
9© Springer International Publishing Switzerland 2015 
E.P. Ivanova, R.J. Crawford (eds.), Antibacterial Surfaces, 
DOI 10.1007/978-3-319-18594-1_2

Chapter 2
Natural Antibacterial Surfaces

Song Ha Nguyen, Hayden K. Webb, Russell J. Crawford, 
and Elena P. Ivanova

Abstract  The world has long experienced the impact of surfaces fouling with bio-
films, not only in economic terms, but also, importantly, the adverse effect that bio-
films can have with regard to public health. In the USA alone, billions of dollars are 
spent every year cleaning equipment, decontaminating products and cleaning ship 
hulls, while over 100,000 mortalities are reported annually as a result of infections 
resulting from medical device implant surgeries that have been compromised by the 
presence of pathogenic bacteria. Of great concern is that the heavy use of chemicals for 
neutralising bacterial colonies has resulted in the production of tougher, more resistant 
strains of pathogenic bacteria, which challenges the scientific community to find new 
approaches for controlling the formation of biofilms. Recently, the hierarchical struc-
tures found on the surfaces of some organisms, such as plant leaves and insect cuticles, 
have been shown to be superhydrophobic, self-cleaning, and possess bactericidal activ-
ity. Since the self-cleaning properties of the lotus leaf were reported in 1997, there has 
been a great deal of effort put into exploring this approach as a potential method for 
controlling the formation of biofilms. These discoveries may provide alternative 
approaches for controlling bacterial behaviour, either before or after the bacteria have 
attached to a substrate surface. This chapter provides a summary of some of the strate-
gies employed by nature for controlling the colonisation of bacteria on surfaces.

Keywords  Antibiofouling • Superhydrophobicity • Self-cleaning • Bactericidal 
activity • Wettability • Plant leaves • Insect cuticule • Mechanobactericidal activity

2.1  �Introduction

Biofouling has remained a complex, problematic issue for a long period of time. Its 
consequences impact not only upon the economy, but also public health. For this 
reason, antibacterial materials have been developed in order to design  advanced 
strategies for limiting the colonisation of bacteria on their  surfaces (Zhang et al. 
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2013). Traditionally, antibacterial surfaces were designed so that their surfaces 
would leach biocides, which would kill bacterial cells in situ and in areas surround-
ing the surface. For example, peptides and chitosan have been used as chemical-
based methods for controlling the colonisation of bacteria on surfaces (Gazit 2007; 
Qi et al. 2004). Antibacterial metal nanoparticles such as silver (Rai et al. 2009), 
copper (Hsiao et al. 2006), and molybdenum (Yasuyuki et al. 2010) have also been 
used as an additive for controlling bacterial attachment. The effects of these metals 
on human health and the environment are of growing concern. In addition, ever-
increasing doses are now being required for chemical-based methods to effectively 
sterilise surfaces. This increased use of chemical agents has led to another problem; 
bacterial resistance to antibiotics. Therefore, the scientific community must con-
tinue to find alternative methods for effectively controlling bacterial attachment.

More recently, new approaches for preventing bacterial attachment, which use 
photocatalytic metal oxides such as TiO2 (Gelover et al. 2006) and ZnO (Franklin 
et al. 2007; Jones et al. 2008), have been developed. These materials produce highly 
reactive species such as hydroxyl radicals, hydrogen peroxide and superoxide, 
which are lethal to Escherichia coli and some other types of bacterial cells (Maness 
et al. 1999; Ibáñez et al. 2003). These metal oxides are, however, mainly activated 
by UVA light sources, which limits their potential biomedical applications (In et al. 
2007; Fu et al. 2005).

