
Chapter 4
Lectures on the Isometric Embedding
Problem (Mn, g) → IRm, m = n

2(n + 1)

Marshall Slemrod

Abstract This work derives the basic balance laws of Codazzi, Ricci, and Gauss
for the isometric embedding of an n-dimensional Riemannian manifold into the
m = n

2 (n + 1)-dimensional Euclidean space. It is shown how the balance laws
can be expressed in quasi-linear symmetric form and how weak solutions for the
linearized problem can be established from the Lax-Milgram theorem.

4.1 Introduction

Riemann introduced the notionof an abstractmanifoldwithmetric structure, hismoti-
vation being the problem of defining a surface in Euclidean space independently of
the underlying Euclidean space. The isometric embedding problem seeks to establish
conditions for theRiemannianmanifold to be a submanifold of aEuclidean space hav-
ing the same metric. For example, consider the smooth n-dimensional Riemannian
manifold Mn with metric tensor g. In terms of local coordinates xi , i = 1, 2, . . . , n
the distance on Mn between neighbouring points is

ds2 = gi j dxi dx j , i, j = 1, 2, . . . n, (4.1.1)

where here and throughout the standard summation convention is adopted. Now let
IRm be m-dimensional Euclidean space, and let y : Mn → IRm be a smooth map so
that the distance between neighbouring points is given by

ds̄2 = dy.dy = yi
, j yi

,kdx j dxk, (4.1.2)

where the subscript comma denotes partial differentiation with respect to the local
coordinates xi . Global embedding of Mn in IRm is equivalent to proving the existence
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of the smooth map y for each x ∈ Mn . Isometric embedding requires the existence
of maps y for which the distances (4.1.1) and (4.1.2) are equal. That is,

gi j dxi dx j = yi
, j yi

,kdx j dxk, (4.1.3)

or
yi
, j yi

,k = g jk, (4.1.4)

which may be compactly rewritten as

∂i y · ∂ j y = gi j , (4.1.5)

where

∂i = ∂

∂xi
, (4.1.6)

and the inner product in IRm is denoted by the symbol “·”.
The classical isometric embedding of a 2-dimensionalRiemannianmanifold into a

3-dimensional Euclidean space is comparatively well studied and comprehensively
discussed in the book by Han and Hong [HH06]. By contrast, the embedding of
n-dimensional Riemannian manifolds into n(n + 1)/2 Euclidean space has only
a comparatively small literature. When n = 3, the main results are due to Bryant
et al. [BGY83], Nakamura andMaeda [NM86, NM89], Goodman andYang [GY88],
and most recently to Poole [Poo10]. The general, but related, case when n ≥ 3 is
considered by Han and Khuri [HK12]. These studies all rely on a linearization of the
full nonlinear system (4.1.4) to establish the embedding y for given metric gi j of the
Riemannian manifold.

Applied analysts familiar with continuum mechanics and quasi-linear balance
laws might find a presentation of the embedding problem within the context of
symmetric quasi-linear forms appealing since there is an accompanying extensive
literature originating with Friedrichs [Fri56]. For this and related references, the
reader may consult Han andHong [HH06]. It appears, however, that when the critical
Janet dimension ism = n(n+1)/2 the isometric embedding problem (Mn, g) → IRm

has not yet been expressed in symmetric quasi-linear form. The purpose of these
self-contained notes is to demonstrate how this may be achieved using the Gauss,
Codazzi, and Ricci relations. The existence and uniqueness of a weak solution to
these equations is then proved by means of the Lax-Milgram theorem.

4.2 Basic Isometric Embedding Equations

Let (X, g) denote an n-dimensionalRiemannianmanifoldwith ascribedmetric tensor
g. Suppose themanifold (X, g) can be embedded globally into IRm . (The term immer-
sion is used when the embedding is local.) As stated in Sect. 4.1, this assumption
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implies that there exist a system of local coordinates xi , i = 1, 2, . . . n on X and
embeddings y j (xi ), j = 1, 2, . . . m such that (4.1.5) holds.

As an example, consider the 2-dimensional Riemannian manifold viewed as a
surface in IR3 and given by y1 = x1, y2 = x2, y3 = f (x1, x2), for a smooth function
f . See Fig. 4.1.
In introductory courses, Pythagoras’ theorem is used to write the distance along

the surface as

(ds)2 = (dx1)
2 + (dx2)

2 + (d f )2

= (dx1)
2 + (dx2)

2 +
(

∂ f

∂x1
dx1 + ∂ f

∂x2
dx2

)2

=
{
1 +

(
∂ f

∂x1

)2
}

(dx1)
2 + 2

∂ f

∂x1

∂ f

∂x2
dx1dx2

+
{
1 +

(
∂ f

∂x2

)2
}

(dx2)
2,

and consequently the corresponding metric is

1 +
(

∂ f

∂x1

)2

= g11,

2
∂ f

∂x1

∂ f

∂x2
= 2g12, (g12 = g21), (4.2.1)

1 +
(

∂ f

∂x2

)2

= g22.

Fig. 4.1 Embedding
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Nowconsider the inverse problem: given themetric as a positive-definite covariant
symmetric tensor, to find components y1, y2, y3 that determine the surface. The
components y1 = x1, y2 = x2 are known, so the question is, can the nonlinear
system of partial differential equations (4.2.1) be solved for f given g? (The general
system is provided by (4.1.5).) For the example of the embedding of (M2, g) into
IR3, the metric tensor may be displayed in the matrix form

g =
[

g11 g12

g12 g22

]

which shows that for the system (4.2.1), there is an equation for each component of
g. More generally, the symmetry of g jk reduces (4.1.5) to three equations for three
unknowns y1, y2, y2, leading to a determined system. On other hand, the embedding
of (M2, g) in IR2 still has three equations but only two components y1, y2 of the
unknown vector y, (the overdetermined case), while the embedding of (M2, g) into
IR4 has three equations to determine four unknown components (y1, y2, y3, y4) (the
underdetermined case).

For an n-dimensional Riemannian manifold the components of the corresponding
metric tensor may be represented by the n × n symmetric matrix

g =
⎡
⎢⎣

g11 · · · g1n

. . .

gn1 · · · gnn

⎤
⎥⎦ . (4.2.2)

There are n(n + 1)/2 entries on and above the diagonal, and we conclude in
general that the isometric embedding problem (recovering the “surface” from the
metric) is

underdetermined when m >
n

2
(n + 1),

determined when m = n

2
(n + 1),

overdetermined when m <
n

2
(n + 1),

wherem is the number of unknowns (y1, y2, . . . , ym), and n(n+1)/2 are the number
of equations. The crucial number

n

2
(n + 1)

is called the Janet dimension.
Not too many solutions can be expected in the overdetermined case, and the ques-

tionof uniqueness has beenpursuedby severalmathematicians. Theunderdetermined
case provides the flexibility of more unknowns than equations rendering superfluous
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Riemann’s concept of an abstract surface. Specifically, for m sufficiently large, the
manifold (Mn, g) embeds globally and smoothly into IRm , and (Mn, g) looks exactly
like a surface. The following theorem is the precise statement.

Theorem 4.2.1 (Nash [Nas56]) Let 3 ≤ k ≤ ∞. A Ck-Riemannian manifold
(Mn, g) has a Ck-embedding into IRm (globally) if

m = n(3n + 11)/2, compact case,

m = n(n + 1)(3n + 11)/2, non-compact case.

Nash’s theorem has been improved but the main point to note is that results for
global embedding always refer to the underdetermined system. Global embedding
(smoothly) is in general not possible for determined systems, where the number of
equations equals the number of unknowns, and which conceptually is more familiar
in applied mathematics.

It is appropriate to quote from the following relevant section in the paper by S-T
Yau [Yau06]:

Section 3.13. Isometric embedding. Given a metric tensor on a manifold, the problem of
isometric embedding is equivalent to finding enough functions f1, . . . , fN so that the metric
can be written as �(d fi )

2. Much work was accomplished for two-dimensional surfaces (as
mentioned in Sect. 2.1.2). Isometric embedding for general dimensions was solved in the
famous work of J. Nash. Nash used his implicit function theorem which depends on various
smoothing operations to gain derivatives. In a remarkable work, Gunther was able to avoid
the Nash procedure. He used only standard Hölder regularity estimates for the Laplacian
to reproduce the Nash isometric embedding with the same regularity result. In his book,
Gromov was able to lower the codimension of the work of Nash. He called his method the
h-principle.

When the dimension of the manifold is n, the expected dimension of the Euclidean space
for the manifold to be isometrically embedded is n(n + 1)/2. It is important to understand
manifolds isometrically embedded into Euclidean space with this optimal dimension. Only
in such a dimension does it make sense to talk about rigidity questions. It remains a major
open problem whether one can find a nontrivial family of isometric embeddings of a closed
manifold into Euclidean space with an optimal dimension.....

Chern told me that he and Levy studied local isometric embedding of a three manifold
into six dimensional Euclidean space, but they did not write any manuscript on it. The major
work in this subject is due to E. Berger, Bryant, Griffiths, and Yang. They show that a generic
three dimensional embedding system is strictly hyperbolic, and the generic four dimensional
system is of principle type. Local existence is true for a generic metric using a hyperbolic
operator and the Nash-Moser implicit function theorem...

Remark 4.2.1 The theory of isometric embedding is a classical subject, but our knowledge
is still rather limited, especially in dimensions greater than three. Many difficult problems
are related to nonlinear mixed type equations or hyperbolic differential equations over closed
manifolds.

4.2.1 Preliminary Lemmas

In this section, we state and prove some lemmas of subsequent interest.
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Lemma 4.2.1 Let X = X ′ × I ⊂ IRn, where X ′ ⊂ IRn−1 is an open domain and
I is a connected open interval. Given smooth functions f : X × IRm → IRm and
A0 : X ′ → IRm, where t ∈ I , there exists a unique solution A : X → IRm to the
system of ordinary differential equations

∂n A = f (x ′, xn, A),

A|xn=t = A0(x ′) for x ′ ∈ X ′,

where ∂n = ∂xn .

Proof The proof is just that of the standard existence-uniqueness theorem for ordi-
nary differential equations. Here, the independent variable xn is “time”, t is the initial
time where the data A0(x ′) is specified, x ′ are parameters on which the data A0(x ′)
and prescribed f (x ′, xn, A) may depend, and A is the unknown function (dependent
variable) that is required to be determined.

Lemma 4.2.2 Let X ⊂ IRn be an open contractible domain and let fi : X × IRm →
IRm satisfy

∂ f a
i

∂x j
+ ∂ f a

i

∂ Ab
f b

j = ∂ f a
j

∂xi
+ ∂ f a

j

∂ Ab
f b
i (4.2.3)

for each (x, A) ∈ X × IRm, where the Einstein summation convention is used here
and throughout unless otherwise stated. Then given x0 ∈ X and A0 ∈ IRm, there
exists a unique solution A : X → IRm to the system

∂i A = fi (x, A), A(x0) = A0, (4.2.4)

where ∂i = ∂xi , and x = (x1, . . . , xn).

Proof Lemma 4.2.1 establishes existence and uniqueness provided the system of
ordinary differential equations is consistent. But differentiation gives

∂i∂ j A = ∂i f j (x, A),

∂ j∂i A = ∂ j fi (x, A),

and the required condition is given by

∂i f j (x, A) = ∂ j fi (x, A).

