
Marco Gribaudo
Daniele Manini
Anne Remke (Eds.)

 123

LN
CS

 9
08

1

22nd International Conference, ASMTA 2015
Albena, Bulgaria, May 26–29, 2015
Proceedings

Analytical and Stochastic
Modelling Techniques
and Applications

Lecture Notes in Computer Science 9081
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zürich, Zürich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Marco Gribaudo · Daniele Manini
Anne Remke (Eds.)

Analytical and Stochastic
Modelling Techniques
and Applications
22nd International Conference, ASMTA 2015
Albena, Bulgaria, May 26–29, 2015
Proceedings

ABC

Editors
Marco Gribaudo
Politecnico di Milano
Milano
Italy

Daniele Manini
Università degli Studi di Torino
Torino
Italy

Anne Remke
Universität Münster
Münster
Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-18578-1 ISBN 978-3-319-18579-8 (eBook)
DOI 10.1007/978-3-319-18579-8

Library of Congress Control Number: 2015937539

LNCS Sublibrary: SL2 – Programming and Software Engineering

Springer Cham Heidelberg New York Dordrecht London
c© Springer International Publishing Switzerland 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in any other physical way, and transmission or information storage
and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

On behalf of the Chairs and the Technical Program Committee, it is our privilege to
welcome all of you to ASMTA 2015, the 22nd International Conference on Analyti-
cal & Stochastic Modelling Techniques & Applications, that took place in the city of
Albena (Varna) in Bulgaria.

The conference, thanks to its colocation with ECMS 2015 (the 29th European Con-
ference on Modeling and Simulation), featured three distinguished keynote speakers
who came from both the academia and the industry. Hans-Georg Zimmermann (Siemens
Corporate Technology) delivered a talk on Causality versus Predictability in Neural
Networks; Prof. Petko H. Petkov (Technical University of Sofia) presented studies
on design and implementation of robust control laws; and Prof. Alexander H. Levis
(George Mason University) introduced multi-formalism modeling of human organiza-
tions. We had 15 regular paper presentations composing the proceedings, which ap-
peared in the Springer Verlag Lecture Notes in Computer Science (LNCS) series.

Many people have contributed to the realization of ASMTA 2015. First of all, our
sincere thanks go to the authors who submitted their work to the conference. Special
thanks go to the Technical Program Committee for their high-quality reviews and to
the Program Chairs for their work in moderating the selection of the accepted papers.
We are grateful for their help to the organizers of the colocated event ECMS 2015
for taking care of all the logistic and practical aspects. In particular, we wish to thank
Martina M. Seidel for managing many aspects of the organization. We also wish to
thank Dieter Fiems and Khalid Al-Begain for their support and guidance during the
whole organization process.

We are grateful to our sponsor, The European Council for Modelling and Simula-
tion. Finally, we would like to thank the EasyChair team and Springer for the editorial
support of this conference series.

We do hope that you all find the conference a good opportunity for new experiences
both from research and personal points of view. Welcome to Albena and enjoy the
ASMTA 2015 program, the broader cooperation opportunity given by the colocation
with a larger event, and the location itself!

March 2015 Marco Gribaudo
Daniele Manini

Anne Remke

Organization

Program Committee

Sergey Andreev Tampere University of Technology, Finland
Jonatha Anselmi Inria, France
Christel Baier Technical University of Dresden, Germany
Simonetta Balsamo Università Ca’ Foscari di Venezia, Italy
Davide Cerotti Politecnico di Milano, Italy
Lydia Chen IBM Research lab Zurich, Switzerland
Antonis Economou University of Athens, Section of Statistics

and OR, Greece
Dieter Fiems Ghent University, Belgium
Jean-Michel Fourneau Universite de Versailles St Quentin, France
Marco Gribaudo Politecnico di Milano, Italy
Yezekael Hayel LIA, University of Avignon, France
András Horváth University of Turin, Italy
Gábor Horváth Budapest University of Technology

and Economics, Hungary
Mauro Iacono Seconda Università degli Studi di Napoli, Italy
Helen Karatza Aristotle University of Thessaloniki, Greece
William Knottenbelt Imperial College London, UK
Julia Kuhn University of Queensland, Australia
Lasse Leskelä Aalto University, Finnland
Daniele Manini University of Turin, Italy
Andrea Marin University of Venice, Italy
Jose Nino-Mora Carlos III University of Madrid, Spain
Tuan Phung-Duc Tokyo Institute of Technology, Japan
Pietro Piazzolla Politecnico di Milano, Italy
Balakrishna J. Prabhu LAAS-CNRS, France
Marie-Ange Remiche University of Namur, Belgium
Anne Remke Westfaelische Wilhelms Universitaet Muenster,

Germany
Jacques Resing Eindhoven University of Technology,

The Netherlands
Marco Scarpa University of Messina, Italy
Filippo Seracini Microsoft, USA
Bruno Sericola Inria, France
Janos Sztrik University of Debrecen, Hungary
Miklos Telek Budapest University of Technology

and Economics, Hungary
Nigel Thomas Newcastle University, UK

VIII Organization

Dietmar Tutsch University of Wuppertal, Germany
Benny Van Houdt University of Antwerp, Belgium
Sabine Wittevrongel Ghent University, Belgium
Verena Wolf Saarland University, Germany
Katinka Wolter Freie Universitaet zu Berlin, Germany
Alexander Zeifman Vologda State University, Russia

Additional Reviewers

Angius, Alessio
Dei Rossi, Gian-Luca
Koops, David

Kovacs, Peter
Sandmann, Werner
Telek, Miklos

Contents

Optimal Analysis for M/G/1 Retrial Queue with Two-Way
Communication . 1

Amar Aissani and Tuan Phung-Duc

Use of Flow Equivalent Servers in the Transient Analysis of Product
Form Queuing Networks . 15

Alessio Angius, András Horváth, Sami M. Halawani, Omar Barukab,
Ab Rahman Ahmad, and Gianfranco Balbo

Model Checking of Open Interval Markov Chains 30
Souymodip Chakraborty and Joost-Pieter Katoen

Performance Modeling of Cellular Systems with Finite Processor Sharing
Queues in Random Environment, Guard Policy and Flex Retrial Users 43

Ioannis Dimitriou

Efficient Performance Evaluation of Wireless Networks with Varying
Channel Conditions. 59

Ekaterina Evdokimova, Koen De Turck, Sabine Wittevrongel,
and Dieter Fiems

Mixed Networks with Multiple Classes of Customers and Restart 73
Jean-Michel Fourneau and Katinka Wolter

Interconnected Wireless Sensors with Energy Harvesting 87
Erol Gelenbe and Andrea Marin

Measuring the Distance Between MAPs and Some Applications 100
Gábor Horváth

Task Delegation in a Peer-to-Peer Volunteer Computing Platform 115
Kristóf Attila Horváth and Miklós Telek

On Convergence Rate to Stationarity of Queues with General
Gaussian Input . 130

Oleg Lukashenko and Evsey Morozov

Model-Based Quantitative Security Analysis of Mobile Offloading Systems
Under Timing Attacks . 143

Tianhui Meng, Qiushi Wang, and Katinka Wolter

Single-Server Systems with Power-Saving Modes. 158
Tuan Phung-Duc

Multiserver Queues with Finite Capacity and Setup Time 173
Tuan Phung-Duc

Power Consumption Analysis of Replicated Virtual Applications 188
Pietro Piazzolla, Gianfranco Ciardo, and Andrew Miner

On the Influence of High Priority Customers on a Generalized Processor
Sharing Queue . 203

Jasper Vanlerberghe, Joris Walraevens, Tom Maertens,
and Herwig Bruneel

Author Index . 217

X Contents

Optimal Analysis for M/G/1 Retrial Queue
with Two-Way Communication

Amar Aissani1(B) and Tuan Phung-Duc2

1 RIIMA Laboratory, Department of Computer Science,
University of Sciences and Technology Houari Boumediene (USTHB),

BP 32, El Alia, 16 111 Bab-Ez-Zouar, Algiers, Algeria
aaissani@usthb.dz

2 Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8552, Japan
tuan@is.titech.ac.jp

Abstract. We consider an M/G/1 retrial queue with two types of calls:
incoming calls (regular one’s) and outgoing calls (which are made when the
server is free). A blocked incoming call joins the orbit and retries for ser-
vice after some random time while an outgoing call is made by the server
after some random idle time. We assume that incoming and outgoing calls
have random amount of works which are processed by the server at two
distinct speeds. This assumption is suitable for evaluating the power con-
sumption that depends on the speed of the server. We obtain the joint
probability distribution of the server state and the number of requests in
the orbit in terms of Laplace and z- transforms. From these transforms, we
obtain some performance metrics of interest such as the probability that
the server is idle or busy by an incoming (outgoing) call and the mean num-
ber of requests in orbit. We propose two optimization problems to find the
optimal outgoing call rate and service speeds.

Keywords: Two way communication · QoS · Retrials · Performance-
energy trade-off · Stationary distribution · Cost optimization

1 Introduction

Retrial queueing systems are interesting stochastic modeling tools, particularly
in computer science. The blocked customer (or client, call, request) is allowed to
repeat successively his attempt until the server is able to provide service. Other-
wise, if the server is available, the arriving customer begins service immediately.
These retrial queueing models have been used in modeling switching networks,
wireless sensor networks, call centers and so on (see [3,4]).

The interested reader can find an extensive bibliography covering the 1990−
1999 [3] and 2000−2009 periods [4], although the study of such problems begun
with the queueing theory itself. Artalejo and Phung-Duc [5] exhibit some situa-
tions (e.g. call centers) in which the server not only serves incoming calls (regular
one’s), but also has a chance to make outgoing phone calls while they are not
c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 1–14, 2015.
DOI: 10.1007/978-3-319-18579-8 1

2 A. Aissani and T. Phung-Duc

engaged in conversation. This queueing feature is known as coupled switching or
models of two way communication. Outgoing calls can also be seen as vacations
or server breakdowns during which an incoming call cannot be served [1,2]. In
Artalejo and Phung-Duc [5], a stationary analysis of the queue length process is
carried out via embedded Markov chain and Markov renewal arguments. How-
ever, neither an analysis of optimality nor numerical results are presented by
Artalejo and Phung-Duc [5].

In this paper, we consider the energetic version of the model of Artalejo
and Phung-Duc [5] by assuming that each incoming or outgoing call requests a
random amount of work which is processed by the server at a constant speed.
This new interpretation is suitable for the computation of the power consumption
which depends on the speed of the server [11]. The current model is suitable for
a sensor node in wireless sensor networks. In wireless sensor network, a node
collects data and sends the data to a sink. Packets that the node receives could
be considered as incoming calls in the current model while data that the node
sends to the sink can be seen as outgoing calls in our model. Because sensor
node has a low capacity battery, the optimization of power consumption is an
important issue. Thus, our optimization problems proposed in this paper may
be useful in the design of such a system. Some other potential applications are
described in [1]. We present an alternative solution based on supplementary
variable method. We obtain the join stationary distribution of the number of
calls in the orbit and the state of the server in terms of generating function and
Laplace transform. These results are more general than those derived by Artalejo
and Phung-Duc [5] in the sense that the latter is easily obtained form the former.
We are able to derive some explicit formulae for the mean number of requests
in the orbit as well as the state probability of the server. Based on these results,
we propose two optimization problems to show the trade-off between power
consumption and the performance of the system and find the optimal outgoing
call rate and the service speeds of incoming and outgoing calls.

The rest of the paper is organized as follows. Section 2 describes the model
in details while the analysis is presented in Section 3. Section 4 presents some
performance measures and their numerical results. Section 5 proposes optimiza-
tion problems with subject to the outgoing call rate and the speeds of the server.
Finally, concluding remarks are presented in Section 6.

2 Model Description

We consider an M1,M2/G1, G2/1 retrial queue with two-way communication [5].
The flow generated by incoming calls forms a Poisson process with rate λ > 0. If
such an incoming call finds the server free then his service begins immediately.
During idle times, the server generates outgoing calls for other services.

We consider here the energetic interpretation of the service [1,2,9]. We con-
sider that the service of a call can be interpreted as the realization of some work
which needs some energy. Let Sn be the amount of work (speed or energy) to
serve the n-th incoming call. We assume that the sequence {Sn, n ≥ 1} consists of

Optimal Analysis for M/G/1 Retrial Queue with Two-Way Communication 3

independent identically distributed random variables with common distribution
function H1(x),H1(0+) = 0 and Laplace-Stieltjes transform h1(s), Re(s) ≥ 0;
the first and second order moments are denoted by h11, h12. Under this energetic
interpretation, the server works with a power (or speed) γ1 > 0 for an incoming
(resp. γ2 > 0 for an outgoing) call. If at time t an incoming primary or retrial
(resp. outgoing) call arrives with a required energy x and if the server is free,
then his service will be completed at time t + x/γ1 (resp. at time t + x/γ2), γ1,
γ2 > 0. Now, if an arriving incoming call finds the server blocked by a service
(of an incoming or an outgoing call), it becomes a source of secondary call and
returns later in an exponentially distributed time with mean 1/ν > 0 to try
again until it finds the server free; the collection of all secondary calls is called
“orbit” (a sort of queue).

Now, if the server is free, then it generates an outgoing call in an exponen-
tially distributed time with mean 1/α. The service times of the outgoing calls are
independent with common probability distribution function H2(x), H2(0+) = 0
and Laplace-Stieltjes transform h2(s), Re(s) ≥ 0; the first and second order
moments are denoted by h21 and h22. The arrival flows of incoming and out-
going calls, service times and inter-retrial times are assumed to be mutually
independent.

Consider the following random process ζ(t) = {α(t), R(t); ξ(t), t ≥ 0}, where
{R(t), t ≥ 0} is the number of customers in orbit at time t; α(t) = 0, if the server
is free at time t; α(t) = 1 (resp. α(t) = 2) if an incoming call (resp. an outgoing
call) is in service at time t. The last component ξ(t) is a positive real random
variable: ξ(t) = 0, if α(t) = 0 ; ξ(t) is the residual service time if α(t) �= 0 .

It is not difficult to show that the stochastic process {ζ(t), t ≥ 0} is a
Markovian process with piecewise linear paths which describes the evolution
of the server state and the number of orbiting customers. We establish first the
ergodicity condition for such a process, then we obtain its stationary probability
distribution.

3 Analysis

3.1 Ergodicity Condition

Let
ρ = λ

h11

γ1
, (1)

and
σ = α

h21

γ2
. (2)

The following theorem gives a condition for the existence of a stationary regime.

Theorem 1. If
ρ < 1, (3)

4 A. Aissani and T. Phung-Duc

then the stochastic process {ζ(t), t ≥ 0} is ergodic and as a consequence there
exists a unique stationary distribution. If ρ > 1, then the limiting probability
distribution of {ζ(t), t ≥ 0} tends to 0, and the underlying process tends to ∞.

Proof. The proof is similar to that of [2,5] with slight modifications.

3.2 Joint Distribution of the Server State
and the Number of Calls in Orbit

In this section we derive the joint distribution of the server state and the number
of customers in orbit in steady-state by its transform.

Under the assumption ρ < 1, the stochastic process {ζ(t), t ≥ 0} is ergodic.
As a consequence, the ergodic stationary probabilities

P0(m) = lim
t→∞ P{α(t) = 0, R(t) = m},m ≥ 0,

Pi(m,x) = lim
t→∞ P{α(t) = i, R(t) = m; ξ(t) < x},

i = 1, 2,m ≥ 0, x ≥ 0,

are solutions of the following system of differential equations

(λ + α + νm)P0(m) = γ1
dP1(m, 0)

dx
+ γ2

dP2(m, 0)
dx

,m ≥ 0,

λP1(m,x) = γ1
dP1(m,x)

dx
− γ1

dP1(m, 0)
dx

+ λ(1 − δ0m)P1(m − 1, x)+

+λP0(m)H1(x) + ν(m + 1)P0(m + 1)H1(x),m ≥ 0, x ≥ 0,

λP2(m,x) = γ2
dP2(m,x)

dx
− γ2

dP2(m, 0)
dx

+ λ(1 − δ0m)P2(m − 1, x)+

+αP0(m)H2(x),m ≥ 0, x ≥ 0,

where δij is the Kronecker function. We introduce the partial generating func-
tions in z,

Q0(z) =
∞∑

m=0

zmP0(m),

Qi(z, x) =
∞∑

m=0

zmPi(m,x), i = 1, 2.

Applying these transforms to the previous system, we obtain

(λ + α)Q0(z) + νz
dQ0(z)

dz
= γ1

∂Q1(z, 0)
∂x

+ γ2
∂Q2(z, 0)

∂x
, (4)

(λ−λz)Q1(z, x) = γ1
∂Q1(z, x)

∂x
−γ1

∂Q1(z, 0)
∂x

+λQ0(z)H1(x)+ν
dQ0(z)

dz
H1(x),

(5)

Optimal Analysis for M/G/1 Retrial Queue with Two-Way Communication 5

(λ − λz)Q2(z, x) = γ2
∂Q2(z, x)

∂x
− γ2

∂Q2(z, 0)
∂x

+ αQ0(z)H2(x). (6)

We apply now the Laplace transform to the second argument of the obtained
partial generating functions in equations (5) and (6) and we get

s(γ1s − λ + λz)f1(z, s) = γ1
∂Q1(z, 0)

∂x
− (

λQ0(z) + ν
dQ0(z)

dz

)
h1(s), (7)

s(γ2s − λ + λz)f2(z, s) = γ2
∂Q2(z, 0)

∂x
− αQ0(z)h2(s), (8)

where fi(z, s) denotes the Laplace transform of Qi(z, x) (i = 1, 2), i.e.,

fi(z, s) =
∫ ∞

0

e−sxQi(z, x)dx, i = 1, 2.

The unknown functions ∂Qi(z,0)
∂x , i = 1, 2 can be determined as usual by

using the fact that the functions Qi(z, 0) are analytical functions in the domain
|z| ≤ 1. Consider for example equation (8) of the previous system of equations.
Since Q2(z, 0) is analytic in the domain |z| ≤ 1, and since the left hand is equal
to zero for s = (λ − λz)/γ2, then the right hand side must also be zero at this
point. As a result, we have the first condition

∂Q2(z, 0)
∂x

=
α

γ2
Q0(z)h2

(λ − λz

γ2

)
. (9)

Similarly, Q1(z, 0) is analytic in the domain |z| ≤ 1, and since the left right hand
is equal to zero for s = (λ − λz)/γ1, then the right hand side must also be zero
at this point. As a result, we also have

∂Q1(z, 0)
∂x

=
1
γ1

(
λQ0(z) + ν

dQ0(z)
dz

)
h1

(λ − λz

γ1

)
. (10)

Substituting now (9)-(10) in (7)-(8), we obtain the functions fi(z, s) (i = 1, 2)
under the following explicit form

f1(z, s) =

[
h1

(
λ−λz

γ1

) − h1(s)
]
[λQ0(z) + ν dQ0(z)

dz]

s(γ1s − λ + λz)
, (11)

f2(z, s) = α
h2

(
λ−λz

γ2

) − h2(s)

s(γ2s − λ + λz)
Q0(z). (12)

Now, substitution of (9)-(10) in equation (4) gives

(λ+α)Q0(z)+νz
dQ0(z)

dz
=

(
λQ0(z)+ν

dQ0(z)
dz

)
h1

(λ − λz

γ1

)
+αQ0(z)h2

(λ − λz

γ2

)
,

(13)

6 A. Aissani and T. Phung-Duc

or equivalently,
(

λ[1 − h1

(λ − λz

γ1

)
] + α[1 − h2

(λ − λz

γ2

)
]
)

Q0(z) = ν[h1

(λ − λz

γ1

) − z]
dQ0(z)

dz
.

(14)
The solution of this homogeneous ordinary differential equation is of the form

Q0(z) = k0exp
(λ

ν

∫ z

0

1 − h1

(
λ−λy

γ1

)

h1

(
λ−λy

γ1

) − y
dy

)
× exp

(α

ν

∫ z

0

1 − h2

(
λ−λy

γ2

)

h1

(
λ−λy

γ1

) − y
dy

)
. (15)

The constant k0 can be determined using the normalization condition and it will
be done in the next section.

So, we have the following result.

Theorem 2. If the condition ρ < 1 is fulfilled, then the joint distribution of the
server state, orbit size and residual work is given by it’s transform

f1(z, s) =

[
h1

(
λ−λz

γ1

) − h1(s)
](

λ(1 − z) + α
[
1 − h2

(
λ−λz

γ2

)])

s(γ1s − λ + λz)
[
h1

(
λ−λz

γ1

) − z
] Q0(z), (16)

f2(z, s) = α
h2

(
λ−λz

γ2

) − h2(s)

s(γ2s − λ + λz)
Q0(z) (17)

where the function Q0(z) is given in Theorem 3.

Proof. Using Tauberian theorem in formula (11), we get

Q1(z,∞) = limx→∞Q1(z, x) = lims→0+sf1(z, s) =

=
1 − h1

(
λ−λz

γ1

)

λ − λz

(
λQ0(z) + ν

dQ0(z)
dz

)
. (18)

Similarly, we obtain from (12)

Q2(z,∞) = α
1 − h2

(
λ−λz

γ2

)

λ − λz
Q0(z). (19)

Using equation (15) we have

λQ0(z) + ν
dQ0(z)

dz
=

λ(1 − z) + α[1 − h2

(
λ−λz

γ2

)
]

h1

(
λ−λz

γ1

) − z
Q0(z). (20)

Hence, by substituting (20) into (18), we obtain

Q1(z,∞) =
1 − h1

(
λ−λz

γ1

)

h1

(
λ−λz

γ1

) − z

[
1 +

α
[
1 − h2

(
λ−λz

γ2

)]

λ − λz

]
Q0(z). (21)

The relation (16) is obtained by substituting (18) into (11) and equation (17) is
just (12).

Optimal Analysis for M/G/1 Retrial Queue with Two-Way Communication 7

3.3 Distribution of the Number of Calls in Orbit

Let qm = P{R(t) = m},m = 0, 1, ... be the distribution of the number of calls
in orbit.

It is easy to see that

qm = P0(m) + P1(m,∞) + P2(m,∞) (22)

The generating function of this distribution is

Q(z) =
∞∑

m=0

qmzm = Q0(z) + Q1(z,∞) + Q2(z,∞)

Theorem 3. If ρ = λh11
γ1

< 1, then the generating function of the number of
calls in orbit is given by

Q(z) =
λ − λz + α

[
1 − h2

(
λ−λz

γ2

)]

λ
[
h1

(
λ−λz

γ1

) − z
] Q0(z), (23)

where

Q0(z) =
1 − ρ

1 + αh21/γ2
exp
(λ

ν

∫ 1

z

1 − h1

(
λ−λy

γ1

)

h1

(
λ−λy

γ1

)− y
dy
)

× exp
(α

ν

∫ 1

z

1 − h2

(
λ−λy

γ2

)

h1

(
λ−λy

γ1

)− y
dy
)
.

(24)

Proof. Taking into account (15), (17) and (19), we obtain after some algebra
expression (23). From this formula we can obtain an explicit expression of the
constant k0 by using the normalization condition Q(1) = 1. Note that when
taking z = 1 in (23), we obtain an indeterminate form 0/0. This difficulty can
be overcome by using twice l’Hospital’s rule.

Remark 1. Note that if the energy γ1 = γ2 = 1, then we obtain the results by
Artalejo and Phung-Duc [5] for the temporal model with two-way communica-
tion.

Remark 2. We note that the ergodicity condition ρ < 1 appears here since the
constant k0 must be strictly positive.

4 Some Performance Metrics and Numerical Results

In this section we show how the results of the previous sections can be helpful
to derive several performance metrics of interest.

8 A. Aissani and T. Phung-Duc

4.1 Performance Metrics

From (15), (17), (23) and (24) we can obtain some performance metrics of inter-
est.

– The probability that the server is idle:

P0 = Q0(1) = Q0(z) |z=1=
1 − λh11/γ1
1 + αh21/γ2

. (25)

– The probability that the server is busy by incoming service:

P1 = Q1(1,∞) =
λ

γ1
h11. (26)

– The probability that the server is busy by outgoing service:

P2 = Q2(1,∞) =
(1 − λh11/γ1)(αh21/γ2)

1 + αh21/γ2
. (27)

– The mean number of calls in orbit:

N1 = Q
′
(1) =

dQ(z)
dz

|z=1=
λαh22/γ2

2

2(1 + αh21/γ2)
+

λ2h12/γ2
1

2(1 − λh11/γ1)
+

+
λ(λh11/γ1 + αh21/γ2)

ν(1 − λh11/γ1)
(28)

– The mean number of calls in orbit when the server is idle:

M1 = Q
′
0(1) =

dQ0(z)
dz

|z=1=
λ

ν

λh11/γ1 + αh21/γ2
1 + (αh21)/γ2

. (29)

Remark 3. We note that the idle server probability is independent of the retrial
rate ν. Indeed, this probability depends only on σ = αh21/γ2 (the traffic intensity
of outgoing calls) which is clearly independent of retrial rate and ρ = λh11/γ1
(the traffic intensity of incoming calls) which is also independent of retrial rate
for linear retrial policy (in opposition to constant retrial policy). On the other
hand the ergodicity condition is the same as for the energetic M/G/1 FIFO [9]
queue since each incoming call must be served.

4.2 Numerical Examples

This subsection is devoted to the presentation of some examples and numerical
illustrations showing how to exploit the results of the previous sections. The
objective is to indicate to a practitioner how he can observe the influence of
given parameters upon given performance measures of interest.

Figure 1(i) illustrates the effect of service speed of outgoing calls γ2 on the
idle server probability P0 for different values of γ1: 5, 10 and 20. We note that
P0 increases when both outgoing rate γ1 and γ2 increase. Figure 1(ii) shows

Optimal Analysis for M/G/1 Retrial Queue with Two-Way Communication 9

Γ1�5
Γ1�10

Γ1�20

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Service speed of outgoing calls Γ2

Pr
ob

ab
ili

ty
th

at
th

e
se

rv
er

is
id

le
P0

5

10

15

20

Γ1

0

5

10

15

20

Γ2

0.0

0.2

0.4

0.6

P0

Fig. 1. (i) Effect of speed of outgoing calls γ2 on the idle server probability P0. (ii) Effect
of γ1 and γ2 on the idle server probability P0.

Γ1�5,Γ2�5

Γ1�5,Γ2�10
Γ1�10,Γ2�5

0 10 20 30 40 50
0

5

10

15

20

25

30

Outgoing rate Α

M
ea

n
nu

m
be

r
of

ca
lls

in
or

bi
tN

1

10

20

30

40

50

Γ1

0

10

20

30

Γ2

0

1

2

3

N1

Fig. 2. (i) Effect of outgoing rate α for different values of γ1 and γ2 on N1. (ii) Effect
of γ1 and γ2 on N1.

the same evolution on a 3D graph. Some parameters are fixed as follow λ = 1,
α = 2, h11 = 2, h21 = 1, ν = 2.

In Figure 2(i) we show the effect of outgoing rate on the mean number of
calls in orbit N1 for fixed values of service speeds for both incoming and outgoing
calls (γ1, γ2) = (5, 5), (5, 10) and (10, 5). As expected, the mean number of calls
in orbit linearly increases with increasing of the outgoing rate α. Figure 2(ii)
shows that N1 decreases when both γ1 and γ2 increase.

Finally, Figures 3(i) and 3(ii) illustrates the effect of retrial rate ν on the
mean number of calls in orbit N1 and mean number of calls in orbit when
the server idle M1 for different values of (γ1, γ2) = (5, 5) (short dashed line),
(5, 10) (gray level line), (10, 5) (long dashed line). As expected both N1 and M1

decreases with decreasing of ν.

5 Optimization Problems

The energetic interpretation considered here leads to a new optimization prob-
lem trying to minimize the total cost of the system. In fact, there are two factors
that we want to minimize.

10 A. Aissani and T. Phung-Duc

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

6

Retrial rate Ν

M
ea

n
nu

m
be

r
of

ca
lls

in
or

bi
tN

1

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4

5

6

Retrial rate Ν

M
ea

n
nu

m
be

r
of

ca
lls

in
or

bi
tM

1

Fig. 3. (i) Effect of retrial rate ν on N1. (ii) Effect of retrial rate ν on M1.

1. the queue length (mean number of incoming calls in the orbit)
2. the power consumption of the server.

It is assumed that the power consumption of the server when it runs at speed γ1
is proportional to γβ

1 for some β > 0. Similarly, the power consumption of the
server when it runs at speed γ2 is proportional to γβ

2 [11].

5.1 Optimal Service Speeds

Consider the function
F (γ1, γ2) = N1 +

1
δ
E(S), (30)

which represents the total cost of the system, where E(S) = C ×P0 +P1 × γβ
1 +

P2×γβ
2 and δ is the relative importance on power consumption and queue length

(QoS). So, we can suggest the following optimization problem.

minγ1>0,γ2>0F (γ1, γ2). (31)

In the following sections, we provide several numerical experiments showing
some non trivial values of γ1 and γ2 which minimize the total cost of the system
given by expression (31), where the constant P0, P1, P2 and N1 are given by
(25)-(28).

5.2 Optimal Idle Interval

We now consider the optimization problem subject to the mean idle interval.
In particular, we find the optimal α which minimizes the cost function while
keeping all other parameters constant.

This optimization problem is useful in the situation where we need to deter-
mine the timing to make an outgoing call. A large mean idle interval (1/α)
reduces the mean queue length. At the same time it increases the idle probabil-
ity resulting in the increase of useless energy consumption. It should be noted
that idle server consumes energy but does not process jobs.

Optimal Analysis for M/G/1 Retrial Queue with Two-Way Communication 11

Because h21, γ2 are constant, minimizing subject to α is equivalent to min-
imizing subject to σ which is the traffic intensity of outgoing calls. Taking the
derivative with respect to σ yields

dF (γ1, γ2)
dσ

= − A

(1 + σ)2
+ B,

where A and B are given by

A =
(1 − ρ)C

δ
− (1 − ρ)γβ

2

δ
− λh22

2γ2h21
, B =

λ

ν(1 − ρ)
.

If A ≤ B, we have
dF (γ1, γ2)

dσ
> 0

implying that the cost function is minimized at σ = 0. If A > B, the cost
function is minimized at

σ∗ =

√
A

B
− 1.

5.3 Examples and Numerical Illustrations

In this section, we illustrate the effect of different parameters on the cost function
in order to show performance-energy trade-off.
The parameters are fixed as follow λ = 2, α = 2, h11 = 2, h12 = 1, h21 = 1,
h22 = 2, ν = 2, C = 1, β = 2. Now we want to illustrate the effect of γ1 and γ2
on the cost function.

We present in Table 1 the optimal values of γ1 and γ2 and the corresponding
minimal cost for different values of δ. We see that the minimal value of the cost
function decreases when δ increases.

In Figures 4(i), 4(ii) and 5(i) we represent the effect of γ1 on the cost function
F (γ1, γ2) for different special cases (δ = 0.1).

– γ1 = 10 × γ2: short dashed line,
– γ1 = γ2: Gray level line,
– γ1 = 0.1 × γ1: long dashed line.

Note that due to the ergodicity condition, the range of γ1 is respectively
γ1 > 4, γ1 > 0.4 and γ1 > 40. Figure 5(ii) shows all graphs together. We note
that the Figure 4(i) is masked by Figure 5(i) in the left up corner on the graph
due to scaling.

Figures 6 and 7 show the effect of the retrial rate on the optimal σ∗ for
different values of C and δ. The optimal σ∗ increases when both δ and retrial
rate increase.

12 A. Aissani and T. Phung-Duc

Table 1. Optimal values of γ∗
1 , γ∗

2 and optimal cost F (γ∗
1 , γ∗

2) for different values of
δ: C = 1, ν = 2.

δ Optimal value γ∗
1 , Optimal value γ∗

2 Minimum cost F ∗ (γ∗
1 ,γ∗

2

0.1 4.03353 4.10481 × 106 16268.3

0.5 4.07498 4.93492 × 106 3319.91

1 4.10603 4.51583 × 106 1684.76

5 4.23706 4.39855 × 106 357.841

10 4.33521 2.58957 × 106 186.725

15 4.41049 1.20018 × 106 128.468

20 4.47393 883739 98.8672

30 4.58029 650642 68.7203

50 4.7488 350133 43.8979

100 5.05787 193073 24.3886

300 5.8268 51323.7 10.1471

500 6.35329 35950.9 6.91697

1000 7.31537 15547.9 4.21571

5000 11.3242 2887.86 1.47686

10000 14.2982 1633.86 0.97487

0 10 20 30 40 50
0

200

400

600

800

1000

Γ1

F�
Γ 1
�

40 42 44 46 48 50
0

200

400

600

800

1000

Γ1

F�
Γ 1
�

Fig. 4. (i) Cost function versus γ1 for γ1 = 10 × γ2: C = 1, ν = 2. (ii) Cost function
versus γ1 for γ1 = 0.1 × γ2: C = 1, ν = 2.

10 20 30 40 50
0

200

400

600

800

1000

Γ1

F�
Γ 1
�

Γ1�Γ2

1�10�Γ2

Γ1�0.1�Γ2

10 20 30 40 50
0

200

400

600

800

1000

Γ1

F�
Γ 1
�

Fig. 5. (i) Cost function versus γ1 for γ1 = γ2: C = 1, ν = 2. (ii) All graphs together.

Optimal Analysis for M/G/1 Retrial Queue with Two-Way Communication 13

Δ�0.1

Δ�0.01

Δ�1

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Retrial rate Ν

O
pt

im
al
Σ
�

Δ�0.1

Δ�0.01

Δ�1

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Retrial rate Ν

O
pt

im
al
Σ
�

Fig. 6. (i) Effect of δ and retrial rate ν on the optimal value σ∗: C = 20, γ1 = 5, γ2 = 1
(ii) Effect of δ and retrial rate ν on the optimal value σ∗: C = 50, γ1 = 5, γ2 = 1.

Δ�0.1

Δ�0.01

Δ�1

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Retrial rate Ν

O
pt

im
al
Σ
�

Δ�0.1

Δ�0.01

Δ�1

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Retrial rate Ν

O
pt

im
al
Σ
�

Fig. 7. (i) Effect of δ and retrial rate ν on the optimal value σ∗: C = 30, γ1 = 10,
γ2 = 5 (ii) Effect of δ and retrial rate ν on the optimal value σ∗: C = 50. γ1 = 10,
γ2 = 5.

6 Conclusion

In this work, we have provided an analysis of the energetic version of the M/G/1
retrial queue with two-way communication studied by Artalejo and Phung-
Duc [5]. In particular, we have made the conjecture that this energetic inter-
pretation leads to a new optimization problem trying to minimize the total cost
of the system. This conjecture was verified experimentally by showing the evo-
lution of the cost function for different values of the parameters. The next step
will be to provide an analytical proof of this conjecture. It will be interesting
also to study the influence of reliability and/or vacations.

Acknowledgments. This work was supported in parts by the Algerian ministry of high
education and scientific research through grants B00220100046 and B ∗ 00220140064.
It has been initiated during a visit of the first author at Tokyo Institute of Technology
(Japan) on behalf of 10th Workshop on Retrial Queues July 24 − 26, 2014. The authors
would like to thanks the anonymous referees for pertinent and helpful comments that
allow to improve the quality of the paper.

14 A. Aissani and T. Phung-Duc

References

1. Aissani, A.: An MX/G/1 Energetic retrial queue with vacations and it’s control.
Electronic Notes in Theoretical Computer Science (ENTCS) Elsevier 253(3), 33–44
(2009)

2. Aissani, A.: An MX/G/1 Energetic retrial queue with vacations and control. IMA
Journal of Management Mathematics 22, 13–32 (2011)

3. Artalejo, J.R.: Accessible bibliography on retrial queues: Progress in 1990–1999.
Mathematical and Computer Modelling 30, 1–6 (1999)

4. Artalejo, J.R.: Accessible bibliography on retrial queues: Progress in 2000–2009.
Mathematical and Computer Modelling 51(9), 1071–1081 (2009)

5. Artalejo, J.R., Phung-Duc, T.: Single server retrial queues with two way commu-
nication. Applied Mathematical Modelling 37, 1811–1822 (2013)

6. Artalejo, J.R., Phung-Duc, T.: Markovian retrial queues with two way communi-
cation. Journal of Industrial and Management Optimization 8, 781–806 (2012)

7. Artalejo, J.R., Gomez-Corall, A.: Retrial queueing systems: A computational app-
roach. Springer, Berlin (2008)

8. Falin, G.I., Templeton, J.G.: Retrial Queues. Chapman and Hill, New Jersey (1997)
9. Gnedenko, B.V., Kovalenko, I.N.: Introduction to Queueing Theory, 2nd edn.

Birkhauser, Boston (1989)
10. Krishnamoorthy, A., Gobakamarand, B., Viswanath, C.: A retrial queue with server

interruptions, resumption and restart of service. Operational Research 12, 133–149
(2012)

11. Lu, X., Aalto, S., Lassila, P.: Performance-energy trade-off in data centers:
Impact of switching delay. In: Energy Efficient and Green Networking (SSEEGN),
pp. 50–55 (2013)

Use of Flow Equivalent Servers in the Transient
Analysis of Product Form Queuing Networks

Alessio Angius1, András Horváth1(B), Sami M. Halawani2, Omar Barukab2,
Ab Rahman Ahmad2, and Gianfranco Balbo1,2

1 Dipartimento di Informatica, Università di Torino, Turin, Italy
{angius,horvath,balbo}@di.unito.it

2 Faculty of Computing and Information Technology, King Abdulaziz University,
Rabigh Branch, Rabigh, Kingdom of Saudi Arabia
{halawani,obarukab,abinahmad}@kau.edu.sa

Abstract. In this paper we deal with approximate transient analysis of
Product Form Queuing Networks. In particular, we exploit the idea of
flow equivalence to reduce the size of the model. It is well-known that
flow equivalent servers lead to exact steady state solution in many cases.
Our goal is to investigate the applicability of flow equivalence to transient
analysis. We show that exact results can be obtained even in the tran-
sient phase, but the definition of the equivalent server requires the anal-
ysis of the whole original network. We propose thus to use approximate
aggregate servers whose characterization demands much less computa-
tion. Specifically, the characterization corresponds to the steady state
equivalent server of the stations that we aim to aggregate and thus can
be achieved by analyzing the involved stations in isolation. This way,
approximations can be derived for any queuing network, but the preci-
sion of the results depends heavily on the topology and on the param-
eters of the model. We illustrate the approach on numerical examples
and briefly discuss a set of criteria to identify the cases when it leads to
satisfactory approximation.

1 Introduction

Queuing networks are widely used for the design and analysis of Discrete Event
Dynamic Systems [18]. The complexities of real systems translate in the com-
plexities of their models, thus making the understanding of their properties
and behaviors a computationally difficult task. Product Form Queuing Networks
(PFQNs) [6] are a restricted class of queuing networks with special features which
make them interesting for practical purposes. Many applications of PFQN can be
found in the literature for the analysis of Computer, Communication, and Man-
ufacturing Systems. The derivation of efficient computational algorithms for the
solution of their mathematical representations [10] has made them very popular
because of the possibility of analyzing very large models with limited computa-
tional effort. Still, given the ever increasing complexity of real systems, simpli-
fication techniques with which an entire sub-model (comprising many nodes -or
c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 15–29, 2015.
DOI: 10.1007/978-3-319-18579-8 2

16 A. Angius et al.

servers- of the original network) can be identified within the model, analyzed in
isolation, and replaced with a single flow equivalent server are very attractive
because they reduce the computational complexity of the analysis of the whole
model. The characterization of the flow equivalent server and the exactness of
the substitution rely on the characteristics of the product form solution of the
original model [5,11,17]. Product form is a property of the stationary distribu-
tion of PFQN and holds only in very specific cases in the transient phase [8]. As
a consequence, the transient analysis of real systems gains little advantages when
these same systems can be modeled with PFQNs. Moreover, little is known about
the quality (approximation level) of the transient solution of a model computed
when subsystems are replaced by their flow equivalent counterparts.

In this paper we investigate the application of flow-equivalence for transient
analysis. We show that the transient solution of a model reduced by the concept
of steady state flow equivalence may yield a good approximation of the transient
behavior of the original model. We limit ourselves to an approximation because,
excluding very special cases, it appears unrealistic to devise an exact approach
that reduces the complexity of the transient analysis as it happens for the steady
state analysis of PFQNs. On the basis of these preliminary observations, we
suggest certain conditions that must be satisfied by the original model for the
method to apply in a satisfactory manner.

Transient analysis is a computationally difficult problem when the state space
is large (more than about 107 states) and not many techniques have been pro-
posed to solve it. Apart of the simplest cases [8], only approximate and simula-
tion based techniques are viable. Among the approximate approaches we have
moment closure techniques [19] and fluid approximations [14]. Methods based
on aggregation have also been developed, see, for example, [7]. Fewer techniques
maintain the original state space of the model and, as a consequence, allow one
to calculate also distributions. Among these, memory efficient approaches have
been proposed based on assuming that the transient probabilities are in a special
form, like product form [1], partial product form [20], or quasi product form [3].
A decomposition based technique has been proposed instead in [2].

The paper is organized as follows. In Section 2 we introduce the model and
summarize the methods used to compute the stationary distribution of PFQNs.
In Section 3 we describe the concept of flow equivalent server and show how to
restructure the model to accommodate the flow equivalent server. In Section 4
we discuss the difficulties that arise when using flow equivalence in a finite time
domain. In Section 5 we discuss the quality of the approximation by applying
the method to (relatively) large networks exhibiting different characteristics and
draw some general indications concerning both the cases in which the method
performs well as well as those where the results are not satisfactory. Finally, in
Section 6 we draw conclusions.

2 Model

We consider a closed network of M queues, N = {s1, s2, . . . , sM}, with a fixed
number N of statistically identical jobs circulating through the network at all

Use of Flow Equivalent Servers in the Transient Analysis 17

times (single class network). Jobs (or customers) get service at the stations and
move from one station to another according to pre-fixed routing probabilities
denoted by ri,j with i, j ∈ {1, 2, ...,M} and globally represented by the routing
matrix R. Service times have exponential distributions which may be load depen-
dent (i.e. functions of the number jobs at the station) and the service discipline
is FIFO. The service intensity (rate) of queue i in the presence of n jobs at the
station is denoted by μi(n).

A given state of the model is a vector n = [n1, ..., nM] where ni denotes the
number of jobs at station i and

∑M
i=1 ni = N . Accordingly, the state space is

defined as

S(N,M) =

{
n = [n1, ..., nM]

∣∣∣∣ ni ≥ 0, i = 1, ...,M ;
M∑

i=1

ni = N

}
(1)

and its cardinality is |S(N,M)| =
(
N+M−1
M−1

)
.

The number of jobs at station i at time t is denoted by ni(t). The probability
that the system is in state n at time t is denoted by πn(t). The probabilities of the
whole state space are conveniently collected in a vector π(t) = [πn(t)]n∈S(N,M).

It has been proved by Gordon and Newell [16] that the equilibrium distribu-
tion of customers in a closed PFQN of this type is given by

πn =
1
G

M∏

i=1

fi(ni) (2)

where G is a normalizing constant defined so that we have
∑

πn = 1, and the
function fi (often called service function of station i) is defined as

fi(n) =
{

1 n = 0
Vi

µi(n)
fi(n − 1) n ≥ 1 (3)

being V = [V1, ..., VM] a real positive solution of the eigenvector-like equation

V = VR (4)

The direct computation of the normalization constant G is of exponential
complexity, but, due to the pioneering work of Buzen [10], computationally effi-
cient algorithms have been devised [13] which obtain the desired quantity in
polynomial time. One such method, called the convolution algorithm, is based
on the definition of an auxiliary function g(n,m) that represents the normaliza-
tion constant computed for the network comprising the first m (≤ M) stations
of the original network and in which only n (≤ N) customers are present. This
quantity can be computed by a recursive method based on the convolution-type
summation

g(n,m) =
n∑

k=0

fm(k) g(n − k,m − 1) (5)

18 A. Angius et al.

The normalization constant for the whole network with M jobs is given then by
G = g(N,M), with g(n, 1) = f1(n).

The method provides expressions for many standard performance indices of
the network that can be defined in terms of values obtained during the compu-
tation of G [10]. An important result, that was also originally derived by Buzen
in [10], concerns the marginal distribution of the customers at the ith station.
For the purposes of this paper, we can focus our attention on the distribution
of the customers in the last station of the network. The probability of having h
jobs at the Mth station can be computed without considering all states of the
network as simply as

PM (h) = fM (h)
g(N − h,M − 1)

g(N,M)
(6)

3 Flow-Equivalent Aggregation

On the basis of the results recalled in the previous section, we can now define
an equivalent server. Consider a PFQN N defined as before and let K = {s1,
s2, . . . , sK}, si ∈ {1, ...,M}, be a subset of its stations. Let K′ be the comple-
mentary subset of stations of K so that K ∩ K′ = ∅ and K ∪ K′ = N . For sake of
simplicity, in the rest of this paper, unless when specified differently, we assume
that the stations of the network are ordered so that those of sub-network K are
the first K stations of the network N that in the rest of the paper will be often
referred to as the aggregated stations. The goal of the aggregation step is to char-
acterize the behavior of the sub-model K in order to replace it with an equivalent
server that will then interact with the other sub-model K′ without affecting its
behavior. This characterization of the equivalent server is performed with a con-
trolled experiment [11,12,15] which corresponds to solving the sub-model K in
isolation under a fixed load H = 1, ..., N . For this purpose let us assume N ′ to
be a queuing network having the same topology of N , but such that the stations
not in K have null service times (they are often referred to as “short-circuited”).
Denoting by π′ the stationary distribution of the customers in the network N ′,
and with X a generic state of N ′

π′
n(H) = Pr{X1 = n1, ...,XK = nK ,XK+1 = 0, ...,XM = 0

∣∣∣∣
K∑

i=1

ni = H}

we can compute the stationary throughputs of all the stations of N ′ when H
customers are in the network as

χi(H) =
H∑

h=1

P ′
i (h,H)μi(h) (7)

where P ′
i (h,H) is the marginal distribution of the customers in the ith station

(i = 1, ...,K), obtained from the proper summation of the distribution π′
n(H).

Use of Flow Equivalent Servers in the Transient Analysis 19

The aggregated throughput of sub-network K can be written as

χagg(H) =
∑

i∈K

⎡

⎣χi(H)
∑

j∈K′
ri,j

⎤

⎦ (8)

Denoting with seq a load-dependent station with service intensity equal to
χagg(H), we can state the following theorem.

Theorem 1. If station seq is put in N in place of the stations that belong to K
in such a way that
(1) the routing probabilities from a station si �∈ K to seq are equal to the sum of
the routing probabilities from si to each station in K, i.e.

ri,eq =
∑

l∈K
ri,l (9)

(2) the routing probabilities from seq to a station sj �∈ K are equal to the weighted
sum of the routing probabilities from each station in K to sj,

req,j =
∑

i∈K Vi ri,j∑
l∈K′

∑
h∈K Vh rh,l

(10)

then the resulting new network (denoted by Neq) has measures of interest equal
to those of N when time approaches infinity.

The result expressed by Theorem 1 is well-known for what concerns the char-
acterization of the equivalent server [4,5,11,15]. The proof usually focuses on
showing that the normalization constant of the original network N is identical
to that of the reduced network Neq.

Little is instead available in the literature for what concerns the modifications
that need to be introduced in the routing matrix of network N in order to
provide a detailed and precise specification of network Neq as defined by (9) and
(10) included in the statement Theorem 1. This is due to the fact that these
details are not relevant for the computation of the stationary distribution of
the whole network; they are instead needed for the transient analysis based on
flow equivalent servers that will be discussed later on in this paper. To check
the validity of the expressions represented by (9) and (10), it is sufficient to
show that the visit ratios computed for the stations that belong to K′ remain
identical when considered both within the original network N and within the
reduced network Neq.

Indeed, if we detail the expression represented by (4), and we perform a
simple manipulation we obtain

{
Vi =

∑
j∈K′Vj rj,i +

∑
h∈KVh rh,i i ∈ K′

∑
l∈KVl =

∑
j∈K′Vj

∑
l∈Krj,l +

∑
h∈KVh

[
1 − ∑

j∈K′rh,j

] (11)

Reorganizing the previous representation and defining (see also [4])

Veq =
∑

j∈K′

∑

h∈K
Vh rh,j (12)

20 A. Angius et al.

we can transform the previous system of equations as follows
{

Vi =
∑

j∈K′Vj rj,i + Veq

∑
h∈KVh rh,i∑

j∈K′
∑

h∈KVh rh,j
i ∈ K′

Veq =
∑

j∈K′Vj

∑
l∈Krj,l

(13)

which proves our theorem when we define
⎧
⎪⎨

⎪⎩

req,eq = 0
ri,eq =

∑
l∈Kri,l i ∈ K′

req,j =
∑

h∈KVh rh,j∑
l∈K′

∑
h∈KVh rh,l

j ∈ K′
(14)

4 Use of Flow-Equivalence in Transient Analysis

In the previous section we showed that the key point for applying flow-equivalence
is the computation of the service rates χagg(h), 1 ≤ h ≤ N , that are required
to define the equivalent station. Since the stationary probabilities of a PFQN
depend only on the mean service times of the stations, these service rates fully
characterize an equivalent server which can take the place of an arbitrary number
of aggregated stations without affecting the stationary measures of the system
[4,5,11,15].

Unfortunately, the application of the flow equivalence in transient analysis
is more difficult and no general results are known for this purpose since the
computation of the service rates of a “transient” equivalent server requires the
knowledge of the transient distribution of the whole network. In order to clarify
this concept, in Section 4.1 we will derive general expressions for aggregation in
a transient context and in Section 4.2 we introduce the proposed approximate
flow equivalence method.

4.1 Exact Aggregation in Transient Analysis

As the network of queues forms a CTMC, π(t) satisfies the well-known ordinary
differential equation

dπ(t)
dt

= π(t)Q (15)

where Q , the infinitesimal generator, is a square matrix of size |S(N,M)| ×
|S(N,M)| with the non-null entries defined as

qn,m =

{
μi(ni) ri,j m �= n ,m = {n1, . . . , ni − 1, . . . nj + 1, . . . , nM}
−∑

∀k �=n qn,k m = n
(16)

Using the notation introduced in the previous section, let us assume that
network N is split into two sub-networks, one comprising the first M−1 stations,
that we call K (stations with indices from 1 up to M−1), and the other consisting
of the last station only (station with index M). A general state of this network
(n) can be denoted by means of a pair n = (n ′, nM) so that the entire state space

Use of Flow Equivalent Servers in the Transient Analysis 21

of the network can now be seen as the union of N +1 subsets S ′(H,N,M),H =
0, ..., N, defined in the following manner

S ′(H,N,M) =

{
n = (n1, ..., nM)

∣∣∣∣ ni ≥ 0;
M−1∑

i=1

ni = H, nM = N − H;

}
(17)

Let us also assume that the states n of N are organized in a lexicographical
order, so that first we have the state with nM = N , followed by the states with
nM = (N − 1) up to the group of states characterized by nM = 0. According
to this organization of the state space, the system of differential equations given
in (15) can now be divided into N + 1 sub-systems whose left-hand-sides are
characterized by the derivatives of the transient probabilities of the states of the
corresponding groups. Let us denote by

π̃H(t) =
∑

n′∈S′(H,N,M)

π(n ′,N−H)(t) (18)

the probability that there are H, 0 ≤ H ≤ N, clients in K. Then by proper
summations of the equations in (15) we can write a system of ordinary differential
equations for the quantities defined in (18) in the form of

dπ̃(t)
dt

= π̃(t)Q̃(t) (19)

where Q̃(t) is an (N + 1) × (N + 1) matrix, whose non-null entries are given as

q̃h,k(t) =

⎧
⎪⎨

⎪⎩

χagg(h, t) k = h − 1
μM (N − h)(1 − rM,M) k = h + 1
−∑

∀l �=h q̃h,l h = k.

(20)

in which χagg(h, t) is the aggregated service rate of the stations in K at time t
if there are h clients in K and (obviously) μM (0) = 0. The term χagg(h, t) can
be computed according to the following derivation.

Let ν
[n′]
h (t) be the conditional probability of finding the sub-network K in

state n ′, given that there are h customers in it:

ν
[n ′]
h (t) =

π(n ′,N−h)(t)∑
n∈S(N,M):nM=N−h πn(t)

Given a specific state n ′ of sub-network K, the rate at which customers flow
from subnetwork K to station M is expressed as

Yn′ =
M−1∑

l=1

μl(n′
l) rl,M (21)

so that

χagg(h, t) =
∑

n′∈S′(h,N,M)

Yn′ ν
[n ′]
h (t) (22)

22 A. Angius et al.

When started from identical initial conditions, the aggregated system (given
in (19)) and the original one (given in (15)) lead to the same transient behavior
for what concerns the number of clients in K and with respect to station M .

The derivation of the service rate of the flow equivalent server, that we have
proposed for the case of a single sub-network to avoid unneeded complexity, can
be easily generalized to the case of any number of sub-networks without changing
the essence of the result. The following example illustrates the exact transient
aggregation described above.

Example 1. Consider a network of three queues with routing probabilities r1,3 =
r3,2 = 1, r2,1 = r2,3 = 1/2, service rates μ1 = 4, μ2 = 3, μ3 = 2 and with two
clients. Let us assume that the states are ordered as |0, 0, 2|, |0, 1, 1|, |1, 0, 1|,
|0, 2, 0|, |1, 1, 0|, |2, 0, 0| and that both clients are at the third queue initially.
Moreover, denote the transient probabilities of the network by πi(t) where i is
one of the states of the network. The system of ordinary differential equations
for this model is

dπ|0,0,2|(t)
dt

=−π|0,0,2|(t)μ3 + π|0,1,1|(t)μ2r2,3 + π|1,0,1|(t) μ1

dπ|0,1,1|(t)
dt

=π|0,0,2|(t) μ3−π|0,1,1|(t) (μ2+μ3)+π|0,2,0|(t) μ2r2,3+π|1,1,0|(t) μ1

dπ|1,0,1|(t)
dt

=π|0,1,1|(t) μ2r2,1−π|1,0,1|(t) (μ1+μ3)+π|1,1,0|(t) μ2r2,3+π|2,0,0|(t) μ1

dπ|0,2,0|(t)
dt

=π|0,1,1|(t) μ3−π|0,2,0|(t) μ2

dπ|1,1,0|(t)
dt

=π|1,0,1|(t) μ3+π|0,2,0|(t) μ2r2,1−π|1,1,0|(t) (μ1+μ2)

dπ|2,0,0|(t)
dt

=π|1,1,0|(t) μ2r2,1−π|2,0,0|(t) μ1

where we highlighted the groups of equations corresponding to specific values
of the number of customers at the third station (the first equation refers to the
state with all the customers on the third station; the second group of equations
corresponds to 1 customer at the third station; and finally the last group to
the case when there are no customers at the third station). Summing up the
equations for each group we get

dπ|0,0,2|(t)
dt

= −π|0,0,2|(t) μ3 + π|0,1,1|(t) μ2r2,3 + π|1,0,1|(t) μ1

d[π|0,1,1|(t)+π|1,0,1|(t)]
dt

= π|0,0,2|(t) μ3 − [π|0,1,1|(t) + π|1,0,1|(t)] μ3

−[π|0,1,1|(t)μ2r2,3 + π|1,0,1|(t)μ1]
+[π|0,2,0|(t) μ2r2,3 + π|1,1,0|(t) (μ1 + μ2r2,3) + π|2,0,0|(t) μ1]

d[π|0,2,0|(t)+π|1,1,0|(t)+π|2,0,0|(t)]
dt

= [π|0,1,1|(t) + π|1,0,1|(t)] μ3

−[π|0,2,0|(t) μ2r2,3 + π|1,1,0|(t) (μ1 + μ2r2,3) + π|2,0,0|(t) μ1]

The left hand sides of these three equations express the derivatives of the prob-
abilities of the aggregated states |0, 2|, |1, 1|, |2, 0| which correspond to lumping
together stations 1 and 2. Looking at the right hand sides, we can identify the
speed at which the aggregated stations send clients to the third one. Indeed,

Use of Flow Equivalent Servers in the Transient Analysis 23

when the state of the aggregated network is |1, 1| the aggregated stations send
client to the third queue with intensity π|1,0,1|(t)μ1 + π|0,1,1|(t)μ2r2,3

By defining the probability distribution of the aggregated network as

π̃|0,2|(t) = π|0,0,2|(t) π̃|1,1|(t) = π|0,1,1|(t) + π|1,0,1|(t)
π̃|2,0|(t) = π|0,2,0|(t) + π|1,1,0|(t) + π|2,0,0|(t)

and the conditional probabilities of finding the aggregated stations in a specific
state, given the total number of customers in the aggregation as

ν
[|0,0|]
0 (t) =

π|0,0,2|(t)
π̃|0,2|(t)

ν
[|0,1|]
1 (t) =

π|0,1,1|(t)
π̃|1,1|(t)

ν
[|1,0|]
1 (t) =

π|1,0,1|(t)
π̃|1,1|(t)

ν
[|0,2|]
2 (t) =

π|0,2,0|(t)
π̃|2,0|(t)

ν
[|1,1|]
2 (t) =

π|1,1,0|(t)
π̃|2,0|(t)

ν
[|2,0|]
2 (t) =

π|2,0,0|(t)
π̃|2,0|(t)

it is possible to re-write the reduced system of differential equations in the fol-
lowing manner

dπ̃|0,2|(t)
dt

= π̃|0,2|(t) q̃|0,2|,|0,2| + π̃|1,1|(t) q̃|1,2|,|0,2|

dπ̃|1,1|(t)
dt

= π̃|0,2|(t) q̃|0,2|,|1,1| + π̃|1,1|(t) q̃|1,1|,|1,1| + π̃|2,0|(t) q̃|2,0|,|1,1|

dπ̃|2,0|(t)
dt

= π̃|1,1|(t) q̃|1,1|,|2,0| + π̃|2,0|(t) q̃|2,0|,|2,0|

where, for example, the rate of the inhomogeneous Markov chain from state
|0, 2| to state |1, 1| is q̃|0,2|,|1,1|(t) = μ3, that from state |2, 0| to state |1, 1| is
q̃|2,0|,|1,1|(t) = (ν[|0,2|]

2 (t)μ2r2,3 + ν
[|1,1|]
2 (t) (μ1 + μ2r2,3) + ν

[|2,0|]
2 (t)μ1), and that

from state |1, 1| to itself is q̃|1,1|,|1,1|(t) = −(μ3 + ν
[|0,1|]
1 (t)μ2r2,3 + ν

[|1,0|]
1 (t)μ1)

which corresponds to specific instances of (22).
The above 3 differential equations give the exact characterization of the

behavior of the original model; the obvious downside of this solution is that we
used the transient probabilities of the original network to construct the aggre-
gated network and that the equivalent time-dependent service rates depend on
the initial conditions.

It is clear from the previous example and from the preceding more general
discussion that exact flow equivalence characterization is difficult to obtain. In
particular, we have shown that

– in order to capture the transient behavior of the original network, the aggre-
gated CTMC is time-inhomogeneous,

– the computation of the time-dependent rates of the aggregated CTMC req-
uires the solution of the original model,

– the time-dependent rates depend on the initial state of the original model
which precludes the possibility to transport the characterization of the aggre-
gated servers from one experiment to another.

These observations emphasize the limited practical applicability of the above
results and the problems of using the flow equivalent approach in transient anal-
ysis. Still they provide strong motivation for investigating the possibility of com-
puting approximate solutions using the heuristics that we introduce in the next
section.

24 A. Angius et al.

4.2 Approximate Aggregation for Transient Analysis

Here, we present the simplest strategy that maintains the advantages of the
original technique, namely, that the aggregate server is characterized on the
basis of the analysis of the aggregated stations in isolation, and that can be used
to approximate the transient probabilities of the original model with reduced
computational cost.

The idea is to impose χagg(h, t) = χagg(h), 1 ≤ h ≤ N , for every t, i.e., to
use information gained from the steady state analysis of the “short-circuited”
servers to define the rates of the aggregate station. Since the rates χagg(h) can be
evaluated using computationally efficient algorithms [9], their cost is negligible
with respect to that of the transient analysis. Moreover, this idea guarantees
that the approximate transient analysis tends to the correct steady state result.

On the other hand, this strategy corresponds to assume that the rate of
service of the equivalent server is not affected by the transient probabilities of
the remaining stations of the system and by the position of the customers within
the aggregated stations. Indeed, this is a strong assumption that, in general, does
not hold but that can be used under certain conditions that we will describe
briefly in Section 5.

We briefly mention here that an approach based on information gained from
the transient analysis of the “short-circuited” servers is also worth of being
investigated. This would lead however to a situation in which the behavior of
the whole network is more difficult to define because subsequent periods with
different number of customers in the aggregate would need to be synchronized.
Hence the overall model would become non-Markovian.

5 Numerical Illustration on a General Network

We tested the method on many networks in which the parameters and the aggre-
gations were selected randomly except for two stations that were used as observa-
tion points to evaluate the accuracy of the approximation under different initial
conditions. All these experiments showed that the more the initial condition
of the analysis is such to quickly fill the waiting room of at least one of the
aggregated stations the more our method provides inaccurate results.

For every experiment, we compared the transient probabilities of the original
and the aggregated models. The results of these comparisons are illustrated
by figures with the mean and the variance of relevant quantities at different
points in time. Specifically, we chose to focus on the behavior of the number
of customers at the non-aggregated stations (the observation points mentioned
before). The analysis of the aggregated model has been done analytically for all
the experiments, whereas the results for the original network have been obtained
via simulation.

We ran a large number of experiments that we cannot report here in detail
due to space reasons. Instead we decided to restrict our discussion on the behav-
ior of a single model where, by changing only a few parameter values, it is

Use of Flow Equivalent Servers in the Transient Analysis 25

0

M/M/2

1

2

3

4 5 6

8

7

9

M/M/3

M/M/5

M/M/1

M/M/3

M/M/1 M/M/2

M/M/1

M/M/3

M/M/2

0.25 0.5

0.25

0.5

0.66

0.5

0.33

0.5

0.5

0.5

0.5

Fig. 1. Random network model

5

M/M/1

9

s0,1,2,3,4

s6,7,8

M/M/2

0.5

0.5

0.5

0.5

Fig. 2. Aggregated network derived using aggregate servers s0,1,2,3,4 and s6,7,8

Table 1. Number of servers and service rates of the stations of the random model

station id 0 1 2 3 4 5 6 7 8 9

num. servers 2 3 1 5 3 1 2 1 3 2

service rate 3.5368 4.4287 3.006 3.008 0.8146 0.8504 1.0648 2.3953 0.4324 0.1002

possible to construct scenarios that can be either favorable for suggesting the
use of the flow-equivalent servers or adverse to the adoption of our method.

