
Chapter 5
Continuum Mechanics of the Interaction
of Phase Boundaries and Dislocations
in Solids

Amit Acharya and Claude Fressengeas

Abstract The continuum mechanics of line defects representing singularities due
to terminating discontinuities of the elastic displacement and its gradient field is
developed. The development is intended for application to coupled phase transfor-
mation, grain boundary, and plasticity-related phenomena at the level of individual
line defects and domain walls. The continuously distributed defect approach is devel-
oped as a generalization of the discrete, isolated defect case. Constitutive guidance
for equilibrium response and dissipative driving forces respecting frame-indifference
and non-negativemechanical dissipation is derived.Adifferential geometric interpre-
tation of the defect kinematics is developed, and the relative simplicity of the actual
adopted kinematics is pointed out. The kinematic structure of the theory strongly
points to the incompatibility of dissipation with strict deformation compatibility.

5.1 Introduction

Whether due to material contrast or material instability, there are many situations
in solid mechanics that necessitate the consideration of 2-d surfaces across which
a distortion measure is discontinuous. By a distortion we refer to measures akin to
a deformation ‘gradient’ except, in many circumstances, such a measure is not the
gradient of a vector field; we refer to a 2-d surface of discontinuity of a distortion
measure as a phase boundary (which, of course, includes a grain boundary as a
special case). The more familiar situation in conventional theory (i.e. nonlinear
elasticity, rate-independent macroscopic plasticity) is when the distortion field cor-
responds to the gradient of a continuous displacement field, but one could, and here
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we will, consider the presence of dislocations, or a discontinuity in the elastic dis-
placement field, as well when necessary. We are particularly interested in situations
where the phase boundary discontinuity actually terminates along a curve on the
surface or, more generally, shows in-plane gradients along the surface. We con-
sider such terminating curves as phase boundary tips and the more general case as a
continuously distributed density of tips and their coupling to dislocations. We refer
to the phase boundary tip curves as generalized disclinations (or g.disclinations; a
(classical) disclination in solids corresponds to the tip constituting the termination
of a pure rotation discontinuity). Concrete physical situations where the kinematic
construct we have just outlined occur are commonplace. In connection to fundamen-
tal, (un)loaded, microstructure of materials, such terminating boundaries (or domain
walls) occur as grain boundaries and triple junction lines in polycrystalline met-
als [DW72, BZB+12, LXBC10, HLL+12] or layered polymeric materials [LB06,
RFL+12]. As agents of failure, some examples are weak interfaces between matrix
and fiber in fiber-reinforced polymer composites, or two such phase boundaries
spaced closely apart enclosing a matrix weak zone in such materials, e.g. crazed
inclusions and shear bands. Of course, deformation bands (especially shear bands)
are just as commonplace in the path to failure inmetallicmaterials and granularmate-
rials. More mundane situations arise in understanding stress singularities at sharp
corners of inclusions in a matrix of dissimilar material in a linear elastic context.

The conditions for the emergence of phase boundaries/localized deformation
bands are by now well-understood, whether in the theory of inelastic deformation
localization, e.g. [HH75, Ric76, PAN82] or solid-solid phase transformations, e.g.
[KS78, Jam81, AK06]. On the other hand, there does not exist a theory today to rep-
resent the kinematics and dynamics of the terminating lines of such phase boundaries
and the propagation of these boundary-tips. This can be of primary importance in
understanding progressive damage, e.g. onset of debonding at fiber-matrix interfaces,
extension of shear bands or crazes, or the stress concentrations produced at five-fold
twin junctions, or grain boundary triple lines. It is the goal of this paper to work out
the general continuum mechanics of coupled phase boundary and slip (i.e. regular-
ized displacement-gradient and displacement discontinuities), taking into account
their line defects which are g.disclinations and dislocations. The developed model
is expected to be of both theoretical and practical use in the study of the coupling of
the structure and motion of phase boundaries coupled to dislocation and kink-like
defects e.g. [HP11, WSL+13, SKS+10].

A corresponding ‘small deformation’ theory has beenworked out in [AF12]. Itwas
not clear to us then whether one requires a theory with couple stress or not and both
thermodynamically admissible possibilities were outlined there.We now believe that
dealing with g.disclinations requires mechanics mediated by torque balance1 and,
therefore, in this paper, we only consider models where couple stresses also appear.
A dissipative extension of disclination-dislocation theory due to deWit [deW70]
has been developed in [FTC11, UCTF11, UCTF13] as well as the first numerical

1However, a dislocation-only defect model does not require any consideration of torque balance or
couple stresses, as shown in [Ach11, AF12] and in Sect, 5.5.3.
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implementations for the theory with application to understanding grain-boundary
mechanics [TCF+13b, TCF13a]. While we focus on continuously distributed defect
densities, it is to be understood that we include in our setting the modeling of indi-
vidual defect lines as non-singular localizations of these density fields along space
curves.

The concept of classical disclinations and dislocations arose in the work of Wein-
garten and Volterra (cf. [Nab87]) from the specific question of characterizing the dis-
placement and rotation jumps across a surface of a multiply connected region with a
hole, when the displacement field is required to be consistent with a prescribed twice
differentiable strain (metric) field; a well-developed static theory exists [RK09] as
well as a very sophisticated topological theory, full of subtle but difficult insights,
due to Klemán and Friedel [KF08]. While self-contained in itself, this question does
not suffice for our purposes in understanding phase boundaries, since these can,
and often necessarily, involve jumps in the strain field. Nevertheless, the differential
geometry of coupled dislocations and so-called disclinations have been the subject of
extensive enquiry, e.g. [Kon55, Bil60, KL92, CMB06], and therefore we show how
our g.disclinations can be placed in a similar differential geometric context, while
pointing out the main differences from the standard treatment. The differences arise
primarily from a desire to achieve relative simplicity by capitalizing on the available
Euclidean structure of the ambient space in which we do our mechanics directed
towards applications.

The remainder of the paper is organized as follows. In Sect. 5.2 we provide a list
of notation. In Sect. 5.3 we develop a fundamental kinematic decomposition relevant
for ourwork. In Sect. 5.4we develop the governingmechanical equations. In Sect. 5.5
we examine consequences of material frame-indifference (used synonymously with
invariance under superposed rigid body motions) and a dissipation inequality for the
theory, ingredients of which provide a critical check on the finite deformation kine-
matics of the proposed evolution equations for defect densities. Section5.6 describes
a small deformation version of the model. In Sect. 5.7 we provide a differential geo-
metric interpretation of our work. Some concluding observations are recorded in
Sect. 5.8.

Finally, in order to provide some physical intuition for the new kinematic objects
we have introduced before launching into their continuum mechanics, we demon-
strate (Fig. 5.1) a possible path to the nucleation of an edge dislocation in a lattice
via the formation of a g.disclination dipole. It is then not surprising that point-wise
loss of ellipticity criteria applied to continuum response generated from interatomic
potentials can bear some connection to predicting the onset of dislocation nucleation
[LVVZ+02, ZLJVV+04].

5.2 Notation

A superposed dot on a symbol represents a material time derivative. The statement
a := b indicates that a is defined to be equal to b. The summation convention is
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(a) (b) (c)

Fig. 5.1 Path to an idealized edge dislocation nucleation (c) involving a deformation discontinuity,
achieved through the formation of a g.disclination dipole (b) in a continuous deformation with
two surfaces of strain discontinuity of an unstretched atomic configuration (a). Here, a continuous
deformation (b) of the original configuration (a) refers to the preservation of all nearest neighbors
signified by bond connections; a discontinuous deformation (c) refers to a change in topology of
bond connections

implied unless otherwise mentioned.We denote by Ab the action of the second-order
(third-order, fourth-order) tensor A on the vector (second-order tensor, second-order
tensor) b, producing a vector (vector, second-order tensor). A · represents the inner
product of two vectors, a : represents the trace inner product of two second-order
tensors (in rectangular Cartesian components, A : D = Aij Dij) and matrices and
the contraction of the last two indices of a third-order tensor with a second order
tensor. The symbol AD represents tensor multiplication of the second-order tensors
A and D. The notation (·)sym and (·)skw represent the symmetric and skew symmetric
parts, respectively, of the second order tensor (·). We primarily think of a third-order
tensor as a linear transformation on vectors to the space of second-order tensors. A
transpose of a third-order tensor is thought of as a linear transformation on the space
of second order tensors delivering a vector and defined by the following rule: for a
third-order tensor B (

BT D
)

· c = (Bc) : D,

for all second-order tensors D and vectors c.
The symbol div represents the divergence, grad the gradient, and div grad the

Laplacian on the current configuration. The same words beginning with a Latin
uppercase letter represent the identical derivative operators on a reference configura-
tion. The curl operation and the cross product of a second-order tensor and a vector
are defined in analogy with the vectorial case and the divergence of a second-order
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tensor: for a second-order tensor A, a third-order tensor B, a vector v, and spatially
constant vector fields b, c, and a spatially uniform second-order tensor field D,

c · (A × v) b =
[(

AT c
)

× v
]

· b, ∀b, c,

D : (B × v) b =
[(

BT D
)

× v
]

· b, ∀D, b,

(divA) · c = div
(

AT c
)

, ∀c,

(divB) : D = div
(

BT D
)

, ∀D,

c · (curlA) b =
[
curl

(
AT c

)]
· b, ∀b, c,

D : (curlB) b =
[
curl

(
BT D

)]
· b, ∀b, D.

In rectangular Cartesian components,

(A × v)im = emjk Aijvk,

(B × v)irm = emjk Birjvk,

(divA)i = Aij, j ,

(divB)ij = Bijk,k,

(curlA)im = emjk Aik, j ,

(curlB)irm = emjk Birk, j ,

where emjk is a component of the third-order alternating tensor X. Also, the vector
XAD is defined as

(XAD)i = eijk A jr Drk.

The spatial derivative for the component representation is with respect to rectangular
Cartesian coordinates on the current configuration of the body. Rectangular Cartesian
coordinates on the reference configurationwill be denotedbyuppercaseLatin indices.
For manipulations with components, we shall always use such rectangular Cartesian
coordinates, unless mentioned otherwise. Positions of particles are measured from
the origin of this arbitrarily fixed Cartesian coordinate system.

For a second-order tensor W , a third-order tensor S and an orthonormal basis
{ei , i = 1, 2, 3} we often use the notation

(
WS2T

)
= WlpSrpker ⊗ el ⊗ ek ;

(
WS2T

)
rlk

:= WlpSrpk .

