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Preface

The peer reviewed chapters in these Proceedings are mainly written versions of
invited lectures delivered by internationally acknowledged specialists at the ICMS
Workshop on “Differential Geometry and Continuum Mechanics” held in
Edinburgh from 17 to 21 June 2013.

The aim of the Workshop was in part to encourage and foster the study of recent
developments in the conceptual foundations and theoretical structure of continuum
mechanics. Modern demands of nanotechnology, special materials, biology and
similar applied fields require that continuum mechanics no longer engages solely
with predictive numerical solutions and the associated mathematical analysis of
classical theories. Identification of basic principles common to all continuum the-
ories and the subsequent derivation of general mathematical properties necessitates
a rigorous critical re-evaluation of the axiomatic foundations, evocative of Hilbert’s
sixth problem.

Differential geometry is of obvious importance to these investigations. For
example, conservation laws are closely related to the Gauss—Codazzi—Ricci system.
Defects can be discussed in a geometric context. The analysis of microstructure
involves manifolds and conditions for their isometric embedding into Euclidean
(physical) space. Geometric notions can be successfully employed to model surface
energies.

These are just some of the topics considered by the 26 speakers at the ICMS
Workshop, and discussed in the following chapters. The talks confirmed that the
formalism and results of differential geometry crucially underpin recent funda-
mental progress in continuum mechanics, while advances in analysis (including
I'-convergence and compensated compactness), the calculus of variations, and
partial differential equations have revealed deep connexions with long-standing
problems in differential geometry.

The interrelated chapters of the present Proceedings correspond to the
Workshop’s principal themes, and further emphasize the cross-fertilisation between
differential geometry, partial differential equations and continuum mechanics
apparent even in the last century. Not included in these Proceedings are the
mini-courses presented by Professors M. Epstein and T. Otway who introduced
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respectively appropriate notions of differential geometry and of equations of mixed
type. Both courses are being separately published in the Springer-Brief Series.

The ICMS Workshop would have been impossible without generous financial
assistance gratefully received from

The Centre for Analysis and Nonlinear PDEs (CANPDE),
The Oxford Centre for Nonlinear PDE (OxPDE),

The London Mathematical Society (LMS),

Bridging the Gap-University of Strathclyde (BTG),

The Glasgow Mathematical Journal Trust (GMJT),

The International Centre for Mathematical Sciences (ICMS).

Thanks are also sincerely extended to the authors for their willing cooperation in
the timely preparation of contributions, to the referees for their valuable reviews,
and to Joerg Sixt and Catherine Waite of Springer for encouragement and advice.
It is also an immense pleasure to acknowledge the highly efficient administrative
support from Jane Walker and her ICMS colleagues. The outstanding success of the
Workshop was in no small part due to their consistent cheerful, patient and friendly
commitment that significantly eased the organisational responsibilities.

Oxford Gui-Qiang G. Chen
Glasgow Michael Grinfeld
Edinburgh R.J. Knops

July 2014
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Part I
General



Chapter 1
Compensated Compactness
with More Geometry

Luc Tartar

The theory of compensated compactness, partly developed in collaboration with
Francois Murat, proved useful for attacking questions in the nonlinear PDE (par-
tial differential equations) of continuum mechanics and physics. Many years ago, I
believed an improvement could be achieved that included more geometrical ideas.
I can only conjecture what should be done, but I consider it useful to present an
historical perspective, in order to place ideas in their context, and indicate where
geometry may be appropriate.

1.1 Training

When I studied (in 1965-1967) at Ecole Polytechnique (then in Paris), I received
a good training in mechanics from Jean Mandel (1907-1982), classical mechanics
being taught in the first year and continuum mechanics in the second. During the first
year, I also attended a course by Maurice Roy (1899—-1985) on aspects of thermody-
namics. I learned about various aspects of physics (classical, quantum, relativistic,
statistical, in alphabetic order) over the two years from a few different teachers, who
did not impress me as much as two of my teachers in mathematics, Laurent Schwartz
(1915-2002) and Jacques-Louis Lions (1928-2001). However, they taught analysis,
and consequently my training did not contain much geometry.

I had chosen to study at Ecole Polytechnique and not at Ecole Normale Supérieure
because I wanted to become an engineer. When, however, I heard that engineers do a
lot of administrative work (for which I still consider myself incompetent) I switched
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4 L. Tartar

to research in mathematics, with an interest in applications. I chose Jacques-Louis
Lions as thesis advisor since he appeared more concerned with applications than
Laurent Schwartz, although he was not interested when (in the mid 1970s) I decided
to understand more about continuum mechanics for the purpose of developing some
of the new mathematical tools that were needed. Laurent Schwartz had no interest in
physics, although his theory of distributions helped explain formal results by Dirac
(1902-1984), and by Heaviside (1850-1925). On the contrary, I believe that Sergei
Sobolev (1908-1989) introduced his H! space motivated by a physical question, but
he may not have been allowed to publish any further results. Jean Leray (1906—1998)
was similarly motivated when he used weak solutions in relation to the (simplified)
Navier—Stokes equation, though he decided to discontinue working on PDE (partial
differential equations) in continuum mechanics while a prisoner of war in a German
camp for officers during World War II.

The approach that I had been taught (by Jacques-Louis Lions) for nonlinear PDE,
introduced adapted Sobolev spaces and derived various estimates for proving exis-
tence and uniqueness of solutions. The method also used either a compactness argu-
ment, according to the original ideas of Jean Leray, or a monotonicity argument,
introduced by George Minty (1930-1986) for a problem in electrical circuits, and
by Eduardo Zarantonello (1918-2010) for a problem in fluid dynamics. While I
was a student, monotonicity became a question of functional analysis, mostly stud-
ied by Haim Brezis, Felix Browder, Jacques-Louis Lions, and Terry Rockafellar (in
alphabetic order).

I resolved a dichotomy that Jacques-Louis Lions regarded as occurring in my
compensated compactness method [Tar79], based on my joint work in compensated
compactness with Francois Murat.

1.2 Differential Geometers and Mechanics

In the late 1960s, a student at Ecole Polytechnique in the year below mine suggested
that I should read Foundations of Mechanics by Abraham [Abr67]. I purchased the
book and found it useful since it contains many results on manifolds about which I
had only been vaguely aware. Nevertheless, I ended up quite puzzled, since the book
is entirely devoid of mechanics. I realized afterwards that it is common for differential
geometers to conform to the 18th century point of view of classical mechanics which
uses ODE (ordinary differential equations). It is as if they are reluctant to acquire the
19th century point of view of continuum mechanics that involves PDE. Even with
such a limitation, why pretend to do mechanics when the intention is to discuss only
manifolds?

I later observed a similar limitation (not restricted to geometers) when explain-
ing that the 20th century point of view of continuum mechanics/physics introduces
PDE with small scales, so that questions of homogenization for identifying limiting
effective equations requires to be understood. This often compels a consideration of



1 Compensated Compactness with More Geometry 5

a larger class of equations (still a little vague) which I call beyond partial differential
equations.

When (in the late 1960s or early 1970s) a friend informed me about the ideas
of René Thom (1923-2002), I only glanced at his book. He seemed to believe that
the laws governing nature can be expressed as ODE, again the 18th century point
of view, and that the 19th century point of view of PDE could be ignored. Also, I
was puzzled by his use of the term “catastrophes” for “singularities of differentiable
mappings”.

In 1970, I was shown a joint article by David Ebin and Jerry Marsden (1942-2010)
[EM69] that deals with the Euler equation for an incompressible fluid on a compact
Riemannian manifold, and which is based on an idea of Vladimir Arnol’d (1937-
2010) concerning a flow of volume preserving diffeomorphisms. It surprised me that
they considered a somewhat unrealistic equation of state (since incompressibility
implies an infinite speed of sound), but failed to mention the more realistic situation
of a (compressible) fluid occupying a domain  C R? possessing a boundary (Note
that compact manifolds have no boundary).

In the article, covariant derivatives are employed for writing the (simplified, and
incompressible) Navier—Stokes equation on a Riemannian manifold. Later, I won-
dered why geometers believe it is of interest to treat such equations: since realistic
fluids have a viscosity dependent upon temperature, and possibly also upon pressure.
Perhaps their approach is useful for a more general equation of state? Geometers (and
later harmonic analysts) seemed to assume that it would be useful to express the equa-
tions of continuum mechanics in their language, but has this led to a natural method
for obtaining a priori estimates for flows of more realistic fluids? Furthermore, has
their framework enhanced understanding of which are the effective equations to
describe turbulent flows?

Thirty years after, I was again perplexed that Charles Fefferman when formulat-
ing questions for the million dollar Clay Prize on Navier-Stokes equation, could not
find (in Princeton or elsewhere) a knowledgeable person (mathematician or not) who
could explain the meaning of the equation. The basic conservation laws of contin-
uum mechanics should have been mentioned and the absence of energy conservation
explained. When listing the groups of invariance of the equation, there should have
been included not only invariance by rotation (since an isotropic fluid is under con-
sideration), but also Galilean invariance. Because bounding the vorticity is the main
difficulty with our current approach for proving global existence of smooth solutions,
it also should have been explained why problems without boundary (R3 or with a
flat torus) were selected. Realistic domains have a boundary and vorticity seems to
be created at the boundary!

1.3 The Div-Curl Lemma

That turbulence is a (still unsolved) question of homogenization became clear to me
only in the late 1970s. Before investigating transport equations, a first step had been
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to develop the theory of homogenization for V-elliptic equations, which Francois
Murat and I (re)discovered in the early 1970s, and for which we defined the notion
of H-convergence [MT77, Tar10]. The notion of G-convergence had already been
developed in the late 1960s in Pisa by Sergio Spagnolo [Spa68], who used it in col-
laboration with Ennio De Giorgi (1928-1996) [GS73], and Antonio Marino [MS69].
Instead of appealing to Morrey’s regularity results, we followed a different argument,
based on our div-curl lemma, which we discovered in 1974, while checking all the
cases for which an effective/homogenized diffusion tensor could be computed.

Let @ C RY be an open set, and consider two sequences converging weakly in
L7 (Q;CN), E™ — E©) DM — D) Assume that E™ has a good curl in

the sense that each component Oy E;.") — 0;E ,En) belongs to a compact of Hl_1 ()

oc

C

strong, and that D has a good div in the sense that >’ j 0; D;") belongs to a com-
pact of Hl;c] () strong. The div-curl lemma states that ¢™ = (E™ D®) (i.e.
> j E;n)D;")) converges to e(® = (E© D)) weakly in the sense of Radon
measures (i.e. with test functions in C.(£2)). I constructed a counter-example for
which convergence does not hold in Lzl e (§2) weak (i.e. with test functions in L2°(R2)),
but this example is not valid for homogenization of V-elliptic equations.

Our initial proof used Fourier transforms and the Plancherel formula, and fol-
lowed an argument due to Lars Hormander that establishes the compact injection
of HIL -(£2) into Ll20 - (£2). We did not employ the method taught by Jacques-Louis
Lions in his treatment of the Rellich—-KondraSov theorem, since this involves an argu-
ment of Kolmogorov (1903-1987), which may have been used before by Fréchet
(1878-1973).

Homogenization commenced almost as exercises in functional analysis and vari-
ational V-elliptic equations (in the spirit acquired from Jacques-Louis Lions), so that
for a stationary diffusion equation, V is a subspace of H'!($2) with @ ¢ RV). It was,
however, the work [San71] of Evariste Sanchez-Palencia (for periodic mesostruc-
tures) which helped me to appreciate that our analysis is related to the notion of
effective properties of mixtures. At last, this observation provided a mathematical
way to check whether the few results I had been taught in continuum mechanics or
physics were correct or not. Because some well accepted ideas are flawed, it naturally
led me to try some ordering of the various physical models which are used, and to
construct some probable chief features of more realistic models.

In the (then new) approach which I was developing, the weak limit is a way to
define macroscopic quantities. E™ corresponds to a real electric field with variations
at a mesoscopic level, while E® corresponds to the macroscopic value. The div-curl
lemma then implies that in electrostatics there is no need for an internal energy.

At the beginning of the academic year 1974—1975, which I spent at UW (Uni-
versity of Wisconsin) in Madison, Joel Robbin showed me an alternate proof of
the div-curl lemma valid on (Riemannian) manifolds, in terms of differential forms,
introduced by Pfaff (1765-1825) and developed by Poincaré (1854-1912) and by
(Elie) Cartan (1869—1951). The proof involves the Hodge decomposition and the
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wedge product of two forms obtained by considering E” as components of a 1-form,
and D" as components of an (N — 1)-form.

For a scalar wave equation, the div-curl lemma implies an equipartition of (hid-
den) energy, which I consider more physical than that taught by my physics teachers.

If u,, satisfies 5 5 5 5
u u
E(p 8tn)_jzk§xj (Aj’k 8x2)=0’ (1D

with the usual hypotheses (p, A« only depending upon x and belonging to L°°,
p > a >0, A > ol and symmetric), there is conservation of the fotal energy,
whose density, given by

1 | 0u, 2 1 Ouy, Ouy,
= — - Aig — , 1.2
én 2p)6t +ZZ /’kaxj Oxy (1.2
Ouy

is the sum of a kinetic part % p ] TR % and apotential part % Zj,k Ajk 3%;’ %Z . When
u, converges weakly to 0 in Hlfj . (in (x, 1)), it is not always true that e, converges
weakly to 0, because there is the possibility that some energy may become hidden
at various mesoscopic levels. However, there is an equipartition between the hidden
kinetic part of the energy and the hidden potential part of the energy, because the

action a, converges weakly to 0, where

Ouy,
ot

21

_ZA. %Oun (1.3)

2 gk axj Oxy

1
anzzp‘

1.4 The Maxwell-Heaviside Equation

There is a similar equipartition of hidden energy in electromagnetism between the
electric part and the magnetic part of the energy, but more remains to be discussed.

A native of Edinburgh, Clerk-Maxwell (1831-1879) was a great physicist, and
in calling the Maxwell-Heaviside equation what others call the Maxwell equation,
it never was my intention to deprive Maxwell of any of his ideas. Rather, it is to
thank Heaviside for the concise system of PDE that now replaces the complicated
system adopted by Maxwell and encumbered with old mechanistic ideas concerning
the aether.

The Maxwell-Heaviside equation is expressed in terms of the “vector” fields,
E (electric field), H (magnetic field), D (electric polarization), and B (magnetic
induction). The vectors D and H satisfy the system

D
div(D) = p, _88_t + curl(H) = j, (1.4)
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which implies conservation of electric charge

dp

i +div(j) =0, (1.5)

while the vectors B and E satisfy
. OB
div(B) =0, e + curl(E) =0, (1.6)

which imply
0A
B = curl(A), E = —grad(V) — o (1.7)

for a scalar potential V and vector potential A, defined up to a gauge transform that
involves
o

V, A being replaced by V + 3 A — grad(y). (1.8)

An application to the Maxwell-Heaviside equation of the compensated compact-
ness theorem (an improvement of the div-curl lemma established with Francois Murat
in 1976 [Mur78, Tar10]), shows for sequences B ) pm g @ that converge
weakly to 0 and for corresponding sequences p and j ™ whose components are in
a compact of H, l;Cl strong, then there is weak convergence to O of the three linearly
independent quadratic quantities given by

(D(’l)’ H(n)); (B("), E(n)); (D(”), E(")) _ (B("), H(")). (1.9)

Again, Joel Robbin explained these facts using differential forms as follows: con-
servation of charge (1.5) corresponds to dws = 0 for the 3-form (in space-time) w3
specified by

w3 = pdxi Adxay Adx3— (jidxa Adx3+ jodxzAdxy+ jzsdxy Adxz) Adt. (1.10)

Consequently, Poincaré’s lemma implies w3 = dwy, which is (1.4) for the 2-form
wy given by

wy = Dy dxy Adx3 + Drdx3 Adxy + D3dxy Adxy + (Hy dx| + Hydx, + Hydx3) Adt. (1.11)
A second 2-form (0, given by
Oy = By dxy Adxz + Bydxz Adxy + Bydxy Adxy — (E1dxy + Eydxy + Eydxz) ndt, (1.12)

shows that dw, = 0 may be rewritten as (1.6). Moreover, it follows from Poincaré’s
lemma that ) = dwy, which is (1.7), for the 1-form w; given by

w) = —A1dxy — Aydxy; — Azdxy + V dt. (1.13)
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Of course, this 1-form is defined up to addition of an exact 1-form dv equivalent to
the gauge transformation (1.8).

The three quadratic quantities (1.9) are formed by considering the wedge-products
of wy and o

wy Awr = (D, Hydxy Ndxy ANdx3 Adt,
Wy ANy =—(B, E)dx) Adxy Adxsz Adt,
&52/\w2=((D, E) — (B, H))dxl/\dxz/\dX3 Adt. (1.14)

Sequential weak continuity of (B, E), (D, H) and (D, E) — (B, H) for solutions of
the Maxwell-Heaviside equation then follows from an application of the compen-
sated compactness theorem (and here the initial framework used by Francois Murat
suffices): if &™) is a sequence of j-forms converging weakly to o> (in L3 ), if
B™ is a sequence of k-forms converging weakly to 3, with j + k < N, and
if the exterior derivatives da and d3% have their coefficients in a compact of
lecl strong, then the sequence of wedge products o™ A 5 converges weakly to
a(® A 3(%9) [Tar10].

That all sequentially weakly continuous quadratic forms are linear combinations
of (B, E), (D, H) and (D, E) — (B, H) must be checked directly [Tar10].

Note that the Maxwell-Heaviside equation (1.4)—(1.7) written in the form (1.10)—
(1.13) is independent of the constitutive relations between B, D, E, and H . For linear
materials, these are

D=cE, B=uH, (1.15)

where the dielectric permittivity € and the magnetic susceptibility p are symmetric
positive definite tensors (instead of just positive scalars) as is natural by homog-
enization. However, irrespective of the precise nature of € and y, there is always
conservation of (total) energy, where the energy density is

1 1
e:E(D, E)—i—E(B,H). (1.16)

Equipartition of (hidden) energy (between electric and magnetic parts) means that
the excess in the limit of the electric part % (D, E) and the excess in the limit of the
magnetic part % (B, H) are equal. The conclusion follows by passing to the limit in
the action

1 1
a=(D.E)~ 3 (B.H). (1.17)

The approach of Joel Robbin uses differential forms and Hodge theory and corre-
sponds to variable coefficients (and proves the result mentioned above). By contrast,
the technique of compensated compactness which I developed in 1976 with Francois
Murat was restricted to differential equations with constant coefficients. It was only
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in the late 1980s that I developed the notion of H-measures [Tar90], capable of
handling variable (but sufficiently smooth) coefficients.

1.5 Interaction of Light and Matter

Newton (1643—-1727) observed that a prism (of glass) separates colours differently,
i.e. the index of refraction of glass depends upon frequency. The same phenomenon
had been previously observed for water, since it is responsible for rainbows, but the
mathematical understanding of what colours are required time to be developed.

In 1810, Goethe (1749-1832) rightly criticized Newton for his incomplete obser-
vations, but any derision was unjustified since Newton was trying to understand
colours from a mathematical/physical point of view (now described using wave-
lengths and frequencies), while Goethe was interested in perception of colours
through human eyes, which is a question of physiology!

Once the Maxwell-Heaviside equation was written, it was easy to deduce for
scalar € and p, that the speed of light v in the material (in any direction), the speed
of light ¢ in the vacuum, and the scalar index of refraction n (> 1) in the material
are related by

2 _ . 2_q1. ,_¢
epv-=1; eopoc-=1; v=—, (1.18)
n

where £ and p are the dielectric permittivity and the magnetic susceptibility of the
vacuum.

My physics courses at Ecole Polytechnique contained a computation of the scalar
index of refraction for a cubic crystal, but did not mention that for some other
crystalline symmetries, the quantities € and x could be symmetric matrices.

Similarly, my physics courses omitted to mention birefringence, discovered by
Bartholin (1625-1698), but which Huygens (1629-1695) failed to explain. Conse-
quently, there was no mention that birefringence is not explained by a scalar wave
equation in an anisotropic material, but that it does occur for the Maxwell-Heaviside
equation in particular anisotropic media.

My physics courses also excluded polarized light, discovered by Malus (1775—
1812), which deprived me from learning that such a notion is frequently discarded
by physicists in favour of linear or circular polarization that can be discussed by
means of a scalar wave equation. Polarization is a natural property for solutions of
the Maxwell-Heaviside equation; in particular, conditions at an interface between
different media require continuity of the tangential component of £ and H and the
normal component of B and D at each interface, a remark which my physics courses
did include.

Since anisotropy was not discussed, I cannot guess whether my physics teachers
realised how misguided Einstein (1879-1955) had been to explore the bending of
light rays using Riemannian geometry, instead of employing the Maxwell-Heaviside
equations to describe light. Isotropic materials with scalar £(x) and p(x) even show
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that components of E, H, B, D do not always satisfy a scalar wave equation, and in
this respect differ from the vacuum where each component ¢ satisfies

2
?“)Tf —2A @ =0.

The history of the law of refraction was revised in 1990 when Rashed discovered
a manuscript from 984 that contained a description of the law due to Ibn Sahl (940—
1000). Prior to 1990, the law was attributed to Snell (1580-1626), despite its earlier
discovery by Hariot (1560-1621). Neither Snell nor Hariot published accounts, while
the publication by Descartes (1596-1650) created arguments with Fermat (1601-
1665), who then proposed his principle of least time for deriving the law. Fermat’s
principle is not physical, because a beam of light (clearly confirmed by using H-
measures [Tar90]) does not minimize time from a point A to a point B. Rather,
the given direction at which it starts from A defines the solution of an ODE that
determines its subsequent path, demonstrating that the variations (in x) of the “index”
of refraction (scalar or tensor) is responsible for the bending of light.

However, the “index” of refraction (scalar or tensor) is a local property dependent
upon the arrangement of matter at a small scale (related to the wavelength of the
light) to deduce how much the index reduces the speed of light. It was a mistake
for Einstein to imagine that it has something to do with what mass is distributed far
away!

1.6 Forces, and Force Fields

Maxwell thirty years before Lorentz (1853—-1928) had introduced the notion of
“Lorentz’s force”; that is, any electric charge g in an electromagnetic field expe-
riences the force f = g (E + v x B), where v is the velocity. In consequence, the
power (f, v) is g (E, v). When many small charges are present having an approx-
imate charge density p, then g v approximates a current density j, corresponding
to

a density of force p E + j X B, and a density of power (j, E). (1.19)

This mixes the 3-form w3 and the 2-form &», but not as a wedge product. Associated
with w3 by duality is a 1-form whose wedge product with &5 is defined and generates
the above quantities in (p, j, B, E).

However, the only quadratic functions in p, j, B, E which are sequentially weakly
continuous are proportional to (B, E), which is included in the list (1.9). Note that
neither (j, E) nor the components of p E 4+ j x B appear in the list!

This fact made me ask in the late 1970s: what is a force? Or, what is a force field?

Robin Knops mentioned to me that there is some kind of a circular argument,
since a force is “measured” with a dynamometer, based on the theory of (linearized)
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elasticity, and that a dynamometer actually measures a displacement. A French “spe-
cialist” of mechanics gave me the unsatisfactory answer that a force is an element
of H~! which appears on the right side of some equations. Joel Robbin provided
an answer in the spirit I was seeking, because my question concerned which kind of
topology (if any) is adapted to oscillating force fields, and weak convergence seems
an inadequate answer. His intuition was that weak convergence is natural for coef-
ficients of differential forms, which can be integrated on manifolds, while a force
field behaves like differentiation on a Lie group.

As in the case of H-convergence, consider how to identify a good approximation
for an oscillating force field F" (x, t; v): a test particle introduced at xo (on 92) with
velocity v, charge go, and mass m, experiences the force go F" (x, t; v), while its
position x" () satisfies

dx" (1)
dt

dx"(0)
dt

d2 n(t)
dt?

mo = qoF" (x"(0, 15 =) x"(0) = xo; = . (120)
On the other hand, for a cloud of test particles, with the same charge to mass ratio
m , the density f”(x, t, v) of particles at (x, #) with velocity v satisfies the transport

equation

ffl =0. 1.21)

Vj

n 3
af +Z -—+—ZF” 13 0)

With respect to passage to the limitin (1.21), arelated question concerns compactness
by averaging, which I first heard about from Benoit Perthame. However, my feeling
is that this is not the “right” answer. Actually, restriction to a given charge to mass
ratio seems to me unnatural.

1.7 Homogenization

H-convergence, (due to Frangois Murat and myself), generalizes G-convergence (of
Sergio Spagnolo), and already involves a topology other than weak convergence.
Let u, (in H, l}; -(£2)) form a weakly convergent sequence such that

— div(A"gmd(un)) = f, = foolin H[;Cl (R2) strong, (1.22)

subject, for example, to the Dirichlet condition. Identification of the weak limit of
A"grad(u,) is based on E" = grad(u,) being considered as coefficients of 1-forms
with good exterior derivatives, and D" = A"grad(u,) as coefficients of (N — 1)-
forms having good exterior derivatives. This explains the topology of H-convergence
for A", and also homogenization as a nonlinear microlocal theory.

The possible topology for force fields seems related to homogenization for trans-

port equations: assuming 1, — Yo (in L (2) weak), a” — a°° (in L (2) weak

loc loc
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* for all j), div(a") = 0, and

nawn _ a(a;'l@/}n) _ . 2
> e (= ' Tj) = fo = fooin L2 () strong, (1.23)

J

determine the weak limit of each a;?d),,. Derivation of a natural effective equation
for 1) in general is open, but even so, the question remains whether the effective
equation will involve covariant derivatives or affine connections.

1.8 The Appearance of Nonlocal Effects by Homogenization

In 1979, I reasoned that since a spectroscopy experiment involves sending waves in a
material whose properties vary at small scales, the rules of absorption and emission
invented by physicists should be their explanation of why an effective equation
contains memory effects.

A first order transport equation is hyperbolic, and therefore I expected that non-
local effects would appear in the effective equation. As a training ground, I started
with an equation

Ou

8_:+an(x)un =fx0);  up(x,0) =v(x), (1.24)
for a sequence a, converging to a, in L weak . I anticipated an effective equation
of the form

Ol

ot

t
+ doolico — / Keg(x,t —S)uco(x,s)ds = f(x,1), (1.25)
0

the sign in front of the convolution kernel (in #) being chosen because v, f > 0
imply u, > 0, and in consequence us, > 0. Thus, Kz > 0 is a sufficient condition
for ensuring that u, is non-negative.

It is easy to compute u, explicitly and to deduce that u., involves the Young
measure of the sequence a,, a concept which I may have been the first to introduce
in questions of PDE, during my 1978 Heriot—Watt course [Tar79], organized by
Robin Knops. At that time, I was unaware that the idea was due to Laurence Young
(1905-2000), so that I adopted the term parametrized measures, then current in
French seminars on control.

The real difficulty is that one has a solution for which an equation must be found.
Although physicists often believe that games they invent are those played by nature,
a mathematician should be cautious, and reflect on what class of equation should be
considered. The equations are linear and invariant by translation in t, and accordingly
an effective equation should be sought with these properties. Laurent Schwartz proved
that (under a minimal continuity hypothesis) the required equation is given by a
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convolution (in ¢) with a distribution, which easily leads to the form (1.25) and an
effective kernel K g (whose sign is another matter) [Tar10].

Navier (1785-1836) in 1821 used energy arguments to derive the “Navier—Stokes”
equation. Subsequent to the introduction by Cauchy (1789-1857) of the (Cauchy)-
stress tensor, Saint-Venant (1797-1886) in 1843 used stress and a linear equation
of state to obtain an alternative derivation of the equation. Later, it was established
by Stokes (1819-1903) in 1845 (after deriving the linear Stokes equation in 1842).
Homogenization suggests that equations of state are only first approximations, and
that a few things are wrong with thermodynamics, so that there are reasons to question
the use of incompressible fluids, and in particular to ask why differential geometers
prefer affine connections.

With p denoting the density of mass and g = p u the density of linear momentum,
conservation of mass is expressed by

@ +div(pu) = 0. (1.26)
ot

Weak convergence, although natural for both p and for pu (which are coefficients
of a 3-form in R*), does not usually hold for u, except under an hypothesis of
incompressibility p = po constant (unphysical since it gives an infinite speed of
sound). Observe that incompressibility leads to div(u) = 0, where div is the exterior
derivative for 2-forms in R3. In addition, vorticity is curl(u), and curl is the exterior
derivative for 1-forms in R3. Differential geometers want to avoid confusing p-forms
and (N — p)-forms for N-dimensional manifolds, but my concern is different: for a
sequence u", it is the sequence of transport operators

o L0 o o) o
EJr;“ij(_EJr; o if div(u )—0) (1.27)

for which the effective equation is to be found, and if u” converges weakly to u®°,
an example shows that its description needs more than u.

For (1.24), I devised a method using a representation formula for Pick func-
tions. Youcef Amirat, Kamel Hamdache, and Hamid Ziani (1949-2004) applied this
method in [AHZS89] to the equation

Ouy,
ot

O
+an<y>aix = fGy. 07 up(x.y,0) = v(x, y), (1.28)

where a_ < a, < a4, and a, converges in L* weak * to a~. These authors also
defined a Young measure dvy. On using linearity and invariance by translation in
(x, 1), they sought a convolution equation in (x, #) and found an effective equation

of the form 9 9
Uoso Uoso
o Ty 2= (129
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2
0(x. y, t)—/ /(9 too (X a(t UBILIFIN (1.30)

where dpy (> 0) is a nonlinear transform of dvy defined by

dl/y 71_ 3 dﬂy ~ ~
(/q+a) =g + doo(y) /q+a forqg € C\ [—at, —a_]. (1.31)

By analogy with a model in kinetic theory, the same authors in [AHZ90] obtained
the effective equation in the form

t 9000 .
w(x,y,a,t):/ Ou (x “a(t 98 4 (1.32)
0 X

oY oY ou™

— = =0 1.33
o o = o V=0 (139
ou> - Jou™  Olfdu) .
o AT s T o= (1.34)

When a,, take only k particular values independent of n, the Young measures dv
have k Dirac masses, and the measures d i, have k — 1 Dirac masses (at roots of a
polynomial of degree kK — 1). As a consequence, the non-local effects propagate at
velocities different to the characteristic velocities of the original equation.

The auxiliary function ¢ describes modes propagating at various velocities, which
do not interact because the equation is linear.

It is not clear how to write the general effective equation, but affine connections
appear not to be helpful!

Another approach is to define b, = a,, — ax so that b, converges weakly to 0,
and to replace a, by ax + v b,. The solution is then sought as a power expansion in
v, with the hope of using v = 1. However, the preceding example (when dp # 0)
shows that (unless v is analytic) the power series does not converge in the sense of
distributions for v # 0, since all terms use the characteristic speed aso but not the
limit [Tar10].

It should be borne in mind that an open problem may force the introduction of an
equation whose type has not been previously considered. This partly explains why I
coined the term beyond PDE, although I cannot describe a precise class of equations.

1.9 Waves and “Particles”

In 1900, Poincaré observed that since the Lorentz force causes charged particles to
accelerate, there must be a reaction; that is, waves must be created in the electromag-
netic field. The balance laws led him to discover that the density of electromagnetic



16 L. Tartar

energy is equivalent to a density of mass according to the rule e = m ¢ (which
Einstein used five years later).

Maxwell’s work on the kinetic theory of gases, as well as that of Boltzmann
(1844-1906), contained insightful ideas but did not account for an important 20th
century observation, which Poincaré and Lorentz also missed when they believed that
the mass of the electron cannot have a purely electromagnetic origin. That electrons,
as with all “elementary particles”, are waves was first conjectured in 1924 by L. De
Broglie (1892-1987). Moreover, waves are described by hyperbolic systems, and
Dirac obtained such a system in 1928, in principle for “one relativistic electron”.

I'have indicated that electrons, if they exist, are all relativistic, i.e. they are related
to solutions of an hyperbolic system whose characteristic speed is ¢, similar to one
obtained by coupling Dirac’s equation (preferably without a mass term) with the
Maxwell-Heaviside equation. Dirac assumed that p and j are quadratic (actually
sesqui-linear) quantities in his ¢ € C*, which describes matter. However, for situa-
tions involving velocities much smaller than c, reasonable results may be obtained
by using a simpler equation derived, for example, by letting c tend to oo in Dirac’s
equation, which gives Schrodinger’s equation!

Even without Dirac’s equation, it is not altogether certain how a potential V could
be constructed that depends only upon x (so that it looks like electrostatics), but which
is not necessarily smooth. Thus, the corresponding electric field £ may not even be
square integrable (so that an electromagnetic energy would be infinite), and then a
Schrodinger equation with such a V would provide partial information about one
particle “trapped inside the potential well”. Physicists seem to forget when teaching
that even a slightly smoother V would evolve according to the Maxwell-Heaviside
equation, but instead expect it to occur on a time scale much larger than that assumed
for the “particle” behaviour, permitting the “frozen” potential V to be used.

Such lack of clarity in the description of the physical phenomena involved recalls
the curious comment of a recent Nobel laureate in physics who in his talk at CMU
(Carnegie Mellon University) puzzled both Amit Acharya and myself when he
asserted that biology is more difficult than physics because biology involves many
scales, whereas in physics there is always only a single scale. Are theoretical “physi-
cists” so disconnected from the real world that they are unaware of interactions
between many scales? It may explain why some physicists still teach that quantum
mechanics is a linear theory, concealing the fact that some of their colleagues work
in quantum field theory, which studies nonlinear aspects of quantum mechanics!

I recently wrote an article [Tar13] on multi-scales H-measures that corrects an
error repeated by physicists since the beginning of quantum mechanics. The paper
shows that for a problem in @ C R? with m (interacting) scales, the fact that the
multi-scales H-measure belong to Q x R>” is not because there are m “particles”!

At a meeting at Ecole Polytechnique (Palaiseau) in 1983, I mentioned my idea of
explaining “particles” by studying oscillations (and concentration effects) of solu-
tions to some semi-linear hyperbolic systems. Robin Knops asked me afterward
which equations I planned to use, since I forgot to include any in my talk.

I believed that Dirac’s equation (without mass term) coupled with the Maxwell—
Heaviside equation might be useful. Planck’s constant & appears in the coupling of
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the matter field ¢ € C* with the electromagnetic field, which led me to wonder
if a theorem could be proved concerning the possible transfer of (hidden) energy
between the two, corresponding to the quanta introduced by Planck (1858-1947).

I argued that if the mass of a “particle” is the electromagnetic energy stored
inside the wave (for a system larger than the Maxwell-Heaviside equation) there
would be no need for a theory like gravitation, which should result as a correction
(of homogenization type) to electromagnetic forces. I had, however, overlooked
the fact (pointed out to me by Bob Swendsen) that the equation without a mass
term is conformally invariant, and accordingly there is no way to deduce that some
concentration effects could cause the appearance of the (rest) mass of an electron.

This led me to wonder whether theoretical “physicists” are interested in con-
formally invariant equations. Comte’s (1798-1857) “classification of sciences”,
given by

Mathematics,
Astronomy,
Physics,
Chemistry,
Biology,

A

creates a Comte complex causing some to study physics because they feel inadequate
to study mathematics. These “physicists” usually end up neither good physicists nor
mathematicians. They often choose astrophysics, without probably realizing that
astrophysics is actually a branch of physics, despite the Comte classification desig-
nating astronomy really to be that branch of mathematics called celestial mechanics!

I finally understood that when a semi-linear hyperbolic system is used to describe
what happens inside either an atom (for physics), or inside a small molecule (for
chemistry), or inside a macromolecule (for bio-chemistry), or inside a cell (for biol-
ogy), and so on, it is better to have no characteristic scale. I also realized that con-
formal invariance is similar to invariance by rotation plus invariance by scaling.

I was given an interesting hint by Raoul Bott (1923-2005) during one of his
official visits to CMU, related to his having been a PhD student (at Carnegie Tech)
of my late colleague Dick Duffin (1909-1996). He observed that physicists consider
PDE in 2 space variables (which they may think easier) with a cubic nonlinearity.
Other systems (including the Dirac equation coupled with the Maxwell-Heaviside
equation, which I prefer) use 3 space variables and a quadratic nonlinearity, and are
related to the Sobolev embedding theorem. For example, in 3-dimensional space-
time one has H! C L, so that a cubic term belongs to L2, but in 4-dimensional
space-time one has H' C L*, so that a quadratic term belongs to L?.

Consequently, an existence theorem perhaps should involve a solution whose first
order partial derivatives are in L? with respect to (x, ¢), which is not usual for a semi-
group approach applied to semi-linear systems, since typically bounded functions in
t are used with values in a Sobolev space of functions in x.
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1.10 Shapes of “Particles”

In 1985, Bostick (1916-1991) published an article in which he conjectured a toroidal
shape for electrons based upon electromagnetism, de Broglie’s wavelength of an
electron, and a current having swirl.

Feynman (1918-1988) thought a relativistic electron to be like a pancake (because
of FitzGerald’s contraction in the direction of motion), so that he probably regarded
an electron at rest to be a ball of dough.

Bostick believed an electron to be shaped as a dough-nut, since in his experimental
work on plasmas (in an open configuration, of which I am ill-acquainted) he observed
that toroidal structures survive longer. The hole in the dough-nut is crucial for the
magnetic lines to pass through in order to avoid a singularity. This plagued what I
call the IS%th century point of view, which mixes a PDE (the Maxwell-Heaviside
equation), and corresponds to the 19th century point of view, with point singularities
satisfying some ODE, which is the 18th century point of view.

Bostick’s idea suggested to me that Dirac’s equation coupled with the Maxwell—
Heaviside equation might support a solution (exact or approximate) having such a
toroidal structure. Because such a toroidal solution is obtained from supposing that
a particular geometrical curve (a circle) is a first term of an expansion, it appeared
possible that other “particles” could be created by starting from special knotted
curves. However, the problem then would not be one of topology (the embedding of
the curve in R?) but of geometry: the current passing through the curve generates
strong forces compelling the curve to prefer a particular geometrical pattern.

The idea is reminiscent of the approach due to Thomson (1824-1907, Lord Kelvin
after 1892) which replaces the equations of fluid dynamics by more basic hyperbolic
systems in order to describe the whole world with vortices. The (ill-conceived) pro-
gram of string theorists is also a revival of “Kelvin’s dream”. But my idea is to
discover what type of solutions with oscillations are compatible with the coupled
Dirac/Maxwell-Heaviside system, or more general hyperbolic systems, and not to
invent games with geometrical objects under the pretence that it is physics!

I'have not tried to perform such computations, but besides starting from a circle, it
would appear that for the idea of Bostick to become more explicit will require a family
of surfaces like tori, that perhaps are those for which the current j is tangent. Which
surfaces will appear when starting from a (geometrically special) knotted curve? Will
they be related to the manifolds named after Eugenio Calabi and Shing-Tung Yau?

Linked knots might then correspond to “particles” bound by “strong forces”, and
consequently imagining that the correspondence relates to “free particles” bound by
the exchange of “special particles” then becomes questionable language!
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1.11 Multiple Scales

The dogmas of quantum mechanics embrace an 18%th century point of view, since
“particles” are sometimes points playing strange games, or are sometimes waves.
The 20th century point of view, which I advocate, is that “particles” are always
waves. However, PDE with small parameters may have solutions with oscillations
(or concentration effects) at small scales, whose description with “new”” mathematical
tools like H-measures produces a first order PDE (in (x, &)), and implies an ODE.

I hope that multi-scales H-measures [Tar13] (or other improvements) will help
prove (or disprove) some formal constructions where a few scales interact, in particu-
lar in boundary layers. There are two important problems for which boundary layers
are conjectured to have a few scales. One concerns Joe Keller’s GTD (geometric
theory of diffraction), and in the other, due to Stewartson (1925-1983), a triple deck
structure is proposed for some boundary layers in hydrodynamics. Other problems
where such ideas should be tested include the size of domains and the movement of
their (grain) boundaries.

It was about 20 years ago, I believe, that I heard a very interesting remark in a
talk by “Raj” Rajagopal. Although he was working at the University of Pittsburgh
at the time, we met mostly abroad, and his talk was given in Paris at the laboratory
now called LJLL (Laboratoire Jacques-Louis Lions) then located in Jussieu (before
moving to Chevaleret, and returning to Jussieu).

Raj started by distinguishing intuitively between gases, liquids, and solids. A small
amount of gas placed in a container soon fills the entire container; a small amount of
liquid approximately maintains its volume and due to gravity soon occupies the entire
volume of the container below a horizontal plane; a small solid approximately keeps
its shape, and soon finds a position of equilibrium near the bottom of the container,
again because of gravity.

Raj then took some paste from a jar, and started to mould it into a ball, while
mentioning that it may be considered to be liquid, possibly visco-elastic, because
in a bowl it flows slowly toward the bottom. When the ball was warm enough he
showed that it bounced back like a good rubber ball, with no apparent dissipation of
energy, so that it could be considered to be an elastic solid. He then threw it as fast
as he could against the blackboard. Everyone in the room ducked expecting the ball
to rebound into the room, but the ball just splashed onto the blackboard as if made
of jelly!

He then mentioned that there was no good model for a material which reacted so
differently to slow variations or to fast variations. If he had not warmed the material
but had hit it hard with a hammer, it would have behaved as a brittle solid and broken
into fine pieces. This would not have been a good idea since the material is slightly
corrosive. Thereupon, he went off to wash his hands before continuing the talk.

It is for a “similar” reason that equations of state are often insufficient, since they
usually correspond to particular mesostructures whose evolution differs markedly in
various situations. However, homogenization has not yet been sufficiently developed
to satisfactorily describe the evolution of mesostructures.
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1.12 Constitutive Relations

Since Francois Murat and I first worked on an academic problem of “optimal design”,
we had tried to describe all effective diffusion tensors for mixtures of two isotropic
materials in given proportions. We solved this problem, but our method (based on
compensated compactness) is not easy to generalize. This question was described in
3 lectures I gave at a 1986 conference organized by Robin Knops and Andrew Lacey
[Tar87] held in Durham (England).