We analyze the system depicted in Figure 1 with the parameters reported in
Table 1; we highlighted stations 5 and 9 because they were not considered for
aggregation. The total number of costumers was set to 40. Two aggregations are
considered: the first, referred as s6,7,8, aggregates stations 6, 7 and 8 whereas
the second stations 0, 1, 2, 3, and 4 into a single station called s0,1,2,3,4. The
resulting aggregated model is depicted in Figure 2.

The first experiment places all the customers at station 5 at the beginning
of the analysis, i.e., n5(0) = 40. According to this initial condition, on average a
half of the customers goes directly to one of the aggregated stations. Observing
Figure 3 which depicts the expected numbers of customers at the two stations,
it is possible to note that they have a symmetric behavior: while the queue of 5
is getting empty the waiting room of station 9 gets full. The variability of the
two phenomena are quite similar since both of them are characterized by a peak
around time 40. However, due to the interactions with the other stations the
variance of the number of customers at station 9 stabilizes around 2 whereas the
same measure for station 5 is almost zero in condition of stability. It is evident
that: i) the trajectories generated by the aggregated model are indistinguishable

26 A. Angius et al.

from the original ones; ii) the queues of the two aggregated stations are empty
with high probability.

The second experiment considers as initial condition n9(0) = 40. In this
situation, both the aggregated stations receive customers directly. Figure 4 illus-
trates the results obtained by using the second initial condition. In this case
the population within station 9 stays almost unchanged and reaches a stable
condition soon. On the other hand, even if the number of customers at station 5
is small the station requires 100 time units to stabilize completely. Also in this
case the two aggregate servers provide an accurate approximation of the original
trajectories.

In our third experiment, in order to stress our approximation method, we
assume that station 5 has an infinite server policy. As initial condition all cos-
tumers are in station 5. In this situation, customers are placed again far from
the aggregated stations but half of the customers arrives, on average, fast into
the aggregated station s6,7,8. Figure 5 depicts the comparison between the tra-
jectories generated by the original model and those generated by using the two
aggregate servers. In this case, looking at the trajectories of station 9, it is pos-
sible to see a significant difference between the approximated curves and the
original ones. Still, the aggregated model provides a satisfactory picture of the
whole phenomenon. In particular, the approximated mean is able to reproduce
the slope of the original trajectory even if it overestimates its value. The variance
instead is overestimated slightly at the beginning and then underestimated for
several time units. However, also in this case the shape of the original curve is
reproduced by the approximation.

As a last experiment, we considered again n9(0) = 40 as initial condition
and we assumed that station 9 has an infinite server policy whereas station
5 is single server. Figure 6 depicts the results by showing that approximated
curves corresponding to the mean and the variance of the number of customers
at station 5 fail to reproduce the peak that characterizes its transient.

The experiments show that the flow equivalence approximation works fine
when the overall speed of an aggregate (of the flow-equivalent server) is much
higher than that of the non-aggregated stations. Opposite is the situation in case
of very slow flow equivalent servers which yield poor approximations.

Obviously the really interesting situation is that represented by intermediate
configurations for which it would be nice to have criteria to decide whether the
transient analysis of the aggregated model is reliable or not. The initial condition
for the transient analysis plays an important role in deciding whether certain
stations are candidate to be aggregated or not. For sure, one can recommend the
aggregation not to include stations which are populated in the initial condition
of the model. Assuming that a subnetwork that we want to aggregate is empty in
the initial configuration, the speed at which customers can reach the aggregate
in the first moments of the transient evolution of the model is critical. Another
crucial point is the routing within the aggregation since, by construction, the flow
equivalence approximation is not able to represent the variability introduced by
the presence of paths involving intermediate stations with different speeds. Thus,

Use of Flow Equivalent Servers in the Transient Analysis 27

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

OR,E[X5]
AG, E[X5]

OR, Var[X5]
AG, Var[X5]

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 20 40 60 80 100

OR,E[X9]
AG, E[X9]

OR, Var[X9]
AG, Var[X9]

Fig. 3. Original and approximated means and variances of the numbers of customers
in station 5 (left) and station 9 (right) computed starting from X5 = 40 and all the
other queues empty

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 20 40 60 80 100

OR,E[X5]
AG, E[X5]

OR, Var[X5]
AG, Var[X5]

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35 40

OR,E[X9]
AG, E[X9]

OR, Var[X9]
AG, Var[X9]

Fig. 4. Original and approximated means and variances of the numbers of customers
in station 5 (left) and station 9 (right) computed by starting with X9 = 40 and all the
other queues empty

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

OR,E[X5]
AG, E[X5]

OR, Var[X5]
AG, Var[X5]

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30

OR,E[X9]
AG, E[X9]

OR, Var[X9]
AG, Var[X9]

Fig. 5. Original and approximated means and variances of the numbers of customers
within station 5 (left) and station 9 (right) computed by considering station 5 as an
infinite server and starting with X5 = 40

subnetworks in which the path of a customer is independent both of the station
the customer comes from and of the station to which the customer proceeds when
it leaves the aggregate are good candidate for aggregation. The aggregation is
thus not recommended when the customers quickly accumulate in the aggregates
(initially empty) at the beginning of the transient period of interest and when
when paths with substantially different speeds are possible within the aggregates.
The aggregation is instead reliable when customers are initially far from the
aggregated stations and take a substantial time to reach them.

28 A. Angius et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 50 100 150 200

OR,E[X5]
AG, E[X5]

OR, Var[X5]
AG, Var[X5]

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 50 100 150 200

OR,E[X9]
AG, E[X9]

OR, Var[X9]
AG, Var[X9]

Fig. 6. Original and approximated means and variances of the numbers of customers
within station 5 (left) and station 9 (right) computed by considering station 9 as an
infinite server and starting with X9 = 40

6 Conclusions

In this paper we considered the transient analysis of closed queuing networks.
Specifically, we investigated the use of the concept of the equivalent server in
transient analysis, using the characterization which provides exact steady state
results for some classes of networks. Similarly to what is done for the steady
state behavior, we showed that equivalent servers can be exact in the transient
phase as well, but their characterizations require the knowledge of the solution
of the whole original network and depend also on the initial location of the cus-
tomers in the network. Consequently, the exact characterization does not lead to
advantages from the computational point of view. This negative result is impor-
tant because it clarifies the fact that station aggregation in transient analysis can
only yield approximate results. For this reason, we opted for an approximate app-
roach. Particularly, we proposed to use the steady state characterization which
can be efficiently computed considering in isolation only those stations that we
aim to aggregate, thus leading to a significant computational gain with respect
analyzing the original network. While the method often provides accurate and
reliable results, there are many cases in which this characterization leads to
highly inaccurate results in the transient phase. Identifying a priori characteris-
tics of the model that can be exploited to decide whether the the approximation
yields reasonable results is an important task that we plan to address in the
near future. Moreover, we plan to continue to study this difficult and important
problem with the objective of defining a set of criteria that can be tested with
limited computational effort to decide on the reliability of the results obtained
with flow equivalent approximation suggested in this paper.

Acknowledgments. This work has been supported in part by project “AMALFI -
Advanced Methodologies for the Analysis and management of Future Internet” spon-
sored by Universit̊a di Torino and Compagnia di San Paolo, and by project grant Nr.
10-15-1432/HICI from the King Abdulaziz University of the Kingdom of Saudi Arabia.

Use of Flow Equivalent Servers in the Transient Analysis 29

References

1. Angius, A., Horváth, A.: Product Form Approximation of Transient Probabilities
in Stochastic Reaction Networks. ENTCS 277, 3–14 (2011)

2. Angius, A., Horváth, A.: Approximate transient analysis of queuing networks by
decomposition based on time-inhomogeneous markov arrival processes. In: Proc. of
8th International Conference on Performance Evaluation Methodologies and Tools
(ValueTools 2014), Bratislava, Slovakia, pp. 1–8, (2014)

3. Angius, A., Horváth, A., Wolf, V.: Approximate transient analysis of queuing net-
works by quasi product forms. In: Dudin, A., De Turck, K. (eds.) ASMTA 2013.
LNCS, vol. 7984, pp. 22–36. Springer, Heidelberg (2013)

4. Balbo, G., Bruell, S.C.: Calculation of the moments of the waiting time distribution
of FCFS stations in product form queueing networks. Computer Performance, 4(2),
June 1983

5. Balsamo, S., Iazeolla, G.: An extension of Norton’s theorem for queueing networks.
IEEE Trans. on Software Eng., SE-8 (1982)

6. Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed
networks of queues with different classes of customers. J. ACM 22(2), 248–260
(1975)

7. Bazan, P., German, R.: Approximate transient analysis of large stochastic models
with WinPEPSY-QNS. Computer Networks 53, 1289–1301 (2009)

8. Boucherie, R.J., Taylor, P.G.: Transient product form distributions in queueing
networks. Discrete Event Dynamics Systems: Theory and Applications 3, 375–396
(1993)

9. Bruell, S.C., Balbo, G.: Computational Algorithms for Closed Queueing Networks.
The Computer Science Library, Elsevier North Holland (1980)

10. Buzen, J.P.: Computational algorithms for closed queueing networks with expo-
nential servers. Commun. ACM 16(9), 527–531 (1973)

11. Chandy, K.M., Herzog, U., Woo, L.: Parametric analysis of queueing networks.
IBM Journal of Res. and Dev. 1(1), 36–42 (1975)

12. Chandy, K.M., Sauer, C.H.: Approximate methods for analyzing queueing network
models of computing systems. ACM Comput. Surv. 10(3), 281–317 (1978)

13. Chandy, K.M., Sauer, C.H.: Computational algorithms for product form queueing
networks. Commun. ACM 23(10), 573–583 (1980)

14. Chen, H., Mandelbaum, A.: Discrete flow networks: Bottleneck analysis and fluid
approximations. Mathematics of Operations Research 16(2), 408–446 (1991)

15. Denning, P.J., Buzen, J.P.: The operational analysis of queueing network models.
ACM Comput. Surv. 10(3), 225–261 (1978)

16. Gordon, W.J., Newell, G.F.: Cyclic queueing networks with restricted length
queues. Operations Research 15(2), 266–277 (1967)

17. Kritzinger, P., van Wyk, S., Krezesinski, A.: A generalization of Norton’s theorem
for multiclass queueing networks. Perform. Eval. 2, 98–107 (1982). Elsevier

18. Lavenberg, S.S.: Computer Performance Modeling Handbook. Academic Press,
New York (1983)

19. Matis, T.I., Feldman, R.M.: Transient analysis of state-dependent queueing net-
works via cumulant functions. J. of Applied Probability 38(4), 841–859 (2001)

20. Whitt, W.: Decomposition approximations for time-dependent Markovian queue-
ing networks. Operations Research Letters 24, 97–103 (1999)

Model Checking of Open Interval Markov Chains

Souymodip Chakraborty(B) and Joost-Pieter Katoen

RWTH Aachen University, 52056 Aachen, Germany
souymodip@gmail.com

Abstract. We consider the model checking problem for interval Markov
chains with open intervals. Interval Markov chains are generalizations of
discrete time Markov chains where the transition probabilities are inter-
vals, instead of constant values. We focus on the case where the intervals
are open. At first sight, open intervals present technical challenges, as
optimal (min, max) value for reachability may not exist. We show that,
as far as model checking (and reachability) is concerned, open intervals
does not cause any problem, and with minor modification existing algo-
rithms can be used for model checking interval Markov chains against
PCTL formulas.

1 Introduction

Discrete time Markov chains (DTMCs) are useful models for analyzing the reli-
ability and performance of computer systems. A DTMC is defined as a weighted
directed graph where the weights on the outgoing transitions define a probabil-
ity distribution. In general, the precise values of these probabilities may not be
always available [9,11,12]. This is precisely the case when transition probabilities
are obtained by statistical methods.

Interval Markov chains [9,13] are useful in modeling and verifying proba-
bilistic systems where the value of the transition probabilities are not known
precisely. IMCs generalize discrete time Markov chains by allowing intervals of
possible probabilities on the state transitions in order to capture the system
uncertainty more faithfully. For example, instead of specifying that the prob-
ability of moving from state s to t is 0.5, one can specify an interval [0.3, 0.7]
which captures the uncertainty in the probability of moving from state s to t.
Uncertainty in the model may occur due to various reasons [12]. In some cases,
the transition probabilities may depend on an unknown environment, and are
approximately known, in other cases the interval may be introduced to make the
model more robust.

There are two prevalent semantics of interval Markov chains. Uncertain
Markov Chains (UMC) [9,11] is an interpretation of interval Markov chains as
set of (possibly uncountably many) discrete time Markov chains where each ele-
ment of the set is a DTMC whose transition probabilities lie within the interval
range defined by the IMC. In the other semantics, called Interval Markov Deci-
sion Processes (IMDP) [11], the uncertainty of the transition probabilities are
resolved non-deterministically. It requires the notion of scheduler, which chooses
c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 30–42, 2015.
DOI: 10.1007/978-3-319-18579-8 3

Model Checking of Open Interval Markov Chains 31

a distribution, each time a state is visited in an execution, from a (possibly
uncountable) set of distributions defined by the intervals on the transitions.

The logic probabilistic computation tree logic (PCTL) [8], extends the tem-
poral logic CTL [7] with probabilities. This allows us to express properties like
“after a request for a service, there is 99% chance of fulfilling the request”. PCTL
formulas are interpreted over DTMCs and model checking on DTMCs can be
done in PTIME. The problem of model checking PCTL properties for IMCs
was studied in [11], it provides a PSPACE algorithms for both UMC and IMDP
semantics for interval Markov chains. Furthermore, NP and co-NP hardness was
shown for model checking in UMC semantics and PTIME hardness for IMDP
semantics which follows from PTIME hardness of model checking PCTL formu-
las on DTMCs. [4] improved the upper bound and showed that model checking
problem for IMDP semantics is in co-NP. This result is shown for a richer class of
logic, called ω-PCTL, which allow Büchi and co-Büchi properties in the formula.

In the literature, the intervals of IMCs are always assumed to be closed. This
assumption is sensible from the model checking perspective in IMDP semantics
as models with open interval may not have an optimal value of satisfying a
temporal property. The focus of this paper is to study IMDP semantics of IMCs
with open intervals. We will later contrast it with the UMC semantics, and will
see that the existing algorithm is applicable for IMCs with open intervals, but its
outcome may vary with the model at hand. The main intuition is that the value
of reachability property in a IMC with open intervals can be made arbitrarily
close to the value of the property obtained by closing the intervals. We use this
observation to show the equivalence between model checking IMCs with open
interval and IMCs with closed intervals.

2 Interval Markov Chains

Definition 1. Let I be the set of intervals (open or closed) in the range [0, 1].
The subsets I0 � {(a, b] | 0 ≤ a < b ≤ 1}, I1 � {(a, b) | 0 ≤ a < b ≤ 1}, I2 �
{[a, b) | 0 ≤ a < b ≤ 1} and I3 � {[a, b] | 0 ≤ a ≤ b ≤ 1}. I =

⋃
i∈{0,1,2,3} Ii.

Let I � 〈a, b〉 be an interval in I, where 〈∈ {(, [} and 〉 ∈ {),]}. The lower
bound I↓ = a and upper bound is I↑ = b. Point intervals ([a, a]) are closed inter-
vals where the upper and lower bounds are equal. The closure of an interval I,
denoted by Ī, is the smallest closed interval that includes I.

Definition 2. A discrete time Markov chain (DTMC) is a tuple M = (S,L, δ)
where S is a finite set of states, L : S → 2AP is a labeling function (AP is the
set of atomic propositions), δ : S → S → [0, 1] is a transition probability matrix,
such that for all s ∈ S,

∑
t∈S δ(s)(t) = 1.

For simplicity of notation we will use the un-Curry notation δ(s, t) for δ(s)(t).
A path π of a DTMC M is an infinite sequence of states π = s0s1 . . . such that
for all i ≥ 0, δ(si, si+1) > 0. The ith state of the path π is denoted by πi = si.
Let Ωs be the set of paths starting from state s. The cylinder (open) set Cyl(ρ)
is the set of all paths with ρ as prefix. Let B be the smallest Borel σ-algebra

32 S. Chakraborty and J.-P. Katoen

defined on the cylinder sets. Let ρ be a finite sequence of states s0s1 . . . sn such
that δ(si, si+1) > 0 for all 0 ≤ i < n. The unique measure μ is thus induced
from δ as, μ(Cyl(ρ)) = δ(s0, s1)·δ(s1, s2) . . . ·δ(sn−1, sn).

Definition 3. An Interval Markov chain (IMC) is a tuple M � (S,L, δ), where
S is a (finite) set of states and L is a labeling function L : S → 2AP , where AP
is the set of atomic propositions. δ is a function δ : S → D, where D is the set
of functions from the set of states to the set of intervals I, i.e., D = S → I.

As before, we will use the un-Curry notation δ(s, t) for δ(s)(t). For a state s, the
probability of a single step from s to t lies in the interval δ(s, t). Thus an IMC
defines a collection of Markov chains, where the single step transition probability
of moving from state s to t lies in the interval δ(s, t). Not every IMC defines a
collection of Markov chains. Thus, we have the notion of realizability.

Definition 4. Let M = (S,L, δ) be an IMC with states S = {s1, . . . , sm}. Let
DM be the set of m × 1 vectors d, such that dT ·1 = 1, which represents the set
of distributions on states of M. Where M is fixed we denote the set as D.

M is said to be realizable if for each set of intervals defined by δ(s), there
exists a distribution d such that for all i ∈ [1,m] di (the ith component of d) is
in δ(s, si). The distribution d is said to be a solution of δ(s). Let sol(s) be the
set of solutions of δ(s).

Next we give two semantics of IMCs: 1) Uncertain Markov chains (UMC), 2)
Interval Markov decision process (IMDP).

Definition 5. (Uncertain Markov chain semantics) An IMC M = (S,L, δ)
represents a set of DTMCs, denoted by [M]u, such that for each DTMC M =
(S,L, δM) in [M]u, δM (s) is a solution of δ(s) for every state s ∈ S. In UMC
semantics, we assume that nature non-deterministically picks a solution of δ(s)
for each state s ∈ S, and then all transitions behave according to the chosen
transition probability matrix.

To define interval Markov decision process semantics, we need the notion
of schedulers. The schedulers resolve the non-determinism at each state s by
choosing a particular distribution from sol(s).

Definition 6. A scheduler of an IMC M = (S,L, δ) is a function η : S+ →
DM, such that for every finite sequence of states π·s of M, η(π·s) is a solution
of δ(s).

A path w = s0s1s2 . . . of an IMC M is an infinite sequence of states. A path w
starting from a state s (i.e., w0 = s) is said to be according to the scheduler η
if for all i ≥ 0, η(w0, . . . , wi)(wi+1) > 0. A scheduler is memoryless if the choice
of the distribution depends solely on the current state, that is, η : S → DM.

Definition 7. (Interval Markov decision process semantics) In IMDP
semantics, before every transition from a state s of a IMC M = (S,L, δ),
nature chooses a solution of δ(s) and then takes a one-step probabilistic transition

Model Checking of Open Interval Markov Chains 33

according to the chosen distribution. In other words, nature chooses a scheduler
η which then defines a DTMC M . The set of all DTMC in this semantics is
denoted by [M]d.

Obviously, for any IMC M we have:

[M]u ⊆ [M]d.

Given an IMC M and a state s, let σ-algebra (Ωs,F) be the smallest σ-algebra
on the cylinder sets of Ωs, where Ωs is the set of infinite paths starting from s.
For each scheduler η we have a probability measure Prη (also denoted by μη

M)
on the events in F .

3 Probabilitic Computation Tree Logic

Probabilistic computation tree logic (PCTL) [8] replaces the path quantifiers in
CTL by probabilistic operators. It has the following syntax:

f ::= a | ∼f | f ∧ f | P��pg
g ::= Xf | f U f

where a ∈ AP , f is called a state formula, g is called a path formula, 	
∈ {<,
≤, >,≥} and p is a rational number in [0, 1]. The PCTL semantics is define on
DTMCs. A DTMC M satisfies a state formula f at a state s if:

M, s |= a iff a ∈ L(s)
M, s |= ∼f iff M, s �|= f
M, s |= f1 ∧ f2 iff M, s |= f1 and M, s |= f2
M, s |= P��pg iff Pr{s |= g} 	
 p,

where {s |= g} = {w | w0 = s and M,w |= g}. A path formula g is true for a
path w of M if:

M,w |= Xf iff M,w1 |= f
M,w |= f1 U f2 iff ∃i : M,wi |= f2 and ∀j < i : M,wj |= f1

We will denote the satisfaction relation by s |= f (and w |= g) when M is
fixed. Next we define the satisfaction relation of a PCTL formula f for an IMC
M for the two semantics. In UMC semantics, M, s |=u f iff for every DTMC
M ∈ [M]u, M, s |= f . Note that for a PCTL formula f , M, s |=u f does not
imply M, s �|=u ∼f . In IMDP semantics, the satisfaction of a PCTL formula f
by a state s of M (M, s |=d f) is the same as for a DTMC except the formula
with probabilistic operator, which is as follows:

M, s |= P��pg iff ∀η : Prη
M{w | w0 = s and M,w |= g} 	
 p

Particularly,

s |= Pr≤c g iff supη Prη(s |= g) ≤ c
s |= Pr<c g iff supη Prη(s |= g) < c
s |= Pr≥c g iff infη Prη(s |= g) ≥ c
s |= Pr>c g iff infη Prη(s |= g) > c

(1)

34 S. Chakraborty and J.-P. Katoen

Thus if event E ∈ F defines a set of paths, we are interested in the values

inf
η

Prη
M(E) and sup

η
Prη

M(E)

Open intervals present a problem for model checking in IMDP semantics. There
might not exist a scheduler that gives the optimal values. Consider the reacha-
bility problem for IMCs in the following example:

Example 1. It is possible that an optimal scheduler may not exist for IMCs with
open intervals. Consider the following example Figure 1, E is the set of paths
that eventually reach the state s1 from s0. infη Prη(E) = 0.6, but no scheduler
gives the probability of reaching s1 from s0 as 0.6. The reason for this is the
open lower bound of (0.3, 1].

4 ε-Approximate Scheduler for Reachability

In this section we consider the reachability problem in IMDP semantics for IMCs
with open intervals. As observed in the previous example, an optimal scheduler
may not exists, thus we will construct ε-approximate schedulers.

An IMC is called a closed IMC if the probability interval of every transition
is closed. We can obtain a closed IMC from an arbitrary IMC by taking the
closure of the probability intervals.

Definition 8. Given an IMDP M � (S,L, δ), a closed IMDP M̄ is defined as
(S,L, δ′), where for every s, t, δ′(s, t) = δ̄(s, t).

Example 2. The closed IMC M̄ for M in the example 1 is shown below:

s0s1 s2

[0.5, 1]

(0.3, 1] (0.1, 4]

[1, 1][1, 1]

Fig. 1. A interval Markov chain

s0s1 s2

[0.5, 1]

[0.3, 1] [0.1, 4]

[1, 1][1, 1]

Fig. 2. A closed interval Markov chain

Evidently, if an IMC M is realizable then M̄ is also realizable.

Definition 9. Basic feasible solution (BFS). Given a set of closed intervals R �
{I1, . . . , Im} a basic feasible solution d is an m × 1 vector, such that there exists
a set H ⊆ R with |H| ≥ |R| − 1 and for all Ii ∈ H, di = Ii↓ or di = Ii↑, and
dT ·1 = 1.

BFSs of a set of intervals J that contains open intervals are the BFSs of the set
of closed intervals J̄ . We have the following observation.

Model Checking of Open Interval Markov Chains 35

Proposition 1. Every solution of a set of (open or closed) intervals, can be
represented as the convex combination of the BFSs.

Proposition 2 ([4]). Let M be a closed IMC, and E be an event defining the
reachability of some set of states T ⊆ S. There exists a memoryless scheduler η
such that the probability of the event E is optimal.

The proposition says that, if M is closed then we have a scheduler η : S → DM

such that Prη(E) = infη′ Prη′
(E) (or supη′ Prη′

(E)), and η chooses at each
state s one of the BFSs of δ(s) (pure scheduler). The proposition follows directly
from the existence of an optimal scheduler for reachability in Markov Decision
Processes [2].

The main theorem of this paper is as follows:

Theorem 1. Let E be the event describing the set of paths of an IMC M start-
ing from a state s and eventually reaching some goal states T . Then:

∀ε > 0 ∃η̂ : |min
η

Prη
M̄(E) − Prη̂

M(E)| ≤ ε

and
∀ε > 0 ∃η̂ : |max

η
Prη

M̄(E) − Prη̂
M(E)| ≤ ε

Proof. Let M � (S,L, δ) and M̄ � (S,L, δ′). M̄ is closed, thus by Prop. 2 an
optimal scheduler exists. Let

∗
η be an optimal scheduler that minimizes Prη

M̄(E).

Furthermore,
∗
η is memoryless, deterministic and chooses one of the BFS of δ′(s)

at each state s. Hence,
∗
η induces a DTMC on M̄, and

∗
η(s, t) defines the single

step transition probability from a state s to a state t.

Let the stochastic matrix
∗
P be such that each row is identified with a state

of M̄. We have :
∗
P (s, t) =

∗
η(s, t) if s �∈ T and

∗
P (s, s) = 1 if s ∈ T (2)

Let A = (1 +
∗
P + (

∗
P)2 + (

∗
P)3 . . .), A is well-defined stochastic matrix as the

series converges. Let γ = ‖A‖∞.
Now we are in a position to define a scheduler η̂ for the IMC M. The scheduler

η̂ is a function, η̂ : S × N → DM. We assume that there are no positive point
intervals. (We can set the value of η̂ if point intervals are present.) Define the
following:

Qs = {t | ∗
η(s, t) > 0,

∗
η(s, t) �∈ δ(s)}

Ls = {t | ∗
η(s, t) ∈ δ(s, t),

∗
η(s, t) = δ(s, t)↓}

Rs = {t | ∗
η(s, t) ∈ δ(s, t),

∗
η(s, t) = δ(s, t)↑}

Is = {t | ∗
η(s, t) ∈ δ(s, t),

∗
η(s, t) �= δ(s, t)↑,

∗
η(s, t) �= δ(s, t)↓}

ρ = min{{x | ∃s,∃t ∈ Ls ∪ Is : x =
∗
η(s, t) − δ(s, t)↓},

{x | ∃s,∃t ∈ Rs ∪ Is : x = δ(s, t)↑ − ∗
η(s, t)},

{x | ∃s,∃t ∈ Qs : x = δ(s, t)↑ = δ(s, t)↓}}
Observe that ρ is a constant of the model M. Let η̂ be defined as follows:

36 S. Chakraborty and J.-P. Katoen

– Let t ∈ Qs. This implies
∗
η(s, t) = δ(s, t)↑ or

∗
η(s, t) = δ(s, t)↓. If

∗
η(s, t) =

δ(s, t)↑ then δ(s, t) is open from above and η̂(s, n, t) =
∗
η(s, t) − 2−n κρ

|Qs| ,

where κ = ε
1+γ . Similarly, if

∗
η(s, t) = δ(s, t)↓ then δ(s, t) is open from below

and η̂(s, n, t) =
∗
η(s, t)+2−n κρ

|Qs| .

– Let t ∈ Rs and α �
∑

t∈Qs

η̂(s, n, t) − ∗
η(s, t). If α < 0 then for all t ∈ Rs ∪ Is,

η̂(s, n, t) =
∗
η(s, t)+ α

|Rs∪Is| and for t ∈ Ls, η̂(s, n, t) =
∗
η(s, t). If α > 0 then for

all t ∈ Ls ∪ Is, η̂(s, n, t) =
∗
η(s, t) + α

|Ls∪Is| and for t ∈ Rs, η̂(s, n, t) =
∗
η(s, t).

If α = 0 then for all t ∈ Ls ∪ Is ∪ Rs, η̂(s, n, t) =
∗
η(s, t).

It remains to prove that d =
∗
η(s, n), defined above, is a solution to δ(s). From

the construction it follows that
∑

t∈S d t = 1 and hence it is a valid distribution
on the states of the IMC M. Consider the following cases: t ∈ Qs and

∗
η(s, t) =

δ(s, t)↑, the upper bound of δ(s, t) is open. The lower bound of δ(s, t) is strictly
smaller than 2−nκρ for any n ∈ N i.e., δ(s, t)↓ < κρ since ρ is at the most
as large as the smallest interval in M. Thus d t ∈ δ(s, t). Similarly, for every
t ∈ Qs, d t ∈ δ(s, t). Suppose α < 0, then Rs ∪ Is is not empty, else δ(s) will
not be realizable. The changes to the probability for a transition s to t, where
t ∈ Rs ∪ Is is small enough so that d t ∈ δ(s, t). Thus, for every t, d t ∈ δ(s, t),
or equivalently d is a solution to δ(s, t). Identical argument holds when α > 0.

Let P̂n be a sub-stochastic matrix defined as follows: P̂n(s, t) = η̂(s, t) if
∗
P (s, t) > 0 else P̂n(s, t) = 0. In other words, P̂n(s, t) > 0 if the state t is in
support(

∗
η(s)).

P̂n =
∗
P + Pn (3)

where |Pn(s, t)| ≤ 2−nκρ for every (s, t).
Let

∗
η and η̂ induce DTMCs M ′ and M on the IMCs M̄ and M, respectively.

Let the corresponding σ-algebra be S � (Ωs,F ,
∗
μ) and S ′ � (Ωs,F , μ̂), where

s is some state of M and Ωs is the set of paths starting from state s. Define
∗
R � {w ∈ Ωs | w is according to

∗
η} and R̂ � {w ∈ Ωs | w is according to η̂},

i.e.,
∗
R and R are set of paths in M ′ and M , respectively. Let B ∈ F be the

event of reaching the goal states T , and E =
∗
R ∩ B and E′ = R̂ ∩ B. It follows

from the construction that E ⊆ E′. Define Ai � {w | ∃u ∈ E : w0 . . . wi =
u0 . . . ui and

∗
η(wi, wi+1) = 0, η̂(wi, i, wi+1) > 0}. Let A =

⋃
i Ai. It is easy to

see that, E′ ∩ Ā = E. We will first show that the event A has a very small
probability measure in S ′:

μ̂(A) = Prη̂
M (A) =

∑

i=0

Prη̂
M (Ai)

If w ∈ Ai then δ(wi, wi+1)↑ > 0 and
∗
η(s, t) = 0. Thus,

Prη̂
M (Ai) ≤ 2−iκρ or Prη̂

M (A) ≤ κρ

Model Checking of Open Interval Markov Chains 37

Thus,
μ̂(A) ≤ κρ (4)

We will now show that the probability of E′ can be made infinitesimally close to
the probability of E. Formally, we will show, |μ̂(E′) − μ̄(E)| ≤ ε. The left hand
side can be written as:

|μ̂(E′) − μ̄(E)| = |μ̂(E′ ∩ A) + μ̂(E′ ∪ Ā) − μ̄(E)|
≤ |μ̂(E) − μ̄(E)| + κρ

(5)

That is, we restrict to the paths that belong to E. Let xn
s denote the probability

of reaching the goal states T at the nth step in M ′ from the state s. Let En be
the event of reaching the goal states T at the nth step in the Markov chain M
such that En ⊆ E and thus

⋃
n En = E. Let yn

s = μ̂(En). Thus, we can write
the following:

xn+1
s =

∑

t∈support(
∗
η(s))

∗
P (s, t)xn

t ,

yn+1
s =

∑

t∈support(
∗
η(s))

P̂n(s, t)yn
t .

Or, using vector notation, xn+1 =
∗
Pxn and yn+1 = P̂nyn. Therefore:

yn+1 − xn+1 =
∗
P (yn − xn) + Pnyn from equation (3)

≤
∗
P (yn − xn) + 2−nκρ1

≤ 2−nκρ(1 +
∗
P +

∗
P

2

+ . . .)1
Thus, ‖yn+1 − xn+1‖∞ ≤ 2−nκργ.

We have,

|μ̂(E) − μ̄(E)| ≤ |
∑

n

(yn
s − xn

s)| ≤
∑

n

2−nκργ ≤ κργ

Combining this with equation (5) we can conclude:

|μ̂(E′) − μ̄(E)| ≤ (1 + γ)κρ ≤ ε

By similar argument we conclude ∀ε > 0 ∃η̂ : |maxη Prη
M ′(E) − Prη̂

M (E)| ≤ κ.

Corollary 1. Let E be the set of paths that reach some goal states T of IMC
M. Then:

min
η

Prη

M̄(E) = inf
η

Prη
M(E) and max

η
Prη

M̄(E) = sup
η

Prη
M(E).

Proof. We need to show ∀κ > 0 ∃η̂ : |minη Prη
M ′(E) − Prη̂

M (E)| ≤ κ. Observe
that, η̂ is also a scheduler of M ′, thus, Prη̂

M (E) − minη Prη
M ′(E) ≤ κ. Simi-

larly, for all κ > 0 there exists a scheduler η̂ of M such that maxη Prη
M ′(E) −

Prη̂
M (E) ≤ κ.

38 S. Chakraborty and J.-P. Katoen

Example 3. In UMC semantics, the nature picks the probability transition ma-
trix and the model behaves according to it. The infimum (or supremum) proba-
bility of reaching some state is different than the infimum probability in IMDP
semantics. This becomes apparent in the following IMC with an open interval:

s0s1 s2s3
[0.5, 0.5] [0.3, 1](0, 0.1]

[0, 1]

[1, 1][1, 1]

The minimum and maximum probability of reaching state s3 from s0 in the
UMC semantics is 0.5. But for any ε > 0 there exists a scheduler for which
the probability of reaching s3 is smaller than ε. That is, the infimum of the
probability of reaching state s3 is 0.

5 PCTL Model Checking

In this section we briefly recall PCTL model checking on DTMC and IMCs with
closed intervals (for the two semantics), and then show how to use the result of
previous section to do model checking for IMCs with open intervals.

Model checking of PCTL [1,6] formula f on DTMC M proceeds much like
the CTL model checking on Kripke structures [5]. The satisfiability of a (state)
sub-formula f ′ of f for a state s of M is iteratively calculated and the label-
ing functions are updated accordingly. For example, for the until formula f =
P��p(f1 U f2) and a state s, the formula f is added to the label of s iff the proba-
bility of reaching states with label f2, via states with label f1 satisfies 	
 p. This
can be done in polynomial time by solving linear constraints. Finally, a state
s |= f if f ∈ L(s) and the model checking problem can be solved in polynomial
time.

Model checking in UMC semantics uses the existential theory of reals [10].
An IMC M, s |=u f in UMC semantics iff for all DTMC M ∈ [M]u, M, s |= f ,
or equivalently, M, s �|=u f iff there exists a M ∈ [M]u such that M, s |= ∼f .
Basically, we use parameters to encode the transition probabilities which are con-
strained by the intervals and construct a formula Γ in existential theory of reals
such that Γ is satisfiable iff there exists a M ∈ [M]u such that M, s |= ∼f [4].
Observe, that the presence (or absence) of open intervals does not affect the
algorithm and the algorithm operates in PSPACE.

Model checking in IMDP semantics is done by first transforming the IMC
into an Markov decision process (MPD) and then doing model checking on the
MDP [2]. Let M = (S,L, δ) be a closed IMC and for each state s ∈ S, let
Bs be the set of basic feasible solution of δ(s). Let DM = (S,L, μ) be the
MDP with μ : S → S → [0, 1], where μ(s) = Bs. From Proposition 1, we can
deduce that, a DTMC M ∈ [M]d iff M is induced by some scheduler η of DM.
Model checking of MDP proceeds the same way as model checking of DTMC. We
iteratively update the labels of the state with (state) sub-formulas. Conjunctions

Model Checking of Open Interval Markov Chains 39

and disjunctions are handled as in the DTMC model checking. Interesting cases
are formulas with probabilistic operator and negations. Let g be a path formula
and P�pg (or P≺pg) is added to the label of a state s ∈ S, iff

min
η

Prη
DM(s |= g) � p (or max

η
Prη

DM(s |= g) ≺ p)

where �∈ {≥, >} (≺∈ {≤, <}). This is done by solving a linear optimization
problem. We use the following proposition to handle formulas with negations.

Proposition 3. For any E ∈ F of (Ωs,F) on MDP M ,

inf
η

Prη(E) = 1 − sup
η

Prη(Ē)

Thus, model checking MDPs boils down to solving successive reachability opti-
mization problems. Note that direct application of this method to IMCs with
open interval is not possible since no scheduler exists which may yields the value
infη Prη

DM(s |= g).
In the rest of the section we use the above mentioned model checking mecha-

nism to show that model checking IMCs with open interval in IMDP semantics,
reduces to model checking its closure.

Theorem 2. Given a PCTL formula f and an IMC M,

M, s |= f iff M̄, s |= f

Proof. We assume that M has open intervals. We proceed by induction on the
structure of the formula f . We have the following cases:

1. Let f := a. The labeling function of s in M and M̄ are identical. Thus,
M, s |= f iff M̄, s |= f .

2. Let f := ∼f ′. From the induction hypothesis, M, s �|= f ′ iff M̄, s �|= f ′. Thus,
M, s |= f iff M̄, s |= f .

3. Let f := f1 ∧ f2. From the induction hypothesis, M, s |= f1 iff M̄, s |= f1
and M, s |= f2 iff M̄, s |= f2. Thus, M, s |= f iff M̄, s |= f .

4. Let f := [Xf ′]��c. Consider the case 	
∈ {≥, >}. Suppose
∗
η be the optimal

scheduler of M̄ such that Pr
∗
η

M̄(Xf ′) = minη Prη

M̄(Xf ′).
We show that for every ε we can construct a scheduler η̂ of M such that

Prη̂
M(Xf ′) − Pr

∗
η

M̄(Xf ′) ≤ ε.

Observe that, any scheduler of M is also a scheduler of M̄, since for any
states s, t ∈ S δ(s, t) ⊆ δ̄(s, t). Thus, Corollary 1. is applicable. Let Qs �
{t | ∗

η(s, t) > 0,
∗
η(s, t) �∈ δ(s)} and Rs � {t | ∗

η(s, t) > 0,
∗
η(s, t) ∈ δ(s, t)}.

We assume that Qs, Rs are not empty and there are no point intervals. Let
η̂(s) = d , where d is defined as follows:

40 S. Chakraborty and J.-P. Katoen

– Let t ∈ Qs. This implies
∗
η(s, t) = δ(s, t)↑ or

∗
η(s, t) = δ(s, t)↓. If

∗
η(s, t) =

δ(s, t)↑ then δ(s, t) is open from above and d t =
∗
η(s, t) − ερ

|S| , where ρ is

the minimum of the length of the non-zero interval in M and the
∗
η(s, t)

for t ∈ Rs. Similarly, if
∗
η(s, t) = δ(s, t)↓ then δ(s, t) is open from below

and d t =
∗
η(s, t)+ ερ

|S| .

– Let t ∈ Rs and α � 1−
∑

t∈Qs

d t −
∑

t∈Rs

∗
η(s, t). We have d t =

∗
η(s, t)+ α

|Rs| .

It follows that d is a distribution on the states of M and is a solution to δ(s).
Let E � {w | ∗

η(w0, w1) > 0 and M̄, w1 |= f ′} and E′ � {w | η̂(w0, w1) >
0 and M, w1 |= f ′}.

|
∗
η

Pr̄
M

(E) −
η̂

Pr
M

(E′)| ≤
∑

t∈support(η̂(s))

ερ

|S| ≤ ε

Thus we can conclude that infη Prη
M(Xf ′) = minη Prη

M̄(Xf ′). By similar
argument:

sup
η

Prη
M(Xf ′) = max

η
Prη

M̄(Xf ′).

M, s |= [Xf ′]��c iff M̄, s |= [Xf ′]��c, where 	
 ∈ {≤, <}.
5. Let f := [f1 U f2]��c. Suppose 	
 ∈ {≥, >}. By induction hypothesis, for

every s, M, s |= f1 iff M̄, s |= f1 and M, s |= f2 iff M̄, s |= f2. Let S1 �
{s | s,M |= f1} and T � {s | s,M |= f2}. The IMC M′ is obtained from
M by omitting states not present in the set S1 ∪ T . It is easy to see that, if
E is the event of reaching T in M′, then infη Prη

M′(E) = infη Prη
M(f).

From Corollary 1 it follows that for any 0 < ε ≤ 1 we can find η̂ such that
Prη̂

M′(E)− minη Prη
M̄′(E) ≤ ε, where E is the event of reaching T in M′.

Thus infη Prη
M(f) = minη Prη

M̄(f). Similar argument holds for 	
 ∈ {<,≤}.

This concludes the proof.

s0 s1

{a}

[0.5, 1]

(0, 1]
[1, 1]

Fig. 3. A interval Markov chain

s0 s1

{a}

[0.5, 1]

[0, 1]
[1, 1]

Fig. 4. A closed interval Markov chain

Example 4. Consider PCTL model checking of IMCs in UMC semantics. This
involves existentially quantifying the transition probabilities and creating a for-
mula in closed real field [4]. This captures a strict set of DTMC as compared to
IMDP semantics, i.e, [M]u � [M]d. For example, DTMC where the transition

Model Checking of Open Interval Markov Chains 41

probability between two states s, t change over time cannot be represented in
UMC semantics. This is exemplified by the IMC M in Figure 3. The probabil-
ity of satisfying the path formula g = G (∼a ∧ [Xa]>0) in the UMC semantics
is 0. But we can find schedulers which can make the probability of satisfying
g arbitrarily close to 1. The scheduler has the freedom to define an infinite
Markov chain by assigning monotonically increasing probabilities for the transi-
tion s0 → s0).

The model checking of the open IMC M is done by closing it (Figure 4). This
gives us the closed IMC M̄, shown below: The maximum probability of satisfying
g in M̄ is 1. Which implies, for every 0 < ε ≤ 1, there exists a scheduler η̂, for
which the probability of staying in a state that satisfies ∼a∧[Xa]>0 (s0) is greater
than 1 − ε, by Theorem 2.

6 Conclusion

We presented the problem of model checking Interval Markov chains with open
intervals. We proved that as far as model checking (and reachability) is con-
cerned open intervals do not cause any problem in interval Markov decision
process semantics and thus can be safely ignored. Interval Markov chains are
but special cases of more complex Markovian models, called constraint Markov
chains (CMC) [3]. Transition probabilities in these models are defined as a solu-
tion to linear equations. Let FV be the set of linear in-equations on variables V .
A constraint Markov chain is a tuple M � (S,L, δ), where the transition func-
tion δ : S → 2FV , maps each state to a set of linear in-equations. Thus IMCs
are a strict sub-class of convex Markov decision process. The behaviour of a
CMC can be defined in the UMC and IMDP semantics. We say, a system of
in-equation are closed if they have non-strict inequalities, otherwise they are
open. A CMC is called open if the transition function maps to an open system
of linear equations. Model checking open CMCs have the same kinds of problems
as described for IMCs. Theorem 2. can be extended to CMCs as well. We can
define basic feasible solutions for a system of linear in-equations as well. Let s
be a state of a CMC M and δ(s) be a system of linear in-equations on vari-
ables {x1, . . . , xk} such that xi denotes the probability of moving from state s
to si. The BFSs of δ(s) are the vertices of the convex hull defined by the set of
in-equations δ(s) ∪ {x1 + . . . + xk = 1}. The same argument as in the proof of
Theorem 2 shows that, model checking of PCTL formulas on CMCs can be done
by first closing the system of in-equations, this is done by replacing the strict
inequalities (<,>) with non-strict inequalities (≤,≥), and then model checking
on the closed model.

Acknowledgement. The authors thank Hongfei Fu for discussions on the topic of
this paper.

42 S. Chakraborty and J.-P. Katoen

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking (Representation and Mind
Series). The MIT Press (2008)

2. Bianco, A., De Alfaro, L.: Model checking of probabilistic and nondeterministic
systems. In: Thiagarajan, P.S. (ed.) FSTTCS 1995. LNCS, vol. 1026, pp. 499–513.
Springer, Heidelberg (1995)

3. Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wasowski,
A.: Constraint Markov chains. Theoretical Computer Science 412(34), 4373–4404
(2011)

4. Chatterjee, K., Henzinger, T., Sen, K.: Model-checking omega-regular properties
of interval Markov chains. In: Amadio, R.M. (ed) Foundations of Software Science
and Computation Structure (FoSSaCS) 2008, pp. 302–317, March 2008

5. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press,
Cambridge (1999)

6. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification.
J. ACM 42(4), 857–907 (1995)

7. Allen Emerson, E.: Temporal and modal logic. In: Handbook of Theoretical Com-
puter Science (vol. b), pp. 995–1072. MIT Press, Cambridge (1990)

8. Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. Formal
Aspects of Computing 6(5), 512–535 (1994)

9. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes.
In: LICS, pp. 266–277. IEEE Computer Society (1991)

10. Renegar, J.: On the computational complexity and geometry of the first-order the-
ory of the reals. part i: Introduction. preliminaries. the geometry of semi-algebraic
sets. the decision problem for the existential theory of the reals. Journal of Symbolic
Computation 13(3), 255–299 (1992)

11. Sen, K., Viswanathan, M., Agha, G.: Model-checking Markov Chains in the pres-
ence of uncertainties. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS,
vol. 3920, pp. 394–410. Springer, Heidelberg (2006)

12. Walley, P.: Measure of uncertainty in expert systems. Artificial Intelligence 83(1),
1–58 (1996)

13. Škulj, D.: Discrete time Markov Chains with interval probabilities. International
Journal of Approximate Reasoning 50(8), 1314–1329 (2009). Special Section on
Interval/Probabilistic Uncertainty

Performance Modeling of Cellular Systems
with Finite Processor Sharing Queues
in Random Environment, Guard Policy

and Flex Retrial Users

Ioannis Dimitriou(B)

Department of Mathematics, University of Patras, 26500 Patras, Greece
idimit@math.upatras.gr

Abstract. We investigate a two-station retrial queueing system to model
the access in modern cellular networks managed by two service providers.
Each provider owns a single access point, which operates under proces-
sor sharing discipline, and accepts three types of users: the handover
users and, the originating subscribers and the originating flex users. At
the arrival epoch, a flex user connects with the provider, which offers
the largest data rate. Each access point can admit a limited number of
users and employ a guard bandwidth policy in order to prioritize the
handover users. Both blocked handover and originating subscriber users
are lost. Blocked flex users join a virtual orbit queue of infinite capacity
from where they retry independently to connect with the service provider
that offers the largest data rate at their retrial time. Moreover, the sys-
tem operates in varying environmental conditions. Using the matrix ana-
lytic formalism we construct a four-dimensional Markovian model, which
allows to represent accurately the types of user behavior and the environ-
mental aspects in cellular networks. We perform a steady-state analysis
and a study of the main performance metrics.

Keywords: Finite processor sharing · Retrials · Load balancing ·
Matrix analytic method · Random environment

1 Introduction

In modern cellular mobile networks, the importance of a proper modeling of
customer behavior for improving the quality of service provided by the system
has been stressed [1,11,37]. Such systems are characterized by the partitioning
of the coverage area into cells served by a base station that can handle a limited
number of users. Typically the system must handle not only the fresh sessions
(i.e. calls) initiated inside a given cell, but also the handover sessions of users
moving across the cell.

An important issue is the modeling of the handover session process, which
consists of session requests caused by mobile users moving from one cell to
another. The current ongoing session has to be handed over between base sta-
tions. Taking into account the customer mobility and the handover effect, the
c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 43–58, 2015.
DOI: 10.1007/978-3-319-18579-8 4

44 I. Dimitriou

cell faces two kinds of session arrival processes: fresh sessions, i.e. sessions orig-
inated in that cell, and handovers sessions. Since handover users already use
network resources, they should be completed first. Normally they are prioritized
with respect to fresh sessions, since blocking a handover user, will degrade more
seriously the quality of service (QoS). Moreover, for an accurate representation
of a cellular network, it cannot be ignored that blocked sessions are able to redial
after some random time. Several studies [1,9–11,24,26,37] recognize the impor-
tant role played by the retrial phenomenon. For an account of the main results
on retrial queues, we refer the reader to the monographs [2,12].

The time spent by users before starting a retrial with modern mobile handsets
becomes shorter compared to the conventional telephone systems. These retrials
will have a negative influence on fresh sessions being connected at their first
attempt, and on handover requests, as the offered load of the system becomes
higher. To cope with the problem of blocked handovers, which must be avoided,
the concept of guard policy has been proposed.

Under such a a scheme, network resources can be reserved in individual cells
or form a pool for a reuse area, and can only be used by handover users. One of
the first studies on this subject is given by Guerin [15] (see also [6]), who explic-
itly studied a model with no retrial users. We also mention the nominal papers
by [7], [37], and [33] that introduced the guard channel policy in the retrial con-
text (see also [9,10] where guard and fractional guard policy was investigated
in conjunction with user retrials). Recently, Kim et al. [20] provided a detailed
analysis of stationary queue length distribution along with an optimization for-
mulation for the guard policy in the presence of retrials. In another scheme, a
priority queue is provided only to handover users [8,17].

It is well known that real communication systems do not have stationary
arrival and/or service patterns. In contrast, queueing parameters vary randomly
over time due to a variety of reasons including rush hour behavior, existence
of several customer classes, breakdowns and repairs of the servers, and ran-
dom shocks (see, e.g. [18,28,35]). However, the joint consideration of the retrial
feature and the random environment has been addressed only in a few papers
[3,18,19,35]. Clearly, all the studies mentioned above refer to a single station.

Furthermore, the Processor Sharing discipline (PS) has been used to evaluate
the flow-level performance of cellular data systems using Proportional Fairness
scheduling [4]. It is a popular model in the study of bandwidth sharing on the
Internet [14]. Some researchers also use it in the performance analysis of wireless
LANs [25]. In an egalitarian PS queue, the servers capacity1 is shared equally
among all flows concurrently in service. In addition, in such systems, the trans-
mission of a blocked flow is re-tried after some rethinking time with a certain
probability [21].

In this paper we focus on the effect of the retrial phenomenon on the QoS in a
cellular mobile network as well as the introduction of flex users that have a special
treatment and choose to connect with the service station that offers the largest

1 Server capacity may mean transmission slots, bandwidth, or CPU time, depending
on the system being studied.

Performance Modeling of Cellular Systems 45

data rate upon arrival. Recent studies on game theoretical analysis of cellular
markets [13], reveal the significant benefits of the notion of flex service compared
to traditional subscriber-only markets. It was shown that the flex service reduces
the percentage of disconnected users, and improves the social welfare. More
importantly, flex users exhibited significantly lower blocking probabilities than
subscribers.

In the following, we consider a mobile communication system operating in a
random Markovian environment and focus on a single cell served by two access
points (APs) that belong to two different service providers (SPs). Each service
station (i.e., an AP of a SP) offers a specific bandwidth, which is shared by all
connected users (i.e., a PS service discipline), and can handle a limited number
of users (see [22,30]). Moreover, we let, for the first time in the related literature,
the service rate to depend both on the state of the environmental process, and on
the number of the connected users. Each AP handles three types of customers,
handover users, originating subscribers and originating flex users.

A guard bandwidth policy [36] is applied to each service station in order to
give priority to handover users. More precisely, given the access point’s band-
width, say C, its admission region in the cell is given by (Nc, Gh, Gf), where
Nc = �C/r� is the maximum number of connected users, where r is the the
minimum bandwidth requirement of a call, Gf (≤ Nc) is a real number repre-
senting a randomized number of guard channels (guard bandwidth) dedicated to
new and handoff traffic in the cellular area, and Gh (≤ Gf) is the guard band-
width reserved only for handoff traffic in this area. Both blocked handover and
originating subscribers users are considered lost. For the first time in the retrial
literature, originating flex users join the AP that provides the largest data rate
at the arrival moment.

If both APs are fully utilized, originating flex users join an infinite capacity
orbit and retry for service. A retrial flex user will try to connect with the AP
that offers the largest data rate upon retrial instant. Note that in such a case, the
retrial rate of the flex user depends on the number of already connected users in
each AP. Note also that it is the first time in the retrial queueing literature that
a processor sharing discipline is used along with a guard policy, the presence of
multi-station queueing system, the random environment, and more importantly
the presence of flex users that join the AP which provides the largest data rate
upon arrival.

To conclude, we can consider the following interpretations to understand the
applicability of flex service. In the first one, flex users may have a special type of
contract that guarantees the coalition of both SPs. This special contract allows
a flex user to connect with the SP which offers the largest data rate. Secondly,
flex users may have mobile devices that are equipped with a special user centric
application which provides information in real time, about the offered data rate
from the available SPs in the target cell, and forces the user to connect with the
“best” one.

We show how the matrix analytic formalism [23,28] provides an appropri-
ate mathematical framework to construct a four-dimensional Markovian model

46 I. Dimitriou

which allows us to represent accurately the types of user behavior and the envi-
ronmental aspects in cellular mobile networks. The organization of the rest of
this paper is as follows. In Section 2, we describe the mathematical model. The
construction of the underlying block-structured infinitesimal generator is pre-
sented in Section 3, while in Section 4, the stability condition and the stationary
distribution of the system state is derived. Section 5 deals with the derivation of
formulas for some key performance measures of the system. Finally, in Section 6,
we give a numerical example that illustrates the system performance.

2 Model Description

We consider a queueing model composed of two stations that operate under
processor sharing discipline. Each station has a finite capacity and cannot admit
more than a specific number of connected users. Therefore, we consider a time-
sharing system of two queues that admit at most M1, M2 users respectively. The
queueing system accepts five types of users, say P1h, P2h, P1f , P2f and P3f . Pkf

users, k = 1, 2 are subscribers that generate sessions originated in the target cell
(fresh sessions) and they connect only with the service provider k. P3f users are
flex (originated sessions in the target cell) in the sense that connect to a provider,
which offers the largest data rate (see below for details). Moreover, P1h, P2h are
handover users arriving from adjoining cells, already connected with the SP 1,
2 respectively.

The limited bandwidth of a target cell and the competition between the
users may create essential problems, especially for the moving users. When an
active mobile user enters the target cell moving from the adjoining cell, his/her
communication can be terminated due to lack of free resources. The requests of
such on-going (handover) users compete with the requests of the users originated
in the target cell (fresh sessions). Clearly, it is more intolerable to drop an on-
going service, than to block a service that has yet to be established. In order
to provide some kind of priority to handover users, we employ a guard policy
[36], which assumes a reservation of AP’s bandwidth exclusively for the service
of handover users.

Let Rj be a real number representing a randomized number of guard channels
(guard bandwidth or simply service positions) dedicated only for handover users
in AP j, j = 1, 2. That said, let C

(i)
j is the offered bandwidth by the AP j, given

the environmental state i (see below). We reserve a part C
(i)
jh < C

(i)
j for handover

requests. Thus, Rj = C
(i)
jh /r

(i)
− , where r

(i)
− is the minimum attainable transfer

rate, given the environmental state i (Note that for convenience we have assumed
that Mj = C

(i)
j /r

(i)
− , j = 1, 2, ∀i). Therefore, Lj = Mj − Rj = (C(i)

j − C
(i)
jh)/r

(i)
−

service positions can be shared from the fresh users originated in the target cell
and from handover users.

The behavior of the model depends on the state of the environmental con-
ditions, which are governed by an irreducible continuous time Markov chain
{Y (t); t ≥ 0} with with finite state space E = {1, 2, ...,M} and infinitesimal gen-
erator S. The environmental process is a very useful modeling tool that offers us

Performance Modeling of Cellular Systems 47

the ability to adapt in our model the fluctuation of users’ traffic. Handover users
connected with SP k, arrive according to a Poisson process with rate λ

(i)
kh. If they

find available space in the AP k, will occupy a service position, otherwise the
handover user is lost and so the mobile user during a conversation is forced to
be terminated. Moreover, Pkf users arrive at the system according to a Poisson
process with rate λ

(i)
k , k = 1, 2, 3, given that the environmental process is in

state i. Upon arrival, Pkf , k = 1, 2, users join AP k, if there is available space
(i.e., at least Lk available service positions) at the corresponding station.

We assume that each user has an exponentially distributed service require-
ment with mean 1/μ. When the environmental process is in state i, and there
are mk connected users in AP k, the server works at a rate c

(i)
mk > 0. This service

capacity is equally shared among all connected users. Hence, each user termi-
nates his session in an interval of length Δ with probability 1

mk
μc

(i)
mkΔ + o(Δ),

for Δ → 0. Let μ
(i)
kmk

= μc
(i)
mk . Note that under such scheme we can incorporate

unavailability periods for the APs. That said, we can set some of the c
(i)
mk to be

zero. In practical applications this fact depends on the state of the environmental
state i. For instance, it is possible during the weekend the AP to be unavailable
due to maintenance (see [30,31]). Moreover, the speed c

(i)
mk depends on the total

number of connected users and thus, we may write c
(i)
mk = min[r(i)+ , C

(i)
k /mk],

where r
(i)
+ ≥ r

(i)
− the maximum attainable transfer rate.

Upon arrival, a P3f user joins the station which provides the largest data rate.
That said, he/she chooses AP k, where μ

(i)
kmk+1/(mk +1) = max(μ(i)

1m1+1/(m1 +

1), μ(i)
2m2+1/(m2 + 1)). If both APs have the same occupancy, the arriving P3f

customer is routed randomly to each AP with probability 1/2, provided that
there is available space in both APs. If an AP is fully utilized, the arriving user
will connect to the AP which has a vacant place.

Moreover, we assume that the dwelling times (i.e., the time spent in a cell
before moving to the coverage area of an adjacent cell) of users are also expo-
nentially distributed with rate νi, independent of the type of user given that
the environmental process is in state i, i = 1, ...,M . Therefore, the total hold-
ing time for a connected user in AP k is exponential with rate μ

(i)
kmk

+ mkνi,
mk = 1, ...,Mk. On the other hand, blocked flex users abandon the cell due to
their mobility at a rate nνi, given that there are n such users.

Letting the handover rate νi (i.e., the rate of dwell time) to depend on the
environmental state, we can deal with several practical issues. For example,
consider the case of smart APs, operating by solar panels (see Mancuzo and
Alouf [27]) that dynamically adjust their coverage area according to weather
conditions. Assume that the weather alternates between sunny and cloudy (i.e.,
M = 2, i = 1, 2). When the weather is sunny (i = 1), then the APs have enough
energy capacity to operate efficiently and they increase their coverage area. On
the other hand, if it is cloudy (i = 2) they decrease their coverage area in order
to save energy. In such a case, ν1 < ν2, i.e., the user spends more time in the cell
during sunny periods, compared with the case of cloudy periods. An alternative

48 I. Dimitriou

example will allow fluctuation in the velocity of the mobile users, and thus, the
time spent by a user in a cell will vary according to the environmental state.

Since each AP can serve a limited number of users, blocking phenomena
occur. Find below the blocking rules:

1. A handover user, connected in SP j, is rejected (and lost) if Mj = Lj + Rj

service positions are occupied in AP j, at an arrival instant.
2. A fresh session originating by a subscriber of SP j is blocked and lost if at

least Lj service positions are occupied.
3. If an arriving fresh P3f user finds both APs fully occupied, enters a virtual

queue (i.e., orbit) of infinite capacity from which try, independently of each
other to access the system after an exponentially distributed time period
with rate α(i), i = 1, ...,M . Upon a retrial attempt, a flex user will join an
AP under the maximum data rate policy described above, given that both
APs have less than Lj , j = 1, 2, occupied service positions. If an AP has no
service positions available for originating users then the retrial flex user will
connect to the other AP. Otherwise, the user will retry later on.

For later use, define Λk = diag(λ(1)
k , ..., λ

(M)
k), Λkh = diag(λ(1)

kh , ..., λ
(M)
kh), k =

1, 2 and Λ3 = diag(λ(1)
3 , ..., λ

(M)
3), α = (α(1), ..., α(M)).

Remark 1. Our model is general enough to describe many practical situations.
For example, consider two Web server farms, where the scheduling of jobs at the
hosts is modeled by PS discipline [16]. In such a case, flex users may represent
jobs that have a specific Service Level Agreement with both SPs, that guarantees
the coalition between them and as a result, these jobs will be served by the service
station, which provides the largest service rate at the arrival instant.

Remark 2. The matrix analytic approach that we use in the following sections,
is powerful enough to describe the problem of k > 2 APs that serve the target
cell. However, the computational cost to analyze the underlying stochastic pro-
cess will increase rapidly, and thus, in such a case, maybe a simulation study is
preferred.

3 Process of the System States

Let Qr(t), Qj(t), and Y (t) denote, respectively, the number of blocked flex users
in orbit, the number of connected users in AP j, j = 1, 2 and the state of the
environmental process at time t. The orbit is of infinite capacity. The process
U = {(Qr(t), Q1(t), Q2(t), Y (t)); t ≥ 0} describes our system (see Fig. 1) and is
a continuous-time Markov chain, and in particular a Level Dependent Quasi
Birth Death (LDQBD) process. The state space of U is given by H = ∪∞

n=0l(n),
where the subsets l(n), n ≥ 0 are the levels of the LDQBD given by l(n) =
{(n,m1,m2, i), 0 ≤ mj ≤ Mj , j = 1, 2, 0 ≤ i ≤ M} .

Performance Modeling of Cellular Systems 49

Table 1. Overview of system’s parameters

Description Value

Offered (reserved) bandwidth at AP j: C
(i)
j (C

(i)
jh), i = 1, ..., M , j = 1, 2.

Minimum/maximum attainable transfer rate of a call: r
(i)

−/+, i = 1, ..., M

Maximum number of connected users in AP j: Mj = C
(i)
j /r

(i)
− , j = 1, 2.

Number of states of the environmental process: M.

Arrival rate of handover users at AP j: λ
(i)
jh , i = 1, ..., M , j = 1, 2

Arrival rate of originating subscribers at AP j: λ
(i)
j , i = 1, ..., M , j = 1, 2

Arrival rate of originating flex users: λ
(i)
3f , i = 1, ..., M

The rate of the dwelling time: νi, i = 1, ..., M

Retrial rate of blocked flex users: α(i), i = 1, ..., M

Randomized number of guard channels of AP j: Rj = C
(i)
jh /r

(i)
− , j = 1, 2

Total service rate at AP j: μ
(i)
jmj

= μc
(i)
mj , i = 1, ..., M , j = 1, 2

Then, the infinitesimal generator Q, in partitioned form, is given by

Q =

⎛

⎜⎜⎜⎜⎜⎜⎝

Q0,0 C 0 0 ...
Q1,0 Q1,1 C 0 ...

