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Abstract. The paper reports an effort made for understanding the
effect of task delegation policy in a peer-to-peer volunteer computing
platform. This effort includes the implementation of a simulation envi-
ronment and the development of associated analytical models for the
analysis of task delegation policies in peer-to-peer computing platforms.
Based on the analytical model best and worst task delegation policies
are computed and the resulted system behavior is verified by simulation.
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1 Introduction

The concept of utilizing the unutilized computing resources of a large number of
(personal) computers connected via the internet is around for several decades.
There are widely known peer-to-peer volunteer computing platform projects
established for evaluating various computationally intensive tasks (a summary is
provided in the next section). The related literature discusses the introduction,
the spread, the order of magnitude, the organization and the applied technical
details of these projects. In this work we focus on a particular detail of the orga-
nization of peer-to-peer volunteer computing platforms, the subtask delegation
policy.

As the organization of volunteer computing platform changes from centrally
controlled to peer-to-peer based, by time it became important to understand the
performance consequences of autonomous subtask delegation policies.

The rest of the paper is organized as follows. Section 2 introduces the existing
computing platforms and the related literature. We summarize the main prop-
erties of a proposed peer-to-peer volunteer computing platform in Section 3.
Analytical models and associated performance analysis of various parameters of
interests are investigated in Section 4. Finally, Section 5 presents the simulation
results and their relation to the results of the analytical models.
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2 Existing Volunteer Computing Platform Solutions

2.1 A Brief History of Volunteer Computing

There is a huge amount of unused computing capacity in personal computers,
because the computers of users work 100% occupancy only negligible part of
the time. This was the basis of the volunteer computing networks which utilize
the unused capacity of personal computers. A study was published about the
capacity of volunteer computing networks in 2006 [4], despite of old data the
measured values are shocking: an ordinary volunteer computing project could
use 95.5 teraFLOPS (1012 Floating-point Operations Per Second) computing
capacity and 7.74 petabyte (1015 byte) storage.

The first volunteer computing projects started in 1997: the GIMPS (Great
Internet Mersenne Prime Search) and the Distributed.net where cryptographic
algorithms were tested. These projects had got tens of thousands of volunteer
users [2].

The first project, which already had got millions of volunteer users, is the
SETI@home project. It has started in 1999. SETI is the abbreviation of Search
for Extraterrestrial Intelligence, and the @home (at home) suffix refers the use of
personal computers instead of supercomputers. Tiny pieces of received signals of
radio telescopes were sent to the computers of volunteers where the client appli-
cation tried to find very narrowband (<Hz) signals in them. The method assumes
that the extraterrestrial intelligence transmits narrowband signal which is easily
distinguishable from the natural background radiation. The task is highly com-
putationally intensive because a lot of parameters – bandwidth, symbol duration
time, Doppler shift, etc. – are unknown [6,13].

Because of the popularity of SETI@home project a general platform called
BOINC (Berkeley Open Infrastructure for Network Computing) was developed
in 2002. The BOINC platform became dominant in the subsequent years.

In the volunteer computing projects one of the hardest challenge is finding and
keeping members as volunteers. Spectacular figures of the scientific results in wall-
paper or in screen saver try to increase the interest. An other option is to publish
the list of most effective volunteers and [17] recommends worker teams to utilize
the team spirit. In spite of the seemingly infinite resources the performance opti-
mization of distributed computing platforms is an essential goal [1].

2.2 Platforms

BOINC was developed at the University of California, Berkeley. It is the largest
volunteer computing platform so far. The projects of the platform are computed
on 600 000 personal computers. The total computing capacity almost reaches
10 petaFLOPS, therefore the system rivals the most powerful supercomputers
[19]. Apart of the SETI@home project the platform hosts additional projects
like Einstein@home, LHC@home, Milkyway@home, etc [3,5].

The XtremWeb platform was developed in parallel and independently from the
BOINC system. The objective and the implementation are very similar in the two
platforms, however in the competition for users BOINC was more successful [11].



Task Delegation in a Peer-to-Peer Volunteer Computing Platform 117

Alchemi is a .NET-based platform, which was developed at the University of
Melbourne. In this system the main objective is the easy programmability, the
other aspects are less important [15,16].

The OurGrid platform is based on a new idea. This platform interconnects
the grid systems of universities and research groups intend to utilize the free
resources [7,8].