Fortunately, for a few applications it is required only to characterize which D =
A'E may occur for a given E, and I solved this easier question in a general situation
[Tar97]. Later, in 1998, I discussed these issues more completely in a course of 5
lectures [Tar00] at a CIME/CIM summer school in Tréia, Portugal.

It would be best to simultaneously understand a few effective properties of mix-
tures, like diffusion of heat and electricity, magnetic and (linear) elastic properties, to
assist the creation of new efficient materials through selection of adapted mesostruc-
tures. To achieve this it seems necessary to improve knowledge of compensated
compactness, or H-measures, or both.

In the summer of 1977, I reported at a conference in Rio de Janeiro, that for
“nonlinear” elasticity I had found no reasonable class of constitutive relations for
homogenization. The situation has not changed, and it is useful to repeat that I'-
convergence is not homogenization, and that it deals with non-physical questions.

Clifford Truesdell (1919-2000) disagreed with my idea that constitutive relations
should be stable under weak convergence, which I considered obvious (since one
would not call the effective material elastic without this property). But 10 years later,
Owen Richmond (1928-2001) made interesting observations about higher order
gradients for an effective behaviour (of perforated aluminum plates).

The evolution equation for (nonlinear) elasticity is an hyperbolic system of con-
servation laws, but it should be noted that discontinuities may form satisfying jump
conditions referred to as “Rankine—Hugoniot conditions”. Stokes had been the first
(in 1848) to derive such conditions, before they were rediscovered by Riemann
(1826-1866) in his thesis (in 1860) treating a model of gas dynamics that instead of
energy conserves “‘entropy”, a word coined later by Clausius (1822—-1888). There is
also a problem of selecting (physically) admissible jumps. Peter Lax used the term
“entropy conditions” for such conditions, but since these often are not related to ther-
modynamical entropy, the term E-conditions used by Costas Dafermos is preferable.
I also recalled in Rio that even the stationary solution must satisfy E-conditions.

1.13 Heat and Thermodynamics

Heat corresponds to energy hidden at mesoscopic levels. The first principle of ther-
modynamics is a rephrasing of conservation of energy, but the second principle is
flawed: what is hidden at mesoscopic levels near xo does not remain there but moves
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as waves. This becomes understandable with a tool like H-measures. Introduction of
probabilities (as in statistical mechanics) then appears to adopt a pessimistic point
of view.

In 1807, Poisson (1781-1840) analyzed a discrepancy occurring in the speed of
sound (in air). When p = A p is used for the compressibility for air, the computed
speed is a slightly above 200 m/s, while the observed value is a little above 300 m/s.
Poisson then used p = B p" as proposed by Laplace (1749-1827), and adjusted
~. There are discrepancies in thermodynamics which are rarely emphasized now,
although the subject did not exist in the early 19th century. At the end of that century
a few bright minds still did not grasp some basic facts. In 1848 Stokes had (correctly)
found the “Rankine—Hugoniot” conditions satisfied by discontinuous solutions for
an (isothermal) gas flow. Later, he was (wrongly) convinced that there was a mistake,
when Strutt (1842-1919, Lord Rayleigh since 1873), and Thomson (not yet Lord
Kelvin), pointed out that his solutions fail to conserve energy.

It is taught now that in a gas at temperature 7', a sound wave does not propagate
at this temperature, because the propagation is too fast for equilibrium to occur. The
process is adiabatic (no exchange of heat, 6 Q = 0), and consequently isentropic

(ds = 22 = 0), which gives y = .

1.14 Compensated Compactness

The term “compensated compactness”, due to Jacques-Louis Lions, is based on the
observation that only the hypotheses of weak convergence and the div-curl lemma are
required to pass to the limit in a non-affine quantity. He concluded that the argument
is analogous to a compactness argument. Since passage to the limit is not always
possible for each product £ 5.”) Dg."), the result in effect uses compensation.

Francois Murat’s compensated compactness (quadratic) theorem (1976) [Mur78]
states that when U" converges weakly to U in L?($2; R?), and when

n

N p
ou
ZZALM@T]? € compact of Hl;C] (€2) strong, i=1,...,q, (1.35)
j=1k=1 J

Q(U™) converges weakly to Q(U°) in LY(Q) weak *, (1.36)
i.e., as Radon measures, for all quadratic Q satisfying
Q(\) =0forall A € A, (1.37)

where the characteristic set A is defined to be

N p
thereexists § e RV, £ £ 0, D D A& =0, i=1.....q. (1.38)
j=1k=1
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My improvement (1976) is that when a quadratic Q satisfies
Q) >0forall A € A, (1.39)

then
Q(U™) — v as Radon measures implies p1 > Q(U ™). (1.40)

My compensated compactness method (1977) consists in assuming that for a
closed set K C RP, there holds

U'(x) € K, ae.x € Q, forall n. (1.41)

“Entropies” Fi, ..., Fy are next determined such that

N OF; U™

~1(Q) strong, (1.42)
8xj

€ compact of H,__
j=1

and then the compensated compactness theorem is applied to U" enlarged by a family
of such “entropies”. This implies constraints satisfied by the Young measures (which
are probability measures on K) of a subsequence U”. When they imply that the
Young measures are Dirac masses, then U™ converges strongly.

H-measures [Tar90] make the quadratic theorem more precise, but the interaction
of H-measures and Young measures (belonging to K) still has to be better understood
[Tar10].

Improvement of my method may require a strategy for choosing “entropies” when
there are many. For example, the nonlinear string equation

wir — (f(wy)), =0inR x (0, 7), (1.43)
can be written as
(Z)t - (f?u))x =0 inRx(0,7), (1.44)
dw ow

where w is displacement, u = v 18 strain, v = o is velocity, and o = f(u) is the
(Piola—Kirchhoff) stress.

In the infinite families of “entropies”, Ron DiPerna (1947-1989) proposed using
only “physical” ones given by,

U2

m.v) =—+F@), q@v)=-vf@ wihFQ) :/o f(©dg, zeR,
(1.45)

2
mu,v) =uv, gau,v)= —% + g(u) with g(2) = —z f(2) + F(2),

g@=-2f'(), zeR. (1.46)
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where 11 is fotal energy related to invariance by translations in t, and 1 is linear
momentum related to invariance by translations in x.
In May 1985 while at the IMA, I considered the smooth case

2

(5 +Fw) —wan =0,
(), — (? fuo— F(u))x —0, (1.47)

and, as a reaction against those who pretend to work on elasticity but never mention
stress and only talk about potential energy, I emphasized stress and eliminated F (u):

W)y — WV +uo)y + o)y =0. (1.48)

In the non-smooth case, O is replaced by a term belonging to a compact set of
H2(R x (0, T)), but what I find interesting is that this relation only uses quadratic
quantities in the unknown, so that instead of differential properties of the strain-stress
relation, an algebraic relation is considered independent of the strain-stress relation.

Equation (1.48) was obtained by using ¢ = f(u), but without this relation the
following result is possible. Suppose that u, v, o are smooth in R x (0, T'), then

(v (ur —vx) +u (v — Jx))t - (J (ur —vy) + v (vr — Ux))x

= @V — WV +u0)y + W)y — (Uoy — uyoy),
(1.49)

so that when
U,V,0, Uy — Vy, Vs — Oy € leoc, then u;0 — u, oy is defined. (1.50)
I checked the case of equation u; + ( f (u))x = 0, and rediscovered the importance

of using 7 = f(u), also noticed by Gui-Qiang Chen. The assumption that u, v are
smooth implies

2 2
(1 itu0) + (0 o)), = (5) +@on+(5) +ev—uww). (15D

from which it follows that
ifu, v, ur + vy € L, (R x (0, 7)), thenu,vy — uyv, is defined.  (1.52)

This suggested the following conjecture, which is still open: if u,, v, converge in
L*>® (]R x (0, T)) weak x and correspond to a Young measure v/, and if

(tn)r + (p)x = 0 and (u2)y + 2(nvn)rx + (V2)xxr = 0in R x (0, T), (1.53)
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for all n, then for a.e. (x,t) € R x (0, T),
V(x,r) 18 supported by a line in the (u, v) plane. (1.54)

With H-measures, this conjecture is implied by a more natural one: if u,,, v, converge
in L® weak  and correspond to a H-measure p, then (1.53) implies that for almost
all (x, 1)

( is supported at two opposite points in (&, 7). (1.55)

There seems to be a geometrical idea behind such calculations, namely that some
2-forms vanish on K.

1.15 De Rham’s Currents

In the PDE courses which I taught at CMU, I pointed out that a pedagogical mistake
had been made by Laurent Schwartz who claimed that a locally integrable function
f defines a distribution. He called that distribution f, but instead he should have
called it f dx which emphasizes the role of dx. At the end of his book, however, he
mentions that there is no natural volume form on a manifold, and he describes the
currents of De Rham (1903-1990).

I heard Laurent Schwartz make fun of one of my teachers in physics at Ecole
Polytechnique, Louis Leprince-Ringuet (1901-2000), who had said that the Hilbert
spaces used by physicists are different from those used by mathematicians.

Laurent Schwartz should have pointed out that for a complex Hilbert space math-
ematicians use an Hermitian product (a, b) which is linear in a and anti-linear in b,
while physicists use the notation of Dirac (c|d), which is linear in d and anti-linear
in c. They explain the notation |d)(c| for an operator, which mathematicians denote
with a tensor product notation d ® c.

Dirac called (c| a “bra” and |d) a “ket”, and for H = L? a function f € L? is
denoted | f), while { f] is an element of the dual H', namely f dx. It shows that the
pedagogical mistake of Laurent Schwartz had been avoided by Dirac!

For V = HOl (Q) C H = L?*(Q), the canonical isometry of V onto V' is u +>
—Au, thatof H onto H' is u — udx.

A few years ago, after Amit Acharya showed me his system of PDE for studying
dislocations, I guessed why more attention should be paid to De Rham’s currents: it
seemed to me that my question of which topology to use for (oscillating) force fields
was about 1-currents, and that dislocations may be about 2-currents.
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1.16 Conclusion

Although I feel that there is some geometry needed for answering some of the ques-
tions which I encountered in my research, I did not find it necessary to read about
differential geometry to any large extent.

In the early 1980s, I had asked Marcel Berger if some of the young bright differ-
ential geometers whom he had mentioned were interested in understanding physics,
and his answer was that it is already difficult to be good in one discipline, and it is
much more difficult to be good in one discipline and a half!

Feynman had explained that it was quicker for him to develop the mathematics
he needed than to take time to look for a mathematician who would understand what
he wanted, and who also know whether some mathematicians had already answered
his question. He also mentioned a lesson learned from his father, that knowing the
name of a bird in many different languages tells almost nothing about the bird itself.

My experience is that differential geometers are rarely interested in the 19th cen-
tury point of view of continuum mechanics, and often prefer to limit their knowledge
to the 18th century point of view of classical mechanics. Since I would like to improve
my understanding of the 20th century point of view on continuum mechanics and
physics which I have advocated, and because it sometimes leads to equations which
are beyond PDE, my feeling is that differential geometers may prefer to continue
using the mathematical tools of which they are familiar instead of helping to develop
those needed for my approach.

It is then useful that those interested in continuum mechanics share their knowl-
edge concerning questions of differential geometry. Accordingly, I want to thank
those in the scientific committee who planned the conference Differential geometry
and continuum mechanics in June 2013 in Edinburgh, as well as those who helped
in the practical organization, and, of course, the participants who shared their
knowledge.
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Chapter 2
Global Isometric Embedding
of Surfaces in R3

Qing Han

Abstract In this note, we give a short survey on the global isometric embedding of
surfaces (2-dimensional Riemannian manifolds) in R3. We will present associated
partial differential equations for the isometric embedding and discuss their solvabil-
ity. We will illustrate the important role of Gauss curvature in solving these equations.

2.1 Introduction

Isometric embedding is a classical problem in differential geometry. In this note, we
present a short survey on the global isometric embedding of Riemannian manifolds
in Euclidean spaces. We begin with the following question.

Question 2.1.1 Given a smooth n-dimensional Riemannian manifold (M", g), does
it admit a smooth isometric embedding in Euclidean space R" of some dimension N?

This is a long standing problem in differential geometry. When an isometric
embedding in RY is possible for sufficiently large N, there arises a further question.
What is the smallest possible value for N ? Those questions have more classical local
versions in which solutions are sought only in a sufficiently small neighborhood
of some specific point on the manifold. Analytically it involves finding a smooth
embedding r : M" — R such that dr - dr = g, or in local coordinates

8,~r-8jr =gj, Lj=1,...,n 2.1.1)
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This is a differential system of n(n + 1)/2 equations for N unknowns. In general, a
necessary condition for this equation to be solvable is N > s, = n(n + 1)/2.
For the global isometric embedding, we have the following result.

Theorem 2.1.2 Any smooth closed Riemannian manifold (M", g) admits a smooth
isometric embedding in RN for some N = N (n).

Theorem 2.1.2 was first proved by Nash [Nas56] and was later improved by
Giinther [Gun89a]. To prove Theorem 2.1.2, one needs to find a global solution of
(2.1.1). We note that (2.1.1) is nonlinear. When iterations are used, a loss of dif-
ferentiation occurs. Nash introduced an ingenuous iteration to handle this loss of
differentiation. Such an iteration was later on improved by Moser, among many peo-
ple, and is now called Nash-Moser iteration. Giinther’s argument is quite simple. He
rewrote the first order system (2.1.1) as a second order elliptic differential system and
then used the contraction mapping principle. Moreover, he improved the dimension
of the ambient space. Specifically, he proved

N > max{s, + 2n, s, +n + 5}.

If n = 2, then N > 10. Hence, any compact 2-dimensional smooth Riemannian
manifold can be isometrically embedded in R!?. A natural question is whether we
can lower the dimension of the target Euclidean space.

For the local embedding, we are interested only in the case N = s, or when N is
close to s,. For the analytic case, we have the following optimal result.

Theorem 2.1.3 Any analytic n-dimensional Riemannian manifold admits an ana-
Iytic local isometric embedding in R .

Theorem 2.1.3 was proved by Janet [Jan26] for n = 2 and by Cartan [Car27] for
n > 3. The proof is based on the Cauchy-Kowalewsky Theorem.
For the smooth case, we have the following result.

Theorem 2.1.4 Any smooth n-dimensional Riemannian manifold admits a local
smooth isometric embedding in R* ",

Theorem 2.1.4 was proved by Greene [Gre70] and by Gromov and Rokhlin
[GR70] independently. Their proofs are based on the iteration scheme introduced
by Nash. Giinther [Gun89a] gave an alternative proof by using the contraction map-
ping principle.

For 2-dimensional Riemannian manifolds, a better result is available. Poznyak
[Poz73] proved that any smooth 2-dimensional Riemannian manifold can be locally
isometrically embedded in R* smoothly.

Refer to [HHO6] for proofs of these results and historical accounts.

In this note, we give a short survey on the global isometric embedding of surfaces
(2-dimensional Riemannian manifolds) in R? in the smooth or sufficiently smooth
category.
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2.2 Local Isometric Embedding

In this section, we briefly review the local isometric embedding. We begin with the
following conjecture.

Conjecture 2.2.1 Any smooth surface admits a smooth local isometric embedding
in R3.

This conjecture was raised by Schlaefli in 1873 and was given renewed attention
by Yau in the 1980s and 1990s. It is still open.

Let g be a smooth metric in aneighborhood of 0 € R?. We are interested in whether
g, restricted to a smaller neighborhood of 0, admits a smooth isometric embedding
in R3. It turns out that the behavior of the Gauss curvature in a neighborhood of 0
plays an essential role. It is a classical result that g in a neighborhood of 0 € R?
admits a smooth isometric embedding in R? if K (0) # 0. The general case when K
assumes zero somewhere remains open in general.

We have the following result for the case of nonnegative Gauss curvature.

Theorem 2.2.2 Suppose g is a C" metric in a neighborhood of 0 € R* with K > 0,
for some integer r > 14. Then g admits a C"~'0 isometric embedding in R3 locally
in a neighborhood of 0.

Theorem 2.2.2 was proved by Lin [Lin85]. We point out that the local isometric
embedding established in Theorem 2.2.2 is not known to be smooth even if the metric
g is smooth. The smoothness was proved in special cases by Hong and Zuily [HZ87].

We have the following result when Gauss curvature changes its sign.

Theorem 2.2.3 Suppose gisa C" metric in aneighborhood of0 € R? with K (0) = 0
and VK (0) # 0, for some integerr > 9. Then g admits a C"~° isometric embedding
in R3 locally in a neighborhood of 0.

Theorem 2.2.3 was proved by Lin [Lin86]. An alternative proof was given by
Han [HanO5a]. For K in Theorem 2.2.3, the implicit function theorem implies the
existence of a curve 7y such that K changes sign across -y at order 1. Han [Han05b]
proved a similar result if K changes sign across a curve v at any order, or more
general, if K changes sign monotonically across . See also [KhuO7a].

Suppose a metric g defined in an open set & C R? is given by

2
g= Z giidxidx;.
i,j=1

To isometrically immerse g in R3,itis equivalent to finding a functionr = (X1, X»,
X3): Q2 — R3 such that dr - dr = g, or

3
D 0iXi 0 Xk =gj i, j=1.2
k=1
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This is a first order differential system of three equations for three unknown functions.
However, such a system is not covered by the general theory of first order differential
systems. In order to study this system, we change it to an equivalent differential
equation.

We first note that r satisfies the following basic equations

Vir=hyn, i,j=1,2, 2.2.1)
where V;; denotes the covariant derivatives with respect to g, i.e.,
_ 9. k
Vijr = Ojr — I'j;okr,

and (h;;) is the coefficient of the second fundamental form. Fix a unit vector e in R?
and consider u = r - e. Taking the scalar product of e and (2.2.1) and then evaluating
the determinant, we get

det(Vju) = K det(g;)(n - e)*.
Note that

2
) [(O1r x Ohr) X €| i 2
el =1 — (222 0udiu =1 — | Vul?.
(n-e) ( 01T  Oor| g ojud;ju [Vu|
Then, we obtain
det(VZu) = Kdet(g;)(1 — [Vul?), (2.2.2)

with a subsidiary condition |Vu| < 1. In local coordinates, (2.2.2) can be written as
det(u;; — Ff}uk) = Kdet(g;))(1 — gijuiuj),

where Fl{; is the Christoffel symbol and (gif ) is the inverse of (g;;). This equation was
derived by Darboux in 1894 and is referred to as the Darboux equation. Obviously,
each component of r satisfies the Darboux equation.

It can be verified that isometrically embedding a given metric g in R? is equivalent
to finding a solution u to the Darboux equation (2.2.2).

The Eq.(2.2.2) is a fully nonlinear equation of the Monge-Ampere type. We are
interested in a local solution in a neighborhood of any given point p € Q. The type
of the Eq. (2.2.2) is determined by the sign of the Guass curvature K . If K is positive
or negative, (2.2.2) is elliptic or hyperbolic. However, (2.2.2) is degenerate where K
vanishes.

In the case that the Gauss curvature K does not vanish at p € 2, (2.2.2) can be
solved easily in a neighborhood of p. The difficulty arises if K vanishes at p.

To prove Theorems 2.2.2 and 2.2.3, we adopt a standard method to obtain local
solutions of nonlinear differential equations. Basically, it consists of three steps.
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Step 1. We choose an approximate solution and scale the equation appropriately.
The purpose is to write the original equation as a perturbation of some standard
equation.

Step 2. We derive a priori estimates for the linearized equation. This is the most
difficult part.

Step 3. We obtain a solution by iterations, which may be an application of the
contraction mapping principle or the complicated Nash-Moser iteration.

The crucial step here is to study the linearized equations and derive a priori
estimates. The linearized equations of the Darboux equation are elliptic if the Gauss
curvature is positive, hyperbolic if the Gauss curvature is negative, and of the mixed
type if the Gauss curvature changes its sign. Moreover, the linearized equations are
degenerate where the Gauss curvature vanishes.

2.3 Isometric Embedding of Closed Surfaces

In this section, we discuss the global isometric embedding of closed surfaces, 2-
dimensional compact Riemannian manifold without boundary. Completely omitted
is the isometric immersion of complete surfaces without boundary.

2.3.1 The Weyl Problem

The simplest closed surface is the sphere. We begin with

Question 2.3.1 Does any smooth metric on S* with a pointwise positive Gauss
curvature admit a smooth isometric embedding in R3?

The Question 2.3.1 is often referred to as the Weyl Problem, which was raised by
Weyl [Wey16]. The first attempt to solve the problem was made by Weyl himself.
He suggested the continuity method and obtained a priori estimates up to the sec-
ond derivatives. Twenty years later, Lewy [Lew38a] solved the problem in the case
of g being analytic. In the early 1950s, Nirenberg [Nir53] and Pogorelov [Pog52]
independently solved the smooth case.

Theorem 2.3.2 Let g be a C*® metric on S* with positive Gauss curvature, o €
(0, 1). Then there exists a C*% isometric embedding of g into R>.

The present form of Theorem 2.3.2 was proved by Nirenberg [Nir53] by the con-
tinuity method. The result was extended to the case of continuous third derivatives
of the metric by Heinz [Hei62]. In a completely different approach to the problem,
Alexandrov in 1942 obtained a generalized solution of the Weyl problem as a limit
of polyhedra. The regularity of this generalized solution was proved by Pogorelov
[Pog52]. Guan and Li [GL94], and Hong and Zuily [HZ95], independently general-
ized Theorem 2.3.2 to metrics on S* with nonnegative Gauss curvature.
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Closely related to the global isometric embedding is the rigidity. The first rigidity
result, proved by Cohn-Vossen [Coh27], states that any two closed isometric analytic
convex surfaces are congruent (within a reflection) to each other. Herglotz [Her43]
gave a very short proof of the rigidity, assuming that the surfaces are three times
continuously differentiable. It was eventually extended to surfaces having merely
two times continuously differentiable metrics by Sacksteder [Sac62].

We now discuss Nirenberg’s solution of the Weyl problem. It is based on the
method of continuity and consists of three steps:

(a) The given C*® metric g on S? with positive Gauss curvature is to be con-
nected with the standard metric go on S? by a family of C*® metrics g;, depending
continuously on 7,0 < ¢t < 1, such that all metrics g; have positive Gauss curvature.

For the next two steps, set

I = {t € [0, 1]; g; can be isometrically embedded in R? in C4’“—categ0ry}.

(b) Show that I is open; that is, if g, is isometrically embedded, then there exists a
small neighborhood of #y, say |t —ty| < £(tp), such that g; is isometrically embedded
for all ¢ in this neighborhood.

(c) I is closed.

Statements (a), (b) and (c) imply the set of values of # for which g; is isometrically
embedded in C*¢ is the whole segment 0 <t < 1.

The statement (a) is proved with the aid of the uniformization theorem, which
enables one to map conformally the Riemannian manifold defined by g globally
onto the unit sphere—after which the construction of g, is easily done.

The statement (b), which may be referred to as the statement of “openness”,
requires one to solve a system of nonlinear partial differential equations which are
degenerate in character. These are attacked by an iteration scheme. The key step is to
solve a system of linear differential equations and to obtain estimates of its solutions.

The statement (c), which may be referred to as the statement of “closedness”, is
based on a priori estimates for the second derivatives of the functions describing a
convex surface with a given metric.

Now we derive the Darboux equation on the unit sphere. Let r(x1, x3) be a closed
convex surface with positive Gauss curvature. The coefficients of the first and sec-
ond fundamental forms of the surface are denoted by g;; and h;;. The g;;’s are the
components of the induced metric g given by

dr - dr = (01rdx1 + Orrdx2) - (O1rdx1 + Oardx;) = giidx;dx;,

ie., gij = Oyr - Ojr. We set
2
lgl = 911922 — 9712-
The orientation is so chosen that the inner unit normal to the surface at any point is
given by

1
n=——0or x or.

Vgl
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The Gauss curvature K of the surface, which is positive, is expressed by the formula

_ hithy —hi,

K (2.3.1)
lgl
We also use the basic equation which takes the form
Oyr =Tpor + hym, i, j =1,2. (2.3.2)

We now introduce one other function p. Choosing the origin as the center of the
largest sphere which may be inscribed in r, we define

1
p(x1,x2) = Er - T. (2.3.3)

This function p satisfies a second order differential equation, which is also called
the Darboux equation. It can be easily derived by expressing K in terms of p and its
derivatives as follows. Differentiating (2.3.3), we have

a,'p = (’)ir - I, i= ], 2, (234)
and
Ojp=0yr -r + g;j = Fg@kp + hyr-n+ g (2.3.5)

In establishing (2.3.5), we have used (2.3.2) and (2.3.4). We may solve for A;; in
(2.3.5) and express K in terms of derivatives of p to obtain the equation

hithy — hi 1

Kae-n?="2 "0 0 0y = — det(dyp — Mk —gi).  (2.3.6)
lg1 lgl

The expression (r - n)? represents the square of the distance from the origin to the

plane tangent to the surface at the point (x1, x2). It may in turn be expressed in terms

of p and g;; as follows

2
2 — |2 — 2 w2 O rxohr
(rem? = Jrf? = | x nf? = |rf? — |r x 25X 2 .
=r]? - ﬁ|(r - 9ir)dor — (r - Oor) O x| 2.3.7)
=2p—g%0ipdjp,

as a consequence of (2.3.3) and (2.3.4). Substituting (2.3.7) into (2.3.6), we obtain the
following nonlinear differential equation of Monge-Ampere type for the function p

1 )
F(x, p, 0p, 0%p) = l det(9p — Tjokp — gi)) — K 2p— g70:p0;p) = 0. (2.3.8)
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This equation is invariant under the change of coordinates. In addition, it is elliptic,
since we have, in view of (2.3.7)

4
AF 91 pFomp — Foyp = K@ n)? > 0. (2.3.9)

This is because the surface is convex (K > 0) and contains the origin in its interior.
In the Nirenberg’s solution of Weyl problem, the Darboux equation (2.3.8) was
used only in the proof of Part (c), the closedness. For the proof of Part (b), the
openness, Nirenberg followed an idea of Weyl’s by solving the first order system for
the isometric embedding. It is an extremely complicated process.
In the rest of the subsection, we discuss the closedness in Nirenberg’s solution of
Weyl problem. The key result is the following theorem.

Theorem 2.3.3 Let {g;,} be a sequence of smooth metrics on S? with positive Gauss
curvature which can be isometrically embedded in R by a smooth embedding Iy,
Suppose g;; converges to g; in C 4 for a smooth metric g, on S* with positive Gauss
curvature. Then g; can be isometrically embedded in R3 by a smooth embedding.

In order to prove Theorem 2.3.3, we need to show that the C3%_norms of r; can
be estimated independent of #;, for some o € (0, 1). Then we simply apply the Ascoli
theorem to prove that a subsequence of r;, converges in C3-norm to a C>® isometric
embedding r;. Then the smoothness of r; follows from the standard results in the
theory of elliptic differential equations.

Let us now estimate the C>“-norm of r;;. For convenience, we drop the depen-
dence on #; and prove a general result.

Theorem 2.3.4 Let r be a closed smooth convex surface in R3 with a smooth first
fundamental form g, with the center of the largest sphere inscribed in r taken as the
origin. Then for any integer m > 3 and any o € (0, 1)

[rjcma < Cpas (2.3.10)

where C3  is a positive constant depending only on «, |g|c4, min K and min |g|;
and Cy, o is a positive constant depending only on m, o, |g|cm.«, min K and min |g|
form > 4.

The main part of the proof is to estimate the C>“-norm of r for some 3 € (0, 1).
Then the standard bootstrap argument yields the estimate for the C""“-norm.

We first need the following estimate of the mean curvature of convex surfaces in
terms of the Gauss curvature. The proof is based on straightforward calculations.

Lemma 2.3.5 For a compact surface (M, g) in R3 with positive curvature K, the
mean curvature H satisfies

2 A!IK
supH” <sup| K — . (2.3.11)
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We now sketch the proof of Theorem 2.3.4.

Proof of Theorem 2.3.4 The proof consists of several steps.

Step 1. First, by a comparison theorem, the intrinsic diameter of g is bounded in
terms of min K, and hence so also is the diameter of the closed convex surface r. It
then follows that the length of the vector r is bounded. Next, since J;r - dir = gij,
the vector J;r is also bounded in length, i = 1, 2. In conclusion, we have

Ir|ct < Cy, (2.3.12)

where C; is a constant depending only on |g|z~ and min K.
Step 2. The second derivatives of r may be bounded in terms of a bound for the
mean curvature H of the surface r as follows. The expression of H implies

1

1
g H = ﬂ(lmg%‘ — 2hiag11g12 + h1gh) + zhll-

Since the surface is convex and the unit normal n was chosen to be an inner normal,
the quadratic form on the right-hand side is positive definite so that we have

hi < 2g11H.
Similarly, we have
hy < 2gnH.
Then we get
lhial < 2H /911922,

since (h;;) is positive definite. By the Gauss equation, we obtain with (2.3.12)
|0yr| < C(|0r| + |hyl) < C(1 + H).

With Lemma 2.3.5, we obtain
Ir|c2 < Ca, (2.3.13)

where C3 is a positive constant depending only on |g|-4, min K and min |g|.
Step 3. We estimate the Holder semi-norm of the second derivatives of r. To do
this, we study the function p introduced in (2.3.3),

p==r-r.

It suffices to estimate the Holder semi-norm of the second derivatives of p. Recall
that p satisfies the nonlinear differential equation of Monge-Ampere type F(x, p,
dp, 0?p) = 01in (2.3.8). By (2.3.9) and a simple geometric argument, we have

4
2 2
4F 011 0F 02p — Fip = ol K(r-m” >c.
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With (2.3.13), it follows
A < (9, F) < A7

where A is a positive constant depending only on |g|4, min K and min |g|. Hence
F = 0 is uniformly elliptic. Therefore, standard results from the theory of fully
nonlinear elliptic differential equations imply

|32P|Cd < Céﬂ,

where C), 3 is a positive constant depending only on |g|4, min K and min |g|. By the
relation between p and r discussed earlier in this section, we get

0°r|cs < C3 5
With (2.3.13), we have
Ir|c2s < Ca3,

where C»_gis a positive constant depending only on |g| -+, min K and min |g|. Finally,
the estimates for p, and hence for r, can be extended to the C"“-norm for any integer
m >3 and any a € (0, 1). ([l

2.3.2 A Rigidity Result

In this subsection, we study the isometric embedding of general closed surfaces. We
start with closed surfaces in R3. As is well-known, a closed surface M in R> satisfies

/ K+dg > 47,
M

where K is the Gauss curvature of M and KV is its positive part, i.e., KT =
max{0, K}. This simply says that the image of the Gauss mapon{p € M : K(p) >
0} covers the unit sphere S* at least once. Such an integral condition provides an
obstruction for the existence of isometric embedding of metrics on closed surfaces.

To find sufficient conditions for the existence of isometric embedding, we first
examine the rigidity, the uniqueness of the isometric embedding if it exists. For closed
surfaces with Gauss curvature of the mixed sign, Alexandrov [Ale38] introduced
a class of surfaces satisfying some integral condition for its Gauss curvature and
proved that any compact analytic surfaces with this condition is rigid. Nirenberg
[Nir63] partially generalized this result for smooth surfaces. To do this, he needed
some extra conditions, one of which is not intrinsic.
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Specifically, let (M, g) be a closed surface such that

/ Kdg = 4r, (2.3.14)
{K >0}
and

VK # 0 whenever K = 0. (2.3.15)

The assumption (2.3.15) means the Gauss curvature changes sign cleanly and it
implies that {p € M; K (p) = 0} consists of finitely many closed curves in M. Let
My = {p e M : K(p) > 0}. It is proved in [Nir63] that (M, glas, ) is rigid
in R and that (M, g) is rigid if there is at most one closed asymptotic curve in
each component of M_ = {p € M : K(p) < 0}. We need to point out that the
extra assumption on asymptotic curves is not intrinsic. With this rigidity result, it
seems reasonable to start with closed surfaces satisfying (2.3.14) and (2.3.15) in our
discussion of the isometric embedding of (M, g) in R3.

Since (2.3.14) involves the part of the surface where the Gauss curvature is posi-
tive, we will focus on this part. Manifolds in the rest of this subsection are compact
with nonempty boundary.

We now formulate the rigidity results by Alexandrov and Nirenberg as follows.
Refer to [Nir63], or [HHO6], for a proof.

Theorem 2.3.6 Let X be an oriented and bounded C*-surface in R3 with nonempty
boundary. Suppose

K>0 inX,
K=0and VK #0 ondZ, (2.3.16)
Js Kdg = 4.
Then,
(1) OX consists of finitely many smooth planar convex curves oj, j =1,...,J.
Moreover, the plane containing o j is tangent to ¥ along o j, foreach j =1, ..., J;
(2) the geodesic curvature kg of o is negative, for each j =1, ..., J;

(3) X |J 0% is rigid.

By Theorem 2.3.6(1), the geodesic curvature k, of each o is simply the curvature
of o as a planar curve. As a consequence, we obtain

/ kgds = =2, (2.3.17)
o

and 3
/ LVl kMg — 0, (2.3.18)
0

where o; is parametrized by s € [0, /;].
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We now formulate the following question.

Question 2.3.7 Let €2 be a smooth domain in RR? with nonempty boundary and ¢ be
a smooth metric in 2. Suppose

K >0 in Q,
K =0and VK #0 on 02, (2.3.19)
Jo Kdg = 4,

and, for each connected component o; in 0€2,

fo‘i kgdS = _27T,
i VTl kamdr g = o, (2.3.20)

where o; is parametrized by s € [0, /;]. Does (€2, g) admit a smooth isometric
embedding in R3?

2.3.3 Compactness of Alexandrov-Nirenberg Surfaces

Our main object in this subsection is the surfaces introduced by Alexandrov and
Nirenberg, as in Theorem 2.3.6. For convenience, we introduce the following termi-
nology.

Definition 2.3.8 We call ¥ an Alexandrov-Nirenberg surface if it satisfies (2.3.16).

Our ultimate goal is to study the isometric embedding related to Alexandrov-
Nirenberg surfaces. The rigidity result in Theorem 2.3.6(3) can be interpreted as the
uniqueness of the isometric embedding. We are interested in the existence of the
related isometric embedding. Following Nirenberg’s solution of the Weyl problem,
we plan to use the method of continuity to prove such an embedding. As discussed in
Sect.2.3.1, there are three steps in the method of continuity: connectedness, openness
and closedness. The closedness often appears in the form of a priori estimates.

Now, we present a result by Han et al. [HHH14].

Theorem 2.3.9 For any integers J > 1 and k > 2 and any constant o € (0, 1), let
Q be a bounded smooth domain in R* and r : Q — R> be a C**3>“-mapping such
that ¥ = r(2) is an Alexandrov-Nirenberg surface. Then,

|I'|Ck,a(§2) <C (|g|ck+2,a(2), rglzn |VK|, Ig:%x |kg|) s

where g is the induced metric on X, K is the Gauss curvature of ¥ and kg is the
geodesic curvature of 0X.
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We note that VK does not vanish on % by (2.3.16) and that k, does not vanish
on 0% by Theorem 2.3.6(2).

Difficulties in deriving the estimate in Theorem 2.3.9 arise from the condition K =
0 on OX. As discussed earlier, vanishing Gauss curvature results in degeneracy of
the associated nonlinear elliptic equations. Hong [Hon99] studied the case where 0%
consists of one connected component and the geodesic curvature k, of O X is positive
everywhere. However, in the present case, k; < 0 on 0% by Theorem 2.3.6(2). From
an analytic point of view, the associated elliptic equation is non-characteristically
degenerate on 0X if k; > 0 on OX and is characteristically degenerate if k, < 0.
The latter is presumably more difficult to study than the former.

To prove Theorem 2.3.9, we need to derive a priori estimates of the second
fundamental forms. In the rest of this section, we describe the set up and major steps
in proving Theorem 2.3.9.

Suppose X is an Alexandrov-Nirenberg surface as introduced in Definition 2.3.8.
By Theorem 2.3.6, 0% consists of finitely many planar convex curves. Let o be
a connected component in 0X. Without loss of generality, we assume that, in the
geodesic coordinates with the base curve o, the induced metric g is of the form

g = B%ds®> +di®> forany(s, 1) € [0, 2] x [0, 1] (2.3.21)
where B is a positive function in [0, 27] x [0, 1] satisfying
B(-,0) =1, B/(-,0) = —k,. (2.3.22)
Here, t = 0 corresponds to the boundary curve o and the negative sign in B, indi-
cates that the geodesic curvature of ¢ is calculated with respect to the anticlockwise
orientation. Obviously, we have B; > 0 on ¢. Furthermore, we assume, by a scaling
in ¢ if necessary, that

B, > Oforallt € [0, 1].

Here and hereafter, we adopt the notion (0, 9;) = (091, 0»). The Gauss-Codazzi
equations are given by

B, B,
L —My=—L— "M+ BB,N, (2.3.23)
B B
B,
M; =Ny ==—M, (2.3.24)

and

NL — M?> = KB, (2.3.25)
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The mean curvature H is given by

n= (L, n (2.3.26)
=55 . 3.

We point out that by Definition 2.3.8, or by (2.3.16) specifically, we have
K(-,0)=0, K:(,0)>0.

A simple calculation yields the following result.

Lemma 2.3.10 Let & be an Alexandrov-Nirenberg surface in R? of class C* and o
be a connected component in OZ. Then, in the geodesic coordinates as in (2.3.21)
and (2.3.22),

K;
L=M=0, N=_[— ont=0,
By

and

L[Z\/ K[B[ 0nl=0.

In other words, L, M, N and L, are intrinsically determined on o.

Next, for the Alexandrov-Nirenberg surface X in R3, we assume by Theorem
2.3.6(1) that 0% consists of J planar convex curves. Hence, X and the planar convex
regions enclosed by these curves form a convex surface TinR3 A simple geometric
argument shows that there exists a ball of radius Ry inside >, where Ry is a positive
constant depending only on 1/ max K and the intrinsic diameter | of X. In the
following, we always take the origin as the center of this ball. We have the following
upper bound of the mean curvature.

Lemma 2.3.11 Let 3 be an Alexandrov-Nirenberg surface in R? of class C. Then,

VK]
H=<C K NINAY
= {ne}'%x e T max K4 max VIAK]

9
where C is a positive constant depending only on the intrinsic diameter of .

Lemma 2.3.11 extends Lemma 2.3.5 for closed surfaces without boundary to
surfaces with boundary, where the Gauss curvature vanishes. Following steps outlined
in the proof of Theorem 2.3.4, we can derive interior estimates of derivatives of the
position vector r. For estimates near the boundary, the crucial part is the estimate of
the boundary Lipschitz norm. We achieve this in three successive steps:

Step 1. Estimate the L°°-norm by the maximum principle;

Step 2. Estimate the boundary Holder norm by de Giorgi iteration;

Step 3. Estimate the boundary Lipschitz norm by blow-up arguments.
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After these 3 steps, we estimate the boundary higher order norm by results in
[HH12] on L? and Holder boundary estimates for a class of characteristically degen-
erate elliptic equations.

2.3.4 Isometric Embedding Near Closed Curves

In this subsection, we describe a result due to Dong [Don93] concerning the isometric
embedding near a closed curve where the Gauss curvature changes sign cleanly. Such
a result can be considered as a semi-global version of Theorem 2.2.3.

Theorem 2.3.12 Let €y be a positive constant, m be a positive integer, and g be a
C™-metric in S' x (—eg, €0) given by

g = B*(s, )ds®> + dr?, (2.3.27)

for some C™-function B in S' x (—eg, e0) with B(-,0) = 1. Assume K = 0 and
VK # 0on {t = 0}. Suppose

K:B; >0 on{t =0}, (2.3.28)
and

2m _

0 |B; (s, O|ds = 2, (2.3.29)
fo exp {«/—1 f() | B; (s, 0)|d’1’} ds = 0.
Then for some ¢ € (0, gg), g restricted to S' x (—¢, €) admits a C™~™0 isometric
embedding in R3, for some universal integer my.

We point out that Theorem 2.3.12 will play an important role in answering Ques-
tion 2.3.7. Let o be a connected component in 0S2. Assume that, in the geodesic
coordinates with the base curve o, g is given by (2.3.27), with B(s,0) = 1. We
assume K,;(s,0) > 0. Then, (2.3.22) implies B; = —k,. By (2.3.28), we have
kg < 0. Then, (2.3.29) is equivalent to (2.3.20). Therefore, Theorem 2.3.12 asserts
that the metric g in Question 2.3.7 restricted to a neighborhood of 92 admits an
isometric embedding in R3.

2.3.5 Torus-Like Surface

In this subsection, we briefly discuss the global isometric embedding of closed man-
ifolds in R3. The torus T2 is our model.

It is natural to ask whether conditions (2.3.14) and (2.3.15) are sufficient for the
isometric embedding of (M, g) in R3. We may even assume that M itself is already
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an embedded closed surface in R? and g is sufficiently close to the induced metric.
It turns out that (2.3.14) and (2.3.15) are not sufficient even in this special case.

We now discuss torus TZ. Suppose {T2, go} is a standard torus with the standard
metric in R3. Tt is easy to check that {T2, go} satisfies (2.3.14) and (2.3.15). For
metrics on T2, instead of (2.3.15), we assume

{K = 0} consists of two curves where VK # 0. (2.3.30)

In the following, we identity T> = S! x S! and denote (s,7) € S! x S'. Let g be a
smooth metric on T? given by

g = Et)ds* + G(t)drt*, (2.3.31)

where E and G are smooth positive 27-periodic functions.
The following result was proved by Han and Lin [HLOS].