0 Q2,1 Q2,2 C ...
...

...
...

.
...

...
...

...
...

.

⎞

⎟⎟⎟⎟⎟⎟⎠
,

where, Qi,j are square matrices of order M(M1+1)(M2+1). Moreover, for n ≥ 0,

Qn,n =
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q
(0,0)
n,n Q

(0,1)
n,n 0 0 ...

Q
(1,0)
n,n Q

(1,1)
n,n Q

(1,2)
n,n 0 ...

0 Q
(2,1)
n,n Q

(2,2)
n,n Q

(2,3)
n,n ...

...
...

.
...

...
...

...
...

.
Q

(M1−1,M1−2)
n,n Q

(M1−1,M1−1)
n,n Q

(M1−1,M1)
n,n

Q
(M1,M1−1)
n,n Q

(M1,M1)
n,n

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where, for m1 = 1, ...,M1,

Q
(m1,m1−1)
n,n = I(M2+1)×(M2+1) ⊗ M

(m1)
1 ,

Q
(m1,m1+1)
n,n = I(M2+1)×(M2+1) ⊗ Λ̂

(m1,m2)
1 ,

(1)

and for k = 1, 2,

M
(mk)
k = diag(μ(1)

kmk
+ mkν1, ..., μ

(M)
kmk

+ mkνM),
Λ̂
(m1,m2)
k = diag(Λ(m1,m2)

k1 , ..., Λ
(m1,m2)
kM).

(2)

50 I. Dimitriou

Blocked flex users

(Retrial box)

)(
1
i

)(
2
i

)(
3
i

)(
1 1

i
m

Flex users join the provider
which offers the largest data rate

)(i

)
1

,
1

max(
2

)(
12

1

)(
11 21

mm

i
m

i
m

A flex user selects which AP
to join according to the rule:

),,(111 LRM
1 SP)(

1
i
h

)(
2
i
h

Blocked subscribers
and blocked handover

users of SP 1

Blocked subscribers
and blocked handover

users of SP 2

Dispatcher

)(PS

)(
2 2

i
m

),,(222 LRM
2 SP

)(PS

Fig. 1. The model given that the environmental process is in state i

Denote u
(i)
kmk

=
μ
(i)
kmk

mk
, k = 1, 2, i = 1, ...,M. Then,

Λ
(m1,m2)
1i = λ

(i)
1hδ{m1<M1} + [λ(i)

1 + λ
(i)
3 δ{

u
(i)
1m1+1>u

(i)
2m2+1

}

+λ
(i)
3
2 δ{

u
(i)
1m1+1=u

(i)
2m2+1

}]δ{m1<L1},

Λ
(m1,m2)
2i = λ

(i)
2hδ{m2<M2} + [λ(i)

2 + λ
(i)
3 δ{

u
(i)
1m1+1<u

(i)
2m2+1

}

+λ
(i)
3
2 δ{

u
(i)
1m1+1=u

(i)
2m2+1

}]δ{m2<L2}.

(3)

Furthermore, for m1 = 0, 1, ...,M1 − 1,

Q(m1,m1)
n,n =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T
(n)
00 Λ̂

(m1,0)
2 0 0 0 ...

M
(1)
2 T

(n)
11 Λ̂

(m1,1)
2 0 0 ...

0 M
(2)
2 T

(n)
22 Λ̂

(m1,2)
2 0 ...

...
...

...
.

...
...

...
...

...
.

M
(M2−1)
2 T

(n)
M2−1 M2−1 Λ̂

(m1,M2−1)
2

M
(M2)
2 T

(n)
M2M2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Performance Modeling of Cellular Systems 51

where,

T (n)
m2m2

= S−Λ3−H(n)−
2∑

k=1

[Λkδ{mk<Lk}+Λkhδ{mk<Mk}+A
(m1,m2,n)
k +M

(mk)
k],

and H(n) = diag(nν1, ..., nνM), A
(m1,m2,n)
k = diag(α(m1,m2,n)

k1 , ..., α
(m1,m2,n)
kM),

α
(m1,m2,n)
1i = n[α(i)δ{

u
(i)
1m1+1>u

(i)
2m2+1

} + α(i)

2 δ{
u
(i)
1m1+1=u

(i)
2m2+1

}]δ{m1<L1},

α
(m1,m2,n)
2i = n[α(i)δ{

u
(i)
1m1+1<u

(i)
2m2+1

} + α(i)

2 δ{
u
(i)
1m1+1=u

(i)
2m2+1

}]δ{m2<L2}.
(4)

Matrix C is of size M
∏2

j=1(Mj +1) and describes transitions between the levels
of the QBD that correspond to the arrival of a flex user in the orbit queue. Note
that, a flex user enters the orbit queue when it finds upon arrival at least L1

and L2 connected users in the AP 1, 2 respectively. Then,

C =
(

0ML1(M2+1)×ML1(M2+1) 0ML1(M2+1)×M(M1−L1+1)(M2+1)

0M(M1−L1+1)(M2+1)×ML1(M2+1) I(M1−L1+1)×(M1−L1+1) ⊗ F

)
,

where

F =
(

0ML2×ML2 0ML2×M(M2−L2+1)

0M(M2−L2+1)×ML2 IM(M2−L2+1)×M(M2−L2+1) ⊗ Λ3

)
.

Finally, for n ≥ 1, Qn,n−1 = (Q(n,m1),(n−1,m
′
1)

), where Q(n,m1),(n−1,m
′
1)

=
0M(M2+1)×M(M2+1),

Q(n,m1),(n−1,m1)) = L
(n)
m1m1 ,m1 = 1, ...,M1,

Q(n,m1),(n−1,m1+1)) = L
(n)
m1m1+1

= diag(A(m1,0,n)
1 , A

(m1,1,n)
1 , ..., A

(m1,M2,n)
1),m1 = 1, ...,M1 − 1.

(5)

The sub-blocks L
(n)
m1m1 = (L(n)

(m1,m2),(m1,m
′
2)

) are of order M(M2+1)×M(M2+1),

where L
(n)

(m1,m2),(m1,m
′
2)

= 0M×M , m
′
2 − m2 > 1, m

′
2 − m2 ≤ −1, and

L
(n)
(m1,m2),(m1,m2)

= H(n), L
(n)
(m1,m2),(m1,m2+1) = A

(m1,m2,n)
2 . (6)

4 Stationary Distribution

Let x, partitioned as x = (x0, x1, ...), xn = (xn0, xn1, ..., xnM1
), n ≥ 0,

xnm1
= (xnm10

, ..., xnm1M2
), 0 ≤ m1 ≤ M1,

xnm1m2
= (xn,m1,m2,1, ..., xn,m1,m2,M) 0 ≤ mj ≤ Mj , j = 1, 2,

(7)

be the stationary probability vector satisfying

xQ = 0, x1′ = 1, (8)

52 I. Dimitriou

where 0 and 1′ denote a row vector and a column vector of zeros and ones with
an appropriate size, respectively.

Several truncation methods have been proposed for solving the set of equa-
tions (8): (i) Direct truncation method [12], where the maximum orbit size is
fixed to N∗. This method results in a finite level-dependent QBD with N∗ + 1
levels, (ii) Generalized truncation method [29], where the retrial rate from the
orbit is fixed by N∗α(i) when there are k ≥ N∗ customers present in the orbit.
Neuts [29] indicated that the generalized truncation method is better that the
direct truncation method, since the former requires a smaller truncation point
than the latter does, in order to achieve the same accuracy.

Clearly, is not our aim here to provide a comparison between different meth-
ods for computing the stationary distribution. We use Neuts’ approximation
method [29] and assume that only N∗ users among the blocked flex retrial users
in the orbit can retry for the service even if there are retrial users greater than
N∗ (A choice of appropriate value of N∗ is done following [29]). Then, the
infinitesimal generator Q∗ is modified as,

Q∗ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q0,0 C
Q1,0 Q1,1 C

.
QN∗−1,N∗−2 QN∗−1,N∗−1 C

QN∗,N∗−1 QN∗,N∗ C
QN∗−1,N∗ QN∗,N∗ C

.

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let the stationary probability vector π (a 1×M(M1 +1)(M2 +1) vector) of the
generator AN∗ = C + QN∗,N∗ + QN∗,N∗−1. The vector π = (π(0), ..., π(M1)),
where π(m1) = (π(m1, 0, 1), ..., π(m1,M2,M)). Then,

Theorem 1. The modified QBD with infinitesimal generator Q∗ is positive rec-
urrent if and only if

M1∑

m1=L1

π(m1)(I(M1−L1+1)×(M1−L1+1) ⊗ F)1′ < πQN∗,N∗1′. (9)

Proof: The proof is done following the lines in [28]. �
Under the condition (9), the partitioned stationary probability vector x∗ of

Q∗ is given by
x∗

n = x∗
N∗−1R

n−N∗+1, n ≥ N∗ − 1, (10)

where the rate matrix R is the minimal non negative matrix solution of

R2QN∗,N∗−1 + RQN∗,N∗ + C = 0M(M1+1)(M2+1)×M(M1+1)(M2+1), (11)

Performance Modeling of Cellular Systems 53

with maximal eigenvalue sp(R) < 1, and the vectors x∗
n, 0 ≤ n ≤ N∗ − 1, are

obtained by the following set of equations

x∗
0Q0,0 + x∗

1Q1,0 = 0,
x∗

n−1C + x∗
n−1Qn,n + x∗

n+1Qn+1,n = 0, 1 ≤ n ≤ N∗ − 2,
x∗

N∗−2C + x∗
N∗−1(QN∗−1,N∗−1 + RQN∗,N∗−1 = 0,

(12)

subject to the normalizing condition,

N∗−2∑

n=0

x∗
n1

′
+ x∗

N∗−1(I − R)−11
′
= 1.

Regarding the computation of the rate matrix, Bright and Taylor [5] (see also
[23]) proposed an efficient algorithm for level-dependent QBDs with infinitely
many levels. Recently, Phung-Duc et al. [32] developed a simple direct-truncated
method in order to compute it, which is less memory consuming than Bright and
Taylor [5]’s algorithm. In our case the matrix R is approximated by the following
iteration

R(0) = 0, R(l + 1) = (C + R2(l)QN∗,N∗−1)(−QN∗,N∗)−1, l ≥ 0, (13)

and iterations will be continued until maxij [Rij(l + 1) − Rij(l)] < ε, where R(l)
is the lth iteration and ε = 10−14 is the degree of the required accuracy.

5 Performance Metrics

Once the stationary probabilities have been computed, we can easily find the
main stationary system performance characteristics.

1. The mean rate of arriving users

Λ =
∑M

i=1

∑M1
m1=0

∑M2
m2=0

∑N∗−1
n=0 si(λ

(i)
h + λ(i) + nα(i))x∗

n,m1,m2,i

+x∗
N∗−1R(I − R)−1s[N∗α + λh + λ]′,

(14)

where, s = (s1, ..., sM) the invariant vector of the random environment,
λ
(i)
h =

∑2
k=1 λ

(i)
kh, λ(i) =

∑3
k=1 λ

(i)
k , λh = (λ(1)

h , ..., λ
(M)
h), λ = (λ(1), ..., λ(M)).

2. The stationary probability pm1,m2 that an arriving user (including a retrial
user) sees ml users, connected in AP l, l = 1, 2.

pm1,m2 =
1
Λ

M∑

i=1

N∗∑

n=0

(λ(i)
h + λ(i) + nα(i))x∗

n,m1,m2,i, 0 ≤ ml ≤ Ml. (15)

3. The stationary probability pBf that an arriving flex user (including a retrial
flex user) is blocked.

pBf =
1
Λ

M∑

i=1

M1∑

m1=L1

M2∑

m2=L2

∞∑

n=0

(λ(i)
3 + nα(i))x∗

n,m1,m2,i. (16)

54 I. Dimitriou

4. Dropping probability for handover users in AP 1, 2

BP1h =
∑M2

m2=0

∑∞
n=0

∑M
i=1 x∗

n,M1,m2,i,

BP2h =
∑M1

m1=0

∑∞
n=0

∑M
i=1 x∗

n,m1,M2,i.
(17)

5. Mean number of users occupied AP 1, 2.

E(Q1) =
∑M1

m1=1

∑M2
m2=0

∑∞
n=0

∑M
i=1 m1x

∗
n,m1,m2,i,

E(Q2) =
∑M1

m1=0

∑M2
m2=1

∑∞
n=0

∑M
i=1 m2x

∗
n,m1,m2,i.

(18)

6. Mean number of blocked flex users in orbit.

E(Qr) =
M1∑

m1=0

M2∑

m2=0

N∗−1∑

n=1

M∑

i=1

nx∗
n,m1,m2,i + N∗x∗

N∗−1R(I − R)−1. (19)

7. The blocking probability for an arriving originating subscriber of SP 1, 2.

BP1f =
∑M1

m1=L1

∑M2
m2=0

∑∞
n=0

∑M
i=1 x∗

n,m1,m2,i,

BP2f =
∑M2

m2=L2

∑M1
m1=0

∑∞
n=0

∑M
i=1 x∗

n,m1,m2,i.
(20)

6 Numerical Results

In the following, we proceed with a scenario to illustrate the system performance.
We assume that the mean service requirement of each user is 1/μ = 50 Mbit.
Moreover, we assume that the system operates in two state random environment

defined by S =
(−2 2

3 −3

)
, and its invariant vector is s = (0.6, 0.4). According

to the environmental state, let also (r(1)− , r
(2)
−) = (2, 4), (r(1)+ , r

(2)
+) = (5, 10),

(C(1)
1 , C

(2)
1) = (50, 100), (C(1)

2 , C
(2)
2) = (40, 80) all in Mbits/s, to be the mini-

mum/maximum attainable transfer rate, and the offered bandwidth by the APs,

0 1 2 3 4 5 6 7 8
0

0.05

0.1

0.15

0.2

0.25

R
1

B
lo

ck
in

g
pr

ob
ab

ili
ty

 o
f o

rig
in

at
in

g
su

bs
cr

ib
er

s
of

 S
P

 1

λ1h

λ1f

=
1

6

λ1h

λ1f

=
1

4

λ1h

λ1f

= 1

Fig. 2. BP1f vs. R1

Performance Modeling of Cellular Systems 55

1 2 3 4 5 6 7 8
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

R
1

B
lo

ck
in

g
pr

ob
ab

ili
ty

 o
f h

an
do

ve
r

us
er

s
of

 S
P

 1

λ1h

λ1f

=
1

6

λ1h

λ1f

=
1

4

λ1h

λ1f

= 1

Fig. 3. BP1h vs. R1

respectively. Then, the maximum number of connected users at AP 1,2 are M1 =
25, M2 = 20 respectively. We reserve R2 = 6 service positions only for handover
users in the AP 2, and assume that the mean dwelling times in the cell, according
to the environmental process, are given by (1/ν1, 1/ν2) = (2 min, 5 min). It is
further assumed that the rethinking time in order a blocked flex user to attempt
a retrial is exponentially distributed with rates (α(1), α(2)) = (2, 1) subject to
the environmental state.

In Fig. 2 it is seen that the dropping probability for the originating subscribers
of SP 1 expectably increases when the randomized number of guard channels
increases, where λkh = sΛkh1′, λkf = sΛkf1′ is the average arrival rate of
handover and originating subscriber users respectively. Moreover, by increasing
the ratio σ1 = λ1h/λ1f the dropping probability of originating subscribers of
SP 1 decreases. On the other hand, in Fig. 3 it is seen, as expected, that the
dropping probability of handover users of SP 1 decreases when we increase the
reserved bandwidth. Since the smaller the σ1, implies the reduction of the arrival
rate of the handover users, we expect that the BP1h will also decrease.

0 1 2 3 4 5 6 7 8 9 10
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

B
lo

ck
in

g
pr

ob
ab

ili
ty

 fo
r

fle
x

us
er

s

R
1

λh = 4

λh = 5

λh = 6

Fig. 4. pBf vs. R1

56 I. Dimitriou

Finally, in Fig. 4 we can observe that the increase in R1 will definitely increase
the blocking probability of the flex users, where λh = λ1h + λ2h, is the total
average arrival rate of handover users at the cell. However, this increase is slower
at lower levels of R1. We can observe that as R1 passes a certain value close to
R2, then pBf increases rapidly. This is expected, since due to the lack of free
resources (i.e., a decrease in L1), the flex users will experience serious problems
to connect with an AP.

References

1. Ajmone Marsan, M., De Carolis, G., Leonardi, E., Lo Cigno, R., Meo, M.: Efficient
estimation of call blocking probabilities in cellular mobile telephony networks with
customer retrials. IEEE J. Sel. Areas in Commun. 19, 332–346 (2001)

2. Artalejo, J.R., Gomez-Corral, A.: Retrial queueing systems: a computational app-
roach. Springer, Berlin (2008)

3. Artalejo, J.R., Lopez-Herrero, M.J.: Cellular mobile networks with repeated calls
operating in random environment. Comput. Oper. Res. 37, 1158–1166 (2010)

4. Borst, S.: User-level performance of channel-aware scheduling algorithms in wireless
data networks. IEEE ACM T. Network. 13(3), 636–647 (2005)

5. Bright, L.W., Taylor, P.G.: Calculating the equilibrium distribution in level depen-
dent quasi-birth-and-death processes. Stoch. Models 11(3), 497–525 (1995)

6. Chang, C.-J., Su, T.-T., Chiang, Y.-Y.: Analysis of a cutoff priority cellular radio
system with finite queueing and reneging/dropping. IEEE ACM T. Network. 2(2),
166–175 (1994)

7. Choi, B.D., Chang, Y., Kim, B.: MAP1/MAP2/M/c retrial queue with guard
channels and it’s application to cellular networks. TOP 7(2), 231–248 (1999)

8. Choi, B.D., Chang, Y.: MAP1, MAP2/M/c retrial queue with the retrial group of
finite capacity and geometric loss. Math. Comput. Model. 30, 99–114 (1999)

9. Do, T.V.: A new computational algorithm for retrial queues to cellular mobile
systems with guard channels. Comput. Ind. Eng. 59(4), 865–872 (2010)

10. Do, T.V.: Solution for a retrial queueing problem in cellular networks with the frac-
tional guard channel policy. Math. Comput. Model. 53(11–12), 2058–2065 (2011)

11. Economou, A., Lopez-Herrero, M.J.: Performance analysis of a cellular mobile net-
work with retrials and guard channels using waiting and first passage time mea-
sures. Eur. T. Telecommun. 20(14), 389–401 (2009)

12. Falin, G.I., Templeton, J.G.C.: Retrial queues. Chapman & Hall, London (1997)
13. Fortetsanakis, G., Papadopouli, M.: On Multi-layer modeling and analysis of wire-

less access markets. IEEE T. Mobile Comput. 14(1), 113–125 (2015)
14. Fredj, S., Bonald, T., Proutiere, A., Regnie, G., Roberts, J.: Statistical bandwidth

sharing: a study of congestion at flow level. In: 2001 ACM Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM 2001), San Diego, USA, pp. 111–122. ACM (2001)

15. Guerin, R.: Queueing-blocking system with two arrival streams and guard channels.
IEEE T. Commun. 36(2), 153–163 (1988)

16. Gupta, V., Harchol Balter, M., Sigman, K., Whitt, W.: Analysis of join-the-
shortest-queue routing for web server farms. Perform. Evaluation 64, 1062–1081
(2007)

Performance Modeling of Cellular Systems 57

17. Hong, D.H., Rappaport, S.S.: Traffic model and performance analysis for cellu-
lar mobile radio telephone systems with prioritized and non-prioritized handoff
procedures. IEEE Trans. Veh. Technol. VT–28, 77–92 (1986)

18. Kim, C.S., Klimenok, V.I., Lee, S.C., Dudin, A.N.: The BMAP/PH/1 retrial queue-
ing system operating in random environment. J. Stat. Plan. Infer. 137, 3904–3916
(2007)

19. Kim, C.S., Klimenok, V., Musho, V., Dudin, A.: The BMAP/PH/N retrial queue-
ing system operating in Markovian random environment. Comput. Oper. Res. 37,
1228–1237 (2010)

20. Kim, C.S., Klimenok, V.I., Dudin, A.N.: Analysis and optimization of guard chan-
nel policy in cellular mobile networks with account of retrials. Comput. Oper. Res.
43, 181–190 (2014)

21. Klessig, H., Fehske, A., Fettweis, G.: Admission control in interference-coupled
wireless data networks: a queuing theory-based network model. In: 12th Interna-
tional Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wire-
less Networks (WiOpt 2014), pp. 151–158. IEEE Press. doi:10.1109/WIOPT.2014.
6850293

22. Knessl, C.: On finite capacity processor-sharing queues. SIAM J. Appl. Math.
50(1), 264–287 (1990)

23. Latouche, G., Ramaswami, R.: Introduction to matrix analytic methods in stochas-
tic modeling. ASA-SIAM, Philadelphia (1999)

24. Liu, X., Fapojuwo, A.: Performance analysis of hierarchical cellular networks with
queueing and user retrials. Int. J. Commun. Syst. 19, 699–721 (2006)

25. Litjens, R., Roijers, F., van den Berg, J., Boucherie, R., Fleuren, M.: Performance
analysis of wireless LANs: an integrated packet/flow-level approach. In: 18th Inter-
national Teletraffic Congress - ITC-18, Berlin, pp. 931–940 (2003)

26. Machihara, F., Saitoh, M.: Mobile customers model with retrials. Eur. J. Oper.
Res. 189, 1073–1087 (2008)

27. Mancuso, V., Alouf, S.: Reducing costs and pollution in cellular networks. IEEE
Commun. Mag. 49, 63–71 (2011)

28. Neuts, M.F.: Matrix-geometric solutions in stochastic models. The John Hopkins
University Press, Baltimore (1981)

29. Neuts, M.F., Rao, B.M.: Numerical investigation of a multiserver retrial model.
Queueing Syst. 7, 169–190 (1990)

30. Nunez-Queija, R.: Sojourn times in non-homogeneous QBD processes with
Processor-Sharing. Stoch. Models 17(1), 61–92 (2001)

31. Nunez-Queija, R., van den Berg, J.L., Mandjes, M.R.H.: Performance evaluation
of strategies for integration of elastic and stream traffic. In: Smith, D., Key, P.
(eds.) 16th International Teletraffic Congress - ITC-16, pp. 1039–1050. Elsevier,
Amsterdam (1999)

32. Phung-Duc, T., Masuyama, H., Kasahara, S., Takahashi, Y.: A simple algorithm
for the rate matrices of level-dependent QBD processes. In: 5th International Con-
ference on Queueing Theory and Network Applications, pp. 46–52 (2010)

33. Pla, V., Casares-Giner, V.: Analysis of priority channel assignment schemes in
mobile cellular communication systems: a spectral theory approach. Perform. Eval-
uation 59, 199–224 (2005)

34. Ramaswami, V., Taylor, P.G.: Some properties of the rate operators in level depen-
dent quasi-birth-and-death processes with countable number of phases. Stoch.
Models 12, 143–164 (1996)

http://dx.doi.org/10.1109/WIOPT.2014.6850293
http://dx.doi.org/10.1109/WIOPT.2014.6850293

58 I. Dimitriou

35. Roszik, J., Sztrik, J., Virtamo, J.: Performance analysis of finite-source retrial
queues operating in random environments. Int. J. Oper. Res. 2, 254–268 (2007)

36. Song, W., Zhuang, W.: Interworking of Wireless LANs and Cellular Networks.
Springer, New York (2012)

37. Tran-Gia, P., Mandjes, M.: Modeling of customer retrial phenomenon in cellular
mobile networks. IEEE J. Sel. Areas Commun. 15, 1406–1414 (1997)

38. Wu, Y., Williamson, C., Luo, J.: On processor sharing and its applications to
cellular data network provisioning. Perform. Evaluation 64, 892–908 (2007)

Efficient Performance Evaluation of Wireless
Networks with Varying Channel Conditions

Ekaterina Evdokimova(B), Koen De Turck, Sabine Wittevrongel,
and Dieter Fiems

Department of Telecommunications and Information Processing, Ghent University,
St-Pietersnieuwstraat 41, 9000 Gent, Belgium

{ekaterina.evdokimova,koen.deturck,sabine.wittevrongel,dieter.fiems}
@telin.ugent.be

Abstract. This paper investigates the performance of opportunistic
schedulers in wireless networks. A base station communicates over fad-
ing channels with multiple mobile nodes, each experiencing varying and
not necessarily identical wireless channel conditions. An opportunistic
scheduler optimises performance by accounting for both buffer size as
well as channel conditions when allocating the transmitter energy among
its users. The present study provides the necessary analytical tools to
assess performance of opportunistic schedulers both fast and accurately,
thereby allowing for fast evaluation and comparison of scheduling algo-
rithms. The scheduler is modelled as a Markovian queueing system with
multiple finite queues in a random environment. Already for a limited
number of users and limited buffer capacities, the size of the state space of
the Markov model makes the direct calculation of the steady-state prob-
ability vector nearly impossible. Therefore, we rely on Maclaurin series
expansions so as to study the scheduler under light traffic conditions as
well as in overload. The computational complexity for calculating the
first N terms in the series expansions is O(NM2S), where M is the size
of the state space of the exogenous channel process and S is the size of
the state space of the entire Markov chain.

Keywords: Performance analysis · Opportunistic scheduling · Wireless
networks · Markov analysis · Steady-state distribution

1 Introduction

Efficiently allocating networking resources is key for the performance of many
multi-user (MU) communication systems. In wireline communications, such allo-
cation aims at optimising performance metrics like network throughput, delay
and jitter, while at the same time retaining fairness between its users [1]. Wire-
line allocation however does not directly apply to MU wireless communication
systems, most prominently due to bandwidth limitations and due to the time-
variation of the channel conditions of its mobile users [2].

Time-variability of the channel conditions can be exploited by opportunis-
tically transmitting to good channels. Opportunistic scheduling is a promising
c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 59–72, 2015.
DOI: 10.1007/978-3-319-18579-8 5

60 E. Evdokimova et al.

cross-layer method that holds the potential of significantly improving wireless
networks’ efficiency in the near future. Such scheduling however immediately
introduces the trade-off between wireless efficiency — a preference to schedule
to the best channel — and fair scheduling — each user is entitled to a certain
amount of network resources. Since the introduction of opportunistic scheduling
in [3], numerous schedulers have been proposed for different instances of wireless
networks, such as mobile cellular networks, cognitive radio, MIMO systems, see
[2,4–10] and the references therein.

The present paper proposes a mathematical framework for studying oppor-
tunistic scheduling. Specifically, we propose tools for fast performance evaluation
of wireless networks equipped with one access point (AP) serving multiple mobile
users under varying transmission conditions. All users feedback their channel
conditions, so the full channel state information (CSI) is assumed to be known
by the AP. Only few authors assess performance of opportunistic schedulers by
analytic means, most assessments of schedulers relying on simulations [11–13].
This is not surprising as stochastic models of opportunistic schedulers involve
multiple queues. This results in Markov models with multidimensional state
space. Even for a limited number of buffers (or mobile nodes) and limited buffer
capacities, the state space of the Markov chain is huge which makes direct solu-
tion techniques numerically infeasible.

In [11], the problem of analytical performance evaluation was tackled nev-
ertheless, by means of a decomposition method. The approach relies on repre-
senting the MU system with K users as a deterministic and stochastic Petri
net (DSPN) with a decomposition into K subnets. Since the subnets can be
analysed separately, the MU system can be represented with far fewer states
than the original Markov model, and thus a low computational complexity can
be achieved. A drawback of this approach is that it rules out most interac-
tions between the queues and these are essential for a complete performance
study. Indeed, the interaction is key for the scheduler as each allocation decision
impacts all queues. The authors make a set of assumptions, which may lead to
significant errors while calculating performance characteristics. A similar decom-
position approach is presented in [12] in the context of cognitive radio spectrum
allocation. Here, a queueing model is analysed by using matrix-analytical meth-
ods. However, the study is mainly focused on the single-queue case with an
extrapolation to multiple queues.

In contrast to the references above, our approach studies the Markov model
as is, without such approximate decomposition. In particular, we consider a
queueing model with K queues, each queue corresponding to the buffer at the
AP of a particular mobile node. The transmission environment is characterised
by an exogenous Markov process with a finite number of states in accordance
with [14]. As the size of the state space of the overall Markov process makes
a direct solution technique computationally infeasible, we rely on Taylor series
expansions [15–18] to assess the performance fast and accurately. Depending
on their application, series expansion techniques for Markov chains are referred
to as perturbation techniques, the power series method or light-traffic analysis.

Efficient Performance Evaluation of Wireless Networks 61

While the naming is not absolute, perturbation methods are mainly motivated
by the assessment of the sensitivity of the performance measures with respect to
a system parameter. The case where the perturbation does not preserve the class-
structure of the non-perturbed chain — the so-called singular perturbations —
has received much attention in literature [15,19]. The power series method
transforms a Markov chain of interest in a set of Markov chains parametrised by
a possibly artificial parameter γ. For γ = 0, the chain is not only easily solved,
but one can also obtain the series expansion in γ. For γ = 1 one gets the original
Markov chain such that the series expansion can be used to approximate the solu-
tion of the original Markov chain, provided the convergence region of the series
expansion includes γ = 1 [20]. Finally, light-traffic analysis often corresponds to
the series expansion in the arrival rate at a queue. For an overview on the tech-
nique of series expansions in stochastic systems, we further refer the reader to
the surveys in [21] and [22] and the recent book [23]. The present study most
closely relates to the numerical series expansion approach of [17] and [18]. In con-
trast to this work, the present unperturbed chain is not upper-diagonal, but block
upper-diagonal. It is shown below, that calculating the terms in the series expan-
sion — in overload as well as under light traffic — is much easier than solving
the queueing model for any particular load. Previous queueing-theoretic stud-
ies on multi-user multi-packet transmission systems include [13,24], but do not
consider the inherent multidimensionality of the queueing problem. In order to
validate the proposed performance evaluation method we validate the accuracy
of our results by simulation.

The remainder of the paper is organised as follows. The next section intro-
duces the modelling assumptions and settles the notational conventions. The
proposed analysis technique is then outlined in Section III and numerically val-
idated in Section IV. Finally, conclusions are drawn in Section V.

2 Opportunistic Scheduling Model

In this paper, we assess the performance of a wireless AP serving multiple mobile
nodes under varying transmission channel conditions and opportunistic schedul-
ing. To this end, we consider a Markovian queueing model with K finite-capacity
queues that share a common transmission channel (see Figure 1). Each queue
corresponds to the AP buffer of a particular mobile node. Let Ck be the capacity
of the kth queue. In every queue, the arrival process is assumed to be a Poisson
process; let λk denote the arrival rate in queue k. As the different queues share
a common transmission channel, the service rates in the queues are coupled.

We make the following assumptions.

– There is an exogenous continuous-time Markov process M(t) that modulates
the state of the wireless transmission channel. Let M = {1, 2, . . . ,M} be the
state space of this Markovian background process and let αij denote the
transition rate from state i to state j, i �= j, i, j ∈ M.

– For every background state m ∈ M, let gm = [gm1, . . . , gmK] be a vec-
tor whose elements quantify the channel conditions as seen by the different

62 E. Evdokimova et al.

λ1

βmμ

n1

λ2 n2

λK nK

gm
1

gm2

g
m
K

Fig. 1. Queueing model for the opportunistic scheduler

queues and let βm be a constant denoting the overall channel quality. Let nk

be the number of packets in the kth queue and let n = [n1, . . . , nK]. Given n,
the service rate μk(n,m) of the kth queue while M(t) = m takes either one
of the following forms,

μk(n,m) = μβm
gmknk∑K
�=1 gm�n�

, (1)

μk(n,m) = μβm

gmk1{nk>0}∑K
�=1 gm�1{n�>0}

, (2)

where 1{X} denotes the indicator function of the event X. Note that the
former service rates are inspired by discriminatory (DPS) and generalised
processor sharing (GPS), respectively, but that the weights are now set to
reflect the channel conditions. The exact form of these service rates is not
important for the analysis though. The methodology developed further on
applies to any queue-size and channel-condition dependent service rate, as
long as there is channel capacity allocated to every non-empty queue in some
channel state.

For further use, we introduce some additional notation. In the remainder, let
Ck = {0, 1, . . . , Ck} be the set of possible queue contents of the kth queue and
let C = C1 × . . . × CK . The state space of our Markovian queueing model is then
C × M; S denotes the size of the state space C × M. Also, c = [C1, . . . , CK]
corresponds to the case where all buffers are full; Mc = {[c, j], j ∈ M} denotes
the corresponding subset of the state space. We define ek as the row vector of
length K with its kth element set to 1 and all other elements zero and e is a row
vector of ones.

At the level of abstraction of the queueing model at hand, we did not specify
any technological assumptions on the AP under consideration. The model at
hand allows to assess the performance of the buffer behaviour at the AP for
wireless systems with opportunistic scheduling like cognitive radio, microcell
networks, Wi-Fi or WiMAX networks, and for different configurations of MU
MIMO with a single AP. The modelling assumptions are sufficiently versatile to
capture a variety of channel- and buffer-aware policies that base their scheduling
decisions on the current state of the system and transmission environment.

Efficient Performance Evaluation of Wireless Networks 63

3 Performance Analysis

Having specified the modelling assumptions, we now present the numerical anal-
ysis technique. We first introduce the balance equations of the Markov chain
under consideration. Expanding the stationary distribution of the Markov chain
around μ = 0 and λ = 0 yields approximations for the stationary distribu-
tion and various performance measures in the light-traffic and overload regime
respectively.

3.1 Balance Equation

In view of the modelling assumptions introduced above, the state of the MU
system is described by the vector (n, j) where n = [n1, . . . , nK] with nk the
number of packets in the kth queue and j ∈ M. Moreover, let π(n, j) be the
steady-state probability to be in state (n, j). As there are neither simultaneous
arrivals nor departures, we get the following set of balance equations:

π(n, j)

⎛

⎝
K∑

k=1

(
λk 1{nk<Ck} + μk(n, j)1{nk>0}

)
+

M∑

i=1,i �=j

αji

⎞

⎠

=
K∑

k=1

π(n + ek, j)μk(n + ek, j)1{nk<Ck}

+
K∑

k=1

π(n − ek, j)λk 1{nk>0} +
M∑

i=1,i �=j

π(n, i)αij , (3)

for n ∈ C and j ∈ M. For ease of notation, let π(n) = [π(n, 1), . . . , π(n,M)],
then we get the equivalent set:

π(n)

(
K∑

k=1

(
λk 1{nk<Ck}IM + Mk(n)1{nk>0}

) − A

)

=
K∑

k=1

π(n + ek)Mk(n + ek)1{nk<Ck}

+
K∑

k=1

π(n − ek)λk 1{nk>0} , (4)

with Mk(n) the M × M diagonal matrix with diagonal elements μk(n, j), with
IM the M × M identity matrix and with A the generator matrix of M(t).

3.2 Regular Perturbation

In the following subsections it is shown that a series expansion approach allows
for evaluating the performance of a wireless MU system under either light-traffic

64 E. Evdokimova et al.

or overload conditions. In particular, it is shown that the series expansion of the
stationary solution of the Markov process corresponds to a regular perturbation
[16,18,25] and that the computational complexity of calculating the consecutive
terms in the series expansion is far better then the complexity of calculating
the stationary distribution directly. Prior to introducing the equations for the
system at hand, we outline the main ideas of the methodology.

The system of equations (3) takes the generic form

πQ = 0 , (5)

where π is a vector which collects all stationary probabilities π(n, j) and where
Q is a known generator matrix whose off-diagonal elements are the transition
rates between states. The row sums of the generator matrix are zero, and the
matrix has negative diagonal elements and non-negative off-diagonal elements.
Assume now that the entries of the generator matrix are affine functions of a
system parameter ε. In the following sections, this parameter will be the arrival
rate λ for the light-traffic approximation and the service rate μ for the overload
approximation. As the entries of the generator matrix are affine functions of ε,
the generic equation (5) can be written as

π(ε)Q = π(ε)
(
Q(0) + εQ(1)

)
= 0 . (6)

Here we have made the dependence of the stationary solution π on ε explicit.
Moreover, note that Q(0) is a proper generator matrix: this is the generator
matrix of the system for ε = 0. Now, assume that this Markov process is a
uni-chain (the Markov process has at most one ergodic class). In this case,
π(0)Q(0) = 0 has a unique normalised solution. Moreover, by Cramer’s rule, one
easily finds that π(ε) is an analytic function of ε in an open interval around ε = 0.
Therefore, let πn be the nth term in the series expansion of π(ε),

π(ε) =
∞∑

n=0

πn εn . (7)

Plugging the series expansion (7) in (6) and identifying equal powers of ε, we get

π0Q
(0) = 0 , πn+1Q

(0) = −πnQ(1) . (8)

Complementing the former set of equations with the normalisation condition,

π0e′ = 1 , πne′ = 0 , (9)

for n > 0 allows for recursively calculating the terms of the series expansion.
For a generic matrix Q(0), there is no gain in computational complexity as

one still needs to invert this matrix while solving for the next term in the series
expansion. However, for the MU system at hand, Q(0) has additional structure.
Indeed, for the light-traffic approximation, non-λ transitions are either depar-
tures or changes of the channel state. Assuming a proper ordering of the states

Efficient Performance Evaluation of Wireless Networks 65

of the Markov process, the generator matrix Q(0) is block upper-diagonal, the
blocks being the size of state space of the channel. For the overload approx-
imation, non-μ transitions are either arrivals or changes of the channel state
and — with a proper ordering of the state space — a similar block upper-
diagonal structure is obtained. In either case, recursively solving the systems of
equations (9) is considerably less involved. The equation

π0Q
(0) = 0

reduces to a system of M equations of M unknowns, while for each n the
unknowns in the system

πn+1Q
(0) = −πnQ(1)

can be solved in blocks of M unknowns at a time due to the block upper-diagonal
structure of Q(0).

3.3 Overload-Traffic Analysis

We first consider the balance equation for μ → 0. In particular we consider the
following Maclaurin series expansion of the steady-state probabilities:

π(n) =
∞∑

i=0

πi(n)μi . (10)

For ease of notation, let M̃k(n) = μ−1Mk(n). Note that M̃k(n) does not depend
on μ; see equations (1) and (2). Plugging the former expression into equation (4)
and comparing terms in μi, we get

πi(n)
K∑

k=1

λk 1{nk<Ck} − πi(n)A

= 1{i>0}
K∑

k=1

πi−1(n + ek)M̃k(n + ek)1{nk<Ck}

− 1{i>0}πi−1(n)
K∑

k=1

M̃k(n)1{nk>0}

+
K∑

k=1

πi(n − ek)λk 1{nk>0} . (11)

Plugging n = 0 = [0, 0, . . . , 0] and i = 0 in the former equation and post-
multiplying with e leads to

π0(0)e′ = 0 , (12)

which implies π0(0) = 0 as the elements of π0(0) are non-negative. Using the
same arguments, one then shows by iteration that for all n ∈ C \ {c}, we
have π0(n) = 0 and π0(c)A = 0. Together with the normalisation condition

66 E. Evdokimova et al.

∑
n∈C π0(n)e′ = 1, this shows that π0(c) = a, the steady-state solution of the

Markov process M(t).
For the higher-order terms (i > 0), we have

πi(n)

(
K∑

k=1

λk 1{nk<Ck}IM − A

)

=
K∑

k=1

πi−1(n + ek)M̃k(n + ek)1{nk<Ck}

+
K∑

k=1

(
πi(n − ek)λk − πi−1(n)M̃k(n)

)
1{nk>0} . (13)

For n �= c, the matrix on the left-hand side is invertible. Hence, we can calculate
the probabilities πi(n) in lexicographical order. For n = c, we get

πi(c)A =
K∑

k=1

(
−πi(c − ek)λk + πi−1(c)M̃k(c)

)
, (14)

and the matrix on the left-hand side is not invertible. A solution of this equation
takes the form

πi(c) =
K∑

k=1

(
−πi(c − ek)λk + πi−1(c)M̃k(c)

)
A# + κia , (15)

for any κi. Here, A# = (A + ea)−1 − ea is the group inverse of A. Finally, the
remaining unknown κi follows from the normalisation condition

∑

n∈C
πi(n)e′ = 0 . (16)

In view of the calculations above, one easily verifies that the numerical com-
plexity of the algorithm is O(NM2S) as there are S/M blocks, N terms in the
recursion and the operations with blocks have complexity O(M3).

3.4 Light-Traffic Analysis

Similar arguments can be developed for the case of light-traffic conditions, that
is, we set λk = λλ̃k and consider an expansion of the form

π(n) =
∞∑

i=0

πi(n)λi .

In view of the balance equation, the terms of this series expansion adhere

Efficient Performance Evaluation of Wireless Networks 67

πi(n)

(
K∑

k=1

Mk(n)1{nk>0} − A

)

=
K∑

k=1

πi(n + ek)Mk(n + ek)1{nk<Ck}

− 1{i>0}πi−1(n)
K∑

k=1

λ̃k 1{nk<Ck}

+ 1{i>0}
K∑

k=1

πi−1(n − ek)λ̃k 1{nk>0} . (17)

For i = 0, we can show that π0(n) = 0 for n �= 0 and π0(0) = a. For i > 0 and
n �= 0, we can recursively calculate all πi(n) in reverse lexicographical order as
the matrix on the left-hand side is invertible. For n = 0, we get

πi(0) = (−
K∑

k=1

πi(ek)Mk(ek) + πi−1(0)
K∑

k=1

λ̃k)A# + κ̃ia , (18)

where κ̃i can be determined from the normalisation condition (16).

4 Numerical Results

We now illustrate our approach by means of some numerical results and assess
the accuracy of our approximation by means of simulation. Note that the time
to simulate the Markov process (by means of the Gillespie algorithm [26]) is far
longer than the time needed to calculate the approximations.

Limiting the number of parameters of the channel, we assume that the chan-
nel qualities at the receivers are varying independently and that the charac-
teristics of all channels are identical. We therefore first focus on the Markov
process which characterises a single channel. Let H be the number of states of
the Markov process Mk(t) for the kth channel and let g = [g1, . . . , gH] and Ã
be the vector of values that quantify the quality of the channel in the different
channel states and the generator matrix of the Markov process Mk(t), respec-
tively. Value g1 corresponds to poor channel quality with no transmission, value
gH corresponds to excellent channel conditions where transmission is possible at
the highest rate. The values in between represent the attenuation level of the
channel capacity depending on the SNR. In order to obtain reasonable values
for g as well as for Ã in terms of channel properties, we rely on [14]. This paper
however assumes that channel changes are at discrete time instants. To obtain a
corresponding continuous-time Markov model, we introduce an additional rate
γ and assume that the channel changes in accordance to [14] on the events of a
Poisson process with rate γ.

Due to the independence of the channels, the simultaneous evolution of all
channels is a Markov process as well with HK states and with generator matrix

68 E. Evdokimova et al.

A = ⊕K
n=1Ã. Here ⊕ denotes the Kronecker sum. Moreover, each state of M(t)

maps on a vector of states of the channel processes Mk(t), such that one easily
identifies gmk, given the values gk for a single channel. In addition, the parameter
βm describing the global channel condition is assumed to be equal to the average
channel condition,

βm =
1
K

K∑

k=1

gmk .

We consider the case of a wireless AP serving K = 3 mobile nodes, each
having a buffer with finite capacity C = 35. The channel to each of the K users
switches between H = 3 possible states of the finite-state Markov chain model
with corresponding qualities gmk ∈ [0.3, 0.7, 1]. Thus, the total number of back-
ground states is M = HK = 27 and the overall state space size is M(C + 1)K =
1.259.712. The generator matrix of the background process A is obtained by
means of [14] applying the following parameter values. The Doppler spread is
100 Hz and the average SNR is 20 dB, whereas the vector of SNR state thresh-
olds is [10, 20, 30]dB. Assuming γ = 100 we obtain the following continuous-time
process,

Ã =

⎛

⎝
−0, 0054 0, 0054 0
0, 0081 −0, 0128 0, 0047

0 0, 0081 −0, 0081

⎞

⎠ .

Figure 2 shows the mean total queue content at the AP under light traffic
(a) and for overload (b) for various orders N of the series expansions and for
the opportunistic DPS policy. To verify our approximations, we also display
simulation results. For sufficiently high-order expansions we observe that the
approximations are accurate in the regions λ = 0 . . . 0.4 and μ = 0 . . . 1 for light
traffic and overload, respectively.

0 0.1 0.2 0.3 0.4

0

1

2

3

4

λ

E
[Q

]

N = 1
N = 2
N =5
N = 10
N = 16

Simulation

0 0.2 0.4 0.6 0.8 1 1.2

90

95

100

105

μ

E
[Q

]

N = 1
N = 2
N = 5
N = 10
N = 20

Simulation

(a) Light traffic (b) Overload traffic

Fig. 2. Mean queue content at the AP: approximation by a series expansion around
λ = 0 (a) and μ = 0 (b)

Efficient Performance Evaluation of Wireless Networks 69

In order to define the region where the approximation is sufficiently accurate
we rely on the simple heuristic by analogy with [18]. Let fN (x) be the Nth order
expansion in x (x = μ or x = λ), then for given ε we can find a range Δx where
the following condition is satisfied

|fN+1(x) − fN (x)|
fN+1(x)

< ε,

or equivalently

1 − ε <
fN (x)

fN+1(x)
< 1 + ε.

For the system under consideration and for given ε = 0.01, we have the regions
Δλ = 0.35 and Δμ = 0.8 for the light-traffic and overload cases, respectively.

For the sake of comparison, we provide both the approximations and simula-
tions for discriminatory processor sharing (DPS) (1) and generalised processor
sharing (GPS) (2) schedulers in Figure 3. As the figure demonstrates, for the
light traffic case, the mean AP buffer content is almost identical under both
schedulers. The reason is that the queues contain but a few packets at most,
such that the difference between DPS and GPS is not outspoken. Under over-
load traffic on the contrary, a GPS policy outperforms DPS. Since GPS is a
purely opportunistic scheduler, it will optimise throughput which results in a
reduction of the total queue content. DPS also prioritises longer queues which
allows for a reduction in delay jitter but comes at the price of higher mean queue
content and delay (by Little’s theorem).

0 0.1 0.2 0.3 0.4 0.5

0

2

4

6

λ

E
[Q

]

N = 15 DPS
N = 15 GPS
Sim DPS
Sim GPS

0 0.2 0.4 0.6 0.8 1 1.2

90

95

100

105

μ

E
[Q

]

DPS (N = 18)

GPS (N = 14)
DPS simulation
GPS simulation

(a) Light traffic (b) Overload traffic

Fig. 3. Mean queue content at the AP: comparison of DPS and GPS under light (a)
and overload (b) traffic

70 E. Evdokimova et al.

5 Conclusions and Future Work

In this paper we considered a queueing model for the performance evaluation of a
wireless access point under varying channel conditions. In order to represent the
transmission channel variations we introduced a Markovian exogenous channel
process. To solve the entire Markov chain and cope with the prohibitively large
size of the state space that is inherent to queueing systems with multiple finite-
capacity buffers, we relied on series expansion techniques. We showed that in
contrast to the stationary solution of the Markov chain, the terms of expansion
of this solution can be calculated fast and accurately, both for expansions in
overload μ = 0 and light traffic λ = 0. The computational complexity of the sug-
gested method is O(NM2S), with N the order of the expansions, M the number
of channel states and S the size of the state space of the overall Markov chain.
Furthermore, to evaluate the region where the approximation is sufficiently accu-
rate we applied a simple heuristic which compares the (N + 1)th and Nth order
expansions. We illustrated the proposed approach with some numerical experi-
mentations involving the DPS and GPS scheduling policies. The approximations
were found to be accurate for light traffic till reasonable load and for reasonable
load till complete overload.

The present study did not address how to assess system performance for
medium load. The upper- or lower-diagonal block structures for the unperturbed
Markov chains in light- and overload traffic, are key for the evaluation method-
ology proposed, and are not present when expanding in medium load, say for
λ/μ around 0.5. The light- and overload traffic expansion however do yield crude
approximations for the stationary distribution in medium load. Such approxi-
mations may be used as initial distribution in an iterative solution method for
the Markov chain. Whether such approximations indeed allow for speeding up
iterative schemes for calculating the stationary distribution (and its expansion
in the load) is left for future work.

Acknowledgments. The second author is a Postdoctoral Fellow with the Research
Foundation, Flanders (FWO-Vlaanderen), Belgium. This research has been funded by
the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy
Office.

References

1. Roberts, J.W.: A survey on statistical bandwidth sharing. Computer Networks
45(3), 319–332 (2004)

2. Liu, X., Chong, E.K.P., Shroff, N.B.: Opportunistic transmission scheduling with
resource-sharing constraints in wireless networks. IEEE Journal on Selected Areas
in Communications 19(10), 2053–2064 (2001)

3. Knopp, R., Humblet, P.: Information capacity and power control in single-cell
multiuser communications. In: Proc. IEEE ICC, pp. 331–334, June 1995

4. Liu, X., Chong, E.K.P., Shroff, N.B.: A framework for opportunistic scheduling in
wireless networks. Computer Networks 41(4), 451–474 (2003)

Efficient Performance Evaluation of Wireless Networks 71

5. Ajib, W., Haccoun, D.: An overview of scheduling algorithms in MIMO-based
fourth-generation wireless-systems. IEEE Network 19(5), 43–48 (2005)

6. Asadi, A., Mancuso, V.: A survey on opportunistic scheduling in wireless commu-
nications. IEEE Communications Surveys & Tutorials 15(4), 1671–1688 (2013)

7. Mietzner, J., Schober, R., Lampe, L., Gerstacker, W.H., Hoeher, P.A.: Multiple-
antenna techniques for wireless communications-a comprehensive literature survey.
IEEE Communications Surveys & Tutorials 11(2), 87–105 (2009)

8. Shakkottai, S., Rappaport, T.S., Karlsson, P.C.: Cross-layer design for wireless
networks. IEEE Communications Magazine 41(10), 74–80 (2003)

9. Gesbert, D., Kountouris, M., Heath, R.W., Chae, C.B., Salzer, T.: Shifting the
MIMO paradigm. IEEE Signal Processing Magazine 24(5), 36–46 (2007)

10. Lin, X., Shroff, N.B., Srikant, R.: A tutorial on cross-layer optimization in wireless
networks. IEEE Journal on Selected Areas in Communications 24(8), 1452–1463
(2006)

11. Lei, L., Lin, C., Cai, J., Shen, X.: Performance analysis of wireless opportunistic
schedulers using stochastic Petri nets. IEEE Transactions on Wireless Communi-
cations 8(4), 2076–2087 (2009)

12. Rashid, M.M., Hossain, M.J., Hossain, E.H., Bhargava, V.K.: Opportunistic Spec-
trum Scheduling for Multiuser Cognitive Radio: A Queueing Analysis. IEEE Trans-
actions on Wireless Communications 8(10), 5259–5269 (2009)

13. Bellalta, B., Faridi, A., Barcelo, J., Daza, V., Oliver, M.: Queueing analysis in mul-
tiuser multi-packet transmission systems using spatial multiplexing. arXiv preprint
arXiv:1207.3506 (2012)

14. Wang, H.S., Moayeri, N.: Finite-state Markov channel-a useful model for radio
communication channels. IEEE Transactions on Vehicular Technology 44(1), 163–
171 (1995)

15. Altman, E., Avrachenkov, K.E., Núñez-Queija, R.: Perturbation analysis for denu-
merable markov chains with application to queueing models. Advances in Applied
Probability 36(3), 839–853 (2004)

16. De Turck, K., De Cuypere, E., Wittevrongel, S., Fiems, D.: Algorithmic approach
to series expansions around transient markov chains with applications to paired
queuing systems. In: Proc. of the 6th International Conference on Performance
Evaluation Methodologies and Tools, pp. 38–44 (2012)

17. De Turck, K., De Cuypere, E., Fiems, D.: A Maclaurin-series expansion approach
to multiple paired queues. Operations Research Letters 42(3), 203–207 (2014)

18. De Turck, K., Fiems, D.: A series expansion approach for finite-capacity proces-
sor sharing queues. In: Proc. of the 7th International Conference on Performance
Evaluation Methodologies and Tools, pp. 118–125 (2013)

19. Lasserre, J.B.: A Formula for Singular Perturbations of Markov Chains. Journal
of Applied Probability 31(3), 829–833 (1994)

20. van den Hout, W.B.: The power-series algorithm. Ph.D Thesis. University of
Tilburg (1996)

21. B�laszczyszyn, B., Rolski, T., Schmidt, V.: Light-traffic approximations in queues
and related stochastic models. In: Advances in Queueing: Theory, Methods and
Open Problems. CRC Press, Boca Raton (1995)

22. Kovalenko, I.: Rare events in queueing theory. A survey. Queueing Systems 16(1),
1–49 (1994)

23. Avrachenkov, K., Filar, J.A.: Analytic Perturbation Theory and Its Applications.
SIAM (2014)

http://arxiv.org/abs/1207.3506

72 E. Evdokimova et al.

24. Rashid, M.M., Hossain, E., Bhargava, V.K.: Cross-layer analysis of downlink
v-blast MIMO transmission exploiting multiuser diversity. IEEE Transactions on
Wireless Communications 8(9), 4568–4579 (2009)

25. Avrachenkov, K.E., Haviv, M.: Perturbation of null spaces with application to the
eigenvalue problem and generalized inverses. Linear Algebra and its Applications
369, 1–25 (2003)

26. Banks, H.T., Broido, A., Gayvert, K., Hu, S., Joyner, M., Link, K.: Simulation
Algorithms for Continuous Time Markov Chain Models. Applied Eletromagnetics
and Mechanics 37 (2007)

Mixed Networks with Multiple Classes
of Customers and Restart

Jean-Michel Fourneau1(B) and Katinka Wolter2

1 PRiSM, Univ. Versailles St Quentin, UMR CNRS 8144, Versailles, France
jmf@prism.uvsq.fr

2 Institute of Computer Science, Free University Berlin, Berlin, Germany
katinka.wolter@fu-berlin.de

Abstract. We consider a network of queues with multiples classes of
customers and restart signals. A restart signal makes a customer in the
queue change its class and restart to the first step of service. The queues
which receive signals can have an infinite server or a processor sharing
discipline. The service time distributions are hyper-exponential, which
can have high variance and are realistic for many real-world applications,
such as transmission times over the internet. For distributions with large
variability the restart mechanism can be useful. We prove that, under
ergodicity condition, such a model has a product form steady-state distri-
bution. This model contains two original features which were previously
not allowed in a network of queues with negative customers: a part of
the network is closed and some stations are Infinite Server queues.

1 Introduction

This paper generalizes in many directions the result obtained in [FWR+13] where
G-networks with restart signals were introduced and have been shown to have
a product form steady-state distribution. This analytical solution is used in
a solver [WRD15]. First, we consider that the restart signal comes from an
open subnetwork with positive and negative customers and triggers while in
our previous work we assumed that the restart signals come from outside the
network and the network only contained positive customers. We also assume
a closed topology for the sub-network to which the signals arrive. Due to this
topology, we are able to consider for the first time for G-networks, stations
with infinite service capacity (IS queues). Finally, for the sake of simplicity, we
assume that the service times follow hyper-exponential distributions which are
specific to the class of the customers and the queue. Note that in the context
of restart mechanism such an assumption is not really restrictive. Indeed, such
a mechanism is only useful when the service times have a high variability and
it may be worth to restart a service which takes too long. With a restart, a
user aborts a running job that has exceeded a given deadline and submits it
again to the system. In many scenarios, such a mechanism allows to reduce the
total response time for a job [vMW04,vMW06]. Here we use the same queueing
representation already defined in [FWR+13]. Jobs are represented as positive
c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 73–86, 2015.
DOI: 10.1007/978-3-319-18579-8 6

74 J.-M. Fourneau and K. Wolter

customers in the G-network of queues and restarts are modeled as signals which
change the class of a customer and restart the service. A trigger signal can also
move the affected job among queues.

G-networks of queues with signals have received a considerable attention since
the seminal paper by Gelenbe [Gel91] in 1991 where he introduced networks
with positive and negative customers. A negative customer deletes a positive
customer if there is any in the queue at its arrival. Then it disappears. If the
queue is empty, it also disappears immediately. A negative customer is never
kept in the queue. It is a signal which deletes a customer. Such a network with
positive and negative customers are associated with models of Random Neural
networks [Gel94] and are therefore suitable to model control algorithms.

The model we have presented in [FWR+13] uses the signal approach to rep-
resent a restart in a network of queues with customers which have iid PH dis-
tributed service times. At the reception of a signal, a customer chosen according
to the queuing discipline begins a restart procedure. This procedure has three
steps.

1. First, it can accept or refuse the signal with a probability which depends on
its class and on its step of service in the PH.

2. Second, it changes to another class using a stochastic mutation matrix.
3. Finally, it jumps to the first step of the PH distribution where it is starting

again its service.

We use the same model (except the distribution of service which is simpler) to
represent the effect of a restart signal but we add several features in the network
concerning the topology, the service disciplines, the existence of other signals in
the network (negative customers as in [Gel91] or triggers as in [Gel93]). This
paper is merely theoretical as we prove that the queueing network has a product
form steady-state distribution if the associated Markov chain is ergodic. The
proof is based on the resolution of the global balance equation. One may use
other theoretical approaches to establish the result. But it not clear that the
CAT and RCAT theorems proved by Harrison [Har03,Har04,BHM10] are easier
for networks with multiple classes of customer.

The result rises many interesting theoretical questions we address at the end
of the paper concerning a possible mean value analysis approach for the closed
sub-network with restart and triggers signals.

The technical part of the paper is organized as follows. In the next section
we present the model and the proof is given in Section 3. Many details of the
proof are postponed into an appendix for the sake of readability.

2 Description of the Model

We investigate generalized networks with an arbitrary number N of queues, K
classes of positive customers, three types of signals (negative customers, restarts
and triggers) and a mixed topology. The mixed topology is described as follows
(see Fig. 1). The set of queues is divided into two subsets which constitute

Mixed Networks with Multiple Classes of Customers and Restart 75

a proper partition. Let S1 and S2 these two sets. S1 is an open network. It
receives fresh customers from the outside and some customers may leave queue
i with probability di to the environment. But S2 is a closed network of queues.
The novelty here is that signals can be sent from a queue in S1 into a queue of
S2. No movement of customers are allowed between S1 to S2. Thus, the network
is a mixed network of generalized queues.

More precisely, signals appear after a service of a customer in S1. At the
completion of its service in queue i in S1, a customer may:

– route as a customer to a queue (say j) in S1 with probability Pi,j ,
– route as a trigger signal to a queue (say j) in S2 with probability Ti,j ,
– route as a restart signal to a queue (say j) in S2 with probability Ri,j ,
– route as a negative customer signal to a queue (say j) in S1 with probability

Qi,j ,
– leave the system with probability di.

Of course, we have the following normalization for all i ∈ S1:

di +
∑

j∈S1

Pi,j +
∑

j∈S1

Qi,j +
∑

j∈S2

Ri,j +
∑

j∈S2

Ti,j = 1. (1)

The behavior of customers in queues of S2 is much simpler: at the completion
of its service in queue i in S2, a customer of class k may route as a customer of
class l to a queue (say j) in S2 with probability P

(k,l)
i,j . It is important to remark

that there are no negative customers in S2.
The model in Fig. 1 could for instance represent a system with load balancing

in the following way: the open subnetwork S1 on the left is the control part of
the system which sends restart signals to the closed queueing network S2 on the
right side. We want to optimize the throughput inside the closed subsystem. The
routing of the customers out of queue E depends on the class of the customers
and their service times are also class dependent. The restart signal received at
queue E is used to change the class of the customers. Therefore, the average
service time but also the variance change when we restart a customer. And the
routing is changed. All these parameters have an influence on the throughput in
the closed subsystem and it gives us the opportunity to control the system with
the restart signals sent from subnetwork S1.

The exemple in Fig. 1 is a very simple one: we only have one source or
restart and one destination. Furthermore we do not consider triggers which move
customers between queues of S2. Clearly we can model systems where the signals
have a large impact on the throughput and using the product form solution we
hope that we can optimize such models.

Let M be the number of customers in S2 irrespective of their location, class
and step of service at the initial time. We will see in the following that this total
number does not evolve with time.

We assume that the queues in S1 contains only one class of customers and
that the service times are iid exponential. Therefore the queueing discipline is not
relevant as we only study steady-state distribution. Fresh arrivals of customers

76 J.-M. Fourneau and K. Wolter

.

open subnetwork
closed subnetwork

restart signal

customers

A

B

C

D

E

F

Fig. 1. Mixed Topology, the customers’ movements are represented with straight lines,
the negative customers by dotted lines and the restart signals by thick dotted lines

only occur at queues in S1. The arrivals follow independent Poisson processes.
The rate for arrivals at queue i in S1 is λi.

The queues in S2 contain K classes of customers. We assume that the queue-
ing discipline is the processor sharing (PS) policy or the infinite server (IS) pol-
icy. We also assume that the service times follow hyper-exponential distributions.
The hyper-exponential distribution is a mixture of H exponential distributions
with probability of mixture mk,p

i such as:

∀i, k
H∑

p=1

m
(k,p)
i = 1. (2)

At queue i, the intensity of service for customers of class k with index p for
the mixture of distributions is denoted as μ

(k,p)
i . Set S2 is partitioned into two

sets: S3 and S4. S3 is the set of Processor Sharing queues while S4 is the set
of Infinite Server queues. It is worthy to remark that this model allows one
to consider Infinite Server queues while, in general, it is not possible to find
the steady-state distribution of such a queue with negative customers or more
complex signals.

We represent the system by vector x whose component xi is the state of
queue i. If i ∈ S1, xi is the number of customers while if i ∈ S2, xi is the
vector (x(k,p)

i) for k = 1, . . . , K and p = 1, . . . , H where (x(k,p)
i) is the number of

customer of class k and phase p in station i. For these queues ||xi|| will be the
number of customers in the queue.

The signals act as follows:

Mixed Networks with Multiple Classes of Customers and Restart 77

– a negative customer deletes a normal customer at its arrival, if there is any
in the queue. Then it vanishes. If the queue is empty, the negative customer
disappears immediately. A negative customer is never queued.