The following list describes some of the mathematical symbols we use in this
paper.
x: current position
Fe: elastic distortion tensor (2nd-order)
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W = (Fe)−1: inverse of elastic 1-distortion tensor (2nd-order)
S: eigenwall tensor (3rd-order)
Y: inverse-elastic 2-distortion tensor (3rd-order)
α: dislocation density tensor (2nd-order)
Π: g.disclination density tensor (3rd-order)
v: material velocity
L: velocity gradient
D = Lsym: rate of deformation tensor
Ω = Lskw: spin tensor
ω = − 1

2X : Ω = 1
2 curl v: half of the vorticity vector

M = grad ω: vorticity gradient tensor
J = grad W: gradient of i-elastic distortion
VΠ : g.disclination velocity
Vα: dislocation velocity
V S : eigenwall velocity
T: Cauchy stress tensor
Λ: couple stress tensor
K: external body moment per unit mass
b: external body force per unit mass
ρ: mass density
ψ: free energy per unit mass

5.3 Motivation for a Fundamental Kinematic Decomposition

With reference to Fig. 5.2a representing a cross-section of a body, suppose we are
given a tensor field ϕ (0th-order and up) that can be measured unambiguously,
or computed from measurements without further information, at most points of a
domain B. Assume that the fieldϕ is smooth everywhere except having a terminated
discontinuity of constant magnitude across the surface S. Denote the terminating
curve of the discontinuity on the surface S as C. We think of the subsetP of S across
which a non-zero jump exists as a wall of the field ϕ and the curve C as a line defect
of the field ϕ. Physical examples of walls are domain walls, grain boundaries, phase
boundaries, slip boundaries and stacking faults (surfaces of displacement discontinu-
ity); those of defect lines are vortices, disclinations, g.disclinations, and dislocations.
Let ν be a unit normal field on S, with arbitrarily chosen orientation. Let B+ be the
subset of B into which ν points; similarly, let B− be the subset of B into which −ν
points. Let x be a point on P . Let x+ ∈ B+ and x− ∈ B− be points arbitrarily close
to x but not x, and let ϕ(x+) = ϕ+ and ϕ(x−) = ϕ−. Join x+ to x− by any contour
Cx−

x+ encircling C. Then
∫

Cx−
x+

grad ϕ · dx = ϕ− − ϕ+ =: −�ϕ�. (5.1)



5 Continuum Mechanics of the Interaction of Phase Boundaries … 129

(a) (b)

Fig. 5.2 Classical terminating discontinuity and its physical regularization

Note that by hypothesis �ϕ� is constant onP so that regardless of how close x is to C,
and how small the non-zero radius of a circular contour Cx−

x+ is, the contour integral
takes the same value. This implies that |grad ϕ(y)| → ∞ as y → C with y ∈ B\C .2

Our goal now is to define a field A that is a physically regularized analog of grad ϕ;
we require A to not have a singularity but possess the essential topological property
(5.1) if grad ϕ were to be replaced there with A. For instance, this would be the task
at hand if, as will be the case here, A is an ingredient of a theory and initial data for
the field needs to be prescribed based on available observations on the field ϕ, the
latter as described above.

It is a physically natural idea to regularize the discontinuity on P by a field on
B that has support only on a thin layer around P . We define such a field as follows
(Fig. 5.2b). For simplicity, assume all fields to be uniform in the x3-direction. Let the
layer L be the set of points

L = {y ∈ B : y = x + h ν(x),−l/2 ≤ h ≤ l/2, x ∈ P} .

Let the x1 coordinate of C be x0. Define the strip field3

WV(x) =
{

f (x1)
{ϕ−(x1)−ϕ+(x1)}

l ⊗ ν(x1), if x ∈ L
0, if x ∈ B\L

2As an aside, this observation also shows why the typical assumptions made in deriving transport
relations for various types of control volumes containing a shock surface do not hold when the
discontinuity in question is of the ‘terminating jump’ type being considered here.
3WV is to be interpreted as the name for a single field.
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where ν(x1) = e2 here, and

f (x1) =
{

x1−x0

r , if x0 < x1 ≤ x0 + r

1, if x0 + r ≤ x1.

In the above, the layer width l and the defect-core width r are considered as given
physical parameters. We now define A as

A := grad B + WV in B, (5.2)

where B is at least a continuous and piecewise-smooth potential field in B, to be
determined from further constraints within a theoretical structure as, for example,
we shall propose in this paper.

Let n be the order of the tensor field ϕ. A small calculation shows that the only
non-vanishing component(s) of curl WV is4

(curl W V )i1···in3 = e312
∂ f

∂x1

[−�ϕ�i1···in

l

]
= W Vi1···in2,1

and this is non-zero only in the core cylinder defined by

Cr =
{

x : x0 ≤ x1 ≤ x0 + r,−l/2 ≤ x2 ≤ l/2
}

.

Moreover, since ∂ f
∂x1

= 1
r in Cr and zero otherwise, we have

∫

C
A · dx =

∫

A
curl WV · e3 da = − �ϕ�

(l · r)
(l · r) = −�ϕ�,

for any closed curve C encircling Cr and A is any surface patch with boundary
curve C .

Without commitment to a particular theory with constitutive assumptions, it is
difficult to characterize further specific properties of the definition (5.2). However,
it is important to avail of the following general intuition regarding it. Line defects
are observed in the absence of applied loads. Typically, we are thinking of grad ϕ as
an elastic distortion measure that generates elastic energy, stresses, couple-stresses
etc. Due to the fact that in the presence of line defects as described, grad ϕ has
non-vanishing content away from P in the absence of loads, if A is to serve as
an analogous non-singular measure, it must have a similar property of producing
residual elastic distortion for any choice of a grad B field for a given WV field that
contains a line defect (i.e. a non-empty subset Cr ). These possibilities can arise, for

4Here it is understood that if n = 0 then the symbol i1 · · · in correspond to the absence of any indices
and the curl of the higher-order tensor field is understood as the natural analog of the second-order
case defined in Sect. 5.2.
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instance, from a hypothesis on minimizing energy or balancing forces or moments.
That such a property is in-built into the definition (5.2) can be simply understood by
realizing that WV is not a gradient and therefore cannot be entirely annihilated by
grad B. To characterize this a bit further, one could invoke a Stokes-Helmholtz type
decomposition of the (localized-in-layer) WV field to obtain

WV = grad Z + P on B

div grad Z = div WV on B

grad Zn = WVn on ∂B

curl P = curl WV on B (5.3)

div P = 0 on B

Pn = 0 on ∂B,

noting the interesting fact that grad Z = −P in B\L because of the localized nature
ofWV . Thus, grad B can at most negate the grad Z part ofWV andwhat remains is at
least a non-localized field P representing some, or in some specific cases (e.g. screw
dislocation in isotropic linear elasticity or Neo-Hookean elasticity, [Ach01]) all, of
the off-Cr content of the original grad ϕ field. Of course, it must be understood that
the primary advantage, within our interpretation, of utilizing A in place of grad ϕ is
that the former is non-singular, but with the desired properties.5

It should be clear now that a fieldwithmany defect lines can aswell be represented
by a construct like (5.2) through superposition of their ‘corresponding WV fields’,
including dipolar defect-line structures where the layerL has two-sided terminations
within the body, without running all the way to the boundary.

As a common example we may think of classical small deformation plasticity
where the plastic distortion field U p may be interpreted as −WV , the displacement
field u as the potential B and A as the elastic distortion Ue. In classical plasticity
theory, the decomposition Ue = grad u − U p is introduced as a hypothesis based
on phenomenology related to 1-d stress strain curves and the notion of permanent
deformation produced in such a set-up. Our analysis may be construed as a funda-
mental kinematical and microstructural justification of such a hypothesis, whether
in the presence of a single or many, many dislocations. At finite deformations, there
is a similar decomposition for the i-elastic 1 distortion Fe−1 = W = χ + grad f
[Ach04, Ach11], where the spatial derivative is on the current configuration and we
identify A with W , Z + B with f , and P with χ.

5 It is to be noted that the decomposition (5.3) is merely a means to understand the definitions (5.2),
(5.4), the latter being fundamental to the theory.
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Based on the above motivation, for the theory that follows, we shall apply the
definition (5.2) to the i-elastic 2-distortion Y to write

Y = grad W + S, (5.4)

where W is the i-elastic 1-distortion and we refer to S (3rd-order tensor) as the
eigenwall field.

What we have achieved above is a generalization of the eigenstrain concept of
Kröner,Mura, and deWit.With the gained understanding, it becomes the naturalmod-
eling tool for dealing with the dynamics of discontinuities and line-singularities of
first and higher-order deformation gradients with smooth (everywhere) fields within
material and geometrically linear and nonlinear theories. The main utility of WV
fields, as will be evident later, is in providing a tool for stating kinematically nat-
ural evolution equations for defect densities; while they also provide regularization of
nasty singularities, such a smoothing effect can, at least in principle, also be obtained
by demanding that the jump �ϕ� rise to a constant value from 0 over a short distance
in P , without introducing any new fields.

5.4 Mechanical Structure and Dissipation

5.4.1 Physical Notions

This subsection has been excerpted from [AZ14] for the sake of completeness.
The physical model we have in mind for the evolution of the body is as follows.

The body consists of a fixed set of atoms. At any given time each atom occupies
a well defined region of space and the collection of these regions (at that time) is
well-approximated by a connected region of space called a configuration.We assume
that any two of these configurations can necessarily be connected to each other by
a continuous mapping. The temporal sequence of configurations occupied by the
set of atoms are further considered as parametrized by increasing time to yield a
motion of the body. A fundamental assumption in what follows is that the mass and
momentum of the set of atoms constituting the body are transported in space by this
continuous motion. For simplicity, we think of each spatial point of the configuration
corresponding to the body in the as-received state for any particular analysis as a set
of ‘material particles,’ a particle generically denoted by X.

Another fundamental assumption related to the motion of the atomic substructure
is as follows. Take a spatial point x of a configuration at a given time t . Take a
collection of atoms around that point in a spatial volume of fixed extent, the latter
independent of x and with size related to the spatial scale of resolution of the model
we have in mind. Denote this region asDc(x, t); this represents the ‘box’ around the
base point x at time t . We now think of relaxing the set of atoms in Dc(x, t) from
the constraints placed on it by the rest of the atoms of the whole body, the latter
possibly externally loaded. This may be achieved, in principle at least, by removing
the rest of the atoms of the body or, in other words, by ignoring the forces exerted by
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them on the collection within Dc(x, t). This (thought) procedure generates a unique
placement of the atoms inDc(x, t) denoted byAx with no forces in each of the atomic
bonds in the collection.

