. Accordingly, employees should work as a
team of teams on the different work items while sharing responsibilities, com-
municating effortlessly, and being aware of both the entire software development
system and the common goal of all teams. Blaming others for failures, showing
disrespect towards fellow employees, and considering only personal work per-
formance are examples of behaviors that contribute negatively to the DevOps
model. Innovation is promoted by allowing both teams and individuals to exper-
iment and learn from their successes and accept failures as a learning experience.

The technological enablers stress the need for automating tasks. As discussed
in [19], automation does not only decrease the amount of errors in the system,

172 J. Smeds et al.

but shifts the focus of the employees from manual error-prone repetitive tasks
to creative and productive tasks. Automation additionally facilitates continu-
ous delivery, especially when having automated infrastructure and configuration
management, where custom programs or scripts configure and monitor the ser-
vice infrastructure. Automation supports the DevOps-capabilities by making
the software and service development process more streamlined and stable while
allowing employees to be innovative and productive.

When comparing the three DevOps aspects, the capabilities can be seen as
the main DevOps aspects. However, DevOps will only work efficiently when these
capabilities are supported by the cultural and technological enablers. Establishing
the technological enablers within an organization is a matter of tool choice,
tool configuration, and tool design. Establishing the cultural enablers is a slow
process, partially because people need time to adjust to changes, and partially
because time and resources are needed for improvement work [19].

4 Impediments Hindering DevOps Adoption

Organizations adopting DevOps should enact the previously described capabil-
ities in their engineering units. This is achieved by ensuring that the named
cultural and technological enablers are in place. Adopting DevOps may not be
trivial for large organizations with complex service requirements. Therefore, we
have studied impediments, which can complicate the adoption of DevOps from
the perspective of capabilities, cultural enablers, and technological enablers. As
the list of impediments is based on an interview corpus collected at a single
organization, it cannot be considered to be complete nor to apply to all types
of organizations. Still, we believe that a study of the impediments found in
an actual organization may help other organizations to plan a future adoption
of DevOps. We emphasize that the impediments listed below are our analy-
sis of concerns as perceived by the employees. We also emphasize that while
some of the issues might not be real in the organization, if perceived as prob-
lematic, they will still negatively affect the adoption of DevOps.

4.1 Impediments Affecting Capabilities.

Unclear definition and Goals of Adopting DevOps As previously dis-
cussed, there is a need for a clear definition of DevOps. Ambiguity can lead to
unclear goals and confusion in the direction of the DevOps adoption. If people
have different understandings of what DevOps means, the understandings of the
goals and of the actions needed to achieve these goals might also differ. Having
a common understanding of the goals and agreeing on how to achieve the goals
was mentioned during the interviews as essential contributors for a successful
adaption of DevOps.

Organizational Structure. Adopting DevOps can be affected, both nega-
tively and positively, by an organization’s structure. The way an organization is

DevOps: A Definition and Perceived Adoption Impediments 173

structured was mentioned, for example when discussing communication, common
goals and practices, decision making, and systems thinking within the organiza-
tion. These topics are closely related to several of the capabilities and the cultural
enablers.

Customers May Not Want DevOps. DevOps may not be suitable for all
customers. Customers might, for example, require processes and practices includ-
ing long testing periods or strict deployment procedures. Such processes and
practices might in turn not be compatible with the processes and practices of
DevOps. DevOps must be implemented in a manner that is compatible with the
customers’ processes and practices.

4.2 Impediments Affecting Cultural Enablers

Geographical Distribution. Geographical distribution of operations and devel-
opment work was mentioned during the interviews. Geographical distribution
can create challenges, for example, as communication cannot be done in person
and as reaching people might be difficult due to different time zones. Social rela-
tionships and the environment are fundamental aspects of organizational culture.
The cultural enablers, including not only communication but all other aspects
as well, can thus be hindered by geographical distribution. The geographical
distribution might also pose other, e.g. process related, challenges.

Buzzword Tiredness. When asking about how familiar DevOps is as a con-
cept, or how to define it, a majority of the respondents mentioned the ambiguity
of the term or something else regarding how the term is used. The lack of trust
in DevOps as a concept was notable in certain answers. Many perceived it as a
buzzword. As one person expressed it, what will be done in practice might actu-
ally not be that different from what was done before it was called DevOps. This
suggests that even if people perceive at least a part of the aspects of DevOps
as positive, the perception of DevOps as a concept is not always positive. A
negative perception of DevOps might lead to a mindset of resisting change.

DevOps is More Work for Developers. Developers becoming overburdened
by extra responsibilities related to operations was one of the most prominent
concerns expressed in the interviews. The reason behind this fear was a percep-
tion that the workload of the developers might increase as the company adopts
DevOps. Thus, the effort dedicated to pure development work would decrease,
unless development resources are added. Another perceived concern was that
added responsibilities related to operations would be intrusive and disrupt the
development work, i.e. the added responsibilities might affect the capacity to
focus and work productively. The concern of being overburdened and not as effi-
cient due to more work can result in unwillingness to get involved, for example,
in new collaborations and collective ownership. The concern might thus create
a mindset that can act primarily as an impediment to the cultural enablers.

174 J. Smeds et al.

DevOps Requires Both Dev and ops skills and knowledge. Some answers
in the interviews implies a concern of DevOps requiring development to have in-
depth knowledge and skills of operations and vice versa. It was argued that
people are not able to handle efficiently both development and operations as the
areas differ so much in terms of skills and knowledge. Regarding what kind of
new competence is needed on the development side, the examples include skills
and knowledge regarding deployment of the different production environments.
For the operations side, it was mentioned, for example, that the programming
competence, not only limited to writing code, but also including knowledge of
the development process, code reviewing etc., should be improved. The opinion
that in-depth knowledge of both areas is needed and that it is better to focus
on a narrower area of expertise can create a mindset where people are not open
for the cultural traits of sharing, communicating, and collaborating.

Lack of interest in the “other side”. The interviews also revealed concerns
regarding the developers interest in operations work and vice versa. It was ques-
tioned whether the developers care about the operations work and vice versa.
Especially the cultural aspects of DevOps rely on some level of interest in what
other teams do. The reason behind this feeling of lacking interest in the other
type of work was also discussed. It was explained that experts, by their own
nature, are people who are interested only in their own area. It was also specu-
lated if DevOps might be hindered by people feeling that doing DevOps means
that you do not fully belong to a group, neither development, nor operations.

4.3 Impediments Affecting Technological Enablers

Monolithic architecture. The architecture of the system is closely coupled
with how the system is developed, tested, and deployed for use. A monolithic
architecture can be a bottleneck to rapid continuous build, test, and deployment.
Transforming the architecture or improving the capability of the continuous
deployment system is needed to overcome this impediment. It was mentioned
during the interviews that a more modularized architecture allows for upgrading
smaller parts of the system independently and, for example, shorter wait times
for build, test, and deployment results. As the interviews suggest, overcoming
this impediment can be particularly challenging if the value of such technical
change is not evident. Without clear value in architectural improvements, these
are easily postponed, for example, in favor of work on new software features.

Development and testing environments do not reflect production envi-
ronments. Some interviewees perceived differences between development,
testing, and production environments as a possible impediment. Difficulty to
simulate production environments in testing environments create a risk that
software is not properly validated before it is deployed to production. Differ-
ences between development, testing, and production environments can be prob-
lematic not only for continuous delivery and deployment, but also for sharing

DevOps: A Definition and Perceived Adoption Impediments 175

responsibilities. It was for example mentioned that if the development and test
environments do not correspond to production, developers, who are accustomed
to use the development and test environments, might face difficulty when in con-
tact with production environments. This is mainly a potential impediment for
technological enablers. However, as the differences also could complicate collab-
oration and having shared ways of working, this is also an impediment for the
capabilities and cultural enablers.

Multiple production environments. Based on the perception of some of the
interviewed people, multiple production environments and differences between
them could be a possible impediment for continuous delivery. Different needs of
environments cause complexity. Automating and having common tools and pro-
cesses becomes challenging. Even different access rights can cause issues. In the
interviews, it was for example stated that when fixing production problems, it is
essential to have free enough access. The main perceived difficulties that multiple
production environments cause are related to deployments and configurations.
This is thus mainly an impediment for technological enablers. It was however
noted that issues grounded in technical complexity might also make people feel
limited in an unfair way, which in turn affect their mindset.

5 Conclusions

Despite the increased popularity of DevOps, what adopting DevOps means is
still unclear. This article aims to clarify the concept and to provide some insight
into what is perceived as impediments in the early stages of adopting DevOps.

To clarify the concept, the existing literature was first reviewed. Based on
the existing literature, the concept of DevOps was defined by a set of defining
characteristics. The characteristics were divided into three groups, capabilities,
cultural enablers, and technological enablers. The second goal was to provide
insight into what people perceive as impediments in the early stages of adopting
DevOps, and 13 employees of a software company were interviewed. Based on
the interviews, 11 potential impediments for adopting DevOps were identified.

We conclude that DevOps is a multifaceted concept and its definition still
requires attention of the research community. We further conclude that adopt-
ing DevOps is not perceived as trivial but it can require overcoming several
impediments. Analyzing which area impediments correlate to, shows that the
impediments are complex and tend to affect several parts of DevOps. This sup-
ports the notion of DevOps being a cohesive but multifaceted phenomenon.

This study only exposes perceived impediments for one company in the start-
ing stages of adopting DevOps. To fully understand and be able to make general-
izable conclusions about the impediments of adopting DevOps, further research
needs to include several organizations. Moreover, further research needs to be
done on the later stages of the adoption process.

176 J. Smeds et al.

Acknowledgements This work has been partially supported by the Digile Need
for Speed program and funded by Tekes, the Finnish Funding Agency for Tech-
nology and Innovation.

References

[1] Azoff, M.: Devops: Advances in release management and automation. Technical
report, Ovum (2011)

[2] Bang, S.K., Chung, S., Choh, Y., Dupuis, M.: A grounded theory analysis of
modern web applications: knowledge, skills, and abilities for devops. In: Proc. of
the 2nd Annual Conference on Research in Information Technology, RIIT 2013,
pp. 61–62. ACM, New York (2013)

[3] Borgenholt, G., Begnum, K., Engelstad, P.E.: Audition: a devops-oriented service
optimization and testing framework for cloud environments. Norsk informatikkon-
feranse (NIK) (2013, 2014)

[4] Bruneo, D., Fritz, T., Keidar-Barner, S., Leitner, P., Longo, F., Marquezan, C.,
Metzger, A., Pohl, K., Puliafito, A., Raz, D., et al.: Cloudwave: where adaptive
cloud management meets devops. In: Proc. of the Fourth Int. Workshop on Man-
agement of Cloud Systems (MoCS 2014) (2014)

[5] Cukier, D.: Devops patterns to scale web applications using cloud services. In:
Proc. of the 2013 Companion Publication for Conference on Systems, Program-
ming, & #38; Applications: Software for Humanity, SPLASH 2013, pp. 143–152.
ACM, New York (2013)

[6] Davis, M.A.: Devops. Informationweek 1384, 6–12 (2014)
[7] DeGrandis, D.: Devops: So you say you want a revolution? Cutter IT J. 24(8),

34–39 (2011)
[8] Economou, F., Hoblitt, J.C., Norris, P.: Your data is your dogfood: Devops in the

astronomical observatory (2014). arXiv preprint http://arxiv.org/abs/1407.6463
[9] Erich, F., Amrit, C., Daneva, M.: Cooperation between information system devel-

opment and operations: a literature review. In: Proc. of the 8th Int. Symp. on
Empirical Software Engineering and Measurement, ESEM 2014, pp. 69:1–69:1.
ACM, New York (2014)

[10] Feitelson, D.G., Frachtenberg, E., Beck, K.L.: Development and deployment at
facebook. IEEE Internet Computing 17(4), 0008–17 (2013)

[11] Harvey, N.: Devops talent: Grow it internally. Informationweek 1393, 7–8 (2014)
[12] Hosono, S., Shimomura, Y.: Application lifecycle kit for mass customization on

paas platforms. In: 2012 IEEE Eighth World Congress on Services (SERVICES),
pp. 397–398. IEEE (2012)

[13] Humble, J., Molesky, J.: Why enterprises must adopt devops to enable continuous
delivery. Cutter IT J. 24(8), 6–12 (2011)

[14] Hüttermann, M.: DevOps for Developers, vol. 1. Springer (2012)
[15] Limoncelli, T.A., Hughes, D.: Lisa11 themedevops: New challenges proven values.

Login 36(4), 46–48 (2011)
[16] Loukides, M.: What is DevOps? O’Reilly Media, Inc. (2012)
[17] Preimesberger, C.: 10 things you need to know about the hot devops trend. eWeek,

p. 1 (2014)
[18] Puppet Labs and IT Revolution Press. 2013 state of devops report (2013). https://

puppetlabs.com/wp-content/uploads/2013/03/2013-state-of-devops-report.pdf
(Accessed 28 August 2013)

http://arxiv.org/abs/1407.6463
https://puppetlabs.com/wp-content/uploads/2013/03/2013-state-of-devops-report.pdf
https://puppetlabs.com/wp-content/uploads/2013/03/2013-state-of-devops-report.pdf

DevOps: A Definition and Perceived Adoption Impediments 177

[19] Puppet Labs, IT Revolution Press, and Thoughtworks. 2014 state of devops report
(2014). http://puppetlabs.com/sites/default/files/2014-state-of-devops-report.
pdf (Accessed 28 August 2014)

[20] Ragan, T.: 21st-century devops-an end to the 20th-century practice of writing
static build and deploy scripts. Linux J., 2013(230), June 2013

[21] Roche, J.: Adopting devops practices in quality assurance. Communications of the
ACM 56(11), 38–43 (2013)

[22] Sacks, M.: Pro Website Development and Operations: Streamlining DevOps for
Large-scale Websites. Apress (2012)

[23] Spinellis, D.: Don’t install software by hand. IEEE Software 29(4), 86–87 (2012)
[24] Swartout, P.: Continuous Delivery and DevOps: A Quickstart Guide. Packt Pub-

lishing Ltd (2012)
[25] Taft, D.K.: Debunking the top myths about devops. eWeek, p. 3 (2014)
[26] Walls, M.: Building a DevOps Culture. O’Reilly Media, Inc. (2013)
[27] Wettinger, J.: Concepts for integrating devops methodologies with model-driven

cloud management based on TOSCA. Master’s thesis, U. of Stuttgart (2012)
[28] Wettinger, J., Breitenbücher, U., Leymann, F.: DevOpSlang – bridging the gap

between development and operations. In: Villari, M., Zimmermann, W., Lau, K.-K.
(eds.) ESOCC 2014. LNCS, vol. 8745, pp. 108–122. Springer, Heidelberg (2014)

[29] Willis, J.: What devops means to me, July 2010. http://www.getchef.com/blog/
2010/07/16/what-devops-means-to-me/ (Accessed 3 December 2014)

[30] Yuhong, L., Chengbo, L., Wei, L.: Integrated solution for timely delivery of cus-
tomer change requests: A case study of using devops approach. Int. J. of U- &
E-Service. Science & Technology 7(2), 41–50 (2014)

http://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf
http://puppetlabs.com/sites/default/files/2014-state-of-devops-report.pdf
http://www.getchef.com/blog/2010/07/16/what-devops-means-to-me/
http://www.getchef.com/blog/2010/07/16/what-devops-means-to-me/

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 178–190, 2015.
DOI: 10.1007/978-3-319-18612-2_15

Scaling Kanban for Software Development in a Multisite
Organization: Challenges and Potential Solutions

Nirnaya Tripathi(), Pilar Rodríguez,
Muhammad Ovais Ahmad, and Markku Oivo

Department of Information Processing Science,
University of Oulu, P.O.Box 3000 FI-90014, Oulu, Finland

{nirnaya.tripathi,pilar.rodriguez,
muhammad.ahmad,markku.oivo}@oulu.fi

Abstract. In software development organizations, large-scale distributed
projects pose many challenges, such as hierarchical requirements, large team
size, and managing workflow. Agile methods, like Scrum, seem to have limita-
tions in addressing those issues. Kanban offers an interesting alternative in this
concern by setting work-in-progress (WIP) limits to manage flow and establish-
ing visibility of requirements using a visual signaling system. However, only
few empirical studies have investigated scaling Kanban for large organizations.
To address this concern, a case study was conducted in a large multisite compa-
ny to identify the challenges and possible solutions in scaling Kanban. During
the study, defining WIP limits, coordinating with distributed teams, and divid-
ing features between teams were found as major challenges. Setting WIP limits
by common agreement between teams and visualizing product backlogs and
teams on electronic board, with teams pulling features from the board, were
found as possible solutions for overcoming the mentioned challenges.

Keywords: Software engineering · Large-scale scrum · Scaling kanban ·
Multisite software development

1 Introduction

The competition among companies in the high technology market is fierce. To gain a
competitive edge, companies have made customer satisfaction their major goal and
aim at achieving this goal by introducing new products and services [1, 2]. The globa-
lization of the software industry has influenced software companies to develop soft-
ware in a multisite environment to reduce costs and increase productivity [3]. For a
multisite environment, companies have established several software development
organizations in numerous geographical locations [4]. Within these organizations,
research and development activities occur to create new product features among de-
velopment teams. To improve team performance and increase customer interaction in
development activities, agile methods such as Scrum and XP have been introduced
[5–7]. Scrum, which has a positive impact on single team performance [8] and small
projects, has been considered for large-scale projects to gain its advantages [9]. How-
ever, scaling Scrum in an organization in a multisite environment is a challenge

 Scaling Kanban for Software Development in a Multisite Organization 179

[10–12]. One barrier perceived during scaling Scrum is to manage dependencies be-
tween projects and teams [13]. In addition, collaboration and communication between
product owners and development teams become increasingly challenging once a
project begins to expand [10]. Thus, some authors have claimed that agile methods
are not enough for large-scale development [14].

More recently, Lean thinking has appeared as a means to scale agile software de-
velopment [15]. Lean thinking can help to bring the flow and pull principles, which
are missing in agile methods [14]. One way to incorporate Lean thinking is through
the use of Kanban [16]. The application of Kanban in software development projects
has been proposed by previous studies [17]. For example, Anderson (2010) suggested
the scaling of Kanban in large-scale projects to facilitate positive cultural changes in
the organization and address the challenges faced during large-scale projects. Kniberg
demonstrated the application of Kanban at the organizational level with three devel-
opment teams in a co-located environment [18]. However, empirical evidence on
scaling Kanban to an organizational level with operations in a multisite environment
is limited [19]. There are some empirical studies conducted on Kanban software de-
velopment projects [19, 20], but just few work in a large-scale context [12, 21].

With this paper, we aim to fill the above research gap by presenting an exploratory
case study of using Kanban in a multisite environment of a large company. Our re-
search goal is to explore the challenges faced when Kanban is scaled in a multisite
organization and possible solutions to these challenges. In this case study, we took
two software developing organizations of the same case company as units of analysis
to reach our research goal.

The remainder of this paper is structured as follows. Section 2 reviews the related
work on Lean thinking and scaling Kanban. Section 3 presents the research approach
and data analysis method. Section 4 provides the empirical results. We conclude the
paper in Section 5, briefly describing the limitations of our study and potential for
future research.

2 Background and Related Work

The concept of Lean thinking first emerged in the 1940s from Toyota’s car manufac-
turing process in Japan [22]. The basis of Lean focuses on the concepts of creating
value and eliminating waste in organizations [22]. To bring Lean thinking to an or-
ganization, five principles were proposed: value, value stream, flow, pull, and pursuit
of perfection [22]. In the context to software organization, Lean thinking can be intro-
duced through the use of the Kanban method [16]. In 2004, David J. Anderson [16]
introduced Kanban to a software development team at Microsoft. Kanban has five
core principles: visualize workflow, limit work in progress, measure and manage flow,
make process policies explicit, and use models to recognize improvement and oppor-
tunities [16]. The motivation to use Kanban was to visualize work, limit work in
progress (WIP), and identify process constraints to achieve flow and focus on a single
item at a given time [19]. Various studies [18–20, 23] have reported the benefits of
using Kanban in software development, for example, better visibility and understand-
ing of the entire process, improved transparency of work and communication, better

180 N. Tripathi et al.

control of flow and WIP, improved team communication and coordination with other
stakeholders, and increased customer satisfaction.

To tackle the issues posed by large-scale projects, Anderson (2010) suggested the
scaling of Kanban at the organizational level [16]. Few studies [18, 21] and a practi-
tioner blog [24] also discussed the concept of large-scale Kanban. Kniberg in his book
“Lean from the Trenches,” [18] discussed scaling Kanban in a large-scale organiza-
tion that had three development teams working in a collocated environment. Vallet
describes of using explicit process policies and electronic board in distributed context
[21]. However, although many companies are developing software products in mul-
tiple sites with distributed teams around the globe, the empirical evidence on scaling
Kanban in large organizations with operate in multisite software development envi-
ronments is very limited [19]. Therefore, this study aims to fill the above research gap
by empirically exploring the challenges in scaling of Kanban in multisite large organ-
izations, along with possible solutions.

3 Research Methodology

To address the research gap and reach our research goal, we define the following two
exploratory descriptive research questions (RQ) [25].

RQ1: What are the challenges in scaling Kanban in a multisite organization for
software development?

RQ2: What are the possible solutions to these challenges when scaling Kanban in
a multisite organization for software development?

Therefore we focus on the challenges in the scaling phase of Kanban and recognize
that the challenges may be different in organizations that have long experience in the
use of Kanban in large multisite organizations. To attain valid answers for the two
RQ’s, we took a constructivist approach by focusing on how experts make sense of
scaling Kanban rather than verifying theories. According to constructivist principles,
we prefer methods that collect rich qualitative data on human activities [25]. As our
study aims to explore and improve software development processes which usually
involve human involvement, the constructivist approach is an appropriate standpoint
for this study. Due to the nature of our research questions and constructivism as our
standpoint, we chose an exploratory case study method in order to collect empirical
evidence [26].

3.1 Case Study Design

Our context is multisite software development, and our research goal is to find chal-
lenges in scaling Kanban at multisite organizations while seeking possible solutions
for those challenges. Therefore, we used embedded, single-case study where we took
two software development organizations from the same company as two unit of anal-
ysis to reach our research goal [26, 27]. The case company under study offers prod-
ucts and services in the telecommunications sector. Most of the product development
projects contain software development in a distributed context.

 Scaling Kanban for Software Development in a Multisite Organization 181

Unit of Analysis 1 (Organization A): The organization selected for the first unit was
situated on site A, located in Northern Europe. It was a fairly large unit with around 50
people, containing five development teams and one area product owner. The product
management team of the case company, situated at other site, was giving product area
features to Organization A for development. For some features, teams within Organiza-
tion A needed to coordinate with team of another organization (situated at Site C located
in Western Europe) to develop features of the same product. Organization A was using
Kanban at a team level for six months. After six months, Organization A is now scaling
Kanban in their entire organization through training and coaching. Therefore, the first
unit is appropriate for providing information on RQ1.

Unit of Analysis 2 (Organization B): Organization B is using Kanban at the organi-
zational level for more than six months. Therefore, the Organization B was selected to
understand how they scaled Kanban at the organizational level and provides possible
solutions for the challenges found in the first unit. This organization was situated on
site B in Northern Europe. Organization B had approximately 60 people and was
comprised of six development teams and four area product owners working with a
team at site D located in India. Therefore, Organization B was performing software
development in a multisite environment and was appropriate for providing answer on
RQ2.

3.2 Data Collection

Data were collected using thematic, semi-structured interviews and carried out from
April to June 2012. These interviews were held face-to-face in English and were audio
recorded. An interview guide was designed for the data collection [28]. As the inter-
views proceeded, our interview guide evolved to gain maximum coverage and depth
for our study. For example, the guide for interviews in Organization B included ques-
tions based on challenges identified in Organization A. The interview guide can be
made available by the author upon request. In addition, we employed the key informant
technique for data collection, which is especially popular in social sciences [29].

Table 1. Details of interviews participants and duration

Interviewee
(code)

Interviewee(s) pro-
file

Software
engineering

experience (years)

Experience
in Kanban

(years)

Interview dura-
tion (minutes)

A1 Software Developer 8 1 55
A2 Scrum Master 8 1 51
A3 Software Developer 14 1 56

A4 Area Product owner 8 1 57
A5 Kanban Consultant 22 3 72
B1 Software Specialist 8 1 56
B2 Senior Manager 12 1 24

182 N. Tripathi et al.

Key informants act as a natural expert observer of their surroundings and are able
to provide deep insight into the concerned phenomena. The advantage of the key in-
formant technique is the ability to acquire good quality expert information within a
short period of time [29]. The authors and case company representatives discussed the
criteria for suitable key informants. Seven interviewees were selected using the guide-
lines of the key informant approach. All the interviewees were proficient in the theo-
retical and practical aspects of Kanban at the organizational level. A brief descriptions
of the interview participants and their roles are shown in Table 1. Participants A1–A5
are from Organization A and B1 and B2 represent Organization B.

3.3 Data Analysis

We used the constant comparison method, a classical theory developing technique used
to analyze qualitative data [28]. The constant comparison method was performed using
the software tool NVivo 10 to support the data analysis and synthesis. To code the data,
we used an integrated method where we employed deductive and inductive approaches.
In the deductive approach, we created pre-formed codes to reflect our research question
and the goal of our study. During the analyses of the interview transcripts, pieces of text
relevant to a particular pre-formed code were attached to it [28, 30]. In the inductive
approach, post-formed codes were generated during open coding and were attached to
specific portions of text from the transcript. The post-formed codes were constantly
compared with each other until common themes emerged [28, 30].

3.4 Validity Discussion

This section discusses validity in terms of construct, internal validity, external validi-
ty, and reliability as described by Runeson and Höst [27]. Construct validity deals
with taking the right measures to examine the phenomenon under study and taking
complete precaution during data collection so that collected data align with given
research questions. We designed our interview guide such that it focused on our re-
search objective. During interview selection, experienced people within the organiza-
tion were selected for interviews, keeping the following aspects in mind: knowledge
in Kanban, software development process, and experience in multisite environments.
In addition, we reviewed the interview guide along with a company representative in
order to ensure that questions would be properly understood by the participants. Inter-
nal validity focuses on how to establish a causal relationship and is mainly used for
explanatory and causal studies. As this study was of an exploratory nature, internal
validity was not considered.

External validity refers to the extent findings can be generalized outside the inves-
tigated cases. The results of this paper are limited to two units conducted at the same
company. However, for companies using similar large-scale framework in their soft-
ware developing organization, results from this study can be applicable and useful in
their context. Reliability is concerned on how data and the analysis depend on the
specific researchers. During the initial phase of this study, the first author created a
case study protocol as a means of rigorous preparation to conduct the case study.

 Scaling Kanban for Software Development in a Multisite Organization 183

Subsequently, the second and fourth authors reviewed the protocol. During data col-
lection, the first and second authors designed the interview guide to discover chal-
lenges and possible solutions in scaling Kanban from various viewpoints. The fourth
author audited and mentored the entire process. The summary of the findings were
sent to interviewee via emails, who then validated the content. The findings were
further reviewed by a company representative to validate the data found in both units.

4 Results

In this section, we first describe the context of our study. Next, we elaborate on the
challenges in scaling Kanban in multi-site large organizations and possible solutions.

4.1 Context Description

Organization A Description: The Company’s product management team specifies
feature to Organization A. These features are internally analyzed in Organization A
during a sprint planning meeting in the presence of the product owner and Scrum
masters. The features are divided into product area based on their functionality and
then put into an area backlog in the form of user stories. Larman and Vodde [9] sug-
gest using area product owners for large-scale Scrum, a practice adopted by Organiza-
tion A. The area product owner takes the user stories from the area backlog and gives
them to the teams to work on at the start of the sprint. The team analyze the user story
assigned by area product owner and then divides it into tasks. The teams visualize
their workflow on physical boards and apply WIP limits on tasks. The team performs
agile practices such as collective code ownership, pair programming, and test driven
development during the implementation. For some features, teams at Organization A
need to collaborate with team of another organization (situated at Site C located in
Western Europe). After the tasks related to the user story are completed, the team give
related demonstrations to other teams and the area product owner. After implementa-
tion, user stories are moved for system-level testing. Once the system-level testing is
completed, the entire feature or release is tested before the final release.

Organization B Description: Figure 1 illustrates Organization B’s workflow as visu-
alized through the electronic Kanban board. The electronic Kanban board is used
because it helps teams located at different sites (i.e., one at Site D, and the remaining
at Site B) to collaborate efficiently. The product management team assigns features to
Organization B. The features then move to Organization B where they are fine-tuned
by the teams during product owner meetings. During meeting features are split into
user stories that are sufficiently small. Each user story is then put into four different
area backlogs. The senior manager creates a new card for each swim lane, which was
created for each product area in the Order column on the electronic Kanban board.
The senior manager picks the user story from the area backlog and puts its informa-
tion on the card.

184 N. Tripathi et al.

Fig. 1. Organization B workfl
information from area backlog
ization workflow visualized in
Development column.

In this electronic Kanban
one for each of the differe
product backlog, which is d
owners and the team repres
contains a description of th
backlog name, and the orde
area product owner, with h
very important, only that u
will signal the teams and t
and needs immediate atten
backlog (i.e., a maximum o
Order column at a given tim
are inserted in this column
team can pull a user story
member from a team can p
chosen and who chooses it
information on the cards in
user story, the name of the
the planned release, the nam
which it was ordered, and w

low. On the left hand side, senior manager picks up a user s
g, and displays it on Order column. On the right hand side, org
n seven columns in which WIP limit is applied only to Order

n board, the first column (Order) contains four swim lan
ent area product backlogs. WIP limit is set for each a
defined by a common agreement between the area prod
sentative. The information on the card in the area back
he user story, area product owner name, release date, a
er date. Cards in the area backlog can be prioritized by

high-value items placed at the top. If a certain user stor
user story is made visible in the area backlog. Doing
the organization that the user story is now very import
ntion. The WIP limit of four is noted on the area prod
of four user stories should be in each area backlog in
me). Next phase is the Development column. Seven tea
with their team’s name. Each team has 5-9 members. A
card from the first column (i.e., the Order column). A

pull the user story card from the Order column, but wha
t should be agreed upon beforehand within the team. T
n the Development column contains the description of
e team currently working on it, area product owner na
me of the area backlog from which it originated, the date
when the development started. A WIP limit of five is set

tory
gan-
and

nes,
area
duct
klog
area
the

y is
this
tant
duct
the

ams
Any
Any
at is
The
the

me,
e on
t on

 Scaling Kanban for Software Development in a Multisite Organization 185

the Development column, as defined by a common agreement between teams. In or-
der words, each team can pull a maximum of five user stories from any four different
area backlogs.

At the team level, once a user story card is pulled into the Development column
from an area backlog, a duplicate card is created on the development team task board
(physical Kanban board). Team members then analyze the user story and divides it
into tasks. Each member works on the task to prepare the user story. Once the user
story is ready and has reached the ‘Done’ column on the task board, demonstrations
with other teams and discussion with area product owners occur. During these discus-
sions, if the area product owner agrees on a user story, the same user story currently
in the Development column on the organizational electronic Kanban board is pushed
to the Approved column. The next column is Customer Documentation, which is
prepared by separate persons. These people pull the card from the Approved column,
and once the customer documentation is created and completed, the card is pushed to
the Order Stabilization column.

During stabilization iteration, the cards present in the Order Stabilization column
are stabilized (i.e., that features are integrated and verified as a whole). After custom-
er documentation and order stabilization, the cards pass through the Testing column at
the point where a prerelease testing phase is done by the organization just before re-
leasing the features to the customer. Finally, the cards reach the Release phase. For
measuring the flow, average lead time is used at the organizational level. The organi-
zation works in two iteration phases: development and stabilization or testing and had
three releases per year.

4.2 Challenges in Scaling Kanban and Possible Solutions

This section describes in detail the top five challenges most frequently mentioned
during the interviews and presents possible solutions. A complete list of challenges
and possible solutions with their reference are shown in Table 2.

Challenge 1: Distributed Teams: The first challenge relates to different product area
teams located at various geographical sites. As an area product owner (A4) describes:

“I think that it's quite difficult to, at least in our program, to expand this Kanban from the
level that we are now [currently at team level]. So, in our system component, we are, all the
teams are using Kanban. So, basically you could say that in our system component, we are
using Kanban. But to expand that to the next level, I think it might be difficult. Well, for in-
stance, because all the system components are located in different sites. So that makes it diffi-
cult . . .”

The first challenge is connected to Visualize and Manage Workflow. In a large
multisite organization, some program features are so big that they need to be split and
distributed to various product areas situated at different sites (such as in this case,
Northern Europe, Western Europe, and India). Therefore, teams within Organization
A must coordinate with other site teams to develop such features. Thus, visualizing
this type of interface on a Kanban board and managing it in a multisite context would
be a challenge. An electronic board can be useful in this case because you can visual-
ize the other site teams on the electronic Kanban board through swim lanes. This way,
multisite teams working on common features can see each other work.

186 N. Tripathi et al.

Table 2. List of challenges and possible solutions with their source

No Challenge Source Possible solution Source

1 Distributed teams: Product area

teams located in different sites

A4, A2 Electronic Kanban board with team specific

swim lanes can be useful in this case.

B1

2 Feature division: distribution of

features across development

teams

A4,

A2, A3

Product owner team decides the allocation

of prioritized features. Those prioritized

features can be displayed on the Kanban

board for the teams to pull work items.

B2, B1

3 Defining WIP limits: the setting

of WIP limits for development

teams

A2, Estimate by common agreement between

development teams must be provided

during the initial phase of defining WIP

limits.

B1

4 Large features may obstruct the

flow for small features on the

Kanban board

A5 The target size of one feature and the ex-

pected duration of implementation by an

average team should be clearly communi-

cated.

B2

5 Product management pushes too

many features to the team. If

there is a WIP limit based on their

perspective, they might force

more work

A4 Limit the number of features coming into

the product backlog. This limit should be

set by the product owners and development

team representative.

B1

6 Teams’ visualization: difficult for

a team to know what other teams

are doing in the organization

A1

Use the electronic Kanban board to create

different swim lanes in the Development

column for the teams. This way, each team

can see the other team’s work.

B1

7 Feature preparation: the prepar-

ing of features before forwarding

them to teams in the organization

A4 The product owner team should fine-tune

the features, and upcoming features should

be visualized on the Kanban board for

teams to pull.

B2, B1

8 Loss of details of team-level

work: a possibility when using the

organizational Kanban board

A4 At the organizational level, provide basic

requirements (i.e., what is expected from

the team).

B2

9 Business pressure: pressure to get

the release ready can cause

people to overlook the specified

limits

A5 Product management or program manage-

ment must conform to the WIP limit.

B2

10 Fixed limit regarding feature

size: large features require small

WIP limits, and the small features

require larger WIP limits, thus, it

is difficult to set a fixed limit

A4 A common goal regarding the average

implementation time of the feature should

be agreed upon.

B2

 Scaling Kanban for Software Development in a Multisite Organization 187

Challenge 2: Feature Division Across Development Teams: The second challenge
is how the product owner team divides work among development teams. An area
product owner (A4) adds:

“Well, of course there would be a kind of second layer, now that this quick Kanban process,
they would somehow still have to give the tasks to these separate teams, right, so there's a kind
of extra layer. Because, I think that now that phase is me, I'm dividing this work for these
teams, but I guess it could work, it should just be decided that how this bigger team [product
owner team] divides this work between the smaller Kanban team.”

This challenge is also related to Visualize Workflow and Manage Flow. The fea-
tures need to be distributed or given to teams for development. Visualizing how the
feature division on a Kanban board could be done and continuously managing it with
teams would be a challenge. This division problem can be resolved by visualizing
product areas and teams on the Kanban board. Then, from the board, teams can pull
the features for development. As a software specialist (B1) remarks:

”Is that even needed? Divided equally to the teams. I don’t see that’s even needed. Teams
take that amount what they are able to take and what is kind of, what fits to that. . . . I think it
comes, everything comes from the team. It should be pull instead of push.”

Challenge 3: Defining WIP Limits for Development Teams: The third challenge is
with defining WIP limits for development teams at organization level. The challenge
is related to Limit WIP. As a Software Developer (A3) states:

“I’m sure there would be some problems to.. When we scale up, there might be some prob-
lems with defining the work in progress limits. When you scale up, it takes some time to find the
correct working practices to get the most out of the teams.”

The challenge with defining WIP limit can be resolved by selecting an initial esti-
mate on the basis of a common agreement between development teams. This way a
suitable limit can be applied across development teams in the organization.

Challenge 4: Large Features May Obstruct the Flow: Another challenge identified
in the first unit is if the features are too big, they will not move across the Kanban
board. As a consultant (A5) from the first unit adds:

“Challenges in visualizing? Well, challenges are that, well, as I said, if there’s too much
things going on, it really doesn’t tell how things are going. And if the features are, or sub-
features are too big, then there’s nothing moving.”

The possible reason for this challenge is that organizations usually develop large
features, which may require several teams to complete. If this type of feature is visua-
lized on the Kanban board, it is possible that other features may be queued for devel-
opment. Such large features may obstruct the flow of other features on the board. To
resolve this challenge, the target size of features must be clearly communicated (i.e.,
how long will it take to implement a large feature by an average team). The target size
will enable the optimum splitting of a large feature into feasible user stories. These
feasible user stories will not stay for long on the Kanban board. As a senior manager
(B2) commented:

“It should be communicated clearly what is the target size of one user story, how long it will
take to implement, by an average team. In our case, we are using the measurements of three

188 N. Tripathi et al.

weeks in average, how long it can take to be implemented. Then it’s only about the willingness
of the teams and the product owners to do the work with the splitting.”

Challenge 5: Product Management’s Perspective of WIP Limits: A challenge with
WIP limits emerges when product management team tries to force more features onto
a team through a higher limit than teams can afford. As an area product owner (A4)
describes:

“Well, the program is always trying to push more and more stuff for us, and if we have these
limits, they might try to force us to take more than what we would like to get. So there's always
this debate between the program and the teams, that we are trying to. They are trying to push a
lot of things to us and we are trying to not take all, everything at once.”

The possible factor causing this challenge is that if WIP limits are included on the
organizational Kanban board based on the program perspective, a large limit could be
indicated because the program wishes to give more features to teams than the teams
can afford to take at a single time. It will be difficult for teams to take a large number
of features when there are overly large WIP limits. This can be overcome by setting
and honoring WIP limits for each area’s backlogs and development teams. These
limits should be specified by common agreement of the product owner team and de-
velopment teams, not by the program. This way, appropriate limits can be applied.

5 Conclusion and Future Work

The research in this paper describes the scaling of Kanban in an organization involved
in multisite software development. Various challenges, along with possible solutions,
were identified when scaling Kanban within an organization. For a multisite environ-
ment, an electronic Kanban board appears to be a must for an organization to smooth-
ly plan and execute software development. In addition, WIP limits can be set for
product area backlog and development teams by mutual agreement. An average lead
time would also be an appropriate metric to measure workflow at the organizational
level. The contribution of this paper gives a description of challenges and possible
solutions in scaling Kanban to a large distributed software developing organization.
We hope the knowledge gained in this research could be useful for other organiza-
tions planning to scale Kanban in their environment. One of the limitations of this
study was that most of the interviewees only have one year of experience with Kan-
ban, which is very short. However, this is typical in any organization in the scaling
phase, especially when scaling from (team level) agile development to large scale
distributed Kanban.

Future Research. The results of this study are based on interviews conducted in two
large software developing organizations. Insights on challenges and possible solutions
identified when scaling Kanban should be validated in other organizations in future
research. It would be interesting to do further empirical research on this topic in a
situation with large amount of teams operating in a multisite environment to confirm
or reject our findings in even larger organizations.

 Scaling Kanban for Software Development in a Multisite Organization 189

Acknowledgments. We would like to thank the case company and the interviewees for the
opportunity to explore real-world transformation to large scale distributed Kanban. This re-
search is supported by ICT SHOK N4S (Need for speed) program financed by the Finnish
Funding Agency for Technology and Innovation (Tekes) and Digile OY.

References

1. Pleatsikas, C., Teece, D.: The analysis of market definition and market power in the
context of rapid innovation. Int. J. Ind. Organ. 19, 665–693 (2001)

2. Minderhoud, S., Fraser, P.: Shifting paradigms of product development in fast and dynam-
ic markets (2005)

3. Herbsleb, J.D., Moitra, D.: Global software development. IEEE Softw. 18, 16–20 (2001)
4. Gassmann, O., von Zedtwitz, M.: New concepts and trends in international R&D organiza-

tion (1999)
5. Schwaber, K., Beedle, M.: Agile Software Development with Scrum (2001)
6. Beck, K.: Embracing change with extreme programming. Computer (Long. Beach. Calif)

32, 70–77 (1999)
7. Rodríguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage in fin-

nish software industry. In: Proceedings of the ACM-IEEE International Symposium on
Empirical Software Engineering And Measurement - ESEM 2012, p. 139. ACM Press
(2012)

8. Rising, L., Janoff, N.S.: The Scrum software development process for small teams. IEEE
Softw. 17, (2000)

9. Larman, C., Vodde, B.: Practices for Scaling Lean & Agile Development: Large, Multisite,
and Offshore Product Development with Large-Scale Scrum. Pearson Education (2010)

10. Paasivaara, M., Lassenius, C.: Scaling Scrum in a Large Distributed Project. 2011 Int.
Symp. Empir. Softw. Eng. Meas, 363–367 (2011)

11. Schnitter, J., Mackert, O.: Large-Scale Agile Software Development at SAP AG.
Commun. Comput. Inf. Sci. 230, 209–220 (2011)

12. Sjøberg, D.I.K., Johnsen, A., Solberg, J.: Quantifying the effect of using Kanban versus
scrum: A case study. IEEE Softw. 29, 47–53 (2012)

13. Boehm, B., Turner, R.: Management challenges to implementing agile processes in tradi-
tional development organizations. Software, ieee. 22, 30–39 (2005)

14. Vilkki, Kati: When agile is not enough. In: Abrahamsson, Pekka, Oza, Nilay (eds.) LESS
2010. LNBIP, vol. 65, pp. 44–47. Springer, Heidelberg (2010)

15. Rodríguez, P., Mikkonen, K., Kuvaja, P., Oivo, M., Garbajosa, J.: Building lean thinking
in a telecom software development organization: strengths and challenges. In: Proceedings
of the 2013 International Conference on Software and System Process, pp. 98–107 (2013)

16. Anderson, D.J.: Kanban. Blue Hole Press (2010)
17. Hiranabe, K.: Kanban Applied to Software Development: from Agile to Lean.

http://www.infoq.com/articles/hiranabe-lean-agile-kanban
18. Kniberg, H.: Lean from the trenches: Managing large-scale projects with Kanban. Prag-

matic Bookshelf (2011)
19. Ahmad, M.O., Markkula, J., Oivo, M.: Kanban in Software Development: A Systematic

Literature Review (2013)
20. Ikonen, Marko: Leadership in Kanban software development projects: a quasi-controlled

experiment. In: Abrahamsson, Pekka, Oza, Nilay (eds.) LESS 2010. LNBIP, vol. 65,
pp. 85–98. Springer, Heidelberg (2010)

190 N. Tripathi et al.

21. Vallet, B.: Kanban at Scale – A Siemens Success Story. http://www.infoq.com/articles/
kanban-siemens-health-services

22. Womack, J.P., Jones, D.T.: Lean thinking: banish waste and create wealth in your corpora-
tion. Simon and Schuster (2010)

23. Ahmad, M.O., Markkula, J., Oivo, M., Kuvaja, P.: Usage of Kanban in software compa-
nies an empirical study on motivation, benefits and challenges. In: 9th International Confe-
rence on Software Engineering Advances (2014)

24. Klaus, L.: Scaling Kanban. http://www.klausleopold.com/2014/09/scaling-kanban.html
25. Easterbrook, S., Singer, J., Storey, M.-A., Damian, D.: Selecting empirical methods for

software engineering research. In: Shull, F., Singer, J., Sjøberg, D.K. (eds.) Guide to
Advanced Empirical Software Engineering, pp. 285–311. Springer, London (2008)

26. Yin, R.K.: Case Study Research: Design and Methods. Sage Publications (2009)
27. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in

software engineering. Empir. Softw. Eng. 14, 131–164 (2008)
28. Seaman, C.B.: Qualitative methods in empirical studies of software engineering. IEEE

Trans. Softw. Eng. 25 (1999)
29. Marshall, M.N.: The key informant technique. Fam. Pract. 13, 92–97 (1996)
30. Cruzes, D.S., Dyba, T.: Recommended Steps for Thematic Synthesis in Software

Engineering. 2011 Int. Symp. Empir. Softw. Eng. Meas, 275–284 (2011)

Short Papers

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 193–198, 2015.
DOI: 10.1007/978-3-319-18612-2_16

The Two Faces of Uncertainty: Threat vs Opportunity
Management in Agile Software Development

Denniz Dönmez() and Gudela Grote

Department of Management, Technology and Economics,
ETH Zurich, Weinbergstr. 56-58, 8092 Zurich, Switzerland

{ddonmez,ggrote}@ethz.ch

Abstract. Uncertainty is an inevitable fact of software development that can de-
termine success or failure of entire projects. Although often associated with risk
or threat, uncertainty bears much overlooked qualities regarding market oppor-
tunities. Adopting a conceptualization of uncertainty that includes both threat
and opportunity, we investigate different possibilities to manage the uncertain-
ties preceding the creation of novel ideas and innovation. In this qualitative
study, we empirically explore the concept of uncertainty beyond the focus on
requirement uncertainty that prevails in the literature and explicitly emphasize
its multidimensionality. We argue that the failure to distinguish between differ-
ent dimensions of uncertainty can lead to their inadequate management at high
cost. Our results show how teams exploit practices to manage different uncer-
tainties in order to mitigate threats while remaining open to opportunities. We
discuss the implications of our findings for product development teams as well
as for the design of supportive organizational structures.

Keywords: Uncertainty · Risk management · Threat · Opportunity management

1 Introduction

The ability to manage uncertainty determines the success or failure of projects, and
even entire companies, and has been established as a “core element” of performance
[14]. In the face of high software project failure rates, uncertainty is naturally asso-
ciated with risk and threats [16], whereas its qualities to enable business opportunities
and competitive advantage are oftentimes overlooked.

In this paper, we explore the management of uncertainty and its role for innovation
that may arise when teams deliberately do not strive to eliminate but rather work with
uncertainty. Our perspective acknowledges the dual nature of uncertainty [14] that
manifests in the possibility for positive and negative effects. On the one hand, no
economic profit exists in a world without uncertainty [13]. On the other hand, large
numbers of projects and even entire companies fail due to uncertainty [3] and, not
surprisingly, the decisions that determine the course and outcome of a project are
affected by uncertainty. From this paradox, the question arises how project teams can
find ways to use uncertainty to their benefit instead of falling victim to it.

194 D. Dönmez and G. Grote

2 Uncertainty as a Multidimensional Concept

Because the “manifold nature of uncertainty” [8] includes aspects as distinct as risk,
ambiguity, and equivocality, a number of scholars have put forward different defini-
tions, the core of which is incomplete information [4]. Although uncertainty may
seem similar to risk, scholars distinguish uncertainty from risk by acknowledging a
fundamental difference between both; risk can be estimated, whereas uncertainty
cannot [6]. A general definition establishes risk as the product of an event’s probabili-
ty multiplied by its impact [1], which theoretically is neither positive nor negative in
its consequence. Yet, in the literature risk is often approached from a threat perspec-
tive [18] in an attempt to put forward mechanisms for its mitigation.

As benefits result from exploiting the potential of uncertainty without exposing
oneself overly to it [5], a wider focus on uncertainty rather than risk [9] enhances
project management research by “providing an important difference in perspective,
including, but not limited to, an enhanced focus on opportunity management“ [18]. To
avoid confusion, we restrict the term ‘risk’, and use the terms ‘threat’ and ‘opportuni-
ty’ when referring to negative and positive outcomes, respectively, associated with
uncertainty. According to the New Oxford American Dictionary, opportunity is “a set
of circumstances that makes it possible to do something.” We use the term to refer to
any positive outcome associated with uncertainty that was not originally envisioned
but only discovered during project work. We use the term ‘threat’ for negative out-
comes that exist potentially, i.e. without certainty.

While there are different consequences of uncertainty, we must carefully study
their origin and account for implications that result from different dimensions of un-
certainty [2, 9]. In software development, such differences manifest in various forms.
For example, software developers are often unsure about the best way to solve a prob-
lem, because the problem may be ill-defined, or because of lacking experience regard-
ing the technology in use. In the literature the term task uncertainty is used when ac-
tors lack understanding of the problem or have insufficient information to complete a
task [17]. Task uncertainty in software development can, for example, be caused by a
lack of experience or knowledge concerning the technology in use [10].

Another source of uncertainty in development projects concerns the resources ne-
cessary to complete the work [15]. Resource uncertainty arises when the availability
of either human resources or infrastructure including, e.g., software licenses or test
user accounts, is unpredictable or unreliable.

A third and possibly the most prominent type of uncertainty in software develop-
ment is requirement uncertainty, which refers to incomplete information or ambiguity
regarding product functionality [12]. While investigations of requirement uncertainty
exist in large numbers, other types of uncertainty in software development have not
received similar attention. In order to remain wary of threats and opportunities at the
same time, software developers need to increase their ability to distinguish different
types of uncertainty and develop a portfolio of adequate approaches for their exploita-
tion.

 The Two Faces of Uncertainty: Threat vs Opportunity Management 195

3 Data Collection and Analysis

We applied qualitative methods to capture how agile software developers manage
different dimensions of uncertainty by conducting field observations, as well as 42
face-to-face interviews in 11 software development teams from five different compa-
nies in Switzerland. The interviews lasted between 20 and 90 minutes. All interviews
were audio recorded and transcribed as soon as possible. In each team, we inter-
viewed different functional roles, always including at least one person with manageri-
al tasks, and at least two team members with software development tasks.

During the interviews, we asked team members how their teams had dealt with dif-
ficult situations in the past and encouraged them to share examples for incidents that
had either positive or negative outcomes. Interview participants were informed about
our goal to investigate the management of uncertainties that are faced in software
development projects, and were subsequently asked about a number of situations in
which they or their teams experienced related problems or difficulties. During the
interviews, we could in some cases exploit information that we obtained during pre-
ceding interviews with different team members. This allowed us to triangulate data
collection with descriptions of incidents from different perspectives.

Data analysis was performed iteratively and incrementally in parallel to late stages
of the data collection. We let clues that we developed influence later interviews and
included additional interesting aspects as far as possible during the interviews. We
applied open coding until theoretical saturation was reached [11], after reading sever-
al times through the interview transcripts, and scanning for clues to our initial ques-
tions: How do teams deal with uncertainty, and how is information collected, ana-
lyzed, and systematically used to manage different uncertainties? To support the data
analysis we relied on a software tool, HyperResearch. After the initial coding, we
clustered similar codes and captured key ideas and concepts in memos in order to
structure our data and uncover underlying approaches to uncertainty management.
Finally, we verified our findings with the help of the study participants.

4 Results

Managing Task Uncertainty. Teams faced different situations in which insufficient
information was available regarding the solution to a problem, and consequently re-
garding the tasks necessary to be performed. Several approaches to acquiring clarity
included the use of so-called spikes (i.e., an investigative task), and the deliberate
exploration of several solutions. While keeping options open requires redundancy to
some extent, opportunities could be realized by selecting the most promising option
under more information. In order to maintain these qualities, teams relied extensively
on structures for knowledge sharing, e.g., in the form of regular internal workshops or
techniques such as pair programming.

Once tasks are established, their estimation becomes important. Teams usually per-
formed estimation meetings at the beginning of development iterations, but spent
considerable time re-estimating the tasks once new information became available
because estimations were often inaccurate in the beginning. To manage task uncer-

196 D. Dönmez and G. Grote

tainty, teams generally kept task sizes as small as possible, splitting single tasks where
possible, so that more precise estimates could be produced.

One team decided to split tasks and distribute them to separate sub-teams, making
changes to the design of the project setup. This turned into an opportunity spotted by
some of the developers: “we split our projects up into different projects […], and so
we found […] we can sell the [application programming interface], just the bare
bones technical thing as a second product.' The developers thought of something and
it turned into a product right away and we fond a customer [for it].” Here, due to an
opportunity arising from the separation of tasks, functionality that was originally in-
tended for internal use only was transformed into a separate product.