On expanding the partial derivatives, we obtain

∂ f j

∂xi
+ ∂ f j

∂ Ab

∂ Ab

∂xi
= ∂ fi

∂x j
+ ∂ fi

∂ Ab

∂ Ab

∂x j
,
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which by (4.2.4) reduces to

∂ f j

∂xi
+ ∂ f j

∂ Ab
f b
i = ∂ fi

∂x j
+ ∂ fi

∂ Ab
f b

j ,

which is hypothesis (4.2.3) stipulated in the Lemma. �

Remark 4.2.2 Lemma 4.2.2 is a nonlinear version of the Poincaré lemma, which
rather than the fundamental theorem of the calculus uses instead the existence and
uniqueness theorem of ordinary differential equations. In the standard Poincaré
lemma, the functions fi do not depend upon A and the statement

∂ f a
i

∂x j
= ∂ f a

j

∂xi

implies the existence of a “potential” A with

f a
i = ∂ Aa

∂xi
,

where
∂2Aa

∂x j∂xi
= ∂2Aa

∂xi∂x j
.

4.2.2 Riemannian Structure in Local Coordinates

We recall some standard results whose derivation and further discussion may be
found in most textbooks on differential geometry or tensor analysis.

Let (X, g) be an n-dimensional Riemannian manifold with metric g, and denote
the kth covariant derivative by ∇k . This derivative permits differentiation along the
manifold, and for scalars φ, vectors φi and second order tensors φi j is given respec-
tively by

∇kφ = ∂kφ, (4.2.5)

∇kφ j = ∂kφ j − �l
jkφl , (4.2.6)

∇kφi j = ∂kφi j − �l
ikφl j − �l

jkφil (4.2.7)

where the Christoffel symbols are calculated from the metric g by the formula

�k
i j = 1

2
gkl (

∂igi j − ∂ jgil − ∂lgi j
)
. (4.2.8)
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The metric tensor with components gkl (upper indices) is the inverse of that with
components gi j (lower indices) so that

gklgpl = δk
l , (4.2.9)

where δk
l is the usual Kronecker delta of mixed order defined by

δk
l = 1, when k = l, (4.2.10)

= 0, when k 
= l. (4.2.11)

Kronecker deltas of upper and lower order are defined similarly.
It is well-known that the following identities hold between the above quantities:

∇kgi j = 0, (4.2.12)

�k
i j = �k

ji , (4.2.13)

∂kgi j = gi p�
p
k j + g j p�

p
ik, (4.2.14)

∇i∂ j = �l
i j∇l . (4.2.15)

The Riemann curvature tensor, Rl
ijk, defined in terms of Christoffel symbols by

Rl
ijk = ∂ j�

l
ki − ∂k�

l
j i + �l

j p�
p
ki − �l

kp�
p
ji , (4.2.16)

is known to satisfy the operator identity

Rl
ijk∂l = −∇ j∇k∂i + ∇k∇ j∂i . (4.2.17)

By lowering indices, we have the covariant Riemann curvature tensor

Rijkl = giq Rq
jkl, (4.2.18)

or
Rijkl = giq

(
∂k�

q
l j − ∂l�

q
k j + �

q
kp�

p
l j − �

q
lp�

p
k j

)
, (4.2.19)

which possesses the minor skew-symmetries

Rijkl = −Rjikl = −Rijlk, (4.2.20)

and the interchange (or major) symmetry

Rijkl = Rklij. (4.2.21)
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Cyclic interchange of indices leads to the first Bianchi identity;

Rijkl + Riklj + Riljk = 0, (4.2.22)

and also to the second Bianchi identity;

∇s Rijkl + ∇k Rijls + ∇l Rijsk = 0. (4.2.23)

Remark 4.2.3 (Special case n=2) When n = 2, the covariant Riemann curvature
tensor reduces to

Rijkl = K
(
gikgl j − gilg jk

)
, (4.2.24)

where K is the Gauss curvature given by

K = Rijklξ
iξkη jηl(

gpqgrs − gprgqs
)
ξ pξqηrηs

, (4.2.25)

for any vectors ξ, η.

Remark 4.2.4 The mixed and covariant Riemann curvature tensors involve the first
derivatives of Christoffel tensors and therefore second derivatives of the metric g.
Consequently, theGauss curvature is expressed in termsoffirst and secondderivatives
of the metric. This is Gauss’ Theorema Egregium.

4.2.3 Non-commutativity of Covariant Derivatives of Vectors

We establish the operator identity (4.2.17) when applied to a vector. That is, we prove
the formula

∇k∇ jφi − ∇ j∇kφi = Rl
ijkφl , (4.2.26)

demonstrating that the second covariant derivative of a vector does not commute.
It follows from (4.2.6) to (4.2.7) that

∇k∇ j φi = ∂2
k j φi − ∂k�

p
ji φl − �

p
ji ∂kφp − �

q
ik∂ j φq + �

q
ik�

p
q j φp − �

q
jk∂qφi + �

q
jk�

p
iqφp

= ∂2
k j φi − ∇k�

p
ji φp − �

p
ji ∂kφp − �

q
ik∂ j φq − �

q
jk∂qφi , (4.2.27)

since relation (4.2.7) yields

∇k�
l
i j = ∂k�

l
i j − �

p
ik�

l
pj − �

p
jk�

l
i p.

Similarly, it may be shown that

∇ j∇kφi = ∂2
jkφi − ∇ j�

p
ki − �

p
ki∂ jφp − �

q
i j∂kφq − �

q
k j∂qφi , (4.2.28)
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on using the relation

∇ j�
l
ik = ∂ j�

l
ik − �

p
i j�

l
pk − �

p
k j�

l
i p.

Subtraction of (4.2.28) from (4.2.27) gives

∇k∇ jφi − ∇ j∇kφi = ∇k�
p
i jφp − ∇ j�

p
ikφp

= R p
ijkφp,

because by definition (4.2.16) we have

Rl
ijk = ∂k�

l
i j − ∂ j�

l
ik + �

p
i j�

l
pk − �

p
ik�

l
pj

= ∇k�
l
i j − ∇ j�

l
ik

4.3 Isometric Immersion

As before, we let (X, g) be an n-dimensional Riemannian manifold with metric g.
An isometric immersion is a IRm-valued function y : (X, g) → (IRm, .) when the
induced metric is the same as the original. That is, in terms of local coordinates
(x1, x2, . . . , xn) there holds

∂i y · ∂ j y = gi j , for each 1 ≤ i, j ≤ n, (4.3.1)

where the dot “·” denotes the canonical Euclidean metric in the coordinate patch
(y1, . . . , ym) in IRm .

On letting ds be the distance between neighbouring points in IRm , when y is
known, we have from the Pythagoras theorem that

ds2 = ∂i y · ∂ j y dxi dx j .

On the other hand, the general distance formula for the abstract Riemannian
manifold (X, g) due to Riemann is given by

ds2 = gi j dxi dx j .

It is then natural to ask under what conditions can the two expressions for the distance
be equated to determine a realization of the manifold.

We investigate this question by again first considering the case n = 2, m = 3. The
tangents to the surface (manifold) are given by ∂1y and ∂2y and span the tangent
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space at the point y(x) = (
y1(x1, x2), y2(x1, x2), y3(x1, x2)

)
. The unit normal

vector at this point is defined (up to a sign) by the usual vector cross product

N = ∂1y × ∂2y

|∂1y × ∂2y| .

In higher dimensions, although there is no cross-product, similar ideas may be used.
Indeed, on the manifold (X, g) the coordinate patch y = (y1, . . . , ym) generates the
collection of tangents

{∂1y(x), . . . , ∂n y(x)}

that span the tangent space to the manifold. Define this tangent space to be Tx X and
note that it is n-dimensional. Let Nx X denote the (m − n)-dimensional subspace
orthogonal and complementary to Tx X , and for each x choose a fixed orthogonal
basis of Nx X given by

{Nn+1(x), . . . , Nm(x)} ,

where each Nr , r = n + 1, . . . , m, is assumed to depend smoothly on x .

4.3.1 The Second Derivative of an Immersion

Now, for each x , the vectors {∂1y(x), . . . , ∂n y(x), Nn+1(x), . . . , Nm(x)} comprise a
basis of IRm , and as such are linearly independent. Therefore, for each pair of indices
1 ≤ i, j ≤ n, the vector ∂2

i j y(x) can be written as a linear combination of these

base vectors. In other words, there exist unique coefficients �̃k
i j , 1 ≤ k ≤ n and

Hμ
i j , n + 1 ≤ μ ≤ m such that

∂2
i j y(x) = �̃k

i j (x)∂k y(x) + Hμ
i j (x)Nμ(x), (4.3.2)

or in components,

∂2
i j y p(x) = �̃k

i j (x)∂k y p(x) + Hμ
i j (x)N p

μ , p = 1, . . . , m. (4.3.3)

Since partial derivatives commute, the decomposition (4.3.2) implies

(
�̃k

i j − �̃k
ji

)
∂k y(x) +

(
Hμ

i j − Hμ
j i

)
Nμ = 0.

As just mentioned, the set {∂1y(x), . . . , Nm} is a basis in IRm , and therefore we have
the symmetries

�̄k
i j = �̃k

ji , (4.3.4)

Hμ
i j = Hμ

j i . (4.3.5)
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The notation �̃k
i j is intentional since it will be proved in Sect. “The Coefficients

�̃k
i j” that the coefficients are precisely the Christoffel symbols �k

i j defined in (4.2.8).
It will then follow from (4.2.7) that in terms of the covariant derivative, the relation
(4.3.2) can be expressed as

∇i∂ j y(x) = Hμ
i j (x)Nμ(x). (4.3.6)

The Coefficients �̃k
i j

Weprove that in expressions (4.3.2) and (4.3.3) for the tangent direction of the second
derivatives ∂2

i j y(x), the coefficients �̃k
i j are precisely the Christoffel symbols�k

i j . On
taking the scalar product of both sides of (4.3.2) with the tangent vector ∂q y(x), and
after noting that ∂q y(x) · Nμ(x) = 0, we obtain

∂2
i j y(x) · ∂q y(x) = �̃k

i j∂k y(x) · ∂q y(x) (4.3.7)

= �k
i jgkq .

The last equation follows since y(x) is an immersion and therefore

∂k y(x) · ∂q y(x) = gkq . (4.3.8)

Differentiation with respect to xi of relation (4.3.8) yields the identity

∂ig jq = ∂2
i j y · ∂q y + ∂ j y · ∂2

iq y,

which by (4.3.7) reduces to

∂ig jq(x) = �̃k
i jgkq(x) + �̃k

iqgk j (x). (4.3.9)

This expression, together with the symmetry (4.3.4) of �̃k
i j , is now used in definition

(4.2.8) to give

�k
i j = 1

2
gkl (

∂igl j + ∂ jgil − ∂lgi j
)

= 1

2
gkl

(
�̃

p
ilgpj + �̃

p
i jgpl + �̃

p
jigpl + �̃

p
jlgpi − �̃

p
ilgpj − �̃

p
l jgpi

)

= 1

2

(
�̃

p
ilg

klgpj + 2�̃k
i j + �̃

p
jlg

klgpi − �̃
p
ilg

klgpj − �̃
p
l jg

klgpi

)

= �̃k
i j ,

which establishes the assertion. Note that these derivations have employed the
formula (4.2.9).
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Henceforth, the superposed tilde is removed from the coefficient �̃k
i j in the decom-

position (4.3.2).