We now imagine immersing Ax in a larger collection of atoms (without superim-
posing any rigid body rotation), ensuring that the entire collection is in a zero-energy
ground state (this may require the larger collection to be ‘large enough’ but not
space-filling, as in the case of amorphous materials (cf. [KS79]). Let us assume that
as x varies over the entire body, these larger collections, one for each x, can be made
to contain identical numbers of atoms. Within the larger collection corresponding
to the point x, let the region of space occupied by Ax be approximated by a con-
nected domain Dpre

r (x, t), containing the same number of atoms as in Dc(x, t). The
spatial configuration Dpre

r (x, t) may correctly be thought of as stress-free. Clearly, a
deformation can be defined mapping the set of pointsDc(x, t) toDpre

r (x, t). We now
assume that this deformation is well approximated by a homogeneous deformation.

Next, we assume that the set of these larger collections of relaxed atoms, one
collection corresponding to each x of the body, differ from each other only in ori-
entation, if distinguishable at all. We choose one such larger collection arbitrarily,
say C, and impose the required rigid body rotation to each of the other collections
to orient them identically to C. Let the obtained configuration after the rigid rotation
of Dpre

r (x, t) be denoted by Dr (x, t).
We denote the gradient of the homogeneous deformation mapping Dc(x, t) to

Dr (x, t) by W(x, t), the i-elastic 1-distortion at x at time t .
What we have described above is an embellished version of the standard fashion

of thinking about the problem of defining elastic distortion in the classical theory of
finite elastoplasticity [Lee69], with an emphasis on making a connection between
the continuum mechanical ideas and discrete atomistic ideas as well as emphasizing
that no ambiguities related to spatially inhomogeneous rotations need be involved
in defining the field W .6 However, our physical construct requires no choice of
a reference configuration or a ‘multiplicative decomposition’ of it into elastic and
plastic parts to be invoked [Ach04]. In fact, there is no notion of a plastic deformation
F p invoked in our model. Instead, as we show in Sect. 5.4.4 (5.14), an additive
decomposition of the velocity gradient into elastic and plastic parts emerges naturally
in this model from the kinematics of dislocation motion representing conservation
of Burgers vector content in the body.

Clearly, the field W need not be a gradient of a vector field at any time. Thinking
of this ielastic 1-distortion field W on the current configuration at any given time as
the ϕ field of Sect. 5.3, the i-elastic 2-distortion field Y is then defined as described
therein.

It is important to note that if a material particle X is tracked by an individual tra-
jectory x(t) in the motion (with x(0) = X), the family of neighborhoods Dc(x(t), t)
parametrized by t in general can contain vastly different sets of atoms compared to
the set contained initially inDc(x(0), 0). The intuitive idea is that the connectivity, or

6Note that the choice of C affects the W field at most by a superposed spatio-temporally uniform
rotation field.
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nearest neighbor identities, of the atoms that persist inDc(x(t), t) over time remains
fixed only in purely elastic motions of the body.

5.4.2 The Standard Continuum Balance Laws

For any fixed set of material particles occupying the volume B(t) at time t with
boundary ∂B(t) having outward unit normal field n

˙∫

B(t)
ρ dv = 0,

˙∫

B(t)
ρv dv =

∫

∂B(t)
Tn da +

∫

B(t)
ρb dv,

˙∫

B(t)
ρ (x × v) dv =

∫

∂B(t)
(x × T + Λ) n da +

∫

B(t)
ρ (x × b + K) dv,

represent the statements of balance of mass, linear and angular momentum, respec-
tively. We re-emphasize that it is an assumption that the actual mass and momentum
transport of the underlying atomic motion can be adequately represented through the
material velocity and density fields governed by the above statements (with some
liberty in choosing the stress and couple-stress tensors). For instance, in the case of
modeling fracture, some of these assumptions may well require revision.

Using Reynolds’ transport theorem, the corresponding local forms for these equa-
tions are:

ρ̇ + ρ div v = 0

ρv̇ = divT + ρb

0 = divΛ − X : T + ρK.

(5.5)

Following [MT62], the external power supplied to the body at any given time is
expressed as:

P(t) =
∫

B(t)
ρb · v dv +

∫

∂B(t)
(Tn) · v da +

∫

∂B(t)
(Λn) · ω da +

∫

B(t)
ρK · ω dv

=
∫

B(t)
(ρv · v̇) dv +

∫

B(t)
(T : D + Λ : M) dv,

where Balance of linear momentum and angular momentum have been used. On
defining the kinetic energy and the free energy of the body as

K =
∫

B(t)

1

2
(ρv · v) dv,

F =
∫

B(t)
ρψ dv,
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respectively, and using Reynolds’ transport theorem, we obtain the mechanical dis-
sipation

D := P − ˙K + F =
∫

B(t)

(
T : D + Λ : M − ρψ̇

)
dv. (5.6)

The first equality above shows the distribution of applied mechanical power into
kinetic, stored and dissipated parts. The second equality, as we show subsequently,
is used to provide guidance on constitutive structure.

5.4.3 G.disclination Density and Eigenwall Evolution

The natural measure of g.disclination density is

curl (Y − grad W) = curl S = Π.

It characterizes the closure failure of integrating Y on closed contours in the body:

∫

a
Πnda =

∫

c
Y dx,

where a is any area patch with closed boundary contour c in the body. Physically, it
is to be interpreted as a density of lines (threading areas) in the current configuration,
carrying a tensorial attribute that reflects a jump in W . As such, it is reasonable
to postulate, before commitment to constitutive equations, a tautological evolution
statement of balance for it in the form of “rate of change = what comes in − what
goes out+what is generated.” Since we are interested in nonlinear theory consistent
with frame-indifference and non-negative dissipation, it is more convenient to work
with the measure

�Π := curl
(

WS2T
)

(5.7)
(

WS2T
)

rlk
:= WlpSrpk

�Πrli = eijk
[
WlpSrpk

]
, j = eijk

[
Wlp

(
Yrpk − Wrp,k

)]
, j ,

(cf. [AD12]), and follow the arguments in [Ach11] to consider a conservation state-
ment for a density of lines of the form

˙∫

a(t)

�Πn da = −
∫

c(t)
Π × VΠ dx. (5.8)

Here, a(t) is the area-patch occupied by an arbitrarily fixed set of material particles at
time t and c(t) is its closed bounding curve and the statement is required to hold for
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all such patches. VΠ is the g.disclination velocity field, physically to be understood
as responsible for transporting the g.disclination line density field in the body.

Arbitrarily fix an instant of time, say s, in the motion of a body and let Fs denote
the time-dependent deformation gradient field corresponding to this motion with
respect to the configuration at the time s. Denote positions on the configuration at
time s as xs and the image of the area patch a(t) as a(s). We similarly associate the
closed curves c(t) and c(s). Then, using the definition (5.7), (5.8) can be written as

˙∫

a(t)

�Πn da +
∫

c(t)
Π × VΠ dx =

˙∫

c(t)
WS2T dx +

∫

c(t)
Π × VΠ dx

=
∫

c(s)

[ ˙
WS2T Fs + (

Π × VΠ
)

Fs

]
dxs

=
∫

c(t)

[ ˙
WS2T FsF−1

s + Π × VΠ

]
dx = 0

which implies
˙

WS2T FsF−1
s = −Π × VΠ + grad Σ,

where Σ is an arbitrary second-order tensor field with physical dimensions of strain
rate (i.e. 1/Time) that wewill subsequently specify to represent grain/phase boundary
motion transverse to itself. Finally, choosing s = t , we arrive at the following local
evolution equation for S:

�
S:= ẆS2T + W ˙S2T + WS2T L = −Π × VΠ + grad Σ .

The local form of (5.8) is7

◦
�Π:= (div v) �Π + ˙�Π − �ΠLT = −curl

(
Π × VΠ

)
. (5.9)

7An important feature of conservation statements for signed ‘topological charge’ as here is that even
without explicit source terms nucleation (of loops) is allowed. This fact, along with the coupling of
Π to the material velocity field through the convected derivative provides an avenue for predicting
homogeneous nucleation of line defects. In the dislocation-only theory, some success has been
achieved with this idea in ongoing work.
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Fig. 5.3 Transport due to g.disclination and eigenwall velocities

Finally, we choose Σ to be

Σ := WS2T V S ; Σij = Wjr Sirk V S
k ,

where V S is the eigenwall velocity field that is physically to be interpreted as trans-
porting the eigenwall field S transverse to itself. This may be heuristically justified as
follows: the eigenwall field represents a gradient of i-elastic distortion in a direction
normal to the phase boundary (i.e. in the notation of Sect. 5.3, normal to P). If the
band now moves with a velocity V S relative to the material, at a material point past
which the boundary moves there is change of i-elastic distortion per unit time given
by Σ . The geometrically complete local evolution equation for S is given by

�
S = −Π × VΠ + grad

(
WS2T V S

)
. (5.10)

Thus, for phase boundaries, VΠ transports in-plane gradients of S including the
tips of such bands, whereas V S transports the phase boundary transverse to itself
(Fig. 5.3).

5.4.4 Dislocation Density and I-Elastic 1-Distortion Evolution

Following tradition [deW73], we define the dislocation density α as

α := Y : X = (S + grad W) : X (5.11)

and note that when S ≡ 0, α = −curl W since for any smooth tensor field A,
curl A = −grad A : X. The definition (5.11) is motivated by the displacement jump
formula (5.18) corresponding to a single, isolated defect line terminating an i-elastic
distortion jump in the body. In this situation, the displacement jump for an isolated
defect line, measured by integrating α on an area patch threaded by the defect line,
is no longer a topological object independent of the area patch.

The evolution of the S : X component ofα is already specified from the evolution
(5.10) for S. Thus, what remains to be specified for the evolution of the dislocation
density field is the evolution of

α̃ := −curl W = (Y − S) : X,
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that is again an areal density of lines carrying a vectorial attribute.
When S = 0, then α̃ = α, and the physical arguments of finite-deformation

dislocation mechanics [Ach11] yield

˙∫

a(t)
α̃ n da = −

∫

c(t)
α̃ × Vα dx

with corresponding local form

Ẇ + WL = α̃ × Vα,

(up to assuming an additive gradient of a vector field to vanish). Here, Vα denotes
the dislocation velocity field, to be interpreted physically as the field responsible for
transporting the dislocation density field in the body.