– a restart signal arriving at queue j selects a customer of class k and step
of service p according to a distribution of probability which is denoted by
N

(k,p)
j and restarts it. The customer stays in the same queue (i.e. say j) but

it changes its class (from k to l) and begins a new service according to the
distribution for its new class. If it fails, the customer is kept unchanged. The
matrix of the class transformation is C

(k,l)
j . The probability of the selection

of a class k customer is state dependent but it also depends on the queueing
discipline of the station which receives the signal: for queues in S3,

N
(k,p)
j (xj) =

x
(k,p)
j

||xj || 1||xj ||>0,

and for queues in S4,

N
(k,p)
j (xj) =

x
(k,p)
j

M
1||xj ||>0.

Of course we have for all index of class k, queue index j ∈ S2, and state xj :

K∑

l

C
(k,l)
j = 1, and

K∑

k=1

H∑

p=1

N
(k,p)
j (xj) ≤ 1.

1 − ∑K
k=1

∑H
p=1 N

(k,p)
j (xj) represents the probability that the signal fails.

– a trigger signal arriving at queue j selects a customer with the same dis-
tribution of probability than the restart and it moves it to another queue.
The customer also changes its class. Let A

(k,l)
j,r be the probability that the

selected customer (in queue j and of class k) moves to queue r as a customer
of class l. If it fails, the customer is kept unchanged. For all j ∈ S2 and class
index k we have:

K∑

l=1

∑

r∈S2

A
(k,l)
j,r = 1.

Clearly, S1 is open while S2 is closed for the routing of customers. Therefore
we called this topology a mixed network of queues with signals. Due to the effect
of the signals arriving in S2 which do not change the total number of customers
and due to the routing of customers in S2, the total number of customers in S2
does not change. Therefore M is the total number of customers in S2 during the
sample-path and at steady-state.

Clearly, (x)t is a Markov chain.

78 J.-M. Fourneau and K. Wolter

3 Main Result

We now state that the model introduced in the previous section has a product
form steady-state distribution if the chain is ergodic and if the flow equations
have a solution which satisfy the stationarity constraints. Let us first introduce
a notation. In the following S

(k,p)
i (xi) will represent the service rate for customer

of class k and step of service (also called phase) p at station i when the state is
xi. We have for all i ∈ S4:

S
(k,p)
i (xi) = μ

(k,p)
i x

(k,p)
i ,

and for all i ∈ S3,

S
(k,p)
i (xi) = μ

(k,p)
i

x
(k,p)
i

||xi|| 1||xi||>0,

and of course S
(k,p)
i is zero when the queue is empty. Note that the form of

N and A are essential to obtain the result. However their consistency with the
service S gives a nice physical interpretation.

Theorem 1. Consider a mixed G-network with customers and signals as des-
cribed in section 2. Assume that the Markov chain is ergodic. If the system

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρi =
λi+

∑
j∈S1 μjρjPj,i

μi+
∑

j∈S1 μjρjQj,i
∀i ∈ S1

a(i, k, p) =
∑

j∈S2

∑K
l=1

∑H
q=1 μ

(l,q)
j ρ

(l,q)
j P

(l,k)
j,i m

(k,p)
i ∀i ∈ S2

b(i, k) =
∑

j∈S1

∑K
l=1

∑H
q=1 μjρjRj,iC

(l,k)
i ρ

(l,q)
j ∀i ∈ S2

c(i, k) =
∑

j∈S1 μjρj

∑
r∈S3 Tj,r

∑H
q=1

∑K
l=1 A

(l,k)
r,i ρ

(l,q)
r ∀i ∈ S2

d(i, k) =
∑

j∈S1 μjρj

∑
r∈S4 Tj,r

∑H
q=1

∑K
l=1 A

(l,k)
r,i ρ

(l,q)
r /M ∀i ∈ S2

e(i) =
∑

j∈S1 μjρj(Rj,i + Tj,i) ∀i ∈ S2

ρ
(k,p)
i = m

(k,p)
i

a(i,k,p)+b(i,k)+c(i,k)+d(i,k)

μ
(k,p)
i +e(i)

∀i ∈ S3

ρ
(k,p)
i = m

(k,p)
i

a(i,k,p)+b(i,k)/M+c(i,k)+d(i,k)

μ
(k,p)
i +e(i)/M

∀i ∈ S4

(3)

has a solution such that ρi < 1 for all i ∈ S1 and
∑K

k=1

∑H
p=1 ρ

(k,p)
i < 1 for

i ∈ S2, then the steady-state distribution has a product form distribution. More
precisely,

π(x) = C

(
∏

i∈S1

(1 − ρi)ρxi
i

) (
∏

i∈S2

gi(xi)

)
,

Mixed Networks with Multiple Classes of Customers and Restart 79

where C is a normalizing constant and for all i ∈ S3,

gi(xi) = (1 −
K∑

k=1

H∑

p=1

ρ
(k,p)
i)||xi||!

K∏

k=1

H∏

p=1

(ρ(k,p)
i)x

(k,p)
i

x
(k,p)
i !

,

while for all i ∈ S4,

gi(xi) =
K∏

k=1

H∏

p=1

exp(−ρ
(k,p)
i)

(ρ(k,p)
i)x

(k,p)
i

x
(k,p)
i !

,

Proof: the proof is based on the resolution of the global balance equation. Let
us first write the Kolmogorov equation at steady-state (Equation 4, next page)
Let us first explain the right hand side of this equation.

– Terms [1] to [5] represent a well known G-network with negative customers
as described in [Gel91].

– Term [6] models the emission of customers between queues of S2.
– Terms [7] and [8] represent the emission of restart signal from a queue i of

S1 to a queue of S2. Term [7] describes the effect of a signal when it succeeds
while Term [8] models the failure of the signal once it has been emitted.

– Terms [9] to [11] model the emission of a trigger signal initiated by a queue of
S1 and with moves from queue j to queue r, both in S2. Term [9] describes
the success of the signal and its effect while Terms [10] and [11] describes
the failure due to empty queue (Term [10]) or due to the selection process
(Term [11]).

The proof is postponed in an appendix for the sake of readability. And we just
give here some simplification rules. ei represents the state of an empty network
with only one customer at queue i, i ∈ S1, while e

(k,p)
i is the state on an empty

network with only one customer of class k at queue i in S2 during step p of its
service.

π(x + ei)
π(x)

= ρi and
π(x + ei − ej)

π(x)
=

ρi

ρj
∀i, j ∈ S1.

Lemma 1. For all i ∈ S2, the quantity S
(k,p)
i (xi + e

(k,p)
i)π(x+e

(k,p)
i)

π(x) does not
depend on the queuing discipline of station i.

Proof. We compute the quantity for Processor Sharing and Infinite Server dis-
ciplines. For all i ∈ S4

S
(k,p)
i (xi + e

(k,p)
i)

π(x + e
(k,p)
i)

π(x)
= μ

(k,p)
i (x(k,p)

i + 1)
ρ
(k,p)
i

(x(k,p)
i + 1)

= μ
(k,p)
i ρ

(k,p)
i .

For all i ∈ S3

S
(k,p)
i (xi+e

(k,p)
i)

π(x + e
(k,p)
i)

π(x)
=μ

(k,p)
i

(x(k,p)
i + 1)

||xi|| + 1
||xi|| + 1

(x(k,p)
i + 1)

ρ
(k,p)
i =μ

(k,p)
i ρ

(k,p)
i .

Thus the quantity does not depend on the queueing discipline and is equal to
μ
(k,p)
i ρ

(k,p)
i .

80 J.-M. Fourneau and K. Wolter

π(x)

⎡
⎣∑

i∈S1

μi1xi>0 +
∑
i∈S1

λi +
∑
i∈S2

K∑
k=1

H∑
p=1

S
(k,p)
i (xi)

⎤
⎦ =

∑
i∈S1

λiπ(x − ei)1xi>0 [1]

+
∑
i∈S1

μiπ(x + ei)di [2]

+
∑
i∈S1

∑
j∈S1

μiπ(x + ei − ej)Pi,j1xj>0 [3]

+
∑
i∈S1

∑
j∈S1

μiπ(x + ei + ej)Qi,j [4]

+
∑
i∈S1

∑
j∈S1

μiπ(x + ei)Qi,j1xj=0 [5]

+
∑
i∈S2

∑
j∈S2

K∑
k=1

K∑
l=1

H∑
p=1

H∑
q=1

π(x + e
(k,p)
i − e

(l,q)
j)S

(k,p)
i (xi + e

(k,p)
i)P

(k,l)
i,j m

(l,q)
j 1

x
(l,q)
j >0

[6]

+
∑
i∈S1

∑
j∈S2

μiRi,j

K∑
k=1

H∑
p=1

K∑
l=1

H∑
q=1

N
(k,p)
j (xj + e

(k,p)
j − e

(l,q)
j) ×

C
(k,l)
j π(x + ei + e

(k,p)
j − e

(l,q)
j)m

(l,q)
j 1

x
(l,q)
j >0

[7]

+
∑
i∈S1

∑
j∈S2

μiRi,jπ(x + ei)

⎛
⎝1||xj ||=0 + 1||xj ||>0(1−

K∑
k=1

H∑
p=1

N
(k,p)
j (xj))

⎞
⎠ [8]

+
∑
i∈S1

∑
j∈S2

μiTi,j

K∑
k=1

H∑
p=1

N
(k,p)
j (xj + e

(k,p)
j) ×

K∑
l=1

∑
r∈S2

A
(k,l)
j,r

H∑
q=1

π(x + ei + e
(k,p)
j − e

(l,q)
r)m

(l,q)
r 1

x
(l,q)
r >0

[9]

+
∑
i∈S1

∑
j∈S2

μiTi,jπ(x + ei)1||xj ||=0 [10]

+
∑
i∈S1

∑
j∈S2

μiTi,jπ(x + ei)1||xj ||>0(1−
K∑

k=1

H∑
p=1

N
(k,p)
j (xj)) [11]

(4)

Property 1. Let us now consider the product N
(k,p)
j (xj+e

(k,p)
j −e

(l,q)
j)

π(x+e
(k,p)
j)

π(x)

for both types of queues in S2. If j ∈ S3 then we get:

N
(k,p)
j (xj + e

(k,p)
j − e

(l,q)
j)

π(x + e
(k,p)
j)

π(x)
=

x
(k,p)
j + 1

||xj || + 1
ρ
(k,p)
j (||xj || + 1)

x
(k,p)
j + 1

= ρ
(k,p)
j .

Mixed Networks with Multiple Classes of Customers and Restart 81

and for queues in S4,

N
(k,p)
j (xj + e

(k,p)
j − e

(l,q)
j)

π(x + e
(k,p)
j)

π(x)
=

x
(k,p)
j + 1

M

ρ
(k,p)
j

x
(k,p)
j + 1

=
ρ
(k,p)
j

M
.

Therefore we cannot abstract the queuing discipline when we deal with Terms
[7] to [11].

Lemma 2. The flow equation between the outside and all the queues in S1 is:
∑
i∈S1

λi =
∑
i∈S1

μiρidi+
∑
i∈S1

∑
j∈S1

μiρiρjQi,j +
∑
i∈S1

∑
j∈S1

μiρiQi,j +
∑
i∈S1

∑
j∈S2

μiρi(Ri,j +Ti,j).

(5)

Remember that the network containing the queues of S2 is closed and it does not
exchange customers with the outside.

Proof. Consider the definition of ρi, multiply both sides by the denominator and
sum for all queue in S1.

∑

i∈S1

μiρi +
∑

i∈S1

∑

j∈S1

ρiρjμjQj,i =
∑

i∈S1

λi +
∑

i∈S1

∑

j∈S1

ρjμjPj,i

Due to Eq. 1, we have:
∑

i∈S1

Pj,i = 1 − dj −
∑

i∈S1

Rj,i −
∑

i∈S1

Tj,i −
∑

i∈S1

Qj,i

After substitution and cancellation of terms, we finally get Eq. 5.

Note that the normalization constant C is not equal to 1.0 as some states
for the closed sub-network are not reachable. Thus we have to use a numerical
algorithm to compute C.

4 Open Questions and Concluding Remarks

The network is decomposed into an open part and a closed part. Typically
G-networks with signals have an open topology because many signals already
studied in the literature imply the deletion of customers. Here if we assume that
the signals are generated outside the component we study, we have a balance
for the customers in queue. If the queue is empty, it remains empty. If there is
a backlog, we still have the same total number of customers after the signal.
Therefore it is possible to consider a closed sub-network where the total number
of customers is constant. Note however that this number is not constant per
class.

This opens many questions related to known results for closed queueing net-
works with customers and without signals. We just want to mention here the
PASTA property [HP93] to describe the state seen by an arriving customer or a

82 J.-M. Fourneau and K. Wolter

signal and the possibility to derive a MVA algorithm [BGDMT98] to compute
the average queue size and the average delay without computing the distribution.
It is well-known that in a closed Gordon Newell network, an arriving customer
sees the steady-state distribution of the network with one customer less. Such
a question can now be considered for closed sub-network of generalized queues
with restart and trigger signals. Such a theoretical result allows to compute the
average queue size without computing the steady-state distribution. Note that
even if Theorem 1 states that the steady-state has a product form, we have
to compute the normalizing constant by a numerical algorithm which still has
to be developed. A natural idea consists in a generalization of the convolution
algorithm proposed by Buzen [BGDMT98], to networks of queues with signals.

Acknowledgments. This research is partly supported by a PHC Procope grant. The
French team is supported by grant ANR-12-MONU-00019.

References

[BGDMT98] Bolch, G., Greiner, S., De Meer, H., Trivedi, K.: Queueing Networks and
Markov Chains. John Wiley & Sons (1998)

[BHM10] Balsamo, S., Harrison, P.G., Marin, A.: A unifying approach to product-
forms in networks with finite capacity constraints. In: Misra, V., Barford,
P., Squillante, M.S. (eds.) Proceedings of the 2010 ACM SIGMETRICS
International Conference on Measurement and Modeling of Computer
Systems, SIGMETRICS 2010, New York, pp. 25–36. ACM (2010)

[FWR+13] Fourneau, J.-M., Wolter, K., Reinecke, P., Krauß, T., Danilkina, A.: Mul-
tiple class G-networks with restart. In: ACM/SPEC International Con-
ference on Performance Engineering, ICPE 2013, pp. 39–50. ACM (2013)

[Gel91] Gelenbe, E.: Product-form queuing networks with negative and positive
customers. Journal of Applied Probability 28, 656–663 (1991)

[Gel93] Gelenbe, E.: G-networks with instantaneous customer movement. Journal
of Applied Probability 30(3), 742–748 (1993)

[Gel94] Gelenbe, E.: G-networks: An unifying model for queuing networks and
neural networks. Annals of Operations Research 48(1–4), 433–461 (1994)

[Har03] Harrison, P.G.: Turning back time in Markovian process algebra. Theo-
retical Computer Science 290(3), 1947–1986 (2003)

[Har04] Harrison, P.G.: Compositional reversed Markov processes, with applica-
tions to G-networks. Perform. Eval. 57(3), 379–408 (2004)

[HP93] Harrison, P.G., Patel, N.M.: Performance Modelling of Communication
Networks and Computer Architectures. Addison-Wesley, January 1993

[vMW04] van Moorsel, A.P.A., Wolter, K.: Analysis and algorithms for restart.
In: 1st International Conference on Quantitative Evaluation of Systems
(QEST 2004), The Netherlands, pp. 195–204. IEEE Computer Society
(2004)

[vMW06] van Moorsel, A.P.A., Wolter, K.: Analysis of restart mechanisms in soft-
ware systems. IEEE Trans. Software Eng. 32(8), 547–558 (2006)

[WRD15] Wolter, K., Reinecke, P., Dräger, M.: GRnet: a tool for G-networks with
restart. In: Proceedings of the 6th ACM/SPEC International Conference
on Performance Engineering, Austin, USA, pp. 101–102. ACM (2015)

Mixed Networks with Multiple Classes of Customers and Restart 83

Appendix

We divide both sides by π and we use the simplification rules already mentioned.

∑

i∈S1

μi1xi>0 +
∑

i∈S1

λi +
∑

i∈S2

K∑

k=1

H∑

p=1
S
(k,p)
i (xi) =

∑

i∈S1

λi
1

ρi

1xi>0 [1]

+
∑

i∈S1

μiρidi +
∑

i∈S1

∑

j∈S1

μi
ρi

ρj

Pi,j1xj>0 +
∑

i∈S1

∑

j∈S1

μiρiρjQi,j +
∑

i∈S1

∑

j∈S1

μiρiQi,j1xj=0 [2 − 5]

+
∑

i∈S2

∑

j∈S2

K∑

k=1

K∑

l=1

H∑

p=1

H∑

q=1
μ
(k,p)
i ρ

(k,p)
i P

(k,l)
i,j m

(l,q)
j

gj(xj − e
(l,q)
j)

gj(xj)
1
x
(l,q)
j

>0
[6]

+
∑

i∈S1

∑

j∈S2

μiRi,j

K∑

k=1

H∑

p=1

K∑

l=1

H∑

q=1
N

(k,p)
j (xj + e

(k,p)
j − e

(l,q)
j) ×

C
(k,l)
j ρi

gj(xj + e
(k,p)
j − e

(l,q)
j)

gj(xj)
m

(l,q)
j 1

x
(l,q)
j

>0
[7]

+
∑

i∈S1

∑

j∈S2

μiRi,jρi

⎛

⎝1||xj ||=0 + 1||xj ||>0(1 −
K∑

k=1

H∑

p=1
N

(k,p)
j (xj))

⎞

⎠ [8]

+
∑

i∈S1

∑

j∈S2

μiTi,j

K∑

k=1

H∑

p=1
N

(k,p)
j (xj + e

(k,p)
j) ×

K∑

l=1

∑

r∈S2

A
(k,l)
j,r

H∑

q=1
ρi

gj(xj + e
(k,p)
j)

gj(xj)

gr(xr − e
(l,q)
r)

gr(xr)
m

(l,q)
r 1

x
(l,q)
r >0

[9]

+
∑

i∈S1

∑

j∈S2

μiTi,jρi1||xj ||=0 [10]

+
∑

i∈S1

∑

j∈S2

μiTi,jρi1||xj ||>0(1 −
K∑

k=1

H∑

p=1
N

(k,p)
j (xj)) [11]

We remark that 1xj=0 = 1−1xj>0 and that 1||xj ||=0+1||xj ||>0 = 1. We substitute
in Term [5] and Term [8]. We factorize Term [10] and Term [11]. We move the
negative parts we have made appeared with this substitutions on the left hand
side of the equation. We factorize Term [1] and Term [3] after exchanging the
index in Term [3].

∑

i∈S1

μi1xi>0 +
∑

i∈S1

λi +
∑

i∈S2

K∑

k=1

H∑

p=1

S
(k,p)
i

(xi) +
∑

i∈S1

∑

j∈S1

μiρiQi,j1xj>0

+
∑

i∈S1
∑

j∈S2 μiρi(Ri,j + Ti,j)1||xj ||>0
∑K

k=1
∑H

p=1 N
(k,p)
j

(xj)

=
∑

i∈S1

1

ρi

1xi>0(λi +
∑

j∈S1

μjρjPj,i) [1]

+
∑

i∈S1

μiρidi +
∑

i∈S1

∑

j∈S1

μiρiρjQi,j +
∑

i∈S1

∑

j∈S1

μiρiQi,j [2 + 3 + 4]

+
∑

i∈S2

∑

j∈S2

K∑

k=1

K∑

l=1

H∑

p=1

H∑

q=1

μ
(k,p)
i

ρ
(k,p)
i

P
(k,l)
i,j

m
(l,q)
j

gj(xj − e
(l,q)
j

)

gj(xj)
1
x
(l,q)
j >0

[5]

84 J.-M. Fourneau and K. Wolter

+
∑

i∈S1

∑

j∈S2

μiRi,j

K∑

k=1

H∑

p=1

K∑

l=1

H∑

q=1

N
(k,p)
j

(xj + e
(k,p)
j

− e
(l,q)
j

) ×

C
(k,l)
j

ρi

gj(xj + e
(k,p)
j

− e
(l,q)
j

)

gj(xj)
m

(l,q)
j

1
x
(l,q)
j

>0
[6]

+
∑

i∈S1

∑

j∈S2

μiρi(Ri,j + Ti,j) [7]

+
∑

i∈S1

∑

j∈S2

μiTi,j

K∑

k=1

H∑

p=1

N
(k,p)
j

(xj + e
(k,p)
j

) ×

K∑

l=1

∑

r∈S2

A
(k,l)
j,r

H∑

q=1

ρi

gj(xj + e
(k,p)
j

)

gj(xj)

gr(xr − e
(l,q)
r)

gr(xr)
m

(l,q)
r 1

x
(l,q)
r >0

[8]

Due to the definition of ρi for i ∈ S1, Term [1] of the r.h.s cancels with the first
and the fourth term of the l.h.s. And applying Lemma 2, the second term of the
l.h.s cancels with Terms [2], [3], [4], and [7]. We get:

∑
j∈S2

K∑
k=1

H∑
p=1

S
(k,p)
j (xj) +

∑
j∈S2

∑
i∈S1

μiρi(Ri,j + Ti,j)1||xj ||>0

K∑
k=1

H∑
p=1

N
(k,p)
j (xj)

=
∑
j∈S2

∑
i∈S2

K∑
k=1

K∑
l=1

H∑
p=1

H∑
q=1

μ
(k,p)
i ρ

(k,p)
i P

(k,l)
i,j m

(l,q)
j

gj(xj − e
(l,q)
j)

gj(xj)
1

x
(l,q)
j >0

[1]

+
∑
j∈S2

∑
i∈S1

μiRi,j

K∑
k=1

H∑
p=1

K∑
l=1

H∑
q=1

N
(k,p)
j (xj + e

(k,p)
j − e

(l,q)
j) ×

C
(k,l)
j ρi

gj(xj + e
(k,p)
j − e

(l,q)
j)

gj(xj)
m

(l,q)
j 1

x
(l,q)
j >0

[2]

+
∑
j∈S2

∑
i∈S1

μiTi,j

K∑
k=1

H∑
p=1

N
(k,p)
j (xj + e

(k,p)
j) ×

K∑
l=1

∑
r∈S2

A
(k,l)
j,r

H∑
q=1

ρi

gj(xj + e
(k,p)
j)

gj(xj)

gr(xr − e
(l,q)
r)

gr(xr)
m(l,q)

r 1
x
(l,q)
r >0

[3]

We now have to consider two cases to substitute the values of S
(k,p)
j and N

(k,p)
j

according to the queueing discipline. If queue j is in S4, we get:

∑

j∈S4

K∑

k=1

H∑

p=1

x
(k,p)
j

⎛

⎝μ
(k,p)
j +

∑

i∈S1

μiρi(Ri,j + Ti,j)
1

M

⎞

⎠

=
∑

j∈S4

∑

i∈S2

K∑

k=1

K∑

l=1

H∑

p=1

H∑

q=1

μ
(k,p)
i ρ

(k,p)
i P

(k,l)
i,j m

(l,q)
j

x
(l,q)
j

ρ
(l,q)
j

[1]

+
∑

j∈S4

∑

i∈S1

μiρiRi,j

K∑

k=1

H∑

p=1

K∑

l=1

H∑

q=1

ρ
(k,p)
j

M
C

(k,l)
j

x
(l,q)
j

ρ
(l,q)
j

m
(l,q)
j [2]

Mixed Networks with Multiple Classes of Customers and Restart 85

+
∑

r∈S4

∑

j∈S2

∑

i∈S1

μiρiTi,j

K∑

k=1

H∑

p=1

K∑

l=1

H∑

q=1

A
(k,l)
j,r

x(l,q)
r

ρ
(l,q)
r

m
(l,q)
r

gj(xj + e
(k,p)
j)

gj(xj)
N

(k,p)
j (xj + e

(k,p)
j) [3]

Note that the step functions are useless and they have been removed. According
to Prop. 1, one must decompose the Term [3] into two terms based on the type
of queues to be able to simplify the expression. Finally, after reordering to make
it clearer:

∑

j∈S4

K∑

k=1

H∑

p=1

x
(k,p)
j

(
μ
(k,p)
j +

∑

i∈S1

μiρi(Ri,j + Ti,j)
1
M

)

=
∑

j∈S4

K∑

l=1

H∑

q=1

x
(l,q)
j

ρ
(l,q)
j

m
(l,q)
j

∑

i∈S2

K∑

k=1

H∑

p=1

μ
(k,p)
i ρ

(k,p)
i P

(k,l)
i,j [1]

+
∑

j∈S4

K∑

l=1

H∑

q=1

x
(l,q)
j

ρ
(l,q)
j

m
(l,q)
j

∑

i∈S1

K∑

k=1

H∑

p=1

μiρiRi,jC
(k,l)
j

ρ
(k,p)
j

M
[2]

+
∑

r∈S4

K∑

l=1

H∑

q=1

x
(l,q)
r

ρ
(l,q)
r

m(l,q)
r

∑

j∈S3

∑

i∈S1

μiρiTi,j

K∑

k=1

H∑

p=1

A
(k,l)
j,r ρ

(k,p)
j [3]

+
∑

r∈S4

K∑

l=1

H∑

q=1

x
(l,q)
r

ρ
(l,q)
r

m(l,q)
r

∑

j∈S4

∑

i∈S1

μiρiTi,j

K∑

k=1

H∑

p=1

A
(k,l)
j,r

ρ
(k,p)
j

M
[4]

This relation holds because of the form of ρ
(k,p)
i for Infinite Service queues. Let

us now consider queues in S3 (i.e. queues with Processor Sharing discipline).

∑

j∈S3

K∑

k=1

H∑

p=1

x
(k,p)
j

||xj ||

(
μ
(k,p)
j +

∑

i∈S1

μiρi(Ri,j + Ti,j)

)

=
∑

j∈S3

∑

i∈S2

K∑

k=1

K∑

l=1

H∑

p=1

H∑

q=1

μ
(k,p)
i ρ

(k,p)
i P

(k,l)
i,j m

(l,q)
j

x
(l,q)
j

ρ
(l,q)
j ||xj ||

[1]

+
∑

j∈S3

∑

i∈S1

μiρiRi,j

K∑

k=1

H∑

p=1

K∑

l=1

H∑

q=1

ρ
(k,p)
j C

(k,l)
j

x
(l,q)
j

ρ
(l,q)
j ||xj ||

m
(l,q)
j [2]

+
∑

r∈S3

∑

j∈S2

∑

i∈S1

μiρiTi,j

K∑

k=1

H∑

p=1

K∑

l=1

H∑

q=1

A
(k,l)
j,r

x
(l,q)
r

ρ
(l,q)
r ||xr||

m(l,q)
r ×

gj(xj+e
(k,p)
j)

gj(xj)
N

(k,p)
j (xj + e

(k,p)
j) [3]

(6)

86 J.-M. Fourneau and K. Wolter

We decompose again the third term in the l.h.s according to the type of queue
which receives the trigger to simplify the ratio of probabilities. After reordering
we get:

∑

j∈S3

K∑

k=1

H∑

p=1

x
(k,p)
j

||xj ||

(
μ
(k,p)
j +

∑

i∈S1

μiρi(Ri,j + Ti,j)

)

=
∑

j∈S3

K∑

l=1

H∑

q=1

m
(l,q)
j

x
(l,q)
j

ρ
(l,q)
j ||xj ||

∑

i∈S2

K∑

k=1

H∑

p=1

μ
(k,p)
i ρ

(k,p)
i P

(k,l)
i,j [1]

+
∑

j∈S3

K∑

l=1

H∑

q=1

x
(l,q)
j

ρ
(l,q)
j ||xj ||

m
(l,q)
j

∑

i∈S1

μiρiRi,j

K∑

k=1

H∑

p=1

ρ
(k,p)
j C

(k,l)
j [2]

+
∑

r∈S3

K∑

l=1

H∑

q=1

x
(l,q)
r

ρ
(l,q)
r ||xr||

m(l,q)
r

∑

j∈S3

∑

i∈S1

μiρiTi,j

K∑

k=1

H∑

p=1

A
(k,l)
j,r ρ

(k,p)
j [3]

+
∑

r∈S3

K∑

l=1

H∑

q=1

x
(l,q)
r

ρ
(l,q)
r ||xr||

m(l,q)
r

∑

j∈S4

∑

i∈S1

μiρiTi,j

K∑

k=1

H∑

p=1

A
(k,l)
j,r

ρ
(k,p)
j

M
[4]

(7)

This relation holds because of the definition of ρ
(k,p)
j for an Infinite Server queue.

Interconnected Wireless Sensors
with Energy Harvesting

Erol Gelenbe1 and Andrea Marin2(B)

1 Intelligent Systems and Networks Group,
Department of Electrical and Electronic Engineering,

Imperial College, London SW7 2BT, UK
e.gelenbe@imperial.ac.uk

2 Dipartimento di Scienze Ambientali, Informatica e Statistica,
Università Ca’ Foscari di Venezia, via Torino 155, Venezia, Italy

marin@dais.unive.it

Abstract. This paper studies interconnected wireless sensors with the
paradigm of Energy Packet Networks (EPN) which were previously intro-
duced. In the EPN model, both data transmissions and the flow of energy
are discretized, so that an energy packet (EP) is the minimum amount
of energy (say in microjules) that is needed to process and transmit a
data packet (DP) or to process a job. Previous work has modeled such
systems to determine the relation between energy flow and DP transmis-
sion, or to study the balance between energy and the processing of jobs
in Cloud Servers. The lack of energy, in addition to processing times, is
the main source of latency in networks of sensor nodes. Thus this paper
models this phenomenon, and shows that under some reasonable condi-
tions, assuming feedforward flow of data packets and local consumption
and leakage of energy, such networks have product form solutions.

1 Introduction and Previous Work

Information and communication technologies (ICT) steadily increase their
energy consumption by about 4% per year [22] reaching roughly 5% of the world-
wide electrical energy consumption in 2012 [18], but there is also hope that ICT
can also reduce the energy consumption in other areas such as transportation for
daily commutes [17,26]. However the users of ICT use more complex multimedia
technologies [14] which are ever more demanding in energy because of their com-
putational complexity and communication bandwidth, so that progress will be
needed to reduce limit this growth through more efficient microelectronics and
new technologies such as energy harvesting for computation and communications
[25,23,21,1,24,16]. Thus recent research has addressed new technologies based on
energy harvesting and so as to minimise the non-renewable energy consumption
for given communication tasks [12,13].

Furthermore, earlier work [15] has also shown that smart routing [7] based
on QoS can be also used to reduce overall energy consumption in a network.

c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 87–99, 2015.
DOI: 10.1007/978-3-319-18579-8 7

88 E. Gelenbe and A. Marin

Because of the random nature of both data flows and of energy, in such con-
texts it become convenient to view not just data and computation but also energy
itself in discrete units. This has given rise to the energy packet (EP) paradigm
[9,8] based on mathematical models such as G-Networks [6]. Such discrete
representations are useful also to capture the stochastic nature of compute-
communications, energy harvesting and data sensing in interconnected micro-
electronic and computer-communication systems.

Contribution. In this paper we pursue a modeling approach developed in [10,11]
where energy harvesting wireless sensors are modeled, assuming that data col-
lection times and the time needed to harvest significant amount of energy, is
substantially higher than the time needed to transmit a packet when energy
is available. Thus the stochastic system representation that is used assumes
finite and positive data and energy arrival rates to nodes and zero service or
data transmission times when energy is available. In this paper this approach
is developed for a sensor network that contains two nodes and packets travel in
feedforward mode through two nodes, or just through one node, before success-
fully exiting the network. The structure we consider also includes not just energy
harvesting, but also the realistic situation when energy leakage may occur. We
prove that, under mild conditions, the equilibrium distribution of the contin-
uous time Markov chain underlying the model has product-form solution and
hence the derivation of the performance indices can be carried out efficiently.
Indeed, many models of wireless sensor networks suffer the problem of the state-
space explosion (see, e.g., [20,5,4]) that makes the exact analysis of the underly-
ing stochastic process very difficult especially for large networks. Product-form
allows us to derive the performance measures of the WSN by the analysis of
each sensor as if it were isolated. From a theoretical point of view, although the
model can be seen as belonging to the wide class of G-networks [6], the product-
form is new and depends on some conditions on the model’s rates that will be
discussed later.

Structure of the Paper. The paper is structured as follows. In Section 2 we intro-
duce the mathematical model of a single sensor. Section 3 describes the model
of interconnected sensors and proves the product-form equilibrium distribution
from which we derive some mean performance indices such as the expected num-
ber of data packets enqueued in a sensor and its throughput. Finally, Section 4
concludes the paper.

2 The Mathematical Model

In this section we consider a single wireless sensor which operates with energy
harvesting. We assume that as soon as the sensor has both a data packet to
transmit and enough energy to transmit that packet, the transmission takes
place very rapidly so that it may be represented as a “zero time” or instantaneous
transmission. We denote each device by the acronym EHWS (Energy Harvesting

Interconnected Wireless Sensors with Energy Harvesting 89

Fig. 1. CTMC underlying the model of sensor i

Wireless Sensor). The EHWS has an unlimited buffer for data packets and an
unlimited “buffer” or battery for energy “packets” since we represent energy in
discrete units. Thus an energy packet (EP) is the exact amount of energy required
to transmit a data packet. Just as data packets are assumed to be collected into
the EHWS in discrete packets of data, we consider that the harvested energy
is also collected into the device’s storage battery in discrete units (the energy
packets).

Thus for an EHWS i, the state can be represented by an integer ni, where i
identifies the EHWS, where ni = 0 means that the device has neither energy nor
data packets, while ni > 0 means that it currently stores ni data packets but no
energy, while ni < 0 means that it stores ni energy packets but no data packets.
We also suppose that the EHWS harvests energy packets at a rate Λi while it
collects data packets at a rate λi. Also, each device looses energy through leakage
at rate μi, and we will assume that packets themselves will be discarded with a
time-out represented by a rate γi.

If one considers a single EHWS whose state is represented by the integer n1,
it becomes clear that it may be modelled as a random walk, provided all the rates
are parameters of independent exponentially distributed random variables, and
that this random walk is ergodic provided that Λ1 + γ1 > λ1 and λ1 + μ1 > Λ1

as in Figure 1. As a consequence of the exponential assumption, DPs and EPs
arrive at the node according to independent and homogeneous Poisson processes.

Furthermore, we can readily see that its stationary distribution for an isolated
node i is given by:

πi(ni) = πi(0)
(

λi

Λi + γi

)ni

if ni > 0 ,

πi(ni) = πi(0)
(

Λi

λi + μi

)−ni

if ni < 0 ,

πi(0) =

[
1 +

λi

Λi+γi

1 − λi

Λi+γi

+
Λi

λi+μi

1 − Λi

λi+μi

]−1

.

3 Interconnected Sensor Nodes

In this section we study the steady-state behaviour of a network of EHWSs. We
assume the topology of the network to be such that each DP is forwarded at

90 E. Gelenbe and A. Marin

most once by a node to another node before leaving the system. We prove that
the CTMC underlying such a network of sensors has a product-form equilibrium
distribution under some conditions on the energy leakage rate and on the DP
time-outs. In this setting, in a network of several EHWS, the transmission of
a data packet (DP) from any one of the sensors may either result in the data
packet arriving at the second sensor, or it may be directed towards the “exit”
so that it is removed from the network. Therefore, a DP may visit at most two
nodes, and that this occurs in one of four ways:

– A DP arrives from outside the network (e.g. through sensing) at one of the
sensors; if that EHWS has no energy, then it is placed in the DP buffer.

– The DP arrives from outside the network at sensor i that does have energy;
it consumes energy and is transmitted, then it leaves the network with prob-
ability pi0.

– The DP arrives from outside the network at sensor i that does have energy;
it consumes energy and is transmitted, and then arrives at sensor j with
probability pij , j �= i. If sensor j does not have energy, the DP stays there.

– Finally the DP arrives from outside the network to sensor i that does have
energy; it consumes energy and is transmitted with probability pij to sensor
j �= i; if sensor j does have energy, the DP leaves the network.

A network whose topology satisfies the conditions of the two-steps routing is
shown in Figure 2.

Fig. 2. A network of EHWSs with two layers. In this case packets are forwarded by at
most one node.

3.1 Product-Form Analysis

In order to derive the product-form equilibrium distribution for a network of
EHWSs we assume that the rate associated with the time-out (energy leakage)

Interconnected Wireless Sensors with Energy Harvesting 91

Table 1. Table of notation for sensor i

Λi Arrival rate of EPs at sensor i
λi Arrival rate of DPs at sensor i from outside
γi Time-out rate for DPs in state ni > 1
γ0
i Time-out rate for DPs in state ni = 1

μi Leakage rate for EPs in state ni < −1
μ0
i Leakage rate for EPs in state ni = −1

pij Probability of routing from EHWS i to EHWS j
ni > 0 Number of DPs buffered by the sensor
ni < 0 Number of EPs stored by the sensor battery

in states ni > 1 (ni < −1) may be different from that in state ni = 1 (ni = −1).
We consider a network of N EHWSs in which a DP is forwarded at most once.
Let us consider a network of N nodes whose state is n = (n1, . . . , nN) with
ni ∈ N. Formally, let P = (pij) be the routing matrix with 1 ≤ i, j ≤ N and
let pi0 be the probability that a DP leaves the network after visiting node i,
i.e.,

∑N
n=1 pin + pi0 = 1. We recall that each sensor is described by the set of

parameters shown in Table 1.
The transition rates of the CTMC underlying the network of EHWSNs are

q(n,n′) =

– Λipij if n′ = n − ei + ej and ni > 0 (transmission of a DP from node i to j
due to the harvesting of an EP)

– λipij if n′ = n − ei + ej and ni < 0 (transmission of a DP from node i to
node j due to the availability of a new data)

– Λi if n′ = n − ei and ni ≤ 0 (harvesting of a new EP from node i)
– Λipi0 + γ0

i if n′ = n− ei and ni = 1 (transmission of a DP to the outside or
timeout of a DP at node i)

– Λipi0 + γi if n′ = n− ei and ni > 1 (transmission of a DP to the outside or
timeout of a DP at node i)

– λi if n′ = n + ei (generation of a new DP at node i)
– λipi0 +μ0

i if ni = −1 (transmission of a DP from node i to the outside when
EP are available or leakage of an EP)

– λipi0 +μi if ni < −1 (transmission of a DP from node i to the outside when
EP are available or leakage of an EP)

We define for each EHWS the following quantity vi.

vi = λi +
N∑

n=1

Λnλn

Λn + γn
pni .

We will show that vi denotes the total arrival rate of DPs at EHWS i.
The following assumption on the time-out and energy leakage rates will

be sufficient to prove the product-form stationary distribution of the EHWS
network.

92 E. Gelenbe and A. Marin

Assumption 1. We assume the following relations on the timeout settings:

– vi + μi = Λi + γi

– μ0
i = vi + 2μi

– γ0
i = Λi + 2γi

Theorem 1. Under the constraints of Assumption 1, given two interconnected
EHWS j and k, their joint equilibrium distribution has the following product-
form:

π(nj , nk) = Ggj(nj)gk(nk) , (1)

where

gi(ni) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if ni = 0
vi

Λi+γ0
i

(
vi

Λi+γi

)ni−1

if ni ≥ 1

Λi

vi+μ0
i

(
Λi

vi+μi

)−ni−1

if ni ≤ −1

(2)

with i = j, k and G is the normalising constant:

G =

⎛

⎝1 +

vj

Λj+γ0
j

1 − vj

Λj+γj

+

Λj

vj+μ0
j

1 − Λj

vj+μj

⎞

⎠
−1 (

1 +
vk

Λk+γ0
k

1 − vk

Λk+γk

+
Λk

vk+μ0
k

1 − Λk

vk+μk

)−1

.

The proof is given in appendix.

Remark 1 (On the conditions for the product-form). It is worth of notice that
the product-form expression given by Theorem 1 is subject to the constraints
on the rates stated in Assumption 1. The fact that some product-form results
have conditions which depend on the model’s transition rates is not new (see
e.g., the conditions on the service rate in the First Come First Service queues
of the BCMP theorem [3], or the product-forms derived in [2,19]). Nevertheless,
in this case the conditions required by Assumption 1 are not strict since they
give a relation on the time-out setting. Informally, we require that the sum
of the energy harvesting rate and the packet time-out rate (consumption rate
of packets) must be equal to the sum of the DPs arrival rate and the energy
leakage rate (consumption rate of energy packets). This balance basically states
that we must consume the DPs with the same rate at which we consume the
EPs and can be reached by opportunely setting the time-out rate of DPs. Similar
considerations hold for the time-out taking the model to state 0.

The product-form expression given by Theorem 1 can be used to compute
some important performance indices such as a EHWS throughput, energy effi-
ciency and expected number of enqueued DPs.

Proposition 1. In stability, the DP throughput of EHWS i is:

THi =
Λivi

μi + vi
. (3)

Interconnected Wireless Sensors with Energy Harvesting 93

The proof follows from the simplification of the expression:

∑

n=−∞
Gigi(n)vi +

∞∑

n=1

Gigi(n)Λi ,

where Gi is the normalising constant for gi(n). The total power consumption
of the EHWS is clearly Λ EPs for unit of time. However, not all this energy is
used to transmit DPs because some will suffer the energy leakage. The efficiency
of the EHWS is given by the ratio of the EPs used for transmitting data and
the total EPs consumed.

Proposition 2. In stability, the efficiency of EHWS i is:

ηi = 1 − μi

γi + Λi
. (4)

Indeed, the rate of consumption of EPs for DPs transmission is given by:

Gi

[−1∑

n=−∞
gi(n)vi +

∞∑

n=1

gi(n)Λi

]
.

Finally, we can derive the expected number of DPs in the queue.

Proposition 3. In stability, the expected number of DPs in the queue of EHWS
i is:

Ni =
γiλi

μi(γi + μi)
.

The expression of Ni can be derived by the simplification of the sum:

Gi

∞∑

n=1

ngi(n) .

4 Conclusion

This paper has shown that a plausible and novel model of two interconnected
energy harvesting wireless sensors with discretised energy harvesting and stor-
age, and a feedforward data packet communication pattern has product form
solution in its state that represents both the amount of energy and the data
packet backlog at each sensor. In future work we expect that these results can
be generalised to other topologies and to arbitrarily large networks.

References

1. Alippi, C., Galperti, C.: An adaptive system for optimal solar energy harvesting
in wireless sensor network nodes. IEEE Transactions on Circuits and Systems I:
Regular Papers 55(6), 1742–1750 (2008)

94 E. Gelenbe and A. Marin

2. Balsamo, S., Harrison, P.G., Marin, A.: Methodological construction of product-
form stochastic Petri nets for performance evaluation. Journal of Systems and
Software 85(7), 1520–1539 (2012)

3. Forest Baskett, K., Chandy, M., Muntz, R.R., Palacios, F.G.: Open, closed, and
mixed networks of queues with different classes of customers. J. ACM 22(2), 248–
260 (1975)

4. Bugliesi, M., Gallina, L., Hamadou, S., Marin, A., Rossi, S.: Behavioural equiva-
lences and interference metrics for mobile ad-hoc networks. Performance Evaluation
73, 41–72 (2014)

5. Gallina, L., Han, T., Kwiatkowska, M.Z., Marin, A., Rossi, S., Spano, A:. Auto-
matic energy-aware performance analysis of mobile ad-hoc networks. In: Proc. of
Wireless Days, pp. 1–6 (2012)

6. Gelenbe, E.: The first decade of g-networks. European Journal of Operational
Research 126(2), 231–232 (2000)

7. Gelenbe, E.: Sensible decisions based on qos. Computational Management Science
1(1), 1–14 (2003)

8. Gelenbe, E.: Energy packet networks: adaptive energy management for the cloud.
In: Proceedings of the 2nd International Workshop on Cloud Computing Platforms,
p. 1. ACM (2012)

9. Gelenbe, E.: Energy packet networks: ict based energy allocation and storage.
In: Rodrigues, J.J.P.C., Zhou, L., Chen, M., Kailas, A. (eds.) GreenNets 2011.
LNICST, vol. 51, pp. 186–195. Springer, Heidelberg (2012)

10. Gelenbe, E.: A sensor node with energy harvesting. ACM SIGMETRICS Perfor-
mance Evaluation Review 42(2), 37–39 (2014)

11. Gelenbe, E.: Synchronising energy harvesting and data packets in a wireless sensor.
Energies 8(1), 356–369 (2015)

12. Gelenbe, E., Gesbert, D., Gündüz, D., Külah, H., Uysal-Biyikoglu, E.: Energy
harvesting communication networks, optimization and demonstration: the e-crops
project. In: 24th TIWDC, Tyrrhenian International Workshop 2013 on Digital
Communications: Green ICT. IEEE Xplore (2013)

13. Gelenbe, E., Gündüz, D.: Optimum power level for communications with inter-
ference. In: 24th TIWDC, Tyrrhenian International Workshop 2013 on Digital
Communications: Green ICT. IEEE Xplore (2013)

14. Gelenbe, E., Hussain, K., Kaptan, V.: Simulating autonomous agents in augmented
reality. Journal of Systems and Software 74(3), 255–268 (2005)

15. Gelenbe, E., Morfopoulou, C.: A framework for energy-awar routing in packet
networks. Computer Journal 54(6), 850–859 (2011)

16. Gelenbe, E., Oklander, B.: Cognitive users with useful vacations. In: 2013 IEEE
International Conference on Communications Workshops (ICC), pp. 370–374.
IEEE Explore (2013)

17. The Climate Group and GeSI. Smart 2020: Enabling the low carbon economy in
the information age. Global E-Sustainability Initiative (2008)

18. Lannoo, B., Lambert, S., Van Heddeghem, W., Pickavet, M., Kuipers, F., Kouti-
tas, G., Niavis, H., Satsiou, A., Beck, M.T., Fischer, A., de Meer, H., Alcock, P.,
Papaioannou, T., Viet, N.H., Plagemann, T., Aracil, J.: Overview of ict energy
consumption (deliverable 8.1). EU Project FP7-2888021, European Network of
Excellence in Internet Science, February 2013

19. Marin, A., Balsamo, S., Harrison, P.G.: Analysis of stochastic Petri nets with sig-
nals. Perf. Eval. 85(7), 1520–1539 (2012)

20. Merro, M., Ballardin, F., Sibilio, E.: A timed calculus for wireless systems. Theo-
retical Computer Science 412(47), 6585–6611 (2011)

Interconnected Wireless Sensors with Energy Harvesting 95

21. Meshkati, F., Poor, H.V., Schwartz, S.C., Mandayam, N.B.: An energy-efficient
approach to power control and receiver design in wireless data networks. IEEE
Transactions on Communications 53(11), 1885–1894 (2005)

22. Pettey, C.: Gartner estimates ict industry accounts for 2 percent of global co2
emissions (2007). https://www.gartner.com/newsroom/id/503867, 14:2013

23. Rodoplu, V., Meng, T.H.: Bits-per-joule capacity of energy-limited wireless net-
works. IEEE Transactions on Wireless Communications 6(3), 857–865 (2007)

24. Seah, W.K.G., Eu, Z.A., Tan, H.-P.: Wireless sensor networks powered by ambient
energy harvesting (wsn-heap)-survey and challenges. In: 1st International Confer-
ence on Wireless Communication, Vehicular Technology, Information Theory and
Aerospace & Electronic Systems Technology, Wireless VITAE 2009, pp. 1–5. IEEE
(2009)

25. Uysal-Biyikoglu, E., Prabhakar, B., El Gamal, A.: Energy-efficient packet transmis-
sion over a wireless link. IEEE/ACM Transactions on Networking (TON) 10(4),
487–499 (2002)

26. Yu, Y., Bhatti, S.N.: The cost of virtue: reward as well as feedback are required
to reduce user ict power consumption. In: Proceedings of the 5th International
Conference on Future Energy Systems, pp. 157–169. ACM (2014)

A Proof of Theorem 1

Since the network structure has a topology in which a packet if forwarded by at
most one EHWS, we can prove the theorem by just considering a tandem of two
sensors in the state space (n1, n2). Equation (1) of Theorem 1 can be rewritten
as:

π(n1, n2) = Gg1(n1)g2(n2)

and
v1 = λ1 , v2 = λ2 +

Λ1λ1p12
Λ1 + γ1

.

For the sake of simplicity we give the proof for p12 = 1 and λ2 = 0. The proof
proceeds by substitution in the system of global balance equations of the under-
lying CTMC. Let us consider the case in which n1 > 0. Then, the corresponding
balance equation of a state (n1, n2), with n2 ∈ Z is:

π(n1, n2)
(
λ1 + Λ1 + γ0

1δn1=1 + γ1δn1>1 + Λ2 + γ0
2δn2=1

+ γ2δn2>1 + μ0
2δn2=−1 + μ2δn2<−1

)

= π(n1 + 1, n2)γ1︸ ︷︷ ︸
A

+π(n1, n2 + 1)
(
Λ2 + γ2δn2>0 + γ0

2δn2=0

)
︸ ︷︷ ︸

B

+π(n1 − 1, n2)λ1︸ ︷︷ ︸
C

+ π(n1 + 1, n2 − 1)Λ1︸ ︷︷ ︸
D

+π(n1, n2 − 1)(μ2δn2≤−1 + μ0
2δn2=0)︸ ︷︷ ︸

E

We divide the RHS by π(n1, n2). We have:

A

π(n1, n2)
=

λ1γ1
Λ1 + γ1

(5)

https://www.gartner.com/newsroom/id/503867

96 E. Gelenbe and A. Marin

For part B:

B

π(n1, n2)
=

λ1Λ1

Λ1 + γ1

1
Λ2 + γ2δn2>0 + γ0

2δn2=0

· (
Λ2 + γ2δn2>0 + γ0

2δn2=0

)
δn2≥0

+
(

Λ1λ1

Λ1 + γ1
+ μ2δn2<−1 + μ0

2δn2=−1

)
1
Λ2

Λ2δn2<0

=
Λ1λ1

Λ1 + γ1
+ μ2δn2<−1 + μ0

2δn2=−1 (6)

For part C:

C

π(n1, n2)
=

Λ1 + γ1δn1>1 + γ0
1δn1=1

λ1
λ1 = Λ1 + γ1δn1>1 + γ0

1δn1=1 (7)

For part D:

D

π(n1, n2)
=

λ1

Λ1 + γ1

(
Λ2

Λ1λ1
Λ1+γ1

+ μ2δn2≤−1 + μ0
2δn2=0

)
Λ1δn2≤0

+
λ1

Λ1 + γ1

(
(Λ2 + γ0

2δn2=1 + γ2δn2>1)
Λ1 + γ1
Λ1λ1

)
Λ1δn2>0

which simplifies to:

D

π(n1, n2)
=

λ1Λ2Λ1

Λ1λ1 + (Λ1 + γ1)(μ2δn2≤−1 + μ0
2δn2=0

δn2≤0 + Λ2δn2>0

+ γ0
2δn2=1 + γ2δn2>1 (8)

For part E:

E

π(n1, n2)
=

Λ2

Λ1λ1
Λ1+γ1

+ μ2δn2≤−1 + μ0
2δn2=0

(μ2δn2≤−1 + μ0δn2=0)

=
Λ2(Λ1 + γ1)

Λ1λ1 + (Λ1 + γ1)(μ2δn2≤−1 + μ0
2δn2=0)

(μ2δn2≤−1 + μ0δn2=0) (9)

Summing Equations (8) and (9) we have:

D + E

π(n1, n2)

=
λ1Λ2Λ1 + Λ2Λ1(μ2δn2≤−1 + μ0

2δn2=0) + Λ2γ1(μ2δn2≤−1 + μ0
2δn2=0)

Λ1λ1 + (Λ1 + γ1)(μ2δn2≤−1 + μ0
2δn2=0)

δn2≤0

+ Λ2δn2>0 + γ0
2δn2=1 + γ2δn2>1

=
λ1Λ2Λ1 + Λ2(μ2δn2≤−1 + μ0

2δn2=0)(Λ1 + γ1)
Λ1λ1 + (Λ1 + γ1)(μ2δn2≤−1 + μ0

2δn2=0)
δn2≤0 + Λ2δn2>0 + γ0

2δn2=1

+ γ2δn2>1 = Λ2 + γ0
2δn2=1 + γ2δn2>1 (10)

Interconnected Wireless Sensors with Energy Harvesting 97

Finally, we sum Equations (5), (6), (7), (10) and obtain:

λ1γ1
Λ1 + γ1

+
Λ1λ1

Λ1 + γ1
+ μ2δn2<−1 + μ0

2δn2=−1

+ Λ1 + γ1δn1>1 + γ0
1δn1=1 + Λ2 + γ0

2δn2=1 + γ2δn2>1

= λ1+μ2δn2<−1+μ0
2δn2=−1+Λ1+γ1δn1>1+γ0

1δn1=1+Λ2+γ0
2δn2=1+γ2δn2>1

which is exactly the LHS of Equation (1) divided by π(n1, n2), as required.
We now consider the case n1 = 0. The balance equations for states (n, 0) are:

π(0, n2)(λ1 + Λ1 + Λ2 + γ2δn2>1 + γ0
2δn2=1 + μ2δn2<−1 + μ0

2δn2=−1)

= π(1, n2 − 1)Λ1︸ ︷︷ ︸
A

+π(−1, n2 − 1)λ1︸ ︷︷ ︸
B

+ π(−1, n2)μ0
1︸ ︷︷ ︸

C

+π(1, n2)γ0
1︸ ︷︷ ︸

D

+ π(0, n2 + 1) (Λ2 + γ2δn2≥1 + γ2δn2=0)︸ ︷︷ ︸
E

+π(0, n2 − 1)
(
μ2δn2≤−1 + μ0

2δn2=0

)
︸ ︷︷ ︸

F

(11)

Let us compute (A + B)/π(0, n2):

λ1

Λ1 + γ0
1

(
Λ2

Λ1λ1
Λ1+γ1

+ μ0
2δn2=0 + μ2δn2<0

)
Λ1δn2≤0

+
λ1

Λ1 + γ0
1

(
Λ2 + γ0

2δn2=1 + γ2δn2>1

λ1Λ1
Λ1+γ1

)
Λ1δn2>0

+
Λ1

λ1 + μ0
1

(
Λ2

Λ1λ1
Λ1+γ1

+ μ0
2δn2=0 + μ2δn2<0

)
λ1δn2≤0

+
Λ1

λ1 + μ0
1

(
Λ2 + γ0

2δn2=1 + γ2δn2>1

λ1Λ1
Λ1+γ1

)
λ1δn2>0

=
(

λ1Λ1

Λ1 + γ0
1

+
λ1Λ1

λ1 + μ0
1

) (
Λ2

Λ1λ1
Λ1+γ1

+ μ0
2δn2=0 + μ2δn2<0

δn2≤0

+
Λ2 + γ0

2δn2=1 + γ2δn2>1

λ1Λ1
Λ1+γ1

δn2>0

)

Notice that by Assumption 1 we have

Λ1 + γ0
1 = 2(Λ1 + γ1) = 2(λ1 + μ1) = λ1 + μ0

1 . (12)

This allows us to rewrite the first term of the product as λ1Λ1/(Λ1 + γ1) and
hence simplify the expression as follows:

A + B

π(0, n2
=

λ1Λ1Λ2

Λ1λ1 + (μ0
2δn2=0 + μ2δn2≤−1)(Λ1 + γ1)

δn2≤0

+ Λ2δn2>0 + γ0
2δn2=1 + γ2δn2>1 (13)

98 E. Gelenbe and A. Marin

We now compute (C + D)/π(0, n2) by using Relation (12):

C + D

π(0, n2)
=

Λ1

λ1 + μ0
1

μ0
1 +

λ1

Λ1 + γ0
1

=
Λ1(λ1 + 2μ1) + λ1(Λ1 + 2γ1)

2(Λ1 + γ1)

=
λ1Λ1 + μ1Λ1 + λ1γ1

Λ1 + γ1
= λ1 +

μ1Λ1

λe + γ1
(14)

Let us derive E/π(0, n2):

E

π(0, n2)
=

λ1Λ1
Λ1+γ1

+ μ0δn2=−1 + μδn2<−1

Λ2
Λ2δn2<0

+
Λ1λ1

Λ1 + γ1

1
Λ2 + γ0

2δn2=0 + γ2δn2≥1
(Λ2 + γ0

2δn2=0 + γ2δn2≥1)δn2>0

=
λ1Λ1

Λ1 + γ1
+ μ0

2δn2=−1 + μ2δn<−1 (15)

Notice that the sum (C +D +E)/π(0, n2) = λ1 +Λ1 +μ0
2δn2=−1 +μ2δn<−1. We

now compute (A + B + F)/π(0, n2) to obtain the remaining terms of the LHS
of Equation (11) divided by π(0, n2). By using Equation (13):

F

π(0, n2)
+

A + B

π(0, n2)
=

Λ2

Λ1λ1
Λ1+γ1

+ μ0
2δn2=0 + μ2δn2≤−1

(
μ2δn2≤−1 + μ0

2δn2=0

)

+
λ1Λ1Λ2

Λ1λ1 + (μ0
2δn2=0 + μ2δn2≤−1)(Λ1 + γ1)

δn2≤0 + Λ2δn2>0 + γ0
2δn2=1 + γ2δn2>1

= λ2 + γ0
2δn2=1 + γ2δn2>1 .

The last case is when n1 < 0. In this case the GBE associated with states
(n1, n2) have the form:

π(n1, n2)
(
λ1 + Λ1 + μ0

1δn1=−1 + μ1δn1<−1 + Λ2 + μ2δn2<−1 + μ0
2δn2=−1

+ γ0
2δn2=1 + γ2δn2>1

)

= π(n1 − 1, n2 − 1)λ1︸ ︷︷ ︸
A

+π(n1 − 1, n2)μ1︸ ︷︷ ︸
B

+π(n1 + 1, n2)Λ1︸ ︷︷ ︸
C

+π(n1, n2 − 1)(μ0
2δn2=0 + μ2δn2≤−1)︸ ︷︷ ︸

D

+π(n1, n2 + 1)(Λ2 + γ0
2δn2=0+γ2δn2≥1)︸ ︷︷ ︸

E

(16)

We divide the equation by π(n1, n2) and consider the RHS:

A

π(n1, n2)
=

Λ1

λ1 + μ1

(
Λ2δn2≤0

Λ1λ1
Λ1+γ1

+ μ0
2δn2=0 + μ2δn2<0

+
Λ2 + γ0

2δn2=1 + γ2δn2>1

Λ1λ
Λ1+γ1

δn2≥1

)
λ1

Interconnected Wireless Sensors with Energy Harvesting 99

=
Λ1

λ1 + μ1

Λ2(Λ1 + γ1)λ1δn2≤0

Λ1λ1 + (μ0
2δn2=0 + μ2δn2<0)(Λ1 + γ1)

+
Λ1

λ1 + μ1

(Λ1 + γ1)(Λ2 + γ0
2δn2=1 + γ2δn2>1)λ1δn2≥1

Λ1λ1

Recalling that by Assumptions 1 we have λ1 + μ1 = Λ1 + γ1 this simplifies to:

A

π(n1, n2)
=

Λ2λ1Λ1δn2≤0

Λ1λ1 + (μ0
2δn2=0 + μ2δn2<0)(Λ1 + γ1)

+ Λ2δn2≥1 + γ0
2δn2=1 + γ2δn2>1 (17)

B + E

π(n1, n2)
=

Λ1μ1

λ1 + μ1

+
Λ1λ1

Λ1 + γ1

Λ2 + γ0
2δn2=0 + γ2δn2≥1

Λ2 + γ0
2δn2=0 + γ2δn2≥1

δn2≥0

+

(
Λ1λ1

Λ1 + γ1
+ μ0

2δn2=−1 + μ2δn2<−1

)
1
Λ2

Λ2δn2<0

Λ1μ1

λ1 + μ1
+

Λ1λ1

Λ1 + γ1
+ μ0

2δn2=−1 + μ2δn2<−1

= Λ1 + μ0
2δn2=−1 + μ2δn2<−1 (18)

C

π(n1, n2)
=

λ1 + μ1δn1<−1 + μ0
1δn1=−1

Λ1
Λ1 = λ1 + μ1δn1<−1 + μ0

1δn1=−1 (19)

D

π(n1, n2)
=

Λ2(Λ1 + γ1)(μ0
2δn2=0 + μ2δn2≤−1)δn2≤0

Λ1λ1 + (μ0
2δn2=0 + μ2δn2<0)(Λ1 + γ1)

(20)

The analysis of the global balance equation system is concluded by observing
that summing Equations (17), (18), (19), (20), we obtain the LHS of the balance
equation (16) as required.

As regards the derivation of the normalising constant it is sufficient to com-
pute the sum of the geometric series given by summing Equation (2) over the
state space (−∞,+∞). ��

Measuring the Distance Between MAPs
and Some Applications

Gábor Horváth1,2(B)

1 Department of Networked Systems and Services,
Budapest University of Technology and Economics, Budapest, Hungary

2 MTA-BME Information Systems Research Group, Magyar Tudósok krt. 2,
Budapest 1117, Hungary
ghorvath@hit.bme.hu

Abstract. This paper provides closed form expressions for the squared
distance between the joint density functions of k successive inter-arrival
times of two MAPs. The squared distance between the autocorrelation
functions of two MAPs is expressed in a closed form as well.

Based on these results a simple procedure is developed to approximate
a RAP by a MAP, in order to reduce the number of phases or to obtain
a Markovian representation.

1 Introduction

MAPs (Markovian Arrival Processes) and their generalizations, RAPs (Ratio-
nal Arrival Processes) are versatile modeling tools in various fields of perfor-
mance evaluation. They represent a dense class of point processes ([1]), and at
the same time they are easy to work with: several important statistical properties
can be expressed in a simple closed form, they exhibit many closeness properties,
queues involving MAP arrival and/or service process can be solved efficiently, etc.

In the last decades considerable research effort has been spent to approximate
various point processes by MAPs to take the advantage of their technical sim-
plicity. Matching and fitting methods have been developed to construct MAPs
based on empirical measurement traces, or based on point processes like depar-
ture processes of queues, etc. However, the MAPs or RAPs produced by some
of these procedures might not be ready for use immediately. There are situa-
tions when compactness (in terms of the number of states) and the Markovian
representation is important.

In order to develop procedures to compress a MAP and/or to obtain a Marko-
vian approximation of a RAP, it is necessary to define distance functions which
measure how “close” two RAPs are to each other. Since this distance function
is evaluated repetitively in an optimization procedure, it must be efficient to
evaluate.