Managing Requirement Uncertainty. Typically taxing development processes,
requirement changes were met by teams with much acceptance under two conditions.
The first is that change requests be limited to the points in time between two devel-
opment iterations. The second condition demands that changes be buffered through
the use of a managed product backlog in which tasks are assigned priorities in order to
allow uninterrupted work during the development iterations. The use of short itera-
tions was seen as positive because it allowed for more frequent feedback, thus reduc-
ing uncertainty: “at some point we had like a change in the requirements, which was
pretty disruptive and we had to [repeat] the Sprint. This shouldn't happen of course.
[...] Having the shorter iterations helps you with doing that.”

Our data suggest that requirement uncertainty can be managed effectively through
the close integration of diverse stakeholders into the development process. Develop-
ment teams that engaged more frequently in communication with customers and sup-
pliers often reported reduced uncertainty regarding requirements. For example, one
developer remarked: “in the old style waterfall system, you get a screenshot, you im-
plement it, you don't understand it directly, you just do what's on the screenshot, and
afterwards the customer says 'Well, that's not what I like'.”

In our data, the most reported incidents of opportunities were related to newly aris-
ing business possibilities based on added functionality, for example as requested by
one client, which could be cross-sold to others. In one team for example, a new cus-
tomer’s feature request increased the value of an initially low priority feature. The
development of this feature turned out to be valuable also for several other existing
customers, increasing the product’s attractiveness beyond the expectations of the team
leader who now enjoyed an increased project budget. This example demonstrates the
importance of the possibility to delay decisions (suspend judgment until more info is
gathered). The flexibility to pursue emerging opportunities would have been excluded
had the project scope and product functionality be specified when the sprint began.

Many mechanisms for the management of requirement uncertainty were adopted
from the Scrum framework and complemented by communication practices of the
teams that instructed team members to strive for transparency of problems regardless
of their nature, and encouraged frequent feedback among all parties. A developer
commented: “you get a lot earlier feedback and can adapt […] and change.”

Managing Resource Uncertainty. Teams frequently experienced difficulties and
disruptions in their workflow due to unavailable input from stakeholders, e.g., when
input from suppliers or contractors was delayed or of insufficient quality so that re-

 The Two Faces of Uncertainty: Threat vs Opportunity Management 197

work became necessary. One team experienced the threat of developer idleness result-
ing especially from their dependency on database specialists within the company, who
repeatedly failed to supply the team. The lack of database support had threatened to
delay the project at several times. The team’s analysis of the issues revealed that no
single person from the database team was responsible for any request, but rather in-
coming requests were shared so that amendments to requests became problematic. It
was decided to approach the database department with a proposal to internalize one
database specialist into the development team, which not only solved the problem but
also led to the creation of a new business model inside the company; database special-
ists could henceforth be hired individually, which guaranteed that all of a team’s re-
quests would be processed by the same person. While this facilitated communication
and scotched errors arising from ill-understood support requests, it also helped to
eliminate a threat while creating an opportunity for the company (a new offering by
the database team).

Effective management of resource uncertainty requires considerable freedom to
explore solutions and tools that allow them to convince the customer to deviate from
an original plan, e.g., in order to pursue technical solutions that are easier or faster
available. One team explained to us their failure to convince a customer of such a
deviation after several team members had become convinced of an alternative’s supe-
riority, but the customer did not want to allocate resources to the issue until a proto-
type was produced (at the team’s own cost). A team member concluded that “some-
times it’s difficult to convince the customer if you can’t show them something.”

The examples reveal the importance of allocating resources flexibly in order to ex-
plore emerging opportunities and minimize threats at the same time. Uncertainty is
managed effectively when team structures can be modified flexibly in order to sup-
port external and internal collaboration.

5 Conclusion

We have detailed how a number of practices embedded in agile software development
support teams in the management of uncertainty that can either turn into threat or
opportunity. Our contribution distinguishes different dimensions of uncertainty linked
to tasks, requirements, and resources, and provides a neglected perspective on uncer-
tainty that includes negative as well as positive outcomes.

Our data show how both threat and opportunity are outcomes of ambiguous situa-
tions that have the potential to turn either way. Therefore, uncertainty must not be
eliminated too early during a project. Instead, threats and opportunities that are related
to different dimensions of uncertainty must be met by adequate mechanisms for their
management. For example, teams addressed task uncertainty by designing small work
packages that could be handled flexibly and measured with higher precision than
larger ones. This resulted in better control of threats, and in some cases in the emer-
gence of opportunities to create supplementary stand-alone product features. Re-
quirement uncertainty was approached by the inclusion of different stakeholders, such
as suppliers and customers based on frequent exchange in order to create and maintain
a goal-oriented production process. Allowing deliberate opportunities for changes at
specific points in time created possibilities to react to changing environments, and

198 D. Dönmez and G. Grote

permitted uninterrupted focus on output during development iterations. Resource
uncertainty was managed primarily by continuous activities of planning and re-
planning in order to match the supply and demand of work. This was supported by the
deliberate investment in redundant skills to some extent, which allowed teams to
avoid bottlenecks in the production process as well as improve the search for innova-
tive solutions.

One major difficulty for uncertainty management lies in distinguishing threats from
opportunities. While many actors who face this task chose to disengage from a syste-
matic approach to uncertainty management [7], our data underline the importance of
systematic collection of information in combination with the delay of decisions that
earns teams the possibility to prevent harm and allow benefit. One powerful approach
offered by agile software developers lies in the incremental collection of information
that turns uncertainty into probability and thus moves it closer to certainty. Despite
the complexity of the uncertainty concept that can deter academics and practitioners,
uncertainty management holds the potential to leverage large impacts on projects and
deserves increased attention.

References

1. Bannerman, P.L.: Risk and risk management in software projects: A reassessment. Journal
of Systems and Software (2008)

2. Bradley, R., Drechsler, M.: Types of Uncertainty. Erkenn. 79(6), 1225–1248 (2013)
3. Flyvbjerg, B., Budzier, A.: Why Your IT Project Might Be Riskier than You Think. Har-

vard Business Review (2011)
4. Grote, G.: Management of Uncertainty - Theory and Application in the Design of Systems

and Organizations. Springer, London (2009)
5. Holt, R.: Risk management: The talking cure. Organization. 11(2), 251–270 (2004)
6. Knight, F.H.: Risk, Uncertainty and Profit. University of Chicago Press, Chicago (1921)
7. Kutsch, E., et al.: Does risk matter? European Journal of Information Systems (2012)
8. Lipshitz, R., Strauss, O.: Coping with Uncertainty: A Naturalistic Decision-Making Analy-

sis. Organizational Behavior and Human Decision Processes (1997)
9. Madsen, S., Pries-Heje, J.: Conceptualizing Perceived Uncertainty in J. Pries-Heje (ed.)

Project Management Multiplicity. Samfundslitteratur, Frederiksberg (2012)
10. McLeod, L., Smith, D.: Managing IT Projects. Boyd and Fraser Publishing (1996)
11. Miles, M.B., et al.: Qualitative data analysis. Sage Publications, Thousand Oaks (2013)
12. Nidumolu, S.: Standardization, requirements uncertainty and software project perfor-

mance. Information & Management. 31, 135–150 (1996)
13. Penrose, E.T.: The Theory of the Growth of the Firm. Blackwell, Oxford (1959)
14. Perminova, O., et al.: Defining uncertainty in projects – a new perspective. International

Journal of Project Management. 26, 73–79 (2008)
15. Sakthivel, S.: Managing risk in offshore systems development. Communications of the

ACM. 50(4), 69–75 (2007)
16. Song, M., Montoya-Weiss, M.M.: The Effect of Perceived Technological Uncertainty on

Japanese New Product Development. AMJ 44(1), 61–80 (2001)
17. Thompson, J.D.: Organizations in Action. Transaction Publishers (1967)
18. Ward, S., Chapman, C.: Transforming project risk management into project uncertainty

management. International Journal of Project Management (2003)

Management Ambidexterity: A Clue
for Maturing in Agile Software Development

Rafaela Mantovani Fontana1,2(B), Victor Meyer Jr.1, Sheila Reinehr1,
and Andreia Malucelli1

1 Pontifical Catholic University of Paraná (PUCPR), R. Imaculada Conceição,
1155, 80215-901, Curitiba, PR, Brazil

rafaela.fontana@ufpr.br, victormeyerjr@gmail.com,

sheila.reinehr@pucpr.br, malu@ppgia.pucpr.br
2 Federal University of Paraná (UFPR), R. Dr. Alcides Vieira Arcoverde,

1225, 81520-260, Curitiba, PR, Brazil

Abstract. Organizational ambidexterity is the ability to be aligned and
efficient in combining current resources and demands (exploitation) as
well as adaptive and innovative due to changing conditions and demands
(exploration). Maturity in software development is defined over exploita-
tion – through processes definition and control. We argue in this study
that mature agile software development is also exploratory – adaptive
and innovative. Thus, our objective is to verify how ambidexterity occurs
in mature agile software development. The research approach is a single
case study with analysis of qualitative data. Our findings show how a
mature team is managed by ambidextrous strategies.

Keywords: Ambidexterity · Maturity · Agile software development

1 Introduction

Organizational ambidexterity represents an essential ability in organizations that
wish to prosper in high-velocity environments [1], and requires efficient man-
agement of current demands (exploitation) with simultaneous adaptation to a
changing environment (exploration) [2], [3].

Our previous work shows evidence that an exploitative focus on process def-
inition and control is not the means to mature in agile software development
[4];[5]. However, solely focusing on exploratory practices may lead to “too many
undeveloped new ideas and too little distinctive competence” [3, p. 71]). This
is the reason we argue mature agile software development management presents
ambidextrous abilities.

Our research question is therefore, the following: How does ambidexterity
occur in mature agile software development? The research approach is a single
case study with qualitative data collection and analysis. This study contributes
to the research by integrating organizational theory and agile software develop-
ment. For practitioners, our findings offer suggestions for strategic management
actions that support maturing in agile software development.
c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 199–204, 2015.
DOI: 10.1007/978-3-319-18612-2 17

200 R.M. Fontana et al.

This paper is organized as follows. Section 2 briefly presents the organiza-
tional ambidexterity concept. Section 3 describes the research approach. Section
4 presents the results and, finally, Section 5 discusses the findings and concludes
the paper.

2 Organizational Ambidexterity

The ability to simultaneously pursue exploitation and exploration [3, p. 71] has
currently been termed “organizational ambidexterity” [6]. Ambidextrous orga-
nizations are successful because they are aligned and efficient in their manage-
ment of current demands while simultaneously adaptive to environmental change
[2]. Alignment is characterized by the ability to maintain individuals working
towards the same goals and adaptability refers to the ability to quickly adjust
activities as a response to changes in the environment [7].

The challenge in describing ambidexterity is that organizations adopt idiosyn-
cratic implementation strategies to become ambidextrous [7]. Gibson and Birkin-
shaw [7], for example, have identified contextually ambidextrous behavior by
analyzing the ability of a business unit to be aligned and adaptable simulta-
neously. Tiwana [8] has identified ambidexterity in information flows among
individuals, which can be “strong ties” or “bridging ties”. Bridging ties lead to
diversity of accessible knowledge, while strong ties lead to knowledge integra-
tion. Tiwana has also characterized ambidexterity as a combination of formal
and informal (clan) controls [9].

Organizational ambidexterity is currently evolving as a research paradigm in
organizational theory [2], is recognized as an adequate approach to the uncer-
tainty of the software product market [10], and is verified in agile software devel-
opment teams [11];[12]. It is relevant, then, to investigate how ambidexterity is
accomplished in mature agile software development.

3 Research Design

The research question that drives this study is “How does ambidexterity occur in
mature agile software development?”. We chose the single case study as research
approach because it is an effective method to “understand the dynamics present
within single settings” [14, p. 534].

The unit of analysis was an agile software development firm. We selected a
Brazilian agile software development company, that developed and customizes a
product which is currently used by a single big customer. This case is specifically
interesting to study ambidexterity because company’s manager has more than
ten years of experience in managing agile teams (is one of the introducers of
agile methods in Brazil). The firm has forty-five employees.

Our data collection and analysis were conducted in October/November, 2014
and guided by the proposition: Management simultaneously combine formal and
clan mechanisms in mature agile software development.

Management Ambidexterity 201

To verify this proposition we applied a qualitative approach through inter-
views with three team members (a team leader, a functional analyst – named
“feature owner” –, and a developer). The protocol for data collection was based
on the study presented by Tiwana [9]. After the interviews had been conducted,
they were transcribed and analyzed using thematic networks analysis [13]. With
the objective to have descriptive statistics of the perception of maturity and
ambidexterity, we also collected quantitative data through a questionnaire. It
measured ambidexterity perception, based on [7] and [8], and maturity percep-
tion, based on [4].

The threats to validity in this study are internal and external. Internal valid-
ity is threatened by the interpretation of interviewees responses. To minimize
this threat, we presented the results for evaluation by the manager of the firm,
who did not participate in the interviews. The external validity is threatened by
the findings from the single case study. In this case, we did not pursue statistical
generalization, but analytical generalization instead [14].

4 Results

The measurement of maturity and ambidexterity showed that the majority of the
respondents have a perception that the company is mature and that the manage-
ment is ambidextrous. Twenty-one employees (46% of the total) responded the
questionnaire. On average, 84% of the respondents agree with the agile maturity
evidences in their work processes; 73% agree that management system encour-
ages people to challenge outmoded traditions, is flexible and responds quickly
to changes (exploration); and 95% agree that management works coherently to
support the overall objectives of the organization (exploitation).

The analysis of the interviews resulted in a number of evidences that rep-
resent observations of firm ambidextrous behavior. In summary, we identified
that ambidexterity is enabled by two main management strategies 1) exploiting
enough to add value to the customer and the team; and 2) processes automa-
tion and results visibility. To accomplish the first initiative, we observed that
management chases definition and execution (exploitation) in such a way that
added value is realized by the customer (outcomes and estimates) and the team
(definition of roles and estimates), but space is left for variety and discovery in
estimates, in the relationship with the customer and within team. For the sec-
ond initiative, we observed that management defined a few indicators concerning
the process, and discussions and solutions are left to emerge from the informal
interactions among team members.

Next subsections present the evidences for these management strategies.

4.1 Exploiting Enough to Add Value for the Customer
and for the Team

Deliberate loose estimates. Estimates at this company are based on past
data but are also deliberately loose: “... for example, nobody says that we have

202 R.M. Fontana et al.

four or five hours to finish a task. We classify tasks as small, medium or big.
There are some statistics that state the range of hours for small tasks, medium
tasks and big tasks.”(Developer, discussing loose estimates). Because deliveries
are fixed every week, there are always features being delivered to customer.
When required, long-term planning is made through milestones, leaving space
for flexibility in the activities for each milestone. We see here planning deriving
from the combination of exploitation, through long-term milestones planning and
estimates based on past data; and exploration from loose delivery dates, and
considering individuals’ experience on tasks classification.

Customer care through people and perceived outcomes. The cus-
tomer of this company is not significantly involved with the team, but the cus-
tomer feels supported by a focal point, the feature owner: “We work a lot with
the customer to define the requirements he needs.” (Feature owner, about help-
ing customer). The customer also receives weekly deliveries, which are validated
and formally accepted. In this relationship we see exploration evidenced by the
customer sensing that the team assists in the processes, and exploitation from
a defined process for deliveries, which provides the customer with a sense of
outcome as a result of the team’s work.

Team atmosphere is friendly and established. The atmosphere among
team members is pleasant. The team members do not typically perform over-
time and, if they must, the overtime is planned and communicated. Whenever
situations of concern occur in the team, the roles of the leaders able to assist
in problem solving or decision making is clear. The teams under each feature
owner are small, which facilitates informal communication and problem solving.
We see, then, exploration enabled through the close relationship between individ-
uals and exploitation facilitated by well-defined problem-solving roles.

4.2 Processes Automation and Status Visibility

Task work out with checkpoints and flexibility. This firm leads task
accomplishment with a high level of automation. Repetitive and time-consuming
development tasks are automated in an internally developed toolkit. Functional
tests and code integration are also automated. The status of the repository, the
tests suite, and other status in the environment are visible to the team through
a number of dashboards on monitors distributed around the rooms. At the same
time, tasks completion is flexible. Whenever problems occur with tasks execu-
tion, discussions for the solution are collective, and the decision to delay the task
is also collective. This extensive automation and status visibility aligns develop-
ers’ work with processes, leading to exploitation. The discussions concerning the
tasks and the status that is visible to all facilitate exploration in task work out.

Process enduring through people and automation. The team members
were highly involved in the definition of the process when the agile method was
adopted. With the current established, stable process, people are encouraged to
automate anything they consider may ease their work. The process is simple
with few manual steps (coding, reviewing and testing). Thus, we consider that

Management Ambidexterity 203

automation retain exploitation in the process, while discussions and freedom to
change guarantee exploration.

Communication arena based on status visibility and conversation.
All data concerning what needs to be done, what is being done, environment
and tests status is shown in real time for everyone. This high visibility and the
red indicators when something malfunctions stimulates people to discuss and
engage in problem solving. We find, then, that exploitation is derived from status
visibility and exploration from intense, informal, and close communication.

5 Discussion and Conclusions

This study aimed to identify how ambidexterity occurs in mature agile software
development. We have qualitatively shown, based on a single case study, the
management strategies used to allow ambidexterity in agile software develop-
ment.

The benefits of combining exploitation and exploration have already been
identified in agile software development. Boehm [15] emphasized the importance
of combining plan-driven and agile approaches. Baskerville et al. [16] previewed
the future of agility as the search for the dual objective of agility and align-
ment. These benefits and mechanisms have been empirically verified in globally
distributed software projects [17].

Ramesh et al. [18] identified a number of balanced practices where exploita-
tion and exploration (e.g., formal structures with flexibility, trust but verify
etc) were simultaneously applied in agile software development. However, the
research focus was on distributed development, which has an explicit need for
discipline [18]. Our study adds to their findings showing that even a collocated
team, when maturing, develops ambidextrous abilities – through deliberate man-
agement strategies – to maintain team work aligned and at the same time flexible
and responding to changes.

This study also addresses a concern of the companies in the adoption of
agile methods, which is the lack of managerial control [19]. We assume what
companies fear loss of control based on processes exploitation, which leads to
the search for stability. We demonstrated that management in agile methods
remains exploitative, but is also exploratory.

Our findings are limited by the context of the studied firm, but may serve as
a reference for practitioners that wish to improve management practices, and as
a subject for further replication and validation for researchers that are interested
in applying organizational theories to agile software development.

References

1. Tushman, M.L., O’Reilly III, C.A.: Ambidextrous organizations: Managing evolu-
tionary and revolutionary change. California Manag. Review 38, 8–30 (1996)

2. Raish, S., Birkinshaw, J.: Organizational Ambidexterity: Antecedents. Outcomes
and Moderators. J. Manag. 34, 375–409 (2008). doi:10.1177/0149206308316058

http://dx.doi.org/10.1177/0149206308316058

204 R.M. Fontana et al.

3. March, J.G.: Exploration and Exploitation in Organizational Learning. Organiz.
Sci. 2 (1991)

4. Fontana, R.M., Fontana, I.M., Garbuio, P.A.R., Reinehr, S., Malucelli, A.: People
over processes: how should agile software development be defined? J. Syst. Softw.
97, 140–155 (2014). doi:10.1016/j.jss.2014.07.030

5. Fontana, R.M., Reinehr, S., Malucelli, A.: Maturing in agile: what is it about?. In:
roceedings of the 15th International Conference, XP 2014, Rome, Italy, pp. 94–109,
26–30 May 2014. doi:10.1007/978-3-319-06862-6 7

6. Tuner, N., Swart, J., Maylor, H.: Mechanisms for Managing Ambidexterity: A
Review and Research Agenda. Int. J. Manag. Reviews 15, 317–332 (2013). doi:10.
1111/j.1468-2370.2012.00343.x

7. Gibson, C., Birkinshaw, J.: The antecedents, consequences, and mediating role
of organizational ambidexterity. Academy Manag. J. 47, 209–226 (2004). doi:10.
2307/20159573

8. Tiwana, A.: Do bridging ties complement strong ties? An empirical examination of
alliance ambidexterity. Strat. Mgmt. J. 29, 251–272 (2008). doi:10.1002/smj.666

9. Tiwana, A.: Systems Development Ambidexterity: Explaining the Complementary
and Substitutive Roles of Formal and Informal Controls. J. Manag. Inf. Syst. 27,
87–126 (2010). doi:10.2753/MIS0742-1222270203

10. Harris, M.L., Collins, R.W., Hevner, A.R.: Control of Flexible Software Develop-
ment Under Uncertainty. Inf. Syst. Research 20, 400–419 (2009). doi:10.1287/isre.
1090.0240

11. Vidgen, R., Wang, X.: Coevolving Systems and the Organization of Agile Software
Development. Inform Syst Res. 20, 355–376 (2009). doi:10.1287/isre.1090.0237

12. Boehm, B.; Turner, R.: Balancing agility and discipline: evaluating and integrat-
ing agile and plan-driven methods. In: Proceedings of the 26th International Con-
ference on Software Engineering, 23–28, 718–729 (2004). doi:10.1109/ICSE.2004.
1317503

13. Attride-Sterling, J.: Thematic networks: an analytic tool for qualitative research.
Qualitative Research 1, 385–405 (2001). doi:10.1177/146879410100100307

14. Eisenhardt, K.: Building Theories from Case Study Research. Academy Manag.
Review 14, 532–550 (1989). doi:http://www.jstor.org/stable/258557

15. Boehm, B.: Get ready for agile methods, with care. IEEE Comp. 35, 64–69 (2002).
doi:10.1109/2.976920

16. Baskerville, R., Pries-Heje, J., Madsen, S.: Post-agility: What follows a decade of
agility? Inf. Soft. Tech. 53, 543–555 (2011). doi:10.1016/j.infsof.2010.10.010

17. Lee, G., Delone, W., Espinosa, J.A.: Ambidextrous Coping Strategies in Globally
Distributed Software Development Projects: Strategies for enhancing flexibility and
rigor. Comm. ACM 49, 35–40 (2006). doi:10.1145/1164394.1164417

18. Ramesh, B., Mohan, K., Cao, L.: Ambidexterity in Agile Distributed Development:
An Empirical Investigation. Inf. Syst. Research 23, 323–339 (2012). doi:10.1287/
isre.1110.0351

19. Melo, C.O., Cruzes, D.S., Kon, F., Conradi, R.: Interpretative case studies on agile
team productivity and management. Inf. Soft. Tech. 55, 412–427 (2013). doi:10.
1016/j.infsof.2012.09.004

http://dx.doi.org/10.1016/j.jss.2014.07.030
http://dx.doi.org/10.1007/978-3-319-06862-6_7
http://dx.doi.org/10.1111/j.1468-2370.2012.00343.x
http://dx.doi.org/10.1111/j.1468-2370.2012.00343.x
http://dx.doi.org/10.2307/20159573
http://dx.doi.org/10.2307/20159573
http://dx.doi.org/10.1002/smj.666
http://dx.doi.org/10.2753/MIS0742-1222270203
http://dx.doi.org/10.1287/isre.1090.0240
http://dx.doi.org/10.1287/isre.1090.0240
http://dx.doi.org/10.1287/isre.1090.0237
http://dx.doi.org/10.1109/ICSE.2004.1317503
http://dx.doi.org/10.1109/ICSE.2004.1317503
http://dx.doi.org/10.1177/146879410100100307
http://dx.doi.org/http://www.jstor.org/stable/258557
http://dx.doi.org/10.1109/2.976920
http://dx.doi.org/10.1016/j.infsof.2010.10.010
http://dx.doi.org/10.1145/1164394.1164417
http://dx.doi.org/10.1287/isre.1110.0351
http://dx.doi.org/10.1287/isre.1110.0351
http://dx.doi.org/10.1016/j.infsof.2012.09.004
http://dx.doi.org/10.1016/j.infsof.2012.09.004

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 205–211, 2015.
DOI: 10.1007/978-3-319-18612-2_18

Towards Predictable B2B Customer Satisfaction
and Experience Management with Continuous

Improvement Assets and Rich Feedback

Petri Kettunen1(), Mikko Ämmälä2, and Jari Partanen2

1 Department of Computer Science, University of Helsinki,
P.O. Box 68 00014, Helsinki, Finland

petri.kettunen@cs.helsinki.fi
2 Elektrobit Wireless Communications Ltd, Tutkijantie 8 90590, Oulu, Finland

{mikko.ammala,jari.partanen}@elektrobit.com

Abstract. Modern high-performing software product development organizations
are nowadays more and more often transforming their operations towards conti-
nuous higher-level ends. In general, customer satisfaction (CS) is such a goal.
This paper presents an approach of gauging and improving customer satisfaction
in an industrial B2B product development project organization for continuous
customer experience (CX) management. In order to do that, the Customer Satis-
faction Index (CSI) used in the company was systematized with an applied im-
pact analysis technique. The resulting artifact (called CSI Impact Mapping Grid)
combines a set of satisfier improvement strategies derived from our initial work
with the GQM+Strategies method coupled with the company assets (capabilities)
and insights. It is furthermore aimed to be integrated with rich online measure-
ment inputs for real-time predictive feedback. Such transparency across the
whole organization enables employees to realize and insightfully support − even
proactively in real time − the various cause-effect relationships of the CS/CX.

Keywords: Customer satisfaction · Customer experience · Business-to-business
relationships · Performance indicators · Employee satisfaction

1 Introduction

In industrial business-to-business (B2B) product development projects customer satis-
faction (CS) may be considered even with individual customers in longer-term rela-
tionships as a leading indicator to actually manage the product development projects
to achieve the specific level of customer satisfaction with economical resource utiliza-
tion. Existing research lacks such approaches. The objective of this paper is to address
such a case in an industrial B2B R&D company. Elektrobit (later referred as the com-
pany), www.elektrobit.com, in the Wireless Business Segment offers products and
product platforms for defense and public safety markets as well as for industrial use.
The company has been measuring their project CS over the years with their in-house
defined CS index. In this design scientific, constructive work, we have equipped the
CS management and improvement by applying systems thinking methodologies fol-
lowing our initial studies with the GQM+Strategies method.

206 P. Kettunen et al.

2 Customer Satisfaction in Industrial B2B Relationships

Traditionally, customer satisfaction has been treated differently in consumer busi-
nesses (B2C) than in industrial B2B organizations [1]. In the former settings, the
product exchanges and interactions between the producers and customers are usually
transaction-based while in the latter cases they are based more on longer-term rela-
tionships. Consequently, the sources and criteria for customer satisfaction are often
more demanding in B2B when not only the actual product but also the delivery
projects (e.g., schedule adherence, changes, risks) matter. The producer company and
the customer cocreate value. The producer company may in turn engage in buyer-
supplier relationships with different degrees of inter-company interdependences.

There are no specific universal standard CS measures defined, and even less for
customer experience (CX) measurements. Some cues (e.g., # of customer incidents)
could be applicable both in B2C and B2B. However, in industrial B2B relationships
the customers are typically distinct companies with dedicated purchasing and project
roles and individuals [2]. It is then often possible to actually ascertain their specific
key satisfiers. There are available multiple general-purpose tools and scales, such as
Net Promoter Score (NPS) and Customer Experience Maturity Model (CXMM) [3].

In sum, we see research needs to understand throughout the B2B organization how
the CS is really judged and how each element affects it either directly or indirectly
and collaboratively. The CS measures can then be systematically incorporated into the
organizational performance management systems. Due to that, we take a holistic,
systems thinking view of the customer satisfaction although the primary interest allies
in the software development [4]. This work promotes transparency with continuous,
rich feedback including “soft” factors (e.g., employee insights).

3 Research Case and Approach

Our industrial B2B case company has a longish history in applying agile software
development and realizing Lean transformation. Overall, if predictability with the
product development could be improved, the company could achieve better match
with the satisfaction targets and therefore − ultimately − gain higher customer loyalty.

To begin with, we applied the GQM+Strategies [5]. In this paper, we continue and
expand that to the full set of the company-specific Customer Satisfaction Index (CSI).
The company has been measuring their project business feedback regularly over many
years with their CSI comprising Project Management (CSI1), Solution Development
(CSI2), Deliverables / Results / Quality (CSI3), and Motivation and Feeling (CSI4)
elements (altogether with some 20 items).

We proceeded with the following research strategy (see Fig. 1):

1. The initial GQM+Strategies process produced a large set of strategies, which could
directly be linked here to certain corresponding elements of the CSI goals (c.f.,
‘S1’). We proceeded by working systematically on the rest of the CSI items.

2. The company assets, resources, and competences (capabilities) were categorized
systematically and linked to the CSI items as satisfiers, and to the strategy elements
(e.g., ‘S1’) as realizations and improvements.

 Towards Predictable B2B Customer Satisfaction and Experience Management 207

The research approach here is to see the B2B customer satisfaction as the result of
the entire company project/product organization working as a system. Consequently,
our research method is to apply systems thinking (hard and soft) to understand and
improve it to develop an overall system for managing the customer satisfaction and
project experience as measured by the CSI elements [6]. The rationale is the multifa-
ceted nature of B2B CS in general, and the given compound composition of the com-
pany CSI in particular with the goal of improving overall customer satisfaction (c.f.,
‘G1’ in Fig. 1).

Company
Customer

Satisfaction Index
(CSI, 18 items)

CSI1.1
…

CSI1.5
Reaction to customer
feedback is/has been

fast.

CSI3.1
The schedule is/was

fulfilled well.

CSI4.3
…

CSI3.4
Change

management is/was
functional.

CSI3.2
The quality of

deliverables is/was
good.

Initial
GQM+Strategies grid
(partial)

the

Company
CAPABILITIES

(assets, resources,
competences)

PROCESSES,
ARTIFACTS
(End Product
Process, PM

Processes, Lessons

Auditing Survey Instruments …

Fig. 1. Research and development approach

208 P. Kettunen et al.

4 Results and Experiences

The main advancement of this research investigation stems from the insight that the
elements in Fig. 1 as a combination can be comprehended as a causal relationship
system like in Fig. 2. The target outcome of the system is managed overall customer
satisfaction and experience. This addresses the following research gaps (c.f., Sect. 2):
How to measure the customer satisfaction? What factors and capabilities impact it?

Considering the first question, in this research case we have reduced the problema-
cy by using the company-specific CSI as the measure. Furthermore, in order to esti-
mate the real-time degree of CS during the project, we realized to utilize also rich
employee insights as inputs. With respect to the second question, our key hindsight is
the point that if we know a priori, how the customer will be satisfied, we can actively
drive the project towards that CX goal. Many internal quality management activities
(e.g., process audits and enchanted delivery maturity reviews) already provide such
predictive indicators. Employee insights support them, too.

Fig. 2. Customer Satisfaction Index (CSI) Impact Mapping Grid system

Following that line of thinking, the CSI items (18) were analyzed as a system of
potential (positive / negative) impact relationships between the different items starting
from the project planning elements (CSI1) and ending with the deliverables (CSI3)
that the project develops (CSI2) for the customer (success paths). The learning and
motivational elements (CSI4) affect basically all those. The relations (hypotheses)
were proposed based on the prior company experiences and lessons learned. Although
all possible relationships between the elements1 cannot probably be proved, many
such intuitive connections can be assumed and confirmed in practice.

In addition to the CSI element impact interrelationships, each element has been
augmented with supporting capabilities and improvement strategies (c.f., Fig. 1). Key
developmental capabilities of the company were categorized based on the quality
improvement activities and lessons learnt.

1 Note that the total number of potential connections between 18 different items is huge.

 Towards Predictable B2B Customer Satisfaction and Experience Management 209

In sum, the resulting design artifact illustrated in Fig. 2 forms a knowledge base
what we call as the CSI Impact Mapping Grid. Currently it comprises the following
pieces of information (corresponding tags 1-7 in Fig. 2): 1. CSI element goals (18
items); 2. Strategies for CSI goals achievement (~20, derived from the initial research
phase [5]); 3. Company capability elements (~40); 4. CSI elements impact (positive /
negative) relationships (hypotheses) (~80); 5. Capability dependencies for supporting
the CSI elements and their (positive) interrelationships (~30); 6. Strategy realization
capability element dependencies (~60); 7. Measurement information sources, links.

Of the CSI element impact relationships hypotheses (4. in Fig. 2), some 10 have
been confirmed so far with company empirical evidence. Table 1 shows some exam-
ples of such positive and negative interrelationships. In practice, the B2B customer-
specific CSI item priorities affect the actual weighting of the impacts.

Table 1. Impact Mapping Grid relationship validating

RELATIONSHIP Impact Type FROM TO

Applied project tailored auditing ensures effective
use of development tools by facilitating tool/process
information.

POSITIVE Capa-
bilities

CSI2.1

Change information is propagated promptly. POSITIVE CSI1.3 CSI3.4
New requirements and information are recognized
and processed systematically and promptly.

POSITIVE CSI4.2 CSI3.4

Communication gaps cause wrong expectations
about the maturity of unofficial deliverables.

NEGATIVE

CSI1.3 CSI3.3

Information overflow may distract and damp. NEGATIVE CSI1.3 CSI1.4

Communication may suffer from personnel changes
(loss of knowledge, competence).

NEGATIVE CSI2.2 CSI1.3

Taking into account the multifaceted nature of the CSI, it is reasonable expect that

there may be even some cyclic relationships between different CSI items. We have
discovered several such potential loops. Finally, for the measurement connections (7.
in Fig. 2) there are already many company measurement data sources which could
potentially be utilized in more real time, also softer ones such as employee surveys.

In sum, the results so far form a knowledge frame for understanding the company
CS/CX and its various influencing factors, addressing the research objective (Sect. 1)
of managing product development predictably to achieve projected satisfaction.

5 Discussion and Conclusion

This research work done together with the case company has produced as the outcome
a system package realized as the CSI Impact Mapping Grid. There are two key result-
ing implications discovered. First, the company representatives have recognized the
complexity of their various potential CS/CX interdependencies (also potentially ad-
verse ones) illuminated by the large number of the hypothesized relationships in it (4.

210 P. Kettunen et al.

in Fig. 2). Second, many existing company capability assets and ongoing quality im-
provement activities have been linked to its different strategy elements (2. in Fig. 2)
according to their dependencies and aligned contributions (avoiding negative ones).

Notably the CSI Impact Mapping Grid has not been validated for prediction. Nev-
ertheless, the project teams can use it as a relative local guideline and checklist to
consider and prioritize the relationships of the CSI in their particular project case, and
their specific responsibilities in its success / failure paths. Furthermore, it is an evolv-
ing, dynamic knowledge and experience base for continuous improvement.

One acknowledged potential limitation is that this research and development has
been done in a single company based on their customized CSI. However, the items of
CSI are not heavily company-specific, which lessens the generalization limitations.

In conclusion, the key idea of this research and improvement was to advance from
traditional, backward-looking customer satisfaction measurements to more forward-
oriented, proactive customer experience development and management in B2B
projects. Based on the company-specific Customer Satisfaction Index (CSI), the ap-
proach developed here created a customer satisfaction improvement system realized
as the CSI Impact Mapping Grid with initially applied GQM+Strategies method so
that the company can consciously manage and improve their CX/CS related targets,
capabilities and knowledge with holistic transparency to aligned CS strategies.

Our future research and development plans include the following:

1. Further evaluation and validation of the currently hypothesized parts of CSI Impact
Mapping Grid in the company with the actual CS survey results

2. Connecting the CSI Impact Mapping Grid to the existing measurements for (real-
time) feedback (7. in Fig 2) – in particular current KPIs and the Customer interface

3. Iterating with GQM+Strategies to elaborate the CSI strategies (e.g., ‘S3’ in Fig. 1)
4. Strengthening the overall CSI system modeling approach – potentially with system

dynamics methods (causal loops) and structural equation modeling (path analysis)

Acknowledgements. This work was supported by TEKES as part of the Need 4
Speed Program of DIGILE (Finnish Strategic Centre for Science, Technology and
Innovation in the field of ICT and digital business).

References

1. Tikkanen, H., Alajoutsijärvi, K., Tähtinen, J.: The Concept Of Satisfaction in Industrial
Markets: A Contextual Perspective and a Case Study from the Software Industry. Industri-
al Marketing Management 29, 373–386 (2000)

2. Homburg, C., Rudolph, B.: Customer satisfaction in industrial markets: dimensional and
multiple role issues. Journal of Business Research 52, 15–33 (2001)

3. Rossomme, J.: Customer satisfaction measurement in a business-to-business context: a
conceptual framework. Journal of Business & Industrial Marketing 18(2), 179–195 (2003)

 Towards Predictable B2B Customer Satisfaction and Experience Management 211

4. Kettunen, P.: Bringing total quality in to software teams: a frame for higher performance.
In: Fitzgerald, B., Conboy, K., Power, K., Valerdi, R., Morgan, L., Stol, K.-J. (eds.) LESS
2013. LNBIP, vol. 167, pp. 48–64. Springer, Heidelberg (2013)

5. Münch, J., Fagerholm, F., Kettunen, P., Pagels, M., Partanen, J.: Experiences and
insights from applying GQM+Strategies in a systems product development organisation.
In: Demirors, O., Turetken, O. (eds.) 39th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA), pp. 70–77. IEEE (2013)

6. Lyneis, J.M., Ford, D.N.: System dynamics applied to project management: a survey, as-
sessment, and directions for future research. Syst. Dyn. Rev. 23(2/3), 157–189 (2007)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 212–217, 2015.
DOI: 10.1007/978-3-319-18612-2_19

Dimensions of DevOps

Lucy Ellen Lwakatare(), Pasi Kuvaja, and Markku Oivo

Department of Information Processing Science, University of Oulu, Oulu, Finland
{lucy.lwakatare,pasi.kuvaja,markku.oivo}@oulu.fi

Abstract. DevOps has been identified as an important aspect in the continuous
deployment paradigm in practitioner communities and academic research cir-
cles. However, little has been presented to describe and formalize what it con-
stitutes. The absence of such understanding means that the phenomenon will
not be effectively communicated and its impact not understood in those two
communities. This study investigates the elements that characterize the DevOps
phenomenon using a literature survey and interviews with practitioners actively
involved in the DevOps movement. Four main dimensions of DevOps are iden-
tified: collaboration, automation, measurement and monitoring. An initial
conceptual framework is developed to communicate the phenomenon to practi-
tioners and the scientific community as well as to facilitate input for future re-
search.

Keywords: DevOps · Continuous deployment · Agile · Software deployment

1 Introduction

Companies offering Internet-based services like Facebook, are now deploying soft-
ware functionality to customers on a daily basis [1]. This paradigm change towards
continuous deployment of software functionality has brought opportunities as well as
challenges for most companies [2]. DevOps, a blend of two words, Developers and
Operations, is a new phenomenon that helps facilitate this change [2]. It builds a liv-
ing bridge between development and operations and gives them an opportunity to
work and collaborate effectively and seamlessly. Agile methods have improved the
performance of software development teams by establishing cross-functional teams
and providing closer collaboration with customers [3]. DevOps seeks to extend col-
laboration of development towards operations, which is responsible for deploying,
managing and supporting systems’ performance at the customer’s site [2]. The con-
tinuous deployment paradigm requires software companies to increase communica-
tion amongst stakeholders, implement automation and improve agility in designing,
delivering and operating software products and services. Erich et al. [4] identified the
main concepts of DevOps as: culture, automation, measurement, sharing, services,
quality assurance, structures and standards. Bang et al. [5] identified the DevOps per-
spectives to include: collaboration; automation of build deployment; testing; meas-
urement of the process value, cost and technical metrics; and sharing of knowledge
and tools.

 Dimensions of DevOps 213

Currently, there is lack of common understanding of what DevOps constitutes in
academia and in the practitioners’ communities. There is a need for research that in-
vestigates the DevOps phenomenon and examines how it impacts software develop-
ment and operations. In this paper, the dimensions of DevOps are identified using
relevant academic literature and interviews with practitioners actively involved in the
DevOps movement. The main contribution of the study is the definition of the main
elements that characterize the DevOps phenomenon and an initial conceptual frame-
work that describes the phenomenon.

2 Research Approach

This study uses a literature review and interviews to investigate the DevOps
phenomenon. To identify relevant academic literature, we followed the procedure
proposed by Webster and Watson [6].

1. The search term, ‘DevOps’, was selected and, on 11.11.2014, it was used to re-
trieve a total of 187 studies from six databases: ACM Digital Library (34), ISI Web
of Science (2), Science Direct (10), IEEE Xplore (13), Scopus (28) and Google
Scholar (first 100).

2. Relevant studies were selected on the basis of: (a) relevance to the topic, (b) peer
reviewed, (c) publication in a scientific journal or in conference proceedings

3. Snowballing was performed in Google Scholar to identify other studies (0).

Interviews. Interviews were conducted with four practitioners working at three com-
panies (Table 1) and actively involved in the DevOps movement as organizers of
DevOps Days1 and DevOps Meetups2.

Table 1. Description of interviewees

Company Offering Employees Role of participants

A ICT products

and services

500 P1: Lead architect for cloud in Technology Strategy

unit

B ICT R&D

services

80 P2 & P3: Senior consultants in a DevOps team

consisting of developers and operations doing audits

for software development process improvements

C ICT R&D

services

63 P4: Senior developer, DevOps expert and manager of

a technology team

The collected data was imported to Nvivo3 and analysed following the thematic syn-
thesis approach [7]. The approach involved coding the problems addressed by De-
vOps, the actions taken (elements) and the impact of the actions taken.

1 DevOps Days is a technical conference (http://devopsdays.org/about/).
2 DevOps Meetups are face-to-face meetings taking place in different cities around the world.
3 Qualitative data analysis software (http://www.qsrinternational.com/).

214 L.E. Lwakatare et al.

3 Dimensions of DevOps

This section presents the findings from a thorough literature analysis of 22 papers
([1,2], [4,5], [8-25]) and interviews with practitioners. Figure 1 presents an initial
conceptual framework that depicts the dimensions that characterize DevOps, the prob-
lems that DevOps tries to address and the resulting outcomes.

Fig. 1. Conceptual framework characterizing the DevOps phenomenon

3.1 Collaboration

There is consensus in the academic literature and among practitioners that the De-
vOps phenomenon encompasses a culture of collaboration between the software de-
velopment organization and the operations organization [2], [8–11]. Other important
stakeholders include testers and quality assurance [12]. According to practitioners, it
is impossible to effectively transfer information about all releases between two sepa-
rate organizations in continuous release mode. Other problems include: poor commu-
nication between developers and operations and systems designed without complete
knowledge and visibility or support for their operational profile [1], [8], [13, 14].

Collaboration is enforced through information sharing, broadening of skillsets and
shifting responsibilities between the two teams as well as instilling a sense of shared
responsibility [1, 2], [15]. These approaches require changes in people’s mind-set as
well as changes in the organization’s work culture. Collaboration impacts the team
structure and the required skillsets of the software developers and operations person-
nel. The development team may become organized around an entire service taking
full responsibility for developing and operating the software functionalities.

3.2 Automation

According to the literature and the practitioners, automation in DevOps is required in
operations processes and increased test automation is necessary in the software devel-
opment process [9], [15–17]. In order to keep up with the pace of Agile software de-
velopment and continuous integration (CI) practices, operations processes need to be

Elements of De-
vOps

Automation

Measurement

Monitoring

Collaboration

Outcomes of DevOps

a) Shared responsibility; one
team responsible for entire

service or product
b) Continuous deployment of
functionality and infrastruc-

ture provisioning
c) Operational data to also
measure performance of

development

Problems addressed by
DevOps

a) Poor communication
b) Manual operations

processes, e.g. deployment,
configuration management
c) Performance of devel-
opment and QA are not

supported by data
d) Monitoring data is se-

 Dimensions of DevOps 215

flexible, repeatable and fast by eliminating manual processes. In complex environ-
ments it is difficult and time consuming to manually deploy functionality and manage
configurations of software functionality and infrastructure repeatedly and quickly
[18, 19]. Additionally, test automation in the CI and customer acceptance phases need
to be improved to ensure the quality of the deployed functionality.

One approach that DevOps uses to address the manual process is depicted in the
concept of “Infrastructure as a Code” (IaC). The IaC concept is used to describe the
idea that almost all actions performed to the infrastructure can be automated [19–21].
It emphasizes developing automation logic for deploying, configuring and upgrading
software and infrastructure repeatedly and quickly, particularly in a cloud environ-
ment. This is observed through increased adoption of open source configuration tools,
such as Chef, in companies (e.g. company A). In the literature, the studies that have
contributed to this have focused on defining frameworks that help identify the limita-
tions of the tools and test for their reliability and repeatability [17],[20],[22]. In a
cloud environment, automation allows the infrastructure to be provisioned and the
functionality to be deployed repeatedly and fast [8], [20].

3.3 Measurement

According to Roche [12], DevOps emphasizes “putting efficiency and process into
perspective”. This means the ability to measure the development process by incorpo-
rating different metrics that will help increase efficiency in product development.
Claps [2] further described it as being able to go beyond Quality Assurance (QA) to
the system’s performance and usage data to seek insights about the quality and use-
fulness of software functionality.

Measurement in DevOps is achieved by measuring the effort of the software proc-
ess beyond QA using real time performance and usage data of software functionality
in the production environment. The impact is that software development efforts are
effectively measured [10].

3.4 Monitoring

Operations personnel monitor systems and the underlying infrastructure to determine
the appropriate resource assignment and to detect, report and correct problems that
occur during or after system upgrades [13]. According to practitioners, operations
personnel use monitoring tools and logs to obtain information regarding a system’s
health. However, in most cases the logs are voluminous causing developers and op-
erations to spend an extensive amount of time locating the problems, especially when
the systems are designed not to expose relevant information [23, 24]. Continuous
deployment of functionality further challenges monitoring activities by requiring them
to be effective and fast [14], [22]. Another problem addressed by DevOps is that the
monitored data is not consolidated and effectively used [8].

DevOps addresses the challenges of effective monitoring by emphasizing collabo-
ration between developers and operations so that the systems are designed to expose
relevant information [13], [24, 25]. Additionally, analytics can be used to integrate

216 L.E. Lwakatare et al.

the system and infrastructure performance data with customer usage behaviour [8].
The information is to be provided as feedback to developers and product management
to use for product improvements and customization [2], [8, 9].

4 Conclusion

DevOps is a relatively a new phenomenon that lacks a common understanding and
definition in academia and in the practitioners’ communities. This study identifies
four elements that characterize DevOps: collaboration, automation, measurement and
monitoring. A conceptual framework is also presented to describe the phenomenon.
This study contributes to previous research by confirming three elements of DevOps
and it adds one new element. It also presents a conceptual framework to describe the
phenomenon. There is still a need for empirical research that investigates the phe-
nomenon in order to validate and enhance the presented conceptual framework.

References

1. Feitelson, D.G., Frachtenberg, E., Beck, K.L.: Development and Deployment at Facebook.
IEEE Internet Computing 17, 8–17 (2013)

2. Claps, G.G., Berntsson Svensson, R., Aurum, A.: On the Journey to Continuous Deploy-
ment: Technical and Social Challenges Along the Way. Information and Software Tech-
nology 57, 21–31 (2015)

3. Rodríguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage in fin-
nish software industry. In: ACM-IEEE International symposium on Empirical software
engineering and measurement, p. 139. ACM Press, New York (2012)

4. Erich, F., Amrit, C., Daneva, M.: Cooperation between Information System Development
and Operations. In: 8th International Symposium on Empirical Software Engineering and
Measurement, p. 1. ACM Press, New York (2014)

5. Bang, S., Chung, S., Choh, Y., Dupuis, M.: A Grounded Theory Analysis of Modern Web
Applications: Knowledge, Skills, and Abilities for DevOps. In: 2nd Annual Conference on
Research in Information Technology, pp. 61–62. ACM, New York (2013)

6. Webster, J., Watson, R.: Analyzing the Past to Prepare for the Future: Writing a Literature
Review. Management Information Systems Quarterly 26, 13–19 (2002)

7. Cruzes, D.S., Dyba, T.: Recommended Steps for Thematic Synthesis in Software Engi-
neering. In: International Symposium on Empirical Software Engineering and Measure-
ment, pp. 275–284. IEEE Press, New York (2011)

8. Bruneo, D., Fritz, T., Keidar-Barner, S., Leitner, P., Longo, F., Marquezan, C., Metzger,
A., Pohl, K., Puliafito, A., Raz, D., Roth, A., Salant, E., Segall, I., Villari, M., Wolfsthal,
Y., Woods, C.: CloudWave: Where Adaptive Cloud Management Meets DevOps. In:
IEEE Symposium on Computers and Communications, pp.1–6. IEEE Press, New York
(2014)

9. Hosono, S., Shimomura, Y.: Application Lifecycle Kit for Mass Customization on PaaS
Platforms. In: 8th IEEE World Congress on Services, pp. 397–398. IEEE Press, New York
(2012)

 Dimensions of DevOps 217

10. Liu, Y., Li, C., Liu, W.: Integrated Solution for Timely Delivery of Customer Change
Requests: A Case Study of Using DevOps Approach. International Journal of U-& E-
Service, Science & Technology 7, 41–50 (2014)

11. Wettinger, J., Breitenbücher, U., Leymann, F.: DevOpSlang – Bridging the Gap between
Development and Operations. In: Villari, M., Zimmermann, W., Lau, K.-K. (eds.) ESOCC
2014. LNCS, vol. 8745, pp. 108–122. Springer, Heidelberg (2014)

12. Roche, J.: Adopting DevOps Practices in Quality Assurance. Communications of the ACM
56, 38–43 (2013)

13. Bass, L.: Supporting Operations Personnel through Performance Engineering. In: Interna-
tional Conference on Performance Engineering, pp. 185–186. ACM Press, New York
(2013)

14. Hosono, S., He, J., Liu, X., Li, L., Huang, H., Yoshino, S.: Fast Development Platforms
and Methods for Cloud Applications. In: IEEE Asia-Pacific Services Computing Confe-
rence, pp. 94–101. IEEE Press, New York (2011)

15. Cook, N., Milojicic, D., Talwar, V.: Cloud Management. Journal of Internet Services and
Applications 3, 67–75 (2012)

16. Spinellis, D.: Don’t Install Software by Hand. IEEE Software 29, 86–87 (2012)
17. Wettinger, J., Andrikopoulos, V., Strauch, S., Leymann, F.: Characterizing and Evaluating

Different Deployment Approaches for Cloud Applications. In: IEEE International Confe-
rence on Cloud Engineering, pp. 205–214. IEEE Press, New York (2014)

18. Borgenholt, G., Begnum, K., Engelstad, P.: Audition: A DevOps-oriented Service Optimi-
zation and Testing Framework for Cloud Environments. In: Conference of Norsk informa-
tikkonferanse (NIK), pp. 146–157. Akademika Publishing, Trondheim (2013)

19. Harrer, S., Rock, C., Wirtz, G.: Automated and Isolated Tests for Complex Middleware
Products: The Case of BPEL Engines. In: IEEE 7th International Conference on Software
Testing, Verification and Validation Workshops, pp. 390–398. IEEE, New York (2014)

20. Hummer, W., Rosenberg, F., Oliveira, F., Eilam, T.: Testing Idempotence for Infrastruc-
ture as Code. In: Eyers, D., Schwan, K. (eds.) Middleware 2013. LNCS, vol. 8275,
pp. 368–388. Springer, Heidelberg (2013)

21. Wettinger, J., Behrendt, M., Binz, T., Breitenbücher, U., Breiter, G., Leymann, F.,
Moser, S., Schwertle, I., Spatzier, T.: Integrating Configuration Management with Model-
driven Cloud Management based on TOSCA. In: 3rd International Conference on Cloud
Computing and Services Science, pp. 437–446. SciTePress (2013)

22. Zhu, L., Xu, D., Xu, S., Tran, A.B., Weber, I., Bass, L.: Challenges in Practicing High
Frequency Releases in Cloud Environments. In: 2nd International Workshop on Release
Engineering, Mountain View, USA, pp. 21–24 (2014)

23. Xu, X., Zhu, L., Weber, I., Bass, L., Sun, D.: POD-Diagnosis: Error Diagnosis of Sporadic
Operations on Cloud Applications. In: 44th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pp. 252–263. IEEE Press, New York (2014)

24. Cukier, D.: DevOps Patterns to Scale Web Applications using Cloud Services. In: Compa-
nion Publication for Conference on Systems, Programming & Applications: Software for
Humanity, pp. 143–152, ACM Press, New York (2013)

25. Shang, W.: Bridging the Divide between Software Developers and Operators using Logs.
In: 34th International Conference on Software Engineering, pp. 1583–1586. IEEE Press,
New York (2012)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 218–223, 2015.
DOI: 10.1007/978-3-319-18612-2_20

Towards Introducing Agile Architecting
in Large Companies: The CAFFEA Framework

Antonio Martini(), Lars Pareto, and Jan Bosch

Computer Science and Engineering, Chalmers University of Technology,
Hörselgången 5, 417 56, Göteborg, Sweden

{antonio.martini,jan.bosch}@chalmers.se

Abstract. To continuously deliver value both in short-term and long-term, a
key goal for large product lines companies is to combine Agile Software De-
velopment with the continuous development and management of software ar-
chitecture. We have conducted interviews involving several roles at 3 sites from
2 large companies employing Agile. We have identified current architect roles
and gaps in the practices employed at the organizations. From such investiga-
tion, we have developed an organizational framework, CAFFEA, for Agile arc-
hitecting, including roles, teams and practices.