Superhydrophobic/self-cleaning surfaces based on natural materials such as 
plant leaves and insect cuticles are currently being developed for controlling bacte-
rial colonisation. Traditionally, only those materials that could induce bacterial cell 
death were considered to be antibacterial materials (Zhang et al. 2013), however 
antibiofouling materials, many of which are also superhydrophobic, can also classi-
fied in this category due to their potential application in controlling bacterial attach-
ment. Many natural surfaces have been subjected to harsh environmental conditions 
in that they are constantly in contact with pollutants and changing weather condi-
tions. Over millions of years of evolution, organisms have developed strategies that 
enable them to survive. Lotus leaves have been studied in detail since 1997 and have 
given rise to the archetypal “lotus effect” due to their self-cleaning nature (Barthlott 
and Neinhuis 1997). The properties that afford the lotus leaf these self-cleaning 
properties are their high water contact angle (θ > 150°) and low tilting angle (θ < 10°), 
the angle to which the leaf needs to be tilted in order for the water droplet to roll off 
the surface. These properties allow water droplets to collect dirt as they move over 
the surface, hence the term ‘self-cleaning’ (Webb et al. 2011) being applied to such 
surfaces. If artificial surfaces can be synthetically produced to possess similar sur-
face characteristics and therefore cause water to behave in a similar way, bacterial 
cells could potentially also be cleaned from such surfaces before they have a chance 
to develop a biofilm. A similar phenomenon was also observed on the surfaces of 
sections of some insects, such as cicada and dragonfly wings. Interestingly, some 
insect surfaces possess not only self-cleaning properties, but also act as bactericidal 
surfaces (Ivanova et al. 2012; Pogodin et al. 2013).
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2.2  �Basics of Biofilms

A biofilm is defined as the attachment and development of microorganism commu-
nity embedded in extracellular matrix on a surface (O’Toole et al. 2000). The organ-
isms undergo a transition state between having the ability to be free swimming in 
their native environment (planktonic cells) to being cells that form part of the 
surface-attached community. The essential factors necessary for the formation of 
a biofilm are microbes and a substratum (Garrett et al. 2008). There are numerous 
advantages for bacteria to be part of a biofilm; these include resistance to antibiotics 
(Schmidt et al. 2012) and disinfectants (Ryu and Beuchat 2005; Simões et al. 2009) 
and being part of a dynamic environment (Liu and Tay 2002; Di Iaconi et al. 2005). 
Intercellular communication within the biofilm community also enhances the regu-
lation of gene expression, which enables the bacterial cells to temporally adapt to 
any phenotypic variations in the surrounding environment, in addition to any defi-
ciency in the available  nutrient supply (Dalton and March 1998; Kjelleberg and 
Molin 2002; Daniels et al. 2004).

Biofilm formation can involve a single microbial species or multiple microbial spe-
cies adhering onto a range of surfaces. On most environmental surfaces, mixtures of 
various species will dominate the biofilm. It is usually a single bacterial species, how-
ever, that is responsible for the infection of medical devices and implants (Holmes 
et al. 2008; Behlau and Gilmore 2008; Seo et al. 2008; Bulgarelli et al. 2013; Wu et al. 
2012). According to a public health report in 2002 (Klevens et al. 2007), approxi-
mately 64 % of hospital attending cases resulted from the viable bacterial infection of 
medical devices and implants. These biofilms have been associated with 100,000 mor-
talities annually in the US alone. Researchers began studying biofilms over three 
decades ago, with the discovery that under natural living conditions, microorganisms 
dominantly attach themselves to surfaces (Geesey et  al. 1977). The first recorded 
observation was published in 1933 by Henrici (1933), however the impact of biofilm 
formation had been recognised even before this time in the form of the fouling of ships 
in marine environments (Angst 1923). It has been estimated that the fouling of US 
Navy ships costs approximately US$ 180M–$260M per year. This represents only 
0.5 % of the total number of ships world-wide (Schultz et al. 2011).

