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  Pref ace   

 This book highlights contemporary and emerging aspects of improving medical 
treatment modalities employing biomaterials or transplantation. During such treat-
ments, different biosurfaces (i.e., the surfaces of the medical devices or transplanted 
cells or organs) inevitably come in contact and interact with human blood and tis-
sues. Such interactions frequently trigger activation of multiple defense systems 
such as the complement, contact, and coagulation cascades and contribute to ana-
phylactoid reactions, ischemia-reperfusion injury, thrombo-infl ammation, and 
immune responses that negatively affect the clinical outcome. Classical examples of 
high clinical importance are biomaterial implants, extracorporeal circuits, bioengi-
neered devices (e.g., drug delivery vehicles), soft and hard tissue implants, as well 
as transplantation of cells (e.g., mesenchymal stromal cells or hepatocytes), cell 
clusters (primarily islets of Langerhans), or whole vascularized organs. Optimal tis-
sue integration and modulation of foreign body reactions are therefore essential for 
preserving anticipated functions and avoiding adverse effects. Modifi cation of bio-
surfaces or pharmaceutical interventions are viable strategies that already produced 
successful results in some cases. However, biosurface-induced complications such 
as rejection, local and systemic infl ammation, and thrombosis remain major prob-
lems in the clinic, thereby fueling a demand for novel surface-modifi cation strate-
gies and therapeutic modalities. 

 This volume compiles data on this rapidly growing fi eld as presented by promi-
nent scientists at the First International Conference on Immune Response to 
Biosurfaces (September 27–October 2, 2014) in Chania, Greece. Topics covered in 
this book include mechanistic and applied research within the fi elds of extracorpo-
real devices, soft and hard tissue implants, tissue and biomaterial targeting, thera-
peutic modulation of foreign body reactions, cell encapsulations, as well as cell 
and whole organ transplantation. We would like to express our sincerest thanks to 
all the authors for contributing timely and highly informative chapters on this fas-
cinating and emerging topic of modern medicine. We also thank Dimitrios Lambris 



vi

and Aegean Conferences, Inc., for all the help provided in organizing this excep-
tional meeting, and Brian Halm of Springer for his supervision of this book’s 
production.  

  Philadelphia, PA, USA     John     D. Lambris      
Uppsala, Sweden    Kristina     N. Ekdahl      
Philadelphia Daniel   Ricklin       
Uppsala, Sweden  Bo     Nilsson           

Preface
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    Chapter 1   
 Thromboinfl ammation in Therapeutic 
Medicine 

             Kristina     N.     Ekdahl     ,     Yuji     Teramura    ,     Sana     Asif    ,     Nina     Jonsson    , 
    Peetra     U.     Magnusson    , and     Bo     Nilsson   

    Abstract     Thromboinfl ammation is primarily triggered by the humoral innate 
immune system, which mainly consists of the cascade systems of the blood, i.e., the 
complement, contact/coagulation and fi brinolytic systems. Activation of these sys-
tems subsequently induces activation of endothelial cells, leukocytes and platelets, 
fi nally resulting in thrombotic and infl ammatory reactions. Such reactions are trig-
gered by a number of medical procedures, e.g., treatment with biomaterials or drug 
delivery devices as well as in transplantation with cells, cell clusters or whole 
 vascularized organs. Here, we (1) describe basic mechanisms for thromboinfl am-
mation; (2) review thromboinfl ammatory reactions in therapeutic medicine; and 
(3) discuss emerging strategies to dampen thromboinfl ammation.  
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1.1         Introduction 

 Innate immunity is fundamental to our defense against microorganisms and foreign 
substances and controls the discrimination between self and non-self structures in 
the human body. As a consequence of its properties and actions, it is responsible for 
many of the incompatibility reactions that occur when foreign substances, materi-
als, cells, and organs are introduced into the body. These reactions pose a major 
problem when modern biotechnological treatment modalities are used, including 
biomaterial devices, drug delivery systems, various bioengineered implants, cell 
therapies, and transplantation. Furthermore, the intravascular innate immune sys-
tem can cause severe side effects in patients, as well as rejection and dysfunction of 
implanted devices and tissues, as reviewed in [ 1 ].  

1.2     Innate Immune Recognition in Thromboinfl ammation 

1.2.1     Recognition Mechanisms and Activation 
of the Cascade Systems of the Blood 

 The intravascular innate immune system acts as a purging system: It identifi es and 
removes foreign substances, including microorganisms, apoptotic cell debris, and 
foreign bodies/materials and orchestrates subsequent immune/thromboinfl amma-
tory responses. It consists of the cascade systems of the blood (complement, con-
tact, coagulation, and fi brinolysis systems), blood cells (polymorphonuclear cells 
[ 2 ] monocytes, platelets), and endothelial cells [ 3 ]. When innate immune reactions 
occur on the endothelial cell surface, they also involve overcoming the actions of 
endogenous anti-infl ammatory and thrombotic agents, such as endothelial-derived 
developmental endothelial locus-1 (Del-1) and the NTPDase CD39, which antago-
nize, respectively, leukocyte adhesion to and platelet aggregation on the endothe-
lium [ 4 ,  5 ]. Because of this interplay, innate immunity is a key contributor to the 
adverse effects that have been observed in many therapies using biomaterials and 
therapeutic cells/organs [ 1 ,  6 ,  7 ].  

1.2.2     The Complement System 

 The unique capacity of complement to sense, differentiate between, and distinctively 
react to healthy but injured to apoptotic self-cells and foreign intruders relies on an 
intricate interplay between pattern recognition molecules, protein scaffolds, enzymes, 
regulators, and cell-surface receptors. The hub-like organization of complement and 
its cell surface-directed action, involving ~50 constituents, is essential for adjusting 
the complement response to various triggers. When the body is faced with foreign 

K.N. Ekdahl et al.
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intruders, recognition of molecular surface patterns triggers distinct initiation 
 pathways: In the classical pathway (CP), C1q binds to antibody patches, C-reactive 
protein (CRP), and other cell markers; in the lectin pathway (LP), microbial carbohy-
drates are recognized by mannose-binding lectin (MBL) or fi colins in complex with 
MBL-associated serine proteases (MASP). Both pathways lead to the assembly of C3 
convertases, which cleave component C3 into the anaphylatoxin C3a and the opsonin 
C3b. Once deposited on target surfaces, C3b fuels an amplifi cation loop via the alter-
native pathway (AP), forming additional C3 convertases with factors B and D (FB, 
FD). Continuous deposition of C3b favors the generation of C5 convertases that con-
vert component C5 into C5b, which then forms membrane attack complexes (MAC) 
that lyse susceptible cells. Cleavage of C5 also releases the anaphylatoxin C5a, which, 
together with C3a, attracts immune cells to sites of activation via binding to the ana-
phylatoxin receptors C5aR1 and C3aR. Phagocytic cells recognize opsonized sur-
faces via complement receptors (CR1, CR3, CR4, CRIg) that bind to C3b and its 
degradation products iC3b and C3dg. iC3b and C3dg also interact with CR2, which is 
part of the B-cell co-receptor complex, and reduces the threshold for B-cell and den-
dritic cell activation. Host cells are protected from autologous complement attack by 
expressing membrane- bound regulators that either destabilize convertases or act as 
cofactors for the factor I-mediated degradation of C3b to iC3b and C3dg. In addition, 
the soluble regulators of complement activation (RCAs) C4b-binding protein (C4BP) 
and factor H (FH) recognize host cell-surface patterns and contribute to the regulation 
of the CP/LP and AP convertases. Finally, the regulators CD59, vitronectin, and clus-
terin prevent the formation of the lytic MAC or C5b-9 complex on host cells. Apoptotic 
cells induce yet another response that lies in between the one observed for foreign 
cells and that for host cells: While the detection of surface modifi ers on apoptotic cells 
by pattern recognition molecules induces opsonization, the presence of regulators pre-
vents excessive amplifi cation and the generation of C5a or the MAC. Thus, comple-
ment facilitates the elimination of apoptotic cells, immune complexes, and cellular 
debris without inducing infl ammatory triggers [ 8 ]    (Figs.  1.1  and  1.2 ).    

1.2.3     The Contact/Kallikrein System 

 Binding of factor (F) XII to a material surface induces a conformational change in 
the protein, ultimately leading to its transformation into an active-enzyme form, 
FXIIa, through a process known as autoactivation. FXIIa generated at the surface 
can, in turn, cleave prekallikrein to kallikrein in the form of a complex with high 
molecular weight kininogen (HMWK). This mutual activation of prekallikrein and 
FXII creates an amplifi cation loop. Ultimately, FXIIa activates surface-bound FXI 
as a complex with HMWK to generate FXIa, leading to the propagation of subse-
quent coagulation cascade reactions and thrombin formation. In addition, the fi brin 
clots formed are able to promote further activation of FXII, thereby creating another 
amplifi cation loop. Most of the generated proteases are subsequently regulated by 
the C1 inhibitor (C1-INH) or antithrombin (AT) [ 9 – 11 ].  

1 Thromboinfl ammation in Therapeutic Medicine
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1.2.4     Interaction Between Platelets, Complement, 
and Contact System Proteins 

 Apart from their role in primary hemostasis, platelets also have a vital role as innate 
immune cells, bringing together constituents of the complement and contact/kalli-
krein systems and ultimately producing infl ammation. One important player in this 

  Fig. 1.1       Biosurfaces in therapeutic medicine. Incompatibility reactions triggered by innate 
immune responses to altered-self and non-self structures on biomaterials, drug delivery devices, 
cells, or cell clusters, and vascularized organs for therapeutic use. Upon exposure to blood, recog-
nition molecules belonging to different cascade systems target altered-self and non-self structures 
on biomaterials and cells. C1q, mannose-binding lectin (MBL), and properdin are “recognition/
trigger” molecules in the complement system, tissue factor (TF), factor (F) VII, and fi brinogen in 
the TF pathway of the coagulation system, and FXII in the contact system. The activation of each 
cascade system triggers amplifi cation reactions. In the complement cascade, there is a powerful 
amplifi cation of C3 that initiates the generation of the anaphylatoxins C3a and C5a as well as the 
lytic C5b-9 complex. The generated activation products in turn trigger the activation of platelets, 
PMNs, and monocytes/macrophages, resulting in thrombotic and infl ammatory reactions. 
Activation of the coagulation cascade leads to the generation of thrombin from prothrombin. 
Further activation of the contact system elicits the generation of the potent vasoactive peptide 
bradykinin from high molecular weight kininogen (HMWK). These adverse events, together with 
complement-mediated cell lysis and coagulation-mediated sequestration, may lead to rejection or 
serious damage to the biomaterial or transplanted graft       
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context is chondroitin sulfate A (CS-A), which is released from the α-granules dur-
ing platelet activation. CS-A is a potent activator of complement in the fl uid phase 
[ 12 ] and also mediates the binding of multiple complement proteins to the platelet 
surface [ 13 ]. Of particular interest is the fact that C3 binds to the surface of activated 
platelets in a conformationally altered conformation, C3H 2 O, which is not a result 
of activation by either of the C3 convertases or other proteolytic enzymes [ 14 ]. In 
addition, platelet activation induces the activation of FXI and FXII within the con-
tact activation system; when activated by platelets, these activated proteases are 
preferentially inactivated by AT, rather than by C1-INH [ 9 ,  10 ,  15 ].   

1.3     Thromboinfl ammation: The Crosstalk of Complement, 
Coagulation, and Platelets with Leukocytes 
and the Endothelium 

 The intravascular innate immune response is largely mediated by thromboinfl am-
matory reactions that take place on biomaterial or endothelial cell surfaces. The 
endothelial surface is constitutively anti-thrombotic and has anti-adhesive and 

Lectin pathway
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MBL
Ficolins
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C1q, CRP
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Tissue factor pathway

Thrombin

TF-FVIIa
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PPPPP

Thrombin
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platelets

Thrombin

Fibrin

  Fig. 1.2    The concept of thromboinfl ammation. Recognition molecules C1q and C-reactive pro-
tein (CRP); properdin, mannan-binding lectin (MBL) and the fi colins of the three activation path-
ways of the complement system; and factor (F) XII, FVII, and tissue factor (TF) of the two 
activation pathways of the coagulation system initiate the activation of the various cascade systems 
of the blood, resulting in the generation of the anaphylatoxins C3a and C5a (which activates PMNs 
and monocytes) and thrombin (which elicits platelet activation and fi brin formation). In addition, 
ischemia or cell stress induces the expression of TF on monocytes and other cells of various tis-
sues, which leads to further thrombin generation. The fi brin formed induces the activation of FXII 
of the contact system, thereby establishing an amplifi cation loop. The ultimate result is a thrombus, 
in which activated leukocytes and platelets are trapped in a fi brin network       
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anti- infl ammatory properties, mainly because of its surface composition of 
 proteoglycans and phospholipids found within the glycocalyx [ 16 ]. However, in the 
course of intravascular infl ammation (e.g., whole-body infl ammation after hemodi-
alysis (HD) or in ischemia-reperfusion injury or transplant vasculopathy), the endo-
thelium is activated by cytokines, C5a, or the insertion of the MAC and thereby 
converted to a pro-coagulatory and pro-adhesive/pro-infl ammatory state [ 17 ]. 
During ischemia-reperfusion injury, metabolites produced during the ischemic 
phase by the vasculature as well as reactive oxygen species (ROS) from recruited 
neutrophils cause the shedding of the protective glycocalyx [ 18 ], leading to expo-
sure of endothelial adhesion proteins, followed by additional innate immune activa-
tion and cellular infi ltration [ 19 ]. 

 Also, endothelial thrombomodulin is downregulated, reducing its endothelial 
anti-thrombotic properties [ 7 ]. The exocytosis of von Willebrand factor from endo-
thelial granulae promotes platelet adhesion on the endothelial surface, whereas the 
upregulation of a multitude of adhesion molecules of the selectin and immuno-
globulin superfamilies confers on the endothelium a pro-adhesive attraction for neu-
trophils and other leukocytes [ 20 ,  21 ]. The leukocyte-endothelial adhesion cascade 
is initiated by the selectin-mediated rolling of leukocytes along the endothelial cell 
surface, which brings the leukocytes into contact with chemokines deposited on the 
apical endothelial surface. These chemokines rapidly activate integrins on the leu-
kocytes, which mediate the fi rm adhesion of the leukocytes to the endothelium. The 
most important integrin adhesion receptors on neutrophils are LFA-1 (CD11a/
CD18) and CR3 (CD11b/CD18 or Mac-1), which interact with endothelial ICAM-1 
and -2 and other adhesion molecules, thereby mediating fi rm leukocyte adhesion to 
the endothelium. These interactions are also involved in the subsequent transmigra-
tion of neutrophils through the endothelium [ 21 ]. Neutrophil adhesion to the endo-
thelium is mainly mediated by endothelial-adherent platelets. This platelet-mediated 
“bridge” between leukocytes and the endothelium is a major component of intravas-
cular thrombo-infl ammatory injury. Neutrophils interact with endothelial-adherent 
platelets via the binding of P- selectin to P-selectin glycoprotein ligand-1 (PSGL1) 
[ 22 ] and the binding between Mac-1 on neutrophils and platelet glycoprotein Ib 
(GPIb) as well as platelet junctional adhesion molecule-3 [ 23 – 25 ]. Blocking 
neutrophil- platelet interactions, e.g., by blocking Mac-1 binding to platelet GPIb, 
can prevent a major part of the acute and subacute leukocyte recruitment in infl am-
matory and autoimmune pathologies [ 26 – 28 ]. 

 We have recently studied the protein adsorption from plasma and the comple-
ment activation and cytokine generation in whole blood that are induced by a 
 number of well-characterized artifi cial polymers. Our main fi nding was a series of 
strong positive correlations between the ratio of the complement activating protein 
C4 to its inhibitor C4BP (i.e., the C4/C4BP ratio) and the generation of 10 (mainly 
proinfl ammatory) cytokines, including IL-17, IFN-γ, and IL-6. The levels of gener-
ated C3a (refl ecting complement activation) correlated weakly with four of these 
cytokines, but no correlations were found with either C5a or sC5b-9, confi rming 
their poor predictive value [ 29 ,  30 ].  
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1.4     Thromboinfl ammatory Reactions in Therapeutic 
Medicine 

1.4.1     Biomaterials 

 Treatments in which extracorporeal circulation devices are used (i.e., treatments in 
which blood is deviated from the circulation of the patient to a device outside the 
body) include hemodialysis (HD), hemofi ltration, cardiopulmonary bypass (CPB), 
extracorporeal membrane oxygenation (ECMO), plasmapheresis, leukapheresis, 
and thrombapheresis. In most cases, whole blood is led through the device in the 
form of unseparated blood or plasma. The plasma is produced by either separating 
whole blood using a membrane/fi lter or by centrifugation, procedures that trigger 
incompatibility reactions to varying degrees. 

 Complement-mediated tissue injury triggered by extracorporeal treatments has 
to a great extent been found to be a consequence of bioincompatibility reactions 
[ 6 ,  31 ]. Historically, HD was associated with severe anaphylactic reactions, and 
even fatal events were reported. Today these problems are less frequent, although 
adverse reactions still occur. Of increasing concern in uremic patients undergoing 
maintenance HD is whole-body infl ammation and accelerating arteriosclerosis. The 
risk of myocardial infarction in these patients is fi ve to ten times higher than in 
healthy individuals. It is becoming more and more obvious that the chronic whole-
body infl ammation triggered by HD is a major contributor to arteriosclerosis in 
uremic patients, leading to a life expectancy of only 4 years after the installation of 
this treatment modality [ 32 ,  33 ]. This infl ammation is to a great extent driven by 
complement activation and is clearly undesirable. It was recently shown that extra-
corporeal circulation of blood though polysulfone membranes results in C5a gen-
eration and increased expression of functional tissue factor (TF), the primary 
initiator of coagulation, by blood neutrophils, potentially contributing to the ele-
vated risk of thrombosis in HD patients [ 34 ]. Importantly, complement inhibition 
with the peptidic C3 inhibitor compstatin signifi cantly reduces TF expression [ 35 ], 
supporting a link between complement and coagulation activation and suggesting 
wide-ranging benefi cial effects for therapeutic complement inhibition in HD. 

 CPB and ECMO procedures have also increased over the past decade as a result 
of increasing vascular bypass surgery; respiratory or cardiac failure in newborns, 
children, and adults; and long-lasting infections affecting the lungs, such as swine 
infl uenza and SARS (acute respiratory distress syndrome). The CPB/ECMO proce-
dures are, like HD, associated with a number of side effects related to contact between 
the blood and the material surface. The resulting cellular and humoral defense reac-
tions are termed the systemic infl ammatory response syndrome (SIRS). During long-
term treatments, there is often an increased incidence of bleeding (a side-effect of 
extensive anticoagulant treatment) and thrombotic events, including postoperative 
myocardial infarction and stroke, which may lead to serious neurological symptoms 
and infl ammation-induced pulmonary fi brosis. The risk of bleeding as a result of 
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anticoagulant treatment clearly demonstrates that the biocompatibility in such 
devices is poor. 

 Other applications of complement/thromboinfl ammation-regulatory surfaces 
include small implants within in the blood circulation, which also react with the 
blood cascade systems, including complement, although no systemic reactions 
occur. Instead, other effects of the interactions are manifested: Vascular stents elicit 
fi brosis, re-stenosis, and thrombosis at the implantation site in the vessel, and car-
diac aids and pumps can trigger thrombotic reactions, leading to emboli.  

1.4.2     Cell Transplantation 

 Thrombo-infl ammatory injury is also a major component of the immediate blood- 
mediated infl ammatory reaction (IBMIR) against transplanted pancreatic islets or 
other cell clusters or cells of non-hematologic origin, such as hepatocytes [ 36 ] and 
mesenchymal stromal cells (MSCs) that attenuate graft-versus-host disease (GVHD) 
[ 37 ,  38 ]. The IBMIR involves the detrimental effects of the concomitant activation 
of innate immune reactions, including the accumulation of neutrophils and platelets, 
and activation of the coagulation cascade, which result in complement-mediated 
injury [ 39 – 42 ]. Exposure of collagen types I and IV on the islets and activation of 
prothrombin to thrombin activate platelets. The intravascular complement activa-
tion further perpetuates the vicious cycle of infl ammation, since complement ana-
phylatoxins C3a and C5a can act as neutrophil chemoattractants in concert with 
various chemokines (e.g., MCP-1, IL-8, and MIF) that are expressed by the islets. 
Furthermore, the anaphylatoxins also upregulate pro-coagulant TF expression on 
the leukocytes, further propagating fi brin formation, which eventually forms a cap-
sule around the islets that entraps activated leukocytes (PMNs and monocytes) 
together with platelets. In clinical islet transplantation, this reaction results in a 
rapid and severe tissue loss [ 1 ,  43 ,  44 ].  

1.4.3     Ischemia-Reperfusion 

 Ischemia-reperfusion injury is a complex condition triggered by cells or tissues 
exposed to ischemia and/or hypoxia [ 45 ] that results in tissue injury and a profound 
infl ammatory response. Ischemia occurs during the obstruction of blood fl ow in 
situations such as cardiac arrest or vascular occlusion, or after a complete disrup-
tion of blood fl ow during situations such as organ transplantation. The former 
hypoxic state is a an example of warm ischemia, whereas the latter is defi ned as 
cold ischemia, in which the organ is perfused with perfusion solution upon organ 
procurement [ 45 ]. A loss of vascular protective barriers such as the vascular glyco-
calyx, a decrease in adenylate cyclase activity, and an increase in vascular 
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permeability are all common in ischemia-reperfusion injury [ 19 ]. The hypoxic 
endothelial and stromal cells are converted into an infl ammatory phenotype that 
not only expresses TF and proinfl ammatory cytokines and chemokines but also 
deposits complement on the endothelial surface, leading to the triggering of a local 
infl ammation, with the binding of platelets and infi ltration of leukocytes (particu-
larly PMNs). This response leads to a further loss of integrity of the endothelial 
cells, ultimately causing vascular damage. After exposure to circulating blood, the 
hypoxic cells are also attacked by the innate immune system, which recognizes the 
cells as “altered self.” This attack further aggravates the condition and fi nally leads 
to cell death and apoptosis. Recognition molecules in this process are FXII and 
MBL, but CRP and natural antibodies of the IgM isotype have also been implicated 
in these reactions.   

1.5     Strategies to Dampen Thromboinfl ammation 

1.5.1     State-of-the-Art Procedures 

 Biomaterial and cell surfaces that come into contact with blood are routinely used 
untreated or are treated with nonspecifi c coatings (e.g., polyethylene glycol [ 46 ], 
and heparin), which do not suffi ce for long-term treatment. More suitable biomate-
rials and therapeutic tissues (cells or organs) intended for contact with blood, such 
as those used in HD and kidney transplantation, have been developed in stages with 
regard to their reactivity with the intravascular immune system. Initially, materials 
and cells were used without any further processing; only a systemic anticoagulant 
treatment was used in some instances. Trial and error led to a selection of materials 
that were superior with regard to innate immune activation after contact with blood. 
Certain polymers,  eng ., polystyrene and polyvinyl chloride, caused a relatively low 
level of activation, while titanium had the opposite effect. Similarly, cells and organs 
were originally used without being given any protection. In a second stage of this 
evolution, the material or cell surfaces were coated with nonspecifi c coatings such 
as PEG, heparin, and recently, betaine [ 47 – 49 ]. A strategy to protect the vasculature 
from the effects of devastating ischemia-reperfusion injury is to immobilize a hepa-
rin conjugate on the vascular surface. This immobilization creates a local deposit of 
heparin and inhibition of thromboinfl ammation, as shown in models utilizing human 
whole blood and primary endothelial cells (Nordling et al.,  in press ). Coatings like 
these will lower the activation of innate immunity to varying degrees, but not com-
pletely; they are not universal inhibitors of all aspects of innate immunity. In par-
ticular, complement activation is less inhibited by both PEG and heparin coatings. 
They have also side effects that lower their effi ciency and usability. PEG surfaces, 
for instance, can be recognized by natural antibodies and thereby activate comple-
ment [ 50 ]. The coatings are also diffi cult to apply to surfaces, necessitating several 
steps of processing before the surface is covered.  
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1.5.2     Autoregulation by Regulator of Complement Activation 
(RCA)-Capturing Peptides 

 A more specifi cally targeted approach for increasing hemocompatibility is to make 
the surface auto-regulatory, either by directly immobilizing regulatory molecules or 
specifi cally targeting them to the biomaterial surface. Immobilized RCAs, FH and 
decay accelerating factor (DAF), reduce surface-induced complement activation, as 
we [ 51 ,  52 ] and others [ 53 ] have demonstrated. 

 Encouraged by these results as well as the impact of adsorbed C4BP mentioned 
above [ 30 ], we further developed this approach by using synthetic peptides with an 
affi nity for the RCAs FH and C4BP; we succeeded in recruiting these regulators 
from the plasma (i.e., in the fl uid phase) onto the material surface, with a resulting 
attenuation in AP and CP complement activation [ 54 ,  55 ].  

1.5.3     ADP Depletion 

 The endothelial cells play an active role not only in propagating infl ammatory/ 
thrombotic events [ 3 ] but also providing platelet-inhibitory compounds, including 
nitric oxide, prosta-cyclin, and ecto-nucleotidases of the CD39/NTPDase (EC 
3.6.1.5) family [ 56 ]. In addition, CD39 has been shown to have anti-infl ammatory 
and immuno-suppressive properties [ 57 ,  58 ] and to contribute to the regulation of 
vascular integrity by regulating thromboinfl ammation [ 59 ]. Studies with CD39 − / −  
knockout mice have highlighted the important role of this enzyme in the control of 
acute immune responses [ 60 ]. The strategy of blocking platelet recruitment and 
aggregation by hydrolyzing released ADP and ATP has produced satisfactory 
results in various  in vivo  settings [ 61 ,  62 ]. Overexpression of CD39 has led to an 
increased anti-infl ammatory capacity [ 63 ] and protection in experimental transplan-
tation models of ischemia reperfusion injury [ 64 ]. In addition, we have recently 
successfully inhibited platelet-dependent activation of the coagulation system as 
well as platelet activation by immobilizing an ADP-degrading apyrase (from potato) 
onto the surface of model biomaterials [ 65 ].  

1.5.4      Auto-Protection by Combined Inhibition 

 Our next step was to co-immobilize potato apyrase and peptide 5C6 onto model 
biomaterial surfaces, again using the biotin-avidin system, and in this way we suc-
ceeded in creating a surface that is auto-protective against the activation of both the 
complement system (by recruiting FH), and platelets (by degrading ADP), thereby 
suppressing not only platelet activation but also subsequent coagulation activation. 
We then made an analogous modifi cation of cellular surfaces, demonstrating this 
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modus operandi to be effi cient not only for biomaterial surfaces but also for cells 
intended for therapeutic transplantation [ 66 ]. The next step in refi ning this com-
bined auto-protective surface is to replace the apyrase with CD39, a human counter-
part of apyrase, in order to increase the effi cacy and, more important, to minimize 
the risk of immunization against proteins of non-human origin.  

1.5.5      PEG-Lipid Coatings 

 The amphiphilic polymer PEG-conjugated phospholipid (PEG-lipid) is spontane-
ously incorporated into the lipid bilayer membrane, where hydrophobic interactions 
take place. In the case of PEG-lipid derivatives, the cell surface can be coated with 
PEG and various functional substances for further functionalization. For example, 
PEG-lipid derivatives have been used to immobilize various bioactive substances on 
the surface of cells or islets, including urokinase, argatroban-loaded liposomes, the 
soluble domain of complement receptor 1 (sCR1), apyrase, and factor H-binding 
peptide (5C6). When these anticoagulants and complement regulators were attached 
to the surfaces, the cells were protected from host immune responses, and graft 
survival was improved. In addition, this approach has been extended to fabricating 
an ultra-thin immune-isolation membrane composed of PEG and to microencapsu-
late islets with living cells. This new approach of creating an immune-isolation 
capsule holds potential for islet transplantation into the liver, because it does not 
appreciably increase the graft volume [ 67 – 70 ]. 

 The approaches mentioned in Sects.  1.5.4  and  1.5.5  are discussed in greater 
detail by Dr. Yuji Teramura in    Chap. 12.      
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    Abstract     The complement system is activated in the vasculature during thrombotic 
and infl ammatory conditions. Activation may be associated with chronic infl amma-
tion on the endothelial surface leading to complement deposition. Complement 
mutations allow uninhibited complement activation to occur on platelets, neutro-
phils, monocytes, and aggregates thereof, as well as on red blood cells and endothe-
lial cells. Furthermore, complement activation on the cells leads to the shedding of 
cell derived-microvesicles that may express complement and tissue factor thus pro-
moting infl ammation and thrombosis. Complement deposition on red blood cells 
triggers hemolysis and the release of red blood cell-derived microvesicles that are 
prothrombotic. Microvesicles are small membrane vesicles ranging from 0.1 to 
1 μm, shed by cells during activation, injury and/or apoptosis that express compo-
nents of the parent cell. Microvesicles are released during infl ammatory and vascu-
lar conditions. The repertoire of infl ammatory markers on endothelial cell-derived 
microvesicles shed during infl ammation is large and includes complement. These 
circulating microvesicles may refl ect the ongoing infl ammatory process but may 
also contribute to its propagation. This overview will describe complement activa-
tion on blood and endothelial cells and the release of microvesicles from these cells 
during hemolytic uremic syndrome, thrombotic thrombocytopenic purpura and vas-
culitis, clinical conditions associated with enhanced thrombosis and infl ammation.  
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2.1            Complement Activation in Thrombotic 
and Infl ammatory Disease 

 The complement system is an assembly of proteins activated via three pathways, the 
classical, lectin and alternative pathways [ 1 ]. All ultimately result in activation of 
the common terminal complement pathway. Complement activation results in dis-
posal of foreign cells, such as bacterial pathogens, unwanted host cells, such as 
apoptotic cells, or immune complexes, by opsonization or cytolysis. Certain com-
plement components have anaphylatoxic, anti-microbial and chemotactic properties 
[ 1 ]. Due to its potent effects the complement system needs to be strictly regulated to 
prevent uncontrolled activation on host cells. Even so, complement may become 
activated, with secondary harmful effects, during infectious, hereditary and auto- 
immune diseases. 

 Complement activation may be so extensive that regulators are overwhelmed 
thus allowing continued activity. Alternatively, if the regulators are dysfunctional or 
the complement components are hyperfunctional, complement activation may pro-
ceed in an uninhibited manner. Regardless of the cause, inappropriate activation 
will be deleterious to host cells in the vasculature at the interface of blood cells and 
the endothelium. Activation on blood cells and endothelial cells will predispose the 
host to thrombosis, infl ammation and hemolysis by rendering the endothelium pro-
thrombotic while activating platelets, leukocytes and red blood cells. Activated 
blood and endothelial cells may shed microvesicles [ 2 ].  

2.2     Complement Interaction with the Endothelium 

 Complement activation occurs on endothelial cells during infl ammatory and throm-
botic processes and enhances cell injury as well as vascular permeability and leuko-
cyte recruitment to the vascular wall and underlying tissues. In infectious and 
infl ammatory conditions the endothelium may be markedly affected, by bacterial 
virulence factors, platelet microthrombi, as well by neutrophil proteases and migra-
tion. Complement activation is either a primary or secondary phenomenon. 
Endothelial cells express complement factors, regulators and their receptors [ 3 ,  4 ]. 
Endothelial complement deposition will lead to cell activation, expression of adhe-
sion molecules [ 5 ,  6 ], release of cytokines and chemokines [ 7 – 10 ], membrane attack 
complex (MAC) formation [ 11 ] and ultimately cytolysis. C5b-9 formation on the 
endothelial cell induces von Willebrand factor (VWF) secretion and expression of 
the catalytic surface for the prothrombinase enzyme complex as well as shedding of 
microvesicles with assembled C5b-9 on their surfaces [ 12 ]. C3a and C5a are released 
activation products that induce cytokine release [ 13 ,  14 ]. C5a and IL-8 (also secreted 
by the endothelium) are chemotactic for polymorphonuclear leukocytes. Vascular 
permeability is increased by complement activation [ 15 ] in part due to C3a and C5a 
[ 16 ] and the terminal complement complex, C5b-9, which also induces increased 

D. Karpman et al.



21

endothelial permeability [ 17 ] followed by leukocyte migration into the extravascular 
space [ 18 ]. Tissue factor release by endothelial cells is mediated by IL-1α and regu-
lated by complement [ 19 ] promoting a procoagulant phenotype.  

2.3     Microvesicles 

 Microvesicles are extracellular organelles that have an important role in infl amma-
tory and thrombotic processes. These plasma membrane vesicles are shed from cells 
during activation or apoptosis [ 20 ]. Complement deposition on cells may trigger 
microvesicle shedding [ 21 – 23 ]. Microvesicles are larger (100–1000 nm) than exo-
somes and are not preformed within the cell’s multivesicular bodies but rather shed 
directly from the cell membrane by the process of ectocytosis [ 21 ]. The phospho-
lipid bilayer plasma membrane of these vesicles exposes receptors from the parent 
cell, and the cytosolic content is similarly derived from the cell of origin. 
Microvesicles can communicate with cells in their immediate vicinity or at remote 
sites from the parent cell by receptor binding of the entire microvesicle, by detach-
ment of a protein from the microvesicle that serves as a ligand binding to the target 
cell, by fusion of the microvesicle to the cell or by endocytosis [ 24 ]. This interaction 
may lead to a signal cascade affecting essential cell functions such as proliferation, 
differentiation and apoptosis [ 25 ]. Increased numbers of circulating microvesicles 
occur in thrombotic and infl ammatory diseases [ 20 ]. 

 Most microvesicles in the systemic circulation originate from platelets [ 26 ] but 
they may originate from a variety of cells, including leukocytes [ 27 ], red blood cells 
[ 28 ] and endothelial cells [ 29 ]. As they transport substances derived from the cell of 
origin they may contain a broad spectrum of receptors, DNA, mRNA, micro RNA, 
histones and other proteins, as well as lipids capable of interacting with cells. 

 Of specifi c importance are the proinfl ammatory and prothrombotic properties of 
circulating microvesicles. Leukocyte-derived microvesicles harbor complement, 
chemokines, cytokines, proteases, HLA antigens, and adhesion molecules [ 27 ]. 
Upon contact these microvesicles can activate resting platelets and endothelial cells. 
Endothelial cells respond by expression of adhesion molecules [ 30 ]. Platelet-derived 
microvesicles bind to endothelial cells and induce the synthesis of pro- infl ammatory 
cytokines and arachidonic acid pathway products [ 31 ]. In the context of infl amma-
tion, they also promote binding of monocytes to endothelial cells [ 32 ]. Furthermore, 
platelet microvesicles modulate adaptive immunity by affecting immunoglobulin 
production by B cells [ 33 ]. Endothelial-derived microvesicles have been shown to 
express markers involved in cellular adhesion and infl ammation such as CD62E 
(E-selectin), CD62P (P-selectin), ICAM-1 (intercellular adhesion molecule-1), 
integrin α v β 3 , CD31 (PECAM-1: platelet endothelial cell adhesion molecule-1), 
CD105 (endoglin), CD144 (VE-cadherin), VWF and CD146 (S-endo-1) [ 34 ]. 
Microvesicles released from cytokine-stimulated endothelial cells induced  secretion 
of soluble ICAM-1 from targeted endothelial cells [ 35 ]. Endothelial microvesicles 
may be considered biomarkers of sustained endothelial activation [ 23 ]. 
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 The prothrombotic potential of microvesicles is mostly related to their exposure of 
phosphatidylserine and tissue factor. The release of microvesicles by cell activation is 
a calcium-dependent enzymatic process, involving scramblase, fl oppase and translo-
case/fl ippase activities [ 36 ,  37 ], leading to disruption of phospholipid membrane 
asymmetry during which phosphatidylserine is translocated to the outer membrane of 
the released microvesicles [ 20 ,  37 ,  38 ]. Not all microvesicles expose phosphatidylser-
ine on the outer leafl et [ 38 ]. Phosphatidylserine can bind coagulation factors VII, IX, 
X, and prothrombin thus initiating clotting. Microvesicles from platelets were shown 
to have a higher procoagulant potential than the parent cell [ 39 ]. The prothrombotic 
effect was also demonstrated in red blood cell-derived microvesicles [ 40 ]. 

 Tissue factor is the receptor for factor VIIa and initiates the extrinsic coagulation 
cascade and thrombin generation. Tissue factor has been demonstrated on microves-
icles derived from monocytes and endothelial cells [ 38 ] and also on platelet-derived 
microvesicles released from platelet-leukocyte aggregates [ 41 ]. Furthermore, tissue 
factor may be transferred to activated platelets on the surface of endothelial and 
monocytic microvesicles [ 34 ]. 

2.3.1     Detection of Microvesicles 

 Microvesicle detection requires specifi c techniques. The vesicles are isolated from 
biological fl uids by a series of centrifugations and detected using fl ow cytometry 
and cell-specifi c markers. The use of multiple markers enables higher specifi city 
and exclusion of contaminating subpopulations. Most microvesicles expose phos-
phatidylserine and will therefore bind annexin V. Their size is determined by com-
parison with fl uorescently-labeled particles/beads of a defi ned size and the quantity/
mL is calculated using a specifi ed quantity of blank calibration particles [ 42 ]. 

 In addition to fl ow cytometry-based methodology microvesicles can be studied 
using proteomics, electron microscopy, ELISA (using immobilized annexin V) as 
well as by nanoparticle tracking.  

2.3.2     Complement Activation and Microvesicle Release 
in Clinical Conditions 

 Elevated levels of blood cell- and endothelial cell-derived microvesicles have been 
demonstrated in prothrombotic states such as acute coronary syndrome [ 43 ], athero-
sclerotic disease [ 44 ], end stage renal disease [ 23 ], hemolytic uremic syndrome 
(HUS) [ 41 ,  42 ,  45 ,  46 ], thrombotic thrombocytopenic purpura (TTP) [ 47 ,  48 ], auto-
immune thrombocytopenia [ 49 ] and vasculitis [ 50 ]. Our current understanding of 
the contribution of complement activation and microvesicles to the pathogenesis of 
the thrombotic and infl ammatory entities comprised in thrombotic microangiopa-
thies and vasculitides will be summarized below.   
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2.4     Hemolytic Uremic Syndrome 

 HUS is defi ned by the simultaneous occurrence of non-immune hemolytic ane-
mia, thrombocytopenia and acute renal failure [ 51 ]. The pathological kidney 
lesion, known as thrombotic microangiopathy (TMA), is characterized by vessel 
wall thickening, detachment of the endothelium from the basement membrane 
with accumulation of amorphous material in the subendothelium and formation of 
microthrombi in glomerular capillaries leading to vessel occlusion. This lesion is 
typical of both HUS and TTP although the underlying pathogenetic mechanisms 
differ. 

 HUS is subdivided based on etiology into cases associated with specifi c infec-
tions, or not, the latter including atypical HUS and secondary causes (Table  2.1 ) 
[ 52 ,  53 ]. The most common subtype of HUS is associated with enterohemorrhagic 
 Escherichia coli  (EHEC) infection. The second most common cause is atypical 
HUS, aHUS, associated with mutations in complement regulators or factors, as well 
as auto-antibodies to the complement regulator factor H.

   Table 2.1    Classifi cation and subtypes of hemolytic uremic syndrome (HUS)   

 Cause 

  Infection-associated  
 EHEC-HUS a   Shiga toxin-producing non-invasive strains that can cause 

hemorrhagic colitis: enterohemorrhagic  E. coli  (EHEC) or 
 Shigella dysenteriae  

  Streptococcus pneumoniae   Neuraminidase-producing invasive strains 
 HIV b  
  Not associated with specifi c infection  
 aHUS c   Mutations in complement factors and regulators and 

auto-antibodies to factor H 
 DGKE d  defi ciency  Recessive DGKE mutations 
 Cobalamin metabolism defect  Cobalamin type C 

 MMACHC mutations, methylmalonic aciduria and 
homocystinuria 

 Drugs  Quinine, mitomycin, anti-VEGF 
 Malignancies  Tumors and anti-cancer treatment, drugs and irradiation 
 Solid organ transplantation  Including use of calcineurin inhibitors 
 SLE e  and antiphospholipid 
syndrome 
 Pregnancy HELLP f  syndrome 

   a HUS caused by bacterial strains that produce Shiga toxin and induce hemorrhagic colitis, also 
known as D+ HUS, diarrhea-associated 
  b HIV: human immunodefi ciency virus 
  c aHUS: atypical HUS 
  d DGKE: diacylglycerol kinase ε 
  e SLE: systemic lupus erythematosus 
  f HELLP: HEmolytic anemia, elevated Liver enzymes, and Low Platelets  
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2.4.1       EHEC-Associated HUS: Toxin Interaction with Blood 
Cells, the Endothelium and Complement Activation 

 EHEC bacteria produce a unique virulence factor known as Shiga toxin (Stx). The 
strains themselves are non-invasive, thus remaining in the intestinal tract after colo-
nization [ 54 ]. EHEC infection is associated with enteritis followed, in approxi-
mately 15 % of cases by the development of HUS [ 55 ]. The remote target organ 
damage occurring in the kidneys and other organs, including the central nervous 
system, during HUS, is secondary to systemic spread of the toxin and other bacterial 
virulence factors together with a potent intestinal and systemic host response [ 56 –
 58 ]. Stx has been demonstrated in the circulation of HUS patients bound to plate-
lets, neutrophils and monocytes [ 41 ,  59 ] but not in free form [ 60 ]. It has also been 
demonstrated in the kidneys of affected HUS patients [ 61 ,  62 ]. 

 Stx binds to the glycosphingolipid receptor globotriaosylceramide (Gb3/CD77), 
also known as the P k  antigen on red blood cells. The Gb3 receptor is present on a 
variety of cells including platelets, monocytes and endothelial cells [ 63 – 65 ]. The 
toxin receptor on neutrophils has been proposed to be toll-like receptor 4 (TLR4) 
[ 66 ]. After binding, the holotoxin undergoes endocytosis. Intracellular toxin is 
transported via a retrograde route from early endosomes to the endoplasmic 
 reticulum. From there the A subunit is translocated to rRNA where it inhibits pro-
tein synthesis leading to cell death. The cytotoxic effect has been demonstrated in 
renal glomerular endothelial cells [ 67 ] and tubular cells [ 68 ,  69 ]. However, not all 
cells are affected in this way. Certain cells, primarily blood cells, are activated by 
the toxin to secrete infl ammatory mediators [ 58 ,  64 ,  70 – 72 ]. Platelets, in particular, 
when partially activated, can be further activated by Stx [ 41 ,  73 ,  74 ]. The combina-
tion of platelet activation and endothelial cell injury will promote a prothrombotic 
interaction and enhance infl ammation. 

 Thrombocytopenia occurring during HUS is secondary to platelet consumption 
on the endothelium in the microangiopathic lesion. Both Stx and lipopolysaccharide 
circulate bound to platelets as well as to other blood cells [ 73 ,  75 ] and both viru-
lence factors activate platelets, either directly and/or in the presence of infl amma-
tory mediators, particularly under conditions of high shear stress [ 41 ]. Our group 
has shown that co-stimulation with both factors induced formation of platelet- 
leukocyte complexes that expressed tissue factor [ 41 ]. 

 During HUS, platelets are activated [ 76 ] and degranulated [ 77 ,  78 ], as indicated 
by elevated platelet-derived factors such as β-thromboglobulin, platelet factor-4 
and VWF [ 79 ]. The latter is also secreted from endothelial cells [ 80 ,  81 ] and medi-
ates Stx-induced platelet adhesion to activated endothelial cells involving the 
platelet receptor GPIIb/IIIa and P-selectin [ 82 ]. Platelets may also be activated by 
chemokines and cytokines released by Stx-stimulated monocytes [ 71 ] or endothe-
lial cells [ 72 ]. 

 Platelet activation and thrombus formation during HUS are thus caused by a direct 
interaction of bacterial virulence factors, especially Stx, with platelets and endothe-
lial cells, as well as an indirect infl ammatory effect, refl ected by cytokine release, 
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which further enhances the platelet-endothelial interaction [ 74 ]. Our group showed 
that Stx induced the formation of platelet-leukocyte aggregates coated with C3 and 
C9, an effect enhanced by co-stimulation with  E. coli  O157 lipopolysaccharide [ 83 ]. 
Platelets are capable of binding C3, C3b, C3d and C4, as well as expressing P selec-
tin and CR2 that bind C3b and C3d, respectively [ 74 ,  84 – 87 ]. Complement activation 
progresses to the terminal pathway and the cytolytic membrane attack complex may 
be assembled on the platelet surface [ 22 ,  83 ]. Complement deposition on platelets 
has an activating prothrombotic effect on the cells [ 88 – 91 ]. The reverse was also 
shown, that the complement system can become sequentially activated on activated 
platelets [ 84 ]. Thus, in order to prevent excessive complement activation platelets 
express and bind complement regulators, including factor H [ 92 – 98 ]. In vitro studies 
have, however, shown that Stx2, at rather high concentrations, could bind to factor H 
at its host surface recognition domain, thus inhibiting its regulatory effect and allow-
ing activation of the alternative pathway of complement in serum [ 99 ]. 

 Components of the coagulation cascade are not consumed as a consequence of 
the thrombotic process occurring during HUS, but prothrombin fragment 1 + 2 
[ 100 – 102 ], tissue plasminogen activator, tissue plasminogen activator inhibitor-1 
[ 103 ], and D dimers are elevated suggesting prothrombotic activity and impaired 
fi brinolysis. 

 In addition to platelets, neutrophils and monocytes, Stx can bind to red blood 
cells via the P k  antigen (an antigen within the P1PK blood group system) present on 
all red blood cells except for the rare p phenotype [ 42 ,  104 ]. Binding was shown, by 
our group, to induce hemolysis as indicated by release of lactic dehydrogenase and 
hemoglobin [ 42 ]. The hemolytic effect of Stx was complement-mediated, via the 
alternative pathway, as it was reduced in the absence of plasma and when plasma 
was heat-inactivated as well as in the presence of EDTA or eculizumab, a human-
ized anti-C5 antibody. 

 Stx has been shown to have a direct cytotoxic effect on endothelial cells [ 105 ] 
including glomerular endothelial cells. This effect may be enhanced in the presence 
of proinfl ammatory cytokines such as interleukin 1 and tumor necrosis factor [ 65 , 
 105 ]. The toxin induces the expression of P selectin on microvascular endothelial 
cells. P selectin binds C3, thus activating the alternative pathway and reducing 
thrombomodulin. This process was found to promote thrombus formation under 
perfusion in vitro, and in a mouse model in vivo [ 106 ]. 

 The induction of endothelial cell injury and microthrombi formation in glomer-
uli alongside severe tubular damage [ 68 ] would be expected to induce secondary 
complement activation during EHEC-mediated HUS. This is indeed the case as 
patients have been shown to have low levels of serum C3 [ 107 ,  108 ] and elevated 
levels of complement products C3a, factor Bb and soluble C5b-9 [ 83 ,  109 ], as well 
as complement C3 and C9 on platelet-leukocyte aggregates suggesting that bacte-
rial virulence factors and the host response induce complement activation on these 
blood cells. C3 has also been demonstrated on patient red blood cells [ 42 ] implicat-
ing a role in the induction of hemolysis. 

 Taken together, the fi ndings in patients, animal models and in vitro studies indi-
cate that complement is activated on blood cells and the endothelium during 
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EHEC- associated HUS and that Stx plays a major role in this process. Complement 
activation could aggravate the procoagulant interaction in the vasculature and 
thus contribute to formation of the pathological lesion manifest in thrombotic 
microangiopathy.  

2.4.2     Microvesicles in EHEC-HUS 

 Patients with EHEC-associated HUS have elevated levels of circulating microves-
icles derived from platelets, monocytes, neutrophils [ 41 ,  83 ,  110 ] and red blood 
cells [ 42 ]. Plasma microvesicle concentrations were higher during the acute phase 
of disease, decreasing to normal levels after recovery. The microvesicles exposed 
phosphatidylserine and a large proportion bore tissue factor [ 41 ], which could 
trigger thrombosis. In addition, blood cell-derived microvesicles had deposits of 
C3 and C9 [ 42 ,  83 ], suggesting that complement was either activated on the parent 
cells before the vesicle bud off, or occurred directly on the microvesicle. 
Complement deposition contributed to opsonization of labeled microvesicles 
[ 83 ]. A recent fi nding was that microvesicles circulating in EHEC-HUS patients 
bore Stx which could thus be transferred to kidney cells and evade immune 
 detection [ 46 ]. 

 In vitro studies showed that Stx and lipopolysaccharide from  E. coli  O157:H7 
induced the release of blood cell-derived microvesicles, mostly from platelets but 
also from monocytes. These microvesicles exhibit deposits of tissue factor [ 41 ], C3 
and C9 [ 83 ] as well as Stx [ 46 ]. Stx also triggered the release of C5b-9 coated red 
blood cell-derived microvesicles, an effect mediated by complement activation via 
the alternative pathway and inhibited by purinergic receptor antagonists [ 42 ]. Thus 
the fi ndings in patients could be reproduced in vitro by stimulation with Stx.  