The Coefficients Hµ
i j

Let us further consider the decomposition (4.3.2). The assumed orthogonality of the
set {∂1y(x), . . . , Nm(x)}, and in particular that of the set {Nn+1(x), . . . , Nm(x)}, so
that

Nμ(x) · Nν(x) = δμν, (4.3.10)

enables us to write

∂2
i j y(x) · Nν(x) = Hμ

i j (x)Nμ(x) · Nν(x)

= Hμ
i j (x). (4.3.11)

The tensors Hμ
i j (x), μ = n+1, . . . , m, as already shown in (4.3.5), are symmetric

with respect to i, j and form the second fundamental form. The first fundamental
form is given by the tensor g.

4.3.2 Decomposition of First Derivative of Nµ(x)

In this section, the first derivative of the normals Nμ(x) is treated analogously to
that of the decomposition of the first derivative of the tangent vectors expressed by
(4.3.2). We prove

Lemma 4.3.1 There exist functions (the induced connection on the normal bundle
over the embedding)

Aν
μi = −Aμ

νi (4.3.12)

such that
∂i Nμ = −g jk Hμ

ik∂ j y + Aν
μi Nν, (4.3.13)

whose component version is given by

∂i N p
μ = −g jk Hμ

ik∂ j y p + Aν
μi N p

ν , p = 1, . . . , m. (4.3.14)

Proof The normals Nμ are postulated to form an orthonormal set in IRm so that
differentiation of (4.3.10) gives

0 = ∂i
(
Nμ · Nν

) = Nν · ∂i Nμ + Nμ · ∂i Nν . (4.3.15)
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Moreover, because the tangents and normals form a full set of orthonormal vectors
that span IRm , we have the decomposition

∂i Nμ = B j
iμ∂ j y + Aν

μi Nν, (4.3.16)

which on scalar multiplication by Nν and use of (4.3.10) leads to

Nν · ∂i Nμ = Aα
μi Nα · Nν = Aα

μiδαν = Aν
μi ,

Nμ · ∂i Nν = Aα
νi Nα · Nμ = Aα

νiδαμ = Aμ
νi .

Upon substitution in (4.3.15), we conclude that

Aν
μi + Aμ

νi = 0, (4.3.17)

as stated in the Lemma.
On the other hand, we also have

Nμ · ∂k y = 0, ∀μ, k, (4.3.18)

and on recalling (4.3.10) and (4.3.11), we deduce that

0 = g jk∂i
(
Nμ · ∂k y

)
= g jk

(
∂i Nμ · ∂k y + Nμ · ∂2

ik y
)

= g jk (
∂i Nμ · ∂k y + Hμ

ik

)
= g jk

(
∂k y · ∂p y B p

iμ + Hμ
ik

)

= g jk
(
gkp B p

iμ + Hμ
ik

)

= B j
iμ + g jk Hμ

ik,

where we again recall the relation g jkgkp = δ
j
p. We conclude that

B j
iμ = −g jk Hμ

ik, (4.3.19)

which after substitution in (4.3.16) and in conjunction with (4.3.17) proves the
Lemma. �.

4.3.3 The Second Partial Derivatives of Normal Vectors

In this section we establish the well-known Codazzi and Ricci equations as a
consequence of the property that second partial derivatives of the normal vectors
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commute. The Gauss equations are derived in the next section after further discus-
sion of the Codazzi equations.

Now, differentiation of (4.3.13) gives

∂ j
(
∂i Nμ

) = −∂ j

(
gqp Hμ

i p∂q y
)

+ ∂ j

(
Aν

μi Nν

)

= −∂ j

(
gqp Hμ

i p

)
∂q y − gqp Hμ

i p∂
2
jq y +

(
∂ j Aν

μi

)
Nν + Aν

μi∂ j Nν,

which after substitution from (4.3.2) to (4.3.13) leads to

∂ j
(
∂i Nμ

) = −∂ j

(
gqp Hμ

i p

)
∂q y − gqp Hμ

i p

(
�k

jq∂k y + Hν
jq Nν

)

+
(
∂ j Aν

μi

)
Nν + Aν

μi

(
−g pq Hν

pj∂q y + Aη
ν j Nη

)
.

On collecting terms in the tangential and normal directions, we rewrite the last
equation as

∂ j
(
∂i Nμ

) = −
(
∂ j

(
g pq Hμ

i p

)
+ g pk�

q
jk Hμ

i p + g pq Aν
μi Hν

pj

)
∂q y

+
(
∂ j Aν

μi − g pq Hμ
i p Hν

jq + Aη
μi Aν

η j

)
Nν,

But the second derivatives of the normal commute, so that

∂ j
(
∂i Nμ

) = ∂i
(
∂ j Nμ

)
, (4.3.20)

and from the terms in the tangent direction, we can read off the Codazzi equations

∂ j

(
g pq Hμ

i p

)
+ g pk�

q
jk Hμ

i p + g pq Aν
μi Hν

pj = ∂i

(
g pq Hμ

j p

)

+ g pk�
q
ik Hμ

j p + g pq Aν
μ j Hν

pi .

(4.3.21)

Similarly, terms in the normal direction lead to the Ricci equations

∂ j Aν
μi − g pq Hμ

i p Hν
jq + Aη

μi Aν
η j = ∂i Aν

μ j − g pq Hμ
j p Hν

iq + Aη
μ j Aν

ηi . (4.3.22)

The more traditional form of the Codazzi equations is recovered by the following
simple computation. On differentiation of (4.2.9), we obtain

0 = ∂ j
(
g pqgpr

)
= ∂ j

(
g pq)

gpr + g pq∂ j
(
gpr

)
,
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which after multiplying by grs and appealing to (4.2.9) leads to

0 = ∂ j
(
g pq)

gprg
rs + grsg pq∂ j

(
gpr

)
= ∂ j

(
g pq)

δs
p + grsg pq∂ j

(
gpr

)
(4.3.23)

= ∂ j
(
gsq) + grsg pq∂ j

(
∂p y · ∂r y

)
(4.3.24)

= ∂ j
(
gsq) + grsg pq

(
∂2

j p y · ∂r y + ∂p y · ∂2
jr y

)
,

where (4.3.1) is used. We now conclude from (4.3.2) in conjunction with the orthog-
onality relations (4.3.18) and (4.2.9) that

∂ j
(
gsq) = −grsg pq

(
�k

jp∂k y · ∂r y + ∂p y · �k
jr∂k y

)
(4.3.25)

= −grsg pq
(
�k

jpgrk + �k
jrgkp

)

= −g pq
(
�k

jpδ
s
k

)
− grs

(
�k

jrδ
q
k

)

= −g pq�s
jp − grs�

q
jr . (4.3.26)

We perform the differentiation of the first term on the left and right of the Codazzi
equations (4.3.21), and then substitute from (4.3.26) after suitably changing indices
to obtain

g pq∂ j Hμ
i p +

(
−gsq�

p
js − gr p�

q
jr

)
Hμ

i p + g pk�
q
jk Hμ

i p + g pq Aν
μi Hν

pj =
g pq∂i Hμ

j p + (−gsq�
p
is − gr p�

q
ir

)
Hμ

j p + g pk�
q
ik Hμ

j p + g pq Aν
μ j Hν

pi .

Multiplication of both sides of the last equation by gqα togetherwith (4.2.9) yields

∂ j Hμ
iα − �

p
jα Hμ

i p − gqαgr p�
q
jr Hμ

i p + gqαg pk�
q
jk Hμ

i p + Aν
μi Hν

α j =
∂i Hμ

jα − �
p
iα Hμ

j p − gqαgr p�
q
ir Hμ

j p + gqαg pk�
q
ik Hμ

j p + Aν
μ j Hν

αi .

By virtue of the symmetry gr p = g pr , and by changing dummy superscripts, the
third and fourth terms on either side cancel to give

∂ j Hμ
iα − �

p
jα Hμ

i p + Aν
μi Hν

α j = ∂i Hμ
jα − �

p
iα Hμ

j p + Aν
μ j Hν

αi .

The usual form of the Codazzi equations is now obtained by the subtraction of
�

p
i j Hμ

αp from both sides of the last equation. This gives

∂ j Hμ
iα − �

p
jα Hμ

i p − �
p
i j Hμ

αp + Aν
μi Hν

α j = ∂i Hμ
jα − �

p
iα Hμ

j p − �
p
i j Hμ

αp + Aν
μ j Hν

αi .

(4.3.27)
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We apply the formula (4.2.7) for the covariant derivative of a second order tensor
to write

∇ j Hμ
iα = ∂ j Hμ

iα − �
p
i j Hμ

pα − �
p
α j Hμ

i p,

∇i Hμ
jα = ∂i Hμ

jα − �
p
ji Hμ

pα − �
p
αi Hμ

j p,

and use the symmetry of the Christoffel symbols and of the coefficients Hμ
i j to derive

the Codazzi equations in the form

∇ j Hμ
iα − ∇i Hμ

jα + Aν
μi Hν

α j − Aν
μ j Hν

αi = 0. (4.3.28)

Remark 4.3.1 (The hypersurface) When the manifold is a hypersurface, we have
m = n + 1 and there is only one normal Nn+1, since n + 1 ≤ ν ≤ m = n + 1. But
Nn+1 is a unit vector so that

Nn+1 · Nn+1 = 1,

and consequently
∂i Nn+1 · Nn+1 = 0. (4.3.29)

The appropriate member of the system (4.3.13) is

∂i Nn+1 = −g pq Hn+1
i p ∂q y + An+1

(n+1)i Nn+1,

which after using (4.3.29) and the orthogonal set ∂1y, . . . , Nn+1 leads us to

0 = Nn+1 · ∂i Nn+1 = An+1
(n+1)i ,

and therefore An+1
(n+1)i = 0. The conclusion, which can be alternatively derived

by applying the skew-symmetry Aν
μi = −Aμ

νi , implies that for a hypersurface the
Codazzi equations simplify to

∇ j Hμ
iα − ∇i Hμ

jα = 0. (4.3.30)

Remark 4.3.2 (Determined case for hypersurfaces) When dealing with hypersur-
faces in the determined case, we have m = n(n + 1)/2 = (n + 1) so that n = 2 and
m = 3. This is the classical case of (M2, g) embedded into IR3.

4.4 The Gauss and Codazzi Equations

This section further discusses the derivation of equations obtained in the previous
section.



