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Abstract. Multiserver queues with setup time have been extensively
studied because they have application in modelling of power-saving data
centers. Although the infinite buffer models are extensively investigated,
less attention has been paid to finite buffer models. This paper considers
an M/M/c/K queue with setup time for which we suggest a simple and
numerically stable recursion for the stationary distribution of the system
state. Numerical experiments show various insights into the performance
of the system such as performance-energy tradeoff as well as the effect
of the capacity on the blocking probability and the mean queue length.
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1 Introduction

The core part of cloud computing is data center where a huge number of servers
are available. These servers consume a large amount of energy. Thus, the key
issue for the management of these server farms is to minimize the power con-
sumption while keeping acceptable service level for users. It is reported that
under the current technology an idle server still consumes about 60% of its peak
processing jobs [1]. Thus, the only way to save power is to turn off idle servers.
However, off servers need some setup time to be active during which they con-
sume energy but cannot process jobs. Thus, there exists a trade-off between
power-saving and performance which could be analyzed by queueing models
with setup time.

Recently, motivated by applications in data centers, multiserver queues with
setup times have been extensively investigated in the literature. In particular,
Gandhi et al. [3] extensively analyze multiserver queues with setup times. They
obtain some closed form approximations for the ON-OFF policy where any num-
ber of servers can be in the setup mode at a time. As is pointed out in Gandhi
et al. [3], from an analytical point of view the most challenging model is the ON-
OFF policy where the number of servers in setup mode is not limited. Gandhi
et al. [4,5] analyze the M/M/c/Setup model with ON-OFF policy using a recur-
sive renewal reward approach. Phung-Duc [11] obtains exact solutions for the
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same model via generating functions and via matrix analytic methods. Slegers
et al. [6] propose a heuristic method to decide the timing for the servers to be
powered up or down.

Although, the infinite model has been investigated [4,5,11], results for sys-
tems with a large number (several hundreds) of servers are not obtained. This
motivates us to develop models for large-scale server farms. Furthermore, less
attention has been paid on finite buffer multiserver queue with setup time. It
should be noted that the results for the latter could be used for the former by let-
ting the capacity tend to infinity. The main aim of our current paper is to present
a simple recursion for the stationary distribution of the M/M/c/K/Setup model
which is more realistic for data centers which typically have a finite buffer. The
computational complexity of the scheme is significantly reduced in comparison
with that of direct methods. As a result, models with several hundreds of servers
are easily analyzed. This allows us to explore new insight into the performance
of large scale systems that has not been observed in literature. Recently, we
become aware of a closely related paper [2], where the authors suggest a recur-
sive scheme for finite buffer model with threshold control. However, the stability
of the numerical scheme is not discussed. In contrast to [2], we suggest here a
new recursive scheme whose numerical stability is rigorously proved.

The rest of this paper is organized as follows. Section 2 presents the model
in details while Section 3 is devoted to derivation of a recursion for the joint
stationary distribution. Section 4 presents some numerical examples showing
insights into the performance of the system. Concluding remarks are presented
in Section 5.

2 Model

We consider a queueing system with c servers and a capacity of K, i.e., the
maximum of K customers can be accommodated in the system. Jobs arrive at
the system according to a Poisson process with rate λ. In this system, a server
is turned off immediately if it has no job to do. Upon arrival of a job, an OFF
server is turned on if any and the job is placed in the buffer. However, a server
needs some setup time to be active so as to serve waiting jobs. We assume
that the setup time follows an exponential distribution with mean 1/α. Let j
denotes the number of customers in the system and i denotes the number of
active servers. The number of servers in setup process is min(j − i, c − i). Under
these assumptions, the number of active servers is smaller than or equal to the
number of jobs in the system. Therefore, in this model a server is in either
BUSY or OFF or SETUP. We assume that the service time of jobs follows
an exponential distribution with mean 1/μ. We assume that waiting jobs are
served according to a first-come-first-served (FCFS) manner. We call this model
an M/M/c/K/Setup queue.

The exponential assumptions for the inter-arrival, setup time and service time
allow to construct a Markov chain whose stationary distribution is recursively
obtainable. It should be noted that we can easily construct a Markov chain for
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a more general model with MAP arrival and phase-type service and setup time
distributions. However, the state space of the resulted Markov chain explodes
and thus the analysis is complex.

3 Analysis

In this section, we present a recursive scheme to calculate the joint stationary
distribution. Let C(t) and N(t) denote the number of active servers and the
number of customers in the system, respectively. It is easy to see that {X(t) =
(C(t), N(t)); t ≥ 0} forms a Markov chain on the state space:

S = {(i, j); 0 ≤ i ≤ c, j = i, i + 1, . . . ,K − 1,K}.