All of these platforms follow the master–worker parallel programming para-
digm. The central server decomposes the task into subtasks and manages the
delegation. The lifecycle of a subtask is the following: (a) the server creates a
job by packing the executable code and the input files together (b) the client
downloads the job (c) the client computes the results (d) the client uploads the
results (e) the server verifies and processes the results.

3 Properties of the Proposed Distributed Computing
Platform Solution

The existing volunteer computing platforms have got two main issues. The first
one is the protection of the volunteer’s computer. In BOINC and XtremWeb the
servers send native executable code to the clients. The platforms use asymmetric
cryptography to ensure the authenticity and the integrity, but the project owner
can execute anything on the volunteer’s computer.

On the other hand Alchemi and OurGrid systems use virtualization to solve
the problem, but it reduces the performance which should be avoided in a com-
puting platform. In the proposed computing platform the elements send the
source code to the peers. This method includes filtering of malicious codes. The
compiling–running combination may be more efficient than the virtualization.

The second issue is that the management of subtasks is centralized in all
existing platforms; they follow the master–worker programming paradigm. In
some systems the executable code or input files can be shared by peer-to-peer
mechanisms [9,10], however the central management of subtasks are presented
here as well.

In the proposed distributed volunteer computing platform, every node can
delegate subtasks to other nodes, if the currently computed subtask contains
parallel blocks. In this approach the programmer can write multi-level subtask
structures, so a subtask in a parallel block can be the same as the main program
following a fractal-like structure. The nodes in the computing network are identi-
cal, so a homogenous programming model can be used instead of a heterogenous
programming model as in CUDA [12], OpenCL [18], etc.

The codes can contain serial- and parallel blocks sequentially. The parallel
blocks must be fully decomposable, so the subtasks can not communicate with
each other or with the main task (except the interchange through input- and
output files). The next serial- or parallel block can be started after all subtasks
of the current block had been completed.

At the beginning of the parallel blocks the client program decides how many
subtasks will be computed locally and how many will be delegated. Because of
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the overhead of subtask delegation there is a trade-off between locally computed
and delegated subtasks. The optimal strategy is investigated and the behavior
of the whole system is analysed in the following section.

4 Performance Analysis of Distributed Computing
Platforms

In this section we investigate the performance of distributed computing platforms
with different analysis approaches. The two main applied analytical approaches
are the phase type (PH) distributions and the mean field approximations, which
we also summarize below.

4.1 Phase Type Distributions

If the stochastic behavior of a real system can be characterized by a Markov
chain then various random event times which are of practical interests are PH
distributed. This statement applies for both discrete and continuous time Markov
chains (DTMCs and CTMCs) with associated discrete or continuous PH distri-
butions. In this work we focus on continuous time models.

Definition 1. The time to reach the absorbing state in a CTMC with n transient
and an absorbing state is (size n) phase type distributed.

Consequently, a (continuous) PH distributed random variable X is continuous
non-negative with cumulative distribution function

F (t) = Pr(X < t) = 1 − veHt1 ,

where row vector v contains the initial probabilities of the CTMC in the transient
states, square matrix H contains the transition rates among the transient states
and column vector 1 is composed by ones. v, H and 1 are referred to as initial
probability vector, transient generator matrix and closing vector, respectively.
Throughout the paper we assume that the Markov chain starts from a transient
state, i.e., v1 = 1, and consequently X has no probability mass at zero. The
density and the moments of X are

f(t) = veHt(−H)1 , (1)

μn = E(X n) = n!v(−H)−n1 . (2)

If the initial probability vector and the transient generator matrix are obtai-
ned from modeling assumptions all performance measures associated with X can
be computed based on (1) and (2).
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4.2 Execution Time Model

The execution time of a parallel block can be analyzed by the CTMC shown
in Figure 1. The states can be arranged in a two-dimensional grid: horizontal
axis shows the number of locally computed subtasks, the vertical axis shows the
number of delegated subtasks, which are computed on other computers.

The absorbing state, which represents the completion of a task, is state (0, 0).
The CTMC in Figure 1 describes the case when a subtask can be computed
locally in an exponentially distributed amount of time with parameter μ1, and
a delegated subtask can be sent, computed and returned in an exponentially
distributed amount of time with parameter μ2.

From any states (except the states at the top and the left boundaries) there
are two possible transitions:

1. a locally-computed subtask completes with rate μ1 and the process goes from
state (i, j) to state (i, j − 1),

2. one of the i delegated subtasks arrives with rate iμ2 and the process goes
from state (i, j) to state (i − 1, j).