94 M. Slemrod

We commute partial derivatives and then use (4.3.2) to obtain

0 = ∂k

(
∂2

i j y
)

− ∂ j

(
∂2

ik y
)

= ∂k

(
�

p
i j∂p y + Hμ

i j Nμ

)
− ∂ j

(
�

p
ik∂p y + Hμ

ik Nμ

)

=
(
∂k�

p
i j − ∂ j�

p
ik

)
∂p y + �P

i j ∂
2
kp y − �

p
ik∂

2
j p y

+
(
∂k Hμ

i j − ∂ j Hμ
ik

)
Nμ + Hμ

i j∂k Nμ − Hμ
ik∂ j Nμ. (4.4.1)

On appealing again to (4.3.2) and also to (4.3.13), we can reduce (4.4.1) to

0 =
(
∂k�

p
i j − ∂ j�

p
ik

)
∂p y + �

p
i j

(
�

q
kp∂q y + Hμ

kp Nμ

)
− �

p
ik

(
�

q
jp∂q y + Hμ

j p Nμ

)

+
(
∂k Hμ

i j − ∂ j Hμ
ik

)
Nμ

+ Hμ
i j

(
−g pq Hμ

kq∂p y + Aν
μk Nν

)
− Hμ

ik

(
−g pq Hμ

jq∂p y + Aν
μ j Nν

)

=
[
∂k�

p
i j − ∂ j�

p
ik + �

q
i j�

p
kq − �

q
ik�

p
jq − g pq

(
Hμ

i j · Hμ
kq − Hμ

ik · Hμ
jq

)]
∂p y

+
[
�

p
i j Hμ

kp − �
p
ik Hμ

j p + ∂k Hμ
i j − ∂ j Hμ

ik + Hν
i j Aμ

νk − Hν
ik Aμ

ν j

]
Nμ, (4.4.2)

where the last expression has been separated into tangential and normal components.
In consequence, the orthogonality relation (4.3.18) implies that each componentmust
vanish. We have

0 = ∂k Hμ
i j − ∂ j Hμ

ik + �
p
i j Hμ

kp − �
p
ik Hμ

j p + Hν
i j Aμ

μk − Hν
ik Aμ

ν j

= ∂k Hμ
i j − ∂ j Hμ

ik + �
p
i j Hμ

kp − �
p
ik Hμ

j p + Hν
ik Aν

μ j − Hν
i j Aν

μk, (4.4.3)

where the antisymmetry relation (4.3.17) for the vectors Aν
μk is employed. The system

(4.4.3) is the previously derived Codazzi equations.
From the tangential component in (4.4.2), we have

0 =
[
∂k�

p
i j − ∂ j�

p
ik + �

q
i j�

p
kq − �

q
ik�

p
jq − g pq

(
Hμ

i j · Hμ
kq − Hμ

ik · Hμ
jq

)]
,

which upon noting the expression (4.2.16) for the Riemann curvature tensor becomes

g pq
(
−Rqijk − Hμ

i j · Hμ
kq + Hμ

ik · Hμ
jq

)
= 0,

from which follows the Gauss relation

Hμ
i j · Hμ

qk − Hμ
ik · Hμ

jq = Riq jk, (4.4.4)
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on recalling the antisymmetry Rqijk = −Riq jk , and that summation over repeated
superscripts is implied.

4.5 Summary for (Mn, g) → (IRm, ·)

We summarise the conclusions obtained so far. Notice that Aν
μ j are components of

vectors for j = 1, 2, 3, . . . , n with the indices ν,μ accounting only for the dimen-
sions n + 1 ≤ μ, ν ≤ m.

A necessary condition for the existence of an isometric embedding is that there
exist functions

Hμ
i j = Hμ

j i , Aν
μi = −Aμ

νi , 1 ≤ i, j ≤ n, n = 1 ≤ μ, ν ≤ m,

such that the Gauss equations hold

m∑
μ=n+1

(
Hμ

ik Hμ
jl − Hμ

il Hμ
jk

)
= Rijkl, (4.5.1)

along with the Codazzi equations

∂k Hμ
i j + Aμ

νk Hν
i j −�

p
ki Hμ

pj −�
p
k j Hμ

i p = ∂ j Hμ
ik + Aμ

ν j −�
p
ji Hμ

pk −�
p
jk Hμ

i p, (4.5.2)

and the Ricci equations

∂i Aν
μ j − ∂ j Aν

μi + Aν
ηi Aη

μ j − Aν
η j Aη

μi = g pq
(

Hμ
i p Hν

jq − Hμ
j p Hν

iq

)
. (4.5.3)

The Ricci system (4.5.3) can be expressed in covariant form by the addition and
subtraction of the term

�
q
i j Aν

μq

to obtain

∇i Aν
μ j − ∇ j Aν

μi + Aν
ηi Aη

μ j − Aν
η j Aη

μi = g pq
(

Hμ
i p Hν

jq − Hμ
j p Hν

iq

)
. (4.5.4)

4.6 Reconstruction of an Isometric Embedding

In this section we state and sketch of the proof of a theorem giving necessary and
sufficient conditions for the existence of an isometric embedding. We have
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Theorem 4.6.1 Consider a simply connected n-dimensional Riemannian manifold
X with coordinates (x1, . . . , xn) and Riemannian metric g (=gi j ). Let 1 ≤ i, j ≤ n,

and suppose there exist symmetric functions Hμ
i j = Hμ

j i and anti-symmetric functions

Aν
μi = −Aμ

νi , n + 1 ≤ μ, ν ≤ m,

such that Eqs. (4.5.1)–(4.5.3) are satisfied.
Then there exist functions Nn+1, . . . , Nm : X → IRm and a function y : X → IRm

for which the following formulae hold

Nμ · Nν = δμν, (4.6.1)

Nμ · ∂i y = 0, (4.6.2)

∂i y · ∂ j y = gi j , (4.6.3)

and

∂2
i j y = �k

i j∂k y + Hμ
i j Nμ, (4.6.4)

∂i Nμ = −g jk Hμ
ik∂ j y + Aν

μi Nν . (4.6.5)

Remark 4.6.1 The theorem states that the conditions on Hμ
i j , Aν

μi together with

(4.6.1)–(4.6.3) are both necessary and sufficient for the embedding (Mn, g) →
(IRm, ·), X = Mn ; that is, the conditions are necessary and sufficient for the existence
of vector functions y(x).

Sketch of Proof
Let {e1, . . . , em} be the standard orthonormal basis of IRm . For a fixed point

x0 ∈ X , define {∂1y(x0), . . . , ∂n y(x0), Nn+1(x0), . . . , Nm(x0} to satisfy (4.5.3)–
(4.6.2). As a possible choice, we set Nμ(x0) = eμ and y(x0) = 0, and select
{∂1y(x0), . . . , ∂n y(x0)} to be a linear combination of {e1, . . . , en} such that (4.6.2)
holds at x0.

Remark 4.6.2 When gi j (x0) = δi j , we may choose

Nμ(x0) = eμ, n + 1 ≤ μ ≤ m,

∂p y(x0) = ep, 1 ≤ p ≤ n.

Let φp = ∂p y(x0), and observe that (4.6.4)–(4.6.5) form a total differential sys-
tem for the unknown IRm-valued function {φ1, . . . ,φn, Nn+1, . . . , Nm}. This con-
clusion may be checked by first differentiating equations (4.6.4) and (4.6.5) to show
that the compatibility conditions obtained by constructing partial derivatives are
consequences of the Gauss equations (4.5.1), Codazzi equations (4.5.2), Ricci equa-
tions (4.5.3), and the original equations (4.6.4) and (4.6.5). In consequence, and by
Lemma 4.2.2, we conclude that there exists a unique solution (the “potential” φp)
that extends the initial data specified at x0.
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Moreover, the differentials of Eqs. (4.6.1)–(4.6.3) are consequences of (4.6.4) and
(4.6.5). Therefore, they hold not only at x0 but also on all of X .

Finally, the symmetry of the right side of (4.6.4) implies ∂ jφi = ∂iφ j , and
consequently by Lemma 4.2.2, there exists a unique IRm-valued function y on X
such that

y(x0) = 0, and ∂i y = φi , 1 ≤ i ≤ n.

The proof of Theorem4.6.1 is complete. �

4.6.1 Examples

It is important that the number of independent equations matches the number of
independent unknowns. The following examples illustrate this aspect, and also serve
as introduction to a counting process developed by Blum.

Example 1. (M2, g) → (IR3, ·)

In this example, we have n = 2 and m = 3 so that 1 ≤ i, j, k ≤ 2 and μ = ν = 3.
The second fundamental form therefore can be represented as the matrix

H =
[

H3
11 H3

12

H3
21 H3

22

]
. (4.6.6)

Furthermore, since n = 2, we may use (4.2.24) to write

R1212 = K
(
g11g22 − g212

)
= K det g, det g > 0.

where K is the Gauss curvature. Consequently, the Gauss equations (4.4.4) reduce
to the single equation

H3
ik H3

jl − H3
il H3

jk = K det g. (4.6.7)

Upon slight rearrangement, the Codazzi equations (4.5.2) become

∂k Hμ
i j − ∂ j Hμ

ik = �
p
ki Hμ

pj + �
p
k j Hμ

i p − �
p
ji Hμ

pk − �
p
jk Hμ

i p, (4.6.8)

which on specialisation to the example under consideration reduce to

∂2H3
11 − ∂1H3

12 = . . . , (4.6.9)

∂2H3
12 − ∂1H3

22 = . . . . (4.6.10)
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Consequently, there are three equations (4.6.7), (4.6.9) and (4.6.10) in the three
unknowns H3

11, H3
12, H3

22.
On employing the Gauss equations (4.6.7) to eliminate one of the unknowns, we

obtain a quasi-linear system. Accordingly, the Gauss relation becomes a “constitu-
tive relation”.

Example 2. (M3, g) → (IR6, ·)

In this example, we have 1 ≤ i, j ≤ 3 and 4 ≤ μ, ν ≤ 6, and the Gauss equations
(4.4.4) reduce to

6∑
μ=4

(
Hμ

ik Hμ
jl − Hμ

il Hμ
jk

)
= Ri jkl , (4.6.11)

where the six non-zero components of the Riemann curvature tensor are

R1212, R1313, R2323, R1223, R1332, R1231. (4.6.12)

We are left, therefore, with six non-trivial Gauss equations, the remainder being
identically satisfied.

The second fundamental form may be expressed as the matrix array of 6 indepen-
dent entries for each μ: ⎡

⎢⎣
Hμ
11 Hμ

12 Hμ
13

Hμ
21 Hμ

22 Hμ
23

Hμ
31 Hμ

32 Hμ
33

⎤
⎥⎦ , (4.6.13)

from which it can be seen that the Codazzi equations (4.5.2) are just a statement
about cross derivatives along rows (or columns since Hμ

i j is symmetric). Apparently,
there are 3 equations across each row, but the couplings

∂1Hμ
23 − ∂3Hμ

21 = . . . ,

∂1Hμ
32 − ∂2Hμ

31 = . . . ,

after subtraction yield
∂2Hμ

31 − ∂3Hμ
21 = . . .

Thus instead of 9 couplings for eachμ, there are only 8. In consequence, asμ = 4, 5, 6
there are 24 Codazzi equations. In summary, we have

1. Equations

(a) 6 Gauss equations.
(b) 24 Codazzi equations.
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(c) 9 Ricci equations.
(d) Thus, there are a total of 39 equations.

2. Unknowns

(a) 6 × 3 = 18 independent components Hμ
i j of the second fundamental form.

(b) 3 × 3 = 9 coefficients Aν
μk = −Aμ

νk .
(c) Thus, there are a total of 27 unknowns.