See Figure 1 for transition among states for the case c = 2 and K = 5.

Fig. 1. Transition among states (c = 2, K = 5)

Let πi,j = limt→∞ P(C(t) = i,N(t) = j) ((i, j) ∈ S) denote the joint station-
ary distribution of {X(t)}. In this section, we derive a recursion for calculating
the joint stationary distribution πi,j ((i, j) ∈ S). The balance equations for states
with i = 0 read as follows.

λπ0,0 = μπ1,1,

(λ + min(j, c)α)π0,j = λπ0,j−1, j = 1, 2, . . . ,K − 1,

cαπ0,K = λπ0,K−1.

leading to π0,j = b
(0)
j π0,j−1 where b

(0)
j = λ/(λ+min(j, c)α) (j = 1, 2, . . . , K − 1)

and b
(0)
K = λ/(cα). Furthermore, it should be noted that π1,1 is calculated using

the local balance equation in and out the set {(0, j); j = 0, 1, . . . ,K} as follows.



176 T. Phung-Duc

μπ1,1 =
K∑

j=1

min(j, c)απ0,j .

Remark 1. We have expressed π0,j (j = 1, 2, . . . , K) and π1,1 in terms of π0,0.

Next, we consider the case i = 1.

Lemma 1. We have

π1,j = a
(1)
j + b

(1)
j π1,j−1, j = 2, 3, . . . ,K − 1,K,

where

a
(1)
j =

μa
(1)
j+1 + min(j, c)απ0,j

μ + λ + min(j − 1, c − 1)α − μb
(1)
j+1

, (1)

b
(1)
j =

λ

μ + λ + min(j − 1, c − 1)α − μb
(1)
j+1

, (2)

for j = K − 1,K − 2, . . . , 2 and

a
(1)
K =

cαπ0,K

μ + (c − 1)α
, b

(1)
K =

λ

μ + (c − 1)α
.

Proof. We prove using mathematical induction. Balance equations are given as
follows.

(λ + μ + min(j − 1, c − 1)α)π1,j = λπ1,j−1 + μπ1,j+1 + min(j, c)απ0,j , (3)
2 ≤ j ≤ K − 1,

(μ + min(K − 1, c − 1)α)π1,K = λπ1,K−1 + cαπ0,K . (4)

It follows from (4) that

π1,K = a
(1)
K + b

(1)
K π1,K−1,

leading to the fact that Lemma 1 is true for j = K. Assuming that Lemma 1
is true for j + 1, i.e., π1,j+1 = a

(1)
j+1 + b

(1)
j+1π1,j . It then follows from (3) that

Lemma 1 is also true for j, i.e., π1,j = a
(1)
j + b

(1)
j π1,j−1.

Theorem 2. We have the following bound.

a
(1)
j ≥ 0, 0 ≤ b

(1)
j ≤ λ

μ + min(j − 1, c − 1)α
,

for j = 2, 3, . . . ,K − 1,K.

Proof. We use mathematical induction. It is easy to see that the theorem is true
for j = K. Assuming that the theorem is true for j + 1, i.e.,
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a
(1)
j+1 ≥ 0, 0 ≤ b

(1)
j+1 ≤ λ

μ + min(j, c − 1)α
, j = 1, 2, . . . ,K − 1.

Thus, we have μb
(1)
j+1 < λ. From this inequality, (1) and (2), we obtain

b
(1)
j ≤ λ

μ + min(j − 1, c − 1)α
,

and a
(1)
j ≥ 0.

It should be noted that π2,2 can be calculated using the local balance between
the flows in and out the set of states {(i, j); i = 0, 1, j = i, i + 1, . . . , K} as
follows.

2μπ2,2 =
K∑

j=2

min(j − 1, c − 1)απ1,j .

Remark 2. We have expressed π1,j (j = 1, 2 . . . ,K) and π2,2 in terms of π0,0.

We consider the general case where 2 ≤ i ≤ c − 1. Similar to the case i = 1,
we can prove the following result by mathematical induction.

Lemma 3. We have

πi,j = a
(i)
j + b

(i)
j πi,j−1, j = i + 1, i + 2, . . . , K − 1,K,

where

a
(i)
j =

iμa
(i)
j+1 + min(c − i + 1, j − i + 1)απi−1,j

λ + min(c − i, j − i)α + iμ − iμb
(i)
j+1

, (5)

b
(i)
j =

λ

λ + min(c − i, j − i)α + iμ − iμb
(i)
j+1

, (6)

and

a
(i)
K =

(c − i + 1)απi−1,K

(c − i)α + iμ
, b

(i)
K =

λ

(c − i)α + iμ
.

