
Chapter 8
Non-metricity and the Nonlinear Mechanics
of Distributed Point Defects

Arash Yavari and Alain Goriely

Abstract We discuss the relevance of non-metricity in a metric-affine manifold
(a manifold equipped with a connection and a metric) and the nonlinear mechanics
of distributed point defects. We describe a geometric framework in which one can
calculate analytically the residual stress field of nonlinear elastic solids with distrib-
uted point defects. In particular, we use Cartan’s machinery of moving frames and
construct the material manifold of a finite ball with a spherically-symmetric distribu-
tion of point defects. We then calculate the residual stress field when the ball is made
of an arbitrary incompressible isotropic solid. We will show that an isotropic distri-
bution of point defects cannot be represented by a distribution of purely dilatational
eigenstrains. However, it can be represented by a distribution of radial eigenstrains.
We also discuss an analogy between the residual stress field and the gravitational
field of a spherical mass.

8.1 Introduction

The first mathematical study of line defects in solids goes back to thework of Volterra
[Vol07] more than a century ago. The close connection between the mechanics of
solids with distributed defects and non-Riemannian geometries was independently
discovered in the 1950s by Kondo [Kon55a, Kon55b], Bilby et al. [BBS55], and
Bilby and Smith [BS56]. Defects influence many of the mechanical properties of
solids and have been the focus of intense research in the last few decades. Moti-
vated by applications of metals in industry and the need to take into account plastic
deformations, the micro mechanism of plasticity, i.e., dislocations have been stud-
ied by many researchers but mostly in the framework of linearized elasticity. Other
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line defects, e.g., disclinations have also been the subject of many investigations.
However, point defects have not received much attention even in the linearized set-
ting after the original works of Love [Lov27], and Eshelby [Esh54]. In particular,
Love [Lov27] calculated the stress field of a single point defect in an infinite linear
elastic solid and observed a 1/r3 singularity. Recently, we [YG12b] showed how
one can calculate the residual stress field of a nonlinear elastic solid with distributed
point defects. Non-metricity proved to be an essential geometric entity in describing
the zero-stress configuration (material manifold) of solids with point defects. Here,
material manifold (B, G,∇) is a flat, torsion-free 3-manifold with non-metricity in
which the body is stress free. We should mention that many researches have known
the relevance of non-metricity to the mechanics of point defects [Fal81, deW81,
Gra89, Kro90, MR02]. However, there has not been a concrete use of non-metricity
in the literature for calculating residual stresses. The geometric framework discussed
here has been recently used by the authors in the analysis of distributed dislocations
and disclinations as well [YG12a, YG13b].

In this book chapter we review the results of [YG12b], extend the residual stress
calculation to arbitrary incompressible isotropic solids, and make some new obser-
vations. In particular, we discuss an analogy with relativity and the gravitational field
of a spherical ball of mass m in an infinite empty space-time.

Another problem that can benefit from geometric ideas is the stress analysis of
inclusions in nonlinear elastic solids [YG13a]. In [YG13a] we showed that collaps-
ing a small spherical inclusion with pure dilatational eigenstrain while keeping the
strength of the inclusion fixed one recovers the stress field of a single point defect
in a linear elastic solid. Earlier in [YG12b] we had shown that using the nonlinear
solution one can recover the classical linear solution for small strength point defect
distributions supported in a small ball. Now one may be tempted to think that any
isotropic distribution of point defects can be represented by pure dilatational eigen-
strains. We will show that this is not the case and that material metric calculated in
[YG12b] is equivalent to a distribution of radial eigenstrains with no circumferential
eigenstrains.

8.2 Non-Riemannian Geometries and Anelasticity

To make this book chapter self contained, in the following we tersely review the
necessary geometric background.

Riemann-Cartan manifolds. On a manifold B a linear (affine) connection is an
operation∇ : X (B)×X (B) → X (B), whereX (B) denotes the set of vector fields on
B. In a local coordinate chart {X A},∇∂A∂B = �C

AB∂C , where�C
AB are Christoffel

symbols of the connection and ∂A = ∂
∂x A are the natural bases for the tangent space.

∇ is compatible with a metric G of the manifold if ∇G = 0. The torsion of ∇ is
defined by T (X, Y) = ∇XY − ∇YX − [X, Y], where [., .] is the commutator of
vector fields. ∇ is symmetric if it is torsion-free, i.e., ∇XY − ∇YX = [X, Y]. In
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(B,∇, G) the curvature is a map R : X (B) × X (B) × X (B) → X (B) defined by
R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X,Y]Z. A Riemann-Cartanmanifold (B,∇, G)

is a metric-affine manifold in which the metric and the connection are compatible.