Theorem 2.3.13 Suppose that g is a metric on T? as in (2.3.31) and satisfies (2.3.14)
and (2.3.30) with K = 0 on {t = t1} and {t = 1} for some t1,t; € [0, 27) with
1 < to. Then g admits a smooth isometric embedding in R if and only if

%) E’ \/_ 1+27 E’ \/_
1-— d 1-— d 2.3.32
[ () vou= [T (/) Vo s

We point out that (2.3.32) is an additional assumption besides (2.3.14) and
(2.3.30). It remains open to generalize to the general case.

2.4 Isometric Immersions of Complete Negatively Curved
Surfaces

In this section, we discuss whether a complete negatively curved surface admits
an isometric immersion in R3. Here a negatively curved surface is a surface with
negative Gauss curvature. An example of such a surface is given by the hyperbolic
surface whose Gauss curvature is —1.

The study of negatively curved surfaces in R3 is closely related to the interpretation
of non-Euclidean geometry. The first result concerning whether the entire hyperbolic
plane can be realized globally in R is due to Hilbert [Hil01].

Theorem 2.4.1 The hyperbolic plane does not admit any C* isometric immersion

in R3.

In fact, Hilbert originally proved that the hyperbolic plane does not admit any C™
isometric immersion in R3, for m sufficiently large. Here, the nonexistence of C?
isometric immersion follows from a result of Efimov’s.
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During the 1960s, Efimov discussed various generalizations of Hilbert’s result
to complete negatively curved surfaces. He found different conditions on the Gauss
curvature under which no isometric immersions in R3 exist. We now review two of
his results. The first result due to Efimov [Efi63] is the following.

Theorem 2.4.2 Any complete negatively curved smooth surface does not admit a
C? isometric immersion in R if its Gauss curvature K is bounded away from zero,
i.e., K <const < 0.

Efimov’s proof is very delicate and complicated. Readers can also refer to Klotz-
Milnor [Klo72]. Based on his earlier results, Efimov [Efi68] made more progress in
the study of nonexistence, proving the following result.

Theorem 2.4.3 Any complete negatively curved smooth surface M has no C? iso-
metric immersion in R> if its Gauss curvature K satisfies

1
sup |K|, sup |D(——=)| < oo.
M M

VIK]

Before the 1970s, most of the study on negatively curved surfaces involves nonex-
istence. As for affirmative answers, no result for complete negatively curved surfaces
was known. Yau [Yau82] raised the following problem: Find a sufficient condition
for a complete negatively curved surface to be isometrically immersed in R3. He
also pointed out that a reasonable sufficient condition might be the decay rate of
the Gauss curvature at infinity. In 1993, Hong [Hon93] gave an affirmative answer
and showed that a correct sufficient condition is that the Gauss curvature decays at
infinity faster than the inverse square of the geodesic distance.

Theorem 2.4.4 Let (M, g) be a complete simply connected smooth surface with
Gauss curvature K < 0 and (p, ) be a (global) geodesic polar coordinate. Assume,
for some constant § > 0,

(Hy) p2+5|K| is decreasing in p outside a compact set,
(Hy)  9yIn|K|, (i =1,2), pd,0p In|K| are bounded.

Then (M, g) admits a smooth isometric immersion in R3.

Hong [Hon93] proved Theorem 2.4.4 by solving the Gauss-Codazzi system, which
is equivalent to the Rozhdestvenskii system for negatively curved surfaces.

In 2010, Chen et al. [CSW10], [CSW10] studied the Gauss-Codazzi system from
another point of view. They established a connection between gas dynamics and
differential geometry and showed how the fluid dynamics can be used to formulate
a geometry problem.
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Chapter 3
Singular Perturbation Problems
Involving Curvature

Roger Moser

Abstract Consider an anisotropic area functional, giving rise to a variational
principle for the shape of crystal surfaces. Sometimes such a functional is regu-
larised with an additional curvature term to avoid difficulties coming from a lack
of convexity. We study the asymptotic behaviour of the resulting functional as the
strength of the regularisation tends to 0. We consider two cases. The first corresponds
to a cubic crystal structure. The expected shapes of the crystal surfaces are polyhe-
dra with faces parallel to the coordinate planes, and for the regularised functionals,
we discover a limiting energy depending on the lengths of the edges. In the second
case, we have a uniaxial anisotropy. We calculate the limiting energy for surfaces of
revolution and give a lower bound for topological spheres.

3.1 Introduction

The shape of crystal surfaces can be studied with a variational approach going back
to the seminal work of Wulff [Wul01]. Suppose that M C R? represents a crystal
surface with outer normal vector v. Then the free energy functional may be given by

an integral of the form
/ Y(v)do,
M

where ¥ is a function depending on the crystal structure and o denotes the surface
measure. That is, we have an anisotropic area functional and the equilibrium shapes
correspond to the local minima subject to a volume constraint (or whatever constraint
is appropriate for the problem in question).

When we study faceted surfaces, this approach can give rise to mathematical
difficulties. Facets arise when the surface energy is non-convex [Her50], and then
the usual tools from the calculus of variations may fail (and indeed minima of the
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energy may not exist under the conditions studied). This is one of the reasons why
it has been proposed to regularise the energy with an additional curvature term.
Suppose that A denotes the second fundamental form of the surface M C R3. Then
we consider functionals of the form

62
/<—|A|2+lI/(1/)) do
v\ 2

and we study their asymptotic behaviour as ¢ — 0. Similar modifications of the
anisotropic area functional have also been introduced on physical grounds [Her50,
AG89, CGP92, GDN98, GJ02]. While many models in the literature use different
curvature terms, such as the squared mean curvature, | H |> (where H denotes the mean
curvature vector), instead of | A|2, the above functionals are fairly representative of a
wide class of regularisations, especially when we consider closed surfaces of known
genus g. With the convention that |H| = |k + k3| for the principal curvatures x1
and ky, the Gauss-Bonnet formula then implies that

1 2 2
—/(IAI —|H[)do =4x(g —1).
2 J/m

Thus the difference is easy to control.

We are particularly interested in sharp lower bounds for the energy and their
asymptotics as ¢ — 0. Suppose, for example, that we have a potential function
¥ : 5 — R with ming ¥ = a > 0. Then obviously

2
/ (€—|A|2+w<u>) > ac(M),
w \2

i.e., the free energy is bounded from below by a multiple of the area, independently
of e. We may then want to examine

1 (62 ) )
— —|A"+Y¥Y () —a) do
v M 2
for a suitable choice of @ > 0 and study lower bounds (possibly under certain
constraints), expecting the next term in an expansion of a limiting energy functional
in terms of €. It is mostly this second step that we study here, and thus we will always
replace ¥ by the function ¥ — a, obtaining a nonnegative function with a non-empty
set of zeros. It is then convenient to write ¥ —a = %(Dz for a function @ : §2 — R
and to introduce the renormalised functional

E.(M) = / (62|A|2 + qﬂ) do. 3.1)
M

26(1’
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The asymptotic behaviour for ¢ — 0 depends on the choice of @, of course. We
discuss two special cases here.

1. The choice

o) = J W + 1D + 1) W2 +12)

provides an example of a potential function with isolated zeros. The problem
that we study is then reminiscent of the Allen-Cahn model in the theory of phase
transitions, and in fact several of our tools are inspired by the work of Modica
and Mortola [MM77, MMo77] and others [Mod87, Ste88, FT89, LM89, KS89,
Bal90, OS91, Ste91]. A similar problem for curves instead of surfaces, motivated
by questions from image processing, was studied by several authors [BMO02,
BMO06, BROS8], and some of their observations are useful here, too. This choice
of the potential function @ corresponds to crystal surfaces with a cubic facet
structure. Accordingly, we study surfaces converging to polyhedra with faces
parallel to the coordinate planes and we discover a limiting functional depending
on the lengths of the edges. The theory can be generalised considerably, including
in particular to other potentials with isolated zeros, but we focus on the special
case in order to simplify the presentation.
2. For the potential function
Q) =1,

we have zeros on a great circle in S2. Superficially, this situation resembles the
problem of Ginzburg-Landau vortices studied by Bethuel et al. [BBH94] and
others. (A guide to the literature is given by Sandier and Serfaty [SSO7].) In this
case, however, the analogy is not good and we need completely different tools.
For this choice of the potential function, we expect needle-shaped surfaces. We
analyse surfaces of revolution in particular and we determine a limiting energy for
this special case. Furthermore, we have some estimates for more general surfaces.
In contrast to the first problem, it is not clear how to generalise the theory to similar
potential functions.

3.2 A Potential with Isolated Zeros

In this section we analyse the energy functionals for the function

SW) = /(2 + DR+ 1303 + D)

with isolated zeros and cubic symmetry. It turns out that the appropriate renormali-
sation is

1 2 1 2
E(M) = 5/M (e|A| + (@) ) do

in this case. That is, in formula (3.1), we choose o = 1.
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3.2.1 Expected Behaviour

If we have a family of smoothly embedded, closed surfaces M, C R> such that

lim sup Ec(M,) < 00,
e\

then as € becomes small, the normal vector of M, will be near one of the zeros of @
except possibly in a set of small measure. This may be simply because M, becomes
very small. But if we impose constraints that prevent such degenerate behaviour,
then we may expect M. to resemble a polyhedron with faces parallel to the coordi-
nate planes, albeit with rounded edges. In the ideal case, we have convergence to a
polyhedron as in the following definition.

Definition 3.1 An admissible polyhedron is a continuously embedded, closed sur-
face My C R3 such that there exist finitely many numbers ay, ..., ay, by, ..., by,
cl,...,cg with

1 J K
MOC(U{ai}sz)U URx{bj}xR U(UR2x{ck}).
j=1 k=1

i=1

It is clear how to define the edges of such a polyhedron and they have a well-defined
length. We write L(My) for the total length of all edges.

We want to show that for a family of smooth surfaces converging to an admissible
polyhedron M, the quantity %L(Mo) may be regarded as a limiting energy. The
first step is to show that suitable approximations always exist. In order to explain
what we mean by ‘approximation’, we need to introduce the notion of convergence
that we use. It is based on the concept of varifolds from geometric measure theory,
where a manifold is represented by a Radon measure indicating its tangent spaces. In
the case of an embedded surface in R3, we can identify tangent planes with normal
vectors once we have chosen an orientation. Thus we obtain a somewhat unusual
(but equivalent) variant of oriented varifolds.

Definition 3.2 An oriented 2-varifold in R3 is a Radon measure on R3 x §2.

If we have an embedded surface M C R? with normal vector v, then the corre-
sponding varifold is the unique Radon measure V on R? x §? such that for every

¢ e CQR? x §),
/ odV =/ o(x,v(x))do(x).
R3x §2 M

We can assign oriented varifolds to admissible polyhedra in a similar way.
Radon measures on R? x S? can be identified with elements of the dual space
(C8 (R3 x S$%))*. The notion of convergence that we use is weak* convergence in
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this space. This is what we mean when we speak of convergence of surfaces in this
chapter.

3.2.2 A Construction

We now discuss a construction of surfaces approximating a given polyhedron, giving
rise to the following result.

Theorem 3.1 Let My C R? be an admissible polyhedron. Then there exists a family
of smoothly embedded surfaces M, C R3 without boundary (for € > 0) such that
M, converges to My as € \( 0 and

) 1
11\1‘13) E(Me) = EL(MO)-

Proof We first consider a single edge of the polyhedron. Since the energy is invariant
under translations and under permutations and reversal of the coordinate axes, we may
assume that we have an edge contained in R x {(0, 0)} between two faces contained
in R x {0} x [0,00) and R x [0, o0) x {0} with normal vectors e, = (0, 1, 0)
and e3 = (0, 0, 1), respectively. We will approximate the union of these two half-
planes with surfaces of the form R x I, where I'. = {v.(¢): t € R} for a smooth
curve 7. : R — R2. Since the construction is essentially two-dimensional here, it
is similar to some of the arguments of Braides and Malchiodi [BMO02], Braides and
March [BMO06], and Braides and Riey [BR08], who studied curves in the plane.
At first we consider

Fe(t) = (e arcoth ( e2t/e 4 1) , earsinh (et/f))
This curve has the property that
Ye(t) — (0,00) ast — oo

and
Ye(t) = (00,0) ast — —o0

(see Fig.3.1). Furthermore,

(1) = ( 1 1 )
Telt) = VT e+ 1 Je2lex1)’
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0.05 1 005
0 - 0 ‘
0 0.05 0 0.05
Fig. 3.1 The curves 4, (left) and 7y, (right) for e = ﬁ andr € [_17W’ IZﬁ]

which is a unit vector for every ¢. Thus 7, is parametrised by arc length. Moreover,
we see that . is symmetric in the sense that

earcoth( e=2t/e 4 1) = carsinh (/) 3.2)
We also have the alternative expression

FL(t) = (—cos b(t /), sin (1 /€)),

where
0(s) = arccot (eﬂ) .

Thus the curvature of this curve is

Re(t) = i@(r/e) = ! lSin 0(t/e)cosB(t/e). (3.3)
dt €( €

etle + e—t/e) =
Finally, we have the normal vector
ne(t) = (sinf(t/e), cos O(t/e)).

If we define the function
¢(n) = |nan3|
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for n = (n, n3), representing the restriction of @ to the circle {0} x S!, then we
see that

1 / - (e(/%e(t))z + %((ﬁ(ﬁg(t))z) =1 / ” sin” 0(t /€) cos® O(t /¢) dt

2 ) €J)_

o0
/ sin® 0(s) cos? O(s) ds

—00

_/°° ds 1
- oo (&8 +e—s)2 N

Thus if we approximate the union of the two half-planes by R x {7.(¢): t € R}, then
we have the limiting energy density % per unit edge length, which is consistent with
the statement of the theorem. Because we eventually have to control the approximat-
ing surfaces along several edges simultaneously, however, we modify the approach
somewhat.

We first derive some inequalities for the functions involved in the definition of 7.
We use the representation

arsinh z = log (z +vVz2 + l)
and observe that for any a > 0, the function f(y) = log(a + ,/y) satisfies

o +2

and f//(y) = —m <0

oo 1
f(y)——2aﬁ+2y

when y > 0. Hence f is concave and it follows that

fo+D = fOM+ 0.

2

Inserting a = z and y = z~, we obtain

1
log(2z) < arsinhz < log(2z) + —.
4z2

Hence c
t 4+ elog2 < earsinh (et/g) <t+elog2+ Ze*Z’/‘.

By the symmetry (3.2), we then also have

t + elog?2 < earcoth ( e=21/e 4 1) <t+elog2+ ie_h/f.



56 R. Moser
Using the concavity of arsinh, we derive the inequalities
0 < earsinh (e_’/e) <ee e,
By the symmetry, we also have
0 < earcoth ( e2t/e + 1) < e e,

Thus
|3c(t) — (0, 1 + elog 2)| < 2ee” /¢

fortr > 0 and
|9e(t) — (—t + elog2, 0)| < 2ee Ve

fort <O.
Next we want to estimate 7,. Clearly we have the inequality

; < e_t/f.

211
1
ﬁ’

Using the convexity of the function z — we see that

1> . 1— lefz’/ﬁ.

- /672t/6+1 - 2

Hence for r > 0,
|5.() = (0, D] < 2¢711Ve,

and forr <0,
|7.(t) — (=1,0)] < 2 lt/e.

Finally, by (3.3), we have
1
3] < e
€
for every t € R.
Now choose a function 7 € C*°(R) withn = 1 in (—o0, %] andn = 0in [1, 00).
Define
0 = (e 4070 + (1= n(e*0) O, 1 + elog2)

forr > 0 and

70 = n(= D30 + (1 = n(=*0) (1 + log2,0)
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fort < 0. Then the first and second derivatives of 7, and . differ by terms that decay
exponentially as € N\ 0. Indeed, with the above inequalities, it is easy to prove that

we still have
o

s )+~ (G(ne0))”) di = 3
> lm Oo(e(/-ee + - P(ne =5

where k. and n denote the curvature and the normal vector of the curve .. In
contrast to 7., however, the new curve has the advantage that v.(¢) = (0, + elog 2)
fors > /% and Ye(t) = (—t +€log2,0) fort < —€3/4. That is, we have a rounded
corner continued by two straight lines (see Fig.3.1). This helps when we want to
combine the approximations of several edges of a polyhedron.

Finally, consider an admissible polyhedron M. Let Ey denote the union of all
edges and Vj the set of all vertices of My. Given a set F' C R3 and & > 0, write

Us(F) = {x e R3: dist (x, F) < 5}

for the d-neighbourhood of F. Now using the approximations previously discussed,
we can construct smooth surfaces M, C R3 such that

o MA\Uga(Eo) = Mo\Ug4(Ep),

e in Uz (Ep)\U,3/4(Vo), we have a surface locally described by curves congruent
to I, and

e in Ugz/4(Vp), we have a smooth extension such that the area is at most of order
€3/2 and the curvature has pointwise bounds of order 1/e.

It is then obvious that we have convergence of M, to My and of E.(M,) to %L(Mo).

3.2.3 A Lower Estimate

Next we discuss the question whether the behaviour seen in Theorem 3.1 is typical.
It is clear that for a family of surfaces M, C R?, the condition

limsup E.(M,) < oo 3.4)
e\0

does not imply convergence to a polyhedron. Even assuming that we have conver-
gence, the limit can be very irregular. For example, consider a sequence (xx)icn that
is dense in R3. Then we can construct a sequence (si)ey of positive numbers such
that the boundaries of the cubes centred at x; and with side lengths s; are pairwise
disjoint and >_;7; s; < oo. We can approximate each cube with smooth surfaces as
in the proof of Theorem 3.1, giving rise to a family of surfaces satisfying (3.4) and
converging to the union of all the cubes. In particular, the limit is then dense in R3.

Nevertheless, it turns out that we always have convergence of a subsequence and
the limit can be interpreted as a generalised polyhedron [Mos12]. Such results can be
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proved with tools from geometric measure theory. Since we want to avoid technical
proofs here, we do not discuss the general case any further. Instead, we only consider
limits that are admissible polyhedra.

The question is then whether the statement of Theorem 3.1 is optimal energetically.
That is, is it possible to find another approximation yielding a lower limiting energy?

Theorem 3.2 ([Mos12]) Suppose that M, C R3 are smoothly embedded surfaces
converging to an admissible polyhedron M. Then

1
—L(My) <liminf E.(M,).
2 e\0

Before we can prove this result, we need to introduce another tool. We will need
the notion of a weak second fundamental form for varifolds. This is based on the
theory of curvature varifolds of Hutchinson [Hut86] (refined by Mantegazza [Man96]
and by Delladio and Scianna [DS95]). The underlying idea is to regard the second
fundamental form as the derivative of the normal vector v. In order to define a weak
derivative of v, we use the formula from Stokes’ theorem,

/ v-curl Xdo =0
M

for a smooth surface M without boundary and a vector field X € Cé (R3; R3). We
insert a vector field of the form X (x) = ¢(x, v(x)). If we extend v smoothly to
R such that the directional derivative normal to M vanishes, and if curl ¢ (x, y)
denotes the curl of 1) with respect to x, then we have

3
curl X (x) = curl yo(x, v(x)) + Z Vi, (x) x 8877’0()(, v(x)).

a=1

Thus denoting the Hilbert-Schmidt inner product by a colon, we have

0= / (z/~ curl ¥ (x, v(x)) + Vv : (a—w(x, v(x)) x 1/)) do 3.5)
M ov

for all ¢ € Cé (R? x $2; R3). Now we note that Vv characterises the second fun-
damental form of M, and so does this formula. If we represent M by an oriented
2-varifold V and represent the second fundamental form by a matrix-valued Radon
measure A on R3 x §? such that

/ Vv(x) :nx,vx))do(x) = / n:dA
M

R3x$2
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for all € CO(R? x §2; R¥*3), then we can rewrite Eq.(3.5) as follows. Let n :
R? x §? — §? be the projection map. Then we have

0
0=/ n'curlxde+/ (—wxn):dA
R3x §2 R3xs2 \ OV

for all ¢ € Cé (R3? x §%; R?). We can now use this formula to generalise the notion
of a second fundamental form to varifolds. There are some complications, however.
First, the formula does not determine A uniquely. Thus we will define a set of weak
second fundamental forms (which is empty if V is not regular enough) rather than a
single weak second fundamental form. Second, we want a weak second fundamental
form that we can control in terms of the functionals E.. While we have

/ |A|®(v)do < E(M)
M

by Young’s inequality and this gives some control away from the zeros Q = @~ !({0})
of @, we have no control near the zeros. For this reason, we exclude Q from the
following definition.

Definition 3.3 Suppose that V is an oriented 2-varifold in R3. Then C oV is the set
of all R3*3-valued Radon measures A on R3 x (52\ Q) such that

)
o:/ n~cur1x1/JdV+/ (—wxn):dA
R3x 52 Rix(s2\0) \ OV

for all ¢ € CJ(R? x §% R3) with supp 22 € R? x (52\ Q).

Clearly, if M C R? is a smoothly embedded surface and V is the corresponding
varifold, then there exists an A € CgV satistying

/ D d|A| =/ AP (v)do < E.(M)
R3x(52\0) M

for all € > 0. If we have a sequence of oriented 2-varifolds Vi converging to a limit
varifold V, and if Ay € Co Vi such that

limsup/ D d|Ax| < oo,
R3x(52\ Q)

k— 00

then there exists a subsequence (A, );en that converges weakly* in (C 8 (R? x
(52\ Q); R3*3))* to a Radon measure A. Then it follows immediately that A € C oV

and
/ <Dd|A|§1iminf/ D d|Ay|.
R3x(S?\Q) =00 JRIx(S2\Q)
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This is one of the key observations for the analysis of the limiting energy.

Proof (Theorem3.2) Let V. be the varifolds belonging to M. and let A, € Co V.
be the weak second fundamental forms coming from the actual second fundamental
forms of M. Let V be the varifold that belongs to M. We may assume that

liminf E.(M,) < o0,
N0

as there is nothing to prove otherwise. Since

/ P d|Ac| = E«(Mo),
R3x (5%\ Q)

the observations preceding this proof show that there exists an A € CoV such that
/ @ d|A| <liminf E.(M,).
R3x (SZ\Q) e\0

For every xo € R3 and p > 0, let B, (x0p) denote the open ball in R3 of radius p
about xq. Define

1
O (xp) = liminf —/ D d|Al ).
PO\ 2p J B, (xg)x(52\0)

Let E( be the union of all edges of M and let s denote the length measure (i.e., the
1-dimensional Hausdorff measure) on Eg. We claim that

Ox) > % (3.6)

for s-almost every x € Eg. Once we know this, we conclude that
1 .
—L(Mp) < @ d|A| < liminf E.(M,)
2 R3x(52\0) e\0

from well-known properties of the Hausdorff measure [AFP0OO, Theorem 2.56],
which then concludes the proof.

We prove (3.6) through a blow-up argument. Fix x¢p € Eq such that ® (xp) < 0o
and choose a sequence p \ 0 such that

1
®(x) = lim _/ PdlAl).
k—o00 \ 2pg By, (x0)x(S2\ Q)
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Define M; = p,?l (Mo — xo) and let V/ denote the varifold for M. Furthermore,
define the Radon measures A;{ on R3 x (SZ\Q) such that

1 X —Xx
/ n:dA, = — 77( O,V):dA(x,z/)
R3x(S\0) Pk JR3x(S\Q) Pk

forall n € CJ(R? x (§%\Q); R**3). Then we have

0
0:/ n.Curlxzdek/—i—/ (—wxn):dA;(
R3 x5 R3x(s2,0) \ OV

for every ¢ € Cé(R3 x §2; R3) with supp % C R3 x (§2\ Q). That is, we have
A;{ e€Co Vk/'

Because M) is an admissible polyhedron, unless xq is on a vertex, we have con-
vergence V, — V’ for a limit varifold V' belonging to the union of two half-planes
contained in two different coordinate planes and thus meeting at a right angle. With-
out loss of generality, we may assume that V' is given by (R x [0, c0) x {0}) U (R x
{0} x [0, o0)). Furthermore, since

1
lim @ d|A}| = lim — D d|A| =20 (xp),
k=00 J By (0)x (52\ Q) k=00 P J B, (x0)x(52\Q)

we have weak™ convergence of a subsequence of (A;c)keN in (C8(31 (0) x (SZ\Q);
R3*3))*. Let A’ denote the limit. Then

0
O:/ n.curlxde/—i—/ (_¢ xn):dA’ (3.7)
B1(0)x 52 BI(0)x(s2\0) \ OV

for every 1) € C}(B1(0) x S%; R?) with supp % C B1(0) x (5%\Q). Since we
know the structure of V', we can rewrite the first integral in this formula as follows.
Using Stokes’ theorem, we obtain

1
/ n- curl ypdV’ = i/ (¥1(x1,0,0, e2) — 91(x1, 0,0, e3)) dxy, (3.8)
B1(0)x S? -1

the sign depending on the orientation of Mj.
Consider the function F : S — R defined by F(v) = %V% Let Vg denote the
gradient on $2. Note that V @ F ) =1e — 1/22 v. Hence

IV F()|* = v3 — 15,

As
(¢>(V))2 = 1/% — 1/31 + V121/32(1 — u%),



62 R. Moser

this means that |V F(v)| < @(v). Let x € C8°(Bl(0)) and define ¥ (x,v) =
X(x)F(v) and ¢» =13 = 0. Then

= Ix@[2®).

’%(x, V) XV

Using (3.7) and (3.8), we conclude that

1 1
5/ x(x1, 0, 0) dx; S/ X))@ () d|A(x, v)].
-1 B1(0)x(S\Q)

If we replace x by a sequence of approximations of the characteristic function of
B;(0), then we obtain

I s/ ® d|A| < 20(x0)
B1(0)x(52\Q)

in the limit, as required.

3.3 A Potential with Zeros on a Circle

We now study the function @ () = v;. With the renormalisation appropriate for this
situation (corresponding to o« = % in (3.1)), it gives rise to the functionals

2
E.(M) = §/M(|A|2 n :—;) do.

As before, we want to examine the asymptotic behaviour as e tends to 0. As the
problem is rather difficult in full generality, we first consider surfaces of revolution
about the x-axis.

3.3.1 Surfaces of Revolution: A Construction

The following arguments are from a previous paper [Mos13].
Fix ¢ > 0 and consider a function u € C*®(—¢, £) N CO([—¢, £]) with u > 0 in
(—¢, ¢) and
u(—¢) =u()=0. (3.9)
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We study surfaces of the form
M= {x €[—6, 0 x R*: x2 423 = (u(xl))2} .

Assuming that
lim u'(t) = Foo, (3.10)
t—+l

we obtain surfaces of revolution that are not necessarily smooth at the points
(£¢, 0, 0), but the singularities are such that whenever

/ [A1? do < 0o,
M\{(£¢,0,0)}

the second fundamental form has a meaning on all of M in the weak sense and the
definition of E. still makes sense. Writing v for the normal vector again, we compute

/

u
N Ty
and
| |2 B 1 N (u//)z
S @)?) (@)D
Thus

4 u—l +€_2M(I/l/)2 M(I/IN)Z
E.(M) = .
o “@A( NFamoE +a+w%ﬂ)m

It is convenient to renormalise the function u and introduce v = u/./c. We define

14 v—l + v(v/)Z 621)(1)”)2
F(v)=m + 557 dt,
2\ V1+e@w)?  (L+e@)?)>/
so that E.(M) = F.(v).
When we let ¢ — 0, we obtain the formal limit

¢ 1 N2
F(v):w/ (——i—v(v))dr.
—¢ \V

We will see later that this functional can indeed be interpreted as a limiting energy.
Setting w = v3/2, we have v(v')? = g(w’)z. Thus we also set

tr4
G(w) = 7r/ (—(u/)2 + w_2/3) dt,
.\
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so that F(v) = G(w). It is natural to study G on the Sobolev space Wol‘z(—ﬂ, 0). If
we want to make F. as small as possible, then it is reasonable to study minimisers
of the functional G.

A minimiser can easily be constructed with the direct method, and by the convex-
ity, it is unique. The Euler-Lagrange equation is

3
w” + Zw_5/3 =0, (3.11)
or, expressed in terms of v,
w)? 1
Vi
— =0.
v 20 + 203

By the reflection symmetry of the problem and by the uniqueness, we must have
w’(0) = 0. If we define the function

s 1/3
9(s) = / L ar=2- (2152,
0

1 —r2/3

then we can immediately write down a particular solution:

wo(t) = g_1 (2 — %) .

For ¢y = %, this function satisfies the conditions wqg(%£p) = 0 and wé(t) — Fo0
for t — ££(. So for the special case £ = £y, this is a candidate for the minimiser
of G.

Next we consider vy = wé/ 3. We want to calculate the energy F(vg). We first
note that 4
—2/3

~(wp)? = wy P —1,

9
and hence

fora o o Ry
F(vo) =27T/ (5(“)6) + w, ) dt:47r/ wo 7 dt — 27l
0 0

4/3 3r\\ 8
0 2 3

Using the substitution s = g~!(2 — 3¢/2), we obtain

87 1 ds 87 1 167
F = — — 1) == (|-3V1=523] —1)=—.
(v0) 3 (/0 s1BV1 — 5213 ) 3 ([ ’ ]0 ) 3
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Thus in the case £ = £, we have

F(v) = 87r\/§. (3.12)

If we want to replace ¢y by another number ¢ > 0, we define A = £/£( and

v(t) = Vv (%) . (3.13)

—
(U)— ™ 5

We use these observations to prove the following statement.

Then we calculate

Theorem 3.3 There exists a function v € C®(—£, £) N CO([—¢, £]) withv > 0 in
(—¢, 0), satisfying (3.9) and (3.10), such that

0
lim sup Fe(v) < 877\/: (3.14)
e\ 3

Proof Consider the previously discussed functions vg and wy. It suffices to prove
(3.14) for £ = £p and v = v, because if we define v as in (3.13), then

2 2 11\2
Fye) =m |~ / UO ) + vO(l/)Oz s | A
Lo 1+ e(v )2 I+ 6(U()) )

Suppose that € € (0, 1] and fix o € (%, 2). Then we have

L+ e(p)” = €1+ ().

Hence . o
—a o wo(vy)

Fe(vo) < F(vg) + € “w/ —_—

‘ _ep (1L (v

If we can show that

L 171\2
/ ’ %m < 00, (3.15)
—tp (14 (W)

then the claim follows from (3.12).
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In order to verify that vy satisfies (3.15), we examine the behaviour of its deriva-
tives near £. First we note that by ’'Hopital’s rule,

3 4/3
il lim /1 —s2/3 = 1.

lim =
s\NO 4g(s)  s\0

Therefore,

O N e ) N (3s4/3 )3/“
lim = lim = lim
N0 (41/3)3% N0 (4g(s)/3)3* N0 \4g(s)

For any pair of constants a < 23/% and b > 23/4, we thus have
a(to —** < wo(1) < b(to —**

in a neighbourhood of ¢y. In [0, £(), we calculate

and it follows that

_ — 1 _
v6=—w01/3,/w02/3—1 and v8=—w0_2+§w04/3.

Therefore, we have

vo <2Vl —t, vy < -—

and vl = G757

1
2Vl — 1t

in a neighbourhood of £y. Combining these estimates, we find that

vo(v))? _
G+ =2 om0
0

near {(. By the symmetry, we have a similar estimate near —¢y. Since o > %, we
conclude that (3.15) holds true.

From the function v, we can reconstruct the corresponding surface by setting
u = v4/€ and forming the corresponding surface of revolution. An example is shown
in Fig.3.2.
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. . . . 4
Fig. 3.2 The graph of the function u = v,/ and the corresponding surface of revolution for £ = 5

1
ande_5

3.3.2 Surfaces of Revolution: A Lower Estimate

Next we show that the functional F' also gives a lower bound for the limiting energy
of surfaces of revolution.

Theorem 3.4 Let (ve)ec(0,1] be a family of functions in C*(—¢, £) N CO([—¢, )
with ve(—£) = ve(£) = 0 and ve > 0 in (—£, £). Suppose that

lim inf F, 00.
R0 (Vo) <

Then there exist a function v : (—£, ) — (0, 00) with V2 e WOI’Z(—E, £) and a
subsequence (v, )keN With € \( 0 as k — 0o such that v, — v uniformly and

4
8my/ = < F(v) < liminf F.(v.).
3 e\0

For the proof we need the following lemma.

Lemma 3.1 Suppose that (v)eN is a sequence of functions vy : (—¢£, £) — [0, 00)
with vz/z S W&’z(—ﬁ, £). Further suppose that (ex)reN IS a sequence of positive

numbers such that ¢, — 0 as k — 0o and

lim sup F, (vx) < oo.
k— 00

Then the sequence (vi)ieN is uniformly equicontinuous. If [a, b] C [—£, €] is an
interval such that
inf inf wvg(¢) > 0, (3.16)

keNa<t<b

then the sequence (v})eN is equi-integrable in [a, b].
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Proof Suppose, for contradiction, that we do not have uniform equicontinuity. Then
after passing to suitable a subsequence, we can find a number § > 0 such that for
every k € Nthereis aninterval [sg, fx] C [—¢, £]suchthatf; —s; — Oask — ooand

|vg (8) — v (sp)| > 20.

Then for every k there is a point ry € [sg, #] such that vg(ry) > 20. Decreasing
the size of the interval [s, #;] if necessary, we can achieve that vy > § throughout
[sk, tr], while still

[vk (1) — v (sk)| = 0.

Now we have

I\2
/ W, < Fo ()

J1+ ex(vy)?
Tk
65/ lug | dt.
Sk

Iy = {t € [se. il ex(up(1))* < 1} and Ji = [sk, ]\ k.

and

Let

Then we have

(v)? (v,g2
J1+ ey 2
in I and
/N2 /
(Uk) - |vk|

L+ a@? V2

in Ji. Hence

73
65/ |v,/(|dt:/ |v,/(|dt+/ v | dt
Sk Iy Ji
12
((tk—sk) (v,g)zdt) +/ |vg | dt
Iy Ji

1/2
2 7 /N2
s [ ) [,

1+ ey )2

V2(t; — si) Fe, (i) N V26 Fe (vr)
T )

IA

IA
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The right hand side converges to 0 as k — oo, hence we have a contradiction. This
proves the first statement.

The proof of the second statement is similar. Suppose that (3.16) is satisfied but
equi-integrability fails in [a, b]. Then there exists a § > 0 such that after passing to
a subsequence, we can find intervals [si, #x] C [a, b] with ty — sy — 0 but

179
/ vy | dt > 6.
Sk

Just as before, we then obtain

< /ﬁ(m—sk)&k(m L V2 F ()
Ty Ty

where

= inf inf vi(7).
v keNa<t<b k(0

Thus we have another contradiction.

Proof (Theorem3.4) The first inequality is clear, since the left-hand side is the min-
imum of F in the relevant function space by the arguments in Sect. 3.3.1. It remains
to prove the second inequality.

We choose a sequence ¢ N\ 0 such that

klint‘)lo Fﬂ( (vfk) = h?{‘l(?f Fe(ve).

By Lemma3.1 and the theorem of Arzela-Ascoli, we may assume that v,, — v
uniformly for some continuous function v : [—£, £] — [0, 00).

Consider the open set 2 = v~ 1((0, 00)). In any compact set C C £2, we have
a uniform lower bound for v, . Therefore, it follows from the uniform bound for
Fe, (ve,) that

limsup/ |vg, | dt < oo,
C

k— 00

By the theorem of Dunford-Pettis and Lemma 3.1 again, we may assume weak con-

vergence of vék in Llloc(.Q). Clearly the limit is the weak derivative v’ of v.
Define the functions
P2

Jfe(p) = ﬁ
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and let g. be the convex envelope of f.. That is,

fo(p) iflpl < /B,

ge(p) =
R ERE

Then the derivative g, exists everywhere and is continuous and bounded. Note that
95 < ge < fe whenever € < . Moreover, by the convexity, we have

95(v.) = gs(v') + g5 (v, — V).
Fix 6 > 0 and fix a compact set C C 2. Then

/ Ve, g5 (VL) di = / Ve, 95 (V) di + / Ve, 750 (v, — V) dt.
C C C

Since gg is bounded, it follows that

Ve, (v
/ vgs (V') di < liminf/ Ve gs(vg,) dt < hmlnf/ a F’() dr.
C k—00

o I+ e (v),)?

Hence by Beppo Levi’s monotone convergence theorem,

2
Ve, (v
/v(v’)zdtz lim/ vg(;(v’)dt<hm1nf/ ( Ek)
c NOJc

1+ e (v, )2

Recall that this is true for every compact set C C §2. Therefore, we also have

¢ Ve, (V]
/ v(v’)zdtfliminf/ a k) (3.17)
—L

k— o0 /1 +6k(vek)2

Now fix a number A\ > 0 and set
/\2
Ay = Iz e[, 0: (v,)* < —] :
€k

In Ay, we have

e/ 1+ ex(V),)? < vV 1+ A2
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Hence

/ dt 1 / dt 1)
fvek\/1+ek(v )2 ST a v

Note that Young’s inequality implies

Fo (vg) = 27r/
e 1+ ek(v )2

Thus as a consequence of Chebyshev’s inequality, we obtain

Ver(14+22)

I[=€, €N\ Ax| < Y

Fek(vek)-

We may assume that
02-2k2)2
€k = 3 7
(1 + 22) sup; ey (Fe, (ve,))

otherwise we select another subsequence. Then |Ag| > 2¢ — 27X, Define

Then |A | > 2¢ — 2~ Furthermore,

dt
— < liminf — <1422 hm inf

A; v k— o0 A/ Ve, /(Z Ve, /1+€k(v )2

by Fatou’s lemma and (3.18). Hence

Car
/ — = lim —<\/1+>\2hm1nf/
-tV i Jal v ZUFk\/1+€k(v )2

Letting A — 0 and combining this inequality with (3.17), we obtain the second
inequality of the theorem.

Combining the above results, we obtain a statement on the asymptotic behaviour
of E. on the space of surfaces of revolution.
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Theorem 3.5 Let Ry be the space of all surfaces of the form
M= {x €[00 x R?: x2 423 = (u(xl))z}

for a function u € C*®°(—¢£,£) N CO(—¢, £]) withu > 0 in (—¢, £) and satisfying
u() = u(—0) = 0andlim,_, 14 u'(t) = Foo. Then

L
liminf E.(M) = 87T\/j.
N0 Ry 3

3.3.3 Topological Spheres

We finally study more general surfaces, although for simplicity we always assume
that they are topological spheres. That is, we consider the set S of all surfaces M C R3
such that there exists a smooth embedding @ : § — R3 with M = & (5?). We use
the quantity

1
A(M) = = sup (y1 —x1)
2)c,yEM

as a measure for the size of M. Then we have the following result.

Theorem 3.6 ([Mos13]) Forany € > 0,

2mV/2€ < lim\ inf inf (E«(M): M € S with A(M) = £}
€

Note that by Theorem 3.5, we also have

14
limsupinf{E.(M): M € S with A(M) > ¢} < 871'\/;.
e\ 0

There is a gap between the two inequalities, and thus we cannot determine the limiting
energy exactly.

On the other hand, it is possible to make additional statements about the behav-
iour of surfaces with sufficiently small energy. If M. € S are surfaces with
liminfe\ o Ec(M,) < 0o, then up to translations, we have a subsequence converging
with respect to Hausdorff distance to a line segment [Mos13]. The proof of this result
is somewhat technical and is omitted here.

The proof of Theorem 3.6 is based on the following lemmas.

Lemma 3.2 Forany M € S with A(M) = ¢,

o(M) < (WE + 263/2) E (M) + 4bre.
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Proof We may assume that M C [—£, €] x R2. As usual, we select a normal vector
v of M. Given a vector field X on R3, we write

divy; X = trace ((id — v ® ¥)VX)

for the divergence of X with respect to M. We denote the mean curvature vector of
M by H. Then we have the integration by parts formula

/ divMXdaz—/ X -Hdo.
M M

For X (x) = (x1, 0, 0), we compute
divy X =1 — 2.

Hence

2 Le 2 V12
(I—=v)do < | Ixillnl|H|do < — |H|"+ — | do.
M M 2 Ju e

By the Gauss-Bonnet theorem,

/|H|2da=/ |A|>do + 8.
M M

o (M) < (NE + 263/2) E.(M) + 4tre,

Therefore,

as claimed.
The second lemma is a variant of a well-known inequality [Sim93, Lemma 1.2].

Lemma 3.3 Let M C S. Then
47rA(M)§/ |Aldo.
M

Proof Let £ = A(M). We may assume that M C [—¢, £] X R2. Then for every
t € [—£, €], define M; = {(x2, x3) € R?: (t,x2,x3) € M}. By Sard’s theorem, the
intersection of M with the plane {r} x R? is transversal for almost every ¢ € [—¢, ]
and thus M, is a smooth closed curve in R?. Let x, be its curvature. Then we calculate
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Hence

[A]
27T§/ |/<[|ds§/ ——ds
My Mf,/l—l/l2

and
4£</e/ 4] ds dt /|A|d
il < ——dsdt = o.
—£JM; /1_,/% M

This is the desired inequality.

Proof (Theorem3.6) Consider a surface M € S.If A(M) > ¢, consider M’ = %
le

and ¢ = oD and note that

b4
Eo(M') = \ mEe(M)-

Thus in order to prove the theorem, it suffices to consider surfaces with A(M) = £.
Then by Lemmas 3.2 and 3.3, and Hélder’s inequality,

2
l6720% < (/ |A|da) 5U(M)/ A do
M M

< (20 + 4€)(Ec(M))* + 8TU/eE(M).

Now it is clear that the inequality in Theorem 3.6 holds true.
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Chapter 4
Lectures on the Isometric Embedding

Problem (M",g) - IR", m = 5(n+1)

Marshall Slemrod

Abstract This work derives the basic balance laws of Codazzi, Ricci, and Gauss
for the isometric embedding of an n-dimensional Riemannian manifold into the
m = ’% (n + 1)-dimensional Euclidean space. It is shown how the balance laws
can be expressed in quasi-linear symmetric form and how weak solutions for the
linearized problem can be established from the Lax-Milgram theorem.