There is no local (dedicated) computation at the left (top) boundary, so there
is only one of the two transitions at these boundaries.

Based on the transition graph the infinitesimal generator matrix of the pro-
cess Q is obtained by mapping the nodes of the transition graph, which are the
states of the Markov chain, to a subset of natural numbers and indicating the
transition rates between the pair of states. The transient generator, matrix H in
(1) and (2), contains the transition rates only among the transient states, and
is the lower right block of matrix Q as it is indicated below for the state space
with 3 × 3 states.

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
μ1 −μ1 0 0 0 0 0 0 0
0 μ1 −μ1 0 0 0 0 0 0
μ2 0 0 −μ2 0 0 0 0 0
0 μ2 0 μ1 −μ1 − μ2 0 0 0 0
0 0 μ2 0 μ1 −μ1 − μ2 0 0 0
0 0 0 2μ2 0 0 −2μ2 0 0
0 0 0 0 2μ2 0 μ1 −μ1 − 2μ2 0
0 0 0 0 0 2μ2 0 μ1 −μ1 − 2μ2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

The elements under the diagonal contain μ1 except every ith, which is 0,
because local computing does not happen at the first column of the grid. The ith

elements under the diagonal contain the rates of arriving delegated task, which
are μ2, 2μ2, etc. in i-length blocks. Conventionally, the diagonal elements contain
the negation of sum of all the other elements in the row.

Expected Value of the Task Execution Time. The mean task execution
time (the running time of parallel block), which is the mean time to reach state
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Fig. 2. Running times for different states

(0, 0) in the Markov chain in Figure 1, is an essential performance measure of
the distributed computing platform in order to optimize the delegation strategy.
In general, the mean task execution time can be computed based on (2), but
utilizing the structural properties of matrix H it can also be computed by an
efficient recursive procedure.

If the process is in state (i, j), i > 0, j > 0, it can move forward to one of the
two possible consecutive states. On both cases we can compute the probability of
taking one of the two possible consecutive states and the expected time to reach
the (0, 0) state from the next state. If the local calculation completes sooner and
the process goes on the first trajectory we have:

E(T̂i,j) =
1

μ1 + iμ2
+ E(Ti,j−1) . (4)

If one of the delegated tasks completes sooner and the process goes on the second
trajectory:

E(Ťi,j) =
1

μ1 + iμ2
+ E(Ti−1,j) . (5)

To calculate the full time, the two conditional expected times, (4) and (5), have
to be weighted by the probabilities of the trajectories.

E(Ti,j) = Pr(1st trajectory)E(T̂i,j) + Pr(2nd trajectory)E(Ťi,j) (6)

=
μ1

μ1 + iμ2

(
1

μ1 + iμ2
+ E(Ti,j−1)

)
+

iμ2

μ1 + iμ2

(
1

μ1 + iμ2
+ E(Ti−1,j)

)
.

This recursive formula is valid for every state where i > 0 and j > 0. The mean
task execution time from the boundary states where i = 0 or j = 0 can be
computed as follows. If the phase type distribution is initialized from a state
where i = 0, j > 0, the task execution time is Erlang(j, μ1) distributed (the sum
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of j independent exponentially distributed random times with the parameter
μ1), whose expected time is

E(T0,j) = j
1
μ1

. (7)

In case of j = 0, i > 0 the successive exponential phases do not have the same
parameter, so the expected values of the phases with phase dependent rates (kμ2,
k = i, i − 1, . . . , 1) have to be summed up.

E(Ti,0) =
i∑

k=1

1
kμ2

=
1
μ2

i∑
k=1

1
k

=
1
μ2

Hi, (8)

where Hi =
∑i

k=1
1
k is commonly referred to as the ith harmonic number.

Optimalization. To investigate the optimal subtask delegation we evaluate the
mean task execution time from different initial states. Figure 2 depicts the mean
task execution time as a function of the initial state, when μ1 = 20 and μ2 = 4.
Indeed the continuous surface on Figure 2 is valid only at integer points.

If the overhead of delegation reduces and the ratio of two intensities converges
to zero, then the surface would converge to the E(T ) = iμ1 plane.