The initial development of a biofilm is described by a two stage kinetic binding 
model (Fig. 2.1). The first stage involves the initial reversible interaction that takes 
place between bacterial cells and the material surface, followed by the second stage 
where specific and non-specific interactions take place  at the molecular level 
(Lichter et al. 2009; Bos et al. 1999). The interactions that occur in the second stage 
involve proteins that are expressed on the bacterial surface and on molecules on the 
material surfaces. The second stage occurs slowly and is irreversible once a mature 
biofilm has been formed. Apart from these two main steps of biofilm maturation, 
O’Toole et al. proposed that the starvation response pathway can also be considered 
as part of the biofilm development (O’Toole et al. 2000). This pathway is developed 
when the source of nutrients becomes depleted, and single microbial cells detach 
from the surface and return to their planktonic state, and commence infecting new 
areas of the surface.

2  Natural Antibacterial Surfaces
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For these reasons, controlling bacterial attachment on material surfaces has been 
a long-standing battle for science. Several approaches have been developed to limit 
the colonisation of microbes onto the surfaces, however most of these have focussed 
on using chemical-based methods for bacterial control, which has led to the new and 
rising problem of bacterial resistance to these agents. Preventing bacterial adhesion 
from occurring by modifying the surface topography of substrates has been identi-
fied as an approach that may provide attractive alternative strategies for controlling 
biofilm formation.

2.3  �Antibiofouling Based on the Self-Cleaning Properties  
of a Surface

2.3.1  �Wettability Theory

Wettability is a measure of the ability of a liquid to wet and spread over a solid sur-
face. The contact angle, which is a function of surface energy of the solid, is formed 
when the liquid/vapour interface meets that of the liquid/solid interface. The wet-
tability of solid surfaces plays an important role in daily life, industry and agricul-
ture. Surfaces with special wettability properties, exhibiting  for example high 
degrees of hydrophobicity or hydrophilicity, have been the subject of much research 

Fig. 2.1  Schematic representation of the two stages of biofilm formation on substrate surfaces 
(Reproduced with permission from American Chemical Society (Lichter et al. 2009))

S.H. Nguyen et al.



13

due to the potential advantages associated with these types of surfaces (Nosonovsky 
and Bhushan 2005, 2007; Su et al. 2010). According to the most commonly agreed 
definitions, surfaces can be classified into one of four categories:

•	 surfaces with a water contact angle greater than 150° and a tilting angle less than 
10°. These surfaces are considered to be superhydrophobic and self-cleaning.

•	 surfaces with a water contact angle between 90° and 150°. These surfaces are 
described as being hydrophobic.

•	 surfaces with a  water contact angle between 10° and 90°. These surfaces are 
described as being hydrophilic.

•	 surfaces with a water contact angle less than 10°. These surfaces are considered 
to be superhydrophilic.

The measurement of water contact angle (WCA, θ) is the most common method 
for determining the wettability of surfaces. Originally, the contact angles were 
determined by Young’s Eq. 2.1 where the surfaces were assumed to be smooth, 
rigid, chemically homogeneous, insoluble and non-reactive (Zhang et  al. 2013; 
Young 1805):

	
cosθ

γ γ
γ

=
−sv sl

lv 	
(2.1)

where θ is the contact angle; γ is the surface tension which is determined as the force 
per unit length; s, l, v represent solid, liquid and vapour, respectively. Surface ten-
sion is also known as surface energy, which is the energy required to break an inter-
molecular bond (Nosonovsky and Bhushan 2008). Numerically, surface tension and 
surface energy are equivalent, however they are thermodynamically different (Yan 
et al. 2011). Surface tension is used when dealing with liquids, whilst surface energy 
is a general term used for the description of solid surfaces.

In practice, most surfaces are both rough and chemically heterogeneous, and this 
complexity at the interface between the solid and liquid surfaces causes difficulties 
in determining the real contact angle. Wenzel first proposed a model to explain the 
relationship between surface roughness and the measured contact angle (Wenzel 
1949), while Cassie and Baxter (1944) described the relationship between the sur-
face fractions of different chemical composition and the contact angle. Wenzel’s 
equation is shown as:

	 cos cosθ θrough smoothr= 	 (2.2)

where θrough and θsmooth are water contact angles on rough and ideal smooth surfaces, 
respectively, and r is the Wenzel roughness factor. The roughness factor is calcu-
lated as the ratio between the actual surface area and the projected surface area, 
which can be used to explain the change in surface hydrophobicity that arises 
through roughness, not surface chemistry. According to the theory, there are two 
separate cases where θrough will behave differently as the roughness factor increases, 
depending on the value of θsmooth:
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	(i)	 if θsmooth <90°, as r increases, θrough will reduce to 0°
	(ii)	 if θsmooth >90°, as r increases, θrough will approach 180°.