Using identical logic, we assume as the statement of evolution of W the equation

Ẇ + WL = α × Vα, (5.12)

with a natural adjustment to reflect the change in the definition of the dislocation
density field. This statement also corresponds to the following local statement for
the evolution of α̃:

◦
α̃:= (div v) α̃ + ˙̃α − α̃LT = −curl

(
α × Vα

)
. (5.13)

It is to be noted that in this generalization of the dislocation-only case, the disloca-
tion density is no longer necessarily divergence-free (see (5.11)) which is physically
interpreted as the fact that dislocation lines may terminate at eigenwalls or phase
boundaries.

We note here that (5.12) can be rewritten in the form

L = Ḟ
e
Fe−1 + (

Feα
) × Vα, (5.14)

whereFe := W−1. Tomake contact with classical finite deformation elastoplasticity,
this may be interpreted as a fundamental additive decomposition of the velocity

gradient into elastic
(

Ḟ
e
Fe−1

)
and plastic ((Feα) × Vα) parts. The latter is defined

by the rate of deformation produced by the flow of dislocation lines in the current
configuration, without any reference to the notion of a total plastic deformation from
some pre-assigned reference configuration. We also note the natural emergence of
plastic spin (i.e. a non-symmetric plastic part of L), even in the absence of any
assumptions of crystal structure but arising purely from the kinematics of dislocation
motion (when a dislocation is interpreted as an elastic incompatibility).
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5.4.5 Summary of Proposed Mechanical Structure
of the Theory

To summarize, the governing equations of the proposed model are

ρ̇ = −ρ div v

ρv̇ = divT + ρb

0 = divΛ − X : T + ρK (5.15)

Ẇ = −WL + α × Vα

Ṡ = W−1
{
−ẆS2T − WS2T L − Π × VΠ + grad

(
WS2T V S

)}2T

0 = −α + S : X − curl W.

The fundamental dependent fields governed by these equations are the current posi-
tion field x, the i-elastic 1-distortion field W , and the eigenwall field S.

The relevance of the eigenwall velocity field V S would seem to be greatest in the
completely compatible case when there are no deformation line defects allowed (i.e.
α = 0, Π = 0). For reasons mentioned in Sect. 5.4.6, including eigenwall evolution
seems to be at odds with strict compatibility. Additionally, modeling wall defects
by dipolar arrays of disclinations [TCF13a] appears to be a successful, fundamental
way of dealing with grain boundary motion. However, it also seems natural to con-
sider many phase boundaries as containing no g.disclinations whatsoever, e.g. the
representation of a straight phase boundary of constant strength that runs across the
bodywithout a termination (this may be physically interpreted as a consistent coarser
length-scale view of a phase-boundary described by separated g.disclination-dipole
units). To represent phase boundary motion in this situation of no disclinations, a
construct like V S is necessary, and we therefore include it for mathematical com-
pleteness.

The model requires constitutive specification for

• the stress T,
• the couple-stress Λ,
• the g.disclination velocity VΠ ,
• the dislocation velocity Vα, and
• the eigenwall velocity V S (when not constrained to vanish).

As a rough check on the validitiy of the mechanical structure, we would like to
accommodate analogs of the following limiting model scenarios within our general
theory. The first corresponds to the calculation of static stresses of disclinations in
linear elasticity [deW73], assuming no dislocations are present. That is, one thinks
of a terminating surface of discontinuity in the elastic rotation field, across which
the elastic displacements are continuous (except at the singular tip of the terminating
surface). The analog of this question in our setting would be to set α = 0 in (5.11)
and consider S : X as a given source for W , i.e.

α̃ = −curl W = −S : X,
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where W is assumed to be the only argument of the stress tensor. Thus, the S field
directly affects the elastic distortion that feeds into the stress tensor. Of course, this
constrained situation, i.e.α = 0, may only be realized if the field S : X is divergence-
free on B. Thus, with (5.11) as a field equation along with constitutive equations for
the stress and couple stress tensor and the static versions of balance of linear and
angular momentum, this problem becomes accessible within our model.

As a second validating feature of the presented model, we mention the work of
[TCF13a] on the prediction of shear coupled grain boundary migration within what
may be interpreted as a small-deformation, disclination-dislocation-only version of
the above theory. There, the grain boundaries are modeled by an array of (stress-
inducing) disclination dipoles and it is shown how the kinematic structure of the
above type of system along with the presence of stresses and couple stresses allows
grain boundary motion with concomitant shear-producing dislocation glide to be
predicted in accord with experiments and atomistic simulations.

Finally, one would of course like to recover some regularized version of classi-
cal, compatible phase transformation theory [BJ87], i.e. classical nonlinear elastic-
ity with a non-convex energy function and with continuous displacements, in the
absence of dislocations, g.disclinations and the eigenwall field in our model, i.e.
(α = 0, S = Π = 0). The model reduces to a strain gradient regularization [Sle83,
AK91, BK84, SLSB99] of classical nonlinear elasticity resulting from the pres-
ence of couple stresses and the dependence of the energy function on the second
deformation gradient.

5.4.6 The Possibility of Additional Kinetics
in the Completely Compatible Case

The question of admitting additional kinetics of phase boundary motion in the
completely compatible case (i.e. no dislocations and g.disclinations) is an interesting
one, raised in the works of Abeyaratne and Knowles [AK90, AK91]. In the spatially
1-d scenario considered in [AK91], it is shown that admitting higher gradient effects
does provide additional conditions over classical elasticity for well-defined propa-
gation of phase boundaries, albeit with no dissipation, while the results of [Sle83]
show that a viscosity effect alone is too restrictive and does not allow propagation.
The work of [AK91], that extends to 3-d [AK06], does not rule out, and in fact
emphasizes, more general kinetic relations for phase boundary propagation aris-
ing from dissipative effects, demonstrating the fact through a combined viscosity-
capillarity regularization of nonlinear elasticity.

Within our model, the analogous situation is to consider the g.disclination density
and the dislocation density constrained to vanish (Π = 0 and α = 0). A dissipative
mechanism related to phase boundary motion may now be introduced by admitting



5 Continuum Mechanics of the Interaction of Phase Boundaries … 141

a generally non-vanishing V S field. For the present purpose, it suffices then to focus
on the following three kinematic equations:

Ṡ = W−1
{
−ẆS2T − WS2T L + grad

(
WS2T V S

)}2T

Ẇ = −WL + α × Vα (5.16)

0 = −α + S : X − curl W.

We first note from (5.162) that if α = 0 then a solution for W with initial condition I
would be F−1, where F is the deformation gradient with respect to the fixed stress-
free reference configuration. Then from (5.163), it can be seen that this ansatz requires
the eigenwall field to be symmetric in the last two indices. In its full-blown geometric
nonlinearity, it is difficult to infer from (5.161) that if Swere to have initial conditions
with the required symmetry, that such symmetry would persist on evolution.

An even more serious constraint within our setting making additional kinetics
in the completely compatible case dubious is the further implication that if Π =
curl S = 0 and S : X = 0 on a simply connected domain, then it is necessarily true
that S can be expressed as the second gradient of a vector field say a, i.e.

Sijk = ai,jk. (5.17)

This implies that (5.161) is in general a highly overdetermined system of 27 equations
in 3 unknown fields, for which solutions can exist, if at all, for very special choices
of the eigenwall velocity field V S . Even in the simplest of circumstances, consider
(5.161) under the geometrically linear assumption (i.e. all nonlinearities arising from
an objective rate are ignored and we do not distinguish between a material and a
spatial time derivative)

Ṡ = grad
(

SV S
)

=⇒ ȧi, j = ai,jk

(
V S

)
k

(upto a spatially uniform tensor field). This is a generally over-constrained system
of 9 equations for 3 fields corresponding to the evolution of the vector field a requir-
ing, for the existence of solutions, a PDE constraint to be satisfied by the phase
boundary/eigenwall velocity field, namely

curl
{
(grad grad a) V S

}
= 0

that amounts to requiring that

ai,jk

(
V S

k,l

)
− ai,lk

(
V S

k, j

)
= 0.
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While satisfied in some simple situations, e.g. grad V S = 0 whenever grad grad a
is non-vanishing, or when all field-variations are in one fixed direction (as for phase
boundary propagation in a 1-d bar), this is a non-trivial constraint on the V S field
in general. Of course, it is conventional wisdom that the phase boundary velocity
kinetics be specifiable constitutively, and a ‘nonlocal’ constraint on V S as above
considerably complicatesmatters.On the other hand,wefind it curious that a nonlocal
constraint on phase transformation constitutive behavior arises naturally in ourmodel
as a consequence of enforcing strict kinematic compatibility.

If one disallows a non-local PDE constraint as above on the constitutive specifi-
cation of V S , then the kinematics suggests the choice V S = 0 (and perhaps the even
stronger Ṡ = 0). Based on the results of Sect. 5.5.3, this precludes dissipation in the
completely compatible case. We find it interesting that recent physical results guided
by continuum mechanics theory [CCF+06, ZTY+10] point to a similar conclusion
in the design of low-hysteresis phase-transforming solids.

5.4.7 Contact with the Classical View of Modeling Defects:
A Weingarten Theorem for g.disclinations
and Associated Dislocations

The discussion surrounding (5.17) and seeking a connection of our work to the
classical tradition of the theory of isolated defects suggest the following natural
question. Suppose one has a three-dimensional body with a toroidal (Fig. 5.4a) or
a through-hole in it (Fig. 5.4d) (cf. [Nab87]). In both cases, the body is multiply-
connected. In the first, the body can be cut by a surface of finite extent that intersects
its exterior surface along a closed curve and the surface of the toroidal hole along
another closed curve in such away that the resulting body becomes simply-connected
with the topology of a solid sphere (Fig. 5.4b). In more precise terminology, one
thinks of isolating a surface of the original multiply-connected domain with the
above properties, and the set difference of the original body and the set of points
constituting the cut-surface is the resulting simply-connected domain induced by
the cut. Similarly, the body with the through-hole can be cut by a surface extending
from a curve on the external surface to a curve on the surface of the through-hole
such that the resulting body is again simply-connected with the topology of a solid
sphere (Fig. 5.4e). Finally, the body with the toroidal hole can also be cut by a surface
bounded by a closed curve entirely on the surface of the toroidal hole in such a way
that the resulting body is simply-connected with the topology of a solid sphere with
a cavity in it. For illustration see (Fig. 5.4c).