Proof. The balance equation for state (i,K) is given as follows.

((c − i)α + iμ)πi,K = λπi,K−1 + (c − i + 1)απi−1,K ,

leading to the fact that Lemma 3 is true for j = K. Assuming that

πi,j+1 = a
(i)
j+1 + b

(i)
j+1πi,j , j = i + 1, i + 2, . . . , K − 1.

It then follows from

(λ + min(c − i, j − i)α + iμ)πi,j

= λπi,j−1 + iμπi,j+1 + min(c − i + 1, j − i + 1)απi−1,j ,

j = K − 1,K − 2, . . . , i + 1,

that
πi,j = a

(i)
j + b

(i)
j πi,j−1.
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Theorem 4. We have the following bound.

a
(i)
j > 0, 0 < b

(i)
j <

λ

iμ + min(j − i, c − i)α
,

for j = i + 1, i + 2, . . . , K − 1, i = 1, 2, . . . , c − 1.

Proof. We also prove using mathematical induction. It is clear that Theorem 4
is true for j = K. Assuming that Theorem 4 is true for j + 1, i.e.,

a
(i)
j+1 > 0, 0 < b

(i)
j+1 <

λ

iμ + min(j + 1 − i, c − i)α
,

for j = i + 1, i + 2, . . . ,K − 1, i = 1, 2, . . . , c − 1. It follows from the second
inequality that iμb

(i)
j+1 < λ. This together with formulae (5) and (6) yield the

desired result.

It should be noted that πi+1,i+1 is calculated using the following local balance
equation in and out the set of states:

{(k, j); k = 0, 1, . . . , i; j = k, k + 1, . . . ,K}

as follows.

(i + 1)μπi+1,i+1 =
K∑

j=i+1

min(j − i, c − i)απi,j .

Remark 3. We have expressed πi,j (i = 0, 1, . . . , c − 1, j = i, i + 1, . . . ,K) and
πi+1,i+1 in terms of π0,0.

Finally, we consider the case i = c. Balance equation for state (c,K) yields,

Lemma 5. We have

πc,j = a
(c)
j + b

(c)
j πc,j−1, j = c + 1, c + 2, . . . ,K − 1,

where

a
(c)
j =

cμa
(c)
j+1 + απc−1,j

λ + cμ − cμb
(c)
j+1

, j = K − 1,K − 2, . . . , c + 1, (7)

b
(c)
j =

λ

λ + cμ − cμb
(c)
j+1

, j = K − 1,K − 2, . . . , c + 1, (8)

and
a
(c)
K =

απc−1,K

cμ
, b

(c)
K =

λ

cμ
.

Proof. The global balance equation at state (c,K) is given by
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cμπc,K = απc−1,K + λπc,K−1,

leading to
πc,K = a

(c)
K + b

(c)
K πc,K−1.

Assuming that πc,j+1 = a
(c)
j+1 + b

(c)
j+1πc,j , it follows from the global balance equa-

tion at state (c, j),

(λ + cμ)πc,j = λπc,j−1 + cμπc,j+1 + απc−1,j , j = c + 1, c + 2, . . . , K − 1,

that πc,j = a
(c)
j + b

(c)
j πc,j−1 for j = c + 1, c + 2, . . . ,K.

Theorem 6. We have the following bound.

a
(c)
j > 0, 0 < b

(c)
j <

λ

cμ
, j = c + 1, c + 2, . . . ,K − 1.

Proof. We also prove using mathematical induction. It is clear that Theorem 6
is true for j = K. Assuming that Theorem 6 is true for j + 1, i.e.,

a
(c)
j+1 > 0, 0 < b

(c)
j+1 <

λ

cμ
, j = c + 1, c + 2, . . . ,K − 1.

It follows from the second inequality that cμb
(c)
j+1 < λ. This together with for-

mulae (7) and (8) yield the desired result.

We have expressed all the probability πi,j ((i, j) ∈ S) in terms of π0,0 which
is uniquely determined by the normalizing condition.

∑

(i,j)∈S
πi,j = 1.

Remark 4. We see that the computational complexity order for {πi,j ; (i, j) ∈ S}
is O(cK). A direct method for solving the set of balance equations requires the
complexity of O(c3K3) while a level-dependent QBD approach (See Phung-Duc
et al. [8]) needs the computational complexity of O(Kc3). We also observe that
the recursion scheme of this paper is numerically stable since it manipulates only
positive numbers (See Theorems 2, 4 and 6).