We conclude that there are more equations than unknowns despite the embedding
problem (M3, g) → (IR6, ·) being determined (m = n(n + 1)/2; n = 3, m = 6),
which implies that not all equations are independent in the Gauss, Codazzi, Ricci
system.

4.6.2 Blum’s Counting Process

The rather painful counting process illustrated in the previous examples is examined
in a series of papers published in the 1940s and 1950s by R. Blum [Blu55, Blu46,
Blu47] and further described in the excellent survey by Goenner [Goe77].

The description in [Goe77, p. 143] of Blum’s counting result for the embedding
(Mn, g) → IRm, ·) may be paraphrased as follows.

Theorem 4.6.2 When the Gauss equations (4.4.4) are satisfied, and Goenner’s
matrices M and N, defined below, are of maximal rank, then (i) for 0 ≤ p =
m − n ≤ n(n − 2)/8 all Codazzi and Ricci equations are consequences of the Gauss
equations; (i i) for n(n − 2)/8 < p = m − n ≤ n(n − 1)/2 a system of

1

3
n(n2 − 1)

[
p − 1

8
n(n − 2)

]

Codazzi equations are independent. The remainder of the Codazzi equations and all
the Ricci equations are a consequence of the independent Codazzi system and of the
Gauss equations.

Goenner’s matrices M and N are given by

Mμki j
abcde =

{
1

2
(δi

cδ
j
d − δ

j
c δi

d)Hμ
eb + 1

2
(δi

eδ
j
c − δ

j
e δi

c)Hμ
db + 1

2
(δi

dδ
j
e − δ

j
dδi

c)Hμ
cb

}
δk

a,

Nμi j
abcd = 1

2
(δi

cδ
j
d − δ

j
c δi

d)Hμ
ab + 1

2
(δi

bδ
j
c − δ

j
bδi

c)Hμ
ad + 1

2
(δi

dδ
j
b − δ

j
dδi

b)Hμ
ac.

Of course even these definitions are not particularly enlightening, and Goenner has
given results that are easier to state but which we will not repeat here. Also since the
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above notation may be confusing, we note that M, N are the coefficient matrices in
systems (4.2.5) and (4.2.6) of Goenner, i.e.,

m∑
μ=n+1

Mμki j
abcdeCμ

ki j = 0,
m∑

μ=n+1

Nμi j
abcdKμ

νi j = 0.

The matrix M has 1
2

(n+1
2

)(n
3

)
rows and 1

3 pn(n2 − 1) columns, the matrix N has
p
2

(n+1
2

)(n−1
2

)
rows and

(p
2

)(n
2

)
columns. Notice that

Mμki j
abcde = Nμi j

bcdeδ
k
a,

and
Nμi j

bcde = Nμi j
bdec = Nμi j

becd , Nμi j
bcde = −Nμi j

bced , Nμi j
bcde = −Nμi j

bdce.

A useful example is given by the case n = 3, m = 6, p = 3. In this case, the
symmetries in Nμi j

abcd yield that only non-zero terms are of the form Nμi j
a123 and the

equations
m∑

μ=n+1

Nμi j
abcdKμ

νi j = 0

become ⎡
⎣ 0 H5 H6

H4 0 H6

H4 H5 0

⎤
⎦K = 0,

where

K = (K4
523,K4

513,K4
5i12,K5

623,K5
613,K5

612,K6
423,K6

413,K6
412)

T , i.e., NK = 0.

But row operations reduce the coefficient matrix N to obtain

⎡
⎣H4 0 0

0 H5 0
0 0 H6

⎤
⎦ ,

and the condition on N of Blum is just that H4, H5, H6 each be of full rank 3. The
matrix N is 9 × 9 as predicted by Blum’s theorem and the matrix M is 3 × 24. We
can write the system

m∑
μ=n+1

Mμki j
abcdeCμ

ki j = 0
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in the form [
H4 H5 H6 H4 H5 H6 H4 H5 H6

]
C = 0.

In this representation the three repetitions for Cμ
123 are not accounted for and hence

the vector C has 27 entries instead of the 24 predicted by Blum’s theorem. If any one
of the Hμ has full rank 3 then M will have full rank 3.

The example “(M3, g) → (IR6, ·)” in Sect. 4.6.1, for which m = 6, n = 3 and
p = 3, satisfies the condition in category (i i) of the above theorem which gives.

1

8
× 3 × 1 ≤ 3 ≤ 3,

and there are
1

8
× 3 × 8 ×

[
24

8
− 3

8

]
= 21

independent Codazzi equations. All theRicci equations are implied by these indepen-
dent Codazzi equations and the Gauss equations. Thus, Blum’s count gives 21 inde-
pendent Codazzi equations, whereas the elementary count conducted in the example
produced 24 Codazzi equations.

The discrepancy is explained by observing that the elementary counting omitted
to include the three equations in Bianchi’s second identity. Substitution of the Gauss
equations in these three equations gives three more relations between derivatives
of the second fundamental forms and consequently there are only 21 and not 24
independent Codazzi equations.

Combined with the 6 Gauss equations there are 27 equations for the 27 unknowns
consisting, as already shown, of 18 entries of the second fundamental forms and 9
coefficients Aν

μk . Nevertheless, it is unclear how even local existence can be proved
for this system.

In the determined system, we have m = n(n + 1)/2, and category (i i) of Blum’s
theorem again applies with p = n(n − 1)/2 so that there are n2(n2 − 1)(3n − 2)/24
independent Codazzi equations. Under the maximal rank condition, the Codazzi and
Gauss equations imply the Ricci equations.

Sketch of the Proof of Blum’s Theorem When n = 3, m = 6

Throughout this section, unless otherwise stated, the summation convention is sus-
pended for repeated indices μ.
Step 1

Particular forms of the covariant Codazzi equations (4.3.28) are

∇1Hμ
23 − ∇3Hμ

21 + Aν
μ3Hν

21 − Aν
μ1Hν

23 = 0, (4.6.14)

∇1Hμ
32 − ∇2Hμ

31 + Aν
μ2Hν

31 − Aν
μ1Hν

32 = 0, (4.6.15)
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which by subtraction yield the equation

∇2Hμ
31 − ∇3Hμ

21 + Aν
μ3Hν

21 − Aν
μ2Hν

31 = 0. (4.6.16)

We conclude that the Codazzi equations (4.6.16) are implied by the pair (4.6.14)
and (4.6.15) so that for n = 3, m = 6 the number of independent Codazzi equations
is reduced by 3.
Step 2

Next, we rewrite the Codazzi equations (4.3.28) as

εl j i∇ j Hμ
ik + εl j i Aν

μi Hν
k j = 0, (4.6.17)

where εi jk is the standard Einstein alternating tensor given by

εi jk = +1, when i, j, k, is an even permutation of 1, 2, 3,

= −1, when i, j, k, is a odd permutation of 1, 2, 3,

= 0, otherwise .

Let cof A be the cofactor of the entry A in the matrix [A]. Then we have

cof Hμ
il = 1

2
εi jkεlmn Hμ

kn Hμ
jm, (4.6.18)

and consequently

∇l
(
cof Hμ

il

) = 1

2
εi jkεlmn

(∇l Hμ
kn

)
Hμ

jm

+ 1

2
εi jkεlmn Hμ

kn

(
∇l Hμ

jm

)
(4.6.19)

= εi jkεlmn Hμ
jm

(∇l Hμ
kn

)
, no sum on μ, (4.6.20)

where the last expression is obtained by interchange of suffixes j ↔ k, m ↔ n.

After a further interchange of suffixes, the Codazzi equations (4.6.17) may be
written as

εlmn∇l Hμ
kn + εlmn Aν

μn Hν
kl = 0, (4.6.21)

εlmn∇l Hμ
jm + εlmn Aν

μm Hν
jl = 0, (4.6.22)

and substituting these relations in (4.6.19) yields

∇l
(
cofHμ

il

) + 1

2
εi jkεlmn Aν

μn Hν
kl Hμ

jm + 1

2
εi jkεlmn Aν

μm Hν
jl Hμ

km = 0,
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where there is no sum on μ. The interchange m ↔ n, j ↔ k in the last expression
then gives

∇l
(
cof Hμ

il

) + εi jkεlmn Aν
μm Hν

jl Hμ
kn = 0. (4.6.23)

Now sum over μ to obtain

6∑
μ=4

∇l
(
cof Hμ

il

) + εi jkεlmn

6∑
μ=4

Aν
μm Hν

jl Hμ
kn = 0. (4.6.24)

Next, define the second order Ricci tensor R to be

Rps = 1

4
εpjkεsiq Riq jk, (4.6.25)

which can be concisely written in matrix form as

R =
⎡
⎢⎣

R11 R12 R13

R21 R22 R23

R31 R32 R33

⎤
⎥⎦ =

⎡
⎢⎣

R2323 R2331 R2312

R2331 R3131 R3112

R2312 R3112 R1212

⎤
⎥⎦ . (4.6.26)

It then follows from the Gauss equations (4.6.11) that

Rps = 1

4
εpjkεsiq

6∑
μ=4

(
Hμ

kq Hμ
j i − Hμ

ki Hμ
jq

)
(4.6.27)

= 1

2
εpjkεsqi

6∑
μ=4

Hμ
ki Hμ

jq (4.6.28)

=
6∑

μ=4

cof Hμ
ps, (4.6.29)

and on substituting in (4.6.24) to eliminate the cofactor term, we obtain

∇l Ril + εi jkεmnl

6∑
μ=4

Aν
μm Hν

jl Hμ
kn = 0, i = 1, 2, 3. (4.6.30)

It is easy to infer from the second Bianchi identity (4.2.23) that the first term on
left in the last equation vanishes, i.e.,

∇l (R1l) = ∇l (R2l) = ∇l (R3l) = 0.
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The second term on the left of (4.6.30) is zero as Aμ
νk is skew-symmetric in μ, ν

(see (4.3.12)). Consequently, the left side of (4.6.30) is identically zero. The combi-
nation, therefore, of the Codazzi and Gauss equations leads to three trivial relations
which reduce the number of independent Codazzi equations by an additional 3.
Step 3.

It is convenient to introduce extra notation with respect to the covariant Codazzi
(4.6.17) and Ricci (4.5.4) equations as follows;

Cμ
kα ≡ εi jk∇ j Hμ

iα + εi jk Aν
μi Hν

α j = 0, (4.6.31)

K ν
kμ ≡ εi jk∇l Aν

μ j + εi jk Aν
ηi Aη

μ j − g pqεi jk Hμ
i p Hν

jq . (4.6.32)

Covariant differentiation of (4.6.31) yields

εi jk∇k∇ j Hμ
iα + εi jk

(
∇k Aν

μi

)
Hν

α j + εi jk Aν
μi

(
∇k Hν

α j

)
= 0. (4.6.33)

The Codazzi equations (4.6.31) enable the last term to be expressed as

εi jk∇k Hν
α j = −εi jk Aη

ν j Hη
αk

and (4.6.33) then is reduced to

εi jk∇k∇ j Hμ
iα + εi jk

(
∇k Aν

μi

)
Hν

α j − εi jk Aη
νi Hη

αk Aν
μi = 0.