4.1 Introduction

Riemann introduced the notion of an abstract manifold with metric structure, his moti-
vation being the problem of defining a surface in Euclidean space independently of
the underlying Euclidean space. The isometric embedding problem seeks to establish
conditions for the Riemannian manifold to be a submanifold of a Euclidean space hav-
ing the same metric. For example, consider the smooth rn-dimensional Riemannian
manifold M" with metric tensor g. In terms of local coordinates x;, i = 1,2,...,n
the distance on M" between neighbouring points is

ds? = gijdxidx;, i, j=1,2,...n, 4.1.1)
where here and throughout the standard summation convention is adopted. Now let
IR” be m-dimensional Euclidean space, and let y : M" — IR” be a smooth map so
that the distance between neighbouring points is given by

ds® =dy.dy = y',y\dxjdx, (4.12)

where the subscript comma denotes partial differentiation with respect to the local
coordinates x; . Global embedding of M™ in IR" is equivalent to proving the existence
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of the smooth map y for each x € M". Isometric embedding requires the existence
of maps y for which the distances (4.1.1) and (4.1.2) are equal. That is,

gijdxidxj = y';yidxjdxy, (4.1.3)

or o
Yy = gk, (4.1.4)

which may be compactly rewritten as
Oiy - 0jy = gij, (4.1.5)

where

0

8x,- ’

0; (4.1.6)

and the inner product in IR” is denoted by the symbol “-”.

The classical isometric embedding of a 2-dimensional Riemannian manifold into a
3-dimensional Euclidean space is comparatively well studied and comprehensively
discussed in the book by Han and Hong [HHO6]. By contrast, the embedding of
n-dimensional Riemannian manifolds into n(n + 1)/2 Euclidean space has only
a comparatively small literature. When n = 3, the main results are due to Bryant
etal. [BGY83], Nakamura and Maeda [NM86, NM89], Goodman and Yang [GY88],
and most recently to Poole [Pool0]. The general, but related, case when n > 3 is
considered by Han and Khuri [HK12]. These studies all rely on a linearization of the
full nonlinear system (4.1.4) to establish the embedding y for given metric g;; of the
Riemannian manifold.

Applied analysts familiar with continuum mechanics and quasi-linear balance
laws might find a presentation of the embedding problem within the context of
symmetric quasi-linear forms appealing since there is an accompanying extensive
literature originating with Friedrichs [Fri56]. For this and related references, the
reader may consult Han and Hong [HHOG6]. It appears, however, that when the critical
Janetdimensionism = n(n+1)/2 the isometric embedding problem (M", g) — R"
has not yet been expressed in symmetric quasi-linear form. The purpose of these
self-contained notes is to demonstrate how this may be achieved using the Gauss,
Codazzi, and Ricci relations. The existence and uniqueness of a weak solution to
these equations is then proved by means of the Lax-Milgram theorem.

4.2 Basic Isometric Embedding Equations

Let (X, g) denote an n-dimensional Riemannian manifold with ascribed metric tensor
g. Suppose the manifold (X, g) can be embedded globally into IR". (The term immer-
sion is used when the embedding is local.) As stated in Sect.4.1, this assumption
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implies that there exist a system of local coordinates x;, i = 1,2,...n on X and
embeddings y;(x;), j = 1,2, ...m such that (4.1.5) holds.

As an example, consider the 2-dimensional Riemannian manifold viewed as a
surface in IR? and given by yl = X1, y2 = X3, y3 = f(x1, x2), for a smooth function
f. See Fig.4.1.

In introductory courses, Pythagoras’ theorem is used to write the distance along
the surface as

(ds)* = (dx1)? + (dx2)* + (df)?

2
= (dx1)* + (dx2)* + (8—fdx1 + a—fdxz
Oxy Oxa

2
= [1 + (8—f) ] (dx1)? +26—fa—fdx1dx2
Ox1 X1 OX2

2
+ [1 + (8—f) ] (dx2)?,
Oxo

and consequently the corresponding metric is

2——— =2g12, (912 =921), (4.2.1)
X2

(v % y°)

€2

T

Fig. 4.1 Embedding
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Now consider the inverse problem: given the metric as a positive-definite covariant
symmetric tensor, to find components y', y?, y3 that determine the surface. The
components y1 = X1, y2 = x; are known, so the question is, can the nonlinear
system of partial differential equations (4.2.1) be solved for f given ¢g? (The general
system is provided by (4.1.5).) For the example of the embedding of (M?, g) into
IR, the metric tensor may be displayed in the matrix form

g1 g12
g =
|:912 922:|

which shows that for the system (4.2.1), there is an equation for each component of
g. More generally, the symmetry of g reduces (4.1.5) to three equations for three
unknowns yl, y2, y2, leading to a determined system. On other hand, the embedding
of (M?, g) in IR? still has three equations but only two components y', y? of the
unknown vector y, (the overdetermined case), while the embedding of (M 2, g) into
IR* has three equations to determine four unknown components (y!, y2, y3, y*) (the
underdetermined case).

For an n-dimensional Riemannian manifold the components of the corresponding
metric tensor may be represented by the n x n symmetric matrix

gir -+ YGin
g = . “4.2.2)
gnl - Gnn

There are n(n 4+ 1)/2 entries on and above the diagonal, and we conclude in
general that the isometric embedding problem (recovering the “surface” from the
metric) is

underdetermined whenm > E(n + 1),

2
determined whenm = g(n +1),
overdetermined whenm < g(n + 1),
where m is the number of unknowns (yl , yz, ..., y"™),and n(n+1)/2 are the number

of equations. The crucial number
"t 1)
—(n
2

is called the Janet dimension.

Not too many solutions can be expected in the overdetermined case, and the ques-
tion of uniqueness has been pursued by several mathematicians. The underdetermined
case provides the flexibility of more unknowns than equations rendering superfluous
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Riemann’s concept of an abstract surface. Specifically, for m sufficiently large, the
manifold (M", g) embeds globally and smoothly into IR”, and (M", g) looks exactly
like a surface. The following theorem is the precise statement.

Theorem 4.2.1 (Nash [Nas56]) Let 3 < k < oo. A C*-Riemannian manifold
(M", g) has a C*-embedding into R" (globally) if

m=nGBn+11)/2, compact case,

m=n(n+1)Bn+11)/2, non-compact case.

Nash’s theorem has been improved but the main point to note is that results for
global embedding always refer to the underdetermined system. Global embedding
(smoothly) is in general not possible for determined systems, where the number of
equations equals the number of unknowns, and which conceptually is more familiar
in applied mathematics.

It is appropriate to quote from the following relevant section in the paper by S-T
Yau [Yau06]:

Section 3.13. Isometric embedding. Given a metric tensor on a manifold, the problem of
isometric embedding is equivalent to finding enough functions fi, ..., fy so that the metric
can be written as ¥ (df;)?. Much work was accomplished for two-dimensional surfaces (as
mentioned in Sect.2.1.2). Isometric embedding for general dimensions was solved in the
famous work of J. Nash. Nash used his implicit function theorem which depends on various
smoothing operations to gain derivatives. In a remarkable work, Gunther was able to avoid
the Nash procedure. He used only standard Holder regularity estimates for the Laplacian
to reproduce the Nash isometric embedding with the same regularity result. In his book,
Gromov was able to lower the codimension of the work of Nash. He called his method the
h-principle.

When the dimension of the manifold is n, the expected dimension of the Euclidean space
for the manifold to be isometrically embedded is n(n + 1)/2. It is important to understand
manifolds isometrically embedded into Euclidean space with this optimal dimension. Only
in such a dimension does it make sense to talk about rigidity questions. It remains a major
open problem whether one can find a nontrivial family of isometric embeddings of a closed
manifold into Euclidean space with an optimal dimension.....

Chern told me that he and Levy studied local isometric embedding of a three manifold
into six dimensional Euclidean space, but they did not write any manuscript on it. The major
work in this subject is due to E. Berger, Bryant, Griffiths, and Yang. They show that a generic
three dimensional embedding system is strictly hyperbolic, and the generic four dimensional
system is of principle type. Local existence is true for a generic metric using a hyperbolic
operator and the Nash-Moser implicit function theorem...

Remark 4.2.1 The theory of isometric embedding is a classical subject, but our knowledge
is still rather limited, especially in dimensions greater than three. Many difficult problems
are related to nonlinear mixed type equations or hyperbolic differential equations over closed
manifolds.

4.2.1 Preliminary Lemmas

In this section, we state and prove some lemmas of subsequent interest.
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Lemma4.2.1 Let X = X' x I C IR, where X' C IR*! is an open domain and
I is a connected open interval. Given smooth functions f : X x R" — R" and
Ag : X' — R", wheret € I, there exists a unique solution A : X — R" to the
system of ordinary differential equations

O A = f(-xlv Xn, A),
Aly, = = Ao(x") forx' e X/,

where 0y, = O, .

Proof The proof is just that of the standard existence-uniqueness theorem for ordi-
nary differential equations. Here, the independent variable x,, is “time”, ¢ is the initial
time where the data Ag(x”) is specified, x’ are parameters on which the data Ag(x”)
and prescribed f (x', x,, A) may depend, and A is the unknown function (dependent
variable) that is required to be determined.

Lemma 4.2.2 Let X C IR* be an open contractible domain and let f; : X x R" —
R” satisfy
) f,“ off = f Poof;
Ox;j T oar ) T oA

N 4.23)

for each (x, A) € X x R", where the Einstein summation convention is used here
and throughout unless otherwise stated. Then given xo € X and Ay € R", there
exists a unique solution A : X — IR" to the system

0iA = fi(x, A), A(xp) = Ay, 4.2.4)

where 0; = Oy,;, and x = (x1, ..., Xp).

Proof Lemma 4.2.1 establishes existence and uniqueness provided the system of
ordinary differential equations is consistent. But differentiation gives

0;0;A = 0; fj(x, A),
0j0;A = 0; fi(x, A),

and the required condition is given by
i fj(x, A) = 9 fi(x, A).
On expanding the partial derivatives, we obtain

of; o5, 0n" _ag o oat
ox; | OAb Ox; Oxj  OAP Ox;’
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which by (4.2.4) reduces to

af; 8 af; = afi df; 9fi b
Ox; (9Ab BA” ’
which is hypothesis (4.2.3) stipulated in the Lemma. (]

Remark 4.2.2 Lemma 4.2.2 is a nonlinear version of the Poincaré lemma, which
rather than the fundamental theorem of the calculus uses instead the existence and
uniqueness theorem of ordinary differential equations. In the standard Poincaré
lemma, the functions f; do not depend upon A and the statement

8)6/' a 8)6,'

implies the existence of a “potential” A with

0A“
a _
fl o 8)(,' ’
where
aZAa aZAa

8xj8xi - 8x,~8xj '

4.2.2 Riemannian Structure in Local Coordinates

We recall some standard results whose derivation and further discussion may be
found in most textbooks on differential geometry or tensor analysis.

Let (X, g) be an n-dimensional Riemannian manifold with metric g, and denote
the kth covariant derivative by V. This derivative permits differentiation along the
manifold, and for scalars ¢, vectors ¢; and second order tensors ¢;; is given respec-
tively by

Vi = k9, (4.2.5)
Vioj = ddj — Ty, (4.2.6)
Vidij = Ocdij — Tipdij — Thypbun 4.2.7)

where the Christoffel symbols are calculated from the metric g by the formula

1
Ftkj = zgkl (aigij — 0jgi1 — algij) . (4.2.8)
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The metric tensor with components g (upper indices) is the inverse of that with
components g;; (lower indices) so that

9 gp = 0, (4.2.9)
where 511‘ is the usual Kronecker delta of mixed order defined by

of =1, whenk =1, (4.2.10)
=0, whenk # 1. (4.2.11)

Kronecker deltas of upper and lower order are defined similarly.
It is well-known that the following identities hold between the above quantities:

Vigij =0, (4.2.12)

i =, 4.2.13)
Okgij = gipl“,fj + 9T (4.2.14)
Vid; = r,!jv,. (4.2.15)

The Riemann curvature tensor, Rfjk, defined in terms of Christoffel symbols by

I l I I P I P
Rl = 0;Ty; — kT, + 1% TF =T} T, (4.2.16)
is known to satisfy the operator identity
R 01 = =V Vid; + ViV;0;. (4.2.17)
By lowering indices, we have the covariant Riemann curvature tensor
Rijii = giq Rﬁd, (4.2.18)
or
Rijit = giq (akrl‘fj —aT{, + Tl T~ Ffpr,fj) , (4.2.19)
which possesses the minor skew-symmetries
Rijit = —Rjitt = — Rijik (4.2.20)

and the interchange (or major) symmetry

Rijit = Ryjj- (4.2.21)



4 Lectures on the Isometric Embedding Problem ... 85
Cyclic interchange of indices leads to the first Bianchi identity;
Rijui + Riwj + Rigr = 0, (4.2.22)
and also to the second Bianchi identity;
Vs Riji + Vi Rijis + ViR = 0. (4.2.23)

Remark 4.2.3 (Special case n=2) When n = 2, the covariant Riemann curvature
tensor reduces to

Rijr = K (gikgij — gigjx) - (4.2.24)
where K is the Gauss curvature given by

Riju& & nin

K = -,
(gpqgrs - gprgqs) EP&In ns

(4.2.25)

for any vectors &, 7.

Remark 4.2.4 The mixed and covariant Riemann curvature tensors involve the first
derivatives of Christoffel tensors and therefore second derivatives of the metric g.
Consequently, the Gauss curvature is expressed in terms of first and second derivatives
of the metric. This is Gauss’ Theorema Egregium.

4.2.3 Non-commutativity of Covariant Derivatives of Vectors

We establish the operator identity (4.2.17) when applied to a vector. That is, we prove
the formula
ViVigi — ViV = Rfjkqbz, (4.2.26)

demonstrating that the second covariant derivative of a vector does not commute.
It follows from (4.2.6) to (4.2.7) that

ViVidi = 0500 — Tl b1 — D10k — U500 + TRTY.6p = 190,06, + T4 T) 6
= 001 — T f0p = Thi0kdp — T50j0g — T4.0,0i, (4.2.27)

since relation (4.2.7) yields
Vkr:l'j = akrfj - F;';(Fﬁ,j - F}"Jkrt{p'
Similarly, it may be shown that

Vi Vidi = 03di — VTl — TLOj6, — Thokgy — TL0,01. (4.2.28)
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on using the relation
V,Ti =0T} —ThT,, =TT},
Subtraction of (4.2.28) from (4.2.27) gives
ViVjdi — V;Vidi = Vil [ 0p — ViTjidp
= Rlp.
because by definition (4.2.16) we have

1 [ l Pl Pl
Rl = ol — 0,0} + 10Tl — A1

1

R

4.3 Isometric Immersion

As before, we let (X, g) be an n-dimensional Riemannian manifold with metric g.
An isometric immersion is a IR"-valued function y : (X, g) — (IR",.) when the
induced metric is the same as the original. That is, in terms of local coordinates
(x', x2, ..., x") there holds

0y - 0;y = gij, foreach 1 <i,j <n, “4.3.1)

where the dot “-” denotes the canonical Euclidean metric in the coordinate patch
Gl ..., y™) in R,

On letting ds be the distance between neighbouring points in IR”, when y is
known, we have from the Pythagoras theorem that

ds®> =8,y - 0jydxidx;.

On the other hand, the general distance formula for the abstract Riemannian
manifold (X, g) due to Riemann is given by

dS2 = gijdxidxj.

Itis then natural to ask under what conditions can the two expressions for the distance
be equated to determine a realization of the manifold.

We investigate this question by again first considering the case n = 2, m = 3. The
tangents to the surface (manifold) are given by d;y and d>y and span the tangent
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space at the point y(x) = (y'(x!,x?), y*(x!, x?), y3(x!, x?)). The unit normal
vector at this point is defined (up to a sign) by the usual vector cross product

O1y x Opy

01y x Dyl

In higher dimensions, although there is no cross-product, similar ideas may be used.
Indeed, on the manifold (X, ¢) the coordinate patch y = (y', ..., y™) generates the
collection of tangents

{O1y(x), ..., Ohy(x)}

that span the tangent space to the manifold. Define this tangent space to be 7y X and
note that it is n-dimensional. Let N, X denote the (m — n)-dimensional subspace
orthogonal and complementary to 7, X, and for each x choose a fixed orthogonal
basis of N, X given by

{Npp1(x), ..., Nm(0)},

where each N, r =n 4+ 1, ..., m, is assumed to depend smoothly on x.

4.3.1 The Second Derivative of an Immersion

Now, for each x, the vectors {01 y(x), ..., O, y(x), Npt1(x), ..., Ny (x)} comprise a
basis of IR”, and as such are linearly independent. Therefore, for each pair of indices
1 <1, j < n, the vector 8i2jy(x) can be written as a linear combination of these

base vectors. In other words, there exist unique coefficients I:f‘j, 1 <k < nand

Hi’;, n+ 1 < pu < m such that

.y () = T5 )0y () + H )N, (x), 432)
or in components,
05yP () = T @Oy () + HEONE,  p=1,....m. (4.3.3)
Since partial derivatives commute, the decomposition (4.3.2) implies
(ff/ - f’,%) Oy (x) + (H,.’]‘. - Hj”i) N, =0.

As just mentioned, the set {0; y(x), ..., Ny} is a basis in IR”, and therefore we have
the symmetries
Iy =14, (4.3.4)
Hi‘]‘. = H]“l 4.3.5)
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The notation I:f‘j is intentional since it will be proved in Sect. “The Coefficients

f‘f‘j” that the coefficients are precisely the Christoffel symbols Ff‘j defined in (4.2.8).
It will then follow from (4.2.7) that in terms of the covariant derivative, the relation
(4.3.2) can be expressed as

Vi0;y(x) = Hl{(x)N,(x). (4.3.6)

The Coefficients I:lkj
We prove that in expressions (4.3.2) a:nd (4.3.3) for the tangent direction of the second
derivatives 8?]. y(x), the coefficients I" lkj are precisely the Christoffel symbols Flkj On

taking the scalar product of both sides of (4.3.2) with the tangent vector 9, y(x), and
after noting that d, y(x) - N, (x) = 0, we obtain

0Fy(x) - Ogy(x) = IOy (x) - Oy y(x) (4.3.7)
- Fugkq

The last equation follows since y(x) is an immersion and therefore
Iy (x) - g y(x) = gig- (4.3.8)
Differentiation with respect to x; of relation (4.3.8) yields the identity
0i9jq = 8 nE Oqy +0;y- @zqy,
which by (4.3.7) reduces to

0igjq(x) =T gkg (x) + T grj (x). (4.3.9)

This expression, together with the symmetry (4.3.4) of Fl D is now used in definition
(4.2.8) to give

1
rl’.‘j — Egkl (9ig1j + 0jgi1 — Oigij)
Ly (=p =P [P 7 r? )
— 29 (Fugpj 19+ Tjigpt + Tji9pi = Viggpj — Fl/g”")
1
= (rl’ Mgpj 205 + T8 g gpi — Tha gp; — T/ " gpz)
=k

<

which establishes the assertion. Note that these derivations have employed the
formula (4.2.9).
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Henceforth, the superposed tilde is removed from the coefficient l:fj in the decom-
position (4.3.2).

The Coefficients Hi’;.

Let us further consider the decomposition (4.3.2). The assumed orthogonality of the
set {01y(x), ..., Np(x)}, and in particular that of the set {N,,+1(x), ..., Ny (x)}, so
that

Ny(x) - Ny(x) = b, (4.3.10)

enables us to write

8,-2jy(x) “Ny(x) = Hi/;(x)Nu(x) - Ny (x)
= Hf;(x) (4.3.11)

The tensors Hlf} (x), p=n+1,...,m,asalready shownin (4.3.5), are symmetric
with respect to i, j and form the second fundamental form. The first fundamental
form is given by the tensor g.

4.3.2 Decomposition of First Derivative of N, (x)

In this section, the first derivative of the normals N, (x) is treated analogously to
that of the decomposition of the first derivative of the tangent vectors expressed by
(4.3.2). We prove

Lemma 4.3.1 There exist functions (the induced connection on the normal bundle
over the embedding)
AV = _A/;i (4.3.12)

i

such that ‘
OiN, = —g H}D;y + AN, (4.3.13)

whose component version is given by

OiNP = —g/ HRO;yP + AUNP,  p=1,....m. (4.3.14)

i

Proof The normals N, are postulated to form an orthonormal set in IR" so that
differentiation of (4.3.10) gives

0=3; (Ny-N,) =N, -9N,+N,-ON,. (4.3.15)
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Moreover, because the tangents and normals form a full set of orthonormal vectors
that span IR", we have the decomposition

&N, = Bl/ua, Y+ AN, (4.3.16)
which on scalar multiplication by N, and use of (4.3.10) leads to

Ny - 9iNy = A%No - Ny = A%60 = A

v
i i’

Ny - OiN, = A3;No - Ny = A6y = Al
Upon substitution in (4.3.15), we conclude that
v e _
AV 4+ Al =0, (4.3.17)
as stated in the Lemma.
On the other hand, we also have
Ny - Oy =0, Yu, k, (4.3.18)

and on recalling (4.3.10) and (4.3.11), we deduce that
0= gjkai (N/t : aky)

= gjk (aiN/l, Oy + Ny, - aizky)

= ¢/* (0N, - Oy + HY)

= g/ (Ohy - 0,yB!, + HY,)

= 9" (9o BY, + HY)

_ nl ik rpit

- Bi/" + g] Hik’
where we again recall the relation g/* Gkp = 5{;. We conclude that

B), = —g/*H], (4.3.19)

which after substitution in (4.3.16) and in conjunction with (4.3.17) proves the
Lemma. .

4.3.3 The Second Partial Derivatives of Normal Vectors

In this section we establish the well-known Codazzi and Ricci equations as a
consequence of the property that second partial derivatives of the normal vectors
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commute. The Gauss equations are derived in the next section after further discus-
sion of the Codazzi equations.
Now, differentiation of (4.3.13) gives

0; (V) = =05 (9™ Hls0,v) + 0 (AL N,)
= ~0; (97 H}}) gy = " 0%, v + (9,47, ) No + AZ0; N,

which after substitution from (4.3.2) to (4.3.13) leads to

9j (0:Nu) = —9; (gqufZ) gy — ¢*" Hj, (Flfqaky + HJVqN”)
+ (0540, ) Ny + AL (=g Hy 0,y + AN, ).

On collecting terms in the tangential and normal directions, we rewrite the last
equation as

0 (ONy) = = (8 (977 Hly ) + g T Hls + g7 AT, HY ) 0,y
j n
(9545 — " Hi HY, + AT ) N,
But the second derivatives of the normal commute, so that
9j (O:;N,) = 0; (0jN,) (4.3.20)
and from the terms in the tangent direction, we can read off the Codazzi equations
Iz kd i _ 7
9 (gquip) + 9" Ty, + 9P AL H Y = 0 (9”‘111,,,)
pk4 pri Pg AV v
+ 9" H; + 9" A H
4.3.21)

Similarly, terms in the normal direction lead to the Ricci equations

AV P4 P v N AV _ 9. AV _ P4l v N 4V
9jAy; — P H HY + Al AL = 0] — g™ Hj H) + ALAY. (43.22)

The more traditional form of the Codazzi equations is recovered by the following
simple computation. On differentiation of (4.2.9), we obtain

0=0; (gpqur)
=0 (9") gpr + 9770; (9pr) »
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which after multiplying by ¢"* and appealing to (4.2.9) leads to

0=0; (g”q)gprg + 99710 (9pr)
=0, (97) 65 + 9" 9" 0; (9pr) (4.3.23)
=0; (g‘q)+g *gP10; (9py - Ory) (4.3.24)
=0, (¢") +9"9" ( py-arywpyﬁfry),

where (4.3.1) is used. We now conclude from (4.3.2) in conjunction with the orthog-
onality relations (4.3.18) and (4.2.9) that

9 (9°7) = —g"* g™ (F’},,(‘?ky Oy + 0py - F’;,aky) (4.3.25)
= —g"SgP4 (F’;pgrk + F’j?rgkp)
= (Pht) - (14 0)
= —g"Tj, = ¢"T7,. (4.3.26)
We perform the differentiation of the first term on the left and right of the Codazzi

equations (4.3.21), and then substitute from (4.3.26) after suitably changing indices
to obtain

g"10;Hl\ + (_gsqrfY _ grprjr) Hl! + g”ijkHi‘;’, +gPIAYHY, =

i

gP10; H;Lp + (_gsq Fi[; — g F;]r) H;Lp + gpk Fiqk Hj#p + gP4 AZ/' H]Zi .
Multiplication of both sides of the last equation by g, together with (4.2.9) yields

I P ok q ph kpda i
0jHio = TjoHjy = 9409 T Hyy + 999" Uy Hyy + Ay Hyyj =
/ p Iz q gk kd i
OiHj, — UL H) — 9909 P T H, + gqag” Ti Hy, + A) HY
By virtue of the symmetry g7 = g””, and by changing dummy superscripts, the
third and fourth terms on either side cancel to give
djHj, — i Hl + Al HY = 0 Hj — T Hi + A HY:

The usual form of the Codazzi equations is now obtained by the subtraction of
F5 HY » from both sides of the last equation. This gives

o;HE, —r” H”—FPH“ + A7, H”._aH“ r”H“ —r”H“ + AJHY

aj 26} o7

(4 3.27)
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We apply the formula (4.2.7) for the covariant derivative of a second order tensor
to write

bo_ 5. gk P P gk
VjHia - a/I_Ii(x - Fin[l:Oz - 1-‘ajl_lip’
B g gk p P ok
ViH;, = 8,Hja — I‘jiHI/ja — Ty Hj,
and use the symmetry of the Christoffel symbols and of the coefficients Hi’; to derive
the Codazzi equations in the form
ViH, = ViH, + A} H; — A} Hy; = 0. (4.3.28)
Remark 4.3.1 (The hypersurface) When the manifold is a hypersurface, we have
m = n + 1 and there is only one normal N, |, sincen +1 <v <m =n+ 1. But

Np+1 is a unit vector so that
Npt1 - Npy1 =1,

and consequently
OiNp+1+ Nyy1 = 0. (4.3.29)

The appropriate member of the system (4.3.13) is
OiNp+1 = —g”qH,-r;,Haqy + A?:il)iNnJr],
which after using (4.3.29) and the orthogonal set 1y, ..., Ny+1 leads us to

1
0= Nn+1 . a1']\]11—}-1 = A’(;tr])i’

An+1

(n+1)i
. _ JZ
by applying the skew-symmetry AZ,. = —A,
Codazzi equations simplify to

and therefore = 0. The conclusion, which can be alternatively derived

implies that for a hypersurface the
/

ViH/ — ViHj‘a =0. (4.3.30)

Remark 4.3.2 (Determined case for hypersurfaces) When dealing with hypersur-

faces in the determined case, we have m = n(n + 1)/2 = (n+ 1) so thatn = 2 and
m = 3. This is the classical case of (M2, g) embedded into R.

4.4 The Gauss and Codazzi Equations

This section further discusses the derivation of equations obtained in the previous
section.
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We commute partial derivatives and then use (4.3.2) to obtain
0=0 () - 9 (%)
= 0 (T50py + HiN,) = 05 T,y + HN,)
P a2 2
= (aTl; = 9;Tk) 0y + T,y = T3,y

o+ (O Y} — 0t ) Ny + HEON,, = HY 03N, @4.1)
On appealing again to (4.3.2) and also to (4.3.13), we can reduce (4.4.1) to

p P p q 4 q
0= (0T, = 0,1} ) 0py + 5 (T, 00y + HN,) = T (1,045 + HY,N,.)
1 1
+ (akHij - ajHik) Ny
+H! (—quH,ﬁ;a,,y + AZkN,,) — Hj; (—g" Hly0py + A, jN,,)
_ p p qpp q P JT— JTa—
= [akrij =0Ty + Ty = Ty — 9™ (Hij P Hyy — Hj - qu)] Opy
14
j

P i P i n 7 1 v Al
+ [0l — T+ OcHl — 0, HY + HY AL, — HEAL N, (442)

where the last expression has been separated into tangential and normal components.
In consequence, the orthogonality relation (4.3.18) implies that each component must
vanish. We have

_ Lo gl o P g P i 1 p
0= 6](1'11-]- — 8,Hl.k + Finkp — Fikij + Hil;Aﬂk — illchyj
— M LM Pk P oyt
= OcHl; — 0;Hjy + T H] — T H] + Hj A}, — HiAy, (44.3)

where the antisymmetry relation (4.3.17) for the vectors A Z  isemployed. The system
(4.4.3) is the previously derived Codazzi equations.
From the tangential component in (4.4.2), we have

_ p TP q P q P W gk B gk
0= I:akrij =0Ty + 1Ty, — T, — g™ (Hij Hp, — Hy - qu)] ;
which upon noting the expression (4.2.16) for the Riemann curvature tensor becomes
Bt ooty
g™ (—thj/k - Hij ) Hkq + Hj - qu) =0,
from which follows the Gauss relation

Hf; - Hy — Hj; - Hj, = Rigjk, (4.4.4)
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on recalling the antisymmetry Ry;jx = —R;qjk, and that summation over repeated
superscripts is implied.

4.5 Summary for (M", g) - (IR", .)

We summarise the conclusions obtained so far. Notice that A’ . are components of
vectors for j = 1,2,3, ..., n with the indices v, u accounting only for the dimen-
sionsn+ 1 < u,v <m.

A necessary condition for the existence of an isometric embedding is that there
exist functions

H“ H]“l, AZi__AZw I<i,j<nn=1<pv=<m,

such that the Gauss equations hold

m
B opph Hoph)
Z (HikHjl - H; ij) = Rijkl, “4.5.1)
p=n-+1

along with the Codazzi equations

OcHf; + A HY —TGH, — T HE = 0jHy + Ay T8 HY T3 HY L (45.2)

and the Ricci equations

1 n
DAY — O AL + ALAT — AV AT, _qu(Hlij"q—H H"). (4.5.3)

The Ricci system (4.5.3) can be expressed in covariant form by the addition and
subtraction of the term
q pv
r ij Auq
to obtain

n n o _ 1 m
ViAl, — VAU + AV AT — AT AT = gP (Hlij”q ijHi’;). (4.5.4)

4.6 Reconstruction of an Isometric Embedding

In this section we state and sketch of the proof of a theorem giving necessary and
sufficient conditions for the existence of an isometric embedding. We have
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Theorem 4.6.1 Consider a simply connected n-dimensional Riemannian manifold
X with coordinates (x1, . .., x") and Riemannian metric g(=gij). Letl <i, j <mn,
and suppose there exist symmetric functions Hi’;. =H ]“l and anti-symmetric functions

vio nt+t1=<uv<m,

AL =—A)

such that Eqs. (4.5.1)—(4.5.3) are satisfied.
Then there exist functions Ny+1, ..., Ny : X — IR" and a functiony : X — R"
for which the following formulae hold

N/L “Ny = 6/u/, (4.6.1)
N, -9y =0, (4.6.2)
8iy . 8jy = Gij, (463)
and
al?j y = rfjaky + Hi‘;N , (4.6.4)
OiN, = —g/*H},0;y + Al;N,. (4.6.5)

Remark 4.6.1 The theorem states that the conditions on Hi/; , A/Vu. together with
(4.6.1)—(4.6.3) are both necessary and sufficient for the embedding (M", g) —
(IR", ), X = M"; thatis, the conditions are necessary and sufficient for the existence

of vector functions y(x).

Sketch of Proof

Let {e1,..., ey} be the standard orthonormal basis of IR”. For a fixed point
xo € X, define {01y(x0), ..., 0ny(x0), Nyt1(x0), - - ., Np(xo} to satisfy (4.5.3)—
(4.6.2). As a possible choice, we set N, (xo) = e, and y(xo) = 0, and select
{01y(x0), ..., Ony(x0)} to be a linear combination of {eq, ..., e,} such that (4.6.2)
holds at xg.

Remark 4.6.2 When g;; (xo) = J;j, we may choose

NM(-XO):eﬂ9 n+1§/j/§m’
Opy(x0) =ep, 1<p=n

Let ¢, = 0,y(x0), and observe that (4.6.4)—(4.6.5) form a total differential sys-
tem for the unknown IR"-valued function {¢y, ..., &,, Ny+1, ..., N;y}. This con-
clusion may be checked by first differentiating equations (4.6.4) and (4.6.5) to show
that the compatibility conditions obtained by constructing partial derivatives are
consequences of the Gauss equations (4.5.1), Codazzi equations (4.5.2), Ricci equa-
tions (4.5.3), and the original equations (4.6.4) and (4.6.5). In consequence, and by
Lemma 4.2.2, we conclude that there exists a unique solution (the “potential” ¢ )
that extends the initial data specified at x.
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Moreover, the differentials of Egs. (4.6.1)—(4.6.3) are consequences of (4.6.4) and
(4.6.5). Therefore, they hold not only at xp but also on all of X.

Finally, the symmetry of the right side of (4.6.4) implies 0;¢; = 0;¢;, and
consequently by Lemma 4.2.2, there exists a unique IR"-valued function y on X
such that

y(x0) =0, and Oiy=4¢;, 1=<i=<n.

The proof of Theorem4.6.1 is complete. ]

4.6.1 Examples

It is important that the number of independent equations matches the number of
independent unknowns. The following examples illustrate this aspect, and also serve
as introduction to a counting process developed by Blum.

Example 1. (M2, g) - (IR, .)

In this example, we have n =2 andm = 3 sothatl <i, j,k <2and p =v = 3.
The second fundamental form therefore can be represented as the matrix

H}) H3

H= [ o 132} ) (4.6.6)
Hy, Hy,

Furthermore, since n = 2, we may use (4.2.24) to write

Ripip =K (911922 - 9122)
= K detg, detg > 0.
where K is the Gauss curvature. Consequently, the Gauss equations (4.4.4) reduce

to the single equation
Hj H} — HjjH}), = K detg. (4.6.7)

Upon slight rearrangement, the Codazzi equations (4.5.2) become

1 B _ P gk P gk P gt P gk
OcHl; — 0jH), =T/ HY, + T HL — T8 HY — T8 H] (4.6.8)

ip’
which on specialisation to the example under consideration reduce to

MH} — 0 HYy = ..., (4.6.9)
nHY, — 01 Hs, (4.6.10)
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Consequently, there are three equations (4.6.7), (4.6.9) and (4.6.10) in the three
unknowns H131, H132, H232.

On employing the Gauss equations (4.6.7) to eliminate one of the unknowns, we
obtain a quasi-linear system. Accordingly, the Gauss relation becomes a “constitu-
tive relation”.

Example 2. (M3, g) - (IR, .)

In this example, we have 1 < i, j <3 and 4 < pu, v < 6, and the Gauss equations
(4.4.4) reduce to

6
> (HilltchHl - Hil;Hjl-Lk) = Riju, (4.6.11)
p=4

where the six non-zero components of the Riemann curvature tensor are

R1212, Ri1313, R2323, R1223, Ri1332, Ri231. (4.6.12)

We are left, therefore, with six non-trivial Gauss equations, the remainder being
identically satisfied.
The second fundamental form may be expressed as the matrix array of 6 indepen-
dent entries for each pu:
H{, H{, H|;
1 M M3
/g 1 Iz
Hy Hy Hiy |, (4.6.13)
g g Iz
Hy Hy Hi

from which it can be seen that the Codazzi equations (4.5.2) are just a statement

about cross derivatives along rows (or columns since Hi‘; is symmetric). Apparently,

there are 3 equations across each row, but the couplings

OHY, — 3HY, = ...,
OHyy, —H) =...,

after subtraction yield
32H3H1 — 83H;1 =...

Thus instead of 9 couplings for each i, there are only 8. In consequence,as . = 4, 5, 6
there are 24 Codazzi equations. In summary, we have
1. Equations

(a) 6 Gauss equations.
(b) 24 Codazzi equations.
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(c) 9 Ricci equations.
(d) Thus, there are a total of 39 equations.

2. Unknowns

(a) 6 x 3 = 18 independent components Hi’; of the second fundamental form.
(b) 3 x 3 =9 coefficients A?, = —Al.
(c) Thus, there are a total of 27 unknowns.

We conclude that there are more equations than unknowns despite the embedding
problem (M3, g) — (]R6, -) being determined (m = n(n + 1)/2;n = 3, m = 6),
which implies that not all equations are independent in the Gauss, Codazzi, Ricci
system.

4.6.2 Blum’s Counting Process

The rather painful counting process illustrated in the previous examples is examined
in a series of papers published in the 1940s and 1950s by R. Blum [Blu55, Blu46,
Blu47] and further described in the excellent survey by Goenner [Goe77].

The description in [Goe77, p. 143] of Blum’s counting result for the embedding
(M", g) — R", -) may be paraphrased as follows.

Theorem 4.6.2 When the Gauss equations (4.4.4) are satisfied, and Goenner’s
matrices M and N, defined below, are of maximal rank, then (i) for 0 < p =
m—n < n(n—2)/8 all Codazzi and Ricci equations are consequences of the Gauss
equations; (ii) forn(n —2)/8 < p=m —n < n(n — 1)/2 a system of

1(2—1)[ — —2)}
3nn p 8nn

Codazzi equations are independent. The remainder of the Codazzi equations and all
the Ricci equations are a consequence of the independent Codazzi system and of the
Gauss equations.

Goenner’s matrices M and N are given by
mrkin L sisr _sisivmt + Lisi — sisiyHt + Lol — sishan | 5k
abcde — E(cd_cd) eb+§(ef_€c) db+§(d€_dc) ch [ “a>
.. 1 . . L 1 . . . 1 . . o
Nabea = 5004 = 007 Hay + 5 (0400 = 5300 Hag + 5 (530, — 046) Hi.

Of course even these definitions are not particularly enlightening, and Goenner has
given results that are easier to state but which we will not repeat here. Also since the
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above notation may be confusing, we note that M, N are the coefficient matrices in
systems (4.2.5) and (4.2.6) of Goenner, i.e.,

m
pkij Ap ulj

Z Mabcdecktj 0’ Z abcd 1/!] =0.

p=n+1 p=n+1

The matrix M has %("'ZH) (g) rows and % pn(n2 — 1) columns, the matrix N has

g(";l) ("gl) rows and () (5) columns. Notice that

Muku Nuu 5k

abcde — “'bede
BEj o ApME] gk Bij o g Bij o g
Nbcde — “'bdec — "'becd’ Nbcde - bced’ Nbcde - bdce*

A useful example is given by the case n = 3, m = 6, p = 3. In this case, the
symmetries in N/ b] ¢ Yield that only non-zero terms are of the form N, iJ 2123 and the

equations
NHI
Z bcd l/lj =0
p=n+1
become
0 H> H°
H* 0 H°|K =0,
H* H> 0
where

A h 4 S 5 15 16 g6 16 T - _
K = (K53, Ks13. Ksi12, Keoss Keiss Koz Kaazs Kdis, Kipp) ™, e, NC=0.

But row operations reduce the coefficient matrix N to obtain

H* 0 0
0 H> 0 |,
0 0 H°

and the condition on N of Blum is just that H*, HY, H® each be of full rank 3. The
matrix N is 9 x 9 as predicted by Blum’s theorem and the matrix M is 3 x 24. We

can write the system
m

pkij _
Z Mabcdeckl/
p=n+1
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in the form
[H* H> H® H* H> HS H* H> H°|C = 0.

In this representation the three repetitions for C{LB are not accounted for and hence
the vector C has 27 entries instead of the 24 predicted by Blum’s theorem. If any one
of the H* has full rank 3 then M will have full rank 3.

The example “(M3,g) — (R, )" in Sect.4.6.1, for which m = 6,n = 3 and
p = 3, satisfies the condition in category (ii) of the above theorem which gives.

1
- x3x1<3<3,
8
and there are
24 3
—X3Xx8X|——=|=21
8 8

independent Codazzi equations. All the Ricci equations are implied by these indepen-
dent Codazzi equations and the Gauss equations. Thus, Blum’s count gives 21 inde-
pendent Codazzi equations, whereas the elementary count conducted in the example
produced 24 Codazzi equations.

The discrepancy is explained by observing that the elementary counting omitted
to include the three equations in Bianchi’s second identity. Substitution of the Gauss
equations in these three equations gives three more relations between derivatives
of the second fundamental forms and consequently there are only 21 and not 24
independent Codazzi equations.

Combined with the 6 Gauss equations there are 27 equations for the 27 unknowns
consisting, as already shown, of 18 entries of the second fundamental forms and 9
coefficients AZk' Nevertheless, it is unclear how even local existence can be proved
for this system.

In the determined system, we have m = n(n + 1)/2, and category (ii) of Blum’s
theorem again applies with p = n(n — 1) /2 so that there are n?(n*—1)(3n—2)/24
independent Codazzi equations. Under the maximal rank condition, the Codazzi and
Gauss equations imply the Ricci equations.

Sketch of the Proof of Blum’s Theorem Whenn =3, m = 6

Throughout this section, unless otherwise stated, the summation convention is sus-
pended for repeated indices p.
Step 1

Particular forms of the covariant Codazzi equations (4.3.28) are

ViHyy = V3Hy, + AjsHy) — A Hyy =0, (4.6.14)
ViH, = VaHYy + Ay Hyy — Ay H3) =0, (4.6.15)
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which by subtraction yield the equation

VoHY| — V3Hy, + A3 Hy, — Ajo HS = 0. (4.6.16)

We conclude that the Codazzi equations (4.6.16) are implied by the pair (4.6.14)
and (4.6.15) so that for n = 3, m = 6 the number of independent Codazzi equations
is reduced by 3.

Step 2
Next, we rewrite the Codazzi equations (4.3.28) as
eljiij,'/;{ + GljiAZijVj =0, (4.6.17)

where ¢; . is the standard Einstein alternating tensor given by

€ijk = +1, when i, j, k, is an even permutation of 1, 2, 3,
= -1, when i, j, k, is a odd permutation of 1, 2, 3,

=0, otherwise .