To make contact with our development in Sect. 5.3, one conceptually associates
the support of the defect core as the interior of the toroidal hole and the support of
the strip field WV as a regularized cut-surface.
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(a)

(b)

(d)

(e)(c)

Fig. 5.4 Non simply-connected and corresponding induced simply-connected bodies. For a–c the
bodies are obtained by rotating the planar figures by π about the axes shown; for d,e they are
obtained by extruding the planar figures along the axis perpendicular to the plane of the paper

Suppose that on the original multiply-connected domain

• a continuously differentiable, 3rd-order tensor field Ỹ is prescribed that is
• symmetric in its last two indices (Ỹijk = Ỹikj) and
• whose curl vanishes (Ỹijk,l = Ỹijl,k).

Given such a field, we ask the question of whether on the corresponding simply-
connected domain induced by a cut-surface as described in the previous paragraph,
a vector field y can be defined such that

grad grad y = Ỹ ; yi,jk = Ỹijk,

and if the difference field of the limiting values of y, as the cut-surface is approached
from the two sides of the body separated by the cut-surface, i.e. the jump �y� of y
across the cut, is arbitrary or yields to any special characterization. Here, wewill refer
to limits of fields approached from one (arbitrarily chosen) side of the cut-surface
with a superscript ‘+’ and limits from the corresponding other side of the cut-surface
with a superscript ‘−’ so that, for instance, �y(z)� = y+(z) − y−(z), for z belonging
to the cut-surface.
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For the question of existence of y on the simply-connected domain, one first looks
for a field W̃ such that

grad W̃ = Ỹ ; W̃ij,k = Ỹijk

and since Ỹ is curl-free and continuously differentiable on the multiply-connected
domain with the hole, on the corresponding simply-connected domain induced by
a cut, the field W̃ can certainly be defined [Tho34]. The jump �W̃� is not to be

expected to vanish on the cut surface, in general. However, by integrating
(

grad W̃
)+

and
(

grad W̃
)−

along a curve on the cut-surface joining any two arbitrarily chosen

points on it, it is easy to deduce that �W̃� is constant on the surface because of the
continuity of Ỹ on the original multiply-connected domain.

With reference to (Fig. 5.5), consider the line integral of Ỹ on the closed con-
tour shown in the original multiply-connected domain without any cuts (the two
oppositely-oriented adjoining parts of the contour between points A and B are
intended to be overlapping). In conjunction, also consider as the ‘inner’ and ‘outer’
closed contours the closed curves that remain by ignoring the overlapping segments,
the inner closed contour passing throughA and the outer throughB. Then, because of

Fig. 5.5 Contour for proving independence of Δ on cut-surface. The contour need not be planar
and the points A and B need not be on the same cross-sectional plane of the body
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the continuity of Ỹ and its vanishing curl, the line integral of Ỹ on the inner and outer
closed contours must be equal and this must be true for any closed circuit that cannot
be shrunk to a point while staying within the domain. Let us denote this invariant
over any such closed curve C as

∫

C
Ỹ dx = Δ.

If we now introduce a cut-surface passing through A and construct the corresponding
W̃ , say W̃1, then the jump of W̃1 at A is given by

�W̃1�(A) =
∫

C(A−,A+)

grad W̃1 dx =
∫

C(A−,A+)

Ỹ dx = Δ,

where C(A−, A+) is the curve formed from the inner closed contour defined pre-
viously with the point A taken out and with start-point A− and end-point A+. The
last equality above is due to the continuity of Ỹ on the original multiply-connected
domain. Similarly, a different cut-surface passing through B can be introduced and
an associated W̃2 constructed with �W̃2�(B) = Δ. Since A, B and the cut surfaces
through them were chosen arbitrarily, it follows that the jump of any of the functions
�W̃� across their corresponding cut-surface takes on the same value regardless of the
cut-surface invoked to render simply-connected the multiply-connected body.

On a cut-induced simply-connected domain, since W̃ exists and its curl vanishes
(due to the symmetry of Ỹ in its last two indices), clearly a vector field y can be
defined such that

grad y = W̃.

Suppose we now fix a cut-surface. Let x0 be an arbitrarily chosen base point on it. Let
x be any other point on the cut-surface. Then, by integrating (grad y)+ and (grad y)−
along any curve lying on the cut-surface joining x0 and x, it can be observed that

�y(x)� = �y(x0)� + Δ (x − x0) . (5.18)

The ‘constant vector of translation’, �y(x0)�, may be evaluated by integrating W̃ on
a closed contour that intersects the cut-surface only once, the point of intersection
being the base point x0 (W̃ is, in general, discontinuous at the base point). It can be
verified that for a fixed cut-surface, �y(x)� is independent of the choice of the base
point used to define it.

The physical result implied by this characterization is as follows: suppose we
think of the vector field y as a generally discontinuous deformation of the multiply-
connected body, with discontinuity supported on the cut-surface. Then the separa-
tion/jump vector y(x) for any point x of the surface corresponds to a fixed affine
deformation of the position vector of x relative to the base point x0 (i.e. Δ indepen-
dent of x), followed by a fixed translation.
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It is important to note here that, for the given field Ỹ on the multiply-connected
domain,whileΔ = �W̃� is independent of the particular cut-surface invoked to define
it, the translational part, �y(x0)�, of the jump �y� on a cut-surface depends on the
definition of the cut-surface (both through the dependence onx0 and the impossibility,
in general, of defining a continuous W̃ on the original multiply-connected domain),
unless Δ = 0. This is the analog of the known result in classical (disclination-
dislocation) defect theory that the Burgers vector of an isolated defect is a well-
defined topological object only in the absence of disclinations. In the same spirit,
when the (non-trivial) constant tensor Δ is such that it has a 2-dimensional null-
space, then for a specific flat, cut-surface spanning the null-space, it is possible that
the jump in �y� vanishes. This gives rise to a surface in the (non-simply-connected)
body on which the deformation map is continuous but across which the deformation
gradient is discontinuous.

Thus, the notion of g.disclinations offers more flexibility in the type of discon-
tinuities that can be represented within continuum theory, as compared to Volterra
distortions defining classical disclinations (cf. [Cas04, Nab87]).8 This is natural since
the Volterra distortion question involves a twice-continuously differentiable Right-
Cauchy Green field in its formulation (in the context of this subsection, this would

amount to enforcing a high degree of smoothness, and therefore continuity, on W̃
T

W̃)
so that only the polar decomposition-related rotation field of W̃ can be discontinuous,
whereas allowing for an incompatible Ỹ field on a multiply-connected domain, even
though irrotational, implies possible discontinuities in the whole field W̃ .

8In the classical disclination-dislocation case, the corresponding question to what we have consid-
ered would be to ask for the existence, on a cut-induced simply-connected domain, of a vector field
y and the characterization of its jump field across the cut-surface, subject to (grad y)T grad y = C
and the Riemann-Christoffel curvature tensor field of (twice continuously differentiable) C (see
[Shi73] for definition) vanishing on the original multiply-connected domain. Existence of a global
smooth solution can be shown (cf. [Sok51] using the result of [Tho34] and the property of preser-
vation of inner-product of two vector fields under parallel transport in Riemannian geometry). The
corresponding result is

�y(x)� = �y(x0)� + �R�U (x − x0) ,

where grad y = RU on the cut-induced simply-connected domain, and R is a proper-orthogonal,
and U = √

C is a symmetric, positive-definite, 2nd-order tensor field. U cannot have a jump across
any cut-surface and the jump �R� takes the same value regardless of the cut-surface invoked to
define it, as can be inferred from the results of [Shi73]. By rearranging the independent-of-x term
in the above expression, the result can be shown to be identical to that in [Cas04]. Of course, for
the purpose of understanding the properties of the Burgers vector of a general defect curve, it is
important to observe the dependence of the ‘constant’ translational term on the cut-surface. An
explicit characterization of the jump in grad y in terms of the strength of the disclination is given in
[DZ11].
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5.5 Frame-Indifference and Thermodynamic Guidance
on Constitutive Structure

As is known to workers in continuum mechanics, the definition of the mechanical
dissipation (5.6) coupled to the mechanical structure of a theory (Sect. 5.4), a com-
mitment to constitutive dependencies of the specific free-energy density, and the con-
sequences of material frame indifference provide an invaluable tool for discovering
the correct form of the reversible response functions and driving forces for dissipative
mechanisms in a nonlinear theory. This exercise is useful in that constitutive behavior
posed in agreement with these restrictions endow the theory with an energy equality
that is essential for further progress in developing analytical results regarding well-
posedness as well as developing numerical approximations. In exploiting this idea
for our model, we first deduce a necessary condition for frame-indifference of the
free-energy density function that we refer to as the ‘Ericksen identity’ for our theory;
in this, we essentially follow the treatment of [ACF99] adapted to our context.

5.5.1 Ericksen Identity for g.disclination Mechanics

We assume a specific free energy density of the form

ψ = ψ
(
W, S, J, �Π

)
. (5.19)

All the dependencies above are two-point tensors between the current configuration
and the ‘intermediate configuration,’ i.e. {Dr (x, t) : x ∈ B(t)}, a collection of local
configurations with similarly oriented and unstretched atomic configurations in each
of them. On superimposing rigid motions on a given motion, each element of this
intermediate configuration is naturally assumed to remain invariant. With this under-
standing, let Q(s) be a proper-orthogonal tensor-valued function of a real parameter
p defined by

dQ
dp

(p) = sQ(p),

where s is an arbitrarily fixed skew-symmetric tensor function, and Q(0) = I. Thus,
dQT

dp (0) = −s. Also, define A tB through

{(
A t B)jkrl − Ajr Bkl

)}
e j ⊗ ek ⊗ er ⊗ el = 0.

Then, frame-indifference of ψ requires that

ψ
(
W, S, J, �Π

) = ψ
(

WQT , S : QT tQT , J : QT tQT , �ΠQT
)

(5.20)
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for Q(p) generated from any choice of the skew symmetric tensor s. Differentiating
(5.20) with respect to p and evaluating at p = 0 implies

0 = −(∂Wψ)ij Wirsrj − (∂Sψ)ijk Sirs
(
srjδsk + δrjssk

)

− (∂Jψ)ijk Jirs
(
srjδsk + δrjssk

) − (∂�Πψ)ijk
�Πijrsrk

where the various partial derivatives of ψ are evaluated at (W, S, J, �Π). This can be
rewritten as

0 = [
(∂Wψ)ij Wir + (∂Sψ)ijk Sirk + (∂Sψ)ikj Sikr (5.21)

+ (∂Jψ)ijk Jirk + (∂Jψ)ikj Jikr + (∂�Πψ)ikj
�Πikr

]
srj,

valid for all skew symmetric s which implies that the term within square brackets has
to be a symmetric second-order tensor. This is a constraint on constitutive structure
imposed by Material Frame Indifference.