According to the Cassie and Baxter model, surface heterogeneity induces air 
entrapment between the topographical structures on a surface, which causes 
increased surface hydrophobicity, as given in the equation:

	 cos cos cosθ θ θ= +f f1 1 2 2 	 (2.3)

where, θ is the composite contact angle of the heterogeneous surface, f1 and f2 are 
the area fractions of surface components 1 and 2, and θ1 and θ2 are their respective 
contact angles. This equation has been used widely to explain and/or predict the 
hydrophobicity of the surfaces with both a micro- and nano-hierarchical structure. 
When a water droplet sits on a rough surface, the two surface components that affect 
surface wettability are the surface itself and the air trapped between the  surface 
features. Since the water contact angle on air can be taken as 180° (i.e. θ2 = 180°), 
and f2 = 1 – f1, then Eq. 2.3 becomes:

	 cos (cos )θ θ= + −f1 1 1 1	 (2.4)

According to Cassie-Baxter theory, superhydrophobicity arises from the combina-
tion of hierarchical surface structures that enable the entrapment of air on low surface 
energy materials. The sliding angle, another parameter that is important in determin-
ing the degree of hydrophobicity, is defined as the critical angle at which the water 
droplets start to slide along a tilted surface (Bhushan et al. 2009; Jung and Bhushan 
2006; Yan et al. 2011). The scientific community has become aware of this principle 
only in the past century, whereas nature has adapted and evolved over millions of 
years to develop mechanisms that function according to this principle. Lotus leaves 
have long been regarded as a symbol of purity in many Asian cultures, and this origi-
nates from their clean nature despite being often found in unclean environmental 
conditions. It is now well established that the self-cleaning ability of the lotus leaf is 
a direct result of surface micro- and nanostructures that maximise the quantity of 
entrapped air in the surface,  resulting in  the condition of superhydrophobicity, in 
accordance to the Cassie-Baxter wetting regime. Several other organisms have been 
identified to utilise similar mechanisms, including other plant species and some 
insects. Some marine organisms are also known to remain clean through the differ-
ent, but related concept of superoleophobicity. The following sections will focus on 
these organisms and the mechanisms by which their surfaces exhibit antibiofouling 
properties for controlling bacterial colonisation onto the surfaces.

2.3.2  �Plant Leaves

Since Barthlott and Neinhuis first reported the ‘lotus effect’, the lotus has become 
the archetype surface for exhibiting superhydrophobicity and self-cleaning abilities 
(Barthlott and Neinhuis 1997). Lotus leaves satisfy the two factors that are reflected 
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in the Cassie-Baxter theory. The surface is covered by a layer of lipids, which are 
low in surface energy. The lipids appear as a layer of multiscale structures that 
enable a large quantity of air to be trapped in between the surface features. This 
results in a surface with very high WCA (θ ≈ 165°) and low tilting angle, hence the 
surface can remain clean as the water droplets collect dirt and contaminating parti-
cles as they roll off the surface. In Fig. 2.2, a mercury droplet that is spherical in 
shape can be seen to roll across the surface of a leaf. Contaminants also adhere to 
the droplet rather than the surface. This demonstrates how superhydrophobic and 
self-cleaning surfaces can be very useful templates for designing antibiofouling 
materials.