Let cof A be the cofactor of the entry A in the matrix [A]. Then we have
cof HY = 16" etmnH! HY (4.6.18)
il = 2 ijk€lmn ey iy, 0.

and consequently

1
\Y} (COf Hil;) = EGijkﬁlmn (lelfn) Hjl'lm

1
+ EeijkelmnH]gq (Vlem) (4.6.19)
= qjkelmanm (Vlngl) , no sum on /4, (4.6.20)

where the last expression is obtained by interchange of suffixes j <> k, m < n.
After a further interchange of suffixes, the Codazzi equations (4.6.17) may be
written as

€tmn Vi Hjy, + €tmn A}, Hiy = 0, (4.6.21)
ctmnViH},, + etmn Ay, Hjy = 0, (4.6.22)

and substituting these relations in (4.6.19) yields

1 1
\Y} (COin/;) + Eei/kelm”AZnnglH]/'lm Eeijkqm"AZm leH]fm =0,
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where there is no sum on p. The interchange m <> n, j <> k in the last expression
then gives

Vi (cof H}}) + €ijxeimn A}, Hy Hyy, = 0. (4.6.23)

Now sum over p to obtain

6 6
SV o H) e S AL =0 (4620
u=4 =4

Next, define the second order Ricci tensor R to be
1
Rps = ZepjkesiqRiqjkv (4.6.25)

which can be concisely written in matrix form as

Ri1 Rz Ris R>323 Rozz1 Rz
R=| Ry Ry R |=| Rzt Rzz1 Rz |. (4.6.26)
R31 R3 Rs33 Ry312 R3112 R

It then follows from the Gauss equations (4.6.11) that

6
1
Rps = Zepjkesiq Z (H]qujHl - HIZH]Nq) (4.6.27)
p=4
1 6
= S€nikesqi > HiHL (4.6.28)
n=4
6
= > cof Hjy, (4.6.29)
n=4

and on substituting in (4.6.24) to eliminate the cofactor term, we obtain

6
ViRii + €ijk€mni ZAZm ]”IH,ﬁ’n =0, i=1,223. (4.6.30)
u=4

It is easy to infer from the second Bianchi identity (4.2.23) that the first term on
left in the last equation vanishes, i.e.,

Vi (Ry) = Vi (Ry) = Vi (R3) = 0.
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The second term on the left of (4.6.30) is zero as Aﬁk is skew-symmetric in y, v
(see (4.3.12)). Consequently, the left side of (4.6.30) is identically zero. The combi-
nation, therefore, of the Codazzi and Gauss equations leads to three trivial relations
which reduce the number of independent Codazzi equations by an additional 3.
Step 3.

It is convenient to introduce extra notation with respect to the covariant Codazzi
(4.6.17) and Ricci (4.5.4) equations as follows;

Cro = €k ViH]\ +€iju Al HY ; =0, (4.6.31)
Ky, = €ijcVIAy; +eijkAn AL — gM e HY HYL (4.6.32)

Covariant differentiation of (4.6.31) yields
ViV H + eije (VeAL ) HY + el (VeHZ, ) =o0. (4.6.33)
The Codazzi equations (4.6.31) enable the last term to be expressed as
€ijkViHy; = —eijk A} HY,
and (4.6.33) then is reduced to

ik Vi ViH!: + €iji (va“ ) Hy; — €ikAlLHD AV = 0.

i i

The interchange of indices i — j — k — i in the last term leads to the further

reduction
ViV HYL + e HE (el — Al AT ) =0, (4.6.34)

i
But from (4.2.26), we may derive the commutation relation

I B pl gkt
VijHi<)z - v/kaai - Riijla’

which may be expressed as

.. gt 1 1%
€ijkViVjiHi, = RijH,

= 9" Rijig H}p

— P, . v v

=g e,ijl-kquH[ﬁ‘a,

where Gauss’ equations (4.5.1) are employed in the derivation of the last line of the
previous equation.

Finally, on appealing to the formula for the commutativity of €;x ViV Hlf;, and
the Gauss equations, we find from (4.6.34) that

HKY, = 0. (4.6.35)
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The maximal rank condition on Hll]’. implies (4.6.35) has a unique solution
Kiyu =0, (4.6.36)

and the 9 Ricci equations are satisfied.

4.7 Symmetrization of the Codazzi Equations

The required symmetrization is achieved by using the Codazzi equations to derive a
certain matrix equation.

On noting the skew-symmetric relation (4.3.12), we may rewrite the Codazzi
equations (4.6.17) in the slightly different form

iV H) + eljiA’;,.H;k =0, 4.7.1)
a subset of which is
ViH[; — V;H}| + A} H}; — A Hl{ = 0. 4.7.2)

The Codazzi equations (4.7.1) may now be used to eliminate the covariant deriv-
ative on the right of the identity (4.6.19) to obtain

1 1
H_ .. beoght gy . I Hopyv
Vicof Hlf = — = eijxeimn Al Hjy, Hil, = > eijieimn ALy, Hf, Hjj

m n
= —¢ijk€mn ALy, H) Hip (4.7.3)
Now let
W = det HJ. (4.7.4)

so that by standard algebra of determinants, we have

DPWH

A 4.7.5)
OHj OH}

1
mn?

= 6jimlenI'I

which together with the expression (4.6.18) enables the identity (4.6.23) to be written
as

PWH
¢jimexinVi (Hppy) Hp; + € jimexin Hiny Vi (Hyk) =—2—0— A} Hj.
J J OH!,0H,,
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Terms on the left may be simplified on further appeal to (4.7.5) to give

W + OW Gt = W
OHLOHY, ™ oHNoH) N T T omHfonf, e

and consequently,

Pwr i Pwr

I = —— AP HY no sum on /. 4.7.6)
ok Vi jk Tt Sontik H

oHyoHY, OH}OH,

The next part of the construction of a matrix equation involves the multiplication
of (4.7.2) by

2w
to obtain
2wh p OPwWH "
- Wvlf]ﬂ +WV1HH
r;wr HY 4 o> ALHY =0, (47.7)

T oghagh Sl T i
8H”8ij v 8Hi18ij

We combine the systems (4.7.6) and (4.7.7) into the matrix array of equations
given by

Pwh
0 0 HY 0 OHTOH, H
82WU V il + il Jjk V il
0 — ST AT Ll gH Pwh N H"
BH”BHJ.k il W 0 Jjk

P wh AN H,U
SoFagi Avn
8Hil 6Hlm ! Ik

+ Fond A Kok Hoggh
(—A} Hjj + A} H))

OH[OH,
=0. (4.7.8)
We examine in detail the terms in this matrix equation and for this purpose intro-

duce further notation. For example, the block matrices in the matrix coefficient of
V, are given by

Pwr P Pwh
OHTOHf; DHDOH], Tt OHLOHT,

wo_ 82W/1. aQW/l (c)ZW/A,

Ly = | oufony oufonh - omLomh | (4.7.9)
Pwr Pwr

ﬁ o« o PP ﬁ
OH},0H;, OH330H3; 349
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m_Pwr W W
OHI,OHY,  OH3,0HI|  OHL,O0HY
Pwr Pw Pwr
T oHoH", oHILOH! OHLOH!
(lel) — 12 12 22 12 32 12 , (4.7.10)
PwH Pwh PwH
L OH[ROHY,  OHypOHs;  OHHROHY dg,3
so that the 12 x 12 composite matrix Bg defined as
0 LY
Bl = [ T 2} 4.7.11)
2 I ’
(L) 0
is symmetric, and the second term on the left in (4.7.8) involving V, becomes
BYV,U*,
where ’
T _ (gr gt gt gk gk gk g
(U ) = (Hu’ Hyy, Hyy, Hyy, Hp, His, '-H33) : (4.7.12)

The matrices Bl“ appearing in the coefficient of V; are defined in a manner similar
to (4.7.11).

Every coefficient matrix in (4.7.8) is symmetric including that for / = 1, but a
separate argument is used to check the first coefficient matrix in the first term on the
left of (4.7.8). This matrix, denoted by Bg' , 1S written as

. 0 0 033 093
By=|qog __ 2w |= |:03><9 — (L ] , (4.7.13)
OH[OH, 0/3x9
where
r_o*wr Pw PWH ]
OHI\OH[, OH[50H, OHI50H]
Pwr Pwr Pwr
OHI'OHY, OH[OH, OHLOHL
Lg — 11 12 12 12 33 12 (4.7.14)
82 WH 82 WH
L OH{ 0H}; OHYOHL, |

Consequently, in terms of the vector U* given by (4.7.12), the Codazzi system
(4.7.8) may be expressed as

ByViU" + B/'V,U" + Q" =0, (4.7.15)
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where QF, the third term on the left of (4.7.8), is given explicitly by the 12-
dimensional vector

PWH Al it
angonf, An ik

(4.7.16)
(—Ay H)) + A HY)

L
Ql = 9ZWH
Tl I3
0H}, E)ij

4.8 Symmetrization of the Linearized Codazzi Equations

4.8.1 Remarks on linearization

Let € > 0 be a small positive parameter, and suppose that a small perturbation in the
variable y; is given by
yi = Yi + €, (4.8.1)

with corresponding small perturbations in other quantities given , for example, by

Hi‘]f = Hi’; + eHil;-, (4.8.2)
Al = Al + Al (4.8.3)
T =T+ ey (4.8.4)

In these expansions, the superposed dot is intended to suggest differentiation with
respect to €.

4.8.2 Linearization of the Codazzi Equations

We now linearize (4.7.2) and (4.7.1) in the sense that after substitution from (4.8.2)—
(4.8.4) all terms of order higher than the first in € are neglected. Moreover, in the
linearization it is convenient to remove the overbar without risk of confusion. Then,
in view of the definition of the covariant derivative (see (4.2.5)—(4.2.7)), linearization
of (4.7.2) and (4.7.1) respectively yields

ViH] — ViH}, + A} Hjj + Al H}] — Al H}

vl
IS ~q rrh ~q i ~q prit ~ gl _ -
_Alll iyl - 1—‘i]I_Ilq - l—‘llli'q + F”qu + FllHiq = 0, (485)

1

and

 ea n g y .
cuji (V5 Al = T4, 1l = T4 HE ) + i (AL HY, + ALHY) =0, (48.6)
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which by interchange of indices becomes
cuan (V1 Ffs, — T Hly = T8 Hlty ) + xn (Al Hiy + AL i) = 0. (487)

On multiplying (4.8.7) by €;im H, kl; and suspending summation over the repeated
index p, we obtain

€jim€kin H,ftj (Vz Hh,

— I} Hyy, =T, Hrifq) + exin Hjyetji (Al Hy, + Al

ng vn

Hzlin) =0,
(4.8.8)

which on recalling (4.7.5), we rewrite as

DPwH

SHFOHE. (AL, Hj + AL H}7) = 0.
i19Hmn

2
(V[I:I“ 77 gt 19 K ) + ﬂ
mn Im*'ng n""mgq 8H,',;8Hrlrfn

(4.8.9)

Next, consider the particular equation (4.8.5), which after multiplication by

62 WH

—_— no sum on /4
o J
8H”8ij

becomes
PwH oy OPWH
- ViH 4 ————
oyl I Hogrh
8Hi18ij ! 8Hﬂ8ij
DPWH ( i .
-~ (A" HY + A" HY — A" HY,
At 11 11 1111
3Hi13ij vit vit veet

o NG P gl i i) —
— AL = Pl D HG 4 T HE + T =0, (48.10)

The linearized Codazzi system (4.8.9) and (4.8.10) may be concisely expressed
by introducing the definitions

2 L . .
O (ALnHjy + AL, HYY)

: DHTOH,
0" = Pwh \H v s g% Al v K oryv ’ (4.8.11)
GHT O, (A Hl — A HY + A HE + AL HE)
PWH G i G pyh
. " oH[oH],, (FlmH"q + Flnlleq)
St = ’ , (4.8.12)

Pwh g ol TG gl g pplt g pri
~ oH[oHT, (Filqu + I Hyyy + Ty Hy, + FllHiq)
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when the system may be written as the single matrix equation
B{V,U" + B/'V;U" + Q" + §V" =0, (4.8.13)

where Bl“ is defined analogously to (4.7.11), and U* is the linearization of the vector
(4.7.12).

4.9 The Ricci Equations

We next discuss the Ricci equations (4.5.3), and without loss of generality' set

AZl =0, (4.9.1)
and (4.5.2) simplify to
DAY, = g (prH;q - HZ"[,Hl”q) , (4.9.2)
DA = g (H{;ng - H;‘le"q) . (4.9.3)
We note that AI‘;Z, AZ3 are therefore completely determined by their data on a
plane x| = constant = —L and on the set H j”k. Accordingly, we may introduce the
substitutions

X1
Aa(rr. ) = Afp(-Loxaxn) + [ o™ (sl 1, — Y, ) d

p
(4.9.4)
X1
AZ3(x1,x2, x3) = AZ3(—L,x2,x3) + gl (H{LpHéjq — Héllel’q) dxy,
—L
(4.9.5)

in the expression (4.7.16) for the matrix Q to eliminate explicit dependence on
Aﬁl. Observe that dependence on A51 is reduced to dependence on data provided
on x; = —L. This data, of course, must be consistent with the additional Ricci
equations.

"Deane Yang pointed out this equality to me and called it a “gauge condition”. An analogy with
continuum mechanics might be setting the pressure equal to zero on the surface of a water wave.
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4.10 The Full Nonlinear System

We emphasize analogies with continuum mechanics by restating the full nonlinear
system in terms employed by that theory.
The balance laws are given by the quasi-linear Codazzi equations (4.7.15):

ByV\U" + B/'V,U" + Q" =0,

where from (4.7.12) we have U* € R'? for each = 4, 5,6, and Q" is given by
(4.7.16).
The constitutive relations are provided by the Gauss equations (4.5.1)

ok Hpph )
Z (HikHjl - H ij) = Rijki, (4.10.1)
"

together with constitutive relations for A‘V‘l given by (4.9.1), (4.9.4), and (4.9.5).
According to Blum’s theorem [Blu55], when the elements H /”k form a full rank
matrix, there are 27 independent equations in 27 unknowns HJ and A}, since the
Ricci equations follow from the Gauss and Codazzi equations. Observe, however,
that relations (4.9.4) and (4.9.5) do not completely eliminate the terms A’ljl in favour
of the terms Hi’; , because initial data on x; = —L still enter into the values of Aﬁl.

4.11 The Linearized Ricci Equations

In the notation of Sect.4.8.1, the linearized Ricci equations (4.9.1), (4.9.4), and
(4.9.5) are given by )
Azl =0, 4.11.1)

X1

{gre (rif, 13, — b},
L

Aly(x1, %2, x3) = Ay (=L, x2, x3) +/ »

p

X1

Al3(x1, X2, x3) = Aj3(—L, X2, x3) +/_L {qu (Hflszyq — Hy, Hy,

+ g7 (Fift Hy, + HY, B3, - B H, — HH, ) dad,
+ g7 (HlL Hy, + HY, Y, — B HY, — HHY, )

(4.11.3)

When Azz(—L,xz,x3) and AZ3(—L,x2,x3) vanish on the boundary of the
domain, their contribution to (4.11.2) and (4.11.3) is zero. Furthermore, the
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integral terms in (4.11.1) and (4.11.3) are bounded by Kvol (£2), where

L

K = 13" 20 sup [HIP+supllg”|| sup [HNHY ] 2 p.
Q.. Q Q. j.k

W Jok

and in consequence, we obtain

Proposition 4.11.1 The quantities AZZ and AZ3 satisfy the bounds

|A”,| < Kvol()'3, (4.11.4)
|Als] < Kvol()'/°, (4.11.5)

Proof of (4.11.4)
Typical terms in the relation (4.11.2) may be expressed as

X1
a(xi, x2,x3) = /_L g (Hl“sz”q) dx},
X1 .
L
b(x1,x2,x3) = /_L gPd (prszq) xi,

where there is no sum on p, q.
The Cauchy-Schwarz inequality applied to the first expression leads to the bounds

, X1 ) 1/2 X1 5 ) 1/2
sup|Hf1'DH2”q| (/ dxl) (/ |gP9| dxl)
Q —L —L

L 1/2
sup 1, 15, 2L ( / ) |g"’q|2dxi) ,

IA

la(xy, x2, x3)|

IA

and consequently, on noting that the term on the right is independent of x1, we have

L L L 2
/ / / la(xy, x2, x3)|2dx1dx2dx3 <412 (sup |H1“pH2"‘I|)
—LJ-rJ-L Q

L L L
x / / / 1§74 |* dx'| dxpdxs,
—LJ—-LJ—-L

/’ .
lall 2@ = 2L sup |HY, Hy g7 120

or

A similar argument gives

L
|b(x1, x2, x3)| < sup Ig”qHz”,,I/ |HY, (x], x2, x3)| dx,
Q —L
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where the expression on the right is again independent of x.
Thus we conclude that

L

2
Ib(x1. x2, x3)]* < 2L (SUP |9qu2Vq) / |H1N,,|2(x{,x2, x3) dx},
Q L

from which follows

L L L
/ / / |b(x1, x2, x3)|* dxidxadxs < 4L* sup|gP Hy, |*
—LJ—-LJ-L Q

L pL oL
x/ / / |H1”p(xi,xz,X3)|2dxidx2dX3,
—LJ—-LJ—-L

which leads to the final bound

1612y = 2L Sup 97 Hy) | HY )l 20 -

4.12 The Linearized Gauss Equations

In view of the notation adopted in Sect. 4.8.1, the linearized Gauss equations become

> (Hi*,iH;; + H 1Y) — B Y~ Hi’;ka) = Riju- (4.12.1)
o
The system (4.12.1) consists of 6 equations in the 18 components Hl’; We say

Hi‘; is non-degenerate in the neighbourhood of x = 0 when 6 of the components of

Hf; can be solved in terms of the remaining 12 components and R; k- A sufficient
condition for non-degeneracy is provided by [BGY 83, Theorem F'] which establishes
non-degeneracy when at least one component of the Riemann curvature tensor R;jx;
is non-zero.

Accordingly, let us assume that the set Hi’; is non-degenerate in a neighbourhood
of x = 0. This implies that the vector

U=|0°%], (4.12.2)

where U#, defined in (4.7.12), can be written as

U =CH + DR. (4.12.3)
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In this relation, H denotes the distinguished 12 components of the set H K i3 and R
denotes the 6 non-trivial elements corresponding to the perturbed Riemann curvature
tensor. It follows that U € IR°, H € R'2, R € R, and therefore in (4.12.3), C
represents a 36 x 12 matrix, while D represents a 36 x 6 matrix.

4.13 The Closed Symmetric System for the Linearized
Problem and Quasi-linear Problem

With reference to the symmetrized and linearized Codazzi equations (4.8.13), let us
set

By 0 0]
Bo=| 0 By 0 [,
| 0 0 BS ]
(B} 0 0]
B=|0 B 0|,
| 0 0 B
Q‘4 S4
o0=|01|. S§=|$], (4.13.1)
Q‘6 S6

and use this notation to write (4.8.13) as
BoViU + BiV;U + QO + 8§ = 0. (4.13.2)

Observe that since Q depends linearly on the sets Hl/; and A", as givenin (4.8.11),
we may introduce matrices E, F to represent the dependence by

O =EU + FA, (4.13.3)

where U € R3¢, Ae IR, E is a 36 x 36 matrix, and F is a 36 x 6 matrix.
Upon substitution of (4.12.3) in (4.13.3) we obtain

Q=E(CH+DR)+FA
=GH+JR+FA, (4.13.4)

where G = EC isa36 x 12 matrix, and J = E D is a36 x 36 matrix. In consequence,
the system (4.13.2) has the form

BoVi (CH + DR) + B;V; (CH+DR) + GH +JR+ FA+$=0, (4.13.5)
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which after rearrangement becomes

BoCViH + BiCV;H + (ByViC + B;V,C + G) H
+ BoVi(DR) + BiV;(DR)+ JR+ FA+ §=0. (4.13.6)

We multiply (4.13.6) on left by the 12 x 36 matrix C” to obtain the equivalent
but compact form

AoViH + AViH+BH+CTFA+A =0, (4.13.7)
where
Ao = CTByC,
A = cTBC,

B=CT(ByViC+ B/V,C+G),
A =CT (ByVi(DR) + B,Vi(DR) + JR +§).

The linearized Ricci equations (4.11.2) and (4.11.3) with
Ajp(=L, x2,x3) = Aj5(=L, x2,x3) =0
next give
Al =0, (4.13.8)

. x
A (x1, x2,x3) = /_L {g”q (H{"[,H,”q - Hll;in/q)

P P P
1=12,3. (4.13.9)

+ g7t (L Hyy + 1Y By — B Y — HE ) e,

Insertion of (4.13.8) and (4.13.9) into (4.13.7) yields a symmetric system of 12
equations in the 12 unknowns H which are weakly non-local due to (4.13.9). The
relations (4.11.4) and (4.11.5), however, indicate that the non-locality is very weak.

Remark 4.13.1 (Non-linear problem) The derivation just described is for the lin-
earized system, but examination of the individual steps in the argument shows that
for the non-linear problem the same procedure also yields a quasi-linear system of
12 equations.
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4.14 The Weak Form of the Closed System

The purpose of previous sections is to formulate the theory in a manner suitable for
proofs of existence and uniqueness in the embedding problem, which are developed
in this Section.

Define the linear operator £ in terms of the general variable H by

LH=AViH+ AV, H+BH+CTFA, 4.14.1)

where A is defined by (4.13.8) and (4.13.9).

We wish to consider the weak form of equations associated with the operator L.
For this purpose, let (-, -) denote the inner product on the space L?(€2, R!?) and let
the function V e C§°(<2, IR'?). The weak form of the equation

LH=—A

is then given by R
(L*V,H)=—(V, A), (4.14.2)

where L£* is the adjoint operator to £. We conclude from (4.14.2) that (L*V, H )
defines a bilinear form on HO1 (2, IR12).

The proofs of existence and uniqueness rely upon the Lax-Milgram theorem (see,
for example, [Yos65]) stated here for convenience.

Theorem 4.14.1 (Lax-Milgram Theorem). Let X be a Hilbert space and C(x, )
a (possibly complex) bilinear functional defined on the product space X x X. Let
I - lx and (-, -)x denote the norm and inner product on X. Suppose that

@) 1CO6LY| <vlxlxlvlx,  (boundedness)
@) C(x,x) = 5||X||%(, (coerciveness)

for positive constants 0, . Then there exists a uniquely determined bounded linear
operator T with bounded inverse T~ such that whenever x, 1 € X there holds

Clx, TY) = (x, ¥)x,
ITIx <67',  IT7Yx <7

To apply the Lax-Milgram theorem to the weak equation (4.14.2), we set X =
Hg(Q,R'?), and let C(x, ©) = (L*x, ¥). Note, however, that Condition (i) holds
but not Condition (ii). To overcome this difficulty, we introduce additional terms
to (4.14.2) that regularize the equation. Let € > 0 be an arbitrary positive constant.
Then the regularized problem is given by

(L*V, H) +e(@V,0H) = —(V, A) — e(OV, OA), (4.14.3)
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in which we employ the notation
3
1 2\ _ vl a2
(ov ,av)_/QZ@v -9V dx,
j=1

where we recall the (, -, ) denotes the Euclidean inner product in R'Z. We now let the
bilinear form C, be defined by the expression on the left of (4.14.3). Upon assuming
the weaker coerciveness estimate

(L*H, H) = 51l HII} 5 g oy (4.14.4)

for some positive constant J;, we have

(i) 1C(V, )| <yIVIxIIHIx,

(ii) Co(H.H) = 81l H|}5 g go) + c(OH. OH).

The Lax-Milgram theorem clearly applies to the regularized problem and shows
that a solution H, = T. A exists to (4.14.3) and satisfies

(L*V, Ho) + €@V, 0H) = —(V, A) — e(dV, DA), (4.14.5)
or alternatively
(L*V, H) — €@V, H) = —(V, A) — €@V, DA), (4.14.6)
forall V € HO1 (2, R?). Accordingly, on setting V = I:I; in (4.14.5), we obtain
(L*He, H)) + ¢(@H,, 0H.) = —(He, A) — e(@He, OA). (4.14.7)
The first term on the left of (4.14.7) may be bounded from below using assumption

(4.14.4), while terms on the right may be bounded from above using the Cauchy-
Schwarz inequality. These operations lead to the bounds

~ 5 ~ 5 ~
| ”HEHLz(Q,]RlZ) + 6”8H€”L2(Q‘]Rl2) =< ||He||L2(Q,]R]2)||A||L2(Q,]Rl2)

+ 6||3ﬁ5 “LZ(Q,IRlz) ||3A ”LZ(Q,IRIZ) .
(4.14.8)

The arithmetic-geometric mean inequality in the form

1 3
b < -—a’+ =b?,
a _3a +4
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applied to terms on the right then yields

U Hel 3o g g2y + € (gnaHEniz(Q,Rn) - §||A||iz(Q,Rn))

~ €
=< ”HE”[AZ(Q,]RIZ)||A||L2(Q’IR12) + Z”aA”iZ(Q,]Rlz)
o1, 5 2 2 € 2
S 3 ”He”LZ(Q,]R]Z) + E ”A ||L2(§2,]R12) + Z ”aA”LZ(Q,IRIZ)’
which after rearrangement gives
01 =~ o 1 2 € 2
S M@ r = 55 1872 r) + 71981720 gy (4.14.9)

We conclude that FI; is bounded independently of ¢ when A € Hé(Q), and
consequently H, hasa weakly convergent subsequence (also denoted by H,) so that

H — H, inL*Q,R?).
We now pass to the limit as € — 0 in (4.14.6) and for all V € C§°(£2) obtain the
relation R
(L*V,H) =—(V, ),

which proves the existence of a weak solution H. Its uniqueness follows from the
coercivity assumption (4.14.4).
Let us summarize the result in the following theorem.

Theorem 4.14.2 Suppose the operator L defined by (4.14.1) satisfies the coercivity
condition R R

(L*H, H) = 01| H|)}5 g g,
for some §1 > 0. Then the weak form of the linearized isometric embedding problem
(4.14.2) has a unique solution for all A € HO1 (2).

The next step is to apply Theorem 4.6.1 to the system (4.14.2), (4.14.6) and
(4.14.7). Assume first that the (undotted) embedding is perturbed in a small neigh-
bourhood of the point x = 0 chosen as the origin of a system of normal coordinates
where the Christoffel symbols F?j vanish. When the small neigbourhood is taken
to be the box —L < x; < L, i = 1,2, 3, the quantity A, defined by (4.13.8) and
(4.13.9) that satisfies the bounds (4.11.4) and (4.11.5), becomes negligible in the box
and do not enter into the coercivity computations. Accordingly, we have

Theorem 4.14.3 When the quadratic form

HT (—01 Ay — 81 A + B) H (4.14.10)
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is positive-definite (or negative-definite) at x = 0 there exists a unique weak solution
to the linearized isometric embedding equations (4.14.2), (4.13.8), and (4.13.9).

The parameters entering into the 12 x 12 symmetric coefficient matrix
1
— 0o — 014 + 5 (B" + B) (4.14.11)

are Hi’;, 01 Ag, 01A1, Or Az, 03A3, A;z, A;’B all evaluated at x = 0. In conse-
quence, the classical chain rule may be applied to Ag, Aj, Az, Az to show that
the parameters in the coefficient matrix reduce to H,./;.', o H], Ay, Als evaluated
at x = 0. We therefore conclude that

(i) The Gauss relations provide 12 independent Hj;.

(ii) The differentiated Gauss relations provide 15 independent 0O, H;J’J. (See, for
example, Poole [Poo10].)

(iii) There are 6 independent A;VLZ’ A;VLS'

Hence there are 12415+ 6 = 33 free parameters entering into the 12 x 12 matrix
(4.14.11) resulting in considerable simplification.
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Chapter 5
Continuum Mechanics of the Interaction

of Phase Boundaries and Dislocations
in Solids

Amit Acharya and Claude Fressengeas

Abstract The continuum mechanics of line defects representing singularities due
to terminating discontinuities of the elastic displacement and its gradient field is
developed. The development is intended for application to coupled phase transfor-
mation, grain boundary, and plasticity-related phenomena at the level of individual
line defects and domain walls. The continuously distributed defect approach is devel-
oped as a generalization of the discrete, isolated defect case. Constitutive guidance
for equilibrium response and dissipative driving forces respecting frame-indifference
and non-negative mechanical dissipation is derived. A differential geometric interpre-
tation of the defect kinematics is developed, and the relative simplicity of the actual
adopted kinematics is pointed out. The kinematic structure of the theory strongly
points to the incompatibility of dissipation with strict deformation compatibility.

5.1 Introduction

Whether due to material contrast or material instability, there are many situations
in solid mechanics that necessitate the consideration of 2-d surfaces across which
a distortion measure is discontinuous. By a distortion we refer to measures akin to
a deformation ‘gradient’ except, in many circumstances, such a measure is not the
gradient of a vector field; we refer to a 2-d surface of discontinuity of a distortion
measure as a phase boundary (which, of course, includes a grain boundary as a
special case). The more familiar situation in conventional theory (i.e. nonlinear
elasticity, rate-independent macroscopic plasticity) is when the distortion field cor-
responds to the gradient of a continuous displacement field, but one could, and here
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we will, consider the presence of dislocations, or a discontinuity in the elastic dis-
placement field, as well when necessary. We are particularly interested in situations
where the phase boundary discontinuity actually terminates along a curve on the
surface or, more generally, shows in-plane gradients along the surface. We con-
sider such terminating curves as phase boundary tips and the more general case as a
continuously distributed density of tips and their coupling to dislocations. We refer
to the phase boundary tip curves as generalized disclinations (or g.disclinations; a
(classical) disclination in solids corresponds to the tip constituting the termination
of a pure rotation discontinuity). Concrete physical situations where the kinematic
construct we have just outlined occur are commonplace. In connection to fundamen-
tal, (un)loaded, microstructure of materials, such terminating boundaries (or domain
walls) occur as grain boundaries and triple junction lines in polycrystalline met-
als [DW72, BZB+12, LXBC10, HLL+12] or layered polymeric materials [LBO6,
RFL+12]. As agents of failure, some examples are weak interfaces between matrix
and fiber in fiber-reinforced polymer composites, or two such phase boundaries
spaced closely apart enclosing a matrix weak zone in such materials, e.g. crazed
inclusions and shear bands. Of course, deformation bands (especially shear bands)
are just as commonplace in the path to failure in metallic materials and granular mate-
rials. More mundane situations arise in understanding stress singularities at sharp
corners of inclusions in a matrix of dissimilar material in a linear elastic context.

The conditions for the emergence of phase boundaries/localized deformation
bands are by now well-understood, whether in the theory of inelastic deformation
localization, e.g. [HH75, Ric76, PANS82] or solid-solid phase transformations, e.g.
[KS78, Jam81, AKO06]. On the other hand, there does not exist a theory today to rep-
resent the kinematics and dynamics of the terminating lines of such phase boundaries
and the propagation of these boundary-tips. This can be of primary importance in
understanding progressive damage, e.g. onset of debonding at fiber-matrix interfaces,
extension of shear bands or crazes, or the stress concentrations produced at five-fold
twin junctions, or grain boundary triple lines. It is the goal of this paper to work out
the general continuum mechanics of coupled phase boundary and slip (i.e. regular-
ized displacement-gradient and displacement discontinuities), taking into account
their line defects which are g.disclinations and dislocations. The developed model
is expected to be of both theoretical and practical use in the study of the coupling of
the structure and motion of phase boundaries coupled to dislocation and kink-like
defects e.g. [HP11, WSL+13, SKS+10].

A corresponding ‘small deformation’ theory has been worked outin [AF12]. It was
not clear to us then whether one requires a theory with couple stress or not and both
thermodynamically admissible possibilities were outlined there. We now believe that
dealing with g.disclinations requires mechanics mediated by torque balance! and,
therefore, in this paper, we only consider models where couple stresses also appear.
A dissipative extension of disclination-dislocation theory due to deWit [deW70]
has been developed in [FTC11, UCTF11, UCTF13] as well as the first numerical

"However, a dislocation-only defect model does not require any consideration of torque balance or
couple stresses, as shown in [Achl1, AF12] and in Sect,5.5.3.
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implementations for the theory with application to understanding grain-boundary
mechanics [TCF+13b, TCF13a]. While we focus on continuously distributed defect
densities, it is to be understood that we include in our setting the modeling of indi-
vidual defect lines as non-singular localizations of these density fields along space
curves.

The concept of classical disclinations and dislocations arose in the work of Wein-
garten and Volterra (cf. [Nab87]) from the specific question of characterizing the dis-
placement and rotation jumps across a surface of a multiply connected region with a
hole, when the displacement field is required to be consistent with a prescribed twice
differentiable strain (metric) field; a well-developed static theory exists [RK09] as
well as a very sophisticated topological theory, full of subtle but difficult insights,
due to Klemén and Friedel [KFO08]. While self-contained in itself, this question does
not suffice for our purposes in understanding phase boundaries, since these can,
and often necessarily, involve jumps in the strain field. Nevertheless, the differential
geometry of coupled dislocations and so-called disclinations have been the subject of
extensive enquiry, e.g. [Kon55, Bil60, KL92, CMBO06], and therefore we show how
our g.disclinations can be placed in a similar differential geometric context, while
pointing out the main differences from the standard treatment. The differences arise
primarily from a desire to achieve relative simplicity by capitalizing on the available
Euclidean structure of the ambient space in which we do our mechanics directed
towards applications.

The remainder of the paper is organized as follows. In Sect.5.2 we provide a list
of notation. In Sect. 5.3 we develop a fundamental kinematic decomposition relevant
for our work. In Sect. 5.4 we develop the governing mechanical equations. In Sect. 5.5
we examine consequences of material frame-indifference (used synonymously with
invariance under superposed rigid body motions) and a dissipation inequality for the
theory, ingredients of which provide a critical check on the finite deformation kine-
matics of the proposed evolution equations for defect densities. Section 5.6 describes
a small deformation version of the model. In Sect. 5.7 we provide a differential geo-
metric interpretation of our work. Some concluding observations are recorded in
Sect.5.8.

Finally, in order to provide some physical intuition for the new kinematic objects
we have introduced before launching into their continuum mechanics, we demon-
strate (Fig.5.1) a possible path to the nucleation of an edge dislocation in a lattice
via the formation of a g.disclination dipole. It is then not surprising that point-wise
loss of ellipticity criteria applied to continuum response generated from interatomic
potentials can bear some connection to predicting the onset of dislocation nucleation
[LVVZ+02, ZLIVV+04].

5.2 Notation

A superposed dot on a symbol represents a material time derivative. The statement
a := b indicates that a is defined to be equal to . The summation convention is
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(a) (b) (c)

[ |

Fig. 5.1 Path to an idealized edge dislocation nucleation (¢) involving a deformation discontinuity,
achieved through the formation of a g.disclination dipole (b) in a continuous deformation with
two surfaces of strain discontinuity of an unstretched atomic configuration (a). Here, a continuous
deformation (b) of the original configuration (a) refers to the preservation of all nearest neighbors
signified by bond connections; a discontinuous deformation (c¢) refers to a change in topology of
bond connections

implied unless otherwise mentioned. We denote by Ab the action of the second-order
(third-order, fourth-order) tensor A on the vector (second-order tensor, second-order
tensor) b, producing a vector (vector, second-order tensor). A - represents the inner
product of two vectors, a : represents the trace inner product of two second-order
tensors (in rectangular Cartesian components, A : D = A;;D;;) and matrices and
the contraction of the last two indices of a third-order tensor with a second order
tensor. The symbol AD represents tensor multiplication of the second-order tensors
A and D. The notation (+),,, and (-),, represent the symmetric and skew symmetric
parts, respectively, of the second order tensor (). We primarily think of a third-order
tensor as a linear transformation on vectors to the space of second-order tensors. A
transpose of a third-order tensor is thought of as a linear transformation on the space
of second order tensors delivering a vector and defined by the following rule: for a
third-order tensor B
(BTD) .¢ = (Be) : D,

for all second-order tensors D and vectors c.

The symbol div represents the divergence, grad the gradient, and div grad the
Laplacian on the current configuration. The same words beginning with a Latin
uppercase letter represent the identical derivative operators on a reference configura-
tion. The curl operation and the cross product of a second-order tensor and a vector
are defined in analogy with the vectorial case and the divergence of a second-order
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tensor: for a second-order tensor A, a third-order tensor B, a vector v, and spatially
constant vector fields b, ¢, and a spatially uniform second-order tensor field D,

c-(Axv)b= [(ATC) x v] b, Vb.c,
D:(Bxv)b= [(BTD) x v] .b, VD,b,
(divA) - ¢ = div (ATc) . Ve,
(divB) : D = div (BTD) Y3
¢ (curlA)b = [curl (ATC)] b, Vb,e,

D: (curlB)b = [curl (BTD)] b, Vb,D.
In rectangular Cartesian components,

(A X )y, = emjxAjjvk,
(B X 1)y = emji Birjvk,
(divA); = Ay ;.
(divB); = B,
(curlA);, = emjkAik, j »
(curl B);,,,, = emjk Birk, j »

where e;,j; is a component of the third-order alternating tensor X. Also, the vector
XAD is defined as
(XAD); = ejjxAjr Dy

The spatial derivative for the component representation is with respect to rectangular
Cartesian coordinates on the current configuration of the body. Rectangular Cartesian
coordinates on the reference configuration will be denoted by uppercase Latin indices.
For manipulations with components, we shall always use such rectangular Cartesian
coordinates, unless mentioned otherwise. Positions of particles are measured from
the origin of this arbitrarily fixed Cartesian coordinate system.

For a second-order tensor W, a third-order tensor S and an orthonormal basis
{ei,i = 1,2, 3} we often use the notation

(WSZT) = WpSper ® e ey ; (WSZT)rzk = Wi Sipk.

The following list describes some of the mathematical symbols we use in this
paper.
X: current position
F¢: elastic distortion tensor (2nd-order)
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W= (F 8)71: inverse of elastic 1-distortion tensor (2nd-order)
S: eigenwall tensor (3rd-order)

Y: inverse-elastic 2-distortion tensor (3rd-order)
a: dislocation density tensor (2nd-order)

IT: g.disclination density tensor (3rd-order)

v: material velocity

L: velocity gradient

D = Ljy,,: rate of deformation tensor

2 = Lg,,: spin tensor

w= —%X 12 = % curl v: half of the vorticity vector
M = grad w: vorticity gradient tensor

J = grad W: gradient of i-elastic distortion

V11 g disclination velocity

V. dislocation velocity

V5. eigenwall velocity

T: Cauchy stress tensor

A: couple stress tensor

K: external body moment per unit mass

b: external body force per unit mass

p: mass density

1: free energy per unit mass

5.3 Motivation for a Fundamental Kinematic Decomposition

With reference to Fig.5.2a representing a cross-section of a body, suppose we are
given a tensor field ¢ (Oth-order and up) that can be measured unambiguously,
or computed from measurements without further information, at most points of a
domain B. Assume that the field ¢ is smooth everywhere except having a terminated
discontinuity of constant magnitude across the surface S. Denote the terminating
curve of the discontinuity on the surface S as C. We think of the subset P of S across
which a non-zero jump exists as a wall of the field ¢ and the curve C as a line defect
of the field ¢. Physical examples of walls are domain walls, grain boundaries, phase
boundaries, slip boundaries and stacking faults (surfaces of displacement discontinu-
ity); those of defect lines are vortices, disclinations, g.disclinations, and dislocations.
Let v be a unit normal field on S, with arbitrarily chosen orientation. Let BT be the
subset of B into which v points; similarly, let B~ be the subset of B into which —v
points. Let x be a point on P. Let x* € BT and x~ € B~ be points arbitrarily close
to x but not x, and let p(x™) = ' and (x~) = . Joinx™ to x~ by any contour
C¥, encircling C. Then

/Cx_ grad g -dx = ¢~ — ot =1 —[¢]. (5.1

xt
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(a) (b)

Fig. 5.2 Classical terminating discontinuity and its physical regularization

Note that by hypothesis [¢] is constant on P so that regardless of how close x is to C,
and how small the non-zero radius of a circular contour C)’c‘; is, the contour integral
takes the same value. This implies that |grad @(y)| — oo asy — C withy € B\C .2
Our goal now is to define a field A that is a physically regularized analog of grad ¢;
we require A to not have a singularity but possess the essential topological property
(5.1) if grad ¢ were to be replaced there with A. For instance, this would be the task
at hand if, as will be the case here, A is an ingredient of a theory and initial data for
the field needs to be prescribed based on available observations on the field ¢, the
latter as described above.

It is a physically natural idea to regularize the discontinuity on P by a field on
B that has support only on a thin layer around P. We define such a field as follows
(Fig.5.2b). For simplicity, assume all fields to be uniform in the x3-direction. Let the
layer £ be the set of points

L={yeB:y=x+hvkx),-l/2<h<l/2,x € P}.

Let the x| coordinate of C be x°. Define the strip field?

Fapleee et @ g 40y ifx e L

WV(x) = H )
0, ifx e B\L

2 As an aside, this observation also shows why the typical assumptions made in deriving transport
relations for various types of control volumes containing a shock surface do not hold when the
discontinuity in question is of the ‘terminating jump’ type being considered here.

3WV is to be interpreted as the name for a single field.
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where v(x1) = e here, and

x1—x°

fan =77

1, ifx0+r§x1.

, ifx0<x1§x0+r

In the above, the layer width / and the defect-core width r are considered as given
physical parameters. We now define A as

A :=gradB+ WYV in B, (5.2)

where B is at least a continuous and piecewise-smooth potential field in B, to be
determined from further constraints within a theoretical structure as, for example,
we shall propose in this paper.