2.4.3     Atypical HUS: Complement Interactions with Blood 
Cells and the Endothelium 

 aHUS is in many cases familial and recurrent leading to renal failure and vascular 
complications [ 111 ,  112 ]. It has been associated with mutations in complement 
regulators factor H, factor I, membrane cofactor protein (MCP/CD46), thrombo-
modulin, clusterin, or complement factors C3 or factor B [ 111 ,  113 ,  114 ]. Mutations 
are mostly heterozygous. Their impact on protein function is described in Table  2.2 . 
Less than 10 % of patients have mutations in more than one complement factor. 
A subset of patients have auto-antibodies to factor H [ 115 ], which are, in some 
cases, associated with deletions or rearrangements in factor H and factor H-related 
proteins (CFHRs) resulting in hybrid genes but usually not associated with other 
complement mutations.
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   Mutations in complement regulators lead to loss-of-function of the regulators thus 
allowing uninhibited complement activation to occur on endothelial cells [ 116 ] and 
platelets [ 45 ] in vitro. Mutations in, and antibodies to, factor H mainly affect the C 
terminus [ 117 ], which is involved in host recognition, differentiating host cells from 
foreign surfaces. Neutralization of host recognition results in undesirable comple-
ment activation on host cells. Mutations in complement factors C3 and factor B may 
lead to gain-of-function resulting in a hyperfunctional C3 convertase [ 118 – 120 ]. 
Thus mutations trigger complement activation, which, in patients, results in comple-
ment deposition on renal endothelial cells [ 121 ] and platelets [ 45 ,  114 ,  120 ]. 
Complement activation occurs via the alternative pathway followed by activation of 
the terminal complement cascade with deposition of C3 and C9 [ 45 ]. Complement 
activation occurs both systemically and locally in the renal vasculature. 

 The effect of aHUS mutations on interactions with blood cells and the endothe-
lium has been studied in vitro and in animal models. Factor H was shown to bind to 
platelets mostly via its C terminal domain [ 96 ]. An aHUS mutant form of factor H, 
FH-E1198Stop, mutated in the C terminus, exhibited reduced binding [ 45 ] and pro-
moted C3 deposition on normal washed platelets. Likewise, patient sera, containing 
mutated forms of factor H or C3, allowed deposition of both C3 and C9 on normal 
washed platelets leading to their activation [ 45 ,  120 ]. 

 In addition to direct complement activation on platelet surfaces, platelet activa-
tion during aHUS may occur due to complement-mediated endothelial damage 
[ 116 ]. Uninhibited complement activation on endothelial cells has been shown to 
occur in the presence of mutated factor H [ 122 ], C3 and factor B mutations [ 118 , 
 119 ] due to decreased regulatory capacity of factor H or hyperfunctional C3 or 
factor B leading to excess formation of the C3 convertase which may also be 
resistant to decay [ 123 ]. Glomerular endothelial cells stimulated with pro-infl am-
matory mediators (TNF and IFNγ) and exposed to aHUS serum with hyperfunc-
tional C3 expressed tissue factor and a prothrombotic phenotype [ 118 ]. Similarly, 
cytokine- stimulated human umbilical vein endothelial cells exposed to certain 
factor B mutations bound more C3 [ 112 ,  123 ]. These in vitro studies exemplify 
how mutated over-functional complement mediated excessive complement depo-
sition on the endothelium. An in vivo model of aHUS was developed in mice 
transgenically expressing a factor H protein lacking the C terminal region. These 
mice exhibited C3 and C9 staining in glomeruli. Thrombotic microangiopathy did 
not develop in mice that, in addition to mutant factor H, lacked C5, indicating that 
the terminal complement pathway was involved in formation of the specifi c glo-
merular lesion [ 124 ]. 

 It would seem likely that complement should deposit on red blood cells during 
aHUS, as complement deposition has been demonstrated on platelets and endothe-
lial cells. This aspect, and if complement mediates hemolysis during aHUS, has, 
however, not been studied. Nonetheless, once hemolysis has occurred and hemoglo-
bin is released, heme is liberated and induces complement activation [ 125 ]. Heme 
was shown to activate complement via the alternative pathway in serum as well as 
on endothelial cells in vitro. The interaction between heme and C3 resulted in an 
overactive C3 convertase [ 125 ].  
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2.4.4     Microvesicles in aHUS 

 Sera from aHUS patients with defi ned factor H mutations located at the C terminal 
domain induced the release of tissue factor-bearing and phosphatidylserine expos-
ing microvesicles from normal washed platelets [ 45 ]. This effect was markedly 
decreased when the normal platelets were preincubated with normal factor H before 
addition of the patient sera indicating that the mutated complement regulator con-
tributed to shedding of prothrombotic microvesicles. Although complement deposi-
tion, secondary to excessive complement activation, has been demonstrated on 
blood and endothelial cells in aHUS, this has yet to be demonstrated on patient 
microvesicles. 

2.5     Thrombotic Thrombocytopenic Purpura 

 TTP is defi ned as the simultaneous occurrence of hemolytic anemia, thrombocyto-
penia, renal and neurological manifestations and fever. It may be recurrent. TTP is 
associated with dysfunctional or defi cient ADAMTS13 (a disintegrin and metallo-
proteinase with a thrombospondin type 1 motif, member 13) known as the VWF 
cleaving protease. Defi ciency of the protease occurs in congenital TTP due to com-
pound heterozygous or homozygous mutations in the protein whereas acquired dys-
function of the protease occurs due to the presence of circulating auto-antibodies to 
the protease [ 126 ]. Defi ciency or dysfunction of ADAMTS13 results in uncleaved 
ultra-large VWF multimers with high biological potency to bind platelets and form 
thrombi, thus predisposing patients to a prothrombotic condition. Lack of 
ADAMTS13 promotes the formation of platelet-VWF strings on endothelial cells 
in vitro [ 127 ]. 

 The primary pathogenetic event during TTP is the formation of microthrombi 
and the typical microangiopathic lesion. However, even during TTP secondary 
complement activation occurs, which may enhance the detrimental interaction 
between endothelial cells and platelets. Patients with TTP, both congenital and 
acquired, exhibit complement activation as shown by low C3 [ 128 ], elevated C3a, 
C5a and C5b-9 in the circulation during acute episodes [ 129 ,  130 ]. Renal, skin and 
cardiac tissue from TTP patients exhibited complement deposition [ 48 ,  131 – 133 ]. 
Sera from TTP patients induced C3 deposition and MAC formation on microvascu-
lar endothelial cells and promoted neutrophil-induced endothelial cytotoxicity, 
effects abrogated by complement inhibition [ 134 ]. 

 The ultra-large VWF strings formed on the endothelial surface in vitro were 
found to activate complement via the alternative pathway. Complement activation 
occurred on platelets, endothelial cells and on VWF itself under perfusion [ 48 ,  135 ] 
and the presence of ADAMTS13 abrogated this effect. Our group has shown that 
exposure of histamine-stimulated glomerular endothelial cells to patient plasma, but 
not normal plasma, induced C3 deposition on platelet-VWF strings and the endo-
thelium [ 48 ]. 
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 Interestingly, factor H was found to bind to VWF via its C terminal region [ 136 ] 
and thereby affect ADAMTS13-mediated cleavage, although confl icting data have 
been reported suggesting it may either enhance [ 136 ], or inhibit [ 137 ], this interac-
tion. Factor H was shown to reduce the size of VWF multimers [ 138 ] which would 
affect their capability to bind platelets. Moreover, VWF binding to factor H 
enhanced cofactor activity in conjunction with factor I [ 137 ] thus inactivating com-
plement progression. Both factor H and VWF are secreted by endothelial cells and 
may thus cooperate in reducing the infl ammatory and thrombotic reaction on the 
endothelial cell surface.   

2.5.1     Microvesicles in TTP 

 In TTP platelet and endothelial microvesicles are released into the circulation [ 47 , 
 139 ]. Calcium-dependent proteolytic activity (Calpain) was associated with platelet- 
derived microvesicles [ 47 ]. Patient endothelial microvesicles co-expressed CD62E 
(E-selectin) and VWF [ 140 ]. Expression of VWF may enhance the platelet aggrega-
tive potential of the microvesicles [ 141 ]. Our group has shown that endothelial 
microvesicles in TTP patient plasma bore deposits of C3 and C9 [ 48 ] refl ecting 
complement activation on the vascular lining. 

 TTP plasma induced the release of procoagulant endothelial cell-derived 
microvesicles from brain and renal microvascular endothelial cells [ 139 ]. The endo-
thelial microvesicles expressed CD62E, ICAM-1, platelet endothelial cell adhesion 
molecule (PECAM-1), CD105 (endoglin) and VWF [ 140 ]. In addition, TTP plasma 
combined with normal platelets and perfused over histamine-treated glomerular 
endothelial cells induced signifi cant C3 and C9 deposition on microvesicles released 
from the endothelial cells, in comparison to control plasma [ 48 ]. 

2.6     Vasculitis 

 Vasculitides are a group of autoimmune diseases characterized by infl ammation in and 
around vessel walls. They are predominantly classifi ed according to the size of the 
affected vessels [ 142 ]. A subset of patients with vasculitides have anti-neutrophil- 
cytoplasmic-antibodies (ANCAs) commonly directed to proteinase 3 and/or myeloper-
oxidase. Multiple organs may be affected during vasculitis, such as the kidneys, 
respiratory tract, gastrointestinal (GI) tract, joints and skin and thus patients may 
exhibit a variety of symptoms such as renal dysfunction, respiratory symptoms, sinus-
itis, GI-bleeding, arthritis and purpura. The clinical severity of vasculitides varies from 
mild and transient to life-threatening conditions, which may recur. Although the patho-
genesis is not fully elucidated ANCAs, complement, neutrophil- and T cell-mediated 
infl ammation are believed to be essential in the development of disease [ 143 – 147 ]. 

 The innate immune system, and especially the complement system, have been shown 
to play a part in the infl ammatory process in vasculitis [ 3 ]. In both immune- complex 
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mediated vasculitides, such as in Systemic Lupus Erythematosus (SLE), and in 
pauci-immune vasculitides, such as ANCA-associated vasculitides, the complement 
system is activated [ 147 ,  148 ]. In SLE both immunoglobulins and complement 
components including C1q, C3 and C4 are deposited in the renal glomerulus, thus 
indicating activation of the classical pathway of complement. In addition, the impor-
tance of the classical pathway in SLE is illustrated by the association with C1q and 
C2 defi ciency [ 149 ,  150 ]. On the other hand, animal models of pauci- immune vas-
culitides have demonstrated activation of the alternative pathway of complement 
[ 151 ,  152 ]. In these animal models C4 defi ciency (classical pathway) did not affect 
the course of disease whereas C5 and factor B defi ciency (alternative pathway) were 
protective suggesting that the alternative pathway mediated infl ammatory injury 
during ANCA-related disease [ 153 ]. 

 Neutrophil migration appears to be an essential component of tissue injury and 
particularly endothelial damage during ANCA-associated vasculitis. The impor-
tance of C5a, acting as a chemotactic agent and an anaphylatoxin, was demonstrated 
as patient neutrophils activated normal serum to produce C5a. The pivotal role of 
C5a was demonstrated by attenuation of the disease in a C5a receptor-defi cient 
mouse model of necrotizing crescentic glomerulonephritis [ 151 ].   

2.6.1     The Role of Microvesicles in Vasculitis 

 Both adults and children with vasculitis have elevated levels of microvesicles in the 
circulation that have been shown to correlate to disease activity [ 154 ,  155 ]. 
Endothelial-, neutrophil- and platelet-derived microvesicles have been demon-
strated in vasculitis patients [ 50 ,  156 ]. As identifi cation of circulating microvesi-
cles, especially endothelial cell-derived, may refl ect endothelial damage seen in 
vasculitis, it has been suggested that circulating microvesicles could be used as a 
biomarker for vasculitis activity [ 154 ,  155 ,  157 ]. 

 Neutrophil-derived microvesicles have been shown to induce endothelial cell 
activation and subsequent release of cytokines [ 30 ,  158 ] as well as endothelial cell 
damage [ 159 ]. ANCA, which are present in a subset of vasculitides, have been 
shown to induce release of microvesicles from neutrophils in vitro, followed by 
microvesicle-dependent activation of endothelial cells, suggesting a pathogenic role 
of microvesicles in vasculitis [ 157 ].   

2.7     Clinical and Therapeutic Implications of Complement 
Activation and Microvesicle Release 

 In the conditions described, HUS (both EHEC-associated and aHUS), TTP and vas-
culitis, complement activation on blood- and endothelial cells activates platelets, 
monocytes, neutrophils, red blood cells as well as endothelial cells promoting 
thrombotic and infl ammatory damage. Activated or apoptotic cells will release 
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microvesicles, and the presence of complement on these microvesicles refl ects the 
detrimental in vivo process. Once complement activation and microvesicle release 
manifest the vascular damage may already be, to a certain degree, irreversible. 
However, an ongoing continuous process may be amenable to treatment. 

 During EHEC infection and prior to the development of HUS antibiotic treat-
ment may expose the patient to an increased risk of developing HUS [ 160 ]. 
Nonetheless, antibiotic therapy during the course of HUS may be benefi cial [ 161 ]. 
The infection, and the renal and neurological complications that may develop, are 
best managed by supportive care [ 161 ,  162 ] as no specifi c treatment has, to-date, 
been shown to be effective. Patients exhibit excessive complement activation [ 42 , 
 83 ,  109 ] and a few patients were suggested to respond to eculizumab, humanized 
anti-C5 antibody (Alexion, Cheshire, CT) [ 163 ], but, by the time patients present 
with HUS, treatment aimed at blocking complement activation may be ineffective, 
as reported during the large  E. coli  O104:H4 outbreak in 2011 [ 161 ,  164 ,  165 ]. 

 In contrast, the disease process occurring during aHUS leads to continuous com-
plement activation due to the presence of complement mutations, or antibodies to 
factor H. In these patients treatment with eculizumab is extremely effective, pre-
venting disease recurrence and renal failure [ 166 ] and allowing patients who previ-
ously developed kidney failure to undergo renal transplantation [ 167 ]. 

 Most patients with TTP are successfully treated with plasma infusions or 
exchange, and patients with acquired TTP respond to rituximab (anti-CD20) [ 126 ]. 
Complement blockade was described in one TTP patient whose disease activity was 
refractory to other treatments (plasma exchange, glucocorticoids, rituximab, and 
vincristine) [ 133 ]. Although this patient had antibodies to ADAMTS13 he was later 
shown to also have antibodies to factor H [ 168 ], which may explain the benefi cial 
response to eculizumab. 

 Patients with vasculitis are treated with non-specifi c immune suppression, usu-
ally achieving remission. Eculizumab was shown to be effective in one severe pedi-
atric case of SLE with vasculitis [ 169 ] and in an adult case of SLE complicated by 
thrombotic microangiopathy [ 170 ]. As animal models of necrotizing glomerulone-
phritis have shown that C5 is involved in the renal damage, using C5a receptor 
defi cient mice [ 151 ], further study of complement blockade as a treatment modality 
in vasculitis and SLE is warranted. 

 In addition to the commercially available eculizumab, multiple therapeutic 
agents are being developed in order to block complement activation at different 
levels and in the different pathways [ 171 ]. These agents may prove to be promising 
therapeutic options for certain thrombotic microangiopathies and vasculitides in the 
future. 

 Elevated circulating microvesicles may be biomarkers of an ongoing infl amma-
tory condition. Still, cells may attempt to eliminate unwanted substances by shed-
ding these within microvesicles. Thus future investigations will need to address the 
contribution of microvesicles to the infl ammatory process and if therapeutic inter-
ventions directed at blocking microvesicle release are benefi cial.  
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2.8     Conclusions 

 Whether as a primary event or as a secondary phenomenon, complement activation 
during thrombotic and infl ammatory conditions affecting the vasculature will fur-
ther perturb injury to the endothelial lining. Microvesicles released from blood and 
endothelial cells are prothrombotic and via secretion of their contents predispose to 
infl ammation. Conditions such as HUS, TTP and vasculitis differ in their etiologies 
and pathogenesis but in these conditions complement activation and microvesicle 
release may exacerbate the course of disease. For this reason therapeutic interven-
tions directed at these processes are worthy of future study.     
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    Chapter 3   
 Role of Complement on Broken Surfaces After 
Trauma 

             Markus     Huber-Lang     ,     Anita     Ignatius    , and     Rolf     E.     Brenner   

    Abstract     Activation of both the complement and coagulation cascade after trauma 
and subsequent local and systemic infl ammatory response represent a major scien-
tifi c and clinical problem. After severe tissue injury and bone fracture, exposure of 
innate immunity to damaged cells and molecular debris is considered a main trigger 
of the posttraumatic danger response. However, the effects of cellular fragments 
(e.g., histones) on complement activation remain enigmatic. Furthermore, direct 
effects of “broken” bone and cartilage surfaces on the fl uid phase response of com-
plement and its interaction with key cells of connective tissues are still unknown. 
Here, we summarize data suggesting direct and indirect complement activation by 
extracellular and cellular danger associated molecular patterns. In addition, key 
complement components and the corresponding receptors (such as C3aR, C5aR) 
have been detected on “exposed surfaces” of the damaged regions. On a cellular 
level, multiple effects of complement activation products on osteoblasts, osteo-
clasts, chondrocytes and mesenchymal stem cells have been found. 

 In conclusion, the complement system may be activated by trauma-altered sur-
faces and is crucially involved in connective tissue healing and posttraumatic sys-
temic infl ammatory response.  
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3.1         Introduction 

 Trauma results in an immediate disruption and damage of various organs, tissues, 
cells and molecules. Depending on the type of trauma and injury severity the organ-
ism is challenged by cellular and molecular debris often functioning as damage asso-
ciated molecular patterns (DAMPS). Furthermore, injured tissue is often exposed to a 
vast amount of external or internal pathogen-associated molecular patterns (PAMPS). 
The resulting immediate infl ammatory response includes the “serine protease sys-
tem” of the coagulation and complement system [ 1 ] and pattern recognition receptors 
of the “fi rst line of cellular defense”. Whereas the resulting “fl uid phase damage con-
trol” induces clotting and walls off injured or infectious tissue, the “cellular damage 
control” phagocytoses and clears up damaged tissue. Micro-fragments of cartilage 
and bones may also be resorbed by activated phagocytes and osteoclasts. 

 The clinical management of damaged and broken surfaces mainly includes a 
careful surgical debridement of damaged tissues, electrocoagulation/ligation or 
revascularization of damaged vessels, and osteosynthesis of broken bones. If the 
tissue defects are too extended, implantation of grafts or metal implants is often 
necessary. Synchronic to and far beyond the surgical “macro-management” there is 
a constant body’s own “micro-management” by the clotting cascade and immune 
system. However, there are only a few reports in defi ning the role of the complement 
system in detecting and clearing broken bio-surfaces. 

 Therefore, this presentation aims to summarize possible underlying mechanisms 
and fi nally adverts to the importance of the complement system in handling dam-
aged surfaces. Furthermore, an outlook for future research and clinical avenues in 
treatment of broken surfaces are provided.  

3.2     Response to Soft Tissue Disruption 

 Soft tissue damage mainly involving skin, adipose and muscle tissues leads to a 
release of multiple cellular content such as mitochondria, nucleosomes, histones, 
RNA/DNA, autophagosome etc. A signifi cant release of intact or fragmented mito-
chondria has been shown in serum of trauma patients    [ 2 ,  3 ]. Based on the endosym-
biotic evolutionary development theory of mitochondria origin, a signifi cant 
complement activation has been proposed triggered by mitochondria (released after 
trauma). Especially mannan-binding lectin (MBL),  L -fi colin, and M-fi colin seem to 
sense mitochondrial components and may activate complement via the lectin path-
way to clear the mitochondria—then considered as “enemies” [ 4 ]. Natural danger-
ous microsurfaces of non-symbiotic microorganisms function as PAMPS and may 
thereby massively activate the complement cascade. However, surfaces of microor-
ganism are not covered in this review and may certainly involve the intense cross- 
talk of toll-like receptors and complement [ 5 ,  6 ]. 

 Concerning histone release it is still a matter of debate whether—and if so, to 
what extent—they are capable to activate complement. A recent trauma study 
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suggested histone-complexed DNA fragments in plasma to be associated with 
trauma- induced coagulopathy [ 5 – 7 ] which via an intense serine protease cross-
talk [ 1 ] is itself associated with trauma-induced complementopathy [ 8 ]. In multi-
ple injured patients, own studies have shown a peak appearance of nucleosomes 
in plasma of patients within the fi rst hour after trauma impact remaining signifi -
cantly enhanced for 12 h after injury [ 9 ]. The nucleosomes correlated with activa-
tion of factor seven- activating serine protease (FSAP), a phylogenetically old 
activation pathway of the coagulation system [ 9 ]. In turn, FSAP is capable to 
cleave both, C3 and C5, thereby generating biologically active anaphylatoxins 
C3a and C5a, respectively. It is noteworthy, that major activators of FSAP itself 
are both RNA and DNA fragments, which can be detected after trauma in the 
experimental and clinical setting. It is still unclear whether complement is directly 
activated by nucleosomes or histones or via the FSAP pathway. However, histones 
were capable to generate in human plasma 3 ng/ml C5a whereas at least ten times 
more was produced by zymosan stimulation [ 9 ]. Further differentiation between 
the various histone forms (e.g., citrullinated, acytylated, methylated) as a poten-
tial trigger for complement activation needs to be studied in further detail. 

 Soft tissue injury excessively releases adipokines including adiponectin which in 
turn may adhere to damaged tissue surfaces such as the endothelium. Adiponectin 
as adipose tissue-specifi c protein has some structural homology with C1q and may 
theoretically interact with and enforce the complement system [ 10 ]. In this regard, 
it has been shown that adiponectin in partnership with C1q and MBL is capable to 
induce a shift of macrophages from the pro-infl ammatory M1—phenotype to the 
pro-regenerative M2 phenotype [ 11 ] to induced repair processes. 

 Soft tissue disruption also results in a local and remote ischemia-reperfusion 
damage activating complement in an early phase by exposition of neo-epitopes in 
ischemic membranes [ 12 ]. In turn, complement-dependent up-regulation of endo-
thelial adhesion molecules such as p-selectin triggers recruitment of additional 
infl ammatory cells. In addition, the stress response to broken surfaces pathophysi-
ologically results in a prolonged vaso-constriction of soft tissue areas thereby fur-
ther aggravating ischemia in a vicious circle. 

 Although several experimental studies suggest some promising effects of a spe-
cifi c complement blockade (e.g., C1q-inhibition, C5a-blockade) in improving local 
and systemic ischemia-reperfusion injury [ 13 – 16 ], its protective effects in the clini-
cal setting remains to be proven [ 12 ].  

3.3     Acute Response to Broken to Surfaces of Cartilage 
Tissue 

 Cartilage injury represents a major risk factor for the development of posttraumatic 
arthritis and subsequently degenerative joint disease [ 17 ]. In the USA about 12 % of 
all cases with osteoarthritis of the hip-, knee- and ankle-joint have been attributed to 
a preceeding major traumatic event [ 18 ]. Different kinds of tissue damage such as 
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direct cartilage trauma, intra-articular fracture and injury of menisci, ligaments or 
joint capsule could be involved in varying combination [ 19 ]. There is experimental 
evidence for an additive morphological effect of cartilage degeneration by com-
bined lesions as shown for a rabbit model of blunt cartilage trauma with and without 
radial transection of the medial meniscus [ 20 ]. Among the different types of joint 
injuries articular fracture carries the highest risk for development of posttraumatic 
osteoarthritis [ 19 ,  21 ]. It has been reported that between 23 and 44 % of patients 
with intraarticular fractures of the knee joint develop degenerative joint disease [ 22 , 
 23 ]. Joint injuries—especially those with intra-articular fractures—may also lead to 
hemarthrosis. Its infl uence on the long-term prognosis of a traumatized joint is not 
completely clarifi ed. In vitro, however, blood exposure of cartilage has adverse 
effects and leads to chondrocyte apoptosis and loss of proteoglycans [ 24 ]. In an 
animal study on dogs the coagulation system further increased the resulting carti-
lage damage after repeated intra-articular blood application [ 25 ]. However, possible 
detrimental effects of complement activation within hemathrosis have not been 
clarifi ed so far. During the last years the concept arose that synovitis and the innate 
immune system play an essential role in the pathogenesis of osteoarthritis [ 26 ,  27 ]. 
This is based on the notion that mechanical or other primary damage to cartilage 
tissue causes the release DAMPs inducing toll-like receptor (TLR)-activation, syno-
vial infl ammation, recruitment of infl ammatory cells, enhanced secretion of cyto-
kines, release and activation of cartilage degrading proteases like MMP13, 
ADAMTS 4 and ADAMTS 5 [ 26 ]. As mentioned above, DAMPs are heterogeneous 
molecules originating either from various compartments inside the cell or the extra-
cellular matrix [ 28 ]. Since cartilage is characterized by a low cell density, the release 
of intracellular DAMPs may play a minor role compared to other tissues (especially 
in comparison to the previously discussed soft tissue). On the other hand it is known 
that chondrocyte death is highest around matrix cracks and that articular fracture 
causes signifi cant chondrocyte death at the fracture edge [ 29 ,  30 ]. Therefore, 
DAMPs released from necrotic or apoptotic chondrocytes may contribute to an acti-
vation of the innate immune system. Binding of these ligands to TLRs of synovial 
cells or chondrocytes leads to the secretion of pro-infl ammatory cytokines and che-
mokines, cellular infi ltration of the synovial tissue and generation of proteases with 
the capacity to degrade the extracellular matrix of the cartilage [ 27 ,  31 ]. This extra-
cellular matrix determines the functional properties of articular cartilage and has a 
highly complex molecular organization [ 32 ]. By structural mechanical disintegra-
tion or proteolytic activity single components or fragments of matrix components 
may also interact with TLRs further enhancing the infl ammatory process. 
Furthermore, there is growing evidence that besides these TLR-transmitted pro-
cesses the complement system is crucially involved in the pathogenetic processes 
induced by broken cartilage surfaces generated by a severe joint trauma [ 33 ] 
(Fig.  3.1 ).  

 Complement factors and complement regulatory proteins in the synovial fl uid 
may originate from synovial blood supply, different types of synovial cells, chon-
drocytes or hemarthrosis in the course of a joint trauma. Overall, relevant comple-
ment components are present in the synovial fl uid in suffi cient amounts [ 31 ,  33 ]. 
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In chondrocytes the synthesis of C1q, C1s, C2 and C4 as well as membrane bound 
complement regulatory proteins CD46, CD55 and CD59 has been reported [ 34 ,  35 ]. 
Furthermore, the expression of receptors for the anaphylatoxins C3a and C5a (C3aR 
and C5aR, respectively) has been described for human chondrocytes [ 35 ,  36 ]. 
Although C3aR and C5aR expression was found to be regulated by TNF, IL1beta 
and IL10 [ 35 ,  36 ] their functional relevance in cartilage homeostasis and pathology 
has not been elucidated in detail so far. Nevertheless, their presence at the chondro-
cyte surface and the identifi cation of terminal complement complex formation 
(TCC, sC5b-9) on the surface of chondrocytes from osteoarthritic cartilage [ 37 ] 
indicates that chondrocytes are potential targets for complement-mediated pro-
cesses. Interestingly, several of the key matrix components of cartilage itself have 
been shown to directly infl uence complement activation either through a stimula-
tory or inhibitory function [ 38 ]. 

 The extracellular matrix of cartilage mainly consists of a network of collagen 
heterofi brils composed of collagen types II, IX and XI, collagen type VI, negatively 
charged proteoglycans (mostly aggrecan and members of the small leucine-rich 
repeat protein family like decorin, biglycan, fi bromodulin, asporin, chondroadherin 
and PRELP), hyaluronan and additional molecules specifi cally interacting with 
other matrix components like matrilin 1 and 3, cartilage oligomeric matrix protein 
(COMP), fi bronectin or link protein [ 32 ]. For several of these components like 
decorin, biglycan, chondroadherin or fi bronectin and some glycosaminoglycans 
(present in cartilage proteoglycans) binding to complement factors e.g., C1q has 
been shown [ 39 – 43 ]. Distinct functionalities with respect to activation or inhibition 
of complement have been reported for the NC4-domain of collagen type IX (e.g., 
inhibition of C9 polymerization and thereby TCC formation), the C-type lectin part 
of the aggrecan G3 domain (e.g., activation of the classical and to a lesser extent the 
alternative pathway through binding of C1q and C3), fi bromodulin (e.g., activation 
of the classical pathway by binding to C1q), PRELP (e.g., inhibition of TCC forma-
tion by prevention of C9 polymerization), decorin and biglycan (e.g., inhibition of 
the classical or classical and lectin pathway by binding of C1q and MBL) as well as 
COMP (e.g., activation of the alternative pathway and inhibition of the classical and 
lectin pathway) [ 44 – 49 ]. Interestingly, some of the matrix proteins that activate 
complement by binding of C1q also interact with complement inhibitors C4-binding 
protein and CFH and thus contribute to a limitation of more terminal steps of com-
plement activation [ 31 ]. This is also the case for DNA—one of the ligands released 
from dying chondrocytes—which may contribute to complement activation at bro-
ken cartilage surfaces. 

 In the past, the role of complement received much interest in the context of pri-
mary immune-mediated rheumatoid arthritis for which an important role of C5a has 
been described in mouse models [ 50 ,  51 ]. Subsequent attempts to translate this 
knowledge into pharmacological therapeutic approaches in men by blocking the 
receptor for C5a were not successful so far [ 52 ]. More recently, a central role of 
complement was postulated based on a surgically induced model of osteoarthritis 
[ 37 ]. The authors found that C5- and C6-defi cient mice were somehow protected 
from osteoarthritis, while mice defi cient in CD59a which is an inhibitor of TCC 
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formation were more severely affected. In line with these results mice with a 
defi ciency of cyclopeptidase B which inhibits complement activation by inactivat-
ing C5a and reduces TCC-formation developed more severe cartilage damage com-
pared to wildtype mice in the same surgical model of medial meniscectomy [ 37 , 
 53 ]. These observations strongly indicate an involvement of the TCC in the patho-
genetic process. This is further supported by overall elevated levels of C3a and 
sC5b-9 in synovial fl uids of patients with osteoarthritis [ 37 ]. In this report comple-
ment activation with TCC-formation was also shown for pulverized human osteoar-
thritic cartilage, pulverized human osteoarthritic synovium, and for fi bromodulin as 
well as aggrecan but not for collagen type II or matrilin 3. Furthermore, in vitro 
generation of TCC on human chondrocytes induced elevated expression of several 
genes usually associated with osteoarthritis (e.g., MMP13, ADAMTS4, ADAMTS5, 
PTGS2). Nevertheless, the question of relevance in human patients with joint injury 
remains an important point. Recently, in the synovial fl uids of patients with ankle 
fractures signifi cantly higher levels of C3a, C5a and sC5b-9 (TCC) were found at a 
mean time point of about 2 days after injury compared to synovial fl uids from 
patients with osteochondrosis dissecans of the same joint [ 54 ]. This indicates early 
complement activation after intra-articular fracture in a patient cohort at high risk 
for development of posttraumatic osteoarthritis. 

 The current knowledge therefore indicates that in synovial joints a delicate bal-
ance of inhibitory and stimulatory factors of complement activation exists. By creat-
ing cartilage damage and artifi cial cartilage surfaces through mechanical trauma 
DAMPs are presented at the broken surface or released into the synovial fl uid which 
have the potential to activate TLRs and the complement system as major functional 
cross-talking parts of the innate immune system. The induced infl ammatory reac-
tion increases the proteolytic activity for cartilage matrix components creating frag-
ments thereof which can further trigger the innate immune response. Finally, 
trauma-associated hemarthrosis may not only provide complement factors but can 
infl uence complement activation by interaction during clotting processes [ 1 ]. At 
present, the relevant conditions leading to such an in vivo scenario are not suffi -
ciently understood. Therefore, further studies are needed with different well-defi ned 
joint injury models all of which may not be possible in mice due to limitations in 
size. Moreover, translational investigations of intra-articular complement activation 
after joint trauma in human patients with different injury types and severity are 
necessary. For specifi c trauma situations characterized by deleterious complement 
activation early pharmacological inhibition of this process [ 55 ] might become a 
realistic option for limiting the resulting damage in the future.  

3.4     Early Response to Broken Surfaces After Fracture 

 A recent clinical study showed in haematoma of ankle fractures generation of C3a, 
C5a and TCC [ 54 ]. In several own experimental studies complement has been 
shown to be involved in fracture healing (Fig.  3.1 ). Since the early phase of fracture 
healing is dominated by a local infl ammatory response complement may especially 
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  Fig. 3.1    Role of the complement and coagulation systems after fracture of bone and cartilage tis-
sue.  ECM  extracelluar matrix,  COMP  cartilage oligomeric matrix protein,  MSC  mesenchymal 
stem cells,  TCC  terminal complement complex (sC5b-9),  TLR  toll-like receptor,  DAMPs  danger- 
associated molecular patterns,  Xa  activated clotting factor X       

modulate the neutrophil and macrophage response, known as “fi rst line of defense”. 
Furthermore, systemic effects of complement activation may signifi cantly contrib-
ute to regenerative processes of broken surfaces. In support, experimental blunt 
chest trauma-induced systemic activation of complement with generation of C3a 
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and C5a signifi cantly compromised fracture healing in rodents [ 56 ,  57 ]. It is note-
worthy, that in presence of a concomitant blunt chest trauma, blockade of C5a was 
capable to normalize fracture healing processes therefore representing a promising 
therapeutic strategy [ 56 ,  57 ]. On a cellular level, direct effects of complement fac-
tors on osteoblast and osteoclast functions have recently been shown [ 58 ]. In addi-
tion, osteoblasts were capable of producing C3 and C5, the latter could be activated 
by osteoclasts. There is also evidence, that anaphylatoxin C3a plays a crucial role in 
mobilization of stem cells from the bone marrow to broken and defective surfaces. 
For example, mesenchymal stem cells (MSC) migrate along C3a gradients in con-
centrations found after multiple trauma [ 59 ]. Once mobilized, the MSC may locally 
generate key complement factors to promote infl ammatory and regenerative pro-
cesses on the damaged surfaces [ 58 ]. Interestingly, the MSC is itself protected 
against complement attacks by a large arsenal of membrane-bound complement 
regulatory proteins (such as CD35, CD46, CD59) [ 58 ]. 

 On a molecular level it is still enigmatic which osseous structure of the fracture 
region represents the main activator of complement. There is no strong evidence 
that damaged collagen structures (abundantly existing in bone tissue as subtype I) 
may act as a major trigger for complement activation. However, if natural anti- 
collagen antibodies are present, exposed damaged collagen structures may certainly 
act as infl ammatory trigger via classical antibody-dependent complement activa-
tion. Furthermore, collagen type I is capable to strongly activate platelets forming 
the sC5b-9 complex, binding complement activation products, and up-regulating 
C3aR and C5aR on the platelet surface. These complement-driven effects may 
result in a strong local thromboinfl ammatory response [ 60 ]. 

 It is tempting to speculate, that also fi bronectin may play an important role on 
broken surfaces. However, whereas fi bronectin can bind C1q it does not result in an 
activation of the classical pathway. It has been proposed that the active binding site 
for fi bronectin is external to the globular head structure of C1q [ 39 ]. 

 On the other side, the fracture hematoma with thrombin as a main clotting factor 
is capable to cleave both, C3 and C5, and thereby may activate complement locally 
in a non-canonical manner [ 1 ,  61 ] (Fig.  3.1 ). In turn, the generated C3a and C5a 
represent potent chemoattractants for many infl ammatory cells. Neutrophils and 
macrophages may both further locally generate complement activation products by 
a serine-protease [ 62 ] and thereby feed in further anaphylatoxins to drive the infl am-
matory response, to clear mini-fragments and to induce regenerative processes for 
successfully stabilizing the fracture region.  

3.5     Role of Complement in Broken Artifi cial Surfaces 

 Surgical implantation of a biomaterial always goes along with tissue injury. 
Therefore, the artifi cial surface gets in tight contact with broken natural surfaces 
of soft tissue, cartilage or bone. Although surgical procedures for implantation 
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maximally reduce the extent of tissue damage—e.g., through minimal invasive 
surgery—a contribution to the local infl ammatory response can be assumed. On the 
other hand the biomaterial itself with its specifi c chemical, physical and (nano-) 
topographical characteristics determines the initial adsorption of proteins from 
blood or interstitial fl uids which occurs within a timespan of nanoseconds [ 63 ]. The 
composition and amount of the bound proteins determines the local infl ammatory 
response, blood clotting processes and complement activation mostly through the 
classical and alternative, partly also the lectin mediated pathway [ 63 ,  64 ]. The 
amount of infl ammation and complement activation defi nes not only the primary 
biocompatibility of a biomaterial but may either support subsequent tissue integra-
tion if it is well controlled, or lead to a failure of this process if it goes out of control. 
In the case of biomaterial degradation or particle release complement activation 
triggered by newly presented artifi cial surfaces may become relevant and may again 
lead to complement activation. With respect to materials used for joint replacement 
it was reported that particles consisting of pure titanium, high density and ultrahigh 
molecular weight polyethylene (UHMWPE) as well as polymethylmethacrylate 
(PMMA) which is present in bone cement partly used for implantation generate C3a 
in a standardized in vitro assay [ 65 ]. Erythrocyte lysis-assays indicated that polyeth-
ylene particles activate the alternative pathway of complement activation and adsorb 
activated complement components [ 66 ]. Furthermore, in synovial tissue from 
patients with aseptic loosening of hip prostheses C3a, iC3b and soluble C5-9 was 
localized by immunostaining at the periphery of polyethylene particles [ 66 ]. 
Therefore, complement may also play a role in aseptic loosening of implants which 
includes activation of macrophages and is associated with peri-implant osteolysis.  

3.6     Outlook 

 Complement acts as an important modulator of the acute immune response on 
broken surfaces and thereby represents an interesting target for specifi c inhibitory 
strategies to support clearance of molecular and cellular debris, to pursue regenera-
tive processes, and to improve long-lasting integration of artifi cial surfaces of 
implants. Especially blockade of key complement components, such as C3 or C5 
and the related anaphylatoxins may help in healing processes of broken tissue sur-
faces. Furthermore, coating of artifi cial surfaces with complement-regulatory pro-
teins to avoid local complement activation may lead to an improved integration of 
implants not only in the physiological environment but also in infl amed or infected 
environments (e.g., in osteomyelitis). To realistically assess the possible benefi t of 
a complement modulatory approach for these indications, more valid experimental 
and clinical studies are needed.     
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    Abstract     The complement system is a network of interacting fl uid-phase and cell 
surface-associated molecules that trigger, amplify, and regulate immune and infl am-
matory signaling pathways. Dysregulation of this fi nely balanced network can 
destabilize host-microbe homeostasis and cause infl ammatory tissue damage. 
Evidence from clinical and animal model-based studies suggests that complement 
is implicated in the pathogenesis of periodontitis, a polymicrobial community- 
induced chronic infl ammatory disease that destroys the tooth-supporting tissues. 
This review discusses molecular mechanisms of complement involvement in the 
dysbiotic transformation of the periodontal microbiome and the resulting destruc-
tive infl ammation, culminating in loss of periodontal bone support. These mecha-
nistic studies have additionally identifi ed potential therapeutic targets. In this regard, 
interventional studies in preclinical models have provided proof-of-concept for 
using complement inhibitors for the treatment of human periodontitis.  
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4.1         Introduction 

 Periodontitis is a chronic infl ammatory disease that compromises the integrity of 
the periodontium, i.e., the tooth-supporting structures such as the gingiva, periodon-
tal ligament, and the alveolar bone [ 1 ]. The disease is initiated by infl ammation 
caused by dysbiotic bacterial communities forming on subgingival tooth sites [ 2 ]. 
Similarly to other chronic diseases, periodontitis requires a susceptible host. 
Susceptibility to periodontitis is determined by genetic factors that may predispose 
to hyperinfl ammatory responses or by environmental factors (e.g., diet and stress) 
and risk-related behavior (e.g., smoking) that can modify the host immune response 
in a destructive direction [ 3 – 7 ]. Regardless of the complexity underlying periodon-
tal disease susceptibility, the control of the host periodontal infl ammatory response 
is considered to be central to the treatment of the disease [ 1 ]. Therefore, identifying 
key infl ammatory pathways that mediate periodontal tissue destruction has impor-
tant translational implications. 

 Chronic periodontitis affects >47 % of U.S. adults [ 8 ] and has been prevalent 
since antiquity [ 9 ]. Severe periodontitis, which affects 8.5 % of adults [ 8 ], is not 
only a common cause of tooth loss, but is also associated with increased risk for 
atherosclerosis, diabetes, rheumatoid arthritis, and adverse pregnancy outcomes 
[ 10 – 13 ]. The high prevalence of periodontitis [ 8 ], its signifi cant economic burden 
[ 14 ,  15 ], and the fact that many clinical cases are refractory to standard modes of 
treatment (combined mechanical and antimicrobial therapy, including scaling and 
root planning, surgery, and systemically administered antibiotics) [ 16 ,  17 ] under-
score the importance of implementing innovative and cost-effective therapeutic 
interventions. In this review, we summarize published evidence that the destructive 
host infl ammatory response in periodontitis is heavily dependent on the activation 
of the complement system. Moreover, we discuss recent studies that provided proof-
of- concept that complement inhibition is a promising therapeutic strategy for the 
treatment of this oral disease.  

4.2     Complement 

 Traditionally known as a cascade of antimicrobial proteins in the blood, complement 
is now recognized as a key system for immune surveillance and homeostasis and a 
major link between the innate and the adaptive arms of the host immune response 
[ 18 ]. In addition to the classic serum proteins (C1-9), the integrated complement 
system comprises pattern-recognition molecules, convertases and other proteases, 
regulators, and receptors for interactions with immune mediators [ 18 ]. The comple-
ment cascade can be triggered by distinct mechanisms (classical, lectin, or alterna-
tive), all of which converge at the third complement component (C3) and lead to the 
generation of effectors that mediate diverse functions. These include the recruitment 
and activation of infl ammatory cells (via the C3a and C5a anaphylatoxins that acti-
vate specifi c G-protein-coupled receptors, C3aR and C5aR [CD88], respectively), 

G. Hajishengallis et al.



59

microbial opsonization and phagocytosis (e.g., through the C3b or C4b opsonins), 
and direct lysis of susceptible targeted microbes (by means of the C5b-9 membrane 
attack complex) [ 18 ]. It should be noted that the activities of complement are not 
restricted to a linear cascade of events but rather involve a network of interactions 
with other systems, which together coordinate the host response to infection or tis-
sue injury. These complement interactions can amplify innate immune and infl am-
matory responses through synergy with Toll-like receptors (TLRs) [ 19 ], provide a 
barrier against the spread of invading bacteria by potentiating local clotting [ 20 ], 
replenish the immune system through mobilization of hematopoietic stem/progeni-
tor cells from the bone marrow [ 21 ] and regulate the activation and differentiation of 
T-cell subsets [ 22 ,  23 ]. 

 Owing to the operation of a sophisticated system of negative regulators (e.g., the 
fl uid-phase regulators factor H and C4-binding protein and the cell-associated regu-
lators CD46 and CD59), complement is not normally activated on the surface of 
host cells and tissues [ 24 ]. However, disruption of these regulatory mechanisms by 
specifi c complement gene mutations or by subversive pathogens can lead to com-
plement over-activation and hence unwarranted infl ammation and possibly damage 
to host tissues. Indeed, genetic defects in complement regulators have been impli-
cated in the development of local or systemic diseases, such as age-related macular 
degeneration and systemic lupus erythematosus [ 18 ,  24 ,  25 ]. From a microbial per-
spective, several pathogens not only hijack soluble negative regulators to protect 
themselves against complement attack but can also degrade cell-associated regula-
tory molecules that would otherwise protect host tissues or cells [ 26 – 29 ]. Moreover, 
it is plausible that complement over-activation can occur for reasons unrelated to 
compromised regulatory mechanisms, such as when the host fails to clear infections 
[ 30 ,  31 ]. In such cases, the infection could become chronic providing a persistent 
stimulus for complement activation.  

4.3     Role of Complement in Periodontal Dysbiosis 
and Infl ammation 

 In order to better understand the role of complement in periodontitis, it is instructive 
to fi rst discuss the role of bacteria in periodontal disease pathogenesis. Until fairly 
recently, the prevailing paradigm was that specifi c organisms were involved in the 
etiology of periodontitis, the most prominent being a troika of bacteria known as the 
“red complex,” namely,  Porphyromonas gingivalis ,  Treponema denticola , and 
 Tannerella forsythia  [ 32 ,  33 ]. This notion was in part fueled by the bias of culture- 
based methods to overestimate the abundance of the easily grown species (such as 
 P. gingivalis ) in the periodontitis-associated biofi lms, while neglecting the presence 
of uncultivable bacteria. However, culture-independent molecular methods used in 
recent metagenomic studies have revealed a more heterogeneous and diverse peri-
odontitis-associated microbiota than previously known from cultural studies [ 34 –
 39 ]. Many of the newly recognized organisms (e.g., certain gram-positive bacteria 
and other species from the gram-negative genera  Prevotella ,  Megasphaera , 
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 Selenomonas ,  Desulfobulbus ,  Dialister ,  and Synergistes ) show as good or better a 
correlation with disease than the red complex bacteria [ 34 – 39 ]. Moreover, a recent 
metatranscriptomic study revealed that the majority of virulence factors that are 
upregulated in the microbiome of periodontitis patients is primarily derived from 
the previously underappreciated species that were not traditionally associated with 
periodontitis [ 40 ]. These recent human microbiome analyses and animal model- 
based mechanistic studies collectively suggest that the pathogenesis of periodontitis 
involves polymicrobial synergy and dysbiosis [ 2 ,  34 ,  36 ,  37 ,  40 – 49 ]. 

 The dysbiosis of the periodontal microbiota represents an alteration in the rela-
tive abundance or infl uence of individual components of the bacterial community 
(relative to their abundance or infl uence in health) leading to dysregulated host- 
microbial crosstalk suffi cient to induce destructive infl ammation and bone loss [ 1 ]. 
Dysbiotic communities exhibit synergistic interactions that can enhance coloniza-
tion, persistence, or virulence; bacteria known as keystone pathogens are involved 
in the breakdown of periodontal tissue homeostasis, whereas other, known as patho-
bionts, can trigger destructive infl ammation once homeostasis is disrupted [ 2 ]. 
Certain commensals, though non-pathogenic by themselves in the oral environment, 
can promote keystone pathogen colonization and, as such, are implicated as acces-
sory pathogens [ 2 ]. Briefl y stated, according to the polymicrobial synergy and dys-
biosis (PSD) model, the host immune response is initially subverted by keystone 
pathogens with the help of accessory pathogens and is subsequently over-activated 
by pathobionts, leading to destructive infl ammation in susceptible hosts (Fig.  4.1 ). 
Therefore, according to the PSD model, periodontitis is not a bacterial infection in 
the classical sense (i.e., not caused by a single or a select few pathogens) but, rather, 
represents a polymicrobial community-induced perturbation of host homeostasis 
that leads to destructive infl ammation in susceptible individuals [ 2 ].  