Many other plants exhibit very similar properties to that of the lotus leaf, for 
example the Indian canna, taro and cabbage leaves. Plants first moved from water 
onto land approximately 480–360 million years ago; this was an important event in 
the history of life as it highlighted the consequences of the evolutionary changes of 
terrestrial organisms and global environments (Kenrick and Crane 1997). To cope 
with their new environments, plants developed a protective ‘skin’, known as the 
cuticle. The plant cuticle is a thin layer of lipophilic compounds that function as a 
protective barrier to perform various physiological, ecological and developmental 
roles. These roles include minimising water loss, reducing the leaching of cellular 
content, decreasing the adhesion of pathogenic spores and dust, protecting tissues 

Fig. 2.2  (a) A mercury droplet collecting dirt on the surface of a Colocasia esculenta leaf and 
(b) an illustration of water droplets on superhydrophobic and self-cleaning surfaces
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from ultraviolet radiation, and mediation of their interaction with the surrounding 
environment (Van Maarseveen et al. 2009). The cuticle contains a continuous extra-
cellular membrane that is made of biopolymers. These polymers cover the primary 
above-ground organs such as the flowers, leaves, stems and fruit of all land plants 
(Koch and Ensikat 2008). A mixture of hydrophobic compounds is integrated and 
superimposed on the cuticles, which is composed of various waxes (Jetter et  al. 
2000; Barthlott et al. 1998).

Plant waxes that are embedded within the cutin network are called “intracuticu-
lar waxes”, whereas “epicuticular waxes” are located on the outer surface of the 
cuticle (Barthlott and Neinhuis 1997; Barthlott et al. 1998; Buschhaus et al. 2007; 
Buschhaus and Jetter 2011; Ensikat et al. 2011; Koch et al. 2009). Cutin is a com-
prised of a polymer of predominantly ω- and mid-chain hydroxyl and epoxy C16 and 
C18 fatty acids in addition to glycerol (Samuels et al. 2008). The epicuticular waxes 
are organised within themselves to form three-dimensional crystals with highly 
variable morphologies, e.g., nano/micro projections, platelets, rods and tubules 
(Barthlott et al. 1998; Koch et al. 2006). Some examples of plants with superhydro-
phobic surfaces are presented in Fig. 2.3.

Both India canna leaves and purple Setcreasea are covered by many wax plate-
lets, distributed randomly on a series of rod-like structures. This increases the pro-
portion of air that can be trapped within the surface, producing water contact angles 
in excess of the 150° contact angle condition for superhydrophobicity (i.e. 165°). In 
the case of ramee leaves (Fig. 2.3d), the rear face is covered by a randomly distrib-
uted fiber-like structure which forms the layers of a web. This also allows for large 
amounts of entrapped air to be present on the surface, causing the surface to exhibit 
a large WCA (164°). The front of ramee leaves are significantly different in nature. 
They are composed of a web of micro-fibers, with many larger micrometer-size 
spheres without any further nanoscale-structure, and the surface exhibits a WCA of 
38° (Guo and Liu 2007).

There are many more leaf surfaces that possess similar properties. Up to 200 
water repellent plant species have been screened to measure their WCA and the 
majority were reported to possess superhydrophobic properties (Neinhuis and 
Barthlott 1997). The common feature shared by these surfaces is that each of them 
possessed a very dense layer of three-dimensional cuticular wax crystals arranged 
randomly or uniformly on their corresponding micro-scale surface features (e.g. 
papillae). This hierarchical structure enables the plant surfaces to remain clean, and 
therefore resistant against a wide range of contaminants. Many attempts have been 
made to understand how the lipids self-assemble into such useful and systematic 
structures, and while no clear understanding has yet been obtained regarding this 
process, it has been postulated that the cutin network may act as a template in con-
trolling the orientation of the wax crystals (Jeffree 2006).

S.H. Nguyen et al.
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2.3.3  �Insect Cuticle

Insects first evolved the ability to fly at least 400 million years ago, and were the first 
organisms to develop powered flight; taking to the skies at least 90 million years 
prior to the earliest winged vertebrates (Grimaldi and Engel 2005). Nowadays they 
represent half of all eukaryotic species on earth. Insect wings are composed of light-
weight building materials of thicknesses ranging from 0.5 μm to about 1 mm (Wan 
et al. 2008; Wootton 1992). In order to adapt to ever-changing environments, insects 
have evolved to possess geometric, non-smooth structures on their wing surface 
(Fig. 2.4) (Arsene et al. 2002; Boeve et al. 2011; Nelson and Charlet 2003). The 
presence of a thin superficial layer of waxes in the epicuticle was first reported by 
Ramsay in 1935 (Ramsay 1935).