Keywords: Agile architecture · Agile software development · Organizational
framework · Architect roles · Software process improvement

1 Introduction

Large software industries strive to make their development processes fast and more
responsive, minimizing the time between the identification of a customer need and the
delivery of value. Short term responsiveness is given by Agile Software Development
(ASD) [1]. A gap in the current Agile frameworks is the lack of activities to enhance
agility in the task of developing and maintaining software architecture (Agile archi-
tecting), necessary for long-term responsiveness [1][2]. The role of architects be-
comes crucial, but there is a lack of knowledge, in literature, on how such roles are
implemented in ASD. Therefore, the research questions that we want to inform are:

RQ1 What are the challenges in conducting architecture practices in Agile software
development employed in large software product line organizations?

RQ2 Which roles and teams are needed in order to mitigate the challenges in con-
ducting architecture practices in large product line organizations employing Agile?

We have combined literature review, interviews involving several roles in large
product line companies employing Agile Software Development and a combination of
structured inductive and deductive analysis in order to find the gaps in the architect
roles and their activities. We have developed an organizational framework, CAFFEA
(Continuous Architecting Framework For Embedded software and Agile), compre-
hending roles and teams to address the challenges related to the architecture practices
in ASD.

Towards Introducing Agile Architecting in Large Companies: The CAFFEA Framework 219

2 Research Design

We have employed an embedded multiple-case study [3], where the unit of analysis is
an (sub-part of the) organization: the unit needed to be large enough, developing 2 or
more sub-systems involving at least 10 development teams. We selected, following a
literal replication approach [4], 2 companies: A and B (3 sub-cases) large organiza-
tions developing software product lines, having adopted ASD and had extensive in-
house embedded software development.

As for data collection, we selected [5] as an up-to-date (2008) and comprehensive
categorization of “what do software architects really do”. From such classification,
we conducted a literature review for each class of practices, selecting the articles con-
taining condensed knowledge. Then we conducted 3 in-depth sets of interviews in-
volving 3 of the cases, in particular A, B1, and B2. The interviews lasted 4 hours and
involved developers, testers and architects responsible for different levels of architec-
ture (from low level patterns to high level components). During the interviews we
assessed if the architecture practices found in step 1 were carried out, who was re-
sponsible, and what challenges they were facing. With this step we identified the cur-
rent gaps in ASD with respect to architecture management.

The interviews and workshops were recorded and transcribed. The analysis was
done following an approach based on Grounded Theory [6], alternating structured
inductive and deductive techniques (described below) and using a tool for qualitative
analysis, to the trace the code to the quotations.

A preliminary evaluation of the framework is being carried out by the authors, but
we could not report the data here for lack of space.

3 Results

First we show the identified architect roles in the companies, highlighting the chal-
lenges connected to such roles. We have divided the challenges in 4 main groups: risk
management, architectural decisions and changes, providing architectural knowledge
and monitor the current status of the system. Then we present the teams, the organiza-
tional mechanism to address the challenges involving more than one role. The overall
components and framework CAFFEA is visible in Figure 1.

3.1 Architects

3.1.1 Chief Architect (CA)
The main role of the CA is to take high-level decisions and to drive the rest of the
architects and the Agile teams in order to build an architecture able to support strateg-
ic business goals. In all the organizations that we have studied, the role of CA is
present and well recognized, and there are few challenges related to ASD.

Risk management - The CA is usually not directly involved in the detailed
development: however, in order to take decisions on feasibility and to assist the sales
unit with technical expertize, the CA needs to elicit the information about the current

220 A. Martini et al.

status of the system. The current challenge is the lack of such reliable information and
therefore the risk of taking business decisions based on wrong assumptions made on
the system.

Monitoring the current status of the system (communication input) - As mentioned
before, the current communication practices lack good mechanisms for providing
input to the CAs to take informed decision and to address past erroneous decisions
(e.g. tool chains not working as expected).

3.1.2 Governance Architect (GA)
We found that the key for the scalability of Agile architecting in a large setting is an
intermediate role between the CA and the teams. Such role, (the Governance Archi-
tect, GA) functions as a coordinator and support, giving strategic directions for a
group of Agile teams developing features within the same (sub-) system. Many archi-
tecture practices were mapped by the informants to this role as the main responsible,
and we found many challenges in the current organizations. Such role is not always
formally recognized: this causes lack of coordination among isolated teams, which
favors the accumulation of architectural debt. Also, the non-recognition of this role
leads to the lack of resources allocated for carrying out the needed architecture prac-
tices.

Risk management - The prioritization of short-term and long-term goals in the
team is done by Product Owners through the backlog of the teams. However, such
risk management activity usually leads to the down-prioritization of refactoring and
architecture improvements, especially the long-term ones. A GA is needed to partici-
pate in prioritization to balance the focus between feature development and the long-
term goals.

Managing decisions and changes - The architecture needs to support several fea-
tures and the safe cooperation of the Agile teams. The investigation highlighted either
the lack of such responsible for inter-feature architecting or the lack of communica-
tion and cooperation between the GA and the Agile teams.

Providing Architecture Knowledge (communication output) - With the shift to
ASD, in some of the organizations (B1 and B2) the teams have changed from “compo-
nent teams” to “generalized teams”, free to change any part of the code given a fea-
ture to be implemented. However, such approach caused, in the teams, a lack of deep
expertize about the components. The role of GA becomes therefore critical for assist-
ing the teams and maintaining the architecture, both with face-to-face communication
but also supported by documentation when the architecture knowledge is complex and
extensive.

Monitoring the current status of the system (communication input) - One of the
most emphasized challenges during data collection was the accumulation of architec-
tural debt [7]: the implementation in the code quickly drifted away from the architec-
ture defined and used for strategic decisions and risk management by the CA and
other management activities. GAs need to monitor and react to architecture erosion
and need for evolution, together with the support of TAs in the Agile teams.

Towards Introducing Agile Architecting in Large Companies: The CAFFEA Framework 221

3.1.3 Team Architect (TA)
The TA, the responsible for the architecture in the FT, is often present in the current
organizations in the form of a technical leader or experienced developer. Such role is
however not formally recognized, which bring the lack of responsibilities for the ar-
chitecture practices in some of the teams.

Risk management - A challenge was the lack of participation of the team in risk man-
agement activities, such as tracking and reporting risky technical debt accumulated dur-
ing the iterations (activity led by the TA) or to represent the interest of the teams in
feasibility discussions with CA, GA and Product Owners (participation of TA).

Providing Architecture knowledge (communication output) - As mentioned for the
CA and GA, the lack of capillary spread of architecture knowledge need to be miti-
gated by a peer in the team, which has been identified with the presence of TA, who
would transfer the architectural knowledge from GAs.

Monitoring the current status of the system (communication input) - We found a
lack of responsibilities, in the team, about tracking and reporting the status of technic-
al debt that might affect other FTs. The TA would cover such responsibility, as well
as lifting proposals for architecture evolution.

Fig. 1. The components of CAFFEA: teams, roles and their relationships

3.2 Teams

Analyzing the current gaps and the relationships among the architect roles previously
mentioned, we found that most of the practices need the roles to coordinate and coo-
perate in order to mitigate the challenges. To achieve such coordination, suitable or-
ganizational mechanisms are non-permanent teams responsible for such practices
visible in Figure 1. A special case is the Runway Team (RT), which involves a whole
Agile team (see next section).

222 A. Martini et al.

3.2.1 Runway Team (RT)
As mentioned about the GA and also confirmed by [7], a challenge in the studied
companies is the down-prioritization of long-term refactorings or architecture im-
provements, causing the constant accumulation of architectural debt leading to res-
ponsiveness crisis. Such refactorings cannot be prioritized as stories in the backlog of
the Agile teams, and therefore remains excluded from the development. In order to
conduct such refactorings, a whole Agile team needs to be dedicated for one or more
sprints to focus on the “architecture feature” rather than on customer-related features.
The RT can be appointed dynamically by a team of Product Owners and architects
(see “Governance Team”) together, when a long-term refactoring is needed. RTs are
visible on the right in Figure 1.

3.2.2 Architecture Teams (ATs)
Most of the architecture practices need coordination and collaboration among differ-
ent architects in Architecture Teams (ATs in Figure 1): for example, in monitoring the
current status of the system, no single architects can have all the information needed:
the system might have different inconsistencies with architecture at different levels
(e.g. low-level design and high-level components). Coordination is also important for
spreading the architecture knowledge, from high level concepts expressed by the CA
to low level design implemented by the teams and known by the TAs. Also when
assessing the risk of architectural debt and taking decisions about solutions and
changes, for example the prioritization of refactorings, the architects need to have
resources allocated together for communication, analysis and tools.

3.2.3 Governance Teams (GTs)
For those practices regarding “risk management” and “architecture decisions and
changes”, we found a strong relationship between the architects and the Product
Owners or higher-level Product managers. The risk assessment of architecture
changes and decisions determines the ratio of resources allocated to the improvements
or of the architecture with respect to the resources used for feature development. We
found the need, in the organizations, of a team involving Architects and Product
Owners or Managers (Governance Teams on different levels, as illustrated in Figure
1) with the responsibility of strategically prioritizing the backlogs of the teams (dotted
arrows in Figure 1) between features and architecture improvements, in order to bal-
ance the short-term with the long-term value output.

3.3 Framework CAFFEA

The framework CAFFEA is the overall framework of roles, teams and practices. A
representation is shown in Figure 1, which combines the visualization of different
views: the relationships among the organizational components (architects, managers,
teams) with respect to different perspectives (Architecture and Governance). Figure 1
shows also the communication needs by the architect roles (central area on the Archi-
tecture Perspective), between the roles and the Agile teams (left) and among the dif-
ferent GTs (Governance Perspective). Figure 1 shows the prioritization relationships
among the roles and the teams (dotted arrows) and outlines, in both the perspectives,
the RTs, our new concept for some of the Agile teams.

Towards Introducing Agile Architecting in Large Companies: The CAFFEA Framework 223

Several companies are adopting the CAFFEA framework in practice and we are
currently evaluating its application through several case-studies.

4 Discussion and Conclusions

Our work takes inspiration from Leffingwell’s work [8] and the concepts of architec-
ture runway. However, the work done by Leffingwell is not supported by scientific
investigation following a rigorous research process. Kructhen, in [5], defines several
anti-patterns for software architects, based on several experiences in architecture
teams. However, the anti-patterns are not specific for the context that we have stu-
died.

The short-term responsiveness in delivering value offered by ASD needs to be en-
hanced, in large software organizations developing embedded software, by Agile
architecting, the management of a software architecture supporting long-lasting res-
ponsiveness. We contribute by highlighting current challenges with respect to archi-
tectural practices (RQ1): such gaps point at the need for specific architect roles; Team
architects, Chief architects and especially important is the Governance Architect, an
intermediate key role for coordinating Agile architecting and scaling Agile in large
organizations. Such architect roles need organizational mechanisms to cooperate,
Architecture Teams, and to interface with Product Management for prioritization and
decisions. We developed the CAFFEA framework, including roles, teams and practic-
es, to give support for Agile architecting (RQ2). Such framework, given the current
identified gaps, has a specific focus on architecture technical debt management and is
being applied and evaluated in practice by several companies.

References

1. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:
Towards explaining agile software development. J. Syst. Softw. 85(6), 1213–1221 (2012)

2. Daneva, M., van der Veen, E., Amrit, C., Ghaisas, S., Sikkel, K., Kumar, R., Ajmeri, N.,
Ramteerthkar, U., Wieringa, R.: Agile requirements prioritization in large-scale outsourced
system projects: An empirical study. J. Syst. Softw. 86(5), 1333–1353 (2013)

3. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14(2), 131–164 (2008)

4. Yin, R. K.: Case Study Research: Design and Methods. SAGE (2009)
5. Kruchten, P.: What do software architects really do? J. Syst. Softw. 81(12), 2413–2416

(2008)
6. Strauss, A., Corbin, J. M.: Grounded Theory in Practice. SAGE (1997)
7. Martini, A., Bosch, J., Chaudron, M.: Architecture Technical Debt: Understanding Causes

and a Qualitative Model. In: 40th Euromicro Conference on Software Engineering and Ad-
vanced Applications, Verona, pp. 85–92 (2014)

8. Leffingwell, D.: Scaling Software Agility: Best Practices for Large Enterprises. Pearson
Education (2007)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 224–229, 2015.
DOI: 10.1007/978-3-319-18612-2_21

Optimal Refactoring

Susanne Siverland1(), Roger C.S. Wernersson2, and Charlotte Sennersten3

1 Sigma IT and Management, Östra Vittusgatan 36 SE-37133, Karlskrona, Sweden
susanne.siverland@sigma.se

2 Ericsson AB, Ölandsgatan 1, Box 518 SE-37133, Karlskrona, Sweden
roger.wernersson@ericsson.com

3 The Commonwealth Scientific and Industrial Research Organisation (CSIRO),
Digital Productivity Flagship, Autonomous Systems, College Road, Sandy Bay 7005, Australia

charlotte.sennersten@csiro.au

Abstract. This paper investigates if Code-Churn, Lines of Code (LoC),
Duplicated Code, Complexity and Technical Debt (TD) can inform a coder
where to prioritize refactoring. A mature code-base of 1 300 000 LoC in ap-
proximately 5000 files for a period of 20 months has been examined. The result
is that code-churn is the strongest variable out of the studied variables followed
by LoC and TD. Multiplying with code-churn strengthens LoC and TD even
more, making them the strongest indicators of refactoring potential.

Keywords: Refactoring · Software maintenance · Qualitative research ·
Software quality · Industry · Return of investment

1 Introduction

With limited resources developers need to spend time refactoring (“…improving the
design of the code after it has been written” [1]) where it makes the most difference. In
order to be able to pick the most relevant files for refactoring this paper investigates a
few commonly used code-quality-variables: Lines of Code (LoC), Complexity, Code
Duplication as well as Technical Debt (TD) and Code-Churn. The research questions
are:

Is LoC, complexity, code duplication, TD or code-churn a significant variable in find-
ing refactoring-candidates to increase maintainability?

Is LoC, complexity, code duplication or TD multiplied with code-churn a significant
variable in finding refactoring-candidates to increase maintainability?

The hypothesis is that one of the studied variables or the variable multiplied with
code-churn will be more significant than the other variables in finding refactoring-
candidates. Code-churn means how often a file is changed; the average frequency. As
a proxy for Maintainability we have used the Total Defect Resolution Time (TDRT)
of a file. There are several different approaches in finding refactoring-candidates [1]
[2][3][4]. Feathers [5] has looked at finding refactoring-candidates with high com-
plexity and high code-churn.

 Optimal Refactoring 225

1.1 The Refactoring Variables and the Analysis

This study used and measured historical data from a mature code-base combined with
data from the company’s bug-reporting system to find out what files would be more
beneficial to refactor. The rows in the illustration in figure 1 represent the four main-
tainability characteristics according to ISO 9126. The columns represent code-level
properties.

 source code properties

 I
S

O
 9

12
6

m
ai

nt
ai

na
bi

li
ty

vo
lu

m
e

co
m

pl
ex

it
y

pe
r

un
it

du
pl

ic
at

io
n

un
it

 s
iz

e

un
it

 te
st

in
g

analysability x x x x

changeability x x

stability x

testability x x x

Fig. 1. The SIG-mm ‘Mapping system characteristics onto source code properties’ (ISO 9126)

The Software Improvement Group maintainability model (SIG-mm) acts as a bridge
between the characteristics and the variables and hence how to change the code in
practice. In table 1 we show how we bridge the variables to code following ISO standard 9126.

Table 1. From ISO standard 9126 with defined variables to code

SIG-mm Bridging the Gap Making use of in this
study

Volume The total number of LoC.

Complexity/Unit Cyclomatic complexity per unit (in
Java a unit is a method).

As “complexity”

Duplication of Code Duplicated blocks over 6 lines As “duplicated lines”

LoC File size As “LoC”

Unit testing Unit test coverage

Code-churn - Zazworka et al. [3] is using change-prone files which are “indicators of
problematic code”. They use change-proneness (code-churn) to measure the result.
This gives us a basis for being able to use it as a variable.

TD - TD has yet to be defined [6] but is commonly used as an indicator of code quali-
ty. We have used SonarQube’s [7] calculation model.

Maintainability – Defect Resolution Time (DRT) is the time from when the defect
was reported to when it was resolved and approved in the company’s bug-tracking

226 S. Siverland et al.

system. Total DRT (TDRT) for a file indicates Maintainability, an approach drawn
from “Faster Defect Resolution with Higher Technical Quality of Software” [8].

The result is validated in two steps:

• Firstly by Spearman’s Rank Correlation Coefficient [9] (SRCC) that will
rank each individual file.

• Secondly by choosing the ten files with the highest TDRT in relation to our
chosen categories: LoC, Duplication, TD, Complexity and code-churn. The
coder can only refactor a limited part of the code-base. There is never a sit-
uation where the entire code-base can be refactored.

2 Methodology

The main method is data-mining. This study used and measured historical data from a
mature code-base combined with data from the company’s bug-tracking system to
find out what files would be more beneficial to refactor.

3 Experiment Design

All gathered values were so called snapshots of existing code that had undergone
change during the chosen time interval. For each file the collected data for the chosen
variables were compared and also multiplied with code-churn against the TDRT of
that particular file. Table 2 presents the tools being used in this study and how the
variables were retrospectively calculated.

Table 2. Tools used to measure or calculate the variables

Variable Tool

LoC SourceMonitor is used to get the ‘Lines of code’ value where all but blank lines and leading and
trailing comments are counted.

Duplication In SourceMonitor duplication is defined as at least six duplicated lines of code. The entire code-
base is scanned. If ten common lines in two files are found, the number will be added to both
files. It makes it possible to see the total per file.

TD SonarQube’s TD-plugin is used. TD is measured in time (or money). For how this time (or
money) is constructed, see SonarQube’s documentation [10].

Complexity SourceMonitor is used (as Feathers) to get a Complexity value. The maximum method complex-
ity is used which calculates the most complex method in the file.

Code-churn A mean value of number of changes per month is calculated, based on data from the Git reposito-

ry [11].

 Optimal Refactoring 227

4 Analysis

4.1 Baseline: Time Spent on Defects in the ‘Top-ten’ Files

To be able to say anything in relation to cause and effect via refactoring we have to
create some kind of baseline. Analysis of the ‘‘top-ten’’ files consisted of the follow-
ing steps 1) find the ten files with the highest TDRT; 2) sum up the TDRT for these
files and; 3) in the rest of the paper the sum will be referred as the ‘baseline’, time
spent on these files.

4.2 ‘Top-ten’ Files per Variable

Now we continue by looking at the ‘top-ten’ worst files on a variable level (LoC,
Duplication, TD, Complexity and Code-churn) to find the ten files with highest values
for each variable and find the TDRT for these files.

4.3 Spearman’s Rank Correlation Coefficient (SRCC)

We will use SRCC [9][12] which is a statistical measure between 1 and -1 of the
strength of a monotonic relationship between paired data where 1 mean absolute cor-
relation, -1 means reversed correlation, and 0 means no correlation.

5 Results

The SRCC shows best result for TD (0.616, strong), see Table 3. In column three all
values are evened out by the multiplication with Code-churn (Variable* Code Churn
SRCC). Column four shows what the impact would have been if the ‘top-ten’ files
would have been refactored. Column five shows that all variables are strengthened
when multiplied by code-churn.

Table 3. Summary of SRCC and % of baseline affected

Variable SRCC Variable* Code-

Churn SRCC

Top-ten worst files

(% of baseline)

Variable* Code-churn

top-ten worst files

(% of baseline)

LoC 0.435 0.558 38 50

Complexity 0.353 0.525 18 26

Duplicated lines 0.111 0.446 <1 36

TD 0.616 0.571 16 50

Code-churn 0.576 49

5.1 Summary TDRT ‘Top-ten’ Paired with the Results for Each Variable

Table 4 shows the ten files with the highest TDRT, and their rank when sorted using
the other variables. This is to find out whether any of the files with the highest TDRT

228 S. Siverland et al.

would have been refactored if the ‘top-ten’ files for each variable had been selected
for refactoring. The time is relative. TDRT 1 is the file with the highest TDRT.

Table 4. Summary TDRT ‘top-ten’ paired with the results for each variable

File Relative
TDRT

Chur
n
(pos)

LoC
(pos)

LoC*
churn
(pos)

TD
(pos)

TD *
Churn
(pos)

Com-
plexity
(pos)

Complex
* churn
(pos)

Duplicat
(pos)

Duplicat
* churn
(pos)

A 1 3 1 1 2 2 307 13 290,5 3
B 0,738 20 58 15 18 29 271 28 582,5 29
C 0,599 355 313 223 183 159 707 282 908 338
D 0,525 213 407 187 124 85 410 151,5 411,5 88
E 0,507 59 142 64 45 57 83 21 not ind. not ind.
F 0,488 48 41 23 37 31 178 33 not ind. not ind.
G 0,471 587 565 440 264 325 1524 652 660 331,5
H 0,464 587 569 443 265 326 1524 652 549,5 282,5
I 0,444 538 377 251 244 208 512 604,5 813 391
J 0,444 491,5 242 337 220 193 1524 305,5 1577,5 878,5

Only one of the ‘top-ten’ TDRT files is indicated among the ‘top-ten’ using any of

the above variables. The marked boxes shows which position that one file got. The
variables are TD, TD*Churn, LoC, LoC*Churn, Churn and Duplicated Lines*Churn.
They all indicate the same file, File A. The other variables would not have indicated
any of the ‘top-ten’ TDRT files.

This means that if a programmer decides to refactor the ‘top-ten’ files based on
any indicator above s/he would have missed nine of the ‘top-ten’ TDRT files.

5.2 Result on Research-Questions

Is refactoring/code-churn a significant variable in finding refactoring-candidates to
increase maintainability?

Yes, code-churn is one of the strongest variables investigated in this paper.

Further on we can ask: How can a programmer be informed what to refactor to raise
maintainability by using the variable, or the variable multiplied with code-churn?

A programmer can select files ripe for refactoring if using code-churn. When Code-
churn is taken into account the strongest variables are LoC*Churn and TD*Churn
when the result is based on SRCC. However if a coder wanted to refactor the ten files
with the highest Maintainability none of the ingoing variables would be suitable.

6 Discussion and Implication

We have not looked into whether longer files had higher TDRT per LoC than shorter
files. All the files are not changed.

 Optimal Refactoring 229

7 Conclusion

Code-churn is very useful in optimizing refactoring when used to select which files to
refactor, when using TDRT as a proxy for maintenance. After code-churn, LoC is the
most promising variable to use, followed by TD. (It is always wisest to refactor a file
when you modify its function, because it is fresh in memory.)

References

1. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley Profes-
sional (1999)

2. Tsantalis, N., Chatzigeorgiou, A.: Ranking refactoring suggestions based on historical vo-
latility. In: 2011 15th European Conference on Software Maintenance and Reengineering
(CSMR), pp. 25–34. IEEE (2011)

3. Zazworka, N., Vetro’, A., Izurieta, C., Wong, S., Cai, Y., Seaman, C., Shull, F.: Compar-
ing four approaches for technical debt identification. Software Quality Journal,
1–24 (2013) (article in press)

4. Feathers, M.: Working effectively with legacy code. Prentice Hall Professional (2004)
5. Feathers, M.: On Churn and Complexity. http://www.stickyminds.com/sitewide.asp?

Function=edetail&ObjectType=COL&ObjectId=16679&tth=DYN&tt=siteemail&iDyn=2
(visited May 21, 2013)

6. Tom, E., Aurum, A., Vidgen, R.: An exploration of technical debt. Journal of Systems and
Software (2013) (article in press)

7. http://www.sonarqube.org/ (visited October 2, 2014)
8. Luijten, B., Visser, J., Zaidman, A.: Faster defect resolution with higher technical quality

of software. In: 4th International Workshop on Software Quality and Maintainability
(SQM 2010).(March 2010)

9. How to calculate Spearman’s rank correlation coefficient. http://en.wikipedia.org/
wiki/Spearman%27s_rank_correlation_coefficient(visited June 20, 2013)

10. Technical Debt Calculation http://docs.codehaus.org/display/SONAR/Technical+Debt+
Calculation(visited August 23, 2013)

11. http://git-scm.com/(visited October 24, 2014)
12. What the Spearman’s rank correlation coefficient result meanshttp://www.statstutor.ac.uk/

resources/uploaded/spearmans.pdf(visited June 20, 2013)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 230–235, 2015.
DOI: 10.1007/978-3-319-18612-2_22

Agile and the Global Software Leaders:
A Perfect Match?

Stavros Stavru() and Sylvia Ilieva

Sofia University “St. Kliment Ohridski”,
5, James Bouchier Str., P.B. 48 1164, Sofia, Bulgaria
{stavross,sylvia}@fmi.uni-sofia.bg

Abstract. The presented study examines the prevailing espoused values of
some of the most successful software organizations and evaluates the extent to
which they are promoted in the agile ideology. Its objective is to determine the
level of value congruence and whether it could be used to further explain the
widespread adoption of agile software development. Its findings reveal a perfect
match between the prevailing espoused values of the examined global software
leaders and the agile ideology, and suggest that the popularity of the agile
methods might be explained through their capability to increase customer value,
facilitate collaboration and teamwork, secure continuous improvement and en-
sure high quality of delivered products and services.

Keywords: Agile software development · Espoused values · Software industry

1 Introduction

Agile is ideology1. It systematizes concrete experience and knowledge, forms a set of
values and principles, and defines rules and standards that must be followed. The
specifics of this ideology had led agile software development to be strongly associat-
ed with the iterative and incremental development of new software systems by small,
co-located and cohesive teams of highly-skilled and collaborative professionals. As
result it is often believed that agile methods could hardly scale to fit various organiza-
tional, project and team contexts. Some of the most challenging scaling issues are
related to team size, geographical distribution, system and management complexity,
legacy systems, compliance with regulations, organizational culture, etc. [1, 2] Many
of these challenges are expected to be even greater for large multi-national software
organizations. However the majority of the global software leaders are successfully
using various agile methods and techniques today (e.g. IBM, Microsoft, SAP, Syman-
tec, Google, etc.) [3]. Having such a discrepancy between the expected limitations of
scaling agile and the increasing number of success stories from the large-scale soft-
ware industry is motivating the presented study.

Organizational values are long-lasting constructs which have emerged from the
collective beliefs, experience and vision of a group or all members of the organization

1 http://www.agilemanifesto.org/

 Agile and the Global Software Leaders: A Perfect Match? 231

on what the organization should holds of intrinsic worth and which influence (explic-
itly or implicitly) the decision making and evaluation of individuals and organizations
in terms of their modes, actions and end states [4]. As such they could be defined as
the ideology of the organization. Organizational values have been extensively studied
in recent years and are often used to explain various organizational and industrial
phenomena [4]. Following this trend of research the presented study examines the
prevailing organizational values of some of the most successful software organiza-
tions and evaluates the extent to which they are reflected in the agile ideology. Its
objective is to determine whether there is value congruence and whether it could be
used to explain the widespread adoption of agile methods among the largest organiza-
tions in the software industry [3].

2 Methodology

The examined organizations were taken from PricewaterhouseCoopers’s Global 100
Software Leaders [5]. The list ranks one hundred of the most successful organizations
in the software industry in regard to their annual revenues. On the top are corporate
giants as Microsoft, IBM, Oracle, SAP and Ericsson. The espoused values of these
organizations were manually extracted from official corporate websites and then
translated into a common terminology using the taxonomy of organizational values
proposed by the authors in [4]. The taxonomy is briefly presented in Table 1.

Table 1. Agent and operational values

Category Description

Agent values
Customer

values
Organizational values associated with stakeholders who are recipients of the
products, services, etc. delivered by the organization.

Partner val-
ues

Organizational values associated with stakeholders on whom the “raw” input
of the organization relies on.

Shareholder
values

Organizational values associated with stakeholders who legally own part of
the organizational share.

Employee
values

Organizational values associated with stakeholders who are contributing labor
and expertise to the organization.

Society
values

Organizational values associated with the environment and the communities
in the region, country or worldwide.

Operational values
Process
values

Organizational values which describe the desired characteristics of all sets of
interrelated activities and tasks that transform organizational resources (in-
puts) into concrete products and services (outputs).

Product
values

Organizational values which describe the desired characteristics of delivered
products and services.

The taxonomy consists of 39 organizational values classified into agent and opera-
tional values. Agent values describe desired end states of various organizational
stakeholders and rationalize the existence of the organization. Operational values on
the other hand define the desired way of organizational functioning as well as the

232 S. Stavru and S. Ilieva

desired characteristics of delivered products and services. Therefore they are the con-
ditions securing the fulfillment of agent values.

3 What’s Valued Most by Global Software Leaders?

Almost all of the examined global software leaders with espoused values have organi-
zational values associated with employees. This makes employee values the leading
category and suggests that successful software organizations tend to highly appreciate
their employees and acknowledge their great importance. The values associated with
processes take a second place, followed by customer and product values. On the bot-
tom of the list are partners, shareholders and society values. The distribution of these
value categories is presented on Figure 1.

Fig. 1. Value categories and their distribution among the examined organizations

Figure 2 further shows the distribution of the organizational values. In regard to
employees - discipline seems to be the most prominent one. This is not a surprise as
all the examined organizations are highly recognizable by the public and their reputa-
tion is quite sensitive to corporate scandals, fraud trials, etc. The second most favora-
ble employee value is cooperation, followed by accountability, creativity and compe-
tency. Continuous improvement is the top value in terms of processes. Other prevail-
ing process values are resources utilization, communication and flexibility. In respect
to customers, improving customer’s financial and marketing positioning is the great-
est concern. Customer’s satisfaction, trust and loyalty, although important, are much
less favorable. This could be explained with the specifics of the software industry
where speed and cost are often crucial for customer’s success despite that it might
result in compromising the quality (thus satisfaction) and/or customer relationships
(thus trust and loyalty). The distribution of product values shows that innovation is
undoubtedly the prevailing value in this category. This is quite expected as global
software leaders have to continuously deliver new and valuable products and services,
and further improve existing ones in order to sustain their leadership status. Quality
seems to be of much less importance. Trust and equity are among the top partner val-
ues. This is understandable as modern software organizations might heavily rely on
many suppliers, contractors, etc. and the overall success of the business is determined
by the fair play of all competitors. In regard to shareholders - the greatest concern is
improving their financial well-being, as well as the reputation of their shareholders
and the corporate image. Society values are the least preferred organizational values.
This raises some concerns as global software leaders are expected to be much more
engaged with ecological and social sustainability and serve as a role model in this
regard.

 Agile and the Global Software Leaders: A Perfect Match? 233

Fig. 2. Org. values and their distribution among the examined organizations

4 Is There a Perfect Match?

The first value of the agile manifesto is related to individuals and their interactions.
More specifically it emphasizes the crucial role software engineers have for the suc-
cessful software development and the need for continuous and effective cooperation
and teamwork. This could be associated with employee values - the leading value
category among the examined organizations. Moreover cooperation is the second
most favorable value in this regard. Other top values are discipline and accountability
which are also strongly advocated in the agile ideology. Respect and commitment
seem to be of less importance although they could be found as value statements in
various agile methods (XP and Scrum). In addition to individuals and their interac-
tions, the first value of the agile manifesto emphasizes the need of processes and tools

234 S. Stavru and S. Ilieva

as well. When applied cautiously they might provide empowering working environ-
ments. Process values are the second most favorable value category among the exam-
ined organization. On top is continuous improvement – a value which is strongly
emphasized in the agile ideology. The same is valid for resource utilization, flexibility
and communication. Consistency is the only process value which could be found in
many agile methods (XP, Scrum and Kanban) but seems to be of less importance to
the business. The second and the third values of the agile manifesto are associated
with customers. They state that the primary concern should be to maximize the added
value to the customers. As such the agile ideology could be seen as customer-centric
in its very nature. Customer values are the third most favorable value category among
the examined global software leaders as well. Moreover the performance of the cus-
tomers is on the top of list, followed by satisfaction, trust and loyalty. Customer’s
empowerment and citizenship seem to be overlooked although they could be found as
value statements in various agile methods (e.g. XP, Scrum and Kanban). The forth
value of the agile manifesto relates to change and its effective management. In the
used taxonomy there are two values associated with change. The first is employee
adaptability which is the least preferred employee value. This reveals a serious dis-
crepancy between the agile ideology and the preferences of the examined global soft-
ware leaders. However organizational flexibility is quite favorable value in terms of
processes which suggests that responding effectively to change is still valuable for the
top business. The four values of the agile manifesto could not be directly associated
with the products, partners, shareholders and society. However this does not mean
that they are entirely absent from the agile ideology. Still they play a secondary role
(as are the preferences of the examined global software leaders). Figure 3 shows the
extent to which the value categories are advocated in the agile ideology and distribut-
ed among the examined global software leaders.

Fig. 3. Value categories and the extent to which they are advocated in the agile ideology and
distributed among the examined global software leaders.

 Agile and the Global Software Leaders: A Perfect Match? 235

5 Conclusions

The findings of the presented study reveal that the agile ideology reflects very well
the prevailing espoused values of the examined organizations (all value categories in
Figure 3 follow the 45-degree line). Similar to these global software leaders, the agile
ideology is employee- and customer-centric and advocates important values associat-
ed with processes and products. This could further explain the widespread adoption of
agile methods and reason why they have become the mainstream in software engi-
neering.

The presented study has its recognized limitations. The first is related to its exter-
nal validity. The findings of the study could not be generalized to the entire software
industry neither to all successful software organizations. This is because its sample is
limited to PricewaterhouseCoopers’s Global 100 Software Leaders and therefore is
non-probalistic. The second limitation comes from the extraction of the espoused
values and their translation into the organizational values from the used taxonomy.
The latter was hampered by the fact that many of the espoused values were defined
vaguely which might have caused misinterpretation. In order to mitigate this threat to
internal validity both authors did the translation independently from each other and
the translation was repeated in one month interval. Yet another limitation comes from
the mapping between the values bedded in the agile ideology and the values from the
used taxonomy. As it is based on authors’ interpretation of the agile manifesto one
could argument the presence of research bias.

The presented study could be further extended. Its target population might be nar-
rowed down to include software organizations from specific business or application
domains, occupation, size, organizational life-cycle, etc. This could be used to evalu-
ate whether the agile ideology reflects the prevailing espoused values in these particu-
lar contexts. Moreover the analysis could be narrowed down to specific agile methods
or extended to include traditional software development methods.

References

1. Ambler, S.W.: Agile Software Development at Scale. In: Meyer, B., Nawrocki, J.R., Wal-
ter, B. (eds.) CEE-SET 2007. LNCS, vol. 5082, pp. 1–12. Springer, Heidelberg (2008)

2. Senapathi, M., Srinivasan, A.: Sustained agile usage: a systematic literature review. In: Pro-
ceedings of the 17th International Conference on Evaluation and Assessment in Software
Engineering, pp. 119–124 ACM, Porto de Galinhas (2013)

3. Stavru, S.: A critical examination of recent industrial surveys on agile method usage. Jour-
nal of Systems and Software 94, 87–97 (2014)

4. Stavru, S.: What do we know about Organizational Values? – A Systematic Review. Sofia
University “St. Kliment Ohridski” (2013)

5. McCaffrey, M.: PwC Global 100 Software Leaders. PricewaterhouseCoopers (2013)

Experience Reports

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 239–247, 2015.
DOI: 10.1007/978-3-319-18612-2_23

High Level Test Driven Development – Shift Left

Kristian Bjerke-Gulstuen1, Emil Wiik Larsen1,
Tor Stålhane2, and Torgeir Dingsøyr2,3()

1 Accenture, Rolfsbuktveien 2, Oslo, Norway
{k.bjerke-gulstuen,emil.wiik.larsen}@accenture.com

2 Department of Computer and Information Science,
Norwegian University of Science and Technology, Trondheim, Norway

{stalhane,dingsoyr}@idi.ntnu.no
3 SINTEF, 7465, Trondheim, Norway

Abstract. Agile development methods are increasingly used in large projects,
with many development teams. Because acceptance testing can require a large
chain of features to be completed, testing is often carried out late in such
projects. In this experience report, we describe a large project where 11 devel-
opment teams delivered a system in 12 three week iterations. We also describe
how the focus of test activities was shifted towards the earlier phases of devel-
opment, what we call “shift left”. This involved shifting the focus both within
the iterations, and in how the overall testing work was organized. We describe
the results of this change, and provide recommendations for how to organize
test work in future large-scale development projects.

Keywords: Large-scale agile development · Scrum · Test · Software engineer-
ing · Agile methods · Inter-team coordination · Test organization

1 Introduction

When agile development methods appeared, they were believed to “best suit collo-
cated teams of about 50 people or less who have easy access to user and business
experts and are developing projects that are not life-critical” [1]. Today, agile meth-
ods are increasingly used in other contexts such as large-scale development projects.
The application of agile methods in large-scale development raises a number of new
challenges [2], including how test activities should be organized.

Large-scale projects typically involve high complexity both with respect to existing
software systems and client organizations. Large projects are often run in large or-
ganizations with high expectations for quality and efficiency. Testing is expected to
be an integrated and clearly defined component of the development method. A chal-
lenge in large development projects can be that test efforts are introduced late in the
development, which may cause delays in delivery to the client. One reason for late
testing is that there is often a large chain of user stories that needs to be implemented
before the client can acceptance test the system.

240 K. Bjerke-Gulstuen et al.

In this experience report we describe Accenture’s experience from one of the major
development projects to date in Norway, which made extensive use of agile methods.
Kristian Bjerke-Gulstuen and Emil Wiik Larsen are experienced test managers in
Accenture. They have been responsible for planning and executing testing in several
large-scale projects, using both traditional and agile development methods. Their
experience from the project was discussed with researchers Tor Stålhane who has a
focus on testing and quality assurance and Torgeir Dingsøyr who has a focus on agile
methods and large-scale development.

We describe our experience with shifting the focus of test activities to the early
phases of development, what we will refer to as the "shift left"-approach, or high-
level test-driven development. We believe these experiences can be of interest to test
managers, testers, project managers, Scrum masters and other participants in large-
scale agile development projects.

We start by describing the project, the shift left-approach and two main implica-
tions before concluding with advice relevant for other large-scale projects.

2 Background: A Large-Scale Project to Meet a Political
Decision

This large-scale IT development project was run by a client within the Norwegian
public sector, and the delivery date was set by a political decision. The system was
considered critical to the Norwegian society and the system-of-systems concerned
was developed as an extension of an existing and mature system-of-systems for
processing of payments. Therefore, both time and quality were critical factors.

The system covers information gathering, processing of data, decisions and calcu-
lation of payments. It is one part of a complex IT system including web services, au-
tomated processes, 200 GUIs, 70 batch services and integration services.

The project consisted of several vendors, developing systems connected via a ser-
vice-oriented architecture. This experience reported is related to the core part of the
system, which in this release involved more than 100 000 hours of development and
testing. The vendor work spanned 12 three week-sprints, and a final six week system
test following the last sprint. Faced with a fixed delivery date and therefore limited
time to implement the functionality in scope, an existing maintenance project of three
Scrum teams was scaled up to 11 teams during a four month period.

The Scrum teams included the following roles: Scrum master, developer, tester /
QA resource, functional and technical architect. There were no client resources
represented in the Scrum teams. The vendors were responsible for detailed design and
development including unit, integration and sprint system testing of their deliverables.
The client was responsible for sprint acceptance testing after every sprint, system
integration testing running in parallel with the vendor’s sprint system tests and a user
acceptance testing (UAT).

 High Level Test Driven Development – Shift Left 241

3 High Level Test Driven Development – Shift Left

Test first or test-driven development is one of the agile practices that has received the
most attention. The focus of testing has moved from unit testing to acceptance testing,
with focus on achieving similar benefits at unit level [3].

More than half of all defects are introduced not due to coding errors but to re-
quirements and design decisions according to Jones [4]. Since (1) more than half of
the defects are introduced early in the development process and (2) the cost of defect
removal increases during project life time, it makes sense to start test development as
early as possible – i.e. shift testing leftwards in the process. In an agile setting, this
has two main implications: Shifting test activities towards the early sprints and to-
wards the start of each sprint.

In the following, we will describe our experience with high level test driven devel-
opment, focusing on two main aspects: First, shift left during sprint work which in-
volves early and high focus on testing in each development iteration. Second, how
testing was organized to achieve this.

3.1 Shift Left During Sprint Work

Motivation. Design documentation delivered to the Scrum teams sometimes included
information that could be interpreted differently depending on the team’s previous
experience with the system. This, in combination with the lack of access to client
resources as part of the Scrum teams, made it clear that the teams had to extend their
responsibility in making clarifications to unclear or ambiguous requirements and de-
sign. Also, the highly interconnected nature of the system and the number of Scrum
teams working on interdependent tasks in parallel proved a challenge to testing.

Execution. To ensure that each team had an efficient approach to testing and quality
assurance, a dedicated QA resource/tester was assigned to each Scrum team. This
person would continuously work with quality assurance of design documentation,
decide whether the implementation was testable, prepare the test model and test data
and work closely with the developers and Scrum master to ensure high quality code.
The tester also ensured that all test activities were performed as early as possible. The
tester helped the team and facilitated involvement of the client during the sprints to
ensure that the necessary clarifications were provided. The client was invited to walk-
through-meetings in addition to reviewing the sprint test plans and test approach.
During sprint closure the clients side resources were invited to sprint demos. These
demos were arranged with the purpose of demonstrating the new parts of the system,
providing information on how the testing was performed and what issues the teams
had encountered in testing the implemented functionality.

Our test strategy described a clear definition of done prior to sprint system testing,
and, more importantly, it described the expectations to the developer with regards to
test. The following are some examples of these expectations:

242 K. Bjerke-Gulstuen et al.

• “Test expects and demands that code is not checked in without unit tests.
Unit tests shall always be in the same check in.”

• “Test expects and demands that peer review of the code is completed be-
fore the task can be set to finished and that the peer review covers the unit
and integration tests and the quality of these tests”

These expectations provided a clear guideline for the tasks to be performed before the
build was released to the test environment. It also demonstrated that testing is an inte-
gral part of the development process and established expectations to the quality of
work within all activities and test phases, from unit test to integration and sprint sys-
tem test. In order for the expectations to be accepted, and not be forced upon the de-
velopers, they were developed in collaboration with senior developers on the project.
These senior developers were part of the Scrum teams and made sure the demands
were known and followed. By being committed to the expectations the senior devel-
opers acted as ambassadors for testing and helped the project establish a mutual un-
derstanding for the level of quality expected in the development phase; we established
a clear and visible culture for quality.

Functional areas were usually divided into several epics and numerous user stories,
involving several application components/modules. User stories completing each
functional area were often delivered by several Scrum teams, making them dependent
on each other to complete development in the sprints. As part of the sprint planning,
the Scrum teams created user story dependency maps (Figure 1) and used these to
make sure that development was planned and completed in a correct sequence both
within the Scrum team and cross teams. The purpose was to complete development in
a timely fashion so that sprint system testing of complete areas could start as early as
possible. The dependency map also included a map of module dependencies for each
user story. In addition, the dependency maps were used in status and progress report-
ing in Scrum and Scrum of Scrum meetings as well as in informal cross-team com-
munication.

Fig. 1. Dependency maps and link to identified high risk modules

To ensure the necessary prioritization and focus during development and testing,
we developed a risk-based approach that identified the high risk modules. I.e., mod-
ules were defined as high risk if

• previous experienc
change and test, b

• the module was us
batch and GUI mo

The resulting list of high ri
multiple user stories, as hi
done to obtain an overview
code changes to. Since we
lect statistics from the pro
ported and fixed (defect his
high risk modules, we deve
development and test plann

Result. We experienced th
most central resources with
the client resources as part
resource with extensive (cro

Client side involvement
from the client early on in t
ing of the functionality to
them in planning and effect
also became a more active p
tion model allowed. Anothe
parent test approach and te
our development, quality as

Dependency maps and a
development and testing so
tem testing of the complete
accurate and reliable in our
pleteness in the sprint deliv
side sprint acceptance test
committed and approved af
in the sprint acceptance test

Fig.

High Level Test Driven Development – Shift Left

ce with the module suggested that it was complex to
both during development and in production
sed in several contexts (i.e. a web service used by both
odules)

sk modules was merged with a list of modules involved
ighlighted by the dependency maps (Figure 1). This w

w of what high risk modules the Scrum teams were mak
were working with an existing system we could also c
duction environment on modules with several defects

story). When we merged the defect statistics with the lis
eloped a good overview and basis for prioritization in

ning.

hat the dedicated QA resource/tester became one of
hin the teams. We relate this to the lack of availability
of the Scrum team, thus allowing the tester to become

oss) functional knowledge.
t facilitated by the Scrum teams enabled direct feedb
the sprints, helping the team to obtain a correct understa
be implemented. The insight gained by the client hel

tively executing their own sprint acceptance test. The cli
part in the development process than the original organi
er positive effect was that the involvement ensured a tra
est process. This proved to be valuable in gaining trus
ssurance and testing process
a risk based approach helped the Scrum teams plan th
o that code was delivered in a way that allowed sprint s
e functionality within the sprint. We believe we were m
r sprint deliverables, and achieved a higher degree of co
verables when using this tool. The results from the cli
support this. The chart (Figure 2) summarizes the sto
fter each sprint. It also shows the number of defects fi
t.

2. Sprint status, defects and user stories

243

d in
was
king
col-
re-

st of
the

the
y of
the

back
and-
ped
ient
iza-
ans-
st in

heir
sys-

more
om-
ient
ries

ixed

244 K. Bjerke-Gulstuen et al.

Sprint 10 to 12 consisted of implementation of the most complex functionality and
more of the system was integrated to other systems. This caused a rise in defects be-
ing detected and fixed during the sprint acceptance testing.

3.2 Organizing the Testing to Achieve a Shift Left Focus

Motivation. Due to scope, risk, complexity and the fact that we were implementing
changes in an existing system, the system needed a large amount of testing and re-
gression testing. To reduce the demand on testing in later project phases it was impor-
tant that the Scrum teams completed all planned test activities. This meant the Scrum
teams also had to implement the concepts of “shift left” when organizing their testing.

Execution. Our test execution model consisted of both sprint system tests and a final
system test (Figure 3). This model aimed at delivering a working system to the client
every third week, a thoroughly regression tested system after the final system test, and
to reduce the demand for testing in later project phases.

Fig. 3. Sprint development and test execution model

Within the sprint we focused on separate testing of each committed user story, fol-
lowed by testing them in context of the complete functionality they were part of.
However, due to the many dependencies we were not always able to test all functio-
nality without stubs or mocks of integrated systems. Therefore, we had to repeat test-
ing of complete areas after all user stories were developed. This final system test
aimed at re-testing the essence in the delivery from all sprints as well as regression
testing of selected critical functionality. For the final system test the testers were
moved from the Scrum teams and organized as a separate team.

The test execution model aimed at dedicating most of the third week of each sprint
to system testing and fixing defects. However, due to many of the development tasks
being complex and time consuming, this was not always possible to achieve. To en-
sure that sufficient testing was performed we decided to rely on exploratory testing in
addition to the structured testing. For our exploratory testing we teamed developers,
designers, client side testers and Scrum team testers, and arranged sessions where the
teams competed in detecting the most defects. These teams organized themselves in
regards to what area to test and their strategy for identifying defects.

In the first week of the sprint each team was required to deliver a test plan for each
user story. At the end of each sprint the client demanded a test report for every user
story covering what we had tested and input for the next test phase. On average the 11

 High Level Test Driven Development – Shift Left 245

teams delivered three to four user stories in each sprint. This meant 30 to 40 test plans
and test reports to be produced manually every sprint, hence both testers and manag-
ers spent a considerable amount of time producing reports rather than doing testing.
This challenge was solved by including the test plan and test report with the develop-
ment tasks already tracked and managed in a project tracking tool, and automating the
process of presenting the reports to the client.

Result. The final system test was essential in demonstrating a complete and high
quality system prior to the user acceptance testing (UAT). By being able to test larger
units of functionality, the Scrum teams identified a large amount of changes due to
unclear requirements before the UAT.

The exploratory testing had several positive effects. It became an important activity
for facilitating collaboration across teams, roles, levels and vendor/client, which re-
sulted in easier communication across “borders”. Also, we found it valuable to in-
clude the developers in these exploratory test teams. We experienced that the devel-
opers enjoyed the activity and even fixed the defects identified before the defects
were registered in the defect management system and assigned for correction.

We found the reporting automation strategy valuable as it helped us to present all
plans and reports to the client in a timely fashion and freed up time for the testers to
focus on the actual testing tasks. Also, this allowed the test manager to spend more
time coaching the teams, helping them to complete all sprint testing.

3.3 Was It an Agile Project?

To deal with the challenges experienced and the size of the project, we needed to
balance agility with processes and routines that gave us more control up front and a
stricter management behavior towards the teams. We found these actions necessary to
meet the goals of the project, but how did the project actually deviate from the prin-
ciples in the Agile Manifesto?1

The Scrum teams did not have a client resource as an integrated part of the team,
but they had a dedicated role within the team (QA/tester) and facilitated proactive
involvement of the client side throughout the sprint.

The Scrum teams were planned to be self-managing and to organize their own
work towards their Scrum team goals. However, to cope with the strict time schedule
we had to develop a management, team and organizational culture that enabled the
management to interfere with the teams if risks for delays were identified. Actions
were taken to make sure all committed user stories were delivered on time and that
testing was done according to the approach and plans. This included putting in extra
effort, often demanded by the management. This was necessary to make sure we did
not produce an unwanted backlog and technical and functional debt.

Having the testers organized as a separate team during the final system test is not
compliant to the manifesto. However, we considered it necessary to meet the dead-
lines for our complete delivery to the next project phase.

1 http://www.agilemanifesto.org/

246 K. Bjerke-Gulstuen et al.

The project also implemented a common set of guidelines and rules to aid the
change request process in deciding if a change request was to be implemented or not.
This process got stricter towards the later sprints and finally only changes critical for
the political decision were accepted. Other changes were registered as technical and
functional debt and deferred for evaluation to later releases.

4 Conclusion

Agile development methods are increasingly used in large development projects char-
acterized by high complexity, interdependent tasks, fixed scope, fixed delivery date
and a professional client with high demands and expectations for quality.

The key learning point from organizing testing in this project was to shift the test
activities left towards the earlier phases of development. This shift ensured that test
and QA activities were given the attention they needed. This helped us to detect de-
fects in both design and code early on, and made it possible to deliver working soft-
ware to the client by the end of every sprint. To achieve this, the organization must be
mature and accept test as a vital part of the development process.

A second key learning point was that when the necessary conditions and expecta-
tions are clearly communicated and understood by the Scrum teams, a mindset and
attitude is naturally developed saying “we plan, implement and deliver this software
together”. If the management and senior developers introduce concepts, expectations
and tools through cooperation, these aids will not be perceived as being forced upon
the teams. The result will be early test and high level test driven development as natu-
ral and integrated parts of the projects agile development process.

To conclude, projects need to find a balance between actions that increases the lev-
el of control and management while preserving the benefits gained by using agile
development methods. However, the actions need to be implemented in a way that
ensures that they are supported and agreed upon by the Scrum teams. Test manage-
ment and project management should therefore be creative and bold in challenging
the way agile is implemented; with the main goal to continuously improve the deli-
very models, and to deliverer working and high quality software to the client on a
regular basis.

Acknowledgements. We are grateful to Ville Heikkilä for helpful comments on earlier ver-
sions of this experience report.

References

1. Williams, L., Cockburn, A.: Agile Software Development: It’s about Feedback and Change.
IEEE Computer 36, 39–43 (2003)

 High Level Test Driven Development – Shift Left 247

2. Dingsøyr, T., Moe, N.B.: Towards Principles of Large-Scale Agile Development. In:
Dingsøyr, T., Moe, N.B., Tonelli, R., Counsell, S., Gencel, C., Petersen, K. (eds.) XP 2014.
LNBIP, vol. 199, pp. 1–8. Springer, Heidelberg (2014)

3. Haugset, B., Hanssen, G.K.: Automated acceptance testing: A literature review and an in-
dustrial case study. Presented at the Agile 2008, Proceedings, Toronto (2008)

4. Jones, C.: Software Quality in 2012: A Survey of State of the Art, presentation by Namcook
Analytics LLC. www.namcook.com

Shorter Feedback Loops by Means
of Continuous Deployment

Arjan Claassen(B) and Laurens Boekhorst

Royal Philips, Amsterdam, Netherlands
{arjan.claassen,laurens.boekhorst}@philips.com

Abstract. Gathering early feedback on features is critical to many pro-
jects. Many Agile methodologies define feedback loops. Often, the feed-
back loop for completed features only closes after the iteration finishes.
In this paper we will introduce a way of closing this feedback loop early,
by means of continuous deployment. This also lowers the deployment
effort for developers, increasing their happiness.