 These recent advances should not be interpreted to suggest that  P. gingivalis  or 
other red complex bacteria are not important in periodontal disease pathogenesis; 
simply, their roles need to be re-interpreted in a manner consistent with emerging 
new evidence. In this regard, it was recently shown that  P. gingivalis  acts as a key-
stone pathogen at low colonization levels. Specifi cally,  P. gingivalis  induces the 
conversion from a symbiotic community structure to a dysbiotic one capable of 
causing destructive infl ammation and periodontal bone loss [ 44 ,  50 ,  51 ]. In line with 
this concept,  P. gingivalis  cannot cause disease in germ-free mice despite coloniz-
ing this host, that is, it cannot cause infl ammatory bone loss in the absence of other 
bacteria [ 44 ]. Contrary to the fi ndings of some of the early culture-based microbio-
logical studies, the recent metagenomic studies using culture-independent molecu-
lar methods show that  P. gingivalis  constitutes a quantitatively minor constituent of 
human periodontitis-associated biofi lms [ 36 ,  38 ,  52 ]. Moreover, in non-human pri-
mates where  P. gingivalis  is a natural inhabitant of the subgingival biofi lm, a spe-
cifi c vaccine (against a key virulence factor, the gingipain proteases) causes a 
reduction both in  P. gingivalis  counts and in the total subgingival bacterial load, in 
addition to inhibiting bone loss [ 53 ]. These fi ndings suggest that the presence of 
 P. gingivalis  benefi ts the entire biofi lm, as predicted by the keystone-pathogen con-
cept [ 50 ]. It should be clarifi ed that the mere presence of  P. gingivalis  does not 
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  Fig. 4.1    The polymicrobial synergy and dysbiosis (PSD) model of periodontal disease pathogen-
esis. Periodontitis is induced by a polymicrobial bacterial community, wherein different members 
have distinct roles that synergize to cause destructive infl ammation. Keystone pathogens, the colo-
nization of which is facilitated by accessory pathogens, manipulate the host response leading from 
a symbiotic to a dysbiotic microbiota, in which pathobionts over-activate the infl ammatory 
response and cause destructive resorption of the supporting bone. Infl ammation and dysbiosis 
reinforce each other by engaging in a positive feedback loop (infl ammatory tissue breakdown 
products are used as nutrients by the dysbiotic microbiota, which further exacerbates infl amma-
tion). The  lower panel  shows the progression from periodontal health to gingivitis (gingival 
infl ammation without bone loss) to periodontitis (loss of epithelial attachment, formation of deep 
periodontal pockets, and infl ammatory bone loss). Periodontal pockets serve as a niche that can 
harbor dysbiotic bacterial communities feeding on the infl ammatory spoils (e.g., degraded colla-
gen peptides, haem-containing compounds) transferred with the gingival crevicular fl uid (GCF) 
that bathes the pockets. Redrawn from Ref. [ 13 ]. Used by permission       
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necessarily trigger a transition toward periodontitis. Indeed,  P. gingivalis  can be 
detected, albeit with reduced frequency, also in periodontally healthy individuals 
[ 36 ,  54 ]. In this regard, there is considerable strain and virulence diversity within 
the population structure of  P. gingivalis . Moreover, key virulence factors (e.g., gin-
gipains and lipid A phosphatases) of this bacterium are regulated by local environ-
mental conditions that likely differ among different individuals [ 51 ]. Another 
potential explanation is that there might be individuals who can resist the capacity 
of  P. gingivalis  to convert a symbiotic microbiota into a dysbiotic one by virtue of 
their intrinsic immune status (e.g., alterations in signaling pathways required for 
immune subversion by  P. gingivalis ). In other words,  P. gingivalis  does not neces-
sarily initiate disease but rather signifi es a risk factor for periodontitis [ 13 ,  55 ] 

 Recent studies in mice and non-human primates indicate that complement is 
involved in both the dysbiotic transformation of the periodontal microbiota and the 
infl ammatory response that leads to destruction of periodontal bone [ 44 ,  47 ,  56 – 59 ]. 
In this model of periodontal disease pathogenesis, C5aR (CD88) is a target of 
immune subversion by  P. gingivalis  leading to the dysbiotic transformation of the 
microbiota, which in turn causes destructive infl ammation that is largely dependent 
on C3 activation (Fig.  4.2 ). This involvement of C3 may entail synergism with 
TLRs, as suggested by previous fi ndings on the interactions of complement and the 
TLR signaling system in the periodontium and other tissues [ 19 ,  57 ,  60 ].  

 Intriguingly, whereas  P. gingivalis  can impair the killing capacity of leukocytes 
such as neutrophils and macrophages, it does not block their ability to induce infl am-
matory responses [ 47 ,  59 ,  61 ]. For instance, in human and mouse neutrophils, 
 P. gingivalis  instigates a C5aR-TLR2 crosstalk which disarms and disassociates a 
host-protective TLR2–MyD88 pathway from a proinfl ammatory and immune- 
evasive TLR2–MyD88 adaptor-like (Mal)–phosphoinositide 3-kinase (PI3K) path-
way that prevents phagocytosis of  P. gingivalis  and bystander bacteria [ 47 ]. The 
ability of  P. gingivalis  to exploit C5aR in leukocytes to impair their antimicrobial but 
not their proinfl ammatory responses allows uncontrolled growth and altered compo-
sition of the microbiota in an infl ammatory environment [ 44 ,  47 ,  59 ]. This docu-
mented concept has resolved a long-standing conundrum: on the one hand, periodontal 
bacteria need to evade immune-mediated killing; on the other hand, they require 
infl ammation as this generates nutrients (e.g., degraded collagen peptides and haem-
containing compounds) that periodontitis-associated bacteria need to thrive [ 62 ]. In other 
words, periodontal bacteria cannot afford to evade killing via immunosuppression, 
even though this represents a common evasion strategy of many other pathogens [ 63 ]. 

 It should be noted that  P. gingivalis  can activate C5aR independently of the 
immunologically activated complement cascade, as this bacterium can release bio-
logically active C5a from C5 through the action of its Arg-specifi c gingipains [ 59 , 
 61 ,  64 ]. Consistent with this,  P. gingivalis  was shown to retain its capacity to colo-
nize the periodontium of C3-defi cient ( C3  −/− ) mice, since these mice express nor-
mal levels of C5 and C5aR that are required for  P. gingivalis  colonization [ 56 ]. 
Intriguingly, although  P. gingivalis  can colonize  C3  −/−  mice, its dysbiotic effect is 
transient in this host and the periodontal microbiota cannot be sustained at high 
levels throughout the experimental period as seen in wild-type [ 56 ]. Moreover, 
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 P. gingivalis -colonized  C3  −/−  mice exhibit signifi cantly less periodontal infl amma-
tion and bone loss than  P. gingivalis -colonized wild-type mice [ 56 ]. Therefore, C3 
is crucial for the long-term sustenance of the dysbiotic microbiota and for maximal 
infl ammatory bone loss. The reason why  P. gingivalis -induced dysbiosis cannot be 
sustained in  C3  −/−  mice is likely related to the diminished periodontal infl ammation, 
which—as alluded to above—is required for nutrient acquisition. Consistent with 
the notion that periodontitis-associated bacteria are “infl ammo-philic” (from the 
Greek suffi x  philic  indicating fondness), the bacterial biomass of human 
periodontitis- associated biofi lms was shown to increase with increasing periodon-
tal infl ammation [ 36 ], and anti-infl ammatory treatments in animal models suppress 
the periodontal bacterial load [ 65 – 67 ].  
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Bone resorption  

Inflammation 

P. gingivalis

Dysbiotic community 

C5aR-TLR2 
subversive crosstalk

C3 activation
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(nutrients) 

  Fig. 4.2    Complement involvement in periodontal dysbiosis and infl ammation. Colonization of the 
periodontium by  P. gingivalis  impairs innate host defense by instigating a subversive C5aR-TLR2 
crosstalk, which leads to the dysbiotic transformation of the periodontal microbiota. The dysbiotic 
microbial community in turn causes C3-dependent infl ammatory bone loss, the hallmark of peri-
odontitis. The resulting infl ammatory environment selects for infl ammophilic bacteria that feed on 
infl ammatory breakdown products, thereby promoting further bacterial growth and dysbiosis. 
These pathologic interactions generate and perpetuate a vicious cycle of periodontal tissue destruc-
tion. Modifi ed from Ref. [ 50 ] on the basis of recent studies [ 47 ,  56 ]. Used by permission       
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4.4     Clinical Evidence Linking Complement to Periodontitis 

 The space between the free gingiva and the tooth surfaces is known as the gingival 
crevice. This anatomical location is bathed with an infl ammatory exudate termed 
gingival crevicular fl uid (GCF) [ 68 ]. When deepened due to periodontal disease 
activity, the gingival crevice is referred to as periodontal pocket, which is a niche 
heavily populated with periodontitis-associated microbial communities [ 13 ] 
(Fig.  4.1 , lower panel). The enhanced host infl ammatory response in periodontitis is 
correlated with elevated fl ow of GCF, in part owing to the increased vascular perme-
ability of the subepithelial blood vessels [ 69 ]. Under infl ammatory conditions, the 
GCF contains complement at up to 70–80 % of its concentration in serum, although 
the serum is not the only source of periodontal complement since it is also produced 
locally [ 70 – 73 ]. For instance, recruited leukocytes and especially macrophages con-
stitute a source of local production of complement components [ 74 ,  75 ]. 

 The periodontal pockets contain a functional complement system as attested by 
analyses of collected GCF samples showing robust complement-dependent hemo-
lytic activity [ 76 ,  77 ]. Moreover, GCF collected from periodontitis patients contains 
activated complement fragments at higher concentrations than in GCF from healthy 
individuals [ 72 ,  78 – 81 ]. Consistent with this, complement components and cleav-
age products are readily detected in chronically infl amed gingiva, whereas comple-
ment is undetectable or present at lower levels in healthy gingival biopsy samples 
[ 71 ,  73 ,  76 ,  77 ,  82 – 84 ]. An immunohistochemical study revealed weaker expres-
sion of CD59 in periodontitis-involved gingiva than in healthy gingival tissue, 
implying impaired protection of diseased tissues against potential tissue damage by 
autologous membrane attack complex formation [ 84 ]. 

 Using an integrative gene prioritization method and databases from genome- 
wide association studies and microarray experiments, a recent study has identifi ed 
C3 among the top 21 most promising candidate genes involved in periodontitis [ 85 ]. 
A genetic basis for periodontal disease is suggested by twin studies and familial 
aggregation of severe forms of the disease [ 3 ,  4 ,  6 ]. Although a number of candidate 
susceptibility genes have been proposed, it remains uncertain whether individual 
genes play important roles in periodontal disease pathogenesis [ 3 ,  4 ,  6 ]. In this 
regard, chronic (or adult-type) periodontitis is a polygenic disease, where multiple 
genes contribute cumulatively to the overall disease risk (or protection) by infl uenc-
ing the host immune response and the microbiota. Nevertheless, a role for C3 is 
supported by additional evidence: Induction of experimental gingivitis in human 
volunteers causes progressive elevation of complement activation (as determined by 
C3 conversion) correlating with increased clinical infl ammatory parameters [ 81 ]. 
Conversely, the resolution of infl ammation in periodontitis patients undergoing 
therapy leads to decreased complement activity, as revealed by reduced C3-to-C3c 
conversion in the GCF [ 86 ]. In a similar context, C3 is among the top 5 % of genes 
that are most strongly downregulated following periodontal therapy [ 87 ]. 
Importantly, local inhibition of C3 blocks experimental periodontitis in non-human 
primates [ 56 ]. 
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 It is of interest to note that despite excessive complement activation in periodonti-
tis, periodontal bacteria have a number of protective mechanisms against complement- 
mediated killing. For instance,  P. gingivalis  and  Prevotella intermedia  can capture 
and co-opt physiological soluble inhibitors of the complement cascade, such as the 
C4b-binding protein [ 88 ,  89 ] (Fig.  4.3 ). In a similar context,  T. denticola  expresses an 
11.4-kDa cell surface lipoprotein which binds complement factor H (hence known as 
factor H-binding protein) [ 90 ]. Moreover, whereas certain bacterial proteases ( P. gin-
givalis  Arg-specifi c gingipains and  T. forsythia  karilysin) cleave C5 to release bio-
logically active C5a, the same proteases readily destroy the C5b component, thereby 
preventing the generation of the membrane attack complex [ 70 ,  91 ] (Fig.  4.3 ).  

 In summary, clinical and histological studies in human patients are consistent 
with the involvement of complement in local tissue destruction in periodontitis. 
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  Fig. 4.3    Inhibition of complement-dependent host defenses by periodontal bacteria.  P. gingivalis  
(Pg) and  P. intermedia  (Pi) protect themselves against complement by using surface molecules 
(HRgpA gingipain for  P. gingivalis , undefi ned molecule for  P. intermedia ) to capture the circulat-
ing C4b-binding protein (C4BP), a physiological negative regulator of the classical and lectin 
pathways.  Treponema denticola  (Td) hijacks another regulator, the complement factor H (CFH), 
using a lipoprotein known as factor H-binding protein (FhbP). In this way, the bacteria can prevent 
complement-dependent opsonophagocytosis and the formation of the membrane attack complex 
(MAC). Moreover, although  P. gingivalis  and  T. forsythia  proteases can release biologically active 
C5a from C5 (which leads to immune evasion and infl ammation), the generated C5b component is 
degraded by the same proteases (Arg-specifi c gingipains HRgpA and RgpB and karilysin), thereby 
preventing the generation of MAC       
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This notion is supported by interventional studies in preclinical models, which addi-
tionally offer promising targets for treating human periodontitis (below).  

4.5     Complement as a Therapeutic Target in Periodontitis 

 The above-discussed mechanistic studies in mice have implicated both C3 and 
C5aR in periodontal disease pathogenesis, thereby offering two novel targets for 
therapeutic intervention in this oral infl ammatory disease. In a proof-of-concept 
study, local intragingival injection of PMX-53, a C5aR antagonist, blocked peri-
odontal infl ammation and bone loss in a model of  P. gingivalis -induced periodonti-
tis, regardless of whether it was administered before or after disease initiation [ 57 ]. 
The same inhibitor inhibited infl ammatory periodontal bone loss also in a mouse 
model of ligature-induced periodontitis where the disease is induced independently 
of  P. gingivalis  [ 57 ]. In this model, a silk ligature is placed around molar teeth, 
resulting in massive local accumulation of bacteria and development of infl amma-
tion and bone loss in conventional (but not germ-free) mice or rats [ 45 ,  92 ]. Work 
by an independent group using a similar ligature-induced periodontitis model in rats 
showed that PMX205 (an analog of PMX53) inhibits bone loss when administered 
in the drinking water, although the effi cacy (<20 % protection vs. controls) [ 93 ], 
was reduced relative to the local administration method (50 % protection vs. con-
trols) [ 57 ]. These differences in effi cacy might be attributed to the different modes 
of inhibitor administration and/or to the use of different animal species. 

 More recently, the suitability of C3 as a therapeutic target in periodontitis was 
evaluated in a non-human primate model [ 56 ]. The inhibitor used was Cp40, an 
improved analog of compstatin, which is a peptidic complement inhibitor acting on 
C3 [ 94 ,  95 ]. Thus, unlike physiological negative regulators of complement, comp-
statin and its analogs do not only bind the C3 convertase but also bind and protect 
C3 from both classical and alternative convertase-mediated cleavage [ 94 ,  95 ]. C3 
inhibition is advantageous in that it blocks the generation of downstream effector 
molecules regardless of the initiation mechanism of complement activation. 
Moreover, by inhibiting complement at the level of C3, compstatin and its analogs 
do not interfere with C4b opsonization induced via the classical and lectin path-
ways. The improved analog Cp40 exhibits plasma half-life values more than 50 h, 
which exceeds expectations for most peptidic drugs, and is the fi rst compstatin ana-
log with subnanomolar target affi nity (K D  = 0.5 nM) [ 96 ,  114 ]. 

 The use of a non-human primate preclinical model (specifi cally cynomolgus 
monkeys;  Macaca fascicularis ) was necessary for an initial evaluation of the effi -
cacy of Cp40 in periodontitis due to its exclusive specifi city for C3 of humans and 
non-human primates. Importantly, the immune system and periodontal anatomy of 
the cynomolgus monkey is very similar to that of humans, and periodontitis in this 
model displays bacteriological, immuno-histological, and clinical features that are 
highly similar to those observed in human periodontitis [ 97 – 101 ]. The cynomolgus 
model is thus considerably more predictive of drug effi cacy in human periodontitis 
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compared to widely used models such as those in rodents, rabbits, or dogs. In the 
Cp40 intervention study, which had a 6-week duration, silk ligatures were placed 
around posterior teeth on both halves of the lower jaw (mandible) for a split-mouth 
experimental design. Specifi cally, one side was treated with active drug (Cp40) and 
the other with inactive analog (control peptide), therefore, each animal served as its 
own control. Treatment with Cp40 resulted in decreased clinical indices that mea-
sure periodontal infl ammation and tissue destruction. The decreased clinical infl am-
mation correlated with lower GCF levels of proinfl ammatory cytokines (e.g., TNF, 
IL-1β, IL-17, and RANKL, a key osteoclastogenic factor) and decreased numbers 
of osteoclasts in bone biopsy specimens [ 56 ]. Consistent with the latter, radio-
graphic analysis showed that Cp40 caused a signifi cant inhibition of periodontal 
bone loss. Interestingly, the GCF levels of osteoprotegerin (OPG), a natural inhibi-
tor of RANKL, were maintained at higher levels in Cp40-treated sites than control 
sites during the course of the study. Therefore, Cp40 caused a favorable reversal of 
the RANKL/OPG ratio, which is thought to be a useful biomarker of human peri-
odontitis [ 102 ]. This study therefore supports the therapeutic potential of Cp40 in 
human periodontitis and marks the fi rst time, for any disease, that complement inhi-
bition was shown to inhibit infl ammatory processes that lead to bone loss in non- 
human primates. More recently, locally administered Cp40 was shown to inhibit 
preexisting, naturally occurring chronic periodontitis in non-human primates    
(Maekawa et al., submitted). 

 The mechanism(s) by which C3 inhibition blocks periodontal infl ammation may 
not be restricted to mere suppression of the complement cascade. This is because 
complement pathways (e.g., C3a or C5a receptor signaling) cross-talk with and 
amplify TLR-mediated infl ammatory responses in both systemic and mucosal set-
tings [ 19 ,  60 ] including the periodontium [ 57 ]. Complement inhibition may thus 
also suppress infl ammation that is initiated by TLR activation in response to micro-
bial ligands such as lipopolysaccharide, lipoproteins, and bacterial DNA [ 1 ,  103 ]. 
Moreover, TLR activation can be triggered by endogenous molecules (e.g., biglycan, 
hyaluronan fragments, and heparan sulfate fragments) that are released upon infl am-
matory tissue damage and act as danger signals [ 104 ,  105 ]. This suggests that com-
plement may also be involved in the progression of periodontal infl ammation; hence 
complement inhibitors may additionally interfere with this stage of the disease.  

4.6     Conclusions and Perspective 

 There is currently an unmet need for effi cacious and safe therapeutics in periodon-
titis, which is often unresponsive to conventional periodontal treatment [ 17 ,  106 –
 108 ]. At present, there is no satisfactory adjunctive therapy to scaling and root 
planing for the treatment of chronic periodontitis. The use of antimicrobials and 
generic antibiotics as adjunctive therapies has met with limited success at best 
[ 109 ]. Therefore, the treatment of periodontal disease should benefi t from safe and 
effective products appropriate for chronic administration. On the basis of evidence 
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from preclinical models, locally applied complement inhibitors can potentially 
block periodontal infl ammation and thereby provide protection as an adjunctive 
therapy to standard periodontal treatment. Being a host modulation-based 
approach, complement inhibition is advantageous to antimicrobial approaches 
since it is the host response that primarily infl icts damage upon the periodontal 
tissues. Moreover, as discussed above, the inhibition of periodontal infl ammation 
also exerts indirect antimicrobial effects, since the periodontitis-associated micro-
biota requires an infl ammatory environment to obtain nutrients for its growth and 
sustenance [ 56 ,  65 – 67 ]. 

 Compstatin-derived compounds with improved inhibitory potency and pharma-
cokinetic properties have shown safety and effi cacy in several other clinically rele-
vant non-human primate disease models. These involve treatment of age-related 
macular degeneration, sepsis, hemodialysis-induced infl ammation, and paroxysmal 
nocturnal hemoglobinuria [ 110 – 113 ]. A Cp40-based drug (AMY-101; Amyndas 
Pharmaceuticals) is currently being evaluated as a novel therapeutic approach to 
treat complications of ABO-incompatible kidney transplantation and paroxysmal 
nocturnal hemoglobinuria [ 114 ]. The recent interventional periodontal studies in 
non-human primates suggest that periodontitis may be a promising clinical applica-
tion for Cp40 and the clinically developed drug candidate AMY-101, a possibility 
that can be pursued in future clinical trials.     
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    Chapter 5   
 The Lectin Pathway of Complement 
and Biocompatibility 

             Estrid     Hein     and     Peter     Garred    

    Abstract     In modern health technologies the use of biomaterials in the form of 
stents, haemodialysis tubes, artifi cial implants, bypass circuits etc. is rapidly 
expanding. The exposure of synthetic, foreign surfaces to the blood and tissue of the 
host, calls for strict biocompatibility in respect to contact activation, the coagulation 
system and the complement system. The complement system is an important part of 
the initial immune response and consists of fl uid phase molecules in the blood 
stream. Three different activation pathways can initiate the complement system, the 
lectin, the classical and the alternative pathway, all converging in an amplifi cation 
loop of the cascade system and downstream reactions. Thus, when exposed to for-
eign substances complement components will be activated and lead to a powerful 
infl ammatory response. Biosurface induced complement activation is a recognised 
issue that has been broadly documented. However, the specifi c role of lectin path-
way and the pattern recognition molecules initiating the pathway has only been 
transiently investigated. Here we review the current data on the fi eld.  
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5.1         Biocompatibility 

 The challenge of biocompatibility is the same for all medical devices in contact with 
blood or tissue, but the issue can also to some degree be extended to organ trans-
plants. The concern is to avoid surface induced thrombosis and infl ammation, which 
in turn will lead to even more adverse clinical effects. One of the common problem 

mailto:peter.garred@regionh.dk


78

causing biomaterials are tubing used for extracorporeal circulation e.g., during hae-
modialysis and coronary bypass surgery, where complement is known to be acti-
vated. The complement system is of particular importance when it comes to immune 
responses to biosurfaces because it is abundantly present in the blood and serves as 
a fi rst line of defence in the human immune system. Activation and deposition of 
complement components on a wide variety of biosurfaces is a well-known issue, but 
the focus has mainly been on the downstream activated components. The lectin path-
way of complement activation was only rather recently discovered and initiating 
pattern recognition molecules are still being added.  

5.2     The Complement System 

 As an integral part of innate immunity, the complement system consists of more than 
30 soluble proteins circulating the blood stream. The main function of these mole-
cules is to activate and orchestrate the infl ammatory response. The complement sys-
tem is evolutionary ancient and as opposed to the somatic hypermutations 
characteristic for the antibodies in the adaptive part of immunity, the complement 
proteins are germ line encoded. The scavenging pattern recognition molecules 
(PRMs) bind to conserved universal structures on the surface of microorganisms, so 
called pathogen or danger associated molecular patterns (PAMPs/DAMPs). This 
generalized mode of recognition, allows the initial response to be rapid, gaining time 
to mobilize the slower acting but more specifi c and powerful adaptive response. 
However, the strategy is crude and increases the risk of mistakes. If not tightly con-
trolled the cascade activation of complement may run wild leaving the host in a 
dangerous and life threatening situation. This is why the complement system is often 
referred to as a double-edged sword. The central event of complement activation is 
the tick-over of C3 activation and accompanying amplifi cation loop of the cascade 
reaction. Upstream C3, there are three distinct initiation pathways leading to this 
situation: the lectin pathway, the classical pathway and the alternative pathway [ 1 ]. 
Figure  5.1  shows the activation pathways illustrated on a foreign biosurface.  

5.2.1     Activation via the Lectin Pathway 

 The lectin pathway of complement is initiated by the binding of pattern recognition 
molecules (PRM) from the subfamilies of collectins and fi colins to the PAMPs or 
DAMPs on the surface of microorganisms or altered self-cells. Six recognition mol-
ecules have thus far been reported to be able to activate the lectin pathway: Mannose- 
Binding Lectin (MBL), Collectin-10 (Collectin liver 1, CL-L1, CL-10), Collectin-11 
(Collectin kidney 1, CL-K1, CL-11), Ficolin-1 (M-fi colin), Ficolin-2 ( L -fi colin) and 
Ficolin-3 (H-fi colin). The PRMS are found in complex with the MBL/fi colin/collec-
tin associated serine proteases (MASPs) of which three are described: MASP- 1, 
-2 and -3. Upon binding of a PRM to a specifi c ligand, MASP-2 is activated and 
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cleaves complement factors C4 and C2 [ 2 ] and next, the fragments C4b and C2a bind 
to each other forming the active C3 convertase C4bC2a. In addition, MASP-1 can 
cleave C2 but not C4 and thus enhances the convertase formation, but is also crucial 
in activation of MASP-2 [ 3 ,  4 ]. The function of the last protease MASP-3 is still 
largely unknown. Similar to the MASPs there exist two smaller alternatively spliced 
variants lacking the serine protease domain, small MBL/fi colin/collectin associated 
protein (sMAP or Map19) and MBL/fi colin/collectin associated protein 1 (MAP-1 or 
Map44). Both molecules are proteolytic inactive, and the function of sMAP is 
unknown, whereas MAP-1 has been shown to be a potent regulator of the lectin path-
way [ 5 ,  6 ]. By competing with the MASPs in the binding to the PRMs, MAP-1 
inhibits lectin driven complement activation [ 7 ].  

5.2.2     Activation via the Classical Pathway 

 The classical pathway has a similar mode of initiation as the lectin pathway: the C1 
complex consisting of the pattern recognition molecule C1q and the serine prote-
ases C1r and C1s, binds either to the Fc part of antibody:antigen complexes on the 
surface of pathogens or dying host cells, or directly to soluble immune complexes 
[ 8 ]. The conformational change in C1q caused by the ligand binding, activates the 
associated C1r, which can now cleave C1s. When activated, C1s will cleave fi rst C4 
and next C2, and the fragments will complex to form the C4bC2a; the same C3 
convertase as generated via the lectin pathway.  

  Fig. 5.1    The three activation pathways of the complement system sketched on a foreign biosur-
face. The classical pathway is initiated by the C1q complex and the lectin pathway is initiated by 
collectins or fi colins in association with the MASPs; both mediating the cleavage of C2 and C4, 
which then forms the C3 convertase. The alternative pathway C3 convertase is formed by activated 
Factor B, spontaneously hydrolysed C3, and properdin. The C3 convertases cleaves C3 to activated 
C3b, which will lead to formation of more C3 convertases via the amplifi cation loop, and in turn 
also to the formation of the terminal complement complex (TCC)       
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5.2.3     Activation via the Alternative Pathway 

 As implied by the name, the alternative pathway varies notable from the other path-
ways and in addition, it carries two functions: it drives the amplifi cation loop at the 
C3 level magnifying the activation mediated by the other pathways, but it can also 
induce an independent activation of the cascade. Spontaneous and slow hydrolysis 
of C3 to C3(H 2 O) is continuously taking place on the surface of all cells. Under 
normal conditions, endogenous regulators such as Factor H inhibit any further acti-
vation on healthy host cells. On foreign or altered host cells, the protease Factor B 
binds to C3(H 2 O) and is then cleaved by Factor D creating the alternative C3 con-
vertase C3(H 2 O)Bb, which is stabilized by properdin [ 9 ]. In addition, properdin 
itself can act as a PRM by direct binding to PAMPs/DAMPs and mediating forma-
tion of C3 convertases by binding fl uid phase C3b [ 10 ].  

5.2.4     The Terminal Pathway 

 The three pathways converge in the formation of active C3 convertases, that can 
effi ciently cleave the most abundant complement component C3 (mean serum conc. 
1.2 mg/ml) into C3a and C3b [ 11 ]. C3a acts as a potent anaphylatoxin recruiting 
phagocytic cells to the site of action. Via an exposed thioester, C3b is now able to 
bind covalently to the target cell or ligand and facilitate the formation of even more 
convertases. The alternative C3 convertase is responsible for the amplifi cation loop 
of complement activation where C3 is rapidly cleaved and new C3 convertases are 
formed in parallel with the formation of the C5 convertases composed of C4bC2aC3b 
or C3bBb3b. This leads to deposition of C6, C7, C8 and multiple C9 that may 
assemble to a lytic transmembrane pore called the membrane attack complex 
(MAC) or terminal complement complex (TCC). 

 Regardless the rather strict classifi cation described above, it is becoming more 
and more evident that these molecules are cross-reactive and activate each other 
independent of pathways and even other cascade systems such as coagulation (e.g., 
reviewed in [ 12 ]).   

5.3     Pattern Recognition Molecules of the Lectin Pathway 

 Structurally, the six PRMs of the lectin pathway are alike. When transcribed and 
translated from their respective genes, monomeric peptides coil up in trimeric alpha 
helices, which further oligomerize to form the fi nal complex molecule. The charac-
teristic bouquet-like structure of these PRMs is achieved from disulphide bridging 
between cysteine residues in the N-terminal end of the peptides. This also forms the 
collagen like domain, responsible for the interaction with the MASPs. The heads of 
the bouquet structure is shaped of the C-terminal globular regions. In MBL, 
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Collectin-10 and Collectin-11, the carbohydrate recognition domain located at the 
globular region, is characterized by being C-type (calcium dependent). In the fi co-
lins, this domain is fi brinogen-like and has a preference for recognizing acetylated 
carbohydrate structures such as GlcNAc [ 13 – 17 ]. The overall structure of the PRMs 
of the lectin pathway is illustrated in Fig.  5.2 ; exemplifi ed as a fi colin molecule. 
Apart from the ligand binding domain, the PRMs have subtle differences which will 
be described below.  

  Fig. 5.2    Overall structure of the pattern recognition molecules (PRMs) of the lectin pathway. The 
illustration shows a fi colin molecule, but the general organization is the same for all the PRMs       
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5.3.1     MBL 

 The classical complement activating collectin MBL is encoded by the  MBL2  gene, 
primarily produced in the liver and present in the circulation in a mean concentra-
tion of 1,500 ng/ml (range: 5–5,000 ng/ml). This large inter individual variation in 
concentration is assigned to commonly occurring single nucleotide polymorphisms 
(SNPs) in the regulatory and structural part of the gene [ 18 ]. MBL binds to ligands 
such as  D -mannose,  N -acetylglucosamine (GlcNAc) and  L -fucose—all carbohydrate 
structures found on the surface of microbes—and it activates the complement cas-
cade via this binding [ 19 ].  

5.3.2     Collectin-10 

 Collectin-10 belongs to the newly discovered so-called novel collectins along side 
Collectin-11 and Collectin-12. Collectin-12 is not described further here, since it is 
a transmembrane PRM and has not been shown to activate complement (yet). The 
gene  COLEC10  is expressed in the liver and the molecule was originally described 
as a cytoplasmatic protein [ 20 ]. Recently, Collectin-10 was determined to be present 
in plasma in a median concentration of 3.0 μg/ml (range 1.5–5.5 μg/ml) and addi-
tionally, it was found in complex with the MASPs [ 21 ]. Briefl y after, it was demon-
strated that Collectin-10 circulates in heterocomplexes with Collectin-11 in serum 
and that these complexes further associates with the MASPs with a preference for 
MASP-1/-3 rather than MASP-2 [ 22 ].  In vitro  experiments in the same study 
showed that when purifi ed, these native Collectin-10/-11 complexes in the presence 
of recombinant MASP-2 could cleave purifi ed C4 on a ligand of mannan or DNA.  

5.3.3     Collectin-11 

 Collectin-11 is encoded by the gene  COLEC11 , expressed in all organs but primar-
ily the kidney [ 23 ] and present in serum in a relatively low concentration of approxi-
mately 0.3 μg/ml [ 24 ,  25 ]. Recently, Collectin-11 was demonstrated to belong to the 
PRMs of the lectin pathway, as it was reported to associate with the MASPs and 
activate the complement cascade on  Candida albicans  [ 26 ,  27 ].  

5.3.4     Ficolin-1 

 Corresponding to their protein names, the three fi colins are encoded by the  FCN1 , 
 FCN2  and  FCN3  genes, respectively [ 28 ]. Ficolin-1 is primarily synthesized in 
monocytes and granulocytes, where it is stored in neutrophilic granules [ 29 ,  30 ]. 
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The trigger mechanism by which Ficolin-1 is released is still unknown, but interest-
ingly, once the granules are secreted, the Ficolin-1 molecules bind back to the cell 
surface in a calcium-dependent manner via the fi brinogen like domain. The ligand 
on the cells has been shown to be sialic acid [ 30 – 32 ]. Accordingly, Ficolin-1 is 
found in a relatively low mean concentration in the circulation of approximately 
0.3 μg/ml in normal healthy individuals [ 29 ,  33 ,  34 ]. Additionally, Ficolin-1 has 
been reported to bind to different subsets of lymphocytes, namely CD56 dim  NK-cells 
and activated T-cells suggesting a hitherto undescribed link between innate and 
adaptive immunity [ 35 ]. Finally, Ficolin-1 has been shown to associate with 
MASP-2  in vivo  [ 36 ], and  in vitro  experiments demonstrated complement activation 
potential [ 37 ], indicating functions of host defence against pathogens other than the 
modulating role indicated by the self recognition.  

5.3.5     Ficolin-2 

 Ficolin-2 is produced by hepatocytes and released to the blood stream [ 38 ]. In 
healthy individuals it circulates in a mean concentration of approximately 5 μg/ml 
(range 1–12 μg/ml) [ 39 – 42 ]. The  FCN2  gene is highly polymorphic with numerous 
reported single nucleotide polymorphisms (SNPs) throughout the promoter, introns 
and exons. Variations located in the promoter has been shown to signifi cantly affect 
the concentration of protein secreted, whereas two SNPs in exon 8 increases or 
decreases the binding affi nity to GlcNAc, respectively [ 39 ,  42 ]. When it comes to 
recognition and binding, Ficolins-2 alternates from the other PRMs due to the vide 
variety of reported ligands. In the fi brinogen-like domain Ficolin-2 contains no less 
than four distinct binding grooves S1, S2, S3 and S4, all of which have different 
recognition specifi city [ 14 ]. In accordance, numerous ligands have been reported, 
many of which are in the category of acetylated compounds: GlcNAc, GalNAc, 
CysNAc, acetylated low density lipoproteins, 1,3- β -glucan [ 13 ,  14 ,  43 ,  44 ]. Also, 
microorganisms such as capsulated  Staphylococcus aureus ,  Streptococcus pneumo-
nia ,  Salmonella typhimurium ,  Escherichia coli ,  Pseudomonas aeruginosa , and 
 Aspergillus fumigatus  [ 41 ,  45 – 47 ]. Activation of the lectin pathway of complement 
via Ficolin-2 has been shown to occur in association with MASP-2 as the enzymatic 
cleaver of C2 and C4 [ 48 ,  49 ]. In addition, Ficolin-2 is reported to interact with the 
long pentraxin-3 (PTX3) on the surface of the opportunistic fungal pathogen 
 Aspergillus fumigatus  and hereby boost the complement response [ 47 ].  

5.3.6     Ficolin-3 

 The gene encoding Ficolin-3,  FCN3  is located on chromosome 1 as opposed to 
 FCN1  and  FCN2 , which are both located on chromosome 9. The gene is highly 
conserved with only a few reported polymorphisms in the coding region [ 50 ]. 
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One of which is a deletion in exon 5,  FCN3  +  1637delC , leading to premature 
termination of the transcript and in the homozygous state, functional defi ciency 
of the protein [ 51 ,  52 ]. Ficolin-3 is predominantly produced in the lungs, bile 
duct epithelial cells and hepatocytes and circulates with a mean of 25 μg/ml—the 
highest concentration of the recognition molecules in the lectin pathway [ 51 ]. 
Few ligands have been described for Ficolin-3 here among the Gram positive 
 Aerococcus viridians  [ 41 ,  53 ] and latest, the Gram negative bacteria  Hafnia alvei , 
a commensal of the human gastrointestinal tract [ 54 ].  In vitro , Ficolin-3 has been 
shown to bind to apoptotic cells and mediate their clearance [ 55 ]. A recently 
developed  in vitro  ELISA assay for analysis of Ficolin-3 complement activation 
function, utilizes the binding of Ficolin-3 to acetylated bovine serum albumin 
(acBSA) [ 16 ].   

5.4     Extracorporeal Circulation and Biocompatibility 

 A variety of medical treatments exploit extracorporeal circulation e.g., autotrans-
fusion, extracorporeal membrane oxygenation, plasmapheresis, haemofi ltration, 
haemodialysis and cardiopulmonary bypass. This is a hazardous procedure 
because of the involvement of direct contact between blood and non-self 
surface. 

5.4.1     Haemodialysis 

 In the case of kidney failure, e.g., end-stage renal disease, haemodialysis is vital for 
clearing the blood of urea and other waste products and accordingly keep the patient 
alive. However, long-term haemodialysis patients have increased morbidity due to 
dialysis-induced chronic infl ammation [ 56 ]. 

 Ficolin-2 has in independent studies been shown to bind to polysulfone hae-
modialysis tubes [ 57 – 59 ]. In two studies of Mares et al. proteins adsorbed to the 
polysulfone dialyser membrane during haemodialysis was eluted, separated by 
2-dimensinal gel electrophoresis and analyzed by mass spectrometry [ 58 ,  59 ]. 
Both studies found Ficolin-2 to be massively present in the membranes along-
side MASP- 1, MASP-2 and C3c, clearly indicating lectin pathway activity. For 
confirmation, the level of Ficolin-2 and MASP-2 in plasma during haemodialy-
sis was measured in ELISA, and it showed a steady decrease corresponding to 
the progressive adsorption to the polysulfone membrane. Xu et al. also investi-
gated the profile of adhered proteins, but to reused polysulfone haemodialysis 
membranes [ 57 ]. Their results were similar: Ficolin-2 and C3 were the most 
abundant proteins found. MASP-1 and MASP-3 was also detected but not 
MASP-2.  
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5.4.2     Cardiopulmunary Bypass Surgery 

 Tubing for extracorporeal circulation during e.g., open heart surgery has, in general, 
been thoroughly tested for biocompatibility. However, some of the major complica-
tions during cardiopulmonary bypass are activation of the complement system, 
infl ammation and postoperative haemorrhage. Heparin is administered to patients 
systemically during surgery to avoid blood clotting but is also widely used as coat-
ing for extracorporeal tubing, since it has been shown to reduce some of the above 
mentioned issues [ 60 ,  61 ]. 

 Various approaches regarding coating have been used commercially to achieve 
the highest degree of biocompatibility in tubing for extracorporeal circulation. 
Bioline ®  circuits are layered with heparin-albumin whereas the coating of Phisio ®  
circuits is designed to imitate the surface of host cells and utilizes a phosporylcho-
line polymer. A newly published study analyzing these two coatings in respect to 
lectin pathway molecules and activation in two randomized groups of patients 
undergoing elective heart surgery showed a surprising result [ 62 ]. During the opera-
tion, Ficolin-2 was signifi cantly depleted from plasma in the patients with Bioline ®  
tubing as compared to Phisio ®  and the level did not restore 24 h post-operationally. 
Curiously, there was no difference in the degree of  in vitro  measured complement 
activation between the two coatings nor the level of any of the other PRMs mea-
sured. In accordance, previous investigations of Phisio ®  and Bioline ®  circuits had 
shown a comparable degree of biocompatibility between the two, regarding whole 
body infl ammation response and  in vivo  complement activity [ 63 ]. Another study 
by Reser et al. compared the clinical outcome of patients who had undergone coro-
nary bypass surgery with different tubing coatings. Again, the tubing investigated 
was Phisio ® , Bioline ®  and a third coating Softline ® , a heparin-free synthetic poly-
mer comprised of hydrophilic and hydrophobic areas, thought to reduce surface 
tension on the contact surfaces [ 64 ]. In respect to the overall survival, there was no 
signifi cant difference between the tubing groups. In a third study comparing 
Bioline ®  with non-heparinized coating complement activity was not analyzed, but 
an overall positive effect of the Bioline ®  circuits was found with reduced systemic 
infl ammation and a shorter stay at the intensive care unit [ 65 ].  

5.4.3     Silicone Rubber Biomaterial 

 In a study by Andersen et al. various coatings for biomaterial surfaces in general 
was investigated for their biocompatibility in respect to complement activation [ 66 ]. 
Silicone rubber treated or untreated with a coating of plasma polymerized vinyl pyr-
rolidone (ppVP) was analyzed for complement activation potential. The results 
showed that both untreated silicon and a control of polystyrene were potent activa-
tors of complement measured as direct deposition of C3b to the material and fl uid 
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phase activated C3c. In contrast, ppVP treated silicone showed a markedly reduced 
complement activity. Further analysis revealed that while all three activation path-
ways were active on the untreated silicone surface and polystyrene, only the lectin 
pathway measured as binding of Ficolin-2 and MBL was active on ppPV treated 
silicone. Hence, the residual complement activity observed on ppPV coated silicone 
was ascribed to be mediated by Ficolin-2 and MBL.   

5.5     Solid Organ Transplantation 

 The resolution to escape the detention of haemodialysis is renal transplantation. 
This, however, entails a whole new series of challenges to the recipient. But shared 
with the dialysis tube the donor organ has the feature of being a foreign surface to 
the recipient. The role of adaptive immunity and antibody mediated graft rejection 
is well established, however, the complement system is also a known actor. Thus, 
deposition of C4d is an accepted marker in antibody mediated graft rejection [ 67 ]. 
As it turns out, the role of the PRMs of the lectin pathway is starting to be estab-
lished in transplantation in general, but particularly in kidney transplantation. 

5.5.1     Kidney Transplantation 

 In a study from Imai et al. Ficolin-3 was found on the peritubular capillary of the 
kidney allograft along with IgM and C4d [ 68 ]. This could indicate a role for 
Ficolin-3 mediated lectin pathway activity; however no deposition of any of the 
MASPs were detected. Bay et al. performed a large cohort study based on pre- 
transplant serum samples, where the results showed that a high pre-transplant level 
of Ficolin-3 was signifi cantly associated with a decreased graft survival [ 69 ]. The 
results have been confi rmed by a similar retrospective study from Smedbråten et al. 
concluding high Ficolin-3 level to be an independent risk factor of kidney graft loss 
[ 70 ]. Though the rejected grafts were not investigated, this indirectly substantiates 
the possible role of Ficolin-3 and lectin pathway in kidney graft rejection.   

5.6     Sampling and Preparation of Blood 

 Though not directly vital to the patients, an important  in vitro  biosurface is the 
inside of the tubes where blood samples are collected for analysis of complement 
components. Today, various compounds are used in blood collection tubes to isolate 
plasma by inhibiting the coagulation system. Citrate and EDTA are chelaters of 
calcium, which is essential for clotting to occur – calcium is however also essential 
for the complement cascade to run. Samples of this type can be analyzed by 
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subsequent addition of calcium to the sample buffer. The human body itself pro-
duces an anti-coagulator, heparin that binds to and activates the natural inhibitor 
antithrombin, which in turn inhibits of the function of thrombin. Heparin does, how-
ever, also interfere with the complement system [ 60 ] and is ligand for Ficolin-2 
[ 15 ]. In blood collection, hirudin, a protein derived from the saliva of leeches, is a 
relatively newly exploited, highly potent anti-coagulation agent. It inhibits thrombin 
directly, and as of yet, no interferences with other blood components have been 
reported [ 71 ]. Regarding the preparation of serum, blood has traditionally been 
drawn into a sterile, non-coated glass tube where the negatively charged surface of 
the glass acts as activator of the intrinsic pathway via factor XII [ 72 ]. In recent times 
however, the addition of coagulation activators to commercially available serum 
tubes is becoming widespread. The mineral silica is an oxidized form of silicon and 
when coated as a powder to the blood vial it will speed up the intrinsic pathway 
activation extensively, thus reducing the clotting time before serum can be prepared 
from the sample. 

5.6.1     Clot Activating Silica in Serum Tubes 

 It was recently documented by our group and confi rmed by others, that Ficolin-2 is 
selectively depleted from serum samples prepared in vials containing silica [ 73 ,  74 ]. 
Indirectly it was shown, that the major part of Ficolin-2 in the initial blood sample 
bound to the silica particles and was thus contained in the blood clot. The entire 
population of Ficoin-2 was not depleted, a residual entity remained in both studies. 
An explanation for this could be that Ficolin-2 forms head-to-head complexes (as 
visualized by electron micrographs in the study of Ohashi and Erickson investigat-
ing the structure of pig fi colins α [ 75 ]), thus covering the binding groove for silica. 
Interestingly, the binding of Ficolin-2 to silica did not result in activation of comple-
ment or consumption of complement components, in any of the studies [ 73 ,  74 ]. 
Though shown to bind to heparin as well, no results of Ficolin-2 depletion in hepa-
rin coated blood collection tubes has been reported. The fi ndings described above, 
could indicate an alternative role for Ficolin-2 in the coagulation system, this how-
ever remains to be elucidated. 

 Though the binding to silica and depletion of Ficolin-2 in serum samples is 
merely of technical importance, the clinical implications could easily be imagined. 
The inaccurate measurements will lead to faulty conclusions e.g., regarding the role 
Ficolin-2 in various disease settings, and since the protein is not depleted entirely 
only drastically reduced, the problem may not be suspected. 

 A recent example is a study where the possible role of Ficolin-2 as a predictor of 
outcome in patients with Crohn’s disease was investigated [ 76 ]. Despite indications 
from previous studies, Ficolin-2 was found to be a poor predictor—but interestingly 
the blood samples used for analysis, were collected in serum tubes containing silica. 
Consequently, the measured Ficolin-2 levels would be unreliable and any possible 
differences could have been distorted.   
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5.7     Final Remarks 

 The data reviewed here, have shown that especially Ficolin-2 binds to several other-
wise biocompatible surfaces and the question remains what other surfaces could be 
targeted. The clinical consequences of these fi ndings have not been investigated and 
the impact on the health of the patients is not known. Due to the high evolutionary 
conservation level of  FCN2  [ 77 ] and that no Ficolin-2 defi ciency has been reported 
to date, it is reasonable to speculate that the  in vivo  depletion could have a signifi -
cant impact on patient health and outcome at least during specifi c disease settings or 
in immune-compromised individuals. Especially considering the spectrum of 
opportunistic microorganisms, that Ficolin-2 has been reported to recognise, 
described in the introduction. Moreover, low levels of Ficolin-2 have been associ-
ated with severe respiratory diseases, e.g., chronic bronchiectasis, pulmonary 
 Mycobacterium tuberculosis  infection, and susceptibility to infection during aller-
gic infl ammation of the lungs [ 78 – 80 ]. Most recently, Ficolin-2 has been shown in 
two independent studies to have an inhibitory effect on hepatitis C virus by binding 
to the envelope protein [ 81 ,  82 ]. Finally, independent  in vitro  studies have shown 
Ficolin-2 to bind to the opportunistic fungus  Aspergillus fumigatus , the cause of 
invasive pulmonary aspergillosis [ 47 ,  83 ,  84 ]. 

 The novel collectins described in the introduction, are, as the name imply still so 
newly discovered and undefi ned, that the research regarding them are not involving 
biocompatibility. On the other hand, the studies available on complement responses 
to biosurfaces have not had the chance to take these molecules into account. 
Accordingly, this an open fi eld for investigation.     
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    Chapter 6   
 Foreign Body Reaction to Subcutaneous 
Implants 

             Michail     Kastellorizios     ,     Namita     Tipnis     , and     Diane     J.     Burgess    

    Abstract     Subcutaneously implanted materials trigger the host’s innate immune 
system, resulting in the foreign body reaction. This reaction consists of protein 
adsorption on the implant surface, infl ammatory cell infi ltration, macrophage fusion 
into foreign body giant cells, fi broblast activation and ultimately fi brous encapsula-
tion. This series of events may affect the function of subcutaneous implants, such 
as inhibition of drug diffusion from long-acting drug delivery depots and medical 
device failure. The foreign body reaction is a complex phenomenon and is not yet 
fully understood; ongoing research studies aim to elucidate the cellular and molec-
ular dynamics involved. Recent studies have revealed information about the spe-
cifi c role of macrophages and their differential activation towards pro- and 
anti- infl ammatory states, as well as species differences in the timing of collagen 
deposition and fi brosis. Understanding of the diverse processes involved in the 
foreign body reaction has led to multiple approaches towards its negation. Delivery 
of tissue response modifi ers, such as corticosteroids, NSAIDs, antifi brotic agents, 
and siRNAs, has been used to prevent or minimize fi brosis. Of these, delivery of 
dexamethasone throughout the implantation period is the most common method to 
prevent infl ammation and fi brosis. More recent approaches employ surface modi-
fi cations to minimize protein adsorption to ‘ultra-low’ levels and reduce fi brosis. 
However, the diverse nature of the processes involved in the foreign body reaction 
favor the use of corticosteroids due to their wide spectrum action compared to 
other approaches. To date, combination approaches, such as hydrophilic coatings 
that reduce protein adsorption combined with delivery of dexamethasone are the 
most effective.  
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6.1         Overview of the Foreign Body Reaction 

 The foreign body reaction is a result of the wound healing response, which is altered 
by the presence of a foreign body. In the absence of a foreign body, tissue trauma 
triggers a series events that comprise wound healing, i.e. infl ammation, prolifera-
tion and remodeling [ 1 – 4 ]. These events result in wound closure and new tissue 
formation (regenerative or scar tissue). The presence of a foreign body interferes 
with the molecular cascades involved in wound healing, particularly the action of 
macrophages and their differentiation into foreign body giant cells. As a result, 
wound healing is altered into what is known as the foreign body reaction, which 
consists of protein adsorption on the implant surface, macrophage recruitment and 
giant cell formation, fi broblast activation, and fi brous encapsulation of the foreign 
body [ 5 – 9 ]. These steps, as they apply to subcutaneously implanted materials, are 
shown in Fig.  6.1  and described below.  

6.1.1     Protein Adsorption 

 Upon implantation, materials are exposed to the subcutaneous tissue’s extracellular 
matrix as well as edema caused by tissue trauma during implantation. This results 
in proteins such as albumin, fi bronectin, fi brinogen, and complement being adsorbed 
on the surface of the implant [ 10 – 14 ]. The majority of the research conducted on 
protein adsorption on biomaterials has been focused on plasma protein adsorption. 
Gifford  et al.  reported protein adsorption characteristics to subcutaneously 
implanted biosensors [ 15 ]. It was determined that multiple proteins with molecular 
weights up to 15 kDa were adsorbed on the sensor surface after subcutaneous 
implantation in rats, with albumin fragments being the predominant species.  