Fig. 2.3  Images of some superhydrophobic plant surfaces, and their corresponding epicuticular 
wax structures: (a) Lotus leaves; (b) Indian canna leaves; (c) Rear face of purple Setcreasea leaves; 
(d) Rear face of ramee leaves (Guo and Liu 2007)
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As is the case with plant leaves, insect surfaces are covered by a layer of cuticle, 
which is the barrier that directly interacts with the environment. Their terminology 
might be different, but in principle they are very similar in construction. The insect 
cuticle is secreted by a single layer of epidermal cells, forming a lipophilic structure 
that consists of two major sublayers, which are the epicuticle and the intracuticle 
(Lockey 1980, 1985; Nelson and Blomquist 1995; Buckner 2010; Jetter and Kunst 
2008). The intracuticular layer, located beneath the epicuticle, is a mixture of chitin 
(poly-N-acetylglucosamine) and protein (Lockey 1980, 1985, 1988). The epicuticle 
is located in the outermost layer and is composed of a mixture of aliphatic hydrocar-
bons and their derivatives; these compounds contain one or more oxygenated func-
tional groups including esters, ketones, alcohols, aldehydes and fatty acids (Samuels 
et al. 2008; Koch and Ensikat 2008). This mixture of organic components is self-
organized in the epicuticular layer of the cuticle, a highly-ordered, rough structure, 
composed of numerous micro- and nanometer-scale features. For some insects, e.g. 
dragonflies, the epicuticular waxes self-assemble into a three-dimensional layer of 
“nanopillars”, which enable air to be trapped in the spaces between and hence 
exhibit a high WCA (Ivanova et al. 2013b; Nguyen et al. 2013). Insect wing mem-
branes are composed of lightweight building materials with a thickness ranging 
from 0.5 μm to approximately 1 mm (Wootton 1992). Their wings are framed by a 
system of veins that aid in stabilizing the wing as a whole (Kreuz et al. 2001; Gorb 
1999; Moussian 2010). The highly-ordered, rough structure of the epicuticle enables 
insects to minimize their mass but still retain the ability to protect themselves from 
being wet by rain and coated with pollutants (Fig. 2.4).

A systematic terminology to describe the 2D and 3D micro- and nano-scale 
structures of the insect cuticle has not thus far been developed. Byun et al. used the 
terms ‘layered cuticle’, ‘setae’, ‘denticles’ and ‘fractal’ to describe the morphologi-
cal features present on the surfaces of the insect wings, and this is the system that 
will be adopted here. The term ‘layered cuticle’ refers to a surface that contains 
scale-like structures that overlap, such as those typically found on butterfly wings. 
Surfaces with ‘setae’ contain high aspect ratio nanopillars or hairs. ‘Denticle’ structures 

Fig. 2.4  Insect wings and their corresponding surface topographies. (a) Isoptera Nasutitermes sp.; 
(b) Hemianax papuensis; (c) Psaltoda claripennis; and (d) Lepidoptera papilio xuthus
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refer to tooth-like projections, and these can vary greatly in their morphology, ranging 
from small hemispheres to taller nanopillars. ‘Fractal’ structures are composed of an 
irregular array of fine nanoscale protrusions (Byun et al. 2009). Among these struc-
tural types, the presence of layered cuticles, denticles and fractal structures result in 
the production of the most hydrophobic surfaces in a majority of cases, whilst the 
presence of setae alone on a surface usually produces a surface exhibiting hydro-
philic properties (Table 2.1).