Cartan’s moving frames. Let us consider a frame field {eα}N
α=1 that forms a basis

for the tangent space of B everywhere. We assume that this frame is orthonormal,
i.e.,

〈〈
eα, eβ

〉〉
G = δαβ . {eα}N

α=1 is, in general, a non-coordinate basis for the tangent
space, i.e., it is not necessarily induced from a coordinate chart. The frame field {eα}
naturally defines the co-frame field {ϑα}N

α=1 such that ϑ
α(eβ) = δα

β . The connection
1-forms are defined by ∇eα = eγ ⊗ωγ

α. The corresponding connection coefficients
are defined as ∇eβ eα = 〈

ωγ
α, eβ

〉
eγ = ωγ

βαeγ , i.e., ωγ
α = ωγ

βαϑβ . Similarly,
∇ϑα = −ωα

γϑγ , and ∇eβϑα = −ωα
βγϑγ . In an orthonormal frame, the metric has

the simple representation G = δαβϑα ⊗ ϑβ .

Non-metricity. Given a metric-affine manifold (B,∇, G)1, the non-metricity is a
map Q : X (B) × X (B) × X (B) → R defined as Q(U, V, W) = 〈∇UV, W〉G +
〈V,∇UW〉G − U[〈V, W〉G]. In other words,Q = −∇G. In the frame {eα},Qγαβ =
Q(eγ, eα, eβ). Non-metricity 1-forms are defined byQαβ = Qγαβϑγ . One can show
that Qγαβ = ωβγα + ωαγβ − 〈dGαβ, eγ〉, where d is the exterior derivative. Thus,
Qαβ = ωαβ +ωβα−dGαβ =: −DGαβ , where D is the covariant exterior derivative.
This is Cartan’s zeroth structural equation. For an orthonormal frame Gαβ = δαβ

and hence Qαβ = ωαβ + ωβα. In a metric-affine manifold with non-metricity, the
Weyl 1-form is defined as Q = 1

nQαβGαβ . Therefore, Qαβ = Q̃αβ + QGαβ ,

where Q̃ is the traceless part of the non-metricity. If Q̃ = 0 and if ∇ is torsion-
free, (B,∇, G) is called a Weyl manifold. The torsion and curvature 2-forms are
defined by

T α = dϑα + ωα
β ∧ ϑβ, (8.2.1)

Rα
β = dωα

β + ωα
γ ∧ ωγ

β . (8.2.2)

These are, respectively, Cartan’s first and second structural equations.

The compatible volume element on a Weyl manifold. A volume element on B is
any non-vanishing n-form. In the orthonormal coframe field {ϑα} the volume form
is written as μ = hϑ1 ∧ ... ∧ ϑn , for some positive function h. In a coordinate chart
{X A} we have μ = h

√
det G d X1 ∧ ... ∧ d Xn . Divergence of an arbitrary vector

field W on B is defined as (DivW)μ = LWμ, where L is the Lie derivative. Having
a connection divergence can also be defined as the trace of the covariant derivative,
i.e., Div∇ W = W A |A = W A

,A + �A
AB W B . The volume element μ is compatible

with ∇ if LWμ = (W A|A)μ, which is equivalent to D
(

h
√
det G

)
= 0 [Saa95].

Thus, dh
h = d ln h = n

2 Q. Note that this implies that d Q = 0. Therefore, to be able
to define a compatible volume element the Weyl one-form must be closed.

1In ametric-affinemanifold the torsion, curvature, and non-metricity, are, in general, non-vanishing.
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Geometric anelasticity. Let us briefly review geometric nonlinear elasticity. We
identify a body B with a Riemannian manifold B and a configuration of B is a
mappingϕ : B → S, where S is another Riemannian manifold (B, G). It is assumed
that the body is stress free in the material manifold. The deformation gradient is the
tangent map of ϕ and is denoted by F = T ϕ. At every point X ∈ B, F is a linear
map F(X) : TXB → Tϕ(X)S. Choosing local coordinate charts {xa} and {X A} on S
and B, respectively, the components of F read

Fa
A(X) = ∂ϕa

∂X A
(X). (8.2.3)

The transpose of F is defined by FT : TxS → TXB, 〈〈FV, v〉〉g = 〈〈
V, FTv

〉〉
G,

for all V ∈ TXB, v ∈ TxS. In components (FT(X))A
a = gab(x)Fb

B(X)G AB(X),
where g and G are metric tensors on S and B, respectively. The right Cauchy-Green
deformation tensorC(X) : TXB → TXB is defined byC(X) = F(X)TF(X) = (gab ◦
ϕ)Fa