Keywords: Short feedback loops · Testing · TDD · BDD · Continuous
integration · Continuous deployment · Hot compatibility · Zero down-
time deployment

1 Introduction

The authors of this paper, Arjan Claassen and Laurens Boekhorst, are web devel-
opers at the Software department of Philips Innovation Services, an innovation
service provider within Royal Philips. It is our aim to accelerate the innova-
tion of our customers, from start-up to multinational. The Software department
is comprised of five groups dedicated to web, mobile, device, and application
development and a group that focuses on systems engineering. The Software
department has adopted the eXtreme Programming (XP) principles and the
Scrum way of project organization from the start in 2001, and has been sup-
porting Philips Research for about 15 years, implementing research prototypes.
Over the past few years we have been supporting Philips product divisions, such
as Consumer Lifestyle and Healthcare, as well.

Historically, Philips has been a product organization. Nowadays, more and
more projects are shifting from just product development and desktop soft-
ware towards mobile application development and web services and applica-
tions. Therefore, the request for service solutions has increased. The authors
have been developing for both research and innovation projects. The web devel-
opment projects were initially small, sometimes only two people. These small
sized project teams resulted in more responsibilities on the developers. Besides
the development and test work they were also responsible for setting up and
maintaining the infrastructure and deployment of the web services and applica-
tions. The developers responsibilities gave them also the opportunity to imple-
ment changes in their projects. With the projects’ sizes increasing the same way
c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 248–253, 2015.
DOI: 10.1007/978-3-319-18612-2 24

Shorter Feedback Loops by Means of Continuous Deployment 249

of working is applied, giving the developers the responsibilities they need to
implement changes.

In the autumn of 2012, Laurens joined the web development team. Since
then the authors have been working together on three major projects, running
for several years, and about ten smaller projects, generally running for just a few
weeks or months. The changes we talk about in this paper were instigated by
the authors, solving a problem that was causing a waste of time. A bottom-up
approach was adopted, spreading the knowledge through technical talks within
the department without forming a special committee. This approach persists
today. In this paper, we describe the process we went through in the past two-
and-a-half years and the challenges that still lie ahead.

2 Test Automation

Testing is in the DNA of the developers in the Software department. From the
start, Test Driven Development (TDD) has been taught as one of the important
principles of XP. By writing the tests upfront the developers are encouraged to
make the system testable.

During the early days, when we were still learning to do proper web devel-
opment we already wrote tests. This was not as easy as we were used in other
technologies. We built up experience in testing web services and web applicat-
ions over a couple of months. Today, we are still learning new ways of defining
tests in new technologies.

At the beginning, the test suite was rather basic, testing the functional classes
and methods. We did not focus on testing the database schema or the class
properties. We ran the test suite locally on the development machines. Even
though a test suite was in place, we could not guarantee that the web service
would function as specified. We did not have full coverage of all functionality.
Since web development was rather new to us and we were not yet able to test
everything as we wanted, we had to do manual testing to prevent the application
from failing once deployed into production.

During the first few months we had been building up experience. This allowed
us to define better tests and create a more rigid and elaborate test suite, both
on unit level and integration level. The test suite covered more and more of the
features and use cases. We started to gain more confidence in our test suite.

Having a solid test suite covering all use cases enables you to verify that the
application does what it should do. Although this is standard practice in Agile
development, in several projects we observed a manual verification and valida-
tion test phase was defined before releasing a product or application in produc-
tion. We started defining verification tests in scenarios, following the Behaviour
Driven Development (BDD) development process, using Gherkin syntax for the
scenarios. These scenarios describe the systems behaviour from the user point of
view. We chose to start verification testing just underneath the user interface.
The main reason is that we wanted to define a stable API for the functional part
of the system, independent of the user interface. The user interface built on top
of the system was treated as a separate application, tested in separation.

250 A. Claassen and L. Boekhorst

Writing these scenarios afterwards has proven to be difficult. We learned
that we should start writing these scenarios from the beginning. Testing your
code base on different levels should be done from day one. BDD should drive
the development, similar to TDD. Test automation and confidence in your test
suite are the enablers for continuous deployment.

3 Deployment Automation

Until two years ago the deployment process was completely manual. We would
upload our code and log in to the server remotely to install missing dependencies,
compile assets, and migrate the database. Depending on the changes, this would
take anywhere from minutes to hours and the application had to be stopped in
order to do so. Rolling back was also difficult since the new code had overwritten
the old code. Developers had to revert changes locally and upload them again. In
some cases, this would happen on the server directly. Since the process was very
error prone, feature deployments were postponed until the end of an iteration,
deploying everything at once. The amount of time lost in this process drove us
to investigate alternatives to manual deployment. Postponing the deployments
also caused customer feedback to arrive too late to take into account during the
next iteration.

Then we were introduced to Capistrano: a deployment automation tool for
Ruby on Rails. Capistrano scripts contain instructions (comparable to tasks in
Ant or make files) on how to install dependencies, migrate the database and
restart the application. Deployments are done in isolation, not touching the
application currently running in production and allowing an erroneous deploy-
ment be rolled back instantly. This requires basic knowledge of the application
that is being deployed. The responsibility to write and maintain these Capistrano
scripts rests on the developers responsible for development of the application
itself.

With deployment scripts in place, the amount of time it took to deploy an
application was reduced to seconds. The application was still inaccessible during
deployment, but the time frame was much smaller. Human error that plagued
the manual approach was also eliminated. The predictability of this solution
instilled much confidence in the team. Deployments started happening on a far
more regular basis and new features were demonstrated long before the end of
an iteration. The shorter feedback loop enabled product owners to refine stories
in the backlog before the next iteration started. The compounded time savings
of these benefits were significant.

4 Continuous Integration

Integration and regression testing was done by the developers on their work
stations. While developing, they regularly ran the test suite with unit and inte-
gration tests, as well as the behaviour scenarios. We encountered situations in
which the tests ran on one development machine, but when running the same

Shorter Feedback Loops by Means of Continuous Deployment 251

test suite on another development machine it generated errors. Not being able to
run the test suite correctly on another machine was often caused by differences
in the versions of the referenced libraries. This also happened on the produc-
tion system resulting in the application not running correctly. Installing a newer
version of the library by the developer for another project was often the root
cause.

We started to set up a continuous integration (CI) server in order to have an
independent machine verify the correctness of the code and its references. Con-
tinuous integration servers had been around for a long time in our department
for the integration of the embedded software and desktop applications. How-
ever, for web development we did not have one in place. With the experience
we had in setting up CI servers for other types of projects, setting it up for web
development was rather straightforward.

The job in the CI server executed successfully if the test suite ran without
problems and all the tests passed. After a successful job run, the project status
on the build monitor would light up green. Any exception would fail the job
and signal the development team to start an investigation. Failures rarely occur,
except when developers didn’t run the test suite on their development machine,
or did not commit all the necessary project files. Another reason to have a
continuous integration server was to prevent our customers from committing
erroneous code, ignoring the test suite.

Even with the continuous integration server in place and writing tests as well
as scenarios, the application would cause exceptions in production. In many cases
these errors were caused by corner cases that were not under test. Occasionally,
the authors were confronted with exceptions that should have been discovered
by tests. Investigation revealed that the tests were excluded in order to make
the suite pass. Since developers should never cut corners like this, we introduced
additional failure criteria to the CI job.

Besides updating the build monitor, our continuous integration server reports
statistics on the number of passed and failed tests, the duration of the build, code
coverage, and more information. We started to add more failure criteria to the
CI job, not only looking at the number of failed tests. Among others we started
observing test duration to signal performance problems in a rudimentary way,
covered classes to prevent untested classes to be introduced, and test exclusions
to see whether tests are excluded. In this way we could see whether the code
base quality was dropping.

5 Continuous Deployment1

At this point we were able to verify that our application was doing everything
it was supposed to do. Development was still interrupted by the occasional
deployment. We considered continuous deployment by the continuous integra-
tion server as a solution to this interruption. With deployment automation in
1 Note: we do not employ continuous deployment for commercial applications or

services.

252 A. Claassen and L. Boekhorst

place, implementing continuous deployment was simply a matter of appending
the deployment script to the build process. Developers now no longer have to
interrupt development to deploy the application. The maintenance burden is
further reduced as developers do not need to have their access to the server
administered either.

We were now deploying over ten times per day, but the application was still
inaccessible during deployment. As the traffic to our applications increased, we
could no longer afford to have them inaccessible this often. We considered con-
figuring the continuous integration server to deploy nightly. This would however
lengthen our feedback loops, while significant effort had been put in shortening
them. It felt like a step back and that is why we opted for eliminating downtime
instead.

In our case this meant we had to figure out a way of migrating the database
in production without having the code that was still running on it to cause
exceptions. The solution to this problem is referred to as hot compatibility.
The goal is to ensure that each deployment is compatible with the previous.
In order to achieve this goal, changes to the database schema happen in two
distinct deployments. The first deployment deals with additions to the schema,
possibly duplicating any functionality that is currently deployed. The second
deployment deals with deleting any functionality that was duplicated in the
previous deployment. By splitting up changes to be as small as possible, this
approach will scale to big architectural changes as well.

Finally we needed to deal with downtime caused by restarting the web server.
We adopted Passenger as a module to run Ruby-on-Rails applications within
the Apache web server. Fortunately, Passenger was already capable of reloading
the application without dropping connections. Instead of restarting Apache, we
changed our deployment script to instruct Passenger to reload the application. It
does so by finishing any outstanding requests and queuing any new connections,
serving them as soon as the application has been reloaded.

6 Open Issues

Sometimes, even with our stringent testing process, an application will fail in
production. By adopting Capistrano we already have the capability to perform
automatic rollbacks to earlier deployments. Capistrano does not keep track of
how many migrations are in a deployment however, and as such it is unable to
downgrade the database. This is a process currently left up to the developer,
although it is prone to error. We wish to automate it at some point, however it
does not rank high on our priority list since it happens very rarely.

More important is the ability to deploy any number of branches simultane-
ously. Quite often a customer is interested in seeing a feature evolve during an
iteration. This is valuable since it allows us further shorten our feedback loop.
Deploying a different branch overwrites the deployed mainline however. This is
highly undesirable due to the fact that a development branch may be unstable,
or introduce database migrations that need to be rolled back when rolling back

Shorter Feedback Loops by Means of Continuous Deployment 253

to the mainline. Ideally, we have a completely separate environment, dedicated
solely to the branch that is being deployed. At this point it is mostly an infras-
tructural challenge as we already have test and deployment automation in place
in order to enable branch deployment.

7 Conclusion

Continuous deployment has allowed us to significantly shorten our feedback
loops. Product owners evaluate the application shortly after the developers finish
a feature. Confidence in your test suite is the enabler for continuous deployment.
Gradually moving forward from test automation to deployment automation, con-
tinuous integration and deployment has proven to be a sustainable approach. The
burden on developers to perform system administration has been greatly reduced
leading to significant time savings as well as increased developer happiness.

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 254–261, 2015.
DOI: 10.1007/978-3-319-18612-2_25

On a Different Level of Team

Johanna Hunt()

Aptivate, Swanns Road, Cambridge, Cambridgeshire, UK
johh@aptivate.org

Abstract. This experience report summarises the decision-making process used
at Aptivate, focusing on the decision to create ‘standing teams’ with delegated
authority to plan the distribution of their own work across multiple projects.
The paper presents the company approach to consensus decision-making, and
how this has supported company culture and values as well as enabled this
change with full participation. This experience report covers the time period
from September 2014 to March 2015.

Keywords: Team · Multi-project · Decision-making · Consensus · Consent ·
Culture

1 Introduction and Background

Aptivate is currently considering options for change, including experimenting with
teams. This is not to ‘become more agile’, but to open up options for improvement;
such as delivering greater value to their clients and increasing empowerment for staff.
This has been handled using a consensus decision-making approach.

Aptivate (originally founded as Aidworld Humanitarian ICT in 2003) is a not-for-
profit company primarily focussed on providing support for international develop-
ment ICT initiatives. Aptivate works with other non-profits, charities, and NGOs as
web / software developers and technical consultants.

There are 18 general members of staff in the company. Staff are distributed across
two main sites in the UK (Brighton and Cambridge), with further colleagues in
Europe and USA. Projects are primarily run as distributed remote projects, but some
are run collocated in the relevant country to ensure participation and input from users.

Aptivate embraced agile approaches from their beginning in 2003, and consensus
for organisational coordination and decision-making in 2009. From late 2013 it was
recognised that the organisation was facing coordination challenges from the growth
in numbers, reducing effectiveness of decision-making and communication. To ad-
dress this the organisation started delegating consent for internal coordination.

2 Teams in Software Development

This section details three distinguishing categories when talking about teams in soft-
ware development; responsibility and capability, size, and duration.

 On a Different Level of Team 255

2.1 Responsibility and Capability

In the agile community there has been a lot of focus on feature teams as opposed to
component teams. This is most commonly defined as the difference between respon-
sibility focussed on a layer or layers of an application (most commonly an architec-
tural or technological divide) versus end-to-end delivery of working (tested) features.
The latter is typically espoused in agile organisations, with cross-functional teams of
generalising specialists able to collaborate on an end-to-end or vertical slice of value.
It is common for feature teams to include testing and quality capability.

2.2 Size

Team size varies significantly. While the standard presented scrum team size is 5-9
people, effective teams can be smaller or larger depending on context. With fewer
people there can be less knowledge distribution and skill coverage, whereas with
more there is a rapidly increasing cost of communication, coordination and alignment.

2.3 Duration

Over time a team will form; aligning around values, ways of working, processes and
improvements. Project teams by definition end with the project the team was formed
for, whereas product teams continue for the duration of a product’s funding. In the
former this is normally marked by project end (by having met project goals or by
cancellation), whereas for the latter the end point is normally when a product is either
retired or when there is no longer a business case for adding new features.

In both cases there is a clear end point to the team, at which it is disbanded. Much
of the learning around effective collaboration is lost when the team disbands – as this
relates to how individuals work with each other in an effective manner, understanding
strengths, capabilities, weaknesses.

For long projects, and long running products or clients, the impact may not be so
apparent as the end matches the end of the overall goal. However, for shorter projects
(up to three months) the abbreviated lifecycle of the project team becomes increas-
ingly visible, with an increased overhead for ramp up and kick off.

An alternative is that of standing teams which continue indefinitely. Such teams
are without a defined end-point, and with continued existence across multiple projects
or even products, gain the advantage of experience and unity of identity. This may be
a team that moves from one project to the next, or one that handles multiple concur-
rent incoming streams of work depending on the organisational setup. In time they
develop their own rituals, values and ways of working which can be considered a
team culture. The risk with such teams is the possibility that they might eventually
become insular and less open to outsiders or new ideas.

3 Teams and Projects at Aptivate

Due to the comparatively small size of the organisation and the nature of the work,
projects typically involve 1-2 developers over periods of two weeks to three months.
In the majority of cases a designer will be involved for part of the time and there will
be a project manager supporting the client communications.

256 J. Hunt

Projects are assigned to individuals through a traditional ‘resource management’
style of coordination; sales people responsible for bringing in the new work coordi-
nate with a person responsible for planning, assigning projects tentatively to people
based on their skills, interests and availability. As client timeframes change, or indi-
viduals are needed elsewhere, so the overall plan is adjusted.

Projects are sold to clients in 10 ‘developer day’ blocks of value delivery (for ex-
ample, 5 days each of two developers, or one person for 10 days). These tend to be
consecutive, but may be split depending on client and need.

Project teams all use digital boards to coordinate their work and visualise to clients.
There is normally a unique board per client. A typical project will involve daily
check-in calls with a client representative as Product Owner for the work. There are
frequent demos and retrospectives, although these are often not on a regular cadence
due to project planning and time limitations. Project managers coordinate the outward
facing communications, often across multiple projects at any time.

This approach had worked well for Aptivate for several reasons, but as the num-
bers in the company have grown, this has become unwieldy, with a large overhead of
moving ‘people pieces’. Where repeat work on an existing site occurs it may or may
not be the same people involved, leading to inconsistencies in approach to both de-
velopment and coordination.

4 Company as Team at Aptivate

One reason that the approach as described above has worked for Aptivate is because
the company itself has been functioning as a single team. The values and ways of
working that one might find within a project team are distributed across the whole
organisation, rather than at the delivery level. There are a number of unifying values
and practices across the organisation which support this.

4.1 Organisational Practices

• The whole organisation, across all locations, attends a daily video call
standup or ‘Morning Meeting’ (MM). In cases where timezones prohibit at-
tendance these meetings are recorded for later consumption.

• Lunch is taken at the same time across the UK offices – with each site pre-
paring a shared lunch and sitting down to eat together every day.

• The entire company meets for a full day ‘Monthly Management Meeting’
(MMM) on a regular cycle. Where possible this involves having everyone in
the same room for the full day – any staff who cannot attend in person attend
as remote participants. This includes a monthly organisation-wide retrospec-
tive.

4.2 Organisational Values

The following are a set of perceived organisational values that support unity of focus.

 On a Different Level of Team 257

Everybody is equal and has a voice
o There is a commitment to equal empowerment and ownership for

all staff. Ownership is not just reflective of empowerment, but also
of responsibility. Everyone is considered equally responsible.

o There is a company ideal of equal pay and benefits for all, no matter
length of time or experience. Where there are exceptions these are
reviewed by the full company and considered limited term.

o Any member of staff can be involved and have a voice in any com-
pany decision. Any member of staff can propose a change that
could affect the entire company.

o The job title for all employees is ‘General Member of Staff.’

Everybody will share and be transparent
o Within legal and ethical constraints, all workings of the company

are transparent to anyone within the company.
o There is a commitment to sharing back to the community both

through speaking at, and running, open events and making code
Open Source where possible.

Work has value
o A societal or ethical benefit or impact should be identifiable in any

project picked up. Normally this is for international development,
but can also include local communities and organisations.

o An initial check goes out to the company before a project is ac-
cepted – anyone can question a project on ethical or impact grounds
to ensure this value is sustained.

Participation is key
o Participation with clients and users to ensure that the right people

are involved is considered vital. Where possible clients are expected
to act as Product Owners, collaborating directly with the teams on a
daily basis. Clients and users will typically be engaged in participa-
tory workshops to ensure the best value for all is identified.

o Everyone is expected to participate and contribute to the running of
the company as a whole however they choose (from washing up, to
facilitating meetings, to doing the accounts).

5 Culture of Consensus

The values presented previously are held across the entire organisation – alignment at
this level supports trust and collaboration in project groups. The company itself func-
tions as a single self-organising entity. A major supporting aspect of this is the culture
of consensus.

258 J. Hunt

From the start Aptivate had a strong value of consultation and participation. Prac-
tices from Formal Consensus decision-making [1] were adopted in 2009 as a more
structured approach to current practice. Rather than being added as a new company
value, this was formalised primarily to improve the approach to decision-making,
which had been tending toward long and occasionally adversarial meetings.

Consensus was seen as a way to improve self-governance in keeping with existing
approaches and values - a way to ensure everyone had a voice and would be heard.
The style of discussion in meetings swiftly shifted from adversarial to calm and co-
constructive. This in turn gave space for the quieter voices to participate.

While decision-making is delegated for day-to-day operations, the MMM is the
primary venue for assessment of ongoing work, review of individual performance,
and policy and strategy decision-making. This is achieved through ‘proposals’ that
anyone can create. The aim is not to get everyone to agree, but to collaboratively pro-
duce the best possible decisions. The consensus approach nurtured the key values, as
it encouraged everybody to participate, have a voice, and collaboratively own deci-
sion-making, thus also enabling transparency.

5.1 Consensus at Aptivate

Anyone can raise a proposal for change. The test for a proposal is this: “Does anyone
have a Critical Concern about the proposal at hand?”

Any proposal is considered accepted unless there is an unresolved Critical Con-
cern, and will not progress unless this is resolved. A Critical Concern may be an issue
that presents unacceptable danger to Aptivate’s ability to deliver, or it may mean that
the person raising the concern would be unable to participate in the company effec-
tively. If a Critical Concern is raised, it is owned by the whole group until resolved.
The proposal will be reconsidered and altered until all concerns are met - usually
making the first step less expensive or risky. As a result, affordable experiments are
made to the company and its operation.

As part of the process people can raise issues, risks or non-critical concerns which
are incorporated into the proposal for monitoring. These are cases where the proposal
is not stopped from progressing, but is considered to carry additional risk that would
need to be tracked or monitored. Thus any proposal will be modified through the de-
cision-making process until all concerns have been resolved or are considered miti-
gated or affordable risks.

Consensus, as practiced at Aptivate, thus produces good solutions, often as interim
‘experiments’ with organisational buy-in from the point of acceptance and the major-
ity of risks and underlying issues addressed. Solutions are cooperatively created, and
not owned by the original proposer. Everyone works to make it the best decision for
the group. All involved are responsible for expressing concerns.

This has resulted in a high level of staff engagement within the company. As every
member of the organisation has a role in making policy, there is a sense of owning
“the rules” with everyone bought in and focussed on making them work. The majority
of proposals are considered and adjusted at the Monthly Management Meeting
(MMM). There is normally preparation work completed in advance to ensure that the
facilitated discussion at the MMM is effective. Proposals will often be shared in ad-
vance.

 On a Different Level of Team 259

Consensus decision-making may appear to take longer, but decisions are not the
end state. Any change starts with an idea, and ends with the implementation of that
change. While more time is spent elaborating an idea and cooperatively agreeing on
it, the end result is a decision that is fully understood and comes with full buy-in from
all involved. Reaching consensus does not mean that everyone is in complete agree-
ment. No proposal is agreed until all concerns have been resolved whether by adding
monitoring or by adjusting the proposal.

Open questioning and non-violent conflict is encouraged for consensus to produce
effective proposals. One of the challenges with everybody having a voice in all deci-
sions is that this can lead to a natural and positive tendency to question, which could
be perceived as "culture of criticism" or as risk-aversion. If a proposal gets pushed
back for later discussion, the proposer may get discouraged.

While discussions of proposals are best had face-to-face, not every discussion
could or needed to be held at the MMM. The discussions prior to a proposal, whilst
valuable, can be time-consuming. A tool has been developed by Aptivate
(http://www.econsensus.org) to enable digital discussion and tracking of responses.
This is especially useful where topics need initial discussion, or a decision outside of
the monthly cycle.

5.2 Delegated Consent and Working Groups

A challenge with consensus is the implied expectation that everyone provides input to
everything. For many groups using consensus, all members of a group make all policy
decisions. As Aptivate numbers grew, the MMM became unwieldy and less effective.
While everyone being able to contribute is vital for alignment and transparency, not
everyone needed or wanted to be involved in all proposal discussions and decisions.

This led to an organisational change which started in late 2013. Working Groups
(WGs) or ‘circles’ with delegated authority for an aspect of the organisation were
created – such as finance, people, output (delivery), marketing. These act as incuba-
tors for proposals, providing clearer accountability as well as taking many organisa-
tional decisions.

Anybody can contribute to any working group at any time. These WGs provide a
service to the MMM and all individuals in the company, by enabling those who are
not interested in certain areas to delegate the decision-making to a smaller group.
Each WG has an elected product owner and project manager.

Where proposals are considered to affect multiple WGs, have a large delivery im-
pact, financial implication, or high organisational risk these are brought back to the
MMM. While this rule is not explicit there is a tacit agreement around the types of
proposals this covers. Everyone has a right to be involved in decisions that affect
them. The MMM retains the right to withdraw delegated consent.

Delegated consent is a pattern of practice which appears in both Formal Consensus
[1] and Sociocratic Consent [2]. Participants in a group using these methods choose
people to serve in empowered decision-making roles; where the group is too large,
multiple teams may each receive delegated authority in a specific domain. Consent
differs from many folk practices of consensus in that it has a clearly defined test for
when a decision is made. For the MMM to withdraw consent, someone would need to
clearly identify a risk that could negatively affect the organisation as a whole. Within

260 J. Hunt

the framework of delegated consent, WGs function as empowered domain-focussed
teams, enabling distributed policy-making.

One of the reasons that this approach was able to succeed, was that the shared val-
ues within and across the organisation (despite covering many locations) had led to a
high level of trust. Everyone is trusted to want the right thing for Aptivate as a whole.
This meant that delegated consent to the Working Groups was possible - acknowledg-
ing that not everyone can be involved in everything enabled groups to be empowered
and effective.

6 Moving to Standing Teams

While, WGs function as organisational teams with delegated consent for decision-
making, Aptivate continues to have challenges at the delivery level with individuals
assigned to projects. While individuals may function or cooperate as short-term sub-
teams, there are organisational challenges:

• Low ownership of code
• Inconsistent quality and testing approaches
• Variable working practices
• Inconsistent ways of working with clients
• Late engagement of staff with project (often starting on day of project, rather

than ramping up or involved in up-front discussions)
• Low knowledge sharing across projects (innovation, improvements and new

techniques may be made, but not carried forward to other projects)
• Increasing levels of project-specific specialist knowledge
• Lack of visibility of upcoming work for individuals
• Increasing feeling of being constrained to a role (e.g. ‘developer’)
• No consistently used predictive planning approaches across projects (due to

variation in staff combinations, estimation approaches, and client needs)
• Hard to ensure sustainable pace for individuals across projects
• Low ongoing improvement at the delivery level

Rather than have the ‘company as team’ with ad-hoc sub-team groupings, a proposal
was made to take the key people who worked on projects (seven ‘developers’, two ‘pro-
ject managers’, and two ‘designers’) and form two teams equally balanced by capability
with delegated authority for their ways of working. The move was thus from multiple
small ad-hoc groups, towards two larger teams.

The decision for this change could not sit within just one working group. A col-
laborative proposal document was created and discussed/shared out for questions,
comments, risks and concerns with all who would be directly affected by this pro-
posal. Some areas were agreed to be monitored as part of the proposal, for example
the impact to ‘company as team’. Modifications to the proposal included the explicit
consideration that teams would be reviewed and members exchanged every few
months, to ensure that the teams did not become silos. As the Working Groups are
cross-cutting, alignment is expected to be retained across the company.

 On a Different Level of Team 261

This proposal document was revised over the course of three weeks, eventually
growing to seven pages, until all immediate points and concerns were met. It was then
presented at the January 2015 MMM, as a two month experiment before review, and
fully accepted with no Critical Concerns.

The final proposal included delegating authority for short term planning to each
team. The newly formed teams would take delegated responsibility for planning and
distribution of work within each team by whatever route they decide, normally focus-
sing on the forthcoming two weeks, but with an awareness of future projects. Teams
may still continue to work on multiple projects, but the decision for how to coordinate
this can sit with them, thus retaining a sense of empowerment for how that work will
be shared and how it can best be achieved within the team. Each team can develop its
own ways of working. Future projects will be considered by a ‘planning’ working
group, containing representatives from each team, to ensure that these are planned to
the appropriate team.

7 Conclusion

Without standing teams and with many projects typically being planned to only re-
quire one or two people, it is hard to share responsibility for quality and make shared
agreements about technical practices. It is also difficult to use any ‘normal’ measures
to predict, schedule and manage early expectations on projects let alone assess
whether pace is sustainable. While the organisation can reflect and improve, there is
no team to reflect and improve for the longer term. This can cause projects to become
short-sighted. Innovation, improvements and new techniques may still be made, but
may not be carried forward to other projects.

The model of shared ownership and ‘company as team’ supported by Aptivate’s
consensus model has alleviated the impact of this, but as the company has grown it is
moving towards clearer delegation of authority and accountability.

This experience report has summarised the approach to decision-making at Apti-
vate, in which I participated as a member of staff, focussing on the proposal to change
to ‘standing teams’. This proposal was put into effect from March 2015 and will be
reviewed in May 2015.

Acknowledgements. Thanks to everyone at Aptivate, this report is the culmination of an expe-
rience including everyone there. Particular thanks to Alan Jackson, Hamish Downer, Kavita
Rajah, Nathaniel Whitestone and Tom Lord for their clarifications and comments. Finally,
incredible thanks to Jutta Eckstein for all her hard work keeping me on track and shepherding
this paper into its final form.

References

1. Butler, C.T., Rothstein, A.: On Conflict and Consensus: A Handbook for Formal Consen-
sus decisionmaking, 3rd edn. Food Not Bombs, Tacoma Park Maryland (2007)

2. Buck, J., Villines, S.: We the People: Consenting to a Deeper Democracy - A Guide to So-
ciocratic Principles and Methods. Sociocracy.info Press, Washington DC (2007)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 262–269, 2015.
DOI: 10.1007/978-3-319-18612-2_26

Applying Agile and Lean Elements to Accelerate
Innovation Culture in a Large Organization –

Key Learnings After One Year Journey

Jari Partanen1 and Mari Matinlassi2()

1 Elektrobit Wireless Communications Ltd, Oulu, Finland
jari.partanen@elektrobit.com

2 Neone, Ii, Finland
mari.matinlassi@neone.fi

Abstract. This paper describes how lean elements have been applied in a large
company to change existing agilean culture towards innovation culture. Innova-
tion concentrates on radical, new business innovations but covers product and
process innovations as well. The main motivation and need to build the innova-
tion culture was an assumption that the company has a lot of competence and
innovation potential not utilized. The final goal is to measure if the actions tak-
en really have an impact to the amount and quality of new, radical innovations
and business growth of the company. This paper is limited to the intermediary
results achieved after the first year being (1) ideas-to-innovations value stream
established (2) idea flow and positive pull created among personnel and (3)
group of perfection practices has been stabilized for continuous improvement.
We plan to describe, measure and analyze concrete examples of radical innova-
tions in the future.

Keywords: Idea management · Radical innovation · Incremental innovation ·
Acceleration · Lean · Cultural change · Experimental culture

1 Introduction

Companies compete in being innovative through successful idea harvesting, optimiz-
ing the impact of critical experts and stimulating innovation culture. Herein, we
define ideas as exploration items or concepts that potentially will be new features,
products or services. Ideas may turn into innovations when there is a proof that, those
ideas have succeeded in creating new business and therefore provided value to the
users or end users. Radical innovations [1] create new products or even completely
new business ecosystems.

According to Farsi et al. [2] “organizations need different stimuli and driving
forces in order to implement and execute innovation”. This paper describes one possi-
ble approach and key learnings on stimulating innovation culture in the wireless seg-
ment of a large, international company, Elektrobit (EB) (www.elektrobit.com), who
specializes in demanding embedded software and hardware solutions for the automo-

 Applying Agile and Lean Elements to Accelerate Innovation Culture 263

tive industry and wireless technologies. Company has previously applied lean and
agile methods widely in the company [3, 4] for example on R&D activities, human
resources management (e.g. transparent goal setting) and finance (e.g. beyond budget-
ing) as well as continuous strategy and planning [5], however applying lean principles
to innovation culture creation has not been experimented before.

 One of the main motivations to build the innovation culture was assumption that
the company has a lot of competence and unutilized innovation potential. That is, tacit
ideas that have value but lack a forum to make them noticed by describing them and
sharing them among personnel. This unmined human capacity to create new and
combine existing things in a new way is one of the main valuable assets of a company
[6]. Therefore the goal was to promote lean startup thinking inside the company [7]
and build a growing organizational culture of innovation by further utilizing lean and
agile approaches.

In the beginning of this journey the organizational barrier for innovation in the
company was seen generally quite high. The existing methods and tools, as well as
the process for innovation, were considered to be too heavy. Further, the existing
processes focused on inventions and patenting and did not cover other types of ideas
such as process ideas, new features ideas or new product ideas efficiently enough.

In order to utilize the full innovation potential of the company we wanted to apply
lean thinking [4] also to the cultural change. Lean thinking means creating a “pull”,
aiming for “less waste” in ways of working and processing, emphasizing transparen-
cy, openness and collaborative development together with the people.

Both the authors are involved in the creation of the ideas-to-innovations change.
We created a systematic way to (1) collect, grow and scale ideas and (2) visualize
ideas early as lightweight demos to collect early phase of market or internal expert
feedback. Further, we created a (3) flow and pull of ideas among personnel starting
from business management to experts and implementation teams. Last but not least
we stabilized perfection practices to (4) continuously iterate and improve the way the
cultural change was applied itself.

In this paper we will first describe the background and motivation for cultural de-
velopment and general status of innovation processes and culture in the beginning of
journey. Then we introduce the lean principles applied and timeline of the case. A set
of particular methods and tools was applied to support the stimulation of innovation
culture. Detailed description of the tools and methods is out of the scope of this paper,
however. In the end of this paper we represent the early phase results, current key
progress indicators and retrospectives as well as lessons learned so far. Future plans
and conclusions are included in the paper at the end.

2 The Case Company, Background and Motivation

EB is a business-to-business provider of embedded systems for the wireless and au-
tomotive industry with more than 1600 employees in seven countries. EB´s wireless
segment offers wireless technologies in the state of the art products, services or solu-
tions and employs approximately 500 people distributed mainly in Finland and the
United States.

264 J. Partanen and M. Matinlassi

Company has used a stage gate based invention and patenting process for a long
time, roughly 13 years, during which much more than 50 patents or patent families
have been established. However focusing on patenting merely has not been enough in
order to create also flow of potential business ideas, inventions or demos to be expe-
rimented in short time frame. Or, for example, utilizing open sourced innovations or
even ideas outsourcing. Due to authority requirements patenting process can take up
to two years to be completed.

Company has also had business – decision based process for new solutions or
products for several years’. Therein, the first step proposal already requires many
aspects to be fulfilled for a business potential of product or solution innovation, so the
requirements for this are quite demanding.

Collecting ideas has not been systematic enough and therefore has not reached its
full potential to capture new business ideas. Collecting ideas also needed to be
lightweight and apply new experimental or exploratory ways of working.

Based on studies, findings have evidenced numerous compatibilities between Lean
and Agile, also called Agilean [8]. Also EB´s Wireless Segment has utilized Agile
methods since 2007 and began to adopt Lean principles in 2010. Adopted methods
include e.g. Scrum and Kanban, which have been increasingly applied not just to
software development but to embedded systems and hardware development as well.

3 Elements for Cultural Change

According to Rodriquez et al. [4], creating a “pull” and reducing “waste”, putting
stronger emphasis on transparency and collaborative development have been driving
forces in the company during the past years. Same authors found 5 lean principles and
2 supporting aspects to be the main elements characterizing EB’s Wireless Segment
Agile and Lean way of working: value, value stream, flow, pull and perfection com-
plemented with transparency and people oriented development. Below, we define
what these elements mean in the context of innovation culture acceleration.

Value and value stream i.e. ideas and the idea-to-innovation chain of actions. All
ideas potentially provide value to the company or to the customer. Tacit ideas do not
provide value and therefore are waste. The goal is to turn tacit ideas into visible, valu-
able ideas. After that, into visual demonstrations and finally into real customer leads,
products and projects i.e. innovations. Example of applying this element is introduc-
ing JIRA based “idea collection tool and process” (see Fig. 1) as a system which
represents the value.

Flow and Pull means that the idea-to-innovation stream does not have bottle necks but
ideas steadily grow towards innovations. Management does not have to demand or force
ideation but, it rather reflects natural, human need to create ideas and innovations. Se-
lected tool well supports the flow of ideas. It provides a visible backlog of new ideas,
ideas in progress and closing as well as definition of done. Review of all new ideas is
done weekly with concurrent team, delegating ideas to further processing and implemen-
tation. Team does not make decision, it supports the ideation.

Perfection means continuous improvement practices in order to keep cultural
change progressing and growing and ensure long term results. Long term change of a

 Applying Ag

large organization is a lot
wanted to keep things prog
quickly and started iterating
feedback. That is why ligh
reviews in order to capture
simply talk within team ab
do to improve things. Large
year (Retrospectives 1and 2
and agree on future directio
important to keep things pr
feedback loop must be rela
processing of new ideas eve

Transparency means val
is, transparency and openne
and publications of ideation
nication and open informati

Involving people through
a low threshold for anyone
of the ideation tool (at Q1/
addition to that, a couple of
on specifically targeted bus

Fig. 1. Timelin

gile and Lean Elements to Accelerate Innovation Culture

of work. From method development point of view,
gressing by creating the first concept of a method/proc
g and continuously learning from our experiences and us
htweight retrospectives are done every week during i
e continuous improvement initiatives for the ideation.
out what works and what does not work and what we
er scale retrospectives were organized twice during the f
2 in Fig. 1) in order to reflect the general status of cha
ons. From the point of view of idea processing, it is equa
rogressing i.e. ideas shall not pile up in any phase and

atively short. Coaching team ensured this by having the
ery week on Friday since April 2014.
luating good communication, visibility and openness. T
ess of ideas that are in the process as well as intranet ne
n success stories. Sartori & Scalco [9] define clear comm
ion sharing as extra important competences for innovatio
hout the company. Key idea of the approach was to prov
to participate. Therefore, since the official internal lau

/2014 in Fig. 1), anyone could submit an idea anytime
f ideation campaigns were organized later to boost ideat
iness domains defined by business management.

ne of the cultural change during 2014 – early 2015

265

we
cess
sers
idea
We
can
first

ange
ally
the

 1st

That
ews
mu-
on.
vide
unch
e. In
tion

266 J. Partanen and M. Matinlassi

According to Sartori & Scalco [9], “the higher the degree of communications and
the larger the employees social network, the better the context for the occurrence of
innovation”. Therefore, in parallel, a “coach network” (Fig. 1) was established. Coach
network is a small group of personnel specially trained with knowledge about idea
submission, review and demonstrations. These experts work in daily projects and
provide their expertise to idea submitters whenever needed. “Expert network” (Fig. 1)
is a larger group of people that takes care of taking ideas further and implementing
them. Expert network consist of small cross competence teams wherein idea submit-
ters are the core of teams complemented with supporting experts. Further, because
involving business management into the innovation activities can have a positive
impact on the efficiency and performance of innovation activities [10] as well as on
the company economic performance [6], we also wanted to have business manage-
ment commitment.

Business management commitment means company-wide communication of they
support to the innovation activities and commitment to the change. Business man-
agement approval was applied for the overall change decision in the beginning
(“Business Management Approval 1” in Fig. 1) but, also for each individual method
and tool introduced along the journey e.g. “Lightweight Demo Concept” (Fig. 1).
Further, a 7 person review team (i.e. coach network) has involved business manage-
ment and key stakeholders to participate in idea processing by directing discovered
new ideas weekly. That is, reviewing of all business ideas with the help of idea man-
agement tool. In addition, several separate workshops have been held for business
reviews e.g. for one area of ideas series of 5 workshops in total.

4 Lessons Learned

In the beginning of the journey, a limited number of KPIs (Key progress indicators)
was defined in order to quantitatively measure the progress of the cultural change. In
the sections below, we present the KPIs, their values in December 2014 i.e. ten
months after the change launched as well as comparison to the situation before the
change. Further, we discuss the gained experiences and retrospectives during the first
year of the journey.

4.1 Results

In the prior approach there was only process for handling inventions. Now, we still
have the invention process complemented with idea handling process. Table 1 shows
selected KPIs and their values with the new process. Below we describe situation with
the prior approach.

The number of all ideas has not been measured before. Only the number of inven-
tion proposals has been measured being 5-10 in a year previously. All these can be
categorized as business ideas. In the earlier process the inventions were submitted by
mostly the experts, representing much less than 5 % of the personnel. In the earlier
invention process, a very limited amount of experts and technology management

 Applying Agile and Lean Elements to Accelerate Innovation Culture 267

representatives have been handling invention proposals. This is due to legal aspects of
invention process. In the earlier invention process the cycle time for the first
processing was not measured but instead, invention proposal total processing time
was measured. It took up to 60 days before the processing of inventions was com-
pleted.

Table 1. Key progress indicators and their values

KPI Value Details

of idea submissions

of potential invention submissions
(may turn as technological idea)

>100

10

40% started, 30% in progress,
30% done
2 completed, 8 in progress

% of potentially new business ideas 25% Categorized as “business idea”
% of personnel submitting ideas 10%
of people participated in idea
processing

>100 20 teams, 3-15 people in each
team

Cycle time to the 1st processing
Cycle time total
of ideation campaigns
% of potentially new business ideas
from the campaigns

<1week
12 weeks
2
50%

From idea submission to a demo
Focus in specific business topic
Categorized as “business idea”
and selected for further studying

4.2 Gained Experience

Based on both large-scale and lightweight retrospectives there seems to be two main
factors that have affected the results above. First, in idea submission, it was created as
simple as possible idea submission form that makes it easy to get started. This was done
in order to lower the burden to submit ideas. Second, in idea screening, it was not made
go/no-go decisions but rather a coaching and shepherding guidance. This was done in
order to scale and grow the ideas and to create a safe environment for ideation.

Lead time of the ideas handling i.e. the latency between the submission and im-
plementation of an idea, have been improved all the time. Especially our experience is
that focused ideation campaigns can shorten the total lead time of individual ideas
however the lead time still being in large, international company around 12 weeks
(from idea to demo). Relatively long sounding lead time is, however, not a problem if
things keep progressing all the time and the status of the idea is open and visible to
the personnel.

Further, it seems that focused ideation campaigns lead to more promising and
beneficial ideas, based on first experiences. Even though final results are not yet there
i.e. no radical innovations implemented on the market, this experimental approach
based on Lean and Agile principles seems to be a solution for developing a large idea-
tion environment. Transparency of the approach is important for the people to see the
progress of ideas and to understand how they could contribute to the ideation leading
into innovations.

268 J. Partanen and M. Matinlassi

5 Discussion

This section discusses the impact of the cultural change to the company and limita-
tions of the study.

5.1 Impact of the Cultural Change on the Company

To see the final impact of the change needs patience. So far, it is already the first sign
that the change has had some impact when people discuss, create and share ideas
continously. Further, it seems that people have learned how to create ideas and how to
present them. Also, the more the ideation culture has progressed in the company, the
more business potential the ideas start to have as for example the first focused idea-
tion campaign lead up to 50% share of potentially relevant ideas for business. This
impact already shows initial cultural change within the organization.

This might also be considered if we see this as a problem in the future – will there
be invasion of ideas and not enough resources to process and implement them all. The
goal has been to prevent this by making small steps and put the minimum necessary
effort to proof and grow the business value of the idea step by step – not as a big
bang. Current lean and agile way of working involves idea submitters always in the
idea processing and implementation team i.e. same people create ideas and implement
them.

5.2 Limitations

Changing culture in a large organization is a process that seems to take years. The
first year journey shows limited early results. The first focused ideas already show
business relevance however the business volume impact remains to be seen. As the
very first demos (2 of them) have just emerged within the first 3 months, it is too
early to measure if they are radical innovations or innovations and, whether they con-
tribute to the business growth of the company.

The presented way of working is fundamentally established based on lean and agile
principles as well as tools utilized in the practical implementation. Therefore the pre-
sented acceleration approach requires agilean culture and way of working as a starting
point for adopting the approach.

The business environment is continuously evolving due to multiple markets and
therefore, the results achieved in this kind of B2B environment may be limited to this
case only and not easily applied to other kind of companies working on other kind or
markets.

The KPIs that were in use before the change are not completely same as after the
change. Further, we plan to introduce some new KPIs during 2015 as well. For exam-
ple, earlier we measured only inventions and now we measure all kinds of ideas -
even process improvement ideas. Therefore the improvement from 5-10 inventions
leading into patents per year compared to 108 ideation items in 10 months are not
directly comparable.

 Applying Agile and Lean Elements to Accelerate Innovation Culture 269

6 Conclusion

At the time of writing this paper, it has been approximately one year since the process
was launched within the organization. The early results show that the number of
ideas, number of people submitting ideas and participating in idea handling has in-
creased. At the same time, the lead time of idea processing has decreased. Therefore,
it may be concluded that experimental approach based on Lean and Agile principles
seems to be a solution for developing a large ideation environment. Management
commitment and continuous sharing of the results for the people and their supervisors
is also seen essential to promote the experiment Way of Working and building the
culture of innovation.

Changing the culture is a long term process and we plan to continue and actively
promote the change during the - at least - next two years. An interesting future re-
search area is to measure business growth of the company in the light of concrete
ideation and innovation examples.

Acknowledgments. This work was supported by TEKES as part of the Accelerate project of
ITEA 2 and has also interfaces to Need 4 Speed Program of DIGILE.

References

1. Ledwidth, A., Martin, A., Nicholas, J., Nosella, A.: Exploring Radical Innovation Search
Practices. Int. J. Tech. Intell. Plann. 8(4), 389–403 (2012)

2. Farsi, J.Y., Rezazadeh, A., Najmabadi, A.D.: Social Capital and Organizational Innova-
tion: The Mediating Effect of Entrepreneurial Orientation. J. Comm. Pos. Pract. 2, 22–40
(2013)

3. Heidenberg, J., Matinlassi, M., Pikkarainen, M., Hirkman, P., Partanen, J.: Systematic pi-
loting of agile methods in the large: two cases in embedded systems development. In: Ali
Babar, M., Vierimaa, M., Oivo, M. (eds.) PROFES 2010. LNCS, vol. 6156, pp. 47–61.
Springer, Heidelberg (2010)

4. Rodriguez, P., Partanen, J., Kuvaja, P., Oivo, M.: Combining lean thinking and agile me-
thods for software development: a case study of a finnish provider of wireless embedded
systems detailed. In: Sprague Jr., R.H. (ed.) HICSS 2014, pp. 4770–4779. IEEE,
Los Alamitos (2014)

5. Suominen, T., Kuusela, R., Tihinen, M.: Continuous Planning - An Important Aspect of
Agile and Lean Development. J. Agile Syst. Mgmt., 23

6. Antonioli, D.: Industrial Relations, Techno-Organizational Innovation and Firm Economic
Performance. J. Econ. Pol. 1, 21–52 (2009)

7. Blank, S.: Why Lean Start-Up Changes Everything. Harvard Business Review, 9, May
2013

8. Azevedo, S.A., Govindan, K., Carvalho, H., Cruz-Machado, V.: An Integrated Model to
Assess the Leanness and Agility of the Automotive Industry. Resources, Conservation and
Recycling 66, 85–94 (2012)

9. Sartori, R., Scalco, A.: Managing Organizational Innovation through Human Resources,
Human Capital and Psychological Capital. European J. Mgmt. 14(2), 63–70 (2014)

10. Spalanzani, A., Zait, D., Zait, A.: Organizational Innovation – Significant Factorial Con-
nections. Scientific Annals of the “Alexandru Ioan Cuza” University of Iasi – Economic
Sciences Section, pp. 159–169 (2011)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 270–278, 2015.
DOI: 10.1007/978-3-319-18612-2_27

It Has Been a Long Journey, and It Is Not Over Yet

Avraham Poupko()

Cisco, SPVSS, Shlomo Halevi 5, Jerusalem, Israel
apoupko@cisco.com

Abstract. This paper tells the story of my Agile Journey over the last 15 years.
It is neither exceptionally rosy nor excessively pessimistic. It is an attempt to
give an honest experience report.

Keywords: Experience · Journey · Extreme programming · XP

1 Introduction

“If you are going through hell, keep going.”

Winston Churchill

I have been in the industry for over 20 years, and I have been practicing some or
another form of Agile from the very early days. I have seen myself mature, I have
seen the industry grow and mature, and in particular, I have seen my organization
mature. This paper tells that story. It tells about challenges, hopes, frustrations and
accomplishments. I then offer some retrospective.

2 Background

Since 1994 I have been working for NDS that was acquired by Cisco in 2012. I write
code and design systems. I take great pride in a job well done. Having fun is a major
objective.

My current role is defined as Senior System’s Architect. I am expected to be deep-
ly familiar with the core products, to understand the customer’s needs, and to lead the
task of building something that meets the customer’s expectations, while remaining in
line with the company’s technical and business objectives.

I work directly both with customers and with developers and development leads.
As a senior person within the organization, I am also expected to provide technical
guidance and inspiration. Currently I do not have any direct reports, but I influence
the work of several dozen engineers.

 It Has Been a Long Journey, and It Is Not Over Yet 271

3 The Pre-agile Days

In the early days of my career (1995-1998), the company I worked for (NDS) and
myself were heavily invested in Object Oriented Design as a design paradigm and in
C++ as an implementation language. We strongly believed that OOD allows the close
modeling of the real world. We would often argue: “The world is made of objects, not
functions or procedures”, and that if done correctly, OOD would make code devel-
opment much easier. Most importantly we believed that OOD would allow us to “get
it right.” All you needed to do was understand the domain, map the domain to a class
hierarchy, and go implement. Of course you had to make sure that the domain was
clear, because if not, you would misunderstand it, and create a wrong hierarchy. That
would be painful to fix. But that was an error left to amateurs. Professional program-
mers and designers would get it right, and once done right, adding or changing re-
quirements would be a piece of cake. Personally, I strongly believed that as I got bet-
ter at my job, I would be able to design Object Oriented systems that are robust.

4 The Journey Begins

4.1 Getting Started

My personal journey with Agile began in May 1999. This is when I read an article by
Kent Beck in C++ report on something called “Extreme Programming.” The name
caught me. If programming is fun, then extreme programming must be extremely fun.
The article started with a discussion of. “How does the cost of changing software
change over time?” I knew by then, from painful experience, that the later a mistake is
discovered, the more costly it is to fix. That was the reason that upfront design is so
important. I knew that the reason we make mistake in upfront design was that we did
not design enough. All we needed to do was design more.

The direction the article took surprised me. The article said that we design too
much. If we designed less, we would make fewer mistakes. The article went on to
explain the idea that in extreme programing we do not plan for the future, rather we
develop for the known. Less design is better.

I showed the article to my boss, and had a chat with him. He read it and said, “I am
not sure if this is naïve, or really smart. Does he mean that we are all doing it wrong?”
I did not have the experience or internal conviction to aggressively push this. I needed
to learn more.

I started reading up on Extreme Programming, and I tried to convince my boss to
let me just try it out. He was not willing to take the risk. He was not willing to forgo
code reviews, he was not willing to forgo upfront design, and he was not willing to
allow shared owner ship of code. I think I know why he refused to take the risk. My
boss was a very moderate, thorough and levelheaded guy. He believed in deep delibe-
ration, and considering all options. Even the name “Extreme Programming” rubbed
him the wrong way. At the time “extreme sports” were becoming popular. The partic-
ipants in these sports came across as thrill seeking, risk takers. Another part of the
problem was that I came across as too enthusiastic, and too dismissive of current prac-

272 A. Poupko

tice. In hindsight I realize that this was a tone I had picked up from articles written by
the likes of Kent Beck. The XP people are sometimes too enthusiastic, and too opti-
mistic. This can frighten some people.

4.2 The Conference

The first break came when I was invited to the first XP conference that took place in
Sardinia in late June 2000. At this conference I met lots of people that were already
well known in the field of software development.

I met Ron Jeffries, Kent Beck, Robert Martin, Martin Fowler, Alistair Cockburn
and others. I remember feeling that these are all people that are truly passionate about
their job. They firmly believe that they can do better, and they want to do better. I
attended workshops and lectures, and had great informal conversations with lots of
people. I remember that conference as the best I have ever attended. I felt that XP is a
real methodology that can solve real problems. I felt inspired to learn more about XP

I came back from the conference deeply inspired. I felt that something very signifi-
cant was about to take place, and that the software development world is about to
undergo a change. I felt challenged, and resolved to do more to get the organization to
accept Extreme Programming.

I started rethinking my position that the problems with OOD were due to lack of
expertise. I had a particular case where a class hierarchy that I was rather pleased
with, contained a structural problem that was only discovered a year too late, and
parts of the framework needed to be rewritten. Rewriting the code was long and pain-
ful, and in our effort to preserve as much work as possible, and not rewrite every-
thing, we ended up with classes and member functions, with names that no longer
represented the actual meaning of those classes. I knew that this code would forever
be hard to maintain, and there was little I could do about it. The timing was perfect.

4.3 Trying Harder

I decided that I would try harder to make the company adopt XP. (Spoiler Alert – I
failed, but I did succeed in getting some people to adopt some good behaviors). Since
then I have learned many times that change in the organization can only happen if
there is an individual, or individuals, that are able to drive a change forward. A non-
Agile company will only convert to Agile, if there is someone actively pushing.

I decided to start with Test Driven Programming. I knew that Test Driven Pro-
gramming has value that is independent of any other XP behavior.