5.5.2 The Mechanical Dissipation

Assuming a stored energy density function ψ with arguments as in (5.19), we now
re-examine the mechanical dissipation D in (5.6). We first compute the material time
derivative of ψ to obtain

ψ̇ = (∂Wψ) : Ẇ + (∂Sψ) ·3 Ṡ + (∂Jψ) ·3 J̇ + (∂�Πψ) ·3 ˙�Π
= (∂Wψ) : (− WL + α × Vα )

+ (∂Sψ) ·3 (W−1 {− ẆS2T − WS2T L − Π × VΠ

+ grad ( WS2T V S )}2T )

+ (∂Jψ) ·3 J̇

+ (∂�Πψ) ·3 [− (L : I)�Π + �ΠLT − curl
(
Π × VΠ

)
] .

(5.22)

In the above, ·3 refers to the inner-product of its argument third-order tensors (in
indices, a contraction on all three (rectangular Cartesian) indices of its argument
tensors). Recalling the dissipation (5.6):

D =
∫

B(t)

(
T : D + Λ : M − ρψ̇

)
dv,

we first collect all terms in (5.22) multiplying L = D + Ω and grad L, observing
that the coefficient of Ω has to vanish identically for the dissipation to be objective
(cf. [AD12]). Noting that

J̇ = grad Ẇ − (grad W) L ⇐⇒ ˙Wrw,k = (
Ẇrw

)
,k − Wrw,m Lmk,
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we obtain
∫

B(t)
[−(∂Wψ)ij WirLrj + (∂Sψ)rwk W −1

wl

(
Wlr LrpSrpk − WlpSrpm Lmk

)

+ (∂Jψ)rwk

(−Wrp,k Lpw − Wrw,m Lmk
)

+ (∂�Πψ)ikj

(
�Πikr LT

rj − Lrr
�Πikj

)
] dv

+
∫

B(t)
(∂Jψ)rwk

(−WrpLpw,k
)

dv,

Noting the symmetry of Lpwk in the last two indices, we define

(
Dsym

J ψ
)

rwk
:= 1

2

[
(∂Jψ)rwk + (∂Jψ)rkw

]
,

and substituting the above in the dissipation (5.6) to collect terms ‘linear’ in D, Ω ,
and grad Ω , we obtain

−
∫

B(t)
−ρ [(∂Wψ)ij Wir + (∂Sψ)ijk Sirk + (∂Sψ)ikj Sikr

+ (∂Jψ)ijk Jirk + (∂Jψ)iwj Jiwr

+ (∂�Πψ)ikj
�Πikr] Ωrj dv

+
∫

B(t)
[Trj − ρ {− (∂Wψ)ij Wir

+ (∂Sψ)mrk Smjk − (∂Sψ)mwj Smwr

− (∂Jψ)pjk Jprk − (∂Jψ)mwj Jmwr

+ (∂�Πψ)ikr
�Πikj − (∂�Πψ)ikm

�Πikmδrj

+ (
Dsym

J ψ
)

pjk,k
Wpr + (

Dsym
J ψ

)
pjk

Jprk}] Drj dv

+
∫

∂B(t)
ρ

(
Dsym

J ψ
)

pjk
Wprnk Drj da

+
∫

B(t)
[Λik − eimn ρ (Dsym

J ψ)rnk Wrm ]

(
−1

2
eipwΩpw,k

)
dv.

(5.23)
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The remaining terms in the dissipation D are

−
∫

B(t)
[(∂Wψ)ij ejrsαir + (∂Sψ)rwk

(
−epjsW −1

wl αlj Srpk

)

−(∂Jψ)rwk,k ewjsαrj] V α
s dv

−
∫

B(t)
[(∂Sψ)rwk

(
−ekjsW −1

wl Πrlj

)

+(∂�Πψ)rwk,m (δkpδms − δksδmp)Πrwp] V Π
s dv

+
∫

B(t)
(∂Sψ)rwk,k WwpSrpjV

S
j dv

−
∫

∂B(t)
(∂Sψ)rwk nk WwpSrpjV

S
j da

−
∫

∂B(t)
(∂Jψ)rwk nkαrjewjsV α

s da

+
∫

∂B(t)
(∂�Πψ)rwk nm(δkpδms − δksδmp)ΠrwpV Π

s da.

(5.24)

5.5.3 Reversible Response and Dissipative Driving Forces

We deduce ingredients of general constitutive response from the characterization of
the dissipation in Sect. 5.5.2.

1. It is a physical requirement that the pointwise dissipation density be invariant
under superposed rigid bodymotions (SRBM)of the body.The ‘coefficient’ tensor
of the spin tensorΩ in the first integrand of (5.23) transforms as an objective tensor
under superposed rigid motions (i.e. (·) → Q(·)QT for all proper orthogonal Q),
but the spin tensor itself does not (it transforms as Ω → −ω + QΩQT , where
ω(t) = Q̇(t)QT ). Since an elastic response (i.e. Vα = V S = VΠ = 0) has
to be a special case of our theory and the 2nd, 3rd, and 4th integrals of (5.23)
remain invariant under SRBM, the coefficient tensor of Ω must vanish. This is a
stringent requirement validating the nonlinear time-dependent kinematics of the
model. Using the Ericksen identity (5.21), it is verified that the requirement is
indeed satisfied by our model.

2. We would like to define elastic response as being non-dissipative, i.e. D = 0.
Sufficient conditions ensuring this are given by the following constitutive choices
for Λdev, the deviatoric part of the couple stress tensor, the symmetric part of the
Cauchy stress tensor, and a boundary condition:

Λdev
jk = e jpw ρ W T

pr

(
Dsym

J ψ
)

rwk
, (5.25)
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Trj + Tjr = Arj + Ajr

Arj := ρ {− (∂Wψ)ij Wir

+ (∂Sψ)mrk Smjk − (∂Sψ)mwj Smwr

− (∂Jψ)pjk Jprk − (∂Jψ)mwj Jmwr

+ (∂�Πψ)ikr
�Πikj − (∂�Πψ)ikm

�Πikmδrj

+ (
Dsym

J ψ
)

pjk,k
Wpr + (

Dsym
J ψ

)
pjk

Jprk}

(5.26)

and [Bpwk + Bwpk
]

nk = 0 on boundary of body

Bpwk := ρ W T
pr

(
Dsym

J ψ
)

rwk
.

(5.27)

These constitutive choices are meant to be valid for all processes, whether dissi-
pative or not. The following observations are in order:

• The skew-symmetric part of the Cauchy stress, Tskw, is constitutively unde-
termined (cf. [MT62]). Similarly, the hydrostatic part of the couple stress
tensor is constitutively undetermined (cf. [UCTF13]), since eipwΩpw,k =
− (

eiwpvp,w

)
,k in (5.23) is deviatoric as the vorticity, being the curl of the

velocity field, is necessarily divergence-free. Taking the curl of the balance
of angular momentum (5.153) and substituting the divergence of Tskw in the
balance of the linear momentum (5.152), one derives a higher order equilib-
rium equation between the symmetric part of the Cauchy stress Tsym and the
deviatoric couple-stress Λdev:

ρv̇ = divTsym + 1

2
curl(divΛdev) + ρb + 1

2
curlρK (5.28)

In each specific problem, the fields ρ, x, W, S are obtained by solving
(5.151,4,5,6) and (5.28). This amounts to solving all of (5.15), where balance
of angular momentum is understood as solved simply by evaluating the skew
part of the Cauchy stress from (5.153).

• The boundary condition (5.27) does not constrain the specification of couple
stress related boundary conditions in any way.

• Couple-stresses arise only if the push-forward of the tensor Dsym
J ψ to the

current configuration has a skew-symmetric component. In particular, if(
Dsym

J

)
rwk

= 0, then there are no couple-stresses in the model and, in the
absence of body-couples, the stress tensor is symmetric and balance of linear
momentum (5.152), viewed as the basic equation for solving for the position
field x or velocity field v is of lower-order (in the sense of partial differential
equations) compared to the situation when couple-stresses are present.

• The important physical case of dislocation mechanics is one where(
Dsym

J ψ
)

rwk
= 0. Here, the stored-energy function depends upon J = grad W
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only through α̃ = −J : X and (∂Sψ) = (∂�Πψ) = 0. The theory, including
dissipative effects, then reduces to the one presented in [Ach04, Ach11].

• In the compatible, elastic case, assuming the existence of a stress-free refer-
ence configuration from which the deformation is defined with deformation
gradient field F, we have W = F−1 and the energy function is only a function
of grad F−1, and F−1. In this case, (∂Jψ)pjk = (

Dsym
J ψ

)
pjk

. Defining

ψ
(

F−1, grad F−1
)

:= ψ̃
(

F
(

F−1
)

, Grad F
(

F−1, grad F−1
))

and using the relations

(Grad F)sP,K = (grad F)sP,k FkK

(grad F)aB,c = −FaM

(
grad F−1

)
Mn,c

FnB

along with further manipulation, it can be shown that

Λjk = ejwp Hwpk

Hwpk = ρFwB
∂ψ̃

∂FpB,K
FkK

(5.29)

and

Arj
∣∣
compatible = ∂ψ̃

∂FrA
FjA + ∂ψ̃

∂FrB,C
FjB,C − Hjrk,k . (5.30)

The couple-stress and symmetric part of Cauchy stress relations that arise
from relations (5.29–5.30) are precisely the ones derived by Toupin [Tou62,
TN04], starting from a different (static and variational) premise and invok-
ing the notion of an hyperstress tensor, a construct we choose not to utilize.
Admittedly, we then need a slightly restricted boundary condition (5.27), but
we do not consider this as a major restriction given the difficulty in physical
identification of hyperstresses and hypertractions.