A Fb
B . The relation between the Riemannian volume element dV at X ∈ B

and its corresponding deformed volume element at x = ϕ(X) ∈ S is dv = JdV ,
where J = √

det g/ det G det F is the Jacobian.
The left Cauchy-Green deformation tensor is defined as B� = ϕ∗(g�) with com-

ponents B AB = (F−1)A
a(F−1)B

b gab. The spatial analogues of C� and B� are

c� = ϕ∗(G), cab =
(

F−1
)A

a

(
F−1

)B
b G AB, (8.2.4)

b� = ϕ∗(G�), bab = Fa
A Fb

B G AB, (8.2.5)

where ϕ∗ and ϕ∗ are the pull-back and push-forward by ϕ, respectively. b� is called
the Finger deformation tensor. Note that C and b have the same principal invariants
denoted by I1, I2, and I3 [Ogd84]. For an isotropicmaterial the strain energy function
W depends only on the principal invariants ofb. One can show that for a compressible
and isotropic material the Cauchy stress has the following representation [DE56,
SM83]

σ = 2

(
I2
I3

∂W

∂ I2
+ ∂W

∂ I3

)
g� + 2

∂W

∂ I1
b� − 2

∂W

∂ I2
b−1. (8.2.6)

Similarly, for an incompressible and isotropic material the Cauchy stress has the
following representation [DE56, SM83]

σ =
(

−p + 2I2
∂W

∂ I2

)
g� + 2

∂W

∂ I1
b� − 2

∂W

∂ I2
b−1. (8.2.7)

Material manifold. We assume that the defect-free body is stress-free in Euclid-
ean space in the absence of external loads. This body may be made of a material
with multiple stress-free configurations (corresponding to multiple wells of a strain-
energy density) but we assume that all the material points are in the same energy well
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(that is we are not considering phase transformations). Next, we assume that some
distribution of defects appears in this body and induces residual stresses (we are
not considering nucleation or the work associated with the creation of defects). The
stress-free configuration with defects (referred to as the material manifold) explicitly
depends on the distribution of defects and their types but not on the constitutive equa-
tions. Of course, residual stresses explicitly depend on the choice of the constitutive
equations.

Point defects. The classical continuum picture of a single vacancy is the following.
Remove a small spherical ball from thebody and identify all the points on its boundary
sphere. A single interstitial or “extra matter” can be visualized by inserting a larger
elastic ball inside the spherical cavity and letting the system relax.Consider a distribu-
tion of point defects or “extramatter” in a solid. If one imagines partitioning this body
into a large number of small cubes of the same size and let them relax the resulting
stress-free cubes will have different sizes (and hence volumes) depending on the dis-
tribution of point defects. The relaxed volumes are the local embedding of the under-
lying Riemannian material manifold into the ambient (Euclidean) space. In other
words, in the stress-free configuration of the defective-solid volume elements vary
depending on the distribution of point defects. It is known that in ametric-affineman-
ifold (B,∇, G)with non-metricity theRiemannian volume element is not covariantly
constant. More specifically, D

√
det G = d

√
det G − ωα

α

√
det G = − n

2 Q
√
det G.

This shows that the Weyl one-form Q is somehow related to the volume density of
point defects.

In the following example, we will use a semi-inverse method and start with a
coframe field with some unknown function(s). This then implies that the material
metric is known up to the unknown function(s). To relate this unknown function(s)
to the volume density of point defects we will find a compatible volume element on
the material manifold B, i.e., a volume element that is covariantly constant.

8.3 Point Defects in an Incompressible Isotropic Ball

In [YG12b] we considered a ball of radius Ro with a spherically-symmetric isotropic
distribution of point defects.We constructed thematerial manifold and calculated the
residual stress field for an incompressible neo-Hookean solid. Here we first construct
the material manifold and then calculate the residual stress field when the defective
ball is made of an arbitrary incompressible isotropic solid.We also consider a special
class of compressible solids for a particular example of distributed point defects.

8.3.1 Construction of the Flat Weyl Material Manifold

In a body with only point defects the material manifold is a flat Weyl manifold,
i.e., the torsion and the curvature of the material connection both vanish. In order to
find a solution, we start by an ansatz for the material coframe field. In the spherical
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coordinates (R,�,�), R ≥ 0, 0 ≤ � ≤ π, 0 ≤ � < 2π, we assume the following
coframe field

ϑ1 = f (R)d R, ϑ2 = Rd�, ϑ3 = R sin� d�, (8.3.1)

for some unknown function f (R) > 0 to be determined. Assuming that the non-
metricity is traceless and isotropic, i.e.,Qαβ = 2δαβ q(R)ϑ1, the matrix of connec-
tion 1-forms has the following form

ω = [ωα
β] =

⎛

⎝
ω1

1 ω1
2 −ω3

1

−ω1
2 ω2

2 ω2
3

ω3
1 −ω2

3 ω3
3

⎞

⎠ , (8.3.2)

where ω1
1 = ω2

2 = ω3
3 = q(R)ϑ1, for a function q(R) to be determined. We now

need to enforce T α = 0. Note that

dϑ1 = 0, dϑ2 = 1

R f (R)
ϑ1 ∧ ϑ2, dϑ3 = − 1

R f (R)
ϑ3 ∧ ϑ1 + cot�

R
ϑ2 ∧ ϑ3.