The interchange of indices i → j → k → i in the last term leads to the further
reduction

εi jk∇k∇ j Hμ
iα + εi jk Hν

α j

(
∇k Aν

μi − Aη
νk Aη

μi

)
= 0. (4.6.34)

But from (4.2.26), we may derive the commutation relation

∇k∇ j Hμ
iα − ∇ j∇k Hμ

αi = Rl
i jk Hμ

lα,

which may be expressed as

εi jk∇k∇ j Hμ
iα = Rl

i jk Hμ
lα

= g pq Ri jkq Hμ
pα

= g pqεi jk Hν
ik Hν

jq Hμ
pα,

where Gauss’ equations (4.5.1) are employed in the derivation of the last line of the
previous equation.

Finally, on appealing to the formula for the commutativity of εi jk∇k∇ j Hμ
iα, and

the Gauss equations, we find from (4.6.34) that

Hν
l j K ν

iμ = 0. (4.6.35)
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The maximal rank condition on Hν
l j implies (4.6.35) has a unique solution

K ν
iμ = 0, (4.6.36)

and the 9 Ricci equations are satisfied.

4.7 Symmetrization of the Codazzi Equations

The required symmetrization is achieved by using the Codazzi equations to derive a
certain matrix equation.

On noting the skew-symmetric relation (4.3.12), we may rewrite the Codazzi
equations (4.6.17) in the slightly different form

εl j i∇ j Hμ
ik + εl j i Aμ

νi Hν
jk = 0, (4.7.1)

a subset of which is

∇1Hμ
i j − ∇ j Hμ

i1 + Aμ
ν1Hν

i j − Aμ
ν j Hν

i1 = 0. (4.7.2)

The Codazzi equations (4.7.1) may now be used to eliminate the covariant deriv-
ative on the right of the identity (4.6.19) to obtain

∇lcof Hμ
il = −1

2
εi jkεlmn Aμ

νn Hμ
jm Hν

lk − 1

2
εi jkεlmn Aμ

νm Hμ
kn Hν

l j

= −εi jkεlmn Aμ
νn Hμ

jm Hν
lk . (4.7.3)

Now let
W μ = det Hμ

i j , (4.7.4)

so that by standard algebra of determinants, we have

∂2W μ

∂Hμ
jk∂Hμ

il

= ε j imεkln Hμ
mn, (4.7.5)

which together with the expression (4.6.18) enables the identity (4.6.23) to be written
as

ε j imεkln∇l
(
Hμ

mn

)
Hμ

k j + ε j imεkln Hμ
mn∇l

(
Hμ

jk

)
= −2

∂2W μ

∂Hμ
il ∂Hμ

kn

Aμ
νn Hν

lk .
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Terms on the left may be simplified on further appeal to (4.7.5) to give

∂2W μ

∂Hμ
il ∂Hμ

mn
∇l Hμ

mn + ∂2W μ

∂Hμ
jk∂Hμ

il

∇l Hμ
jk = −2

∂2W μ

∂Hμ
il ∂Hμ

kn

Aμ
νn Hν

lk,

and consequently,

∂2W μ

∂Hμ
il ∂Hμ

jk

∇l Hμ
jk = − ∂2W μ

∂Hμ
il ∂Hμ

jm

Aμ
νn Hν

lk, no sum on μ. (4.7.6)

The next part of the construction of a matrix equation involves the multiplication
of (4.7.2) by

∂2W μ

∂Hμ
il ∂Hμ

jk

to obtain

− ∂2W μ

∂Hμ
il ∂Hμ

jk

∇1Hμ
il + ∂2W μ

∂Hμ
il ∂Hμ

jk

∇l Hμ
i1

− ∂2W μ

∂Hμ
il ∂Hμ

jk

Aμ
ν1Hν

il + ∂2W μ

∂Hμ
il ∂Hμ

jk

Aμ
νl Hν

i1 = 0. (4.7.7)

We combine the systems (4.7.6) and (4.7.7) into the matrix array of equations
given by

[
0 0

0 − ∂2Wμ

∂Hμ
il ∂Hμ

jk

]
∇1

[
Hμ

i1
Hμ

il

]
+

⎡
⎣ 0 ∂2Wμ

∂Hμ
il ∂Hμ

jk
∂2Wμ

∂Hμ
il ∂Hμ

kn
0

⎤
⎦ ∇l

[
Hμ

i1
Hμ

jk

]

+
⎡
⎣

∂2Wμ

∂Hμ
il ∂Hμ

kn
Aμ

νn Hμ
lk

∂2Wμ

∂Hμ
il ∂Hμ

jk

(−Aμ
ν1Hμ

il + Aμ
νl Hμ

i1

)
⎤
⎦

= 0. (4.7.8)

We examine in detail the terms in this matrix equation and for this purpose intro-
duce further notation. For example, the block matrices in the matrix coefficient of
∇2 are given by

Lμ
2 =

⎡
⎢⎢⎢⎢⎣

∂2Wμ

∂Hμ
11∂Hμ

12

∂2Wμ

∂Hμ
12∂Hμ

12
. . . ∂2Wμ

∂Hμ
33∂Hμ

12

∂2Wμ

∂Hμ
11∂Hμ

22

∂2Wμ

∂Hμ
12∂Hμ

22
. . . ∂2Wμ

∂Hμ
33∂Hμ

22

∂2Wμ

∂Hμ
11∂Hμ

32
. . . . . . ∂2Wμ

∂Hμ
33∂Hμ

32

⎤
⎥⎥⎥⎥⎦
3×9

, (4.7.9)
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(
Lμ
2

)T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂2Wμ

∂Hμ
12∂Hμ

11

∂2Wμ

∂Hμ
22∂Hμ

11

∂2Wμ

∂Hμ
32∂Hμ

11

∂2Wμ

∂Hμ
12∂Hμ

12

∂2Wμ

∂Hμ
22∂Hμ

12

∂2Wμ

∂Hμ
32∂Hμ

12

...
...

...

∂2Wμ

∂Hμ
12∂Hμ

33

∂2Wμ

∂Hμ
22∂Hμ

33

∂2Wμ

∂Hμ
32∂Hμ

33

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
9×3

, (4.7.10)

so that the 12 × 12 composite matrix Bμ
2 defined as

Bμ
2 =

[
0 Lμ

2(
Lμ
2

)T 0

]
, (4.7.11)

is symmetric, and the second term on the left in (4.7.8) involving ∇2 becomes

Bμ
2 ∇2Uμ,

where (
Uμ

)T = (
Hμ
11, Hμ

21, Hμ
31, Hμ

11, Hμ
12, Hμ

13, . . . Hμ
33

)
. (4.7.12)

The matrices Bμ
l appearing in the coefficient of∇l are defined in a manner similar

to (4.7.11).
Every coefficient matrix in (4.7.8) is symmetric including that for l = 1, but a

separate argument is used to check the first coefficient matrix in the first term on the
left of (4.7.8). This matrix, denoted by Bμ

0 , is written as

Bμ
0 =

[
0 0

0 − ∂2Wμ

∂Hμ
il ∂Hμ

jk

]
=

[
03×3 09×3

03×9 − (
Lμ
0

)
3×9

]
, (4.7.13)

where

Lμ
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

∂2Wμ

∂Hμ
11∂Hμ

11

∂2Wμ

∂Hμ
12∂Hμ

11

∂2Wμ

∂Hμ
13∂Hμ

11

∂2Wμ

∂Hμ
11∂Hμ

12

∂2Wμ

∂Hμ
12∂Hμ

12

∂2Wμ

∂Hμ
33∂Hμ

12

...
...

...

∂2Wμ

∂Hμ
11∂Hμ

33
. . . ∂2Wμ

∂Hμ
33∂Hμ

33

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.7.14)

Consequently, in terms of the vector Uμ given by (4.7.12), the Codazzi system
(4.7.8) may be expressed as

Bμ
0 ∇1Uμ + Bμ

l ∇lU
μ + Qμ = 0, (4.7.15)
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where Qμ, the third term on the left of (4.7.8), is given explicitly by the 12-
dimensional vector

Qμ =
⎡
⎣

∂2Wμ

∂Hμ
il ∂Hμ

kn
Aμ

νn Hμ
lk

∂2Wμ

∂Hμ
il ∂Hμ

jk

(−Aμ
ν1Hμ

il + Aμ
νl Hμ

i1

)
⎤
⎦ . (4.7.16)

4.8 Symmetrization of the Linearized Codazzi Equations

4.8.1 Remarks on linearization

Let ε > 0 be a small positive parameter, and suppose that a small perturbation in the
variable yi is given by

yi = ȳi + εẏi , (4.8.1)

with corresponding small perturbations in other quantities given , for example, by

Hμ
i j = H̄μ

i j + εḢμ
i j , (4.8.2)

Aμ
νi = Āμ

νi + ε Ȧμ
νi , (4.8.3)

�i
jk = �̄i

jk + ε�̇i
jk . (4.8.4)

In these expansions, the superposed dot is intended to suggest differentiation with
respect to ε.

4.8.2 Linearization of the Codazzi Equations

We now linearize (4.7.2) and (4.7.1) in the sense that after substitution from (4.8.2)–
(4.8.4) all terms of order higher than the first in ε are neglected. Moreover, in the
linearization it is convenient to remove the overbar without risk of confusion. Then,
in view of the definition of the covariant derivative (see (4.2.5)–(4.2.7)), linearization
of (4.7.2) and (4.7.1) respectively yields

∇1 Ḣμ
il − ∇l Ḣμ

i1 + Ȧμ
ν1Hν

il + Aμ
ν1 Ḣν

il − Ȧμ
νl Hν

i1

−Aμ
νl Ḣν

i1 − �̇
q
i1Hμ

lq − �̇
q
l1Hμ

iq + �̇
q
il Hμ

1q + �̇
q
1l Hμ

iq = 0; (4.8.5)

and

εl j i

(
∇ j Ḣμ

i p − �̇
q
jp Hμ

iq − �̇
q
ji Hμ

pq

)
+ εl j i

(
Ȧμ

νi Hν
j p + Aμ

νi Ḣν
j p

)
= 0, (4.8.6)
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which by interchange of indices becomes

εkln

(
∇l Ḣμ

mn − �̇
q
lm Hμ

nq − �̇
q
ln Hμ

mq

)
+ εkln

(
Ȧμ

νn Hν
lm + Aμ

νn Ḣν
lm

) = 0. (4.8.7)

On multiplying (4.8.7) by ε j im Hμ
k j and suspending summation over the repeated

index μ, we obtain

ε j imεkln Hμ
k j

(
∇l Ḣμ

mn − �̇
q
lm Hμ

nq − �̇
q
ln Hμ

mq

)
+ εkln Hμ

jkεl j i
(

Ȧμ
νn Hν

lm + Aμ
νn Ḣν

lm

) = 0,

(4.8.8)

which on recalling (4.7.5), we rewrite as

∂2W μ

∂Hμ
il ∂Hμ

mn

(
∇l Ḣμ

mn − �̇
q
lm Hμ

nq − �̇
q
ln Hμ

mq

)
+ ∂2W μ

∂Hμ
il ∂Hμ

mn

(
Ȧμ

νn Hν
lm + Aμ

νn Ḣν
lm

) = 0.