  Fig. 6.1    Steps in the foreign body reaction       
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6.1.2     Acute Infl ammation 

 Blood/implant interactions during initial tissue trauma lead to the activation of the 
complement system [ 16 – 18 ]. This triggers the body’s innate immune system, which 
leads to edema and white blood cells infi ltration (primarily neutrophils and mono-
cytes) at the implantation site. Neutrophils are recruited within a few hours following 
implantation and their primary function is to ingest bacteria and other debris  via  
phagocytosis. Neutrophils are the primary infl ammatory cell type for the fi rst 2 days 
following implantation, at which point they subside and macrophages, differentiated 
from recruited monocytes, become predominant. Macrophages remain at the site of 
implantation for a few days in order to ingest foreign material and recruit other cell 
types, such as fi broblasts, to aid in wound healing. Macrophages recognize the implant 
as foreign due to protein adsorption on the implant surface, and the continuous pres-
ence of the implant results in macrophage differentiation and fusion into foreign body 
giant cells [ 19 – 22 ]. Giant cells can contain up to about 100 nuclei, as multiple macro-
phages fuse to ingest large materials. The presence of macrophages and foreign body 
giant cells has been used as a marker for the foreign body reaction, even though their 
exact role has not been elucidated. On a molecular level, acute infl ammation is char-
acterized by increased levels of pro-infl ammatory cytokines, such as IL-4, IL-8, and 
TNF. These cytokines are excreted by neutrophils and macrophages and play an 
important role in infl ammation regulation. Recent advances towards deciphering the 
role of infl ammatory cytokines are described in the next section. 

 Acute infl ammation is diagnosed  via  physical examination (redness and swelling 
of the infl amed area) or  via  histological evaluation of the tissue surrounding the 
implant. The latter is more commonly employed in research endeavors, and the 
presence of neutrophils and macrophages in high levels around the implants is used 
to confi rm infl ammation.  

6.1.3     Fibrosis 

 During the fi nal part of the foreign body reaction, collagen fi bers are deposited 
around the implant and ultimately contract to form a dense, acellular, fi brous cap-
sule [ 6 ,  7 ]. Collagen is deposited by fi broblasts [ 23 ,  24 ] activated by macrophages, 
and the fi brous capsule that results from their action isolates the implant from the 
local tissue microenvironment. Isolation serves as the body’s last defense against a 
foreign body, and results from the body being unable to digest or otherwise elimi-
nate the foreign material from the tissue. 

 Fibrous encapsulation as a result of the foreign body reaction is part of the extra-
cellular matrix (ECM) remodeling phase during wound healing. Under normal con-
ditions, where no foreign body is present during wound healing, fi broblasts produce 
collagen to replace the ECM that was lost during tissue injury. The collagen fi bers 
produced under these conditions do not form a fi brous capsule and do not have 
any particular orientation, which results in healthy, loose connective tissue [ 4 ]. 
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The  presence of a foreign body alters the remodeling phase of wound healing. 
Macrophages and foreign body giant cells attached on the surface of the foreign body 
secret matrix metalloproteinases and their inhibitors, which modulate the concentra-
tion of cytokines around the implant. Fibroblasts respond and move up concentration 
gradients of certain cytokines (such as platelet derived growth factor (PDGF)) 
 [ 25 – 30 ]. Accordingly, fi broblasts orient around the foreign body and deposit colla-
gen fi bers that then encapsulate the foreign body in a fi brous membrane.  

6.1.4      Recent Advances in the Elucidation of the Foreign 
Body Reaction Mechanisms 

 The study of the foreign body reaction and its underlying mechanisms has been a 
research focus for the past decades. A comprehensive review of the main steps of 
the foreign body reaction to biomaterials is presented by Anderson  et al . (2008) 
with emphasis on the cellular components of the reaction [ 6 ]. More recent studies 
report on molecular dynamics during the foreign body reaction, as well as further 
insights into the role of specifi c cell types. 

 With the aid of advanced analytical techniques such as multiplex immunoassay-
ing and ELISA, the up-regulation of pro- and anti-infl ammatory molecules through-
out long-term implantation periods (from 7 to 30 days) has been mapped [ 31 ,  32 ]. 
It was determined that the pro-infl ammatory cytokines IL-6 and TNF (which pro-
mote macrophage activation) and IL-4 and IL-13 (which promote macrophage 
fusion into foreign body giant cells) are up-regulated during the fi rst period follow-
ing implantation, with IL-13 peaking at 21 days. The anti-infl ammatory interleukin 
IL-10 is up-regulated during the later stages of the foreign body reaction [ 33 ]. In 
addition, genetically modifi ed, knock-out mice that do not express the chemokine 
receptor CCR2 demonstrated a stronger acute infl ammatory phase (indicated by 
neutrophil infi ltration) but a reduced chronic infl ammatory phase (indicated by 
reduced numbers of macrophages) compared to control mice [ 34 ,  35 ]. Similarly, the 
absence of the toll-like receptor TLR4 in a knock-out mouse model resulted in a 
thicker fi brotic band encapsulating the implants [ 36 ]. Macrophage polarization has 
been studied to decipher the various roles of macrophages in the foreign body reac-
tion. It is known that macrophages can be activated to either promote infl ammation 
(traditionally activated macrophages, M1) or to promote tissue remodeling (alterna-
tively activated macrophages, M2). It is now known that during the foreign body 
reaction, macrophages are activated in a way that results in actions attributed to both 
M1 and M2 macrophages [ 37 ]. 

 More recently, the foreign body reaction to subcutaneous implants of fi xed size, 
shape and composition was compared between a small (rat) and a large (Gottingen 
minipig) animal model [ 38 ]. It was determined that while the steps that make up 
the foreign body reaction are preserved across the different species, their relative 
timing of occurrence is signifi cantly different. Minipigs demonstrated earlier onset 
of fi brosis, with a dense collagen accumulation starting from day 7 as opposed to 
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day 14 in rats. A comparison of rat and minipig tissue 7 days post implantation is 
shown in Fig.  6.2 .  

 The advances described above constitute signifi cant contributions towards under-
standing the underlying mechanisms of the foreign body reaction, and newer 
research is continuously surfacing that addresses a different aspect of this complex 
process. However, the inter-relation of the molecular and cellular dynamics during 
the foreign body reaction, as well as the entire spectrum of their complex actions is 
yet to be fully elucidated.   

6.2     Tools to Evaluate the Foreign Body Reaction 

 The complexity of the foreign body reaction has made the development of a single, 
quantifi able marker for its diagnosis and evaluation challenging. The most com-
monly used method to measure the foreign body reaction is  via  histological evalua-
tion of the tissue response in animal models, usually rodents. More thorough 
techniques that quantify molecular and cellular markers for specifi c aspects of the 
reaction have been developed, however, histological evaluation remains the most 
reliable method and is used to validate newer techniques. 

6.2.1     In Vivo Methods 

6.2.1.1     Invasive Techniques 

 The most straight-forward approach to evaluate the biocompatibility of a material 
designed for subcutaneous implantation is to test the tissue response to the material 
at different time points following implantation [ 38 – 41 ]. For this, serial sacrifi ce of 
rodents is typically employed to obtain samples of tissue samples from the area 

  Fig. 6.2    Comparison of the foreign body reaction in rats and minipigs 7 days post-implantation. Star 
denotes implant location. Connective tissue is stained pink, collagen fi bers light pink and infl amma-
tory cells purple (H&E staining).  Green arrow : collagen fi bers;  black arrow : fi broblasts [ 38 ]       
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surrounding the implants, which are then stained and examined microscopically. 
Hematoxylin & Eosin (H&E) staining is most commonly used, since it can stain and 
differentiate cells, nuclei, extracellular matrix and collagen fi bers. Masson’s 
Trichrome, which stains collagen, is also used when the focus of the study is the 
fi brotic phase of the foreign body reaction. When partial anti-infl ammatory effects 
are observed, a reduction in the severity of the foreign body reaction can be evalu-
ated by cell (neutrophil and macrophage) counting around the implant, as well as 
measuring the fi brotic capsule thickness. In addition, immune-staining for neutro-
phils (NIMP-R24) and macrophages (MAC387) can be used to quantify the acute 
and chronic infl ammatory phases [ 42 ]. 

 More recent approaches employ quantifi cation of pro- and anti-infl ammatory 
cytokines in tissue surrounding the implants [ 43 – 46 ]. This method is especially use-
ful when the foreign body reaction between different materials is compared, and it 
can give insight on mechanistic aspects of the reaction, as described in the previous 
section.  

6.2.1.2     Noninvasive or Minimally Invasive Techniques 

 The serial sacrifi ce of animals involved in the methods described above creates a 
need for minimally invasive methods to monitor the foreign body reaction during 
long periods of time  in vivo . To this end, the microdialysis technique has been 
adapted to monitor the up-regulation of infl ammatory cytokines in the interstitial 
fl uid [ 33 ,  47 ,  48 ]. Microdialysis catheters can be implanted in the subcutaneous tis-
sue, mimicking a subcutaneous implant. An isotonic solution is pumped through the 
catheter and molecules present in the tissue fl uid that can pass through the catheter’s 
pores, are collected and analyzed. This technique has been successfully applied to 
measure concentrations of the infl ammatory cytokines MCP-1, IL-6 and IL-7. 
Applications in measuring tissue response to implants alongside the implanted 
microdialysis catheter require further development of the technique. Another 
approach is to use imaging techniques to monitor the foreign body reaction. For 
example, cellular apoptosis associated with infl ammation has been monitored  via  
fl uorescence [ 42 ], while fi brin deposition from mast cells has been detected using a 
modifi ed near infrared probe [ 49 ].   

6.2.2     In Vitro Methods 

 A method to evaluate the biocompatibility of new and existing biomaterials  in vitro  
is necessary, especially in early stage investigations. Currently, there is no standard-
ized  in vitro  method to test the foreign body reaction. The cytotoxicity testing pro-
tocols described by the United States Pharmacopeia are typically followed when a 
new material is synthesized, however, lack of cytotoxicity does not guarantee 
biocompatibility. 
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 Cell culture-based methods to test the foreign body reaction have been developed 
in recent years. The majority of these methods include incubation of the implant in 
a macrophage culture with subsequent testing of macrophage adhesion to the sur-
face of the implant, or identifi cation of infl ammatory cytokines to determine macro-
phage polarization [ 43 ,  44 ,  46 ,  50 ]. More complex methods combine macrophages 
with endothelial cells or fi broblasts, in order to cover a wider area of the foreign 
body reaction [ 51 ]. Of these methods, macrophage adhesion on the implant surface 
coupled with quantifi cation of infl ammatory cytokine expression in the media has 
shown some ability to predict biocompatibility  in vivo  between different materials. 
In addition, an  in vitro  model that mimics the foreign body reaction  via  surface 
modifi cation of polymeric materials has been recently reported [ 52 ]. This model, 
however, was not developed for the evaluation of the foreign body reaction  in vitro .   

6.3     Prevention of the Foreign Body Reaction 

 Recent years have seen a rise in complex subcutaneous formulations as well as sub-
cutaneously implanted medical devices, whose function can be inhibited by the for-
eign body reaction. For example, infl ammatory cell adhesion on biosensor surfaces 
can decrease biosensor stability  in vivo . Moreover, fi brous encapsulation prevents 
these tissue analytes from reaching the biosensor [ 39 ,  53 ], and, in the case of con-
trolled drug release formulations, the diffusion of drug to the local tissue [ 54 ]. 
Accordingly, prevention of the foreign body reaction to subcutaneous implants 
remains a major research focus. Methods studied to that effect include release of 
tissue response modifi ers, implant surface modifi cation to minimize the reaction, or 
a combination of these two approaches. 

6.3.1     Release of Tissue Response Modifi ers 

 Tissue response modifi ers target cellular components of the foreign body reaction 
and disrupt the cascade of infl ammatory events. Non-steroid anti-infl ammatory 
drugs (NSAIDs), glucocorticoids, anti-fi brotic agents, and siRNAs have been used 
as tissue response modifi ers. 

6.3.1.1     Non-steroid Anti-infl ammatory Drugs 

 NSAIDs are effective in inhibiting the early stages of the foreign body reaction by 
acting on neutrophils [ 55 – 59 ]. Their anti-infl ammatory effect, however, is insuffi -
cient for long-term applications. For example, release of salicylic acid was shown to 
only reduce the severity of fi brosis (reduction in fi brotic band thickness) [ 60 ]. 
NSAIDs are therefore not extensively used to battle the foreign body response.  
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6.3.1.2     Glucocorticoids 

 Glucocorticoids have been used extensively to prevent the foreign body reaction 
due to their effi cacy and wide spectrum of activities [ 61 – 63 ]. They target neutro-
phils, macrophages, mast cells, lymphocytes and fi broblasts. They increase the 
expression of anti-infl ammatory cytokines, reduce pro-infl ammatory cytokines, and 
reduce collagen synthesis in fi broblasts. 

 The most commonly used glucocorticoid is dexamethasone, due to its high 
potency which allows it to be administered in low doses [ 64 ,  65 ]. From a pharma-
cological perspective, dexamethasone is very effective in preventing the foreign 
body reaction and it has been determined that a constant presence of dexamethasone 
is required for a long-term anti-infl ammatory effect [ 38 ,  41 ]. To achieve long-term 
release and effect, dexamethasone has been incorporated in polymer microspheres 
[ 66 ,  67 ], scaffolds [ 68 ,  69 ], electrospun fi bers [ 70 ], and microsphere/hydrogel com-
posites [ 38 – 40 ,  64 ,  71 ,  72 ]. 

 The effi cacy of subcutaneously delivered dexamethasone has been evaluated in 
small (normal and diabetic rats) [ 39 – 41 ,  71 ] and large (Gottingen minipigs)[ 38 ] 
animal models for implantation periods ranging from 1 to 3 months. 
Dexamethasone- loaded poly(lactic-co-glycolic) (PLGA) microspheres embedded 
in a polyvinyl alcohol hydrogel were used to coat small subcutaneous implants 
that mimic implantable glucose biosensors. PLGAs of molecular weight appropri-
ate for the implantation duration were chosen to achieve gradual release of 
dexamethasone. 

 As mentioned in Sect.  6.1.4  above, Gottingen minipigs showed an earlier onset 
of fi brosis compared to rats. The temporal asymmetry between the two species’ 
reaction to the subcutaneous implants necessitated modifi cation of dexamethasone- 
loaded PLGA microspheres to tailor the dexamethasone release kinetics to the tim-
ing of the foreign body reaction.  

6.3.1.3     Anti-fi brotic Agents 

 Fibrosis in vital organs (such as liver and kidney fi brosis) is not dissimilar to the 
chronic infl ammatory phase of the foreign body reaction [ 73 ]. Accordingly, antifi -
brotic agents that are used in the treatment of such diseases can be used to prevent 
the foreign body reaction by targeting fi broblasts and inhibiting collagen produc-
tion. Ganceto  et al . reported that delivery of pirfenidone, an antifi brotic and anti-
infl ammatory agent, reduced fi broblast activation by macrophages as well as 
collagen production [ 74 ]. However, fi brosis was not completely negated, possibly 
due to lack of suffi cient anti-infl ammatory action during earlier implantation peri-
ods. A summary of antifi brotic molecules that can potentially be used to prevent the 
foreign body reaction is shown in Table  6.1  below.
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   Table 6.1    List of antifi brotic agents with potential in use to the prevent foreign body reaction, 
adapted from [ 73 ]   

 Fibrotic pathway/target  Inhibiting compound(s) 

 Infl ammation/immunosuppression  Glucocorticoids, retinoids, colchicine, azathioprine, 
cyclophosphamide, thalidomide, pentoxifylline, 
theophylline 

 Collagen synthesis  Prolyl-4-hydroxylase inhibitors (e.g. HOE0 077 or 
phenanthrolinones) 

 TGFβ  Decorin, pirfenidone, relaxin, BMP-7, hepatocyte growth 
factor, SMAD7 

 CTGF  Antisense oligonucleotides, cAMP, TNF 
 Endothelin-1  Bosentan 
 Angiotensin II  ARBs, ACE inhibitors 
 Rho GTPases  Y-27362, fasudil 
 MMP2 and 9  Bay 12-9566 
 TIMP-1  Monoclonal antibodies specifi c for TIMP-1 
 B cell antagonists  Rituximab 

6.3.1.4        Gene Silencing 

 The progress from protein adsorption to acute infl ammation and fi nally fi brosis is 
controlled by chemotaxis induced by pro- and anti-infl ammatory cytokine expres-
sion and release in the tissue. Recent early stage approaches utilize siRNA delivery 
to silence genes that express infl ammatory cytokines. In one report, siRNA was 
delivered to silence the COL1A1 gene and subsequently down-regulate collagen 
production, which resulted in reduction of fi brotic capsule thickness [ 75 ]. In another 
report, siRNA that targeted the mammalian target of rapamycin (mTOR) to down- 
regulate collagen production showed promising results in an  in vitro  cell culture 
model, but had no signifi cant anti-fi brotic effects  in vivo  [ 76 ]. Utilization of gene 
silencing is a promising approach to negate the foreign body reaction, however, its 
usefulness is uncertain since research on this is still at a very early stage. In addition, 
siRNAs pose stability challenges which might prove prohibitory for long-term 
applications where tissue response modifi ers are needed to remain stable for long 
periods of time, up to several months, prior to release in the tissue.   

6.3.2     Modifi cation of Implant Surface 

 The interphase between implant and subcutaneous tissue plays a major role on the 
severity of the foreign body reaction. Macrophages adhered on the surface of the 
implant attract and orient fi broblasts around the implant, which ultimately results in 
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fi brous encapsulation [ 77 ]. Protein adsorption on the implant surface initiates these 
events; accordingly, modifi cation of the implant surface to minimize protein adsorp-
tion may lead to reduced reaction. There are different modifi cations that have been 
studied, and they all share the same principle of action: reduce hydrophobicity of 
the implant surface and/or modify its surface to mimic native structures. 

 The simplest approach is to incorporate hydrogel coatings, around the implants 
[ 7 ]. Natural (such as chitosan [ 78 ], alginate [ 79 ], collagen [ 80 ], dextran [ 81 ], and 
hyaluronan [ 82 ]) as well as synthetic (such as PVA [ 83 – 86 ] and polyethylene oxide, 
PEO [ 46 ,  87 ,  88 ]), have been used in the past to prepare hydrogel coatings for sub-
cutaneous implants. Such coatings mask the usually hydrophobic surface of the 
implants and reduce protein adsorption, which has been shown to reduce but not 
eliminate fi brosis. 

 Recent studies have explored more advanced surface modifi cations to negate 
fi brosis. Of note is the use of zwitterionic hydrogels, which have been determined 
to prevent fi brosis and promote wound healing and neovascularization for a period 
of 3 months [ 89 ]. This is a signifi cant development since long-term prevention of 
the foreign body reaction without delivery of tissue response modifi ers was not 
achieved previously. Another notable development is the use of porous materials to 
control macrophage polarization [ 90 ]. It has been shown that macrophages that 
infi ltrate pores of 34 μm activate primarily to M1 macrophages (anti-infl ammatory), 
as opposed to macrophages outside the material pores that activate primarily to M2 
macrophages (pro-infl ammatory). Lastly, decellularized dermal tissue has been 
used to improve tissue/implant interactions. A recent study conducted in primates 
using human acellular dermal matrices demonstrated minimal fi brosis 2 months 
after implantation [ 91 ].   

6.4     Conclusions 

 The foreign body reaction is a major obstacle towards long-term functionality of 
materials and devices implanted subcutaneously, with implantable biosensors prob-
ably being the most affected. Typically, implanted or semi-implanted biosensors 
cannot be used for more than a few days at a time due to tissue reaction that starts 
from the trauma caused during implantation. This is a serious setback since advance-
ments in electrochemical and microelectronic components have led to miniaturized, 
fully implantable biosensors that cannot function in the body due to the foreign 
body reaction. Accordingly, understanding the mechanisms involved in as well as 
preventing and/or suppressing the foreign body reaction is of urgency. 

 The foreign body reaction is not a single occurrence, but a cascade of interlocked 
events. The molecular and cellular mechanisms that make up the reaction are of 
both a specifi c and non-specifi c nature. For example, non-specifi c protein adsorp-
tion occurs during the fi rst few minutes after implantation whereas specifi c recruit-
ment of macrophages during the subsequent days is tightly controlled by chemotaxis. 
The diversity of the components that make up the foreign body reaction have made 
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the development of a single test for its evaluation so far impossible. Currently, 
research-stage methods to evaluate the foreign body reaction in vitro utilize incuba-
tion of the material with macrophages and other relevant cell lines. However, in vivo 
testing in animal models is necessary, with histological evaluation of the tissue reac-
tion at multiple time points the most prevalent method. 

 To overcome the obstacles posed by the foreign body reaction, prevention or sup-
pression approaches are under investigation. Most commonly, the anti- infl ammatory 
drug, dexamethasone, is delivered throughout the implantation period to suppress 
the foreign body reaction. Dexamethasone has been incorporated in composite coat-
ings that have been shown to prolong the functionality of implantable biosensors 
in vivo. Other methods to suppress the reaction are under investigation, such as 
delivery of antifi brotic agents and gene silencing. Dexamethasone remains the most 
effective approach to date due to its high potency and wide range of effi cacy that 
covers most of the spectrum of the foreign body reaction. It is unclear whether pre-
venting the initial tissue and blood protein adsorption on the implant surface can 
prevent the subsequent steps that would lead to fi brous encapsulation. However, 
novel materials with modifi ed surfaces have been developed that produce minimal 
reaction that can potentially be suppressed more easily in a prevention/suppression 
combination approach. 

 It is expected that strategies to suppress the foreign body reaction developed over 
the past two decades will be integrated with subcutaneous implants such as 
 biosensors and these devices will soon be tested in clinical settings. In addition, 
further elucidation of the foreign body reaction and novel materials to prevent as 
well as new methods to suppress it will likely continue to prevail in research studies 
on this subject.     
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    Chapter 7   
 Molecular Characterization of Macrophage- 
Biomaterial Interactions 

                Laura     Beth     Moore     and     Themis     R.     Kyriakides     

    Abstract     Implantation of biomaterials in vascularized tissues elicits the sequential 
engagement of molecular and cellular elements that constitute the foreign body 
response. Initial events include the non-specifi c adsorption of proteins to the bioma-
terial surface that render it adhesive for cells such as neutrophils and macrophages. 
The latter undergo unique activation and in some cases undergo cell-cell fusion to 
form foreign body giant cells that contribute to implant damage and fi brotic encap-
sulation. In this review, we discuss the molecular events that contribute to macro-
phage activation and fusion with a focus on the role of the infl ammasome, signaling 
pathways such as JAK/STAT and NF-κB, and the putative involvement of micro 
RNAs in the regulation of these processes.  

  Keywords     Biomaterials   •   Foreign body response   •   Foreign body giant cells   • 
  Infl ammation   •   Infl ammasome   •   Macrophage  

7.1         Introduction 

 The foreign body response (FBR) is initiated following injury due to biomaterial 
implantation. An infl ux of proteins from the blood and interstitial fl uid creates a 
random and temporary proteinaceous coating on the biomaterial surface. Proteins 
from serum as well as interstitial proteins attach and undergo changes in structure 
including denaturation on the surface of the implant and aid in subsequent cell 
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 adhesion [ 1 – 3 ]. Additionally, platelets release chemoattractant signals that stimu-
late cell migration and fi brinogen that contributes to the formation of a provisional 
matrix [ 2 ]. Following protein interactions, infl ammatory cells such as neutrophils 
and monocytes migrate to the implant, interact with surface-adsorbed proteins and 
undergo activation. Recruited macrophages, as well as resident macrophages, are 
induced to secrete their own chemoattractant signals and cytokines, which contrib-
ute to the development of the FBR [ 1 ]. Recent evidence has also implicated activa-
tion of the infl ammasome in this process, which leads to the production of 
pro-infl ammatory cytokines such IL-1β, and eventual fi brotic encapsulation of the 
implant. In contrast to the typical wound environment, macrophages undergo unique 
activation and a subset undergoes fusion to create foreign body giant cells (FBGC) 
[ 4 ]. FBGCs are considered a hallmark of the FBR and can cause direct degradation 
of the implanted biomaterial, which often leads to its malfunction [ 1 ,  4 ,  5 ]. 
Specifi cally, it has been shown that FBGCs secrete reactive oxygen species, degra-
dative enzymes, and create an acidic environment at the biomaterial interface [ 4 ]. 
In fact, direct erosion of implants by FBGCs has been demonstrated by scanning 
electron microscopy [ 5 ,  6 ]. Subsequently, pro-fi brotic signals at the implant site 
induce the formation of a collagenous and largely avascular capsule, which envelopes 
the biomaterial within 2–4 weeks after implantation [ 2 ,  4 ]. Confi nement in the capsule 
prevents true integration of the implant with the surrounding tissue, which is respon-
sible for the loss of function for numerous biomaterials including sensors [ 1 ,  7 ,  8 ]. 
Figure  7.1  provides an overview of the participation of macrophages in the FBR.   
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  Fig. 7.1    Overview of macrophage participation in the foreign body response. Macrophages are 
recruited to the site of implantation where they make contact with protein-coated biomaterial sur-
faces leading to their unique activation. A subset of macrophages engages in cell-cell interaction 
leading to fusion and formation of foreign body giant cells. Both activated macrophages and foreign 
body giant cells provide pro-fi brotic signals that result in the encapsulation of biomaterials. Molecules 
that were shown to infl uence the progression of the FBR in genetically modifi ed mice are shown       
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7.2     Biomaterials and the Infl ammasome 

 Various stimuli including silica, uric acid, ATP, and disruption of cellular integrity 
induce the assembly of a protein complex consisting of nucleotide-binding domain 
and leucine-rich repeat-containing –type (Nlrp), apoptosis-associated speck-like 
protein containing CARD (Asc), and Caspase-1, known as the infl ammasome [ 9 , 
 10 ]. Caspase-1 is normally inactive but undergoes activation during complex forma-
tion. The primary role of the infl ammasome is to convert pro- IL-1β to IL-1β, which 
is then secreted into the extracellular milieu [ 10 – 12 ]. Induction of pro- IL-1β pro-
duction is mediated by a separate signal involving Toll-like receptor (TLR) 4. 
Therefore, engagement of TLR4 and Nlrp leads to the coordinated production, acti-
vation, and secretion of IL-1β. The stimuli mentioned above can induce infl amma-
some formation and caspase-1 activation by causing K+ effl ux, generation of 
reactive oxygen species, or lysosomal destabilization. Macrophage-biomaterial 
interactions have been shown to induce IL-1β release in a number of in vitro and 
in vivo studies suggesting the involvement of the infl ammasome. However, studies 
demonstrating a direct link between macrophage-biomaterial interactions and 
infl ammasome activation are limited. St Pierre et al., showed in a series of in vitro 
studies that uptake of titanium microparticles by macrophages induced the release 
of IL-1β and utilized siRNAs against infl ammasome components to inhibit this pro-
cess [ 13 ]. Similarly, Maitra et al showed that isolated polyethylene-based implant-
derived particles and alkane polymers could induce pro- IL-1β production and IL-1β 
release in macrophages [ 14 ]. In this study, inhibition of infl ammasome components 
was not pursued but the authors did demonstrate caspase-1 activation. In addition, 
numerous studies have shown that nanoparticles and microparticles can activate the 
infl ammasome. More recently, Bueter el al demonstrated activation of the infl am-
masome by chitosan, which based on studies with selective inhibitors, was depen-
dent on K+ effl ux, reactive oxygen species, and lysosomal destabilization [ 15 ]. This 
and the studies described above involve biomaterial-based foreign bodies that are 
readily taken up by single cells. However, many in vitro studies show release of 
IL-1β by macrophages in contact with biomaterials suggesting the involvement of 
mechanisms that do not involve uptake. Consistent with this suggestion, investiga-
tors showed that the infl ammasome is activated in the context of cell-biomaterial 
interactions [ 16 ]. Specifi cally, addition of 150 μm poly-methyl methacrylate 
(PMMA) microspheres to macrophages induced infl ammasome activation and 
IL-1β secretion. Similarly, injection of the same microspheres in a mouse intraperi-
toneal model resulted in increased levels of IL-1β. Utilizing the same model, inves-
tigators showed lack of IL-1β production in mice defi cient for Caspase-1, Nlrp3, or 
Asc. Interestingly, in long term subcutaneous (SC) implant studies (4 weeks), mice 
defi cient in either Caspase-1 or Asc displayed reduced implant encapsulation. In 
contrast, encapsulation was normal in Nlrp3 KO mice indicating the participation of 
a separate Nlrp receptor in the progression of the FBR. Therefore, more research is 
needed to identify the infl ammasome components that mediate implant fi brosis. 
Figure  7.2  illustrates putative modes of infl ammasome activation by biomaterials.   
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7.3     Macrophages and FBGCs in the FBR 

 Homologous cell fusion is a highly orchestrated process that occurs in numerous 
cell types under both physiological and pathological conditions, including tropho-
blasts in placental development, myoblasts in skeletal muscle formation, and cells 
of the monocytic lineage in osteoclast and FBGC formation [ 17 – 21 ]. The latter can 
be induced in vitro by treatment of macrophages plated on fusion-permissive sur-
faces, such as naked polystyrene, with IL-4. In vitro fusion studies involving mac-
rophages from IL-4Rα knockout mice have demonstrated the importance of IL-4 in 
the fusion process [ 22 ]. Interestingly, FBGC formation was recently shown to be 
normal in IL-4Rα knockout mice suggesting the existence of additional fusogenic 
signals in vivo [ 23 ]. FBGCs can be damaging to biomaterials and devices and con-
tribute to infl ammation at the implant site [ 1 ,  4 ,  19 ,  21 ,  24 ,  25 ]. In addition, macro-
phages and FBGCs provide signals that contribute to the formation of the collagenous 
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  Fig. 7.2    Biomaterial-induced infl ammasome activation. Nano- and micro-sized particles can 
induce assembly of the infl ammasome complex leading to conversion pro-caspase 1 to caspase 1, 
which then converts pro- IL-1β to IL-1β. Secretion of IL-1β contributes to the infl ammatory 
response. Small size particles induce activation following uptake by macrophages and lysosomal 
rupture. In addition, certain particles can induce activation via the generation of reactive oxygen 
species and/or K +  effl ux. Large biomaterials, too big to be taken up by cells, can also induce 
infl ammasome activation and IL-1β secretion via a process that depends on membrane dynamics. 
However, the exact mechanism of activation has not been elucidated       
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capsule. For example, they secrete pro-migratory molecules and TGF-β, which 
leads to recruitment of fi broblasts that deposit extracellular matrix and encapsulate 
the implant [ 1 ,  4 ,  26 ]. Foreign body capsules can reach thickness of 50–200 μm and 
completely envelope implants in a largely avascular space that consists of dense and 
highly organized collagen fi bers [ 1 ,  26 ].  

7.4     Macrophage Activation in the FBR 

 Macrophages have been recently categorized based on the expression of specifi c 
molecules that refl ect their activation state [ 27 ]. Most commonly, they are subdi-
vided into two activation/polarization states: classically activated (M1) or alterna-
tively activated (M2) but these states should be considered as broad characterizations. 
M1 macrophages are thought to be involved in pro-infl ammatory signaling whereas 
M2 are classifi ed as anti-infl ammatory cells that contribute to tissue repair [ 27 – 29 ]. 
Both of these states can be induced in vitro by treatment of cells with IFN-γ/LPS 
(M1) or IL-4 (M2). Because FBGC formation can be induced by IL-4 these cells 
often categorized as M2 [ 29 – 31 ]. However, recent studies support the idea of a M1/
M2 activation continuum rather than distinct states [ 27 ,  29 ,  32 – 35 ]. In fact, in vivo 
analysis of traditional M1 and M2 activation markers in an interperitoneal (IP) 
implantation model by qRT-PCR, immunohistochemistry, and enzyme linked immu-
nosorbent assays (ELISAs) demonstrated a unique polarization state that was high-
lighted by both M1 and M2 markers [ 36 ]. Specifi cally, FBGC expressed both M1 
(iNOS, IL-1β, TNF) and M2 (Arg1, CD36, IL-10) markers [ 36 ]. Likewise, analysis 
of gene expression following IP implantation of boiled egg white demonstrated 
induction of both M1 (TNF, IL-6) and M2 (IL-4, IL-10) markers during the ensuing 
FBR [ 32 ]. Finally, analysis of subcutaneous polyvinyl alcohol (PVA) sponge implants 
demonstrated overlapping M1-M2 macrophage phenotypes during the FBR, with 
cells expressing TNF, IL-6, Arg1, TGFβ, and Ym1 [ 33 ]. These studies highlight the 
unique plasticity and activation state of macrophages during the FBR [ 29 ,  34 ].  

7.5     Molecular Pathways 

7.5.1     JAK/STAT Pathway 

 Fusion of macrophages is the consequence of a multistep mechanism induced by IL-4 
and followed by the acquisition of a fusion competent state, chemotaxis, and subse-
quent cytoskeletal rearrangements during and after fusion [ 17 ,  19 ,  37 ,  38 ]. Progression 
to fusion results in the increased expression of cell surface and secreted molecules 
including DNAX-activating protein of molecular mass 12 kDa (DAP12), dendritic 
cell-specifi c transmembrane protein (DC-STAMP), matrix metalloproteinase 9 
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(MMP9), monocyte chemotactic protein-1 (MCP-1), and epithelial- cadherin (ECad) 
[ 2 ,  4 ,  17 ,  39 ,  40 ]. As mentioned above, induction of a fusion-competent state in vitro 
can be achieved by addition of IL-4 and involves at least two separate  pathways 
including JAK/STAT [ 37 ]. As shown in Fig.  7.3 , IL-4 induces the JAK1/3 and STAT6 
signaling cascade, leading to upregulation of ECad and β-catenin that localize to the 
cell periphery where they are thought to facilitate cell-cell interactions [ 37 ,  41 ].   
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  Fig. 7.3       JAK/STAT and NFkB pathways in biomaterial-adherent macrophages. Exposure of 
biomaterial- adherent macrophage to IL-4 induces activation of the JAK/STAT pathway leading to 
phosphorylation of STAT6 that translocates to the nucleus where it promotes the expression of 
genes including E-cadherin and β-catenin. A separate more complex and not completely defi ned 
IL-4-induced pathway causes upregulation of MCP-1 and TNF, which are secreted and bind their 
respective receptors. TNF activates the canonical NF-κB pathway by phosphorylation of IκB by 
IKK and its subsequent ubiquitination and degradation. Degradation of IκB leads to liberated p50/
p65 complex that translocates to the nucleus and induces transcription. Both pathways are essential 
for macrophage fusion in vitro and the process depends on IL-4 and interaction with specifi c 
surfaces       
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7.5.2     MCP1 and Rac1-Dependent Cytoskeletal Remodeling 

 IL-4 induces DAP12-dependent signaling through the ITAM motif and TREM2 
receptor, with downstream SYK signaling increasing DC-STAMP expression [ 42 ]. 
Moreover, machinery reminiscent of macrophage phagocytosis, including MCP-1 
mediated Rac-1-dependent cytoskeleton rearrangements and phosphatidyl serine 
(PtdSer) exposure and subsequent recognition by CD36, have also been linked to 
macrophage fusion [ 17 ,  43 – 45 ]. The reason the two pathways are considered sepa-
rate involves observations in MCP1-KO mice and their macrophages that are defec-
tive in fusion but display normal upregulation of Ecad and β-catenin in response to 
IL-4. In contrast, they display reduced Rac-1 activation and Rac-1-mediated cyto-
skeletal remodeling as well as TNF and MMP-9 expression [ 2 ,  37 ]. However, fusion 
in MCP-1 macrophages can be restored by addition of exogenous MMP-9, which 
leads to changes in the subcellular localization of E-cad from the cell periphery to 
the cytoplasm. These observations suggest that the secretion of MMP-9 and the pos-
sible cleavage of Ecad represent a point where the two pathways display functional 
overlap [ 37 ]. While several molecular mediators of fusion have been implicated in 
the FBR, the exact signaling pathways regulating this process remain unknown and 
it is anticipated that their identifi cation would lead to the development of novel 
strategies to attenuate FBGC formation and the FBR [ 4 ].  

7.5.3     TNF and NF-κB Pathway 

 In vitro and in vivo studies have demonstrated the importance of TNF in the FBR 
[ 4 ,  32 ,  33 ,  37 ] .  In fact, analysis of levels of TNF during macrophage-biomaterial 
interactions can be helpful in evaluating the biocompatibility of new materials [ 4 ]. 
For example, TNF has been used as a marker of infl ammation and indicator of 
severity of the FBR in studies ranging from the effect of topographical alterations, 
lymphocyte enhancement of FBGC activation, and the biocompatibility of novel 
materials such as poly(ethyleneglycol)-based hydrogels [ 46 – 48 ]. The importance of 
TNF is apparent when one considers the fact that the fusion-defi cient phenotype of 
MCP-1 macrophages can be rescued via exogenous TNF treatment [ 37 ]. TNF 
induction in macrophages during the FBR is intriguing because it is a potent inducer 
of the NF-κB pathway. In the absence of activation, the canonical NF-κB compo-
nents p50 and p65 (RelA) are held in the cytoplasm by the inhibitory IκB. When 
present, TNF induces activation of the IKK complex, promoting the phosphoryla-
tion and ubiquitination of IκB, which is subsequently degraded allowing the release 
and translocation of the p50-p65 heterodimer complexes to the nucleus where they 
induce transcription of target genes (Fig.  7.3 ) [ 49 ]. Alternatively, the non-canonical 
NF-κB pathway involves NIK-dependent induction of IKK which phosphorylates 
the p100 precursor thereby releasing the p52-RelB complex [ 49 ]. Canonical activa-
tion of NF-κB has been noted  in vivo  following implantation of titanium and copper 
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implants in rats and propylene mesh in mice [ 50 ,  51 ]. Additionally, induction of the 
non-canonical NF-κB pathway has been demonstrated as essential to RANKL 
mediated osteoclast fusion [ 52 ]. Although the canonical NF-κB pathway has been 
shown to be important in IL-4-induced macrophage fusion and the non-canonical 
pathway for osteoclast fusion, it has been suggested that cross talk between path-
ways does occur, potentially allowing for compensation [ 53 ]. Nevertheless, It has 
been recently established that the canonical NF-κB pathway is required for macro-
phage fusion during the FBR both in vitro and in vivo [ 36 ]. Specifi cally, induction 
and nuclear translocation of NF-κB components p50 and RelA were shown at day 3 
following IL-4 stimulation. NF-κB induction occurred in temporal manner consis-
tent with TNF expression and was minimal in fusion-defi cient MCP-1 KO mice. 
Additionally, inhibition of canonical NF-κB pathway by treatment with the pharma-
cological inhibitor Bay11, resulted in decreased fusion. More importantly, induc-
tion and nuclear translocation of p50/RelA was observed in vivo in implant-adherent 
macrophages undergoing fusion at day 4 following implantation in an IP model 
[ 36 ]. These observations suggest that TNF contributes to FBGC formation and the 
FBR, in part, by activating the canonical NF-κB pathway. However, the downstream 
effects of this pathway and the genes that are regulated by p50/p65 in this process 
have not been identifi ed.   

7.6     FBGC Formation and FBR Phenotypes 
in Genetically Modifi ed Mice 

 With the advent of genetically modifi ed mice, investigators have utilized models of 
biomaterial implantation in order to elucidate the contribution of specifi c molecules 
in the FBR. Despite the lack of standardized approaches in these studies and the 
variable approaches used, such as multiple implantation locations and time points, 
numerous biomaterials, and different modes of analysis, the cumulative body of 
acquired knowledge is informative. For example, it was shown in short term studies 
that mice defi cient in either plasminogen or fi brinogen displayed reduction in cell 
recruitment and/or cell attachment to biomaterials [ 54 ]. In addition, mice lacking 
components critical for monocyte/macrophage recruitment such as E- and P-selectin 
displayed reduced accumulation of infl ammatory cells in an IP implantation model 
and this was associated with a reduced fi brotic response [ 55 ]. Similarly, mice lack-
ing MCP-1 displayed reduced macrophage accumulation and FBGC formation and 
signifi cant attenuation of capsule thickness in an IP implant model [ 37 ]. Interestingly, 
the same mice with SC implants displayed reduced FBGC formation despite normal 
macrophage recruitment and capsule thickness [ 2 ]. Several knockout mice or cells 
isolated from them displayed altered FBGC formation including MMP-9, 
DC-STAMP, DAP12, IL-4Rα, MT1-MMP, plasma fi bronectin, osteopontin, 
PTPN12, STAT6, and CD36 [ 22 ,  40 ,  42 ,  44 ,  56 – 61 ]. As mentioned in Section 2 
above, Helming et al demonstrated compromised fusion of IL4Rα-KO macrophages 
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in vitro [ 22 ]. Consistent with the fi ndings of Helming et al, anti-IL-4 antibodies were 
shown to block FBGC formation in a cage implant model [ 62 ]. In contrast, Yang 
et al showed normal FBGC formation in IL4Rα-KO mice in a SC implant model [ 23 ]. 
Therefore, the requirement for IL-4 signaling and perhaps other signals in FBGC 
formation in vitro and in vivo remains to be elucidated. Moreover, the complex phe-
notype of biomaterial-adherent macrophages, featuring characteristics of both M1 
and M2 activation, suggests the contribution of additional signaling molecules. 

 Alterations in capsule formation have also been detected in genetically modifi ed 
mice, including those lacking the angiogenesis inhibitor thrombospondin-2 (TSP2), 
which formed capsules with increased vessel density and aberrant collagen fi bers 
[ 63 ]. SPARC-KO mice displayed reduced collagen capsule thickness, and double 
deletion of SPARC and its homologue have resulted in increased vessel density [ 64 , 
 65 ]. Plasminogen activator inhibitor-1 KO mice displayed reduced fi brosis in a PVA 
sponge implant model [ 66 ]. More recently, Zaveri et al demonstrated a surprising 
role for macrophage integrin Mac1 in infl uencing capsule thickness [ 67 ]. Obviously, 
these molecules represent signifi cant variation in function (enzymes, receptors, cell 
adhesion proteins, cytokines, extracellular matrix proteins) and subcellular localiza-
tion (cytoplasmic, membrane-bound, secreted), which highlights the complexity of 
the processes they regulate. Moreover, several of these molecules have been shown 
to be induced signifi cantly during FBGC formation and progression of the FBR 
suggesting that regulation of gene expression plays a signifi cant role in these 
processes.  

7.7     MicroRNAs and FBGC Formation 

 MicroRNAs (miRs) are small noncoding RNAs that regulate gene expression via 
post-transcriptional modifi cation of transcripts [ 68 ]. See Eulalio et al and Krol et al 
for detailed reviews on the generation and mode of action of miRs [ 70 ,  71 ]. MiRs 
have confi rmed participation in essentially all cellular processes examined to date, 
including cellular development, metabolism, apoptosis, proliferation, and differen-
tiation [ 71 – 73 ]. If one considers that a single miR may infl uence post-transcrip-
tional control of hundreds of targets, and that an mRNA transcript will be infl uenced 
by many miRs, it is not surprising that miRs regulate over half of the human genome 
[ 72 – 74 ]. Though little work has been done regarding the role of miRs in cellular 
fusion, evidence exists that they are involved in monocyte/macrophage differentia-
tion and processes involved in cell fusion such as cytoskeletal remodeling and the 
NF-κB pathway [ 75 – 78 ]. In addition, miRs haven been shown to regulate several 
molecules that have been implicated in FBGC formation. For example, miRs regu-
late the hematopoietic stem cell lineage, including the differentiation of monocytes 
into macrophages, which strongly suggests their importance in determining macro-
phage phenotype [ 72 ]. Furthermore, miR-21 has recently been linked to the process 
of differentiation of monocyte-derived dendritic cells, a process that is dependent on 
IL-4 and granulocyte- macrophage colony  stimulating factor (GM-CSF) [ 79 ]. 
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MiR-705 has been shown to regulate MMP9 expression in the uterine matrix, and 
miRs 143/145 regulate cytoskeletal remodeling during phenotype switch in smooth 
muscle cells [ 80 ,  81 ]. More importantly, miRs have been implicated in homotypic 
cell fusion including that of myoblasts, osteoclasts, and most recently FBGC. Sugatini 
et al. reported that miR-223 and miR-21 regulated RANKL-mediated osteoclasto-
genesis [ 82 ,  83 ]. Unlike miR-223 where the targeted transcript(s) involved in the 
regulation of osteoclast formation are not known [ 84 – 86 ], miR-21 was shown to 
downregulate PDCD4 to promote fusion [ 83 ]. In addition, miR-7b has been demon-
strated to directly target DC-STAMP during osteoclastogenesis, thus inhibiting 
NFATC1 and c-FOS to attenuate fusion [ 87 ]. As mentioned above, myoblast fusion 
during developmental myogenesis as well as following injury is also regulated by 
microRNAs. Specifi cally, reduction of myoblast fusion was observed to be regu-
lated by miR-1192 targeting HMGB1 as well as miR-206 and miR-1 downregulat-
ing CX43 gap junctions during myogenesis [ 88 ,  89 ]. The participation of miRs in 
FBGC formation is largely unexplored with a single study showing that miR-7a-1 
can regulate DC-STAMP during IL-4 induced macrophage fusion [ 90 ]. Finally, 
deletion of dicer, which is a central molecule in miR processing, resulted in a sig-
nifi cant increase of IL-4 dependent fusion [ 90 ].  

7.8     Conclusion 

 Investigation of the molecules and signaling pathways that regulate FBGC forma-
tion and the FBR offers the dual promise of facilitating the development of strate-
gies to improve the function and longevity of biomaterials as well as enhance our 
fundamental understanding of key cellular processes. Identifi cation of required 
molecules should lead to the rational design of biomaterials with the capacity to 
modulate their expression and/or function in a benefi cial manner. Current approaches 
are predominantly focused on surface modifi cations that have had limited success in 
curbing the FBR and in general apply to a small subset of biomaterials. In contrast, 
molecular approaches could be applied in numerous applications. Equally impor-
tant, the elucidation of the molecules and pathways that regulate FBGC formation 
should provide insights relevant to other types of cell fusion including osteoclast 
and myoblast formation. Similarly, a more in-depth understanding of the processes 
that regulate the encapsulation of biomaterials could enhance our ability to combat 
other fi brotic diseases.     
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    Chapter 8   
 Heparan Sulfate Proteoglycan Metabolism 
and the Fate of Grafted Tissues 

             Jeffrey     L.     Platt      ,     Lucile     E.     Wrenshall      ,     Geoffrey     B.     Johnson      , 
and     Marilia     Cascalho     

    Abstract     Tissue and organ transplants between genetically distinct individuals are 
always or nearly always rejected. The universality and speed of transplant rejection 
distinguishes this immune response from all others. Although this distinction is 
incompletely understood, some efforts to shed light on transplant rejection have 
revealed broader insights, including a relationship between activation of comple-
ment in grafted tissues, the metabolism of heparan sulfate proteoglycan and the 
nature of immune and infl ammatory responses that ensue. Complement activation 
on cell surfaces, especially on endothelial cell surfaces, causes the shedding hepa-
ran sulfate, an acidic saccharide, from the cell surface and neighboring extracellular 
matrix. Solubilized in this way, heparan sulfate can activate leukocytes via toll like 
receptor-4, triggering infl ammatory responses and activating dendritic cells, which 
migrate to regional lymphoid organs where they spark and to some extent govern 
cellular immune responses. In this way local ischemia, tissue injury and infection, 
exert systemic impact on immunity. Whether or in what circumstances this series of 
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events explains the distinct characteristics of the immune response to transplants is 
still unclear but the events offer insight into the inception of immunity under the 
sub-optimal conditions accompanying infection and mechanisms by which infec-
tion and tissue injury engender systemic infl ammation.  

  Keywords     Complement   •   Endothelial cells   •   Heparan sulfate   •   Antigen presenting 
cell   •   Dendritic cell   •   Toll-like receptor   •   Systemic infl ammatory response syndrome   
•   Sepsis   •   Accommodation  

8.1         The Thinking Process 

 In June 1999, Tom and Ray Magliozzi delivered the commencement address at the 
Massachusetts Institute of Technology (MIT). The Magliozzi brothers were alumni 
of MIT and had a popular radio program, Car Talk, in which they entertained audi-
ences with humorous stories and with advice on automobile repair and human 
nature. According to one report of the address [ 1 ], the brothers proposed a theory 
that happiness is an inverse function of phylogeny and declared their mantra to be: 
“ non impediti ratione cogitatonis ” or “unencumbered by the thought process.” One 
unifying conclusion was that rational thinking is inimical to happiness but another 
conclusion, more pertinent for the fi elds of immunology and transplantation, might 
be that  dumb luck  often solves the most important problems; but, just as often, ratio-
nal thinking prevents us from seeing that the problems are solved. Below we 
describe and reinterpret some conclusions we drew from fortuitous observations 
made as we investigated immunity and transplantation. We make no attempt to dis-
cuss the broader literature on these subjects since we cannot know which observa-
tions of others were truly fortuitous and because we believe the evolution of thinking 
and not the thinking process  per se  has more lasting value than the details.  