First of all, I took aside a senior developer, whom I have a lot of respect for, and I
showed him how to do Test Driven Programming. This is a guy that had been pro-
gramming in many languages for many more years than I had, and who was signifi-
cantly senior to me in the company hierarchy. I showed him JUnit and CUnit, and I
showed him the example that Martin Fowler had shown in his workshop. To my de-
light, he got it. He understood exactly what test driven programming could do for
him, and he has been doing test driven programming ever since.

Lesson Learned: If you are going to promote an idea in an organization, try to con-
vince one person. One person is a great start.

 It Has Been a Long Journey, and It Is Not Over Yet 273

Unfortunately, TDD is still as widely accepted within our company as it should be.
We have discovered some major problems with it, but basically it works and its value
is recognized.

One bizarre effect of TDD was the following. Sometimes a new behavior is re-
quired of a function, and the developer has a choice, whether to add a control varia-
ble, or just create a new function. For example there is a function: f(int x); that
does something, but we sometimes need the function to do something else g, so we
have two options:

1. Extend the function to f(int x, bool do_also_g = false);
2. Create a new function f_and_g(int x);

The decision whether to go for option 1 or option 2 depends on all sorts of consid-
erations. The ease of reading and writing the program are certainly legitimate consid-
erations. However, the programmers discovered that option 1 makes writing the tests
easier. So people were extending the signatures of the function with more and more
control parameters, not because that is what made programmatic sense, but because
that is what allowed the developer to avoid writing a whole new set of tests.

Where is the fallacy here? By adding more parameters, proper test coverage grows
combinatorically. That means, in the above example, the entire set of tests needs to be
copied, with the control variable set to true.

In general, I noticed that people often treated test writing as sort of an “overhead,”
something to be avoided. This can be a big problem. I might go as far as saying that if
you treat tests as overhead, and not as part of the code to be delivered, you might as
well not write them.

Also, people only wrote tests for new functions. Writing tests for the thousands of
existing functions seemed to be too daunting a task and was never done. So even
though all the tests had passed, it was only those tests that we had written. Thus we
never really had test coverage.

I tried to introduce pair programming. I took a friend, and we started programming
together. That was a miserable failure. It failed because we did not adopt supporting
behaviors. For example, the programming was done at my PC, and I left the email
client on. Whenever an email popped up, I would take a look to see if it was urgent,
and if it was urgent or short, I would take care of it. This is bad behavior even when
programming alone, but it is absolutely devastating when working in pairs. While I
was checking my email, my partner went to check his. By the time we got back to-
gether, 20 minutes had gone by, and we had lost the flow.

4.4 Not Really Agile

Over the next ten years, people within the organization started becoming more and
more exposed to Agile methodologies. We adopted some practices, but not others. We
never really became a truly Agile organization. The following paragraphs outline that.

Pair programming never really picked up. There might be cultural reasons for that,
or issues to do with ego. I tried to do my part in educating people on the value of pair

274 A. Poupko

programming, but I was not very good at it myself, and thus had a hard time convinc-
ing others.

Shared ownership never really picked up either.
I know why “shared ownership” did not work. Some people took “ownership” to

mean everyone can change any code anywhere, but the real “owner” of the code will
clean it up if there is a problem. They did not really internalize the idea that with
“ownership” anyone that touches the code is responsible to leave it in as good or bet-
ter condition than it was before he started it. Ownership does not give you a right to
break things.

Daily build and Test Driven Programming did pick up a bit. However, we cheated
a little, and as a consequence we never really got the full advantage of those two great
ideas.

For example, if there was some code that did not pass all the tests, we just com-
mented it out. We did not want to break the daily build. We would start in the morn-
ing, uncomment our code, and start writing. At the end of the day, if we did not pass
all tests, we would comment out the code again, and do our daily build. So over a few
days we ended up having quite a bit of code that did not fit into the daily build.

4.5 Retrospective

Looking back at the early days, I realize several things. First and foremost, in order to
do XP, you must do more than just follow the rules. You must follow the spirit, and
understand how to apply the rules. Also, in order to push XP within the organization,
you need a champion that gets what it is about and believes in it. He needs to be tech-
nically excellent and able to show results rather quickly. The champion needs to be
passionate, charismatic and convincing. This is true about any change, but XP in-
volves so many changes at once that this is much more significant. Not enough
thought was given by the initial pioneers of XP as to how to migrate code that was
written in a non-XP environment to become “XP friendly”.

5 Where We Are Today

5.1 Growth

Over the following ten years, the company was growing, fast. Our branch of the com-
pany had grown from 200 people to over 1000. Some parts of the company adopted
Agile practices, mainly Scrum, and others did not.

Personally, I was becoming more involved in design and less in the day-to-day
coding.1 As I got into more and more of a design and architecture role, I became more
proficient at “lightweight design.” I resisted making the design flexible in support of
requirements that might one day come along. But design was never refactored, so

1 At the time, the company encouraged that separation. Architects design, and Coders imple-

ment.

 It Has Been a Long Journey, and It Is Not Over Yet 275

when we made bad design based on wrong assumptions, the bad design often stuck
even after our assumptions were corrected.

In 2012 our company was acquired by Cisco. Cisco was a whole new ball game.
Cicso is a large company, by any standard, that puts a huge emphasis on optimal per-
formance. Cisco is very aware of the cost of developing and maintaining software,
and will go to lengths in order to reduce costs and keep them down.

One of the things that our new mother company was concerned about was that
even though our customers were getting most of their requirements met, the cost of
developing software was on the rise. Our systems were large and complex and brittle.2
One day, management of the newly created division prescribed the following: “From
now on, we will be an Agile organization. We will all do Agile ‘by the book’.”

Everyone wanted to be part of the Agile transformation. The particular form of
Agile chosen was Scrum. So people started training as Scrum Masters, and Product
Owners. We were supposed to transform from a company that exhibits some Agile
practices in some places, to a company that was fully Agile. My personal reaction was
one of “reserved optimism”. On the one hand, I was excited that we were now going
“fully Agile” and I was hoping to play a significant role in that transformation. On the
other, I was not really sure what “fully Agile” means, and if being “fully” anything
was a good idea.

Over time, I noticed the following phases. Not every part of our unit went through
the phases in the exact same way, but all parts of the organization certainly went
through some variant of them.

5.2 Phase 1 - Optimism

Agile is great. If it is Agile, it is good. In this phase, people were going around touting
Agile as the solution to all problems. There were people from other parts of the com-
pany going around telling these great Agile stories of how if we would only adopt
Agile, many of our problems would be solved. Everyone wanted to become a scrum
master or product owner, and everyone was attending workshops. I was delighted.
More than 10 years after having attending the first XP conference, it seemed that the
company I worked for was willing to fully commit to being Agile. I volunteered to
mentor, to teach, to coach, to preach and guide on anything and everything that had to
do with Agile.

2 While the two often go together, it is worth explaining the difference between “complex” and

“brittle”.
“Complex” means “Many parts with many interactions”. This goes together with high coupl-

ing, where the knowledge to implement requirements requires knowledge of lots of “neighbor-
ing” components. This makes the cost of change high.

“Brittle” or fragile is when the design is precarious, in the sense that every small change,
force changes to the design.

276 A. Poupko

5.3 Phase 2 - The Problems

Not everyone understood Agile, but almost everyone liked it. Once in a while some-
thing really troubling would come up. For instance Agile was occasionally used as an
excuse for laziness, but it was hard to tell when. I myself, when asked for a detailed
design of some particular aspect would often say: “Oh, we are Agile now, we don’t
need that.” But deep inside, I was not sure if I was being Agile, or being lazy. The
YAGNI (You Ain’t Gonna Need It) principle can give easy rise to procrastination. I
do not like doing very tedious detailed work, and the YAGNI principle was too con-
venient. After seeing this behavior in others, and myself I started to try to articulate
“Patterns” of Agile design. I tried to define heuristics and rules to help us identify
which elements need to be done up front, and what can be deferred. One activity I
found particularly productive was to review the relationships between the real world
entities and to have a discussion as to which relationship is intrinsic and which is not
(“incidental”). More important than the actual architecture was this common under-
standing. I tried to make sure that everyone involved in the coding, understood these
underlying assumptions so that the design decisions that were taken every day ac-
counted for them.

Another example of the misunderstanding of Agile is in the way people understood
user stories. I often heard people say, “Stories?? They are just requirements. Take all
the requirements and translate them into user stories (As an X I need Y so that Z).”

They simply missed the point that stories are meant to first be told, and only then
captured as user stories. The telling of a user story shifts the emphasis from the formal
and context free description of what the system does, to the highly contextual. I later
came to learn that this is an extremely common misunderstanding in the world of
Agile. A lot of people really don’t get user stories. As a consequence, people often
would just read the user story, but never had the story told to them, and sometimes
missed important information, that would have been conveyed had they actually been
told the story. This is certainly a battle worth fighting and whenever we use Rally or
some other tool, I also make sure that before the story is written, it is told.

While we were quickly adopting some Agile behaviors, the core values of “Agile”
were took longer to sink in. I realized that a value such as “prefer individuals over
process” must come from deep within the individual and within the organization. And
if you do not believe in the values, then it is very difficult to really be Agile.

A typical example might help illustrate. I once spent quite a bit of time at a cus-
tomer site to learn about the customer’s needs and business. I came back from that
customer, gathered the team, and told them the story. I told in dramatic detail, how the
operator (Fredrik) gets his instructions, and how he configures the system on a daily
basis. I told about how frustrated Fredrik gets with the current system, and how some
modifications would make his life much easier. I then wrote some “place holder”
stories such as “When adding a channel, Fredrik needs to be able to easily copy a
configuration from an already configured channel. This allows Fredrik to save time,
and to make fewer configuration errors.” I thought that the story was clear, and so did
the developers. We entered the story into Rally, and expected that whenever people
read the story, they would remember what I told them in detail, and would know how

 It Has Been a Long Journey, and It Is Not Over Yet 277

to implement. Yet, one of the PMs objected, “How can you put a first name in a re-
quirement? And you must follow form. This is what the story should say – ‘As an
operator, I need to copy configuration from an already configured service, to a newly
defined service, so that the correct specification of the service parameters is en-
sured’.” He went on to explain that since they are the basis of acceptance, the user
stories must be properly formal, and have full detail.

I chose not to fight this particular battle, and just complied. But since then, I have
been campaigning to craft user stories that explain what the system must do to bring
value to the users, and acceptance criteria that explain what the system must do so
that we get paid.

5.4 Maturity

It seems like at the moment, we are reaching some sort of equilibrium. We are figur-
ing out what Agile practices work for which groups and which parts of the organiza-
tion. We are not yet a fully “Agile organization” (does such a thing exist?), and we
might never become one, but we are doing much better.

A lot of the effort is focused on process training. There is also technical training, in
the use of tools and languages. What I find lacking most is training in proper design. I
am currently working on creating a community of analysts and architects that train
and mentor each other in good design. Because design is in the grey area between
skill and art, it is not an easy thing to teach, but we are trying.

Over the last year I have noticed that some of the very good developers are not
properly trained or skilled in analysis and design. This is a shortcoming that I think
can and must be fixed. If we claim that everyone is responsible for the overall quality
of the final product, then everyone is responsible for the design.

6 Retrospective

It has been a very long journey, and I learned a lot along the way. Here are some of
the main takes that I would like to share.

Legacy is an extremely powerful force. If we have a large organization that has
been around for a long time and thus has lots of legacy software and behaviors, it will
require a great deal of force to change the organizational behavior. Whenever we
discuss adopting Agile behavior, we need to discuss how we get there.

Adopting behaviors is not enough. In order for Agile to be successful, you need to
believe in the values.

The evolution from extreme programming to Agile shows a great deal of maturity.
Extreme programing preached that you must follow all the rules in order to be an
extreme programmer. Agile preaches only core values, and lets the individual or or-
ganization, blaze their own trial.

278 A. Poupko

The process of going from waterfall or partially Agile to Agile, is an important
process. We are not yet done, and it will not be easy. It will probably continue to be a
very bumpy ride.

Acknowledgements. Special thanks to all my friends and most of my managers in NDS and
then Cisco, who patiently listened to all my ideas. Your feedback was not always kind, gener-
ous, or even welcome. But it was always honest, and after a while – appreciated.

Thanks to Rebecca Wirfs-Brock for great comments and insights.

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 279–286, 2015.
DOI: 10.1007/978-3-319-18612-2_28

Organizational Culture Aspects
of an Agile Transformation

Shlomi Rosenberg()

Cisco Systems, Service Provider Video Software and Solutions, Jerusalem, Israel
shrosenb@cisco.com

Abstract. For an organization wishing to be more agile after working waterfall
for years, it is not enough to just start learning and implementing new ways of
working. There must be a parallel activity, at least equally important, of dealing
with the organizational culture changes required to support this transformation.
In Cisco I deal with those on a daily basis. An organizational culture is much
harder to change than work methods. It involves feelings, perceptions and fears,
so it is advisable to be aware of the importance and invest in dealing with it.
This experience report details examples of these culture aspects, how we deal
with them and some tips that can help make such transformation successful.

Keywords: Organizational culture · Agile transformation · Management · Lea-
dership

1 Introduction

I am a senior development manager and part of the leadership of an organization with
a staff of over 200 people, which is part of a much larger multinational engineering
organization. This paper shares insights from my experience in being an active part of
an amazing agile transformation that we have gone through and are still making
progress with. I will focus on the organizational culture aspects of an agile transfor-
mation of this scale, which in the beginning I wasn't aware of as relevant. I came to
realize their importance to success in the transformation and that it is at least as im-
portant as the agile practices themselves.

2 Background

For the past twelve years I have been an engineering manager at various levels, man-
aging teams and activities related to development, integration and testing of complex
systems in the digital TV industry. The entire development process was completely
waterfall based. Our organization has always been structured in a way that is tightly
coupled to clear functions. These domains can be based on job roles such as integra-
tors, developers, QC engineers, etc.

They can also be based on components, projects, customers, etc. and all of these
were divided between multiple sites worldwide. This type of organizational structure

280 S. Rosenberg

nourished an organizational culture that exhibited some underlying problematic cha-
racteristics such as ownership, territorialism, lack of trust, over-management and so
forth. Actually, it was sometimes hard to believe that these domains were part of the
same company or even that they were all working on the same project, a situation that
is clearly harmful to efficiency and productivity. These aspects of organizational cul-
ture and various behaviors deriving from them not only make it difficult to improve
effectiveness, but also need to be dealt with, specifically when considering such a
large-scale transformation to Agile.

3 Ownership

Ownership in general doesn’t indicate something negative. After all, when engineers
feel ownership, they also feel responsible and it is clear who to go to with questions,
support, and bug fixes required. These are things managers actually like and need.
The question is what to build the ownership around?

3.1 The Culture Issue

The problem in our organization starts from the fact we develop complex end-to-end
systems, which are built from numerous stacks running on various machines at different
physical locations and each built from tens of components. Our organization was heavi-
ly based around component ownership i.e. Managers and their teams owned code.

When I refer to code ownership I refer to a culture of “no one but the component
team is allowed to modify our code”. It also nourished a management culture of fo-
cusing around what they own “physically”, which allowed them to get some materia-
listic measure of their “power”.

This direct correlation between code and teams was drastic and it caused strong
dependencies and obstacles in our ability to move fast. For example, different time
zones of component owners caused delays in progressing integrations. Some compo-
nent owners would not even expose their code, so integrators could not debug by
themselves. These dependencies were a big contribution for our heaviness as a devel-
opment organization.

When we decided to transform to become more agile, one of our key principles
was to enable our teams to progress feature development in as self-sustained way as
possible. We decided that instead of owning code, the teams should own features. For
supporting them in doing so, it meant we must reduce the code/component ownership
to a minimum so when developing an E2E feature they’ll need to develop and inte-
grate all involved components in the feature’s vertical flow.

This code ownership was, and still is in few cases, one of the biggest obstacles to
our full Agile transformation. Component teams, owners and managers in particular,
were nervous about this change. This code ownership is what defined their organiza-
tion in many ways for so many years. Code is something tangible and is something
you can “fight” for. Also, for many engineers, it was comfortable and “encouraged”
them to be narrowly focused. Rather than building fast velocity feature development

 Organizational Culture Aspects of an Agile Transformation 281

capabilities, they got used to focus on their narrow component domains. They could
raise dependencies and have someone to “blame” for not progressing.

Also for those not owning components, specifically the integration teams, it nur-
tured frustration of not being able to progress effectively as they were constantly de-
pendent on others. For others it was a comfortable situation, as their job was just to
perform builds and report back if what they got is sufficient based various level inves-
tigations. This integration dynamic was comfortable for the owners and some of the
integration teams.

For most people, something comfortable shouldn’t be changed, and they will fight
for it. They focus on rationalizing this way of work by pointing the problems to other
places and by focusing on the importance of people being experts in their function or
component. They would also convince each regarding his role that “it’s too complex
for anyone to do it or no one has the knowledge or experience to do what they do”.
All valid points, but all can also change.

3.2 How We Dealt with It

The described situation impacts effectiveness as it virtually causes formation of teams
within teams, limiting their agility. If not dealt with, it cripples the enablement and
self-sustainability of the functional scrum teams turning them practically in to a semi-
waterfall integration teams.

As a start, from team structuring perspective, as mentioned above, we defined ver-
tical teams. These teams’ mission is to deliver end-to-end user stories and features.
That is what they are measured by. We tried to limit as much as possible the number
of horizontal (component centric) teams. The reason it’s limiting the number and not
eliminating is because after all there are areas where it makes a lot of sense to remain
horizontal (such as point products within the solution which are used by other solu-
tions also, third party component porting, etc.).

To compliment that, decision wise, we made a decision and communicated to all
teams, that components can be branched by vertical teams if they need to do so for
progressing. This mainly disconnected the “only owners can modify code” from the
component ownership. At the beginning we experimented with a vertical team to
prove this increases velocity. We were proved right and use the concept more widely
in other teams. Also, we are pressuring vertical teams not to be intimidated by new
unfamiliar code. We are communicating clearly that we are not happy with them
opening impediments for each bug they find in Horizontal components, but rather
push to fix them.

3.3 Culture Tip

At early stages and continuously after, identify engineers in vertical teams who are
both technically strong and willing to enthusiastically try the change. These engineers
together will prove it is doable. This is quicker than depending on external parties.
Success stories with results will be your best proof and motivator for others.

282 S. Rosenberg

4 Territorialism

It’s the most trivial thing to have different job roles in a development organization.
We have architects, developers, integrators and QC engineers. Our organization was
built according to these roles i.e. each of the above roles was grouped also organiza-
tional-wise. So we had an architecture department, a development department, an
integration department and a QC department. The flow of development was that arc-
hitects defined a work-package, the development teams involved developed their part
of it, the integration team integrated the components and then the QC teams tested it.
Sounds reasonable, but it developed an underlying engineering culture that doesn’t go
with agile development.

4.1 The Culture Issue

The underlying culture around our previous structure came mainly from prestige re-
lated reasons. It’s simple. Some of these roles subjectively have better reputation than
others. Few examples:

− Developers want to develop code, they don’t want to do integration nor QC work.
− Integrators feel it’s beneath them to test.
− Developers don’t want integrators to find fixes for their bugs.
− Integrators feel threatened by QC engineers investigating the bugs they find.

For these reasons and more, people guarded their domains carefully. The engineers
were territorial about their engineering function and would usually stay away from
other functions.

One of our major goals of the transformation was building vertically enabled
teams, who deliver end-to-end tested features. This was not a trivial change for many
of our engineers. Suddenly an engineer is responsible to deliver an end to end feature.
Together with his team, he is required to do much more than just write code, just inte-
grate it or just test it. He needs to be involved and aware of all aspects of delivering
the end-to-end user story. That is part of the new Definition of Done for the team’s
user stories. This is a major change to engineering mindset.

4.2 How We Dealt with It

This proved to be a difficult change. It’s not easy for someone who always used to
writing code and passing it to someone for integrating and then testing, to start deli-
vering end-to-end working features.

First, we invest a lot in training to understand this concept and its importance as a
key to our success. We are also pushing POs to minimize defining user stories, which
correlate to these different functions as there was a tendency to define user stories
such as “Write tests for functionality X” coming from pressure from within some of
the teams. We constantly monitor to see we don’t have single task type engineers in
the teams, even on the expense of in the short term sometimes slowing down some
activities. Naturally, some engineers are stronger or more experienced in some func-
tions than the others, which is a positive thing.

 Organizational Culture Aspects of an Agile Transformation 283

4.3 Culture Tip

Be persistent on this and work closely with the engineers to explain and convince
them that the new way of work is better. Also acknowledge and praise high quality
rather that high pace.

5 Managers vs. Leadership

Our command and control driven waterfall organization structure had a heavy man-
agement structure of roughly one manager to six employees.

The team responsibilities at the majority of cases were narrow related to the prod-
uct the organization delivered. Also these team managers were responsible to all as-
pects of their team. This caused a lot of silos, which was slowing us down and limit-
ing the variety of influence sources to the wide organization product perspective. The
culture was also that only managers can lead or influence.

When we began our transformation we didn’t focus on organization restructuring,
we focused on activity restructuring. We didn’t even discuss the organization structur-
ing until we were confident with our program structure.

This proved to be a smart approach as it instantly eliminated all silos, which con-
tributed greatly to the senior leadership to cooperate amazingly. This was crucial for
leading the transformation. The leadership team literally didn’t have anything to fight
about in terms of private interests as with all the scrum teams’ buildup it so happened
that each manager had his reporting engineers spread between different teams, so
teams were not associated with managers. Later, when we were confident with our
program structure, the management organization restructuring was much clearer in
terms of needs. We could restructure to fit our activities rather than organizing activi-
ties to fit a reporting structure. We divided the classical management role into three
main categories, namely People, Activity & Technical:

− The people manager role is now focused on taking care of the Engineers and
staffing the program teams rather than “interfering” with the teams work - this is
the reporting structure.

− The activity management is done by the scrum teams and their PO (not a report-
ing structure).

− The technical management is a tech lead type network that continuously mentor,
advise and lead technically the teams (not a reporting structure).

5.1 The Culture Issue

For an organization with such an embedded command & control mindset and culture,
the strongest source of influence, power and leadership came from the reporting struc-
ture. The common perception was that leadership equals management.

The downside that started building up slowly was that our people managers, which
until transitioning to working agile had clear responsibility, didn’t find their place in
the system. The activities and team management was provided by the scrum teams

284 S. Rosenberg

themselves and the program management, so “all” that was left for them is the people
management, which was unclear. The perception was that being a people manager is
just a bureaucracy role. It started causing tension and insecurity, specifically for the
first line managers. On the other hand, the engineers also gradually showed signs of
confusion not understanding who to go to for what kind of issues. This situation
alerted us, the leadership team, that we needed to move forward with the reorganiza-
tion in order to fill all these gaps.

Fig. 1. Alignment of organization structure to support agile

When starting to communicate the structure change shown in Fig. 1, managers,
(mainly first line managers) got nervous. At first look and considering the manage-
ment culture we were coming from, it looks like are eliminating a level of seniority. If
they are not chosen as people managers they perceived it to mean they are demoted
and they are not part of our leadership anymore. It could be perceived as limiting for
carrier development. Although I am confident in that structure, it’s not that easy to
make people understand that. Many people who were managers in the old organiza-
tion structure are no longer managers. It doesn’t mean they can’t be leaders.

5.2 How We Dealt with It

There are actually many more influential positions available at this structure once you
understand people manager is not the only way to develop your carrier. It is also not
necessarily always the most visible leadership position in terms of the program day-
to-day performance.

Saying all that, it’s not that trivial to explain, specifically to a mature organization with
such different organizational culture. One of the main actions we took is to consider
scrum masters, product owners and architects (we try to assign an architect for each
team) as part of the organization leadership. They take an active part in shaping our way
forward. As senior leaders, we respect and keep the well-defined boundaries between
people management issues, which will be dealt with people managers, and scrum team
management, which is dealt with the scrum masters or product owners.

There is a continuous learning and improvement process for shaping the different
leadership roles, empowering the different roles to lead their domain.

5.3 Culture Tip

From early stage start communicating the difference between functional management
and people management. Also focus on the importance of the different roles in an

 Organizational Culture Aspects of an Agile Transformation 285

agile organization. These things take time to absorb and it will drastically reduce fru-
strations when you apply your reorganization.

6 The Buzzword Trap

My last topic involves a communication related aspect to our agile transformation.
Anything new usually involves a lot of buzzwords. Agile is no different and as the
name implies, they do indeed create a buzz. In a large scale transformation such as we
went through, you must create a buzz, or a sense of excitement, in order to pull every-
body on board. However, if you don’t walk the walk at the same pace you talk the
talk, it is easy to achieve the opposite effect. What my experience showed me is that
you can’t answer questions or give guidance with buzzwords if you want them to
transform the way people work. You must focus on the methodology and only after-
wards relate it to its name if you want. Another issue related to this is that I observed
people actually turning agile to be their goal rather than the means to achieve their
goal.

6.1 The Culture Issue

As agile methodologies are so different in so many ways from waterfall, mentioning
words such as sprint, scrum, agile and retrospective as the solution for all the prob-
lems we face is far from being enough to motivate a large organization to change. For
someone taken out of their comfort zone by such change, specifically many engineers,
buzzwords are not comforting. In fact, overloading people with new terminology can
be quite intimidating and cause the opposite effect of contempt.

At the start of our transformation, anyone who wanted to sound like he is fully
agile “compatible” used a lot of agile buzzwords. However, it became clear that dif-
ferent people have different interpretations of the different words. This can easily
cause damage to what you want to achieve as it causes misalignment. For example,
you show up for a demo and find that the team was working on it for three days rather
than showing their current raw state. Another example is teams being managed by
their scrum master by him asking for status at each standup, commenting on it and
giving directions for next day. The problem with these behaviors is that it is easy to
derail from what we try to achieve as these are command and control behaviors
masked by agile structure and neglecting those can easily regress the work culture
back to what you originally want to change.

6.2 How We Dealt with It

This requires a lot of self-discipline. We started being aware, mainly when guiding
the teams not to use these words. E.g., many times we actually ban the word agile
from our discussions. We focus on the methodology and what we want to achieve.

The focus is on understanding the problems we want to solve and discussing the
way we believe it can be solved. We don’t focus on coupling our solutions with an

286 S. Rosenberg

agile framework. We created a culture, which is open for improvement and feedback.
We invest in agile coaching. We continually conduct classes and to complement
these, we have coaches joining the teams, even the more experienced teams and pro-
viding feedback on what to do more of, what to do less of and what to change. We
focus on continuous improvement rather than on achieving some ultimate goal.

6.3 Culture Tip

When going agile and passing the messages needed for this transformation, don’t
focus on agile related buzz words it is not sufficient to achieve a real transformation.
Focus on the characteristics and qualities that come with it and why you need them.

7 What did I Learn from This Experience

My agile transformation experience has shown me the importance of the culture as-
pects involved in such a deep change to the way we work. It also proves to me and
makes me confident that being aware to it and addressing it, is an absolute key factor
to a sustainable culture change. I think the following should be an integral part of any
leadership team’s agenda when transforming to agile.

 Your organization’s culture aspects are equally important to succeeding with

your transformation. They are more difficult to deal with.
 Be persistent on explaining the advantages of multidiscipline engineering within

the teams and value high quality over fast pace.
 Communicate the difference between functional management and people man-

agement. Focus on the leadership aspects of different roles
 Focus on the characteristics and qualities that you believe are important for your

culture, not on agile buzzwords.
 Choose the right leadership to lead your transformation. Make sure they trust

each other, work well together, and understand that organization success is their
success.

 Your leadership at all levels must encourage change and support change.

Acknowledgements. I’d like to thank Cisco for the opportunity to be part in leading such an
agile transformation. I would also like to thank my colleagues at the leadership team running
this transformation.

Lastly, I would really like to thank my experience report shepherd Ken Power for encourag-
ing and really helping bringing this paper together. Thanks Ken for all the help. It probably
wouldn’t come together without you!

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 287–293, 2015.
DOI: 10.1007/978-3-319-18612-2_29

The Guide Board, an Artefact to Support the Continuous
Improvement of an Agile Team’s Culture

Matti Schneider()

Université de Nice Sophia-Antipolis, Nice, France
agile@mattischneider.fr

Abstract. The Guide Board is an artefact that supports continuous improve-
ment of practices and interactions within a team, with the same materials as
classical agile artefacts. It represents the conclusions of a team’s retrospectives
as “guides” to make them tangible. By specifying how these guides are visual-
ised and handled depending on their actual application, the Guide Board im-
proves the production system efficiency by increasing the critical reuse of pre-
vious conclusions. A successful application substantially increases the team’s
self-awareness of its culture, and makes its habits more visible to other stake-
holders, thus improving communication. Finally, it improves the readability of
its social rules to newcomers, thus supporting integration of new hires and
therefore growth.

Keywords: Guide Board · Agile · Artefact · Continuous improvement · Retro-
spective

1 Introduction

A few years ago, I started a highly constrained software project with a small team that
had a strong agile potential. The team members were lacking most of the theory, but
were eager to learn. I decided to gradually introduce concepts while development
started. After presenting the bare minimum of Scrum to get a working Sprint 0 came
the first retrospective. Along with it came the following question: how will I give my
motivated but newbie team a feeling of tangible outcomes from this first occurrence
of the most important ritual? How can I make them feel the crucial nature of this op-
portunity to reflect upon how they work and interact? How can I give the team a hint
that this long-term investment will pay off, and that it is paving the way towards a
better version of itself?

This is how the first version of the Guide Board came to be: by a simple facilita-
tor’s reflex of writing down the answers the team had given to its own questions on
sticky notes, with a little playfulness in illustrating them. What made it more specific
than a simple “reflection workshop output” [2] artefact was the column grouping
under a sprint number card (Fig. 1), to give an idea that others would follow.

288 M. Schneider

Fig. 1. The “guides” of the first sprint (top), defining the expected times of the standup (middle) and
lunch (bottom), as an answer to the waste the team members felt in waiting for each other

Most agile teams rely on physical artefacts to help them visualise, inspect and
improve their processes. Burndown charts provide input for continuous improvement.
Happiness indexes increase the salience of its need. On the contrary, if there is a
common ritual for the team to “reflect on how to become more effective”, there is no
common way to help it “then tune and adjust its behaviour accordingly” [7].

The first role of the Guide Board is to help with formalising the retrospective
decisions that have long-term effects. These decisions are crucial to continuous
improvement, yet are hard to respect consistently enough1 to yield the expected
results, leading to the same type of problems being detected again and again. By
offering a simple, well-defined format, the Guide Board decreases the barrier to entry
to take such decisions and eases their inspection and adaptation in later retrospectives.
More importantly, by making these decisions tangible and visible enough to influence
day-to-day situations, the board nudges team members in respecting the decisions
they took, even when they are focused on production rather than improvement.

Over months, the Guide Board truly became what allowed us to achieve the
cultural changes we needed to overcome the obstacles that kept coming.

2 The Board and Its Making

2.1 Overview

From its original first column, our Guide Board kept on growing to the right, always as
a repository of retrospective conclusions. It quickly took enough space to grant a
specific place. Considering its use, it was obvious it had to be visible from everywhere.
The large paper sheets covered in stickies ended up at the top of a wall, overlooking
the workstations (Fig. 2).

1 Especially without external coaching.

 The Guide Board, an Artefact to Support the Continuous Improvement 289

This position felt right2, but it
brought a few readability issues.
This is why, from iteration 23 on,
most sticky notes are pasted sticky
side down (Fig. 3), which makes
them lean downwards and thus more
readable from below.

2.2 Opening a Guide

After each retrospective, a column is
added to the board, materialised by
sticky notes of different colours
(Fig. 4). On the first line, a red
sticky note mentions the iteration
number. The team then creates a
new “guide” for every rule that it
decides to adopt to enhance its
strengths and reduce its weaknesses.
These guides are represented by a
green sticky note covered by a few
words accompanied by schematic
drawings. After a discussion leading
to a precise characterisation of the
rule, the guide is added below the
number of the current iteration. A
guide is therefore the reification of a
debate conclusion, a reminder that a
discussion took place. These
keywords and drawings are here to
recall the agreement to participants,
as a tangible trace of the decision.
We stopped drawing illustrations at
some point. However, after a few
weeks usage, it became clear that
the illustrated guides were easier to
memorise, and much easier to identify when glancing at the board. By starting to use
them again, we realised that they were even more important than expected.

Indeed, agreeing on an illustration led to much deeper debates than agreeing on a
sentence3. Upon observing this improvement, we opened a guide stating that “The
illustration defines the rule”: agree on the drawing first. The team will define the
expected impact much more precisely, and the textual description will be obvious.

2 It actually has very good reasons for being there, one of them being friction isomorphism [5].
3 That may sound counterintuitive, but makes sense if you consider how much information can

be encoded through drawings, as opposed to words, on a single sticky note.

Fig. 3. Sticky notes should be pasted upside-down

Fig. 2. Our Guide Board, at the top of a wall

Fig. 4. Top left corner of the Guide Board

290 M. Schneider

Interestingly, cognitive psychology confirms images strongly help in constructing
mental models of processes [4], which is exactly what we are after here. Empirical
evidence confirms this: illustrated guides were closed much less often than pure texts.

To avoid overload, we quickly had to define what was allowed on the board and
what was to be kept as oral conclusions, or stored otherwise.

The first criteria is actionability. A guide defines an action, or refines how one
should be done. For example, the guide “Describe bugs from the point of view of the
user” defines the way the team considers most efficient to describe bugs. Simply
stating “Bugs are not properly described”, while an acceptable retrospective
conclusion if the team cannot come up with a solution yet, is not an acceptable guide.

The second criteria is durability. Anything that was to change durably our habits
was in, any non-recurring or experimental action was out. Experiments are a good
thing, but only the successful ones are stored as guides, once they have proven
benefits. For example, “No story over 10 points in the backlog” is eligible, while
“Split all stories over 10 points currently in the backlog” is not4. The distinction is
simple to grasp by remembering that a guide embodies a course of action the team
wants to follow for the foreseeable future.

2.3 Using Guides

One usage of the guides is individual. A team member unsure about how to handle a
given situation may first turn to the Guide Board as a repository of common agreed-
upon policies before turning to colleagues.

For example, we observed far less rushed deliveries after opening the guide
“Deliver and prepare the demonstration the day before the sprint ends”, as each team
member knew what to focus on without waiting for others to be available to take a
collective decision: the collective decision on priorities had already be taken.

Another usage is collective. When a team member believes that a debate has
already happened earlier, she may simply point to a guide to end the discussion. This
closes the debate without generating frustration, since it simply reminds a point that
had already been agreed upon by all team members.

For example, our mean daily standup duration went down from 13’42” to 5’55”
after opening the guide “Keep the stand-up under 6 minutes” [5]. The tangibility of
the guide allowed team members to discretely point at it rather than interrupting a
colleague being inadvertently too long.

Objectification of the collective decision decreases social risks on both the giving
and receiving ends of a reminder: you are not accusing me, and I don’t have to justify
myself; you are simply reminding me something we all agreed on, and I had simply
temporarily forgotten; now I remember, and have the opportunity to adjust my
behaviour to be consistent with my own choices.

2.4 Closing a Guide

Obviously, even rules enacted with the best observations and intentions may fail on
delivering value over time, would it be only because of external context changes.

4 Even though adding the new rule implies the one-shot action, the latter is not added to the

Guide Board but handled on its own.

 The Guide Board, an Artefact to Support the Continuous Improvement 291

There is thus a need to stop observing obsolete rules. Yet, simple removal is a waste,
as these modifications are also opportunities. Opportunities to improve decision-
taking on later rules by observing the ones that failed. Opportunities to better
characterise external pressures by observing their impact on our system.
Opportunities to ensure external stakeholders are aware of a change in our processes.

The Guide Board defines a way to “close” past guides while maximising the value
of such events. You may have noticed some of the guides are covered by blue sticky
notes. These guides are closed, and they have been through the process that follows.

The team may decide to put a guide “under observation” if it considers, in a
retrospective, that it failed to respect the embodied decision. The last line of the board
is headed by a large exclamation mark, and includes all guides that are under
observation for the current iteration (Fig. 5). These guides will be reinstated in their
previous place at the end of the iteration if the team believes it finally respected them.
Otherwise, they will be closed. Closure is achieved by covering the guide with a blue
sticky note on which the closure iteration number is written. In such a case, repeating
the mistake is avoided by also writing down the reasons for inadequacy of the guide
to the current situation on the back of the sticky.

The closure iteration number has two roles. On one hand, it allows measurement of
the time between opening and closure, and thus to check that a guide is not closed
right after having been enacted, which would mean that guides are adopted too
quickly. On the other hand, the iteration numbers are a reference to a set of
experiences shared within the team. Therefore, reading that index often allows a team
member to recontextualise the closure without consulting the reminder on the back.

This full reminder comes in handy to help the team grow over failing habits. When
confronted with a specific type of problem, a human group often has a specific type of
response. By having a tangible anchor for a past solution that failed, the team is able
to spot similarities with a solution it could come up with to face a new problem. It is
much easier to design a solution that learns from a past failure by reading the reasons
identified at the time of closure than by trying to remember what went wrong later on.

3 Limitations and Open Questions

3.1 Team Maturity

Empirical evidence shows that theoretical knowledge of agile practices is not
necessary to experience benefits from using a Guide Board. However, since its inputs
are decisions taken collectively during retrospectives, the rewards are directly
proportional to the quality and regularity of said retrospectives.

This means that the prerequisites for a return on investment in a Guide Board are
the same as those for retrospectives. Goodwill, collective responsibility, personal
safety [2] and regular inspection-and-adaptation are required. Only then can the
benefits of objectification of collectiveness through an artefact be felt5.

5 More accurately, the prerequisite is system entanglement [5]: the ability of the team to mod-

ify its artefacts combined with the ability for the artefacts to prescribe members’ behaviour.

292 M. Schneider

3.2 Adoption in Existing Projects

Teams that tried to adopt this artefact mentioned that it would probably be most
efficient when used from the beginning of a project. This hypothesis is based on the
idea that an already-formed team may not benefit from a partial representation of its
culture, as only the latest additions to it are made visible.

The representation of a team’s practices will always be partial, as what is made
tangible is only what the team deemed valuable enough to explicitly try preserving,
and what it struggled with enough to discuss and try solving. Elements that don’t
emerge through discussion will stay invisible anyway, so those missing because they
emerged before the board’s presence should not bring specific problems. If an
important element is not treated, it will come back in retrospectives until a decision is
taken, and thus a matching guide is opened.

One team had success filling a Guide Board a posteriori upon adoption,
highlighting important recent decisions, both that they struggled with and that were a
success.

Starting with the latest retrospectives rather than an empty board could be good
practice for existing projects, but this has to be done with the whole team. Otherwise,
the guides will be only one member’s understanding and fail to embody agreement.

3.3 Project Duration

I have often heard that due to its long-term benefits, the Guide Board is probably only
worth using in projects that will be longer than a certain amount of iterations. If there
is such a minimal investment number, it is not characterised yet. I can tell that we felt
immediate improvement with the first, trivial guides that eased synchronisation for
team-wide events, as they were what the retrospective made emerge as a priority.

Since the basis of a Guide Board is retrospectives and that its aim is to increase
their impact, the question of whether it is worth using it in a specific project can
probably be reduced to whether it is worth doing retrospectives at all for that project.

A question that is still open, though, is how much a board is specific to a team or to
a project, which may change the phrasing to how much you want to invest in a team
rather than in a project.

4 Conclusion

One may see the Guide Board as a generalisation of the Kanban principles [1] to the
culture: make practices visible, reflect upon them regularly, characterise and measure
failure. However, one must keep in mind that “guides” are not simply moving parts in
a meta-production system that would make the best praxis emerge. A Guide Board is
not a driving wheel, it has to be owned by a team willing to improve if it is to deliver
any improvement [5].

We like to think of it more as a “production style guide”: a growing set of
parameters defining how software is to be produced, according to experience in how
to avoid common failures (and bits of personal preference), collectively owned,
maintained and enforced. It does not dictate end goals, nor is it a golden, immutable

 The Guide Board, an Artefact to Support the Continuous Improvement 293

law that may never be transgressed. It is a style guide that does not address only code,
but critical parts of software engineering too often forgotten [3]: the interactions
between the people, machines and software that form the production system.

Acknowledgments. Nicolas Dupont, Thomas De Bona, Paul Percier, Thibault Vigouroux,
Sallyan Freudenberg, Alistair Cockburn, Anouchka Labonne.

References

1. Anderson, D.: Kanban — Successful Evolutionary Change for your Technology Business.
Blue Hole Press (2010)

2. Cockburn, A.: Crystal Clear: a human-powered methodology for small teams. Pearson
Education (2004)

3. Curran, B.: What is software engineering? ACM Ubiquity (2005)
4. Glenberg, A.M., Langston, W.E.: Comprehension of illustrated text: Pictures help to build

mental models. Journal of memory and language 31(2), 129–151 (1992)
5. Schneider, M: Partage de représentations et ritualisation au sein d’une équipe de déve-

loppement logiciel agile. Université de Nice Sophia-Antipolis (2014)
6. Schneider, M: L’approche centrée artefacts. In: Agile France Conference (2014)
7. Signatories of the Agile Manifesto: Principles behind the agile manifesto (2001)
8. Wells, D.: Daily Stand Up Meeting. Extreme Programming (1999)

Testing Modtalk

Josh Fridstrom, Adam Jacques, Kurt Kilpela, and John Sarkela(B)

Northern Michigan University, Marquette, MI 49855, USA
jsarkela@nmu.edu

Abstract. The Modtalk project is an effort to create a production ready
tool chain for compiling Smalltalk programs into standalone executables.
This development project entailed writing and testing code in a cross
development environment, in a target executable environment, and a C
based runtime that supports the compiled executable. We discovered that
test-driven development supported team communication, focused design
efforts, and produced code artifacts that documented the system. In the
process, we also discovered that tests were often brittle and would break
for a variety of reasons. We identify why some of our tests were brittle
and ways in which we responded when tests failed.

Keywords: Test driven development · Compiler · IDE · Smalltalk

1 Introduction

The Modtalk project is an extra-curricular software development project that
has been under development at Northern Michigan University since January
2013. A pedagogical goal of the project is to allow undergraduate students to
have the opportunity to experience team development of a software project of
significant scope and complexity. The project goal is to develop a set of developer
tools for production Smalltalk development. This report covers the experience of
the first two teams to contribute to this multi-year project. The first team was
a pair consisting of a student, Steve Jarvis, and instructor, John Sarkela. The
second team included three additional students who were entering their senior
year, Josh Fridstrom, Adam Jacques, and Kurt Kilpela.

Why Smalltalk? Smalltalk introduced the term object oriented. The original
usage of this term implied much more than a language that supported classes
and polymorphic message sends. Object orientation implied a development pro-
cess that entailed direct manipulation of objects. The Smalltalk environment
was at once an operating system and a programming environment. In this envi-
ronment, everything was an object. This even included the implementation of
the compiler, debugger, classes, compiled methods, processes, and method acti-
vations. To create a new subclass, the developer sent a message to the proposed
superclass requesting that subclass be created. To add behavior, the compiler
was sent a message with a class and some source text to compile. This source was
transformed into a compiled method object, and added to the method dictio-
nary of that class. In this environment, the program, the operating system, the
c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 294–301, 2015.
DOI: 10.1007/978-3-319-18612-2 30

Testing Modtalk 295

language implementation, the developer tools were all represented with a very
large object graph known as the virtual image. The virtual image was brought to
life by a virtual machine that animated the object graph implementing message
sends that modified the object graph.

This environment was extraordinarily productive for a single developer. How-
ever, because the activity of coding was a process of incremental modification
of a running program, sharing developed software was problematic. Further,
there was no clear distinction between the development tools, the program under
development, the language implementation, or the operating system, making the
deployment of a standalone application difficult.

The Modtalk project seeks to address these issues by taking a radically dif-
ferent approach to Smalltalk development. Modtalk stores source code in files.
It has an integrated development environment that compiles that source code
into a mix of C and assembler that can be compiled with a standard C compiler
tool chain into a standalone executable. In this paper, we will be reporting on
our experiences testing this system into existence and evolving it over the first
two years of project development.

The scope of the work involves three distinct domains of execution. The
cross development environment, Pharo Smalltalk, in which the tools are being
developed, C in which the runtime support libraries are implemented, and actual
programs created by the cross development tools. Therefore, we had unit tests
that needed to run in each of these three domains.

As is often the case, as test cases accumulated, they started to become a
burden on progress. There is a natural tension between keeping tests passing
and the principle of continuous design improvement. Tests that break because
of an improvement to the code base, we call brittle. Imagine a plate of glass.
If you attempt to bend or deform that plate of glass, the expected outcome
is many shards of broken glass. Similarly the deformation of an interface often
leads to test failures. Sometimes these changes can be foreseen; other times they
take us by surprise. Note that we do not believe that brittle tests are inherently
bad. For example, tests for key system interfaces should be brittle and complain
loudly when an implementation is out of conformance. However, in our case, we
were in the process of attempting to not only define these interfaces, but also to
determine on which boundaries they lived.

2 The Project

2.1 Project Release Plans

We identified goals for the first two release cycles of the project. The first release
cycle was six months long and had the objective of being able to compile a simple
program that allocated objects and sent messages. The tests for this phase of
the project were written in the Pharo cross development environment and in our
C language runtime environment.

The second cycle was eighteen months long targeted a system with sufficient
functionality to compile standard benchmarks such as the delta blue constraint

296 J. Fridstrom et al.

solver. This second cycle introduced tests running in the context of a program
compiled by the Modtalk compiler.

The traditional unit of compilation for Smalltalk is a method, so we initially
envisioned a compiler that first loaded all of the global definitions into a model
of the program, and then it compiled the method definitions in the context of
that program model. Modtalk introduces the notion of source code modules to
Smalltalk. Program and subsystem modules define global namespaces. Packages
hold the actual source code definitions and clusters provide views on those pack-
ages. Modtalk does not change the syntax of Smalltalk, but does add a higher
order language for expressing how packages are composed to define subsystems,
and how subsystems are composed to define a program.

We wanted all of this to be under source control, so we had the further
requirement of a framework for loading versions of source modules into memory
so that they could be semantically validated and decorated as a full model of
the program. Our initial subsystem break down looked like this.

Fig. 1. The initial rough breakdown of subsystems

We would not need to begin work on the runtime until we had the ability to
create and load a program, so work on the runtime was deferred. Our repository
subsystem was to be responsible for saving a module object as source text in
an external repository as well as later retrieving a version of the source and
producing a module object. We wanted to be able to support svn or git as a
backend, and settled on git for the first implementation. At the time, the simplest
course of action seemed to be to use the FSGit framework on SqueakSource.
We created a bridge class that delegated to the implementation class. FSGit
supported memory based repositories, which made it very easy to create and
destroy repositories when testing.

We created classes to model all of the Smalltalk source code definition types
defined in the ANSI standard. Most of these objects were simple information
holders and we did not write tests for them. Next up was the module system.
Modules are the unit of persistence for source code in Modtalk. We had not
settled on an external syntax for our source code modules, and chose to use a
concrete syntax that was easy to generate and parse, but not particularly easy
for a human to read or write directly. We knew that we would be replacing
the module syntax at least once before this phase of development was over.

Testing Modtalk 297

We designed abstract module reader and module writer tests. The tests were
all of the form: given a module, produce the corresponding source; or given
source, produce the corresponding module. We implemented the test methods
for the readers and writers in the abstract test case. This abstract test case
included concrete methods that returned instances of modules required by the
tests. We declared abstract accessing methods responsible for returning what the
corresponding external source strings should be. Creating a concrete test case
for the module readers and writers entailed writing an accessing method that
returned the appropriate source string for that version of the module syntax. We
subsequently changed the syntax for modules twice, in each case, the readers,
writers, and their test cases were all completed in a day of work.

Once we could save and restore software modules from the repository, we
needed to start the process of decorating these modules to produce the program
model used during compilation. We identified two key objects, a module manager
and a definition manager. The module manager was to be responsible for ensur-
ing the referential integrity of the module structure. The definition manager was
responsible for managing program scopes and program model artifacts as defini-
tions were loaded into a program model. We implemented the module manager
and definition manager by sequentially writing tests for everything we could
identify they needed to do. The level of complexity of this part of the system
caused us to implement a bulk whole program loader, rather than an incremental
loader. We wrote tests to ensure we could recognize and record global program
errors. Unfortunately, the resulting code had all of the structure and elegance
of a big ball of mud. On the positive side, we did design a fairly stable and
complete interface for the module manager. A very important aspect of writing
tests first, is that it is an effective way to scope design activities. By focusing all
of ones attention on the task of writing tests, one is forced to consider what the
component under test needs to do, not how it does it. The consequence of this
is that just enough design gets done.

The method scanner, parser, and abstract syntax tree nodes were easy to
test into existence and had a very stable specification. We wrote tests for each
type of token, and each production of the method grammar. These were well
understood, and implemented in a week.

At this point, we could load a program, build global scopes for name spaces
in the program, and we could compile methods. We were four months into the
first cycle of development. The ability to generate code was next in our queue.
We defined a low-level stack/register machine that would serve as the model for
the Modtalk code generator for this purpose. At this point, we welcomed Josh,
Kurt, and Adam to the team. They were given documentation of the Modtalk
machine register architecture and op code set, as well as the types and memory
formats for objects in memory. They were initially tasked with implementing a
direct threaded interpreter for this abstract machine, as well as implementing
the object allocator.

There was a big learning curve to get up to speed on the work that had been
done to this point. Once again, tests helped to focus effort as new team members

298 J. Fridstrom et al.

were being on boarded to the project. We built the simplest possible C based
test runner, wrote tests for byte and pointer object allocations and tests for the
op code set. While the new team members were busying themselves with getting
runtime tests to pass, Steve and John tested a code generator into existence.

Shortly thereafter, we could compile a program that created an object and
sent some messages. We could not yet handle method arguments, or temporary
variables, but we could send messages. This completed our first release cycle.

2.2 Refining the Design

At the beginning of the second release cycle, we had 27 test cases in the Pharo
cross-development environment with 149 test methods. The runtime had 6 object
allocation tests, 20 interpreter tests, and 3 method lookup tests. We needed to
get enough Modtalk classes written so that we could compile a working SUnit
test framework. This was important, as we did not have debugging tools for
the generated program beyond gdb and lldb. They are great debuggers, but the
wrong level of abstraction for debugging our generated code. To get an adequate
library of classes compiled, we needed to get a garbage collector, more primitives,
full block closures with non-local returns, and exceptions working.

In our retrospective of the first release of the project, we noticed that no one
had contributed to the FSGit project in over a year. This caused some concern,
and we decided to fork a shell and run standard git commands instead. While
this change did not break any tests directly, the performance characteristics were
profoundly different. So much so, that running all the tests became problematic.
We ran the tests and assured that they behaved the same as the old implementa-
tion. After that, we stopped running the repository tests as written for a number
of months. Over time, we rewrote the tests to be less file system intensive.

Fig. 2. A more refined understanding of the system

Upon revisiting our block diagram of the system, we discovered that we
needed to refine our Compiler subsystem into a Semantic subsystem and a Code
Generation subsystem. To do this would require an extensive rework of the com-
pilation subsystem. All of our compiler tests were testing actual generated code
sequences produced from abstract syntax trees. To expose the new Semantic

Testing Modtalk 299

subsystem interface, we needed to compile up to an intermediate representa-
tion in the Semantic subsystem and generate the actual runtime code in the
Code Generation subsystem from intermediate representation. Our strategy was
to introduce intermediate representation in the existing implementation and a
threaded code generator. We validated the intermediate representation and code
generator by ensuring that the existing compiler tests all green lighted. The next
step was to cleave the code generation subsystem from the semantic subsystem.
This action broke every compiler test, and was a needed design refinement.
Knowing that the compiler tests green lighted prior to this shattering of the
compiler tests gave us the courage to proceed.

We now faced a big problem. Modtalk library development needed to proceed
at a break neck speed. At the same time, we needed to radically restructure the
underlying implementation of the semantic subsystem. Both of these activities
needed to happen simultaneously. Our solution was to introduce two new facade
objects: one for the repository subsystem, and one for the semantic subsystem.
All of the tools were refactored to use these objects. In this way, library construc-
tion could proceed using the big ball of mud implementation, while the refactored
module manager and definition manager were developed. We were able to get a
version of SUnit ported in about one month of effort. We focused testing of the
new semantic subsystem on the edge cases of the new implementation, as the
main paths of execution were implicitly covered by other tests.