4 Performance Measures and Numerical Examples

4.1 Performance Measures

Let PB denote the blocking probability. We have

PB =
c∑

i=0

πi,K .
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Let πi denote the stationary probability that there are i active servers, i.e.,
πi =

∑K
j=i πi,j . Let E[A] and E[S] denote the mean number of active servers and

that in setup mode, respectively. We have

E[A] =
c∑

i=1

iπi, E[S] =
c∑

i=0

K∑

j=i

min(j − i, c − i)πi,j .

The power consumption per a unit time for the model with setup time is given
by

Coston−off = CaE[A] + CsE[S], (9)

where Ca and Cs are the cost per a unit time for an active server and a server
in setup mode, respectively.

For comparison, we also find the power consumption per a unit time for the
corresponding ON-IDLE model, i.e., M/M/c/K without setup times. Letting
pi (i = 0, 1, . . . ,K − 1,K) denote the stationary probability that there are i
customers in the system, we have

pi =
(

λ

μ

)i 1
i!

p0, i = 0, 1, . . . , c,

pi = pc

(
λ

cμ

)i−c

, i = c, c + 1, . . . ,K − 1,K,

where p0 is determined by the normalization condition
∑K

i=0 pi = 1. Let E[Â]
denote the mean number of active servers, we have

E[Â] =
K∑

i=0

min(i, c)pi =
λ(1 − pK)

μ
,

where the second equality is due to Little’s law. Therefore, the mean number of
idle servers is given by c − E[Â]. Thus, for this model, the power consumption
per a unit time is given by

Coston−idle = CaE[Â] + (c − E[Â])Ci. (10)

where Ci is the cost per a unit time for an idle server.
Let E[N ] denote the mean number of customers in the system. We have

E[N ] =
c∑

i=0

K∑

j=i

πi,j × j.

Let E[T ] denote the mean response time of a customer. We have

E[T ] =
E[N ]

λ(1 − PB)
.
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4.2 M/M/c/c System

We consider the following parameter setting: c = K, μ = α = 1. Furthermore,
we set the cost for an active server and that for a setup server as Ca = Cs = 1
as in [7]. The cost for an idle server is Ci = 0.6 because an idle server still
consumes 60% energy of its peak processing a job [1]. We investigate the power
consumption for the M/M/c/K/Setup queue and its corresponding M/M/c/K
model by (9) and (10), respectively. Figures 2 and 4 represent the blocking
probability and power consumption against ρ = λ/(cμ) for the case c = K = 50
while Figures 3 and 5 represent those for the case c = K = 500. We observe that
the blocking probability PB decreases with α and is bounded from below by that
of the corresponding ON-IDLE model (pK). We also observe that our numerical
scheme is stable since it can calculate the blocking probability of order 10−17.
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Fig. 2. Blocking probability against
ρ (c = 50)
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Fig. 5. Power consumption against
ρ (c = 500)

We observe from Figures 4 and 5 that the power consumption increases with
the traffic intensity ρ as expected. Furthermore, for the case α = 1, 0.1, the ON-
OFF policy outperforms the ON-IDLE one for any value of ρ. As for the case
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α = 0.01 there exist a range in which the power consumption of the ON-IDLE
model is smaller than that of the ON-OFF model. Furthermore, the range for
c = 50 is larger than that of c = 500. This suggests that the ON-OFF policy is
more advanced in large-scale systems.

Figures 6 and 7 represent the mean number of setup servers E[S] against
traffic intensity for the case c = 50 and c = 500, respectively. We observe that
there exists some ρ̂α such that E[S] increases with ρ in the range (0, ρ̂α) while
E[S] decreases with ρ for the range (ρ̂α, 1). This is because when the traffic
intensity is small, many servers are turned off. As a result, increasing the traffic
intensity (number of arriving customers) incurs in the increase in the mean
number of servers in setup. However, when the traffic intensity is large enough,
almost the servers are likely on for all the time. Thus, the effect of setup is less
and then the mean number of servers in setup time decreases with the traffic
intensity.

4.3 Mean Response Time and Queue Length

In this section, we show the mean queue length (E[N ]) and the mean response
time (E[T ]) of the M/M/100/K with setup time where K = 200,500,1000, 2000
and 3000. We observe from Figures 8 and 9 that for α = 1, 0.1, the mean response
time and the mean queue length are unchanged for K ≥ 500. This is because our
system converges to the corresponding M/M/100/∞ as the capacity (K) tends
to infinity. However, for the curves where α = 0.01, we observe that K = 2000
is not large enough to approximate the infinite capacity system.