(8.3.3)
Cartan’s first structural equations read

T 1 = ω1
2 ∧ ϑ2 − ω3

1 ∧ ϑ3 = 0, (8.3.4)

T 2 =
[

1

R f (R)
+ q(R)

]
ϑ1 ∧ ϑ2 − ω1

2 ∧ ϑ1 + ω2
3 ∧ ϑ3 = 0, (8.3.5)

T 3 = cot�

R
ϑ2 ∧ ϑ3 −

[
1

R f (R)
− 1

R
+ q(R)

]
ϑ3 ∧ ϑ1

+ ω3
1 ∧ ϑ1 − ω2

3 ∧ ϑ2 = 0. (8.3.6)

This implies that

ω1
2 = −

[
1

R f (R)
+ q(R)

]
ϑ2, ω2

3 = −cot�

R
ϑ3, ω3

1 =
[

1

R f (R)
+ q(R)

]
ϑ3.

(8.3.7)

It can be shown that R1
1 = R2

2 = R3
3 = 0 are trivially satisfied. The remaining

Cartan’s second structural equations read

R1
2 = −R2

1 = dω1
2 + ω3

1 ∧ ω2
3 = 0, (8.3.8)

R2
3 = −R3

2 = dω2
3 + ω1

2 ∧ ω3
1 = 0, (8.3.9)

R3
1 = −R1

3 = dω3
1 + ω2

3 ∧ ω1
2 = 0. (8.3.10)
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The first equation gives us the following ODE

1

f (R)

d

d R

[
1

R f (R)
+ q(R)

]
+ 1

R f (R)

[
1

R f (R)
+ q(R)

]
= 0. (8.3.11)

The solution is
1

R f (R)
+ q(R) = C

R
. (8.3.12)

Note that when q(R) = 0, we have f (R) = 1 and hence C = 1. Therefore

q(R) = 1

R

[
1 − 1

f (R)

]
. (8.3.13)

In this example the Weyl 1-form is written as

Q = 2q(R)ϑ1 = 2

R

[
1 − 1

f (R)

]
ϑ1 = 2( f (R) − 1)

R
d R. (8.3.14)

The function f (R) is determined using the volume density of point defects n(X) and
using the equation μ0 −μ = nμ0 [YG12b]. In the particular example of a defective
ball μ0 = R2 sin�d R ∧ d� ∧ d� and μ = f (R)h(R)μ0, and hence

f (R) = 1 − n(R)

1 − 1
R3

∫ R
0 3y2n(y)dy

. (8.3.15)

8.3.2 Calculation of the Residual Stress Field

In this section we extend our previous calculation in [YG12b] to arbitrary incom-
pressible isotropic solids and a certain class of compressible isotropic solids. We
consider a ball of radius Ro and assume that a point defect density n(R) is given.

Incompressible Isotropic Solids

The material metric has the following form

G =
⎛

⎝
f 2(R) 0 0
0 R2 0
0 0 R2 sin2 �

⎞

⎠ , G� =
⎛

⎜
⎝

1
f 2(R)

0 0

0 1
R2 0

0 0 1
R2 sin2 �

⎞

⎟
⎠ . (8.3.16)

Having the underlying Riemannian material manifold, we obtain the residual stress
field by embedding it into the Euclidean ambient space, which is the Euclidean
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3-space. We look for solutions of the form (r,φ, z) = (r(R),�, Z), and hence
det F = r ′(R). Assuming an incompressible solid we have

J =
√

det g
det G

det F = r2

f (R)R2 r ′(R) = 1. (8.3.17)

Assuming that r(0) = 0, we obtain

r(R) =
(∫ R

0
3x2 f (x)dx

) 1
3

. (8.3.18)

The Finger tensor b� (bab = Fa
A Fb

B G AB) is found to be

b� =
⎛

⎜
⎝

R4

r4(R)
0 0

0 1
R2 0

0 0 1
R2 sin2 �

⎞

⎟
⎠ . (8.3.19)

The principal invariants of b read

I1 = 2
r2(R)