When the program reaches a parallel block, it has to decide how many
subtasks will be computed locally and how many will be delegated. This two
numbers determine the starting state of the process. When a parallel block is
composed by N subtasks the starting state satisfies the i + j = N formula,
therefore the optimum is the minimum of the surface on the i + j = N section
plane. The section plane has got N integer points, the optimal running time is
obtained at the minimum of these. Figure 2 contains the N = i + j = 8, 15, 23
section plane on the surface and their minimum points. These points indicate
the optimal number of delegated subtask in case of n parallel tasks.
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Figure 3 shows the optimal number of delegated subtasks as a function of the
total number of subtasks. Up to a threshold (10 in the example) every subtask
is computed locally, after that almost all of the following subtasks are delegated.

Figure 4 shows the optimal running time as a function of the total number of
subtasks. Up to the threshold where the optimal execution time is obtained with
no subtask delegation (N < 10) the plot is linear with slope 1/μ1, which is in
line with formula (7). After that point the slope breaks down due to the effect of
delegation as it is visible from a comparison with Figure 3. According to (8) the
mean time to complete a number of delegated task is related to the harmonic

series. The ith harmonic number is approximately equal to ln(i), because
n∫
1

1
xdx =

ln(n) and the harmonic series is an approximation to the definite integral. The
difference between the harmonic series and the logarithmic series converges to
the Euler–Mascheroni constant: limn→∞ Hn − ln(n) = γ ≈ 0.5772156649.

Model Parameters Setting. The expected value of running time of a locally-
computed subtask is the reciprocal of μ1, so μ1 can be defined as the FLOPS
of the machine divided by the floating-point operations of a subtask. Similarly,
the reciprocal of μ2 can be defined as the sum of the floating-point operations of
one subtask divided by the average FLOPS in the computing network and the
mean time to transmit the input/output data through the internet connection.

The above described Markovian model and this parameters setting do not
guarantee the perfect matching of the model and the real execution times in the
computing platform. For this reason we also verify the results by simulation in
Section 5.

4.3 Mean Field Approximation

In the previous subsections we optimized the system behavior assuming infinite
computing resources. To consider the effect of finite computing resources we
apply a different modeling approach, the mean field approximation. The mean
field method allows the analysis of large Markov systems which are composed
by a finite number of identical interacting components, where the interaction
depends only on the number of components which are in particular states. For
example, in our case the identical components are the computing units and the
dependence of one component on the other components is only through the
number of available idle computing units. Let N be the number of components.
The state of component � (� = 1, 2, . . . , N) at time t is denoted by X�(t). In
our case the state of the component depends on the task it is working on. A
component could be idle, working on a delegated task, and being responsible for
the execution of the task composed by parallel subtasks. The latest case can be
described by a state space similar to the one on Figure 1. The overall behavior of
these three possible cases is discussed below and depicted on Figure 5. The state
space of each component, S, is composed by s = |S| states, and Ni(t) denotes
the number of components which are in state i (∀i ∈ S) at time t. For example,
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Nidle(t), denotes the number of idle computing units which are available for task
or subtask assignment. In our case it is intuitive to see that a delegation decision
depends only on the number of idle computing units and not on the state of a
particular computing unit of the system. The row vector composed by Ni(t) is
denoted by N(t) and by this definition,

∑s
i=1 Ni(t) = N (is the number of all

computing units in our case).
The global behavior of the set of N components forms a CTMC over the state

space of size sN . However, due to the fact that the components are identical and
indistinguishable, the state space can be lumped into the aggregate state space
SL of size

(
N+s−1

s−1

)
, where a state of the overall CTMC is identified by the number

of components staying in each state of S, i.e., by N(t) = (N1(t), N2(t), . . . , Ns(t))
(in our case it means the number of idle components, the number of components
working on a delegated task, the number of components responsible for the
computation of a task and waits for the completion of two delegated subtasks,
etc). N(t) refers to the population vector, which describes the distribution of the
population between the possible states.

The evolution of a given computing unit is such that the transition rates may
depend on the global behavior through the actual value of vector N(t). With
this assumption, the transition rate of a particular component from state i to j
is Kij(N(t)) which depends only on vector N(t). The diagonal elements of the
transition rate matrix are defined by Kii(N(t)) = −

∑
j∈S,j �=i

Kij(N(t)).

Instead of using the population vector, N(t), the normalized population vec-
tor, n(t) = N(t)/N is commonly used for the mean field analysis of such sys-
tems. The entries of n(t) define the proportion of objects in state i at time
t and

∑
i∈S ni(t) = 1. The associated transition rate function is denoted by

kij(n(t)), and the matrix composed by these elements is k(n(t)) = {kij(n(t))}.
Hereafter we assume that kij(n(t)) is a Lipschitz continuous function over the s-
dimensional unit cube. The mean field method is based on the following essential
theorem.