Meanwhile, work on the new primitives and garbage collector proceeded as
quickly as possible. Our simplest of C based test runners was rapidly becoming
inadequate. The garbage collector stress tests malloced gigabytes of memory.
In order to isolate interactions between tests, it was necessary to extend the C
test runner to fork each test in its own process. Running each test in its own
process allowed us to record tests that crashed the test process as errors and
continue running the rest of the tests. The garbage collector was written over a
two-week period, and has been stable and reliable. It is certainly the case that
having tests for the closure operations and traversal operations performed by
the garbage collector contributed to this stability. We also took the time to add
support for test suites in the C test runner. This way, when we worked on a
runtime component, we were able to simply run just the tests relevant for the
component on which we were working.

2.3 The Process of Processes

In order to implement asynchronous IO in a portable way, it was necessary to
implement the Smalltalk process class and a process scheduler. Host OS signals
are converted into program interrupts. Interrupt handlers are dispatched by a
highest priority interrupt process. We had to get this working in our compiled
programs.

The Smalltalk Blue Book specifies the interface for the process scheduler,
process, and semaphore. Tests for much of the behavior could be generated
directly from the specification with the use of an Interpreter mock object.

300 J. Fridstrom et al.

A big problem arises when one tries to actually test the occurrence of a
process switch. It is possible to write tests that infer whether or not process
switches have occurred, actually observing and testing this is somewhat prob-
lematic. The problem of debugging the process scheduler given the status of our
debugger further compounded the problem.

Our solution was to follow the advice of Fredrick Brooks in The Mythical
Man-month.

If the target computer is new, one needs a logical simulator for it. This
gives a debugging vehicle long before the real target exists. Equally
important, it gives access to a dependable debugging vehicle even after
one has a target machine available. Dependable is not the same as accu-
rate. The simulator will surely fail in some respect to be a faithful and
accurate implementation of the new machines architecture. But it will be
the same implementation from one day to the next, and new hardware
will not.[1]

We built out our mock interpreter until it could execute a major subset of our
ANSI tester. This allowed us to use the Pharo Smalltalk debugging tools to
ensure that the process scheduler was working correctly. When this work was
done, we were near the end of our release cycle, and settled for hand testing the
scheduler. To compensate for this lack of testing, we did build a number of tests
that heavily exercised the process scheduler. The interesting thing is that we
were able to run the process scheduler in a runtime that was embedded within
the context in which the test itself was running. Given a bit more schedule time,
we could actually have a test that reflects on a program running in an interpreted
runtime environment.

Another curious consequence of this activity is that we had a major insight
into how the code generator should be structured. We would have been well
advised to take Mr. Brooks advice about planning to throw out the first two
implementations. The task of retargeting our code generator to a Smalltalk-based
interpreter helped us to distinguish the deep abstractions that characterized
the design of the code generator, from the particulars of our code generation
strategies. From this test driven exploration we made a major design discovery
that gave us pluggable object writers and code writers.

When the process code was merged with the development branch, every
runtime interpreter test broke. In this case, the problem was not with the tests
themselves, but rather with the naive assumptions we made at the end of the
first release cycle when most of these tests were written. When these tests were
written, we had no clear understanding of the order in which the runtime process
of a compiled program was initialized. The fix was straightforward, and identified
an aspect of the runtime we had overlooked in our original design.

3 What We Learned

Tests serve a number of distinct purposes on a complex project:

Testing Modtalk 301

– Tests may be used to inform team members.
– Tests focus and scope design activities.
– Tests prioritize implementation activities.
– Tests define boundaries of major components. When using a test for this

purpose it is wise to define a facade and write the tests against that object.
– Tests validate implementation semantics.
– Tests can facilitate porting. In our case supporting new target architectures.

Tests often tend to be brittle, and if one is not careful, that can be an impediment
to rapid development. Tests can be brittle for a number of reasons:

– Changing technical architectures can reveal hidden performance assumptions
in the implementation of the tests.

– Changing specifications or requirements can lead to broken tests. If you
know how the specification will be changing, you can capture common test
structure in an abstract test case.

– Evolution of system boundaries can lead to broken tests.
– Tests written with incomplete understanding.

Brittle tests must be managed lest they burden development and halt the for-
ward progress of the project. It is useful to consider that some tests are forever
and should be maintained. Some tests are used to drive an implementation tra-
jectory and may not be needed forever. Many tests are brittle because they
depend on details of representation. Many of our early tests became obsolete
because the representation of code sequences changed. Many of these tests are
not strictly necessary because the semantics of our ANSI tester program vali-
dates the semantics of the generated code. We have also become aware that the
intention of a set of tests can change over time.

Originally, the runtime interpreter tests were used to instruct and inform stu-
dents. Now they document the garbage collector and primitives. We have spiked
an implementation of a native x64 based target, and are looking at ARM64 as
a future native platform. In support of that, we are considering the possibility
of generating Modtalk machine validation tests. These would replace the hand
written interpreter tests with machine generated tests for each platform to which
we port.

Students working on the next release are developing a native debugger, and
GUI support. Other students are looking into support for optimization and
project configuration. We hope to make Modtalk an environment in which under-
graduates can explore the implementation of a dynamic language and get expe-
rience of agile development outside of the classroom.

Acknowledgments. Our special thanks go out to Rebecca and Allen Wirfs-Brock.
Rebecca for her insight and advice, and Allen for his insightful work on Modular
Smalltalk in the mid 1980s which inspired much of this project.

References

1. Brooks, F.: The Mythical Man-Month (20th Anniversary Edition). Addison-Wesley
(1995)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 302–309, 2015.
DOI: 10.1007/978-3-319-18612-2_31

Building Learning Organization Through
Peer Hands-on Support Community and Gamification

Tomáš Tureček(), Martin Chmelař, Roman Šmiřák, and Jan Krchňák

RainFellows.s.r.o., Bohumín, Czech Republic
tomas.turecek@rainfellows.com
http://www.rainfellows.com

Abstract. The story is about how we decided to activate potential of the teams
in a product portfolio with 21 products and more than 400 people in 5 countries
and started to build a learning organization where product teams share expe-
rience and knowledge with each other and improve. And this all driven by their
own motivation. How? By organizing a community a bit different way, using
peer hands-on support in between community sessions and by gamifying per-
sonal growth. This paper describes how we designed the community, piloted it
for 3 months and summarizes the results. Teams are now much more connected
cross team/product borders and they actively help each other to improve.

Keywords: Learning organization · Leadership · Community · Experiment · Pilot ·
PDCA · Mentoring · Coaching · Growth · Gamification · Business for breakfast

1 Context

We, RainFellows, are a team of coaches and mentors who help leaders to build, devel-
op and efficiently lead teams and companies. Our main focus is to help the leaders to
involve and engage employees into the changes they need to make to become more
successful in their business and to teach the employees how to continually improve
their way of working together. Our experience comes from hundreds of teams and
companies supported in past 10 years.

In 2009 we helped to outsource development of Tieto Energy products from Scan-
dinavia to Ostrava, Czech Republic. The biggest challenge of the service ramp-up was
also the change of way of working from traditional to an Agile one. In XP2010 paper
[1] we published all the constraints we were fighting with together with all the lessons
learnt. Long story short, we managed to stabilize new way of working quickly and
later on rolled this Agile way of working out to other products as well. There has been
established so called Lean office of coaches and mentors, which we RainFellows are
still part of, in order to help the teams to stabilize the situation after the radical
changes they went through and at the same time to continually improve the way of
working to meet challenging business goals. This went very well but one thing. It is
currently 28 cross-functional Agile teams of various sizes working on 21 products in
5 countries and they got used to the Lean office mentors being drivers of continuous
improvement and gave over this responsibility to them. From external perspective it

 Building Learning Organization Through Peer Hands-on Support Community 303

seems that most of the team leaders (TL) got used to their comfort zones of routine
and do not feel the need to work on their leadership skills. We applied many of Agile
and Lean principles but we failed in maybe the most important one - activate the
people potential in the organization. Finally, we (the mentors and the management)
decided to change this and to do it in an Agile/incremental way.

2 Motivation

TLs did a great job with their cross-functional teams while applying Agile rituals and
they were very well aligned with the product and portfolio vision. But there was a
huge opportunity to improve in the area of innovation and collaboration. Retros-
pectives were kind of dull, not bringing much improvement, mostly pointing outside
(to the management) and missing actions in most cases. At the same time most TLs,
as former developers, admitted they actually lack soft skills to efficiently lead their
teams. Last but not least, it was clearly visible the teams within one product and also
between the products were living in silos with little motivation to change their way of
working. The teams gladly shared outside what they were doing and how they had
done it but almost no one was willing to ask for help or feedback to improve their
own “silo”.

Vision of a Truly Learning Organization
We dreamt of something more lively and energetic. Of people being more engaged
and willing to share with and offer help to their peers in other teams in the portfolio.
Of people challenging themselves and being proud of what they do. And of leaders
growing their skills and helping their teams to grow as well.

This change of the mindset of all the people in the organization is definitely an evo-
lutionary thing, it cannot be fixed by just sending all the people to a training course
or get them certified and hope for the best. After a visioning we, the mentors and the
management, agreed to focus on three cornerstones:

• Focus on TLs and through them change the mindset of their teams as well
• Set up a TLs community to regularly meet, share, inspire, cheer up, ask for help

and most important to provide hands-on peer support to each other
• Activate and boost TLs’ interest in personal growth through inspiration, success

stories of their peers and gamification

3 Proposed Solution - Community and Gamified Growth

We already had a chance to organize communities couple of times before. Having
done so, over the course of time we identified community patterns helping us to
create a positive reinforcement loop [3] to create and keep the momentum of our
communities and thus increase their chance to blossom further.

304 T. Tureček et al.

• Attractive vision and purpose - a common goal, a reason to meet, share and do
something together.

• High value delivered - a value coming from attending has to be much higher than
the comfort zone of not attending. A cake helps :-)

• Minimal overhead - joining has to be as easy as possible, from organizing ses-
sions in suitable time and place to high efficiency of the meetings.

• Charismatic community leaders - people follow leaders having and loving their
strong vision who are able to inspire people and make them cooperate

• Management support - people have to have slack time to meet and the communi-
ty activities have to be prioritized among other things to be done.

Having previous experience of working as TLs and Scrum Masters (SMs) and know-
ing the drill pretty well we designed the community the way we believed would be
the best to serve the purpose of building a learning organization. These were, of
course, still hypotheses that had to be validated. Therefore we organized a 3 month
pilot to validate the design and all the hypotheses (see section 4). The sections
below describe how we had designed the community - including all the mentioned
patterns.

3.1 Attractive Vision and Purpose of the Community

The community has to provide TLs practical help with their daily challenges just in
time when they need it. Not just sharing and inspiring but also acting. The com-
munity has to help TLs to make the change happen. Together with the community
leaders we defined the following vision/purpose of the community:

“Enjoy working together through our growth
and improving the environment around us.”

The vision is reflected in the practical arrangement of the community as a platform
helping TLs to (1) grow as Leaders, (2) support each other, (3) celebrate their suc-
cess and growth, (4) get support from skilled coaches and mentors and (5) get sup-
port from management.

3.2 Value and Minimal Overhead

As mentioned in section 3, we as former SMs and TLs defined what we would expect
from the community as the following:

• “Someone helps me to deal with my challenges”
• “I get inspired by what my peers (or guests) work on and what they’ve achieved”
• “I can share with my peers what I have accomplished and get their appreciation”
• “I learn what’s going on in general in our organization”

The whole community concept has been designed to fulfil these needs.

 Building Learning Organization Through Peer Hands-on Support Community 305

Fig. 1. Community activities

As depicted in Fig. 1 – a Community session (1) happens once a month and its
main goal is to let TLs capture challenges and opportunities they have (either concrete
issues to be solved or inspiration from someone else’s success story) and pair with
other TLs (or Agile/Lean mentors) who already experienced a similar situation in
past. They immediately plan hands-on Follow-up meeting/s (2) focused on bringing
the idea into life. This cooperation results either in a success story or at least in les-
sons learnt presented as Results (3) at the next Community session (4) which typical-
ly again yields new hands-on Follow-up meetings (5) – a positive reinforcement
loop [3]. If TL does not want to wait for follow-ups or the topic is interesting to many
others, then we continue with a focused topic discussion, where we have dedicated
time to elaborate more on the topic and make everyone satisfied.

As can be seen from the community design, it clearly covers all four TLs’ needs
described at the beginning of this chapter.

Community meeting has to be perceived as very efficient. Therefore we got in-
spired by Business for Breakfast (B4B) concept [2] which we find exceptionally
effective and we know it very well since we lead one of the B4B business clubs in
Ostrava, Czech Republic. We adjusted B4B procedure to suit the community needs.

Community meeting agenda (2-4 hours)

1. Each attendee gives one minute elevator pitch to:

a. Introduce her/himself
b. Share what s/he has done great and what s/he can help others with
c. Ask for help with the challenge s/he’s currently facing

After each pitch we, as moderators, summarize the key needs and offers men-
tioned and encourage attendees to request/offer practical hands-on support from/to
this attendee (30m).
If any of other attendees is interested in learning more or wants to offer help s/he
writes it into so called Referral sheet (RS) [2] and addresses it appropriately to
reach the right attendee later on in step 3. RS is in paper form since people like
tangible things, its physical passing to the respective addressee visualizes the con-
nection and it also serves as a connection record for later use and statistics.

2. Attendees share the success stories and lessons learnt from the last month (1h)
3. The moderator delivers filled RSs to their addressees (visualization) and makes

attendees to plan follow-up meetings immediately in their calendars (30m)
4. The focused topic discussion – topic gathering, voting and solving (up to 2h)

This way the meeting is not just usual status reporting but it motivates everyone to
be active and results in a tangible outcome in form of planned follow-up meetings.

306 T. Tureček et al.

3.3 Charismatic Community Leaders

In order to attract enough community members, the community leaders have to pos-
sess a strong passion and put a lot of effort into organization of the community. For-
tunately, we really believe in the idea of a learning organization and we organize each
community session as a small conference. We meet weekly and continually work
on the next community session to make it even more efficient than previous one and
to have good success stories and new achievements (see section 3.5) there. Good
refreshment helps too :-)

3.4 Management Support

The Management has been fully supporting the activity. We agreed on 3 month
pilot funding to see if the challenging goals mentioned in the Vision section would
bring the fruits. The Management did not insist on any concrete evaluation criteria;
we agreed we would collect the data and check the results and then decide whether to
continue after the pilot period. We collected following data:

• Attendance
• Connections - how many times people connected for follow-up hands-on work
• Success stories - numbers and concrete impact (positive change)
• Feedback from participants

The 3 month pilot is over now; this was the original budget:

• 3x 8h/TL - 3x 4h for 3 community sessions and the rest as a slack time for follow-
up activities. Hands-on work is part of their work time already

• 3x 2,5d/mentor (4) to organize community and provide hands-on support to TLs

3.5 Gamification of the Growth

TLs plan follow-up activities if they hear something interesting or have a challenge to
tackle. But what if they don’t have one? What else can encourage them to challenge
themselves, step out of their comfort zone, try out new things, experiment and grow
their skills? We came with such a concept. We identified 7 skills, based on identified
gaps, and elaborated them into Agile Team Leader Guru game. TLs can gather
achievements in form of sticky stars they can glue into the spots at particular skills in
their own printed game plans in Fig. 2.

We defined 3 levels of achievements for each skill and we encourage TLs to as-
pire to gain them. We tried our best to define tasks to be accomplished to get each
achievement, but there’s nothing like one-size-fits-all. Therefore we defined the tasks
on general level and only when a TL aspires for an achievement we tailor concrete
tasks together with her/him in order to do things that bring as high value as possi-
ble. Then we actively support/pair TLs in accomplishing these tasks. In the end the
TL captures results and lessons learnt and presents them in the next community
session. This way TLs get also appreciation for the work done. The stories also in-
spire others to challenge themselves and aspire for an achievement as well.

 Building Learning Or

Leader and Coach Achiev
Goal: be able to coach and l

• Symptom when missing:

• Team expects to be
• Team members ask
• Quiet and disconne

• ✩ Give at least once pos
• ✩✩ Coach one team me
• ✩✩✩ Coach another co

As stated above, we always

4 Experiment and

Since everything we design
from the past communities
ronment. We agreed with th
with 15 TLs and their team

We also agreed with the
be strictly voluntary and i
erwise it would be difficult
ue they get or because of be

rganization Through Peer Hands-on Support Community

Fig. 2. Game plan

vement Example
lead team members to help them grow

:

e told what to do
k the TL to do things for them they can do themselves
cted team members in meetings

sitive and constructive negative or corrective feedback
ember to help him improve himself (GROW model)
oach in using the coaching model

s tailor these general tasks together with a concrete TL.

d Results

ned was based on hypotheses, despite all our lessons lea
s, we needed to pilot this approach in a controlled en
he Management to pilot community activities for 3 mon
ms that reside in Ostrava (one location only).
Management that the attendance of the community m
it will not be used for any kind of formal evaluation. O
t to distinguish whether attendees come because of the v
eing evaluated better.

307

arnt
nvi-
nths

must
Oth-
val-

308 T. Tureček et al.

The pilot lasted from Nov
community procedure has
each community session w
ments. See the following se

4.1 What Went Well

• The pilot with 3 local co

• 11 attendees comin
• 11 success stories p
• 7 achievements gai
• 3 concrete topics s
• 3.86/4 - feedback f
• 75x TLs helped ea

Fig. 3. Visualizati

• As seen from the results
up activities. Changes re

• We asked for feedback
feedback survey in the en

• “The community m
hands-on work with

• “Pairing and connec
• “Achievements gam

• The roughly estimated ti
• The hypothesis about s

for TL activation has b
story about how mentors
pective which yielded 3

• The chart of visualized c
Two TLs shared they w
connection lines and hav

vember 2014 to February 2015 and it is over now. T
been followed 3 times with slight adjustments since a

we performed a retrospective and came up with impro
ections for details.

ommunity sessions brought great results:

ng to a session in average (out of 15)
presented
ined
olved in focused topic discussions

from TLs about the whole pilot period
ach other!!! – captured via Referral sheets

ion of Referral sheets - pairing within the community

the concept really attracts people and generates follo
eally happen in teams and generate success stories.
after each session and we also organized one anonym
nd of the pilot. These are the points mentioned the most

meeting produces concrete tangible results - follow
h peers and coaches helps to solve concrete challenges”
cting during the community session (B4B concept)”

me” and “Cake :-)”

me/budget for TLs and mentors was surprisingly accura
success stories and achievements working as a motiva
been proven true. For example, one TL shared a succ
s helped him to improve facilitation of an Iteration retr
aspirations for the same achievement (ripple effect).
connections in Fig. 3 seems to have gamification potent
were more active in generating connections to have m
ve their bullets bigger.

The
after
ove-

ow-

mous
t:

w-up

ate.
ator
cess
ros-

tial.
more

 Building Learning Organization Through Peer Hands-on Support Community 309

4.2 What Can Be Improved

• The second part of the community session – the focused topic discussion – has
been less attended. We are now processing community members’ feedback to im-
prove the situation.

• The community partially duplicates the work of line management in sense of
challenging and helping TLs to grow. Line managers haven’t been involved so far.

• Once, attendance was lower than before, and we found out there were some collid-
ing mandatory management meetings – we agreed with the management to respect
these community time slots.

• The community faces the risk of eating all its topics so we plan to introduce
guests from other units but at this moment we have not decided yet how to sponsor
their support if they ask for help as well.

• The community depends very much on us and the community leaders – we
plan to focus more in next months on making community more self-sustaining.

• The gamified growth (game) depends on us as mentors – we plan to involve
people who gained an achievement in helping their peers to get the same one.

5 Conclusion

In order to activate teams and build a truly learning organization we engaged their
TLs into a community standing on two major pillars: practical hands-on peer support
and gamified growth (see section 3.5). The 3 month pilot has proven the approach
we chose has worked (see section 4). The positive feedback from both the commu-
nity members and their management resulted in approval of another 6 months of
continuation and an explicit request to scale the community concept up also to
other parts of the Energy organization (other countries). The concept also attracted
attention of the local HR department which asked us to share it with other commu-
nity leaders in Ostrava to inspire them and to also to build the concept into the local
talent management programme.

We have plenty of ideas how to improve the concept, e.g. how to gamify the atten-
dance of the community members so they create a habit of joyfully coming to every
community session and prioritize it over their other duties. Feel free to contact us to
get an update on new stories and the latest progress.

References

1. Tureček, T., Šmiřák, R., Malík, T., Boháček, P.: Energy project story: from waterfall to dis-
tributed agile. In: Sillitti, A., Martin, A., Wang, X., Whitworth, E. (eds.) XP 2010. LNBIP,
vol. 48, pp. 362–371. Springer, Heidelberg (2010)

2. Business for Breakfast meeting record. http://www.bforbfranchise.co.uk/work/ (June, 03,
2015)

3. Daniels, A.C.: Bringing Out the Best in People, pp. 53-63, McGraw-Hill, Inc. (2000) ISBN
0-07-135145-0

From Sprints to Lean Flow: Management
Strategies for Agile Improvement

Marcelo Walter1, Ramon Tramontini1, Rafaela Mantovani Fontana2,3(B),
Sheila Reinehr2, and Andreia Malucelli2

1 Objective Solutions, Av. Horacio Raccanelo Filho, 5355,
Maringá, PR 87020-035, Brazil

{mlwalter,ramon}@objective.com.br
2 Pontifical Catholic University of Paraná (PUCPR), R. Imaculada Conceição, 1155,

Curitiba, PR 80215-901, Brazil
rafaela.fontana@ufpr.br, sheila.reinehr@pucpr.br,

malu@ppgia.pucpr.br
3 Federal University of Paraná (UFPR), R. Dr. Alcides Vieira Arcoverde, 1225,

Curitiba, PR 81520-260, Brazil

Abstract. This paper describes management strategies for continuous
improvement in agile software development teams. We have applied these
strategies in a Brazilian team, which was born in 2009 and now grew
into a headquarter of the company with ninety people. We have cur-
rently reached lean flow state with constant throughput, reduced lead
time and enhanced quality by cutting bugs rate in half. In a continuous
improvement cycle, our management strategies are based on looking at
the situation, sensemaking the situation and providing simple responses.
We describe how we applied these strategies to learn how to correctly
limit work in progress (WIP) and to face challenges with coaching, esti-
mates, team motivation, sprints and pair programming.

Keywords: Agile software development · Management · Improvement ·
Lean · Flow state

1 Introduction

As complex adaptive systems, agile teams present challenges to leaders on how
to make space for innovation, flexibility and self-organization [1,2,3]. We expe-
rienced managing a Brazilian agile team from ground up to a ninety people
headquarter, in a five-year journey. Throughout this journey we recognized the
importance of the management actions to lead a successful agile adoption [5].

The management strategies we applied are based on looking, sensemaking
and providing simple responses. As there is no silver-bullet in managing agile
teams [6], we exemplify how these strategies guided continuous improvement
from sprints – i.e. an adoption of Scrum “by the book”– to lean flow state. By
lean flow state we mean having the work to flow through the system, removing
waste and impediments [7,8].
c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 310–318, 2015.
DOI: 10.1007/978-3-319-18612-2 32

From Sprints to Lean Flow: Management Strategies for Agile Improvement 311

2 The Case Organization

The management strategies described in this paper were developed in Objective
Solutions’s headquarter in Maringá, a small city in the South of Brazil. Our
business is software development for big Brazilian telecommunication companies.
Our main product is a Customer Relationship Management application that
today has more than 4000 Java Classes, 1700 Oracle tables and around 33000
functional automated tests. We build on a daily basis and deliver a new version
for all customers every month.

The activities in this headquarter started in 2009. Our set of initial practices
was mainly based on Scrum and Extreme Programming: daily meetings, sprints,
planning poker, calculating velocity, pair programming, task-board, move people
around (M.P.A.) and retrospectives. In the continuous improvement endeavor,
we faced challenges and implemented improvements, as described in Figure 1.

All these facts have been recorded throughout the journey. The first two
authors were directly involved in day-to-day activities and faced all the challenges
described here. The others are researchers who were responsible for analyzing
and compiling the lessons learned.

3 Management Strategies

Our focus on continuous improvement has led us, since the beginning, to con-
tinuously analyze our practices and implement improvements by managing our
team with a cycle, as Figure 2 summarizes. For each challenge we face, first, we
understand what is happening based on physical visibility. This visibility makes
us and the team look at symbols, colors and drawings to realize what is wrong.
What is wrong bothers people and emergent emotions lead us to make sense
of the situation. We then observe and create simple measurements. Our focus,
then, is on quickly acting with simple responses. These actions should generate
physical visibility so that the cycle restarts.

These strategies allow us to experiment solutions before making decisions,
which is a reasonable way to manage agile teams as complex adaptive systems
[2], [3]. The examples we present separately in next sections could all have been
described as applications of the cycle: looking, sensemaking and providing simple
responses. We actually chose to classify them according to each challenge’s main
topic and its applied strategy. Anyhow, they represent the continuous cycle of
improvement we have faced throughout the journey, as shown in Figure 1.

3.1 Looking at and Building Emotions

Things that are shown to be wrong bother people. We have always worked on
creating boards, processes written on the walls, colors and symbols. In Figure 2
we show that this visual information makes people feel emotions – either good
or bad – and take more coherent and collaborative decisions.

312 M. Walter et al.

Fig. 1. Challenges and improvements journey.

Fig. 2. Management strategies.

From Sprints to Lean Flow: Management Strategies for Agile Improvement 313

Confused Coach. When we had eleven pairs of programmers with only few
months of experience, the team coach had a hard work guaranteeing tasks were
delivered with quality and on time. We felt the need to create a means to see
how much help was being required – we needed physical, concrete visibility. We
created low-tech red flags for this purpose. Each pair had a flag they had to raise
every time they got stuck on a task. The flags should remain up until help came.

These flags showed us how individuals in our team behaved and led us to
realize we had to be more proactive on keeping up with the pairs. This is the rea-
son we responded creating the Yellow Flags (other examples of simple responses
are given in Section 3.3). Every pair had a yellow flag that should be raised
first thing in the morning. The coach had to check all pairs with a raised yellow
flag and problems were prevented before they happened. Besides, the number
of yellow flags that were still up at the end of the day made us realize we had
limitations and that we needed more coaches. We created, then the cross-pair
review, in which pairs reviewed other pairs’ work.

Unbalanced Task Board. As prescribed by Kanban, we have always worked
with physical task boards, which provides itself physical visibility. One day we
were looking at our task board and realized that our tasks were completely
unbalanced. The column “Review” was full of tasks in queue. Besides it, there
was a great amount of blocked tasks: activities that were waiting for a customer
decision. With this problem that bothered us visually, we counted the tasks and
identified that the amount of unfinished tasks was twice the WIP.

To gain more visibility, we changed our task board. In spite of having just
columns-like layout such as “to do”, “doing”, “done”, we created slots in the
“doing” column for each pair. Each slot had three parts: in the top, one part
in which was the current task; and, in the bottom, two parts where were the
blocked tasks and tasks to review. This change enabled us to look at the board
and make sense of what was happening. We identified WIP per pair and saw
there was something wrong, as described next.

Disguised Pushing. We still had too much concurrent tasks, and it seemed
that the only way to reach flow state was to reduce parallelism. In our process, we
were still promoting parallelism because we allowed each pair to have a current
task, a blocked task and a task waiting for review. Besides it, we observed that
most developers were more prone to start a fresh, interesting task, instead of
finishing a blocked and complicated one.

We saw, then, we were self-pushing tasks in our team because our WIP
was not correctly limited. We changed the task board (again) to reduce the
possibility to have more than one blocked task. In the first column, the backlog;
in the second column, the pairs slots. In each slot, we had space for just one task.
The blocked tasks remained behind the current task. When it was finished, the
next blocked task was automatically assigned as the current. The third column
was, then, the “to review” tasks.

314 M. Walter et al.

This new restriction reduced parallelism. At this time we also created an
application that automated our task board, providing us real time tasks status,
assignees, time spent and other important data. To keep visibility, the virtual
task board was projected on the wall.

These examples showed how physical visibility triggered emotions which led
us to make sense of the facts. The following section shows other examples of how
metrics and observation helped us providing simple responses.

3.2 Making Sense and Creating Simple Measurements

When we name this strategy as “making sense” we refer to Karl Weick’s sense-
making process, in which we develop “plausible images that rationalize what
people are doing” [4, p. 409]. In this case emotions precede interpretation of
facts, which sometimes require texts, numbers and explanations. Besides, the
executive board in companies usually want these data. So, we usually work with
automated and simple metrics. In this section we show examples of how simple
data helped us making sense of the situation and implementing improvements.

Still Pushing. We had recently automated our task board and we noticed
something was still wrong with our WIP. We had sixteen pairs and sixty-nine
current tasks in our board... A simple measurement of our current tasks made
us see that, yes, we were misapplying the concept of limited WIP.

We studied the concept and understood that all started tasks should be
counted as WIP, even if they were blocked for reasons out of our control (e.g.
a customer delay). As we could not simply reduce WIP from sixty-nine to six-
teen tasks, we just prevented the seventieth task to start. Every time our WIP
reduced, we reset WIP limit to the current WIP size. As the tasks board was
virtual, developers could not even drag a new task from the backlog when WIP
was reached!

Soon the team got used to this restriction and removing impediments in
blocked tasks became a team effort. We realized the secret to reach the flow
state was to control our WIP. By reducing the amount of tasks people could
deal with simultaneously, we gained the flow state. We saw in practice that to
do more, people tend to start several new tasks [1], in an attempt to make the
process more efficient. It actually leads to an ineffective process. By measuring
our WIP we could identify how many simultaneous things we were working on
and make the decision to limit WIP.

Ineffective Estimates. At this time, we had already left sprints and were work-
ing with a continuous flow of tasks, as in Lean Software Development [8] (see
Figure 1). With a history of comparisons between the tasks estimates and the
real work – simple measurements, we realized that our developers were behaving
as stated by the Parkinson’s Law: “The work expands so as to fill the time avail-
able for its completion.” [9]. While we noticed this behavior in some estimates,
another issue bothered us. Once our team agreed with the task estimation and

From Sprints to Lean Flow: Management Strategies for Agile Improvement 315

deadline, we still had to wait for the customer endorsement before working on
the story. Most of the time, we had to wait several days to get it and, when we
finally got it, sometimes the given solution was not applicable anymore.

We decided, thus, to dissociate the team from estimations. We kept an initial
estimate to the customer, given by an experienced proxy we had in the team
(the specifier), but our team stopped estimating.

We knew our velocity. It was calculated over past data: if a task estimated
with 10 hours took us 15 hours to be accomplished, our velocity was 0.66 (10/15).
We used this velocity factor to adjust every estimate the specifier did and this
was the estimate told to our customer. The team got the first estimate, without
the adjustment, to avoid the Parkinson’s Law effect. No more planning poker,
no more task estimates on the team.

Estimates Variance. We did a good job on knowing our velocity and using it to
adjust estimates to customer. However, we are always looking for improvements
and, observing our data, we saw that, on average we were fine, but standard
deviation was still high: we had a lot of tasks with delay and a lot of tasks
finishing earlier.

We decided, then, to implement the T-shirt sizes for estimation. Our tasks
would be estimated in sizes: extra-small, small, medium, big, extra-big. Ok, but
how much is a “small task”? The amount of hours in each size was calculated
with historical data (usually last two months, based on the effort reported by
developers), using a clustering algorithm. This algorithm calculated, as an exam-
ple, that, in the past two months, a small task for this team was from eight to
twelve hours. It gave us an estimation for each task, reducing standard deviation
we had when we adjusted the estimates with the velocity average.

Bored Team. This is another example of sensemaking what was happening,
but not related to measuring things but observing people. Suddenly we realized
we were losing people motivation. It seemed that, when we got to a stabilized
process, the days were always the same and the lack of novelty took away our
“sparkling eyes”. With a little study and based on the work by Daniel Pink
[10] who poses that knowledge workers get motivated when they have purpose,
autonomy and mastery, we implemented gamification in our team. We believe
games stimulate purpose by creating short-term achievable objectives, autonomy
by engaging people in technical goals they are capable of achieving, and mastery
by the competition it stimulates.

Our endeavor was to create games to solve day-to-day issues, such as a big
stack of broken automated tests. We were very successful with our games and
started to promote them every week. We learned two lessons from frequent
games: the first is that challenge is lost when games are too frequent; and the
second is that awards may be in accordance with what really motivates the team
(see [10] for knowledge workers motivation). Gamification is a powerful tool if
games are well planned and used occasionally.

316 M. Walter et al.

These examples showed that measurements and observation helped us mak-
ing sense of the situation. Our focus on responding quickly and in a simple
way were already shown in previous examples. Next section complements these
examples with situations that present how simple responses may generate great
outcomes.

3.3 Providing Simple Responses and Making them Physically
Visible

Whenever working with complex adaptive systems, trying to predict what is
going to happen is not the means to make decisions. There is a need to probe
[3]: we take simple actions to observe the success (or not) of the practice and
make our decisions based on what we observed.

Sprint Starvation. In the beginning of our journey (see Figure 1) we had a
backlog of about 1500 hours and planning the tasks was a real challenge. We
soon realized that the sprints-planning format was not adequate to our context.
The way demands continuously arrived showed us that a continuous flow of
stories would fit better to our needs. This was the end of our sprints – and a
step towards Lean Software Development [8].

Not Every Pair Works Well. Since the creation of the team, we always
believed that pair programming allows developers to do a better job than by
themselves. However, we realized that different personalities and professional
experiences lead to some issues with pairing. By observing, we identified that
there were programmers that preferred to work alone; there were programmers
that preferred not to code and just watch the other working. We thus developed
a simple tool we called “Keyboard rotation alarm”. It is a software that warns
developers, from time to time, that they should shift positions. With this tool,
pairs got used to shift positions several times during the day.

Biased Move People Around (M.P.A). When we established pair program-
ming, we defined a fixed period for the M.P.A practice: once a week developers
could change their pairs as they pleased. The issue with this practice was that
people tended to keep their pairs. Therefore, with pairs that did not change we
were loosing the benefits of knowledge sharing throughout the team. We devel-
oped, thus, a software to automatically create best M.P.A combinations based
on parameters such as: skill levels, M.P.A. history, vacations, seniority etc.

Radical Pairing. Later, with almost ninety people in the team, we kept with
100% pair programming. We had good results, but we realized that some tasks
actually could be performed with solo programming. As we had our limited-WIP
culture established, we started to change WIP to allow stories to be implemented

From Sprints to Lean Flow: Management Strategies for Agile Improvement 317

not in pairs. With time and maturity, we left each team to self-organize and set
their own WIP size. It naturally remained on 70% or 80% of the size of the team.

These simple responses triggered important changes in our process. Creating
physical visibility allows the cycle to restart and provide basis for the continuous
improvement we always looked for.

4 Conclusions

This experience report described the management strategies applied to launch an
agile team and lead it to a headquarter with ninety people. We have been working
with a cycle that supports continuous improvement by looking at the situation,
sensemaking it and providing simple responses. The strategy is based on physical
visualization, building emotions and simple measurements. Our main result since
the creation of the team was reaching flow state (constant throughput), with
reduced lead time (around 70%) and enhanced quality (reduced bugs in around
50%). We also described challenges we faced with coaching, estimates, team
motivation, sprints and pair programming. Our report complements the view by
[7], which describes the impediments to flow in agile software development.

Considering that complex adaptive systems should be managed with simple
rules [11], the take-home messages to conclude our paper are five simple rules: 1)
always listen to your team, they have the best solutions; 2) try new approaches
without fear: constant and small changes; 3) do not trust your intuition: measur-
ing is essential, always; 4) you can measure everything [12]; and 5) motivation
is a transitory state: a stable environment does not trigger stable motivation.

References

1. Denning, S.: The leader’s guide to radical management. John Wiley & Sons, Inc.,
San Francisco (2010)

2. McDaniel Jr., R.R.: Management Strategies for Complex Adaptive Systems. Per-
formance Improvement Quarterly 20, 21–42 (2007)

3. Snowden, D.J., Boone, M.E.: A leader’s framework for decision-making. Harvard
Business Review, 68–76 (2007)

4. Weick, K.E., Sutcliffe, K.M., Obstfeld, D.: Organizing and the Process of Sense-
making 16, 409–421 (2005). doi:10.1287/orsc.1050.0133

5. Melo, C., Cruzes, D., Kon, F., Conradi, R.: Interpretative case studies on agile
team productivity and management. Inf. Soft. Tech. 55, 412–427 (2013). doi:10.
1016/j.infsof.2012.09.004

6. Bustard, D., Wilkie, G., Greer, D.: The maturation of agile software development
principles and practice: observations on successive industrial studies in 2010 and
2012. In: 20th Annual IEEE International Conference and Workshops on the Engi-
neering of Computer Based Systems (EBCS) (2013). doi:10.1109/ECBS.2013.11

7. Power, K., Conboy, K.: Impediments to flow: rethinking the lean concept of
‘waste’ in modern software development. In: Cantone, G., Marchesi, M. (eds.)
XP 2014. LNBIP, vol. 179, pp. 203–217. Springer, Heidelberg (2014). doi:10.1007/
978-3-319-06862-6 14

http://dx.doi.org/10.1287/orsc.1050.0133
http://dx.doi.org/10.1016/j.infsof.2012.09.004
http://dx.doi.org/10.1016/j.infsof.2012.09.004
http://dx.doi.org/10.1109/ECBS.2013.11
http://dx.doi.org/10.1007/978-3-319-06862-6_14
http://dx.doi.org/10.1007/978-3-319-06862-6_14

318 M. Walter et al.

8. Wang, X., Conboy, K., Cawley, O.: “Leagile” software development: An experience
report analysis of the application of lean approaches in agile software development.
J. Syst. Soft. 85, 1287–1299 (2012). doi:10.1016/j.jss.2012.01.061

9. Parkinson, C.N.: Parkinson‘’s Law and Other Studies in Administration. Random
House Inc., New York (1957). http://sas2.elte.hu/tg/ptorv/Parkinson-s-Law.pdf

10. Pink, D.: The puzzle of motivation (2009). video available at http://www.ted.com/
talks/dan pink on motivation

11. Power, K.: Social contracts, simple rules and self-organization: a perspective on
agile development. In: Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179,
pp. 277–284. Springer, Heidelberg (2014). doi:10.1007/978-3-319-06862-6 21

12. Hubbard, D.W.: How to measure anything: finding the value of “intangibles” in
business, 2nd edn. John Wiley and Sons, New Jersey (2010)

http://dx.doi.org/10.1016/j.jss.2012.01.061
http://sas2.elte.hu/tg/ptorv/Parkinson-s-Law.pdf
http://www.ted.com/talks/dan_pink_on_motivation
http://www.ted.com/talks/dan_pink_on_motivation
http://dx.doi.org/10.1007/978-3-319-06862-6_21

Mob Programming - What Works, What
Doesn’t

Alexander Wilson(B)

Unruly, London, UK
alex.wilson@unrulymedia.com

Abstract. At Unruly we are constantly trying to turn up the dial on our
XP practices, and in the second half of 2014 we started to take the step
from Pair Programming on all production code to Mob Programming
with the entire team. This report shares experiences that Unruly has
gained in pushing the boundaries of Extreme Programming.

Keywords: Mob programming · XP · Extreme programming · Group-
think · Continuous delivery

1 Introduction

A company specialising in video ad technology, Unruly[2] was founded in 2006
with eXtreme Programming values baked in right from the start. While it has
occasionally been an uphill battle to keep these aspects in place, we are still
strong adherents to XP practices.

This paper explains how and why we adopted Mob Programming[6] at Unruly,
how we started, what worked for us, what downsides we discovered, the response
from the rest of the business, and where we are now.

2 Life at Unruly

As part of our application of XP, we maintain that all of our production code
must be developed using pair programming. We have worked hard to encourage
collective ownership across our 3 teams (of around 6/7 software developers each).
The teams use frequent pair rotation to share knowledge within the team and
we hold cross-team lightning talks and developer exchanges. This is made easy
by co-locating all development teams in our London HQ.

Towards the end of 2014, some of us attended a talk by Woody Zuill at the
annual JavaOne conference on the topic of Mob Programming[7]. Mob Program-
ming, as Zuill describes, is “the whole team working on the same problem, at
the same time, using the same workstation”. It resembles the Randori[5] style of
programming popular at Coding Dojos that we already use during sessions to
learn new technologies.

c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 319–325, 2015.
DOI: 10.1007/978-3-319-18612-2 33

320 A. Wilson

At Unruly the product development teams are free to try new things that
might improve our workflow. After an informal whiteboard discussion with the
rest of the team about what Mob Programming consists of, we resolved to give
Mob Programming a try to find out how useful it would be for us. We’re accus-
tomed to pairing every day, so the cognitive jump for us to experiment with Mob
Programming seemed relatively small. It wasn’t too hard to convince the rest of
the team as we were about to embark on a particularly difficult piece of work -
we had been suffering performance issues on one of our systems and had decided
to re-architect it. The code in question was the worst kind to refactor/extract:
old and business critical.

We decided mobbing could be useful for this piece of work because we wanted
as many eyes on what we were doing as possible.

3 Our Mobbing Setup

Our team started by declaring that all Fridays were “Mob Fridays”.
When Mob Programming it is essential that the whole team is able to read

the code as it evolves. In his talk, Woody spoke about isolating the team from
everyone else in a meeting room and we decided to adapt this tactic to our own
existing setup. We placed a portable whiteboard as a screen between us and the
rest of the development area, and used it to hold architecture discussions and
team huddles.

Unruly has an open-plan development area with shared workstations. It was
going to be hard for us to all crowd around one monitor. However we were loathe
to leave our area for a meeting room (which would be hard to book for an entire
day) and it would require us to move a workstation to somewhere else in the
building.

Our solution was to supplement the large monitors on our paired workstations
with an additional 50inch monitor that was a mirror of the workstation screen.
This was placed at right angles to the actual monitor, with the intention that
1the team watches the large screen and the driver is able to look at both the
screen and the rest of the team - see Figure 1.

The team felt our setup was more productive than having everyone looking
at a single screen and passing a keyboard around. The arrangement emphasised
the discussion-rooted relationship between the driver (who acted as “the hands
of the team”) and the observers (who were not just backseat passengers along
for the ride).

Initially we used a large television that we borrowed from our internal Infra
team, but this had a much lower resolution than the mirrored monitor and the
team felt that the screen flickered too much. We fixed this by purchasing a larger,
higher-resolution monitor out of our team’s budget. One side effect of mobbing
in an open work space is that other teams working in the same area saw us
mobbing and decided to try it too.

Taking the piece of work with the highest priority already in progress - the
team ran a Randori-style session until we completed it or the day was over.

Mob Programming - What Works, What Doesn’t 321

Fig. 1. Running a 4-person mob. Driver in the background

A Randori session in the context of programming is the timed rotation of a
single driver at the keyboard writing code, while the rest of the group either
observes in silence or guides the driver. At the end of the allocated time period,
elaborated on in section 6, the driver rejoins the group and is replaced by a
different member of the group. This felt like a good format to start mobbing
with.

4 Tracking Mob Work

As part of visualising the current state of our iteration, the team already used a
whiteboard of “hieroglyphs” depicting different activities we worked on. These
include (but aren’t limited to) story work, maintenance tasks, meetings, and
story research. We use them during standups to make sure that our efforts are
allocated effectively (and the same people aren’t always pairing or doing sup-
port). Additionally, they form part of our retrospectives as a way of keeping note
of how we are spending our time and on what types of work over the course of
an iteration.

(a) Mobbed story work is represented in red (b) Key to hieroglyphs on our board

322 A. Wilson

When we discussed how to reflect mobbing in this pre-existing tracking sys-
tem the team consensus was the mobbing was a different way of accomplishing
a task. As it was not a different task, mobbed activities were represented with
the same symbols but in a different colour. This is one difference between our
team and the other teams at Unruly who later adopted mobbing.

5 Mobbing on Critical Code

As mentioned, the team was in the middle of making some important perfor-
mance improvements. The company has grown substantially over the last 2 years
and we were beginning to experience issues with how much data our stats pro-
cessing pipeline was able to handle. We resolved to extract functionality from our
monolithic web application in order to both avoid resource contention and move
towards a better architected system. However, these changes involved touching
a lot of critical code in a lot of potentially dangerous places, including but not
limited to payments. Any mistakes here that might lead to lost data would have
translated into equivalent financial losses.

With 5+ pairs of eyes on this code during these changes, the team managed
to make the hardest parts of the transition with relatively little stress and worry.
The unanimous feeling from the team was that they felt more confident in the
changes made over this period than if they had been paired on. We realised that
Mob Programming is also beneficial as a form of Team Building, with everyone
learning together.

6 First Observations

After mobbing once per week for a couple of months, our team made the following
observations:

– We initially decided on 5 minute rotations in the driving seat which turned
out to be near optimal for our team size. A mob of 4 to 6 developers meant
only 15 to 25 minutes between the same person being in the driving seat
again. This was just long enough to accomplish writing a failing test and
making it pass, but not too long that the team (or any of its members)
might lose focus.

– We noticed that operating as a mob does not work effectively without a well-
maintained and fast test-suite. With our 5 minute rotation time, if our test
suites went above 10 minutes then 2 or more people lost out on their turn
in the driving seat. In the beginning this felt like a brutal approach but the
XP spirit of “if it hurts, do it more” incentivised us to keep our test suites
fast. The longer integration tests were still necessary, but these provided us
opportunities to turn into a huddle and discuss where to go next, ensuring
we were aligned at all steps on the way to the goal

Mob Programming - What Works, What Doesn’t 323

– The ping-pong style of pair programming[3] that we were used to no longer
applied. We started settling into a new style where the observing team guides
the construction of the test, and the person in the driving seat makes the
test pass as normal. In this sense, it evolved into something resembling one-
with-many pairing style.

Overall the team was happy with these results, so we decided to take what
we felt was the next logical step: mobbing on a story from beginning to end. We
felt this would be a good test of some of the claims made by proponents of Mob
Programming, namely the alleged increased productivity throughput resulting
from One-Piece Flow[1]. Our application of XP and paired programming leads
us to rarely having more than 2 pieces of work in progress at a time, so we
already have a naturally enforced WIP (Work-in-Process) limit.

Before we started, we wanted to address some concerns that non-developer
members of the team (such as our product manager) had. In particular, it can
be hard to convince the business that having the whole team working on a single
story or piece of work is more effective and productive than having pairs working
on different stories. We also decided that if the team as a whole needed to be
interrupted (e.g. if there was a group discussion that needed to happen) it could
only happen after a complete rotation of the team. Since the team was situated
in our open-plan working area, this was a hard change to become accustomed
to instead of being able to interrupt people at any time to talk about stories or
support issues.

7 The Risks of Mob Programming

Mob Programming is not the ultimate software development panacea - the
majority of problems that arise in mob programming are very rarely of a tech-
nical nature and are much more likely to stem from people-oriented issues. We
observed two such things over our period of mob programming - the effect of dom-
inant personalities within the group and the emergence of Groupthink, a well-
documented psychological phenomenon. Taken together, both of these problems
have the potential to limit the effectiveness of the mob and undo its usefulness
back to a level behind that of even pair programming.

According to the book of the same name, GroupThink is most likely to
occur in groups with strong senses of group identity and refers to the deteriora-
tion of mental-efficiency, reality testing, and moral judgement that results from
in-group pressures[4]. It is, in other words, the tendency to draw a skewed per-
ception of the situation at hand due to the group’s overconfidence in both its
technical abilities and how well it can perceive future events.

We encourage developers to rotate into other teams for a week or the length of
a story if they have expertise or interest in the work that another team is doing.
During one such rotation, a developer from another team asked “How are you
not worried about the changes that you’re making?” and the team’s conclusive
response was that with the entire team there any issues would be easily solved.

324 A. Wilson

We didn’t know it but we were slowly slipping into a GroupThink mental-
ity, although this was ameliorated by only having weekly sessions to start with.
There was also the issue of “dominant personalities” in the team. This is not
necessarily about who is the loudest, or who talks the most. A dominant per-
sonality is someone who the team will subconsciously or consciously defer to in
an argument. Team members such as a sufficiently experienced developer with
strong domain knowledge can be a focal point for this.

In these scenarios, the team is less likely to challenge ideas from one such
person and due to the nature of the mob a dominant personality can exhibit
influence over the team even when not driving. Ironically, dominant personalities
tend to be less effective when they are driving, as the driver is frequently the
hands of the team rather than engaging their own interests.

We tackled both issues by trying to nurture constructive dissent at all points
during the software development process - it’s encouraged to flag up potential
issues and ask questions from the beginning of a story (and in fact whether
a story is even needed) all the way through the code-writing process. In our
experience there’s no real recipe or process that promotes such counter-thinking
but we try to lead by example.

We’ve also found it beneficial to have an external observer taking part in the
Mob who isn’t normally part of the team. Including non-developer specialists in
the team had an additional positive effect of mitigating this problem - by acting
as unofficial moderators, the specialists could (and did) inject criticism into the
Mob’s discussions and kept us from succumbing to both of the aforementioned
issues.

8 The Cross-Team Response to Mob Programming

After 5 months of Mob Programming across all 3 teams, each team member
filled out a small survey about their experiences with Mob Programming so far.
The results were by and large what was expected, but a few surprising results
came back:

– Almost no one would agree to use Mob Programming on all stories as a rule,
and instead preferred to evaluate whether the story would benefit from it.

– The developers felt that Mob Programming was more beneficial for complex
work (where there is still room for error) than for complicated work (where
the solution is known but time-consuming), and that complicated work can
be just as efficiently completed by a pair.

– A significant portion of the developers were in favour of a hybrid approach -
running a Mob every day but being able to fluidly move in and out of other
tasks, like a pair being able to join the Mob if they were waiting for customer
feedback.

– Tasks that were dull, repetitive, or unclear were most likely to cause the
Mob to dissolve.

– The ideal time limit for a Mob of 4-6 people seems to be 5 minutes, but for
a Mob of 3 people we found that 10 minutes was more appropriate.

Mob Programming - What Works, What Doesn’t 325

– Most teams drifted into having regimented breaks of around 15 minutes after
2 to 3 rounds of rotation. In practice this translated to a break every 1 to
2 hours, but members were able to break off if they needed to take short
breaks due to meetings or other needs.

– All teams noticed a small decrease in cycle-time across stories, but no notice-
able change in story throughput.

9 Conclusion

We adopted Mob Programming to solve the specific problem of making changes
to critical code. Having experienced the results and perceived safety first-hand,
we resolved to decide at the beginning of each story whether it was worth mob-
bing on it from start to finish, which yielded best results on complex pieces of
work where the proliferation of operational knowledge is at its most valuable.

There are problems that need to be constantly guarded against such as
GroupThink and defending against dominant personalities exerting too much
influence on the team. Finally, given Unruly’s unusual approach of making devel-
opers responsible for the entire software development process including research
and operational support, we felt Mob Programming did not yield suffient gains
to be worth mandating for every piece of work.

Our conclusion is that while Mob Programming is a useful tool in particular
situations and to solve specific problems, it is but one of many tools available to
us as a team, and not a new methodology to adopt across the board.

References

1. One-Piece Flow (2015). http://www.kaizenworld.com/kaizen/one-piece-flow.html
2. Unruly.co. (2015). http://unruly.co/
3. Hoover, D.: Ping-Pong Programming: Enhance Your TDD and Pair Programming

Practices (2005). http://www.stickyminds.com/article/ping-pong-
programming-enhance-your-tdd-and-pair-programming-practices

4. Janis, I.L.: Groupthink: psychological studies of policy decisions and fiascoes (1982)
5. Rooksby, J., Hunt, J., Wang, X.: The theory and practice of randori coding dojos. In:

Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 251–259. Springer,
Heidelberg (2014)

6. Zuill, W.: Mob Programming (2012). http://mobprogramming.org/mob-
programming-basics/

7. Zuill, W.: Mob Programming at JavaOne (2015). https://oracleus.activeevents.com/
2014/connect/sessionDetail.ww?SESSION ID=2181

http://www.kaizenworld.com/kaizen/one-piece-flow.html
http://unruly.co/
http://www.stickyminds.com/article/ping-pong-programming-enhance-your-tdd-and-pair-programming-practices
http://www.stickyminds.com/article/ping-pong-programming-enhance-your-tdd-and-pair-programming-practices
http://mobprogramming.org/mob-programming-basics/
http://mobprogramming.org/mob-programming-basics/
https://oracleus.activeevents.com/2014/connect/sessionDetail.ww?SESSION_ID=2181
https://oracleus.activeevents.com/2014/connect/sessionDetail.ww?SESSION_ID=2181

Panels

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 329–333, 2015.
DOI: 10.1007/978-3-319-18612-2

Continuous Delivery – From Concept to Product:
Trade-offs in Effectiveness and Efficiency?