R2 + R4

r4(R)
, I2 = 2

R2

r2(R)
+ r4(R)

R4 . (8.3.20)

Now (b−1)ab = cab = gamgbmcmn has the following representation

b−1 =

⎛

⎜⎜
⎝

r4(R)

R4 0 0

0 R2

r4(R)
0

0 0 R2

r4(R) sin2 �

⎞

⎟⎟
⎠ . (8.3.21)

Therefore, the Cauchy stress can be written as

σ =

⎛

⎜⎜⎜
⎝

−p + α R4

r4
+ 2β R2

r2
0 0

0 −p
r2

+ α
R2 + β

(
R2

r4
+ r2

R4

)
0

0 0 1
sin2 �

[−p
r2

+ α
R2 + β

(
R2

r4
+ r2

R4

)]

⎞

⎟⎟⎟
⎠

,

(8.3.22)

where α = 2 ∂W
∂ I1

and β = 2 ∂W
∂ I2

.

The only non-trivial equilibrium equation reads

σrr
,r + 2

r
σrr − rσθθ − r sin2 θ σφφ = 0. (8.3.23)
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Or

σrr
,R + 2 f R2

r2

(
1

r
σrr − rσθθ

)
= 0. (8.3.24)

This gives us the differential equation p′(R) = k(R), where

k(R) = α′(R)
R4

r4(R)
+ 2β′(R)

R2

r2(R)
+ 2

(
β(R) + α(R)

R2

r2(R)

)

[
2R

r2(R)
− f (R)

R4

r5(R)
− f (R)

r(R)

R2

]
. (8.3.25)

Suppose that at the boundary σrr (Ro) = −p∞. Thus

p(R) = p∞ + α(Ro)
R4

o

r4(Ro)
+ 2β(Ro)

R2
o

r2(Ro)
−

∫ Ro

R
k(ξ)dξ. (8.3.26)

Once p(R) is known all the stress components are easily calculated from (8.3.22).

Example 8.3.1 In [YG12b] we considered the following point defect distribution

n(R) =
{

n0 0 ≤ R ≤ Ri ,

0 Ri < R ≤ R0,
(8.3.27)

where Ri < Ro. Thus, one can see that

0 ≤ R ≤ Ri : f (R) = 1, (8.3.28)

R > Ri : f (R) = 1

1 − n0

(
Ri
R

)3 . (8.3.29)

This yields

0 ≤ R ≤ Ri : r(R) = R, (8.3.30)

R > Ri : r(R) =
[

R3 + n0R3
i ln

(
(R/Ri )

3 − n0

1 − n0

)] 1
3

. (8.3.31)

Note that for R < Ri , λ1 = λ2 = λ3 = 1 and hence I1 = I2 = 3. Therefore,
α = α0 and β = β0 are constants and consequently for R < Ri , k(R) = 0. Thus

0 ≤ R ≤ Ri : p(R) = p∞ + α(Ro)R4
o

r4(Ro)
+ 2

β(Ro)R2
o

r2(Ro)
−

∫ Ro

Ri

k(ξ)dξ = pi , (8.3.32)

Ri ≤ R ≤ Ro : p(R) = p∞ + α(Ro)R4
o

r4(Ro)
+ 2

β(Ro)R2
o

r2(Ro)
−

∫ Ro

R
k(ξ)dξ. (8.3.33)
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It is seen that pressure is uniform for R < Ri . Now the radial stress has the following
distribution

0 ≤ R ≤ Ri : σrr (R) = α0 + 2β0 − pi = σi , (8.3.34)

Ri ≤ R ≤ Ro : σrr (R) = α(R)R4

r4(R)
+ 2

β(R)R2

r2(R)
− p∞ − α(Ro)R4

o

r4(Ro)

− 2
β(Ro)R2

o

r2(Ro)
+

∫ Ro

R
k(ξ)dξ. (8.3.35)

It is seen that the radial stress is uniform and equal to σi for R < Ri . Note that the
other two physical components of stress are also equal to σi for R < Ri .

Remark 8.3.2 Note that the defective ball does not have to be homogenous. One
can have different energy functions for R < Ri and R > Ri . In this case W =
W (R, I1, I2) and hence α and β will have jumps at R = Ri . This will not affect the
pressure for R < Ri . However, for R > Ri , one should add the term [[α + 2β]]Ri to
the pressure field.