(4.8.9)

Next, consider the particular equation (4.8.5), which after multiplication by

− ∂2W μ

∂Hμ
il ∂Hμ

jk

, no sum on μ

becomes

− ∂2W μ

∂Hμ
il ∂Hμ

jk

∇1 Ḣμ
il + ∂2W μ

∂Hμ
il ∂Hμ

jk

∇l Ḣμ
i1

− ∂2W μ

∂Hμ
il ∂Hμ

jk

(
Ȧμ

ν1Hν
il + Aμ

ν1 Ḣν
il − Ȧμ

νl Hν
i1

−Aμ
νl Ḣν

i1 − �̇
q
i1Hμ

lq − �̇
q
l1Hμ

iq + �̇
q
il Hμ

1q + �̇
q
1l Hμ

iq

)
= 0. (4.8.10)

The linearized Codazzi system (4.8.9) and (4.8.10) may be concisely expressed
by introducing the definitions

Q̇μ =
⎡
⎢⎣

∂2Wμ

∂Hμ
il ∂Hμ

kn

(
Ȧμ

νn Hν
lk + Aμ

νn Ḣν
lk

)
∂2Wμ

∂Hμ
il ∂Hμ

jk

(− Ȧμ
ν1Hν

il − Aμ
ν1 Ḣν

il + Ȧμ
νl Hν

i1 + Aμ
νl Ḣν

i1

)
⎤
⎥⎦ , (4.8.11)

Ṡμ =
⎡
⎢⎣

− ∂2Wμ

∂Hμ
il ∂Hμ

mn

(
�̇

q
lm Hμ

nq + �̇
q
ln Hμ

mq
)

− ∂2Wμ

∂Hμ
il ∂Hμ

jk

(
�̇

q
i1Hμ

lq + �̇
q
l1Hμ

iq + �̇
q
il Hμ

1q + �̇
q
1l Hμ

iq

)
⎤
⎥⎦ , (4.8.12)
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when the system may be written as the single matrix equation

Bμ
0 ∇1U̇μ + Bμ

l ∇l U̇
μ + Q̇μ + Ṡμ = 0, (4.8.13)

where Bμ
l is defined analogously to (4.7.11), and U̇μ is the linearization of the vector

(4.7.12).

4.9 The Ricci Equations

We next discuss the Ricci equations (4.5.3), and without loss of generality1 set

Aν
μ1 = 0, (4.9.1)

and (4.5.2) simplify to

∂1Aν
μ2 = g pq

(
Hμ
1p Hν

2q − Hμ
2p Hν

1q

)
, (4.9.2)

∂1Aν
μ3 = g pq

(
Hμ
1p Hν

3q − Hμ
3p Hν

1q

)
. (4.9.3)

We note that Aν
μ2, Aν

μ3 are therefore completely determined by their data on a
plane x1 = constant = −L and on the set Hν

jk . Accordingly, we may introduce the
substitutions

Aν
μ2(x1, x2, x3) = Aν

μ2(−L , x2, x3) +
∫ x1

−L
g pq

(
Hμ
1p Hν

2q − Hμ
2p Hν

1q

)
dx ′

1,

(4.9.4)

Aν
μ3(x1, x2, x3) = Aν

μ3(−L , x2, x3) +
∫ x1

−L
g pq

(
Hμ
1p Hν

3q − Hμ
3p Hν

1q

)
dx ′

1,

(4.9.5)

in the expression (4.7.16) for the matrix Q to eliminate explicit dependence on
Aμ

νl . Observe that dependence on Aμ
νl is reduced to dependence on data provided

on x1 = −L . This data, of course, must be consistent with the additional Ricci
equations.

1Deane Yang pointed out this equality to me and called it a “gauge condition”. An analogy with
continuum mechanics might be setting the pressure equal to zero on the surface of a water wave.
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4.10 The Full Nonlinear System

We emphasize analogies with continuum mechanics by restating the full nonlinear
system in terms employed by that theory.

The balance laws are given by the quasi-linear Codazzi equations (4.7.15):

Bμ
0 ∇1Uμ + Bμ

l ∇lU
μ + Qμ = 0,

where from (4.7.12) we have Uμ ∈ IR12 for each μ = 4, 5, 6, and Qμ is given by
(4.7.16).

The constitutive relations are provided by the Gauss equations (4.5.1)

∑
μ

(
Hμ

ik Hμ
jl − Hμ

il Hμ
jk

)
= Ri jkl , (4.10.1)

together with constitutive relations for Aμ
νl given by (4.9.1), (4.9.4), and (4.9.5).

According to Blum’s theorem [Blu55], when the elements Hμ
jk form a full rank

matrix, there are 27 independent equations in 27 unknowns Hμ
jk and Aμ

νl since the
Ricci equations follow from the Gauss and Codazzi equations. Observe, however,
that relations (4.9.4) and (4.9.5) do not completely eliminate the terms Aμ

νl in favour
of the terms Hμ

i j , because initial data on x1 = −L still enter into the values of Aμ
νl .

4.11 The Linearized Ricci Equations

In the notation of Sect. 4.8.1, the linearized Ricci equations (4.9.1), (4.9.4), and
(4.9.5) are given by

Ȧν
μ1 = 0, (4.11.1)

Ȧν
μ2(x1, x2, x3) = Ȧν

μ2(−L , x2, x3) +
∫ x1

−L

{
ġ pq

(
Hμ
1p Hν

2q − Hμ
2p Hν

1q

)

+ g pq
(

Ḣμ
1p Hν

2q + Hμ
1p Ḣν

2q − Ḣμ
1p Hν

2q − Hμ
1p Ḣν

2q

)}
dx ′

1,

(4.11.2)

Ȧν
μ3(x1, x2, x3) = Ȧν

μ3(−L , x2, x3) +
∫ x1

−L

{
ġ pq

(
Hμ
1p Hν

2q − Hμ
2p Hν

1q

)

+ g pq
(

Ḣμ
1p Hν

2q + Hμ
1p Ḣν

3q − Ḣμ
1p Hν

3q − Hμ
1p Ḣν

3q

)}
dx ′

1.

(4.11.3)

When Ȧν
μ2(−L , x2, x3) and Ȧν

μ3(−L , x2, x3) vanish on the boundary of the
domain, their contribution to (4.11.2) and (4.11.3) is zero. Furthermore, the
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integral terms in (4.11.1) and (4.11.3) are bounded by Kvol (�), where

K = ‖ġ pq‖L2(�) sup
�,μ, j,k

|Hμ
jk |2 + sup

�

‖g pq‖ sup
�,μ, j,k

|Hμ
jk |‖Ḣμ

jk‖L2(�,IR27),

and in consequence, we obtain

Proposition 4.11.1 The quantities Ȧν
μ2 and Ȧν

μ3 satisfy the bounds

| Ȧν
μ2| ≤ K vol(�)1/3, (4.11.4)

| Ȧν
μ3| ≤ K vol(�)1/3. (4.11.5)

Proof of (4.11.4)
Typical terms in the relation (4.11.2) may be expressed as

a(x1, x2, x3) =
∫ x1

−L
ġ pq

(
Hμ
1p Hν

2q

)
dx ′

1,

b(x1, x2, x3) =
∫ x1

−L
g pq

(
Ḣμ
1p Hν

2q

)
dx ′

1,

where there is no sum on p, q.
The Cauchy-Schwarz inequality applied to the first expression leads to the bounds

|a(x1, x2, x3)| ≤ sup
�

|Hμ
1p Hν

2q |
(∫ x1

−L
dx ′

1

)1/2 (∫ x1

−L
|ġ pq |2 dx ′

1

)1/2

≤ sup
�

|Hμ
1p Hν

2q | (2L)1/2
(∫ L

−L
|ġ pq |2 dx ′

1

)1/2

,

and consequently, on noting that the term on the right is independent of x1, we have

∫ L

−L

∫ L

−L

∫ L

−L
|a(x1, x2, x3)|2 dx1dx2dx3 ≤ 4L2

(
sup
�

|Hμ
1p Hν

2q |
)2

×
∫ L

−L

∫ L

−L

∫ L

−L
|ġ pq |2 dx ′

1dx2dx3,

or
‖a‖L2(�) ≤ 2L sup

�

|Hμ
1p Hν

2q |‖ġ pq‖L2(�).

A similar argument gives

|b(x1, x2, x3)| ≤ sup
�

|g pq Hν
2q |

∫ L

−L
|Ḣμ

1p(x ′
1, x2, x3)| dx ′

1,
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where the expression on the right is again independent of x1.
Thus we conclude that

|b(x1, x2, x3)|2 ≤ 2L

(
sup
�

|g pq Hν
2q

)2 ∫ L

−L
|Ḣμ

1p|2(x ′
1, x2, x3) dx ′

1,

from which follows

∫ L

−L

∫ L

−L

∫ L

−L
|b(x1, x2, x3)|2 dx1dx2dx3 ≤ 4L2 sup

�

|g pq Hν
2q |2

×
∫ L

−L

∫ L

−L

∫ L

−L
|Ḣμ

1p(x ′
1, x2, x3)|2 dx ′

1dx2dx3,

which leads to the final bound

‖b‖L2(�) ≤ 2L sup
�

|g pq Hν
2q |‖Ḣμ

1p‖L2(�).

4.12 The Linearized Gauss Equations

In view of the notation adopted in Sect. 4.8.1, the linearized Gauss equations become

∑
μ

(
Ḣμ

ik Hμ
jl + Hμ

ik Ḣμ
jl − Ḣμ

il Hμ
jk − Hμ

il Ḣμ
jk

)
= Ṙi jkl . (4.12.1)

The system (4.12.1) consists of 6 equations in the 18 components Ḣμ
i j . We say

Hμ
i j is non-degenerate in the neighbourhood of x = 0 when 6 of the components of

Ḣμ
i j can be solved in terms of the remaining 12 components and Ṙi jkl . A sufficient

condition for non-degeneracy is provided by [BGY83, Theorem F] which establishes
non-degeneracy when at least one component of the Riemann curvature tensor Ri jkl

is non-zero.
Accordingly, let us assume that the set Hν

i j is non-degenerate in a neighbourhood
of x = 0. This implies that the vector

U̇ =
⎡
⎣ U̇ 4

U̇ 5

U̇ 6

⎤
⎦ , (4.12.2)

where Uμ, defined in (4.7.12), can be written as

U̇ = C Ḣ + DṘ. (4.12.3)
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In this relation, Ḣ denotes the distinguished 12 components of the set Ḣμ
i j , and Ṙ

denotes the 6 non-trivial elements corresponding to the perturbed Riemann curvature
tensor. It follows that U̇ ∈ IR36, Ḣ ∈ IR12, Ṙ ∈ IR6, and therefore in (4.12.3), C
represents a 36 × 12 matrix, while D represents a 36 × 6 matrix.