Let n be the order of the tensor field ¢. A small calculation shows that the only
non-vanishing component(s) of curl WV is*

Of [—[li...i
(curl WV);,..i,3 = e3]2_f [%

B, ] =WV,

and this is non-zero only in the core cylinder defined by
C = {x:x0§x1 §x0+r,—l/2§x2§l/2}.

. 9 . .
Moreover, since 0—){1 = % in C, and zero otherwise, we have

/A-dx:/cuerV-e3da=—M(Z'V)Z_HSOHv
c 4 (-r)

for any closed curve C encircling C, and A is any surface patch with boundary
curve C.

Without commitment to a particular theory with constitutive assumptions, it is
difficult to characterize further specific properties of the definition (5.2). However,
it is important to avail of the following general intuition regarding it. Line defects
are observed in the absence of applied loads. Typically, we are thinking of grad ¢ as
an elastic distortion measure that generates elastic energy, stresses, couple-stresses
etc. Due to the fact that in the presence of line defects as described, grad ¢ has
non-vanishing content away from P in the absence of loads, if A is to serve as
an analogous non-singular measure, it must have a similar property of producing
residual elastic distortion for any choice of a grad B field for a given WV field that
contains a line defect (i.e. a non-empty subset C,). These possibilities can arise, for

“4Here it is understood that if n = 0 then the symbol i - - - i,, correspond to the absence of any indices
and the curl of the higher-order tensor field is understood as the natural analog of the second-order
case defined in Sect.5.2.
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instance, from a hypothesis on minimizing energy or balancing forces or moments.
That such a property is in-built into the definition (5.2) can be simply understood by
realizing that WV is not a gradient and therefore cannot be entirely annihilated by
grad B. To characterize this a bit further, one could invoke a Stokes-Helmholtz type
decomposition of the (localized-in-layer) WV field to obtain

WV =gradZ +P on BB
divgradZ = divWV on BB

gradZn = WVn on 0B

curlP = curl WV on B (5.3)
divP =0 on B
Pn =0 on 0B,

noting the interesting fact that grad Z = —P in B\ L because of the localized nature
of WV. Thus, grad B can at most negate the grad Z part of WV and what remains is at
least a non-localized field P representing some, or in some specific cases (e.g. screw
dislocation in isotropic linear elasticity or Neo-Hookean elasticity, [AchO1]) all, of
the off-C,- content of the original grad  field. Of course, it must be understood that
the primary advantage, within our interpretation, of utilizing A in place of grad ¢ is
that the former is non-singular, but with the desired properties.”

It should be clear now that a field with many defect lines can as well be represented
by a construct like (5.2) through superposition of their ‘corresponding WV fields’,
including dipolar defect-line structures where the layer £ has two-sided terminations
within the body, without running all the way to the boundary.

As a common example we may think of classical small deformation plasticity
where the plastic distortion field UP may be interpreted as —WYV, the displacement
field u as the potential B and A as the elastic distortion U°. In classical plasticity
theory, the decomposition U¢ = gradu — UP is introduced as a hypothesis based
on phenomenology related to 1-d stress strain curves and the notion of permanent
deformation produced in such a set-up. Our analysis may be construed as a funda-
mental kinematical and microstructural justification of such a hypothesis, whether
in the presence of a single or many, many dislocations. At finite deformations, there
is a similar decomposition for the i-elastic 1 distortion F¢~!' = W = x + gradf
[AchO4, Achl1], where the spatial derivative is on the current configuration and we
identify A with W, Z + B with f, and P with x.

5 It is to be noted that the decomposition (5.3) is merely @ means to understand the definitions (5.2),
(5.4), the latter being fundamental to the theory.
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Based on the above motivation, for the theory that follows, we shall apply the
definition (5.2) to the i-elastic 2-distortion Y to write

Y =grad W + S, 5.4)

where W is the i-elastic 1-distortion and we refer to S (3rd-order tensor) as the
eigenwall field.

What we have achieved above is a generalization of the eigenstrain concept of
Kroner, Mura, and deWit. With the gained understanding, it becomes the natural mod-
eling tool for dealing with the dynamics of discontinuities and line-singularities of
first and higher-order deformation gradients with smooth (everywhere) fields within
material and geometrically linear and nonlinear theories. The main utility of WV
fields, as will be evident later, is in providing a tool for stating kinematically nat-
ural evolution equations for defect densities; while they also provide regularization of
nasty singularities, such a smoothing effect can, at least in principle, also be obtained
by demanding that the jump [¢] rise to a constant value from 0 over a short distance
in P, without introducing any new fields.

5.4 Mechanical Structure and Dissipation

5.4.1 Physical Notions

This subsection has been excerpted from [AZ14] for the sake of completeness.

The physical model we have in mind for the evolution of the body is as follows.
The body consists of a fixed set of atoms. At any given time each atom occupies
a well defined region of space and the collection of these regions (at that time) is
well-approximated by a connected region of space called a configuration. We assume
that any two of these configurations can necessarily be connected to each other by
a continuous mapping. The temporal sequence of configurations occupied by the
set of atoms are further considered as parametrized by increasing time to yield a
motion of the body. A fundamental assumption in what follows is that the mass and
momentum of the set of atoms constituting the body are transported in space by this
continuous motion. For simplicity, we think of each spatial point of the configuration
corresponding to the body in the as-received state for any particular analysis as a set
of ‘material particles,” a particle generically denoted by X.

Another fundamental assumption related to the motion of the atomic substructure
is as follows. Take a spatial point x of a configuration at a given time . Take a
collection of atoms around that point in a spatial volume of fixed extent, the latter
independent of x and with size related to the spatial scale of resolution of the model
we have in mind. Denote this region as D, (x, t); this represents the ‘box’ around the
base point x at time . We now think of relaxing the set of atoms in D, (x, t) from
the constraints placed on it by the rest of the atoms of the whole body, the latter
possibly externally loaded. This may be achieved, in principle at least, by removing
the rest of the atoms of the body or, in other words, by ignoring the forces exerted by
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them on the collection within D, (x, ¢). This (thought) procedure generates a unique
placement of the atoms in D, (x, ¢) denoted by A, with no forces in each of the atomic
bonds in the collection.

We now imagine immersing Ay in a larger collection of atoms (without superim-
posing any rigid body rotation), ensuring that the entire collection is in a zero-energy
ground state (this may require the larger collection to be ‘large enough’ but not
space-filling, as in the case of amorphous materials (cf. [KS79]). Let us assume that
as x varies over the entire body, these larger collections, one for each x, can be made
to contain identical numbers of atoms. Within the larger collection corresponding
to the point x, let the region of space occupied by Ay be approximated by a con-
nected domain DY (x, t), containing the same number of atoms as in D, (x, ¢). The
spatial configuration DX (x, ) may correctly be thought of as stress-free. Clearly, a
deformation can be defined mapping the set of points D, (x, t) to DY (x, ). We now
assume that this deformation is well approximated by a homogeneous deformation.

Next, we assume that the set of these larger collections of relaxed atoms, one
collection corresponding to each x of the body, differ from each other only in ori-
entation, if distinguishable at all. We choose one such larger collection arbitrarily,
say C, and impose the required rigid body rotation to each of the other collections
to orient them identically to C. Let the obtained configuration after the rigid rotation
of DY (x, t) be denoted by D, (x, 1).

We denote the gradient of the homogeneous deformation mapping D.(x,t) to
Dy (x,1) by W(x, t), the i-elastic 1-distortion at x at time 7.

What we have described above is an embellished version of the standard fashion
of thinking about the problem of defining elastic distortion in the classical theory of
finite elastoplasticity [Lee69], with an emphasis on making a connection between
the continuum mechanical ideas and discrete atomistic ideas as well as emphasizing
that no ambiguities related to spatially inhomogeneous rotations need be involved
in defining the field W.° However, our physical construct requires no choice of
a reference configuration or a ‘multiplicative decomposition’ of it into elastic and
plastic parts to be invoked [Ach04]. In fact, there is no notion of a plastic deformation
F? invoked in our model. Instead, as we show in Sect.5.4.4 (5.14), an additive
decomposition of the velocity gradient into elastic and plastic parts emerges naturally
in this model from the kinematics of dislocation motion representing conservation
of Burgers vector content in the body.

Clearly, the field W need not be a gradient of a vector field at any time. Thinking
of this ielastic 1-distortion field W on the current configuration at any given time as
the ¢ field of Sect. 5.3, the i-elastic 2-distortion field Y is then defined as described
therein.

It is important to note that if a material particle X is tracked by an individual tra-
jectory x(¢) in the motion (with x(0) = X), the family of neighborhoods D, (x(t), )
parametrized by ¢ in general can contain vastly different sets of atoms compared to
the set contained initially in D, (x(0), 0). The intuitive idea is that the connectivity, or

SNote that the choice of C affects the W field at most by a superposed spatio-temporally uniform
rotation field.
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nearest neighbor identities, of the atoms that persist in D (x(¢), t) over time remains
fixed only in purely elastic motions of the body.

5.4.2 The Standard Continuum Balance Laws

For any fixed set of material particles occupying the volume B(¢) at time ¢ with
boundary OB(t) having outward unit normal field n

/ pdv =0,

B(1)

/ pvdv:/ Tnda+/ pb dv,
B(t) dB(1) B(t)

/p(xxv)dv:/ (xxT+A)nda+/ pxxb+K) dv,
B(1) OB(1) B(1)

represent the statements of balance of mass, linear and angular momentum, respec-
tively. We re-emphasize that it is an assumption that the actual mass and momentum
transport of the underlying atomic motion can be adequately represented through the
material velocity and density fields governed by the above statements (with some
liberty in choosing the stress and couple-stress tensors). For instance, in the case of
modeling fracture, some of these assumptions may well require revision.
Using Reynolds’ transport theorem, the corresponding local forms for these equa-
tions are:
p+pdive=0
pv =divT + pb (5.5)
0=divA - X:T+ pK.

Following [MT62], the external power supplied to the body at any given time is
expressed as:

P(t):/ pb-vdv+/ (Tn)-vda+/ (An)~wda+/ pK - wdv
B(1) dB(1) dB(1t) B(1)

:/ (pv-iJ)dv+/ (T:D + A:M) dv,
B(t) B(1)

where Balance of linear momentum and angular momentum have been used. On
defining the kinetic energy and the free energy of the body as

1
K:/ — (pv - v) dv,
B() 2

F :/ oY dv,
B(t)
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respectively, and using Reynolds’ transport theorem, we obtain the mechanical dis-
sipation

D::P—K—'i—F:/ (T:D+A:M—pj) dv. (5.6)
B(1)

The first equality above shows the distribution of applied mechanical power into
kinetic, stored and dissipated parts. The second equality, as we show subsequently,
is used to provide guidance on constitutive structure.

5.4.3 G.disclination Density and Eigenwall Evolution

The natural measure of g.disclination density is
curl (Y — grad W) = curl§ = I1.

It characterizes the closure failure of integrating Y on closed contours in the body:

/Hnda =/de,
a c

where a is any area patch with closed boundary contour c in the body. Physically, it
is to be interpreted as a density of lines (threading areas) in the current configuration,
carrying a tensorial attribute that reflects a jump in W. As such, it is reasonable
to postulate, before commitment to constitutive equations, a tautological evolution
statement of balance for it in the form of “rate of change = what comes in — what
goes out + what is generated.” Since we are interested in nonlinear theory consistent
with frame-indifference and non-negative dissipation, it is more convenient to work
with the measure

T = curl (WSZT) (5.7)
(WSZT)rlk = WipSipk

*Hrli = ejk [WlpSrpk]’j = ejjk [Wlp (erk — er,k)]’j s

(cf. [AD12]), and follow the arguments in [Ach11] to consider a conservation state-
ment for a density of lines of the form

/ Mnda = — m x V7 dx. (5.8)
a(t) c(t)

Here, a(t) is the area-patch occupied by an arbitrarily fixed set of material particles at
time ¢ and c(¢) is its closed bounding curve and the statement is required to hold for
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all such patches. V! is the g.disclination velocity field, physically to be understood
as responsible for transporting the g.disclination line density field in the body.
Arbitrarily fix an instant of time, say s, in the motion of a body and let F; denote
the time-dependent deformation gradient field corresponding to this motion with
respect to the configuration at the time s. Denote positions on the configuration at
time s as x; and the image of the area patch a(¢) as a(s). We similarly associate the
closed curves c(¢) and c(s). Then, using the definition (5.7), (5.8) can be written as

/*Hnda+ mxvigx= ws2T dx + I x v7ax
a(t) c(t) c(t) c(t)

= / [WSZTFS + (1T x V”)FS] dx,
c(s)
= / [WSzTFsFS_I +10 x V”} dx =0
c(t)
which implies )
WSTFF;' = - x VT + grad X,
where X is an arbitrary second-order tensor field with physical dimensions of strain
rate (i.e. 1 /Time) that we will subsequently specify to represent grain/phase boundary

motion transverse to itself. Finally, choosing s = ¢, we arrive at the following local
evolution equation for S:

o . .
S:=WS*T + WS*T + WS>'L = -1 x VT + grad X.

The local form of (5.8) is’

o

T:= (divv) T + T —*TIL" = —curl (I x vT). (5.9)

7 An important feature of conservation statements for signed ‘topological charge as here is that even
without explicit source terms nucleation (of loops) is allowed. This fact, along with the coupling of
IT to the material velocity field through the convected derivative provides an avenue for predicting
homogeneous nucleation of line defects. In the dislocation-only theory, some success has been
achieved with this idea in ongoing work.
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Effect of transportdueto |/

Transport due to Vil [ Transport due to 24

Fig. 5.3 Transport due to g.disclination and eigenwall velocities

Finally, we choose X' to be
> =WSVS ;. m =W, SV,

where VS is the eigenwall velocity field that is physically to be interpreted as trans-
porting the eigenwall field S transverse to itself. This may be heuristically justified as
follows: the eigenwall field represents a gradient of i-elastic distortion in a direction
normal to the phase boundary (i.e. in the notation of Sect.5.3, normal to P). If the
band now moves with a velocity V3 relative to the material, at a material point past
which the boundary moves there is change of i-elastic distortion per unit time given
by X'. The geometrically complete local evolution equation for S is given by

<o
S=—0xV" 4 grad (WSZTVS) . (5.10)

Thus, for phase boundaries, V! transports in-plane gradients of S including the
tips of such bands, whereas VS transports the phase boundary transverse to itself
(Fig.5.3).

5.4.4 Dislocation Density and I-Elastic 1-Distortion Evolution

Following tradition [deW73], we define the dislocation density o as
a:=Y:X=(8+gradW):X (5.11)

and note that when § = 0, @« = —curl W since for any smooth tensor field A,
curlA = —grad A : X. The definition (5.11) is motivated by the displacement jump
formula (5.18) corresponding to a single, isolated defect line terminating an i-elastic
distortion jump in the body. In this situation, the displacement jump for an isolated
defect line, measured by integrating c on an area patch threaded by the defect line,
is no longer a topological object independent of the area patch.

The evolution of the S : X component of « is already specified from the evolution
(5.10) for S. Thus, what remains to be specified for the evolution of the dislocation
density field is the evolution of

a:=—curlW =Y -098) : X,
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that is again an areal density of lines carrying a vectorial attribute.
When § = 0, then @ = «, and the physical arguments of finite-deformation
dislocation mechanics [Achl11] yield

/&nda:—/ o x V&dx
a(t) c(t)

with corresponding local form
W+ WL =& x V2,

(up to assuming an additive gradient of a vector field to vanish). Here, V¢ denotes
the dislocation velocity field, to be interpreted physically as the field responsible for
transporting the dislocation density field in the body.

Using identical logic, we assume as the statement of evolution of W the equation

W+ WL =axV®, (5.12)

with a natural adjustment to reflect the change in the definition of the dislocation
density field. This statement also corresponds to the following local statement for
the evolution of a:

o= (divv) & + & — aLT = —curl (a x V°) . (5.13)

Itis to be noted that in this generalization of the dislocation-only case, the disloca-
tion density is no longer necessarily divergence-free (see (5.11)) which is physically
interpreted as the fact that dislocation lines may terminate at eigenwalls or phase
boundaries.

‘We note here that (5.12) can be rewritten in the form

L=FF"+ (Fa) x V°, (5.14)

where F¢ := W~!. To make contact with classical finite deformation elastoplasticity,
this may be interpreted as a fundamental additive decomposition of the velocity
gradient into elastic F°F “’1) and plastic (F¢a) x V) parts. The latter is defined
by the rate of deformation produced by the flow of dislocation lines in the current
configuration, without any reference to the notion of a total plastic deformation from
some pre-assigned reference configuration. We also note the natural emergence of
plastic spin (i.e. a non-symmetric plastic part of L), even in the absence of any
assumptions of crystal structure but arising purely from the kinematics of dislocation
motion (when a dislocation is interpreted as an elastic incompatibility).
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5.4.5 Summary of Proposed Mechanical Structure
of the Theory

To summarize, the governing equations of the proposed model are

p=—pdivo
pv =divT + pb
0=divA —X:T+pK (5.15)

W=—-WL+axV"

. . 2T
S=w-! {—WSZT —WSTL — 1 x V" + grad (WSZTVS)}
0=—-a+S:X—curlW.

The fundamental dependent fields governed by these equations are the current posi-
tion field x, the i-elastic 1-distortion field W, and the eigenwall field S.

The relevance of the eigenwall velocity field VS would seem to be greatest in the
completely compatible case when there are no deformation line defects allowed (i.e.
o =0, IT = 0). For reasons mentioned in Sect. 5.4.6, including eigenwall evolution
seems to be at odds with strict compatibility. Additionally, modeling wall defects
by dipolar arrays of disclinations [TCF13a] appears to be a successful, fundamental
way of dealing with grain boundary motion. However, it also seems natural to con-
sider many phase boundaries as containing no g.disclinations whatsoever, e.g. the
representation of a straight phase boundary of constant strength that runs across the
body without a termination (this may be physically interpreted as a consistent coarser
length-scale view of a phase-boundary described by separated g.disclination-dipole
units). To represent phase boundary motion in this situation of no disclinations, a
construct like VS is necessary, and we therefore include it for mathematical com-
pleteness.

The model requires constitutive specification for

the stress T,

the couple-stress A,

the g.disclination velocity V7,

the dislocation velocity V¢, and

the eigenwall velocity V5 (when not constrained to vanish).

As a rough check on the validitiy of the mechanical structure, we would like to
accommodate analogs of the following limiting model scenarios within our general
theory. The first corresponds to the calculation of static stresses of disclinations in
linear elasticity [deW73], assuming no dislocations are present. That is, one thinks
of a terminating surface of discontinuity in the elastic rotation field, across which
the elastic displacements are continuous (except at the singular tip of the terminating
surface). The analog of this question in our setting would be to set a = 0 in (5.11)
and consider S : X as a given source for W, i.e.

a=—curlW=-5:X,
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where W is assumed to be the only argument of the stress tensor. Thus, the S field
directly affects the elastic distortion that feeds into the stress tensor. Of course, this
constrained situation, i.e. o« = 0, may only be realized if the field S : X is divergence-
free on B. Thus, with (5.11) as a field equation along with constitutive equations for
the stress and couple stress tensor and the static versions of balance of linear and
angular momentum, this problem becomes accessible within our model.

As a second validating feature of the presented model, we mention the work of
[TCF13a] on the prediction of shear coupled grain boundary migration within what
may be interpreted as a small-deformation, disclination-dislocation-only version of
the above theory. There, the grain boundaries are modeled by an array of (stress-
inducing) disclination dipoles and it is shown how the kinematic structure of the
above type of system along with the presence of stresses and couple stresses allows
grain boundary motion with concomitant shear-producing dislocation glide to be
predicted in accord with experiments and atomistic simulations.

Finally, one would of course like to recover some regularized version of classi-
cal, compatible phase transformation theory [BJ87], i.e. classical nonlinear elastic-
ity with a non-convex energy function and with continuous displacements, in the
absence of dislocations, g.disclinations and the eigenwall field in our model, i.e.
(a=0,S =II =0). The model reduces to a strain gradient regularization [Sle83,
AK91, BK84, SLSB99] of classical nonlinear elasticity resulting from the pres-
ence of couple stresses and the dependence of the energy function on the second
deformation gradient.

5.4.6 The Possibility of Additional Kinetics
in the Completely Compatible Case

The question of admitting additional kinetics of phase boundary motion in the
completely compatible case (i.e. no dislocations and g.disclinations) is an interesting
one, raised in the works of Abeyaratne and Knowles [AK90, AK91]. In the spatially
1-d scenario considered in [AK91], it is shown that admitting higher gradient effects
does provide additional conditions over classical elasticity for well-defined propa-
gation of phase boundaries, albeit with no dissipation, while the results of [Sle83]
show that a viscosity effect alone is too restrictive and does not allow propagation.
The work of [AK91], that extends to 3-d [AKO6], does not rule out, and in fact
emphasizes, more general kinetic relations for phase boundary propagation aris-
ing from dissipative effects, demonstrating the fact through a combined viscosity-
capillarity regularization of nonlinear elasticity.

Within our model, the analogous situation is to consider the g.disclination density
and the dislocation density constrained to vanish (II = 0 and o = 0). A dissipative
mechanism related to phase boundary motion may now be introduced by admitting
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a generally non-vanishing V* field. For the present purpose, it suffices then to focus
on the following three kinematic equations:

. . 2T
§=w! {—WS” — WS*'L + grad (WSZTVS)}
W=—-WL+axV"® (5.16)

O0=—-a+S:X—curlW.

We first note from (5.16,) that if o = 0 then a solution for W with initial condition 1
would be F~!, where F is the deformation gradient with respect to the fixed stress-
free reference configuration. Then from (5.163), it can be seen that this ansatz requires
the eigenwall field to be symmetric in the last two indices. In its full-blown geometric
nonlinearity, it is difficult to infer from (5.161) that if S were to have initial conditions
with the required symmetry, that such symmetry would persist on evolution.

An even more serious constraint within our setting making additional kinetics
in the completely compatible case dubious is the further implication that if IT =
curl S =0 and S : X = 0 on a simply connected domain, then it is necessarily true
that S can be expressed as the second gradient of a vector field say a, i.e.

Sijk = aj_jk- 5.17)

This implies that (5.167) is in general a highly overdetermined system of 27 equations
in 3 unknown fields, for which solutions can exist, if at all, for very special choices
of the eigenwall velocity field V. Even in the simplest of circumstances, consider
(5.161) under the geometrically linear assumption (i.e. all nonlinearities arising from
an objective rate are ignored and we do not distinguish between a material and a
spatial time derivative)

S = grad (SVS) = 4i,j = aijk (VS)k

(upto a spatially uniform tensor field). This is a generally over-constrained system
of 9 equations for 3 fields corresponding to the evolution of the vector field a requir-
ing, for the existence of solutions, a PDE constraint to be satisfied by the phase
boundary/eigenwall velocity field, namely

curl {(gradgrada) VS} =0

that amounts to requiring that

aj jk (Vks,l) —a; Ik (Vks!j) =0.
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While satisfied in some simple situations, e.g. grad VS = 0 whenever grad grada
is non-vanishing, or when all field-variations are in one fixed direction (as for phase
boundary propagation in a 1-d bar), this is a non-trivial constraint on the VS field
in general. Of course, it is conventional wisdom that the phase boundary velocity
kinetics be specifiable constitutively, and a ‘nonlocal’ constraint on VS as above
considerably complicates matters. On the other hand, we find it curious that a nonlocal
constraint on phase transformation constitutive behavior arises naturally in our model
as a consequence of enforcing strict kinematic compatibility.

If one disallows a non-local PDE constraint as above on the constitutive specifi-
cation of V5, then the kinematics suggests the choice V5 = 0 (and perhaps the even
stronger § = 0). Based on the results of Sect. 5.5.3, this precludes dissipation in the
completely compatible case. We find it interesting that recent physical results guided
by continuum mechanics theory [CCF+06, ZTY+10] point to a similar conclusion
in the design of low-hysteresis phase-transforming solids.

5.4.7 Contact with the Classical View of Modeling Defects:
A Weingarten Theorem for g.disclinations
and Associated Dislocations

The discussion surrounding (5.17) and seeking a connection of our work to the
classical tradition of the theory of isolated defects suggest the following natural
question. Suppose one has a three-dimensional body with a toroidal (Fig.5.4a) or
a through-hole in it (Fig.5.4d) (cf. [Nab87]). In both cases, the body is multiply-
connected. In the first, the body can be cut by a surface of finite extent that intersects
its exterior surface along a closed curve and the surface of the toroidal hole along
another closed curve in such a way that the resulting body becomes simply-connected
with the topology of a solid sphere (Fig.5.4b). In more precise terminology, one
thinks of isolating a surface of the original multiply-connected domain with the
above properties, and the set difference of the original body and the set of points
constituting the cut-surface is the resulting simply-connected domain induced by
the cut. Similarly, the body with the through-hole can be cut by a surface extending
from a curve on the external surface to a curve on the surface of the through-hole
such that the resulting body is again simply-connected with the topology of a solid
sphere (Fig. 5.4e). Finally, the body with the toroidal hole can also be cut by a surface
bounded by a closed curve entirely on the surface of the toroidal hole in such a way
that the resulting body is simply-connected with the topology of a solid sphere with
a cavity in it. For illustration see (Fig. 5.4c).

To make contact with our development in Sect. 5.3, one conceptually associates
the support of the defect core as the interior of the toroidal hole and the support of
the strip field WV as a regularized cut-surface.
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() (a)

O
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(b) (c) (e)

=0 C=

Fig. 5.4 Non simply-connected and corresponding induced simply-connected bodies. For a—c the
bodies are obtained by rotating the planar figures by 7 about the axes shown; for d,e they are
obtained by extruding the planar figures along the axis perpendicular to the plane of the paper

Suppose that on the original multiply-connected domain

e a continuously differentiable, 3rd-order tensor field Y is prescribed that is
e symmetric in its last two indices (Y;jx = Yy;) and
e whose curl vanishes (Y1 = Yiji 1).

Given such a field, we ask the question of whether on the corresponding simply-
connected domain induced by a cut-surface as described in the previous paragraph,
a vector field y can be defined such that

grad grady = Y ; Vijk = I7ijlo

and if the difference field of the limiting values of y, as the cut-surface is approached
from the two sides of the body separated by the cut-surface, i.e. the jump [y] of y
across the cut, is arbitrary or yields to any special characterization. Here, we will refer
to limits of fields approached from one (arbitrarily chosen) side of the cut-surface
with a superscript ‘4’ and limits from the corresponding other side of the cut-surface
with a superscript ‘—’ so that, for instance, [[y(z)] = y*(z) — y~ (z), for z belonging
to the cut-surface.
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For the question of existence of y on the simply-connected domain, one first looks
for a field W such that _ _ ~ ~
gradW =Y ; Wik = Yijk

and since Y is curl-free and continuously differentiable on the multiply-connected
domain with the hole, on the corresponding simply-connected domain induced by
a cut, the field W can certainly be defined [Tho34]. The jump [W] is not to be

Nt
expected to vanish on the cut surface, in general. However, by integrating (grad W)

and (grad W) - along a curve on the cut-surface joining any two arbitrarily chosen

points on it, it is easy to deduce that [[Wﬂ is constant on the surface because of the
continuity of Y on the original multiply-connected domain.

With reference to (Fig.5.5), consider the line integral of ¥ on the closed con-
tour shown in the original multiply-connected domain without any cuts (the two
oppositely-oriented adjoining parts of the contour between points A and B are
intended to be overlapping). In conjunction, also consider as the ‘inner’ and ‘outer’
closed contours the closed curves that remain by ignoring the overlapping segments,
the inner closed contour passing through A and the outer through B. Then, because of

Fig. 5.5 Contour for proving independence of A on cut-surface. The contour need not be planar
and the points A and B need not be on the same cross-sectional plane of the body
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the continuity of Y and its vanishing curl, the line integral of Y on the inner and outer
closed contours must be equal and this must be true for any closed circuit that cannot
be shrunk to a point while staying within the domain. Let us denote this invariant
over any such closed curve C as
/szA
C

If we now introduce a cut-surface passing through A and construct the corresponding
W, say Wy, then the jump of Wy at A is given by

Wi ]A) =/

gdeldxz/ Ydx = A,
CA—.AT)

CA—.A™h)

where C(A~,A™) is the curve formed from the inner closed contour defined pre-
viously with the point A taken out and with start-point A~ and end-point A*. The
last equality above is due to the continuity of ¥ on the original multiply-connected
domain. Similarly, a different cut-surface passing through B can be introduced and
an associated W5 constructed with [W,](B) = A. Since A, B and the cut surfaces
through them were chosen arbitrarily, it follows that the jump of any of the functions
[[W]] across their corresponding cut-surface takes on the same value regardless of the
cut-surface invoked to render simply-connected the multiply-connected body.

On a cut-induced simply-connected domain, since W exists and its curl vanishes
(due to the symmetry of Y in its last two indices), clearly a vector field y can be
defined such that

grady = W.

Suppose we now fix a cut-surface. Let x( be an arbitrarily chosen base point on it. Let
x be any other point on the cut-surface. Then, by integrating (grady)* and (grady)~
along any curve lying on the cut-surface joining x¢ and x, it can be observed that

@] = [y(xo)] + A (x — xo) . (5.18)

The ‘constant vector of translation’, [y(xo)], may be evaluated by integrating W on
a closed contour that intersects the cut-surface only once, the point of intersection
being the base point x¢ (W is, in general, discontinuous at the base point). It can be
verified that for a fixed cut-surface, [y(x)] is independent of the choice of the base
point used to define it.

The physical result implied by this characterization is as follows: suppose we
think of the vector field y as a generally discontinuous deformation of the multiply-
connected body, with discontinuity supported on the cut-surface. Then the separa-
tion/jump vector y(x) for any point x of the surface corresponds to a fixed affine
deformation of the position vector of x relative to the base point xy (i.e. A indepen-
dent of x), followed by a fixed translation.
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It is important to note here that, for the given field ¥ on the multiply-connected
domain, while A = [[Wﬂ isindependent of the particular cut-surface invoked to define
it, the translational part, [y(xo)], of the jump [y] on a cut-surface depends on the
definition of the cut-surface (both through the dependence on x( and the impossibility,
in general, of defining a continuous W on the original multiply-connected domain),
unless A = 0. This is the analog of the known result in classical (disclination-
dislocation) defect theory that the Burgers vector of an isolated defect is a well-
defined topological object only in the absence of disclinations. In the same spirit,
when the (non-trivial) constant tensor A is such that it has a 2-dimensional null-
space, then for a specific flat, cut-surface spanning the null-space, it is possible that
the jump in [y] vanishes. This gives rise to a surface in the (non-simply-connected)
body on which the deformation map is continuous but across which the deformation
gradient is discontinuous.

Thus, the notion of g.disclinations offers more flexibility in the type of discon-
tinuities that can be represented within continuum theory, as compared to Volterra
distortions defining classical disclinations (cf. [Cas04, Nab87]).% This is natural since
the Volterra distortion question involves a twice-continuously differentiable Right-
Cauchy Green field in its formulation (in the context of this subsection, this would

amount to enforcing a high degree of smoothness, and therefore continuity, on WT W)
so that only the polar decomposition-related rotation field of W can be discontinuous,
whereas allowing for an incompatible ¥ field on a multiply-connected domain, even
though irrotational, implies possible discontinuities in the whole field W.

8n the classical disclination-dislocation case, the corresponding question to what we have consid-
ered would be to ask for the existence, on a cut-induced simply-connected domain, of a vector field
y and the characterization of its jump field across the cut-surface, subject to (grady)” grad y = C
and the Riemann-Christoffel curvature tensor field of (twice continuously differentiable) C (see
[Shi73] for definition) vanishing on the original multiply-connected domain. Existence of a global
smooth solution can be shown (cf. [Sok51] using the result of [Tho34] and the property of preser-
vation of inner-product of two vector fields under parallel transport in Riemannian geometry). The
corresponding result is

)] = yxo)l + [RIU (x —xo) .

where grady = RU on the cut-induced simply-connected domain, and R is a proper-orthogonal,
and U = /C is a symmetric, positive-definite, 2nd-order tensor field. U cannot have a jump across
any cut-surface and the jump [R] takes the same value regardless of the cut-surface invoked to
define it, as can be inferred from the results of [Shi73]. By rearranging the independent-of-x term
in the above expression, the result can be shown to be identical to that in [Cas04]. Of course, for
the purpose of understanding the properties of the Burgers vector of a general defect curve, it is
important to observe the dependence of the ‘constant’ translational term on the cut-surface. An
explicit characterization of the jump in grady in terms of the strength of the disclination is given in
[DZ11].
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5.5 Frame-Indifference and Thermodynamic Guidance
on Constitutive Structure

As is known to workers in continuum mechanics, the definition of the mechanical
dissipation (5.6) coupled to the mechanical structure of a theory (Sect.5.4), a com-
mitment to constitutive dependencies of the specific free-energy density, and the con-
sequences of material frame indifference provide an invaluable tool for discovering
the correct form of the reversible response functions and driving forces for dissipative
mechanisms in a nonlinear theory. This exercise is useful in that constitutive behavior
posed in agreement with these restrictions endow the theory with an energy equality
that is essential for further progress in developing analytical results regarding well-
posedness as well as developing numerical approximations. In exploiting this idea
for our model, we first deduce a necessary condition for frame-indifference of the
free-energy density function that we refer to as the ‘Ericksen identity’ for our theory;
in this, we essentially follow the treatment of [ACF99] adapted to our context.

5.5.1 Ericksen Identity for g.disclination Mechanics

We assume a specific free energy density of the form
V=1 (W,S,J,' ). (5.19)

All the dependencies above are two-point tensors between the current configuration
and the ‘intermediate configuration,” i.e. {D,(x, t) : x € B(t)}, a collection of local
configurations with similarly oriented and unstretched atomic configurations in each
of them. On superimposing rigid motions on a given motion, each element of this
intermediate configuration is naturally assumed to remain invariant. With this under-
standing, let Q(s) be a proper-orthogonal tensor-valued function of a real parameter
p defined by

d
d—Q(p) =s0(p),
P

where s is an arbitrarily fixed skew-symmetric tensor function, and Q(0) = I. Thus,
T
%(O) = —s. Also, define A B through

{(AtB)jk — AjrBu)}ej @ ex @ e, @ e = 0.

Then, frame-indifference of ¢ requires that

» (W, 8.0, ) = v (WQT, S:07:07,J: 07107, *HQT) (5.20)
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for Q(p) generated from any choice of the skew symmetric tensor s. Differentiating
(5.20) with respect to p and evaluating at p = 0 implies

0= —(3W1/))U Wirsr/' - (3S7/J)z,k Sirs (srj(ssk + 5(/5516)
- (8J¢)1jk Jirs (S}f['(ssk + 5rjssk) - (a*ﬂw)ijk *Htf/'rsrk

where the various partial derivatives of v are evaluated at (W, S, J, *IT). This can be
rewritten as

0= [@Ow)y Wir + (Ds¥) it Sirk + (Ds¥)tj Sikr (5.21)
+ @)k Jirk + Q) Jitr + Q) igg M ] 515,
valid for all skew symmetric s which implies that the term within square brackets has

to be a symmetric second-order tensor. This is a constraint on constitutive structure
imposed by Material Frame Indifference.

5.5.2 The Mechanical Dissipation

Assuming a stored energy density function ¢ with arguments as in (5.19), we now
re-examine the mechanical dissipation D in (5.6). We first compute the material time
derivative of 1) to obtain

b= @) : W+ @sv) 3 S+ ) 3 T + @) 5 M1
= (Owv¢) : (= WL+ a xV?)
+ Os) 3 W H{— WS — WS L -1 x v
+ grad (WS*TVS )T
+@Oy) 3 J
+ (0) 3 [— @ : DM +*TIL" — curl (T x V)]

(5.22)

In the above, -3 refers to the inner-product of its argument third-order tensors (in
indices, a contraction on all three (rectangular Cartesian) indices of its argument
tensors). Recalling the dissipation (5.6):

D= (T:D+A:M—pi) dv,
B(t)

we first collect all terms in (5.22) multiplying L = D + $2 and grad L, observing
that the coefficient of §2 has to vanish identically for the dissipation to be objective
(cf. [AD12]). Noting that

J = gl"(ldW —(gradW)L <= Wy = (Wrw)’k — Wiwm Links
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we obtain

/ [—(3W¢)U WirLtj/' + (357/))rwk Wv;ll (erLrpSrpk - WlpSrmemk)
B(1)

+ (alw)mk (_er,kpr - Wrw,mLmk)
+ (1) ixj (*UierrTj - er*ﬂikj) ] dv

+ / (aﬂ/})rwk (_erpr,k) dv,
B(t)

Noting the symmetry of L,y in the last two indices, we define

sym 1
(D7) i = 5 (@1t + @y ]

and substituting the above in the dissipation (5.6) to collect terms ‘linear’ in D, £2,
and grad $2, we obtain

_ /B( ) —p@Ow); Wir + (Os9) ik Sirk + (Os) s Siter
t

+ (5J¢)Uk Jirk + (5J¢),~wj Jiwr
+ (O ) Mikr] 2,5 dv

+/ (Tyj — p{— Owip); Wir
B(1)

+ (OsV)mrk Smjk — (OSY) i Smwr

— Oy ik Iprk = O1) gy Jor

+ (@) iy iy — Q) it im0y
+(DF") i Wor + (D7"0) Ly Jpid] Dy dv

+/ p (DY™)) . Wyni D, da
B(1) (D5 i Worni D

(5.23)

1
+/ [Aik — €imn p (D_;ym'll))rnk Wim 1 (_Eeipwgpw,k) dv.
B(t)
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The remaining terms in the dissipation D are

_/ [(3W1/))U €jrsQir + (OsV) pyok (_epjsz:[lalerpk)
B(1)
_(8J1/})rwk,k ewy’sarj] Vsa dv
_/ [(asw)rwk (_ekjsz;llnrlj)
B()
HOq w)rwk,m (5kp6ms - 5kx5mp)17 rwp] VSH dv

+ / (D5 e Wap SV dv (5.24)
B(t)
- / (351/))er ng Wprrpj V;g da
JB(1) :
_ / (0]1/))nd N Qpjeyjs VS(’Y da
OB(t)

+/ (a*ﬂ¢)mk Nm (5kp5ms - 5k35mp)nrwp VSH da.
OB(t)

5.5.3 Reversible Response and Dissipative Driving Forces

We deduce ingredients of general constitutive response from the characterization of
the dissipation in Sect.5.5.2.

1. It is a physical requirement that the pointwise dissipation density be invariant
under superposed rigid body motions (SRBM) of the body. The ‘coefficient’ tensor
of the spin tensor 2 in the first integrand of (5.23) transforms as an objective tensor
under superposed rigid motions (i.e. (-) — Q(-)Q” for all proper orthogonal Q),
but the spin tensor itself does not (it transforms as 2 — —w + Q207 , where
w(t) = O®)QT). Since an elastic response (i.e. V¢ = VS = VT = 0) has
to be a special case of our theory and the 2nd, 3rd, and 4th integrals of (5.23)
remain invariant under SRBM, the coefficient tensor of £ must vanish. This is a
stringent requirement validating the nonlinear time-dependent kinematics of the
model. Using the Ericksen identity (5.21), it is verified that the requirement is
indeed satisfied by our model.

2. We would like to define elastic response as being non-dissipative, i.e. D = 0.
Sufficient conditions ensuring this are given by the following constitutive choices
for A, the deviatoric part of the couple stress tensor, the symmetric part of the
Cauchy stress tensor, and a boundary condition:

A% = ejpu p W) (DF")) (5.25)

rwk’
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Tj+ Tir = Ay + Ajr
Arj =P {— (3W1/1),, Wiy
+ (aS'(/J)mrk Smjk - (asw)mwj Sinwr

— ) ook — O g T (5:20)
+ (O gy ity — (O i Tikm 01
+ (D;ymw)pjk,k Wpr + (D ;ymw)pjk Jpri}
and
[Bpwk + Bwpk] ny = 0 on boundary of body 5.27

— T (psym
Bowk = p Wy, (D7), -
These constitutive choices are meant to be valid for all processes, whether dissi-
pative or not. The following observations are in order:

e The skew-symmetric part of the Cauchy stress, T, is constitutively unde-
termined (cf. [MT62]). Similarly, the hydrostatic part of the couple stress
tensor is constitutively undetermined (cf. [UCTF13]), since ejpy$2pw i =
— (empv p,w)’ , in (5.23) is deviatoric as the vorticity, being the curl of the
velocity field, is necessarily divergence-free. Taking the curl of the balance
of angular momentum (5.153) and substituting the divergence of T°* in the
balance of the linear momentum (5.15;), one derives a higher order equilib-
rium equation between the symmetric part of the Cauchy stress 7% and the
deviatoric couple-stress A%

1 1
pv =divT™™ + Ecurl(div A%y + pb + EcurlpK (5.28)

In each specific problem, the fields p,x, W, S are obtained by solving
(5.151,4.5.6) and (5.28). This amounts to solving all of (5.15), where balance
of angular momentum is understood as solved simply by evaluating the skew
part of the Cauchy stress from (5.153).

e The boundary condition (5.27) does not constrain the specification of couple
stress related boundary conditions in any way.

e Couple-stresses arise only if the push-forward of the tensor D;y ") to the
current configuration has a skew-symmetric component. In particular, if
(D}™),,x = 0. then there are no couple-stresses in the model and, in the
absence of body-couples, the stress tensor is symmetric and balance of linear
momentum (5.15;), viewed as the basic equation for solving for the position
field x or velocity field v is of lower-order (in the sense of partial differential
equations) compared to the situation when couple-stresses are present.

e The important physical case of dislocation mechanics is one where
(D™ ), = 0. Here, the stored-energy function depends upon J = grad W
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only through & = —J : X and (9sv)) = (O1¢)) = 0. The theory, including
dissipative effects, then reduces to the one presented in [Ach04, Achl11].

e In the compatible, elastic case, assuming the existence of a stress-free refer-
ence configuration from which the deformation is defined with deformation

gradient field F, we have W = F~! and the energy function is only a function
of grad F~', and F~!. In this case, @) s = (D}ymw)pjk. Defining

P (Ffl, gradel) = z/? (F (Ffl) , Grad F (Ffl,gmdel))
and using the relations

(Grad F)sp g = (grad F)p i Frk

(gradF)aB’C =—F.u (gradF_l) F.p
Mn,c
along with further manipulation, it can be shown that

Ajk = €jwp prk

o (5.29)
Hypie = pF, F;
wpk = PI'wB ) Foox kK
and - ~
N o
rj‘compatible = OF,p F}A + OF,5 ¢ F}B’C o erk’k' (5.30)

The couple-stress and symmetric part of Cauchy stress relations that arise
from relations (5.29-5.30) are precisely the ones derived by Toupin [Tou62,
TNO4], starting from a different (static and variational) premise and invok-
ing the notion of an hyperstress tensor, a construct we choose not to utilize.
Admittedly, we then need a slightly restricted boundary condition (5.27), but
we do not consider this as a major restriction given the difficulty in physical
identification of hyperstresses and hypertractions.