Compressible Isotropic Solids

Next we consider a spherically-symmetric point defect distribution in a ball made
of a compressible isotropic solid. For an isotropic solid instead of considering the
strain energy density as a function of the principal invariants of C one can assume
that W explicitly depends on the principal invariants of U, i.e. W = Ŵ (i1, i2, i3),
where

i1 = λ1 + λ2 + λ3, i2 = λ1λ2 + λ2λ3 + λ3λ1, i3 = λ1λ2λ3. (8.3.36)

Carroll [Car88] rewrote the representation of the Cauchy stress for isotropic elas-
tic solids in terms of the left stretch tensor. In our geometric framework [Car88]’s
Eq. (2.15) is rewritten as [YG13a]

σ =
(

i2
i3

∂Ŵ

∂i2
+ ∂Ŵ

∂i3

)

g� + 1

i3

∂Ŵ

∂i1
V� − ∂Ŵ

∂i2
V−1. (8.3.37)

In components this reads

σab =
(

i2
i3

∂Ŵ

∂i2
+ ∂Ŵ

∂i3

)

gab + 1

i3

∂Ŵ

∂i1
V ab − ∂Ŵ

∂i2

(
V −1

)ab
, (8.3.38)

where bab = V am V bngmn and cab = (
V −1

)am (
V −1

)bn
gmn . Carroll [Car88]

considered a special class of compressible materials for which Ŵ (i1, i2, i3) =
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u(i1) + v(i2) + w(i3), where u, v, and w are arbitrary C2 functions. For this class
of materials we have

σ =
(

i2
i3

v′(i2) + w′(i3)
)

g� + u′(i1)
i3

V� − v′(i2)V−1. (8.3.39)

In the case of a ball with a spherically-symmetric point defect distribution, we have

λ1 = r ′(R)

f (R)
, λ2 = λ3 = r(R)

R
. (8.3.40)

Thus

i1 = r ′(R)

f (R)
+ 2r(R)

R
, i2 = 2r(R)r ′(R)

R f (R)
+ r2(R)

R2 , i3 = r ′(R)r2(R)

R2 f (R)
. (8.3.41)

A simple calculation gives us

V� =
⎛

⎜
⎝

r ′(R)
f (R)

0 0

0 1
Rr(R)

0
0 0 1

Rr(R) sin2 �

⎞

⎟
⎠ , V−1 =

⎛

⎜
⎝

f (R)
r ′(R)

0 0

0 R
r3(R)

0

0 0 R
r3(R) sin2 �

⎞

⎟
⎠ .

(8.3.42)

Hence, the non-zero stress components read

σrr (R) = u′(i1)
R2

r2(R)
+ v′(i2)

2R

r(R)
+ w′(i3), (8.3.43)

σθθ(R) = u′(i1)
R f (R)

r3(R)r ′(R)
+ v′(i2)

(
R

r3(R)
+ f (R)

r2(R)r ′(R)

)
+ w′(i3)

r2(R)
,

(8.3.44)

σφφ(R) = 1

sin2 �
σθθ(R). (8.3.45)

The equilibrium equation (8.3.23) is simplified to read

R2

r2
du′

dr
+ 2R

r

dv′

dr
+ dw′

dr
+ 2(1 − f )

(
Ru′

r2r ′ + v′

rr ′

)
= 0. (8.3.46)

We first consider a harmonic material [Joh60] for which v(i2) = c2(i2 − 3) and
w(i3) = c3(i3 − 1), where c2 and c3 are constants (Class I materials according to
Carroll [Car88]). In this case the above ODE is reduced to

du′

dr
+ 2(1 − f )

(
u′

Rr ′ + c2r

R2r ′

)
= 0. (8.3.47)
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Let us now consider the point defect distribution (8.3.27). For R < Ri , f (R) = 1
and hence du′

dr = 0. This implies that i1 must be a constant and therefore

r(R) = C1R + C2

R2 . (8.3.48)

For r(R) to be bounded at the origin we must have C2 = 0. Now for R < Ri ,
i1 = 3C1 and hence the physical components of Cauchy stress read

σ̄rr (R) = σrr (R) = u′(3C1)

C2
1

+ 2c2
C1

+ c3 = σ1, (8.3.49)

σ̄θθ(R) = r2(R)σθθ(R) = u′(3C1)

C2
1

+ 2c2
C1

+ c3 = σ1, (8.3.50)

σ̄φφ(R) = σ̄θθ(R), (8.3.51)

i.e., the Cauchy stress inside the point defect sphere is uniform and hydrostatic.
For Classes II and III materials according to Carroll [Car88], u(i1) = c1(i1 − 3),

w(i3) = c3(i3 − 1) and u(i1) = c1(i1 − 3), v(i2) = c2(i2 − 3), respectively. For
R < Ri , for Class II materials, we have r2(R) = C1R2 + C2

R . Similarly, for Class III
materialswe have r3(R) = C1R3+C2. Assuming that r(0) = 0 in both casesC2 = 0
and hence for R < Ri , we have r(R) = αR, where α is a constant. This is identical
to what we observed for harmonic materials. Therefore, the above result holds for
materials of Types II and III as well. The unknown constant C1 is determined after
one solves a nonlinear second-order ODE for r in the interval Ri < R ≤ Ro and
imposes the continuity conditions r(R−

i ) = r(R+
i ), σrr (R−

i ) = σrr (R−
i ), and the

boundary condition σrr (Ro) = −p∞.