In this paper we show that the squared distance between the joint density
functions of k successive inter-arrival times of two MAPs can be expressed in
a closed form. Furthermore, the squared distance between the autocorrelation

c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 100–114, 2015.
DOI: 10.1007/978-3-319-18579-8 8

Measuring the Distance Between MAPs and Some Applications 101

functions can be expressed in a closed form as well. Based on these results a
simple procedure is developed to approximate a RAP by a MAP, and some
possible applications are also provided.

The rest of the paper is organized as follows. Section 2 introduces the nota-
tions and the main properties of MAPs and RAPs used in the paper. Section 3
presents how the distance between two MAPs is calculated. The RAP approx-
imation procedure is developed in Section 4. Finally, Section 5 demonstrates
how the results are applied for the approximation of the departure process of a
MAP/MAP/1 queue.

2 Markovian Arrival Processes

A Markovian Arrival Process (MAP, [7]) with N phases is given by two N × N
matrices, D0 and D1. The sum D = D0 +D1 is the generator of an irreducible
continuous time Markov chain (CTMC) with N states, which is the background
process of the MAP. Matrix D1 contains the rates of those phase transitions
which are accompanied by an arrival, and the off-diagonal entries of D0 are the
rates of internal phase transitions.

The phase process embedded at arrival instants plays an important role in the
analysis of MAPs. This phase process is a discrete time Markov chain whose
transition probability matrix is P = (−D0)−1D1. The stationary probability
vector of the embedded process is denoted by α, it is the unique solution to
linear equations αP = α, α1 = 1.

The joint density function of k consecutive inter-arrival times X1,X2, . . . Xk

is given by

fk(x1, x2, . . . , xk) = αeD0x1D1 · eD0x2D1 · · · eD0xkD11. (1)

The lag-k autocorrelation of the inter-arrival times is matrix-geometric, and
can be expressed as

ρk =
E(X1Xk+1) − E(X1)2

E(X 2
1) − E(X1)2

=
α(−D0)−1P k(−D0)−11 − α(−D0)−11 · α(−D0)−11

σ2

=
1
σ2

α(−D0)−1(P − 1α)k(−D0)−11

(2)

for k > 0, and it is ρ0 = 1 for k = 0. σ2 denotes the variance of the inter-arrival
times. In (2) we exploited that P k − 1α = (P − 1α)k holds for k > 0 (notice
however that it does not hold for k = 0).

Rational Arrival Processes (RAPs) are generalizations of MAPs, which do
not have the Markovian restrictions. The D0,D1 matrices of RAPs can have
arbitrary entries, the only restriction is that the joint density function must be
valid. However, without loss of generality we assume that (D0+D1)1 = 1 holds
throughout the paper. By the appropriate similarity transformation all RAPs can

102 G. Horváth

be transformed to this form ([8]), and several authors apply this assumption to
make the corresponding derivations simpler.

Getting rid of the Markovian restrictions makes RAPs easier to use than
MAPs in several situations, but checking that a RAP is a valid stochastic process
is hard (apart from the case when the transformation to a Markovian represen-
tation is successful).

Since this paper is on measuring the distance between two MAPs/RAPs, we
are going to leave the traditional (D0,D1) notation of the MAP matrices behind
and use different letters instead.

3 Efficient Calculation of the Distance Between
Two MAPs

3.1 The Distance Between the Joint Density Functions
of Two MAPs

Let us consider two MAPs, A = (A0,A1) and B = (B0,B1). The squared
difference of the joint density of the inter-arrival times up to lag-k is defined by

Dk{A,B} =

∫ ∞

0

. . .

∫ ∞

0

∫ ∞

0

(
αAeA0x1A1 · · · eA0xk−1A1 · eA0xkA11

− αBeB0x1B1 · · · eB0xk−1B1 · eB0xkB11
)2

dx1 . . . dxk−1 dxk,

(3)

where αA and αB denote the stationary phase distribution of MAPs A and B
at arrival instants. The square term expands to

Dk{A,B} = Lk(A,A) − 2Lk(A,B) + Lk(B,B), (4)

where Lk(A,B) represents the integral

Lk(A,B) =

∫ ∞

0

. . .

∫ ∞

0

∫ ∞

0

αAeA0x1A1 · · · eA0xk−1A1 · eA0xkA11

· αBeB0x1B1 · · · eB0xk−1B1 · eB0xkB11 dx1 . . . dxk−1 dxk.

(5)

This integral can be evaluated in an efficient way, by successive solution of
(Sylvester-type) linear equations, as stated by the following theorem.

Theorem 1. Lk(A,B) can be expressed by

Lk(A,B) = 1TBT
1 · Yk · A11, (6)

where matrix Yk is the solution of the recursive Sylvester equation
{

−BT
1 Yk−1A1 = BT

0 Yk + YkA0 for k > 1,
−αT

BαA = BT
0 Y1 + Y1A0 for k = 1.

(7)

Measuring the Distance Between MAPs and Some Applications 103

Proof. We start by transforming (5) as

Lk(A,B) =

∫ ∞

0

. . .

∫ ∞

0

∫ ∞

0

1
TBT

1 eB
T
0 xkBT

1 eB
T
0 xk−1 · · · BT

1 eB
T
0 x1αT

B

· αAeA0x1A1 · · · eA0xk−1A1 · eA0xkA11 dx1 . . . dxk−1 dxk

= 1
TBT

1

(∫ ∞

0

. . .

∫ ∞

0

∫ ∞

0

eB
T
0 xkBT

1 eB
T
0 xk−1 · · · BT

1 eB
T
0 x1αT

B

· αAeA0x1A1 · · · eA0xk−1A1 · eA0xk dx1 . . . dxk−1 dxk

)
· A11.

(8)

Let us denote the term in the parenthesis by Yk. For k > 1, separating the first
and the last terms leads to the recursion

Yk =

∫ ∞

0

eB
T
0 xk · BT

1

(∫ ∞

0

. . .

∫ ∞

0

eB
T
0 xk−1BT

1 · · · BT
1 eB

T
0 x1αT

B

· αAeA0x1A1 · · · eA0xk−1A1 dx1 . . . dxk−1

)
A1 · eA0xk dxk

=

∫ ∞

0

eB
T
0 xkBT

1 · Yk−1 · A1eA0xk dxk,

(9)

which is the solution of Sylvester equation −BT
1 Yk−1A1 = BT

0 Yk +YkA0. The
equation for k = 1 is obtained similarly. �
Note that the solution of (7) is always unique as matrices A0 and B0 are sub-
generators.

3.2 The Distance Between the Lag Autocorrelation Functions

The squared distance between the lag autocorrelation functions of MAP A and
B is computed by

Dacf{A,B} =
∞∑

i=0

(ρ(A)
i − ρ

(B)
i)2

=
∞∑

i=1

(1
σ2

A
αA(−A0)−1(P A − 1αA)i(−A0)−11

− 1
σ2

B
αB(−B0)−1(P B − 1αB)i(−B0)−11

)2

,

(10)

where σ2
A (σ2

B) denotes the variance of the inter-arrival times of MAP A (B),
respectively. Expanding the square term leads to

Dacf{A,B} =
1

σ4
A

(
M(A,A) − m

(A)
2

2
/4

)

− 2
1

σ2
Aσ2

B

(
M(A,B) − m

(A)
2 m

(B)
2 /4

)

+
1

σ4
B

(
M(B,B) − m

(B)
2

2
/4

)
,

(11)

104 G. Horváth

where m
(A)
2 and m

(B)
2 denote the second moment of the inter-arrival times of

MAP A and B, while matrix M(A,B) represents the sum

M(A,B) =
∞∑

i=0

αA(−A0)−1(PA − 1αA)i(−A0)−11·

· αB(−B0)−1(PB − 1αB)i(−B0)−11.

(12)

The terms involving the second moments in (11) are necessary since the sum
goes from i = 1 in (10) and it goes from i = 0 in (12). Term 0 of M(A,B) equals
m

(A)
2 /2 · m

(B)
2 /2.

The next theorem provides the solution of matrix M(A,B).

Theorem 2. Matrix M(A,B) is obtained by

M(A,B) = αA(−A0)−1 · X · (−B0)−11, (13)

where X is the unique solution to the discrete Sylvester equation

(PA − 1αA) · X · (PB − 1αB) − X + (−A0)−11αB(−B0)−1 = 0. (14)

Proof. Matrices PA − 1αA and PB − 1αB are stable, since the subtraction of
1αA and 1αB removes the eigenvalue of 1 which matrices PA and PB originally
had. Hence we can utilize that the solution of the sum X =

∑∞
i=0 AiCBi satisfies

the discrete Sylvester equation AXB − X + C = 0. �

4 Application: Approximating a RAP with a MAP

Having results for measuring the distance between two RAPs or MAPs can be
useful in many situations by themselves. In this section we use them as distance
functions in an optimization problem. We develop a simple procedure to obtain a
MAP that approximates the behavior of a given RAP. Two possible applications
of this procedure are as follows.

– Several matching procedures produce a RAP which does not have a Marko-
vian representation, or which is not even a valid stochastic process (the joint
density is negative at some points). The presented procedure returns a valid
MAP that is as close as possible to the target RAP.

– Several performance models involve huge MAPs which make the analysis too
slow and numerically challenging. With the presented procedure it is possible
to compress these large MAPs by constructing small replacements that are
easier to work with.

Throughout this section the target RAP is denoted by A = (A0,A1) and
the approximating one by B = (B0,B1).

Measuring the Distance Between MAPs and Some Applications 105

4.1 Obtaining Matrix B1 Given that αB and B0 Are Known

Given that αB and B0 are already available (see later in Section 4.2) matrix B1

it obtained

– either to minimize Dk{A,B} up to a given k,
– or to minimize Dacf{A,B}.

According to the following theorem, optimizing the squared distance of the
lag-1 joint density function D2{A,B} is especially efficient.

Theorem 3. Given that αB and B0 are available, matrix B1 minimizing
D2{A,B} is the solution of the quadratic program

min
B1

{
vec〈B1〉T (WBB ⊗ YBB)vec〈B1〉 − 2vec〈A1〉T (WAB ⊗ YAB)vec〈B1〉

}

(15)

subject to
(
I ⊗ αB(−B0)−1

)
vec〈B1〉 = αA, (16)

(1T ⊗ I)vec〈B1〉 = −B01. (17)

Matrices WAB,WBB,YAB and YBB are the solutions to Sylvester equations

A0WAB + WABBT
0 = −A01 · 1TBT

0 , (18)

B0WBB + WBBBT
0 = −B01 · 1TBT

0 , (19)

A0
TYAB + YABB0 = −αT

A · αB, (20)

BT
0 YBB + YBBB0 = −αT

B · αB. (21)

Proof. Let us first apply the vec〈〉 (column stacking) operator on (6) at k = 2.
Utilizing the identity vec〈AXB〉 = (BT ⊗ A)vec〈X〉 for compatible matrices
A,B,X and the identity vec〈uT v〉 = (vT ⊗uT) for row vectors u and v (see [9]).
We get

vec〈L2(A,B)〉 = (1TA0
T ⊗ 1

TB0
T) · vec〈Y2〉 = vec〈B01·1TA0

T 〉T · vec〈Y2〉. (22)

Applying the vec〈〉 operator on both sides of (7) and using vec〈AXB〉 = (BT ⊗
A)vec〈X〉 again leads to

−(I ⊗ BT
1 Y1)vec〈A1〉 = (I ⊗ BT

0)vec〈Y2〉 + (A0
T ⊗ I)vec〈Y2〉, (23)

from which vec〈Y2〉 is expressed by

vec〈Y2〉 = (−A0
T ⊕ BT

0)−1(I ⊗ BT
1)(I ⊗ YAB)vec〈A1〉, (24)

since Y1 = YAB. Thus we have

vec〈L2(A,B)〉 = vec〈B01·1TA0
T 〉T (−A0

T ⊕ B0
T)−1

︸ ︷︷ ︸
vec〈WAB〉T

(I ⊗ B1
T)(I ⊗ YAB)vec〈A1〉,

(25)

106 G. Horváth

where we recognized that the transpose of vec〈WAB〉 expressed from (18)
matches the first two terms of the expression. Using the identities of the vec〈〉
operator yields

vec〈WAB〉T (I ⊗ B1
T) = vec〈B1

TWAB〉T = vec〈B1〉T (WAB ⊗ I). (26)

Finally, putting together (25) and (26) gives

vec〈L2(A,B)〉 = vec〈B1〉T (WAB ⊗ YAB)vec〈A1〉. (27)

From the components of D2{A,B} (see (4)) L2(A,A) plays no role in the opti-
mization as it does not depend on B1, the term L2(A,B) yields the linear term
in (15) according to (27), and L2(B,B) introduces the quadratic term, based
on (27) after replacing A by B.

According to the first constraint (16) and the second constraint (17) the
solution must satisfy αB(−B0)−1B1 = αB and B11 = −B01, respectively. �

Theorem 4. Matrix WBB ⊗ YBB is positive definite, thus the quadratic opti-
mization problem of Theorem 3 is convex.

Proof. If WBB and YBB are positive definite, then their Kronecker product is
positive definite as well. First we show that matrix YBB is positive definite, thus
zYBBzT > 0 holds for any non-zero row vector z. Since YBB is the solution of
a Sylvester equation, we have that YBB =

∫ ∞
0

eBT
0 xαT

B · αBeB0x dx. Hence

zYBBzT =
∫ ∞

0

zeBT
0 xαT

B · αBeB0xzT dx =
∫ ∞

0

(
αBeB0xzT

)2
dx, (28)

which can not be negative, furthermore, apart from a finite number of x values
αBeB0xzT can not be zero either. Thus, the integral is always strictly positive.

The positive definiteness of matrix WBB can be proven similarly. �

Being able to formalize the optimization of D2{A,B} as a quadratic pro-
gramming problem means that obtaining the optimal matrix B1 is efficient: it
is fast, and there is a single optimum which is always found.

If we intend to take higher lag joint density differences also into account,
the objective function is Dk{A,B}, which is not quadratic for k > 2. However,
our numerical experience is that the built-in non-linear optimization tool in
MATLAB, called fmincon is able to return the solution matrix B1 quickly,
independent of the initial point of the optimization. We have a strong suspicion
that the returned solution is the global optimum, however we can not prove the
convexity of the objective function formally.

It is also possible to use Dacf{A,B} as the objective function of the optimiza-
tion problem, when looking for matrix B1 that minimizes the squared difference
of the autocorrelation function. We found that fmincon is rather prone to the
initial point in this case. Repeated running with different random initial points
was required to obtain the best solution.

Measuring the Distance Between MAPs and Some Applications 107

4.2 Approximating a RAP

The proposed procedure consists of two steps:

1. obtaining the phase-type (PH) representation of the inter-arrival times, that
provides vector αB and matrix B0;

2. obtaining the optimal B1 matrix such that the correlation structure of the
target RAP is captured as accurately as possible.

Section 4.1 describes how step 2 is performed.
For step 1, any phase-type fitting method can be applied. To solve this prob-

lem [3] develops a moment matching method that returns a hyper-exponential
distribution of order N based on 2N − 1 moments, if it is possible. An other
solution published in [6] is based on a hyper-Erlang distribution, which always
succeeds if an appropriately large Erlang order is chosen.

Our method of choice, however, is a slight modification of [5], which is the
generalization of the former two. It constructs PH distributions from feedback
Erlang blocks (FEBs), where each FEB implements an eigenvalue of the tar-
get distribution. With FEBs it is possible to represent complex eigenvalues as
well, as opposed to the previously mentioned methods that operate on hyper-
exponential and hyper-Erlang distributions. The original method in [5] puts the
FEBs in a row, which is not appropriate for our goals, since there is only a single
absorbing state, implying that matrix B1 can have only a single non-zero row,
thus no correlation can be realized. However, the original method can be modi-
fied in a straight forward way to return a hyper-FEB structure. A key step of [5]
is the solution of a polynomial system of equations, which can have several solu-
tions, providing several valid αB,B0 pairs. Our RAP approximation procedure
performs the optimization of matrix B1 with all of these solutions, and picks
the best one among them.

4.3 Numerical Examples

In the first numerical example we extract 7 marginal moments and 9 lag-1 joint
moments from a measurement trace containing inter-arrival times of real data
traffic1, and create a RAP of order 4 with the method published in [10]. The
obtained matrices are as follows:

A0 =

⎡

⎢⎢⎣

−0.579 −0.402 −0.364 −0.348
−0.368 −0.205 −0.315 −0.36
1.32 −0.845 0.701 1.13
−1.7 0.3 −1.14 −1.52

⎤

⎥⎥⎦ , A1 =

⎡

⎢⎢⎣

0.576 0.262 0.41 0.446
0.168 0.501 0.313 0.266
0.29 −1.69 −0.598 −0.302
0.292 1.94 1.03 0.786

⎤

⎥⎥⎦ .

The RAP characterized by A = (A0,A1) is, however, not a valid stochastic
process as the joint density given by (1) is negative since f2(0.5, 8) = −0.000357.
This RAP is the target of our approximation in this section.
1 We used the BC-pAug89 trace, http://ita.ee.lbl.gov/html/contrib/BC.html. While

this is a fairly old trace, it is often used for testing PH and MAP fitting methods, it
became like a benchmark.

http://ita.ee.lbl.gov/html/contrib/BC.html

108 G. Horváth

Let us now construct a MAP B(1) = (B(1)
0 ,B

(1)
1) which minimizes the

squared distance of the lag-1 joint density with A. The distribution of the inter-
arrival times, characterized by αB,B

(1)
0 are obtained by the modified moment

matching method of [5], and matrix B
(1)
1 has been determined by the quadratic

program provided by Theorem 3. The matrices of the MAP are

B
(1)
0 =

⎡

⎢⎢⎢⎢⎣

−0.074 0 0 0 0
0 −0.27 0.27 0 0
0 0 −0.27 0.27 0
0 0 0 −0.27 0
0 0 0 0 −1.2

⎤

⎥⎥⎥⎥⎦
, B

(1)
1 =

⎡

⎢⎢⎢⎢⎣

0.0065 0.024 0 5.5·10−8 0.044
0 0 0 0 0
0 0 0 0 0

0.017 0.086 0 0 0.17
0 0.012 0 0 1.2

⎤

⎥⎥⎥⎥⎦
,

and the squared distance in the lag-1 joint pdf is D2{A,B(1)} = 0.000105. The
quadratic program has been solved by MATLAB is less than a second. Next,
we repeat the same procedure, but instead of focusing on the lag-1 distance, we
optimize on the squared distance of the joint pdf up to lag-10. This can not be
formalized as a quadratic program any more, but the optimization is still fast,
lasting only 1-2 seconds. In this case the hyper-exponential distribution provided
the best results (D11{A,B(10)} = 4.37 · 10−5). The matrices are

B
(10)
0 =

⎡

⎣
−0.0519 0 0

0 −0.151 0
0 0 −1.24

⎤

⎦ , B
(10)
1 =

⎡

⎣
10−6 0.0519 10−6

10−6 0.151 0.000465
0.000129 10−6 1.24

⎤

⎦ .

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5

m
ar

gi
na

l p
df

x

Original
Lag-1 optimized

Lag-10 optimized

Fig. 1. Comparison of the density functions of the marginal distribution

To evaluate the quality of the approximation Figure 1 compares the marginal
density functions of A,B(1) and B(10). The plots are close to each other, the
approximation is relatively accurate. To demonstrate that the lag-1 joint densi-
ties are also accurate, Figure 2 depicts them at x2 = 0.5, 1 and 1.5.

In the next experiment the objective is the squared distance of the lag-k
autocorrelation function. As before, the input RAP is A, but now the approxi-
mation procedure has to minimize Dacf{A,B(ρ)} which is given in a closed form

Measuring the Distance Between MAPs and Some Applications 109

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.5 1 1.5 2 2.5 3

La
g-

1
jo

in
t p

df
, f

2(
x 1

,x
2)

x1

x2=0.5, original
x2=0.5, lag-1 optimized

x2=0.5, lag-10 optimized
x2=1.0, original

x2=1.0, lag-1 optimized
x2=1.0, lag-10 optimized

x2=1.5, original
x2=1.5, lag-1 optimized

x2=1.5, lag-10 optimized

x2=0.5

x2=1.0

x2=1.5

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 0.5 1 1.5 2 2.5 3

La
g-

10
 jo

in
t p

df
, f

10
(x

1,x
2)

x1

x2=0.5, original
x2=0.5, lag-1 optimized

x2=0.5, lag-10 optimized
x2=1.0, original

x2=1.0, lag-1 optimized
x2=1.0, lag-10 optimized

x2=1.5, original
x2=1.5, lag-1 optimized

x2=1.5, lag-10 optimized

x2=0.5

x2=1.0

x2=1.5

Fig. 2. Comparison of the lag-1 joint density functions

by (11) and Theorem 2. According to our experience the result of the optimiza-
tion is rather prone to the initial point. The best result from 10 trials is given
by matrices

B
(ρ)
0 =

⎡

⎢⎢⎢⎢⎢⎢⎣

−0.0851 0.0851 0 0 0 0
0 −0.0851 0 0 0 0
0 0 −0.267 0.267 0 0
0 0 0 −0.267 0.267 0
0 0 0 0 −0.267 0
0 0 0 0 0 −1.2

⎤

⎥⎥⎥⎥⎥⎥⎦
,B

(ρ)
1 =

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0.0485 0 0 0.0366
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.0965 0 0 0.1705

0.0004 0 0.0117 0 0 1.1885

⎤

⎥⎥⎥⎥⎥⎥⎦
.

and the corresponding autocorrelation function is depicted in Figure 3. The
squared distance between the autocorrelation functions is Dacf{A,B(ρ)} =
0.00237.

 0

 0.05

 0.1

 0.15

 0.2

 2 4 6 8 10 12 14

au
to

co
rre

la
tio

n

lag

Original
Optimized

Fig. 3. Comparison of the autocorrelation functions

5 Application: Approximating the Departure Process
of a MAP/MAP/1 Queue by a MAP

A popular approach for the analysis of the network of MAP/MAP/1 queues
is the so called traffic based decomposition, where the internal traffic in the

110 G. Horváth

network is modeled by MAPs. The closeness properties of MAPs over splitting
and superposition make them ideal for this purpose. The key question is how to
obtain a MAP that represents the departure process of a queue. Two options
from the past literature which are known to perform relatively well are as follows:

– The ETAQA truncation of the queue length process in [11],
– and the joint moments based procedure presented in [4].

In the practice both methods can return a RAP instead of a MAP, thus the
procedure described in Section 4 becomes relevant.

5.1 Introduction to the Departure Process Analysis

The MAP/MAP/1 queue is a subclass of QBD queues, which are characterized
by four matrices, B,F ,L and L0. Matrices B and F consist of phase transition
rates accompanied by service and arrival events, respectively, while matrices L0

and L correspond to the internal transitions when the queue is at level 0 and
at level above zero. The generator matrix of the CTMC keeping track of the
number of jobs in the queue and the phase of the system has a tri-diagonal
structure given by

Q =

⎡

⎢⎢⎢⎣

L0 F
B L F

B L F
.

⎤

⎥⎥⎥⎦ . (29)

Separating the transitions that generate a departure leads to a MAP that
captures the departure process in an exact way as

D0 =

⎡

⎢⎢⎢⎣

L0 F
L F

L F
.

⎤

⎥⎥⎥⎦ , D1 =

⎡

⎢⎢⎢⎣
B

B
. . .

⎤

⎥⎥⎥⎦ , (30)

but unfortunately this representation has infinitely many states. A finite repre-
sentation can be obtained by truncating the infinite model. It is proven in [11]
that an appropriate truncation at level k is able to preserve the joint distribution
of the departure process up to lag-(k − 1). The truncation at level k is done as

D0
(k) =

⎡

⎢⎢⎢⎣

L0 F
L F

.
L + F

⎤

⎥⎥⎥⎦

0
1
...
k

, D1
(k) =

⎡

⎢⎢⎢⎣
B

. . .
B − FG FG

⎤

⎥⎥⎥⎦

0
1
...
k

, (31)

where matrix G is the minimal non-negative solution to the matrix-quadratic
equation 0 = B + LG + FG2.

Measuring the Distance Between MAPs and Some Applications 111

Although the truncation leads to a finite model, the number of states can
still be too large. The superposition operations in the queueing network increase
the number of states even more, and the limits of numerical tractability are
easily hit. A possible solution for the state-space explosion is provided in [4],
where a compact representation is constructed while maintaining the lag-1 joint
moments of the large process.

5.2 Practical Problems and Possible Solutions

An issue with both the ETAQA departure model and the joint moment based
approach is that they do not always return a Markovian representation, it is not
even guaranteed that the departure model is a valid stochastic process.

Applying the RAP approximation procedure presented in Section 4 makes it
possible to overcome this problem. Based on (D0

(k),D1
(k)) it always returns a

valid Markovian representation (H0,H1), and at the same time it is also able
to compress the truncated departure process to a desired level.

There is, however, one issue which has to be taken account when applying
the procedure of Section 4, namely that the number of marginal moments that
can be used to obtain matrix H0 is limited. We are going to show that the order
of the PH distribution representing the inter-departure times is finite (denoted
by ND), determined by 2ND − 1 moments, and using more moments during the
approximation leads to a dependent moment set (see [3]).

Theorem 5. The order of the PH distribution representing the inter-departure
times of a QBD queue with block size N > 1 is

ND = 2N. (32)

Proof. In [11] it is shown how an order 2N PH distribution is constructed that
captures the inter-departure times in an exact way, thus ND ≤ 2N . Additionally,
it is easy to find concrete matrices B,F ,L and L0 such that the order of this
PH distribution is exactly 2N (practically any random matrices are suitable, the
order can be determined by the STAIRCASE algorithm of [2]). Consequently,
we have that ND = 2N . �

Surprisingly, in case of MAP/MAP/1 queues the order of the inter-departure
times is lower.

Theorem 6. ([4], Theorem 2) The order of the PH distribution representing
the inter-departure times of a MAP/MAP/1 queue is

ND = NA + NS , (33)

where NA denotes the size of the MAP describing the arrival process and NS the
one of the service process, assuming that NA + NS > 1.

112 G. Horváth

Thus, the proposed method for producing a MAP (B0,B1) that approxi-
mates the departure process is as follows:

1. First the ETAQA departure model is constructed up to the desired lag k, pro-
viding matrices (D0

(k),D1
(k)). The stationary phase distribution at depar-

ture instans needs to be determined as well, αD is the unique solution to
αD(−D0

(k))−1D1
(k), αD1 = 1.

2. The marginal moments of the inter-departure times are computed from αD

and D0
(k). The more moments are taken into account, the larger the output

of the approximation is. According to the above theorems, more than 2ND−1
should not be used.

3. Matrix B0 is obtained by moment matching (see Section 4.2).
4. Matrix B1 is obtained such that either the squared distance of the joint

density is minimized up to lag k, see 4.1.

5.3 Numerical Example

In this example2 we consider a simple tandem queueing network of two
MAP/MAP/1 queues. The arrival process of the first station is given by matrices

D0 =

⎡

⎣
−0.542 0.003 0
0.04 −0.23 0.01
0 0.001 −2.269

⎤

⎦ , D1 =

⎡

⎣
0.021 0 0.518

0 0.17 0.01
0.004 0.005 2.259

⎤

⎦ , (34)

while the matrices characterizing the service process are

S0 =
[−10 0

0 −2.22

]
, S1 =

[
7.5 2.5
0.4 1.82

]
. (35)

With these parameters both the arrival and the service times are positively
correlated (ρ(A)

1 = 0.21 and ρ
(S)
1 = 0.112) and the utilization of the first queue

is 0.624.
The service times of the second station are Erlang distributed with order 2

and intensity parameter 6 leading to utilization 0.685.
This queueing network is analyzed such a way, that the departure process

is approximated by the ETAQA truncation and by the joint moments based
methods. Next, our RAP approximation procedure (Section 4) is applied to
address the issues of the approximate departure processes, namely to obtain
a Markovian approximation and in case of the ETAQA truncation method, to
compress the large model to a compact one.

Table 1 depicts the mean queue length of the second station and the model
size by various departure process approximations. The ETAQA truncation model
has been applied with truncation levels 2 and 6, which has been compressed
by our method based on either 3 or 5 marginal moments and with D2{} or

2 The implementation of the presented method and all the numerical examples can be
downloaded from http://www.hit.bme.hu/∼ghorvath/software

http://www.hit.bme.hu/~ghorvath/software

Measuring the Distance Between MAPs and Some Applications 113

Table 1. Results of the queueing network example

Model of the departure process #states E(queue len.)

Accurate result (simulation): n/a 2.6592

ETAQA, lag-1 truncation 18 2.3379
Our method based on 3 moments and D2{} 2 2.4266
Our method based on 5 moments and D2{} 3 2.5722

ETAQA, lag-5 truncation 42 2.5405
Our method based on 3 moments and D2{} 2 2.4266
Our method based on 5 moments and D2{} 3 2.5722
Our method based on 3 moments and D6{} 2 2.4266
Our method based on 5 moments and D6{} 3 2.6805

Joint moments based, 2 states 2 2.3255
Our method based on 3 moments and D2{} 2 2.3255

Joint moments based, 3 states 3 2.755
Our method based on 3 moments and D2{} 2 2.4266
Our method based on 5 moments and D2{} 3 2.7489

D6{} distance optimization. The corresponding queue length distributions at the
second station are compared in Figure 4. The departure process has also been
approximated by the joint moments based method of [4], and an approximate
Markovian representation has been constructed with our method based on 3 or
5 marginal moments and D2{} optimization.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10 12 14

Pr
ob

ab
ili

ty

Queue length

With ETAQA
Our method, 3 moments, D2{}
Our method, 5 moments, D2{}
Our method, 3 moments, D6{}
Our method, 5 moments, D6{}

 1e-09

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100

Pr
ob

ab
ili

ty

Queue length

With ETAQA
Our method, 3 moments, D2{}
Our method, 5 moments, D2{}
Our method, 3 moments, D6{}
Our method, 5 moments, D6{}

Fig. 4. Queue length distribution with the ETAQA departure model and its Markovian
approximations

The results indicate that the RAP approximation and state space compres-
sion technique presented in this paper is efficient, the MAP returned is able to
capture the important characteristic of the target RAP with an acceptable error.

Acknowledgments. This work was supported by the Hungarian research project
OTKA K101150 and by the János Bolyai Research Scholarship of the Hungarian
Academy of Sciences.

114 G. Horváth

References

1. Asmussen, S., Koole, G.: Marked point processes as limits of Markovian arrival
streams. Journal of Applied Probability, 365–372 (1993)

2. Buchholz, P., Telek, M.: On minimal representations of rational arrival processes.
Annals of Operations Research 202(1), 35–58 (2013)

3. Casale, G., Zhang, E.Z., Smirni, E.: Trace data characterization and fitting for
Markov modeling. Performance Evaluation 67(2), 61–79 (2010)

4. Horváth, A., Horváth, G., Telek, M.: A joint moments based analysis of networks
of MAP/MAP/1 queues. Performance Evaluation 67(9), 759–778 (2010)

5. Horváth, G.: Moment matching-based distribution fitting with generalized hyper-
erlang distributions. In: Dudin, A., De Turck, K. (eds.) ASMTA 2013. LNCS, vol.
7984, pp. 232–246. Springer, Heidelberg (2013)

6. Johnson, M.A., Taaffe, M.R.: Matching moments to phase distributions: Mixtures
of Erlang distributions of common order. Stochastic Models 5(4), 711–743 (1989)

7. Latouche, G., Ramaswami, V.: Introduction to matrix analytic methods in stochas-
tic modeling, vol.5. Society for Industrial and Applied Mathematics (1987)

8. Lipsky, L.: Queueing Theory: A linear algebraic approach. Springer Science &
Business Media (2008)

9. Steeb, W.: Matrix calculus and Kronecker product with applications and C++
programs. World Scientific (1997)

10. Telek, M., Horváth, G.: A minimal representation of Markov arrival processes and
a moments matching method. Performance Evaluation 64(9), 1153–1168 (2007)

11. Zhang, Q., Heindl, A., Smirni, E.: Characterizing the BMAP/MAP/1 departure
process via the ETAQA truncation. Stochastic Models 21(2–3), 821–846 (2005)

Task Delegation in a Peer-to-Peer Volunteer
Computing Platform

Kristóf Attila Horváth1 and Miklós Telek1,2(B)

1 Budapest University of Technology and Economics, Budapest, Hungary
horvath.kristof.attila@gmail.com

2 MTA-BME Information systems research group, Budapest, Hungary
telek@webspn.hit.bme.hu

Abstract. The paper reports an effort made for understanding the
effect of task delegation policy in a peer-to-peer volunteer computing
platform. This effort includes the implementation of a simulation envi-
ronment and the development of associated analytical models for the
analysis of task delegation policies in peer-to-peer computing platforms.
Based on the analytical model best and worst task delegation policies
are computed and the resulted system behavior is verified by simulation.

Keywords: Peer-to-peer volunteer computing platform · Task delega-
tion · Mean field model · Simulation

1 Introduction

The concept of utilizing the unutilized computing resources of a large number of
(personal) computers connected via the internet is around for several decades.
There are widely known peer-to-peer volunteer computing platform projects
established for evaluating various computationally intensive tasks (a summary is
provided in the next section). The related literature discusses the introduction,
the spread, the order of magnitude, the organization and the applied technical
details of these projects. In this work we focus on a particular detail of the orga-
nization of peer-to-peer volunteer computing platforms, the subtask delegation
policy.

As the organization of volunteer computing platform changes from centrally
controlled to peer-to-peer based, by time it became important to understand the
performance consequences of autonomous subtask delegation policies.

The rest of the paper is organized as follows. Section 2 introduces the existing
computing platforms and the related literature. We summarize the main prop-
erties of a proposed peer-to-peer volunteer computing platform in Section 3.
Analytical models and associated performance analysis of various parameters of
interests are investigated in Section 4. Finally, Section 5 presents the simulation
results and their relation to the results of the analytical models.

The authors thank the support of the OTKA K101150 project.

c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 115–129, 2015.
DOI: 10.1007/978-3-319-18579-8 9

116 K.A. Horváth and M. Telek

2 Existing Volunteer Computing Platform Solutions

2.1 A Brief History of Volunteer Computing

There is a huge amount of unused computing capacity in personal computers,
because the computers of users work 100% occupancy only negligible part of
the time. This was the basis of the volunteer computing networks which utilize
the unused capacity of personal computers. A study was published about the
capacity of volunteer computing networks in 2006 [4], despite of old data the
measured values are shocking: an ordinary volunteer computing project could
use 95.5 teraFLOPS (1012 Floating-point Operations Per Second) computing
capacity and 7.74 petabyte (1015 byte) storage.

The first volunteer computing projects started in 1997: the GIMPS (Great
Internet Mersenne Prime Search) and the Distributed.net where cryptographic
algorithms were tested. These projects had got tens of thousands of volunteer
users [2].

The first project, which already had got millions of volunteer users, is the
SETI@home project. It has started in 1999. SETI is the abbreviation of Search
for Extraterrestrial Intelligence, and the @home (at home) suffix refers the use of
personal computers instead of supercomputers. Tiny pieces of received signals of
radio telescopes were sent to the computers of volunteers where the client appli-
cation tried to find very narrowband (<Hz) signals in them. The method assumes
that the extraterrestrial intelligence transmits narrowband signal which is easily
distinguishable from the natural background radiation. The task is highly com-
putationally intensive because a lot of parameters – bandwidth, symbol duration
time, Doppler shift, etc. – are unknown [6,13].

Because of the popularity of SETI@home project a general platform called
BOINC (Berkeley Open Infrastructure for Network Computing) was developed
in 2002. The BOINC platform became dominant in the subsequent years.

In the volunteer computing projects one of the hardest challenge is finding and
keeping members as volunteers. Spectacular figures of the scientific results in wall-
paper or in screen saver try to increase the interest. An other option is to publish
the list of most effective volunteers and [17] recommends worker teams to utilize
the team spirit. In spite of the seemingly infinite resources the performance opti-
mization of distributed computing platforms is an essential goal [1].

2.2 Platforms

BOINC was developed at the University of California, Berkeley. It is the largest
volunteer computing platform so far. The projects of the platform are computed
on 600 000 personal computers. The total computing capacity almost reaches
10 petaFLOPS, therefore the system rivals the most powerful supercomputers
[19]. Apart of the SETI@home project the platform hosts additional projects
like Einstein@home, LHC@home, Milkyway@home, etc [3,5].

The XtremWeb platform was developed in parallel and independently from the
BOINC system. The objective and the implementation are very similar in the two
platforms, however in the competition for users BOINC was more successful [11].

Task Delegation in a Peer-to-Peer Volunteer Computing Platform 117

Alchemi is a .NET-based platform, which was developed at the University of
Melbourne. In this system the main objective is the easy programmability, the
other aspects are less important [15,16].

The OurGrid platform is based on a new idea. This platform interconnects
the grid systems of universities and research groups intend to utilize the free
resources [7,8].

All of these platforms follow the master–worker parallel programming para-
digm. The central server decomposes the task into subtasks and manages the
delegation. The lifecycle of a subtask is the following: (a) the server creates a
job by packing the executable code and the input files together (b) the client
downloads the job (c) the client computes the results (d) the client uploads the
results (e) the server verifies and processes the results.

3 Properties of the Proposed Distributed Computing
Platform Solution

The existing volunteer computing platforms have got two main issues. The first
one is the protection of the volunteer’s computer. In BOINC and XtremWeb the
servers send native executable code to the clients. The platforms use asymmetric
cryptography to ensure the authenticity and the integrity, but the project owner
can execute anything on the volunteer’s computer.

On the other hand Alchemi and OurGrid systems use virtualization to solve
the problem, but it reduces the performance which should be avoided in a com-
puting platform. In the proposed computing platform the elements send the
source code to the peers. This method includes filtering of malicious codes. The
compiling–running combination may be more efficient than the virtualization.

The second issue is that the management of subtasks is centralized in all
existing platforms; they follow the master–worker programming paradigm. In
some systems the executable code or input files can be shared by peer-to-peer
mechanisms [9,10], however the central management of subtasks are presented
here as well.

In the proposed distributed volunteer computing platform, every node can
delegate subtasks to other nodes, if the currently computed subtask contains
parallel blocks. In this approach the programmer can write multi-level subtask
structures, so a subtask in a parallel block can be the same as the main program
following a fractal-like structure. The nodes in the computing network are identi-
cal, so a homogenous programming model can be used instead of a heterogenous
programming model as in CUDA [12], OpenCL [18], etc.

The codes can contain serial- and parallel blocks sequentially. The parallel
blocks must be fully decomposable, so the subtasks can not communicate with
each other or with the main task (except the interchange through input- and
output files). The next serial- or parallel block can be started after all subtasks
of the current block had been completed.

At the beginning of the parallel blocks the client program decides how many
subtasks will be computed locally and how many will be delegated. Because of

118 K.A. Horváth and M. Telek

the overhead of subtask delegation there is a trade-off between locally computed
and delegated subtasks. The optimal strategy is investigated and the behavior
of the whole system is analysed in the following section.

4 Performance Analysis of Distributed Computing
Platforms

In this section we investigate the performance of distributed computing platforms
with different analysis approaches. The two main applied analytical approaches
are the phase type (PH) distributions and the mean field approximations, which
we also summarize below.

4.1 Phase Type Distributions

If the stochastic behavior of a real system can be characterized by a Markov
chain then various random event times which are of practical interests are PH
distributed. This statement applies for both discrete and continuous time Markov
chains (DTMCs and CTMCs) with associated discrete or continuous PH distri-
butions. In this work we focus on continuous time models.

Definition 1. The time to reach the absorbing state in a CTMC with n transient
and an absorbing state is (size n) phase type distributed.

Consequently, a (continuous) PH distributed random variable X is continuous
non-negative with cumulative distribution function

F (t) = Pr(X < t) = 1 − veHt1 ,

where row vector v contains the initial probabilities of the CTMC in the transient
states, square matrix H contains the transition rates among the transient states
and column vector 1 is composed by ones. v, H and 1 are referred to as initial
probability vector, transient generator matrix and closing vector, respectively.
Throughout the paper we assume that the Markov chain starts from a transient
state, i.e., v1 = 1, and consequently X has no probability mass at zero. The
density and the moments of X are

f(t) = veHt(−H)1 , (1)

μn = E(X n) = n!v(−H)−n1 . (2)

If the initial probability vector and the transient generator matrix are obtai-
ned from modeling assumptions all performance measures associated with X can
be computed based on (1) and (2).

Task Delegation in a Peer-to-Peer Volunteer Computing Platform 119

4.2 Execution Time Model

The execution time of a parallel block can be analyzed by the CTMC shown
in Figure 1. The states can be arranged in a two-dimensional grid: horizontal
axis shows the number of locally computed subtasks, the vertical axis shows the
number of delegated subtasks, which are computed on other computers.

The absorbing state, which represents the completion of a task, is state (0, 0).
The CTMC in Figure 1 describes the case when a subtask can be computed
locally in an exponentially distributed amount of time with parameter μ1, and
a delegated subtask can be sent, computed and returned in an exponentially
distributed amount of time with parameter μ2.

From any states (except the states at the top and the left boundaries) there
are two possible transitions:

1. a locally-computed subtask completes with rate μ1 and the process goes from
state (i, j) to state (i, j − 1),

2. one of the i delegated subtasks arrives with rate iμ2 and the process goes
from state (i, j) to state (i − 1, j).

There is no local (dedicated) computation at the left (top) boundary, so there
is only one of the two transitions at these boundaries.

Based on the transition graph the infinitesimal generator matrix of the pro-
cess Q is obtained by mapping the nodes of the transition graph, which are the
states of the Markov chain, to a subset of natural numbers and indicating the
transition rates between the pair of states. The transient generator, matrix H in
(1) and (2), contains the transition rates only among the transient states, and
is the lower right block of matrix Q as it is indicated below for the state space
with 3 × 3 states.

Q =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
μ1 −μ1 0 0 0 0 0 0 0
0 μ1 −μ1 0 0 0 0 0 0
μ2 0 0 −μ2 0 0 0 0 0
0 μ2 0 μ1 −μ1 − μ2 0 0 0 0
0 0 μ2 0 μ1 −μ1 − μ2 0 0 0
0 0 0 2μ2 0 0 −2μ2 0 0
0 0 0 0 2μ2 0 μ1 −μ1 − 2μ2 0
0 0 0 0 0 2μ2 0 μ1 −μ1 − 2μ2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

The elements under the diagonal contain μ1 except every ith, which is 0,
because local computing does not happen at the first column of the grid. The ith

elements under the diagonal contain the rates of arriving delegated task, which
are μ2, 2μ2, etc. in i-length blocks. Conventionally, the diagonal elements contain
the negation of sum of all the other elements in the row.

Expected Value of the Task Execution Time. The mean task execution
time (the running time of parallel block), which is the mean time to reach state

120 K.A. Horváth and M. Telek

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

μ1 μ1 μ1

μ1 μ1 μ1

μ1 μ1 μ1

μ1 μ1 μ1

μ2 μ2 μ2

2μ2

3μ2

2μ2

3μ2

2μ2

3μ2

μ2

2μ2

3μ2

Fig. 1. Phase type CTMC for execution
time modeling

4030

own tasks (i)

201000
10

delegated tasks (j)

20
30

1.5

1

0.5

0

2

40

ru
n
n
in
g
ti
m
e

Fig. 2. Running times for different states

(0, 0) in the Markov chain in Figure 1, is an essential performance measure of
the distributed computing platform in order to optimize the delegation strategy.
In general, the mean task execution time can be computed based on (2), but
utilizing the structural properties of matrix H it can also be computed by an
efficient recursive procedure.

If the process is in state (i, j), i > 0, j > 0, it can move forward to one of the
two possible consecutive states. On both cases we can compute the probability of
taking one of the two possible consecutive states and the expected time to reach
the (0, 0) state from the next state. If the local calculation completes sooner and
the process goes on the first trajectory we have:

E(T̂i,j) =
1

μ1 + iμ2
+ E(Ti,j−1) . (4)

If one of the delegated tasks completes sooner and the process goes on the second
trajectory:

E(Ťi,j) =
1

μ1 + iμ2
+ E(Ti−1,j) . (5)

To calculate the full time, the two conditional expected times, (4) and (5), have
to be weighted by the probabilities of the trajectories.

E(Ti,j) = Pr(1st trajectory)E(T̂i,j) + Pr(2nd trajectory)E(Ťi,j) (6)

=
μ1

μ1 + iμ2

(
1

μ1 + iμ2
+ E(Ti,j−1)

)
+

iμ2

μ1 + iμ2

(
1

μ1 + iμ2
+ E(Ti−1,j)

)
.

This recursive formula is valid for every state where i > 0 and j > 0. The mean
task execution time from the boundary states where i = 0 or j = 0 can be
computed as follows. If the phase type distribution is initialized from a state
where i = 0, j > 0, the task execution time is Erlang(j, μ1) distributed (the sum

Task Delegation in a Peer-to-Peer Volunteer Computing Platform 121

task size
0 5 10 15 20 25 30 35

d
el
eg
at
io
n
s

0

5

10

15

20

25

30

Fig. 3. Optimal number of delegated sub-
tasks

task size
0 5 10 15 20 25 30 35

ti
m
e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 4. Optimized running time

of j independent exponentially distributed random times with the parameter
μ1), whose expected time is

E(T0,j) = j
1
μ1

. (7)

In case of j = 0, i > 0 the successive exponential phases do not have the same
parameter, so the expected values of the phases with phase dependent rates (kμ2,
k = i, i − 1, . . . , 1) have to be summed up.

E(Ti,0) =
i∑

k=1

1
kμ2

=
1
μ2

i∑

k=1

1
k

=
1
μ2

Hi, (8)

where Hi =
∑i

k=1
1
k is commonly referred to as the ith harmonic number.

Optimalization. To investigate the optimal subtask delegation we evaluate the
mean task execution time from different initial states. Figure 2 depicts the mean
task execution time as a function of the initial state, when μ1 = 20 and μ2 = 4.
Indeed the continuous surface on Figure 2 is valid only at integer points.

If the overhead of delegation reduces and the ratio of two intensities converges
to zero, then the surface would converge to the E(T) = iμ1 plane.

When the program reaches a parallel block, it has to decide how many
subtasks will be computed locally and how many will be delegated. This two
numbers determine the starting state of the process. When a parallel block is
composed by N subtasks the starting state satisfies the i + j = N formula,
therefore the optimum is the minimum of the surface on the i + j = N section
plane. The section plane has got N integer points, the optimal running time is
obtained at the minimum of these. Figure 2 contains the N = i + j = 8, 15, 23
section plane on the surface and their minimum points. These points indicate
the optimal number of delegated subtask in case of n parallel tasks.

122 K.A. Horváth and M. Telek

Figure 3 shows the optimal number of delegated subtasks as a function of the
total number of subtasks. Up to a threshold (10 in the example) every subtask
is computed locally, after that almost all of the following subtasks are delegated.

Figure 4 shows the optimal running time as a function of the total number of
subtasks. Up to the threshold where the optimal execution time is obtained with
no subtask delegation (N < 10) the plot is linear with slope 1/μ1, which is in
line with formula (7). After that point the slope breaks down due to the effect of
delegation as it is visible from a comparison with Figure 3. According to (8) the
mean time to complete a number of delegated task is related to the harmonic

series. The ith harmonic number is approximately equal to ln(i), because
n∫
1

1
xdx =

ln(n) and the harmonic series is an approximation to the definite integral. The
difference between the harmonic series and the logarithmic series converges to
the Euler–Mascheroni constant: limn→∞ Hn − ln(n) = γ ≈ 0.5772156649.

Model Parameters Setting. The expected value of running time of a locally-
computed subtask is the reciprocal of μ1, so μ1 can be defined as the FLOPS
of the machine divided by the floating-point operations of a subtask. Similarly,
the reciprocal of μ2 can be defined as the sum of the floating-point operations of
one subtask divided by the average FLOPS in the computing network and the
mean time to transmit the input/output data through the internet connection.

The above described Markovian model and this parameters setting do not
guarantee the perfect matching of the model and the real execution times in the
computing platform. For this reason we also verify the results by simulation in
Section 5.

4.3 Mean Field Approximation

In the previous subsections we optimized the system behavior assuming infinite
computing resources. To consider the effect of finite computing resources we
apply a different modeling approach, the mean field approximation. The mean
field method allows the analysis of large Markov systems which are composed
by a finite number of identical interacting components, where the interaction
depends only on the number of components which are in particular states. For
example, in our case the identical components are the computing units and the
dependence of one component on the other components is only through the
number of available idle computing units. Let N be the number of components.
The state of component � (� = 1, 2, . . . , N) at time t is denoted by X�(t). In
our case the state of the component depends on the task it is working on. A
component could be idle, working on a delegated task, and being responsible for
the execution of the task composed by parallel subtasks. The latest case can be
described by a state space similar to the one on Figure 1. The overall behavior of
these three possible cases is discussed below and depicted on Figure 5. The state
space of each component, S, is composed by s = |S| states, and Ni(t) denotes
the number of components which are in state i (∀i ∈ S) at time t. For example,

Task Delegation in a Peer-to-Peer Volunteer Computing Platform 123

Nidle(t), denotes the number of idle computing units which are available for task
or subtask assignment. In our case it is intuitive to see that a delegation decision
depends only on the number of idle computing units and not on the state of a
particular computing unit of the system. The row vector composed by Ni(t) is
denoted by N(t) and by this definition,

∑s
i=1 Ni(t) = N (is the number of all

computing units in our case).
The global behavior of the set of N components forms a CTMC over the state

space of size sN . However, due to the fact that the components are identical and
indistinguishable, the state space can be lumped into the aggregate state space
SL of size

(
N+s−1

s−1

)
, where a state of the overall CTMC is identified by the number

of components staying in each state of S, i.e., by N(t) = (N1(t), N2(t), . . . , Ns(t))
(in our case it means the number of idle components, the number of components
working on a delegated task, the number of components responsible for the
computation of a task and waits for the completion of two delegated subtasks,
etc). N(t) refers to the population vector, which describes the distribution of the
population between the possible states.

The evolution of a given computing unit is such that the transition rates may
depend on the global behavior through the actual value of vector N(t). With
this assumption, the transition rate of a particular component from state i to j
is Kij(N(t)) which depends only on vector N(t). The diagonal elements of the
transition rate matrix are defined by Kii(N(t)) = −

∑

j∈S,j �=i

Kij(N(t)).

Instead of using the population vector, N(t), the normalized population vec-
tor, n(t) = N(t)/N is commonly used for the mean field analysis of such sys-
tems. The entries of n(t) define the proportion of objects in state i at time
t and

∑
i∈S ni(t) = 1. The associated transition rate function is denoted by

kij(n(t)), and the matrix composed by these elements is k(n(t)) = {kij(n(t))}.
Hereafter we assume that kij(n(t)) is a Lipschitz continuous function over the s-
dimensional unit cube. The mean field method is based on the following essential
theorem.

Theorem 1. [14] The normalized state vector of the population process, n(t),
tends to be deterministic, in distribution, as N tends to infinity and satisfies the
following differential equation

d

dt
n(t) = n(t) k(n(t)) . (9)

The mean field approximation is based on the fact that for large but finite N
the deterministic approximation according to (9) is a good approximation of the
system behavior with well defined error bounds [14].

4.4 The Mean Field System Model

The model in Section 4.2 optimizes the task execution time disregarding its
effect on resource utilization. In this section, we present an approximate mean
field model of the system which considers also the resource utilization.

124 K.A. Horváth and M. Telek

When the studied volunteer computing project runs a task with one level
delegation policy (delegated subtasks are not divided into lower level subsub-
tasks), then the state space of a computing device is similar to the state space
of the execution time model when the computing device is responsible for the
computation of a task composed of a given number of subtasks. In this case
state (i, j) is the state when the computing device is waiting for the comple-
tion of i delegated subtasks and the node has to compute j subtasks locally. In
state (0, 0) the node is idle, so it can start with a new task or it can receive a
delegated subtask from another node. Additional to the states associated with
the task computation there is state (∗) which identifies the state when the node
computes a delegated subtask.

To describe the considered subtask delegation policy we introduce the dele-
gation function fij as follows

fij = Pr(the node goes to state (i, j) after the delegation). (10)

For notational convenience we assume f00 = 0.
∑

i

∑
j fij = 1, because fij

describes the probability of a complete and disjoint set of events. Indeed, this
delegation function also contains the distribution of the number of parallel sub-
tasks in an arriving main task.

Pr(an arriving task is composed by k parallel subtasks) =
k∑

i=0

fi,k−i. (11)

Further more, λ denotes the arrival intensity of a new task. A new task is com-
posed by a given number of parallel subtasks and, similarly to the notations of
the previous sections, μ1 and μ2 denote the subtask completion rate for local
and delegated subtasks, respectively. In the i ≤ 3, j ≤ 3 part of the state space
the following differential equations describe the evolution of the normalized pop-
ulation vector.

d

dt
n01(t) = −μ1n01(t) + μ2n11(t) + μ1n02(t) + λf01,

d

dt
n02(t) = −μ1n02(t) + μ2n12(t) + μ1n03(t) + λf02,

d

dt
n03(t) = −μ1n03(t) + μ2n13(t) + λf03,

d

dt
n10(t) = −μ2n10(t) + 2μ2n20(t) + μ1n11(t) + λf10,

d

dt
n11(t) = −μ2n11(t) − μ1n11(t) + 2μ2n21(t) + μ1n12(t) + λf11,

...

Task Delegation in a Peer-to-Peer Volunteer Computing Platform 125

The general form of these equations is

d

dt
nij(t) = −(iμ2 + μ1)nij(t) + I(i + 1)μ2ni+1,j(t) + I(j + 1)μ1ni,j+1(t) + λfij ,

(12)

where

I(i) =

{
1, if i ≤ 3,
0, othervise.

The number of delegated subtasks from one main task is
∑

i i
∑

j fij , conse-
quently the same number of nodes move to state (∗) at the arrival of a main
task due to the associated task delegations. The differential equation for the
number of nodes in state (0, 0) is

d

dt
n00(t) = −λ

⎛

⎝1 +
∑

i

i
∑

j

fij

⎞

⎠ + μ1n01(t) + μ2n10(t) + μ2n∗(t) . (13)

Finally, the differential equation for state (∗) is

d

dt
n∗(t) = λ

∑

i

i
∑

j

fij − μ2n∗(t) . (14)

In this set of differential equations the number of computing units working on a
delegated subtask is encoded in two ways

n∗(t) =
∑

i

i
∑

j

nij(t). (15)

From the fact that the normalized population vector sums up to one we further
have ∑

i

∑

j

nij(t) + n∗(t) = 1. (16)

These two relations can be used to simplify the system description or for sanity
check of results obtained from the redundant description.

The state transitions described by the differential equations are illustrated
in Figure 5. The vertices represent the possible states of the computing units,
the edges represent the state transitions and the associated intensities indicate
the transition rates. Note that in some cases intensities depend on some relative
population values (which is not the case with a transition graph of a CTMC).
Those are the cases when the k(n(t)) matrix elements depend on n(t) as it is
in (9). This set of differential equations can be solved by numerical procedures,
e.g., by Runge–Kutta method.

Starting from a completely idle system, n(0) = (1, 0, · · · , 0), Figure 6 depicts
the system evolution when λ = 1, μ1 = 5, μ2 = 4 and f21 = 1. According to
Figure 6 the system is not saturated with this load and the normalized population
vector converges to a fix point.

126 K.A. Horváth and M. Telek

00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

μ1

λ Ɗ f
n00

μ1 μ1

μ1 μ1 μ1

μ1 μ1 μ1

μ1 μ1 μ1

μ2

μ2 μ2 μ2

2μ2

3μ2

2μ2

3μ2

2μ2

3μ2

μ2

2μ2

3μ2

λ f03 / n00λ f02 / n00λ f01 / n00

λ f10
 n00

λ f20
 n00

λ f30
 n00

Fig. 5. Transition graph of the mean
field model

time
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

n
or
m
al
iz
ed

n
u
m
b
er

of
n
o
d
es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n00

n01

n10

n11

n20

n21

n∗

Fig. 6. The results of mean field analysis

The analysis of the behavior of an overloaded system requires an extension of
the above set of differential equations with boundary limits to keep the normal-
ized population values between 0 and 1. For example the boundary extension of
(13) is

d

dt
n00(t) =

⎧
⎨

⎩

•, if 0 < n00(t) < 1,
max(•, 0), if n00(t) = 0,
min(•, 0), if n00(t) = 1,

(17)

where • stands for the expression on the right hand side of (13). The limit of
stability is the highest load where limt→∞ n00(t) > 0 still holds.

Stability with Autonomous Computing Units

In volunteer computing platforms the project owner has to avoid the system
saturation. It is not a trivial problem when the participating computing units
are autonomous. For example, if the delegation function is not known because the
nodes decide the delegation strategy autonomously the project owner has to find
a safe task submission rate, λ, at which the system remains stable independent
of the delegation policy of the autonomous computing units.

A safe task submission rate can be obtained by assuming that the autonomous
computing units apply always the most inefficient task delegation policy.

The overall resource utilization of the task completion with i delegated and
j locally computed subtasks, Cij , can be computed by a recursive relation based
on the same considerations as the ones in Section 4.2

E(Ci,j) =
μ1

μ1+iμ2

(
i+1

μ1+iμ2
+ E(Ci,j−1)

)
+

iμ2

μ1+iμ2

(
i+1

μ1+iμ2
+ E(Ci−1,j)

)
,

which accounts for the total resource utilization, since with i delegated and
j locally computed subtasks i + 1 computing units are occupied. Plotting the
obtained E(Ci,j) values similar to Figure 2 and taking the maximal values along

Task Delegation in a Peer-to-Peer Volunteer Computing Platform 127

number of locally-computed subtasks
0 1 2 3 4 5 6 7 8 9 10 11

ru
n
n
in
g
ti
m
e
(s
)

0

5

10

15

Fig. 7. The results of simulation with 10
subtasks

number of locally-computed subtasks
0 1 2 3 4 5 6 7 8 9 10 11

ru
n
n
in
g
ti
m
e
(s
)

0

5

10

15

20

25

30

35

40

45

Fig. 8. The results of simulation with 20
subtasks

the i + j = N section planes defines the most inefficient delegation policy. The
limit of saturation with this most inefficient delegation policy defines the admis-
sible safe task submission rate of the project owner.

We close the section by mentioning, that the modeling approach applied in
this section can be extended for higher levels of hierarchical task subdivisions,
but it would complicate the discussion significantly and is out of the scope of
this paper.

5 Simulation

To verify the analytical results we have developed an event-driven simulator in
C++ language. The implemented simulation model contains several additional
details of a real volunteer computing platform including socket management for
data transfer between nodes, task execution in virtual environment, realistic
computation delegation strategy with higher level hierarchical subtask division,
etc.

5.1 Execution Time Results

Figure 7 shows the execution times of a task with 10 subtasks. In this example,
the subtasks can be computed with 10 MFLO (Mega FLoating-point Operations)
and the computers have 10 MFLOPS computation capacity in average. The
amount of data required for the computation of a subtasks is 3 MB, and the
speed of the internet connection is 2 MB/s. Figure 7 shows the average running
times and the confidence intervals for 95% confidence level.

The minimum of the task completion time is obtained at 4 locally-computed
and 6 delegated subtasks. The running time is 6.76 s in this case.

Figure 8 shows another example with 20 subtasks. It contains the running
times up to 10 locally computed subtasks because the linear trend continues

128 K.A. Horváth and M. Telek

time (s)
0 10 20 30 40 50 60

n
or
m
al
iz
ed

n
u
m
b
er

of
id
le

n
o
d
es

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

50 nodes

100 nodes

500 nodes

1000 nodes

5000 nodes

analytical result

Fig. 9. The results of the simulation and the analytical model for relative number of
nodes

over. In this example the subtasks can be computed with 40 MFLO, the other
parameters are the same as above. The optimal delegation was found at 3 locally
computed subtasks which coincides with the analytical results from Section 4.2.
The associated optimal running time is 14.85 s.

5.2 Results of the Overall System Behavior

To verify the results of the mean field analysis in Section 4.3 we collected popu-
lation results in the simulator. Figure 9 plots normalized number of idle nodes as
a function of time for computing platforms with different number of computing
units and identical relative loads. In this simulator run tasks were composed by
20 subtasks, the intensity of the task arrivals was λ = 0.005 1/s, the calculated
task completion rates were μ1 = 0.27 1/s and μ2 = 0.18 1/s. The figure con-
tains results for computing platforms with 50, 100, 500, 1000 and 5000 nodes as
well as the results of the mean field model. Figure 9 supports the intuition that
the simulated results converge to the analytical result as the number of nodes
increases.

6 Conclusions

The paper presents a performance assessment of volunteer computing platforms.
A set of real characteristic features, e.g. task failures, arrivals and departures of
computing nodes, restricted availability, local usage, etc. are left for future work.
Different modeling paradigms are used for the analysis of performance measures.