8.2     The Immune Response to Transplantation 

 Three decades ago we began to explore the immune response to transplantation. The 
question that seemed most urgent at that time (and still today) was why transplanta-
tion evokes immunity that is universal, rapid and powerful. Conventional immune 
reactions, typifi ed by initial exposure to  Mycobacterium bovis , attenuated and opti-
mized in dosage as Bacillus Calmette–Guérin (BCG) vaccine, are detected in 
approximately 50 % of those fi rst exposed approximately 4–6 weeks after exposure 
and detection required re-administration of antigen in the form of a skin test. 
In contrast, immune responses to transplantation occur in nearly 100 % of recipi-
ents, can be detected within a few days and in the absence of immunosuppression 
destroy the grafted tissue or organ [ 2 – 5 ]. Our original approach to understanding 
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what might distinguish the immune response to transplantation was to explore the 
numbers of leukocytes of varying phenotypes that populated rejecting grafts [ 6 ] and 
delayed type hypersensitivity reactions [ 7 ]. The phenotype of leukocytes in DTH 
differed somewhat from the phenotype of leukocytes in rejection but the kinetics 
and other characteristics differed more [ 7 ]. Thus, this thought process brought an 
end to what had been a productive line of research and led to research aimed linking 
phenotype with functions. 

 The functions of the phenotypic markers initially studied, CD2, CD3, CD4, and 
CD8, BA-1, among others, were not then understood but since some markers were 
also expressed in development [ 8 ,  9 ], it seemed that understanding the processes 
governing the evolution of phenotypes in development would shed light on the func-
tion of the markers in mature tissue. It seemed further that changes in the phenotype 
and function of cells might be governed by glycosaminoglycans, the unique carbo-
hydrate substitutions on proteoglycans, the metabolism of which had been found to 
drive cell-cell and cell-matrix interactions in development [ 10 ]. The lines of reason-
ing that brought us to investigate glycosaminoglycans and proteoglycans were 
entirely wrong, but the investigation nevertheless would bring some understanding 
of processes that can determine the fate of transplants  

8.3     Proteoglycans in Ontogeny and Rejection of Kidneys 

 Proteoglycans consist of a core protein conjugated with glycosaminoglycan chains. 
Glycosaminoglycan chains are O-linked linear copolymers consisting of interdigi-
tating hexuronic acid and hexosamine residues modifi ed by N- and O-linked sulfate 
esters. The expression of a given core protein determines which glycosaminoglycan 
chain will be added to the core protein, where on or in the cell the proteoglycan will 
be situated and a few biological properties. However, it is the glycosaminoglycan 
chains that confer the predominant biological properties of proteoglycans we shall 
consider. Only a few of many outstanding reviews of the structure, biosynthesis and 
biological properties of proteoglycans are provided as references [ 11 – 13 ]. 

 To understand the connection between the phenotype and function of cells, we 
explored the metabolism of proteoglycans in kidney organogenesis and the impact 
of perturbing that metabolism [ 14 – 16 ]. The kidney was selected for study because 
morphogenesis of that organ involves complex stereotypic cell-cell and cell-matrix 
interactions the disruption of which might cause dramatic and reproducible change 
in morphology and biochemistry. Disrupting chondroitin sulfate proteoglycan syn-
thesis had clearly and also predictable changes. But, adding heparan sulfate had the 
greatest impact; it shut down development of branching structures without appar-
ently impacting on maturation of epithelial element of glomeruli, which we found 
to be associated with degradation of heparan sulfate. We took these results to indi-
cate that heparan sulfate controls the earliest events in nephron formation (induction 
of nephrogenic mesenchyme); but, it might also have refl ected the inhibition of 
heparan sulfate depolymerization by heparanase or the elution of heparan sulfate 
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binding peptides. We would later return to these possibilities in entirely different 
systems, ischemic tissues and rejecting organs [ 17 – 20 ]. However, we fi rst turned 
our attention to the question of whether infl ammation and immunity might change 
the metabolism of heparan sulfate proteoglycan.  

8.4     Metabolism of Heparan Sulfate Proteoglycan 
in Infl ammation and Immunity 

 Having found that metabolism of heparan sulfate and chondroitin sulfate proteogly-
cans are linked to organogenesis of kidney [ 14 ,  21 ], we wondered whether metabo-
lism of these also changes in infl ammation and immunity. The query was focused 
on endothelial cells, which we considered the principal target of cell-mediated and 
humoral immunity [ 17 ,  22 ,  23 ]. Mature endothelial cells that we used produced far 
more heparan sulfate than chondroitin sulfate and hence we direct our work at the 
metabolism of heparan sulfate proteoglycan. But, there was another, far better rea-
son for focusing on endothelial cell heparan sulfate proteoglycan. Heparan sulfate 
proteoglycan on cell surfaces and extracellular matrices exerted or at least sup-
ported all of the key physiologic functions of endothelial cells that infl ammation, 
immunity and disease disrupt (Fig.  8.1 ). Heparan sulfate maintains the integrity of 
the endothelial lining, providing a key barrier to diffusion of proteins and migration 
of cells. Heparan sulfate maintains the fl uidity of blood by tethering and activating 
antithrombin III and tissue factor pathway inhibitor. Heparan sulfate also regulates 
activation of complement, in part by its action of antithrombin III and in part by 
tethering factors H and properdin and helps to limit oxidant injury by tethering 
superoxide dismutase. Heparan sulfate also potentially regulates infl ammation and 
immunity by attaching chemokines and many cytokines to endothelial surfaces. 
Therefore, we reasoned that if one had to name a molecule the metabolism of which 
would transform the biology of tissues and organs, one could fi nd no better candi-
date to name than heparan sulfate.  

 This reasoning led us to investigate whether and how infl ammation modifi es 
heparan sulfate metabolism in endothelial cells. In this one case, perhaps owing to 
dumb luck, we were apparently  non impediti ratione cogitatonis . Thus, activation of 
complement on endothelial cells, as it might occur in ischemia-reperfusion injury or 
graft rejection, caused the quantitative shedding of heparan sulfate from the cells 
[ 22 ]. Interaction of neutrophils [ 24 ] and activated T cells also caused shedding of 
heparan sulfate [ 25 ]. Shedding of heparan sulfate caused by complement occurred 
within a few minutes, shedding caused by neutrophils proceeded over 20–60 min 
and was less complete, shedding caused by activated T cells took place over about 
1 h and the loss represented <50 % of heparan sulfate. It thus seemed that acute 
infl ammation and immunity might, as an early manifestation, disrupt the barrier, 
anticoagulant, and anti-infl ammatory functions of blood vessels and in this way set 
the stage for the dramatic changes in endothelial cell physiology and activation that 
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would be seen over the ensuing hours [ 26 – 30 ]. It seemed also that the burgeoning 
interest in endothelial cell biology could not be explored in full unless changes in 
heparan sulfate proteoglycan were taken into account. 

 What seemed most interesting then and now, from a practical perspective, was 
not the loss of heparan sulfate  per se , as important as that might be, but rather the 
mechanism of the loss (which one might wish to prevent therapeutically). Both 
proteases and an endoglycosidase, heparanase (endo-β-glucuronidase), were known 
to degrade heparan sulfate proteoglycans associated with normal and malignant 
cells (although an impact on blood vessels and blood vessel functions in infl amma-
tion and immunity had not been described). Proteases might cause release of nearly 
full-sized proteoglycans; heparanase might release small fragments of individual 
glycosaminoglycan chains; both enzymes, acting together would release partly 
degraded fragments of proteoglycans and glycosaminoglycans. Thus, the size of 
heparan sulfate proteoglycans and fragments thereof could provide clues to the 
enzyme activities responsible for the shedding of the molecules. Determining the 
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  Fig. 8.1    Heparan sulfate proteoglycan and the functions of endothelium .  Heparan sulfate proteo-
glycans, consisting of a core protein conjugated with heparan sulfate glycosaminoglycan chains 
(strings of pearls) contribute to many function of normal blood vessels. These functions include (a) 
providing negative cell surface-charge that regulates complement, coagulation and cellular interac-
tions; (b) maintaining the junctional integrity of the endothelial barrier to effl ux of cells, solutes 
and plasma; (c) tethering and in some cases activating proteins that regulate oxidants such as 
superoxide dismutase (SOD); adherence, migration and activation of leukocytes, stem cells (che-
mokines) and lymphocytes (IL-2); coagulation    [antithrombin III (ATIII) and tissue factor pathway 
inhibitor (TFPI)] and complement [MBL associated serine protease (MASP-1) and (MASP-2), 
fi colins, Factor P, C4 binding protein (C4 BP), C1 inhibitor (C1 INH), factor H and factor I]. 
Shedding of heparan sulfate deprives endothelial cells of these functions leading to cellular injury, 
extravasation of blood cells and plasma from blood vessels, activation of complement, coagulation 
and hemostasis and infl ammation       
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size of shed molecules was especially important for discovering how complement 
had acted because the sera used as a source of complement might contain abundant 
amounts of platelet heparanase [ 31 ], the activity of which would confound probing 
this subject. Using endothelial cells in which heparan sulfate had been biosyntheti-
cally labeled we traced the fate and size of the label, [35S]sulfate, after exposure of 
the cells to complement, neutrophils and activated (and resting) T cells. In each of 
these setting the preponderance of heparan sulfate initially released from the labeled 
cells was found in nearly full-size proteoglycans [ 32 ]. Thus, the earliest step, espe-
cially after complement was activated [ 20 ,  33 ] ,  involved the action of proteases, the 
inhibition of which would preserve endothelial cell heparan sulfate, at least under 
the conditions used in our experiments (Fig.  8.2 ).  

 That is not to say that heparanase and/or oxidants are not important in the overall 
sequence of events. Activated T cells had been found to produce heparanase and use 
it to penetrate matrices and inhibition of heparanase appears to halt migration of 
T cells [ 34 ,  35 ]. Likewise, oxidants produced by infl ammatory cells and endothelial 
cells might also cleave heparan sulfate [ 36 ]. However, degradation by heparanase 
and oxidants is much slower and requires not only prior activation of immune 
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  Fig. 8.2    Complement activation and the inciting of infl ammation and immunity. Complement 
activation on endothelial cells incites infl ammation and immunity via several mechanisms. 
Illustrated in the fi gure is one mechanism involving degradation of heparan sulfate proteoglycan. 
Complement activation causes neutrophils, platelets and endothelial cells to secrete proteases and 
heparanase, an endoglycosidese that specifi cally cleaves heparan sulfate. Heparan sulfate proteo-
glycans and partially degraded heparan sulfate chains so released activate infl ammatory cells and 
dendritic cells (antigen presenting cells) which, via secretion of cytokines, such as IL-1, increased 
antigen processing and presentation and co-stimulation and migration to regional lymph nodes, 
activate naïve T cells       
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infl ammatory cells but persistence of those cells in the vicinity of the proteoglycans 
to be degraded. Thus, infl ammation or immunity involving complement probably 
does not depend on heparanase and oxidants, at least at the inception.  

8.5     Heparan Sulfate and the Immune Response 

 If shedding of heparan sulfate was an early event in tissue injury, infection or trans-
plantation, could it impact in some way on the activation of T cells? Heparin, which 
is structurally similar to but more sulfated than heparan sulfate had been shown 
previously to inhibit autoimmune disease and allograft rejection [ 37 ,  38 ]. But, hepa-
rin was commonly used as an anticoagulant in transplant recipients and seemed to 
have no appreciable impact on rejection in that setting. Besides, rejection of a graft 
would be preceded by T cell differentiation and expansion and migration and we 
were interested in understanding the potential impact of heparan sulfate shed at the 
earliest time, when cells of the immune system would either be ignited to respond 
or held in check (tolerance). 

 The initial testing of the impact of heparan sulfate on T cell activation was con-
ducted in mixed leukocyte cultures, which, in mouse, are prepared by mixing sple-
nocytes from different strains, or cultures of splenocytes and mitogens of various 
types [ 39 ]. In these systems, we observed that heparan sulfate amplifi ed T cell pro-
liferative responses and development of effector functions, especially under subop-
timal conditions we believed would model the condition in which T cell activation 
normally occurs [ 39 ,  40 ]. 

 However, the most interesting fi nding was not that heparan sulfate stimulated 
T cells; indeed, we observed that heparan sulfate had no appreciable direct impact 
on T cells. Rather, the most interesting fi nding was that heparan sulfate modifi ed the 
function of antigen presenting cells (APC), the leukocytes, such as dendritic cells, 
that actually take up and present antigen to T cells. This fi nding made more sense 
than any impact heparan sulfate might have on T cells because it is the APC in 
transplants or infected tissues that take up antigen at sites of tissue injury, and hence 
the site of heparan sulfate shedding, and carry the antigen to lymphoid organs where 
naïve T cells reside. 

 A further observation was also of much interest. If the presence of heparan sul-
fate was limited to the fi rst day of a 5-day mixed leukocyte culture, it had the most 
profoundly stimulatory impact, while the presence of heparan sulfate only during 
the last several days of a 5-day mixed culture had a profoundly inhibitory impact on 
the proliferative response. The early impact of heparan sulfate thus seemed to model 
rather well a circumstance in which an APC takes up antigen and becomes activated 
and then migrates to a microenvironment, the lymphoid tissue, which lacks a surfeit 
of shed of heparan sulfate. 

 We also found that the apparently disparate actions of heparan sulfate on APC 
were owed, at least in part, to secretion of IL-1 and IL-6 early after stimulation 
and PGE2 later and were associated with activation and nuclear translocation of 
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NFκB [ 41 ,  42 ]. We also found that the panoply of changes in cellular functions 
was  relatively specifi c for heparan sulfate. Heparin, which has structural similar-
ity to heparan sulfate but contains twice as many sulfate esters and is mainly 
confi ned to cellular granules, had far less stimulatory effect than heparan sulfate 
(and since heparin has some sequences modifi ed like heparan sulfate, the heparin 
sequences might well have had no impact). Chondroitin sulfate, which has similar 
charge density but differ disaccharide units but is expressed outside cells, caused 
little change except at the highest concentrations used. And, only heparan sulfate 
incited production of PGE2 [ 42 ]. In its action on APC, heparan sulfate seemed to 
trigger a number of signaling intermediates in APC, the constellation of which 
could not be ascribed to any one receptor or cell surface perturbation and we con-
cluded that heparan sulfate probably delivered signals via two or more discrete 
surface events, but the net effect would enhance T cell activation. The production 
of PGE2 on the other hand seemed unrelated to the overall propensity of heparan 
sulfate to promote immune response to sub-optimal stimuli (which we fi gured 
then as now represent the condition when immunity to foreign organisms and 
toxins most needs stimulation). Instead, the production of PGE2 days after APC 
were activated might limit the expansion of T cells responding to antigen or avoid 
ongoing activation of antigen specifi c responses.  

8.6     Orchestrating T Cell Responses  In Vivo  

 Studying T cells in mixed cultures of splenocytes has revealed much of what is 
known about the specifi city of alloimmune responses. However, neither alloim-
mune nor conventional immune responses arise by a mixing of splenocytes. Rather, 
they arise when a small number of dendritic cells, take up antigen and receive acti-
vating signals such as lipopolysaccharide (LPS). Activated dendritic cells migrate 
from tissues to regional lymph nodes where the dendritic cells are brought together 
with a large number naïve T cells in lymphoid tissues. Dendritic cells are sometimes 
referred to as “professional antigen presenting cells” because unlike the various 
cells that might be used to probe T cell specifi city and biochemical processes of 
antigen presentation, dendritic cells have the unique abilities to engulf antigen in 
various forms, migrate from the source of antigen to key positions in lymphoid 
organs, and present antigen and the key accessory signals needed to activate naïve 
T cells or in the absence of the accessory signals to generate energy [ 43 – 45 ]. Hence, 
to know whether and how heparan sulfate might actually impact on T cell activation 
(or suppression), it would be necessary to probe these events using dendritic cells. 

 As a fi rst step, we asked whether heparan sulfate changes the differentiation and 
function of dendritic cells of the mouse [ 46 ]. Immature bone marrow derived den-
dritic cells were incubated with small amounts of heparan sulfate or with control 
substances (including heparan sulfate that had been depolymerized by treatment 
with HNO2, to assure absence of contaminating substances) and then “activation” 
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was evaluated by assaying expression of proteins typically found on mature den-
dritic cells. Immature dendritic cells expressed MHC class II at intermediate levels 
and low levels of CD40, CD54, and CD86 at low levels. Dendritic cells exposed to 
heparan sulfate expressed high levels of these proteins. Exposure to heparan sulfate 
also caused functional changes in the dendritic cells—(a) the cells secreted appre-
ciable amounts of TNF, IL-1β and IL-6; (b) the uptake and processing of antigen 
ceased while the MHC class II molecules became “fi xed” at the surface; and (c) the 
number of dendritic cells needed to evoke an alloimmune response decreased by an 
order of magnitude. Thus, immature dendritic cells exposed to heparan sulfate 
behaved like mature, activated dendritic cells poised to induce cellular immune 
responses [ 44 ,  47 ]. In contrast, the cells kept under control conditions continued to 
appear and behaved as immature dendritic cells, which induce immunological toler-
ance in some systems [ 48 – 53 ]. 

 It seemed as though heparan sulfate acted initially as an agonist to cause den-
dritic cells to mature and in this way to promote cellular immunity but that the 
promoting of cellular immunity was circumscribed and indeed ultimately sup-
pressed by the later production of PGE2. Thus action of heparan sulfate on antigen 
presenting cells could explain both the expansion and also the eventual contraction 
of a cellular immune response to foreign antigen [ 20 ]. The suppression of T cell 
proliferation caused by PGE2 clearly differed from the condition of energy gener-
ated by immature dendritic cells.  

8.7     What About Complement, PGE2 and Control 
of the Immune Response? 

 Our fi nding that heparan sulfate causes APC to produce PGE2 and our thinking 
that PGE2 might help circumscribe cellular immune responses was eclipsed by 
another observation. We discovered that IL-2 can be tethered to cells by heparan 
sulfate and that IL-2 so tethered can induce apoptosis of newly activated T cells, 
which express receptors for IL-2 [ 54 ]. In fact, the tethered form of IL-2 and not 
IL-2 in solution appeared to account for the impact of IL-2 in the generation and 
control of immune responses to model antigens delivered  in vivo  [ 55 ]. We imag-
ined that interaction or lack thereof between complement and endothelial or paren-
chymal cells might govern immune responses—promoting responses when 
complement causes heparan sulfate to be shed and suppressing response when 
complement does not (Fig.  8.3 ) [ 56 ].  

 Although we did not forget entirely about PGE2 [ 20 ], our thinking about com-
plement, heparan sulfate and IL-2, we did not pursue an apparent disparity concern-
ing the involvement of complement and heparan sulfate in activation versus 
suppression of cellular immunity. If activation of complement causes heparan sul-
fate to be shed, and by now we had compelling evidence for that in vivo, and if the 
shed heparan sulfate activated APC which migrated to lymph nodes to activate 
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T cells, then the production of PGE2 would subvert the expansion and function of 
effector T cells before they arrived in infected or transplanted tissues. We should 
have considered how PGE2 might impact of T cell activation in the microenviron-
ment of lymph nodes. For, in the microenvironment of lymph nodes, PGE2 might 
conceivably promote foreign antigen-specifi c immunity and hinder auto-antigen- 
specifi c immunity, at least as we imagine these potentially occur. Decades ago, 
PGE2 was shown to profoundly suppress random migration of helper T cells [ 57 ]. 
The investigation of PGE2 focused on the impact on T cells of known specifi city 
and function. In a lymph node, the migrating dendritic cells encounter T cells of 
diverse specifi cities and activation of those recognizing peptide-MHC complexes 
depends on the duration of specifi c interaction with TCR. Since, as mentioned 
above, the activated dendritic cells have peptide-MHC complexes relatively fi xed, 
the duration of TCR engagement with the complexes will depend on the number of 
MHC bearing a given peptide and the propensity of T cells to migrate away. In this 
setting, as opposed to the conditions in a mixed leukocyte culture, PGE2 would 
favor the full activation of T cells. Further, if PGE2 or other factors failed to slow 
the separation of newly activated T cells from activated dendritic cells, then T cells 
bearing TCR that recognize self peptide-MHC complexes might gain access to the 
activated dendritic cells, leading to autoimmunity.  

Complement

IL-2

IL-2R

Activated T Cell

  Fig. 8.3    Impact of heparan sulfate proteoglycan and shedding of heparan sulfate proteoglycan and 
glycosaminoglycan on control of cellular immunity.  Left : Intact heparan sulfate chains bind IL-2, 
which can cause activated T cells to undergo apoptosis, contributing to immunological tolerance. 
 Right : Loss of heparan sulfate caused by activation of complement deprives endothelium of IL-2, 
allowing activated to cells to attach, transmigrate and exert effector functions       
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8.8     How Heparan Sulfate Activates Dendritic Cells 

 While we clearly missed the opportunity to explore what might be a pivotal involve-
ment of heparan sulfate metabolism in sculpting, via PGE2, the T cell response to 
antigen, we did not forget our earlier question about how heparan sulfate might 
interact with leukocytes in the fi rst place. 

 We had found, as mentioned above, that heparan sulfate triggers many signaling 
pathways in APC [ 41 ], the constellation of which seemed incompatible with utiliza-
tion of a single type of receptor. However, since the stimulated cells produced cyto-
kines, it was possible some of the pathways were activated by an autocrine loop. 
Indeed, we had found that complement activates endothelial cells through such an 
autocrine loop—the membrane attack complex triggers transcriptional activation 
and secretion of IL-1α which acts on the endothelial cell to evoke the broad range 
of changes [ 26 ,  27 ,  58 ]. However, the pathways induced by heparan sulfate involved 
activation of protein kinase cascades and NFκB [ 41 ]. These pathways happened to 
be the same pathways utilized by LPS and for that reason we used LPS as a positive 
control when we fi rst tested how heparan sulfate if at all would activate dendritic 
cells [ 46 ]. LPS proved an excellent control because it evoked responses quite simi-
lar to heparan sulfate. 

 In the late 1990s, toll-like receptor-4 (TLR-4) was reported to be the cellular 
protein through which LPS delivered signals to cells [ 59 ]. We immediately tested 
whether heparan sulfate might deliver signals through TLR-4. Using wild type mice 
and mice with mutations that encoded defective or absent TLR-4 or CD14 as sources 
of dendritic cells, we found that dendritic cells from the mutant strains of mice were 
inured to exposure to heparan sulfate while dendritic cells from wild type mice 
became activated as described above [ 60 ]. These results indicated quite clearly that 
heparan sulfate was utilizing TLR-4 in the same way as LPS, although how exactly 
either agonist utilized TLR-4 was not then clear. The results also suggested to us 
that since heparan sulfate proteoglycan undergoes degradation during the repair and 
remodeling of injured tissues, TLR might serve as monitors for the overall well 
being of tissues, and not just for infection [ 60 ,  61 ].  

8.9     From Infl ammation to the Immune Response 
to Transplantation? 

 Our investigation of heparan sulfate metabolism began with the question of whether 
processes such as ischemia and complement activation that damage endothelial 
cells could account in part for the unique characteristics of the cellular immune 
response to transplantation. Now, having found that transplantation (and comple-
ment activation) causes shedding of heparan sulfate and that the shed macromole-
cules activate dendritic cells, enabling T cell activation under suboptimal conditions, 
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we were poised fi nally to test the overall model in transplantation. Defective 
 signaling of all TLR, owing to defi ciency of MyD88 in the transplant and in the 
recipient, had been reported to prevent development of rejection in tissues from 
male mice transplanted into female mice [ 62 ], a minor transplantation antigen mis-
match. Using mice with aberrant or absent TLR4, we tested the concept both for 
minor and major (MHC) antigen mismatches and the results could not be more 
clear. Absence of TLR-4 function or protein had absolutely no impact on the kinet-
ics of rejection. What did matter however was the genetic background of the strains 
of mice used. What explains such a result? Our earliest work showing that comple-
ment induces shedding of heparan sulfate from endothelial cells also showed that 
complement induces transcriptional activation of IL-1α, and that IL-1α acting as an 
autocrine agonist activates endothelial cells. Although we did not think about it at 
the time, the conditions that identifi ed the seminal importance of IL-1α, including 
the replacing of medium bathing complement-treated cells and specifi cally block-
ing IL-1α, had proved that shed heparan sulfate was not essential for activation of 
endothelial cells. And, IL-1α was quite suffi cient for activating macrophages and 
dendritic cells. Thus, if shedding of heparan sulfate and action of TLR-4 was impor-
tant for ischemia and immune-mediated injury, and for the genesis of immunity in 
truly suboptimal conditions (when PGE2 is needed), it was not at all essential for 
the generation of alloimmunity, as the conditions in which transplantation immunity 
arises are far from suboptimal.  

8.10     Whither Endogenous Agonists 

 Our work also led to an equally clear and less appealing conclusion. Immunologists 
 impediti ratione cogitatonis  were not at all ready to accept the possibility that some-
thing other than LPS or other exogenous (pathogen-derived) agonists could deliver 
signals through TLR. It took us nearly 4 years and layer upon layer of proof that 
heparan sulfate was not contaminated by bacterial products, to bring our fi ndings to 
publication. During much of that time, TLR were said to be the receptors for 
PAMPS, pathogen associated molecular patterns [ 63 ,  64 ]. However, the idea that 
TLR could recognize endogenous agonists [ 61 ], apart from any contamination, 
eventually gained acceptance and the agonists came to be known as DAMPS, dam-
age associated molecular patters. 

 But, the term “damage associated molecular patterns” may cloud more vital and 
universal functions for TLR and the metabolism of proteoglycans and some other 
macromolecules. As we knew from the work of others [ 10 ,  65 ] and confi rmed 
[ 14 ,  15 ] at the outset of our work, development and possibly repair and regenera-
tion, of tissues and organs depends absolutely on the degradation of proteoglycans 
(and perhaps other macromolecules from which ‘DAMP’ derive). Blocking degra-
dation blocks development. This degradation then is not a refl ection of ‘damage’ but 
is something essential for life in multicellular organisms [ 61 ]. Perhaps, then, devel-
opmental biologists might consider changing the acronym use to refer to the 
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 agonists of TLR or toll receptors, the invertebrate homologues of TLR, from 
DAMPS to “DAMPS,” the later referring, of course, to “development associated 
molecular patterns.” 

 With the more expansive defi nition of DAMPS in mind, we explored the poten-
tial impact of TLR on development and maturation of mice [ 66 ]. Mice defi cient of 
TLR-4 or a co-receptor, CD14, looked very much like wild type mice and hence did 
not appear, at least to us, to have the gross development defects one might expect to 
see if TLR regulated the development of mice as  toll  regulates the development of 
insects. However, as wild type mice aged, they exhibited dramatic changes in 
weight, bone structure, and physique, becoming heavy, obese and osteoporotic and 
developing measurably weaker bones. In contrast, TLR-4-defi cient or -defective 
mice and CD14-defi cient mice remained lean and strong-boned and exhibited no 
osteoporosis as they aged. We thus referred to the phenotype of mice lacking TLR 
functions as the “Adonis phenotype.” Of particular interest, then, was the further 
observation that Adonis mice were no more active than wild type mice. Thus, 
despite the undoubted importance of exercise for overall health and well being, it 
did not explain the Adonis phenotype.  

8.11     Heparan Sulfate in SIRS and Sepsis 

 Our interest in heparan sulfate as a potential agonist for TLR-4 led us to investigate 
an entirely different condition in which signaling by TLR generates biological 
changes. Besides their involvement in recruiting adaptive immune responses, TLR 
and particularly TLR-4 were best known as triggers for the sepsis syndrome and for 
the systemic infl ammatory response syndrome or SIRS. SIRS was defi ned by the 
abrupt onset of fever, leukocytosis, shock and sometimes death in the absence of 
detectable infection; in the presence of infection, these fi ndings would be called 
sepsis. SIRS occurs in such conditions as pancreatitis, multi-organ trauma, acute 
liver failure among others and the resemblance to sepsis is so close that investigators 
have asked repeatedly whether these conditions might cause by some means the 
entry of endotoxin into the system circulation. The answer has generally been no. 
Using the same strains of wild type and TLR-4 defi cient or defective mice, we 
found that systemic administration of heparan sulfate had the same biological 
impact as LPS in wild type mice—it stimulated production of TNF and IL-6 and 
ultimately death—and like LPS, it had no appreciable effect on the mutant strains of 
mice [ 67 ]. Of particular note for those still skeptical about heparan sulfate was that 
a protein that specifi cally blocked the infl ammatory impact of LPS did not impair 
the action of heparan sulfate. 

 We next asked whether release of endogenous heparan sulfate would engender 
SIRS. Serine proteases cleave heparan sulfate core proteins near the transmembrane 
domain to generate proteoglycans of the same size as those released from endothe-
lial cells and one such protease, elastase, is released in pancreatitis. Hence we 
administered elastase to wild type and mice with defective TLR-4 signaling [ 67 ]. 
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Once again, the results were clear—SIRS occurred in wild type mice while no 
appreciably changes occurred mutant strains. The administration of elastase did 
cause release of heparan sulfate in both strains and especially in spleen where large 
numbers of infl ammatory cells are found. 

 These studies led us to propose a working model for the events that lead to the 
systemic infl ammation and death in SIRS and potentially in sepsis [ 68 ,  69 ]. Since 
mice and humans with defective receptors for LPS have substantially increased 
risk of death from sepsis the expression and function of TLR-4 is clearly adaptive, 
probably facilitating the local containment and walling off of infectious agents 
[ 20 ]. Yet, when containment and walling off fail, and TLR beyond the site of infec-
tion are stimulated, systemic manifestations ensue—this concept probably repre-
sents the consensus model. But, we are struck by the observations in multiple 
clinical trials that administration of antibodies or other agents that block LPS does 
not improve the pathophysiology or outcome of sepsis and neither does it make 
sepsis worse [ 70 ]. To some, this trial and the many other failed attempts to improve 
the outcome of sepsis by blocking LPS indicate that still better blocking agents are 
needed. To us, these observations suggest the possibility that despite 150 years of 
research on LPS, that substance might not actually cause the life threatening mani-
festations of sepsis in patients with infection. And, if that is so, then we should at 
least consider the possibility that it is endogenous agonists for TLR, such as hepa-
ran sulfate, at not exogenous substances, such as LPS or other PAMPS, that cause 
the pathophysiology of sepsis (and SIRS). This model would fi nally unify the 
pathogenesis of SIRS and sepsis and possibly encourage someone to invent an 
acronym more poetic than DAMPS.  

8.12     Concluding Remarks 

 Today heparan sulfate is known to have more functions in endothelial cell biology, 
and graft rejection, and graft acceptance than editorial space would permit us to 
discuss. However, we would be remiss if we failed at least to mention that the pres-
ence of heparan sulfate in tissue and organ grafts probably plays a key part in pro-
tecting grafts from injury, as another glance at Figs.  8.1  and  8.3  might suggest, and 
in reestablishing cell and tissue function after ischemia and reperfusion. Because, in 
the absence of immunosuppression, immunity poses an absolute barrier to trans-
plantation of foreign tissues and organs, the subject of the immune response to 
transplantation overshadows nearly every other biological consideration. However, 
recent work in developmental and ‘regenerative’ biology suggests that restoring the 
integrity of tissue architecture and facilitating engraftment will pose challenges at 
least as great as those posed by transplant immunity. And, to the extent that a tissue 
or organ can be made to resist injury from ischemia or immunity, the challenge of 
regeneration and engraftment will be more easily met. Toward that objective, we 
investigate with enthusiasm, and hopefully  non impediti ratione cogitatonis , the 
condition of “accommodation,” which we discovered unexpectedly in transplants 
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that apparently resisted immune and infl ammatory injury that should have caused 
their destruction [ 23 ,  71 – 73 ]. Accommodation is now appreciated to occur not only 
in transplants, but also in tumors, infections and in cells exposed to environmental 
toxins [ 71 ,  74 ,  75 ]. Whether by way of happenstance or mechanism, we have 
observed  de novo  expression of heparan sulfate, previously shed from grafts, in 
accommodated organs [ 76 ].   
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    Abstract     Human organ transplantation is the therapy of choice for end-stage organ 
failure. However, the demand for organs far exceeds the donation rate, and many 
patients die while waiting for a donor. Clinical xenotransplantation using discordant 
species, particularly pigs, offers a possible solution to this critical shortfall. 
Xenotransplantation can also increase the availability of cells, such as neurons, and 
tissues such as cornea, insulin producing pancreatic islets and heart valves. However, 
the immunological barriers and biochemical disparities between pigs and primates 
(human) lead to rejection reactions despite the use of common immunosuppressive 
drugs. These result in graft vessel destruction, haemorrhage, oedema, thrombus for-
mation, and transplant loss. Our consortium is pursuing a broad range of strategies 
to overcome these obstacles. These include genetic modifi cation of the donor ani-
mals to knock out genes responsible for xenoreactive surface epitopes and to express 
multiple xenoprotective molecules such as the human complement regulators CD46, 
55, 59, thrombomodulin and others. We are using (new) drugs including complement 
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inhibitors (e.g. to inhibit C3 binding), anti-CD20, 40, 40L, and also employing 
physical protection methods such as macro-encapsulation of pancreatic islets. 
Regarding safety, a major objective is to assure that possible infections are not 
 transmitted to recipients. While the aims are ambitious, recent successes in preclini-
cal studies suggest that xenotransplantation is soon to become a clinical reality.  

  Keywords     Xenogeneic heart transplantation   •   Xenogeneic islet transplantation  
 •   Complement and xenogeneic transplantation   •   Genetically modifi ed donors   •   Safety 
after xenogeneic transplantation  

9.1         Introduction 

9.1.1     The Shortage of Human Organs, Discordant (Porcine) 
Xenogeneic Transplants as an Alternative 

 Human (allogeneic) organ transplantations have been very successful over the last 
six decades and remain the therapy of choice for end-stage organ failure whenever 
conventional medical or surgical therapies are of no avail. Heart transplantation as 
an example, not only offers an approximately 40 % chance to survive 20 post- 
operative years [ 1 ] (own experience) but also a good quality of life. However, the 
demand for organs far surpasses the donation rate and a substantial proportion of 
patients die while still on the waiting list, 17.4 % in Germany [ 2 ]. 

 Patients on the list for deceased kidney donations wait almost 42 months, 
although the advantages of transplantation over dialysis are evident after only 
1 year [ 3 ]. 

 The shortage of organs is undoubtedly grave, in Germany fewer than ten donors 
per million residents were reported in 2014, and several alternatives have been sug-
gested. One possible solution would be clinical xenotransplantation using non- 
human primates as concordant donors and triple drug immunosuppression as 
applied in human allotransplants [ 4 ]. However, ethical and logistical considerations 
preclude this. Apes are endangered species and their use is out of the question, other 
non-human primates are too small and their growth too slow. 

 In contrast, discordant species, notably pigs, offer an abundant new source of 
organs for various reasons:

•    Similarities in size, anatomy, nutrition and physiology to man  
•   Short generation intervals (12 months) and high fertility (10–14 offspring per 

litter)  
•   Well-established and economic housing and breeding conditions with high 

hygienic standards  
•   Availability of advanced reproductive biotechnologies and genetic engineering 

techniques  
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•   Minor concerns regarding the slaughtering of pigs, at least in Western countries, 
because they are raised for meat production on an industrial scale    

 Nevertheless, despite these obvious advantages, serious ethical concerns do exist 
in society regarding the use of pigs as donors and these have to be allayed [ 5 ].  

9.1.2     The Need for Discordant Cellular Transplantations 

 There are clinical needs for a huge variety of cell types, some of which are already 
being investigated as transplants, such as neurons [ 6 ] und corneas [ 7 ,  8 ]. At the 
moment there is a particular focus on pancreatic insulin producing islets. 

 An epidemic of obesity in Western populations has dramatically increased the 
threat of diabetes mellitus, with the number of patients expected to almost double 
within the next two decades [ 9 ]. Although anti-diabetic therapy is successful for 
most patients, hypoglycaemia is a life-threatening complication in 5–10 % of cases. 
At present, allogeneic pancreatic islet cell transplantation offers a solution for type 
1 diabetes and greatly improves life quality with relatively low operative risk. 
According to the American Collaborative Islet registry (CITR), the 5-year graft 
survival rate approximates 50 %, with successful second and third interventions 
possible [ 10 – 12 ]. These results compare favourably with other diffi cult transplanta-
tion procedures, such as lungs, where the 5-year survival rate is around 50 % [ 1 ]. 

 In Germany, there is only the Dresden group successfully carrying out islet trans-
plantation. Results are very encouraging, within the observation time patients 
exhibited stable glycaemic control with reduction of HbA1c and required less insu-
lin [ 13 ]. However the shortage of suitable donors and the extraordinarily high num-
ber of islet cells required for each patient severely restricts the availability of such 
treatment. 

 Discordant xenogeneic islet transplantation would therefore offer a practical 
solution. This is supported by the impressive results of porcine islet transplantation 
into diabetic primate models, using islets from wild-type pigs and immunosuppres-
sion of the recipient [ 14 ], encapsulated islets from wild-type pigs [ 15 ], or islets from 
genetically engineered donor pigs [ 16 ].  

9.1.3     The Need for Biological Valve Prostheses 
for Younger Patients 

 Another focus of our consortium is on biological heart valve prostheses, of which 
between 120,000 and 240,000 devices are implanted worldwide each year. The new 
transcatheter techniques for aortic valve replacement have further increased their 
number. These biological valves, mounted on small catheters and rapidly expanding 
balloons are usually introduced via the femoral artery without the need for a thora-
cotomy or the heart-lung-machine [ 17 ]. 
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 Biological valves (porcine, bovine) do not need anticoagulation if the patient is 
in sinus-rhythm. They do however have restricted durability, and the rate of degen-
eration correlates with the youth of the patient at the time of intervention [ 18 ]. In 
contrast mechanical devices have unlimited durability, but necessitate life-long 
anticoagulation. 

 Extending the durability of biological valves, especially in younger patients, has 
posed a tremendous challenge since their introduction more than 40 years ago. 
Newly developed prostheses have been made from decellularised heart valve matri-
ces that are revitalised in vivo by cells from the recipient, forming a functional 
epithelium and live interstitium. Decellularised heart valve matrix from wild-type 
pigs does however attract infl ammatory cells and mediates platelet activation mostly 
due to preformed antibodies [ 19 ]. Pigs genetically modifi ed to overcome these 
immune mechanisms may thus provide a superior source of such materials.   

9.2     Discordant Xenotransplantation to Solve the Shortage 
of Human Cells, Organs and Tissues 

 Xenotransplantation would undoubtedly provide substantial advantages for human 
regenerative medicine. The main problems arise from disparities between swine and 
primates resulting from approximately 90 million years of evolutionary divergence, 
which can affect important protein-protein and other biochemical interactions. 
Considerable immunological and physiological incompatibilities must therefore be 
overcome before xenogeneic grafts can be clinically effective. Fortunately, our 
understanding of these barriers is increasing rapidly and rational strategies are being 
developed to overcome them. Humoral rejection from preformed antibodies and the 
blood coagulation system present the immediate obstacles, in the longer term the 
greatest challenge comes from the adaptive immune response. 

 The possible transfer of infectious agents to a graft recipient—also a major risk 
in allo-transplantation—might be exacerbated with organs, tissues, cells from non- 
human species. On the other hand, xenotransplantation offers the opportunity to 
systematically examine donors for infectious agents before transplantation [ 20 ]. To 
control the infectious burden, animals must be raised in a clean environment 
 (designated pathogen free, DPF) and xenograft recipients must be monitored 
post-operatively. 

9.2.1     Responses to Xenogeneic Cells and Vascularised Organs, 
the Role of Complement 

 An unmodifi ed porcine organ transplanted into a human or primate recipient is con-
fronted with a series of rejection responses. The fi rst is hyperacute rejection, fol-
lowed by acute humoral xenograft rejection, also known as acute vascular or delayed 
xenograft reaction. Both hyperacute and acute humoral xenograft rejection are 
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 ultimately the result of preformed and acquired antibodies binding to cell surface 
antigens on the graft endothelium. The hyperacute reaction is directed primarily 
against porcine α1,3-galactosyl-galactose (α-Gal) epitopes [ 21 ], and the acute 
humoral reaction against non-Gal epitopes [ 22 ]. Antibody binding initiates (mostly) 
classical complement activation, followed by graft vessel destruction, interstitial 
haemorrhage and oedema. 

 Hyperacute rejection leads to graft failure within minutes or hours, and acute 
humoral rejection within days or at most 3 weeks. 

 In addition to antibody-mediated activation of the xenograft endothelium, incom-
patibilities between human (or primate) blood coagulation components and the por-
cine vessel wall also contribute to the formation of microthrombi, ischemic injury 
and ultimately consumptive coagulopathy (reduced plasma fi brinogen, thrombocy-
topenia, increased D-dimers and INR) [ 23 – 29 ]. Porcine thrombomodulin is impli-
cated as responsible, since it binds weakly to primate thrombin, leading to levels of 
activated protein C insuffi cient to interrupt coagulation [ 30 ]. 

 If left unprotected, tissues like porcine insulin producing islets succumb to early 
graft loss known as immediate blood mediated infl ammatory reaction (IBMIR), 
which is also driven by preformed antibodies, complement and excessive coagula-
tion [ 31 ,  32 ]. 

 As with allogeneic procedures, cellular reactions should be expected following 
xenogeneic transplantation.  

9.2.2     Strategies to Overcome Immunologic 
Xenogeneic Reactions 

9.2.2.1     Micro- and Macro-Encapsulated Porcine Islets 

 The need for immunosuppressive drugs can be obviated by encapsulation, in which 
all islets are surrounded with a porous biopolymer composed mainly of alginate 
(micro-encapsulation) [ 33 ,  34 ]. This contains pores large enough for small mole-
cules such as water, glucose, oxygen and most importantly insulin to permeate, but 
excludes immune competent cells and larger molecules such as antibodies. However, 
it is not known how long these capsules can maintain function in vivo, since inferior 
bio-compatibility may lead to occlusion of pores. Recent studies have shown that 
the encapsulation material, especially alginate, activates both the complement and 
coagulation cascades resulting in the formation of tight fi brotic capsules around the 
microsystems [ 35 ,  36 ]. 

 Nevertheless, the New Zealand company Living Cell Technologies, a pioneer in 
this fi eld, has so far carried out transplants with 14 diabetic patients chosen because 
they suffered frequent episodes of unaware hypoglycaemia [ 34 ]. A dose-fi nding and 
safety study showed improvement in some treated patients, for example through 
reduced glycated haemoglobin levels. 

 Macro-encapsulation might offer an alternative to obviate the problems seen in 
microencapsulation. The device that is proposed here, is the size of a cardiac 
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pacemaker (or an ice-hockey puck) and is implanted to the outer side of the 
peritoneum (Fig.  9.1 ) [ 37 ]. The islets remain immobilised within the alginate, 
which is totally covered by a PTFE membrane. A gas mixture is delivered to the 
islets via two ports, assuring for optimal oxygen supply to the islets, a feature 
developed by the company Beta-O 2 , of Israel. Avoiding hypoxia is of critical 
importance to prevent early and long term graft loss.

   So far six diabetic pigs have been successfully treated with the system. Within 
the mean observation time of 85 days, the animals remained normoglycaemic at the 
upper limit of the norm and glucose challenge tests led to a measurable increase of 
porcine C-peptide [ 38 ]. 

 In a proof of principle study, a 63-year-old diabetic patient received the device 
(loaded with human islets) for 10 months without application of immunosuppres-
sion, within that time the transplanted islets remained living and reacted to meta-
bolic challenges [ 37 ].  

9.2.2.2     Genetically Modifi ed Porcine Islets, Heart Valves, 
Vascularised Organs (Hearts) 

 Genetic modifi cations of the tissues must ameliorate the various xenogeneic reac-
tions of the recipient. 

 Unmodifi ed porcine cell surfaces, including the endothelium, present α-Gal 
sugar epitopes that are absent in old world monkeys (e.g. baboons) and humans. 
Animals (humans) lacking α-Gal develop antibodies to α-Gal during early life [ 39 ] 
and these initiate hyperacute rejection. 

 Inactivation of the enzyme responsible for α-Gal synthesis, α-1,3-galactosyl trans-
ferase (GGTA1), by genetic knock out (KO) of the GGTA1 gene and  generation of 
homozygous pigs was therefore a major breakthrough [ 40 ]. Since then several indepen-
dent herds have been established and α-Gal-KO organs have been tested in numerous 
pig-to-baboon transplantation studies resulting in maximum survival of 3 months for 
kidneys [ 41 ] and 8 months for beating but not working hearts (Fig.  9.2a ) [ 27 ].

  Fig. 9.1    Macroencapsulation system for islets. Cross-section of the device (Beta-O2, Israel). The 
islets remain immobilised within the alginate compartment which is covered by a PTFE mem-
brane. Alginate and PTFE are porous allowing the permeability of small molecules such as glucose 
and insulin, but not big sized antibodies and immune competent cells. Oxygen is supplied to the 
islets via two ports connected to a gas reservoir integrated in the device       
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  Fig. 9.2    Techniques of heart transplantation; ( a ) Heterotopic experimental abdominal transplanta-
tion; the graft is connected to the abdominal vessels of the recipient and perfused via the coronary 
arteries. No heart-lung-machine is necessary for this non-working model; ( b ) Heterotopic thoracic 
transplantation; connection of both the donor and recipient atriums (and of course the aortas and 
pulmonary artery trunks), whereby all ventricles are fi lled. The donor organ is working; ( c ) 
Orthotopic heart transplantation; the clinical state of the art technique; ( b ) and ( c ) necessitate the 
use of the heart-lung-machine, incurring some technical challenges and inducing a non-specifi c 
(complement driven) infl ammatory reaction. Illustrations by Nina Bantschow       
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   Once hyperacute rejection is overcome, acute humoral rejection presents the 
next obstacle. Hearts from α-Gal-KO pigs transplanted into baboons were found to 
exhibit widespread thrombotic microangiopathy, ischemia, focal haemorrhage and 
necrosis as a consequence of progressive humoral rejection and disordered throm-
boregulation, as mentioned above. The underlying mechanisms are not completely 
understood, but are thought to involve changes to the porcine endothelium follow-
ing transplantation that lead to a procoagulant state. Antibodies to antigens other 
than α-Gal (non-Gal) epitopes also seem to play a major role in acute humoral 
xenogeneic rejection [ 22 ]. However, the number and diversity of non-Gal antigens 
preclude their removal by gene targeting. The preferred strategy is thus to prevent 
complement-mediated destruction of the xenograft. Various transgenic pigs express-
ing human complement regulators (CD46, CD55, CD59; [ 42 – 45 ]; reviewed in [ 46 , 
 47 ]) on the vascular endothelium have been generated, combined with α-Gal-KO 
animals, and tested in pig-to-baboon transplantation experiments (Table  9.1 ).

   Table 9.1    The “genetic toolbox” central to our strategies to minimise or abolish hyperacute and 
delayed humoral rejection. These genetic modifi cations of donor pigs prolong graft survival by 
different mechanisms and are combined in various multi-genetically modifi ed pigs   

 Genetic modifi cation  Mechanisms 
 α-Gal-KO  Deletion of Gal antigen expression 
 α-Gal/CMAH-KO  Deletion of Gal antigen and sialic acid Neu5Gc 

expression 
 h-CD46 or h-CD55 or h-CD59  Downregulation of the human (h) complement system 
 h-TM  Binds human thrombin, cofactor in activating Protein C 
 CD39  Inhibition of ADP-induced platelet activation and 

aggregation 
 HO-1  Anti-apoptotic, cytoprotective and anti-infl ammatory 
 A20  Anti-infl ammatory and anti-apoptotic 
 LEA 29Y  Blockade of a T-cell co-stimulation pathway 
 HLA-E  Graft protection against human natural killer cells. 
 Multi-genetically modifi ed pigs 
 α-Gal-KO + h-CD46 a,b   Multi-genetically modifi ed animals are correspondingly 

more complex. The genetic modifi cations include the 
gene knockouts and transgenes listed above. Obtaining 
these animals with appropriate levels of transgene 
expression requires multiple experimental iterations to 
optimize transgene structure and identify the best founder 
animals, a process that can take several years. 

 α-Gal-KO + h-CD46 + h-TM a,b  
 α-Gal-KO + h-CD46 + HO-1 a,b  
 α-Gal-KO + h-CD55 + HO-1 a,b  
 α-Gal-KO + h-CD46 + LEA 29Y a,b  
 α-Gal-KO + h-CD46 + HLA-E a,b  

 α-Gal-KO + h-CD46 + h-CD55 + h-CD59, A20, HO-1 b,c  
 α-Gal/CMAH-KO + h-CD46 + h-CD55 + h-CD59, A20, HO-1 c  
 α-Gal/CMAH-KO + h-CD46 + h-CD55 + h-CD59, A20, HO-1 + CD39 + hTM c  

   a Produced by E. Wolf (Ludwig-Maximilians-Universität Munich, Oberschleißheim, Germany) 
using Gal-KO/CD46 background provided by D. Ayares (Revivicor, Blacksburg, USA) 
  b Genetically modifi ed pig hearts available for our current cardiac transplant experiments in baboons 
  c Produced by A. Schnieke (Technical University Munich, Weihenstephan, Germany) and by 
H. Niemann (HO-1, A20, h-CD59, Friedrich Löffl er Institute, Mariensee, Germany)  
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   Transgenes that modulate endothelial activation such as heme oxygenase 1 (HO- 
1), are also thought to be benefi cial [ 48 ]; the expression of human HLA-E protects 
against the cytotoxic activity of natural killer cells [ 49 ]. 