8.3.3 An Analogy Between the Point Defect Metric
and the Schwarzschild Metric

Einstein’s vacuum field equations can be solved exactly for a spherically-symmetric
distribution of matter with gravitational mass m. The solution is called the Schwarz-
schild (exterior) solution. In the coordinates (t, R,�,�) for space-time, theSchwarz-
schild metric reads [HE73]

d S2 = −
(
1 − 2m

R

)
dt2+

(
1 − 2m

R

)−1

d R2+R2d�2+R2 sin2 �d�2. (8.3.52)

This metric represents the gravitational field outside of a ball of mass m. Note that
this solution is valid only for R > 2m. The interior solution can be determined
using the energy-momentum tensor of the matter inside the ball. When restricted to
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(R,�,�) this metric looks very similar to our point defect metric if one replaces
(
1 − 2m

R

)−1
by f (R). Next we consider a single point defect and observe another

interesting similarity between our metric and that of Schwarzschild.

8.3.4 Singularity in the Material Metric in the Case
of a Single Point Defect

We consider a single point defect with strength δv at the center of the ball. In this
case

n(R) = δv

4πR2 δ(R), (8.3.53)

where δ(R) is the one-dimensional Dirac delta distribution. Therefore

h(R) = 1 − 3δv

4πR3 . (8.3.54)

Hence

f (R) = 1 − δv
4πR2 δ(R)

1 − 3δv
4πR3

= R3 − δv
4π Rδ(R)

R3 − 3δv
4π

= 1

1 − 3δv
4πR3

. (8.3.55)

Note that f (R) > 0 and hence this expression is meaningful only when

R >

(
3δv

4π

) 1
3

. (8.3.56)

8.3.5 Exterior Residual Stress Field of a Ball of Point Defects

InYavari andGoriely [YG12b]we considered a finite ball of radius Ro with a uniform
defect distribution n0 in a small ball of radius Ri and showed that the stress inside the
defective ball is uniform for R < Ri . Let us now assume that n(R) = 0 for R > Ri

but is elsewhere arbitrary. The total volume of the point defects is

δv =
∫ Ri

0
4πR2n(R)d R. (8.3.57)

Note that for R > Ri , we have

f (R) = 1

1 − 3δv
4πR3

. (8.3.58)
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It is seen that for R > Ri , f (R)depends only on δv and not on the specific distribution
of n(R) for R < Ri . Therefore, r(R) and consequently all the stress components for
R > Ri depend only on δv. Thus, we have proved the following proposition.

Proposition 8.3.3 Consider a ball of radius Ro made of an isotropic elastic material
or a material with anisotropy respecting the spherical symmetry. Assume that the
ball is defect free outside a ball of radius Ri < Ro. Then, the residual stress field
for R > Ri depends only on the total volume of the point defects in R < Ri and is
independent of the specific form of n(R) for R < Ri .

Remark 8.3.4 Note that this result is similar to the effect of a spherical ball of matter
with mass m on the gravitational field. The gravitational field of the space-time
outside the ball depends only on m and not on the specific distribution of density
inside the ball (as long as it is spherically symmetric).

8.3.6 Isotropic Distribution of Point Defects and Pure
Dilatational Eigenstrains

We know that in the limit of a vanishing inclusion with pure dilatational eigenstrain
the linearized solution for a single point defect in an isotropic linear elastic solid
is recovered as shown in [YG12b] by fixing δv = 4πR3

i n0/3 and in the limit of
small Ri . Note that our point defect metric is equivalent to that of a distributed radial
eigenstrain. A natural question is: can we represent an isotropic distribution of point
defects by a pure dilatational eigenstrain distribution? We will see in the following
that the answer is negative.