Task Delegation in a Peer-to-Peer Volunteer Computing Platform 129

References

1. Altman, E., Kameda, H., Hosokawa, Y.: Nash equilibria in load balancing in dis-
tributed computer systems. International Game Theory Review 4, 91–100 (2002)

2. Anderson, D.P.: Public computing: reconnecting people to science. In: Conference
on Shared Knowledge and the Web, pp. 17–19 (2003)

3. Anderson, D.P.: BOINC: a system for public-resource computing and storage.
In: Fifth IEEE/ACM International Workshop on Grid Computing, pp. 4–10
(November 8, 2004)

4. Anderson, D.P., Fedak, G.: The computational and storage potential of volunteer
computing. In: Sixth IEEE International Symposium on Cluster Computing and
the Grid, CCGRID 2006, vol. 1, pp. 73–80. IEEE (2006)

5. Anderson, D.P., Walton, R., Fenton, C.: BOINC project. http://boinc.berkeley.
edu/

6. Anderson, D.P., Werthimer, D.: SETI@home project. http://setiathome.berkeley.
edu/

7. Andrade, N., Cirne, W., Brasileiro, F., Roisenberg, P.: OurGrid: an app-
roach to easily assemble grids with equitable resource sharing. In: Feitelson,
D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862,
pp. 61–86. Springer, Heidelberg (2003)

8. Andrade, N., Costa, L., Germóglio, G., Cirne, W.: Peer-to-peer grid computing
with the OurGrid community. In: Proceedings of the SBRC, pp. 1–8 (2005)

9. Costa, F., Silva, L., Fedak, G., Kelley, I.: Optimizing the data distribution layer
of BOINC with BitTorrent. In: IEEE International Symposium on Parallel and
Distributed Processing, IPDPS 2008, pp. 1–8. IEEE (2008)

10. Farkas, G., Szanto, I., Gora, V., Haller, P.: Extending the BOINC architecture
using peer-to-peer application code exchange. In: 2011 Roedunet 10th Interna-
tional Conference (RoEduNet), pp. 1–4. IEEE (2011)

11. Fedak, G., Germain, C., Neri, V., Cappello, F.: Xtremweb: a generic global com-
puting system. In: Proceedings of the First IEEE/ACM International Symposium
on Cluster Computing and the Grid, pp. 582–587. IEEE (2001)

12. Garland, M.: Parallel computing with CUDA. In: Proc. of the IEEE Int. Symp.
on Parallel and Distributed Processing (IPDPS), Atlanta, GA (April 19–23, 2010)

13. Korpela, E., Werthimer, D., Anderson, D.P., Cobb, J., Lebofsky, M.: SETI@home
- massively distributed computing for SETI. Computing in science & engineering
3(1), 78–83 (2001)

14. Kurtz, T.G.: Strong approximation theorems for density dependent Markov
chains. Stochastic Processes and their Applications 6(3), 223–240 (1978)

15. Luther, A., Buyya, R., Ranjan, R., Venugopal, S.: Alchemi: a. net-based grid com-
puting framework and its integration into global grids. arXiv preprint cs/0402017
(2004)

16. Luther, A., Buyya, R., Ranjan, R., Venugopal, S.: Peer-to-peer grid computing
and a. NET-based alchemi framework. High Performance Computing: Paradigm
and Infrastructure. Wiley Press, Fall (2004)

17. Nov, O., Anderson, D., Arazy, O.: Volunteer computing: a model of the factors
determining contribution to community-based scientific research. In: Proceedings
of the 19th international conference on World wide web, pp. 741–750. ACM (2010)

18. Stone, J.E., Gohara, D., Shi, G.: Opencl: A parallel programming standard for
heterogeneous computing systems. Computing in science & engineering 12(3), 66
(2010)

19. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: TOP500 project. http://
www.top500.org/lists/2014/11/

http://boinc.berkeley.edu/
http://boinc.berkeley.edu/
http://setiathome.berkeley.edu/
http://setiathome.berkeley.edu/
http://arxiv.org/abs/cs/0402017
http://www.top500.org/lists/2014/11/
http://www.top500.org/lists/2014/11/

On Convergence Rate to Stationarity of Queues
with General Gaussian Input

Oleg Lukashenko1,2(B) and Evsey Morozov1,2

1 Institute of Applied Mathematical Research of the Karelian Research Centre RAS,
Petrozavodsk, Russia

lukashenko-oleg@mail.ru
2 Petrozavodsk State University, Petrozavodsk, Russia

emorozov@karelia.ru

Abstract. The paper studies the rate of convergence to stationarity of
the fluid queueing system with a constant service rate which is fed by
a Gaussian process with stationary increments. It is assumed that vari-
ance of the input process is regularly varying with index 2H ∈ (1, 2).
It is proved that the convergence rate is exactly the same that has been
obtained for the fluid system fed by the corresponding fractional Brow-
nian motion.

Keywords: Convergence · Stationarity · Fractional Brownian motion ·
Regular variation · Large deviations · Gaussian input

1 Introduction

Gaussian processes are well-recognized models to describe the traffic dynamics of
a wide class of the modern telecommunication networks. The main motivation to
apply these models is that the researchers have detected specific properties, such
as self-similarity and long-range dependence, which are inherent in the modern
network traffic [10,20]. Gaussian approximation is also motivated by statistical
analysis of data traces [8,15]. We recall that self-similarity means that the dis-
tribution of the process remains unchanged under suitable scaling of time and
space, while the long-range dependence means a slow decay of the autocorrela-
tion function. These properties make difficult the probabilistic analysis and, as a
consequence, the obtaining key characteristics in an explicit form. At the same
time, these characteristics are crucial to evaluate the Quality of Service (QoS)
provided by the networks.

We consider a centred Gaussian input process A := {At, t ∈ R} with sta-
tionary increments and with regularly varying variance,

σ2(t) := VarAt = L(t)|t|2H , 0 < H < 1, (1)

E. Morozov—This work is supported by Russian Foundation for Basic research,
projects 15–07–02341 A, 15–07–02354 A,15–07–02360 A, and also by the Program
of strategic development of Petrozavodsk State University.

c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 130–142, 2015.
DOI: 10.1007/978-3-319-18579-8 10

On Convergence Rate to Stationarity of Queues 131

where L is a slowly varying function: limt→∞ L(tx)/L(t) = 1 for any x > 0. We
mention the following important cases of Gaussian inputs.
1. Fractional Brownian motion (fBm), denoted by BH , satisfies (1) with L ≡
1 and is the most studied self-similar long-range dependent Gaussian process.
A fBm, being the input to a queueing system, is called fractional Brownian
(fB) input. To motivate our interest to fB input, we consider N independent
identically distributed (i.i.d.) on-off sources, such that source k is described by
the process {Ik(t), t ≥ 0}, k = 1, ..., N , with

Ik(t) =
{

1, t ∈ on-period
0, t ∈ off-period. (2)

During an on-period a source is active, while it is inactive during the following
off-period. The on-off periods form an alternating renewal process. The aggre-
gated arrived workload generated by all sources during time interval [0, t] is then
defined as

AN (t) =

t∫

0

(
N∑

k=1

Ik(u)

)
du. (3)

We assume that distribution function F of on-period (and/or off-period) is heavy-
tailed, that is

1 − F (x) ∼ cx−αL(x), x → ∞, (4)

where c > 0 is a constant, parameter α ∈ (1, 2) and function L is slowly varying
at infinity. Note that, because α > 1 in (4), the mean periods μon < ∞, μoff <
∞. It is shown in [19] that (under mild conditions) the following approximation
holds for t and N large:

A(t) ≈ tN
μon

μon + μoff
+

√
L(t)NBH(t), (5)

where slowly varying function L is expressed in the terms of given parameters,
and the Hurst parameter H ∈ (1/2, 1). This result allows to consider a queue-
ing system fed by fB input as a suitable model for a wide class of the modern
telecommunication systems.

2. The sum of n independent fBms which models the aggregated traffic generated
by heavy-tailed heterogeneous on-off inputs with different parameters αi satis-
fying (4), i = 1, ..., n. This superposition of on-off inputs, after an appropriate
time scaling, converges weakly to the sum of independent fBms with variance
σ2(t) =

∑n
i=1 t2Hi and different parameters Hi ∈ (1/2, 1) [19].

3. Integrated Ornstein-Uhlenbeck process with variance σ2(t) = t + e−t − 1,
which is the Gaussian counterpart of the Anick-Mitra-Sondi fluid model [2] (see
also [1]). The relevance of the latter model for the network traffic modelling is
motivated in [9].

132 O. Lukashenko and E. Morozov

We assume (w.l.o.g.) that the service rate equals 1. According to [18] the
stationary workload at instant t is defined as

Q(t) := sup
s≤t

(At − As − (t − s)), (6)

and is distributed as [14]

M := sup
t≥0

(At − t) .

An important performance measure of the communication systems is the over-
flow probability P(M > b) the stationary workload exceeds a finite threshold b. In
an infinite buffer Gaussian system, analysis of the overflow probability is reduced
to analysis of the extremes of Gaussian processes. For a queueing systems with
general Gaussian input (including fB input), there are no explicit expression for
the overflow probability, however a few asymptotic results are available. In this
regard we mention the following key works [5–7]. It is important to emphasize
that the asymptotic results proved below for the so-called large buffer regime,
that is as b → ∞, can be used for accurate approximation for moderate values
of b as well. To determine the accuracy of the asymptotic approximation, it is
reasonable to use simulation. In this regard it is quite important to know how
long the simulation sample path should be, and this problem is closely relates
to the rate of convergence to stationarity. Indeed, for each t, denote

M(t) := sup
s∈[0,t]

(As − s). (7)

Then the knowledge of the convergence rate allows to determine a time instant
T such that, for t ≥ T , an estimate of the overflow probability P(M(t) > x)
approximates P(M > x) with a given accuracy for each given x ≥ 0. In this
regard we consider the difference

P(M > x) − P(M(t) > x) = P(M > x, M(t) ≤ x) =: γ(x, t) ≥ 0.

There are some possible probabilistic distances based on γ(x, t), but we will focus
on Kolmogorov-Smirnov (uniform) distance,

D(t) := sup
x>0

γ(x, t),

which measures the maximum distance between distributions. (Another popu-
lar integral distance, or L1-distance, measures the total distance between the
distributions [11].)

The main contribution of this paper is that we establish convergence rate to
stationarity in the queueing system fed by a general Gaussian input, and it is
an extension of the corresponding result from [11] proved for the system with
fB input. We mainly follow the approach developed in [3,11], and it allows us to
focus only on the analysis of the differences in the corresponding proofs.

On Convergence Rate to Stationarity of Queues 133

2 Large Deviation Background

First we consider an important particular case A = BH , that is the fB input
with covariance function

Γ(s, t) := E

[
BH(s)BH(t)

]
=

1
2

(|t|2H + |s|2H − |t − s|2H
)
.

We recall the Large Deviation Principle (LDP) framework which is used through-
out the paper. Define function space Ω of the trajectories of process BH ,

Ω =
{

ω ∈ C(R), ω(0) = 0, lim
|t|→∞

ω(t)
1 + |t| = 0

}
,

with the norm

||ω||Ω := sup
t∈R

|ω(t)|
1 + |t| .

The reproducing kernel Hilbert space R (RKHS) associated with the distribution
of BH is the closure of the following set of functions

f :=
n∑

k=1

fk Γ(tk, ·), fk ∈ R, n ∈ N.

The inner product of f, g ∈ R is defined as

〈f, g〉R =
n∑

i=1

m∑

j=1

fi gjΓ(ti, tj).

On the space Ω, define the rate function

I(f) =

{
1
2 ||f ||2R, f ∈ R,

∞, otherwise,
(8)

where ||f ||R :=
√〈f, f〉R. Function I(f) can be interpreted as a measure for the

likelihood of a path, and the path f∗ := arg inf I(f) is called the most likely path.
In what follows, we need the following generalized version of Schilder’s theorem
(LDP for fBm) [14]:

lim sup
n→∞

1
n

lnP

(
A√
n

∈ F

)
≤ − inf

f∈F
I(f),

for any closed set F ∈ Ω, and

lim inf
n→∞

1
n

lnP

(
A√
n

∈ G

)
≥ − inf

f∈G
I(f),

for any open set G ∈ Ω.

134 O. Lukashenko and E. Morozov

A set F is called good (with respect to the rate function I) if

inf
f∈F ◦

I(f) = inf
f∈F

I(f),

where F ◦ and F are the interior and the closure of the set F , respectively. For
any good set F , generalized version of Schilder’s theorem states informally that

P

(
A√
n

∈ F

)
≈ exp

(
−n inf

f∈F
I(f)

)
,

i. e., the decay rate is dominated by the path with minimal R-norm (the most
likely path).

2.1 LDP with Appropriate Scaling

Consider Gaussian process A with variance (1) and, for each α > 0, define the
following scaled process A(α) = {A

(α)
t , t ∈ R}, where

A
(α)
t :=

Aαt

σ(α)
.

Denote

v(α) =
α2

σ2(α)
.

It has been shown in [3] that, under the (additional) assumption that the fol-
lowing limit exists

lim
t→0

σ2(t)| log |t||1+ε < ∞ for some ε > 0, (9)

the pair ((A(α)

√
v(α)

, v(α)
)

: α ≥ 1

)

satisfies a LDP with good rate function, i. e.,

lim sup
α→∞

1
v(α)

lnP

(
A(α)

√
v(α)

∈ F

)
≤ − inf

f∈F
I(f), (10)

for any closed set F ∈ Ω, and

lim inf
α→∞

1
v(α)

lnP

(
A(α)

√
v(α)

∈ G

)
≥ − inf

f∈G
I(f) (11)

for any open set G ∈ Ω. Moreover the rate function I is defined by the RKHS
associated with the corresponding fBm (see [4] p. 124, eq. (2.9) and [3], p. 867,
Corollary 3), i. e., satisfies definition (8).

Remark. Under extra technical conditions, the LDP (10), (11) has been firstly
established by Kozachenko et al. [4], and then Dieker [3] has weakened these
conditions up to (9).

On Convergence Rate to Stationarity of Queues 135

3 Related Asymptotic Results

Busy period asymptotics. A LPD approach described above allows to obtain
asymptotic results for various stationary measures, in particular, for an ongoing
stationary busy period

K := inf{t ≥ 0 : Q(t) = 0} − sup{t ≤ 0 : Q(t) = 0}.

Dieker [3] has shown that for the input process with variance (9),

lim
t→∞

σ2(t)
t2

logP(K > t) = − inf
f∈B

I(f) := −ν, (12)

where the set of functions

B := {f ∈ R : f(r) ≥ r, ∀r ∈ [0, 1]},

and the rate function I is determined by (8). Because the kernel R is defined by
the distribution of the corresponding fBm, then the constant ν in (12) depends
on the index variation 2H only. Relation (12) has been firstly established by
Norros [17] for A = BH , and then it was generalized by Kozachenko et al. [4]
and Dieker [3]. Moreover, it is known that the constant ν ∈ [12 , c2

H/2], where

cH :=
[
H (2H − 1) (2 − 2H)B (H − 1/2, 2 − 2H)

]−1/2

, (13)

and B is the Beta function [17]. A characterization of the most likely path in
the set B has been found in [12], and, because explicit expression for ν is not
available, the numerical methods to calculate ν have been proposed.

Convergence rate asymptotics. There is a close connection between the busy
period asymptotics and the asymptotics of the convergence rate. In particular,
the following logarithmic asymptotics for fBm input holds [11]:

lim
t→∞

1
t2−2H

log D(t) = − inf
f∈B

I(f) = −ν,

i. e., the decay rate of D(t) is exactly the same, in the logarithmic sense, as the
decay rate of the probability P(K > t) in (12).

4 Main Asymptotic Result

A LDP with an appropriate scaling allows to extend previous result to more
general Gaussian input. Namely, we prove the following statement.

Theorem 1. For a general Gaussian input with regularly varying variance (1),

lim
t→∞

1
v(t)

log D(t) = −ν. (14)

136 O. Lukashenko and E. Morozov

Proof. The proof is mainly based on arguments from [11] and [3]. For any x > 0,
t ≥ 0 we have

γ(x, t) = P(M > x,M(t) ≤ x)

= P

(
∀ r ∈ [0, t] : Ar ≤ x + r; ∃ s > t : As > x + s

)

= P

(
∀ r ∈ [0, 1] :

A
(t)
r√
v(t)

≤ x

t
+ r; ∃ s > 1 :

A
(t)
s√
v(t)

>
x

t
+ s

)
.

Observe that,

lim inf
t→∞

1
v(t)

log D(t) = lim inf
t→∞

1
v(t)

log sup
x>0

γ(x, t)

= lim inf
t→∞

1
v(t)

log sup
x>0

P

(
∀r ∈ [0, 1] :

A
(t)
r√
v(t)

≤ x + r;

∃ s > 1 :
A

(t)
s√
v(t)

> x + s
)
. (15)

For each x ≥ 0, denote

Pt(x) = P

(
∀ r ∈ [0, 1] :

A
(t)
r√
v(t)

≤ x + r; ∃ s > 1 :
A

(t)
s√
v(t)

> x + s
)
.

Then it follows that for arbitrary ε > 0,

lim inf
t→∞

1
v(t)

log D(t) = lim inf
t→∞

1
v(t)

log sup
x>0

Pt(x)

≥ lim inf
t→∞

1
v(t)

logPt(ε). (16)

For each ε ≥ 0 define the set

Aε := {f ∈ R | ∀r ∈ [0, 1] : f(r) ≤ ε + r; ∃ s > 1 : f(s) > ε + s}.

It is easy to see that Aε is an open subset of Ω. It then follows from LDP (11)
that

lim inf
t→∞

1
v(t)

logPt(ε) ≥ − inf
f∈Aε

I(f).

Moreover, according to proposition 3.3 of [11],

inf
f∈A0

I(f) = inf
f∈B

I(f) = ν. (17)

Now letting ε ↓ 0 in (16) and applying (17) we obtain

lim
t→∞

1
v(t)

log D(t) ≥ −ν,

On Convergence Rate to Stationarity of Queues 137

so the lower bound in (14) is established. Because all corresponding properties
of the fBm path space remain in force in our setting, then, to establish the upper
bound in (14), we again can apply arguments from [11]. More exactly, we have
as in (15) that

lim sup
t→∞

1
v(t)

D(t) = lim sup
t→∞

1
v(t)

log sup
x>0

Pt(x).

For a fixed ε > 0, we now take arbitrary u ∈ R which is multiply ε > 0. It gives

sup
x>0

Pt(x) ≤
u/ε∑

k=1

P
ε
t (k) + sup

x>u
Pt(x), (18)

where P
ε
t (k) := sup(k−1)ε≤x≤kε Pt(x). Consider the second term on the right in

(18). It is easy to see that (for arbitrary x)

sup
x>u

Pt(x) ≤ sup
x>u

P

(
∃ s > 1 :

A
(t)
s√
v(t)

> x + s

)
= P

(
∃ s > 1 :

A
(t)
s√
v(t)

> u + s

)
.

If we take now u ≥ H−1 − 1, then by the proof of Lemma 3.5 in [11],

lim sup
t→∞

1
v(t)

logP

(
∃ s > 1 :

A
(t)
s√
v(t)

> u + s

)
≤ −ν. (19)

The kth summand in the first term on the right in (18) is upper bounded as

P
ε
t (k) ≤ P

(
∀r ∈ [0, 1] :

A
(t)
r√
v(t)

≤ k ε + r; ∃ s ≥ 1 :
A

(t)
s√
v(t)

≥ (k − 1) ε + s
)
.

Define the set

Ax,ε := {f ∈ R | ∀r ∈ [0, 1] : f(r) ≤ x + r;∃s ≥ 1 : f(s) ≥ x − ε + s}.

It is not difficult to show that Ax,ε is closed in Ω. Hence, by the LDP (10), we
obtain

lim sup
t→∞

1
v(t)

logPε
t (k) ≤ − inf

f∈Akε,ε

I(f). (20)

It then follows from (19)-(20)

lim sup
t→∞

logPt(x) ≤ max
{

max
x=ε,2ε,...,u

(− inf
f∈Ax,ε

I(f)),−ν
}

. (21)

Now, as in [11] (pp. 1395–1396), we obtain

− inf
f∈Ax,ε

I(f) ≤ − inf
f∈A0,ε

I(f),

138 O. Lukashenko and E. Morozov

and thus, the the right-hand side of (21) is upper bounded by

max
{

− inf
f∈A0,ε

I(f),−ν

}
.

Letting ε ↓ 0 gives the following upper bound in (14),

lim sup
t→∞

1
v(t)

D(t) ≤ max{− inf
f∈A0,0

I(f),−ν}.

Finally, using standard continuity arguments (see, for instance, Section 4 in [17]
or Appendix in [13]), one can show that

inf
f∈A0,0

I(f) = inf
f∈A0

I(f) = ν,

and it completes the proof.

5 Estimation of the Simulation Horizon

In this section we describe in brief estimation of the overflow probability
P(M > x) via simulation, i.e., the estimation of the probability that station-
ary workload exceeds some threshold x. To this end, we must generate a number
of the trajectories of the Gaussian input with length T , and the main question is:
how large T must be? Actually, in this case, instead of P(M > x), the probability
P(M(T) > x) is estimated. Define

τx = inf{t ≥ 0 : At − t ≥ x},

then evidently, P(M(T) > x) = P(τx ≤ T), implying

P(M > x) = P(τx < ∞) = P(τx ≤ T) + P(T < τx < ∞).

The last expression shows that, in order to approximate P(M > x) by
P(M(T) > x) with given accuracy ε > 0, we must take T so large that

P(T < τx < ∞)
P(τx < ∞)

< ε, (22)

see Chapter 8 of [14] for more details. Further, note that

P(T < τx < ∞) = γ(x, T) ≤ D(T).

Moreover, according to Theorem 1, for all T sufficiently large,

D(T) ≈ exp(−νv(T)).

On Convergence Rate to Stationarity of Queues 139

Now consider the denominator of (22):

P(τx < ∞) = P(M > x) = P

(
sup
s≥0

(As − s) > x

)

≥ sup
s≥0

P (As > x + s)

= sup
s≥0

Ψ
(

x + s

σ(s)

)
:= G(x), (23)

where Ψ denotes the tail distribution of standard normal variable,

Ψ(t) =
1√
2π

∫ ∞

t

e−y2/2dy.

The function G(x) is not explicitly available for a general Gaussian input, while
it is known for fBm [16]:

G(x) = Ψ
(

x + s̄

σ(s̄)

)
, where s̄ =

xH

1 − H
.

Thus, in general case G(x) can be calculated numerically. In this case the left
hand side of (22) is approximated by

exp(−ν v(T))
G(x)

.

Now the lower bound of the required sample length can be found as the minimal
T satisfying the inequality

v(T) ≥ −1
ν

log(εG(x)). (24)

 50

 100

 150

 200

 250

 300

 350

 400

 1e-006 1e-005 0.0001 0.001 0.01 0.1 1

T

Accuracy ε (log scale)

Fig. 1. Simulation horizon T vs. accuracy ε

140 O. Lukashenko and E. Morozov

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 0 10 20 30 40 50 60 70 80 90 100

T

Buffer size x

Fig. 2. Simulation horizon T vs. buffer size x

 10

 100

 1000

 10000

 100000

 1e+006

 1e+007

 1e+008

 1e+009

 1e+010

 1e+011

 1e+012

 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

T
 (

lo
g

sc
al

e)

H

Fig. 3. Simulation horizon T vs. Hurst parameter H

The latter problem also can be resolved by the numerical methods, in which
case, instead of the unknown constant ν, it is reasonable to use its upper bound
c2
H/2, see (13). Note that for the fB input inequality (24) can be rewritten as

T ≥
(
−1

ν
log(ε G(x))

) 1
2−2H

. (25)

Fig. 1 illustrates dependence between simulation horizon T and the accuracy
(error) ε for the fixed buffer size x = 1, while Fig. 2 illustrates the dependence
between T and x for the fixed accuracy ε = 0.01, when the input is the sum
of two independent fB inputs with parameters H1 = 0.7, H2 = 0.6. Finally,

On Convergence Rate to Stationarity of Queues 141

Fig. 3 shows dependence between T and parameter H, corresponding to the
lower bound (25), for a single fB input and x = 1.

6 Conclusion

We consider the rate of convergence to stationarity of the fluid queueing system
with a constant service rate and with Gaussian input with stationary increments.
The variance of the input is regularly varying with index 2H, 0 < H < 1. For
this system, we prove that the convergence rate is similar to that has been earlier
obtained in [11] for the fluid system with the corresponding fB input. We also
discuss estimation of the overflow probability by simulation and present some
numerical examples.

References

1. Addie, R., Mannersalo, P., Norros, I.: Most probable paths and performance for-
mulae for buffers with Gaussian input traffic. European Transactions in Telecom-
munications. 13, 183–196 (2002)

2. Anick, D., Mitra, D., Sondhi, M.M.: Stochastic theory of a data handling system
with multiple resources. Bell System Technical Journal. 61, 1871–1894 (1982)

3. Dieker, A.B.: Conditional limit theorems for queues with Gaussian input: a
weak convergence approach. Stochastic Processes and their Applications. 115(5),
849–873 (2005)

4. Kozachenko, Y., Vasylyk, O., Sottinen, T.: Path space large deviations of a large
buffer with Gaussian input traffic. Queueing Syst. 42, 113–129 (2002)

5. Duffield, N., O’Connell, N.: Large deviations and overflow probabilities for the gen-
eral single server queue, with applications. Proceedings of the Cambridge Philo-
sophical Society. 118, 363–374 (1995)

6. Debicki, K.: A note on LDP for supremum of Gaussian processes over infinite
horizon. Stat. Probab. Lett. 44, 211–220 (1999)

7. Hüsler, J., Piterbarg, V.: Extremes of a certain class of Gaussian processes. Stochas-
tic Process. Appl. 83, 257–271 (1999)

8. Kilpi, J., Norros, I.: Testing the Gaussian approximation of aggregate traffic. In:
Proceedings of the 2nd Internet Measurement Workshop, pp. 49–61 (2002)

9. Kulkarni, V., Rolski, T.: Fluid model driven by an Ornstein-Uhlenbeck process.
Probability in the Engineering and Informational Sciences. 8, 403–417 (1994)

10. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature
of ethernet traffic (extended version). IEEE/ACM Transactions of Networking.
2(1), 1–15 (1994)

11. Mandjes, M., Norros, I., Glynn, P.: On convergence to stationarity of fractional
Brownian storage. Ann. Appl. Probab. 19(4), 1385–1403 (2009)

12. Mandjes, M., Mannersalo, P., Norros, I., van Uitert, M.: Large deviations of infi-
nite intersections of events in Gaussian processes. Stochastic Process. Appl. 116,
1269–1293 (2006)

13. Mandjes, M., van Uitert, M.: Sample-path large deviations for tandem and priority
queues with Gaussian inputs. Ann. Appl. Probab. 15, 1193–1226 (2005)

14. Mandjes, M.: Large Deviations for Gaussian Queues: Modelling Comminication
Networks. Wiley, Chichester (2007)

142 O. Lukashenko and E. Morozov

15. van de Meent, R., Mandjes, M., Pras, A.: Gaussian traffic everywhere? In: Pro-
ceedings of IEEE International Conference on Communications (ICC), vol. 2, pp.
573–578 (2006)

16. Norros, I.: A storage model with self-similar input. Queueing Syst. 16, 387–396
(1994)

17. Norros, I.: Busy periods for fractional Brownian storage: a large deviation app-
roach. Adv. in Perf. Anal. 2(1), 1–19 (1999)

18. Reich, E.: On the integrodifferential equation of Takacs I. Ann. Math. Stat. 29,
563–570 (1958)

19. Taqqu, M.S., Willinger, W., Sherman, R.: Proof of a fundamental result in self-
similar traffic modeling. Computer communication review. 27, 5–23 (1997)

20. Willinger, W., Taqqu, M.S., Leland, W.E., Wilson, D.: Self-similarity in high-speed
packet traffic: analysis and modeling of Ethernet traffic measurements. Statistical
Sciences. 10(1), 67–85 (1995)

Model-Based Quantitative Security Analysis
of Mobile Offloading Systems

Under Timing Attacks

Tianhui Meng(B), Qiushi Wang, and Katinka Wolter

Department of Mathematics and Computer Science,
Freie Universität Berlin, Takustr. 9, 14195 Berlin, Germany

{tianhui.meng,qiushi.wang,katinka.wolter}@fu-berlin.de

Abstract. Mobile offloading systems have been proposed to migrate
complex computations from mobile devices to powerful servers. While this
may be beneficial from the performance and energy perspective, it cer-
tainly exhibits new challenges in terms of security due to increased data
transmission over networks with potentially unknown threats. Among
possible security issues are timing attacks which are not prevented by tra-
ditional cryptographic security. Metrics on which offloading decisions are
based must include security aspects in addition to performance and energy-
efficiency. This paper aims at quantifying the security attributes of mobile
offloading systems. The offloading system is modeled as a stochastic pro-
cess. The security quantification analysis is carried out for steady-state
behaviour as to optimise a combined security and cost trade-off measure.

Keywords: Mobile offloading · Security attributes · Quantitative anal-
ysis · Semi-Markov process

1 Introduction

Cloud computing has become widely accepted as computing infrastructure of the
next generation, as it offers advantages by allowing users to exploit platforms
and software provided by cloud providers (e.g., Google, Amazon and IBM) from
anywhere on demand at low price [1]. At the same time, mobile devices are
progressively becoming an important constituent part of everyday life as very
convenient communication and business tools with a wide variety of software
covering all aspects of life. Mobile devices allow to make transactions in almost
every possible situation in life, even while walking on the street. The concept of
computation offloading has been proposed with the objective to migrate large
computations and complex processing from mobile devices with energy limita-
tions to resourceful servers in the cloud. This avoids a long application execution
time on mobile devices which results in large power consumption.

Over the last years, research on computation offloading focussed on how to
offload and what to offload from mobile devices to cloud servers in order to
c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 143–157, 2015.
DOI: 10.1007/978-3-319-18579-8 11

144 T. Meng et al.

reduce the execution time and power consumption of computation tasks [2].
Several offloading infrastructures have been developed for offloading at varying
granularity, among which the MAUI offloading system, presented in 2010, not
only achieves significant reduction in energy consumption for some jobs on mobile
devices, but also improves the performance of mobile applications (i.e., refresh
rate of a game can increase from 6 to 13 frames per second) [3]. In addition,
instead of offloading the full code, MAUI partitions the application code at
runtime to maximize energy savings. However, several challenges still exist in
the following three aspects of mobile offloading systems:

Time and energy consumption in data transition
Data transmission over wireless or cellular networks is of highly unpre-
dictable quality. Wu [4] proposed metrics to express the energy response time
tradeoff, the Energy-Response time Weighted Sum (ERWS) and Energy-
Response time Product (ERP) for mobile offloading systems which can be
optimised using different offloading policies.

Lossy network
Low bandwidth or long delays are a possible factor incurring network unre-
liability. Consequently, when migrating the computation to the cloud server,
the execution of the offloading task may suffer from long delays or even
failures by the unreliable network. Limited battery capacity of the mobile
device prohibits unpredictable waiting times, which may also be caused by a
long recovery process. A dynamic scheme to determine whether and when to
launch the local re-execution, instead of always waiting for network recovery
to offload [5] may help to deal with this problem.

Security and data confidentiality
Along with the benefits of high performance, the offloading system witnesses
potential security threats including compromised data due to the increased
number of parties, devices and applications involved, that leads to an increase
in the number of points of access. Security threats have become an obstacle
in the rapid expansion of the mobile cloud computing paradigm. Significant
efforts have been devoted in research organisations and academia to build
secure mobile cloud computing environments and infrastructures [6]. How-
ever, work on modelling and quantifying the security attributes of mobile
offloading system is rare.

Quantitative analyses of system dependability and reliability have received
great attention for several decades. In 1993, Littelwood [7] first introduced the
idea to evaluate the system security attributes using analytical methods of sys-
tem reliability. Then, Nicol et al. [8] surveyed the model-based techniques for
evaluating system dependability, and summarized how they can be extended to
evaluate system security. Previous work on the security of computing and infor-
mation systems has been mostly assessed from a level point of view. A system
is assigned a given security level with respect to the presence or absence of cer-
tain functional characteristics and the use of certain development techniques.
In 2013, Zhang [9] proposed an approach to evaluate the network security situa-
tion objectively using Network Security Index System (NSIS). Only a few studies

Model-Based Quantitative Security Analysis of Mobile Offloading Systems 145

have considered the quantitative evaluation of security. The authors in [10] make
an effort to examine the security vulnerabilities of operating systems of routers
within the cloud carrier by assessing the risk based on the National Vulnerabil-
ity Database (NVD) and gives a quantifiable security metrics for cloud carrier,
which is very useful in the Service Level Agreement (SLA) negotiation between
a cloud consumer and a cloud provider.

In this paper, we propose a state transition model of a general mobile offload-
ing system under the specific threat of timing attacks. Our model is aimed to deal
with a general offloading system with a master secret stored on the server side,
where the timing attacker can get normal offloading service. In a timing attack
the attacker deduces information about a secret key from runtime measurements
of successive requests. This process can be interrupted by frequently changing
the key [11]. From the security quantification point of view, since the sojourn
time distribution function in different system states may not always be exponen-
tial, the underlying stochastic model needs to be formulated as a Semi-Markov
Process (SMP). Computing the combined system security and cost trade-off
metric, we investigate the cost for a given security requirement. Our results will
give security metrics on which offloading decisions are based. To enhance system
security, the sensitivity of the influencing factor in the quantitative analysis is
also discussed.

The remainder of this paper is structured as follows. In Section 2, we develop
a Semi-Markov model for a general offloading system under the threat of timing
attack. The steady-state probabilities leading to the computation of steady-state
security measures is addressed in Section 3. Section 4 shows numeral results of
the analysis performed on the model for a sample. And finally, the paper is
concluded and future work are presented in Section 5.

2 Security Analysis Based on SMP Model

A mobile offloading system is a solution to enhance the capabilities of the mobile
system by migrating computation to more resourceful computers (i.e., servers).
To quantitatively analyse the security attributes of a system under the threat of
timing attacks, we have to incorporate the actions of an attacker who is trying to
capture sensitive information in conjunction with the protective actions taken by
the offloading system. Therefore, we have to develop a composite security model
that takes into account the behaviour of both actors. Semi-Markov Processes
(SMPs) are generalizations of Markov chains where the sojourn times in the
states need not be exponentially distributed [12].

The state transition model represents the system behaviour for a specific att-
ack and given system configuration that depends on the actual security require-
ments. In our scenario, the system is assumed to be vulnerable to timing attacks
in which the attacker in the worst case will eventually decrypt the system key. We
assume that the server is configured as to renew its key regularly to prevent or
handle these attacks.

146 T. Meng et al.

2.1 Behaviour of Attacker and System

Timing attacks gain information from the server response time and rather than
brute force attacks or theoretical weaknesses in the algorithms they are a real
threat to mobile offloading systems. However this threat is not covered by tra-
ditional notions of cryptographic security [13]. It was commonly believed that
timing attacks can be directed only towards smart cards or affect inter-process
locally, but more recent research reveals that remote timing attacks are also pos-
sible and should be taken into consideration [14][15]. Mobile offloading requires
access to resourceful servers for short durations through wireless networks. These
servers may use virtualization techniques to provide services so that they can
isolate and protect different programs and their data. However, the author in [16]
shows that using a cache timing attack, an attacker can bypass the isolated envi-
ronment provided by virtualisation characteristics, where sensitive code is exe-
cuted in isolation from untrustworthy applications. It is worth mentioning that
a timing attack also poses a threat to other types of systems. Timing attacks can
be detrimental in the mix-zone construction and usage model over road networks
[17].

In the offloading systems we consider, a server master key is used for the
encryption and decryption operations of user data. In order to improve security,
the server should regularly or irregularly change the master key. The system has
to process all user-files with both the new and the old master key. In this process,
the system does not accept any other user commands. When user data is very
large, this process will take long. Therefore, it is reasonable to recommend a
minimum time for the master key replacement cycle, and select a suitable time,
which is when there is a low amount of user access(e.g.. at night).

In timing attacks to our offloading system, an attacker will continue to send
requests to the server and the obtained service will be properly performed by the
server. In addition the attacker records each response time for a certain service
and tries to find clues to the master secret of the server by comparing time
differences from several request queues. If the attacker successfully breaks the
secret information from the timing results, he can read and even modify other
users information without authorisation.

2.2 The Model

Fig. 1 depicts the state transition model we propose for describing the dynamic
behaviour of a generic offloading system. This system is under the specific threat
of timing attacks conducted by random attackers. We describe the events that
trigger transitions among states in terms of probabilities and cumulative distri-
bution functions, which will be shown later.

The states and parameters of the SMP model are summarized here:

– I Initial state of the offloading system after star up
– T Timing attack happening state
– A Attack state after the attacker get the secret of the system

Model-Based Quantitative Security Analysis of Mobile Offloading Systems 147

I

T

R

A
p

i

p
t

p
a

1-p
-p
i

r

1

1
-p

t

1
-
p

a

p
r

Fig. 1. State transition diagram for a generic offloading system

– R Rekeying state
– pt probability that an attacker begin to conduct a timing attack to the system
– pa probability of attack system confidentiality after a successful timing attack
– pi probability that the system return initial state by manual intervention
– pr probability that the attack is terminated due to rekeying operation

After initialisation, the system is in the good state I. The sojourn time in
state I is the life time of the system before an attacker starts a timing attack or
the system renews its key. We assume there is only one attacker in the system
at one time. If an attack happens, the system is brought to state T , in which
the timing attack takes place and the attacker decyphers the encryption key
by making time observations. So while the system is in state T , the attacker
is not yet able to access confidential information. We assume that it takes a
certain time to perform the timing attack after which the attacker will know the
encryption key and the system moves to the compromised state A. Changing
the encryption key can prevent or interrupt a timing attack. During rekeying
the system is in state R. The challenge is to find an optimal value for the rekey
interval. The rekeying should certainly happen before or soon after the system
enters the compromised state. Rekeying will bring the system back to the initial
state I.

If the attacker succeeds to determine the encryption key through time mea-
surements confidential data will be disclosed which is assumed to incur a high
cost. This can only happen if the system is in the compromised state A and we
call the incident of entering the compromised state a security failure. One pos-
sibility is that one attacker stops himself and another attacker comes for a new
timing attack. So the system is brought from compromised state A to another
timing attack state T . The attack can also be stopped by manual intervention,
i.e. triggering the rekey operation. This can happen either in the attack state T
or in the compromised state A, both transitioning the system to the rekey state
R from which it will return to the initial state.

148 T. Meng et al.

2.3 Measures on SMP

After defining the model and its parameters, we must now establish the mea-
sures we want to investigate. Normally security is decomposed into three dif-
ferent aspects: confidentiality, integrity and availability, whereas dependability
is decomposed into the attributes: availability, reliability, safety, integrity and
maintainability [18]. For simplicity, in the rest of this paper, we use the term
security to denote the combined concept of security and dependability.

The measures are defined in this work as system cost and confidentiality
that are functions of the state probabilities of the SMP model. In our scenario,
the offloading system suffers from cost in two states, the compromised state A
and the rekeying state R, as discussed in Section 2.1. The system loses sensitive
information in the compromised state, and cost is also incurred when the system
deploys a rekeying process regularly. The steady-state probabilities πi may be
interpreted as the proportion of time that the SMP spends in the state i. In our
model, the rekeying cost and the data disclosed cost are both interpreted as the
proportion of system life time, that is, the steady-state probability of the SMP.
We define two weights c and its complement 1 − c for the two kinds of cost. We
use normalization weights for simplicity. The system cost is defined as:

Cost = cπA + (1 − c)πR . (1)

where πi, i ∈ {A,R} denotes the steady-state probability that the SMP is in
state i. 0 ≤ c ≤ 1 is the weighting parameter used to share relative impor-
tance between the loss of sensitive information and the effort needed to rekey
regularly. Similarly, if a timing attack to the offloading system is successful, the
attacker obtains the master key and can browse unauthorised files thereafter.
The entered states denote the loss of confidentiality. Therefore, the steady-state
confidentiality measure can then be computed as

Confid = 1 − πA . (2)

In order to investigate how system security will interact with the cost, we
also define a trade-off metric. An objective function formed from the division of
the security attribute confidentiality and system cost is created to demonstrate
the relationship between the cost the system has to pay and the corresponding
security system gain. The trade-off metric shows the how much security per cost
you can obtain. As a system designer, one may look forward to maintaining
the confidentiality of sensitive informations with lower system cost, as for the
trade-off measure, the larger the better.

Trade =
Confid
Cost

. (3)

In the next two Sections, we will evaluate these measures by computing the
steady-state probability of the SMP model and synthesize the effect of parameter
changing by sensitivity analysis.

Model-Based Quantitative Security Analysis of Mobile Offloading Systems 149

3 Semi-Markov Process Analysis

In this section, we derive and evaluate the security attributes using methods for
quantitative assessment of dependability, known as the dependability attributes,
e.g. reliability, availability, and safety which have been well established quanti-
tatively.

For the offloading system, we have described the system’s dynamic behaviour
by a SMP model with the states {I, T,A,R} and the transition between these
states. A system response to a security attack is fairly automated and could be
quite similar to how it may respond to accidental faults. Let {X(t) : t ≥ 0} be the
underlying stochastic process with a discrete state space Xs = {I, T,A,R}. To
obtain a complete description of this SMP model, two sets of parameters must be
known: the mean sojourn time hi in each state and the transition probabilities
pij between different states, where i, j ∈ Xs, which we have depicted in the
previous Section.

3.1 DTMC Steady-State Probability Computations

It was explained earlier in order to carry out the security quantification analysis,
we need to analyse the SMP model of the system that was described by its state
transition diagram. The steady-state probabilities {πi, i ∈ Xs} of the SMP states
are computed in terms of the embedded DTMC steady-state probabilities vi and
the mean sojourn times hi[19]:

πi =
vihi∑
j vjhj

i, j ∈ Xs. (4)

Assuming the existence of the steady-state in the underlying DTMC, it can be
computed as −→v = −→v · P i ∈ Xs. (5)

where −→v = [vI , vT , vA, vR] and P is the DTMC transition probability matrix
which can be written as:

P =

I T A R
I
T
A
R

⎛

⎜⎜⎝

0
0
pi
1

pt
0

1 − pi − pr
0

0
pa
0
0

1 − pt
1 − pa

pr
0

⎞

⎟⎟⎠
(6)

In addition, we have the total probability relationship:
∑

i

vi = 1 i ∈ Xs. (7)

The transition probability matrix P describes the DTMC state transition prob-
abilities between the DTMC states as shown in Fig. 1. The first step towards

150 T. Meng et al.

evaluating security attributes is to find the steady-state probability vector −→v of
the DTMC states by solving Eqs. 5 and 7. We can get solutions:

vI =
pipa + 1 − pa + papr

φ
, (8)

vT =
pt
φ

, vA =
ptpa
φ

, vR = vI − piptpa
φ

For the sake of brevity, we assume: φ = 2+2pipa+pt+ptpa−2pa+papr−piptpa.
Note that the analysis carried out in this paper depends only on the mean

sojourn time and is independent of the actual sojourn time distributions for the
SMP states. If we were to carry out a transient analysis of the SMP, this would
no longer be true. In the next subsection, the DTMC steady-state probabilities
are used to compute the SMP steady-state probabilities.

3.2 Semi-Markov Model Analysis

The mean sojourn time hi in a particular state i ∈ Xs is the other quantity
that is needed to compute the SMP steady-state probabilities. It is determined
by the random time that a process spends in a particular state as discussed in
Section 3. In the computer security domain, there is a wide variety of attackers
ranging from amateur hackers to inimical intelligence agencies possessing a wide
spectrum of expertise and resources.

The parameters hT , hA, pt, pa depend on the attackers’ behavior which
we assumed as random processes. The analysis in this paper only takes into
account the mean value of these processes. More complex study will consider
a quantitative analysis of attacker behavior based on empirical data. However,
this paper limits itself to dealing with an SMP model only. The attacker model
is planned to be covered separately in a future paper. We put the hi again here:

– hI the mean time the system spends before an attacker conducts a timing
attack or rekey itself

– hT the mean time before the attacker break the master secret of the server
by timing attack

– hA the mean time the system is losing information
– hR the mean time for rekeying process

Clearly, for the model to be accurate, it is important to estimate accurately
the model parameters. Some parameters we will get from experiments. The mea-
surements we are in process of taking are based on a offloading server under tim-
ing attacks. We have built a timing attack demonstrator and measure the mean
time for a successful attack which will be used as hI . Some parameters, e.g.
probability that an attacker begin to conduct a timing attack and attack system
confidentiality after a successful timing attack will be assumed as an attacker.
Other parameters used in our system can be tune by the system administra-
tor, like the rekey probability pr and the mean sojourn time in initial state hI .

Model-Based Quantitative Security Analysis of Mobile Offloading Systems 151

In this work, however, our focus is primarily on developing a quantitative anal-
ysis methodology for the security attributes of an offloading system. So, in the
absence of exact values of model parameters, we assume it will also be mean-
ingful to evaluate the sensitivity of security attributes to variations in model
parameters.

In Section 5 we present a case study with numerical results to show how
one can use our quantitative analysis of system security and the influences of
changes in various model parameters. Here, we can compute the steady-state
probabilities {πi, i ∈ Xs} of the SMP states by using Eqs. 4 and 8. Again, for
the sake of brevity, we assume:
Φ = (pipa +1−pa +papr)hI +pthT +ptpahA +(pipa +1−pa +papr −piptpa)hR.
The solutions are presented as

πI =
pipa + 1 − pa + papr

Φ
hI (9)

πT =
pt
Φ

hT (10)

πA =
ptpa
Φ

hA (11)

πR =
hR

hI
πI − piptpa

Φ
hR (12)

Given the SMP model steady-state probabilities, various measures can be com-
puted via Eqs. 1 to 3.

3.3 Sensitivity Analysis

The main aim of parametric sensitivity analysis is to predict the effect of vari-
ations in inputs and parameters on outputs (measures), hoping to find perfor-
mance or reliability bottlenecks, and guiding an optimisation process [20]. It is
a useful procedure for offloading system optimisation in the early design phase.
Since some model parameters are difficult to ascertain in the design phase, sen-
sitivity analysis can predict the influence on the quantitative analysis results
from changes in different parameters. Matos et al. [21] developed a hierarchical
analytical model of mobile cloud availability and presented sensitivity analysis
based on distinct techniques to assess the impact of each input parameter to
identify the bottlenecks for system improvement. Effects on the measures on
SMP from changes in different input parameters are discussed.

Measure ∈ {Cost, Confid, Trade} is a measure. x ∈ {pi, pt, pa, pr, hI , hT ,
hA, hR} is a variable in our model. The sensitivity analysis is conducted by cal-
culating the derivative of the measure with respect to a certain input parameter.

d(Measure)
dx

(13)

Eqs. 13 is the sensitivity formula for measure prediction in the SMP model.
The numerical results in the format of graphs will be shown in the next section,

152 T. Meng et al.

from which we can see intuitively the impact of parameter changes on different
measures.

4 Numerical Study

In this section we give numerical results as examples to show how one can eval-
uate security attributes of the SMP model defined in the previous sections using
different measures.

First, we assume that the probability of a timing attack coming to the offload-
ing system is equal to the one that the system will trigger its rekeying process,
i.e., pt = 0.5. The mean time the system spends before an attacker conducts a
timing attack or it rekeys is hI = 10 time units. Further, the probability that the
attacker successfully cracks the system secret using a timing attack is pa = 0.6
and the probability of an unsuccessful attack 1 − pa = 0.4. The time taken by a
successful timing attack is assumed to be hT = 5 time unites. Besides, suppose
that the probability that the system return initial state by manual intervention
is pi = 0.2 and probability of the attack is terminated due to rekeying operation
is pr = 0.5. Hence, the probability that the current attack stops and another
timing attack affects the system is 1−pi−pr = 0.3 . We also assume the duration
for a specific attack is supposed to be hA = 3 time unites and rekeying process
time is hR = 1 time unite respectively.

Using the values given above as the model input parameters and Eqs. 9 - 12,
we obtain the steady-state probabilities of the Semi-Markov process as:

πI = 0.6634, πT = 0.2023, πA = 0.0728, πR = 0.0615.
The steady-state probabilities πi may be interpreted as the proportion of

time that the SMP spends in the state i. For the assumed values of the input
parameters, the proportion of time that the offloading system spends in the
initial state I is approximately 66% of the whole system life time.

Fig. 2 shows the measure of system cost, confidentiality and trade-off metric
changing with different weighting parameters c. To better scale for the figure,
the trade-off metric Trade is divided by 15 and the Cost metric is multiplied by
10. From Fig. 2, it can be seen that the system cost increase with rekey proba-
bility pr when the weighting parameter is small, as we put more weight on the
rekeying cost. At high values, the information loss cost component becomes the
decisive factor. We see the decrease in system cost as pr increase. While one can
see that the cost increases with rekey probability pr, the confidentiality metric
stays content with changing weighting parameters c as it is independent of the
weighting. The combined trade-off measure increases as the rekey probability pr
increases when the parameter c is small. All three metrics achieve their minimum
value when c = 1, where we only consider the costs of the compromised systems.
From Fig. 3, we can observe that the system cost metric is very large when hI

is small with all possible weighting parameter values, since the system triggers
rekey process not so frequently that the system sojourns in the initial state I for
a short time. Again, for all values of the weighting parameter c from 0 to 1, the
confidentiality metric stays the same and it increases when hI becomes larger.

Model-Based Quantitative Security Analysis of Mobile Offloading Systems 153

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

weighting parameter c

Cost*10 (pr=0.4)
Confid (pr=0.4)
Trade/15 (pr=0.4)
Cost*10 (pr=0.5)
Confid (pr=0.5)
Trade/15 (pr=0.5)
Cost*10 (pr=0.6)
Confid (pr=0.6)
Trade/15 (pr=0.6)

Config
Trade/15

Cost*10

Fig. 2. System measures changing with weighting parameter under different pr

Intuitively, one can see that the larger the mean sojourn time in state I, the
better is the trade-off measure. However, it decreases with increasing weighting
parameter c as we put less weight to the system rekeying cost. In the flowing
analysis, we choose to put more weight to the cost with system information lost
in state A than the cost causes by the rekeying process, as c = 0.7.

Fig. 4 shows how different measures behave with changes in rekey probability
parameter pr and the time in the initial state hI . It can be seen that the larger
pr and hI are, the better the offloading system performs.

As discussed in Section 2.2, pr is the probability that the attack is terminated
due to rekeying operation, so it depends on the system configuration. And rekey-
ing process can bring the system back to initial state before an attack, which
will affect hI . Since we can tune the rekeying process as system administrators,
we conduct sensitivity analysis of system behaviour on the effect from changes
in the rekey probability pr and the mean sojourn time in initial state hI . Fig.
5(a) shows the system cost measure as a function of hI and pr. Interestingly,
when the mean time in initial state hI is short, the system cost increase as the
rekey probability pr increase. However, we see a decrease in system cost as pr
increase, when hI is very long. Also we can see, the system cost is more sensitive
to hI than to pr. In Fig. 5(b), we conduct sensitivity analysis to the system
confidentiality measure Confid. It increase dramatically with the sojourn time
hI in state I when the system is rekeying more frequently. However, it does not
interact that strikingly with model input parameter pr.

154 T. Meng et al.

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

weighting parameter c

Cost*10 (pr=0.4)
Confid (pr=0.4)
Trade/15 (pr=0.4)
Cost*10 (pr=0.5)
Confid (pr=0.5)
Trade/15 (pr=0.5)
Cost*10 (pr=0.6)
Confid (pr=0.6)
Trade/15 (pr=0.6)

Fig. 3. System measures changing with weighting parameter under different hI

0 0.2 0.4 0.6 0.8

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

rekey probability pr

Cost*10
Confid
Trade/15

5 10 15 20
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

initial state sojourn time hi

Fig. 4. System measure comparison under pr and hI

The trade-off metric as a function of hI and pr is depicted in Fig. 6. As
expected, the trade-off metric monotonically increase as pr and hI increase. That
is because the system more often rekeys and it spends more time in good state.
When the time in initial state is short, the trade-off measure hardly changes
with the parameter pr. While the rekey probability has a significant effect on
the system as hI is very large. Therefore, a good system management will be
able to enlarge the mean sojourn time in initial state.

Model-Based Quantitative Security Analysis of Mobile Offloading Systems 155

(a) Cost as a function of hI and pr (b) Confid as a function of hI and pr

Fig. 5. Sensitivity analysis to Cost and Config

Fig. 6. Trade-off metric as a function of hI and pr

5 Conclusion and Future Work

In this paper, we have presented an approach for quantitative assessment of
security attributes for an offloading system under the specific threat of timing
attacks. A state transition model that describes the dynamic behavior of this
system is used as the basics for developing a stochastic model. We have solved
for steady-state probabilities of the Semi-Markov Process model as the founda-
tion of security attributes analysis. These include system cost and a trade-off

156 T. Meng et al.

metric. Also, the model analysis is illustrated in a numerical example. The sen-
sitivity of the influencing factors in the quantitative analysis is discussed in this
paper, which can be used to identify security bottlenecks and trace back to the
vulnerability of the offloading system.

The objective of our future work is conducting experiments to get the pre-
cise input parameters for our model. We have implemented a simple timing
attack demonstration which we will develop further and use to determine realis-
tic values. Our work in this paper gives a simple component model for security
quantifying. The component models composing methods for sequence and par-
allel styles will be proposed respectively form more complex system structures.
Furthermore, transient measure of our model will be conducted.

References

1. Subashini, S., Kavitha, V.: A survey on security issues in service delivery models
of cloud computing. Journal of Network and Computer Applications 34(1), 1–11
(2011)

2. Kumar, K., Liu, J., Lu, Y.-H., Bhargava, B.: A survey of computation offloading
for mobile systems. Mobile Networks and Applications 18(1), 129–140 (2013)

3. Cuervo, E., Balasubramanian, A., Cho, D.-K., Wolman, A., Saroiu, S., Chandra,
R., Bahl, P.: Maui: making smartphones last longer with code offload. In: Proceed-
ings of the 8th International Conference on Mobile Systems, Applications, and
Services, pp. 49–62. ACM (2010)

4. Wu, H., Wolter, K.: Tradeoff analysis for mobile cloud offloading based on an addi-
tive energy-performance metric. In: 8th International Conference on Performance
Evaluation Methodologies and Tools (2014)

5. Wang, Q., Wolter, K.: Reducing task completion time in mobile offloading sys-
tems through online adaptive local restart. In: Proceedings of the 6th ACM/SPEC
International Conference on Performance Engineering, pp. 3–13. ACM (2015)

6. Khan, A.N., Kiah, M.M., Khan, S.U., Madani, S.A.: Towards secure mobile cloud
computing: A survey. Future Generation Computer Systems 29(5), 1278–1299
(2013)

7. Littlewood, B., Brocklehurst, S., Fenton, N., Mellor, P., Page, S., Wright, D., Dobson,
J., McDermid, J., Gollmann, D.: Towards operational measures of computer security.
Journal of Computer Security 2(2), 211–229 (1993)

8. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: from depend-
ability to security. IEEE Transactions on Dependable and Secure Computing 1(1),
48–65 (2004)

9. Zhang, J.-F., Liu, F., Zheng, L.-M., Jia, Y., Zou, P.: Using network security index
system to evaluate network security. In: Qi, E., Shen, J., Dou, R. (eds.) The 19th
International Conference on Industrial Engineering and Engineering Management,
pp. 989–1000. Springer, Heidelberg (2013)

10. Lenkala, S.R., Shetty, S., Xiong, K.: Security risk assessment of cloud carrier.
In: 2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pp. 442–449. IEEE (2013)

11. Rebeiro, C., Mukhopadhyay, D., Bhattacharya, S.: An introduction to timing
attacks. In: Timing Channels in Cryptography, pp. 1–11. Springer (2015)

12. Limnios, N., Oprisan, G.: Semi-Markov processes and reliability. Springer Science
& Business Media (2001)

Model-Based Quantitative Security Analysis of Mobile Offloading Systems 157

13. Köpf, B., Basin, D.: Automatically deriving information-theoretic bounds for adap-
tive side-channel attacks. Journal of Computer Security 19(1), 1–31 (2011)

14. Brumley, B.B., Tuveri, N.: Remote timing attacks are still practical. In: Atluri, V.,
Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 355–371. Springer, Heidelberg
(2011)

15. Brumley, D., Boneh, D.: Remote timing attacks are practical. Computer Networks
48(5), 701–716 (2005)

16. Weiß, Michael, Heinz, Benedikt, Stumpf, Frederic: A cache timing attack on aes in
virtualization environments. In: Keromytis, Angelos D. (ed.) FC 2012. LNCS, vol.
7397, pp. 314–328. Springer, Heidelberg (2012)

17. Palanisamy, B., Liu, L.: Mobimix: protecting location privacy with mix-zones over
road networks. In: 2011 IEEE 27th International Conference on Data Engineering
(ICDE), pp. 494–505. IEEE (2011)

18. Avizienis, A., Laprie, J.-C., Randell, B., Landwehr, C.: Basic concepts and taxon-
omy of dependable and secure computing. IEEE Transactions on Dependable and
Secure Computing 1(1), 11–33 (2004)

19. Trivedi, K.S.: Probability & statistics with reliability, queuing and computer sci-
ence applications. John Wiley & Sons (2008)

20. Frank, P.M.: Introduction to system sensitivity theory, vol. 11. Academic press,
New York (1978)

21. Matos, R., Araujo, J., Oliveira, D., Maciel, P., Trivedi, K.: Sensitivity analysis of
a hierarchical model of mobile cloud computing. Simulation Modelling Practice
and Theory 50, 151–164 (2015). Special Issue on Resource Management in Mobile
Clouds

Single-Server Systems with Power-Saving Modes

Tuan Phung-Duc(B)

Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan

tuan@is.titech.ac.jp

Abstract. Vacations queues are motivated from the need of utilizing
the server when it is idle. Most of papers in the literature assume that
consecutive vacations follow the same distribution. Recently, Ibe et al. [5]
consider a model where the lengths of consecutive vacations follow differ-
ent distributions and obtain the steady state solution by a direct method.
In this paper, we first consider the same model and obtain exact results as
well as the decomposition for the queue length and the sojourn time via
a generating function approach. We then demonstrate that our method
can analyze more complex models with working vacations or with aban-
donment. Numerical results show insights into the performance of single
server systems with power-saving modes.

Keywords: Setup time · Working vacation · Abandonment · Power-
saving

1 Introduction

Vacation queue is characterized by the feature that the server may be unavailable
for service for a random period of time when it is idle. The time that the server is
away from service is called vacation. Vacation is resulted from many factors. In
some cases, vacation is resulted from post service processing, server breakdowns
etc. Some other case, vacation corresponds to a power-saving mode where the
server is turned off in order to save energy in communication and computer
systems. This is because in the current technology, an idle server still consumes
about 60% of its peak consumption [3]. This paper pays attention to power-
consumption and thus we refer the vacation to as the power-saving mode.

Two simple vacation policies are single vacation and multiple vacation. In
the former, the server takes one vacation and returns to normal mode even if
there is no customer in the system. In the latter case, upon the completion of
a vacation, if the system is empty, the server takes another vacation otherwise
it starts serving waiting customers. This paper focuses on the latter case, i.e.,
the server takes vacations until it finds a waiting customer upon completion of a
vacation. In the literature, most of papers deal with the case where vacations are
homogeneous, i.e. consecutive vacations follow the same distribution. Recently,
Ibe et al. [5] analyzes a model in which the distribution of the duration of
the first vacation is different from that of other vacations. The authors obtain
c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 158–172, 2015.
DOI: 10.1007/978-3-319-18579-8 12

Single-Server Systems with Power-Saving Modes 159

the steady state result using a simple method based on difference equations.
A related work is due to Ke [7] where two type of vacations based on thresholds
are presented. The notation of differentiated vacations are also introduced in
[1,14] in the framework of gated vacation while the multiple adaptive vacations
are presented in [13] in a discrete time context.

In this paper, using a generating function approach, we give a simpler solu-
tion for the model by Ibe et al. [5] and some extended models. In particular, we
first analyze the model by Ibe et al. [5] using generating function approach which
yields simple expressions. We obtain the generating function for the number of
customers in the system based on which the sojourn time distribution is easily
obtained via the distributional Little’s law [8]. We then analyze a more general
model with differentiated working vacations. This model generalizes those pro-
posed by Servi and Finn [12] and Ibe et al. [5]. Finally, we analyze an extension of
the model of [5] where customers may abandon the service when the server is on
vacation. In addition, deep insights such as decomposition properties are easily
obtained with the generating function methodology. It should be noted that in
single server context, the model with multiple vacation is identical to that with
setup time where the first customer of each busy period should wait for a setup
time. Queues with setup time are extensively studied recently because they have
application in power-saving data centers [2,4,6,9–11].

The rest of this paper is presented as follows. Section 2 analyzes the model
presented by Ibe et al. [5] using a generating function approach. Section 3 deals
with an extended model with working vacation. Section 4 presents the analysis
of the model with abandonment. Some insights into the performance of these
system are presented in Section 5 via numerical experiments. Finally, concluding
remarks are presented in 6.

2 Model with Differentiated Vacations

In this section, we describe the M/M/1 model with differentiated vacations [5]
and present a new analysis via generating functions.

2.1 Model

We consider an M/M/1 queueing system with vacation. Customers arrive at the
system according a Poisson process with rate λ and request for an exponentially
distributed service with mean 1/μ. The server starts a type I vacation when it
becomes idle. The length of this vacation follows an exponential distribution with
mean 1/γ1. On returning from this vacation, if the server is still idle, it takes a
type II vacation whose duration follows an exponential distribution with mean
1/γ2. Type II vacations are repeated as long as the system is empty upon the
completion of a vacation. On returning from either a type I or type II vacation,
if there are some customers in the system the server immediately starts servicing
customers until the system is empty again.

160 T. Phung-Duc

Fig. 1. Model with differentiated vacations

2.2 Analysis

Let S(t) denote the state of the server,

S(t) =

⎧
⎨

⎩

0, serving,
1, vacation of type I,
2, vacation of type II.

Let N(t) denote the number of customers in the system. It is easy to see that
(S(t), N(t)) forms a Markov chain on state space

S = {(0, j); j ∈ N} ∪ {(1, j); j ∈ Z+} ∪ {(2, j); j ∈ Z+},

where N = {1, 2, . . . } and Z+ = 0 ∪ N. See Figure 1 for the transitions among
states.

Let πi,j denote the steady state probability that the system is in state (i, j).
Balance equations for state (1, j), j ∈ Z+ are given by

(λ + γ1)π1,j = λπ1,j−1, j ≥ 1. (1)

Let Π1(z) =
∑∞

j=0 π1,jz
j denote the generating function of π1,j , j ∈ Z+. Mul-

tiplying (1) by zj (j ∈ N), summing up over j ∈ N and arranging the result
yields

(λ + γ1)(Π1(z) − π1,0) = λzΠ1(z),

leading to

Π1(z) =
(λ + γ1)π1,0

λ + γ1 − λz
.

Similarly, we also have

Π2(z) =
(λ + γ2)π2,0

λ + γ2 − λz
,

where Π2(z) =
∑∞

j=0 π2,jz
j denotes the generating function of π2,j (j ∈ Z+).

Single-Server Systems with Power-Saving Modes 161

Balance equations for state (0, j), j ∈ N are given by.

(λ + μ)π0,1 = μπ0,2 + γ1π1,1 + γ2π2,1, (2)
(λ + μ)π0,j = λπ0,j−1 + μπ0,j+1 + γ1π1,j + γ2π2,j , j ≥ 2. (3)

Let Π0(z) =
∑∞

j=1 π0,jz
j denote the generating function of π0,j (j ∈ N). Mul-

tiplying (2) by z and (3) by zj and summing up the results over j ∈ N, we
obtain

(λ+μ)Π0(z) = λzΠ0(z)+
μ

z
(Π0(z)−π0,1z)+γ1(Π1(z)−π1,0)+γ2(Π2(z)−π2,0).

leading to

[(λ + μ)z − λz2 − μ]Π0(z) = −μπ0,1z + γ1z(Π1(z) − π1,0) + γ2z(Π2(z) − π2,0).