Steven Fraser1, Ismo Aro2, Henri Kivioja3, Erik Lundh4,
Ken Power5, Linda Rising6, Werner Wild7, and Rebecca Wirfs-Brock8

1 Innoxec, CA, USA
sdfraser@acm.org

2 Omenia, Finland
ismo.aro@omenia.fi

3 Ericsson, Helsinki, Finland
henri.kivioja@ericsson.com

4 Compelcom, Sweden
erik.l.lundh@gmail.com
5 Cisco Systems, Galway, Ireland
ken.power@gmail.com

6 Independent Consultant, TN, USA
risingl@tds.net

7 University of Innsbruck, Austria
werner.wild@uibk.ac.at

8 Wirfs-Brock Associates, OR, USA
rebecca@wirfs-brock.com

Abstract. The implementation and release of software products has progressed
from a lengthy delivery cycle – the methodical sequential path of “big bang”
waterfall product delivery – to the rapid iterative release cycle supported by ag-
ile practices. Recently, “continuous delivery” has emerged as a strategy to ac-
celerate product availability. However, only a systematic automation of the
build, test and deployment processes in concert with superbly coordinated
teams of software practitioners and business partners makes make this possible.
However, trade-offs in the optimization of process may act to limit the innova-
tiveness of product output. This panel will discuss approaches, challenges,
risks, and strategies for using continuous delivery to competitive advantage.

Keywords: Agile · Waterfall · Automation · Processes · Innovation · Delivery

1 Steven Fraser (Panel Impresario)

Steven Fraser is based in Silicon Valley California and has served as an innovation
catalyst with global influence for three Fortune 500 Companies as: Director, Cisco
Research Center; Senior Staff, Qualcomm Learning Center; and Senior Manager,
Nortel Disruptive Technologies and Global External Research. In addition to a year
spent as a Visiting Scientist at Carnegie Mellon University’s Software Engineering

330 S. Fraser et al.

Institute (SEI) consulting on Domain Engineering (software reuse) processes and
practices he has organized and delivered over 75 software engineering conferences,
panels, keynotes, workshops, and tutorials.

Continuous delivery of software features, systems and services is a dream that may
becoming reality. This panel will discuss challenges and results – observing and re-
porting on current best practices and pitfalls.

2 Ismo Aro

Ismo has an extensive track record in the corporate world as a change agent. He is
enthusiastic to work with companies to improve their capability to produce customer
value faster and drive them to be amazing places to work. Nowadays he works as an
entrepreneur at Omenia.

Inventories are one of the biggest source of waste in software development. Com-
panies that develop software accumulate immaterial inventories as feature requests in
backlogs, in code waiting, in source control systems, or software packages waiting for
deployment. We should systematically locate and reduce these inventories, by finding
constraints and exploiting them.

3 Henri Kivioja

Henri has experienced and lived transformations in many corporations: moving from
a two year release cycle to a more frequent delivery and deployment cadence. He has
learned from experience with large telecom operators on what it means to move to-
wards rapid value creation. Henri has been fortunate enough to be at the center of
change as a project and program manager and more recently as a head coach. He has
learned the fundamentals of large-scale change, feedback mechanisms and people.
Henri is a popular public speaker in the Lean-Agile community.

Continuous Deployment should be based on market and business demand. Another
dimension is that how (and if) we understand how it works. Conventional manage-
ment treats this aspect as efficiency. In knowledge, work efficiency is a broader con-
cept and sometimes misunderstood. We need to agree on some general terms and
concepts. What is continuous? What is the purpose of R&D? How does the contractu-
al situation affect value creation? How is culture impacting teamwork and way the
work is improved? What is the relation between Continuous Integration, Continuous
Delivery and Continuous Deployment? All in all the term “competitive advantage”
needs to be rephrased in modern software and knowledge work, as tools and availabil-
ity of different technologies is possible outside the industries’ entry barriers (regula-
tion, cost, availability). This implies that advantage is created through people and
culture – not solely with tools and frameworks.

 Continuous Delivery – From Concept to Product: Trade-offs in Effectiveness 331

4 Erik Lundh

Erik Lundh has more than 30 years’ experience in product-technical-software devel-
opment beginning as an apprentice at an innovative design and engineering firm. Erik
has worked in mature firms and start-ups, from small to large (Ericsson and ABB).
Erik programmed industrial just-in-time (Lean) systems in the 1980’s, was a “pro-
cess-management guy” in the 1990’s, and spent the fun part of the 2000’s as an agile
evangelist-coach. Erik facilitated his first (highly successful) agile project in 2000 and
helped Sweden’s top e-commerce brand go agile in 2006. Erik was invited to mentor
Ericsson’s first major agile transformation of 2,300 staff at 10 R&D sites in 5 coun-
tries 2006-08.

Continuous Delivery is the name of the game both for products and services. Do a
feature, deliver it and get feedback as soon as possible. Either split-test or roll-out/roll
back. But wait! Why are many organizations failing with – or eroding their software?
I feel that there are a few vital pieces are missing: (1) Continuous delivery to me does
not mean continuous planning. You need a highly constrained cyclic planning that
feeds into iterative development with continuous delivery (learning “just in time”) in
order to build true value. (2) Trying to avoid constraints (e.g. #noestimates) is an at-
tempt to avoid making decisions – shying away from innovation and creativity. We
need constraints and estimates to generate ideas and make smart choices. Without a
constrained system, we will forever chase the electric rabbit of the “unaccountable”
customer. (3) Agile teams explore and learn about possibilities well before they need
them in the product. Winning teams need to learn what they need “now”.

5 Ken Power

Ken is a Principal Engineer and internal coach and consultant with Cisco Systems. He
lives in Galway, Ireland and works with teams and organizations around the world.
His responsibilities include leading the agile transformation for Cisco’s largest soft-
ware group. He also works with universities and research groups in agile, lean and
software engineering research. He is currently completing a PhD in Lean Flow and
understanding impediments in teams and organizations. He is a frequent speaker at
the major international agile, lean and software engineering conferences, and has
published numerous papers on agile and lean development. Ken is a Fellow of the
Lean Systems Society, a certified Human Systems Dynamics Professional, and a
trained Co-Active Coach and Organization & Relationship System Coach.

Continuous Delivery (CD) brings many advantages that enable business agility.
However, CD is not solely a technology and infrastructure challenge. Not all teams
and organizations are ready to adopt CD. There are a number of pre-requisites that I
have found useful to articulate. These pre-requisites are both technical and cultural,
and neither can be neglected without jeopardizing the overall effort. Continuous
Delivery depends on several pre-requisites being in place. Firstly – the requisite foun-
dation is a culture that supports continuous improvement and problem solving.
Secondly – followed by the technical and cultural aspects of Continuous Integration

332 S. Fraser et al.

(CI) and Continuous Feedback. To be successful, these elements must work together
to support Continuous Deployment.

6 Linda Rising

Linda Rising is an independent consultant who lives near Nashville, Tennessee. Linda
has a Ph.D. from Arizona State University in object-based design metrics. Her back-
ground includes university teaching as well as work in industry in telecom-
munications, avionics, and strategic weapons systems. She is an internationally
known presenter on topics related to agile development, patterns, retrospectives, the
change process, and the connection between the latest neuroscience and software
development. Linda is the author of numerous articles and has published several
books: Design Patterns in Communications, The Pattern Almanac 2000, A Patterns
Handbook, with co-author Mary Lynn Manns, Fearless Change: Patterns for Intro-
ducing New Ideas and to be released in 2015 More Fearless Change.

Even my very elementary understand of physics reveals that light can be viewed as
a wave (continuous) or as a stream of particles (discrete). Which is “right”? Both!
The useful approach is determined by context. That is so true for models! In our in-
dustry, we tend to embrace the current model and throw out everything from the past.
We even denigrate past models – not realizing that we are where we are because we
built on those former approaches. Perhaps it's time to become more scientific, to see
the effect of context, and to consider appropriate contexts for continuous delivery.

7 Werner Wild

Werner Wild studied Computer Science and Mathematics at the University of Inns-
bruck and currently teaches at the Free University of Bolzano and the University of
Innsbruck. Previous assignments include UNESCO, NIO Goa, ISS The Hague, UBS
Switzerland, SwissRe Zurich, Joanneum Research Graz and others. He also helps
organizations to build high performance software development teams from scratch,
including recruiting, process establishment, project management, training & coaching,
dev-ops and also creates scalable architectures. His involvement with computers
started 1972; developing virtual machines, compilers, medical and financial applica-
tions – and continues with agile trends in Software Engineering. He organizes work-
shops at international conferences and is an elected official to the Austrian Chamber
of Commerce in the Tyrol, identifying and tackling the challenges ahead of the Aus-
trian IT industry. He loves to fly (for more than 25 years) and holds a FAA Commer-
cial Pilot License, with a current Instrument Rating.

In a recent mission critical project (mobile payment) we were able to implement
Continuous Delivery successfully. Our goal was to deliver a change within 30
minutes – to production, from code check-in to going live! By fully automating build-
ing, testing and deployment (but including a last minute manual safety check!) we
were able to bring the time down to 20 minutes! For development we use eXtreme

 Continuous Delivery – From Concept to Product: Trade-offs in Effectiveness 333

Programming, steering the project via Kanban, and rigorously following the princi-
ples of Lean Software Development. In my opinion a highly disciplined development
approach is required to succeed with Continuous Delivery and equally important we
should not forget to include our “sys admins” in the process - right from the begin-
ning! We are all in ONE team! However, I am not convinced that the business can
leverage this new flexibility to the fullest – since the business has to be as agile as the
development team to earn maximum value from Continuous Delivery.

8 Rebecca Wirfs-Brock

Rebecca Wirfs-Brock invented the set of design practices known as Responsibility-
Driven Design (RDD) and by accident started the x-DD meme. Along the way she
authored two popular object design books. In her spare time she jogs (even in the
rain). In her work she helps people hone their design and architecture skills, manage
and reduce technical debt, refactor their code, and address architecture risks. She is
program director of the Agile Alliance’s Experience Reports Program.

With continuous delivery you can perform small experiments that contribute to
small steady course corrections. However, can a more significant innovation fit into a
development process where the drumbeat of delivery is constant? Innovation should
not be forced to fit into a cycle of continuous delivery. I don’t know how to plan for
big innovations but I have some experience with taking slightly innovative ideas off a
continuous delivery pipeline in order to vet their feasibility and mitigate design risks
before committing to them. We were able to explore unproven, intriguing ideas in
small, bounded experiments or innovation spikes. These experiments were several
weeks long, and they were time-limited. Some failed. Others succeeded – and through
this learning we helped shaped future product innovation.

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 334–338, 2015.
DOI: 10.1007/978-3-319-18612-2

Learning from Disaster and Experience:
Evolving Software Professionalism

Steven Fraser1, Janne Järvinen2, Erik Lundh3, Ken Power4,
Linda Rising5, Werner Wild6, and Rebecca Wirfs-Brock7

1 Innoxec, CA, USA
sdfraser@acm.org

2 F-Secure, Finland
janne.jarvinen@f-secure.com

3 Compelcom, Sweden
erik.l.lundh@gmail.com
4 Cisco Systems, Galway, Ireland
ken.power@gmail.com

5 Independent Consultant, TN, USA
risingl@tds.net

6 University of Innsbruck, Austria
werner.wild@uibk.ac.at

7 Wirfs-Brock Associates, OR, USA
rebecca@wirfs-brock.com

Abstract. Professionalism evolves as knowledge and skills mature from craft to
commercial practice – often as the result of learnings derived from failure and
human hazard. Aviation, medicine, engineering, and architecture are examples
of disciplines with an established knowledge base and curriculum of learning
and mentorship. These disciplines often require regulated practices executed by
certified professionals to ensure the safety and economic value of delivered
services. This panel will debate whether we are learning effectively from our
experiences and what might be done to accelerate increased software profes-
sionalism and product value.

Keywords: Professionalism · Knowledge · Skills · Craft · Practice · Learning ·
Failure · Certification · Value · safety

1 Steven Fraser (Panel Impresario)

Steven Fraser is based in Silicon Valley California and has served as an innovation
catalyst with global influence for three Fortune 500 Companies serving as: Director,
Cisco Research Center; Senior Staff, Qualcomm Learning Center; and Senior
Manager, Nortel Disruptive Technologies and Global External Research. In addition
to a year spent as a Visiting Scientist at Carnegie Mellon University’s Software Engi-
neering Institute (SEI) consulting on Domain Engineering (software reuse) processes
and practices he has organized and delivered over 75 software engineering confer-
ences, panels, keynotes, workshops, and tutorials.

 Learning from Disaster and Experience: Evolving Software Professionalism 335

Twenty-five years ago, CMU professor Mary Shaw wrote on “Prospects for an En-
gineering Discipline of Software” in IEEE Software (Nov.1990, pp 15-24). She pro-
posed that engineering disciplines evolve from craft – with development characterized
by virtuosos, talented amateurs, intuition, brute force, extravagant use of available
materials and manufacture for use rather than sale. Shaw further postulated that as
time progresses, a shared experience base characterized by skilled crafts people, es-
tablished procedures based in science (enabling education and training) with a con-
cern for economics and materials – scales to commercial practice and manufacture for
sale. “Engineering discipline” is achieved when a cadre of educated professionals
with a shared knowledge in analysis, theory, and science – including awareness for
economics, ethics, human hazards and risks – evolves to develop products and ser-
vices for the good of humanity. This panel brings together industry experts to share
their thoughts on software professionalism and discipline.

2 Janne Järvinen

Janne Järvinen has over 25 years of experience in software engineering and software
process improvement in various positions within software industry from programmer to
VP Engineering in small and large software companies. Janne is Director, External R&D
Collaboration at F-Secure Corporation and has also been active in academia in various
research programs such as European ESPRIT (BOOTSTRAP, PROFES) and ITEA
(MOOSE, FLEXI). He led the Cloud Software program (www.cloudsoftwareprogram.
org), and now leads the N4S program (www.n4s.fi) under DIGILE Oy. He is an IEEE
member and holds a PhD in Information processing science from University of Oulu
(2000).

I am a strong believer of continuous improvement in all possible forms. I have led
software teams both in small and large organizations and I have seen both successes
and failures. More than often an important contributing factor to success has been the
ability learn from one’s mistakes. On the other hand, as making of software is largely
invisible software professionals are often challenged to demonstrate aspects of their
work that may bear little relevance to actual software. Or what actually is relevant for
a software professional? Is it enough that one produces superior code? Finally, I
would borrow ideas to develop software professionalism from digital security re-
search where I have seen teams of analysts engage in investigations of the latest
threats in close cooperation with industry partners and international and national in-
formation security authorities. We must share our experiences with a larger com-
munity more effectively and transparently than possible today.

3 Erik Lundh

Erik Lundh has more than 30 years’ experience in product-technical-software devel-
opment beginning as an apprentice at an innovative design and engineering firm. Erik
has worked in mature firms and start-ups, from small to large (Ericsson and ABB).
Erik programmed industrial just-in-time (Lean) systems in the 1980’s, was a

336 S. Fraser et al.

“process-management guy” in the 1990’s, and spent the fun part of the 2000’s as an
agile evangelist-coach. Erik facilitated his first (highly successful) agile project in
2000 and helped Sweden’s top e-commerce brand go agile in 2006. Erik was invited
to mentor Ericsson’s first major agile transformation of 2,300 staff at 10 R&D sites in
5 countries 2006-08.

We lost the ball when the Agile movement was handed “sticks”: the 1990s light-
weight method Scrum – reengineered as the safe haven for change-angst mediocre
low level managers (in my opinion head-count reduction road-kill), Kanban – the
Taylorists revenge, and SAFE – the RUP exploiters revenge. Good people turned
away in disgust from third rate agile “profiles”, catering to pointy-haired bosses with
money in hand looking for agile storefronts on assembly line software sweatshops.
Some of the best of the original agile proponents stopped caring about process and
product. Their reaction was to initiate the blue collar Software Craftsmanship Move-
ment. In my opinion, we need agile software professionals that master process, prod-
uct, craft and technologies – and we need to send all scrum masters to retraining as
product management support. I spent the 1980s solving – strike that – *fixing* larger
and larger problems with my technical prowess, only to realize that the root causes
were non-technical. Early agile methods involved programmers in business and vice
versa, and that as what attracted me and my Swedish process improvement communi-
ty to agile methods like Extreme Programming in 1999-2000. That hope and motiva-
tion has been replaced by nervous laughs when asked whether agile works.

4 Ken Power

Ken is a Principal Engineer and internal coach and consultant with Cisco Systems. He
lives in Galway, Ireland and works with teams and organizations around the world.
His responsibilities include leading the agile transformation for Cisco’s largest soft-
ware group. He also works with universities and research groups in agile, lean and
software engineering research. He is currently completing a PhD in Lean Flow and
understanding impediments in teams and organizations. He is a frequent speaker at
the major international agile, lean and software engineering conferences, and has
published numerous papers on agile and lean development. Ken is a Fellow of the
Lean Systems Society, a certified Human Systems Dynamics Professional, and a
trained Co-Active Coach and Organization & Relationship System Coach.

The profession of software engineering is still finding its identity, even now dec-
ades on from when the term was first coined. Referring to professional education in
general, Donald Schön describes what he calls “the crisis of confidence in profes-
sional knowledge”. Schön proposes that university-based professional schools should
take influence from the traditions of education for practice. These influences should
include art and design, music and dance conservatories, athletics coaching, and ap-
prenticeship in the crafts. All of these have in common an emphasis on coaching and
on learning by doing. He goes even further to say that professional education needs to
be redesigned “to combine the teaching of applied science with coaching in the artist-
ry of reflection-in-action”. There are several options for bringing this to life in teams

 Learning from Disaster and Experience: Evolving Software Professionalism 337

and organizations. Examples include job rotations, shadowing, and formal mentor-
ship. The increasingly popular guilds, chapter and communities of practice are further
opportunities, but they need to have real substance and organizational support.

5 Linda Rising

Linda Rising is an independent consultant who lives near Nashville, Tennessee. Linda
has a Ph.D. from Arizona State University in object-based design metrics. Her back-
ground includes university teaching as well as work in industry in telecom-
munications, avionics, and strategic weapons systems. She is an internationally
known presenter on topics related to agile development, patterns, retrospectives, the
change process, and the connection between the latest neuroscience and software
development. Linda is the author of numerous articles and has published several
books: Design Patterns in Communications, The Pattern Almanac 2000, A Patterns
Handbook, with co-author Mary Lynn Manns, Fearless Change: Patterns for Intro-
ducing New Ideas and to be released in 2015 More Fearless Change.

This topic calls to mind the ACM Forum on Risks to the Public in Computers and
Related Systems moderated by Peter G. Neumann (www.risks.org) detailing software
misadventures. The Forum reports accidents, injuries, and deaths as a result of soft-
ware error. I always read that and I always thought that our industry didn't seem as
responsive as other fields such as avionics. We don't seem to pay attention to those
reports. We seem to talk about the latest buzzword and I wonder what we are carrying
forward. Are we as an industry becoming like our projects – small and focused on the
moment – just trying stuff without any formal approaches and leaving our mathemati-
cal and scientific history behind? As software becomes a more important part of every
produce and service. This failure to learn seems to lead to a place we might not want
to go.

6 Werner Wild

Werner Wild studied Computer Science and Mathematics at the University of Inns-
bruck and currently teaches at the Free University of Bolzano and the University of
Innsbruck. Previous assignments include UNESCO, NIO Goa, ISS The Hague, UBS
Switzerland, SwissRe Zurich, Joanneum Research Graz and others. He also helps
organizations to build high performance software development teams from scratch,
including recruiting, process establishment, project management, training & coaching,
dev-ops and also creates scalable architectures. His involvement with computers start-
ed 1972; developing virtual machines, compilers, medical and financial applications –
and continues with agile trends in Software Engineering. He organizes workshops at
international conferences and is an elected official to the Austrian Chamber of Com-
merce in the Tyrol, identifying and tackling the challenges ahead of the Austrian IT
industry. He loves to fly (for more than 25 years) and holds a FAA Commercial Pilot
License, with a current Instrument Rating.

338 S. Fraser et al.

In aviation many systems are in place to learn from experience and to receive valu-
able feedback. For example, we must continually demonstrate our skills in a simulator
and in flight. If there are “incidents” – these must be reported (e.g. ASRS: Aviation
Safety Reporting System - http://asrs.arc.nasa.gov). Pilots frequently review incident
and accident reports to learn from others. Perhaps it is time to borrow an idea or two
from aviation to foster increased professionalism in our software industry.

7 Rebecca Wirfs-Brock

Rebecca Wirfs-Brock invented the set of design practices known as Responsibility-
Driven Design (RDD) and by accident started the x-DD meme. Along the way she
authored two popular object design books. In her spare time she jogs (even in the
rain). In her work she helps people hone their design and architecture skills, manage
and reduce technical debt, refactor their code, and address architecture risks. She is
program director of the Agile Alliance’s Experience Reports Program and co-chair of
the XP 2015 Experience Reports track.

I hope I never stop learning. My technical learning has been driven by positive ex-
periences and interactions with others as we build something together. I learn the
most when I work with those who are articulate and considerate enough to explain
why they want to solve something some particular way, to share what the next move
we should take as well as why they are confident (or not) about what we’re doing, and
how they feel about our code. Back and forth communication as we build something
significant and complex together is where I learn best. A highly performing, tight
agile team is one of the best opportunities for professional learning. However, I have
written lots of code solo, and through those experiences I have also learned a great
deal. I don’t believe that every bit of code is best developed by a collective mind.
Sometimes solo efforts are the most productive where you get deep into the problem.

I have also worked on teams where we didn’t communicate as we banged out code
and as a consequence, we didn’t learn much. What seems most important to me as a
software professional is doing things that help me develop a wise inner critic who
considers why I prefer some solution over another, why I think this is a hack and that
is not, why I think this will work and that will not. And that is because software is,
well, soft. There are many ways to solve a problem in code, but only a few are good
enough solutions. To get really good at this profession, you need challenging work
where you don’t know how to solve it and lots of feedback.

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 339–341, 2015.
DOI: 10.1007/978-3-319-18612-2

Practical Applications of the Agile Fluency Model

Diana Larsen1, Steve Holyer2, Jutta Eckstein3, Antti Kirjavainen 4, and Olli Sorje5

1 FutureWorks Consulting LLC, 6307 NE 8th Avenue, Portland, OR, USA
Diana@futureworksconsulting.com

2 Engage Results, Founder, Agile Coaching, Aemtlerstrasse 114, Zurich, Switzerland
coach@engage-results.com

3 IT communication, Gaussstr. 29,38106 Braunschweig, Germany
je@it-communication.com

4 Flowa, Department, Kaarlenkatu 3-5 B 14, FI-00530 Helsinki, Finland
Antti.Kirjavainen@flowa.fi

5 Affecto Finland Oy, Retail and Services, Helsinginkatu 15, FI-20500 Turku, Finland
olli.sorje@affecto.com

Abstract. First published in 2011, the Agile Fluency Model (agilefluency.com)
describes four stages for achieving agile team proficiency: focus on value, de-
liver value, optimize value, and optimize the system. Adopting agile in succes-
sive stages the model delivers benefits proportional to investments. The model
fosters the identification, adaption and adoption of agile practices appropriate to
the team’s context and objectives. Does it reflect reality? Is it useful? Does it
work when theory meets practice? This panel brings together Agile Fluency
practitioners to share their challenges, successes, and future directions
for model evolution.

Keywords: Agile adoption · Agile fluency · Agile practices · Team proficiency ·
Value delivery

1 Diana Larsen – Panelmeister

Diana consults with leaders and teams to create work processes and environments
where innovation, inspiration, and imagination flourish. She is an international au-
thority in the areas of Agile software development, team leadership, and Agile transi-
tions.

Diana co-authored Agile Retrospectives: Making Good Teams Great! and Liftoff:
Launching Agile Teams and Projects. She created the Agile Fluency™ Model with
James Shore.

2 Steve Holyer — Looking for Organizational Fluency

When Diana showed the Agile Fluency™ Model to me, I recognized that it describes
exactly what I’ve experienced when I’ve worked with software teams who are suc-
cessfully mastering Agile development. That’s why I’m so excited about it. It’s not a

340 D. Larsen et al.

maturity model that dictates how teams must progress, it’s an observation based on
experience of what teams can expect in their progress. I’ve used the model as a tool to
encourage teams that were stuck doing “by the book Scrum” (1-Star) so they could
see a much richer path. The Agile Fluency™ Model has proven useful for changing
the conversation with leaders about targets and KPI’s so that it becomes a conversa-
tion about helping teams and the organization evolve their understanding of leader-
ship and team learning. Diana and I used the Agile Fluency™ Model to create a set of
learning objectives that we’ve used to train teams at each level of Agile Fluency. This
broadened the focus of our training beyond the typical Agile training focus which is
often focused on just one level of fluency.

The Agile Fluency™ Model is written to describe the evolution of a development
team. Therefore it naturally describes the experience of delivering software from the
perspective of the builders creating code. And yet, the model itself states there’s a
shift in organizational structure that takes place as a build team becomes a 3-star
team. There’s also an organizational culture shift that takes place as the build team
moves from a 3-star team to become a 4-star team. This begs the question, “How does
the whole organization become fluent at the 3-star and the 4-star level?” There must
be more to the Agile Fluency™ Model that hasn’t been described yet at the level of
Agile Management. The Agile Fluency™ Model is based on anecdotal evidence from
the authors and their colleagues. Now that the model is defined, I’m looking forward
to expanding the body of knowledge about Agile Fluency with efforts to collect more
data so we can see what new data reveals.

Steve serves as advocate, trainer and mentor for companies discovering different
ways of working using Agile practices in a productive, fulfilling, and fun way. He
uses the model in most, if not all, aspects of his work with teams.

3 Jutta Eckstein – The Shifts are Harder than You Think

To me, as a practitioner, the Agile Fluency™ Model mirrors what I see happening in
Industry. I experience that many teams already struggle with the first stage on the
model – to focus on value. They concentrate instead on the adherence to practices.
Yet, I also experienced teams that not only focused on value but reached the second
stage to also deliver it. They were not able to let go of their habits even when asked to
switch back to waterfall. They just couldn’t.

 However, the model doesn’t show how hard it is to move from one stage to the
other. And I wonder if reaching four stars is only possible if an organization starts this
way. Although I want to believe it’s possible, I doubt that a cooperation doing busi-
ness in a non-agile way for e.g. 30 years will be able to ever reach that stage. If only
for the reason, that they won’t have the patience to go through the deep culture shift
which will take at least ten years.

Jutta Eckstein works as an independent coach, consultant, and trainer. She holds a
M.A. in Business Coaching & Change Management, a Dipl. Eng. in Product-
Engineering, and a B.A. in Education. She has helped many teams and organizations
worldwide to make an Agile transition. She has a unique experience in applying Agile
processes within medium-sized to large distributed mission-critical projects. She has
published her experience in her books Agile Software Development in the Large,

 Practical Applications of the Agile Fluency Model 341

Agile Software Development with Distributed Teams, Retrospectives for Organiza-
tional Change, and together with Johanna Rothman Diving for Hidden Treasures:
Finding the Real Value in your Project Portfolio.

4 Antti Kirjavainen

Having coached software development and knowledge work teams and organizations
for the past 5 years, I have found that setting goals together with the organization I’m
coaching helps to carry out the coaching relationship and contributes to the relation-
ship’s success. We set the goals in terms of impact. I have used the Agile Fluency™
Model over the past 2.5 years to facilitate this goal-setting and to successfully set
expectations related to the change process.
 I have found Agile Fluency™ Model useful for agreeing on the current state of
teams with the customer, agreeing on the desired end state with teams and their spon-
sors and with setting realistic expectations for the change. What I have found chal-
lenging is making the progress visible and measurable during the change. The metrics
described in the model work well as lagging indicators, but we would benefit from
leading indicators as well. The linear representation of the model makes it easy for
sponsors to mistake it for a maturity model. There is some ambiguity in the descrip-
tion of the model and its stages and whether or not to focus on different stages at
once. That is why I have adapted my own description of model’s stages to call them
dimensions instead.

Antti is an entrepreneur at Flowa (Finland). He helps organizations achieve effec-
tiveness and excellence in software development and knowledge work through agile,
lean thinking and Management 3.0. Antti is also fascinated about the potential of
games for learning and facilitating collaboration.

5 Olli Sorje

For me the Agile Fluency™ Model means giving context for all Agile practices. It
helps you to identify where you and your team currently are and decide where you
should aim for. Not all organizations should aim for a 4-star level. This model also
helps you understand why you are not maybe getting the benefits that Agile promises.
I also like the concept of Fluency a lot. You might use all the practices from a specific
star level, but it you devolve back to old habits under pressure it means you aren’t
fluent at that level! That’s unfortunately what typically happens in Agile transitions.
You adopt Agile practices, but then the deadline starts to get closer. You decide that
these new practices are slowing you down, and you fall back to old practices.

Olli Sorje is working as Lead Developer at Affecto Finland. Olli is passionate
about Agile and creating real value for customers. Olli enjoys working with teams and
helping them evolve.

References

1. http://agilefluency.com (last time accessed March 20, 2015)

Doctoral Symposium Abstracts

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 345–346, 2015.
DOI: 10.1007/978-3-319-18612-2

Improving Processes by Integrating Agile Practices

Philipp Diebold()

Fraunhofer IESE, Kaiserslautern, Germany
philipp.diebold@iese.fraunhofer.de

Abstract. Even though agile development has been known for many years, it is
mainly used in information systems and is not common yet in embedded sys-
tems. Despite the mandatory regulations, the companies would like to increase
the flexibility by the benefits of agile development. Thus, the idea is creating an
Agile Capability Analysis with a subsequent Process Simulation, resulting in
appropriate process extensions adhere to mandatory requirements. Because of-
ten agile methods require context-specific adaptations, we believe that the up-
front investigation which agile practices to integrate into processes entails many
benefits, especially in regulated domains.

Keywords: SPI · Agile SW development · Agile practices

1 Introduction and Problem

Agile development has been common for several years. Nonetheless, it is mainly used
in information systems and not in embedded systems (ES), which are often restricted
by regulations. The problem in these domains is their inflexible development. Thus,
they want to use agile development within their regulations. This raises the research
question: How to bring more agility to the regulated software domains?

2 Related Work

Even though plan-based processes, e.g. waterfall and V-model, which fit many regu-
lations, dominate different ES domains [2], there are some approaches that try to ad-
dress the problem of getting agility integrated into regulated domains. Some of the
common agile methods like Scrum are already used in part in ES. But this only ap-
plies to pilot projects or to early phases of the final product, where it is possible to try
things and where developers are not restricted by too many regulatory requirements.
In addition, less specific approaches have also been published that try to address the
issue of more flexibility in regulated domains. One is the Agile V-Model [1], devel-
oped for medical devices.

As shown in the short discussion of existing related work and the already men-
tioned issue of adapting the different agile methods, there is a lack of systematic
Software Process Improvement (SPI) approaches in research that make use of agile
practices while adhering to mandatory regulations.

346 Philipp Diebold

3 Solution Approach

To address this problem, the overall solution idea is based on two parts: the Agile
Capability Analysis and a Process Simulation aimed at finding the most appropriate
agile practices as process extension. These two parts constitute the contribution and
novelty of the idea because no such analysis is currently available and even though
process simulations are widely used, none deals with the integration of agile practices.

The purpose of the Agile Capability Analysis is to identify the capability of ex-
tending the current development process with agile practices in terms of the context
(incl. regulations). The inputs are the current process and context information, e.g.,
team size or team location. This analysis is built on a model containing the infor-
mation about the impact of all different agile practices, which are formal described in
a repository. This reveals all possible agile practices that could be potential extensions
in the specific context.

The purpose of the Process Simulation is to simulate possible agile practices
combinations and their joined impact. Therefore, the formal process description and
the outputs of the analysis are used. All possible combinations of the set of agile prac-
tices are simulated in the company’s process. Thus, the formalized process and the
possible process extension with the necessary information, e.g. their impact, will be
used to come up with the simulation model. This model will then be used for the sim-
ulation and should provide information on how the combinations might behave con-
cerning the impact characteristics.

Based on this information, the SPI can be performed by selecting one of the possi-
ble combinations that best fits to the organizations improvement goal. This should
than be implemented and further been evaluated compared to the assumed impact.

4 Conclusion and Future Work

The overall solution idea should support SPI in regulated environments by integrating
agile practices into the current development processes. This is done by the Agile
Capability Analysis and a simulation of the process extensions, the agile practices.

The future research agenda regarding this idea includes the following aspects: The
Agile Capability Analysis will be defined in detail because only parts already exist.
Additionally, the Process Simulation needs to be elaborated more detailed because
currently it is rather a high level idea. Finally, the question is how to evaluate the
overall idea and/or its different parts.

References

1. McHugh, M., Cawley, Q., McCaffery, F., Richardson, I., Wang, X.: An Agile V-Model for
Medical Device Software Development to Overcome the Challenges with Plan-driven
Software development Lifecycles. In: Proceedings of SEHC 2013 (2013)

2. Weiguo, L., Xiaomin, F.: Software Development Practices for FDA-Compliant Medical
Devices. In: Proceedings of CSO 2009, pp. 388–390 (2009)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 347–349, 2015.
DOI: 10.1007/978-3-319-18612-2

Assurance Case Integration with
An Agile Development Method

Osama Doss and Tim Kelly

High Integrity Systems Engineering Research Group,
Department of Computer Science, University of York, York, YO10 5DD, UK

{osad500,tim.kelly}@york.ac.uk

Abstract. Agile software development has had success in different domains.
However there is one area where the implementation of agile methods still
needs development – that is in the field of safety critical systems. In this field,
the software engineering processes need to be justified against the requirements
of software safety assurance standards (such as ISO 26262 in the automotive
domain). We describe our ongoing research on assurance case integration with
an existing agile development method – SafeScrum.

Keywords: Safety-critical systems · Assurance · SafeScrum · Assurance case ·
Safety cases

1 Research Problem

Whilst the use of agile methods is seen by some as attractive, and there is some evi-
dence of increasing use in safety-critical domain, there are still many in the domain
who have concerns. For example, Redmill [1] raises concerns about whether hazard
identification and analysis can be carried out incrementally. The question of how to
integrate agile methods and safety assurance is not new. But there is one particular
area of practice that remains neglected in the existing work – namely the integration
of safety (assurance) case development with an agile approach. A safety case is the
argument and evidence that establishes the acceptable safety of safety-critical
system [2]. It is normally prepared (by the developer) and assessed (by an independ-
ent assessor or regulator) as part of safety critical systems development. Safety cases
are an increasingly widespread approach [3]. Structured argumentation approaches
(such as the use of the Goal Structuring Notation – GSN - [4]) have become popular
as a means of explicitly representing the arguments (and links to evidence) contained
within a safety case. The research problem we are tackling is the integration of assur-
ance case development (including the incremental development of structured argu-
ments) with a typical agile development method.

348 O. Doss and T. Kelly

2 Research Methods

• We have conducted a survey to investigate the practical problems posed by
the integration of the two disciplines.

• We are developing a pattern-based approach to integrating software safety
cases, SafeScrum’s Safety Product Backlog, risk-based planning, and re-
quirements-based evaluation. Software safety argument patterns describe the
nature of the argument and safety claims that would be expected for any
software safety case [5].

• The feasibility, and practicality of the proposed integration of safety case de-
velopment with SafeScrum will be initially evaluated through an illustrative
case study.

• Peer review (through structured questionnaire) of the developed approach
applied to the worked case study example will be conducted.

• 1-to-1 semi-structured interviews will also be used with some of the re-
spondents from our initial survey, the purpose of this interview study is to
investigate the success proposed of safety case development within
SafeScrum.

3 Results and Future Work

We have already conducted the practitioner survey (with 31 respondents). The results
from this survey have provided a clear direction in terms of the importance of incre-
mental hazard analysis, safety requirements development, and assurance case devel-
opment (i.e. they indicate clearly that these activities must be performed within an
increment, rather than simply being up-front or end-of-development activities). We
are using the insight gained from the case study to evaluate how safety activities are
currently being proposed within the Safe-Scrum method, and to help define a process
model for how requirements development, hazard analysis and assurance case devel-
opment can be performed as in-increment activities. With regard to assurance case
development, we have identified that the existing GSN argument patterns of Hawkins
et al. [5] already attempt to integrate software safety requirements development and
assurance case development. At present these patterns are expressed to suit a tradi-
tional ‘tiered’ software development. We are currently examining how these patterns
can be adapted to suit incremental development. Following development of the pro-
cess model, and adaptation of the patterns we will be applying the proposed approach
to a case study system to serve as the basis for further evaluation with the respondents
from our initial survey.

References

1. Felix, R.: Software Projects: Evolutionary v Big-bang Delivery. Wiley Series in Software
Engineering Practice. Hardcover (January 30, 1997)

 Assurance Case Integration with An Agile Development Method 349

2. Kelly, T.: A Systematic Approach to Safety Case Management. In: Proceedings of SAE
2004 World Congress, Detroit (March 2004)

3. Hawkins, R., Habli, I., Kelly, T., McDermid, J.: Assurance cases and prescriptive software
safety certification: A comparative study, vol. 59, pp. 55–71 (November 2013)

4. Kelly, T., Weaver, R.: The Goal Structuring Notation – A Safety Argument Notation. In:
Proceedings of the International Conference on Dependable Systems and Networks – Work-
shops on Assurance Cases, Florence, Italy (2004)

5. Hawkins, R., Clegg, K., Alexander, R., Kelly, T.: Using a Software Safety Argument Pat-
tern Catalogue: Two Case Studies. In: Flammini, F., Bologna, S., Vittorini, V. (eds.)
SAFECOMP 2011. LNCS, vol. 6894, pp. 185–198. Springer, Heidelberg (2011)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 350–351, 2015.
DOI: 10.1007/978-3-319-18612-2

Data-Driven Decision-Making in Product R&D

Aleksander Fabijan1, Helena Holmström Olsson1, and Jan Bosch2

1 Malmö University, Faculty of Technology and Society,
Östra Varvsgatan 11,205 06 Malmö, Sweden

{Aleksander.Fabijan, Helena.Holmstrom.Olsson}@mah.se
2 Chalmers University of Technology, Department of Computer Science

and Engineering, Hörselgången 11, 412 96 Göteborg, Sweden
Jan.Bosch@chalmers.se

Abstract. Software development companies experience the road mapping and
requirements ranking process to be complex as product management (PdM)
strives in getting timely and accurate feedback from the customers. Often, com-
panies have insufficient knowledge about how their products are being used,
what features the customers appreciate and which ones will generate revenue.
To address this problem, this research aims at helping the companies in closing
the ‘open’ feedback loop that exists between PdM and customers. Moreover,
the research strives at exploring techniques that can be used to involve custom-
ers in continuous validation of software functionality in order to provide PdM
with the evidence needed for accurate R&D investments.

Keywords: Customer feedback · Data collection · The ‘open loop’ problem

1 Introduction

Due to the increasing amount of software in products and hence, the capability to
connect these products to the Internet, there is a fundamental shift in how products are
developed and in how the life cycles of these products are perceived [1], [2]. This
implies that user feedback collected in the early phases of product development is
complemented with another data source, i.e. product data revealing real-time use [3].

Despite this, product managers often struggle with getting timely and accurate
feedback from customers. Typically, the feedback loops are slow and there is a lack
of mechanisms that allow for efficient customer data collection and analysis [1], [5].
As a result, companies have insufficient knowledge about how their products are used
and what features the customers actually appreciate. This means that there is an ‘open
loop’ between customer data and product management decisions [4], [5].

To address this problem, this thesis project aims at exploring the existing methods
and discovering new techniques that allow for (1) continuous validation of deployed
software functionality through product and customer data, and (2) efficient customer
and product data collection and analysis practices.

 Data-Driven Decision-Making in Product R&D 351

2 Proposed Approach and Evaluation of Results

The research presented in this proposal is conducted within a large research collabora-
tion consisting of three universities and eight companies.

For the purpose of this research, we use a qualitative case study approach in which
we engage with company representatives with various roles such as e.g. developers,
product managers and product owners etc. on a continuous basis using a mix of inter-
views, workshops, weekly status update meetings, individual visits and validation
sessions. Interview results work as a basis for workshop sessions and seminars in
which we further discuss and validate our findings. It should be noted that the
company collaboration is well established and results are continuously evaluated with
the companies and reported every six months.

In terms of data analysis, we adopt a qualitative approach as described by e.g.
Walsham [6].

3 Expected Contributions and Progress Towards the Goals

As the first phase in the research project outlined here, we have conducted a ‘state-of-
the-art’ literature review in which we identify existing customer feedback and data
collection techniques as reported in the software engineering domain, i.e. the top
ranked journals and conferences [7]. The results were summarized in a structured
model that provides an overall understanding for the existing feedback and data col-
lection techniques, and that works as a support for selecting the appropriate feedback
technique(s) in a specific stage of the software development process.

Moving forward, we plan to expand this model with additional feedback collection
techniques, identify and complement it with the types of data collected, and to vali-
date our model in the companies to provide also a ‘state-of-practice’ view.

References

1. Olsson, H.H., Alahyari, H., Bosch, J.: Climbing the “Stairway to Heaven”. In: 2012 38th
EUROMICRO Conference on Software Engineering and Advanced Applications Software
Engineering and Advanced Applications (SEAA), Izmir, Turkey (2012)

2. Cockburn, A., Williams, L.: Agile software development: it’s about feedback and change.
Computer 36, 0039–0043 (2003)

3. Bosch, J.: Building Products as Innovations Experiment Systems. In: Cusumano, M.A.,
Iyer, B., Venkatraman, N. (eds.) ICSOB 2012. LNBIP, vol. 114, pp. 27–39. Springer,
Heidelberg (2012)

4. Olsson, H.H., Bosch, J.: From Opinions to Data-Driven Software R&D. In: Proceedings of
the 40th Euromicro Conference on Software Engineering and Advance Applications,
Verona, Italy (2014)

5. Bosch-Sijtsema, P., Bosch, J.: User involvement throughout the innovation process in
high-tech industries. Journal of Product Innovation Management (2014)

6. Walsham, G.: Doing Interpretive Research. 2006 European Journal of Information
Systems (15), 320–330 (2006)

7. Fabijan, A., Olsson, H.H., Bosch, J.: Customer Feedback and Data Collection Techniques
in Software R&D: A literature review. Accepted to Proceedings of ICSOB 2015, Braga,
Portugal (2015)

Combining Kanban and FOSS: Can It Work?

Annemarie Harzl and Wolfgang Slany

Institute of Software Technology, Graz University of Technology,
Inffeldgasse 16b/II, 8010 Graz, Austria

aharzl@ist.tugraz.at, wolfgang.slany@tugraz.at

Abstract. Free and Open Source Software (FOSS) and Agile Software
Development(ASD) research have gained momentum over the past decade.
However, to the best of our knowledge, there exists no work about these
two phenomena combined. This thesis will show how Agile Software
Development(ASD), specifically the Kanban Method, and FOSS can be
consolidated and how they can benefit from each other’s advantages. The
agile community and the FOSS community can benefit from this body
of work, as we aim at broadening the understanding of both.

Keywords: Lean · Agile · Kanban · FOSS · Open source

1 Statement of Research Problem

In 2009 Ågerfalk et al. [1] identified research about agile development in the
context of open source software as a future research area. This research intends
to take first steps to fill this gap. The knowledge if and how agile methods should
be introduced into FOSS projects can be valuable for the FOSS community
and cooperating companies, which intend to spread their agile methods to the
community, they are working with.

For the purpose of this work a FOSS project was selected, which is situated at
Graz University of Technology. One team was chosen to participate in the study,
because conducting the study with the whole project, would not be feasible. Being
at the same university as the FOSS project provides us with the opportunity to
directly observe the contributors in their natural context. The project already
applies some agile methods (for example Test-Driven Development (TDD)), but
not in a systematic way, and contributors experience some problems with agile
adoption. Hence, they contacted us and asked how they could improve their use
of agile methods. The Kanban Method [2] has been chosen by the research team,
because it is the most adaptive method [3]. It allows to take an existing process
and slowly adapt it to the specific needs of the organization. The Kanban Method
does not impose a huge set of rigid rules, which is very important, because intro-
ducing rigid rules into a system almost always requires positional power, which is
not available in a FOSS community.

c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 352–353, 2015.
DOI: 10.1007/978-3-319-18612-2

Combining Kanban and FOSS: Can It Work? 353

Research Questions: My doctoral research aims at answering the questions if
Agile Software Development (ASD) techniques, specifically the Kanban Method,
can be successfully applied to a FOSS project and whether a FOSS project can
benefit from it. I am interested in the current state of agile adoption in the stud-
ied project and how the agile process and its introduction into the project can
be customized to better fit the needs of the FOSS project and its contributors.

– Research Question (RQ)1 What are the current problems with agile adop-
tion and can they be solved through the use of the Kanban Method?

– RQ2 Can FOSS projects benefit from using agile methods like the Kanban
Method?

– RQ2.1 Do FOSS contributors, who are coached in the Kanban Method,
experience this knowledge as beneficial to their work or not?

– RQ2.2 Do interaction or communication in the team change with the use
of the Kanban Method?

– RQ2.3 Does the Kanban Method have any effect on the source code
created by the coached team?

2 Research Methodology

To answer RQ1 a longitudinal single-case study was chosen as research method-
ology because the case study method is suitable for research of contemporary
phenomena in their natural context [4]. According to [5] this method has advan-
tages when a researcher has little or no control over the studied events and when,
how or why research questions are asked. At first I will observe team meetings
and coding sessions and then I will coach the team in the usage of agile meth-
ods. To answer RQ2.1 another research method will be used, namely surveys.
Participants of the case study will give subjective feedback about their expe-
rience with agile methods at the beginning, throughout and at the end of the
case study. They will do this through questionnaires. Surveys and observations
of team meetings will be used to answer RQ2.2. This provides the opportunity to
compare the perception of team members and someone outside the team. Some
code metrics will be calculated for the teams’ source code, for example code
complexity as a measure for internal quality, to answer RQ2.3.

No results have been achieved so far.

References

1. Ågerfalk, P., Fitzgerald, B., Slaughter, S.: Introduction to the special issue: flexible
and distributed information systems development: state of the art and research
challenges In: Information Systems Research 20 (2009)

2. Anderson, D.: Kanban - Successful Evolutionary Change for Your Technology Busi-
ness, Blue Hole Press (2010)

3. Nirenberg, H., Skarin, M.: Kanban and Scrum - making the most of both, C4Media
(2010)

4. Runeson, P., Höst, M.,: Guidelines for conducting and reporting case study research
in software In: Empirical Software Engineering engineering, vol. 14, 2009

5. Yin, R.: Case Study Research - Design and Methods Fourth Edition (2009)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 354–355, 2015.
DOI: 10.1007/978-3-319-18612-2

Paradigm Shift from Large Releases to Continuous
Deployment of Software:

Designing a Reference Model for Continuous Deployment

Teemu Karvonen, Markku Oivo, and Pasi Kuvaja

University of Oulu, Finland
{Teemu.3.Karvonen,Markku.Oivo,Pasi.Kuvaja}@oulu.fi

Abstract. Continuous deployment (CD) is an essential method as software de-
velopment companies move towards real-time business and continuous experi-
ments. Powered by the lean and agile methods, CD aims for continuous de-
ployment of valuable software. This doctoral research investigates what it will
take to enable CD. The findings will be collected to generate a CD reference
model. The research is initiated by studying existing literature and models for
organisational assessment in relation to lean and agile approaches. Next, the fo-
cus is sharpened to capabilities that are required for enabling CD in information
and communication technologies (ICT) industry. The research will apply litera-
ture reviews, case studies and the design science research (DSR) framework.

Keywords: Lean · Agile · Software development · Continuous deployment ·
Real-time business · Reference model · Assessment

1 Doctoral Research Plan

The software engineering (SE) field of research has focussed on studying multidisci-
plinary aspects concerning how to improve ways of developing and deploying soft-
ware intensive products. Today, the development paradigm in information and com-
munication technologies (ICT) has moved from plan-based waterfall to iterative agile
methods [1]. Many software development companies have set their future goal to
‘deliver value in real time’. It seems that innovation experiment systems and continu-
ous deployment of valuable software are essential new capabilities which companies
must develop in order to advance beyond the agile approach [2,3,4]. Continuous
deployment (CD) [5,6] describes practices for developing and deploying software.
CD has clearly built-in principles of lean [7] and agile. According to the lean principle
‘flow’, value-creating steps should occur in a tight sequence so that the value will
flow smoothly towards the customer. In addition, the agile manifesto1 describes how
to deliver software: ‘Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software’. Moreover, it aims to ‘deliver working soft-
ware frequently, from a couple of weeks to a couple of months, with a preference to
the shorter timescale’.

1 http://agilemanifesto.org/principles.html

 Paradigm Shift from Large Releases to Continuous Deployment of Software 355

Organisational assessment models are also frequently discussed in SE studies. Peri-
odical assessments are found useful for analysing an organisation’s current status. A
reference model can be used together with an assessment model to define desired real-
life working practices. The reference model (what to assess) and assessment model
(how to conduct assessment) can also be integrated into a single ‘tool’, such as in
Lean Enterprise Self-Assessment Tool (LESAT) [7].

The research goal is to develop new knowledge and methods which aid in the
transition towards CD. The main research methods and questions are as follows: 1)
How do ICT companies apply CD? – Case studies; and 2) How can CD capabilities
be assessed? – Systematic mapping study and design science research (DSR) [8]. In
the principles of DSR, the aim is to produce innovative research artefacts. Research
has already started, with a wide-range study of lean and agile methods and their re-
lated assessment models. The first design artefact, LESAT for software [7], is an adap-
tation of the self-assessment tool designed for lean enterprise transformation. Next,
the research scope will be narrowed to CD practices and capabilities in a real envi-
ronment, following the design and validation of the CD reference model. The first
results from case study interviews indicate that CD requires the involvement of multi-
ple stakeholders and the tight integration of the customer, product management, re-
search and development (R&D) and operations.

References

1. Dybå, T., Dingsøyr, T.: Empirical studies of agile software development: A systematic
review. Information and Software Technology 50, 833–859 (2008)

2. Bosch, J., Eklund, U.: Eternal embedded software: Towards innovation experiment
systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012, Part I. LNCS, vol. 7609,
pp. 19–31. Springer, Heidelberg (2012)

3. Fagerholm, F., Guinea, A.S., Mäenpää, H., Münch, J.: Building blocks for continuous
experimentation. In: Proceedings of the 1st International Workshop on Rapid Continuous
Software Engineering, RCoSE 2014, pp. 26–35. ACM Press, New York (2014)

4. Olsson, H., Bosch, J., Alahyari, H.: Towards R&D as innovation experiment systems: A
framework for moving beyond agile software development. In: IASTED Multiconferences -
Proceedings of the IASTED International Conference on Software Engineering, SE 2013, pp.
798–805 (2013)

5. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases through Build,
Test, and Deployment Automation. Addison-Wesley Professional (2010)

6. Fitzgerald, B., Stol, K.-J.: Continuous software engineering and beyond: trends and chal-
lenges. In: Proceedings of the 1st International Workshop on Rapid Continuous Software
Engineering, RCoSE 2014, pp. 1–9. ACM Press, New York (2014)

7. Karvonen, T., Rodriguez, P., Kuvaja, P., Mikkonen, K., Oivo, M.: Adapting the Lean
Enterprise Self-Assessment Tool for the Software Development Domain. In: Proceedings
of 38th EUROMICRO Conference on Software Engineering and Advanced Applications
(SEAA), September 5-8, pp. 266–273 (2012), doi:10.1109/SEAA.2012.51

8. Hevner, A.R., Chatterjee, S., Gray, P., Baldwin, C.Y.: Design research in information
systems: theory and practice. Springer, New York (2010)

How to Adopt Continuous Delivery? A Research
Proposal

Eero Laukkanen1 and Casper Lassenius1,2

1 Aalto University, P.O. BOX 19210, FI-00076, Aalto, Finland
{eero.laukkanen,casper.lassenius}@aalto.fi

2 Massachusetts Institute of Technology, Sloan School of Management

1 Research Problem

Continuous delivery (CD) is a software development discipline in which software
can be released to production at any time [1]. The discipline is achieved through
optimization, automatization and utilization of the build, deploy, test and release
process [2]. The proposed benefits of CD are increased visibility, faster feedback
and empowerment of stakeholders [2]. However, when trying to adopt CD, orga-
nizations have faced numerous challenges and problems [3,4]. Even continuous
integration (CI), which is a prerequisite for CD [2], has not been adopted in
some cases [5].

The dissertation aims to gain deep understanding of the problems when
adopting CD and build solutions to those problems. Since the already found
problems have been numerous [3,4], we believe that simply finding the problems
is not enough, but we need to analyze the causal structure of the problems in
order to solve them. Thus, the following research questions are asked:

1. What problems are faced when adopting CD for a software product?
2. What are the causes for those problems?
3. What solutions can be used for solving those problems?