4.13 The Closed Symmetric System for the Linearized
Problem and Quasi-linear Problem

With reference to the symmetrized and linearized Codazzi equations (4.8.13), let us
set

B0 =
⎡
⎣ B4

0 0 0
0 B5

0 0
0 0 B6

0

⎤
⎦ ,

Bl =
⎡
⎢⎣

B4
l 0 0

0 B5
l 0

0 0 B6
l

⎤
⎥⎦ ,

Q̇ =
⎡
⎣ Q̇4

Q̇5

Q̇6

⎤
⎦ , Ṡ =

⎡
⎣ Ṡ4

Ṡ5

Ṡ6

⎤
⎦ , (4.13.1)

and use this notation to write (4.8.13) as

B0∇1U̇ + Bl∇l U̇ + Q̇ + Ṡ = 0. (4.13.2)

Observe that since Q̇ depends linearly on the sets Ḣμ
i j and Ȧμ

νm as given in (4.8.11),
we may introduce matrices E, F to represent the dependence by

Q̇ = EU̇ + F Ȧ, (4.13.3)

where U̇ ∈ IR36, Ȧ ∈ IR6, E is a 36 × 36 matrix, and F is a 36 × 6 matrix.
Upon substitution of (4.12.3) in (4.13.3) we obtain

Q̇ = E
(
C Ḣ + DṘ

) + F Ȧ

= G Ḣ + J Ṙ + F Ȧ, (4.13.4)

where G = EC is a 36×12matrix, and J = E D is a 36×36matrix. In consequence,
the system (4.13.2) has the form

B0∇1
(
C Ḣ + DṘ

) + Bl∇l
(
C Ḣ + DṘ

) + G Ḣ + J Ṙ + F Ȧ + Ṡ = 0, (4.13.5)
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which after rearrangement becomes

B0C∇1 Ḣ + BlC∇l Ḣ + (B0∇1C + Bl∇lC + G) Ḣ

+ B0∇1(DṘ) + Bl∇l(DṘ) + J Ṙ + F Ȧ + Ṡ = 0. (4.13.6)

We multiply (4.13.6) on left by the 12 × 36 matrix CT to obtain the equivalent
but compact form

A0∇1 Ḣ + Al∇l Ḣ + BḢ + CT F Ȧ + � = 0, (4.13.7)

where

A0 = CT B0C,

Al = CT BlC,

B = CT (B0∇1C + Bl∇lC + G) ,

� = CT (
B0∇1(DṘ) + Bl∇l(DṘ) + J Ṙ + Ṡ

)
.

The linearized Ricci equations (4.11.2) and (4.11.3) with

Ȧν
μ2(−L , x2, x3) = Ȧν

μ3(−L , x2, x3) = 0

next give

Ȧν
μ1 = 0, (4.13.8)

Ȧν
μl(x1, x2, x3) =

∫ x1

−L

{
ġ pq

(
Hμ
1p Hν

lq − Hμ
lp Hν

1q

)

+ g pq
(

Ḣμ
1p Hν

lq + Hμ
1p Ḣν

lq − Ḣμ
1p Hν

lq − Hμ
1p Ḣν

lq

)}
dx ′

1,

l = 2, 3. (4.13.9)

Insertion of (4.13.8) and (4.13.9) into (4.13.7) yields a symmetric system of 12
equations in the 12 unknowns Ḣ which are weakly non-local due to (4.13.9). The
relations (4.11.4) and (4.11.5), however, indicate that the non-locality is very weak.

Remark 4.13.1 (Non-linear problem) The derivation just described is for the lin-
earized system, but examination of the individual steps in the argument shows that
for the non-linear problem the same procedure also yields a quasi-linear system of
12 equations.
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4.14 The Weak Form of the Closed System

The purpose of previous sections is to formulate the theory in a manner suitable for
proofs of existence and uniqueness in the embedding problem, which are developed
in this Section.

Define the linear operator L in terms of the general variable Ĥ by

LĤ = A0∇1 Ĥ + Al∇l Ĥ + BĤ + CT F Ȧ, (4.14.1)

where Ȧ is defined by (4.13.8) and (4.13.9).
We wish to consider the weak form of equations associated with the operator L.

For this purpose, let (·, ·) denote the inner product on the space L2(�, IR12) and let
the function V ∈ C∞

0 (�, IR12). The weak form of the equation

LĤ = −�

is then given by
(L∗V, Ĥ) = −(V,�), (4.14.2)

where L∗ is the adjoint operator to L. We conclude from (4.14.2) that (L∗V, Ĥ)

defines a bilinear form on H1
0 (�, IR12).

The proofs of existence and uniqueness rely upon the Lax-Milgram theorem (see,
for example, [Yos65]) stated here for convenience.

Theorem 4.14.1 (Lax-Milgram Theorem). Let X be a Hilbert space and C(χ,ψ)

a (possibly complex) bilinear functional defined on the product space X × X. Let
‖ · ‖X and (·, ·)X denote the norm and inner product on X. Suppose that

(i) |C(χ,ψ)| ≤ γ‖χ‖X‖ψ‖X , (boundedness)

(i i) C(χ,χ) ≥ δ‖χ‖2X , (coerciveness)

for positive constants δ, γ. Then there exists a uniquely determined bounded linear
operator T with bounded inverse T −1 such that whenever χ, ψ ∈ X there holds

C(χ, T ψ) = (χ,ψ)X ,

‖T ‖X ≤ δ−1, ‖T −1‖X ≤ γ.

To apply the Lax-Milgram theorem to the weak equation (4.14.2), we set X =
H1
0 (�, IR12), and let C(χ,ψ) = (L∗χ,ψ). Note, however, that Condition (i) holds

but not Condition (i i). To overcome this difficulty, we introduce additional terms
to (4.14.2) that regularize the equation. Let ε > 0 be an arbitrary positive constant.
Then the regularized problem is given by

(L∗V, Ĥ) + ε(∂V, ∂ Ĥ) = −(V,�) − ε(∂V, ∂�), (4.14.3)
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in which we employ the notation

(
∂V 1, ∂V 2

)
=

∫
�

3∑
j=1

∂ j V 1 · ∂ j V 2 dx,

where we recall the (, ·, ) denotes the Euclidean inner product in IR12. We now let the
bilinear form Cε be defined by the expression on the left of (4.14.3). Upon assuming
the weaker coerciveness estimate

(L∗ Ĥ , Ĥ) ≥ δ1‖Ĥ‖2
L2(�,IR12)

(4.14.4)

for some positive constant δ1, we have

(i) |Cε(V, Ĥ)| ≤ γ‖V ‖X‖Ĥ‖X ,

(i i) Cε(Ĥ , Ĥ) ≥ δ1‖Ĥ‖2
L2(�,IR12)

+ ε(∂ Ĥ , ∂ Ĥ).

The Lax-Milgram theorem clearly applies to the regularized problem and shows
that a solution Ĥε = Tε� exists to (4.14.3) and satisfies

(L∗V, Ĥε) + ε(∂V, ∂ Ĥε) = −(V,�) − ε(∂V, ∂�), (4.14.5)

or alternatively

(L∗V, Ĥε) − ε(∂2V, Ĥε) = −(V,�) − ε(∂V, ∂�), (4.14.6)

for all V ∈ H1
0 (�, IR12). Accordingly, on setting V = Ĥε in (4.14.5), we obtain

(L∗ Ĥε, Ĥε) + ε(∂ Ĥε, ∂ Ĥε) = −(Ĥε,�) − ε(∂ Ĥε, ∂�). (4.14.7)

The first term on the left of (4.14.7) may be bounded from below using assumption
(4.14.4), while terms on the right may be bounded from above using the Cauchy-
Schwarz inequality. These operations lead to the bounds

δ1‖Ĥε‖2L2(�,IR12)
+ ε‖∂ Ĥε‖2L2(�,IR12)

≤ ‖Ĥε‖L2(�,IR12)‖�‖L2(�,IR12)

+ ε‖∂ Ĥε‖L2(�,IR12)‖∂�‖L2(�,IR12).

(4.14.8)

The arithmetic-geometric mean inequality in the form

ab ≤ 1

3
a2 + 3

4
b2,
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applied to terms on the right then yields

δ1‖Ĥε‖2L2(�,IR12)
+ ε

(
2

3
‖∂ Ĥε‖2L2(�,IR12)

− 1

2
‖�‖2

L2(�,IR12)

)

≤ ‖Ĥε‖L2(�,IR12)‖�‖L2(�,IR12) + ε

4
‖∂�‖2

L2(�,IR12)

≤ δ1

2
‖Ĥε‖2L2(�,IR12)

+ 1

2δ1
‖�‖2

L2(�,IR12)
+ ε

4
‖∂�‖2

L2(�,IR12)
,

which after rearrangement gives

δ1

2
‖Ĥε‖2L2(�,IR12)

≤ 1

2δ1
‖�‖2

L2(�,IR12)
+ ε

4
‖∂�‖2

L2(�,IR12)
. (4.14.9)

We conclude that Ĥε is bounded independently of ε when � ∈ H1
0 (�), and

consequently Ĥε has a weakly convergent subsequence (also denoted by Ĥε) so that

Ĥε ⇀ Ĥ , in L2(�, IR12).

We now pass to the limit as ε → 0 in (4.14.6) and for all V ∈ C∞
0 (�) obtain the

relation
(L∗V, Ĥ) = −(V,�),

which proves the existence of a weak solution Ĥ . Its uniqueness follows from the
coercivity assumption (4.14.4).

Let us summarize the result in the following theorem.

Theorem 4.14.2 Suppose the operator L defined by (4.14.1) satisfies the coercivity
condition

(L∗ Ĥ , Ĥ) ≥ δ1‖Ĥ‖2
L2(�,IR12)

for some δ1 > 0. Then the weak form of the linearized isometric embedding problem
(4.14.2) has a unique solution for all � ∈ H1

0 (�).

The next step is to apply Theorem 4.6.1 to the system (4.14.2), (4.14.6) and
(4.14.7). Assume first that the (undotted) embedding is perturbed in a small neigh-
bourhood of the point x = 0 chosen as the origin of a system of normal coordinates
where the Christoffel symbols �

q
i j vanish. When the small neigbourhood is taken

to be the box −L ≤ xi ≤ L , i = 1, 2, 3, the quantity Ȧ, defined by (4.13.8) and
(4.13.9) that satisfies the bounds (4.11.4) and (4.11.5), becomes negligible in the box
and do not enter into the coercivity computations. Accordingly, we have

Theorem 4.14.3 When the quadratic form

Ḣ T (−∂1A0 − ∂lAl + B) Ḣ (4.14.10)
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is positive-definite (or negative-definite) at x = 0 there exists a unique weak solution
to the linearized isometric embedding equations (4.14.2), (4.13.8), and (4.13.9).

The parameters entering into the 12 × 12 symmetric coefficient matrix

− ∂1A0 − ∂lAl + 1

2

(
BT + B

)
(4.14.11)

are Hμ
i j , ∂1A0, ∂1A1, ∂2A2, ∂3A3, Aν

μ2, Aν
μ3 all evaluated at x = 0. In conse-

quence, the classical chain rule may be applied to A0, A1, A2, A3 to show that
the parameters in the coefficient matrix reduce to Hμ

i j , ∂l Hμ
il , Aν

μ2, Aν
μ3 evaluated

at x = 0. We therefore conclude that

(i) The Gauss relations provide 12 independent Hμ
i j .

(ii) The differentiated Gauss relations provide 15 independent ∂l Hμ
i j . (See, for

example, Poole [Poo10].)
(iii) There are 6 independent Aν

μ2, Aν
μ3.

Hence there are 12+15+6 = 33 free parameters entering into the 12×12 matrix
(4.14.11) resulting in considerable simplification.
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