The superhydrophobicity of an insect wing surface, together with its ability to 
self-clean, are very important factors that contribute to an insect’s ability to sur-
vive. The nanoarray structures present on the surfaces of some insect wings such 
as those of the cicada and dragonfly afford the insect antireflective properties, 
which can assist in protecting them from predators (Watson et al. 2008). The super-
hydrophobic and self-cleaning properties can also assist in keeping their surfaces 
clean and free from contaminants that may also adversely impact their antireflec-
tive properties. The self-cleaning properties of these insect wings can be fur-
ther  enhanced due to the presence of  turbulent conditions during their flight 
(Nishimoto and Bhushan 2013).

2.3.4  �Superoleophobicity

Superhydrophobicity is the key for terrestrial organisms to deal with contaminants, 
however it is not a practical option for aquatic organisms, since their living condi-
tions require constant contact with water. In order to cope with this difference in 
living conditions, nature has employed a different, but similar concept. The surfaces 
of these organisms are modified so that their surfaces remain wet but unable to be 
wet by oils, the main source of contaminants, particularly with modern types of 
marine pollution. Several aquatic species exhibit superoleophobicity rather than 

Table 2.1  Micro- and nano-scale wax crystal morphologies on the epidermal cells of insect wing 
surfaces and their WCA

Order Species Structural morphology WCA (°)

Isoptera Schedorhinotermes sp. Setae 71
Coleoptera Amphizoa sinica Setae 109
Hymenoptera Vespa simillima xanthoptera Setae 121
Hymenoptera Vespa dybowskii Setae 126
Hemiptera Meimuna microdon Denticle 140
Orthoptera Atractomorpha lata Denticle 148
Orthoptera Acrida cinerea cinerea Denticle 151
Odonata Hemicordulia tau Fractal 157
Odonata Hemianax papuensis Fractal 161
Lepidoptera Artogeia canidia Layered cuticle 162
Lepidoptera Papilio xuthus Layered cuticle 168

This table was modified and updated from Byun et al. (2009)
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superhydrophobicity, exhibiting oil contact angles (OCA) greater than 150° when 
submerged in water. These organisms possess hierarchical surface structures that 
are self-cleaning, antifouling and promote low-drag  conditions when moving 
through water (Bixler and Bhushan 2013).

For example, dolphin (Fish and Hui 1991), whale (Baum et al. 2002) and shark 
skin is known to reduce drag and improve fouling resistance. The skin of bottlenose 
dolphins Tursiops truncatus and the killer whale Orcinus orca are covered by der-
mal ridges positioned such that they are transverse to the direction of flow (Ridgway 
and Carder 1993; Fish 2006). Another whale, Globicephala melas has enclosed 
nanopores on their patterned ridges, which exhibit great antifouling ability (Baum 
et al. 2002). Shark skin is covered by dermal denticles shaped like small ribs (or 
‘riblets’). The denticles are oriented so that they align with the direction of fluid 
flow as the shark swims through the water. The low drag riblet microstructure, 
together with a mucous layer on the surface, allows the shark to remain flexible and 
clean (Bushnell and Moore 1991; Bechert et al. 1997; Dean and Bhushan 2010). 
This surface structure also provides protection from abrasion, which in turn mini-
mises the opportunities for microorganisms to adhere (Bhushan 2012). Fish scales 
are another example of self-cleaning surfaces in aquatic environments (Hay 1996). 
They perform in a manner that is very similar to the shark skin. Their surfaces are 
covered by sector-like scales (diameter of 4–5 mm), which are covered by papillae 
(100–300 μm in length and 30–40 μm in width), and exhibit a particularly high oil 
contact angle in water (163°).