2 Research Methodology

The dissertation will consist of five empirical qualitative studies. First, a sys-
tematic literature review (SLR) [6] is executed to summarize existing research
and experience reports on the subject. The SLR will include empirical stud-
ies and experience reports which are qualitatively synthesized into a theory of
adoption problems and solutions. Second, the theory is refined through a single
case study [7] focusing on problems perceived by individuals in a project adopt-
ing CD. Individual analysis is done, because it is believed that the perceptions
between individuals differ. Third, a single case study will be performed using
ARCA root cause analysis method [8] to study adoption problems in a single
case and to innovate solutions to the problems. Fourth, the impact of these
solutions is investigated in a follow-up study. Fifth, the root cause analysis is

c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 356–357, 2015.
DOI: 10.1007/978-3-319-18612-2

How to Adopt Continuous Delivery? A Research Proposal 357

performed in other cases too, and the results are synthesized into a generalized
theory.

Data sources for the case studies are Finnish software companies in the Digile
Need for Speed program that continues until 2017. Thus, there is an opportunity
to conduct long-term longitudinal case studies of CD adoption. The selection of
data sources for the case studies is done partly based on convenience, but also
according to the research goals. The subject of the research program is tightly
related to CD, so it is expected that the case companies are also valid subjects
for the studies.

3 Results and Future Agenda

The systematic literature review is in writing and will complete in near future.
Data collection for the single case study has been executed partially. The design
for the first root cause analysis case study has been done and the data collection
will begin in the near future.

The initial results of systematic literature review indicate that numerous
problems when adopting CD have been identified and some of them could be
solved. However, we found that there is a lack of causal analysis done on the
problems. This indicates that our future agenda on root cause analysis will pro-
vide improvement on the current knowledge.

References

1. Fowler, M.: ContinuousDelivery (May 2013), http://martinfowler.com/bliki/
ContinuousDelivery.html

2. Humble, J., Farley, D.: Continuous Delivery: Reliable Software Releases Through
Build, Test, and Deployment Automation. Addison-Wesley Professional, 1st edn.
(2010)

3. Claps, G.G., Svensson, R.B., Aurum, A.: On the journey to continuous deployment:
Technical and social challenges along the way. Information and Software Technology
57(0), 21 – 31 (2015)

4. Debbiche,A.,Dienér,M.,BerntssonSvensson,R.:ChallengesWhenAdoptingContin-
uous Integration: A Case Study. In: Product-Focused Software Process Improvement.
Lecture Notes in Computer Science, vol. 8892, pp. 17–32. Springer International Pub-
lishing (2014)

5. St̊ahl, D., Bosch, J.: Automated Software Integration Flows in Industry: A Multiple-
case Study. In: Companion Proceedings of the 36th International Conference on
Software Engineering. pp. 54–63. New York, NY, USA (2014)

6. Kitchenham, B.: Guidelines for performing systematic literature reviews in software
engineering. Tech. rep., Keele University Technical Report (2007)

7. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Software Engineering 14(2), 131–164 (2009)

8. Lehtinen, T.O., Mäntylä, M.V., Vanhanen, J.: Development and evaluation of a
lightweight root cause analysis method (ARCA method)–field studies at four soft-
ware companies. Information and Software Technology 53(10), 1045–1061 (2011)

http://martinfowler.com/bliki/ContinuousDelivery.html
http://martinfowler.com/bliki/ContinuousDelivery.html

Posters

Teaching Scrum – What We Did, What We Will
Do and What Impedes Us

Emil Alégroth, H̊akan Burden, Morgan Ericsson, Imed Hammouda,
Eric Knauss, and Jan-Philipp Steghöfer

Software Engineering Division
Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
{Emil.Alégroth,Håkan.Burden,Morgan.Ericsson.Imed.Hammouda,

Eric.Knauss,Jan-Philipp.Steghöfer}@chalmers.se

Abstract. This paper analyses the way we teach Scrum. We reflect on
our intended learning outcomes, which challenges we find in teaching
Scrum and which lessons we have learned during the last four years. We
also give an outlook on the way we want to introduce and apply Scrum
in our teaching and how we intend to improve the curriculum.

The results aggregated in this paper are a response to a crisis: we, a group of
teachers and researchers at the University of Gothenburg (GU) and Chalmers
Technical University have realized that the way we teach Scrum doesn’t align
with the intended learning outcomes of our courses. These often include process
knowledge, technical knowledge, and methodological knowledge. The intended
outcome in the process area is the ability to apply the process and the agile prin-
ciples in future development projects. We feel that the courses become unmain-
tainable for us and put a lot of cognitive load on our students who learn Scrum
in lectures and apply it in projects in parallel. While applying Scrum is key to
understand it, the projects’ deliverables and technical aspects tend to shadow
teaching goals and reflection on agile principles and practices. This causes stu-
dents to feel like the process is “overhead” instead of being a possibility to struc-
ture their work. Since we as teachers are necessarily mainly concerned about the
outcome of the project and mainly interact with the students when they present
deliverables, we also have very little opportunity to observe the application of
the process and give direct feedback on it.

TheSoftwareEngineeringdivision is a joint venture betweenGUandChalmers.
Apart from courses in different programmes at both universities, it offers a Bache-
lor in Software Engineering and Management and a Master in Software Engineer-
ing. Both programmes emphasise project-based learning and thus allow students
to experience work in group settings with complex case studies and fixed deadlines.
A number of these courses either include agile practices in their learning objectives
or make use of them for the project work.

As teachers at the Software Engineering division we are responsible for teach-
ing Scrum in four courses in three contexts – Software Processes (first term)
and Software Architecture Project (third term) in the Software Engineering and

c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 361–362, 2015.
DOI: 10.1007/978-3-319-18612-2

362 E. Alégroth et al.

Management bachelor program; Software Engineering Project (second term) for
various engineering and IT programs as well as Agile Software Development in
the Software Engineering master program. The project courses in the bachelor
program and the course in the master program have a focus on technical knowl-
edge whereas the Software Processes course focuses on theoretical knowledge.

By sharing our experiences and our lessons learnt we hope to allow trainers
and teachers elsewhere to benefit from our experience and to balance the cogni-
tive load and to start the same alignment process in education and training of
agile software development that has now begun for us.

To get an overview of how we teach and apply Scrum in our courses we collec-
tively reflected on our experiences and, applying the terminology of Brookfield,
evaluated our practices using a peer lens [1]. Following Schön the reflection was
on-action [2] since our teaching is spread out over the academic year and the
course curricula are set for each course instance. This process led us to a number
of insights and best practices that we want to apply in our future teaching. Two
examples are:

1. Teaching Scrum needs to have a practical element: Scrum must be applied
to know it. However, the more technically advanced the practical element is, the
more the students focus on learning the platform instead of the process. The
platform becomes an impediment for learning Scrum.

2. Stress is an impediment for learning Scrum since the students focus on
delivering before the deadline instead of using a sound process. In a workshop
setting the stress creates learning opportunities since the close interaction with
the teachers enables immediate and detailed feedback. This resonates with what
Babb et al. report from industry where the need to meet deadlines had a negative
impact on the Scrum teams possibility for reflection-in action during the sprint
retrospectives [3].

Our suggestion is to introduce Scrum using workshops and a platform with
low technical demands. When students have been introduced to Scrum they can
apply the knowledge in a project with a more technical setting, thereby balancing
the cognitive load among the process aspects and technical aspects of the project.
We have adapted our curriculum accordingly and now offer a Scrum workshop
using Lego building blocks as part of the different courses to allow students of
all semesters to experience Scrum this way. In the future, every student in the
first term will participate in such an exercise and therefore be prepared for the
use of Scrum in the second term Software Engineering project.

References

1. Brookfield, S.: Becoming a Critically Reflective Teacher. Higher and Adult Educa-
tion Series. Wiley (1995)

2. Schön, D.A.: The Reflective Practitioner: How Professionals Think in Action.
Harper torchbooks. Basic Books (1983)

3. Babb, J., Hoda, R., Nørbjerg, J.: Barriers to Learning in Agile Software Devel-
opment Projects. In Baumeister, H., Weber, B., eds.: Agile Processes in Software
Engineering and Extreme Programming. Volume 149 of Lecture Notes in Business
Information Processing., Springer Berlin Heidelberg (2013) 1–15

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 363–364, 2015.
DOI: 10.1007/978-3-319-18612-2

Agility in Dynamic Environments: A Case Study
for Agile Development

Simon Brooke and Dina Allswang

Abstract. Continual technological advances require software solutions, prod-
ucts and platforms to be adaptable, extendible and rapidly created to meet mar-
ket needs.

Software technologies must be interchangeable, environments transparent,
solutions maintainable, continuously integrated and delivered with value to the
customer.

This paper presents a video software solution in which architecture, design,
development, quality and integration were all done in an Agile manner to meet
quality requirements, functional requirements, timelines and customer needs,
while ensuring adaptability to changes at continuously high quality.

1 Background

In the past, our software development was based on Waterfall methodology. Re-
quirements and design were many months ahead of implementation and coding peri-
ods were several months. High-level management decided that Agile could improve
development processes. An Agile expert was consulted. Several problematic areas in
the development lifecycle were identified:

• Major code rewrites due to late requirement changes
• Several rounds of fixes due to long, serial development/QC
• Integration bugs found too late in the development process
• Functionality not always as intended due to lack of ongoing feedback

2 New Project Using Scrum

An inter-departmental team was selected, consisting of personnel with varying levels
of experience and multiple areas of expertise. The Scrum methodology was adopted
for the project and various roles were assigned.

The project involved development of 5 components and integrating them into a
larger subsystem. High-level architecture was managed using Agile and detailed ar-
chitecture for each sprint was reviewed with the product owner.

364 S. Brooke and D. Allswang

3 Sprint Activities

The product owner managed the prioritized backlog in consultation with all stake-
holders. For each sprint, the team members declared their capacity and selected tasks
from the product owner’s prioritized sprint plan.

Daily stand-up meetings provided close collaboration between team members, to
request help and prevent impediments. The team updated progress on the scrum board
enabling re-allocation of resources if necessary.

Retrospectives were held to discuss successful methods and improvements.

4 Continuous Integration

The components were continuously tested and integrated into the subsystem. Auto-
mated tests were run nightly and issues handled daily. This enabled completion of
development and QC within sprint scope.

5 Collaboration with Project Customer

Detailed design, requirements and implementation were reviewed with the project
representative including a demo per sprint enabling timely feedback.

6 Conclusion

A measure of the project success was the satisfaction level of the customers. They
appreciated the potentially shippable products available at the end of each sprint in-
cluding a set of expected and high quality, high-priority features enabled by continu-
ous customer involvement and feedback.

References

1. Schwaber, K., Sutherland, J.: The Official Scrum Guide

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 365–366, 2015.
DOI: 10.1007/978-3-319-18612-2

Introducing SafeScrum

Geir Kjetil Hanssen1, Ingar Kulbrandstad2, and Børge Haugset1

1 SINTEF ICT, Strindveien 4, 7465 Trondheim, Norway
2 Autronica Fire & Security, Haakon VII’s gate 4, 7041 Trondheim, Norway

ghanssen@sintef.no, Ingar.Kulbrandstad@autronicafire.no,
borge.haugset@sintef.no

Abstract. Safety-critical systems such as process control- and signal systems
play a fundamental role in many important industries and aspects of society.
Such systems, including software, must fulfill extreme demands for correct op-
eration and integrity, meaning that development must follow strict standards (in
our case IEC 61508), which has to be documented and evaluated by external
certification bodies to receive necessary approval. We present recent industrial
experience in applying the SafeScrum approach in a complex software organi-
zation.

Keywords: Safety-critical systems · SafeScrum · IEC 61508

1 Agile Development of Safety Critical Systems

An increasing part of the functionality of safety-critical systems, e.g. ship-control and
fire-detection are implemented as software due to more standardization of hardware.
This gives larger and more complex software development projects, which must meet
the same strict requirements for safety operation performance as electronically based
systems. This calls for efficient and flexible development processes. Present methods
are tailored for hardware development, emphasizing low requirements- and design-
change frequency, being plan-based and document driven. This gives low require-
ments change tolerance and high costs (25-50% of total project costs) for producing
documentation to prove conformance to standards such as IEC 61508 (process control
systems) [1].

2 SafeScrum

To challenge this trend we have proposed the SafeScrum approach [2], which is an
extension of the Scrum software development methodology in combination with com-
mon XP techniques. Scrum has now been adapted to fit development of safety critical
systems and has been harmonized with software lifecycle requirements defined in the
IEC61508 standard. Fitting Scrum for this type of development and certification means
that it has to be extended with additional activities. For example, code reviews need to
be documented with full traceability in such a way that an independent assessor can

366 G.K. Hanssen et al.

verify that all code has been reviewed according to the standard. Another important
extension is routines for change impact analysis, meaning that changes in requirements
must be followed by an analysis on whether the change may impact the safety function
of the system. This must also be fully traceable and documented for external verifica-
tion. The overall challenge is to utilize the benefits of an agile approach, having it
aligned with the standards extensive requirements for documentation while at the same
time avoiding too much extra weight.

3 Introducing SafeScrum – Early Lessons Learned

Autronica Fire & Security AS has for over a year introduced SafeScrum in a SIL3
industry project (very high safety performance). Key lessons learned are:

(1) Adaptation and adoption of a radically different process needs change agents:
Although supported by external experts, the shaping of SafeScrum and the change
process itself happened as a grass-root movement. Having the ones that are to be us-
ing the process implement it themselves is important to establish sufficient motivation
and to build necessary hands-on knowledge on a very detailed level. (2) A radical
change costs extra resources and needs support from management: In our case
management strongly supported the change, giving the team trust, freedom and time
to try and fail. Without this support and resources it would have been extremely hard
to succeed bottom-up. (3) External support and validation strengthens the change:
Although the change happened bottom-up, external input on methodology and safety
assessment (researchers) as well as discussions with the certification body (TÜV in
this case) has enabled the team to prioritize change actions, discuss ideas and evaluate
the suitability of SafeScrum and compatibility with the IEC 61508 standard. (4) Tools
are as important as processes: There is a need to provide extensive documentation
of compliance with the process. Traditionally this results in a lot of effort spent to
produce explicit documentation in addition to the development itself. SafeScrum
works very much because tools automate or supports the team in creating this type of
information. (5) Change needs to be done step-by-step: The new process was start-
ed in the simplest possible way with only the core Scrum elements. Eventually, more
details were added based on constant evaluation and refinement of the process. This
approach also gave the team confidence as they always had a fully working process,
which was in-line with the IEC 61508 standard.

References

[1] Bell, R.: Introduction to IEC 61508. Presented at the 10th Australian Workshop on Safety
Critical Systems and Software, Darlinghurst, Australia (2005)

[2] Stålhane, T., Myklebust, T., Hanssen, G.K.: The application of Scrum IEC 61508 certifia-
ble software. Presented at the ESREL, Helsinki, Finland (2012)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 367–368, 2015.
DOI: 10.1007/978-3-319-18612-2

Revisit – A Systematic Approach to Continuously
Improve Agile Practices in Large-scale and

Fast-expanding R&D Center

Peng Liu and Yuedong Zhao

Nokia Networks Chengdu Technology Center,
Building A4, Tianfu Software Park, High-tech Zone,

610041 Chengdu, Sichuan, P.R.China
{brian.1.liu,yuedong.zhao}@nokia.com

Abstract. We give an overview of our recent initiative in designing a systemat-
ic framework to help teams continuously improve Agile practices in large-scale
and fast-expanding R&D centre. The framework is expected to be a closed-
loop, light-weighted and sustainable one with positive business impact. To ad-
dress these requirements, after several rounds of pilot, a “Revisit” framework is
figured out, which consists of five major phases:1) Goal/Problem-driven plan-
ning; 2) Light-weight audit; 3) Audit result analysis and reporting; 4)
On-demand Competence Development support leveraging resources across the
organization; 5) Progress tracking and effectiveness check. Also, a joint-force
including a Revisit team, Revisit agents, and ScrumMaster community is setup
to ensure the effective execution. Initial results indicate promising evidence this
approach can help teams’ quality and efficiency improvement.

Keywords: Agile method · Scrum · Continuous improvement · Competence
development · Light-weight audit · Software quality support processes

1 Introduction*

Agile, as an effective strategy to make software enterprises more flexible and respon-
sive to changes, has one vital focus on continuous improvement [1]. However, in
large-scale software R&D center with teams in different maturity levels, immature
teams are most likely to be incompetent and inefficient in inspecting the real barriers
in their agile practice and corresponding root causes and therefore adapting by taking
effective improvement actions [2]. On the other hand, for matured teams, they may
become stagnant, and it is a challenge to reinvigorate these teams in their agile prac-
tice to make it more efficient in creating customer values. Moreover, for a fast-
expanding R&D centre (e.g., in China, India and Poland), a new challenge is to ensure
new hires do not introduce too much “turbulence” to the agile way of working of
existing teams. Yet another aspect to consider is employee Competence Development

 Peng Liu is now agile/engineering coach in Nokia Networks Chengdu TC, and Yuedong Zhao
 is the head of R&D office, Nokia Networks MBB OSS Chin.

368 P. Liu and Y. Zhao

(CoDe). The fact is, however, employee CoDe team is most likely a central function
not working closely with teams, which may lead to a mismatch between teams’ real
training needs and the resources (e.g., training, coaching) provided by the CoDe team.

Facing all above challenges, in Nokia Networks Chengdu Technology Centre (TC),
there is a high demand for a mechanism to effectively help teams across the organiza-
tion to continuously improve their agile practice with major requirements as:
Requirement 1: Light-weight. Teams expect low overhead and interruption.
Requirement 2: Close-loop. The mechanism shouldn’t stop with identifying problems
but should form a closed Plan-Do-Check-Act (PDCA) loop to help team grow.
Requirement 3: Effectiveness. CoDe support should be based on problems identified
and positive business impact are expected from team.
Requirement 4: Sustainability. Good agile practice should sustain, and team should be
capable for inspecting and adapting themselves.

2 Solution

As a result, in Nokia Network Chengdu TC, after several pilots, we finally figure out
the “Revisit” framework as a systematical approach to help teams continuously im-
prove agile practice in large-scale and fast-expanding software powerhouse.

Fig. 1. Revisit framework: An overview

Highlights of lessons learnt are: First, this bottom-up initiative really gains buy-in
from teams; second, refresh on Agile principle and Scrum practice is a must in fast-
expanding R&D to avoid pitfalls like mini-waterfall; third, on-demand CoDe based
on issues identified in Revisit is more effective in achieving positive business impact.

References

1. Meso, P., Jain, R.: Agile software development: adaptive systems principles and best
practices. Information Systems Management 23(3), 19–30 (2006)

2. Beavers, P.A.: Managing a large “agile” software engineering organization. In: Agile
Conference (AGILE), pp. 296–303. IEEE (2007)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 369–370, 2015.
DOI: 10.1007/978-3-319-18612-2

Applying Randori-Style Kata and Agile Practices
to an Undergraduate-Level Programming Class

Chitsutha Soomlek()

Department of Computer Science, Faculty of Science,
Khon Kaen University, Khon Kaen, Thailand

chisutha@kku.ac.th

Abstract. This study adapted and applied a traditional randori-style kata to a
web programming class, in order to help undergraduate students improve their
programming skills. The process in the traditional randori-style kata was modi-
fied to match to the nature of XML. The results indicated that the modified
randori-style kata is an effective method for the programming course and the
students to enhance their programming skills. The activity also helped the
students to repetitively review and reapply theories and knowledge to pro-
gramming problems. The kata can stimulate the learning system, enhance self-
confidence, and improve the relationships among the students.

Keywords: Randori-style kata · Coding dojo · Kata · Learning systems · Pro-
gramming education

1 Introduction

A kata, also called coding dojo, is an activity designed for programmers to improve
their coding skills through practices, repetition, and knowledge sharing [1]. A kata
includes agile practices; e.g., pair programming, Test-Driven Development (TDD),
Continuous Integration (CI), refactoring, and timeboxing; in the activity [1].
Swamidurai et al. indicated that using peer code review in the TDD context is even
more effective for a programming practice than the traditional pair programming [2].

2 Procedure and Methods

In order to help our undergraduate students to improve their coding skills, a modified
version of randori-style kata was created and integrated in a web programming class
at the Department of Computer Science, Khon Kaen University, Thailand. The class
was designed for 3rd-year and 4th-year students and focused on XML, XML-based
technologies, Web technologies (e.g. HTML, XHTML, and JavaScript), and their
applications (e.g. AJAX and Web services). The modified kata was assigned as one of
the class activities in the Fall 2014 semester. There were 79 3rd-year students regis-
tered in this class. There were one instructor and two teaching assistants.

370 C. Soomlek

In the traditional randori-style kata, TDD is primarily used. However, writing a test
before writing a code in XML is different from other programming languages that
already have corresponding testing frameworks, e.g. Java and JUnit, PHP and
PHPUnit, etc. Therefore, instead of writing a failing unit test on a testing framework,
Document Type Definition (DTD), XML schema, and test cases were employed. For
example, the instructor introduced a programming problem, a corresponding
DTD/XML schema, and explained the acceptance criteria with examples to the stu-
dents. The students had to write a well-formed and valid XML document according to
the definitions provided in the DTD/XML schema. Sometimes, an XML document
was given; then, the students had to write a DTD/XML schema that is complied with
the XML document while keeping the document well-formed and valid. After the
students were familiar with how to write a DTD/XML schema, they had to write a
definition in DTD/XML schema first, and then, they had to create corresponding
XML tags. Moreover, the instructor occasionally gave subtle hints, strategies, direct
instructions, or changes of requirements during the practice sessions.

In the traditional kata, audiences are not allowed to disturbed the pilot and co-pilot,
i.e. paired programmers. In this class, students were allowed to deliberate, share, and
discuss their ideas with the class.

3 Results

This class was evaluated through three sets of questionnaires with open-end questions
and interviews. 79 students registered in this course.

26 students participated in the modified kata ≥ 2 times. 22 students participated
only once. 25 students did not participate in the kata. 6 people did not answer the
questionnaires. 100% of participants agreed that the activity was an excellent activity
for reviewing what they had learnt from the class, can help them understand XML,
and can improve their coding skills. The activity can also motivate the students to
hone their coding skills. Moreover, the modified randori-style kata can improve self-
confidence and relationship among the students. However, the non-participants stated
several reasons why they did not participate in the modified kata, for example, the
session ended before their turns and they did not know how to solve the problems.

The modified randori-style kata could be used as an alternative method for pro-
gramming practices. It can be applied to any programming courses and used for train-
ing purposes. Moreover, there are many possibilities to enhance the activity such as
having multiple groups of kata working on the same programming problem.

References

[1] Martin, R.C.: The Clean Coder: A Code of Conduct for Professional Programmers. Pren-
tice Hall (2011)

[2] Swamidurai, R., Dennis, B., Kannan, U.: Investigating the impact of peer code review and
pair programming on test-driven development. In: IEEE SoutheastCon 2014, pp. 1–5.
IEEE (2014)

© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 371–372, 2015.
DOI: 10.1007/978-3-319-18612-2

Continuous Strategy Process in the Context
of Agile and Lean Software Development

Tanja Suomalainen1 and Jenni Myllykoski2

1 VTT Technical Research Centre of Finland
Kaitoväylä 1, P.O. Box 1100, FI-90571 Oulu Finland

{Tanja.suomalainen}@vtt.fi
2 Oulu Business School Pentti Kaiteran katu 1,

P.O. BOX 4600, FI-90014 University of Oulu Finland
{Jenni.myllykoski}@oulu.fi

Abstract. This extended abstract introduces an ongoing research which elaborates
the concept of continuous strategy with an aim to better address the contemporary
challenges of strategy process within the field of software development. Theoreti-
cally the research draws on the strategy process and practice -literature and on the
literature of agile and lean software development when conceptualizing continu-
ous strategy. Empirically the research examines the emerging challenges in soft-
ware companies’ strategy process when they are pursuing continuous practices in
software development. The tentative analysis revealed that the practices that stem
from the more traditional, structured strategy process are not compatible with the
more “continuous planning”-oriented organisational practices. Thus, there seems
to be pressure for developing more continuous strategy process and practices.
Furthermore, in other organisational processes, especially in team level, the
practices relating to continuity are more successfully applied, than in strategic
level.

Keywords: Strategy process · Continuous planning · Software development

1 Introduction

In recent few years, the adoption of agile and lean development practices has in-
creased remarkably in Information and Communication Technology (ICT) industry.
Even though many companies have succeeded in adopting these practices, even more
innovative approaches that support continuous practices throughout the organisation
are needed [1]. For example, [2] emphasize continuous integration between software
development and its operational deployment as well as continuously assessing and
improving the link between business strategy and software development. Similarly,
there is a clear need for continuous planning in which plans are dynamic open-ended
artifacts that evolve in response to changes in the business environment. However, the
continuous software development practices appear to be ill assorted with the tradi-
tional, rationalistic view of strategy process. Whereas the continuous software devel-
opment stresses the importance of real time actions and continuous change [1], the

372 T. Suomalainen and J. Myllykoski

rationalistic view of strategy process is very static and future-oriented. It relies on the
assumption of relatively predictable business environment that allows the rational
managers [3] to create a long term future plan based on systematic scanning and posi-
tioning [4], and subsequently to implement it while having sufficient control over the
consequences of actions [3]. The usefulness of such theories in the context of soft-
ware development is questionable.

2 Research Method

We argue that continuous software development and planning calls for flexibility also
in the strategy process and therefore the purpose of this research is to introduce and
empirically investigate the concept of continuous strategy. The concept is rooted on
the emerging literature on strategy process and practice that acknowledges continuous
change as the inherent feature of reality and views strategy as fluxing, improvisational
and temporal process [3, 4]. In addition, we draw on the literature on continuous
software development, with an aim to connect the concept of continuous strategy with
the practice of agile and lean software development. The research builds on a qualita-
tive multi case study [5] in which data is collected through several interviews (alto-
gether 22 at the moment) and analysed with the help of NVivo tool. The research is
done in Digile’s Need for Speed (N4S) research program (http://www.n4s.fi/en/).

The tentative analysis of an interview data revealed that the practices stemming
from the “traditional”, structured strategy process are not compatible with the more
continuous planning practices within the organisation. Thus, there seems to be pres-
sures for developing continuous strategy process and practices. Furthermore, in other
organisational processes, especially in team level, the practices relating to continuity
are more successfully applied, but in strategic level continuity is not yet achieved.

References

1. Olsson, H.H., Bosch, J., Alahyari, H.: Towards R&D as Innovation Experiment Systems: A
Framework for Moving Beyond Agile Software Development. In: Proceedings of the
IASTED International Conference on Software Engineering, SE 2013, pp. 798–805 (2013)

2. Fitzgerald, B., Stol, K.: Continuous Software Engineering and Beyond: Trends and
Challenges. In: Proceedings of the 1st International Workshop on Rapid Continuous Soft-
ware Engineering, pp. 1–9. ACM (2014)

3. MacKay, R., Chia, R.: Choice, Chance and Unintended Consequences in Strategic Change:
A Process Understanding of the Rise and Fall of Northco Automotive. Academy of Man-
agement Journal 56(1), 208–230 (2013)

4. Tsoukas, H., Chia, R.: Introduction: Why philosophy matters to organisation theory. In:
Philosophy and Organization Theory: Research in the Sosiology of Organisation, vol. 32,
pp. 1–21. Emerald Group Publishing (2011)

5. Yin, R.K.: Case study research: design and methods, 3rd edn. Applied Social Research
Methods Series, vol. 5. Sage Publications, Thousand Oaks (2003)

Automatizing Android Unit and User
Interface Testing

Juha-Matti Vanhatupa and Mikko Heikkinen

PacketVideo Finland Oy, Hallituskatu 8, FI-33200 Tampere, Finland
{vanhatupa,mheikkinen}@pv.com

Abstract. In this paper we describe our efforts moving towards autom-
atized testing in Android application development. With sophisticated
combination of Android development tools and Perl scripts, we have
automatized parts of the testing produce. Using the built system, unit
tests are built and run automatically each time when a new build is
created. In addition, we are automatizing user interface testing using
Android uiautomator tool. In this automatization process we encoun-
tered several technical issues, for which Android development tools do
not offer ready-made solutions, and we had to implement solutions for
those.

Keywords: Test automation · Android · graphical user interface testing

1 Introduction

Mobile applications are designed to run on smartphones, tablet computers and
other mobile devices. They are a challenging target for testing, many of them
are web applications using resources from the Web, and they can also use data
from sensors of the device. In addition they feature many different versions of
operating systems and software frameworks customized for different devices [4].

The use of unit testing is generally low in mobile development community
[1]. Approximately 20% of developers stated that their companies do not use
any unit testing, and when performed it was mostly done manually. In addition,
graphical user interface testing is challenging to automatize, and it is mostly
done manually [1]. It was automatized only in 3% of the cases.

We have automatized executing unit tests with combination of Perl scripts
and Android build tools. In addition we convert manual user interface (UI) tests
into automatized tests using uiautomator framework [3]. The target application
of this work was Twonky Beam [2], an app that lets users discover and transfer
online video content from a tablet or mobile device to a television.

2 Test Automatization Approach

The purpose of automatizing unit testing is to ensure these tests are executed
with each build. Natural solution was to include compiling and running unit tests

c© Springer International Publishing Switzerland 2015
C. Lassenius et al. (Eds.): XP 2015, LNBIP 212, pp. 373–374, 2015.
DOI: 10.1007/978-3-319-18612-2

374 J.-M. Vanhatupa and M. Heikkinen

into build scripts of Twonky Beam. So they are executed, when a new feature or
bug fix is pushed to the remote stream in version control and a build is launched
on Jenkins. Scripts used for compiling Twonky Beam are written in Perl and we
used it also for unit test automatization.

Perl has many built-in functions for shell programming and it can call oper-
ating system facilities. This enabled compiling projects (application project and
unit test project), and starting Android emulator, and running unit tests on it.

We started automatization of UI testing using uiautomatorviewer tool. The
tool enables taking screenshots of UI and viewing layout hierarchy of UI compo-
nents. Then we implemented UI test cases. Manual UI tests are converted into
uiautomator tests. Almost all of our 80 UI tests are possible to automatize using
uiautomator, excluding only test cases, which required rebooting the device, or
manual switching on of wireless networks.

When implementing uiautomator test cases, we encountered a problem with
WebView component. Uiautomator cannot gather info about UI components
inside it, since it sees WebView only as one component. We resolved the problem
using coordination calculation algorithm, which calculates correct coordinates
based on pixel density of the device and made a mouse click using those.

Another issue in UI testing was caused by different localization versions of
Twonky Beam application (English and Japanese), because uiautomator uses
text strings of UI components to locate them. To avoid failures in string com-
parison we included an extra step to the build process of uiautomator project.
In this step files containing localized strings are copied into uiautomator project.
When text string of UI component is required in the project, a separate function
is called and the string is fetched from the correct file of localized strings.

3 Conclusions

Android framework offers many valuable tools, e.g. uiautomator is an excellent
tool for UI test automatization. Although, as we described special cases in UI
testing have to be handled separately. Overall, test automatization can save
time and resources. The implemented approach can be used with other Android
applications also.

References

1. Joorabchi, M. E., Mesbah A., Kruchten, P.: Real Challenges in Mobile App Devel-
opment. In: Proceedings of the ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement. pp. 15–24. IEEE Computer Society (2013)

2. Twonky Beam application, http://twonky.com/product/beam/
3. uiautomator testing framework,

http://developer.android.com/tools/testing/testing ui.html
4. Wasserman, A.I.: Software Engineering Issues for Mobile Application Development.

In: Proceedings of the FSE/SDP Workshop on Future of Software Engineering
Research. pp. 397–400. ACM (2010)

Author Index

Abrahamsson, Pekka 52
Ahmad, Muhammad Ovais 178
Alégroth, Emil 361
Allswang, Dina 363
Ämmälä, Mikko 205
Arcelli Fontana, Francesca 3
Aro, Ismo 329

Bajwa, Sohaib Shahid 52
Barroca, Leonor 64
Berger, Christian 15
Bjarnason, Elizabeth 27
Bjerke-Gulstuen, Kristian 239
Boekhorst, Laurens 248
Borg, Markus 27
Bosch, Jan 218, 350
Brooke, Simon 363
Burden, Håkan 361

Chmelař, Martin 302
Claassen, Arjan 248
Counsell, Steve 129

Destefanis, Giuseppe 129
Diebold, Philipp 40, 345
Dingsøyr, Torgeir 239
Dönmez, Denniz 193
Doss, Osama 347

Eckstein, Jutta 339
Eklund, Ulrik 15
Engström, Emelie 27
Ericsson, Morgan 361

Fabijan, Aleksander 350
Fontana, Rafaela Mantovani 199, 310
Fraser, Steven 334, 329
Fridstrom, Josh 294

Giardino, Carmine 52
Gregory, Peggy 64
Grote, Gudela 193

Hammouda, Imed 361
Hanssen, Geir Kjetil 365
Harzl, Annemarie 352
Haugset, Børge 365
Heikkilä, Ville T. 93
Heikkinen, Mikko 373
Hokkanen, Laura 81
Holyer, Steve 339
Hunt, Johanna 254

Ilieva, Sylvia 230
Itkonen, Juha 93

Jacques, Adam 294
Järvinen, Janne 334

Karvonen, Teemu 354
Kassab, Mohamad 129
Kelly, Tim 347
Kettunen, Petri 205
Kilpela, Kurt 294
Kirjavainen, Antti 339
Kivioja, Henri 329
Knauss, Eric 361
Krchňák, Jan 302
Kulbrandstad, Ingar 365
Kuvaja, Pasi 212, 354

Larsen, Diana 339
Larsen, Emil Wiik 239
Lassenius, Casper 356
Laukkanen, Eero 356
Lehtinen, Timo O.A. 93
Lenarduzzi, Valentina 105
Lindgren, Eveliina 117
Liu, Peng 367
Lundh, Erik 329, 334
Lunesu, Ilaria 105
Lwakatare, Lucy Ellen 212

Malucelli, Andreia 199, 310
Marchesi, Michele 129

Marshall, Stuart 141
Martini, Antonio 218
Matinlassi, Mari 262
Matta, Martina 105
Md. Rejab, Mawarny 141
Meyer Jr., Victor 199
Münch, Jürgen 117, 154
Myllykoski, Jenni 371

Noble, James 141
Nybom, Kristian 166

Oivo, Markku 178, 212, 354
Olsson, Helena Holmström 350
Ortu, Marco 129
Ostberg, Jan-Peter 40

Pareto, Lars 218
Partanen, Jari 205, 262
Porres, Ivan 166
Poupko, Avraham 270
Power, Ken 329, 334

Reinehr, Sheila 199, 310
Rising, Linda 329, 334
Rissanen, Olli 154
Rodríguez, Pilar 178
Rosenberg, Shlomi 279

Salah, Dina 64
Sarkela, John 294
Schneider, Matti 287
Sennersten, Charlotte 224
Sharp, Helen 64
Siverland, Susanne 224

Slany, Wolfgang 352
Smeds, Jens 166
Šmiřák, Roman 302
Soomlek, Chitsutha 369
Sorje, Olli 339
Stålhane, Tor 239
Stavru, Stavros 230
Steghöfer, Jan-Philipp 361
Suomalainen, Tanja 371

Taibi, Davide 105
Taylor, Katie 64
Tonelli, Roberto 129
Tramontini, Ramon 310
Tripathi, Nirnaya 178
Tureček, Tomáš 302

Unterkalmsteiner, Michael 27

Väänänen-Vainio-Mattila, Kaisa 81
Vanhatupa, Juha-Matti 373
Virtanen, Risto 93

Wagner, Stefan 40
Walter, Marcelo 310
Wang, Xiaofeng 52
Wernersson, Roger C.S. 224
Wild, Werner 329, 334
Wilson, Alexander 319
Wirfs-Brock, Rebecca 329, 334

Zanoni, Francesco 3
Zanoni, Marco 3
Zendler, Ulrich 40
Zhao, Yuedong 367

376 Author Index

	Preface
	Organization
	Contents
	Full Research Papers
	A Duplicated Code Refactoring Advisor
	1 Introduction
	2 Related Work on Code Clone Refactoring
	3 DCRA Approach
	3.1 Locations and Refactoring Techniques
	3.2 Qualitas Corpus Analysis
	3.3 Refactoring Technique Implementation

	4 Duplicated Code Refactoring Advisor
	4.1 Clone Detector
	4.2 Clone Detailer
	4.3 Refactoring Advisor
	4.4 Refactoring Advice Aggregator

	5 Validation
	6 Conclusions and Future Works
	References

	Expectations and Challenges from Scaling Agile in Mechatronics-Driven Companies -- A Comparative Case Study
	1 Introduction
	1.1 Problem Domain and Motivation
	1.2 Research Goal
	1.3 Contributions and Scope
	1.4 Structure of the Article

	2 Related Work
	3 Comparative Case Study Design
	3.1 Research Questions
	3.2 Case and Subjects Selection
	3.3 Data Collection Procedure
	3.4 Analysis Procedure
	3.5 Validity Procedure

	4 Results
	4.1 Threats to Validity

	5 Conclusion and Future Work
	References

	An Industrial Case Study on Test Cases as Requirements
	1 Introduction
	2 Agile RE: Test Cases as Requirements Documentation
	3 Case Companies
	3.1 Company A
	3.2 Company B
	3.3 Company C

	4 Method
	5 Results
	5.1 Company A: A De Facto Practice
	5.2 Company B: An Established Practice
	5.3 Company C: Planned Practice as Part of Agile Transition
	5.4 Limitations

	6 Test Cases in the Role of Requirements (RQ1)
	6.1 Elicitation and Validation
	6.2 Verification
	6.3 Tracing
	6.4 Requirements Management

	7 The Reasons for and Contexts of the Practice (RQ2)
	8 Conclusions and Future Work
	References

	What Do Practitioners Vary in Using Scrum?
	1 Introduction
	2 Scrum Background
	3 Case Study Design
	3.1 Research Questions
	3.2 Case and Subjects Selection
	3.3 Data Collection Procedure
	3.4 Analysis Procedure
	3.5 Validity Procedure

	4 Results
	4.1 Case and Subject Description
	4.2 Overview
	4.3 Team, Product Owner, and Scrum Master
	4.4 Sprint
	4.5 Events
	4.6 Requirements
	4.7 Quality Assurance
	4.8 Evaluation of Validity

	5 Related Work
	6 Conclusions and Future Work
	References

	Key Challenges in Early-Stage Software Startups
	1 Introduction
	2 Background
	3 Research Approach
	4 Results
	4.1 Key Challenges Perceived by Early-Stage Software Startups
	4.2 Key Challenges Experienced in Two Early-Stage Software Startups

	5 Discussion
	6 Conclusions
	References

	Agile Challenges in Practice: A Thematic Analysis
	1 Introduction
	2 Related Work
	3 Method
	3.1 Data Collection
	3.2 Participants
	3.3 Data Analysis

	4 Results
	5 Discussion
	5.1 Are These Challenges Reflected in Research Literature?
	5.2 Challenges and the Goals Set for 2015
	5.3 Persistence of Challenges over Time
	5.4 Limitations

	6 Conclusions
	References

	UX Work in Startups: Current Practices and Future Needs
	1 Introduction
	2 Related Work
	2.1 UX Practices in Industry
	2.2 Lean UX
	2.3 Product Development in Startups

	3 An Interview Study of UX Work in Startups
	3.1 Participating Startups
	3.2 Method

	4 Results
	4.1 Current Practices
	4.2 Challenges with Gaining Feedback and Using It
	4.3 Needs for UX Work When Scaling Up

	5 Discussion and Conclusions
	References

	Why the Development Outcome Does Not Meet the Product Owners’ Expectations?
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Case Company
	3.2 Data Collection with Root Cause Analysis
	3.3 Data Analysis

	4 Results
	4.1 Retrospective Outcomes of Development Team 1
	4.2 Retrospective Outcomes of Development Team 2
	4.3 Retrospective Outcomes of Product Owner Team
	4.4 Synthesis of the Individual Retrospective Results

	5 Discussion
	5.1 Answers to the Research Questions
	5.2 Implications for Practitioners
	5.3 Limitations

	6 Conclusions and Future Work
	References

	Functional Size Measures and Effort Estimation in Agile Development: A Replicated Study
	1 Introduction
	2 The Original Case Study
	2.1 Study Design
	2.2 Study Context
	2.3 Study Results

	3 Study Context and Design
	3.1 Case Study 1: Matchall2
	3.2 Case Study 2: Serts
	3.3 Commonalities and Differences to the Original Case Study

	4 Results
	4.1 Matchall2 Case Study Results
	4.2 Serts Case Study Results

	5 Discussion
	6 Conclusions
	References
	Appendix: Detailed Results

	Software Development as an Experiment System: A Qualitative Survey on the State of the Practice
	1 Introduction
	2 Background and Related Work
	3 Study Approach
	4 Results
	4.1 Overview of Participants
	4.2 Software Development Practices
	4.3 Practices of Eliciting and Using Customer Feedback
	4.4 Challenges with Respect to Continuous Experimentation

	5 Discussion
	6 Conclusions
	References

	Would You Mind Fixing This Issue?
	1 Introduction
	2 Related Works
	3 Experimental Setup
	3.1 Dataset
	3.2 Magnet and Sticky Metrics
	3.3 Politeness

	4 Result and Discussion
	4.1 Does the Politeness among Developers Affect the Issues Fixing Time?
	4.2 Does the Politeness among Developers Affect the Attractiveness of a Project?

	5 Threats to Validity
	6 Conclusion
	References

	Coordinating Expertise Outside Agile Teams
	1 Introduction
	2 Grounded Theory
	2.1 Data Collection
	2.2 Data Analysis

	3 Research Findings
	3.1 Factor 1: Availability
	3.2 Factor 2: Agile Mindset
	3.3 Factor 3: Stability
	3.4 Factor 4: Knowledge Retention
	3.5 Factor 5: Effective Communication

	4 Discussion
	5 Conclusion
	References

	Transitioning Towards Continuous Delivery in the B2B Domain: A Case Study
	1 Introduction
	2 Background and Related Work
	3 Case Study
	4 Results
	4.1 Technical Challenges
	4.2 Procedural Challenges
	4.3 Customer Challenges
	4.4 Benefits of Continuous Delivery

	5 Discussion
	5.1 Limitations

	6 Summary
	References

	DevOps: A Definition and Perceived Adoption Impediments
	1 Introduction
	2 Research Questions and Study Design
	2.1 Threats to Validity
	2.2 Conducting the Literature Review
	2.3 Conducting the Interviews

	3 What Is DevOps?
	3.1 DevOps Capabilities and Enablers

	4 Impediments Hindering DevOps Adoption
	4.1 Impediments Affecting Capabilities.
	4.2 Impediments Affecting Cultural Enablers
	4.3 Impediments Affecting Technological Enablers

	5 Conclusions
	References

	Scaling Kanban for Software Development in a Multisite Organization: Challenges and Potential Solutions
	1 Introduction
	2 Background and Related Work
	3 Research Methodology
	3.1 Case Study Design
	3.2 Data Collection
	3.3 Data Analysis
	3.4 Validity Discussion

	4 Results
	4.1 Context Description
	4.2 Challenges in Scaling Kanban and Possible Solutions

	5 Conclusion and Future Work
	References

	Short Papers
	The Two Faces of Uncertainty: Threat vs Opportunity Management in Agile Software Development
	1 Introduction
	2 Uncertainty as a Multidimensional Concept
	3 Data Collection and Analysis
	4 Results
	5 Conclusion
	References

	Management Ambidexterity: A Clue for Maturing in Agile Software Development
	1 Introduction
	2 Organizational Ambidexterity
	3 Research Design
	4 Results
	4.1 Exploiting Enough to Add Value for the Customer and for the Team
	4.2 Processes Automation and Status Visibility

	5 Discussion and Conclusions
	References

	Towards Predictable B2B Customer Satisfaction and Experience Management with Continuous Improvement Assets and Rich Feedback
	1 Introduction
	2 Customer Satisfaction in Industrial B2B Relationships
	3 Research Case and Approach
	4 Results and Experiences
	5 Discussion and Conclusion
	References

	Dimensions of DevOps
	1 Introduction
	2 Research Approach
	3 Dimensions of DevOps
	3.1 Collaboration
	3.2 Automation
	3.3 Measurement
	3.4 Monitoring

	4 Conclusion
	References

	Towards Introducing Agile Architecting in Large Companies: The CAFFEA Framework
	1 Introduction
	2 Research Design
	3 Results
	3.1 Architects
	3.2 Teams
	3.3 Framework CAFFEA

	4 Discussion and Conclusions
	References

	Optimal Refactoring
	1 Introduction
	1.1 The Refactoring Variables and the Analysis

	2 Methodology
	3 Experiment Design
	4 Analysis
	4.1 Baseline: Time Spent on Defects in the ‘Top-ten’ Files
	4.2 ‘Top-ten’ Files per Variable
	4.3 Spearman’s Rank Correlation Coefficient (SRCC)

	5 Results
	5.1 Summary TDRT ‘Top-ten’ Paired with the Results for Each Variable
	5.2 Result on Research-Questions

	6 Discussion and Implication
	7 Conclusion
	References

	Agile and the Global Software Leaders: A Perfect Match?
	1 Introduction
	2 Methodology
	3 What’s Valued Most by Global Software Leaders?
	4 Is There a Perfect Match?
	5 Conclusions
	References

	Experience Reports
	High Level Test Driven Development – Shift Left
	1 Introduction
	2 Background: A Large-Scale Project to Meet a Political Decision
	3 High Level Test Driven Development – Shift Left
	3.1 Shift Left During Sprint Work
	3.2 Organizing the Testing to Achieve a Shift Left Focus
	3.3 Was It an Agile Project?

	4 Conclusion
	References

	Shorter Feedback Loops by Means of Continuous Deployment
	1 Introduction
	2 Test Automation
	3 Deployment Automation
	4 Continuous Integration
	5 Continuous DeploymentNote: we do not employ continuous deployment for commercial applications or services.
	6 Open Issues
	7 Conclusion

	On a Different Level of Team
	1 Introduction and Background
	2 Teams in Software Development
	2.1 Responsibility and Capability
	2.2 Size
	2.3 Duration

	3 Teams and Projects at Aptivate
	4 Company as Team at Aptivate
	4.1 Organisational Practices
	4.2 Organisational Values

	5 Culture of Consensus
	5.1 Consensus at Aptivate
	5.2 Delegated Consent and Working Groups

	6 Moving to Standing Teams
	7 Conclusion
	References

	Applying Agile and Lean Elements to Accelerate Innovation Culture in a Large Organization – Key Learnings After One Year Journey
	1 Introduction
	2 The Case Company, Background and Motivation
	3 Elements for Cultural Change
	4 Lessons Learned
	4.1 Results
	4.2 Gained Experience

	5 Discussion
	5.1 Impact of the Cultural Change on the Company
	5.2 Limitations

	6 Conclusion
	References

	It Has Been a Long Journey, and It Is Not Over Yet
	1 Introduction
	2 Background
	3 The Pre-agile Days
	4 The Journey Begins
	4.1 Getting Started
	4.2 The Conference
	4.3 Trying Harder
	4.4 Not Really Agile
	4.5 Retrospective

	5 Where We Are Today
	5.1 Growth
	5.2 Phase 1 - Optimism
	5.3 Phase 2 - The Problems
	5.4 Maturity

	6 Retrospective

	Organizational Culture Aspects of an Agile Transformation
	1 Introduction
	2 Background
	3 Ownership
	3.1 The Culture Issue
	3.2 How We Dealt with It
	3.3 Culture Tip

	4 Territorialism
	4.1 The Culture Issue
	4.2 How We Dealt with It
	4.3 Culture Tip

	5 Managers vs. Leadership
	5.1 The Culture Issue
	5.2 How We Dealt with It
	5.3 Culture Tip

	6 The Buzzword Trap
	6.1 The Culture Issue
	6.2 How We Dealt with It
	6.3 Culture Tip

	7 What did I Learn from This Experience

	The Guide Board, an Artefact to Support the Continuous Improvement of an Agile Team’s Culture
	1 Introduction
	2 The Board and Its Making
	2.1 Overview
	2.2 Opening a Guide
	2.3 Using Guides
	2.4 Closing a Guide

	3 Limitations and Open Questions
	3.1 Team Maturity
	3.2 Adoption in Existing Projects
	3.3 Project Duration

	4 Conclusion
	References

	Testing Modtalk
	1 Introduction
	2 The Project
	2.1 Project Release Plans
	2.2 Refining the Design
	2.3 The Process of Processes

	3 What We Learned
	References

	Building Learning Organization Through Peer Hands-on Support Community and Gamification
	1 Context
	2 Motivation
	3 Proposed Solution - Community and Gamified Growth
	3.1 Attractive Vision and Purpose of the Community
	3.2 Value and Minimal Overhead
	3.3 Charismatic Community Leaders
	3.4 Management Support
	3.5 Gamification of the Growth

	4 Experiment and d Results
	4.1 What Went Well
	4.2 What Can Be Improved

	5 Conclusion
	References

	From Sprints to Lean Flow: Management Strategies for Agile Improvement
	1 Introduction
	2 The Case Organization
	3 Management Strategies
	3.1 Looking at and Building Emotions
	3.2 Making Sense and Creating Simple Measurements
	3.3 Providing Simple Responses and Making them Physically Visible

	4 Conclusions

	Mob Programming - What Works, What Doesn't
	1 Introduction
	2 Life at Unruly
	3 Our Mobbing Setup
	4 Tracking Mob Work
	5 Mobbing on Critical Code
	6 First Observations
	7 The Risks of Mob Programming
	8 The Cross-Team Response to Mob Programming
	9 Conclusion
	References

	Panels
	Continuous Delivery – From Concept to Product: Trade-offs in Effectiveness and Efficiency?
	1 Steven Fraser (Panel Impresario)
	2 Ismo Aro
	3 Henri Kivioja
	4 Erik Lundh
	5 Ken Power
	6 Linda Rising
	7 Werner Wild
	8 Rebecca Wirfs-Brock

	Learning from Disaster and Experience: Evolving Software Professionalism
	1 Steven Fraser (Panel Impresario)
	2 Janne Järvinen
	3 Erik Lundh
	4 Ken Power
	5 Linda Rising
	6 Werner Wild
	7 Rebecca Wirfs-Brock

	Practical Applications of the Agile Fluency Model
	1 Diana Larsen – Panelmeister
	2 Steve Holyer — Looking for Organizational Fluency
	3 Jutta Eckstein – The Shifts are Harder than You Think
	4 Antti Kirjavainen
	5 Olli Sorje
	References

	Doctoral Symposium Abstracts
	Improving Processes by Integrating Agile Practices
	1 Introduction and Problem
	2 Related Work
	3 Solution Approach
	4 Conclusion and Future Work
	References

	Assurance Case Integration with An Agile Development Method
	1 Research Problem
	2 Research Methods
	3 Results and Future Work
	References

	Data-Driven Decision-Making in Product R&D
	1 Introduction
	2 Proposed Approach and Evaluation of Results
	3 Expected Contributions and Progress Towards the Goals
	References

	Combining Kanban and FOSS: Can It Work?
	1 Statement of Research Problem
	2 Research Methodology
	References

	Paradigm Shift from Large Releases to Continuous Deployment of Software: Designing a Reference Model for Continuous Deployment
	1 Doctoral Research Plan
	References

	How to Adopt Continuous Delivery? A ResearchProposal
	1 Research Problem
	2 Research Methodology
	3 Results and Future Agenda
	References

	Posters
	Teaching Scrum – What We Did, What We WillDo and What Impedes Us
	References

	Agility in Dynamic Environments: A Case Study for Agile Development
	1 Background
	2 New Project Using Scrum
	3 Sprint Activities
	4 Continuous Integration
	5 Collaboration with Project Customer
	6 Conclusion
	References

	Introducing SafeScrum
	1 Agile Development of Safety Critical Systems
	2 SafeScrum
	3 Introducing SafeScrum – Early Lessons Learned
	References

	Revisit - A Systematic Approach to Continuously Improve Agile Practices in Large-scale and Fast-expanding R&D Center
	1 Introduction
	2 Solution
	References

	Applying Randori-Style Kata and Agile Practices to an Undergraduate-Level Programming Class
	1 Introduction
	2 Procedure and Methods
	3 Results
	References

	Continuous Strategy Process in the Context of Agile and Lean Software Development
	1 Introduction
	2 Research Method
	References

	Automatizing Android Unit and UserInterface Testing
	1 Introduction
	2 Test Automatization Approach
	3 Conclusions
	References

	Author Index