Consider a coframe field of the following form

ϑ1 = K (R)d R, ϑ2 = K (R)Rd�, ϑ3 = K (R)R sin� d�, (8.3.59)

for some unknown function K (R) to be determined. Assuming that the non-metricity
is traceless and isotropicQαβ = 2δαβ q(R)ϑ1, the matrix of connection 1-forms has
the following form

ω = [ωα
β] =

⎛

⎝
ω1

1 ω1
2 −ω3

1

−ω1
2 ω2

2 ω2
3

ω3
1 −ω2

3 ω3
3

⎞

⎠ , (8.3.60)

where ω1
1 = ω2

2 = ω3
3 = q(R)ϑ1, for a function q(R) to be calculated. Note that

dϑ1 = 0, dϑ2 = 1

K (R)

[
1

R
+ K ′(R)

K (R)

]
ϑ1 ∧ ϑ2,

dϑ3 = − 1

K (R)

[
1

R
+ K ′(R)

K (R)

]
ϑ3 ∧ ϑ1 + cot�

RK (R)
ϑ2 ∧ ϑ3. (8.3.61)
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Cartan’s first structural equations read

T 1 = ω1
2 ∧ ϑ2 − ω3

1 ∧ ϑ3 = 0, (8.3.62)

T 2 =
{

1

K (R)

[
1

R
+ K ′(R)

K (R)

]
+ q(R)

}
ϑ1 ∧ ϑ2 − ω1

2 ∧ ϑ1

+ ω2
3 ∧ ϑ3 = 0, (8.3.63)

T 3 = cot�

RK (R)
ϑ2 ∧ ϑ3 −

{
1

K (R)

[
1

R
+ K ′(R)

K (R)

]
+ q(R)

}
ϑ3 ∧ ϑ1

+ ω3
1 ∧ ϑ1 − ω2

3 ∧ ϑ2 = 0. (8.3.64)

This gives us

ω1
2 = −

{
1

K (R)

[
1

R
+ K ′(R)

K (R)

]
+ q(R)

}
ϑ2, ω2

3 = − cot�

RK (R)
ϑ3,

ω3
1 =

{
1

K (R)

[
1

R
+ K ′(R)

K (R)

]
+ q(R)

}
ϑ3. (8.3.65)

It can be shown that R1
1 = R2

2 = R3
3 = 0 are trivially satisfied. The remaining

Cartan’s second structural equations read

R1
2 = −R2

1 = dω1
2 + ω3

1 ∧ ω2
3 = 0, (8.3.66)

R2
3 = −R3

2 = dω2
3 + ω1

2 ∧ ω3
1 = 0, (8.3.67)

R3
1 = −R1

3 = dω3
1 + ω2

3 ∧ ω1
2 = 0. (8.3.68)

The first equation gives us the following ODE

d

d R

{
1

K (R)

[
1

R
+ K ′(R)

K (R)

]
+ q(R)

}

+
(
1

R
+ K ′(R)

K (R)

) {
1

K (R)

[
1

R
+ K ′(R)

K (R)

]
+ q(R)

}
= 0, (8.3.69)

with solution
1

K (R)

[
1

R
+ K ′(R)

K (R)

]
+ q(R) = C

RK (R)
. (8.3.70)

Note that when q(R) = 0, we have K (R) = 1 and hence C = 1. Therefore

q(R) = 1

RK (R)
− 1

K (R)

[
1

R
+ K ′(R)

K (R)

]
= − K ′(R)

K 2(R)
=

(
1

K (R)

)′
. (8.3.71)
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Interestingly, the other two curvature 2-forms trivially vanish. The Weyl 1-form is
written as

Q = 2q(R)ϑ1 = −2K ′(R)

K (R)
d R = −2d ln K (R). (8.3.72)

The governing differential equation for the function h(R) reads

d ln h(R) = 3

2
Q = −3d ln K (R). (8.3.73)

Therefore, h(R) = C K −3(R). Because for K (R) = 1, h(R) = 1, C = 1, and
hence h(R) = K −3(R). Note that μ = hϑ1 ∧ ϑ2 ∧ ϑ3 = h(R)K 3(R)μ0 = μ0, and
hence n(R) = 0. This means that the metric (8.3.59) cannot represent a spherically-
symmetric distribution of point defects.

8.4 Conclusions

Wediscussed the relevance of non-metricity in the nonlinearmechanics of distributed
point defects.Ananelasticity problem is transformed to a classical nonlinear elasticity
problem if one can construct the material manifold, i.e., a 3-manifold in which the
defective body is stress-free by construction. The material manifold of a solid with
distributed point defects is a flatWeylmanifold, i.e., amanifoldwith a connection and
metric such that the non-metricity is traceless and both the torsion and the curvature
tensors vanish. We revisited the problem of a finite ball with a spherically-symmetric
and isotropic distribution of point defects. We constructed the material manifold and
calculated the residual stress fieldwhen the ball ismadeof an arbitrary incompressible
isotropic solid. We observed an interesting analogy between the residual stress field
and the gravitational field of space-time with a ball made of matter. We also showed
that an isotropic distribution of point defects cannot be represented by a distribution
of pure dilatational eigenstrains.
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