The surface structures of snail shells have been commercially exploited in the 
construction of  snail shell-inspired self-cleaning surfaces for outdoor walls 
(Nishimoto and Bhushan 2013). These surfaces exhibit the ability to remain clean, 
despite their dwelling environment and their appearance on rainy days. The surface 
of snail shells is comprised of a regularly rough structure consisting of line grooves 
(pitch of 0.5 mm), smaller grooves crossing the line groove (pitch of 0.1 mm) and 
micro-grooves between the line grooves (pitch of 10 μm). The surface of snail shells 
is covered by a regular hierarchical structure that ranges in size from micrometers 
to millimeters, which may facilitate water entrapment. Compared to superhydrophobic 
surfaces, which entrap air within their hierarchical structure, superoleophobic sur-
faces trap water molecules. This water-entrapment system helps the shells remain 
wet, yet remain clean under their semi-aquatic living conditions. This is a key factor 
that contributes to their ability to self-clean, in the way that their usually wetted 
surface is rarely able to be contaminated (Nishimoto and Bhushan 2013).

2.4  �Mechanobactericidal Activity

The inspiration that can be obtained from insects appears to be almost unlimited. 
Ivanova et al. recently found that the robust hexagonal arrays of ‘nanopillars’ on the 
surfaces of Psaltoda claripennis cicada wings are bactericidal (Ivanova et al. 2012). 
This nanopattern present on the wing surfaces penetrated attaching Pseudomonas 
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aeruginosa cells, killing them with extreme efficiency (Fig. 2.5a, a1). The surface 
of the cicada wings retained its lethality against these Gram negative pathogenic 
bacteria even after the surface was coated with a 10 nm-thick layer of gold, which 
indicated that the bactericidal properties of the cicada wing surfaces arose from the 
physical properties of the wing surfaces, rather than from their chemical composi-
tion. It was also reported that the wings consistently killed other Gram-negative 
bacteria, i.e., Branhamella catarrhalis, E. coli, and Pseudomonas fluorescens, how-
ever Gram-positive cells (Bacillus subtilis, Planococcus maritimus, and 
Staphylococcus aureus) were found to be resistant to the action of the wing surface 
(Hasan et al. 2012). Cicada wings were the first example of a surface with bacteri-
cidal properties that arose as a result of purely physical action.

To explain this phenomenon, biophysical models were constructed to describe 
the interaction taking place between the bacterial cells and the nanopatterns present 
on the surface of the cicada wings (Pogodin et al. 2013). Mathematical calculations 
revealed that the nanopillars did not pierce the cells but rather  the cells were 
stretched in the regions between the nanopillars as they adsorbed onto the wing 
surface, until the point of cell rupture. It was also found that the more rigid the cell 
membrane, the harder they were to break, which was consistent with the results 
obtained for the Gram-positive bacteria that attached to the wing surface, but were 
not killed by the action of the nanopillars; the thicker layer of peptidoglycan present 
in the cell wall afforded the cells a greater dgree of rigidity, making them resistant 
to the action of the wing nanopillars. This was supported experimentally by decreas-
ing the rigidity of Gram-positive cells though microwave treatment. B. subtilis, S. 
aureus, and Planococcus maritimus were used as bacterial species. After microwave 

Fig. 2.5  Bacterial cells were found to be killed by the physical action of the surface of (a, a1) 
cicada wings Psaltoda claripennis, and (b-b3) dragonfly wings Diplacodes bipunctata
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treatment, all three bacterial species showed a high level of susceptibility to the 
action of the cicada wing surfaces.

In contrast to cicada wings, which only showed effectiveness against Gram nega-
tive bacteria, the surfaces of dragonfly wings were shown to have the ability to kill a 
large range of bacterial species, including Gram-negative (Pseudomonas aerugi-
nosa), and Gram-positive, (Staphylococcus aureus and Bacillus subtilis) bacte-
ria  and even endospores. Similar to cicada wings, dragonfly wings surfaces are 
covered by a layer of nanopillar-like structures, which punctured all types of bacte-
rial cells that came into contact with the surface, as demonstrated in Fig. 2.5, b1–3. 
A synthetic material known as black silicon that mimics the surface structure of 
these dragonfly wings also demonstrated antibacterial properties against these dif-
ferent types of bacterial cells (Ivanova et al. 2013a). The discovery of the bacteri-
cidal properties possessed by these insect wings has brought them into focus as 
promising new prospects as templates  for the production of synthetic biocidal 
surfaces.
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