 Expression of human thrombomodulin on porcine cells, especially on the endo-
thelium, has been favourable in preclinical experiments (see also next chapter), 
ameliorating or even avoiding signs of thrombotic microangiopathy [ 50 – 53 ]. 

 Additional immunosuppressive treatment (tacrolimus, mycophenolate mofetil, 
cortisone, ATG each alone or in combination) will clearly be necessary to overcome 
the consistent delayed humoral and cell-mediated rejection mechanisms. Total tho-
racic lymph node irradiation with 6–7 Gy [ 54 ] or co-stimulation blockade with 
CD40 or CD40L antibodies must be added [ 55 ]. A useful genetic approach is to 
express a T-cell co-stimulation blocker such as the improved form of CTLA4-Ig, 
LEA29Y, on transplanted cells or organs. This has been successfully demonstrated 
by researchers within our consortium, who transplanted LEA29Y expressing pig 
islets into diabetic humanised immune-defi cient mice [ 56 ]. 

 Since xenogeneic interventions can be planned in advance, the bone marrow 
(and therefore antibody production) is suppressed prior to transplantation using 
anti-CD20 to destroy B-cells, or even Bortezomib in combination with cortisone to 
obviate plasma cells, cyclophosphamide for myeloablation [ 57 ]. Extracorporeal 
immune-adsorption (induces complement activation) may be used to remove pre- 
existing antibodies.    

9.3     Preclinical Results 

 In a recent review, Ekser and colleagues [ 46 ] listed the longest survival times 
reported for xenografted porcine cells and organs. Micro-encapsulated pancreatic 
islets from wild-type animals survived more than 800 days [ 15 ], non-encapsulated 
islets transgenic for human-complement regulator protein CD46 survived almost 
400 days [ 16 ]. Hearts placed heterotopically within the thorax (Fig.  9.2b ) beat for 
up to 50 days [ 58 ] (personal experience), and those placed orthotopically (Fig.  9.2c ) 
for 57 days [ 59 ]. Transplanted CTLA4-Ig transgenic neuronal cells to treat 
Parkinson’s disease, and wild-type decellularised corneas were also successful for 
hundreds of days [ 7 ,  60 ]. Whole kidneys from CD55 transgenic animals survived 
for 90 days [ 61 ], although porcine renal erythropoietin is not recognised by primate 
recipients and must be replaced. Liver and lung transplants do however stand in 
contrast to these successes, surviving only 8 and 5 days [ 62 ,  63 ]. 

 A team led by Muhammad Mansoor Mohiuddin (NIH) has achieved a major 
breakthrough in the fi eld of xenogeneic heart transplantation. In his most recent 
group, two out of fi ve genetically modifi ed (α-Gal-KO, CD46, h-thrombomodulin) 
pig hearts, have been beating for more than one and two post-operative years in 
baboons [ 51 ,  53 ,  64 ]. The immunosuppressive regimen is simple and obviously well 
tolerated; the (long-term) maintenance treatment includes only anti-CD40 and 
mycophenolate mofetil (steroids are tapered off within seven post-operative weeks). 
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The genetically modifi ed porcine hearts were however placed into the abdomen of 
the recipient, in a beating but non-working mode. Figure  9.2a  shows the arrange-
ment; the donor ascending aorta was connected to the recipient’s abdominal aorta 
and the donor pulmonary artery to the inferior caval vein. Further orthotopic experi-
ments are needed to verify these excellent results; orthotopic procedures will how-
ever necessitate the use of a heart-lung-machine, incurring some technical challenges 
and inducing a non-specifi c (complement driven) infl ammatory reaction [ 65 ], which 
is not trivial to overcome under these circumstances. Effective inhibition of C3 
binding with Compstatin is therefore planned from our side. 

 In the fi eld of preclinical macro-encapsulated islet transplantation, effi cacy and 
safety studies (carried out by the Dresden team) are underway. 

 Since glutaraldehyde fi xed/decellularised porcine valves still present α-Gal and 
non-Gal antigens, tissues from (multiple) knock-out animals will prove benefi cial.  

9.4     Safety Preconditions, First Preclinical Results 

 Among the possible infectious agents perceived as xenotransplantation risks, por-
cine endogenous retroviruses (PERV-A, B, C) have received the most attention 
because they are integrated in the germ line and transmitted vertically to offspring, 
and cannot thus be eliminated by raising pigs under DPF conditions [ 66 ]. Initial 
studies showed the human-tropic potential of PERV in vitro [ 67 ] and revealed their 
predisposition for retroviral recombination [ 68 ]. Recombined PERV-A/C has higher 
infectious potential than PERV-C [ 69 ]. But most importantly, there was no evidence 
of cross-species transmission in the fi rst clinical trials of islet xenotransplantation 
(see also above; [ 34 ]). 

 Regarding safety issues, the International Xenotransplantation Association 
(IXA) has defi ned and regularly updates the conditions for xenotransplantation [ 70 , 
 71 ] (current update on the Second International Conference on Clinical Islet 
Xenotransplantation, August 2014, San Francisco, USA).  

9.5     Conclusion 

 The great Norman Shumway, pioneer of human heart transplantation, used to say: 
“Xenotransplantation is the future and always will be!” Recent breakthroughs in 
preclinical xenotransplantation experiments suggest that, fortunately, this pessimis-
tic view may no longer be true. 

      Funding   The Transregio Collaborative Research Center 127 is funded by the German Research 
Foundation (DFG).  
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    Chapter 10   
 Macroencapsulated Pig Islets Correct Induced 
Diabetes in Primates up to 6 Months 

             Pierre     Gianello     

    Abstract     A bioartifi cial pancreas, in which islets of Langerhans are encapsulated 
within a semipermeable membrane, may be an alternative therapeutic device for 
diabetic patients. It may constitute another safe and simple method of transplanting 
islets without the need for immunosuppressive therapy. Since the semipermeable 
membrane protects the islets from the host immune system, the islets are likely to 
survive and release insulin for a long period of time, thereby controlling glucose 
metabolism in the absence of immunosuppressive medication. Recent data using 
macroencapsulation of pig islets in primate seems encouraging. In fact, a “mono/
bilayer” confi guration of macroencapsulated pig islets implanted subcutaneously 
has been found to signifi cantly improve diabetes control in primates for 6 months 
without any immunosuppression.  
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       Allogeneic transplantation is today the only successful therapy for several life- 
threatening diseases. However, organ donation only partially meets the demand and 
many patients still die while waiting for transplantation. Cellular transplantation 
represents a very successful tool to treat type 1 diabetes mellitus (T1DM) by trans-
plantation of human islets [ 1 ,  2 ]. Unfortunately, islet allotransplantation suffers 
from comparable limitations which is even aggravated by the fact that more than 
one donor is regularly needed to treat one T1DM recipient. Although human stem 
cells may solve these problems in the future, there are still several major hurdles that 
preclude their use for clinical applications. Therefore, like in the 60s when, in the 
absence of dialysis, clinicians referred to xenogeneic (non-human primates) organs 
to treat human beings (a renal xenograft survived up to 9 months), the scientifi c 
community has today reconsidered the possibility of using  porcine cells  to cure 
specifi c diseases by xenogeneic cellular transplantation. In fact, (1) pig cells have a 
stable function and differentiation pattern and are not tumorigenic; (2) pig cells 
have been shown to meet the physiological needs in large animal models (primates); 
(3) the source of pig cells can be scaled-up to meet all demands on a highly stan-
dardized manner, in the respect of animal welfare rules; (4) Designated Pathogen- 
Free (DPF) pig lines can be produced and could result in a higher safety profi le than 
allotransplantation itself; (5) the risk of zoonosis, which was raised years ago as the 
major hurdle, has been recently circumvented and is actually viewed as a controlled 
risk and (6) the pig insulin has been used during decades for treating T1DM patients 
since its differs from human insulin (52aa) only at one amino-acid. The use of xeno-
geneic cells, however, raises a major diffi culty which is the need for a heavy sys-
temic immunosuppression (IS). In order to avoid this heavy IS, mechanical 
immunoprotection has been investigated to be used in preclinical models. An attrac-
tive alternative to immunosuppressive drugs is cell immunoisolation by encapsula-
tion in a semipermeable matrix to protect transplanted tissues against immune cells 
from the recipient as well as against antibodies (autoimmunity of T1DM, ABO/
human leukocyte antigen incompatibility, preformed antibodies against α-Gal and 
other antigens in xenotransplantation). 

 Macroencapsulation and microencapsulation systems have been proposed for 
cell immunoisolation [ 3 – 9 ]. However, the lack of biocompatibility [ 3 ,  4 ,  10 – 14 ], the 
nonselective permeability (cytokines, antibodies), the implant degradation, and the 
limitation of nutrient diffusion are also reported as major causes of encapsulated 
islet dysfunction [ 15 ]. Although several materials have been assessed (agarose, chi-
tosan, copolymers of acetonitrile, AN69, poly(2-hydroxyethyl methacrylate), poly-
urethane, monomethoxy poly(ethylene glycol), Biodritin) [ 16 – 22 ], alginate is 
currently one of the major material used in the fi eld of islet transplantation to pro-
vide immunoisolation of encapsulated cells [ 23 – 27 ]. This material, extracted from 
brown alga, is a polysaccharide composed of subunits of mannuronic (M) and gulu-
ronic (G) acids. The M/G ratio directly affects physical and biocompatible proper-
ties of implants. High-G alginates are more stable and therefore more resistant to 
mechanical stresses than high-M alginates after implantation [ 3 ]. In contrast, a 
smaller pore size, found in high-M alginates [ 28 ], can promote selective permeabil-
ity for small molecules, avoiding immunoglobulins and immune cells. Alginates of 
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high viscosity and high content in mannuronic (SLM) or guluronic acids (SLG) are 
the most commonly reported in the literature. New alginates with coupled peptide 
sequence (arginylglycylaspartic acid [RGD]) were also assessed to improve encap-
sulated cell adherence in the matrix [ 29 ]. Alginates with a very low density (very 
low density Mannuronate (VLDM) and very low density Guluronate (VLDG)) were 
similarly tested to reduce implant size by loading a higher number of islets per vol-
ume of polymer. The content in M and G acids as well as alginate viscosity and the 
use of peptidic sequences [ 30 ] may infl uence biocompatibility [ 4 ,  31 ]. 

 As a fi rst step, there is a need to select an encapsulation material that possesses 
ideal biocompatible properties for islets encapsulation such as (1) stability during 
the graft process, (2) immunologic protection (impermeability to molecules 
>150 kDa such as IgG) coupled with permeability to molecules of low molecular 
weight such as insulin, glucose, nutrients, and metabolites, and (3) promotion of 
angiogenesis to allow a suffi cient oxygen pressure (pO 2 ) thereby ensuring encapsu-
lated tissue survival and function. To avoid nonspecifi c immune response against 
alginates, each material is characterized by a low level of endotoxin content 
(<100 EU/g). 

10.1     Choice of Encapsulating Alginate 

 First, it was investigated, in vivo, the biocompatible properties of different chemical 
alginates and their potential use for islet encapsulation and subcutaneous transplan-
tation in both rat and primate models [ 23 ,  32 ]. 

 Alginates composed of either high mannuronic (SLM) or high guluronic (SLG) 
content were tested (Tables  10.1  and  10.2 ). Three subtypes in each group were used: 
(1) high viscosity (SLM vs. SLG), (2) Very Low Density (VLDM vs. VLDG), and 
(3) peptide (arginine, glycine, aspartic acid for RGD)-coupled alginate (SLM-RGD 
vs. SLG-RGD) (Novamatrix, Drammen, Norway). Alginate implants of disc-like 
shape of about 1–1.5 cm 2  and a thickness of 3–6 mm were subcutaneously implanted 
in the paravertebral space of Wistar rats. Seven experimental groups of seven rats 

    Table 10.1    Characteristics of various alginates in vivo   

 Alginate  % W/V  % M  % G  Coupled peptide  Viscosity (mPa.s) 
 Endotoxin 
content (EU/g) 

 SLM  3  >50  –  No  >100  <100 
 SLG  3  –  >60  No  >100  <100 
 SLM 
RGD 

 3  >50  –  Yes  >100  <100 

 SLG RGD  3  –  >60  Yes  >100  <100 
 VLDM  7  >50  –  No  <20  <100 
 VLDG  7  –  >60  No  <20  <100 
 Ctrl+  3  >50  –  No  >100  <100 

10 Macroencapsulated Pig Islets Correct Induced Diabetes in Primates up to 6 Months



160

( n  = 49) were created: one group per alginate type (SLM, SLG, SLM-RGD, SLG- 
RGD, VLDM, VLDG) and one positive control group. Each animal from the seven 
experimental groups received two implants, which were placed in small  subcutaneous 
pockets located on each side of the dorsal column. In each group, three rats were 
sacrifi ced after 2 weeks and two additional rats were euthanized at 4 weeks after 
implantation. After 12 weeks, the last four implants were explanted from the 
remaining rats in each group (14 rats/28 implants).

    Alginate implants were weighed before and after implantation to assess the weight 
recovery and then the percentage of graft recovery. Surrounding tissues and implants 
(structured and destructured) were taken for investigations. Sections were thereafter 
routinely colored with silver methenamine (PASM) and Masson’s trichrome to 
assess, respectively, the degree of fi brosis and angiogenesis. Lymphocyte (CD3) and 
macrophage (CD68) infi ltrations were assessed by immunohistochemistry [ 23 ]. The 
numbers of macrophages, lymphocytes, and vessels were quantifi ed histomorpho-
logically. For characterization of the permeability of different alginates, before and 
after implantation, implants of each alginate were incubated with FITC-coupled lec-
tins of different molecular weights: 36, 75 or 150 kDa [ 33 ]. In vivo biocompatibility 
was characterized by evaluation of graft stability, neoangiogenesis in periphery of 
implants, recruitment of lymphocytes and macrophages, and assessment of graft per-
meability to small molecules and to the immune system of the receiver. 

    Table 10.2       Alginate selection: biocompatibility   

 SLM  SLG 
 SLM 
RGD 

 SLG 
RGD  VLDM  VLDG  Ctrl+ 

 Permeability to 
molecules of 

150 kDa     

 Prior 
implantation 

 No   Yes    Yes    Yes    Yes    Yes    Yes  

 At each 
explantation 
time 

 No   Yes    /    Yes    /    /    /  

 Degradation  No   No    Yes    Yes    Yes    Yes    Yes  
 Fibrosis  No   Yes    Yes    Yes    Yes    Yes    Yes  
 Lymphocytes recruitment  +   +    +++    ++    ++    +++    ++++  
 Macrophages recruitment  +   +    +++    ++    +++    +++    ++  
 Angiogenesis  +++   ++    +    ++    +    +    ++  

 Ideal pO 2      

 pO 2  > 12 mmHg  Yes   Yes    No    Yes    No    No    No  
 pO 2  ~ 40 mmHg  Yes   No    No    No    No    No    No  
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 Electronic paramagnetic resonance (EPR) oximetry was used to assess evolution 
in pO 2  inside grafts in vivo up to 4 weeks and to evaluate in vitro a possible gradient 
of pO 2  inside the SLM3 % grafts. The measurement is based on the oxygen- 
dependent broadening of the EPR spectrum of a paramagnetic oxygen sensor [ 34 ]. 
The pO 2  inside the alginate implants, placed subcutaneously in rats, was studied up 
to 4 weeks after transplantation. Paramagnetic carbon was used as the oxygen- 
sensitive probe. Adding carbon exclusively to alginate implants ensures the graft 
specifi city of the signal measured. EPR spectra were recorded with a modulation 
amplitude less than one third of the peak-to-peak line width. 

 Implants were weighed before and after each explantation time to calculate the 
percentage of weight recovered after implantation (Tables  10.1  and  10.2 ). Control 
material was totally degraded 4 weeks after implantation. The percentage of weight 
recovery >100 % indicated serious fi brosis surrounding Ctrl + (after 2 weeks), SLM- 
RGD, and VLDG and SLG-RGD (after 12 weeks). Serious implant degradation was 
also observed for SLM-RGD at 12 weeks (−58 % of graft weight), VLDM from 2 
weeks after implantation (−70 %), and VLDG (−52 %). Suitable implant stability, 
up to 12 weeks after implantation, was observed only for SLM (−27 %) and SLG 
(−16 %). The weight of the SLG implant, however, decreased signifi cantly from 2 
to 4 weeks, whereas the weight recovery of the SLM implant was stable during the 
complete graft course without a serious fi brosis process. 

 Angiogenesis is required to allow oxygenation of transplanted tissues. Therefore, 
angiogenesis was quantifi ed by histomorphologic analysis of tissues surrounding 
alginate implants (number of vessels/0.16 mm 2 ) at each explantation time. 
Angiogenesis surrounding the alginate material was signifi cantly higher in SLM 
than in other alginates at 2 and 4 weeks after implantation. Although SLG and 
Ctrl + demonstrated a transient angiogenesis at 2 weeks, it was not maintained at 4 
and 12 weeks after implantation. Because the major cause of encapsulated cell 
death is probably hypoxia, pO 2  was assessed in vivo inside alginate implants at 1, 2, 
3, and 4 weeks after implantation. Only SLM, SLG, and SLG-RGD alginates 
showed a pO 2  > 10 mmHg during the 4 weeks of follow-up and only SLM clearly 
demonstrated a constant and much higher oxygenation (~40 mmHg) during the 
entire 4-week follow-up. 

 Low lymphocyte infi ltration (<35 lymphocytes/0.16 mm 2 ) was observed for all 
experimental alginates at each explantation time. However, a higher degree of lym-
phocyte infi ltration was found at 2 weeks after implantation for SLM-RGD and 
Ctrl + (22.45 ± 5.85 and 34.55 ± 5.30, respectively, vs. a mean of 5.18 ± 0.61 
cells/0.16 mm 2  for other alginates). At 4 and 12 weeks after implantation, VLDM 
and VLDG, respectively, demonstrated the highest lymphocyte recruitment 
(16.70 ± 1.46 and 10.10 ± 2.20, respectively, vs. a mean of 6.46 ± 0.68 cells/0.16 mm 2  
for other alginates). In contrast, a lower recruitment of CD3 +  cells was observed for 
SLM and SLG at each explantation time (a mean of 4.98 ± 1.09 and 2.42 ± 0.48 
cells/0.16 mm 2 , respectively). Looking also at macrophage recruitment during the 
graft process, 2 weeks after implantation, SLM-RGD, VDLM, VDLG, and 
Ctrl + were characterized by signifi cantly higher macrophage infi ltration than that in 
SLM, SLG, and SLG-RGD. After 4 weeks, CD68 +  cell infi ltration persisted at a 
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higher level for VLDM and VLDG than other alginates. At 12 weeks after 
 implantation, VLDG and even SLG-RGD demonstrated a signifi cantly higher infi l-
tration of macrophages than that in SLM. Throughout the whole graft process, SLM 
showed a constantly low level of macrophage infi ltration similar to that in SLG and 
even SLM-RGD at 4 and 12 weeks. 

 The permeability of the 6 alginates and control material to lectins of 36, 75, and 
150 kDa was tested in vitro before implantation. The 6 alginates and the control 
material were permeable to small-molecular-weight molecules (36 and 75 kDa 2 ). In 
contrast, lectins of 150 kDa could not penetrate SLM alginate, whereas similar lec-
tins penetrated all other tested materials. All alginate devices implanted in rats were 
explanted after 2, 4, and 12 weeks for permeability testing. Since the permeability 
assay for lectins requires well-structured alginates, permeability characterization 
was not performed on SLM-RGD, VLDM, and Ctrl + materials because they lost 
their structure after 2 weeks. 

 After explantation, each tested alginate maintained its permeability to molecules 
of low molecular weight at each explantation time. Only SLM and SLG maintained 
their permeability to molecules of 75 kDa during the entire graft process. SLM 
preserved the level of selective permeability to 150 kDa up to 12 weeks after implan-
tation, whereas a signifi cantly higher degree of permeability to such molecular 
weight molecules was evidenced for SLG and SLG-RGD. 

 All over, these data suggested to use SLM alginate to micro or macroencpasulate 
pig islets and evaluate the survival of these islets in vivo in a preclinical model i.e., 
pig to primate.  

10.2     In Vivo Proof of Concept in Pig to Primate Model 

 As a second step, encapsulated pig islets in high-M alginate were implanted under 
the kidney capsula and the encapsulated material improved the graft survival (vs 
non encapsulated islets) after transplantation into several non-diabetic primates. 
A mean level of 0.14 ± 0.08 ng/ml of porcine C-peptide was detected until day 30 
post- transplantation, in the sera of 7 primates. Level of C-peptide was signifi cantly 
higher than the level obtained in animals receiving non-encapsulated pig islets 
(0.03 ± 0.02 ng/ml). Although no porcine C-peptide was detected in primate sera 
over 90, 135, 180 days post-transplantation, no graft fi brosis, no capsule overgrowth 
and insulin positive cells were observed. Dithizone positive cells were found inside 
grafts after 135 and 180 days of transplantation. 

 Capsules were removed 135 ( n  = 2) and 180 ( n  = 3) days after transplantation and 
were incubated in the presence of different concentrations of glucose to assess the 
function of pig islets from explanted capsules. An increase in insulin release, after 
exposure to glucose 15 mM supplemented with Forskolin, was observed for pig 
encapsulated islets removed at day 135: 6.6 ± 2.3 % vs. 2.9 ± 0.9 % of insulin con-
tent for glucose 15 mM + Fsk 1 μM vs. glucose 5 mM ( p  = 0.028,  n  = 2). The mean 
SI was calculated at 2.2 (range 2.0 – 2.7) (Fig.  10.1 ).  
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    However, a signifi cant decrease in insulin content was observed in capsules 
explanted from primates after 135 (2.2 ± 1.9 ng/islet) and 180 (1.1 ± 1.0 ng/islet) 
days of transplantation ( p  < 0.005) as compared to those extracted from capsules 
prior to transplantation (32.2 ± 24.3 ng/islet) for capsules containing a mean of 2–3 
pig islet cells ( p  < 0.005). 

 In all primates, the presence of anti-pig antibodies (IgM and IgG) was detected 
prior to transplantation thereby confi rming the presence of preformed anti-pig anti-
bodies. No increase in IgM or IgG anti-pig antibodies was found in the sera of pri-
mates transplanted with empty capsules. In contrast, when primates were given 
non-encapsulated pig islets ( n  = 2) the level of anti-pig IgM and IgG antibodies was 
strongly increased, therefore suggesting the sensitization by pig proteins or 
glycoproteins. 

 The fi rst aim of this second step was to demonstrate the biocompatibility of 
encapsulated pig islets for long-term (6 months) in primates and overall, these data 
suggest that encapsulated pig islets must be embedded in very pure alginate, culti-
vated for 18 or 24 h in serum-free medium containing a concentration of 1.8 mM of 
CaCl 2 . In addition, the ratio of well formed capsules must be over 90 % to obtain a 
long term in vivo biocompatibility in the pig to primate model. 

PIG ISLETS ENCAPSULATION
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  Fig. 10.1    An increase in insulin release, after exposure to glucose 15 mM supplemented with 
Forskolin, was observed for pig encapsulated islets removed at day 135 and 180 days of transplan-
tation ( p  < 0.005) as compared to those extracted from capsules prior to transplantation ( p  < 0.005)       
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 Although the survival of encapsulated pig islets in diabetic monkeys was reported 
9 years ago but never confi rmed by others teams [ 35 ], there is one recent and casu-
istic manuscript describing biocompatibility of alginate/polyornithine/alginate 
microcapsules after 8 weeks of implantation into non-diabetic primate [ 36 ]. The 
present experimental work in vivo clearly demonstrated that implantation of opti-
mised capsules might improve pig islet survival into primates without immunosup-
pression for up to 6 months in the most stringent xenogeneic pig to primate model 
without any immunosuppression. 

 Some of the pig islets survived long-term despite a strong humoral anti-pig 
immune response. In fact, all the primates used in this study had preformed anti-pig 
antibodies of both IgM and IgG types. Despite the encapsulation, all primates devel-
oped an elicited anti-pig immune response as evidenced by the signifi cant shift of 
both anti-pig IgM and mainly IgG antibodies by Flow Cytometry. Despite this anti-
body production, no rejection or fi brosis was evidenced thereby demonstrating the 
immune protection of the pig islets by the capsules [ 37 ]. The immunization against 
pig proteins could be the consequence of a small percentage of pig islets not being 
encapsulated or simply prove that pig proteins might get out of the capsules [ 38 ], 
such as porcine C peptide [ 39 ].  

10.3     Macroencapsulation of Pig Islets Can Control 
a Diabetes In Vivo up to 6 Months 

 To confi rm these data in non-diabetic primates and evaluate how much these encap-
sulated pig islets could control a diabetes in the same preclinical model, it was 
crucial to use diabetic monkeys and to modify the graft now being designed as a 
mono/bi-layer graft to improve the oxygenation of beta cells (Fig.  10.2 ) and there-
fore avoid any lack of Oxygen diffusion.  

Islet

Collagenic support

ALGINATE

  Fig. 10.2    The collagenic 
support (HACM) is covered 
by mono/bilayer of pig islets 
and embedded both size with 
SLM alginate 3 % to be 
implanted subcutaneously in 
in vivo models       
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 After Streptozotocin treatment and prior to transplantation, six animals displayed 
clinical features of diabetes including polyuria, polydipsia, weight loss (−29 ± 13 % 
of initial weight prior to diabetes induction), persistent fasting hyperglycemia 
(271 ± 92 mg/dl), glycosuria (>1,000 mg/dl), and elevated glycosylated hemoglobin 
(>13 %). The absence of endogenous production of insulin was confi rmed by an 
abnormal intravenous glucose tolerance test (IVGTT). When the animals were sac-
rifi ced, 94 % of beta cell mass in the native primate pancreas had been destroyed by 
streptozotocin (STZ). 

 Recipients of empty capsules (sham animals) showed no correction of diabetes. 
After transplantation of nonencapsulated pig islets under the kidney capsule (KC) 
of two primates, a peak in the porcine C-peptide level was observed 1 h after trans-
plantation (range 2.438–6.525 ng/ml). The C-peptide level, however, was below the 
detection threshold (<0.1 ng/ml) 7 days after transplantation. 

 In addition, three to fi ve monolayer cellular devices (MCDs formed of a colla-
genic support and embedded into alginate) were implanted in each primate’s 
abdominal subcutaneous tissue containing a mean of 50,000 adult pig islet equiva-
lents (IEQs) seeded on a 1-cm 2  human acellular collagen matrix and embedded in 
alginate 3 % w/v. A total amount of 30,000 IEQ/kg per primate was delivered. 
After MCD implantation, the diabetes was completely corrected for 20, 20, 23, 24, 
and 28 weeks (Fig.  10.3 ). Average FBG was 94 ± 11 mg/dl; basal levels of porcine 
C-peptide were detected (0.362 ± 0.392 ng/ml in fasted state); glycosuria, polyuria, 
and polydipsia disappeared; and body weight increased (+8.2 % of initial body 
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weight). The control of diabetes was highlighted by correction of HbA1C, which 
normalized (<7 %) in primates 5, 8, and 9 up to 16 weeks after implantation. 
Although all transplanted primates had a decrease in HbA1C, primates 6 and 7 did 
not show a normal HbA1C <7 %.  

 Function of islets encapsulated in MCDs was assessed by IVGTT 12, 14, and 16 
weeks after grafting in three animals. Whereas diabetic monkeys were unable to 
manage a glucose challenge after STZ treatment (insulin sera levels <1.5 μU/ml 
during IVGTT course), MCD implantation allowed normalization of the glucose 
course during IVGTT with six times more insulin release on average. In addition, 
the peak level of porcine C-peptide was measured in the primate sera. When total 
graft dysfunction was observed at 24 weeks post-transplantation (HbA1C >13 %), 
an assay again demonstrated a pathological arginine level. All implants were 
removed when diabetes completely reappeared, as indicated by elevated FBG, body 
weight lost (−24 %), and HbA1C >13 %. 

 Two animals underwent a second implant with fresh MCDs after failure of the 
fi rst graft. After total dysfunction of the primary implants, the diabetic state was 
confi rmed by an elevation of HbA1C at >13 and 12.9 % for primates 5 and 8, 
respectively. Secondary MCDs were placed in the same subcutaneous pouch as the 
fi rst implants, and diabetes was then completely controlled again for an additional 
16 and 20 weeks, as shown by normal FBG (91 ± 21 mg/dl and 68 ± 11 mg/dl), 
decreased HbA1C (9.6 and 7.4 %), and basal level of porcine C-peptide production 
(mean of 0.22 and 0.16 ng/ml) for primates 5 and 8, respectively. After this period 
of graft function, all signs of diabetes re-appeared with an elevation of HbA1C at 
13 % but without any graft destruction. 

 Histologic examination revealed no alginate degradation and lower CD3 
(64.4 ± 45.9 vs. 215.9 ± 15.5 cells/mm 2 ,  P  < 0.005) and CD68 (126.3 ± 23.1 vs. 
496.2 ± 61.8 cells/mm 2 ,  P  < 0.005) infi ltration for explanted MCD versus free pig 
islets (Ctrl + at day 7 after transplantation). No C3d/C9 deposition and some insulin- 
positive cells seeded between the human acellular collagen and alginate matrix were 
found in MCDs after total graft dysfunction. 

 Similarly to non-diabetic primates, in all animals receiving MCDs the presence of 
anti-pig antibodies (IgM and IgG) was detected before transplantation, and an 
increased level of anti-pig IgG antibodies after one, two and 6 months. These anti- pig 
antibodies were mainly directed against the Gal epitope and were highly cytotoxic. 

 Although the second transplant succeeded for primates 5 and 8, anti-pig antibod-
ies again increased at 6 weeks after retransplantation with MCD. These newly 
induced antibodies were specifi c for the Gal epitope and highly cytotoxic. As 
observed for primary grafting, these secondary induced antibodies decreased during 
a long time course of transplantation. 

 The aim of this third study was to prove the concept of a subcutaneous macrode-
vice by demonstrating that encapsulated porcine islets can control diabetes up to 6 
months after implantation into the most stringent xenogeneic model and without 
immunosuppression. 

 The long-term survival of the macroencapsulated graft in this work can be 
 attributed to two major factors: (1) the metabolic activity of the MCD device in the 
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subcutaneous tissue and (2) the selective permeability of the alginate against  anti-pig 
antibodies. 

 The MCD was designed with a monolayer deposition of islets to provide biologi-
cal support for the pig islets; immunoprotection was provided by alginate. The 
human acellular collagen matrix (HACM) used for islet support is a human decel-
lularized collagen tissue. The freeze-dried structure of the HACM promotes islet 
adhesion and can improve the number of islets seeded per graft. A mean of 50,000 
IEQ can be placed per 1 cm 2  of HACM if the purity of the islet preparation corre-
sponds to a volume of 200 μl of the cellular pellet. Many improvements of our 
porcine islet isolation method have resulted in >85 % purity of the endocrine tissue, 
which avoids exocrine contamination [ 40 ] and positively affects duration of encap-
sulated graft function [ 41 ]. 

 The most relevant factors for the implantation site for encapsulated islets are (1) 
physical and chemical stability of the graft after transplantation and (2) metabolic 
compatibility between the site and transplanted islets to control diabetes. The bio-
compatibility of the alginate capsules placed in subcutaneous tissue was confi rmed 
in primates (up to 120 days post-implantation, data not shown) prior to testing MCD 
implantation [ 42 ]. The metabolic properties were determined by the response of 
encapsulated pig islets in MCDs to in vivo glucose and arginine stimulation. 
Although the subcutaneous tissue can be considered to have a lower physiological 
effect on insulin compared with portal drainage after transplantation into the liver, 
similar glucose courses were obtained in non-diabetic and transplanted states for 
primates. In addition, it was demonstrated that subcutaneous tissue allows a suffi -
cient oxygen tension for survival of encapsulated islets MCD [ 43 ]. 

 Although adult beta cells express a low level of Gal epitope (5.1 % of adult pig 
beta cells) [ 44 – 47 ] we confi rm that Gal expression can persist after the isolation 
procedure (on endothelial cells) [ 23 ,  48 ], and therefore remains a target for humoral 
xenorejection against free pig islet xenotransplantation in humans and nonhuman 
primates. In contrast to immunosuppressed primate recipients in which no antibody 
response was elicited [ 49 ,  50 ], a high level of cytotoxic anti-Gal antibody was found 
in the sera of primates given transplants of encapsulated pig islets without immuno-
suppression. Therefore, the material for encapsulation must possess selective per-
meability for nutrients while preventing passage of immune cells and anti-Gal 
antibodies associated with pig islet xenotransplantation. The alginate 3 % w/v (used 
for MCD) demonstrated the selective permeability necessary to avoid the passage of 
IgG (150 kDa) prior and after transplantation.  

10.4     Conclusion 

 Macroencapsulated adult pig islets transplanted into the subcutaneous tissue of dia-
betic cynomolgus monkeys (1) sustain long-term function without immunosuppres-
sion when placed on a collagen support with a monolayer deposition, (2) can treat 
diabetes with HbA1C correction <7 %, (3) can metabolically control the glucose 
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course with an acute stimulation, and (4) are easy to transplant and retransplant into 
the subcutaneous space, which is a clinically applicable site involving a low- invasion 
procedure. Following the guidelines recently reported by Cooper and Casu [ 51 ], 
these data show that it is possible to meet International Xenotransplanatation 
Association (IXA) guidelines for a clinical pilot study. Following the properties of 
alginate 3 % w/v, the MCD failure at 6 months could be attributed to the lifespan of 
adult pig islets. 

 Now, SPF pigs, low in PERV needs to be selected to serve as a source of pig islets 
into human pilot studies.     
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    Abstract     Xeno-transplantation of pancreatic islets represents a promising thera-
peutic alternative for the treatment of type 1 diabetes mellitus. However, potent 
innate immune responses induced shortly after the transplantation of donor islets to 
the recipient, comprising the Instant Blood Mediated Immune Reaction (IBMIR), 
exert detrimental actions on islet graft function. The coagulation and complement 
cascades together with the leukocyte and platelet populations are the major players 
in IBMIR. This innate immune attack affects dramatically islet integrity and leads 
to signifi cant loss of function of the xenograft. In the present review, we focus on the 
mechanisms contributing to IBMIR components and address therapeutic interven-
tion approaches to limit IBMIR by administering inhibitors in circulation, by coat-
ing the islet surface with inhibitors or by generating transgenic donor animals; these 
approaches could result in improved xenograft survival.  
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11.1         Introduction 

 Cell or organ transplantation (Tx) is a promising therapeutic approach for the treat-
ment of patients suffering from end-stage organ defi ciency [ 1 ,  2 ]. Type 1 diabetes 
mellitus (T1DM), which is a disease resulting from an autoimmune reaction, is linked 
to high morbidity and mortality rates, especially because of its micro- and macro-
vascular complications. Patients suffering from T1DM can only be treated with exog-
enous administration of insulin. Allotransplantation of isolated islets of Langerhans 
or whole pancreas transplantation has been established as a therapeutic option, how-
ever, the shortage of appropriate donor islets is a major limiting factor [ 3 ,  4 ]. 

 Transplantation between different species, termed as xenotransplantation (xeno-
 Tx), may provide a promise to bypass the issue of shortage of human donor organs 
[ 5 ]. Until now, a variety of xenogeneic applications have been described including the 
transplantation of heart, kidneys, lungs or liver [ 6 ]. In the same context, xenogeneic 
islet transplantation to T1D patients may represent an alternative therapeutic approach 
to treat T1DM [ 7 ,  8 ], especially due to the unlimited availability of xenografts. 

 Pigs are currently considered the preferred xenograft donor species for several rea-
sons. This species share physiological similarities with humans, while their low repro-
duction time together with the high number of progeny are further obvious advantages 
[ 9 ]. Moreover, the major advances in genetics in recent years have yielded the genera-
tion of transgenic pigs feasible; these tools are engaged to generate xenogeneic grafts 
with optimal function and protection from the host immune attack [ 10 – 12 ]. 

 Despite the organ similarities between human and pigs, inter-species incompat-
ibilities give rise to immune and thrombotic reactions that result in the xenograft 
rejection [ 13 ,  14 ]. Besides rejection reactions that are based on adaptive immunity 
[ 15 ,  16 ], in the context of islet xeno-Tx, a major potential compromise in graft func-
tion may derive from a group of innate immune responses that are termed Instant 
Blood Mediated Infl ammatory Reaction (IBMIR). IBMIR is triggered by the xeno-
geneic contact between blood and islets and includes a complex interplay between 
activation of coagulation and the complement system, as well as leukocyte and 
platelet activation and accumulation (Fig.  11.1 ), thereby dramatically infl uencing 
the function and the survival of the xenograft, thus affecting adversely the outcome 
of islet xeno-Tx [ 17 ,  18 ]. The present review will focus on the mechanisms and 
interactions that regulate the pathophysiology of IBMIR, with a special emphasis on 
innate immunity and will address treatment strategies and points of therapeutic 
intervention that could ameliorate the adverse responses following islet xeno-Tx.   

11.2     The Complement System 

 Complement system, a major component of immunity, consists of a complex net-
work of soluble and membrane-bound proteins that cooperate in the recognition and 
elimination of microbial pathogens as well as foreign materials [ 19 ]. In recent years, 
the classical view of the complement system has been extended to include a variety 
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of immune and non-immunological responses, including processes linked with tis-
sue degeneration and regeneration, such as age-related macular degeneration 
(AMD) [ 20 ], liver regeneration [ 21 ,  22 ], and wound healing [ 23 ]. Further physio-
logic and pathophysiologic processes regulated by the complement system include 
angiogenesis [ 24 ], the mobilization of stem cells [ 25 – 27 ], lipid metabolism and 
infl ammation in metabolic organs leading to insulin resistance and diabetes 
[ 28 – 30 ]. 

 Impaired or excessive complement activation has been associated with the 
adverse effects observed after biomaterial applications in clinical practice [ 31 ,  32 ], 
in neurological disorders [ 33 ] and several autoimmune diseases [ 34 ,  35 ]. 

 Activation of the complement system occurs via three different loops (termed the 
classical, lectin and alternative pathways) depending on the nature of the initial trig-
ger. Irrespective of the activation loop, all pathways converge to the cleavage of C3 
by C3 convertases. C3 convertases cleave the central component C3 to the 
 anaphylatoxin C3a and C3b [ 19 ], the primary function of which, as well as of its 
split product iC3b is opsonophagocytosis. Moreover, iC3b can bind to the comple-
ment receptors CR3 and CR4 and lead to immune cell adhesion and cell activation 
[ 36 ,  37 ]. In addition, since activation of complement is associated with proteolytic 
cleavage of its components, proteases represent a further “non-traditional” pathway 
of complement activation [ 38 ,  39 ]. 

  Fig. 11.1    Simplifi ed overview of the key steps occurring during IBMIR in islet xeno-Tx. The 
xenogeneic contact between blood and islets triggers the activation of the extrinsic pathway of 
coagulation that is mediated through tissue factor (TF). As a result, the downstream effector throm-
bin is generated thus leading to fi brin deposition and the entrapment of islets into thrombi. 
Attachment of platelets to islets further supports the procoagulant effects. Activated fragments of 
complement (iC3b) are deposited on the islet surface, C3a and C5a anaphylatoxins activate and 
attract leukocytes and formation of MAC mediates the lysis of islets ( FVIIa : activated coagulation 
factor VII,  MAC : membrane attack complex)       
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 The classical pathway (CP) is triggered by antigen-antibody complexes, which 
are recognized by C1q. A major process in this pathway is the generation of CP C3 
convertase C4b2b, which results from the cleavage of C4 to C4a and C4b and in turn 
the splitting of C2 to C2a and C2b [ 40 ]. The activation of the lectin pathway (LP), 
which is initiated by the binding of mannose-binding lectin (MBL) or fi colins to 
pathogen surfaces and subsequent involvement of MBL-associated serine proteases 
MASP-1 and MASP-2, shares signifi cant similarities with that of the CP [ 41 ]. 
Spontaneous C3 hydrolysis to C3(H 2 O) accounts for the constitutive and continuous 
low level of activation of the alternative pathway (AP) [ 42 ]. The generated C3b 
assembles together with factor B and factor D the AP C3 convertase C3bBb [ 43 ]. 
The AP C3 convertase complex is stabilized by the binding of properdin [ 44 – 46 ]. 

 The generation of C3b by C3 cleavage in all three pathways is a major compo-
nent of C5 convertases that cleave C5 to C5a anaphylatoxin and C5b [ 47 ]. C5b 
participates in the formation of membrane attack complex (MAC) by recruiting the 
complement components C6, C7, C8 and C9 with a main function to mediate the 
lysis of pathogens or targeted cells [ 48 ]. 

 On the other hand, the C3a and C5a anaphylatoxins are very potent chemoat-
tractants, via interaction with their G-protein-coupled C3a- and C5a-receptors, 
respectively, and thereby contribute to infl ammatory cell recruitment to the site of 
injury or infection. In addition, C3a and C5a can activate immune cells and upregu-
late expression and release of infl ammatory cytokines and mediators [ 19 ,  49 ]. 

 Several soluble and membrane-bound complement regulators ensure that exces-
sive complement activation is prevented [ 50 ]. The membrane-bound regulators of 
complement activity include the decay accelerating factor (DAF or CD55), the mem-
brane cofactor protein (MCP or CD46), the complement receptor type 1 (CR1 or 
CD35), and the CD59 (or protectin) [ 50 ]. CD55 inhibits C3 and C5 convertases [ 51 ], 
whereas CD46 acts as a cofactor with factor I to promote the cleavage of C3b to iC3b 
[ 52 ]. The complement regulatory role of CD59 is mediated by the blockade of the 
polymerization of C9, thus interfering with the MAC formation [ 53 ]. Membrane 
complement regulators have been chosen as therapeutic strategies to block the func-
tion of complement in the context of IBMIR. For that reason, transgenic pigs that 
overexpress human CD55 (hCD55), human CD46 (hCD46) or human CD59 (hCD59) 
have been generated. Islet xenografts from these animals were protected from com-
plement-dependent lysis and displayed better engraftment, as will be outlined in 
detail under the paragraph “Therapeutic targeting of IBMIR” [ 54 – 59 ]. Soluble regu-
lators of complement activity include factor H that affects negatively the AP, the C1 
inhibitor (C1INH) that inhibits serine proteases involved in the activation of CP [ 60 ] 
and the C4 binding protein that targets effectively both CP and LP [ 50 ,  61 ].  

11.3     The Coagulation Cascade 

 The coagulation cascade participates in both hemostasis and thrombosis [ 62 ]. 
Tissue factor of the so-called extrinsic cascade is the central player for coagulation 
[ 63 ] and participates in thrombotic pathologies, including cardiovascular disease 
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[ 64 ,  65 ], and biomaterial-associated processes [ 32 ]. An infl ammatory stimulus or 
endothelial cell activation results in generation of the extrinsic Xase complex con-
sisting of TF and activated factor VII (FVIIa) [ 66 ]. The Xase-complex in turn pro-
motes the activation of factor X (FX), which together with activated FVa and Ca 2+  
forms the prothrombinase complex that mediates the conversion of prothrombin to 
thrombin [ 67 ]. Thrombin can activate platelets and cleave fi brinogen to fi brin, 
thereby resulting in the formation of insoluble fi brin clot [ 68 ]. 

 Coagulation and thrombosis participate in acute reactions to islet allo- [ 69 ] or 
xeno-Tx [ 70 ]. Notably, the exposure of islets of human or porcine origin to human 
blood results in the rapid activation of coagulation, as evidenced by up-regulation of 
TF levels [ 71 ] and by generation of high amounts of thrombin [ 72 ]. Moreover, islet 
Tx has been associated with thrombotic manifestations, such as fi brin deposition, 
and localization of the transplanted islets within thrombi [ 70 ]. Endogenous anti- 
thrombotic agents are therefore of major importance as potential benefi cial modula-
tors of IBMIR. The fi ne tuning of the coagulation cascade [ 73 ] is mediated by 
antithrombin III (ATIII), which inactivates thrombin, FXa and FIXa [ 74 ], the acti-
vated protein C (APC), which together with Protein S blocks FVa and FVIIIa [ 75 ], 
the tissue factor pathway inhibitor (TFPI) as well as thrombomodulin (TM). TFPI 
binds to and inhibits either FXa or the TF/FVIIa complex [ 76 ]. The anticoagulant 
activity of TM is mediated by its binding to thrombin. The TM-thrombin complex 
further promotes the generation of APC [ 77 ]. However, thrombin bound to TM can 
cleave and activate thrombin-activatable fi brinolysis inhibitor (TAFI) [ 78 ] that 
exerts procoagulant properties by blocking fi brinolysis. In the context of islet xeno-
 Tx, genetically modifi ed pigs that overexpress hemostasis-regulatory molecules 
have been generated. To this end, expression of hTFPI [ 79 ] protected xenografts and 
promoted the achievement of normoglycemia after xeno-Tx. Porcine TM has shown 
to be a poor co-factor for human thrombin and its protective function is therefore 
lost, which leads to increased coagulation [ 80 ]. For that reason, transgenic overex-
pression of hTM in pigs could avert the thrombotic manifestations observed after 
islet xeno-Tx [ 81 ]. 

11.3.1     Interactions Between Coagulation and Complement 

 Several connections between complement and the coagulation systems including 
their mutual regulation have been suggested [ 38 ,  39 ]. On the one hand, coagulation 
proteases can cleave complement components, thus providing an additional extrin-
sic way of complement activation. The coagulation factors FIXa, FXa, FXIa as well 
as thrombin cleave C3 and C5 and as a result C3a and C5a are generated [ 38 ]. TM 
is capable of negatively regulating the activation of complement system [ 82 ]. On the 
other hand, MASP-2 promotes the activation of coagulation by cleaving prothrom-
bin to thrombin [ 83 ], while the complement regulator C1INH can inhibit coagula-
tion factors XIa and XIIa [ 84 ]. Of interest, C5a either generated as a result of 
biomaterial-induced complement activation [ 32 ] or in antiphospholipid syndrome 
[ 85 ], induces the up-regulation of TF expression. C5a may also promote 
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coagulation indirectly by up-regulating plasminogen activator inhibitor-1, thus 
inhibiting fi brinolysis [ 86 ]. Therefore, complement and coagulation should be con-
sidered as two closely interacting and mutually regulated systems.   

11.4     Leukocyte-Endothelial Interactions 

 Upon tissue infl ammation, infection or injury, the interaction of leukocytes with the 
activated endothelium ensures a proper host response and provides the platform for 
the recruitment of immune cells to the site of injury or infl ammation [ 87 ]. The leu-
kocyte adhesion cascade includes multiple steps, such as rolling, adhesion, crawling 
and the subsequent leukocyte transmigration [ 88 ]. Initially, the rolling of leukocytes 
is mediated by interaction between the endothelial E- and P-selectins and their 
ligands CD44 and P-selectin glycoprotein ligand-1 (PSGL-1) [ 89 ]. The leukocyte 
adhesion and crawling to the endothelium takes places via the interaction between 
adhesion molecules present on the endothelial surface and leukocyte integrins. To 
this end, the β2 integrins Mac-1 (αΜβ2) and LFA-1 (αLβ2) bind to intercellular 
adhesion molecule-1 and 2 (ICAM-1, 2) [ 87 ,  90 ]. Mac-1 has also specifi city for 
binding to the receptor for advanced glycation end products (RAGE) [ 91 ]. Moreover, 
the β1 integrin VLA-4 (α4β1) binds to the adhesion molecule VCAM-1 [ 92 ]. 
Following this step, the adherent leukocytes transmigrate through the endothelium 
and accumulate within the infl amed tissues [ 93 ,  94 ]. 

 Leukocyte adhesion and infi ltration to the transplanted tissues has been associated 
with xenograft dysfunction and subsequent rejection [ 15 ]. Importantly, many of the 
interactions between leukocyte integrins and adhesion molecules remain operative in 
pig to human xeno-Tx settings [ 16 ]. Several studies have addressed the capacity of 
human leukocytes to roll and adhere to porcine endothelial cells (pECs), thus demon-
strating the functionality of the selectin- and integrin-dependent interactions between 
the two species [ 13 ,  95 ,  96 ]. More specifi cally, the adhesion of human lymphocytes 
to pECs was shown to be dependent on LFA-1 and VLA-4 [ 97 ] and the adhesion of 
human monocytes to pECs was prevented with combined inhibition of E-selectin, 
LFA-1 and VLA-4 [ 98 ]. In addition, the inhibition of VLA-4, LFA-1 and Mac-1 
resulted in decreased adhesion of human NK cells to pECs [ 99 ]. Besides the adhesion 
step, the human leukocyte transmigration across the porcine endothelium has also 
been studied [ 100 ]. Inhibition of β2 integrins, CD99 [ 96 ] or VCAM-1 [ 100 ] led to the 
reduction of the xenogeneic leukocyte transmigration. Of note, the activation of com-
plement system has been associated with the upregulation of selectins [ 101 ] and 
adhesion molecules and the blockade of this system was associated with a dramatic 
decrease of leukocyte adhesion to pECs in a xenogeneic whole blood model [ 102 ]. 