Theorem 1. [14] The normalized state vector of the population process, n(t),
tends to be deterministic, in distribution, as N tends to infinity and satisfies the
following differential equation

d

dt
n(t) = n(t) k(n(t)) . (9)

The mean field approximation is based on the fact that for large but finite N
the deterministic approximation according to (9) is a good approximation of the
system behavior with well defined error bounds [14].

4.4 The Mean Field System Model

The model in Section 4.2 optimizes the task execution time disregarding its
effect on resource utilization. In this section, we present an approximate mean
field model of the system which considers also the resource utilization.
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When the studied volunteer computing project runs a task with one level
delegation policy (delegated subtasks are not divided into lower level subsub-
tasks), then the state space of a computing device is similar to the state space
of the execution time model when the computing device is responsible for the
computation of a task composed of a given number of subtasks. In this case
state (i, j) is the state when the computing device is waiting for the comple-
tion of i delegated subtasks and the node has to compute j subtasks locally. In
state (0, 0) the node is idle, so it can start with a new task or it can receive a
delegated subtask from another node. Additional to the states associated with
the task computation there is state (∗) which identifies the state when the node
computes a delegated subtask.

To describe the considered subtask delegation policy we introduce the dele-
gation function fij as follows

fij = Pr(the node goes to state (i, j) after the delegation). (10)

For notational convenience we assume f00 = 0.
∑

i

∑
j fij = 1, because fij

describes the probability of a complete and disjoint set of events. Indeed, this
delegation function also contains the distribution of the number of parallel sub-
tasks in an arriving main task.

Pr(an arriving task is composed by k parallel subtasks) =
k∑

i=0

fi,k−i. (11)

Further more, λ denotes the arrival intensity of a new task. A new task is com-
posed by a given number of parallel subtasks and, similarly to the notations of
the previous sections, μ1 and μ2 denote the subtask completion rate for local
and delegated subtasks, respectively. In the i ≤ 3, j ≤ 3 part of the state space
the following differential equations describe the evolution of the normalized pop-
ulation vector.

d

dt
n01(t) = −μ1n01(t) + μ2n11(t) + μ1n02(t) + λf01,

d

dt
n02(t) = −μ1n02(t) + μ2n12(t) + μ1n03(t) + λf02,

d

dt
n03(t) = −μ1n03(t) + μ2n13(t) + λf03,

d

dt
n10(t) = −μ2n10(t) + 2μ2n20(t) + μ1n11(t) + λf10,

d

dt
n11(t) = −μ2n11(t) − μ1n11(t) + 2μ2n21(t) + μ1n12(t) + λf11,

...
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The general form of these equations is

d

dt
nij(t) = −(iμ2 + μ1)nij(t) + I(i + 1)μ2ni+1,j(t) + I(j + 1)μ1ni,j+1(t) + λfij ,

(12)

where

I(i) =

{
1, if i ≤ 3,
0, othervise.

The number of delegated subtasks from one main task is
∑

i i
∑

j fij , conse-
quently the same number of nodes move to state (∗) at the arrival of a main
task due to the associated task delegations. The differential equation for the
number of nodes in state (0, 0) is

d

dt
n00(t) = −λ

⎛
⎝1 +

∑
i

i
∑

j

fij

⎞
⎠ + μ1n01(t) + μ2n10(t) + μ2n∗(t) . (13)

Finally, the differential equation for state (∗) is

d

dt
n∗(t) = λ

∑
i

i
∑

j

fij − μ2n∗(t) . (14)

In this set of differential equations the number of computing units working on a
delegated subtask is encoded in two ways

n∗(t) =
∑

i

i
∑

j

nij(t). (15)

From the fact that the normalized population vector sums up to one we further
have ∑

i

∑
j

nij(t) + n∗(t) = 1. (16)

These two relations can be used to simplify the system description or for sanity
check of results obtained from the redundant description.

The state transitions described by the differential equations are illustrated
in Figure 5. The vertices represent the possible states of the computing units,
the edges represent the state transitions and the associated intensities indicate
the transition rates. Note that in some cases intensities depend on some relative
population values (which is not the case with a transition graph of a CTMC).
Those are the cases when the k(n(t)) matrix elements depend on n(t) as it is
in (9). This set of differential equations can be solved by numerical procedures,
e.g., by Runge–Kutta method.