Substituting the generating functions Π1(z) and Π2(z) into the above equation
and arranging the result yields,

Π0(z) =
λz

μ − λz
(Π1(z) + Π2(z)).

Let Π(z) denote the generating function of the number of customers in the
system. We have

Π(z) = Π0(z) + Π1(z) + Π2(z) =
μ

μ − λz
(Π1(z) + Π2(z))

=
1 − ρ

1 − ρz
.
Π1(z) + Π2(z)

1 − ρ
,

where ρ = λ/μ. Thus, from the normalization condition, we obtain Π1(1) +
Π2(1) = 1 − ρ. Balance equation for state (2, 0) yields, λπ2,0 = γ1π1,0. From
these two equations, we obtain

π1,0 =
1 − ρ

λ+γ1
γ1

+ γ1
λ

λ+γ2
γ2

, π2,0 =
(1 − ρ)γ1

λ
λ+γ1

γ1
+ γ1

λ
λ+γ2

γ2

.

Furthermore, we have

π0,1 =
1 − ρ

μ
γ1

+ μγ1(λ+γ2)
λγ2(λ+γ1)

.

Remark 1. It should be noted that if γ2 → ∞, the system converges to the
M/M/1 queue with single vacation. In fact, we have

lim
γ2→∞ π1,0 =

1 − ρ
λ+γ1

γ1
+ γ1

λ

, lim
γ2→∞ π2,0 =

(1 − ρ)γ1
λ

λ+γ1
γ1

+ γ1
λ

, lim
γ2→∞ Π2(z) = π2,0.

State (2, 0) corresponds to the idle state in the corresponding M/M/1 queue
with single vacation.

162 T. Phung-Duc

Remark 2. Since

lim
γ1→∞ π1,0 = 0, lim

γ1→∞ π2,0 =
(1 − ρ)γ2
λ + γ2

,

the current model tends to the M/M/1 with multiple vacations as γ1 → ∞.

We rewrite the generating function of the number of customers in the system
as follows.

Π(z) =
1 − ρ

1 − ρz

Π1(z) + Π2(z)
1 − ρ

=
1 − ρ

1 − ρz

(
Π1(1)
1 − ρ

γ1
λ + γ1 − λz

+
Π2(1)
1 − ρ

γ2
λ + γ2 − λz

)
.

The first term in the right hand side is the generating function of the number
of customers in an M/M/1 queue while the second term corresponds to the
number of customers that arrive during the remaining time of vacations. More
precisely, Π1(1)

1−ρ and Π2(1)
1−ρ are the probabilities that the server is in vacation of

type I and II respectively under the condition that the server is not working.
Furthermore, it should be noted that the distributional Little’s law [8] estab-

lishes in our model. Therefore, the LST of the sojourn time distribution is given
by

W ∗(s) = Π(1 − s

λ
),

which is also decomposed into two parts. The first one corresponds to the sojourn
time in the conventional M/M/1 queue without vacation while the second one
corresponds to the extra sojourn time due to vacations. More precisely, the LST
of the sojourn time is given by

W ∗(s) =
μ − λ

μ − λ + s

(
Π1(1)
1 − ρ

γ1
γ1 + s

+
Π2(1)
1 − ρ

γ2
γ2 + s

)
.

The mean number of customers in the system E[L] is given by Π ′(1), i.e.,

E[L] = Π ′(1) =
ρ

1 − ρ
+

Π1(1)
1 − ρ

λ

γ1
+

Π2(1)
1 − ρ

λ

γ2
.

The mean sojourn time E[W] is obtained using the Little’s law

E[W] =
Π ′(1)

λ
.

3 Model with Differentiated Working Vacations

In this section, we analyze a model with differentiated working vacations. In this
model the server still processes job but at different rates in vacations.

Single-Server Systems with Power-Saving Modes 163

Fig. 2. Model with differentiated working vacations

3.1 Model

We further consider the case where in vacation state the server can still serves
customers but with different rate. In particular, we assume that the service rates
at type I and type II vacations are μ1 and μ2, respectively. Since the state space
is the same as that of the model in Section 2, we use the same notation for the
stationary distribution. See Figure 2 for the transition among states.

3.2 Analysis

Balance equation is now more complex. Balance equations for states (1, j), j ∈ N

are given by

(λ + μ1 + γ1)π1,1 = λπ1,0 + μ1π1,2, j = 1, (4)
(λ + μ1 + γ1)π1,j = λπ1,j−1 + μ1π1,j+1, j ≥ 2. (5)

Let Π1(z) =
∑∞

j=0 π1,jz
j denote the generating function of π1,j (j ∈ Z+). Mul-

tiplying (4) by z and (5) by zj , summing up over j ∈ N and arranging the result,
we obtain

(λ + μ1 + γ1)(Π1(z) − π1,0) = λzΠ1(z) +
μ1

z
(Π1(z) − π1,0 − π1,1z),

leading to

Π1(z) =
[(λ + μ1 + γ1)π1,0 − μ1π1,1]z − μ1π1,0

(λ + μ1 + γ1)z − λz2 − μ1
. (6)

Let 0 < ẑ1 < 1 and z1 > 1 denote two distinct roots of the denominator of the
above formula. We have

ẑ1 =
λ + μ1 + γ1 − √

(λ + μ1 + γ1)2 − 4λμ1

2λ
,

z1 =
λ + μ1 + γ1 +

√
(λ + μ1 + γ1)2 − 4λμ1

2λ
.

164 T. Phung-Duc

Putting z = ẑ1 into (6), we obtain expression between π1,1 and π1,0. After
some arrangement, we obtain

Π1(z) =
π1,0

1 − z
z1

.

Similarly, letting Π2(z) =
∑∞

j=0 π2,jz
j , we obtain

Π2(z) =
π2,0

1 − z
z2

,

where z2 > 1 is a solution of (λ + μ2 + γ2)z − λz2 − μ2 = 0, i.e.,

z2 =
λ + μ2 + γ2 +

√
(λ + μ2 + γ2)2 − 4λμ2

2λ
.

We write down the balance equations for states (0, j) (j ∈ N).

(λ + μ)π0,1 = μπ0,2 + γ1π1,1 + γ2π2,1, j = 1, (7)
(λ + μ)π0,j = λπ0,j−1 + μπ0,j+1 + γ1π1,j + γ2π2,j , j ≥ 2. (8)

Let Π0(z) =
∑∞

j=1 π0,jz
j denote the generating function of π0,j (j ∈ N). Multi-

plying (7) by z and (8) by zj and summing up the result over j ∈ N yields

(λ + μ)Π0(z) = λzΠ0(z) +
μ

z
(Π0(z) − π0,1z) + γ1Π1(z) + γ2Π2(z).

Arranging this equation, we obtain

(z − 1)(μ − λz)Π0(z) = −μπ0,1z + γ1z(Π1(z) − π1,0) + γ2z(Π2(z) − π2,0)
= γ1z(Π1(z) − Π1(1)) + γ2z(Π2(z) − Π2(1)).

Simplifying this expression we obtain

Π0(z) =
z

μ − λz

(
γ1Π1(z)
z1 − 1

+
γ2Π2(z)
z2 − 1

)
.

Thus we have

Π(z) =
2∑

i=0

Πi(z)

=
(

γ1z

(μ − λz)(z1 − 1)
+ 1

)
Π1(z) +

(
γ2z

(μ − λz)(z2 − 1)
+ 1

)
Π2(z).

Furthermore, using a cut between {π1,j ; j ∈ Z+} and {π2,j ; j ∈ Z+} yields

γ1π1,0 = γ2(Π2(1) − π2,0),

or equivalently

π2,0 =
(z2 − 1)γ1

γ2
π1,0.

Using the normalization condition Π(1) = 1, we obtain π1,0.

Single-Server Systems with Power-Saving Modes 165

Remark 3. We observe the following limiting results.

lim
γ2→∞ z2 = ∞, lim

γ2→∞ Π2(z) = π2,0, lim
γ2→∞ π2,0 = lim

γ2→∞
γ1
λ

π1,0.

Thus when γ2 → ∞, our model reduces to the M/M/1 model with single working
vacation. In this limiting regime, state (2,0) is the idle state in the corresponding
M/M/1 model with single working vacation.

Remark 4. We have

lim
γ1→∞ z1 = ∞, lim

γ1→∞ π1,0 = 0, lim
γ1→∞ Π1(z) = 0.

Thus, when γ1 → ∞, our model reduces to the M/M/1 queue with working
vacation (M/M/1/WV) [12].

For this model, we could also write the generating function Π(z) in the
following form.

Π(z) =
1 − ρ

1 − ρz
Πv(z),

where Πv(z) is the generating function of the extra queue length inducing by
working vacations. However, the form of Πv(z) is more involved and does not
have a clear physical interpretation as in the model presented in Section 2.

Furthermore, it should be noted that the distributional Little’s law [8] estab-
lishes for our model. Thus, the Laplace-Stieltjes transform (LST) of the sojourn
time distribution is given by

W ∗(s) = Π(1 − s

λ
),

which is also decomposed into two parts. The first one corresponds to the sojourn
time in the M/M/1 queue without vacation while the second one corresponds to
the extra sojourn time due to working vacations.

Using the LST of the sojourn time distribution, we derive the mean and the
variance of the sojourn time in the system. We have

Π ′
1(1) =

π1,0z1
(z1 − 1)2

, Π ′
2(1) =

π2,0z2
(z2 − 1)2

Π ′
0(1) =

μ

(μ − λ)2

(
γ1Π1(1)
z1 − 1

+
γ2Π2(1)
z2 − 1

)
+

1
μ − λ

(
γ1Π

′
1(1)

z1 − 1
+

γ2Π
′
2(1)

z2 − 1

)
.

The mean number of customers in the system E[L] is given by Π ′(1).

E[L] = Π ′(1) = Π ′
0(1) + Π ′

1(1) + Π ′
2(1).

Let W denote the the sojourn time of a customer, we have

E[W] = − dW ∗(s)
ds

∣∣∣∣
s=0

=
Π ′(1)

λ
=

Π ′
0(1) + Π ′

1(1) + Π ′
2(1)

λ
,

E[W 2] =
d2W ∗(s)

ds2

∣∣∣∣
s=0

=
Π ′′(1)

λ2
=

Π ′′
0 (1) + Π ′′

1 (1) + Π ′′
2 (1)

λ2
,

166 T. Phung-Duc

where

Π ′′
1 (1) =

2π1,0z1
(z1 − 1)3

, Π ′′
2 (1) =

2π2,0z2
(z2 − 1)3

,

Π ′′
0 (1) =

2λμ

(μ − λ)3

(
γ1Π1(1)
z1 − 1

+
γ2Π2(1)
z2 − 1

)
+

2μ

(μ − λ)2

(
γ1Π

′
1(1)

z1 − 1
+

γ2Π
′
2(1)

z2 − 1

)

+
1

μ − λ

(
γ1Π

′′
1 (1)

z1 − 1
+

γ2Π
′′
2 (1)

z2 − 1

)
.

Furthermore, the variance of the sojourn time is given by

Var[W] = E[W 2] − E[W]2.

Thus, we have explicit expressions for the mean, the variance as well as the LST
of the sojourn time distribution.

4 Model with Abandonment

In this section, we analyze a variant of the model in Section 2, where customers
may abandon when the server is on vacations.

4.1 Model

In this section, we investigate the model in Section 2 adding the feature that
customers may abandon when the server is on vacations. In this model, customers
may abandon after some exponentially distributed waiting time with mean 1/θ
in type I vacation. If the server is in type II vacation, customers abandon after
an exponentially distributed waiting time with mean 1/ϕ. Since the state space
is the same as before, we use the same notations for the stationary distribution.

4.2 Analysis

Balance equations for states {(1, j); j ∈ Z+} are given by

(λ + γ1)π0,1 = μπ0,1 + θπ1,1,

(λ + γ1 + jθ)π1,j = λπ1,j−1 + (j + 1)θπ1,j+1.

Defining generating function by Π1(z) =
∑∞

j=0 π0,jz
j , we have

(λ + γ1)Π1(z) + θzΠ ′
1(z) = μπ0,1 + λzΠ1(z) + θΠ ′

1(z),

which is transformed to

Π ′
1(z) =

λz − λ − γ1
θ(z − 1)

Π1(z) +
μπ0,1

θ(z − 1)
.

Single-Server Systems with Power-Saving Modes 167

Fig. 3. Model with impatient customer inducing by vacations

After some tedious algebras taking into account the fact that Π1(1) is finite, we
obtain

Π1(z) =
μπ0,1

θ
exp

(
λ

θ
z

)
(1 − z)− γ1

θ

∫ 1

z

exp
(

−λ

θ
u

)
(1 − u)

γ1
θ −1du.

Balance equations for states {(2, j); j ∈ Z+} are given by

λπ2,0 = γ1π1,0 + ϕπ2,1,

(λ + γ2 + jϕ)π2,j = λπ2,j−1 + (j + 1)ϕπ2,j+1.

Letting Π2(z) =
∑∞

j=0 π2,jz
j and transforming these two equations to z-domain,

we obtain the following differential equation.

Π ′
2(z) =

(
λ

ϕ
+

γ2
ϕ(1 − z)

)
Π2(z) +

γ2π2,0 + γ1π1,0

ϕ(z − 1)

This differential equation is similar to that of Π1(z) and the solution is given by

Π2(z) =
γ1π1,0 + γ2π2,0

ϕ
exp

(
λ

ϕ
z

)
(1 − z)− γ2

ϕ

∫ 1

z

exp
(

−λ

ϕ
u

)
(1 − u)

γ2
ϕ −1du.

Finally, balance equations for states {(0, j); j ∈ N} are given as follows.

(λ + μ)π0,1 = μπ0,2 + γ1π1,1 + γ2π1,2,

(λ + μ)π0,j = λπ0,j−1 + μπ0,j+1 + γ1π1,j + γ2π2,j .

Letting Π0(z) =
∑∞

j=1 π0,jz
j , we then obtain

Π0(z) =
−μπ0,1z + γ1z(Π1(z) − π1,0) + γ2z(Π2(z) − π2,0)

(λ + μ)z − λz2 − μ
.

168 T. Phung-Duc

In order to get Π0(1), we use the L’Hopital’s rule for z = 1. In particular,
we have

Π0(1) =
γ1Π

′
1(1) + γ2Π

′
2(1)

μ − λ
,

where we have used μπ0,1 = γ1(Π1(1) − π1,0) + γ2(Π2(1) − π2,0). This is due to
the balance of flows coming into and out the set of states {(0, j); j ∈ N}.

We further have the following expressions for Π ′
1(1) and Π ′

2(1) as follows.

Π ′
1(1) =

λ

θ + γ1
Π1(1), Π ′

2(1) =
λ

ϕ + γ2
Π2(1).

We also have

Π1(1) =
μπ0,1

γ1
, Π2(1) =

γ1π1,0 + γ2π2,0

γ2
.

Furthermore, substituting z = 0 into the expressions for Π1(z) and Π2(z),
we obtain

π1,0 =
μπ0,1

θ
κ1, π2,0 =

γ1π1,0 + γ2π2,0

ϕ
κ2,

where

κ1 =
∫ 1

0

exp
(

−λ

θ
u

)
(1 − u)

γ1
θ −1du, κ2 =

∫ 1

0

exp
(

−λ

ϕ
u

)
(1 − u)

γ2
ϕ −1du.

Thus, Π0(1),Π1(1) and Π2(1) are expressed in terms of π0,1 which is uniquely
determined using the normalization condition.

Π0(1) + Π1(1) + Π2(1) = 1.

5 Numerical Examples

In this section we investigate the effect of parameters on performance measures
for the model presented in Section 3. We fixed some parameters as follows:
γ2 = 1, μ = 1, μ2 = 0.1 and μ1 = 0.05. Figures 4 to 7 show the server state
probabilities: Π0(1) (normal mode), Π1(1) (type I vacation) and Π2(1) (type
II vacation) against the traffic intensity for the case γ1 = 1, 0.5, 0.25 and 0.1,
respectively. We observe that Π2(1) decreases with ρ while Π0(1) increases with
ρ. Furthermore, we observe that Π1(1) increases and then decreases with ρ ∈
(0, 1). Figures 8 and 9 represent the mean and the variance of the response time
for γ1 = 1, 0.5, 0.25 and 0.1. We observe that the mean and the variance of the
sojourn time decrease with γ1. This is because a small γ1 means that the type I
vacation period is long leading to a large sojourn time.

We have a close look at the steady probabilities of power-saving states, i.e.,
(1,0) and (2,0) where the power consumption is low. We fix γ1 = 1 and vary
γ2 = 1, 0.5, 0.25, 0.1 and 0.05. In this scenario, the duration of type I vacation is

Single-Server Systems with Power-Saving Modes 169

shorter than that of type II vacation. Other parameters (μ, μ1, μ2) are kept the
same as before. We observe from Figure 10 that π1,0 increases with a relatively
small ρ and then decreases with a relatively large ρ. On the other hand, we
observe from Figure 11 that probability π2,0 decreases with ρ for all γ2.

In states (1, 0) and (2, 0), the server consumes only a small amount of energy.
Thus, when the probabilities of these states are large, it is suitable for applying
the current model because we can save energy. On the other hand, when the
steady state probabilities of states (1, 0) and (2, 0) are small, there is less chance
to save energy. As a result, we may use the ON/IDLE model in this case. We
also observe that when the traffic intensity is low, π2,0 is close to one. This is
intuitively true because at low traffic intensity there are no customers in the
system in almost all the time and thus the server likely to repeat its multiple
power-saving modes, i.e., state (2,0).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Traffic intensity ρ

Normal mode
Vacation of type I
Vacation of type II

Fig. 4. Probability vs. ρ (γ1 = 1)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Traffic intensity ρ

Normal mode
Vacation of type I

Vacation of type II

Fig. 5. Probability vs. ρ (γ1 = 0.5)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Traffic intensity ρ

Normal mode
Vacation of type I
Vacation of type II

Fig. 6. Probability vs. ρ (γ1 = 0.25)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y

Traffic intensity ρ

Normal mode
Vacation of type I

Vacation of type II

Fig. 7. Probability vs. ρ (γ1 = 0.1)

The mean power consumption is given as follows.

E[P] = C0Π0(1) + C10π1,0 + C1(Π1(1) − π1,0) + C2(Π2(1) − π2,0) + C20π2,0.

170 T. Phung-Duc

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

M
ea

n
R

es
po

ns
e

T
im

e

Traffic intensity ρ

γ1 = 1
γ1 = 0.5

γ1 = 0.25
γ1 = 0.1

Fig. 8. E[W] vs. ρ

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1

V
ar

ia
nc

e
of

 R
es

po
ns

e
T

im
e

Traffic intensity ρ

γ1 = 1
γ1 = 0.5

γ1 = 0.25
γ1 = 0.1

Fig. 9. Var[W] vs. ρ

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y:

 π
1,

0

Traffic intensity ρ

γ2 = 1
γ2 = 0.5

γ2 = 0.25
γ2 = 0.1

γ2 = 0.05

Fig. 10. π1,0 vs. traffic intensity

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

ba
bi

lit
y:

 π
2,

0

Traffic intensity ρ

γ2 = 1
γ2 = 0.5

γ2 = 0.25
γ2 = 0.1

γ2 = 0.05

Fig. 11. π2,0 vs. traffic intensity

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 0.2 0.4 0.6 0.8 1

M
ea

n
P

ow
er

 C
on

su
m

pt
io

n

Traffic intensity ρ

ON/IDLE
γ2 = 1

γ2 = 0.5
γ2 = 0.25

γ2 = 0.1
γ2 = 0.05

Fig. 12. Power consumption vs. traffic intensity

Single-Server Systems with Power-Saving Modes 171

The coefficients C0, C1 and C2 are the power consumption of the server at nor-
mal mode ({π0,j ; j ∈ N}), type I vacation ({π1,j ; j ∈ N}) and type II vacation
({π2,j ; j ∈ N}), respectively. Furthermore, C10 and C20 are the power consump-
tion of the server at state (1,0) and (2,0) respectively. It should be noted that
the server typically consumes only small amount of energy at these states.

Figure 12 shows the power consumption against the traffic intensity. We
assume that the server at normal mode consumes C0 = 200W . The power con-
sumption of the server in type I setup is C1 = 200W while that in type II setup
is C2 = 210W . This implies that type II setup is more power-consuming than
type I setup. Furthermore, when the server at power saving modes, it consumes
only C10 = 15W at state (1,0) (suspend state) and C20 = 5W at state (2,0)
(hibernate), respectively. These data are measured from real experiments [2,6].
Other parameters are fixed as follows: γ1 = 1, μ1 = 0.01, μ2 = 0.1, μ = 1 and
γ2 = 1, 0.5, 0.25, 0.1, 0.05. For comparison, we also plot the power consumption
per a unit time for the corresponding ON/IDLE model, where we assume that a
busy server consumes 200W while an idle server still consumes 60% of its peak,
i.e, 120W [6]. Thus the mean power consumption in the ON/IDLE model is
given by 200ρ + 120(1 − ρ).

We observe that the curves for γ2 = 1, 0.5 are below that for the ON/IDLE
model. It means that the current model is always more power-saving than the
ON/IDLE model if the setup time of mode II is fast enough. For the cases where
γ2 = 0.25, 0.1, 0.05, we see that when the traffic intensity is small enough the
current model is more power-saving while it is better to adopt ON/IDLE model
if the traffic intensity is large enough.

6 Concluding Remark

In this paper, we analyze single queueing systems with differentiated non-working
and working vacations. Using the generating function approach, we obtain the
generating functions for the queue length distribution which gives exact expres-
sion for steady-state probabilities, decomposition property and the LST of the
sojourn time distribution. Our models generalize various existing ones in the
literature such as models with single or multiple vacations. The methodology in
this paper can be extended to the model with more than two working vacation
modes.

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant
Number 2673001. The author would like to thank the referees for constructive com-
ments which improve the presentation of the paper.

References

1. Fiems, D., Walraevens, J., Bruneel, H.: The discrete-time gated vacation queue
revisited. AEU-International Journal of Electronics and Communications 58(2),
136–141 (2004)

172 T. Phung-Duc

2. Gebrehiwot, M.E., Aalto, S., Lassila, P.: Optimal sleep-state control of energy-
aware M/G/1 queues. In: Proc. of 8th International Conference on Performance
Evaluation Methodologies and Tools (Valuetools 2014) (2014)

3. Gandhi, A., Harchol-Balter, M., Kozuch, M.A.: Are sleep states effective in data
centers? In: Proc. of International Green Computing Conference (IGCC). IEEE
(2012)

4. Haverkort, B.R., Postema, B.: Towards simple models for energy-performance
trade-offs in data centers. In: Proc. of SOCNET & PGENET 2014 (2014)

5. Ibe, O.C., Isijola, O.A.: M/M/1 multiple vacation queueing systems with differenti-
ated vacations. Modelling and Simulation in Engineering 2014, Article ID 158247,
6 (2014)

6. Isci, C., McIntosh, S., Kephart, J., Das, R., Hanson, J., Piper, S., Frissora, M.: Agile,
efficient virtualization power management with low-latency server power states. In:
ACM SIGARCH Computer Architecture News, vol. 41, No. 3, pp. 96–107. ACM
(2013)

7. Ke, J.C.: The optimal control of an M/G/1 queueing system with server startup
and two vacation types. Applied Mathematical Modelling 27, 437–450 (2003)

8. Keilson, J., Servi, L.D.: A distributional form of Little’s law. Operations Research
Letters 7(5), 223–227 (1988)

9. Phung-Duc, T.: Impatient customers in power-saving data centers. In: Sericola,
B., Telek, M., Horváth, G. (eds.) ASMTA 2014. LNCS, vol. 8499, pp. 185–199.
Springer, Heidelberg (2014)

10. Phung-Duc, T.: Server farms with batch arrival and staggered setup. In: Pro-
ceedings of the Fifth Symposium on Information and Communication Technology,
pp. 240–247. ACM (2014)

11. Phung-Duc, T.: Exact solution for M/M/c/Setup queue (2014). http://arxiv.org/
abs/1406.3084

12. Servi, L.D., Finn, S.G.: M/M/1 queues with working vacations (M/M/1/WV).
Performance Evaluation 50(1), 41–52 (2002)

13. Tang, Y., Yu, M., Yun, X., Huang, S.: Reliability indices of discrete-time Geox/G/1
queueing system with unreliable service station and multiple adaptive delayed vaca-
tions. Journal of Systems Science and Complexity 25(6), 1122–1135 (2012)

14. Vishnevsky, V.M., Dudin, A.N., Semenova, O.V., Klimenok, V.I.: Performance
analysis of the BMAP/G/1 queue with gated servicing and adaptive vacations.
Performance Evaluation 68(5), 446–462 (2011)

http://arxiv.org/abs/1406.3084
http://arxiv.org/abs/1406.3084

Multiserver Queues with Finite Capacity
and Setup Time

Tuan Phung-Duc(B)

Department of Mathematical and Computing Sciences,
Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo, Japan

tuan@is.titech.ac.jp

Abstract. Multiserver queues with setup time have been extensively
studied because they have application in modelling of power-saving data
centers. Although the infinite buffer models are extensively investigated,
less attention has been paid to finite buffer models. This paper considers
an M/M/c/K queue with setup time for which we suggest a simple and
numerically stable recursion for the stationary distribution of the system
state. Numerical experiments show various insights into the performance
of the system such as performance-energy tradeoff as well as the effect
of the capacity on the blocking probability and the mean queue length.

Keywords: Multiserver queue · Setup time · Finite capacity

1 Introduction

The core part of cloud computing is data center where a huge number of servers
are available. These servers consume a large amount of energy. Thus, the key
issue for the management of these server farms is to minimize the power con-
sumption while keeping acceptable service level for users. It is reported that
under the current technology an idle server still consumes about 60% of its peak
processing jobs [1]. Thus, the only way to save power is to turn off idle servers.
However, off servers need some setup time to be active during which they con-
sume energy but cannot process jobs. Thus, there exists a trade-off between
power-saving and performance which could be analyzed by queueing models
with setup time.

Recently, motivated by applications in data centers, multiserver queues with
setup times have been extensively investigated in the literature. In particular,
Gandhi et al. [3] extensively analyze multiserver queues with setup times. They
obtain some closed form approximations for the ON-OFF policy where any num-
ber of servers can be in the setup mode at a time. As is pointed out in Gandhi
et al. [3], from an analytical point of view the most challenging model is the ON-
OFF policy where the number of servers in setup mode is not limited. Gandhi
et al. [4,5] analyze the M/M/c/Setup model with ON-OFF policy using a recur-
sive renewal reward approach. Phung-Duc [11] obtains exact solutions for the

c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 173–187, 2015.
DOI: 10.1007/978-3-319-18579-8 13

174 T. Phung-Duc

same model via generating functions and via matrix analytic methods. Slegers
et al. [6] propose a heuristic method to decide the timing for the servers to be
powered up or down.

Although, the infinite model has been investigated [4,5,11], results for sys-
tems with a large number (several hundreds) of servers are not obtained. This
motivates us to develop models for large-scale server farms. Furthermore, less
attention has been paid on finite buffer multiserver queue with setup time. It
should be noted that the results for the latter could be used for the former by let-
ting the capacity tend to infinity. The main aim of our current paper is to present
a simple recursion for the stationary distribution of the M/M/c/K/Setup model
which is more realistic for data centers which typically have a finite buffer. The
computational complexity of the scheme is significantly reduced in comparison
with that of direct methods. As a result, models with several hundreds of servers
are easily analyzed. This allows us to explore new insight into the performance
of large scale systems that has not been observed in literature. Recently, we
become aware of a closely related paper [2], where the authors suggest a recur-
sive scheme for finite buffer model with threshold control. However, the stability
of the numerical scheme is not discussed. In contrast to [2], we suggest here a
new recursive scheme whose numerical stability is rigorously proved.

The rest of this paper is organized as follows. Section 2 presents the model
in details while Section 3 is devoted to derivation of a recursion for the joint
stationary distribution. Section 4 presents some numerical examples showing
insights into the performance of the system. Concluding remarks are presented
in Section 5.

2 Model

We consider a queueing system with c servers and a capacity of K, i.e., the
maximum of K customers can be accommodated in the system. Jobs arrive at
the system according to a Poisson process with rate λ. In this system, a server
is turned off immediately if it has no job to do. Upon arrival of a job, an OFF
server is turned on if any and the job is placed in the buffer. However, a server
needs some setup time to be active so as to serve waiting jobs. We assume
that the setup time follows an exponential distribution with mean 1/α. Let j
denotes the number of customers in the system and i denotes the number of
active servers. The number of servers in setup process is min(j − i, c − i). Under
these assumptions, the number of active servers is smaller than or equal to the
number of jobs in the system. Therefore, in this model a server is in either
BUSY or OFF or SETUP. We assume that the service time of jobs follows
an exponential distribution with mean 1/μ. We assume that waiting jobs are
served according to a first-come-first-served (FCFS) manner. We call this model
an M/M/c/K/Setup queue.

The exponential assumptions for the inter-arrival, setup time and service time
allow to construct a Markov chain whose stationary distribution is recursively
obtainable. It should be noted that we can easily construct a Markov chain for

Multiserver Queues with Finite Capacity and Setup Time 175

a more general model with MAP arrival and phase-type service and setup time
distributions. However, the state space of the resulted Markov chain explodes
and thus the analysis is complex.

3 Analysis

In this section, we present a recursive scheme to calculate the joint stationary
distribution. Let C(t) and N(t) denote the number of active servers and the
number of customers in the system, respectively. It is easy to see that {X(t) =
(C(t), N(t)); t ≥ 0} forms a Markov chain on the state space:

S = {(i, j); 0 ≤ i ≤ c, j = i, i + 1, . . . , K − 1,K}.

See Figure 1 for transition among states for the case c = 2 and K = 5.

Fig. 1. Transition among states (c = 2, K = 5)

Let πi,j = limt→∞ P(C(t) = i,N(t) = j) ((i, j) ∈ S) denote the joint station-
ary distribution of {X(t)}. In this section, we derive a recursion for calculating
the joint stationary distribution πi,j ((i, j) ∈ S). The balance equations for states
with i = 0 read as follows.

λπ0,0 = μπ1,1,

(λ + min(j, c)α)π0,j = λπ0,j−1, j = 1, 2, . . . ,K − 1,

cαπ0,K = λπ0,K−1.

leading to π0,j = b
(0)
j π0,j−1 where b

(0)
j = λ/(λ+min(j, c)α) (j = 1, 2, . . . , K − 1)

and b
(0)
K = λ/(cα). Furthermore, it should be noted that π1,1 is calculated using

the local balance equation in and out the set {(0, j); j = 0, 1, . . . ,K} as follows.

176 T. Phung-Duc

μπ1,1 =
K∑

j=1

min(j, c)απ0,j .

Remark 1. We have expressed π0,j (j = 1, 2, . . . , K) and π1,1 in terms of π0,0.

Next, we consider the case i = 1.

Lemma 1. We have

π1,j = a
(1)
j + b

(1)
j π1,j−1, j = 2, 3, . . . ,K − 1,K,

where

a
(1)
j =

μa
(1)
j+1 + min(j, c)απ0,j

μ + λ + min(j − 1, c − 1)α − μb
(1)
j+1

, (1)

b
(1)
j =

λ

μ + λ + min(j − 1, c − 1)α − μb
(1)
j+1

, (2)

for j = K − 1,K − 2, . . . , 2 and

a
(1)
K =

cαπ0,K

μ + (c − 1)α
, b

(1)
K =

λ

μ + (c − 1)α
.

Proof. We prove using mathematical induction. Balance equations are given as
follows.

(λ + μ + min(j − 1, c − 1)α)π1,j = λπ1,j−1 + μπ1,j+1 + min(j, c)απ0,j , (3)
2 ≤ j ≤ K − 1,

(μ + min(K − 1, c − 1)α)π1,K = λπ1,K−1 + cαπ0,K . (4)

It follows from (4) that

π1,K = a
(1)
K + b

(1)
K π1,K−1,

leading to the fact that Lemma 1 is true for j = K. Assuming that Lemma 1
is true for j + 1, i.e., π1,j+1 = a

(1)
j+1 + b

(1)
j+1π1,j . It then follows from (3) that

Lemma 1 is also true for j, i.e., π1,j = a
(1)
j + b

(1)
j π1,j−1.

Theorem 2. We have the following bound.

a
(1)
j ≥ 0, 0 ≤ b

(1)
j ≤ λ

μ + min(j − 1, c − 1)α
,

for j = 2, 3, . . . ,K − 1,K.

Proof. We use mathematical induction. It is easy to see that the theorem is true
for j = K. Assuming that the theorem is true for j + 1, i.e.,

Multiserver Queues with Finite Capacity and Setup Time 177

a
(1)
j+1 ≥ 0, 0 ≤ b

(1)
j+1 ≤ λ

μ + min(j, c − 1)α
, j = 1, 2, . . . ,K − 1.

Thus, we have μb
(1)
j+1 < λ. From this inequality, (1) and (2), we obtain

b
(1)
j ≤ λ

μ + min(j − 1, c − 1)α
,

and a
(1)
j ≥ 0.

It should be noted that π2,2 can be calculated using the local balance between
the flows in and out the set of states {(i, j); i = 0, 1, j = i, i + 1, . . . , K} as
follows.

2μπ2,2 =
K∑

j=2

min(j − 1, c − 1)απ1,j .

Remark 2. We have expressed π1,j (j = 1, 2 . . . ,K) and π2,2 in terms of π0,0.

We consider the general case where 2 ≤ i ≤ c − 1. Similar to the case i = 1,
we can prove the following result by mathematical induction.

Lemma 3. We have

πi,j = a
(i)
j + b

(i)
j πi,j−1, j = i + 1, i + 2, . . . , K − 1,K,

where

a
(i)
j =

iμa
(i)
j+1 + min(c − i + 1, j − i + 1)απi−1,j

λ + min(c − i, j − i)α + iμ − iμb
(i)
j+1

, (5)

b
(i)
j =

λ

λ + min(c − i, j − i)α + iμ − iμb
(i)
j+1

, (6)

and

a
(i)
K =

(c − i + 1)απi−1,K

(c − i)α + iμ
, b

(i)
K =

λ

(c − i)α + iμ
.

Proof. The balance equation for state (i,K) is given as follows.

((c − i)α + iμ)πi,K = λπi,K−1 + (c − i + 1)απi−1,K ,

leading to the fact that Lemma 3 is true for j = K. Assuming that

πi,j+1 = a
(i)
j+1 + b

(i)
j+1πi,j , j = i + 1, i + 2, . . . , K − 1.

It then follows from

(λ + min(c − i, j − i)α + iμ)πi,j

= λπi,j−1 + iμπi,j+1 + min(c − i + 1, j − i + 1)απi−1,j ,

j = K − 1,K − 2, . . . , i + 1,

that
πi,j = a

(i)
j + b

(i)
j πi,j−1.

178 T. Phung-Duc

Theorem 4. We have the following bound.

a
(i)
j > 0, 0 < b

(i)
j <

λ

iμ + min(j − i, c − i)α
,

for j = i + 1, i + 2, . . . , K − 1, i = 1, 2, . . . , c − 1.

Proof. We also prove using mathematical induction. It is clear that Theorem 4
is true for j = K. Assuming that Theorem 4 is true for j + 1, i.e.,

a
(i)
j+1 > 0, 0 < b

(i)
j+1 <

λ

iμ + min(j + 1 − i, c − i)α
,

for j = i + 1, i + 2, . . . , K − 1, i = 1, 2, . . . , c − 1. It follows from the second
inequality that iμb

(i)
j+1 < λ. This together with formulae (5) and (6) yield the

desired result.

It should be noted that πi+1,i+1 is calculated using the following local balance
equation in and out the set of states:

{(k, j); k = 0, 1, . . . , i; j = k, k + 1, . . . , K}

as follows.

(i + 1)μπi+1,i+1 =
K∑

j=i+1

min(j − i, c − i)απi,j .

Remark 3. We have expressed πi,j (i = 0, 1, . . . , c − 1, j = i, i + 1, . . . , K) and
πi+1,i+1 in terms of π0,0.

Finally, we consider the case i = c. Balance equation for state (c,K) yields,

Lemma 5. We have

πc,j = a
(c)
j + b

(c)
j πc,j−1, j = c + 1, c + 2, . . . , K − 1,

where

a
(c)
j =

cμa
(c)
j+1 + απc−1,j

λ + cμ − cμb
(c)
j+1

, j = K − 1,K − 2, . . . , c + 1, (7)

b
(c)
j =

λ

λ + cμ − cμb
(c)
j+1

, j = K − 1,K − 2, . . . , c + 1, (8)

and
a
(c)
K =

απc−1,K

cμ
, b

(c)
K =

λ

cμ
.

Proof. The global balance equation at state (c,K) is given by

Multiserver Queues with Finite Capacity and Setup Time 179

cμπc,K = απc−1,K + λπc,K−1,

leading to
πc,K = a

(c)
K + b

(c)
K πc,K−1.

Assuming that πc,j+1 = a
(c)
j+1 + b

(c)
j+1πc,j , it follows from the global balance equa-

tion at state (c, j),

(λ + cμ)πc,j = λπc,j−1 + cμπc,j+1 + απc−1,j , j = c + 1, c + 2, . . . , K − 1,

that πc,j = a
(c)
j + b

(c)
j πc,j−1 for j = c + 1, c + 2, . . . , K.

Theorem 6. We have the following bound.

a
(c)
j > 0, 0 < b

(c)
j <

λ

cμ
, j = c + 1, c + 2, . . . , K − 1.

Proof. We also prove using mathematical induction. It is clear that Theorem 6
is true for j = K. Assuming that Theorem 6 is true for j + 1, i.e.,

a
(c)
j+1 > 0, 0 < b

(c)
j+1 <

λ

cμ
, j = c + 1, c + 2, . . . , K − 1.

It follows from the second inequality that cμb
(c)
j+1 < λ. This together with for-

mulae (7) and (8) yield the desired result.

We have expressed all the probability πi,j ((i, j) ∈ S) in terms of π0,0 which
is uniquely determined by the normalizing condition.

∑

(i,j)∈S
πi,j = 1.

Remark 4. We see that the computational complexity order for {πi,j ; (i, j) ∈ S}
is O(cK). A direct method for solving the set of balance equations requires the
complexity of O(c3K3) while a level-dependent QBD approach (See Phung-Duc
et al. [8]) needs the computational complexity of O(Kc3). We also observe that
the recursion scheme of this paper is numerically stable since it manipulates only
positive numbers (See Theorems 2, 4 and 6).

4 Performance Measures and Numerical Examples

4.1 Performance Measures

Let PB denote the blocking probability. We have

PB =
c∑

i=0

πi,K .

180 T. Phung-Duc

Let πi denote the stationary probability that there are i active servers, i.e.,
πi =

∑K
j=i πi,j . Let E[A] and E[S] denote the mean number of active servers and

that in setup mode, respectively. We have

E[A] =
c∑

i=1

iπi, E[S] =
c∑

i=0

K∑

j=i

min(j − i, c − i)πi,j .

The power consumption per a unit time for the model with setup time is given
by

Coston−off = CaE[A] + CsE[S], (9)

where Ca and Cs are the cost per a unit time for an active server and a server
in setup mode, respectively.

For comparison, we also find the power consumption per a unit time for the
corresponding ON-IDLE model, i.e., M/M/c/K without setup times. Letting
pi (i = 0, 1, . . . ,K − 1,K) denote the stationary probability that there are i
customers in the system, we have

pi =
(

λ

μ

)i 1
i!

p0, i = 0, 1, . . . , c,

pi = pc

(
λ

cμ

)i−c

, i = c, c + 1, . . . , K − 1,K,

where p0 is determined by the normalization condition
∑K

i=0 pi = 1. Let E[Â]
denote the mean number of active servers, we have

E[Â] =
K∑

i=0

min(i, c)pi =
λ(1 − pK)

μ
,

where the second equality is due to Little’s law. Therefore, the mean number of
idle servers is given by c − E[Â]. Thus, for this model, the power consumption
per a unit time is given by

Coston−idle = CaE[Â] + (c − E[Â])Ci. (10)

where Ci is the cost per a unit time for an idle server.
Let E[N] denote the mean number of customers in the system. We have

E[N] =
c∑

i=0

K∑

j=i

πi,j × j.

Let E[T] denote the mean response time of a customer. We have

E[T] =
E[N]

λ(1 − PB)
.

Multiserver Queues with Finite Capacity and Setup Time 181

4.2 M/M/c/c System

We consider the following parameter setting: c = K, μ = α = 1. Furthermore,
we set the cost for an active server and that for a setup server as Ca = Cs = 1
as in [7]. The cost for an idle server is Ci = 0.6 because an idle server still
consumes 60% energy of its peak processing a job [1]. We investigate the power
consumption for the M/M/c/K/Setup queue and its corresponding M/M/c/K
model by (9) and (10), respectively. Figures 2 and 4 represent the blocking
probability and power consumption against ρ = λ/(cμ) for the case c = K = 50
while Figures 3 and 5 represent those for the case c = K = 500. We observe that
the blocking probability PB decreases with α and is bounded from below by that
of the corresponding ON-IDLE model (pK). We also observe that our numerical
scheme is stable since it can calculate the blocking probability of order 10−17.

 1e-009

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 0 0.2 0.4 0.6 0.8 1

B
lo

ck
in

g
P

ro
ba

bi
lit

y

Traffic Intensity

Pure Loss
Setup (α = 1)

Setup (α = 0.1)
Setup (α = 0.01)

Fig. 2. Blocking probability against
ρ (c = 50)

 1e-016

 1e-014

 1e-012

 1e-010

 1e-008

 1e-006

 0.0001

 0.01

 1

 0 0.2 0.4 0.6 0.8 1

B
lo

ck
in

g
P

ro
ba

bi
lit

y

Traffic Intensity

Pure Loss
Setup (α = 1)

Setup (α = 0.1)
Setup (α = 0.01)

Fig. 3. Blocking probability against
ρ (c = 500)

 0

 10

 20

 30

 40

 50

 0 0.2 0.4 0.6 0.8 1

P
ow

er
 C

on
su

m
pt

io
n

Traffic Intensity

Pure Loss
Setup (α = 1)

Setup (α = 0.1)
Setup (α = 0.01)

Fig. 4. Power consumption against
ρ (c = 50)

 0

 100

 200

 300

 400

 500

 0 0.2 0.4 0.6 0.8 1

P
ow

er
 C

on
su

m
pt

io
n

Traffic Intensity

Pure Loss
Setup (α = 1)

Setup (α = 0.1)
Setup (α = 0.01)

Fig. 5. Power consumption against
ρ (c = 500)

We observe from Figures 4 and 5 that the power consumption increases with
the traffic intensity ρ as expected. Furthermore, for the case α = 1, 0.1, the ON-
OFF policy outperforms the ON-IDLE one for any value of ρ. As for the case

182 T. Phung-Duc

α = 0.01 there exist a range in which the power consumption of the ON-IDLE
model is smaller than that of the ON-OFF model. Furthermore, the range for
c = 50 is larger than that of c = 500. This suggests that the ON-OFF policy is
more advanced in large-scale systems.

Figures 6 and 7 represent the mean number of setup servers E[S] against
traffic intensity for the case c = 50 and c = 500, respectively. We observe that
there exists some ρ̂α such that E[S] increases with ρ in the range (0, ρ̂α) while
E[S] decreases with ρ for the range (ρ̂α, 1). This is because when the traffic
intensity is small, many servers are turned off. As a result, increasing the traffic
intensity (number of arriving customers) incurs in the increase in the mean
number of servers in setup. However, when the traffic intensity is large enough,
almost the servers are likely on for all the time. Thus, the effect of setup is less
and then the mean number of servers in setup time decreases with the traffic
intensity.

4.3 Mean Response Time and Queue Length

In this section, we show the mean queue length (E[N]) and the mean response
time (E[T]) of the M/M/100/K with setup time where K = 200,500,1000, 2000
and 3000. We observe from Figures 8 and 9 that for α = 1, 0.1, the mean response
time and the mean queue length are unchanged for K ≥ 500. This is because our
system converges to the corresponding M/M/100/∞ as the capacity (K) tends
to infinity. However, for the curves where α = 0.01, we observe that K = 2000
is not large enough to approximate the infinite capacity system.

We observe in all the curves that the mean queue length increases with the
traffic intensity. On the other hand, the mean response time decreases with ρ
when ρ is small while it increases with ρ when ρ is large. This is because at
low traffic intensity, the effect of setup time is large. Thus, increasing the traffic
intensity incurs in increasing the number of setup servers. As a result the mean
response time decreases. However, when the traffic intensity is large enough, it
is likely that all the servers are ON for all the time. As a result, the effect of
setup time decreases leading to the increase of the mean response time with the
traffic intensity as in the conventional M/M/c/K system without setup time.

4.4 Effect of the Number of Servers

Figures 10 to 13 represent the ratio of the power consumption of the M/M/c/c
with setup time against that of the corresponding M/M/c/c without setup time
(Coston−off/Coston−idle) for ρ = 0.3, 0.5, 0.7 and 0.9. We observe that under
all considered traffic intensities, the ratio is less than one for α = 1, 0.1 meaning
that the former is less power-consuming than the latter for α = 1 and 0.1. On
the other hand, for α = 0.01, the latter outperforms the former for a wide range
of c. This may be due to the fact that a large portion of customers are lost due
to the slow setup (1/α = 100). We observe in the case ρ = 0.3, 0.5 and 0.7 that
the power consumption ratio decreases with c.

Multiserver Queues with Finite Capacity and Setup Time 183

 0

 5

 10

 15

 20

 25

 30

 0 0.2 0.4 0.6 0.8 1

M
ea

n
N

um
be

r
of

 S
et

up
 S

er
ve

rs

Traffic Intensity

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)

Fig. 6. Mean number of setup servers
against ρ (c = 50)

 0

 20

 40

 60

 80

 100

 120

 140

 0 0.2 0.4 0.6 0.8 1

M
ea

n
N

um
be

r
of

 S
et

up
 S

er
ve

rs

Traffic Intensity

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)

Fig. 7. Mean number of setup servers
against ρ (c = 500)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 0.2 0.4 0.6 0.8 1

M
ea

n
Q

ue
ue

 L
en

gt
h

Traffic Intensity

Setup (α = 1), K=200
Setup (α = 0.1), K=200

Setup (α = 0.01), K=200
Setup (α = 1), K=500

Setup (α = 0.1), K=500
Setup (α = 0.01), K=500

Setup (α = 1), K=1000
Setup (α = 0.1), K=1000

Setup (α = 0.01), K=1000
Setup (α = 1), K=2000

Setup (α = 0.1), K=2000
Setup (α = 0.01), K=2000

Setup (α = 1), K=3000
Setup (α = 0.1), K=3000

Setup (α = 0.01), K=3000

Fig. 8. Mean queue length against
ρ (c = 100)

 0

 2

 4

 6

 8

 10

 0 0.2 0.4 0.6 0.8 1

M
ea

n
R

es
po

ns
e

T
im

e

Traffic Intensity

Setup (α = 1), K=200
Setup (α = 0.1), K=200

Setup (α = 0.01), K=200
Setup (α = 1), K=500

Setup (α = 0.1), K=500
Setup (α = 0.01), K=500

Setup (α = 1), K=1000
Setup (α = 0.1), K=1000

Setup (α = 0.01), K=1000
Setup (α = 1), K=2000

Setup (α = 0.1), K=2000
Setup (α = 0.01), K=2000

Setup (α = 1), K=3000
Setup (α = 0.1), K=3000

Setup (α = 0.01), K=3000

Fig. 9. Mean response time against
ρ (c = 100)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250 300 350 400 450 500

R
at

io
 (

O
N

-O
F

F
/O

N
-I

D
LE

)

Number of Servers (c)

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)
1

Fig. 10. Ratio of power consumption
(ρ = 0.3)

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250 300 350 400 450 500

R
at

io
 (

O
N

-O
F

F
/O

N
-I

D
LE

)

Number of Servers (c)

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)
1

Fig. 11. Ratio of power consumption
(ρ = 0.5)

184 T. Phung-Duc

 0.6

 0.8

 1

 1.2

 1.4

 50 100 150 200 250 300 350 400 450 500

R
at

io
 (

O
N

-O
F

F
/O

N
-I

D
LE

)

Number of Servers (c)

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)
1

Fig. 12. Ratio of power consumption
(ρ = 0.7)

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 50 100 150 200 250 300 350 400 450 500

R
at

io
 (

O
N

-O
F

F
/O

N
-I

D
LE

)

Number of Servers (c)

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)
1

Fig. 13. Ratio of power consumption
(ρ = 0.9)

 1e-009

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 100 150 200 250 300 350 400 450 500

B
lo

ck
in

g
P

ro
ba

bi
lit

y

Capacity (K)

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)

Fig. 14. Blocking probability against
K (ρ = 0.7, c = 100)

 1e-009

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 100 150 200 250 300 350 400 450 500

B
lo

ck
in

g
P

ro
ba

bi
lit

y

Capacity (K)

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)

Fig. 15. Blocking probability against
K (ρ = 0.9, c = 100)

 1e-009

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

B
lo

ck
in

g
P

ro
ba

bi
lit

y

Capacity (K)

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)

Fig. 16. Blocking probability against
K (ρ = 0.7, c = 10)

 1e-009

 1e-008

 1e-007

 1e-006

 1e-005

 0.0001

 0.001

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400 450 500

B
lo

ck
in

g
P

ro
ba

bi
lit

y

Capacity (K)

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)

Fig. 17. Blocking probability against
K (ρ = 0.9, c = 10)

Multiserver Queues with Finite Capacity and Setup Time 185

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

M
ea

n
N

um
be

r
of

 J
ob

s
in

 S
ys

te
m

Capacity (K)

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)

Fig. 18. Mean number of jobs in system
against K (ρ = 0.7, c = 100)

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

M
ea

n
N

um
be

r
of

 J
ob

s
in

 S
ys

te
m

Capacity (K)

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)

Fig. 19. Mean number of jobs in system
against K (ρ = 0.9, c = 100)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 50 100 150 200 250 300 350 400 450 500

M
ea

n
N

um
be

r
of

 J
ob

s
in

 S
ys

te
m

Capacity (K)

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)

Fig. 20. Mean number of jobs in system
against K (ρ = 0.7, c = 10)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 50 100 150 200 250 300 350 400 450 500

M
ea

n
N

um
be

r
of

 J
ob

s
in

 S
ys

te
m

Capacity (K)

Setup (α = 1)
Setup (α = 0.1)

Setup (α = 0.01)

Fig. 21. Mean number of jobs in system
against K (ρ = 0.9, c = 10)

4.5 Effect of the Capacity

In this section, we show the influence of the capacity K on the performance of
the system. We consider the cases where ρ = 0.7 and ρ = 0.9 while c = 10
and 100. Figures 14 to 17 represent the blocking probability against K for the
c = 100, 10 and ρ = 0.7, 0.9. We observe in all these graphs that the blocking
probability geometrically decreases in K. We observe in the curves for α = 1, 0.1
that the blocking probability is sensitive to K in the sense that it decreases with
K at a high speed. On the other hand, we observe that the blocking blocking
probability for the case α = 0.01 is less sensitive to K in comparison with the
cases α = 1, 0.1.

Figures 18 to 21 represent the mean number of customers in the system
against K for the c = 100, 10 and ρ = 0.7, 0.9. We observe in the graphs for
ρ = 0.7 that the mean number of customers in the system increases with K
and then converges to some fixed value. This is intuitive because our system
converges to the M/M/c/∞ with setup time when K → ∞. In the graphs for
ρ = 0.9 we also observe that the mean number of customers in the system

186 T. Phung-Duc

increases with K. Furthermore, when α = 1, 0.1 the mean number of customers
in the system converges to some fixed value for K < 500 however the curve for
α = 0.01 does not converge in the range K < 500. This suggests that in the
case α = 0.01 the queue length is very long and a large portion of customers
are lost due to blocking. This is also supported from the curves for the blocking
probability with α = 0.01.

5 Concluding Remarks

We present a simple recursion to calculate the stationary distribution of the
system state of an M/M/c/K queue with setup time for data centers. The com-
putational complexity order of the algorithm is only O(cK). The methodology
of this paper can be applied for various variant models with setup time and finite
buffer. In particular, the methodology of this paper can also be applied to the
finite buffer counter part of the M/M/c queue with vacation presented in [12].
Furthermore, it is easy to extend the model in this paper to take into account
the abandonment of customers [9]. This extension may be presented somewhere.

Acknowledgments. This work was supported in part by JSPS KAKENHI Grant
Number 2673001. The author would like to thank the referees for constructive com-
ments which improve the presentation of the paper.

References

1. Barroso, L.A., Holzle, U.: The case for energy-proportional computing. Computer
40(12), 33–37 (2007)

2. Kuehn, P.J., Mashaly, M.E.: Automatic energy efficiency management of data cen-
ter resources by load-dependent server activation and sleep modes. Ad Hoc Net-
works 25, 497–504 (2015)

3. Gandhi, A., Harchol-Balter, M., Adan, I.: Server farms with setup costs. Perfor-
mance Evaluation 67, 1123–1138 (2010)

4. Gandhi, A., Doroudi, S., Harchol-Balter, M., Scheller-Wolf, A.: Exact analysis of
the M/M/k/setup class of Markov chains via recursive renewal reward. In: Pro-
ceedings of the ACM SIGMETRICS, pp. 153–166. ACM (2013)

5. Gandhi, A., Doroudi, S., Harchol-Balter, M., Scheller-Wolf, A.: Exact analysis of
the M/M/k/setup class of Markov chains via recursive renewal reward. Queueing
Systems 77(2), 177–209 (2014)

6. Slegers, J., Thomas, N., Mitrani, I.: Dynamic server allocation for power and per-
formance. In: Kounev, S., Gorton, I., Sachs, K. (eds.) SIPEW 2008. LNCS, vol.
5119, pp. 247–261. Springer, Heidelberg (2008)

7. Mitrani, I.: Managing performance and power consumption in a server farm. Annals
of Operations Research 202(1), 121–134 (2013)

8. Phung-Duc, T., Masuyama, H., Kasahara, S., Takahashi, Y.: A simple algo-
rithm for the rate matrices of level-dependent QBD processes. In: Proceedings of
the 5th International Conference on Queueing Theory and Network Applications
(QTNA2010), Beijing, China, pp. 46–52. ACM, New York (2010)

Multiserver Queues with Finite Capacity and Setup Time 187

9. Phung-Duc, T.: Impatient customers in power-saving data centers. In: Sericola,
B., Telek, M., Horváth, G. (eds.) ASMTA 2014. LNCS, vol. 8499, pp. 185–199.
Springer, Heidelberg (2014)

10. Phung-Duc, T.: Server farms with batch arrival and staggered setup. In: Pro-
ceedings of the Fifth Symposium on Information and Communication Technology,
pp. 240–247. ACM (2014)

11. Phung-Duc, T.: Exact solution for M/M/c/Setup queue (2014). http://arxiv.org/
abs/1406.3084

12. Tian, N., Li, Q.L., Gao, J.: Conditional stochastic decompositions in the M/M/c
queue with server vacations. Stochastic Models 15, 367–377 (1999)

http://arxiv.org/abs/1406.3084
http://arxiv.org/abs/1406.3084

Power Consumption Analysis of Replicated
Virtual Applications

Pietro Piazzolla1(B), Gianfranco Ciardo2, and Andrew Miner2

1 Department of Electronics, Information and Bioengineering,
Politecnico di Milano, Milano, Italy

pietro.piazzolla@polimi.it
2 Department of Computer Science, Iowa State University, Ames, USA

{ciardo,asminer}@iastate.edu

Abstract. The search for green IT has inspired a wide spectrum of
techniques for power management. In a data center where computa-
tional power is provided by means of virtualised resources, like virtual
machines, the policy to allocate them on physical servers can strongly
impact the power consumption of the entire system. We propose a gener-
alised stochastic Petri net model to investigate the contribution to energy
efficiency due to different allocation and deallocation policies.

Keywords: Energy efficiency · Generalised stochastic Petri nets ·
Virtualised datacenters · Allocation policies · Performance evaluation

1 Introduction

Research to improve IT infrastructure sustainability has inspired a wide spec-
trum of techniques for power management that exploit, albeit in different ways,
two types of basic mechanisms: the dynamic scaling of system components’ per-
formance (Dynamic Performance Scaling) and the dynamic hibernation of com-
ponents (Dynamic Component Deactivation), see e.g.[1]. The main assumption
underlying these techniques is that a system experiences a workload that varies
over time, allowing for component adjustments. Among the techniques devel-
oped to improve energy efficiency in data centers, there are some that work
on the system load, providing algorithms, heuristics or policies to schedule it
among several servers. In a data center where computational power is provided
to users by means of virtualised resources, for example virtual machines (VM),
the policy followed to allocate them on physical hosts, or machines (PM), can
strongly impact the power consumption of the whole system. In particular, by
using different VM placement strategies, it is possible to control host utilization.
For example, consolidating several VMs on a single PM allows some other phys-
ical machine to be in an idle state, thus lowering system energy consumption. In
several works [3], the instantaneous power consumption is shown to have a linear

c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 188–202, 2015.
DOI: 10.1007/978-3-319-18579-8 14

Power Consumption Analysis of Replicated Virtual Applications 189

relation with CPU utilization, but even if the utilization is zero, the machine
still consumes a large amount of energy just for being on and ready to process
incoming requests. The power required by each idle server, Pidle, can heavily
affect the consumption of the entire system. Strategies like consolidation can be
used to reduce Pidle by sharing its contribution among all the VMs running on
the same server. However, consolidation alone will only increase the number of
idle machines: to be effective, it must be used in conjunction with a Dynamic
Component Deactivation strategy, in order not to pay the power consumption
Pidle for those hosts that are not utilised.

In this paper we are interested in studying how different VM allocation and
release strategies impact energy consumption of a virtualised datacenter. Place-
ment scheduling strategies, or policies, define from which available host to allo-
cate the resources for a newly requested VM, while deallocation policies define
from which server to release no longer required ones. We focus on systems run-
ning groups of identical VM instances, all replicating the services of the same
application. Such an application is able to scale its number of instances accord-
ing to the workload it handles. Since all the VMs are identical replicas and their
allocation and deallocation depends only on the number of requests the appli-
cation receives, it is possible to develop different strategies with different energy
efficiency outcomes.

We propose a generalised stochastic Petri net (GSPN) model of a virtualised
datacenter to measure the capability of each policy to reduce the number of PMs
powered on, thus reducing Pidle consumption. This paper is one of the few to
focus on the reduction of this power index, as well as one of the few to explicitly
include deallocation policies in its analysis .

The rest of this paper is organized as follows. Section 2 gives a brief overview
of related literature. Section 3 presents the main assumptions about the specific
problem addressed in this paper and the analyzed policies. Section 4 presents
the model of the virtualised datacenter in terms of its parameters and discusses
the power consumption measures we adopt. The Petri net model is the focus of
Section 5, while Section 6 presents results. Section 7 concludes the paper.

2 Related Work

A common problem in data center management is resource allocation in the
presence of workloads having fluctuating intensities. In the literature, there are
several works that deal with the optimal allocation of resources in virtual envi-
ronments, aiming at different goals and exploiting different techniques. Of these
works, many exploit probabilistic techniques and models [2,14] to maximise
selected performance indices.

Motivated by the need to understand and reduce energy waste and its related
costs, in the last decade, researchers focused on devising techniques to optimise
the power management of servers in large data centers. An exhaustive survey on
this specific topic can be found in [1] and references therein. Early works on power
consumption [11] propose policies to dynamically turn on or off cluster nodes,

190 P. Piazzolla et al.

according to the system workload, but without addressing the issues introduced
by virtualization. Starting from [10], power management techniques have been
explored in the context of virtualised systems. The problem of dynamic provi-
sioning of VMs for multitier web applications according to the current workload
(number of incoming requests), in an efficient resources management perspective,
is the topic of [8]. In several works [12], average data center power consumption
is optimised by means of diverse power management policies. Often the proposed
solutions exploits consolidation and migration of VMs as opposed to this paper.
In [13] migration is also not considered, as the objective is to improve the utiliza-
tion of resources, leading to reduced energy consumption. Each application can
be deployed using several VMs instantiated on different PMs. The resources are
allocated to applications proportionally according to the applications’ priorities.
A similar approach, studying power consumption and replication of services, is
presented in [9] and extended in [4].

3 Scenario

The computational and storage power of a datacenter is usually leveraged to
execute applications whose services can be accessed by end users. We focus on
those applications able to automatically scale their demand of system resources
to satisfy a different workload of requests. If the resources of the system are
provided in form of VMs, and the workload increases, then further VMs are
allocated to that particular application. We consider that the VMs providing the
application services can be replicated multiple times to serve a larger number of
requests. These replicas are identical to one another, providing the same services
and are used to scale the system. For the purpose of this work, the life time of
a VM, i.e., the interval of time between its instantiation and its deallocation, is
orders of magnitude higher than that of the single incoming job it serves. Once
the application’s request for further instances is acknowledged by the system,
the new VM(s) instance(s) must be assigned to the available PM(s).

Different scheduling policies can be implemented to allocate the resources for
new VMs among the available servers of the datacenter [15]. Some of the most
common are:

– Random: a randomly determined PM is selected to host the new VM.
– Round-robin: the VM is placed on the next available PM in a sequence.
– Least loaded server : the VM is placed on the PM with the most available

resources.
– Most loaded server : the VM is placed on the PM with the fewest available

resources.

In the literature the allocation of VMs among the PMs is performed using opti-
mization algorithms, but these solutions often require time and knowledge about
the load of each application, a knowledge that is rarely available beforehand.

When the peak of requests terminates, the application releases all the excess
VMs, scaling down its resources requirements. Different release policies can be

Power Consumption Analysis of Replicated Virtual Applications 191

0

10

20

30

40

50

60

70

0 20 40 60 80 100

Measured Data Linear Tendency

Fig. 1. Power consumption vs Utilization [3]

implemented to determine which VM is to be turned off. In this work we consider
the following release policies: a randomly determined PM is selected to release
the VM (Random), the VM is removed from the PM with the most available
resources (Least loaded server), the VM is removed from the PM with the fewest
available resources (Most loaded server).