 In the context of islet xeno-Tx, leukocyte-endothelial interactions are however 
less relevant. In the native pancreas, the islets are highly vascularized and upon 
enzymatic isolation, islets are disconnected from the donor vasculature. It should be 
noted that in cultured islets the endothelial cells regress or lose their vascular mark-
ers [ 103 ]. Furthermore, the detection of endothelial cells is decreased after in vitro 
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culture of porcine islets [ 104 ]. The low levels of remaining islet EC may cause a 
rather low direct involvement of interactions between recipient leukocytes and EC 
in porcine islets transplanted to the portal vein [ 105 ]. Thus, in contrast to other 
xeno-Tx settings, leukocyte-endothelial interactions may be less operative in the 
context of islet xeno-Tx. 

 The smooth function of the leukocyte adhesion cascade is controlled by endog-
enous negative regulators [ 106 ,  107 ]. These molecules include Del-1, pentraxin-3, 
growth differentiation factor-15, galectin-1 and annexin 1 that block at several 
points the cascade [ 87 ]. The integrin inhibitor Del-1 (or epidermal growth factor 
(EGF)-like repeats and discoidin-I-like domains 3; EDIL3) is an endothelial-derived 
glycoprotein [ 90 ]. Del-1 blocks the interaction between the leukocyte integrin 
LFA-1 and ICAM-1. As a consequence, the absence of Del-1 can result in increased 
leukocyte recruitment [ 108 ,  109 ]. In addition, Del-1 inhibits the binding of the com-
plement fragment iC3b to Mac-1 integrin [ 110 ], thus further enhancing its anti- 
infl ammatory properties. The inhibitory role of Del-1 on leukocyte recruitment has 
been suggested by the enhanced severity of chronic infl ammatory diseases in Del-
1- defi cient mice [ 111 ,  112 ]. The relevance of endogenous inhibitors of the leuko-
cyte adhesion cascade in the context of xeno-Tx merits further examination.  

11.5     Modulation of IBMIR 

 IBMIR takes place shortly after transplantation of isolated islets into the portal vein 
of diabetic recipients [ 18 ], or after xeno-transplantation of islets (e.g. from pig) to a 
different species (e.g. non-human primates). The coagulation cascade, the comple-
ment system and innate immune cells together with platelets turn out to be main 
drivers of the IBMIR (Fig.  11.1 ) [ 18 ]. 

 The contact of host blood with the transplanted islets elicits rapidly a series of 
thrombo-infl ammatory reactions, including upregulation of TF expression [ 71 ] and 
thrombin generation [ 72 ]. Moreover, the induction of TAFI further propagates pro-
coagulant effects [ 113 ]. Intravascular clotting is induced [ 56 ] and thrombi, that 
entrap the islets, are formed [ 70 ]. In parallel, activation of complement CP and AP 
occurs, anaphylatoxins are generated, resulting in infl ammatory cell recruitment to 
the graft. Moreover, active complement fragments are deposited on grafts, thus pro-
moting the complement-dependent lysis of islets [ 114 ]. In addition, platelets and 
leukocytes infi ltrate the site of transplantation and bind to the surface of the islets 
[ 72 ,  115 ]. As a consequence, the integrity of islet grafts is disrupted leading to an 
early massive loss of transplanted islets [ 116 ,  117 ]. The acute destruction of a sig-
nifi cant proportion of transplanted islets by IBMIR is the major reason that the 
number of islets required for effective Tx is very high [ 118 ]. Interestingly, the extent 
of islet damage increases with decreased compatibility between the donor and 
recipient species. Thus, in the context of xeno-Tx, IBMIR becomes more relevant, 
as the recipient cannot control the IBMIR induced by xeno-Tx due to the incompat-
ibility observed between the regulators and the effector molecules that are present 
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on the xenograft and on the cells of the recipient, respectively [ 8 ]. Moreover, regula-
tory proteins are rather absent from porcine islets preparations [ 119 ]. It is therefore 
imperative to develop effi cient therapeutic options targeting the parameters orches-
trating IBMIR [ 18 ]. 

11.5.1     Therapeutic Targeting of IBMIR 

 In an effort to protect islet xenografts from the harmful effects of IBMIR, several 
approaches have been followed, such as strategies to inhibit coagulation, comple-
ment, leukocyte recruitment or combinations thereof. Such strategies involve the 
application of soluble inhibitors, the immobilization of inhibitory molecules on the 
surface of the graft or the generation of donor animals that lack antigenic molecules 
or overexpress regulatory elements. 

 In a xenogeneic in vitro whole blood system that simulates IBMIR, administra-
tion of a recombinant form of APC, either alone or in combination with the platelet 
activation inhibitor tirofi ban, protected islet viability via reduced coagulation and 
IBMIR [ 120 ]. In islet-Tx in vivo, APC decreased the degree of IBMIR, as assessed 
by reduced infl ammation and coagulation markers and thereby promoted graft via-
bility and function [ 121 ]. 

 The glycosaminoglycan LMW-DS (low-molecular weight dextran sulfate) has 
been reported to inhibit effectively both complement and coagulation cascades 
[ 122 ]. Thereby, LMW-DS attenuates signifi cantly the activation of complement 
[ 123 ] and coagulation cascades, thus affecting the degree and outcome of IBMIR in 
both in vitro and in vivo models [ 115 ,  124 ,  125 ]. To further ensure the potent inhibi-
tion of IBMIR following islet xeno-Tx, LMW-DS was used in combination with 
inhibitors of complement, such as compstatin [ 126 ,  127 ]. 

 Generation of thrombin has not only a major impact on thrombotic effects, but 
can also regulate complement activation [ 128 ]. The thrombin inhibitor melagatran 
blocked the activation of plasmatic coagulation and complement and decreased the 
activation of leukocytes after the exposure of islets to whole blood, thus suggesting 
a benefi cial role for thrombin inhibition in IBMIR [ 72 ]. 

 CD39 (ectonucleoside triphosphate diphosphohydrolase 1; ENTPD1) has also 
served as a target to minimize IBMIR effects. This molecule plays an important role 
in the regulation of thromboinfl ammation by degrading ATP and ADP, thus exerting 
anti-infl ammatory and anti-coagulant properties [ 129 ]. Incubation of islets 
 overexpressing CD39 with human blood induced a prolongation in clotting time, 
thereby suggesting a protective role for CD39 in islet xeno-Tx [ 130 ]. 

 The specifi c inhibition of complement system has been extensively tested in the 
context of IBMIR. The AP seems to be the predominant complement pathway in the 
course of IBMIR. More specifi cally, treatment of isolated islets with factor H, or an 
antibody against factor B resulted in decreased complement activation upon their 
exposure to human serum, while C1INH did not block the generation of comple-
ment effectors in the same context [ 131 ]. The contribution of AP in IBMIR was 
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further confi rmed in a xenogeneic model of islet-Tx, whereby administration of 
factor H resulted in the blockade of complement and protected the islets from dam-
age [ 131 ]. A peptide blocking complement effector C5a, alone [ 132 ] or in combina-
tion with the synthetic protease inhibitor gabexate mesilate [ 133 ] was shown to 
eliminate the detrimental effects of IBMIR, as coagulation activity was decreased 
and the islet function was improved. Of note, the suppressive effects of C5a-blocking 
peptide on both complement and coagulation pathways further support the interplay 
between these two cascades. Compstatin, a potent peptidic inhibitor that blocks 
complement system at the point of C3 [ 134 ], blocked the binding of active frag-
ments of complement to islets exposed to human plasma, diminished complement 
activation in fl uid phase [ 123 ,  126 ] and protected islets from lysis [ 114 ]. 

 In further studies targeting IBMIR, Bennet et al. incubated isolated islets with 
whole blood in the presence of a soluble form of CR1 (sCR1). They demonstrated 
that treatment with sCR1 blocked the IBMIR-associated complement activation and 
protected the islets from damage. Simultaneous inhibition with sCR1 and heparin 
eliminated IBMIR adverse effects as depicted by the decreased activation of coagu-
lation, complement and leukocytes. Interestingly, the protective role of sCR1 was 
confi rmed in vivo, since administration of the inhibitor supported islet integrity, as 
assessed by reduced insulin release shortly after Tx [ 70 ]. 

 It is worth mentioning that isolated islets can serve as a source of procoagulant 
factors. TF, the main initiator of coagulation in vivo, was found to be present in 
isolated islets [ 69 ,  71 ] and its knock-down [ 135 ,  136 ] or its inhibition with specifi c 
antibodies [ 137 ] has been proven benefi cial for the blocking of IBMIR. Interestingly, 
nicotinamide, a vitamin B derivative, was used to decrease the expression levels of 
TF and coagulation, thereby ameliorating IBMIR [ 138 ] and leading to improved 
islet function after islet-Tx [ 139 ]. 

 Islet xenografts can be assumed as foreign biosurfaces, which exposed to recipi-
ent blood trigger vigorous innate immune responses. Therefore, an emerging treat-
ment strategy to eliminate the adverse effects of IBMIR is the coating of inhibitory 
molecules on the surface of isolated islets, thereby suppressing coagulation and 
complement systems locally at the site of transplantation. 

 In this context, heparin has been extensively studied as an inhibitor of IBMIR- 
associated detrimental effects. Several techniques of heparin immobilization have 
been introduced [ 140 ,  141 ]. Coating of islets with heparin abrogated the thrombotic 
manifestations during IBMIR [ 141 ] and was associated with increased graft sur-
vival [ 142 ]. Heparin coating of islets in combination with angiogenic growth factor 
increased the interaction with co-cultured EC and could be benefi cial for islet 
 vascularization [ 143 ]. Moreover, sCR1-coated islets displayed less release of insu-
lin upon their exposure to serum, as a result of decreased complement-dependent 
lysis [ 144 ,  145 ], which led to overall better survival and function post transplanta-
tion [ 146 ]. The simultaneous immobilization of sCR1 with heparin inhibited 
IBMIR and further increased the frequency of normoglycemia observed after Tx 
[ 147 ]. The plasminogen activator urokinase has also been immobilized on the islet 
surface [ 148 ,  149 ], either alone or in combination with soluble thrombomodulin 
[ 150 ] or heparin [ 151 ]. Furthermore, administration of liposome carriers with TM 
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contributed to the achievement of normoglycemia after islet-Tx via decreasing 
levels of fi brin and immune cell accumulation in the transplanted tissues [ 152 ]. 

 During recent years, the design and generation of genetically engineered pigs, 
either lacking or overexpressing a combination of molecules that can regulate com-
plement and coagulation cascades, has opened new ways for the treatment of 
IBMIR. 

 Animals defi cient in a1,3-galactosyltransferase, an enzyme promoting the syn-
thesis of the Gal antigen, was a fi rst approach to obtain genetically modifi ed islets 
[ 153 ]. Existing xeno-reactive antibodies of the human recipients can bind to Gal 
that is present in the donor graft [ 1 ] and not in humans [ 154 ] and in turn induce 
rapid immune responses that are responsible for the graft dysfunction and loss 
[ 155 ]. In alternative approaches, the expression of human factors in pig islets, e.g. 
via adenoviral overexpression of the hCD55 or hCD59 made them less susceptible 
to complement-dependent lysis [ 156 ,  157 ]. These fi ndings were further confi rmed 
when hCD55-overexpressing islets isolated from transgenic pigs were also pro-
tected from lysis [ 158 ]. Interestingly, transplantation of islets overexpressing the 
CRP hCD46 resulted in the achievement of long-term normoglycemia in a xenoge-
neic model of Tx [ 57 ]. 

 To further enhance the protection of xenografts from the innate immune mecha-
nisms elicited during IBMIR, research efforts to generate multi-transgenic animals, 
which target multiple regulation points of complement and coagulation systems, 
have been undertaken. Pigs overexpressing a combination of human CRPs, such as 
hCD46, hCD55 or hCD59 in the presence of Gal defi ciency have been generated 
[ 55 ,  56 ,  58 ,  59 ]. In addition, the human anticoagulant proteins TFPI and CD39 were 
simultaneously introduced to the porcine genome [ 79 ]. The use of these animals in 
models of xenogeneic islet-Tx resulted in protection of islet engraftment thus 
increasing the possibility to treat T1D-associated hyperglycemia.   

11.6     Conclusions 

 Signifi cant efforts are being undertaken to treat type 1 diabetes by applying islet 
xeno-Tx. Before that is translated into clinical studies, the adverse effects of IBMIR, 
which is the main culprit for the early damage and loss of islet xenografts, should be 
effectively bypassed. To unravel the mechanisms that orchestrate IBMIR, ex vivo 
whole blood models that simulate IBMIR as well as in vivo Tx models are utilized. 
The combined therapeutic approaches targeting complement, coagulation or leuko-
cyte activation may ameliorate the IBMIR-related complications and bring the islet 
xeno-Tx closer to clinical practice.     
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    Chapter 12   
 Cell Surface Engineering for Regulation 
of Immune Reactions in Cell Therapy 

             Yuji     Teramura     ,     Sana     Asif    ,     Kristina     N.     Ekdahl    , and     Bo     Nilsson   

    Abstract     Transplantation of the pancreatic islets of Langerhans (islets) is a prom-
ising cell therapy for treating insulin-dependent type 1 diabetes mellitus. Islet trans-
plantation is a minimally-invasive technique involving relatively simple surgery. 
However, after intraportal transplantation, the transplanted islets are attacked by the 
recipient’s immune system, because they activate a number of systems, including 
coagulation, complement response, infl ammation, immune rejection, and recur-
rence of autoimmune disease. We have developed a surface modifi cation and micro-
encapsulation technique that protects cells and islets with biomaterials and bioactive 
substances, which may be useful in clinical settings. This approach employs amphi-
philic polymers, which can interact with lipid bilayer membranes, without increas-
ing cell volume. Molecules attached to these polymers can protect transplanted cells 
and islets from attack by the host immune system. We expect that this surface modi-
fi cation technique will improve graft survival in clinical islet transplantation.  

  Keywords     Surface modifi cation   •   Poly(ethylene glycol) (PEG)   •   PEG-lipid   •   Islet 
transplantation   •   Instant blood-mediated infl ammatory reaction (IBMIR)   •   Diabetes   
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12.1         Introduction 

 Insulin-dependent (type 1) diabetes mellitus is a chronic disease that develops 
 during childhood. This disease involves an autoimmune disorder that destroys 
insulin- secreting cells, called beta cells, of the Islets of Langerhans (islets) in the 
pancreas, which results in insulin defi ciency [ 1 ,  2 ]. Thus, these patients cannot con-
trol glucose metabolism. The number of patients with type 1 diabetes is highly vari-
able from area to area throughout the world. In Europe and the US, the prevalence 
of type 1 diabetes is much higher than in Asian countries, such as Japan and China, 
and Scandinavian countries have a much higher prevalence than other countries. 
Current therapies for type 1 diabetes are not ideal; therefore, there is a need to estab-
lish an effective therapy for type 1 diabetes. 

 To date, three approaches are available for treating type 1 diabetes. The fi rst is 
insulin therapy. For this treatment, patients must inject themselves with insulin sub-
cutaneously before every meal and before sleeping to control their glucose metabo-
lism. These insulin injections must be continued throughout the patient’s life, 
because the disease develops during childhood. This treatment is very diffi cult for 
patients. Moreover, it is not easy to maintain accurate glucose control throughout 
life. Thus, as these patients grow up, they run an increased risk of hypoglycemia and 
various complications, including retinopathy, nephropathy, and neuropathy. 

 The second approach is a whole pancreas transplantation. The pancreas can be 
isolated from donors after brain death or once the heart stops beating; then, it is 
transplanted into the recipient. Techniques are constantly improving for procuring 
and preserving excised pancreas, and for performing the surgical transplant proce-
dure; thus, the success rates for pancreas transplantations increase each year. 
However, despite the increasing success rates, the shortage of donors is a serious 
problem. Consequently, many patients do not get the opportunity to receive a pan-
creas transplantation. Also, except when the donor and recipient are identical twins, 
most recipients must take immune-suppressive drugs after a pancreas transplanta-
tion. Currently, the side effects of immune-suppressive drugs are not fully under-
stood for long term treatments; thus, safety issues must be carefully discussed 
between the physician and the patient. 

 The third approach is the transplantation of pancreatic islet cells, which are iso-
lated from the pancreas of a donor. Islets are aggregates of 1,000–2,000 endocrine 
cells, that form a cluster of 100–300 μm in diameter, and they coexist with the exo-
crine tissues of the pancreas. Islets comprise four kinds of endocrine cells; beta 
cells, alpha cells, delta cells, and pancreatic polypeptide (PP) cells, which secrete 
insulin, glucagon, somatostatin, and pancreatic polypeptide, respectively. After the 
islets are isolated from the donor pancreas with digestion enzymes, the resulting 
islet cell suspension is infused into the recipient’s body. This procedure is quite 
simple. A number of studies have described islet isolation and islet transplantation 
in small animals. Moreover, various clinical reports have been published since the 
beginning of 1970s [ 3 ], when we discovered that diabetes could be cured by trans-
planting only pancreatic islets into recipient patients. Although islet transplantation 

Y. Teramura et al.



191

has many features similar to organ transplantation, the surgical procedure is simpler 
and it is minimally-invasive for the patient. Thus, islet transplantation is a promising 
treatment for curing type 1 diabetes, and it represents an alternative therapy to pan-
creas transplantation [ 4 ,  5 ]. 

 However, like any transplantation therapy, transplanted islets face host immune 
rejection responses; thus, the patient must take immune-suppressive drugs to protect 
grafts. Additionally, graft survival is lower with transplanted islets compared to a 
transplanted pancreas. Currently, in the clinical setting, the islet suspension is 
infused into the liver of the recipient through the portal vein with a catheter. This 
technique has been accepted as a safe, effective therapy for patients with type 1 
diabetes. Islets are carried by the blood stream to the liver, where they become 
entrapped inside hepatic blood vessels. After infusion into the liver, the islet surface 
is exposed to recipient blood, and this activates blood coagulation and a comple-
ment response, which subsequently induces infl ammation [ 6 – 8 ]. This series of reac-
tions is termed an instant blood-mediated infl ammatory reaction (IBMIR). The 
IBMIR acts to destroy islets immediately after transplantation into the liver. This 
issue remains unresolved in clinical islet transplantation. 

 Some studies have examined the prevention of early unfavorable reactions to 
protect islets from the IBMIR. The results have shown that IBMIR could be regu-
lated with systemic administration of anticoagulants, anti-thrombin inhibitor, mela-
gatran [ 9 ], low-molecular weight dextransulfate [ 10 ], and some complement 
inhibitors [ 6 ,  11 – 13 ]. Promising results have been achieved with these approaches 
in experimental islet transplantation [ 14 ]. However, these techniques are diffi cult to 
apply in the clinical setting, due to a high risk of bleeding. Alternatively, our group 
has examined immobilization of bioactive substances onto the islet surface, which 
provides local regulation of unfavorable reactions [ 15 – 21 ]. This technique avoids 
the risk of bleeding after intraportal islet transplantation. In the following sections, 
we discuss how this approach can be implemented for regulating IBMIRs. 

 In islet transplantation, various approaches have been examined that used syn-
thetic and natural polymers to improve graft survival [ 22 ]. To date, hydrogel and 
semi-permeable membrane-encapsulating islet devices have been developed to pro-
duce a bioartifi cial pancreas. The strategy is to construct a physical barrier to isolate 
islets from the host’s immune system, and thus, protect islets from immune rejec-
tion reactions. The different bioartifi cial pancreas devices can be classifi ed into 
microcapsular and macrocapsular types. These devices have shown promising 
results, particularly when they were transplanted into small animals with diabetes, 
such as mice and rats. However, it is quite diffi cult to fi nd a transplantation site in 
the human body, due to the increase in total volume and/or size of the implant after 
the islets have been micro- or macroencapsulated [ 22 ]. The average diameter of 
islets is roughly 100–300 μm. The average diameter of encapsulated islets is approx-
imately three times larger than that of freshly isolated islets. Thus, because volume 
is the radius to the third power, the microencapsulated islet volume is estimated to 
be 27 times larger than the freshly isolated islet volume. Additionally, empty cap-
sules might remain in solution, although most would be removed in purifi cation. In 
clinical settings, the fresh islet suspension volume is approximately 10 mL; thus, it 
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would increase to about 270 mL after microencapsulation. A transplantation site for 
such a large volume is diffi cult to fi nd in the human body. 

 To overcome this issue, we have proposed an alternative to encapsulation, which 
involves cell surface modifi cation with various biomaterials. This approach enabled 
the fabrication of a new bioartifi cial pancreas without appreciably increasing parti-
cle size or volume [ 22 ,  23 ]. Our cell surface modifi cation technique could protect 
islets from various immune responses during intraportal islet transplantation. Thus, 
patients could reduce or eliminate immune suppressive drugs, because the modifi ed 
islets would suppress immune rejection. In the following sections, we describe our 
recent techniques for cell surface modifi cation, and their applications to islet enclo-
sure with synthetic polymers and a relatively thin membrane. We also discuss the 
advantages and disadvantages of these techniques.  

12.2     Cell Surface Modifi cations with Synthetic Polymers 

 To date, several approaches have been proposed for cell surface modifi cation with 
synthetic polymers. These methods involve attachment of various functional groups 
and bioactive substances onto the cell surface, which facilitates the formation of an 
immune-isolation membrane. Generally, cell surface modifi cations are classifi ed 
into three types: (1) covalent conjugation of polymers to the amino groups of mem-
brane proteins; (2) electrostatic interactions between cationic polymers and the 
negatively charged-cell surface; and (3) hydrophobic interactions between a hydro-
phobic domain on amphiphilic polymers and the lipid bilayer of the cell 
membrane. 

 Various synthetic polymers have been covalently conjugated to the amino groups 
of membrane proteins through reactions with  N -hydroxyl-succinimide (NHS) and 
cyanuric chloride [ 24 – 30 ]. Polyethylene glycol (PEG) conjugated with NHS can be 
covalently attached to the cell membrane by mixing it into a cell suspension, with-
out the need for organic solvents; this technique results in living cells coated with 
single PEG chains. However, this chemical reaction is diffi cult to control, because 
it occurs randomly with all cell membrane proteins. This unselective conjugation 
may disturb membrane protein function. Thus, cell modifi cation with PEG-NHS 
should be carefully controlled. Additionally, the NHS group is readily hydrolyzed 
in buffer solution; consequently, the conjugation reaction must constantly compete 
with the inactivation reaction. 

 Surface modifi cation by electrostatic interaction is based on multiple electro-
static interactions between cationic polymers and the negatively charged cell sur-
face. Polyethyleneimine (PEI), poly- L -lysine (PLL), and polyallylamine (PAA) are 
often used for this method. The cell surface is modifi ed by depositing alternating 
layers of anionic and cationic polymers. The thickness of the modifi ed membrane 
can be controlled by repeating polymer depositions. After polymer deposition, the 
cell surface takes on the properties of the outermost polymer layer. Polycations, 
such as PEI, PAA, and PLL assemble into polyion complexes with polystyrene 
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 sulfate (PSS) [ 31 – 34 ]. However, the cell membrane is easily destroyed in interac-
tions with most cationic polymers; consequently, most cationic polymers cause 
severe cytotoxicity and damage to islets and other cells. Although human islets were 
successfully modifi ed with a layer-by-layer membrane composed of PAA/PSS/PAA 
[ 33 ], it was diffi cult to cover the entire islet surface. 

 Our group has focused on hydrophobic interactions with amphiphilic polymers 
for cell surface modifi cations. To date, we have employed amphiphilic polymers 
(Fig.  12.1 ) made of PEG-conjugated phospholipid derivatives (PEG-lipid) and 
poly(vinyl alcohol) carrying long alkyl side chains (PVA-alkyl) [ 22 ,  23 ]. We con-
fi rmed the properties of these amphiphilic polymers with surface plasmon resonance 
(SPR), which allowed us to monitor their interaction with a supported lipid mem-
brane (Fig.  12.2a (i)). The SPR signal increased when a PEG-lipid solution was added 
to a supported lipid membrane on a SPR sensor surface. This signal refl ected the 
incorporation of PEG-lipid into the lipid membrane. We measured three PEG- lipids 
with different alkyl chain lengths and found that the incorporation rates decreased 
with increasing alkyl chain lengths (Fig. 2a(ii)). When a PEG-lipid solution was 
mixed with cells, the hydrophobic alkyl chains on the PEG-lipid spontaneously 
anchored to the lipid bilayer of the cell membrane via hydrophobic interactions in 
aqueous solution. The spontaneous anchoring of PEG-lipid into cell membranes was 
also demonstrated in cultures of a human cell line derived from T-cell leukemia cells 
(CCRF-CEM cells). When a solution of fl uorescein isothiocyanate (FITC)-conjugated 
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PEG-lipid was added to CCRF-CEM cells, we observed a corona of FITC 
 fl uorescence at the peripheries of all cells with confocal laser scanning fl uorescence 
microscopy (Fig. 2a). This result indicated that PEG-lipids were selectively located 
on the cell surface. Additionally, we found that PEG-lipid retention on the cell mem-
brane depended on the alkyl chain length of the PEG-lipid. SPR measurements 
showed that the dissociation rate of PEG-lipids with long alkyl chains was much 
lower than that of PEG-lipids with short alkyl chains. The same phenomenon was 
observed in cell culture experiments. PEG-lipids with longer alkyl chains dissociated 
slowly from the cell surface into the medium compared to PEG-lipids with shorter 
alkyl chains [ 35 ]. This modifi cation method can be applied to cell lines, primary 
cells, and islets, because clear fl uorescence signals were detectable on all cell sur-
faces after treatment with FITC-PEG-lipids.   

 PEG-lipid derivatives can also be used to modify islet surfaces (Fig.  12.2b ). For 
example, single stranded DNA molecules (ssDNA) can be incorporated into a 
 PEG- lipid derivative (Fig.  12.2c ), and further polymer modifi cations can be made 
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with this approach (Fig.  12.2d ). For example, this approach has been used to 
immobilize various bioactive substances on the cell surface, including urokinase 
[ 19 ,  21 ], argatroban- loaded liposomes [ 16 ], the soluble domain of complement 
receptor 1 (sCR1) [ 17 ,  18 ], and factor H-binding peptide. When these anticoagu-
lants and complement regulators were attached to islet and cell surfaces, cells 
were protected from host immune responses, and graft survival was improved. In 
addition, this approach has been extended to fabricate an ultra-thin immune-isola-
tion membrane composed of PVA and PEG and to microencapsulate islets with 
living cells. This new approach of creating an immune-isolation capsule holds 
potential for islet transplantation into the liver, because it does not appreciably 
increase graft volume.  

12.3     Fibrinolytic Urokinase Immobilized on the Islet Surface 

 Urokinase is a serine protease that transforms inactive plasminogen into active plas-
min, which then dissolves the fi brin gel in blood clots. When urokinase was immo-
bilized onto islet surfaces, it was expected to dissolve blood clots surrounding the 
islets transplanted in the liver, thus inhibiting the reactions in the IBMIR cascade. 
The fi brinolytic enzyme, urokinase was immobilized on islets with the use of 
ssDNA hybridization between ssDNA-PEG-lipid and the complementary sequence, 
ssDNA′, attached to urokinase (Fig.  12.3 ) [ 19 ,  21 ]. To test this hybridization, a solu-
tion of dT20-PEG-lipid was incorporated onto a SPR sensor surface, and then either 
dA20-urokinase (ssDNA′) or dT20-urokinase (control) was added (Fig.  12.3c ). A 
signal increase refl ected the dA20-urokinase binding to the dT20-PEG-lipid modi-
fi ed surface; in contrast, no signal increase was observed when dT20-urokinase was 
added. These results indicated that urokinase could be specifi cally conjugated to the 
surface by the hybridization of dA20 to the dT20 molecules. Next, we used the same 
chemistry to modify the islet surface. Urokinase was immobilized onto islet sur-
faces by fi rst coating the surface with dT20-PEG-lipid and then adding dA20- 
urokinase. The urokinase-immobilized islets were analyzed with an anti-urokinase 
antibody stain (Fig.  12.4a ). Fluorescence could be observed on the urokinase- 
immobilized islets when dT20-PEG-lipids were used to immobilize urokinase, but 
little fl uorescence was observed on unmodifi ed islets or on islets treated with dA20- 
urokinase, but without dT20-PEG-lipid treatment. These results indicated that uro-
kinase could be specifi cally immobilized on islet surfaces through DNA 
hybridization. PEG-lipids with different alkyl chain lengths were used to examine 
the stability of urokinase on the islet surface. As described above, dT20-PEG-lipid 
retention on the cell membrane depended on the alkyl chain length of the PEG-lipid 
[ 35 ]. Fluorescence was observed throughout 2 days of culture when islets were 
treated with dT20-PEG-lipid (C18), but the fl uorescence faded on islets treated with 
dT20-PEG-lipid (C16).   

 To determine whether chemical modifi cation and immobilization had disturbed 
urokinase function, we employed a fi brin-plate based assay to examine the function 
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of urokinase immobilized on islet surfaces (Fig.  12.4a ). When placed in a fi brin gel 
supplemented with plasminogen, the urokinase-immobilized islets were surrounded 
by dissolved areas that were clearly larger than those surrounding unmodifi ed islets. 
These results indicated that urokinase could be immobilized on islet surfaces and 
maintain its ability to activate plasminogen. We also used the fi brin-plate based 
assay to examine urokinase-immobilized islets cultured in the presence of serum. 
Urokinase activity decreased over 2 days in culture, which suggested that urokinase 
might be released from islet surfaces in the early stage of transplantation. 
Nevertheless, urokinase-immobilized islets maintained their morphology after 7 
days in culture medium, and very few damaged cells were observed (Fig.  12.4a ). 
Moreover, those islets retained the ability to regulate insulin release in response to 
glucose concentration changes. 
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 To evaluate the effi cacy of urokinase on IBMIR  in vivo , we performed animal 
experiments with a syngenic transplantation mouse model. Urokinase-immobilized 
islets (from BALB/c mice, 125 islets) or unmodifi ed islets (125 islets) were infused 
into the livers of diabetic BALB/c mice through the portal vein. The unmodifi ed 
islets did not alter diabetes in half the recipient mice (Fig.  12.5b ). In contrast, the 
urokinase-immobilized islets led to normalized blood glucose levels in all recipient 
mice (Fig.  12.5c ). Insulin concentration in blood increased sharply immediately 
after transplantation with non-modifi ed islets, on the other hand, insulin remained 
low in recipients with urokinase-immobilized islets. These results indicated that a 
large number of islets without urokinase were immediately destroyed. When the 
livers of recipient mice were stained for insulin at 64 days, we observed insulin- 
positive grafts in liver sections (Fig.  12.5c , inset). These data suggested that 
 immobilizing urokinase onto islets could be a promising method for evading IBMIR 
and improving graft survival in a clinical setting.   
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  Fig. 12.4    Functional evaluation of urokinase-immobilized islets. ( a )  Left : Fluorescence images of 
urokinase-immobilized islets stained with an anti-urokinase antibody ( green ).  Middle : Phase- 
contrast image of urokinase-immobilized islets after 7 days of incubation.  Right : Fibrin-gel plate 
assay shows fi brinolytic activity ( dark areas ) of urokinase-immobilized islet and unmodifi ed islet. 
( b ,  c ) Changes in blood glucose levels in mice with type 1 diabetes after transplantation of ( b ) 
unmodifi ed islets (125 islets) or ( c ) urokinase-immobilized islets (125 islets) into the liver. This 
model is a syngenic model (BALB/c islets into BALB/c diabetic mice). Type 1 diabetes was 
induced by an intraperitoneal injection of streptzotocin. The  inset  in ( c ) shows an image of insulin 
staining ( green ) in the liver of a recipient mouse 64 days after transplanting urokinase-immobilized 
islets. (Partially modifi ed from [ 19 ,  21 ])       

 

12 Cell Surface Engineering for Regulation of Immune Reactions in Cell Therapy



198

12.4     Low-Molecular-Weight Drugs Inside Liposomes 
Immobilized on the Islet Surface 

 Low-molecular-weight drugs are suitable for effectively regulating blood coagula-
tion enzymes, platelets, and complement, which are responsible for IBMIR. In this 
section, we will introduce a method for immobilizing a low-molecular-weight anti-
coagulant, argatroban, onto the islet surface. First, we attempted to attach argatro-
ban to the islet surface [ 16 ]. However, it is not possible to apply the same methods 
developed for immobilizing high-molecular-weight proteins on the islet surface, 
because low-molecular-weight molecules typically have few or no functional groups 
available for immobilization. Even when drugs do have feasible functional groups, 
immobilization on the end of a PEG-lipid might disturb their function. Therefore, 
we used liposomes, which can encapsulate small drugs inside the membrane, and 
therefore, they serve as drug carriers. We immobilized drug-loaded liposomes onto 
the islet surface with the ssDNA-PEG-lipid method (Fig.  12.5a ). First, liposomes 
that contained the thrombin inhibitor, argatroban, were modifi ed with dA20-PEG- 
lipids, and islets were modifi ed with dT20-PEG-lipids. Then, they were mixed to 
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  Fig. 12.5    Immobilization of argatroban-loaded liposomes onto the islet surface. ( a ) Schematic 
illustration of the immobilization of argatroban-loaded liposomes onto an islet surface. The sur-
faces of liposomes ( grey spheres ) loaded with argatroban ( black spots ) and islets ( yellow balls ) 
were modifi ed with dA20-PEG-lipid and dT20-PEG-lipid, respectively. When combined, the lipo-
somes were attached to islets via the hybridization of dA20 to dT20 ssDNAs. ( b )  Left : Confocal 
laser scanning microscope image of fl uorescence-labeled liposomes immobilized on islets.  Right : 
Phase-contrast image of liposome-immobilized islets. (Partially modifi ed from [ 16 ])       
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allow DNA hybridization between the dT20 and dA20 surface molecules. To 
 monitor the immobilization of liposomes onto islet surfaces, we used fl uorescence- 
labeled liposomes. Dynamic light scattering measurements showed that the lipo-
some diameter was 105 ± 30 nm. Confocal laser scanning fl uorescence microscopy 
showed that fl uorescent liposomes were located at the periphery of each islet 
(Fig.  12.5b ); thus, liposomes were immobilized on the islet surfaces. Moreover, islet 
morphology was retained after liposome immobilization (Fig.  12.5b ). The release 
of argatroban from liposome-modifi ed islets was evaluated by measuring anti- 
thrombin activity. We found that anti-thrombin activity increased with increasing 
culture periods; this indicated that argatroban was gradually released from the 
liposome- immobilized islets. In contrast, anti-thrombin activity was quite low in the 
media of control (unmodifi ed) islets. In addition, glucose stimulation indexes were 
not signifi cantly different between islets and liposome-modifi ed islets, which sug-
gested that liposome immobilization did not interfere with islet regulation of insulin 
release in response to glucose concentration changes. 

 As described above, IBMIR is involved in early islet graft loss during intraportal 
transplantation. Therefore, it is important to inhibit thrombotic reaction sat an early 
stage. Liposome immobilization is an attractive approach for releasing argatroban 
from the islet surface, because it provides effective local suppression of thrombotic 
reactions around liposome-immobilized islets. Moreover, the total dose of argatro-
ban needed in liposomes is lower than that needed with systemic administration. 
This study demonstrated a fi rst examination of the release of small drugs from lipo-
somes attached to the islet surface. With this approach, liposomes can be loaded 
with a variety of anticoagulants and drugs that regulate the complement system to 
provide effective suppression of IBMIR in islet transplantation.  

12.5     sCR1 Immobilized on Islets for Complement Regulation 

 Complement receptor type 1 (CR1) is a membrane glycoprotein, which is expressed 
on the surfaces of various blood cells, kidney podocytes, and dendritic cells [ 36 ]. 
CR1 is a potent inhibitor of both the classical and alternative pathways of comple-
ment activation, which are involved in IBMIR and in thrombotic reactions. CR1 
suppresses complement activation by inducing dissociation of the C3 and C5 con-
vertases and by acting as a cofactor for the proteolytic cleavage of C3b and C4b by 
Factor I. 

 We prepared the soluble domain of CR1 (sCR1) from gene-transfected Chinese 
hamster ovary cells [ 37 ]. To immobilize sCR1 onto islet surfaces [ 17 ], we modifi ed 
islets with maleimide-conjugated PEG-lipid (Mal-PEG-lipid) and we introduced 
thiol groups onto sCR1 (sCR1-SH) with Traut’s reagent. Then, we reacted sCR1-
 SH with Mal-PEG-lipid-modifi ed islets (Fig.  12.6 ). To test this reaction, we 
attached Mal-PEG-lipid to the SPR sensor surface, and we monitored the reaction 
between sCR1-SH and the maleimide group. The SPR signal increased with time 
when a solution of sCR1-SH with 10 thiol groups per molecule was added to the 
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Mal-PEG- lipid-immobilized sensor surface (Fig.  12.6a ). On the other hand, only a 
slight increase in the SPR signal was detected when the modifi ed surface was 
treated with cysteine in advance (Fig.  12.6a ); cysteine occupied the available 
maleimide groups and blocked sCR1-SH immobilization. These results indicated 
that sCR1-SH could be immobilized with the thiol-maleimide reaction. We used 
the same chemistry for immobilization of sCR1 onto the islet surface. Islets were 
treated with Mal-PEG- lipid, and then, sCR1-SH was added. We detected sCR1-
immobilized onto islets by treating with fl uorescence-labeled anti-sCR1 antibody. 
sCR1 was detected at the periphery of the modifi ed islets (Fig.  12.6a ), but not on 
control islets. Moreover, sCR1 immobilization did not alter islet morphology or 
islet insulin secretion in response to changes in glucose concentration.  

 Next, we incubated sCR1-immobilized rat islets in rabbit serum to examine the 
protective effect of sCR1 against cellular destruction by xenoreactive antibodies and 
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  Fig. 12.6    Functional evaluation of sCR1-immobilized islets. ( a )  Left : SPR signals of sCR1-SH 
immobilization onto Mal-PEG-lipid modifi ed surfaces. After an artifi cial lipid membrane was 
modifi ed with Mal-PEG-lipid, sCR1-SH was added. For the control, cysteine was added fi rst to the 
Mal-PEG-lipid modifi ed surface, followed by sCR1-SH.  Right : Images of sCR1-immobilized 
islets immunostained with anti-sCR1 antibodies ( green ). ( b ) Phase-contrast images of unmodifi ed 
rat islets, BSA-immobilized islets, and sCR1-immobilized islets. Images show all three rat islets 
before and 24 h after incubation in rabbit serum. ( c ) Insulin leaked from damaged cells into the 
rabbit serum during incubation with unmodifi ed rat islets ( black circles ), BSA-immobilized islets 
( black squares ), or sCR1-immobilized islets ( white squares ). As a control, rat islets were incubated 
in 50 % heat-inactivated serum ( white circles ). The concentration of insulin released from rat islets 
was determined with the ELISA method. (Partially modifi ed from [ 17 ])       
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complement activation. As a control, we used bovine serum albumin (BSA)-
immobilized islets (Fig.  12.6b ). Because rat and rabbit are a discordant animal com-
bination [ 38 ], rabbit serum contains xenoreactive antibodies against rat cells. We 
observed swollen and damaged cells in unmodifi ed islets and BSA-immobilized 
islets that were incubated in rabbit serum, and the destruction increased with time. 
However, swollen and damaged cells were rarely observed when sCR1- immobilized 
islets were incubated in rabbit serum (Fig.  12.6b ). In fact, immunohistochemistry 
showed that sCR1 was still detectable on sCR1-immobilized islets after 24 h incu-
bation in rabbit serum; thus, these islets were protected from attacking antibodies 
and subsequent cellular destruction (Fig.  12.6b ). When the islets are damaged, 
β-cells leak insulin into the medium (Fig.  12.6c ). However, when we used heat- 
inactivated medium, which lacked complement activity, there was no insulin leak-
age from β-cells. This result supported the conclusion that islets had been destroyed 
by xenoreactive antibodies and subsequent complement activation. Incubation in 
normal rabbit serum caused signifi cantly larger amounts of insulin leakage from 
unmodifi ed and BSA-immobilized islets than from sCR1-immobilized islets at 24 h 
(Fig.  12.6c ). These results suggested that sCR1 immobilized on islets effectively 
inhibited complement activation and protected islets from attack by xenoreactive 
antibodies and complement response. This method is expected to control IBMIR in 
islet transplantations in clinical settings and future xenotransplantations.  

12.6     Other Complement System Regulators 
Immobilized on the Islet Surface 

 Some microorganisms, such as  Neisseria meningitidis  and  Yersinia enterocolitica , 
express various molecules on their surfaces that can bind specifi cally to human 
complement regulators. The primary complement regulators in human blood are 
factor H (480 μg/mL) and C4 binding protein (C4BP; 300 μg/mL). Both these pro-
teins inhibit complement activation. When microorganisms enter the blood, their 
surface molecules bind to these complement regulators in human blood until their 
whole surface is covered [ 39 ,  40 ]. The recruited complement regulators suppress 
innate immunity attack by the host. We reasoned that, if we could coat cells with 
molecules to mimic the microorganism surface, transplanted cells could escape the 
innate immunity of the host. 

 Here, we focused on the functional peptide, ASSSRCTYDHWCSH (5C6), 
which can specifi cally interact with factor H [ 41 ]. This factor H-binding peptide 
was conjugated onto the end of a PEG-lipid. Then, we modifi ed cell surfaces with 
5C6-conjugated PEG-lipid [ 42 ]. The 5C6 was expected to interact with and recruit 
factor H to the surface immediately after cells were placed in contact with human 
blood (Fig.  12.7a ). We used porcine aortic endothelial cells (PAECs) to test this 
approach. When unmodifi ed PAECs were mixed with human whole blood, platelet 
aggregation was induced, as shown by the increase in thrombin-antithrombin 
 complexes (TAT), a marker of coagulation, and the increase in C3a, a marker of 
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complement activation. Eventually, the PAECs were damaged by the immune 
attack. Also, when we modifi ed PAECs with PEG-lipid alone, to provide a PEG 
coating, we observed no inhibition of platelet aggregation, and the TAT and C3a 
signals were similar to those observed with unmodifi ed PAECs (Fig.  12.7b ). On the 
other hand, complement activation was suppressed when PAECs were modifi ed 
with 5C6-conjugated PEG-lipid (Fig.  12.7b ). Immunostaining with anti-factor H 
antibody showed that factor H was bound to the cell surface. These results indicated 
that factor H was specifi cally recruited to the cell surface from human blood, and 
that it could regulate complement activation. Coagulation activation (from TAT) and 
platelet aggregation could also be inhibited when PAECs were modifi ed with apy-
rase (Fig.  12.7b ), an enzyme that degrades ADP, which is involved in secondary 
platelet aggregation. Although several clinical anticoagulants are available, drugs 
that inhibit complement activation are limited. Therefore, it is advantageous to 
recruit and use endogenous complement regulators that exist in human blood. In 
particular, when cells are transplanted into humans, this is a useful approach for 
suppressing IBMIR.   

Cellular 
membrane

Regulation of complement activation

5C6-PEG-lipid (peptide is 
interacting with factor H)

0 min Apyrase/
5C6

Apyrase PEG 0 min Apyrase/
5C6

Apyrase PEG

a

b

Factor H is recruited 
from human blood

  Fig. 12.7    Complement activation regulators in human blood recruited onto the cell surface. ( a ) 
The cell surface was modifi ed with 5C6-conjugated PEG-lipids. The 5C6 ( grey crescents ) were 
selected to interact with complement regulators, like factor H ( blue oval ) and C4BP (not shown). 
Immobilized peptides recruit endogenous regulators onto the cell surface. The immobilized regula-
tors inhibit complement activation. ( b ) Porcine aortic endothelial cells activated coagulation (TAT) 
and the complement pathway (C3a) in human whole blood. Cells were modifi ed with PEG-lipid 
alone, immobilized apyrase, or co-immobilized 5C6 and apyrase. Cells were incubated with human 
whole blood for 30 min at 37 °C (n = 6). **p < 0.01, ***p < 0.001, based on repeated measures of the 
one-way analysis of variance with Dunnett’s post hoc-test. (Partially modifi ed from [ 42 ])       
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12.7     Islet Microencapsulation with an Ultra-Thin Membrane 

 We have described regulators of innate immunity activation and various bioactive 
substances that were attached to the surfaces of cells and islets with PEG-lipid, 
which were active immediately after intraportal transplantation [ 21 ,  43 ]. However, 
these cell surface-immobilized materials tend to be taken up and/or detached from 
the surface over time, because the cell surface is in a dynamic state (e.g., endocyto-
sis). Therefore, in the long run, single polymer chains and nanometer membranes 
might not be suffi cient to protect cells from host immune attacks and immune rejec-
tion, which is primarily carried out by T cells. We reasoned that protection from 
host T cell attacks might be achieved by isolating islets within a polymer membrane 
that has high integrity and stability. The alternate deposition of cationic and anionic 
polymers has previously been used to microencapsulate cells and islets [ 20 ,  33 , 
 44 – 46 ]. That method made it possible to produce membranes with thicknesses of 
several tens of nanometers [ 20 ]. In addition, there was no practical increase in mem-
brane thickness after coating the cell surface with polymers. However, it is diffi cult 
to produce polymer membranes of micrometer thicknesses, even with several repe-
titions of polymer deposition, because the deposition eventually destroyed the cell 
structure. Although some improvements have been made to these approaches, there 
remains a risk of cell damage. It is likely that multiple direct interactions with the 
cell surface may infl uence the cell structure. To overcome these issues, we devel-
oped a method for microencapsulating islets that produces a stable membrane of 
micrometer thickness [ 47 ]. 

 With our method, a polymer membrane is formed on the islet surface by immo-
bilizing 8-arm PEG-SH and 4-arm PEG-Malpolymers in the presence of Mal-PEG- 
lipid micelles (Fig.  12.8a ). Both 8-Arm PEG-SH and 4-arm PEG-maleimide are 
commercially available. It is important that gelation among these molecules should 
take place only at the periphery of the islet surface. Ideally, membrane thickness 
should be limited to the micrometer range. Otherwise, there will be an unnecessary 
volume increase after surface modifi cation. As shown in Fig.  12.8a , fi rst, the islets 
are mixed with Mal-PEG-lipid, which attaches to the surface. Then, the 8-arm 
PEG-SH is added in the presence of Mal-PEG-lipid micelles to achieve gelation. 
The gelation between 8-arm PEG-SH and Mal-PEG-lipid micelles takes place 
around the islet surface, which substantially increases the thickness of the islet 
periphery. After washing with buffer, the 4-arm PEG-Mal is added as a cross-linker 
between the SH groups. This cross-linking stabilizes the micelle coating. These 
procedures can be repeated to achieve the desired thickness, which can be con-
trolled by monitoring the polymer membrane with confocal laser scanning micros-
copy (Fig.  12.8b ). Thus, it was possible to encapsulate the islet within a thin 
membrane.  

 Although this membrane is stabilized by random thiol-maleimide cross-linking, 
many functional groups remain available for further modifi cation with substances that 
carry SH or maleimide. When Alexa488-labeled apyrase-SH was used for this proce-
dure, the polymer membrane was fl uorescently labeled as apyrase was immobilized. 
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The role of apyrase was described in the previous section. The membrane thickness 
was estimated to be several micrometers in Fig.  12.8b . The islet surface can be com-
pletely covered with this thin membrane, which can protect the islet from immune 
attack. 

 Our method can be applied to various sizes of cells; e.g., erythrocytes and PAECs. 
Polymer membrane formation is mainly based on the hydrophobic interaction 
between PEG-lipids and the cell surface and the molecules that interact with the 
PEG-lipid; therefore, cell size does not affect membrane formation. The membrane 
thickness was achieved with the PEG-lipid micelles (size, 27 ± 0.2 nm), which were 
covalently cross-linked with branched polymers (4-arm PEG-Mal and 8-arm 
PEG-SH) attached to the cell surface. This membrane was substantially thicker than 
those formed with conventional methods that rely on layers of interactive 
polymers.  