Starting from a completely idle system, n(0) = (1, 0, · · · , 0), Figure 6 depicts
the system evolution when λ = 1, μ1 = 5, μ2 = 4 and f21 = 1. According to
Figure 6 the system is not saturated with this load and the normalized population
vector converges to a fix point.
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The analysis of the behavior of an overloaded system requires an extension of
the above set of differential equations with boundary limits to keep the normal-
ized population values between 0 and 1. For example the boundary extension of
(13) is

d

dt
n00(t) =

⎧
⎨
⎩

•, if 0 < n00(t) < 1,
max(•, 0), if n00(t) = 0,
min(•, 0), if n00(t) = 1,

(17)

where • stands for the expression on the right hand side of (13). The limit of
stability is the highest load where limt→∞ n00(t) > 0 still holds.

Stability with Autonomous Computing Units

In volunteer computing platforms the project owner has to avoid the system
saturation. It is not a trivial problem when the participating computing units
are autonomous. For example, if the delegation function is not known because the
nodes decide the delegation strategy autonomously the project owner has to find
a safe task submission rate, λ, at which the system remains stable independent
of the delegation policy of the autonomous computing units.

A safe task submission rate can be obtained by assuming that the autonomous
computing units apply always the most inefficient task delegation policy.

The overall resource utilization of the task completion with i delegated and
j locally computed subtasks, Cij , can be computed by a recursive relation based
on the same considerations as the ones in Section 4.2

E(Ci,j) =
μ1

μ1+iμ2

(
i+1

μ1+iμ2
+ E(Ci,j−1)

)
+

iμ2

μ1+iμ2

(
i+1

μ1+iμ2
+ E(Ci−1,j)

)
,

which accounts for the total resource utilization, since with i delegated and
j locally computed subtasks i + 1 computing units are occupied. Plotting the
obtained E(Ci,j) values similar to Figure 2 and taking the maximal values along
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the i + j = N section planes defines the most inefficient delegation policy. The
limit of saturation with this most inefficient delegation policy defines the admis-
sible safe task submission rate of the project owner.

We close the section by mentioning, that the modeling approach applied in
this section can be extended for higher levels of hierarchical task subdivisions,
but it would complicate the discussion significantly and is out of the scope of
this paper.

5 Simulation

To verify the analytical results we have developed an event-driven simulator in
C++ language. The implemented simulation model contains several additional
details of a real volunteer computing platform including socket management for
data transfer between nodes, task execution in virtual environment, realistic
computation delegation strategy with higher level hierarchical subtask division,
etc.

5.1 Execution Time Results

Figure 7 shows the execution times of a task with 10 subtasks. In this example,
the subtasks can be computed with 10 MFLO (Mega FLoating-point Operations)
and the computers have 10 MFLOPS computation capacity in average. The
amount of data required for the computation of a subtasks is 3 MB, and the
speed of the internet connection is 2 MB/s. Figure 7 shows the average running
times and the confidence intervals for 95% confidence level.

The minimum of the task completion time is obtained at 4 locally-computed
and 6 delegated subtasks. The running time is 6.76 s in this case.

Figure 8 shows another example with 20 subtasks. It contains the running
times up to 10 locally computed subtasks because the linear trend continues
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Fig. 9. The results of the simulation and the analytical model for relative number of
nodes

over. In this example the subtasks can be computed with 40 MFLO, the other
parameters are the same as above. The optimal delegation was found at 3 locally
computed subtasks which coincides with the analytical results from Section 4.2.
The associated optimal running time is 14.85 s.

5.2 Results of the Overall System Behavior

To verify the results of the mean field analysis in Section 4.3 we collected popu-
lation results in the simulator. Figure 9 plots normalized number of idle nodes as
a function of time for computing platforms with different number of computing
units and identical relative loads. In this simulator run tasks were composed by
20 subtasks, the intensity of the task arrivals was λ = 0.005 1/s, the calculated
task completion rates were μ1 = 0.27 1/s and μ2 = 0.18 1/s. The figure con-
tains results for computing platforms with 50, 100, 500, 1000 and 5000 nodes as
well as the results of the mean field model. Figure 9 supports the intuition that
the simulated results converge to the analytical result as the number of nodes
increases.

6 Conclusions

The paper presents a performance assessment of volunteer computing platforms.
A set of real characteristic features, e.g. task failures, arrivals and departures of
computing nodes, restricted availability, local usage, etc. are left for future work.
Different modeling paradigms are used for the analysis of performance measures.
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