The specific policy to allocate and release resources for VMs determines the
utilization levels of the various hosts in a datacenter. In Fig. 1, from [3], the
typical relation between the utilization of a server and its power consumption is
shown. Although a less utilised server will consume less energy, as it can be seen,
even if the utilization is zero, the machine still consumes energy simply because
it is powered on. To reduce their Pidle contribution, unutilised servers must be
put in an state in which their power consumption is negligible or null, using one
or more Dynamic Component Deactivation techniques. Policies can be defined
to determine when such servers are to be turned on or off. We assume that a
server is turned off when it hosts no VMs, and is turned on when no resources
are available in the pool of current active servers to allocate a new VM.

We want to study how the policies that determine the placement and release
of virtual machines among PMs can influence the power consumption of a dat-
acenter. In particular, allocating and deallocating resources for VM instances
according to a specific strategy can determine different levels of utilization among
the servers that may put a higher or lower number of them in idle state. Since
idle PMs can be deactivated to save power, policies can be seen as a tool to
increase power efficiency by reducing the Pidle contribution.

4 Model Description

Consider a system composed by a number M (large but finite) of homogeneous
PMs, each able to allocate C resources for running VMs. These PMs can be either
powered on or powered off. In the first case, they are able to serve requests while
in the second case they are not, but will consume (little or) no power. We assume

192 P. Piazzolla et al.

the power consumption of a datacenter is proportional to the number of PMs
powered on. We ignore startup or shutdown energy costs. The system is used by
K different applications (basically classes of VMs). The services each application
provides are based on a virtual server that can be replicated a maximum of Nk

(1 ≤ k ≤ K) times to allow heavier workloads to be served. Nk represents the
degree of parallelization that application k can achieve. Once instantiated on a
server m, a replica n cannot be moved to another server. That is, our model
does not account for server migration. As [1] noticed, VM migration leads to
time delays and performance overheads that require a dedicated analysis which
is outside the scope of this paper. The state of the system is a collection of Nk

variables per application k, and one per PM m. Let us call nk,i the variable
associated to the i-th VM that is hosting services for application k (with 1 ≤
i ≤ Nk). Its domain is nk,i ∈ {0, . . . , M} indicating that the replica is not used
(if nk,i = 0) or the number of the PM to which it is allocated (nk,i = m). The
boolean variable γm indicates whether server m is powered off (γm = 0) or not
(γm = 1). We assume that there are always resources available in the system to
satisfy a request to allocate one more VM, that is:

M · C ≥
K∑

k=1

Nk. (1)

Two different types of events can change the state of the system:

– α events: request to allocate (α+
k) or deallocate (α−

k) a new VM. Allocating
a new instance n for an application k is always possible unless n = Nk.
Deallocating is always possible provided there is at least one n �= 0 for an
application k.

– β events: requests to power on (β+) or off (β−) a PM. Powering on a new
PM occurs when no resources are available to allocate a new VM. On the
converse, when a PM has no VMs it can be shut down. Powered off PMs do
not contribute to system power consumption.

For each application k (1 ≤ k ≤ K), the trigger of α+
k events follows a Poisson

Process with an interarrival rate λk. Events α−
k for application k trigger following

a Poisson Process with service rate μk. Since we consider the lifetime of a VM
to be orders of magnitude longer than that of the requests it serves, an α−

k

event is fired when the number of requests to application k can be served by one
fewer VM. The allocation policies listed in Section 3 define how the state of the
system changes after the occurrence of an event α or β. According to the focus
of this study, the most significant parameter that we want to minimize is the
Pidle required by a running PM. We define the energy consumption function or
efficiency E(t) as the number of PMs powered off at time t. In particular, since
we assume that no time is required to start or stop a PM and that β events
are immediate, then new PMs are instantaneously available while PMs without
VMs on it are automatically turned off. Let nVM (m, t) be the number of VMs
allocated on PM m at time t, and let us denote 1(φ) the indicator function that

Power Consumption Analysis of Replicated Virtual Applications 193

returns 1 if predicate φ is true, and 0 otherwise. We can then define E(t) as:

E(t) =
M∑

m=1

1(nVM (m, t) = 0) (2)

To compute the power consumption of the running PMs, instead, a more
accurate approach is required. It has been shown [7] that a good approximation
of the power consumption of a server can be described by a linear function of
the utilization:

P (U) = Pidle + U · (Pmax − Pidle) (3)
where Pmax is the maximum power consumption that a given PM will have.
We can approximate the utilization as U(n) = n/C, where n is the number of
VMs running on the considered PM. To measure the energy consumption of the
system we define an estimated power consumption function P (t) that considers
the number of PMs powered on at time t and the number of VMs running on
them. We can then define P (t) as:

P (t) =
M∑

m=1

(
1(nVM (m, t) ≥ 1) · Pidle +

nVM (m, t)
C

· (Pmax − Pidle)
)

(4)

If the Pidle consumption is higher than the power consumption per VM (that
is, considering Pmax and PM capacity C), then Eq. 2 correctly accounts for
this expenditure. Otherwise, if the power consumption per VM is higher than
Pidle consumption, Eq. 4 provides a better approximation because it accounts
for different PM types.

5 Petri Net

Fig. 2 shows the proposed GSPN model of the system. Places pk represent virtual
machines not (yet) requested for allocation by application k and may contain a
number of tokens up to the maximum number of replicas allowed per application,
Nk. Places p′

k are their complementary places (#p′
k = Nk − #pk, where #x

signifies the number of tokens in place x) and contain the number of running
VMs for each application k.

The available PMs are represented by PMm places, each holding up to C
tokens. These tokens represent the resources each PMm can provide to run VMs.
For each applications k, places V Mk,m represent the number of running VMs
an application has allocated on PM m. When transition α+

k fires for application
k, the request for a new VM is issued (token in qk) and, according to the given
policy (see Section 5.1), one of the immediate transitions gk,m fires, placing the
VM on one of the available PMs (adding one token in V Mk,m). When requests
arrive, immediate transitions gk,m can fire only if there are resources available in
the corresponding PM m (tokens in PMm > 0). When the α−

k transition is fired
for application k, the request for stopping one of its running VMs is issued. This
transition may fire only if there are running VMs for the application (tokens in
p′
k > 0). Once there are tokens in rk, VMs and PMs resources can be released

following a policy that enables one of the immediate transitions hk,m.

194 P. Piazzolla et al.

+
1

g1,1

g1,M

gK,1

gK,M

h1,1

h1,M

hK,1

hK,M

VM1,1

VM1,M

VMK,1

VMK,M

C

PM 1

C

PM M

N1

p1

q1 r1

rK

+
K

NK

pK

-
1

p1‘

-
K

pK‘

qK

mk

m

m

Fig. 2. Petri net model of the system. The dotted lines indicate replications of subnets
due to replication of places.

5.1 Modelling the Policies

Random placement and release policies introduced in Section 3 can be imple-
mented with no changes to the model in Fig. 2, as the random selection of one
of the available V Mk,m places naturally corresponds to PN semantics.

Most-Least Loaded Server placement policies can be implemented as a guard
introduced to the immediate transitions gk,m, while the corresponding release
policies require a guard for hk,m transitions. If we consider as the least loaded
server PMm the one with the highest capacity available we can define, for the
model in Fig. 2 , the following guards as the Least loaded server placement and
release policies:

gk,m ≡ hk,m ≡
∧

i�=m

(#PMm ≥ #PMi) (5)

where the ∧ symbol is the logical AND among the propositions.
The most loaded server is the PMm with the lowest capacity available, then

for the model in Fig. 2, we can define the following guards as the Most loaded
server placement and release policies:

gk,m ≡ hk,m ≡
∧

i�=m

(#PMm ≤ #PMi) (6)

Round Robin Policy. To be implemented as a placement policy requires the
model in Fig. 2 to be changed. The model in Fig. 3 takes into account such
changes and models the policy with the addition of a subnet whose places and

Power Consumption Analysis of Replicated Virtual Applications 195

k

+
k

Nk

-
kpk

gk,m

hk,mVMk,m

PM m

qk rrk

pk‘

RR m

to RRm+1*

C

from RRm-1*

to RRm+1*

from RRm-1*

m

Fig. 3. Petri net of the model with round robin allocation policy

arcs are grey. The token in RRm place represents the server m next in line to
receive the allocation of a new VM. Once server m receives the VM, the round
robin token is moved to the next server. The ∗ character indicates that once the
token is in RRM , that is the last place of the round robin cycle, the next PM in
line will be PM1. In case a given PMm runs out of resources, the subnet depicted
in red make possible for the round robin token to skip that m and find the next
available PM, thanks to the firing of km transitions. Bi-directional arcs (qk, km)
enable this skipping only when a new VM allocation is issued, thus avoiding the
round robin token to loop forever when there are no free PMs. In this paper, we
implement round robin as a placement policy only.

6 Experimental Results

This section presents results obtained solving the models of the previous sections
using the SMART [5] tool (Stochastic Model checking Analyzer for Reliability
and Timing). SMART takes in input a GSPN and generates the underlying
continuous-time Markov chain (CTMC). To compute the steady-state distribu-
tion of the CTMC for models in Fig. 2 and 3, we use the Gauss-Seidel option
(#Solver GAUSS SEIDEL) with an exact symbolic representation of the transi-
tion rate matrix (#SolutionType EXACT EVMDD).

We ran tests with different system configurations, each implementing a spe-
cific pair of “allocation–deallocation” policies, using the codes Rnd (random),
RR (round robin), LL (least-loaded), ML (most-loaded). Some of these com-
binations correspond to real datacenters configurations, other are considered
for comparative purposes. We used an i7 ASUS machine, running Ubuntu 14.04
OS.

196 P. Piazzolla et al.

Fig. 4. Results for the first set of experiments

6.1 Two Application Classes

For the first set of experiments, consider a simple cluster with K = 2 different
classes of applications. All PMs are homogeneous and can host up to C = 4
VMs. Each application class requests the allocation of single core VMs only.
The interarrival time distribution of VM allocation requests (transitions α+

k) is
exponential with rate λ1 = 1 for class 1 and λ2 = 3 for class 2. Both rates are
expressed as number of VM allocation requests per hour. While not particularly
realistic, the values attributed to them allow to focus on the policies’ contribution
to system behavior. Deallocation (transitions α−

k) rates per class are μ1 = λ1

and μ2 = λ2, respectively, expressed as number of VM deallocation requests per
hour. For each policy, we consider up to M = 5 PMs. Since we want to test a
fully utilized system, Nk is set according to Eq. 1 (Nk = 4 · M/2).

Fig. 4 shows results for these parametrizations. The x-axis corresponds to
the number of PMs composing the system, the y-axis to the percentage of idle
hosts, in steady-state. According to Eq. 2, a higher percentage of unused PMs
implies a higher energy efficiency. From Fig. 4 it is possible to see that the
percentage of unused PMs is affected by different policies. The ML-LL policy
clearly outperforms the others as the total number of PMs increases, reaching
nearly 40% idle machines in steady state. Even with different values, all policies
show a higher percentage of idle hosts as M increases with the exception of LL-
ML. Here, the allocation on new VMs on the least loaded (possibly empty) PM,
together with a deallocation strategy that hardly unloads a given PM completely,
contributes to an increase of power consumption as M increases.

Using an approximate solution (#SolutionType APPROXIMATE EVMDD) for
the Rnd-Rnd policy, we raise the number of PMs up to M = 9 and use dif-
ferent load factors, that is, different values of ρk = λk/μk. We only consider
values of ρ ≤ 1 to test a system whose load intensity is not requiring its full
capacity. In such a situation, the probability of having idle servers is sufficient
to obtain benefits from the application of energy saving strategies. The service
rates are fixed to μ1 = 1 and μ2 = 3, while λ1 and λ2 are scaled to obtain
different ρ values (for simplicity, we assume ρ1 = ρ2).

Power Consumption Analysis of Replicated Virtual Applications 197

Fig. 5. Approximate results for the Rnd-Rnd policy under different load intensities

Fig. 5 shows the results. As expected, when ρ decreases, the probability
to have idle machines increases. Unless noted otherwise, the rest of the paper
assumes λ = μ to highlight the policy effects on the power preservation.

6.2 Modelling Different Types of VMs

For the second set of experiments we improve the characterization of different
application classes. In particular, we allow different resource demands for each
application, in terms of the number C of resources required by their VMs, thus
providing a more accurate representation of the investigated system. The models
in Fig. 2 and 3 are modified by adding a weight wk to the arcs connecting places
PMm to transitions gk,m, representing this higher resources demand by class.
The same weight wk is applied to the arcs from transitions hk,m to places PMm,
representing the deallocation of the same resource amount when a VM of that
class is released. To satisfy the assumption of Eq. 1, the value of N for each class
is now divided by the resources demands wk, i.e., Nk = M · C/(K · wk).

Fig. 6 shows the results for the improved models. For these tests, we use w1 =
1 and w2 = 2 and investigate a different load balance: in Fig. 6a, λ1 = μ1 = 1
while λ2 = μ2 = 3 (class 2 is the fastest but also the most demanding in terms
of resources); in Fig. 6b, λ1 = μ1 = 3 while λ2 = μ2 = 1 (class 2 is the slowest
but still the most demanding one). The comparison of these two figures reveals
an interesting behavior. For some but not all the cases, the resulting percentage
of idle machines is the same, suggesting that policies are not influenced in the
same way by different load balancing, revealing some that are more resilient
to workload characteristics. In particular, ML-ML results in slightly more idle
servers when class 2 is the slowest but most resource demanding, while RR-Rnd
shows the opposite behavior. Another interesting fact can be observed when the
system has 3 PMs: on the ML-ML and ML-LL curves there is a sort of “step”. A
possible reason is an uneven allocation of VMs that, for some states, prevents the
allocation of a new 2-core VM on the most loaded server, requiring to allocate

198 P. Piazzolla et al.

a. b.

Fig. 6. Results for the improved model. a: class 2 application is the fastest; b: class 2
application is the slowest. In both, class 2 is the most resource demanding.

it on a (possibly) unused one, instead. This effect is presumably less evident as
the number of PMs raises.

6.3 Performance Analysis and Energy Consumption

This section increases accuracy by including performance degradation of a PM
when the number of running VMs on it increases. To this end, the firing of
transition α−

k is slowed by a factor 10 for each resource used. For the tests in this
section, we focus on a specific parametrization of the model: we fix the number
of PMs to M = 4, all providing the same number C = 4 of resources. K = 2
applications run in the system, each with different allocation and deallocation
rates (λ1 = μ1 = 3, λ2 = μ2 = 1) and different resource demands (w1 = 1,
w2 = 2). The maximum number of instances per application is N1 = 8 and
N2 = 4, respectively. Fig. 7 shows, for each policy, the steady-state probability
of having a given number of idle PMs. While the mean number of idle machines
used in the previous sections is a useful estimate, we present here the distribution
of this number per machine, to show more clearly how each policy affects energy
consumption. For all cases in Fig. 7, the probability to have 3 or 4 unutilised PMs
is negligible (less than 1%). Policies like ML-LL and ML-ML have the highest
probability to leave idle 1 or 2 machines. Interestingly, ML-LL shows a lower
probability to have no PMs idle than having only 1 in use.

The interference caused by multiple VMs active on the same PM can change
the execution time of any batch process executed by that machine, especially
when their combined workload pushes the utilization close to the maximum.
Different allocation and deallocation policies can minimize or magnify this inter-
ference. We therefore introduce another peformance measure for the model: the
system running time (R) representing the mean execution time of each allocated
VM, considering their mutual interactions. The introduction of R helps relate
energy consumption with system performance. This measure is equivalent to
system response time for time-sharing systems and can be computed using the
well known Little’s Law (N = X · R).

Fig. 8 shows results for different policies, where R is expressed in hours.
ML-ML shows a behavior opposite to LL-LL: ML-ML allows a system to have

Power Consumption Analysis of Replicated Virtual Applications 199

Fig. 7. Steady state probability to have a given number of idle PMs, per policy

Fig. 8. Running time in hours computed using Little’s Formula

more idle PMs, but at the cost of the worst system running time; LL-LL, while
providing the best running time, requires more running PMs. Other policies
provide similar R, but with very different energy consumption values.

In previous sections, we used Eq. 2 as a measure of energy consumption. To
give a more accurate account of energy consumption per policy, we now apply
Eq. 4. Fig. 9 shows results obtained by its use, for different values of Pidle and
Pbusy, as in [3]. The values used in Fig. 9a, Pidle = 18 Watts and Pbusy = 67
Watts were measured on a laptop machine and may represent, in a virtualised
datacenter, the newest servers on the market, with low consumption rates. In
Fig. 9b, Pidle = 70 Watts and Pbusy = 160 Watts values approximate instead
measurements taken on a desktop i7 Asus machine. They may well represent the
typical machine used as a server in a private cloud environment.

Different Pidle and Pbusy values result in different power consumptions in the
two figures, but they behave proportionally (the LL-ML always has the highest
consumption). The only noticeable exceptions are ML-LL and ML-ML, as they
tend to consolidate VMs over the fewest possible PMs. This strategy works best
when Pidle is low, while it is less effective when it is high, as there is little gain
in turning off a machine that does not consume much power when idle.

200 P. Piazzolla et al.

a. b.

Fig. 9. Energy Consumption using different Pidle and Pbusy values

6.4 Using Real Traffic Data

As a final example, we present results obtained from parameterizing the model
in Fig. 2 and 3 according to real internet traffic data. The traces, available at
[6], are analyzed to determine λk and μk rates for two classes of applications
through a fitting procedure. In particular, after defining a time interval of 24
hours, we consider the workload generated by two classes of requests, GET and
POST , during that interval in terms of number of operations issued every 15
minutes. In Fig. 10a, one can see the hourly distribution of requests. We assume
that each virtual machine can handle a limited number of class operations per
hour. During the day, as the workload fluctuates, the number of required VMs
will vary. We set the maximum number of requests per hour handled by class
1 VMs at 1.25 million, while class 2 VMs can handle up to 100,000 requests
per hour. In Fig. 10a, the main y-axis shows the thresholds for the first class of
requests (GET) while the secondary y-axis shows the same for the second class
(PUT). As it can also be seen from the figure’s grid, we need a total of 18 VMs to
handle the daily load, 9 for each class. From the traces it is possible to evaluate
for how many 15 minute intervals a given number of VMs of a class is required to
support the workload. We then set λk and μk dependent to the marking of pk, to
reproduce, on average, the traces’ throughput. Unlike for other tests, we assume
that there is no degradation in performance when a PM utilization increases and
that, in this case, λk(pk) �= μk(pk). This requires to measure energy efficiency
using Eq. 2, as the mean number of idle machines in steady state. Moreover, all
the VMs requested by classes are of the same type (w1 = w2 = 1). The maximum
number of virtual machines required by one of the K = 2 classes considered is
fixed at N = 8. This is because we assume that at least 1 VM per class is always
on to handle the minimum load expected and is thus excluded from the model.
Fig. 10b presents results for three different combinations of M and C able to
allocate the total of 16 VMs required. By Eq. 1, M · C = 16; thus, if the system
has M = 2, then each PM machine has C = 8 cores; if M = 4, then C = 4; and,
if M = 8, then C = 2.

The figure shows increasing probabilities to have idle PMs as M grows, as
observed in Section 6.1. In this case, it is possible to compare how different

Power Consumption Analysis of Replicated Virtual Applications 201

a. b.

Fig. 10. a) Real traffic traces for two classes of requests. b) Comparing energy efficiency
of different policies using real traffic data to set the model.

policies behave as PMs increase. Even if ML-LL provides the most idle PMs,
policies like LL-LL and Rnd-RR seem to benefit more from a higher number of
PMs, in particular showing, from M = 4 to M = 8, an 380% idleness increase.

7 Conclusion

We used Petri net models to investigate how different VM allocation and deal-
location strategies impact energy consumption in a virtualised datacenter. We
showed that different performance objectives, in terms of response time versus
power consumption can be achieved by choosing the appropriate placement pol-
icy. Future implementation will include features like times and power costs for
server startup and shutdown. To extend the realism of the model, more complex
policies as well as different classes of resources, like storage and network, will also
be included in addition to the CPU. Due to state-space explosion, such model
extensions will likely require discrete-event simulation for their study.

References

1. Beloglazov, A., Buyya, R., Lee, Y.C., Zomaya, A., et al.: A taxonomy and survey of
energy-efficient data centers and cloud computing systems. Advances in Computers
82(2), 47–111 (2011)

2. Bennani, M.N., Menascé, D.A.: Resource allocation for autonomic data centers
using analytic performance models. In: Autonomic Computing, ICAC 2005, pp.
229–240, June 2005

3. Cerotti, D., Gribaudo, M., Piazzolla, P., Pinciroli, R., Serazzi, G.: Multi-class queu-
ing networks models for energy optimization. In: Proc. of 8th Int. Conf. Perfor-
mance Evaluation Methodologies and Tools (2014)

4. Cerotti, D., Gribaudo, M., Piazzolla, P., Serazzi, G.: Matching performance objec-
tives for open and closed workloads by consolidation and replication. Annals of
Operations Research, pp. 1–24 (2014)

5. Ciardo, G., Jones III, R.L., Miner, A.S., Siminiceanu, R.I.: Logic and stochastic
modeling with SMART. Performance Evaluation 63(6), 578–608 (2006). Modelling
Techniques and Tools for Computer Performance Evaluation

202 P. Piazzolla et al.

6. Danzig, P., Mogul, J., Paxson, V., Schwartz, M.: The internet traffic archive. The
archive is sited at the Lawrence Berkeley National Laboratory. http://ita.ee.lbl.
gov/html/traces.html

7. Fan, X., Wolf-Dietrich Weber, W.-D., Barroso, L.A.: Power provisioning for a
warehouse-sized computer. In: Proce. of the 34th Int. Symposium on Computer
Architecture, pp. 13–23. ACM, New York (2007)

8. Gandhi, A., Harchol-Balter, M., Das, R., Lefurgy, C.: Optimal power allocation
in server farms. In: Proc. of the 11th Int. Conf. on Measurement and Modeling of
Computer Systems, pp. 157–168. ACM, NY (2009)

9. Gribaudo, M., Piazzolla, P., Serazzi, G.: Consolidation and replication of VMs
matching performance objectives. In: Al-Begain, K., Fiems, D., Vincent, J.-M.
(eds.) ASMTA 2012. LNCS, vol. 7314, pp. 106–120. Springer, Heidelberg (2012)

10. Nathuji, R., Schwan, K.: Virtualpower: Coordinated power management in virtu-
alized enterprise systems. SIGOPS Oper. Syst. Rev. 41(6), 265–278 (2007)

11. Pinheiro, E., Bianchini, R., Carrera, E.V., Heath, T.: Load balancing and unbal-
ancing for power and performance in cluster-based systems (2001). http://www2.
ic.uff.br/julius/stre/pinheiro01load.pdf

12. Raghavendra, R., Ranganathan, P., Talwar, V., et al.: No “power” struggles: Coor-
dinated multi-level power management for the data center. SIGARCH Comput.
Archit. News 36(1), 48–59 (2008)

13. Song, Y., Wang, H., Li, Y., et al.: Multi-tiered on-demand resource scheduling for
VM-based data center. In: Proc. of the 9th Symposium on Cluster Computing and
the Grid, pp. 148–155. IEEE (2009)

14. Watson, B.J., Marwah, M., Gmach, D., et al.: Probabilistic performance modeling
of virtualized resource allocation. In: Proc. of the 7th int. Conference on Autonomic
Computing, pp. 99–108. ACM, NY (2010)

15. Xu, X., Hu, H., Hu, N., Ying, W.: Cloud task and virtual machine allocation
strategy in cloud computing environment. In: Lei, J., Wang, F.L., Li, M., Luo, Y.
(eds.) NCIS 2012. CCIS, vol. 345, pp. 113–120. Springer, Heidelberg (2012)

http://ita.ee.lbl.gov/html/traces.html
http://ita.ee.lbl.gov/html/traces.html
http://www2.ic.uff.br/julius/stre/pinheiro01load.pdf
http://www2.ic.uff.br/julius/stre/pinheiro01load.pdf

On the Influence of High Priority Customers
on a Generalized Processor Sharing Queue

Jasper Vanlerberghe(B), Joris Walraevens, Tom Maertens, and Herwig Bruneel

Stochastic Modelling and Analysis of Communication Systems Research Group
(SMACS), Department of Telecommunications and Information Processing (TELIN),

Ghent University (UGent), Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
{jpvlerbe,jw,tmaerten,hb}@telin.UGent.be

Abstract. In this paper, we study a hybrid scheduling mechanism in
discrete-time. This mechanism combines the well-known Generalized Pro-
cessor Sharing (GPS) scheduling with strict priority. We assume three
customer classes with one class having strict priority over the other
classes, whereby each customer requires a single slot of service. The latter
share the remaining bandwith according to GPS. This kind of scheduling
is used in practice for the scheduling of jobs on a processor and in Qual-
ity of Service modules of telecommunication network devices. First, we
derive a functional equation of the joint probability generating function
of the queue contents. To explicitly solve the functional equation, we
introduce a power series in the weight parameter of GPS. Subsequently,
an iterative procedure is presented to calculate consecutive coefficients of
the power series. Lastly, the approximation resulting from a truncation of
the power series is verified with simulation results. We also propose ratio-
nal approximations. We argue that the approximation performs well and
is extremely suited to study these systems and their sensitivity in their
parameters (scheduling weights, arrival rates, loads ...). This method
provides a fast way to observe the behaviour of such type of systems
avoiding time-consuming simulations.

Keywords: Generalized Processor Sharing (GPS) · Priority · Queue-
ing · Scheduling · Power series

1 Introduction

Numerous queueing systems in practice, have a high-priority bypass possibility.
In this paper we study the influence of these high priority customers on a gener-
alized processor sharing (GPS) queue. For instance, the processor of a computer
system is shared by several jobs, whereby each class of jobs gets a time-share
according to the weight of its class. However, the processor can also be inter-
rupted, for hardware I/O for instance (i.e., the user pushes a key, requested data
from the harddisk becomes available ...), these are in fact short high-priority
jobs, bypassing the normal scheduling mechanism.

c© Springer International Publishing Switzerland 2015
M. Gribaudo et al. (Eds.): ASMTA 2015, LNCS 9081, pp. 203–216, 2015.
DOI: 10.1007/978-3-319-18579-8 15

204 J. Vanlerberghe et al.

An example from telecommunications is DiffServ [9]. DiffServ is short for Dif-
ferentiated Services and is an architecture designed to deliver a different Quality
of Service (QoS) grade to various services in telecommunication networks. It
defines an Expedited Forwarding (EF) class of packets next to the Assured For-
warding (AF) class. EF packets have essentially high priority and are thus given
strict priority over all other packets. The AF class of packets is divided into sub-
classes, and the scheduling amongst the subclasses is a GPS-based scheduling.

Cisco implemented this kind of scheduling mechanism in some of its gigabit
switch routers. The brand names used are IP Realtime Transport Protocol (RTP)
Priority and Low Latency Queueing (LLQ); both are based on a mixture of
GPS-like scheduling with priority bypassing. They differ in the type of traffic
they support, i.e., UDP vs TCP.

As a result of its practical application, this model also attracted attention
from the research community, where it is frequently referred to as PQ-GPS.
Jin et al. [4,5] studied PQ-GPS under long-range dependent traffic by using a
flow decomposition approach dividing the system into single-server single-queue
(SSSQ) systems. They obtain analytical upper and lower bounds. Parveen [12]
used the same SSSQ approach to study a system containing both long-range and
short-range dependent traffic. After the single queue decomposition he however
uses another technique resulting in a single approximation, as opposed to an
upper and lower bound. Lastly, we mention Wang et al. [20] who studied a finite
hybrid queueing model using PQ and Weighted Fair Queueing (WFQ). As WFQ
is known to be a good approximation for GPS, it is also of interest here. Drawing
up a Markov chain for the system and solving it for the steady-state probability,
they conclude with a sensitivity analysis for the parameters of the system.

Next to studying hybrid scheduling models, most of the attention has gone
to both individual models, i.e., either priority queueing or generalized processor
sharing models. Priority queueing was, for instance, studied in [3,6,13,15,18,19].
Whereas, GPS was analyzed in [7,8,10,11,17,21].

In this paper, we analyze a hybrid priority-GPS scheduling algorithm. We
construct a functional equation for the probability generating function (pgf)
of the queue contents in steady state. Subsequently, we develop an iterative
procedure to calculate the coefficients of the power series of this pgf, whereby the
power series is constructed in the GPS-weight. Due to practical restrictions, we
use the truncated power series to construct approximations. Lastly, we evaluate
the approximations using simulation results.

2 Mathematical Model

We consider a discrete-time (i.e., time is assumed to be slotted) queueing system
with three queues of infinite capacity and one transmission channel. Three classes
of customers, named 1, 2 and 3, arrive to the system. Customers of class 1
have strict priority over the other customers. Consequently, the server always
serves class 1 as long as this class is backlogged. If class 1 is not backlogged,
class 2 and 3 customers are served according to a discrete-time implementation

On the Influence of High Priority Customers 205

Fig. 1. Model

of GPS. As such, the server serves a class 2 customer with probability β and a
class 3 customer with probability (w.p.) 1−β, if both classes are backlogged. The
weight parameter of the GPS scheduling is thus β and can be used to divide the
bandwith among customers of class 2 and 3. Within each queue, the customers
are served in FIFO order. This model is depicted in Fig. 1.

The number of arrivals of class j (j = 1, 2, 3) in slot k is denoted by aj,k,
where we assume {aj,k, k > 0} forms a sequence of independent and identically
distributed random variables. The joint pgf of the arrivals of all classes is denoted
as A(z1, z2, z3) � E[za1,k

1 z
a2,k
2 z

a3,k
3]. Furthermore, we define λj as the mean num-

ber of arrivals in queue j and λT as the mean total number of arrivals to the
queueing system per time slot. Every customer requires a single slot of service.
This means that the load ρ (i.e., the mean number of slots of work arriving
to the system per slot) equals λT ; subsequently, the stability condition for this
queueing system is λT < 1.

In the next sections, we study the stationary distribution of the queue content
in each of the queues. Therefore, we define uj,k as the queue content in queue j

at the beginning of slot k and Uk(z1, z2, z3) � E[zu1,k
1 z

u2,k
2 z

u3,k
3] as the joint pgf

of the queue content at the beginning of slot k. The stationary distribution is
then U(z1, z2, z3) = limk→∞ Uk(z1, z2, z3).

3 The Functional Equation

Let us first establish the system equations, relating (u1,k, u2,k, u3,k) and (u1,k+1,
u2,k+1, u3,k+1), i.e., the state of the system at the beginning of slot k and the
state of the system at slot k + 1. We split the equations into several (sub)cases:

– All queues empty, i.e., uj,k = 0, j = 1, 2, 3:

(u1,k+1, u2,k+1, u3,k+1) = (a1,k, a2,k, a3,k) (1)

– Queue 1 not empty, i.e., u1,k > 0:

(u1,k+1, u2,k+1, u3,k+1) = (u1,k − 1 + a1,k, u2,k + a2,k, u3,k + a3,k) (2)

– Queue 1 empty, i.e., u1,k = 0:

206 J. Vanlerberghe et al.

• queue 2 empty and queue 3 not empty i.e., u2,k = 0, u3,k > 0:

(u1,k+1, u2,k+1, u3,k+1) = (a1,k, a2,k, u3,k − 1 + a3,k) (3)

• queue 2 not empty and queue 3 empty, i.e., u2,k > 0, u3,k = 0:

(u1,k+1, u2,k+1, u3,k+1) = (a1,k, u2,k − 1 + a2,k, a3,k) (4)

• queue 2 and 3 both not empty, i.e., u2,k > 0, u3,k > 0:

(u1,k+1, u2,k+1, u3,k+1) =

{
(a1,k, u2,k − 1 + a2,k, u3,k + a3,k) w.p. β

(a1,k, u2,k + a2,k, u3,k − 1 + a3,k) w.p. 1 − β

(5)

From these systems equations, we construct a relation between the pgfs
Uk(z1, z2, z3) and Uk+1(z1, z2, z3):

Uk+1(z1, z2, z3) = A(z1, z2, z3)
(

Uk(0, 0, 0)

+
1
z1

(
Uk(z1, z2, z3) − Uk(0, z2, z3)

)

+
1
z3

(
Uk(0, 0, z3) − Uk(0, 0, 0)

)

+
1
z2

(
Uk(0, z2, 0) − Uk(0, 0, 0)

)

+
(

β

z2
+

1 − β

z3

) (
Uk(0, z2, z3)

− Uk(0, 0, z3) − Uk(0, z2, 0) + Uk(0, 0, 0)
))

. (6)

In steady state, both Uk and Uk+1 are equal. We denote U(z1, z2, z3) �
limk→∞ Uk(z1, z2, z3) = limk→∞ Uk+1(z1, z2, z3) as the pgf of the queue content
in steady state. By letting k → ∞ in Equation (6) and solving the result for
U(z1, z2, z3), we retrieve the following functional equation for U(z1, z2, z3):

U(z1, z2, z3) =

A(z1, z2, z3)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(
z2(z1 − z3) + βz1(z3 − z2)

)
U(0, z2, z3)

+(1 − β)z1(z3 − z2)U(0, z2, 0)

−βz1(z3 − z2)
)
U(0, 0, z3)

+
(
z1z3(z2 − 1) + βz1(z3 − z2)U(0, 0, 0)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

z2z3(z1 − A(z1, z2, z3))
(7)

This functional equation still contains some unknowns that need to be deter-
mined to obtain full knowledge of the statistical distribution of the queue length.

On the Influence of High Priority Customers 207

Therefore, we need to calculate the unknown boundary functions U(0, z2, z3),
U(0, z2, 0), U(0, 0, z3) and U(0, 0, 0). This last unknown is easily found as
U(0, 0, 0) and equals the probability that the system is empty in steady state
(u1 = u2 = u3 = 0). In queueing theory, this is a well-known result and is equal
to 1 − λT . For ease of notation, however, we will only do this substitution after
eliminating the other boundary functions.

4 The Power Series Approximation

To eliminate the boundary functions, we write U(z1, z2, z3) as a power series in
β, where we assume U(z1, z2, z3) is analytic in a neighborhood of β = 0. This
approach was also used in [17] to analyze a two-queue GPS system. We write:

U(z1, z2, z3) =
∞∑

m=0

Vm(z1, z2, z3)βm. (8)

In the remainder of this section, we use this power series and the functional
equation from the previous section to derive an iterative procedure to calculate
Vm from Vm−1.

4.1 Eliminating Vm(0, 0, z3)

The first step is to replace U(z1, z2, z3) by its power series in (7). Subsequently, we
can equate the coefficients of βm on the right and left hand side of Equation (7).
For the coefficient of βm,m ≥ 0, this yields

(z2z3(z1−A(z1, z2, z3))Vm(z1, z2, z3) (9)

=A(z1, z2, z3)
[
z1(z3 − z2)

(
Pm−1(z2, z3) + Vm(0, z2, 0) + Vm−1(0, 0, 0)

)

+ z2(z1 − z3)Vm(0, z2, z3) + z1z3(z2 − 1)Vm(0, 0, 0)
]
,

where we defined V−1(z1, z2, z3) � 0 and Pm(z2, z3) = Vm(0, z2, z3)−Vm(0, z2, 0)
−Vm(0, 0, z3) and thus P−1(z2, z3) = 0. Looking closely at Equation (9), we can
see that only two of the remaining unknown boundary functions Vm(0, z2, 0) and
Vm(0, z2, z3) are needed to calculate Vm(z1, z2, z3), assuming Vm−1(z1, z2, z3) is
known. By introducing the power series we effectively eliminated one of the
unknown boundary functions.

4.2 Eliminating Vm(0, z2, z3)

By using a generalization of Rouchè’s theorem [1], we can prove that z1 −
A(z1, z2, z3) has one zero in the unit disk of z1 for an arbitrary z2 and z3 in
the unit disk. We denote this zero by Y2,3(z2, z3) and it is thus implicitly defined
as Y2,3(z2, z3) = A(Y2,3(z2, z3), z2, z3), with |Y2,3(z2, z3)| < 1. As the left hand

208 J. Vanlerberghe et al.

side of Equation (9) is zero for z1 = Y2,3(z2, z3) and Vm(z1, z2, z3) remains finite
in the unit circle, the right hand side should also equal zero. This leads to

z2(z3 − Y2,3(z2, z3))Vm(0, z2, z3)

=Y2,3(z2, z3)(z3 − z2)
(
Pm−1(z2, z3) + Vm(0, z2, 0) + Vm−1(0, 0, 0)

)

+ Y2,3(z2, z3)z3(z2 − 1)Vm(0, 0, 0). (10)

4.3 Eliminating Vm(0, z2, 0)

We can prove that Y2,3(z2, z3) is the pgf of a random variable of this system,
see [18] for a similar example. Then by again using Rouchè’s theorem, we can
prove that z3 −Y2,3(z2, z3) has one zero in the unit disk of z3 for an arbitrary z2
in the unit disk. We denote this zero by Y2(z2) and it is thus implicitly defined
as Y2(z2) = Y2,3(z2, Y2(z2)) = A(Y2(z2), z2, Y2(z2)), with |Y2(z2)| < 1. As the
left hand side of Equation (10) is zero for z3 = Y2(z2) and Vm(0, z2, z3) remains
finite in the unit circle, the right hand side should also equal zero. This yields

Vm(0, z2, 0) = − Pm−1(z2, Y2(z2)) − Vm−1(0, 0, 0) +
Y2(z2)(z2 − 1)Vm(0, 0, 0)

z2 − Y2(z2)
.

(11)

Feeding this result back into Equation (10), we get that

z2(z3 − Y2,3(z2, z3))Vm(0, z2, z3)

= Y2,3(z2, z3)(z3 − z2)
(
Qm−1(z2, z3) +

Y2(z2)(z2 − 1)Vm(0, 0, 0)
z2 − Y2(z2)

)
, (12)

with

Qm(z2, z3) = Pm(z2, z3) − Pm(z2, Y2(z2)) (13)
= Vm(0, z2, z3) − Vm(0, z2, Y2(z2)) − Vm(0, 0, z3) + Vm(0, 0, Y2(z2)).

Lastly, as U(0, 0, 0) = 1 − λT (shown before), we know that V0(0, 0, 0) = 1 − λT

and Vm(0, 0, 0) = 0 for m > 0.
So by introducing the power series notation and the two implicitly defined

functions Y2,3 and Y2, we found a solution for the boundary functions. Substi-
tuting, these solutions in Equation (9), we get (with m > 0) that

V0(z1, z2, z3) =
(1 − λT)A(z1, z2, z3)(z2 − 1)(z3 − Y2(z2))(z1 − Y2,3(z2, z3))

(z2 − Y2(z2))(z3 − Y2,3(z2, z3))(z1 − A(z1, z2, z3))
,

(14)

Vm(z1, z2, z3) =
A(z1, z2, z3)(z3 − z2)Qm−1(z2, z3)(z1 − Y2,3(z2, z3))

z2(z3 − Y2,3(z2, z3))(z1 − A(z1, z2, z3))
. (15)

As a result, starting from V0, Vm can be calculated from Vm−1. This concludes
the iterative calculation procedure of U(z1, z2, z3).

On the Influence of High Priority Customers 209

As a test of our analysis, suppose we would want to study the joint probability
generating function of u1 and u2 + u3. We can do this by replacing both z2 and
z3 by z, as E[zu1

1 zu2+u3] = U(z1, z, z). We subsequently get:

V0(z1, z, z) =
(1 − λT)A(z1, z, z)(z − 1)(z1 − Y2,3(z, z))

(z − Y2,3(z, z))(z1 − A(z1, z, z))
, (16)

Vm(z1, z, z) = 0. (17)

As Vm equals zero for m > 0, U(z1, z, z) = V0(z1, z, z) and the pgf is independent
of β, as expected. The result we get, is the pgf for a priority queueing system
with 2 queues as can be found in [19]. This confirms our result.

5 Approximations of Performance Measures

In the previous section, we derived an iterative algorithm to calculate the joint
pgf U(z1, z2, z3) of the queue content. More practical performance measures of
the system, however, would for instance be the mean length of each of the three
queues. These can be calculated from the power-series form of the pgf

E[uj] =
∂U(z1, z2, z3)

∂zj

∣∣∣∣
z1=z2=z3=1

=
∞∑

m=0

βm ∂Vm(z1, z2, z3)
∂zj

∣∣∣∣
z1=z2=z3=1

. (18)

We showed earlier that Vm(z1, 1, 1) = 0 for m > 0, so E[u1] = V0(1, 1, 1) is
independent of β. This is of course expected, as the length of the high-priority
queue should not depend on the scheduling of the packets of the lower priority
queues.

A second conclusion follows from the fact that in the work conserving system
presented here, the total backlog is a constant. This constant E[uT] is indepen-
dent of β. As a result, we get:

E[uT] =E[u1] + E[u2] + E[u3], (19)
E[uT] − E[u1] =E[u2] + E[u3] (20)

=
∞∑

m=0

βm ∂Vm(1, z2, 1)
∂z2

∣∣∣∣
z2=1

+
∞∑

m=0

βm ∂Vm(1, 1, z3)
∂z3

∣∣∣∣
z3=1

.

(21)

The terms in the left hand side are constants, while E[u2] and E[u3] on the right
hand side of the equation are a function of β, as can be seen from Equation (18).
Subsequently, this means that for m > 0:

∂Vm(1, z2, 1)
∂z2

∣∣∣∣
z2=1

= − ∂Vm(1, 1, z3)
∂z3

∣∣∣∣
z3=1

. (22)

210 J. Vanlerberghe et al.

This result can significantly help speed up calculations, as we only need to cal-
culate one of those derivatives.

With these results, we are able to calculate the exact mean queue lengths,
or at least to an arbitrary precision. This is however only theoretically possible.
In practice, the calculation of Vm is far from straightforward. The calculation
of Qm−1 in (15) involves Vm(0, z2, Y2(z2)) and Vm(0, 0, Y2(z2)), for which sev-
eral applications of l’Hopital’s rule are needed. The differentiation in l’Hopital’s
rule leads to very large expressions, quickly becoming infeasable for current
computers. Calculating the mean queue length involves another differentiation
and evaluation in 1 for all zj , j = 1..3, leading to several more applications of
l’Hopital’s rule.

We, however, have another trick up our sleeve. We can also calculate the
power series in β = 1 leading to:

U(z1, z2, z3) =
∞∑

m=0

(1 − β)mṼm(z1, z2, z3) (23)

So, because of the symmetry in the system, Ṽm can be calculated from Vm,
whereby class 3 customers are sent to queue 2 and class 2 customers to queue 3.
In particular, Ṽm can be calculated from Equation (15) with A(z1, z2, z3) replaced
by A(z1, z3, z2). Subsequently, the mean lengths of queues 2 and 3 can be calcu-
lated as

E[uj] =
∞∑

m=0

∂Ṽm(z1, z2, z3)
∂z5−j

∣∣∣∣∣
z1=z2=z3=1

, j = 2, 3. (24)

Basically, in practice we can calculate the first M terms of the power series
of E[u2] and E[u3], either in β = 0 or in β = 1, from the functions V0 up to
VM . With these values we can construct approximations. We opt to approximate
E[u2] and E[u3] by rational functions (Padè approximants) of the form

[L/N]E[uj](β) =
∑L

l=0 vj,lβ
l

∑N
n=0 wj,nβn

, (25)

whereby the coefficients vj,l and wj,n should be chosen such that the deriva-
tives of [L/N]E[uj](β) in either 0 or 1 match the values obtained before. For
[L/N]E[uj](β) to be unique, we need a normalization. Therefore, we choose
wj,0 = 1. As we have 2(M + 1) datapoints and L + N + 1 coefficients in
[L/N]E[uj](β), we need to choose L and N such that L + N = 2M + 1.

The Padè approximants can introduce difficulties as the denominator can
introduce poles for β ∈ [0, 1]. Furthermore, the result could be non-monotone;
however, the mean queue length of class 2 (class 3) should decrease (increase)
in β. Lastly, the performance of each approximant is different and varies with
the parameters of the arrival process, so it is unclear which one performs best
beforehand (see also the numerical examples in the next section). These problems
are identical to the ones in [16], the solution presented therein can also be used

On the Influence of High Priority Customers 211

here to overcome these problems. This solution (in short) consists of disregarding
the unfeasible approximants and averaging the remaining ones. As to keep this
text self-contained and simple, we will restrict the discussion here to the Padè
approximants (and in the remainder do not use the solution from [16].

6 Numerical Examples

In this section, we will compare our power series approximation for the mean
queue length with simulation results. As the mean queue length for class 1 is not
influenced by the other queues and could also easily be calculated from results
for single-class FCFS queueing, we will not discuss it here. Furthermore, we only
analyze queue 2, as the system is work conserving, results for queue 3 follow
easily from (19).

We will use an arrival process with a joint pgf of the number of arrivals of
the three classes of the form

A(z1, z2, z3) =
(

1 +
λ1

16
(z1 − 1) +

λ2

16
(z2 − 1) +

λ3

16
(z3 − 1)

)16

, (26)

where λj is the arrival rate of class j customers (as defined earlier). Furthermore,
we define α1 = λ1

λT
and α2 = λ2

λT
as the fraction of class 1 and class 2 customers,

respectively.
For the simulation results in this section, we have used Monte-Carlo simula-

tions over 107 slots. This high number of slots is enough to eliminate bias from
the transient phase. Additionally, each simulation uses exactly the same sequence
of arrivals and decision variables, to minimize the variance between simulations
for different parameters of the system. This is the well-known technique of the
common random numbers[2,14].

In Fig. 2, we show the mean length of queue 2 as a function of the weight
β, with λT = 0.9, α1 = 0.1, and α2 = 0.1. The figure shows curves of the
simulation result and the Padè approximants without poles. We can see that for
these parameters the [2/3] Padè approximant is very accurate.

Secondly, we observe that the approximations perform best close to β = 0
and β = 1. This is expected as the available information is exactly the value up
to the M -th order derivative in these points (in this case M = 2). Subsequently,
the approximants are constructed to match this information, thus performing
well near β = 0 and β = 1.

In our second numerical example, we study the influence of the amount of
high-priority (i.e., class 1) customers. We keep the total load λT = 0.9 fixed
and λ2 = λ3, while increasing α1 from 0.1 to 0.6. The mean queue-2 length
is depicted in Fig. 3 on the left, showing both the simulation results and the
best performing Padè approximant. We can see that the performance of the
approximation is still accurate though slightly deteriorates as α1 decreases, this
results from the choice of the approximant. For this graph, we chose the [3/2]
approximant, which on average performs best for these curves, but for smaller α1

the [2/3] approximant is actually better. Furthermore for β = 1, i.e., when the

212 J. Vanlerberghe et al.

 0

 0.5

 1

 1.5

 2

 2.5

 0 0.2 0.4 0.6 0.8 1

simulation
[0/5]
[2/3]
[3/2]

Fig. 2. Mean queue-2 length: comparison between simulation and Padè approximants

 0

 0.5

 1

 1.5

 2

 2.5

 4

 4.5

 6

 0 0.2 0.6 0.8 0.s 1

α1=0.1

α
1=0.6

i mu l at omn[
/4]23

 0

 .

 50

 5.

 10

 0 021 024 026 028 5

α1=0.6

α1=0.1

simulation
[/]13

Fig. 3. Mean queue-2 length (left) and mean queue-2 delay (right): effect of increasing
fraction of class 1 customers

queueing system is effectively a strict priority system with class 1 having highest
priority, class 2 medium priority and class 3 low priority, higher α1 barely makes
a difference. This is mainly because there are few class 2 customers in the system
as α2 decreases from 0.1 to 0.056. On the other end for β = 0, we have a strict
priority queueing system with class 1 high priority, class 3 medium priority and

On the Influence of High Priority Customers 213

 0

 .

 5

 1

 2

 4

 0 065 062 068 06s .

λΤ=0.99

λΤ=0.9

λΤ=0.8

λΤ=0.7
λΤ=0.5

i mu l at omn[
/5]13

Fig. 4. Mean queue-2 length: effect of increasing total load

class 2 low priority. As class 2 is the lowest on the priority ladder, the influence
of the bypassing (higher priority) class 3 and class 1 customers is greater. With
α2 small, however, queueing rarely happens and the influence is rather small.

Using Little’s theorem, we also calculated the mean class-2 delay, it is depicted
in Fig. 3 on the right. We saw before that as α1 increases the mean queue-2 length
decreases, mainly because α2 decreases (we keep the total load and ratio between
class-2 and 3 packets fixed). As we can see from the graph of the delay, for an
increasing amount of high priority packets the class-2 packets have a larger delay.
There are thus less class-2 packets in the system but they stay there longer.

In Fig. 4, we show E[u2] as a function of β for different values of the total
load λT , with α1 = α2 = 0.1 fixed. As the load in the system increases, we
observe the queue-2 length increases as well. This is a classical queueing result:
a higher load always leads to higher congestion. As in the previous example (and
for the same reason), we can see the effect at β = 1 is barely visible as opposed
to at β = 0. Furthermore, we see that approximation is close to the simulated
result. For λT = 0.99, we only depicted the approximation. Simulations over 107

slots do not converge for this high load, as the event of the system being empty
becomes very rare.

Lastly, we look at the influence of the amount of class-2 customers while
keeping the total load and the amount of high-priority packets constant. The
results are depicted in Fig. 5 for λT = 0.9, α1 = 0.1 and α2 ranging from 0.1
to 0.5. As the amount of class-2 packets increases the queue length increases,
which was to be expected. Another observation is that the performance of the
approximation deteriorates. In Fig. 5, we chose to show the [2/3] approximant.
This is, however, not the best approximation for every parameter combination.

214 J. Vanlerberghe et al.

 0

 .

 5

 1

 2

 4

 0 065 062 068 06s .

α2=0.5
α2=0.4

α2=0.3

α2=0.2

α2=0.1

i mu l at omn[
/5]13

Fig. 5. Mean queue-2 length: effect of increasing fraction of class 2 customers

For instance, for α2 = 0.5 Padè approximant [3/2] is the best one. However,
even if we compare every simulation with the best fitting approximant, the per-
formance still deteriorates.

7 Conclusions

In this paper, we derived an analytical method to calculate the joint probability
generating function of a three-class queueing system with a hybrid GPS-priority
scheduling. The iterative algorithm leads to solutions with arbitrary precision in
theory. Unfortunately, in practice, we are limited by the capabilities of current
computers in the derivation of performance measures. Using Padè approximants,
we have presented a method to use partial information to construct approxima-
tions. These approximations were compared with results from simulation and
prove to work well. As a result, this power series approximation leads to a very
efficient method to study these kind of systems for the whole parameter space,
avoiding very time and resource consuming simulations.

Acknowledgments. This research has been co-funded by the Interuniversity Attrac-
tion Poles (IAP) Programme initiated by the Belgian Science Policy Office.

References

1. Adan, I.J., Van Leeuwaarden, J., Winands, E.M.: On the application of Rouché’s
theorem in queueing theory. Operations Research Letters 34(3), 355–360 (2006)

On the Influence of High Priority Customers 215

2. Asmussen, S., Glynn, P.W.: Stochastic Simulation: Algorithms and Analysis: Algo-
rithms and Analysis, vol. 57. Springer (2007)

3. Choi, B., Choi, D., Lee, Y., Sung, D.: Priority queueing system with fixed-length
packet-train arrivals. IEE Proceedings-Communications 145(5), 331–336 (1998)

4. Jin, X., Min, G.: Analytical modelling of hybrid PQ-GPS scheduling systems under
long-range dependent traffic. In: 21st International Conference on Advanced Infor-
mation Networking and Applications, 2007, AINA 2007. pp. 1006–1013. IEEE
(2007)

5. Jin, X., Min, G.: Performance modelling of hybrid PQ-GPS systems under long-
range dependent network traffic. IEEE Communications Letters 11(5), 446–448
(2007)

6. Kim, K., Chae, K.C.: Discrete-time queues with discretionary priorities. European
Journal of Operational Research 200(2), 473–485 (2010)

7. Lee, J.Y., Kim, S., Kim, D., Sung, D.K.: Bandwidth optimization for internet
traffic in generalized processor sharing servers. IEEE Transactions on Parallel and
Distributed Systems 16(4), 324–334 (2005)

8. Lieshout, P., Mandjes, M.: Generalized processor sharing: Characterization of
the admissible region and selection of optimal weights. Computers & Operations
Research 35(8), 2497–2519 (2008)

9. Nichols, K., Blake, S., Baker, F., Black, D.: Definition of the differentiated services
field (DS field) in the IPv4 and IPv6 headers. RFC 2474 (Proposed Standard) (dec
1998). http://www.ietf.org/rfc/rfc2474.txt, updated by RFCs 3168, 3260

10. Parekh, A.K., Gallager, R.G.: A generalized processor sharing approach to flow
control in integrated services networks: the single-node case. IEEE/ACM Transac-
tions on Networking (TON) 1(3), 344–357 (1993)

11. Parekh, A.K., Gallagher, R.G.: A generalized processor sharing approach to flow
control in integrated services networks: the multiple node case. IEEE/ACM Trans-
actions on Networking (TON) 2(2), 137–150 (1994)

12. Parveen, A.S.: A survey of an integrated scheduling scheme with long-range and
short-range dependent traffic. International Journal of Engineering Sciences &
Research Technology 3(1), 430–439 (2014)

13. Smith, P.J., Firag, A., Dmochowski, P.A., Shafi, M.: Analysis of the M/M/N/N
queue with two types of arrival process: Applications to future mobile radio sys-
tems. Journal of Applied Mathematics 2012 (2012)

14. Spall, J.C.: Introduction to stochastic search and optimization: estimation, simu-
lation, and control, vol. 65. John Wiley & Sons (2005)

15. Takine, T., Sengupta, B., Hasegawa, T.: An analysis of a discrete-time queue for
broadband ISDN with priorities among traffic classes. IEEE Transactions on Com-
munications 42(234), 1837–1845 (1994)

16. Vanlerberghe, J., Walraevens, J., Maertens, T., Bruneel, H.: Approximating the
optimal weights for discrete-time generalized processor sharing. In: Networking
Conference, 2014 IFIP, pp. 1–9. IEEE (2014)

17. Walraevens, J., van Leeuwaarden, J., Boxma, O.: Power series approximations for
two-class generalized processor sharing systems. Queueing systems 66(2), 107–130
(2010)

18. Walraevens, J., Steyaert, B., Bruneel, H.: Delay characteristics in discrete-time GI-
G-1 queues with non-preemptive priority queueing discipline. Performance Evalu-
ation 50(1), 53–75 (2002)

http://www.ietf.org/rfc/rfc2474.txt

216 J. Vanlerberghe et al.

19. Walraevens, J., Steyaert, B., Bruneel, H.: Performance analysis of a single-server
ATM queue with a priority scheduling. Computers & Operations Research 30(12),
1807–1829 (2003)

20. Wang, L., Min, G., Kouvatsos, D.D., Jin, X.: Analytical modeling of an integrated
priority and WFQ scheduling scheme in multi-service networks. Computer Com-
munications 33, S93–S101 (2010)

21. Zhang, Z.L., Towsley, D., Kurose, J.: Statistical analysis of the generalized proces-
sor sharing scheduling discipline. IEEE Journal on Selected Areas in Communica-
tions 13(6), 1071–1080 (1995)

Author Index

Ahmad, Ab Rahman 15
Aissani, Amar 1
Angius, Alessio 15

Balbo, Gianfranco 15
Barukab, Omar 15
Bruneel, Herwig 203

Chakraborty, Souymodip 30
Ciardo, Gianfranco 188

De Turck, Koen 59
Dimitriou, Ioannis 43

Evdokimova, Ekaterina 59

Fiems, Dieter 59
Fourneau, Jean-Michel 73

Gelenbe, Erol 87

Halawani, Sami M. 15
Horváth, András 15

Horváth, Gábor 100
Horváth, Kristóf Attila 115

Katoen, Joost-Pieter 30

Lukashenko, Oleg 130

Maertens, Tom 203
Marin, Andrea 87
Meng, Tianhui 143
Miner, Andrew 188
Morozov, Evsey 130

Phung-Duc, Tuan 1, 158, 173
Piazzolla, Pietro 188

Telek, Miklós 115

Vanlerberghe, Jasper 203

Walraevens, Joris 203
Wang, Qiushi 143
Wittevrongel, Sabine 59
Wolter, Katinka 73, 143

	Preface
	Organization
	Contents
	Optimal Analysis for M/G/1 Retrial Queue with Two-Way Communication
	1 Introduction
	2 Model Description
	3 Analysis
	3.1 Ergodicity Condition
	3.2 Joint Distribution of the Server Stateand the Number of Calls in Orbit
	3.3 Distribution of the Number of Calls in Orbit

	4 Some Performance Metrics and Numerical Results
	4.1 Performance Metrics
	4.2 Numerical Examples

	5 Optimization Problems
	5.1 Optimal Service Speeds
	5.2 Optimal Idle Interval
	5.3 Examples and Numerical Illustrations

	6 Conclusion
	References

	Use of Flow Equivalent Servers in the Transient Analysis of Product Form Queuing Networks
	1 Introduction
	2 Model
	3 Flow-Equivalent Aggregation
	4 Use of Flow-Equivalence in Transient Analysis
	4.1 Exact Aggregation in Transient Analysis
	4.2 Approximate Aggregation for Transient Analysis

	5 Numerical Illustration on a General Network
	6 Conclusions
	References

	Model Checking of Open Interval Markov Chains
	1 Introduction
	2 Interval Markov Chains
	3 Probabilitic Computation Tree Logic
	4 -Approximate Scheduler for Reachability
	5 PCTL Model Checking
	6 Conclusion
	References

	Performance Modeling of Cellular Systems with Finite Processor Sharing Queues in Random Environment, Guard Policy and Flex Retrial Users
	1 Introduction
	2 Model Description
	3 Process of the System States
	4 Stationary Distribution
	5 Performance Metrics
	6 Numerical Results
	References

	Efficient Performance Evaluation of Wireless Networks with Varying Channel Conditions
	1 Introduction
	2 Opportunistic Scheduling Model
	3 Performance Analysis
	3.1 Balance Equation
	3.2 Regular Perturbation
	3.3 Overload-Traffic Analysis
	3.4 Light-Traffic Analysis

	4 Numerical Results
	5 Conclusions and Future Work
	References

	Mixed Networks with Multiple Classes of Customers and Restart
	1 Introduction
	2 Description of the Model
	3 Main Result
	4 Open Questions and Concluding Remarks
	References

	Interconnected Wireless Sensors with Energy Harvesting
	1 Introduction and Previous Work
	2 The Mathematical Model
	3 Interconnected Sensor Nodes
	3.1 Product-Form Analysis

	4 Conclusion
	A Proof of Theorem 1

	Measuring the Distance Between MAPs and Some Applications
	1 Introduction
	2 Markovian Arrival Processes
	3 Efficient Calculation of the Distance BetweenTwo MAPs
	3.1 The Distance Between the Joint Density Functionsof Two MAPs
	3.2 The Distance Between the Lag Autocorrelation Functions

	4 Application: Approximating a RAP with a MAP
	4.1 Obtaining Matrix B1 Given that B and B0 Are Known
	4.2 Approximating a RAP
	4.3 Numerical Examples

	5 Application: Approximating the Departure Processof a MAP/MAP/1 Queue by a MAP
	5.1 Introduction to the Departure Process Analysis
	5.2 Practical Problems and Possible Solutions
	5.3 Numerical Example

	References

	Task Delegation in a Peer-to-Peer Volunteer Computing Platform
	1 Introduction
	2 Existing Volunteer Computing Platform Solutions
	2.1 A Brief History of Volunteer Computing
	2.2 Platforms

	3 Properties of the Proposed Distributed Computing Platform Solution
	4 Performance Analysis of Distributed Computing Platforms
	4.1 Phase Type Distributions
	4.2 Execution Time Model
	4.3 Mean Field Approximation
	4.4 The Mean Field System Model

	5 Simulation
	5.1 Execution Time Results
	5.2 Results of the Overall System Behavior

	6 Conclusions
	References

	On Convergence Rate to Stationarity of Queues with General Gaussian Input
	1 Introduction
	2 Large Deviation Background
	2.1 LDP with Appropriate Scaling

	3 Related Asymptotic Results
	4 Main Asymptotic Result
	5 Estimation of the Simulation Horizon
	6 Conclusion
	References

	Model-Based Quantitative Security Analysis of Mobile Offloading Systems Under Timing Attacks
	1 Introduction
	2 Security Analysis Based on SMP Model
	2.1 Behaviour of Attacker and System
	2.2 The Model
	2.3 Measures on SMP

	3 Semi-Markov Process Analysis
	3.1 DTMC Steady-State Probability Computations
	3.2 Semi-Markov Model Analysis
	3.3 Sensitivity Analysis

	4 Numerical Study
	5 Conclusion and Future Work
	References

	Single-Server Systems with Power-Saving Modes
	1 Introduction
	2 Model with Differentiated Vacations
	2.1 Model
	2.2 Analysis

	3 Model with Differentiated Working Vacations
	3.1 Model
	3.2 Analysis

	4 Model with Abandonment
	4.1 Model
	4.2 Analysis

	5 Numerical Examples
	6 Concluding Remark
	References

	Multiserver Queues with Finite Capacity and Setup Time
	1 Introduction
	2 Model
	3 Analysis
	4 Performance Measures and Numerical Examples
	4.1 Performance Measures
	4.2 M/M/c/c System
	4.3 Mean Response Time and Queue Length
	4.4 Effect of the Number of Servers
	4.5 Effect of the Capacity

	5 Concluding Remarks
	References

	Power Consumption Analysis of Replicated Virtual Applications
	1 Introduction
	2 Related Work
	3 Scenario
	4 Model Description
	5 Petri Net
	5.1 Modelling the Policies

	6 Experimental Results
	6.1 Two Application Classes
	6.2 Modelling Different Types of VMs
	6.3 Performance Analysis and Energy Consumption
	6.4 Using Real Traffic Data

	7 Conclusion
	References

	On the Influence of High Priority Customers on a Generalized Processor Sharing Queue
	1 Introduction
	2 Mathematical Model
	3 The Functional Equation
	4 The Power Series Approximation
	4.1 Eliminating Vm(0,0,z3)
	4.2 Eliminating Vm(0,z2,z3)
	4.3 Eliminating Vm(0,z2,0)

	5 Approximations of Performance Measures
	6 Numerical Examples
	7 Conclusions
	References

	Author Index