3. We refer to dissipative ‘driving forces’ in this context as the power-conjugate
objects to the fields VΠ, Vα, and V S in the dissipation D (5.24), since in their
absence there can be no mechanical dissipation in the theory (i.e. all power sup-
plied to the body is converted in entirety to stored energy), with the reversible
response relations (5.25)–(5.27) in effect. Interestingly, the theory suggests sep-
arate driving forces in the bulk and at external boundaries of the body.
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• The bulk driving forces are given by

V α
s � − [(∂Wψ)ij ejrsαir + (∂Sψ)rwk

(
−epjsW −1

wl αlj Srpk

)

− (∂Jψ)rwk,k ewjsαrj]
(5.31)

V Π
s � − [(∂Sψ)rwk

(
−ekjsW −1

wl Πrlj

)

+ ( (∂�Πψ)rwp,s − (∂�Πψ)rws,p)Πrwp]
(5.32)

V S
j � (∂Sψ)rwk,k WwpSrpj (5.33)

• The boundary driving forces at an external boundary point with outward unit
normal n are given by

V S
j � − (∂Sψ)rwk nk WwpSrpj (5.34)

V α
s � − (∂Jψ)rwk nkαrjewjs (5.35)

V Π
s �

(
(∂�Πψ)rwp ns − (∂�Πψ)rws n p

)
Πrwp. (5.36)

When the various defect velocities are chosen to be in the directions of their
driving forces, then the mechanical dissipation in the body is guaranteed to satisfy

D ≥ 0,

i.e. the rate of energy supply in the model is never less than the rate of storage of
energy.

5.5.4 A Special Constitutive Dependence

There are many situations when the atoms of the as-received body relieved of applied
loads can be re-arranged to form a collection that is stress-free. An example is that of
the as-received body consisting of a possibly dislocated perfect single crystal. Let us
denote such a stress-free collection of the entire set of atoms in the body as R. When
such an atomic structure is available, it is often true that, up to boundary-effects, there
are non-trivial homogeneous deformations of the structure that leave it unchanged
(modulo rigid body deformations) and this provides an energetic constraint on pos-
sible atomic motions of the body. In our modeling, we would like to encapsulate this
structural symmetry-related fact as a constitutive energetic constraint.

When defects of incompatibility are disallowed (e.g. compatible phase transfor-
mations), then the theory alreadypresented suffices formodeling, employingmultiple
well-energy functions in the deformation gradient from the perfect crystal reference
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with second deformation gradient regularization. In the presence of defects, in par-
ticular dislocations, and when the focus is the modeling of individual dislocations, a
constitutive modification may be required. There exists a gradient flow-based mod-
eling technique for small deformation analysis called the phase-field method for
dislocations [RLBF03, WL10, Den04] that amalgamates the Ginzburg-Landau par-
adigmwith Eshelby’s [Esh57] eigenstrain representation of a dislocation loop; for an
approach to coupled phase-transformations and dislocations at finite deformations
within the same paradigm see [LJ12]. An adaptation of those ideas within our frame-
work of unrestrictedmaterial and geometric nonlinearity and conservation-law based
defect dynamics requires, for the representation of physical concepts like the unstable
stacking fault energy density, a dependence of the stored energy on a measure that
reflects deformation of R to the current atomic configuration. Thismeasure cannot be
defined solely in terms of the i-elastic 1-distortion W . The following considerations
of this section provides some physical justification for the adopted definition (5.37)
of this measure.

Let us approximate the spatial region occupied by R by a fixed connected spatial
configuration R. We consider any atom in R, say at position XR, and consider a
neighborhood of atoms of it. As the deformation of the body progresses, we imagine
tracking the positions of the atoms of this neighborhood around XR. By approximat-
ing the initial and the image neighborhoods by connected domains, one can define a
deformation between them. We assume that this deformation is well-approximated
by a homogeneous deformation with gradient Fs(XR, t). We assume that by some
well-defined procedure this discrete collection of deformation gradients at each time
(one for each atomic position) can be extended to a field on the configuration R,9

with generic point referred to as X R . Since R and B(t) are both configurations of
the body, we can as well view the motion of the body, say xR , with R as a reference
configuration and with deformation gradient field

FR = GradX R x,

where the expression on the right hand side refers to the gradient of the position field
x on the configuration R.

Through this one-to-one motion referred to R we associate the field

Ws(x, t) := Fs−1(x, t)

9Note that such a tensor field is notF p of classical elastoplasticity theory; for instance, its invariance
under superposed rigid body motions of the current configuration is entirely different from that of
Fp .
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with the current configuration B(t) in the natural way and constrain the possible
local deformations Fs 10 by requiring

curl Ws = α̃ =⇒ curl (W − Ws) = 0

and choosing the ‘free’ gradient of a vector field through

W = Ws + grad x−1
R =⇒ Ws := W − F−1

R . (5.37)

We note that the knowledge of themotion of the body and the evolution of theW field
completely determine the evolutionof thefieldWs. In themanner defined, in principle
Ws is an unambiguously initializable field whenever the atomic configuration in the
as-received body is known and a ‘perfect’ atomic structure R for the body exists.

When adependence of the energy function on the structural distortion is envisaged,
this implies an additional dependence of the stored energy function (5.19) onFR (and
a dependence on the configuration R). This implies corresponding changes in the
Ericksen identity, reversible response functions, and the driving forces that may be
deduced without difficulty.

We emphasize, however, that it is not clear to us at this point that the constitutive
modeling necessarily requires accounting for the structural variable Ws (or equiv-
alently the pair W and FR), despite the viewpoint of the phase-field methodology.
In particular, whether a suitable dependence of the stored energy function solely on
the element W of the pair suffices for the prediction of observed behavior related to
motion of individual dislocations needs to be explored in detail.

5.6 ‘Small Deformation’ Model

In this section we present a model where many of the geometric nonlinearities that
appear in the theory presented in Sect. 5.5 are ignored. This may be considered
as an extension of the theory of linear elasticity to account for the dynamics of
phase boundaries, g.disclinations, and dislocations. A main assumption is that the
all equations are posed on a fixed, known, configuration that enters ‘parametrically’
in the solution to the equations. Such a model has been described in [AF12]. In what
we present here, there is a difference in the reversible responses from those proposed
in [AF12], even though the latter also ensure that the dissipation vanishes in the
model for elastic processes. The choices made here render our model consistent with
Toupin’s [Tou62] model of higher-order elasticity in the completely compatible case.

10This may also be viewed as a constraint on the atomic re-arrangement leading to the choice of
the particular R.
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Theeigenwallfield in the small deformation case is denotedby Ŝ.All g.disclination
densitymeasures are denoted by Π̂. The elastic 1-distortion is approximated by I−Ue

where Ue is a ‘small’ elastic distortion measure and we further introduce a plastic
distortion field by the definition

Ue := grad u − U p,

where u is the displacement field of the body from the given distinguished refer-
ence configuration. The strain tensor is defined as ε := (grad u)sym. The elastic

2-distortion is defined as Ge := grad Ue + Ŝ, with the g.disclination density as
curl Ge = curl Ŝ = Π̂. The dislocation density is defined as α̂ := −Ge : X =
curl Ue − Ŝ : X.

The governing equations are

ρü = div T + b̂

0 = div Λ − X : T + K̂

U̇
p = α̂ × V̂

α

˙̂S = −Π × V̂
Π + grad

(
ŜV̂

S
)

˙̂
Π = −curl

(
Π̂ × V̂

Π
)

.

(5.38)

Here V̂
S
is the eigenwall velocity, V̂

α
the dislocation velocity, V̂

Π
the disclination

velocity, and b̂ and K̂ are body force and couple densities per unit volume. We also
define Ĵ := grad Ue.

The stored energy density response (per unit volume of the reference) is assumed
to have the following dependencies:

ψ = ψ
(

Ue, Ŝ, Π̂, Ĵ
)

,

and a necessary condition for the invariance of the energy under superposed infini-
tesimal rigid deformations is

(∂Ueψ) : s = 0 for all skew tensors s,

which implies that (∂Ueψ) has to be a symmetric tensor, thus constraining the func-
tional form of ψ.
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On defining
(

Dsym

Ĵ
ψ

)
ijk

:= 1
2

[(
∂Ĵψ

)
ijk

+
(
∂Ĵψ

)
ikj

]
, the dissipation can be

characterized as:

D =
∫

B
Tij ε̇ij dv − 1

2

∫

B
ΛijeirsΩrs, j dv −

∫

B
ψ̇ dv

=
∫

B

[
Tij − (∂Ueψ)ij +

(
Dsym

Ĵ
ψ

)
ijk,k

]
Dij dv

+
∫

B

[
−1

2
eirsΛij −

(
Dsym

Ĵ
ψ

)
rsj

]
Ωrs, j dv

+
∫

B

[
esjr

{
(∂Ueψ)ij −

(
∂Ĵψ

)
ijk,k

}]
α̂irV̂ α

s dv

+
∫

B

(
∂Ŝψ

)
ijk,k ŜijrV̂ S

r dv

+
∫

B

[
esnr

{(
∂Ŝψ

)
ijn + enmk

(
∂

Π̂
ψ

)
ijk,m

}]
Π̂ijr V̂ Π

s dv

−
∫

∂B

(
Dsym

Ĵ
ψ

)
ijk

nk ε̇ij da

+
∫

∂B
esjr

(
∂Ĵψ

)
ijk

nk α̂ir V̂ α
s da

−
∫

∂B

(
∂Ŝψ

)
ijk nk Ŝijr V̂ S

r da

+
∫

∂B

(
∂

Π̂
ψ

)
ijk [δkrδms − δksδmr] nmΠ̂ijr V̂ Π

s da.

(5.39)

5.6.1 Reversible Response and Driving Forces
in the Small Deformation Model

Motivated by the characterization (5.39), we propose the following constitutive
guidelines that ensure non-negative dissipation in general and vanishing dissipation
in the elastic case:

Tij + Tji = Âij + Âji

Âij := (∂Ueψ)ij −
(

Dsym

Ĵ
ψ

)
ijk,k

Λdev
ij = −eirs

(
Dsym

Ĵ
ψ

)
rsj[(

Dsym

Ĵ
ψ

)
ijk

+
(

Dsym

Ĵ
ψ

)
jik

]
nk

∣∣∣
boundary

= 0
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V̂ α
s

∣∣
bulk � esjr

{
(∂Ueψ)ij −

(
∂Ĵψ

)
ijk,k

}
α̂ir

V̂ S
r

∣∣
bulk �

(
∂Ŝψ

)
ijk,k Ŝijr

V̂ Π
s

∣∣
bulk � esnr

{(
∂Ŝψ

)
ijn + enmk

(
∂

Π̂
ψ

)
ijk,m

}
Π̂ijr

V̂ α
s

∣∣
boundary � esjr

(
∂Ĵψ

)
ijk

nk α̂ir

V̂ S
r

∣∣
boundary � − (

∂Ŝψ
)

ijk nk Ŝijr

V̂ Π
s

∣∣
boundary �

[(
∂

Π̂
ψ

)
ijr ns − (

∂
Π̂

ψ
)

ijs nr

]
Π̂ijr .