3. We refer to dissipative ‘driving forces’ in this context as the power-conjugate
objects to the fields VI v and VS in the dissipation D (5.24), since in their
absence there can be no mechanical dissipation in the theory (i.e. all power sup-
plied to the body is converted in entirety to stored energy), with the reversible
response relations (5.25)—(5.27) in effect. Interestingly, the theory suggests sep-
arate driving forces in the bulk and at external boundaries of the body.
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e The bulk driving forces are given by

Vsa ~ = [(8Ww)l] €jrsQir + (357/))rwk (_epjs Wv;ll Ollerpk)

(5.31)
- (a‘]w)rwk,k s Q]
n . -1 .
Vs ~ = [(5S¢)mk (_ek]Sle Hrl]) (5.32)
+ ((8*H¢)rwp,s - (a*Hd))rws,p)Hrwp]
V5 o (050 mutek WS (5.33)

e The boundary driving forces at an external boundary point with outward unit
normal n are given by

V5 o — (050) e 1k Waap S (5.34)
Vsa ~ (a.ﬂz[})rwk Nk Qrjewis (5.35)
Vi~ (O map 15 — @) s 1) M- (5.36)

When the various defect velocities are chosen to be in the directions of their
driving forces, then the mechanical dissipation in the body is guaranteed to satisfy

D >0,

i.e. the rate of energy supply in the model is never less than the rate of storage of
energy.

5.5.4 A Special Constitutive Dependence

There are many situations when the atoms of the as-received body relieved of applied
loads can be re-arranged to form a collection that is stress-free. An example is that of
the as-received body consisting of a possibly dislocated perfect single crystal. Let us
denote such a stress-free collection of the entire set of atoms in the body as R. When
such an atomic structure is available, it is often true that, up to boundary-effects, there
are non-trivial homogeneous deformations of the structure that leave it unchanged
(modulo rigid body deformations) and this provides an energetic constraint on pos-
sible atomic motions of the body. In our modeling, we would like to encapsulate this
structural symmetry-related fact as a constitutive energetic constraint.

When defects of incompatibility are disallowed (e.g. compatible phase transfor-
mations), then the theory already presented suffices for modeling, employing multiple
well-energy functions in the deformation gradient from the perfect crystal reference
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with second deformation gradient regularization. In the presence of defects, in par-
ticular dislocations, and when the focus is the modeling of individual dislocations, a
constitutive modification may be required. There exists a gradient flow-based mod-
eling technique for small deformation analysis called the phase-field method for
dislocations [RLBF03, WL10, Den04] that amalgamates the Ginzburg-Landau par-
adigm with Eshelby’s [Esh57] eigenstrain representation of a dislocation loop; for an
approach to coupled phase-transformations and dislocations at finite deformations
within the same paradigm see [LJ12]. An adaptation of those ideas within our frame-
work of unrestricted material and geometric nonlinearity and conservation-law based
defect dynamics requires, for the representation of physical concepts like the unstable
stacking fault energy density, a dependence of the stored energy on a measure that
reflects deformation of R to the current atomic configuration. This measure cannot be
defined solely in terms of the i-elastic 1-distortion W. The following considerations
of this section provides some physical justification for the adopted definition (5.37)
of this measure.

Let us approximate the spatial region occupied by R by a fixed connected spatial
configuration R. We consider any atom in R, say at position Xg, and consider a
neighborhood of atoms of it. As the deformation of the body progresses, we imagine
tracking the positions of the atoms of this neighborhood around Xg. By approximat-
ing the initial and the image neighborhoods by connected domains, one can define a
deformation between them. We assume that this deformation is well-approximated
by a homogeneous deformation with gradient FS(XR, t). We assume that by some
well-defined procedure this discrete collection of deformation gradients at each time
(one for each atomic position) can be extended to a field on the configuration R,’
with generic point referred to as Xr. Since R and B(¢) are both configurations of
the body, we can as well view the motion of the body, say xg, with R as a reference
configuration and with deformation gradient field

Fr = Gradx x,
where the expression on the right hand side refers to the gradient of the position field
x on the configuration R.

Through this one-to-one motion referred to R we associate the field

WS(x, 1) :=F* ' (x, 1)

9Note that such a tensor field is not F? of classical elastoplasticity theory; for instance, its invariance
under superposed rigid body motions of the current configuration is entirely different from that of
F?.
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with the current configuration B(#) in the natural way and constrain the possible
local deformations F® '° by requiring

curlWe =& = curl(W —W%) =0
and choosing the ‘free’ gradient of a vector field through
W =W+ gradxy' = WS:=W —F. (5.37)

‘We note that the knowledge of the motion of the body and the evolution of the W field
completely determine the evolution of the field WS, In the manner defined, in principle
WS is an unambiguously initializable field whenever the atomic configuration in the
as-received body is known and a ‘perfect’ atomic structure R for the body exists.

When a dependence of the energy function on the structural distortion is envisaged,
this implies an additional dependence of the stored energy function (5.19) on F g (and
a dependence on the configuration R). This implies corresponding changes in the
Ericksen identity, reversible response functions, and the driving forces that may be
deduced without difficulty.

We emphasize, however, that it is not clear to us at this point that the constitutive
modeling necessarily requires accounting for the structural variable W® (or equiv-
alently the pair W and Fr), despite the viewpoint of the phase-field methodology.
In particular, whether a suitable dependence of the stored energy function solely on
the element W of the pair suffices for the prediction of observed behavior related to
motion of individual dislocations needs to be explored in detail.

5.6 ‘Small Deformation’ Model

In this section we present a model where many of the geometric nonlinearities that
appear in the theory presented in Sect.5.5 are ignored. This may be considered
as an extension of the theory of linear elasticity to account for the dynamics of
phase boundaries, g.disclinations, and dislocations. A main assumption is that the
all equations are posed on a fixed, known, configuration that enters ‘parametrically’
in the solution to the equations. Such a model has been described in [AF12]. In what
we present here, there is a difference in the reversible responses from those proposed
in [AF12], even though the latter also ensure that the dissipation vanishes in the
model for elastic processes. The choices made here render our model consistent with
Toupin’s [Tou62] model of higher-order elasticity in the completely compatible case.

10This may also be viewed as a constraint on the atomic re-arrangement leading to the choice of
the particular R.
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The eigenwall field in the small deformation case is denoted by S.All g.disclination
density measures are denoted by I1. The elastic 1-distortion is approximated by I —U*¢
where U° is a ‘small’ elastic distortion measure and we further introduce a plastic
distortion field by the definition

U’ .= gradu — U?,

where u is the displacement field of the body from the given distinguished refer-
ence configuration. The strain tensor is defined as € := (gradu)yy,,. The elastic

2-distortion is defined as G° = gradU° + S, with the g.disclination density as
curl G° = curl§ = M. The dislocation density is defined as & = —G° : X =
curlU¢ — 8 : X.

The governing equations are
pii = divT +b

0=divA —X:T+K
U =axv"

(5.38)
A A T anS
S——mxV +grad(SV )
ﬁ = —curl (ﬁ X ‘A/H) .
Here V is the elgenwall velocity, V* the dislocation velocuy, the disclination

velocity, and b and K are body force and couple densities per unit volume. We also
define J := gradU°®.

The stored energy density response (per unit volume of the reference) is assumed
to have the following dependencies:

" =¢(U€,S‘,f1,i),

and a necessary condition for the invariance of the energy under superposed infini-
tesimal rigid deformations is

(Oyevp) : s = 0 for all skew tensors s,

which implies that (Jye)) has to be a symmetric tensor, thus constraining the func-
tional form of .
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On defining ( “mw)l_jk = % |:(8}1/1)ijk + (8]1/1)l_kj], the dissipation can be

characterized as:

. 1
D=/ TijEijdv_E/ Aijezrs rs] /WU
B B
sym
- / [ — @)y + (Dj V)| P
1 sym
" 25 i d
/B|: 2em ij j ,l/))”jil rs,j AV
+/ |:eSJr [(6UE¢)1] (aju})ijk,kl_ dirvsa dv
/ %) 1 i S VS dv
+/ esnr 51/1 ijn +eﬂmk( qu[})zjk,m}:l ﬁijr VSH dv
/ Sym " niéijda
l
+/3 eyr( J¢) nkdir‘?va da
_/ (8§w)~k”lk5ijr‘7rsda
0B v
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(5.39)

Uu

5.6.1 Reversible Response and Driving Forces
in the Small Deformation Model

Motivated by the characterization (5.39), we propose the following constitutive
guidelines that ensure non-negative dissipation in general and vanishing dissipation
in the elastic case:

Ty + T = Aj + Aji
o Qe — (DO
Ay = @pwy; = (D"0)
dev _ . sym
Aij o elrs( j w)rsj

[(5770)  (2570),, )

=0

boundary
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Vi i~ e [(aUgw)ij N (aﬂ’) ” } Qir
ijk,k

. .

v |bulk ~ (aﬁw)ijk,k Sijr

VSH |h“lk 7 Conr {(8377[}) ijn + enmk (8ﬁw) ijk,m} ﬁijr (5.40)

% . . A
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As before, a dependence of the energy on F® in the nonlinear case translates to
an extra dependence of the stored energy on

UP = gradu —U* =1 —U° — (I — gradu) ~ W — F' = W*

in the small deformation case, with corresponding changes in the reversible response
and driving forces.

5.7 Contact with the Differential Geometric Point of View

For the purpose of this section it is assumed that we operate on a simply-connected
subset of the current configuration B. Arbitrary (3-d) curvilinear coordinate systems
for the set will be invoked as needed, with the generic point denoted as (51 € 2 13 3).
Lower-case Greek letters will be used to denote indices for such coordinates. The
natural basis of the coordinate system on the configuration B will be denoted as the
list of vectors

Ox

Z@ O[=1,2,3,

€q

with dual basis (eﬂ =grad&®,3=1,2, 3). We will assume all fields to be as smooth
as required; in particular, equality of second partial derivatives will be assumed
throughout.

Beyond the physical motivation provided for it in Sect.5.4.3 as a line density
carrying a tensorial attribute, the disclination density field IT = curl Y alternatively
characterizes whether a solution W (2nd-order tensor field) exists to the equation

gradW =Y, (5.41)

with existence guaranteed when I = curl Y = curl S = 0 which, in a rectangular
Cartesian coordinate system, amounts to

Siik,i — Siji.k = €rikergpSijip.q = €rik (CurlS)ijr =0. (5.42)
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This is a physically meaningful question in continuum mechanics with a simple
answer. Moreover, when such a solution exists, the existence of a triad ;la, a =
1,2, 3 of vectors corresponding to each choice of a coordinate system for B is also
guaranteed by the definition _

d, = Wea.

This question of the existence of a triad of vectors related to arbitrary coordinate
systems for B and the integrability of Y can also be posed in a differential geometric
context, albeit far more complicated.

We first consider the i-elastic 1-distortion W that is assumed to be an invertible
2nd-order tensor field by definition. Defining

t_la = We,,

and noting that c_la, a =1, 2, 3 is necessarily a basis field, there exists an array 1;;3
satisfying ) ‘
dog= Fﬁﬂdu. (5.43)

Let the dual basis of (da, o = 1,2,3) be (@” = W%, a =1,2,3). Then

f‘(fd —e W ([{gradW}eg] e, + Weaﬁ) .

We observe that even though (5.43) is an overconstrained system of 9 vector equations
for 3 vector fields, solutions exist due to the invertibility of W, and the following
‘integrability” condition arising from d, g, = d,, 3, holds:

Y - 1 14 4

Iﬂ()z@,'y u’y B + I aﬂ P’Y FozSFl =0. (5.44)
Guided by the integrability/existence question suggested by (5.43) we now turn

the argument around and ask for conditions of existence of a vector field triad (d,,)
given the connection symbols I defined by

P P P
Lo =T,5+S5
. —1
Shyi=e"- W= ({Ses}es).
Thus, we ask the question of existence of smooth solutions to

d(y,ﬁ = Fagd/z (545)

Based on a theorem of Thomas [Tho34], it can be shown that a 9-parameter family
of (global) solutions on simply-connected domains may be constructed when the
following condition on the array I" holds:

7 Iz P _
ROy (D)= Thy =T+ ThI) = Tk =0. (5.46)
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The condition corresponds to the mixed components of the curvature tensor of the
connection I" vanishing and results ind 3, = d 3 for the (d,,) triad that can be
constructed. We note that
Gy (1) = R0 (1) + R 5 (S) + T ST 5+ TS5, — TpSY, — IS5,

with R“ (I') = 0from (5.44). Furthermore, the typical differential geometric treat-
ment [K0n55 Bil60, KL92, CMBO06] imposes the condition of a metric differential
geometry, i.e. the covariant derivative of the metric tensor (here W’ W) with respect
to the connection I is required to vanish. There is no need in our development to
impose any such requirement.

The difference in complexity of the continuum mechanical and differential geo-
metric integrability conditions (5.42) and (5.46), even when both are expressed in
rectangular Cartesian coordinates, is striking. It arises because of the nature of the
existence questions asked in the two cases. The differential geometric question (5.45)
involves the unknown vector field on the right hand side while the continuum mechan-
ical question (5.41), physically self-contained and sufficiently general for the purpose
at hand, is essentially the question from elementary vector analysis of when a poten-
tial exists for a completely prescribed vector field.

Finally, we note that both in the traditional metric differential geometric treatment
of defects [Kon55, Bil60, KLL92, CMBO06] and our continuum mechanical treat-
ment at finite strains, it is not straightforward, if possible at all, to separate out the
effects of strictly rotation-gradient and strain-gradient related incompatibilities/non-
integrabilities. Fortunately from our point of view, this is not physically required
either (for specifying, e.g., the defect content of a terminating elastic distortion dis-

continuity from observations).

5.8 Concluding Remarks

A new theoretical approach for studying the coupled dynamics of phase transfor-
mations and plasticity in solids has been presented. It extends nonlinear elastic-
ity by considering new continuum fields arising from defects in compatibility of
deformation. The generalized eigendeformation based kinematics allows a natural
framework for posing kinetic balance/conservation laws for defect densities and con-
sequent dissipation, an avenue not available through simply higher-gradient, ‘cap-
illary’/surface energy regularizations of compatible theory. Such a feature is in the
direction of theoretical requirements suggested by results of sharp-interface models
from nonlinear elasticity in the case of phase transformations [AK06]. In addition,
finite-total-energy, non-singular, defect-like fields can be described (that may also be
expected to be possible with higher-gradient regularizations), and their evolution can
be followed without the cumbersome tracking of complicated, evolving, multiply-
connected geometries. This feature has obvious beneficial implications for practical
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numerical implementations where the developed model introduces interesting com-
binations of elliptic and hyperbolic (when material inertia is included) systems with
degenerate parabolic equations for numerical discretization. The elliptic component
includes div — curl systems, novel in the context of their use in solid mechanics.
Significant components of such problems have been dealt with computationally in
our prior work e.g. [RAO5, VBAF06, FTC11, TCF13a], and detailed considerations
for the present model will be the subject of future work.

The generalized eigendeformation fields have striking similarities with gauge
fields of high-energy particle physics, but do not arise from considerations of
gauge invariance of an underlying Hamiltonian. Instead, they arise from the phys-
ical requirement of modeling finite total energies in bodies that contain commonly
observed 1 and 2-dimensional defects, and from a desire to be able to model their
observed motion and interactions.

In formulating a continuum mechanical model of solid-solid phase transformation
behavior based squarely on the kinematics of deformation incompatibility, our work
differs from that of [FG94] and those of [Kha83, Roi78]. In the context of dislocation
plasticity alone, for the same reason it differs from the strain-gradient plasticity work
of [Aif84, FHO1, GHNH99]. There is an extended body of work in strain-gradient
plasticity that accounts for the dislocation density in some form [Ste96, Gur02, FS03,
EBG04, LS06, KT08, Gud04, FW09] but none have been shown to build up from a
treatment of the statics and dynamics of individual dislocations as in our case [AchO1,
Ach03, VBAF06, DAZM, ZCA13, TCF13a].

Finally, we mention a widely used, and quite successful, framework for grain-
boundary network evolution [Mul56, KLT06, EES09]. This involves postulating a
grain boundary energy density based on misorientation and the normal vector to
the boundary and evolving the network based on a gradient flow of this energy
(taking account of the natural boundary condition that arises at triple lines). Given
that a grain boundary is after all a sharp transition layer in lattice orientation and
the latter is a part of the elastic distortion of a lattice that stretches and bends to
transmit stresses and moments, it is reasonable to ask why such modeling succeeds
with the complete neglect of any notions of stress or elastic deformation and what
the model’s relation might be to a theory where stresses and elastic strains are not
constrained to vanish. The Mullins model does not allow asking such questions. With
localized concentrations of the eigenwall field representing the geometry of grain
boundaries (including their normals), g.disclinations representing triple (or higher)
lines, dependence of the energy on the eigenwall field and the i-elastic 1-distortion
representing effects of misorientation, and the eigenwall velocity representing the
grain boundary velocity, our model provides a natural framework, accounting for
compatibility conditions akin to Herring’s relation at triple lines, for the response of
grain boundaries to applied stress [TCF13a, FTUC12]. Moreover, it allows asking
the question of whether stress-free initializations can remain (almost) stress-free on
evolution. Interestingly, it appears that it may be possible to even have an exact analog
of the stress-free/negligible stress model by allowing for general evolution of the
eigenwall field S, and constraining the dislocation density field « to ensure that a =
—curl W always belongs to the space of curls of (proper-orthogonal tensor) rotation
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fields. We leave such interesting physical questions for further study along with the
analysis of ‘simple’ ansatz-based, exact reduced models of phase boundary evolution
coupled to dislocation plasticity within our setting that have been formulated.

Ericksen [Eri98, Eri0O8] raises interesting and important questions about the
(in)adequacy of modeling crystal defects with nonlinear elasticity, the interrela-
tionships between the mechanics of twinning and dislocations, and the conceptual
(un)importance of involving a reference configuration in the mechanics of crystalline
solids, among others. It is our hope that we have made a first step in answering such
questions with the theory presented in this paper.
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Chapter 6
Manifolds in a Theory of Microstructures

G. Capriz and R.]J. Knops

Abstract A synopsis, broadly based on contributions by Capriz and co-workers,
is presented of a model for a body with microstructure that employs the Cartesian
product of a Euclidean space (a fit set part of which is instantaneously occupied
by the gross image of the body) and a Riemannian manifold each of whose mem-
bers specifies a microstructure. Motivation is provided by known special theories.
Macro and micro kinetic energy, kinetic coenergy, and inertia are discussed prepara-
tory to the derivation of the governing nonlinear partial differential equations from
the Lagrangian action principle, Noether’a theorem, and a Hamiltonian formula-
tion. Precise mathematical specification of initial and boundary conditions remains
fragmentary.

6.1 Introduction

Behaviour of matter, including gross behaviour as observed in every-day life, depends
upon a material’s fine structure caused, for example, by the arrangement of constituent
small granules, or minute molecular particles.

There is increasing awareness of the many different possible types of microstruc-
ture. Better known examples include microfracture or erratically damaged rocks,
porous media or media exhibiting dendritic features, in particular liquids containing
distributed gas bubbles, voids, fibre-reinforced solids, elastomers, metal and liquid
foams, quasi-crystals, alloys, amalgams, granular assemblies, cellular clusters, dust
particle clouds, atmospheric dispersion of volcanic ash and other airbourne par-
ticulates, plasmas, avalanches, liquid crystals, polymeric bodies, spin glasses, and
polarisable liquids.
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Microstructure, ordinarily imperceptible to the naked eye, nevertheless exerts con-
siderable influence on gross performance and its detailed understanding is essential
to meet stringent demands of contemporary industrial design for high performance
devices. Such needs often call for modification of existing properties or the creation
of novel features. New fundamental mathematical theories must be developed that
operate equally successfully from micro to continuum length scales, and accommo-
date, for example, phase transitions, surface roughness, and quantization. Familiar
basic axioms of continuum mechanics, such as those proposed by Noll [Nol59], must
be abandoned or severely curtailed, while to include a sufficiently broad class of
microstructural effects, innovative general methods and procedures must be devised.
A geometrical context for such investigations provides elegance and conciseness
while facilitating physical insight unencumbered by analytical technicality. Preferred
here is a multifield theory that involves additional holonomic (independent) para-
meters. It is a semi-classical approach that links classical concepts with those of
differential geometry. To each patch of the body is associated not only its position in
Euclidean space but also a site in a finite dimensional, connected, paracompact, differ-
entiable manifold M, that characterises the microstructure. These bodies, referred
to as complex bodies, possess a variational and Hamiltonian structure. Geometry
combined with symmetry and Noether’s theorem then can be employed to derive
conservation laws.

The appeal to the theory of manifolds to describe microstructure and its evolu-
tion is largely justified, as in any introductory course of Lagrangian mechanics, by
the need to explain the settings and mechanisms of complex phenomena partly sub-
jected to perfect constraints. A mass point system is often insufficient to describe a
set of molecules that locally are in common motion. Molecules in a nematic liquid
crystal are similar to a minute rod, but their common local direction must be speci-
fied. Another example is the gyrocontinuum where each material element contains
a gyroscope [BCO1].

There is historical precedence. Duhem and the Cosserats at the turn of the twen-
tieth century introduced the notion that each body element should have attached
a separately rotating orthogonal frame. In 1919, Theodor Kaluza and Oskar Klein
proposed that general relativity should be extended by increasing the dimensions
of ordinary spacetime, the extra dimensions being of separate and distinct charac-
ter. The interpretation of microstructure in which points on a manifold, or fibre, are
assigned to each point of a simple body directly relates to the Kaluza-Klein proposal.
A common analogy is the example of the familiar hosepipe whose surface is two-
dimensional. However, the hosepipe becomes one-dimensional when viewed from
a sufficiently large distance, demonstrating the effect of different length scales. The
extra dimension can be used to possibly describe the thinning or thickening of the
pipe. Penrose [Pen04, pp. 326-327] may be consulted for further information.

The present article, based in part on the earlier account [Cap00], is a unified
description of selected contributions due mainly to Capriz and co-workers. Related
topics are treated in a report by Mariano [Mar02]. Although there is no attempt to
either comprehensively survey the extensive literature that exists on the subject or
to relate its history, relevant references are cited as appropriate. An introductory
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knowledge is assumed of differential geometry that may be found in many texts
including [Eps14], while [MH83, YZL09] have specific reference to elasticity.

A detailed description of quantitative properties, which properly belongs to analy-
sis, is not our purpose. In this respect, the interested reader is referred not only to
[Miil98] and [GMM 10] but also to the prolific literature devoted to applications of the
variational calculus to various types of microstructure. Basic assumptions adopted in
the present article are that microstructural elements are known, and that those initially
in the neighbourhood of some point remain in the same neighbourhood throughout
the entire motion of the body.

We begin in Sect. 6.2 with a discussion of several known special theories to help
motivate the later general geometric treatment. The discussion is accompanied by
observations that emphasise aspects significant for our general approach. In Sect. 6.3
certain basic principles are considered which we are convinced should precede any
account of continuum mechanics. Section 6.4.1 introduces the notion of a fibre bundle
to describe the system of microstructure attached to each point of a simple body. The
subtle concepts of microstructural kinetic energy, kinetic coenergy and inertia are
considered in Sects.6.4.3-6.4.5. Section 6.5.1 presents the Lagrangian formulation
of the problem and derives governing balance laws in the form of partial differential
equations. Various conservation laws are derived by means of Noether’s theorem
in Sect.6.5.2, while the Hamiltonian formulation of the problem is presented in
Sect.6.5.3. The initial boundary value problem is completed by specification of ini-
tial and boundary conditions, but unfortunately prescription of boundary conditions
encounters various unresolved difficulties. A critical evaluation of the outstanding
challenges is undertaken in Sect. 6.6. A final section is devoted to retrospective and
prospective comment.

The direct and index notations are used interchangeably as appropriate to the
context, while throughout the conventions are adopted of summation over repeated
indices, and of the comma to denote partial differentiation.

6.2 Special Theories

6.2.1 Introduction

Some well-known specific theories are selected to demonstrate not only how
microstructures can be represented by points on a manifold, but also how physi-
cal properties determine the choice of manifold. It is obviously desirable that any
meaningful abstract theory retains features generic to special theories. Other illus-
trations are discussed in [Cap89], and will be cited only when seeking motivation
for the introduction of additional or contradictory effects to our abstract model.

We commence, however, with a simple example similar to those used to intro-
duce Lagrangian mechanics. Extension of our discussion to include dynamics would
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indicate the possible influence of microstructural kinetics on the gross motion, and
how this can lead to an unsymmetric Cauchy stress.

6.2.2 Constrained Point Mass System

To illustrate ideas underlying the development of the abstract theory, we present a
simple example in which each material element contains a double pendulum freely
swinging within a plane entrained by the gross motion.

Particles of equal mass m concentrated at points A and B are connected by rigid
light rods AC and CB to a third particle also of mass m attached to point C. The rods
are of equal length and are freely hinged at C. The mass centre x of the system lies
at the point of trisection of CD where D is the midpoint of AB. The rods AC and BC
freely rotate about the hinge C, and the system moves in a given plane entrained by
the gross motion of x.

The macromotion is determined by the motion of x in the ambient Euclidean space
&£3. On the other hand, the microstructural variables are the unit vector n along DC
and the angle « at the vertex of the isosceles triangle ACB. These variables lie on the
torus 72 = S! x S1, which corresponds to the manifold M. The total motion consists
of the motion of the mass centre x and the motion about the mass centre specified
by that of the microstructural elements n, o, and may be described by the bundle
&3 x T?. Note that there is interaction between the macro- and micro-contributions
to the total kinetic energy. (See [Cap89, Sect. 6, Remark 3].)

6.2.3 Voids

Less obvious features to be included in the abstract model are suggested by the
standard continuum containing minute, diffused voids taken to be the microstructure.
At each point x of the continuum body B C &3 the void fraction is measured by
the scalar variable v which takes values in the open interval (0, 1). Consequently,
the manifold M is an open interval of the real line IR, while B C IR? is the base
manifold (simple body) in the ambient Euclidean space, £3. The system therefore
can be modelled as the bundle IR* x (0, 1). The actions affecting the microstructure are
those caused by, and having an influence on, the microstructural interaction between
fields. In a certain, possibly artificial, sense, this endows the notion of voids with
substance. Thus, consider the example of an incompressible liquid occupying the
whole space and containing a single spherical bubble whose radius § varies with
time. A result due to Lord Rayleigh [RL17] implies that besides the gross kinetic
energy, there is a microstructure kinetic energy density per unit mass of amount

1 ..
—~§362
27
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due to the rate of change 6 of the bubbles’ radius, where ~ is an appropriate constant
for small 4. It cannot be inferred, however, that a physically relevant connexion exists
on the manifold which complicates, or even prevents, the successful introduction of
microstress.

The example of simple voids exhibits a further feature that an abstract model
should possess. The void fraction can assume the extreme values given by v = 0
in those parts of the region without a void including where a void has collapsed,
or by v = 1 in those parts completely occupied by a void. Consequently, in this
illustration, the manifold M = [0, 1] possesses a boundary and is therefore compact
but not open. Shocks are likely to develop as the void fraction tends to zero, while
singularities may occur at those parts of the boundary where the void fraction is
unity.

Allowance must be made also for singular effects such as the pitting of the surface
of arigid box containing a liquid with gas bubbles, or the spontaneous release of gas
bubbles in a fluid under pressure. These phenomena are of technical relevance and
provide the first indications of more complex behaviour in materials when boundaries
are taken into account.

The type of voids just discussed can be replaced by more complex arrangements
such as micro-inhomogeneities and cavities, voids of irregular shape (microcracks),
or voids packed closely together as in a metallic foam. Alternatively, we may consider
a sequence of bodies each member of which has a successively increasing number
of regularly spaced voids whose limit, intended to represent the real body as in the
search for an optimal shape, requires detailed investigation (c.p., [CP81, CMO00]).
Difficulties occur when endeavouring to model interaction between adjacent defects
(possibly including extreme effects of collisions or coagulation of cavities). Such
difficulties often are avoided by confining attention to problems in which a char-
acteristic dimension of the inhomogeneity or cavity is considerably less than the
distances between nearest neighbours. When the dimension is of comparable size,
as in models of metallic foams or bone structures, an entirely different approach is
required based, for example, on rows of rods traversing a cavity (trabecular structure).

A complementary system to those just described consists of identical spheres
or molecules suspended in “empty” space, or a space- filling void. The problem is
reminiscent of that encountered in the kinetic theory of monoatomic gases, except
that here we are invoking the axiom of permanent material elements (see Sect.6.3),
and allowing the family of molecules in each loculus, or neighbourhood, at any instant
to exclusively belong to a box imagined artificially entrained by the gross motion.
In general, there can be no migration into or out of the box but when migration does
occur the net outflow must be zero. The average velocity of the contained molecules
is v, so that the box stretches at the rate div v, as required by the axiom.

It is important to note that in gas dynamics, arguments are customarily conducted
using the spatial rather than the material configuration. Capriz [Cap84, Cap89] may
be consulted for further discussion of this aspect.

The assumption, tacit or otherwise, of the axiom of permanent material elements
in the kinetic theory produces unexpected, if somewhat rare, consequences. When the
restriction implied by the axiom is interpreted as a perfect constraint the accompany-
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ing reaction, ignored within the usual balance equations, allows cohesive interactions.
Alternatively, the confinement of molecules within a box may be due to collisions
with molecules belonging to neighbouring boxes leading to the introduction of the
concept of pressure.

Although strictly beyond the scope of the present article, it is worthwhile men-
tioning related issues concerned with temperature. In gas dynamics, the difference
between the velocity of a given molecule and the average velocity over all mole-
cules in the box is called the peculiar velocity ¢ of the molecule. A peculiar extra
kinetic energy may be associated with this peculiar velocity which is then linked with
the notion of femperature, interpreted as a scalar microstructural variable. Again, in
gas dynamics, more can be precisely known about the distribution of energies (the
number density of molecules possessing the same energy in the loculus). The deter-
mination of this field over the body requires the microstructure to be characterised
by a function, and consequently to be studied using the theory of manifolds of maps.

Temperature also occurs when the micro-constituents in the loculus have different
values of the parameter v. The number of parameters is reduced on taking certain
moments or averages, and for maxwellian distributions is reduced to a single para-
meter analogous to absolute temperature. This may be zero for micro-constituents
having identical dispositions, and, as in simple treatments of nematic liquid crystals,
might even become negative (already observed experimentally).

6.2.4 Nematic Liquid Crystals

Continua where the microstructure is two-dimensional include the well-known and
extensively studied example of nematic liquid crystals. Liquid crystal molecules are
regarded as minute rods of finite length and definite direction but without definite
orientation. Each can be modelled by a unit vector n, but since physical polarity is
absent, n and —n are treated as equivalent. The microstructural elements therefore
can be represented as points v on the manifold given by the two-dimensional unit
sphere 2 with antipoles identified or, equivalently, by the projective plane. Note
that this manifold possesses neither a boundary nor an origin. When for notational
convenience, we retain n to represent the microstructure, it must be ensured that
the theory is invariant with respect to reversals in the direction of n (i.e., when n is
changed to —n).

Whitney’s theorem secures the existence of an embedding of the manifold S? into
a five-dimensional linear space. The embedding must preserve physically significant
quantities (for example, the metric) ascribed to M, but may not be unique so that
the resulting theory must be made invariant with respect to choice of embedding.

The discussion in [BC93, CB04] (see also [BC11]) notes also that the direction
of n can be placed in one-to-one correspondence with the tensor

1
n®n—§l, (6.2.1)
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where [ is the unit tensor. Of the tensors (6.2.1) that belong to the five-dimensional
linear space of symmetric, traceless tensors, one, say N, will be derived as the
average over the element that contains molecules of varying degrees of orientation.
Consequently, N may be expressed as

1
N = yn@ndS — =1, / vdS =1, (6.2.2)
S? 3 S2

where dS is the area element of S2, and the function ~(v, x) measures the distribution
of v on the manifold S2; that is, the fraction of rods in the direction of 7.

The principal axes of N determine the distribution of possible orientations, while
the eigenvalues )\; of the tensor

1
N+3l 6.2.3)

generate two further parameters describing essential features of the distribution.
These are the degree of prolation, s € [—1/2, 1] (called by Erickson [Eri91] the
degree of orientation), given by

L2 1/3
s =3 [5 E(/\i - 1/3)] , (6.2.4)

and the degree of triaxiality 3 € [0, 1] (or optical biaxiality) given by

3
B =323 v = A7, (6.2.5)
i=1

where the indices of the eigenvalues are taken modulo 3. The values s = 1 and
B = 0 correspond to perfect ordering, while 5 = 0 leads to optical uniaxiality.
“Melting” occurs when s = § = 0. As stated in [BC93], the tensor (6.2.3) is
closely related to the dielectric tensor determined by optical observations. These
observations have led to claims that biaxiality may be found in liquid crystals due to
distinct optic axes, despite the tensor (6.2.3) being triaxial. More than terminology
is involved, since optical uniaxiality and geometric triaxility may even coexist in
certain degenerate cases. Some mechanical properties, however, including those for
the elastic potential of orientation, depend only upon the invariants of (6.2.3) and
therefore are symmetric functions of the eigenvalues ;. On the other hand, optic
properties involve the eigenvalues in appropriate order.

Remark 6.2.1 The eigenvalues J;, or the parameters s and (3, determine the variance
of the distribution so that we have

1 2 2
/'y(n@n——I—N) dS==—-X\XN i=1,23. (6.2.6)
S, 3 3
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By inspection, the variance achieves its maximum when both s and 3 vanish, and
vanishes itself when s = 1 (and necessarily g = 0).

The relevant literature contains numerous results and open problems in the study
of nematic liquid crystals. We conclude this subsection, however, by briefly men-
tioning two significant features characteristic of bodies whose microstructure can be
represented by a parameter v belonging to a finite dimensional manifold M.

The first concerns Dirichlet type boundary value problems. Counterexamples
indicate that although the boundary and boundary conditions may both be analytic,
the corresponding solution may not be smooth. Classical examples include a nematic
filling a right circular cylinder with n constrained to be normal to the boundary (cf.,
[Daf70, BTO7]); and a nematic filling a sphere but with n constrained to be tangent
to the surface. The somewhat strange singularity found in the solution for the sphere,
which earned it the special name of “boojum”, is related to the topological theory of
defects.

The second characteristic feature applies to the same set of problems which may
exhibit solutions, that although regular, are not unique. A possible approach is then to
take suitable statistical averages over all the non-unique solutions, but this operation
assumes the manifold can be embedded into a linear space.

6.2.5 Cosserat Materials

In contrast to nematic liquid crystals, the microstructure considered in this section
is described in terms of directed vectors. The issue was first considered by Duhem,
and later by the Cosserat brothers [Cos09] who treated the more general problem
of three rigid mutually orthogonal directions assigned at each point and belonging
to the manifold SO(3). According to [TN65], this generalisation formed part of an
attempt by the Cosserats to unify theories of mechanics, optics, and electrodynamics,
with other theories of the aether devised by MacCullough, Maxwell and Kelvin. (See
[BC11] for further comment.) The Cosserats’ aether is intended to be an affine space
consisting of ordinary space-time augmented by “invisible” adjuncts at each of its
points.

The theory of Cosserat materials is distinct from the gyrocontinua theory devel-
oped by Brocato and Capriz in [BCOl, BC02] and [BCI11, Sect. 2.4] whose
microstructural elements consist of small gyroscopes pin-fixed through gimbals to
capsules entrained by the gross motion. Torques generated by changes in orienta-
tion of the gyroscopes’ axes produce the interaction between the gross motion and
gyroscopes.

By assuming the existence of reference clusters and employing Taylor series
expansions, Green and Rivlin [GR64a, GR64b] motivate higher order gradient and
multipolar theories. This corresponds to selecting v to be a tensor that belongs to the
vector space constructed from the tensor product of IR* and its dual, and leads to the
introduction of tensor bundles.
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The theory of micropolar mechanics developed by Eringen [Eri68] may be simi-
larly interpreted with v again being an appropriate tensor and the fibre bundle being
a tensor bundle in a linear space.

6.3 Basic Notions in Continuum Mechanics

We recall that the gross image (possibly evolving in time) of a material body at a
given instant 7 is a fit (c.p., [NV88]) open set B of the ambient three-dimensional
Euclidean space £3. Our study of complex bodies explores in detail the behaviour
in a small neighbourhood e(x), (the loculus), of each place x € B, supposed to
be at the mass centre of the micro-constituents (e.g., the molecules) spontaneously
occupying e(x) at the instant 7, irrespective of their previous and future positions. It
is further assumed that at any instant 7 € [0, 7], T > 0, the mass-averaged velocity
v(x, 7) of the micro-constituents in e(x) is known for each x, and may therefore be
associated with x.

Consequently, the fields v(x, 7) are known over 3 for all instants in the interval
[0, 7]. Streak lines (e.g., wind trajectories in gas dynamics) may be constructed via
retrogression (c.p., [TM80, Chap. III, (iv)]) as the backwards- in-time solution to the

ordinary differential equation

d
&), (6.3.1)
dr

and determine an initial place xo belonging to a set By for any place x in the present
set 3;. Provided the velocity fields v are sufficiently smooth, we obtain a smooth
bijection between each xo € By and the corresponding place x € B given by

x = x(xg, 7). (6.3.2)

In terms of the vector (6.3.2), two other fields may be defined each of later impor-
tance:

F(x,7) = g_;co’ L(x, ) = grad,v(x, 7). (6.3.3)

A basic axiom (which we call the axiom of permanent material elements) adopted
in treatises on classical field theories (usually without comment, though Hellinger
[Hel14]is anotable exception) assumes that the bijection (6.3.2) is actually a material
bijection. That is, it is supposed that constituent elements occupying at time 7 = 0
the neighbourhood e(xg), say a sphere of radius 9, are transported by the motion of
the “wind” into a neighbourhood at x(xg, 7) of radius d(det F )1/3. Each material
element constructed in this manner is a permanent monad, whose constituents are
assumed to remain unaltered throughout all processes treated by the theory. Then a
field of mass density p(7, x) may be determined at each instant 7 on 3; so that the
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mass of the element, given by 47 p(x, 7)d> det F/3, does not change from its initial
value 47p(xo, 0)5 /3. As a consequence, we have

p(x, 7)det F = p(xop, 0). (6.3.4)

Although largely applicable to solids, there are circumstances when the axiom is
not satisfied, because constituents initially belonging to e(x() either disperse beyond
the sphere modified by the wind at x(7, xg, ) or become compressed into a sphere
of smaller radius. Theories developed for such cases, including that of ephemeral
continua [Cap08], are significantly more complicated due in particular to problems
connected with the definition of the “material” derivative of pv, necessary for a sat-
isfactory expression of local inertia. The axiom is also contradicted, for example, by
results in the kinetic theory of gases, in granular media, and by incompatiblities occur-
ring in (diffusing) mixture theories. Related issues, with implications for observer
independence, have aroused considerable controversy (c.p., Miiller [Miil72], Ede-
len and McLennan [EM73] and Woods [Wo083] in the kinetic theory; and Green
[Gre82] and Woods [Woo81, Wo082] in continuum mechanics). Indeed, Truesdell
[Tru66], [Tru77, p. 31] contrived a somewhat artificial device to explain a failure in
the dynamics of mixtures.

Other circumstances exist when it is uncertain whether or not the axiom applies.
At least one non-trivial counter-example is provided by the properties of affine
microstructure exhibited by micromorphic continua since expansion of the set of
molecules may drastically exceed that macroscopically evaluated.

Difficulties of a different kind occur when treating the neighbourhood of a bound-
ary point, x. Suppose that a satisfactory definition of a boundary is available, and
consider a boundary layer of thickness proportional to §, the radius of e(x). This
implies that e(x) straddles the boundary and in the absence of material external to
the boundary violates the assumption that x is the mass-centre of constituents in
e(x). More generally, material immediately external to the body, and possibly of
different microstructure, must be taken into account when determining properties to
be attributed to x. It is known that surface tension, especially at boundary corners,
along with wettability, coherence, and adherence, are examples of boundary effects
which influence gross behaviour, but which are absent in the bulk of the body.

Microstructure boundary conditions are further discussed in Sect. 6.6.

6.4 The Manifold and Related Properties

6.4.1 The Manifold

As indicated in Sect. 6.3, we suppose that the microstructure within a material ele-
ment can be represented by a finite number of Lagrangian parameters v, o =
1,2...m assigned at each point x belonging to the placement B of the body.
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We regard the parameters as coordinates of a number v on the local chart of an atlas
for a differentiable manifold M of finite dimension m. The manifold must be chosen
in accordance with experimentally verifiable features, eventually corresponding to
exact mathematical properties. While it is intended that the local coordinates v (x)
include and generalise those identified in the examples treated in Sect. 6.2, there is
no broad agreement on a more specific criterion, apart from mathematical conve-
nience, for the selection of properties intrinsic to the manifold M. The coordinates
v should conform to specific structural properties, and should be minimal in the
sense that omission of at least one vitiates the model. Moreover, a given physically
accepted set of coordinates {v“} might generate another by means of a diffeomor-
phism, or one-to-one smooth map, which implies that quantities dependent upon
the position and deformation of the body must be invariant (in fact, covariant) with
respect to such transformations. The requirement generalises the familiar notion of
observer independence under translation and rotation of frames of reference.