Maleimide-PEG-
lipid micelle

8-arm PEG-SH 4-arm PEG-Mal

Repeat this procedure to increase the membrane thickness up 

3 day 8 day 15 day

a

b

  Fig. 12.8    Microencapsulation of pancreatic islets with a ultra-thin membrane. ( a ) The polymer 
membrane was formed by fi rst allowing Mal-PEG-lipid to incorporate into the membrane; then, 
8-arm PEG-SH and micelles of Mal-PEG-lipid are added to increase membrane thickness. Finally, 
4-arm PEG-Mal is added to cross-link the polymer layer, which stabilizes the polymer membrane. 
This procedure is repeated to build up a capsule of micrometer thickness. ( b ) Confocal laser scan-
ning microscope images show that islets remained stably encapsulated at 3, 8, and 15 days after 
microencapsulation. The membrane was labeled with Alexa488-apyrase-SH ( green ). (Partially 
modifi ed from [ 47 ])       
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12.8     Islet Microencapsulation with Living Cells 

 In this section, we introduce the method of islet microencapsulation with living 
cells. This approach is based on the notion that transplanted islets could be made 
signifi cantly more compatible with host blood and immune responses by covering 
the islet surface with recipient cells. In particular, IBMIR destruction and graft 
rejection could be ameliorated by coating the transplant with recipient vascular 
endothelial cells. This technique requires attaching recipient cells to donor cells. 
Here, we used a complementary pair of ssDNA-PEG-lipids (dT20-PEG-lipid and 
dA20-PEG-lipid) to modify the surfaces of cells to induce the cell-cell attachment 
[ 48 ,  49 ] (Fig.  12.9a ). Accordingly, dT20 was incorporated onto the surfaces of sin-
gle recipient cells with dT20-PEG-lipid, and dA20 was incorporated onto the sur-
faces of donor islets with dA20-PEG-lipid. When the dA20-PEG-lipid-modifi ed 
islets were mixed with the dT20-PEG-lipid-treated cells, the hybridization of the 
dA20 and dT20 molecules immobilized the cells onto the islet surface (Fig.  12.9b ). 
We used the human endoderm kidney cell line (HEK293) for immobilization onto 
isolated islets. When we cultured these HEK293 cell-immobilized islets, the 
HEK293 cells proliferated on the islet surface without detaching from the surface. 
After 3 days in culture, the whole islet surface was fully covered with a layer of 
HEK293 cells (Fig.  12.9b ). Moreover, we observed no central necrosis inside the 
islet surrounded with cells. These islets were also analyzed by immunostaining. 
After 3 days in culture, we sliced islets into thin sections, and stained them with an 
anti-insulin antibody (Fig.  12.9b ). We found that insulin was clearly observed in the 
islets. In addition, the insulin response was not altered by the cell encapsulation; 
changing the glucose concentration in the medium could stimulate insulin release. 
However, insulin secretion was reduced compared to that observed with control 
islets. Although HEK293 cells are a cell line, not primary cells, this study showed 
that it was possible to encapsulate islets inside living cells. The method proposed 
here may lead to a clinical procedure for encapsulating donor islets with cells 
derived from recipient patients with type 1 diabetes.   

12.9     Conclusions and Outlook 

 We have developed techniques for protecting transplanted cells and islets with sur-
face modifi cations and microencapsulation with PEG-lipid derivatives, bioactive 
substances, and living cells. Coating cells with bioactive substances, such as uroki-
nase, apyrase, sCR1, and factor H, suppressed activation of blood coagulation cas-
cades and the complement system. In the near future, these techniques will be 
implemented to inhibit IBMIR-mediated early islet loss during intraportal trans-
plantation in the clinical setting. These surface modifi cations persist for several days 
after the islets are infused into the liver, which should be suffi cient for protection 
from early graft loss. 
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 Although a major obstacle to cell transplantation therapy is the shortage of human 
donors, the shortage may not limit therapy for type 1 diabetes, because in the near 
future, we may be able to prepare insulin-secreting β cells or tissues from embry-
onic stem (ES) cells or induced pluripotent stem (iPS) cells [ 50 ]. However, the 
problem of immune reactions against grafts remains to be overcome. Cells differen-
tiated from ES cells should be protected from the recipient’s immune system, 
because they are allogeneic. Cells prepared from a patient’s own iPS cells are 
expected to survive without immunosuppressive therapy. Nonetheless, type 1 diabe-
tes is an autoimmune disease; thus, β cells derived from the patient’s iPS cells may 
be destroyed by recurrent autoimmune reactions that are not fully controlled, even 
with immunosuppressive drugs. However, iPS cells might also be available from a 
cell bank, and these would be allogeneic. The idea of a bioartifi cial pancreas is 
important, because both stem cell-derived β cells and donated islets require 
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  Fig. 12.9    Microencapsulation of a pancreatic islet with living cells via DNA hybridization. ( a ) 
Schematic illustration of the microencapsulation of an islet within living cells. Both the cell and 
islet surfaces are modifi ed with polyDNA. dT20-PEG-lipid was immobilized on HEK293 cells 
(expressing GFP). dA20-PEG-lipid was immobilized on the surface of islets. When the modifi ed 
cells and islets are mixed, DNA hybridization causes a shell of HEK293 cells ( blue ) to form on the 
islet surfaces ( orange ). After several days of culture, HEK293 proliferation encloses the islet 
within a cellular capsule. ( b )  Left : Phase-contrast and confocal microscope images show islets with 
HEK293 cells ( green ) attached at 0 and 3 days.  Right ,  Phase-contrast image : after 3 days in cul-
ture, islets are completely encapsulated with GFP-expressing HEK293 ( green  in the  inset ).  Right , 
 fl uorescence image : Image of a sliced section of encapsulated islet stained with an anti-insulin 
antibody.  Green : insulin,  blue : nuclei. (Partially modifi ed from [ 48 ])       
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protection from immune attack when they are transplanted into humans. While cur-
rently realizable, surface modifi cation techniques must be improved before they can 
promote long-term graft survival.   
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    Chapter 13   
 Complement Interception Across Humoral 
Incompatibility in Solid Organ 
Transplantation: A Clinical Perspective 

             Ali-Reza     Biglarnia     ,     Kristina     N.     Ekdahl    , and     Bo     Nilsson   

    Abstract     The humoral barrier in transplant biology is the result of preformed 
donor-specifi c antibodies (DSAs), directed either against human leukocyte antigens 
(HLA) or non-HLA antigens such as blood group (ABO) molecules. The term 
 “sensitization” applies to patients carrying these antibodies. Transplantation is 
widely accepted as a life-saving opportunity for patients with terminal end-organ 
disease. However, in sensitized patients, transplant outcome is hampered by 
antibody- mediated rejection (AMR) as a consequence of DSA exposure. 
Furthermore, sensitized patients have limited access to “matched” organs from the 
both living and deceased donor pool. 

 Considering the crucial role of the complement system in the pathophysiology of 
AMR and the availability of complement intervention therapeutics, there is a grow-
ing interest in complement-targeting strategies. This review highlights the emerging 
importance of monitoring and modulation of the complement system in the context 
of enabling transplantation across humoral incompatibility in sensitized recipients 
with preformed anti-HLA or natural anti-ABO antibodies. It also discusses the sig-
nifi cance of the complement system in the induction of accommodation and further 
emphasizes current and future perspectives of novel complement therapeutics.  
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13.1         Introduction and Historical Overview 

 The history of transplantation has consistently been shaped by the need to overcome 
surgical and immunological barriers. Towards the beginning of the twentieth cen-
tury, the era of solid organ transplantation began with the pioneer working of 
Emerich Ullman (1861–1937) who was the fi rst to perform a successful kidney 
auto-transplantation in a dog. Encouraged by this success, he soon thereafter per-
formed the fi rst kidney transplantation (xenogeneic) from a pig donor to a female 
human patient who suffered from end-stage renal disease [ 1 ]. This surgical mile-
stone was, however, overshadowed by a fatal biological reaction that decades later 
was identifi ed as the immunological response to non-self antigen, an antibody- 
mediated rejection (AMR). 

 The modern era of solid organ transplantation started in Boston at Brigham 
Hospital on December 23, 1954 when Joseph Murray and colleagues performed a 
successful live donor kidney transplant with excellent long-term results. Unlike 
their predecessors [ 2 ], the Boston group achieved success because the transplant 
was performed in monocygotic identical twins, which enabled them to circumvent 
the immunological barrier, rather than challenge it [ 3 ]. However, given the shortage 
of genetically identical donors and the urgent need for the expansion of transplanta-
tion between genetically disparate individuals, the development of immune modula-
tion strategies quickly became a necessity. Initial immunosuppressive protocols 
included sublethal total body irradiation for the induction of bone marrow aplasia 
and lymphocyte depletion [ 4 ]. This treatment modality, however, was not only inef-
fective in preventing destructive allogeneic immune reaction but also harbored a 
life-threatening risk of severe infectious complications. 

 The era of immunopharmacologic interventions began with the clinical use of 
6-mercaptopurine and its pro-drug azathioprine in combination with glucocortico-
steroids [ 5 ,  6 ] and it further evolved with the discovery of calcineurin inhibitors in 
the 1980s; these inhibitors are still the cornerstone of the current immunosuppres-
sive treatment after organ transplantation [ 7 – 10 ]. 

 Thanks to the evolution of immunopharmacology, transplantation has been trans-
formed from a surgical adventure into a life-saving clinical practice that is broadly 
implemented [ 11 ]. However, this progress is also associated with challenges. In the 
United States and Europe, the number of patients on the waiting list with end-stage 
organ disease is increasing [ 12 ,  13 ]. Also, the total number of donors (deceased and 
living) is still insuffi cient to meet the increasing need for transplant candidates. 
According to the Organ Procurement & Transplanatation Network (OPTN) database, 
there are currently more than 123,000 transplant candidates on the waiting list in the 
United States, as opposed to an annual number of transplants ranging from 24,000 to 
29,000 over the past 10 years (OPTN data as of January 30, 2015). 

 The widening gap between supply and demand not only drives the surgical devel-
opment toward maximal utilization [ 14 ] and an expansion of the donor pool [ 15 ,  16 ] 
but also assumes the use of strategies to enable transplantation between individuals 
with high-immunological risk profi les. These strategies include treatment protocols 
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to increase the likelihood that sensitized patients can successfully receive “human 
leukocyte antigen” (HLA-) or ABO-mismatched live- or deceased- donor organs. 

 For many years, the adaptive immunity, and particularly T-cells has been consid-
ered the central regulatory and effector hub in alloreative immune response [ 17 ]; 
this view has strongly shaped the development of immunopharamacologic interven-
tions. However, critical events in organ transplantation, including brain death, 
ischemic- reperfusion injury, and acute and chronic immune responses still represent 
a clinical burden with high risk for graft failure. A recent 20-years survey from more 
than 250,000 renal transplant patients in the United States has shown that the prog-
ress in transplant outcome has mainly been made in improving short-term results, 
whereas the attrition rate of graft loss in the long term has remained essentially 
constant [ 18 ]. Undoubtedly, these data indicate that the traditional immunosuppres-
sive strategies used so far have been successful in reversing the early acute immune 
response, but they have failed to prevent sustained graft damage. Thus, the former 
paradigm of T-cell dominance in allogeneic immunity has increasingly been ques-
tioned as to not entirely representing the complex interaction of events from dona-
tion to transplantation and beyond. So, what is missing? 

 Innate immunity is a non-adaptive and evolutionarily preserved arm of the 
immune system that distinguishes self from non-self structures in the body. It repre-
sents the fi rst line of defense in the presence of noxious stimuli such as invading 
pathogens or physical or metabolic insults [ 19 ]. For many years, innate immunity 
was considered less relevant to transplant biology, and interest in developing phar-
maceutical therapies targeting this ancient part of the immune system was restricted. 
An increasing appreciation for the innate immunity, however, has emerged from 
several important clinical observations. Kidney transplant candidates have the 
option to receive organs from either live or deceased donors. Transplantation involv-
ing living donors is highly appreciated not only because of the elective nature of the 
procedure, but also because organs from live donors are not exposed to critical 
events such as brain-death or prolonged cold preservation which are invariably the 
case in deceased-donor transplantation. When outcomes are compared between 
living-unrelated HLA-mismatched transplants and HLA-matched deceased-donor 
kidney transplants, it is intriguing to fi nd that “unmatched” live-donor organs have 
the same or even better survival than do their “matched” deceased-donor counter-
parts [ 20 ]. A recent meta-analysis further revealed that the emergence of delayed 
kidney-graft function, mostly as a consequence of ischemic-reperfusion injury, is 
associated with a 41 % increased risk of graft loss in the long-term [ 21 ]. These 
observations have for many years suggested the existence of another non-antigen 
specifi c immune reaction, which appears to have a devastating effect on transplant 
outcome. 

 Today, mounting evidence has revealed an integral role for innate immunity in 
the non-specifi c and specifi c infl ammatory reactions that are generated during criti-
cal transplant-related events, such as brain death, surgical trauma, organ preserva-
tion, ischemic-reperfusion injury, and humoral and cellular immune responses [ 19 , 
 22 – 25 ]. In this review we will focus on antibody-mediated rejection (AMR) and 
role that complement plays in this adverse reaction.  
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13.2     The Complement System in Transplant Biology 

13.2.1     Activation Mechanisms 

 The proteins, approximately 50 in number, that form the complement system are 
found either in body fl uids in the form of zymogen molecules or on cellular surfaces 
as receptors and/or regulators. Activation of the system occurs via three pathways 
utilizing different recognition molecules that bind to structures on target surfaces, 
thereby generating two different proteolytic enzyme complexes, the classical/lectin 
pathway (C4b2a) and the alternative pathway (C3bBb) C3 convertases, which 
cleaves C3 into C3b, and the anaphylatoxin C3a. The classical pathway (CP) is trig-
gered by antibodies, primarily IgM, IgG 1 , and IgG 3 , that are either present in 
antigen- antibody complexes or bound to a target surface. Such antibodies bind the 
C1 complex (C1q, C1r 2 , and C1s 2 ) via its C1q moiety. Recent data show that IgG 
bound to a cellular surface forms hexamers by noncovalent interactions between 
their Fc segments, resulting in an avidity for C1q that is high enough to accomplish 
subsequent complement activation [ 26 ]. 

 Similarly, the lectin pathway (LP) is initiated by the binding of mannan-binding 
lectin (MBL) or fi colins, thereby activating three different MBL-associated serine 
proteases (MASPs). These events all result in the assembly of the CP/LP 
C3-convertase. The alternative pathway (AP) may be triggered by various surfaces 
of biological or non-biological origin, e.g., microorganisms or biomaterials, which 
do not fully regulate the AP C3-convertase. Furthermore, regardless of which path-
way is the initial trigger of the activation, the AP provides a powerful amplifi cation 
loop, since C3b is a subunit, and therefore every deposited C3b molecule is a poten-
tial nucleus of a novel AP C3-convertase complex. 

 At this point, the pathways converge into a common terminal pathway (TP) in 
which the fi rst step is the proteolytic activation of C5 into the anaphylatoxin C5a 
and the C5b fragment, which in turn represents the fi rst component of the mem-
brane attack complex (MAC). In its complete form, the MAC consists of C5b, C6, 
C7, C8, and multiple copies of C9, all of which are inserted into the cell membrane. 
A current summary of our understanding of the complement system is given in [ 27 ].  

13.2.2     Effector Mechanisms 

 The generated anaphylatoxins C3a and C5a mediate the recruitment (via chemo-
taxis) and activation of polymorphnuclear leukocytes (PMNs) and monocytes by 
binding to C3aR and C5aR1 on these cells. The binding of the cells to the target is 
mediated by various receptors (primarily CR1 (CD35), CR3 (CD11b/CD18) and 
CR4 (CD11c/CD18)) via the target-bound C3 fragments C3b and iC3b, thereby 
mediating phagocytosis and cytotoxicity. In addition, the formation of the MAC 
can cause cell lysis, but cell damage as well as infl ammasome activation may also 
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occur already at sublytic concentrations of MAC [ 28 ,  29 ]. It should be noted that 
complement activation of the TP not only generates cell-associated MAC but also 
soluble, incomplete complexes containing only one copy of C9 (sC5b-9), which 
remain in the in the blood plasma.  

13.2.3     Regulation of Complement Activation 

 Complement activation on autologous cells is controlled by regulators of comple-
ment activation (RCA), which are operative mainly at the C3 convertase level. 
These proteins include complement receptor 1 (CR1 [CD35]), membrane cofactor 
protein (MCP [CD46]), and decay acceleration factor (DAF [CD55]), which all act 
by disrupting the convertase and/or functioning as co-factors for the plasma prote-
ase factor I. The action of these cell-bound inhibitors is further topped up by factor 
H and C4 binding protein (C4BP), which regulate the convertases of the AP and CP/
LP, respectively. These proteins are pulled down from the plasma as a result of their 
inherent affi nity for the proteoglycans present on cellular surfaces. In addition, cell- 
bound CD59 and fl uid-phase clusterin both inhibit the assembly of the MAC. C1 
inhibitor (C1-INH) controls the activity of C1r and C1s of the C1 complex as well 
as the MASPs (-1, -2, and -3) of the LP [ 30 ].  

13.2.4     Therapeutic Complement Inhibition 

 The clinical development of complement inhibitors has proved challenging [ 31 ,  32 ], 
and at present, there are only two drugs available in the clinic. Preparations of the 
regulator C1-INH (e.g., Cinryze, ViroPharma) block both the CP and the LP, but 
they are not complement-specifi c and also inhibit serine proteases of the coagula-
tion and contact activation/kinin systems. The humanized anti-C5 mAb eculizumab 
(Soliris, Alexion), in contrast, blocks the TP by preventing the cleavage of C5 into 
the anaphylatoxin C5a and C5b, which initiates the formation of the MAC.  

13.2.5     Assays to Monitor Complement Activation 

 The subject of complement diagnostics is reviewed in detail in [ 33 ,  34 ]. Quantifi cation 
of individual complement proteins (e.g., C1q, C1-INH, MBL, C4, C3, factor B) is 
in general performed using specifi c immunoassays. During humoral rejection of a 
transplanted organ induced by the presence of DSAs, activation of the CP leads to 
the generation of complement activation products in the fl uid phase and a concomi-
tant consumption of the corresponding precursor molecules. This sequence of 
events can be monitored by measuring the levels of C3a by enzyme immunoassay 
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(EIA) or C3dg by nefelometry.. In order to compensate for varying concentrations 
of native C3, determination of the total amount of C3 should also be performed, and 
the ratio of C3a/total C3 or C3dg/total C3 should be calculated as a true measure of 
C3 activation. 

 C5a and sC5b-9 complexes can be readily detected in the fl uid phase by 
EIA. However, the interpretation of the data for C5a (as compared to C3a) is diffi -
cult, since a substantial amount of the generated C5a will inevitably bind to leuko-
cytes because these cells express much higher amounts of C5aR1 than C3aR [ 35 ]. 

 Consumption of complement components within the CP and TP leads to a 
depression in hemolytic activity. This loss of function can be quantifi ed, either by 
hemolytic assays specifi c for the CP using sheep erythrocytes sensitized with IgM 
antibodies (e.g. conveniently in a single tube CH-50 like analysis) [ 36 ], or by an 
EIA (Wielisa, Wieslab) that allows simultaneous determination of all three activa-
tion pathways [ 37 ]. 

 Finally, histological evaluation of biopsies using antibodies against the C4 split 
product C4d is routinely used as a measure of complement activation [ 38 ]. However, 
caution should be observed when interpreting these data, since it is always possible 
that the detected C4 or C4 fragments are generated by the transplanted organ itself, 
in response to cytokine generation, and not deposited as a consequence of comple-
ment activation [ 39 ].  

13.2.6     Local Production of Complement in the Kidney 

 Humoral allo-response, as observed in ABO-incompatible (ABOi) and HLA- 
sensitized transplant patients, are particularly of concern because they result in seri-
ous hyperacute/acute AMR and a high rate of graft loss [ 40 ]. Complement has long 
been implicated in the outcome of AMR, and the activation product C4d is currently 
being used as a biomarker of this condition [ 41 ]. 

 An important study has shown that the C3 synthesis in the transplanted kidney is 
increased and is dependent on the duration of the cold ischemia [ 42 ]. C3 production 
by the donor kidney reached a peak after reperfusion, indicating the potential for 
using complement inhibition during organ collection as means of decreasing tissue 
damage and improving the transplant outcome.  

13.2.7     Anti-ABO and Anti-HLA Antibodies 

 Major immunological obstacles in allogeneic transplantation are the ABO and the 
HLA barriers. Humans have so-called “natural antibodies” against the A and/or B 
carbohydrate antigens, antigens that they do not express. These antibodies are pro-
duced in a T-cell independent manner, without previous immunization, and are thus 

A. Biglarnia et al.



217

predominately of the IgM type; in addition, natural antibodies of the IgA and IgG 3  
isotypes have been reported [ 43 ]. In contrast, individuals who are exposed to allo-
geneic HLA may become immunized, leading to the production, under the infl uence 
of T-cells, of IgG antibodies directed against the alien HLA. Such immunization can 
occur as a response to HLA-mismatched transplants, in multiparous women, or in 
patients who have received multiple leukocyte-containing blood transfusions [ 44 ].   

13.3     The Clinical Burden of Pre-sensitization 

 The risk of hyperacute rejection is high in the presence of naturally occurring blood 
group antibodies when the ABO blood group barrier is being crossed [ 45 ]. 
Consequently, pre-transplant blood group typing of the donor and recipient is 
imperative to prevent accidental ABO-antibody mediated hyperacute rejection. 

 The term “sensitization” refers to the formation of anti-HLA antibodies prior to 
transplantation. When they receive a transplant, these sensitized patients have an 
increased risk of AMR and graft loss. In 1969, the concept of pre-transplant 
complement- dependent cytotoxic (CDC) cross-matching was introduced by Patel 
and Terasaki [ 46 ]. For the fi rst time, the introduction of CDC testing enabled the 
identifi cation of pre-formed cytotoxic antibodies that could be linked to hyperacute 
rejection and immediate graft failure [ 47 ,  48 ]. Despite the implementation of more 
advanced assays, such as Luminex for fl ow cytometric crossmatching (FCXM), 
CDC is still the golden standard that has dramatically decreased the risk of hyper-
acute rejection as a consequence of pre-formed HLA-linked cytotoxic antibodies. 

 In an ideal clinical situation, avoidance of humoral incompatibility can provide 
excellent short- and long-term results [ 49 ]. However, the current clinical landscape 
is far away from ideal, since the sensitization phenomenon has become a public 
health obstacle. In the United States, 30 % of patients awaiting kidney transplanta-
tion are sensitized (OPTN data as of May, 2014). Within the same population, the 
annual transplant rate among patients with high anti-HLA antibody burden 
(PRA > 80 %) has been reported to be as low as 6.8 % [ 50 ], indicating the low prob-
ability for “matched” transplantation and ultimately longer time on the waiting list 
which are directly associated with increased risk for mortality [ 51 ,  52 ]. The same 
picture is evident for the Scandinavian and other European populations. According 
to the Scandia transplant database, 1,362 patients are at present on the transplant 
waiting list. Of these, 28 % have anti-HLA antibodies, and 44 % of them are highly 
immunized (PRA > 80 %) (  http://www.scandiatransplant.org    ). An analysis of the 
UK’s national kidney transplant waiting list in March 2009 revealed that 41 % of 
adult patients and 58 % of pediatric patients were sensitized (  www.bts.org.uk    ). 

 Naturally occurring anti-ABO antibodies create similar disparities, and the time 
to transplant varies substantially between different blood groups [ 53 ]. Patients with 
willing living-donors share the same fate when either ABO- or HLA incompatibility 
is encountered.  
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13.4     Desensitization for ABO-Incompatible Transplantation 

13.4.1     ABO-Incompatibility 

 Within the general population, there is a 35 % probability for two random individu-
als to be ABO-incompatible (ABOi). This statistic also implies that transplant can-
didates have the same likelihood of having willing but ABOi living donors. Given 
the current severe shortage in organ availability, treatment strategies to overcome 
the ABO barrier have become attractive options for maximizing the donor pool. 
Strategies enabling ABOi transplantation are based on the following fundamental 
principles: (1) removal of anti-A and/or anti-B antibodies by plasma exchange or 
immunoadsorption, (2) maintenance immunosuppression, (3) immunomodulation 
with intravenous immunoglobulins (IVIG), and (4) reduction of the B-cell reservoir 
by splenectomy or more recently, with anti-CD20 monoclonal antibody rituximab. 

 Traditionally, ABO-incompatible transplantations were effectively possible with 
a combination of intense immunosuppression, frequent plasma exchange, and sple-
nectomy. However, excessive immunosuppression, combined with increased surgi-
cal trauma, were deterrents to the broader acceptance of this procedure. In 2003, 
Gunnar Tydén presented the Swedish protocol that replaced splenectomy with a 
single dose of rituximab combined with standard CNI-based immunosuppression. 
Furthermore, the protocol implemented antigen-specifi c immunoadsorption 
(GlycosorbABO; Glycorex, Lund, Sweden), rather than plasma exchange, using 
specifi c blood group antigens A (Ga1NAcα1–3(Fucα1–2)Gal and B (Galα1–
3(Fucα1–2)Gal covalently bound to a Sepharose matrix [ 54 ,  55 ]. Combining effi -
cacy with a reduction in immunosuppression and surgical trauma, this protocol 
dramatically increased acceptance of a broader implementation of ABOi transplan-
tations [ 56 ,  57 ]. Today, ABOi transplantations are successfully performed on a 
global scale, with outcomes comparable to those of ABO-compatible transplanta-
tions [ 58 ,  59 ]. One key point in this success is a phenomenon known as 
accommodation.  

13.4.2     The Concept of Accommodation 

 The initial target in acute vascular rejection is the vascular endothelium, ultimately 
followed by microvascular infl ammation and thrombosis, then ischemia, apoptosis, 
or necrosis, and fi nally graft failure. Accommodation is defi ned as a condition in 
which the transplant elicits no rejection while maintaining normal function, despite 
the presence of anti-donor antibodies and fully functional effector complement 
components in the plasma [ 60 ]. 

 In clinical setting, accommodation was fi rst described in renal transplantation 
across the ABO barrier, when ABO-antibodies were temporarily eliminated prior to 
transplant [ 61 ,  62 ]. In order for accommodation to establish, either low anti-graft 
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antibody level or lowered complement function seems to be required at the time of 
graft implantation. Accommodation is primarily induced in transplantations when 
the antigen elicits non-T cell dependent antibody responses. Typically, these 
responses are elicited by carbohydrate antigens such as the ABO and the Gal anti-
gens. However, accommodation has also been reported for anti-HLA antibodies  in 
vitro  and in a presensitized allogeneic non-human primate transplantation model 
[ 63 ,  64 ]. The mechanism by which this non-responsive state is achieved is not fully 
understood. Several investigators [ 65 ] have reported an overexpression of the genes 
HO-1, A20, Bcl-2, and Bcl-x, which inhibit activation of the transcription factor 
NF-κB and thereby promote an anti-infl ammatory state and downregulating proin-
fl ammatory cyto/chemokines. It has been reported that many of the processes 
involved in accommodation, including apoptosis triggered by TNF, and necrotic 
cell death caused by the MAC of complement, are prevented by pretreatment of the 
endothelial cells with the TH2 cytokines IL-4 or IL-13. This requires activation of 
phospholipid synthesis, in association with preservation of mitochondrial structure 
and function [ 66 ]. Also, up-regulation of complement regulators such as CD59 has 
been reported as an additional mechanism of accommodation [ 41 ,  67 ].  

13.4.3     Complement Modulation in ABO-Incompatible 
Transplantation 

 In a survey of 19 consecutive patients undergoing desensitization for ABOi kidney 
transplantation, we previously demonstrated a 100 % patient and graft survival for 
a median follow-up of 40 months [ 68 ]. The treatment algorithm for this protocol is 
illustrated in Fig.  13.1 .  

 For the same cohort, the median glomerular fi ltration rate at last follow-up was 
82 mL/min, also indicating excellent long-term renal function. Given the ability of 
anti-ABO antibodies to induce a vicious humoral response, these results are some-
what surprising, even in the context of accommodation, which is presumably estab-
lished within the fi rst 2 weeks post-transplantation [ 69 ]. We previously assumed the 
presence of an earlier mechanism complementary to accommodation that could be 
important for promoting good outcomes after ABOi transplantation. During humoral 
rejection, the complement cascade is activated (through the CP) via the cleavage of 
C3 into C3b and C3a, fi nally resulting in the formation of the membrane attack 
complex C5b-9. This mechanism could be responsible for the speed and severity of 
the humoral rejection process in renal transplantation. 

 In order to evaluate the possibility of interference between desensitization and 
complement activation, we measured the serum levels of the complement products 
C1q, C3, C3a, and sC5b-9 from the start of preconditioning on day −30 to 1 month 
post-transplant in the aforementioned cohort. We found that antigen-specifi c immu-
noadsorption had an inhibitory effect on complement activation by depleting com-
plement compounds. These results were further confi rmed by our detection of C1q, 
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C3, and C3a in the eluates from used absorption columns. These fi ndings were 
further confi rmed by detection of C1q, C3 and C3a in the eluates from used immu-
noadsorbents [ 68 ]. 

 A recent randomized clinical trial on 14 ABOi transplant recipients, confi rmed 
our result by showing the same depleting effect of desensitization, including 
antigen- non-specifi c immunoadsorption on complement factors C3, C3a, and C1q 
[ 70 ]. In the line with these fi ndings, it is conceivable that the complementary effects 
of complement depletion and antibody elimination are an important link in the suc-
cess of transplantation across the humoral incompatibility. 

 A relevant question, however, is whether novel treatment strategies to specifi -
cally target complement activation could minimize the need for excessive antibody 
elimination and still provide comparable results. If so, what benefi ts would this 
treatment modifi cation bring to clinical practice? 

 As mentioned above, desensitization protocols include serial apheresis sessions 
(immunoadsorption or plasma exchange) for elimination of anti-ABO antibodies in 
the pre-transplant period. The rationale for this time-consuming treatment is to cre-
ate a short interval of time in which ABOi transplant can safely be performed with 
virtually no risk of severe humoral rejection. Hence, the feasibility of the protocol 
requires the availability of a living donor for elective planning of the transplant 
within this short “window of operability.” It is therefore conceivable that patients 
with no access to living donors (such as those listed on transplant waiting lists) are 
considered ineligible for this successful treatment option. For these patients, this 
limitation entails disadvantages in terms of both donor availability and organ alloca-
tion, particularly for waitlisted patients with blood type O. It is generally known that 
blood type O individuals lack both A and B antigens. Therefore, blood type O 

  Fig. 13.1    Swedish desensitization protocol for ABOi living-donor kidney transplantation with 
center-specifi c adjustments. In the pre-transplant phase, patients are treated with a single dose of 
rituximab (day −30), triple-based maintenance immunosuppression (starting day −9), antigen- 
specifi c immunoadsorption (starting day −9, guided by isoagglutinin levels) and intravenous 
immunoglobulin (IVIG, day −1). Anti-IL-2 receptor antibody infusions are given on days 0 and 4. 
In the post-transplant period, immunoadsorption treatment is guided by the level of isoagglutinin 
titers. Immunoadsorption treatments are usually discontinued at 1 week post-transplantation       
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donors are considered “universal donors,” since their organs can be transplanted to 
A-, B-, and AB-recipients as well as O recipients. Most organ allocation policies 
prioritize optimal HLA matching, in particular for HLA-sensitized patients (e.g., 
the acceptable mismatch program in the Eurotransplant and Scandiatransplant 
areas) in order to maximize transplantation outcomes. 

 For this purpose, blood type O organs are being allocated to HLA-matched 
non-O transplant candidates (  www.eurotransplant.nl    ). In a recent 12-year survey of 
more than 1,000 waitlisted transplant candidates within the Eurotransplant area, it 
was calculated that 14 % of all O organs have been allocated to non-O recipients. 
This signifi cant “drainage” of O organs to non-O recipients was associated with 
increased accumulation of O patients on the waiting list, which further resulted in 
longer waiting time compared to non-O waitlisted transplant candidates. As a con-
sequence, O patients not only had a higher waiting list mortality but also a concomi-
tant inferior outcome when given a transplant [ 71 ]. 

 Apart from the allocation issues with O recipients in general, the strict separation 
of the waiting list by blood type also causes local issues. At the Uppsala University 
Hospital in Sweden, effi cient utilization of organs has also been hampered by the 
need for blood type compatibility between donor and recipient. This situation has 
been particularly apparent for pancreatic allografts, given the limited number of 
diabetic patients on the waiting list. In this respect, pancreatic allografts have been 
discarded in some cases because of a positive donor-specifi c cross-match in blood 
group-compatible recipients. On the other hand, crossmatch-negative recipients 
with an incompatible blood group have not been considered suitable candidates. 
As a consequence, pancreatic allografts have been underutilized. 

 In an attempt to fi nd a solution to this clinical obstacle, we have assessed trans-
plantation across the ABO barrier as a logical solution for optimal organ utilization. 
In deceased-donor transplantation, logistics during organ allocation and the legiti-
mate demand for short ischemia time restrain the possibilities for time-consuming 
preconditioning, including antibody elimination. However, a simple abundance of 
excessive antibody elimination gives rise to serious concerns because the elevated 
level of anti-ABO antibody titer at the time of transplantation could induce severe 
AMR and immediate graft failure. Previously, we discussed the importance of anti-
body elimination, together with complement depletion, for success in ABOi 
 transplantation. Given the pivotal role of complement in the pathophysiology of the 
AMR, novel strategies to specifi cally target complement activation could minimize 
the signifi cance of preformed antibodies. Principally, this means that complement 
inhibition can increase the safe acceptance of higher antibody levels at the time of 
the ABOi transplantation. 

 Previously, we have introduced an “overnight” protocol including eculizumab 
and complement monitoring for patients undergoing ABOi deceased-donor trans-
plantation [ 72 ] (Fig.  13.2 ).  

 To increase the safety margin in terms of preventing an early humoral response, 
we considered the following aspects to be important in the planning and design of 
the protocol: (1) Pre-transplant antibody elimination by a single plasma exchange 
combined with rituximab, (2) induction with thymoglobulin and maintenance of 
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triple immunosuppression, and (3) eculizumab induction for patients with high 
baseline anti-ABO antibody titers (≥1:64) or on-demand treatment basis in the case 
of humoral rejection. Furthermore, daily measurements of complement parameters 
C3 and C3d (for calculation of the C3dg/C3 ratio), as well as estimation of CP func-
tion, were implemented as a supplementary tool for the early diagnosis of 
complement- driven humoral rejection after the transplantation. The systematic 
analysis of complement activation and extensive surveillance revealed new insights 
into the potential and pitfalls of complement modulation using C5 blockade in 
“overnight” ABO-incompatible transplantation. 

 The fi rst case involved a blood group type B donor who was allocated to a 
kidney- pancreas transplant recipient with blood type A1 and low isoagglutinin 
baseline titer. Despite all the measures taken to minimize the risk of humoral com-
plications, a distinct biopsy-verifi ed AMR was encountered on day 9, which was 
preceded by an increase in isoagglutinin. At the same time, monitoring of comple-
ment activation revealed a drop in CP function, and an increase in the C3d/C3 ratio, 
indicating signifi cant complement consumption. The occurrence of humoral rejec-
tion during the rebound of isoagglutinins and the absence of anti-HLA antibodies 
prompted us to assume a rejection mediated by ABO reactivity. This rejection epi-
sode was accompanied by a rapid decline in kidney function and severe abdominal 
pain. The pivotal role of complement as the key infl ammatory mediator during this 

  Fig. 13.2    Overnight protocol for ABOi deceased-donor transplantation. Treatment starts at the 
day of transplant (Tx) with single plasma exchange prior to surgery. In patients with high ABO- 
antibody titers (≥1:64), eculizumab is given just before the circulation of the graft is re- established. 
Immunosuppression consists of thymoglobulin induction followed by rituximab and CNI-based 
triple maintenance. Short term post-transplant aphereis with either antigen-specifi c immunoad-
sorption or plasma exchange is guided by the level of ABO antibody titers       
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particular type of humoral response was demonstrated by the observation that both 
the kidney function and the severe infl ammatory response were rapidly normalized 
after a single administration of eculizumab. Considering our empirical knowledge 
of accommodation, short term protection from humoral damage by further suppres-
sion of complement function was favored. Here, CP function, was used as an ana-
lytical tool to monitor the therapeutic level of C5 blockade and guide the second 
pre-emptive administration of eculizumab, which was given after an interval of 4 
days. Currently, after more than 1,200 days, the patient has both excellent kidney 
and pancreas graft function, with no further incidence of any type of rejection. 

 Encouraged by this successful case, we further introduced eculizumab and com-
plement monitoring into the traditional Swedish desensitization protocol for a sub-
group of high-risk patients with inferior response to antibody elimination and 
increased antibody presence at the time of living-donor ABOi transplantation. In 
this patient population, modifi cation of the protocol to include eculizumab  induction 
was considered important for prevention of early humoral complication (Fig.  13.3 ).  

 Overall, 18 patients were included in the ABO desensitization protocol for 
deceased-donor (n = 8) and living-donor transplants (n = 10). At a median follow-up 
of 538 days, the patient survival was 100 %. Three patients lost their grafts: In one 
ABOi kidney-pancreas transplant recipient (AB to O), the kidney was removed on 
day 270 because of a severe local fungal infection causing fungal septicemia. In this 
patient, the pancreas graft function was consistently normal after more than 
1,000 days with no need for exogenous insulin. Two patiens developed de-novo 
anti-HLA DSAs and biopsy proven rejection episodes resulting in pancreas graft 
failure at days 240 and 940, respectively. At a median follow-up of more than 500 
days, the median creatinine and HbA1c was normal for the remaining patients, indi-
cating excellent intermediate long-term graft function. 

  Fig. 13.3    Modifi ed Swedish protocol for ABOi living-donor transplantation. Modifi cation con-
sists of inclusion of eculizumab induction and complement monitoring for high-risk ABOi patients       
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 The data thus far have shown that the current desensitization protocols make 
high-risk ABOi transplants feasible for both deceased- and living-donor recipients. 
However, there were also obstacles that could potentially restrict the broader 
implementation of ABO desensitization protocols, including C5 blockade. One 
major challenge frequently observed was an early post-transplant increase in iso-
agglutinin titers. Indeed, elevated ABO antibody levels were observed in eight of 
the 18 cases, and most cases occurred in the deceased-donor transplant population 
(six of eight cases). 

 As a consequence of exposure to an increased level of post-transplant ABO anti-
bodies, AMR was frequently observed, with an overall incidence of 44 %. However, 
it was intriguing to fi nd that AMR was also evident in patients treated with eculi-
zumab when CP function measurement showed complete blockade of complement 
in hemolytic assay. In one case, this phenomenon was extremely clear: In the high- 
risk pancreas-kidney transplant recipient with a double blood-type mismatch (AB to 
O), consistent C5 blockade (indicated by 0 % CP function) was achieved by eculi-
zumab during the fi rst 2 weeks after the transplantation. However, despite complete 
terminal complement inhibition, the patient presented with AMR on day 9, with 
ongoing complement consumption (increased C3 turnover) as indicated by an ele-
vated C3d/C3 ratio, paralleled by an increase in isoagglutinin levels. Given the per-
sistent C3 consumption during C5 blockade, the rejection treatment was successfully 
completed with C1-INH (Berinert), which further normalized the C3d/C3 ratio, 
indicating disruption of the upstream complement activity [ 73 ]. 

 Persistent upstream complement activity and cleavage of C3 during complete C5 
blockade is a novel fi nding with strong clinical relevance, as further indicated by our 
data. Among the peptide fragments generated by C3 consumption, C3a is one of the 
most potent anaphylatoxins, not only stimulating T-cell proliferation and longevity 
but also promoting T-cell responses directed against alloantigens, illustrating the 
bridge between complement-driven humoral damage and cellular rejection [ 74 – 76 ]. 
Implementation of C5 blockade in the ABO-desensitization protocol enables high- 
risk ABOi living- as well as deceased-donor transplantation. However, the upstream 
complement activity and the occurrence of AMR during complete C5 blockade indi-
cate the need for a more specifi c complement inhibition tackling the early stages of 
the complement cascade. This issue will be further discussed later in this chapter.   

13.5     Desensitization for HLA-Incompatible Transplantation 

13.5.1     HLA-Incompatibility 

 For a subgroup of highly sensitized patients, desensitization still remains the treat-
ment of choice to enable transplantation. Currently, there are a variety of different 
treatment modifi cations to achieve desensitization, all sharing the same fundamen-
tal principles: (1) antibody elimination by plasma exchange or immunoadsorption; 
(2) maintenance immunosuppression, including T-cell-depletive induction (with 
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alemtuzumab, thymoglobulin); (3) immunomodulation and antibody clearance with 
high-dose intravenous IVIG; and (4) reduction of the B-cell reservoir (with ritux-
imab) and/or antibody production (with bortezomid) [ 77 ]. The overall purpose of 
combining these treatment modalities is to lower the level of anti-HLA donor- 
specifi c antibodies to a safe level at the time of the transplantation, a strategy that 
was previously discussed for ABO desensitization. Indeed, desensitization for HLA 
has recently been useful in providing survival benefi t when compared to sensitized 
patients remaining on the dialysis [ 78 ]. However, following desensitization, pro-
longed exposure to DSAs still remains a challenge. Moreover, long-term antibody 
elimination (e.g., by plasma exchange or immunoadsorption) is not a realistic treat-
ment option. As a consequence, desensitized patients are often faced with an 
increased risk of acute humoral, subclinical, or even chronic rejection, as well as a 
high incidence of transplant glomerulopathy at 1-year post-transplantation [ 40 ,  79 ].  

13.5.2     Complement Modulation in HLA-Incompatible 
Transplantation 

 Given the importance of the complement system in antibody-mediated injury, the 
introduction of eculizumab into the conventional HLA desensitization protocol was 
a reasonable attempt to address the sustained humoral damage apparent in desensi-
tized transplant patients. Initial experiences with the use of eculizumab were 
reported from the Mayo Clinic in the United States, concerning 26 highly sensitized 
patients with a positive pre-transplant cross-match, who underwent living-donor 
kidney transplantation using a protocol that included eculizumab induction with 
subsequent prolonged administration for 1 month post-transplant. At 3 months, the 
authors were able to demonstrate a 7.7 % incidence of biopsy-verifi ed AMR, as 
compared to 41 % in the historical control, despite equal DSA exposure in both 
groups. Moreover, protocol biopsies at 1-year revealed a lower rate of transplant 
glomerulopathy in the eculizumab group than in the historical control [ 80 ]. 

 Although these initial data are promising, the effi cacy of eculizumab in treating 
AMR, in particular in the presence of prolonged DSA exposure, is controversial. 
Here, experiences on therapeutic intervention with exulizumab have mainly been 
accumulated from the Mayo Clinic again. In a series of 16 sensitized kidney trans-
plant recipients with a positive cross-match, 38 % of the patients showed evidence 
of chronic humoral rejection after eculizumab treatment [ 81 ]. In a recent report on 
30 sensitized transplant recipients, the incidence of microvascular injury, including 
glomerular and capillary infl ammation (an indicator of humoral rejection), was 
28 % at 3 months for eculizumab-treated patients [ 82 ]. Indeed, the incidence of 
microvascular injury in eculizumab-treated patients did not differ from that of 
patients given plasma exchange only, which indicates an inferior effect of terminal 
complement inhibition on sustained humoral damage. In line with these fi ndings, 
the same group also demonstrated the occurrence of AMR despite complete thera-
peutic effect of eculizumab (as indicated by CP function) [ 83 ]. 
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 One possible explanation for the inconsistency of terminal complement 
 inhibition in preventing humoral allo-responses could be the involvement of the 
upstream complement pathways. This hypothesis is supported by our results on the 
use of eculizumab in high-risk ABOi transplantations. As previously discussed, 
increased ABO antibody exposure after transplantation was highly associated with 
AMR and increased upstream complement activity, as indicated by an increase in 
C3 turnover. This upstream activity was also evident in patients presenting with 
AMR, despite having a full therapeutic level of eculizumab as indicated by CP func-
tion level. Indeed, in one patient, C1-INH was successfully added to target the 
upstream complement activity (as indicated by an elevated C3d/C3 ratio) when an 
AMR occurred during eculizumab treatment. 

 Given these accumulated data, the concept of upstream complement inhibition is 
gaining increasing interest. C1-INH, either in its recombinant form or as a concen-
trated extract from human serum, has been successfully used in pre-clinical models 
to prevent both allogeneic and xenogeneic humoral immune responses [ 84 – 87 ]. 
Currently, eculizumab and C1-INH Berinert (a concentrated extract from human 
serum) are the only approved drugs with indications for clinical complement inhibi-
tion. In a recent randomized, placebo-controlled clinical trial, C1-INH Berinert was 
introduced into a desensitization protocol including IVIG and rituximab for sensi-
tized patients with pre-formed donor-specifi c antibodies and positive cross- reactivity 
(CDC−, FCMX+) [ 88 ]. Here, C1-INH or placebo was given as an induction treat-
ment that was continued twice weekly for 21 days. At the 6-month follow-up, there 
was no difference in the overall incidence of AMR between the recipients of C1-INH 
and placebo. However, in contrast to the placebo group, AMR was absent from the 
CI-INH-treated patients during the treatment period. Moreover, the author observed 
a reduction in complement-binding anti-HLA antibodies (by C1q analysis) in the 
CI-INH patients when compared to the control patients; however, data on the inci-
dence of microvascular injury were not presented. Overall, these initial data are 
promising, but further larger studies are warranted to validate the potential advan-
tages of C1-INH over C5 blockade.   

13.6     Current and Future Perspectives 

 Although eculizumab has been useful for the prevention and/or treatment of AMR, 
it is not a universal remedy. In view of potential importance of upstream comple-
ment activity in transplantation across humoral incompatibility, exploration of alter-
native complement-specifi c therapeutics has become of signifi cant clinical value. 
Currently, the armamentarium of complement therapeutics is limited to eculizumab 
and C1-INH (Berinert); C1-INH is being evaluated for its safety and effi cacy in 
sensitized transplant recipients. Notably, there is a growing interest in the develop-
ment of new strategies aiming to block complement activation at the level of 
C3 [ 31 ]. Indeed, there are preclinical data indicating that therapeutic intervention 
at the level of C3 strongly prevents AMR and promotes accommodation. 
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The Yunnan- cobra venom factor (Y-CVF) is a cobra venom and a structural and 
functional analog of complement factor C3 [ 89 ]. Y-CVF has the ability to bind fac-
tor B and to form the complex Y-CVF/Bb. Y-CVF/Bb acts as a convertase, cleaving 
both C3 and C5. Since Y-CVF/Bb is not easily deactivated by endogenous regula-
tors such as protein H and I, sustained consumption of C3 results to its total deple-
tion and an overall complement inhibition [ 90 ]. In a recent study, Y-CVF was 
combined with standard CNI-based triple immunosuppression in skin-presensitized 
rhesus monkeys undergoing kidney transplantation [ 63 ]. Y-CVF was given daily 
beginning on day −2 to achieve complete C3 depletion by the time of the transplan-
tation. Post- transplantation, the treatment was repeated every other day for a period 
of 2 weeks. While, non Y-CVF animals lost their grafts at a median of 3 days, long 
term survival was achieved in the Y-CVF group. Indeed, three of fi ve animals had 
still normal serum creatinine after more than 715 and 1,000 days, respectively. The 
reasons for the loss of the remaining grafts were hemorrhagic complication post-
biopsy (day 41) and euthanasia (day 140) because of a poor general condition. 
Moreover, AMR was completely absent in the Y-CVF group, despite the persistence 
of donor- specifi c antibodies. Taken together, these encouraging data indicate that 
short tem systemic interception of C3 might be benefi cial for the prevention of 
AMR and the promotion of accommodation in allogeneic transplantation. 

 Compstatin peptides are a family of cyclic synthetic peptides that bind to C3 and 
prevents its activation by convertases [ 91 ]. Therefore, they inhibit he initiation, 
amplifi cation, and the terminal sequence of all three activation pathways. The cur-
rent lead analog (Cp40) features a nanomolar IC 50, , and it binds C3b with sub- 
nanomolar affi nity [ 92 ]. In  in vitro  and non-human primate studies, compstatin has 
been successfully used for a wide range of clinical indications that feature uncon-
trolled C3 activation, such as sepsis [ 93 ], experimental hemodialysis [ 94 ], age- 
related macular degeneration [ 95 ], paroxysmal nocturnal hemoglobinuria [ 96 ], and 
periodontal disease [ 97 ]. A thorough survey of the molecular development of comp-
statin and its potential clinical applicability is available [ 98 ]. 

 In the context of desensitization across humoral incompatibility, future protocols 
including C3 blockade may constitute an attractive treatment option that could 
potentially fi ll the therapeutic gaps in the current desensitization strategies, includ-
ing terminal complement inhibition. Considering the accumulating data on C3 
interception thus far, future strategies might not only be more effi cient in preventing 
AMR but also in promoting accommodation and long-term survival. The future may 
not be far away, since the Cp40-based therapeutic AMY-101 (Amyndas 
Pharmaceuticals) is currently being evaluated for clinical trials in uremic patients 
undergoing ABOi kidney transplantation. 

 Clearly, there is a current surge in novel treatment strategies as well as therapeu-
tic interventions tailored to enriching the treatment alternatives for sensitized 
patients awaiting transplantation. However, successful implementation of these 
novel treatment strategies requires the knowledge and professional competence of 
the medical community to ensure sound and reliable clinical judgments concerning 
the adoption and appropriate of these therapies. It is conceivable that close interdis-
ciplinary collaborations between physicians, transplant surgeons, immunologists 
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and immunogenetic laboratories will remain important for the provision of adequate 
medical care to high-risk sensitized patients with terminal end-organ disease.     
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