(5.40)

As before, a dependence of the energy on Fs in the nonlinear case translates to
an extra dependence of the stored energy on

U p = grad u − Ue = I − Ue − (I − grad u) ≈ W − F−1
R = Ws

in the small deformation case, with corresponding changes in the reversible response
and driving forces.

5.7 Contact with the Differential Geometric Point of View

For the purpose of this section it is assumed that we operate on a simply-connected
subset of the current configuration B. Arbitrary (3-d) curvilinear coordinate systems
for the set will be invoked as needed, with the generic point denoted as

(
ξ1, ξ2, ξ3

)
.

Lower-case Greek letters will be used to denote indices for such coordinates. The
natural basis of the coordinate system on the configuration B will be denoted as the
list of vectors

eα = ∂x
∂ξα

α = 1, 2, 3,

with dual basis
(
eβ = grad ξβ,β = 1, 2, 3

)
.Wewill assume all fields to be as smooth

as required; in particular, equality of second partial derivatives will be assumed
throughout.

Beyond the physical motivation provided for it in Sect. 5.4.3 as a line density
carrying a tensorial attribute, the disclination density field Π = curl Y alternatively
characterizes whether a solution W̃ (2nd-order tensor field) exists to the equation

grad W̃ = Y, (5.41)

with existence guaranteed when Π = curl Y = curl S = 0 which, in a rectangular
Cartesian coordinate system, amounts to

Sijk,l − Sijl,k = erlkerqpSijp,q = erlk (curl S)ijr = 0. (5.42)
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This is a physically meaningful question in continuum mechanics with a simple
answer. Moreover, when such a solution exists, the existence of a triad d̃α,α =
1, 2, 3 of vectors corresponding to each choice of a coordinate system for B is also
guaranteed by the definition

d̃α := W̃eα.

This question of the existence of a triad of vectors related to arbitrary coordinate
systems for B and the integrability of Y can also be posed in a differential geometric
context, albeit far more complicated.

We first consider the i-elastic 1-distortion W that is assumed to be an invertible
2nd-order tensor field by definition. Defining

d̄α = Weα

and noting that d̄α,α = 1, 2, 3 is necessarily a basis field, there exists an array Γ̄
μ
αβ

satisfying
d̄α,β = Γ̄

μ
αβ d̄μ. (5.43)

Let the dual basis of
(
d̄α,α = 1, 2, 3

)
be

(
d̄

α = W−T eα,α = 1, 2, 3
)
. Then

Γ̄
ρ
αβ = eρ · W−1 ([{grad W} eβ

]
eα + Weα,β

)
.

Weobserve that even though (5.43) is an overconstrained systemof 9 vector equations
for 3 vector fields, solutions exist due to the invertibility of W , and the following
‘integrability’ condition arising from d̄α,βγ = d̄α,γβ , holds:

Γ̄
μ
αβ,γ − Γ̄

μ
αγ,β + Γ̄

ρ
αβΓ̄ μ

ργ − Γ̄
ρ
αβΓ̄ μ

ργ = 0. (5.44)

Guided by the integrability/existence question suggested by (5.43) we now turn
the argument around and ask for conditions of existence of a vector field triad (dα)

given the connection symbols Γ defined by

Γ
ρ
αβ := Γ̄

ρ
αβ + Sρ

.αβ

Sρ
.αβ := eρ · W−1 ({

Seβ

}
eα

)
.

Thus, we ask the question of existence of smooth solutions to

dα,β = Γ
μ
αβdμ. (5.45)

Based on a theorem of Thomas [Tho34], it can be shown that a 9-parameter family
of (global) solutions on simply-connected domains may be constructed when the
following condition on the array Γ holds:

Rμ
.αβγ(Γ ) := Γ

μ
αβ,γ − Γ

μ
αγ,β + Γ

ρ
αβΓ μ

ργ − Γ
ρ
αβΓ μ

ργ = 0. (5.46)
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The condition corresponds to the mixed components of the curvature tensor of the
connection Γ vanishing and results in dα,βγ = dα,γβ for the (dα) triad that can be
constructed. We note that

Rα
.μβγ(Γ ) = Rα

.μβγ(Γ̄ ) + Rα
.μβγ(S) + Γ̄ α

νγ Sν
.μβ + Γ̄ ν

μβ Sα
.νγ − Γ̄ α

νβ Sν
.μγ − Γ̄ ν

μγ Sα
.νβ

with Rα
.μβγ(Γ̄ ) = 0 from (5.44). Furthermore, the typical differential geometric treat-

ment [Kon55, Bil60, KL92, CMB06] imposes the condition of a metric differential
geometry, i.e. the covariant derivative of the metric tensor (here WT W) with respect
to the connection Γ is required to vanish. There is no need in our development to
impose any such requirement.

The difference in complexity of the continuum mechanical and differential geo-
metric integrability conditions (5.42) and (5.46), even when both are expressed in
rectangular Cartesian coordinates, is striking. It arises because of the nature of the
existence questions asked in the two cases. The differential geometric question (5.45)
involves the unknownvector field on the right hand sidewhile the continuummechan-
ical question (5.41), physically self-contained and sufficiently general for the purpose
at hand, is essentially the question from elementary vector analysis of when a poten-
tial exists for a completely prescribed vector field.

Finally, we note that both in the traditional metric differential geometric treatment
of defects [Kon55, Bil60, KL92, CMB06] and our continuum mechanical treat-
ment at finite strains, it is not straightforward, if possible at all, to separate out the
effects of strictly rotation-gradient and strain-gradient related incompatibilities/non-
integrabilities. Fortunately from our point of view, this is not physically required
either (for specifying, e.g., the defect content of a terminating elastic distortion dis-
continuity from observations).

5.8 Concluding Remarks

A new theoretical approach for studying the coupled dynamics of phase transfor-
mations and plasticity in solids has been presented. It extends nonlinear elastic-
ity by considering new continuum fields arising from defects in compatibility of
deformation. The generalized eigendeformation based kinematics allows a natural
framework for posing kinetic balance/conservation laws for defect densities and con-
sequent dissipation, an avenue not available through simply higher-gradient, ‘cap-
illary’/surface energy regularizations of compatible theory. Such a feature is in the
direction of theoretical requirements suggested by results of sharp-interface models
from nonlinear elasticity in the case of phase transformations [AK06]. In addition,
finite-total-energy, non-singular, defect-like fields can be described (that may also be
expected to be possible with higher-gradient regularizations), and their evolution can
be followed without the cumbersome tracking of complicated, evolving, multiply-
connected geometries. This feature has obvious beneficial implications for practical
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numerical implementations where the developed model introduces interesting com-
binations of elliptic and hyperbolic (when material inertia is included) systems with
degenerate parabolic equations for numerical discretization. The elliptic component
includes div − curl systems, novel in the context of their use in solid mechanics.
Significant components of such problems have been dealt with computationally in
our prior work e.g. [RA05, VBAF06, FTC11, TCF13a], and detailed considerations
for the present model will be the subject of future work.

The generalized eigendeformation fields have striking similarities with gauge
fields of high-energy particle physics, but do not arise from considerations of
gauge invariance of an underlying Hamiltonian. Instead, they arise from the phys-
ical requirement of modeling finite total energies in bodies that contain commonly
observed 1 and 2-dimensional defects, and from a desire to be able to model their
observed motion and interactions.

In formulating a continuummechanical model of solid-solid phase transformation
behavior based squarely on the kinematics of deformation incompatibility, our work
differs from that of [FG94] and those of [Kha83, Roi78]. In the context of dislocation
plasticity alone, for the same reason it differs from the strain-gradient plasticity work
of [Aif84, FH01, GHNH99]. There is an extended body of work in strain-gradient
plasticity that accounts for the dislocation density in some form [Ste96, Gur02, FS03,
EBG04, LS06, KT08, Gud04, FW09] but none have been shown to build up from a
treatment of the statics and dynamics of individual dislocations as in our case [Ach01,
Ach03, VBAF06, DAZM, ZCA13, TCF13a].

Finally, we mention a widely used, and quite successful, framework for grain-
boundary network evolution [Mul56, KLT06, EES09]. This involves postulating a
grain boundary energy density based on misorientation and the normal vector to
the boundary and evolving the network based on a gradient flow of this energy
(taking account of the natural boundary condition that arises at triple lines). Given
that a grain boundary is after all a sharp transition layer in lattice orientation and
the latter is a part of the elastic distortion of a lattice that stretches and bends to
transmit stresses and moments, it is reasonable to ask why such modeling succeeds
with the complete neglect of any notions of stress or elastic deformation and what
the model’s relation might be to a theory where stresses and elastic strains are not
constrained to vanish. TheMullins model does not allow asking such questions.With
localized concentrations of the eigenwall field representing the geometry of grain
boundaries (including their normals), g.disclinations representing triple (or higher)
lines, dependence of the energy on the eigenwall field and the i-elastic 1-distortion
representing effects of misorientation, and the eigenwall velocity representing the
grain boundary velocity, our model provides a natural framework, accounting for
compatibility conditions akin to Herring’s relation at triple lines, for the response of
grain boundaries to applied stress [TCF13a, FTUC12]. Moreover, it allows asking
the question of whether stress-free initializations can remain (almost) stress-free on
evolution. Interestingly, it appears that it may be possible to even have an exact analog
of the stress-free/negligible stress model by allowing for general evolution of the
eigenwall field S, and constraining the dislocation density fieldα to ensure that α̃ =
−curl W always belongs to the space of curls of (proper-orthogonal tensor) rotation
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fields. We leave such interesting physical questions for further study along with the
analysis of ‘simple’ ansatz-based, exact reducedmodels of phase boundary evolution
coupled to dislocation plasticity within our setting that have been formulated.

Ericksen [Eri98, Eri08] raises interesting and important questions about the
(in)adequacy of modeling crystal defects with nonlinear elasticity, the interrela-
tionships between the mechanics of twinning and dislocations, and the conceptual
(un)importance of involving a reference configuration in themechanics of crystalline
solids, among others. It is our hope that we have made a first step in answering such
questions with the theory presented in this paper.
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