We observe in all the curves that the mean queue length increases with the
traffic intensity. On the other hand, the mean response time decreases with ρ
when ρ is small while it increases with ρ when ρ is large. This is because at
low traffic intensity, the effect of setup time is large. Thus, increasing the traffic
intensity incurs in increasing the number of setup servers. As a result the mean
response time decreases. However, when the traffic intensity is large enough, it
is likely that all the servers are ON for all the time. As a result, the effect of
setup time decreases leading to the increase of the mean response time with the
traffic intensity as in the conventional M/M/c/K system without setup time.

4.4 Effect of the Number of Servers

Figures 10 to 13 represent the ratio of the power consumption of the M/M/c/c
with setup time against that of the corresponding M/M/c/c without setup time
(Coston−off/Coston−idle) for ρ = 0.3, 0.5, 0.7 and 0.9. We observe that under
all considered traffic intensities, the ratio is less than one for α = 1, 0.1 meaning
that the former is less power-consuming than the latter for α = 1 and 0.1. On
the other hand, for α = 0.01, the latter outperforms the former for a wide range
of c. This may be due to the fact that a large portion of customers are lost due
to the slow setup (1/α = 100). We observe in the case ρ = 0.3, 0.5 and 0.7 that
the power consumption ratio decreases with c.
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Fig. 11. Ratio of power consumption
(ρ = 0.5)
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Fig. 12. Ratio of power consumption
(ρ = 0.7)
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Fig. 13. Ratio of power consumption
(ρ = 0.9)
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Fig. 14. Blocking probability against
K (ρ = 0.7, c = 100)
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Fig. 15. Blocking probability against
K (ρ = 0.9, c = 100)
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Fig. 16. Blocking probability against
K (ρ = 0.7, c = 10)
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Fig. 17. Blocking probability against
K (ρ = 0.9, c = 10)
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Fig. 18. Mean number of jobs in system
against K (ρ = 0.7, c = 100)
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Fig. 19. Mean number of jobs in system
against K (ρ = 0.9, c = 100)
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Fig. 20. Mean number of jobs in system
against K (ρ = 0.7, c = 10)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 50  100  150  200  250  300  350  400  450  500

M
ea

n 
N

um
be

r 
of

 J
ob

s 
in

 S
ys

te
m

Capacity (K)

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)

Fig. 21. Mean number of jobs in system
against K (ρ = 0.9, c = 10)

4.5 Effect of the Capacity

In this section, we show the influence of the capacity K on the performance of
the system. We consider the cases where ρ = 0.7 and ρ = 0.9 while c = 10
and 100. Figures 14 to 17 represent the blocking probability against K for the
c = 100, 10 and ρ = 0.7, 0.9. We observe in all these graphs that the blocking
probability geometrically decreases in K. We observe in the curves for α = 1, 0.1
that the blocking probability is sensitive to K in the sense that it decreases with
K at a high speed. On the other hand, we observe that the blocking blocking
probability for the case α = 0.01 is less sensitive to K in comparison with the
cases α = 1, 0.1.

Figures 18 to 21 represent the mean number of customers in the system
against K for the c = 100, 10 and ρ = 0.7, 0.9. We observe in the graphs for
ρ = 0.7 that the mean number of customers in the system increases with K
and then converges to some fixed value. This is intuitive because our system
converges to the M/M/c/∞ with setup time when K → ∞. In the graphs for
ρ = 0.9 we also observe that the mean number of customers in the system
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increases with K. Furthermore, when α = 1, 0.1 the mean number of customers
in the system converges to some fixed value for K < 500 however the curve for
α = 0.01 does not converge in the range K < 500. This suggests that in the
case α = 0.01 the queue length is very long and a large portion of customers
are lost due to blocking. This is also supported from the curves for the blocking
probability with α = 0.01.

5 Concluding Remarks

We present a simple recursion to calculate the stationary distribution of the
system state of an M/M/c/K queue with setup time for data centers. The com-
putational complexity order of the algorithm is only O(cK). The methodology
of this paper can be applied for various variant models with setup time and finite
buffer. In particular, the methodology of this paper can also be applied to the
finite buffer counter part of the M/M/c queue with vacation presented in [12].
Furthermore, it is easy to extend the model in this paper to take into account
the abandonment of customers [9]. This extension may be presented somewhere.
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