Linear spaces are special types of manifold that, like Euclidean spaces, enjoy
certain useful properties that do not extend to some types of microstructure envis-
aged here. Concepts such as tangent spaces, connexions, covariant differentiation,
and infinitesimal generators retain intrinsic meaning on more general manifolds, but
then usually an origin cannot be specified nor a displacement defined. Operations in
a linear space become available when the respective dimensions permit an (isomet-
ric) embedding of the manifold. A brief discussion is postponed to Sect. 6.4.2 of the
isometric embedding of M into an Euclidean space £V, which the Nash-Whitney
theorems prove is possible for sufficiently large N. As already mentioned, it is conve-
nient to attribute additional properties to the manifold M which necessarily restricts
its potential generality. At the same time, the introduction of extra conditions might
lead to unexpected predictions and the discovery of new phenomena.

Relaxation of some assumptions broadens the admissible class but this aspect is
worth exploring only when it assists new experiments and the designed development
of a specific new material.

The finite dimensional (m < oo) manifold M is supposed to be intrinsically
connected, differentiable, compact, preferably without boundary, and equipped with
a positive-definite Riemannian metric, the associated Levi-Civita connexion, and
usual Christoffel symbols. When compactness is replaced by paracompactness then
every differentiable manifold may be endowed with a Riemannian metric (see, for
example, [Wes81, Prop. 2.15, p. 373]). However, as Segev [Seg13] and others have
pointed out, certain microstructures might not have a natural metric. This has led
to the construction of theories of continuum mechanics independent of any metric.
This aspect is further studied in [Seg13].

Let one choice of a positive-definite Riemannian metric on M be ,3(v®), so
that in standard notation we have the relations

Q] = det Qup, Qs =450, 6.4.1)
¢4 = Qg™ etc., (6.4.2)
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and the corresponding line element becomes
ds? = dv*Qupdv® = dv®du,. (6.4.3)

Later, itis shown that this metric may be induced by a suitably defined microstructural
kinetic energy motivated by physical evidence.

We further suppose that a Levi-Civita connexion is defined on the manifold, with
corresponding Christoffel symbols

1 0y, 0K Q
Loon (020 _ 083 0} (6.4.4)
2 dvy, v, ovg

[
Fﬂv_

Then, the covariant derivatives V,, for scalar, vector, and second order tensors are
given by

Vb = 0ao, (6.4.5)
Vads = Oatppg — Fg’a¢#, (6.4.6)
Vadsy = 0adsy — Dby — Thadpp (6.4.7)
where 96
Dot = E9e (6.4.8)

Note, however, that a metric intrinsic to M does not uniquely generate an intrinsic
connexion. In consequence, the covariant derivative (and therefore the intrinsic gra-
dient and divergence operators) cannot be uniquely specified, which in turn implies,
as discussed later, that micro-stress might loose its usually understood meaning.
Examples demonstrating that an intrinsic metric and intrinsic connexion can both
exist, or neither exist, are described in [CG97b].

6.4.2 Isometric Embeddings

The advantages of conducting mathematical operations in a linear space are self-
evident, and physically significant circumstances occur when without linearity
progress becomes severely inhibited. As discussed in [BC11], the axiom of per-
manent material elements for mushy, or dendritic, regions implies that elements
belonging to each loculus (or neighbourhood) e(x) may not be describable by a
unique value of v. Partial ordering together with the extremes of perfect ordering
and complete disorder may even occur at different times. This suggests adopting
some representative average to measure behaviour, which is straightforward in a
linear space.
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According to the Whitney theorem [Whi37, Whi57], manifolds can be embedded
into a Euclidean, and therefore linear, space of sufficiently high dimension. To be
precise, any manifold of dimension m and of class C* for some appropriate positive
k can be (isometrically) embedded globally into a Euclidean space of dimension
(2m+1). For Riemannian manifolds, as considered here, the more precise theorem of
Nash [Nas56] states thatfor3 < k < o0, a Ck_Riemannian manifold M of dimension
m can be isometrically embedded into the Euclidean space of dimensionn = m(3m+
11)/2 when M is compact, and into the Euclidean space of dimension m (m+1) (3m+
11)/2 when M is non-compact. Conditions for the existence of isometric embeddings
are established in [Sle14], Remark 2.1 of which is especially relevant. When Nash’s
theorem holds, the Riemannian compact C*-manifold M becomes an m-dimensional
hypersurface (or submanifold) in the Euclidean space £", n = m(3m + 11) /2. Such
embeddings determine the minimal number of coordinates for the point v € M,
and remove the ambiguity in the local shape of the manifold (see, for example,
[Mai08]). Moreover, the connexion imposed on M by the particular embedding
limits the choice of coordinates; see, [Car96]. As already mentioned in Sect.6.2.4,
embeddings are not unique. For example, by the Whitney theorem, SO(3) can be
embedded into £7, but an embedding into &£ 5 is also known. It cannot, however, be
embedded into £4. Any consequent theory must be made invariant with respect to
the choice of non-unique embeddings, and physical properties must be preserved by
all embeddings. Let us also remark that points within the convex hull of the image of
the manifold in this space represent partially ordered microstructures, with the point
representing total disorder corresponding to the unique origin in a linear space. As
also previously stated, a linear space allows averaging processes to be performed.
We refer to [BC00, BC11] for further details.

Itis important to note that practical measurement, including that of microstructure,
is conducted in the ambient Euclidean space £ 3 and must be consistent with those
intrinsic to the manifold M. This is further reason to ensure that the manifold can
be isometrically embedded into the ambient Euclidean space.

6.4.3 Microstructural Kinetic Energy

Recall that M is a differentiable manifold that has an associated tangent bundle
T M, i.e., the set M together with the tangent spaces 7, M attached to all v € M.
Although this elemental structure is sufficient, for example, to define Lie derivatives
and differential forms, we further suppose that M is endowed with both a Riemannian
metric and a Levi-Civita connexion. As in the general discussion of Sect.6.4.1, we
suppose that the components of the positive-definite Riemannian metric on M are
Q,4(v). The metric on the tangent manifold 7 .M is again Q,3, and we define the
corresponding scalar product of vectors 1 on 7 .M to be the positive definite quadratic
form

pop = p*Quapp’ = p pra (6.4.9)
by virtue of (6.4.2).



180 G. Capriz and R.J. Knops

The evolution of the microstructure within the material neighbourhood or loculus
e(x(xp, 7)) during the time interval [0, 7] describes a trajectory over the trivial bundle
&3 x M given by v(r, x(xg, 7)), with 7 € [0, 7]. The microstructural celerity ¥’ (a
term used in oceanography) can be evaluated along the trajectory as a vector in the
tangent space 7, M at v(7, x(xg, 7)) by means of the vector dv /0t belonging to
T,(x,7)/M, and of a double vector Ov/0x regarded as a linear operator from vectors
in &3 to those in 7,, M. We have

ov® ov®
)= —— N 4.1
v g +v (3xi) (6.4.10)

where v(x, 7) is the previously introduced mass averaged velocity, and indicial nota-
tion is adopted for clarity.

The superposed dot in (6.4.10) signifies the material, or total, time derivative,
(alternatively denoted by D /D), which implies a common time scale for treating
both the micro- and macro-components. There are, however, certain circumstances
in which the time rates of change describing micro- and macro-behaviour are signifi-
cantly different. It may therefore be appropriate to represent time itself as a fibre bun-
dle analogous to the fibre bundle decomposition of the micro- and macro-kinematic
variables.

We conjecture that for solids with microstructure a change in v produces a change
in the deformation gradient F', while a change in v affects the velocity gradient L,
where F and L are defined in (6.3.3). Conversely, changes in F and L equally can
be expected to influence v and v respectively.

An evolution equation for the parameters »“, derived from the invariance of virtual
power with respect to (gauge) group transformations, is given by (see [CG97b])

At = —p%, 6.4.11)
where p is the density, v the free energy per unit mass, and A is proportional to
the symmetric positive-definite viscosity tensor. The gauge group of transformations
includes the group of rotations on M. In the absence, however, of an intrinsic con-
nexion on M, these groups are replaced by invariance with respect to changes of the
connexions on M.

We suppose that microstructural elements can be adequately incorporated into
Lagrangian dynamics. An essential quantity is then the microstructural kinetic energy
density per unit mass (v, /), pointwise defined as the positive-definite scalar product
.

KW, 1) = 1Qup)i’ = .0 = 0D, (6.4.12)



6 Manifolds in a Theory of Microstructures 181

The Riemannian metric 2,3 may be variously defined. In particular, it can be
determined experimentally or specified from a constitutive hypothesis provided the
choice is consistent with physically motivated properties of the manifold M. Each
choice defines a scalar product of microstructural velocities which in turn yields the
microstructural kinetic energy according to (6.4.12). Conversely, a microstructural
kinetic energy density function may be postulated as a constitutive assumption and
then (6.4.12) induces a Riemannian metric on 7 M. It is tacitly assumed that the
microstructure Kinetic energy remains bounded implying that the microstructural
velocity also remains bounded. As discussed, however, in [Cap89], the bound may not
be global in time, since the speed of propagation of the microstructural perturbations
may approach a limit at which shocks or other singularities develop creating infinite
microstructural kinetic energy. In dislocation theory, the limit is the speed of sound.

Further remarks on the microstructural kinetic energy are discussed in the next
section on microstructural kinetic coenergy, and in Sect.6.4.5 on microstructural
inertia where it is shown (cp., [CG97a]) that microstructural kinetic energy can
vanish independently of microstructural inertia.

6.4.4 Microstructural Kinetic Coenergy

In the application of Lagrange’s principle of Least Action, we suppose that inertia per
unit mass is derived in part from the bulk kinetic energy density and in part from the
microstructural kinetic coenergy density x (v, ) assumed differentiable with respect
to v, and which is discussed in this section. Indeed, the microstructural kinetic energy
density (v, v) is related to the microstructural kinetic coenergy density x by means
of the Legendre transform f™*(x) of x as follows

. N 0 .
R, D) = 50 = (a—x) =X, (6.4.13)
12
which in coordinate form becomes
0
k(D) = F*(x) = 250 _ y. (6.4.14)
oo

It is known from Legendre-Fenchal theory, (cp [Roc70], [BV10]), that the kinetic
energy ~(v, ) defined by (6.4.13) is a convex function with respect to  in the sense
of possessing a supporting plane in 7 M. The transform is involutive if and only if
X is additionally convex in the sense of supporting planes, while for strictly convex
functions, we have y = f*(x). By definition, both functions x, x are related to the
Riemannian metric 2,3 specified on M. Consequently, the Levi-Civita connexion
deduced from the metric may be employed for covariant differentiation.

However, x need not be convex. Nevertheless, when  is homogeneous of second
degree it coincides with x, and therefore must be convex. More generally, (6.4.13)
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may be solved for x in terms of . Let v serve as a parameter, and set v¢ = %0,
where o is another parameter, and v are contravariant components of the vector ~.
The general solution (see [CG97a]) can be represented as

X(V» V) :XC(D» V)+¢(Vs V)s (6415)
where . is the particular solution

Yt Iy| 72

Xe@*, V%) = |y 200 (s(u3) + /1 072K(7°0; u")da), (6.4.16)

and E is an arbitrary function such that x. (v, v) = E(v). The covariant components
of y are ,,. The function ¢ (7, v) is the general solution of the homogeneous equation
corresponding to (6.4.13), and as such is homogeneous of degree one in . It then
follows that when « is homogeneous of second degree in  then so also is x.

The decomposition (6.4.15) can equivalently be represented as

(v, v) = (v, 1) + d(v, 1), (6.4.17)

where

n
X, Py = |y "2y / 07 2k(w™, v70) db. (6.4.18)
1
The upper limit is given by IT = fprCM—Z’ and

S, ) = d(w, 1) + (v - NE®). (6.4.19)

Note that ¢ is still homogeneous of degree one in 7.

In general, s coincides with , but there are circumstances when these functions
are distinct. Recall that the microstructural kinetic energy ~ depends upon consti-
tutive hypotheses which therefore also determine the choice of x and ¢ defined in
(6.4.19). Although more general forms are possible, expression (6.4.12) indicates
that one choice of the microstructural kinetic energy density « is quadratic in v
and non-zero. However, conditions can be selected under which (;3 = 0 and the
microstructural kinetic coenergy, by (6.4.17) and (6.4.18), also vanishes (set o = 1).
Further comments are provided in the next section.

6.4.5 Microstructural Inertia

We follow the development given in [Cap89, Sect. 7]. Details are presented in
[CG97a]. Let w belong to the cotangent bundle 7, M over the point v € M, and
suppose that the kinetic energy theorem holds in the form that the power per unit
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mass of inertia forces is opposite in sign to the material time-derivative of the kinetic
energy per unit mass. On letting —m and —w be the densities of the respective macro-
and micro-inertia per unit mass, we have

D (1, . . .
— | =x"+r, D)) =mx +w.r, (6.4.20)
Dt \2

where D /DT and the superposed dot are used interchangeably to denote the material
time derivative. An immediate consequence of (6.4.20) is m = X. In addition, on
appealing to (6.4.13), we conclude that

B 5/<; 8/{
= vt

(:
- (5
-

X
8V8y

; . Px | Ox  Ox\ ..
)V+(8V8V+$_$>V
. . OxY\ .
8u8u au) v
D (0x ox\ .
Dr (5) au) v

D (0x ox
w= (61)) 5 (6.4.21)

which implies that

‘We may now further elaborate on possible distinctions between the kinetic energy
+ and kinetic coenergy x. When Y is linear in  so that

X, ) = N\ ()i, (6.4.22)

it is easy to show that x = 0 but that the microstructure inertia w is non-zero and of
Coriolis type expressed by

8Al 3)\/ - .
w_p(ai_gy)y, ij=1,...n, (6.4.23)

and thus does not contribute to the power. This, and similar examples, may be relevant
to magneto-mechanical effects (see, for example, [DP95]). Conversely, there may be
other circumstances when x = 0 is insufficient for the microstructural inertia w to
vanish. For example, let v be a vector d and set x = 0, ¢ = c¢|d| where ¢ is constant.
Then w becomes proportional to the component of d in the plane orthogonal to d;

that is, to
. d®d\ -
cld| " (1 - — d,
peld ( |d|2)
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where [ is the identity tensor.

Again, observe that the functions « and y may differ when they are functions of
|7|? only and independent of v. Such an example occurs in moving dislocation theory
when v represents the dislocation density and the speed of second sound imposes a
limit on |7|.

6.5 Lagrange’s Principle of Least Action

6.5.1 Balance Laws. Conservative System

A possible derivation of balance laws is from Noether’s theorem. Alternatively, they
may be established from either total energy balance or balance of power subject to
gauge invariance interpreted to mean invariance with respect to spin of the observer
and diffeomorphisms of the microstructural parameters v“. In this regard, Gurtin
and Podio-Guidugli [GP92] develop a procedure for mechanical balance laws. We
comment further on this aspect in Remark 6.5.2. Instead, in accordance with Capriz
and Mariano [CMO03] and Brocato and Capriz [BC11], who were motivated by the
approach employed by the Cosserats [Cos09], we derive the balance laws from
Lagrange’s Least Action Principle. Let the Lagrange density £, defined over the
body in its reference configuration B, be specified by

|
L(x0.x, %, F,v, 0, Vv) = Ep*fcz + pex — pU (x0, x, F, v, V) — peip(x, 1),
(6.5.1)

where p, is the mass density in B, Vv(x, 7) is the spatial gradient operator with
respect to x, U is the potential energy per unit mass, and ¢ is the potential per unit
mass of external sources. The kinetic coenergy density function Y is introduced in
Sect.6.4.4.

For sufficiently smooth £, extrema of the total Lagrangian L of the body defined as

.
Lg = / L dXdr, (6.5.2)
' 0 JB,

where dX is the volume element of B,, are determined in the standard manner (cp
[MHS83]) and lead to the following system of Euler-Lagrange field equations which
are the fundamental partial differential equations of the present theory [CMO03]:

D (0L oL oL

—\\ =) = +— —Div—, 6.5.3
Dr(ax) ox " oF 6.5.3)
D (85) oL . 0L

pr\ar) = " PVav

Dr (6.5.4)
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where the divergence operator Div is with respect to the material coordinate x(, and
the operator D/D signifies the material time derivative.

These equations can be reduced to forms containing the macro-Cauchy stress
tensor 7" and the macro-Piola-Kirchhoff stress tensor P, which as usual are related by

ou
P=(et ) TF ' = —prr (6.5.5)

Similarly, the corresponding micro-stress tensors S and R are related by

ouU
ovy’

R=(detF)SF~' = —p, (6.5.6)

On letting f and (3 denote the respective macro- and micro-vector body force per
unit mass, we deduce from the variational principle that

O 5 0% (6.5.7)
Ox

f= ov

Also, the spatial and referential internal microaction vectors ¢ and ¥ (or the “self-
force”), whose sum is not necessarily zero, are related by

¥ = (det F)( = p*g—llf. (6.5.8)

Consequently, for a conservative motion of the body, the governing equations
become:

1. Spatial macro- and micro-balance equations

divT + pf = pi, (6.5.9)

D [9y\ @
divs+pﬁ—g=p[E(a—§)—a—>y‘], (6.5.10)

where (x, 7) € B x [0, 7], and div denotes the spatial divergence operator.
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2. Referential macro- and micro-balance equations.

DivP + p, f = pii, (6.5.11)

D (0 9
DivR + puff — 0 = ps ’E (8—;‘) - 6—);] (6.5.12)

where (xg, 7) € By x [0, T].

Inspection shows these equations respectively form coupled systems, demonstrat-
ing the interaction between the macro- and micro-behaviour. As with most coupled
systems, it is of interest to measure the interaction, and in particular determine the
error that occurs when microstructure components are neglected. Expressed other-
wise, it is important to establish how the solution depends upon v and other coupling
parameters.

For non-conservative motions, the balance equations remain in the form stated
above, with the significant exception that the quantities P, R, f, 3, and ( are no
longer obtained as derivatives of the respective potential functions.

Remark 6.5.1 Relations (6.5.6) and (6.5.8) confirm the dependence of both S and (
on points v belonging to the manifold M. In certain problems the choice of v may be
determined by physical considerations, but in others, there may be greater freedom.
It may then be desirable to transform the elements v into a new set still belonging
to M. Consequently, in such problems we must seek to employ intrinsic versions
of the various operators which implies that covariant derivatives are defined by an
intrinsic connexion on M whose choice should again be physically motivated.

Remark 6.5.2 The last observation may be amplified and related to the derivation
of balance laws from the invariance of balance of power (c.p., [Car96, CG97b]).
For weak non-local interactions and virtual parameters 2%, the corresponding virtual
power may be approximated to first order by

/ (iaz‘ﬂ + SV“) dx, (6.5.13)

T

with no physical meaning ascribed to either fa or S'(’Y Nor can these entities be
localised in the sense that (6.5.13) holds on each subbody. Suppose now that an
intrinsic connexion exists on M and introduce microstress S over [3; as a linear
operator from the translation space ) in the Euclidean space £ onto the cotangent
space 7, M. The interactions are now local and the micro-traction o, can be mean-
ingfully defined. For each subbody O C B;, the virtual power of micro-inertia is
given by

/ p(( Ox —8—X)) fﬂdx—/ faf/“dx—/ oo dS,  (6.5.14)
o ov>  ve o) 90
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where previous notation is used. In consequence, we have o, = Sén i» Where n is the
unit outward normal on 0O. Expression (6.5.13) is now valid but ,, and S}, are no

longer dependent on B;. The dual of S’ becomes the covariant gradient U5 defined
in terms of the intrinsic connexion by

V = V + le/ B (6.5.15)

Similarly, the divergence operator in (6.5.10) is given by

divsS =S, =S, T8, (6.5.16)

where 96
o= I 0@ (6.5.17)

Xo

6.5.2 Total Energy. Noether Theorems

From the Euler-Lagrange equations (6.5.3) and (6.5.4), we derive appropriate ver-
sions of the familiar Noether theorem. Define the total energy by

. 8£ . 5[,
and use the relations or 5
X
. = Px=> . 1
o0~ o0 (6.5.19)

together with (6.4.13) to alternatively express U in terms of the microstructural
kinetic energy (v, ) (see (6.4.12)) as

1
U= 2pui® + putiv, D) + pU 0, X, F, v, Vi) + pupl, ), (65.20)
and Vv is the gradient with respect to xg.
The balance of energy then becomes

U —Div (P + UR) = 0. (6.5.21)
Noether’s theorem is now used, as described in [CMO03], to derive conservation

laws from the Euler-Lagrange equations (6.5.3) and (6.5.4). We sketch the argument.
Itis supposed that the Lagrange density £ is invariant under the action of two suitable
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diffeomorphisms defined respectively on B, and B, together with a Lie group of
transformations of M. Let
oL

Q=— -(v—Fw)+ a—ﬁ Epm@) — (Vr)w), (6.5.22)
ox ov

oL\’ oL\’
F=Lw+ (8_F) (v— Fw) + (ﬁ) Em@) — (Vr)w), (6.5.23)

where the vectors v and w are related to the diffeomorphisms, and o4 is the infin-
itesimal generator of the action of the Lie group on ¥ € M. It may then be proved
that

O + Div F = 0. (6.5.24)

A special choice of diffeomorphism implies that (6.5.24) leads to the previously
derived referential, or material, macro-balance equation (6.5.11). An arbitrary Lie
group leads to the referential micro balance equation (6.5.12). For other diffeomor-
phisms, it is established in [CMO03] that (6.5.24) also implies the generalisation of
results obtained in elasticity by Knowles and Sternberg [KS72], Green [Gre73],
and Fletcher [Fle76]. Specifically, Capriz and Mariano [CMO03] derive the following
conservation law from (6.5.24):

FT%—F(V )T% —Div (| IP— 1 ¢2 + w,v)|1 —%—0
ox v ov 1v Pt TP Y oxo
(6.5.25)
where the stress-energy momentum tensor IP, a generalisation of the Eshelby tensor,
is given by
P=p,Ul — F'P— (V)T xR, (6.5.26)

and the product « is defined by
((VZ/)T . R) Vou=Rv-(Vv)u (6.5.27)

for all vectors v, u.

The conservation law (6.5.25), related to configurational forces which for
microstructure are studied by Mariano [Mar(00], generalises that previously employed
to investigate crack propagation and the J-integral introduced by Rice [Ric68]; see
also [MT92].

When the material is homogeneous and in static equilibrium under zero source
terms, we have

U=pU(F,Vv), (6.5.28)

and the conservation law (6.5.25) reduces to

DivP=0, (6.5.29)
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where IP is given by (6.5.26), while the balance equations (6.5.11) and (6.5.12)
become

DivP =0, (x0,v) € By x M, (6.5.30)
DivR=0, (x,v)€ B, x M. (6.5.31)

The constitutive relations (6.5.5) and (6.5.6) are unaltered in form.
Multiplication of (6.5.29) by x( then gives the conservation law

0 =xp-DivIP
=Div (xg-IP) —tr P
= Div (xo-P) — 3p,U +Div (x - P) 4+ Div (x - R).
An alternative derivation may be based on arguments presented by Olver [Olv86].
When integrated over B,, the last equation leads to an integral conservation law
analogous to that used in [KS84] to prove uniqueness of the solution to the affine

displacement boundary value problem on a star-shaped region for a homogeneous
nonlinear elastic body.

6.5.3 Hamiltonian Treatment

We define the macro-momentum p and micro-momentum 7 according to

oL
= — S5.32
P=50 (6.5.32)
oLC

and let the Hamiltonian density H be given by
H(xo,x,p, F,v,m,Vv)y =p-x+7-U— L(xg,x,%x, F,v,v,Vv). (6.5.34)

Then the Euler-Lagrange system (6.5.3) and (6.5.4) may be written as

OH oH
= ——— +Div — 6.5.35
P= "o TV OE (6:5-33)
. OH
X = E’ (6.5.36)
. OH . OH
™ = _E =+ Div ﬁ, (6537)
U= 8_7'[ (6.5.38)
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To adjoin boundary conditions to the corresponding boundary value problem,
Capriz and Mariano [CMO03] assume there are non-empty subsets 8Bi1), 5‘853) of
the reference boundary 0B, on which there respectively holds

OH ov OH ov®
TN = p—, —n=pe— 6.5.39
oF "~ ox v oy (6539
where n is the unit outward normal on 8B,, and V) (x) and V@ (v) are prescribed
surface potentials. On the complementary parts 88*\€)B§<1) and GB*\GBiz) the func-
tions x (xg), v(xg) are supposed given.
The Hamiltonian H of the whole body is taken as

H(x,p, F,v,m, Vv) = / H(xo, x, p, F,v,m™, Vv)dxg — / V(l)(x) das
B oBY
- / V() ds, (6.5.40)
oB?
where dS denotes the surface area element.
The variational, or functional, derivative §J/dg of the functional
Jlgl = /B L0, 9(x0). Vg(x0)) do (6.5.41)
is explicitly given by
oJ oL oL
= Di (6.5.42)

5~ o5 PV avg

the right side of which corresponds to the expression occurring in the Euler-Lagrange
equation.
The variational derivative is used to define the Poisson bracket, given as

oW O0H O0H W
W,H} = —_ — ) d
{ } /B* ( ox Op ox Op ) 0

oW H OH W s
" Joso ox 5 s = 5 5 ot

+/ oW O0H O0H W 4
.\ ov 0T ov  om 0

oW oH SH oW
+/08i2) (57 S e — 'aBSP) ds, (65.43)

where for a sufficiently smooth scalar function YV we have set

w =/ Wi(xo, x, F, p,v, ™) dxg. (6.5.44)
B
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The relation between the Lagrangian and Hamiltonian formulations is established
by Capriz and Mariano [CM03] who prove that the canonical Hamiltonian equation

W ={W, H}, (6.5.45)

is equivalent to the system (6.5.35)—(6.5.38), and consequently to (6.5.3) and (6.5.4).

The introduction of the Hamilton-Jacobi equation enables the derivation of results
analogous to those in the classical theory. For example, it is proved in [CMO03]) that
there exists a generating function S = S(7, xo, x, F, P, v, ) given by

S = /EdT + constant, (6.5.46)
that satisfies 95
— +H =0,
or +
oS oS . oS

= , = —, V= —,
P Oxo T ov o

The spatial form of the theory just outlined is discussed in [CMO03].

6.6 Boundary Conditions

Boundary conditions represent in some suitable manner the effect of external phe-
nomena on the internal behaviour of the body, and complete the specification of
the time-independent problem. Subject to appropriate smoothness of data, existence,
uniqueness and regularity can be established from standard results in the theory of
nonlinear partial differential equations.

Complications occur, however, when considering microstructure. The subject is
extensively reviewed in [CP04], and there is an ample literature devoted to spe-
cial studies including that of martensite/austensite phase transitions in solids, and
nematic liquid crystals. The critical summary presented here mainly concerns out-
standing issues that must be resolved before any precise specification is possible in
the microstructure problem. The list is not in any special rank order.

6.6.1 Definition and Nature of the Boundary

At the macro-scale we suppose that the boundary encloses a fit region in the sense
of Noll and Virga [NV88], but from the micro-perspective the enclosed region may
no longer satisfy this condition, but merely be open. Indeed, at the microstructural
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scale the boundary may become severely irregular although remaining continuous.
Granular materials, for example, do not have a smooth boundary. The precise pre-
scription of irregular but continuous boundaries becomes important not only when
specifying meaningful boundary conditions, but also when modifying the notion of
flux to allow the normal on the boundary to rapidly oscillate or even to be undefined.
Such issues are discussed notably by Segev [Seg00, Segl3].

Difficulties especially occur when boundary conditions are considered for gases
at small density. The fine detail of the boundary must then be taken into account.
Equally, the boundary is important when dealing with solid bodies immersed in a
condensing fluid, while surface interfaces between components in fluid mixtures can
be prohibitively complicated. An obvious example is the finely distributed surrounds
of cirrus clouds in contrast to the more exactly defined surfaces of cumulus clouds.

Similar care is required when an Euler cut is used to describe an internal boundary
separating subregions of different microstructure. Due to irregularity of the actual
physical boundary, a point on the cut may not correspond to the mass centre of its
loculus or neighbourhood e(x) therefore contradicting one of our main assumptions.
Considerations of this type have already been encountered in Sect. 6.3 for a boundary,
either internal or external, that separates regions of different phases such as martensite
and austenite. This leads to the related concept of interactions across a surface. Some
models are discussed in [CP04, CV90] and [FMOS5].

6.6.2 Axiom of Permanent Material Elements

Difficulties have been noted in Sect. 6.3 regarding the reconciliation of the mate-
rial bijection (6.3.2) with a physically plausible model of the bodies’ boundary.
Another question concerns the prescription of suitable balance laws at a boundary.
Little progress has apparently been achieved with any of these issues, and it seems
unlikely that any single mathematical model will suffice to account for all the dis-
parate physical circumstances that possibly might occur.

6.6.3 Limit Processes

A complex or irregular boundary may be investigated by means of a limit process
using “reasonable’ sets (fit regions, for example) as members of a sequence that ever
more closely approximates rapid variations of an actual boundary. This is equivalent
to postulating that the boundary may be replaced by a shell whose thickness is of
order . Assume that the sequence under consideration is monotonic (i.e., when parts
are added or subtracted at the shell’s boundary) and all members of the sequence
are fit regions within the same compact set. As § — 0, the shell contracts into
a two-dimensional surface, and on using the volume measure as norm, it may be
expected that a limit set exists. The process may be valid when considering internal
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boundaries between subbodies, but is less certain when applied to the problem of
an external boundary regarded as the interface with an external region of different
micro-composition. Information is then required on the behaviour of the external
environment and how this is affected by the presence of the body.

Significantly greater complexity occurs when successive terms of the sequence
are obtained by subtracting regions that formed part of the bulk of the body whether
or not monotonicity is preserved. Holes may accumulate against walls which ulti-
mately must be regarded as portions of the topological boundary while not necessarily
belonging to the reduced boundary. Elegant examples of Noll [Nol73, pp. 91-92]
illustrate that the limit region may be fit, but still allow a vast range of non-standard
effects.

When the sequence is not monotonic, the limit set may not exist and the investi-
gation must be expanded to include Young measures and such other mathematical
concepts as “presence” and “texture”, along with a new algebra of bodies that involves
probabilistic concepts. Unfortunately, a precise definition of boundary becomes elu-
sive or, rather, confused with that of the body itself. The notion of flux seems to
merge with that of volume density, and a boundary condition may become indistin-
guishable from equilibrated internal action. These important questions, considered in
[CMOO0], are not exclusively theoretical, but, on the contrary, possess definite prac-
tical significance related, for example, to optimal shapes, granular materials, and
suspensions.

The boundary may be so severely irregular that the perimeter becomes infinite
in length. Nevertheless, it should be possible to evaluate the total limit flux through
the irregular boundary using the gradient theorem and the (assumed) limit of bulk
totals of divergence measures. In this respect, it must be confirmed whether there
are flux representation theorems expressible in terms of totals over the boundary
of Hausdorff measures with fractional dimension. These questions are discussed in
[RS03] and [Sil97] and elsewhere.

An entirely different approach to a highly irregular boundary consists of two
stages. First, a “vicinal” smooth surface is introduced as a gross approximation.
Secondly, “crenellations” are generated by assuming a law depending upon a finite
number of parameters. For simplicity, suppose the body is composed of a classical
material (say linearly elastic). The tractions at the boundary are then averaged over the
vicinal surface and consequently mean stresses and strains can be evaluated in the bulk
of the body. Finally, the corresponding variances, especially near the boundary, are
considered as microstrains and microstresses associated with microstructure defined
by parameters that characterise the crenellations.
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6.6.4 Dirichlet and Neumann Boundary Conditions. Cauchy
Initial Data

Dirichlet boundary data and Cauchy initial data. In Sect. 6.2.4, we mention an imme-
diate difficulty that accompanies prescribed Dirichlet boundary micro-data. Suppose
continuous values of v assigned on the boundary can be mapped onto the manifold
M to form a compact sphere which might not reduce to a single point on M by
continuous collapse. When this sphere does not belong to the identity of the sec-
ond homotopy group on M, a singularity must occur within B.. The topological
theory of defects [Mer79] classifies the type of irregularities as a sheet of phase
transitions, or line and point defects. Certain singularities that possess extreme prop-
erties are termed “boojum”, and were first recognised in bodies composed of nematic
liquid crystals. They now play an intriguing role in the theory of superfluidity. Yet
again, experimental evidence, particularly in liquids and semisolids, indicates that
full regions of quasicrystallisation or a glassy state may occur for random values of
v, demanding development of a markedly different mathematical model.

Neumann boundary data. Macro- and micro-boundary tractions specify compo-
nents of P and S on 0B, or 0B, and are only rarely, if at all, realisable in the
laboratory. Even for the strictly mechanical version of the Cosserat theory, it is not
easy to invent practical devices that can reproduce boundary torques that are not
moments of forces. Indeed, effective modelling of microstructure boundary “trac-
tions” is best achieved by modifying the Lagrangian density £ to include a surface
energy density dependent upon v and the unit normal vector n. This results in the
macro-Piola-Kirchhoff stress P having an extra term representing surface tension,
and the material microstructural stress vector Sn becoming the derivative of a surface
density with respect to n. See also Sect. 6.6.8.

6.6.5 Bifurcation

Under certain circumstances, the static problem subject to boundary conditions of
place may admit several different solutions each of which is an energy minimiser.
Experimental evidence demonstrates that these solutions may fractionally coexist;
that is, different solutions may occur in different parts of the body, rather than occu-
pying regions in which they are pointwise superposed. There may be a family, or even
a continuous set, of such solutions with a characteristic distribution within the body.
A broader theory involving an appropriate form of Boltzmann’s equation might be
required to adequately explain such phenomena. This task may not be straightfor-
ward since the dimension of M may become infinite perhaps necessitating appeal
to the theory of manifolds of mappings.
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6.6.6 Gross Shape of B

Under Neumann boundary conditions, the body normally assumes a shape deter-
mined by the surface data and specified source terms. But as the body deforms, any
change in shape may be impeded by self-contact or by contact with neighbouring
bodies, as, for example, in the growth of large solid crystals. The boundary conditions
then become of unilateral type studied notably by Lions [Lio69], Lions and Stam-
pacchia [LS67]; and by Ciarlet and Necas [CN87] and Fichera [Fic72] in elasticity.
On the other hand, the shape assumed by drops either of semisolids or of liquids
due to microstructure may be decided by the appropriate Wulff set; see, for example,
[Cap89, Sect. 33] and [CPO4].

6.6.7 Rigid Container

Complications noted in the previous section can easily be avoided by supposing
that the external environment offers no response, effectively corresponding to null
“Neumann” boundary conditions. Conversely, it may be supposed that the body is
encased in a perfectly rigid (and inert) container. These idealisations, however, are
nor always physical; for example, a freely floating body subject to null boundary
conditions may lose mass due to evaporation or other causes.

With regard to a rigid container, it must be decided whether its surface can be
assumed smooth or whether it should be endowed with a particular microstructure.
Very fine polishing of the container’s surface might enable the tangent plane at each
boundary point to be exactly defined. It also might clarify the type of constraint
that can be imposed on surface microstructure, without limiting the effects of local
curvature. For simple bodies, the interaction between body and container may be
influenced not only by adherence properties, but also by suitably adjusted wettability
properties that may reduce abodies’ coherence (for example, mercury is an ineffective
lubricant).

It must be emphasised that properties of adherence and coherence can be dra-
matically influenced by very small changes in the bodies’ composition. The mixing
of minute percentages of appropriate additives drastically alters boundary proper-
ties without necessarily influencing properties in the bulk of the body. For example,
biological tissues may be provided with a skin equipped with a microstructure that
enables the skin to respond to specific needs. Recent medical research suggests that
adverse effects of a heart attack may be mitigated by addition of microparticles to
the blood stream. Obviously, investigation of such responses must incorporate the
molecular, or even atomic, structure.

Accordingly, when effects of the boundaries’ minute features become signifi-
cant, the microstructure model must adequately recognise surface roughness, crys-
tallinity, and surface rulings. Frequently, however, characteristics of the boundary’s
microstructure constrain the choice of v which must assume a specific value at each
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point of the boundary. The classical analysis of standard boundary conditions of
place may no longer be relevant and consequently it does not always follow that
smoothness of the independent data variables implies existence of smooth solu-
tions to the equilibrium problem. On the contrary, inclusion in the model of surface
microstructure possibly raises fundamental objections of principle as already stated
in Sect.6.6.4. In order to deal with this question, Biscari and Turzi [BT07] model
boundary roughness by strong oscillations in a fixed boundary condition. (Consider
the example of a nematic liquid crystal in which the director is held parallel to a vio-
lently oscillating outer normal due to boundary roughness.) These authors establish
that at an interior point the microstructure boundary conditions may be effectively
replaced by a Robin type (weak anchoring) boundary condition associated with a
boundary potential dependent upon boundary roughness.

6.6.8 Surface Potentials

A frequently employed and straightforward assumption that overcomes difficulties
mentioned in previous sections requires the field © to minimise the total energy now
defined to be the energy of the body plus a surface energy. Relevant constitutive
laws must be postulated that are valid for surface effects, and appropriate objectivity
conditions satisfied.

6.6.9 Free Boundary

Other difficulties, so far unresolved, occur when the surface or boundary is unknown,
that is when we are dealing with a free boundary value problem. The boundary,
for example, could be determined by a phase transition, with parts of the body
consisting of material in one of several possible phases. The body itself could be
immersed in an environment composed of the same material but in a different phase.
The complete description of the body and its microscopic features then additionally
requires constitutive laws to be postulated.

6.7 Conclusion

These introductory notes are intended to facilitate and encourage wider access to
the literature of the geometric treatment of microstructure. Although there has been
little or no attempt to include new material, it is hoped that sufficient indication is
provided of the rich diversity of challenging problems awaiting full investigation.
Exclusion from present consideration definitely does not imply a topic is unworthy
of study.
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Accordingly, we list in no particular order some important topics purposely omit-
ted.

1. Explicit development of new microstructure theories capable of practical testing,
or leading to the creation by chemists, physicists, and other similar experimen-
talists, of new particles and materials. New theories could also assist biologists
to discover corresponding naturally occurring materials. Quasi-crystals, although
strictly a mixture and not a continuum with microstructure, has followed a similar
development.

2. Application of the general equations to recover the special theories outlined in
Sect.6.2. Such particularisation is discussed in the tract [Cap89].

3. Discussion of linearisation, its implications, and indeed its precise meaning in
the present context.

Linearisation might be possible for manifolds with small curvature as in the exam-
ple of a linear elastic shallow shell. For plates, the theory can become completely
linear. In general, however, embedding into a linear space is required.

4. Exploration of ephemeral materials (see [Cap08]), Navier-Stokes-«3 continua

(see, for example, [CF11, CFS12]), hypocontinua [Cap10], and other theories for
which the axiom of permanent material elements is contravened (see Sect.6.3).
Indeed, in such theories the micro-constituents in a given neighbourhood (loculus)
and at a given instant may later disperse to several different locations violating
the notion of a material element. Also omitted is an examination of gyrocontinua
(see [Cap03, CMO04]), and of the double pendulum and its generalisations, along
with other simple examples.
Among other theories not considered are the important class of continua that forms
a category intermediate to those envisaged in Sect. 6.3. Although each neighbour-
hood at a given instant has a permanent number of microstructural elements, each
such population contains subsets requiring separate identification as points on the
manifold. When the subsets become too large, and the microstructural behaviour
too complex, rigorous averaging procedures are required to reduce the number of
variables.

5. Defects and similar singularities including dislocations, while only having been
briefly mentioned, are extensively studied in the literature. See, for example,
[ES14] and [YG14] where other contributions are quoted. Other pertinent con-
tributions include [Eps14] and [AF14], but especially for static distributions of
dislocations the literature is too vast for meaningful citation in the present chapter.

6. A comprehensive account of constitutive relations for microstructure is lack-
ing, including the extension of the general representation of the micro-stress
derived in Sect. 6.5.1. Of relevance in this respect is the contribution by Gotay and
Marsden [GMO92] that obtains a gauge-invariant, physically meaningful, stress
energy momentum tensor using fluxes of a multidimensional momentum map
across hypersurfaces in spacetime.
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Chapter 7
On the Geometry and Kinematics
of Smoothly Distributed and Singular Defects

Marcelo Epstein and Reuven Segev

Abstract A continuum mechanical framework for the description of the geometry
and kinematics of defects in material structure is proposed. The setting applies to a
body manifold of any dimension which is devoid of a Riemannian or a parallelism
structure. In addition, both continuous distributions of defects as well as singular
distributions are encompassed by the theory. In the general case, the material structure
is specified by a de Rham current 7 and the associated defects are given by its
boundary 97 . For a motion of defects associated with a family of diffeomorphisms
of a material body, it is shown that the rate of change of the distribution of defects is
given by the dual of the Lie derivative operator.

7.1 Introduction

We present below a mathematical framework for the description of the geometry and
kinematics of material defects from the continuum mechanics, macroscopic, point of
view. In particular, the proposed framework applies to both continuously distributed
as well as singular defects and is formulated on general manifolds devoid of any
metric or a parallelism structure.

Material defects, are frequently described by relative translations of neighboring
points in the material (e.g., [KA75, LK06, Sah84]). Sometimes a global point of view
is adopted (e.g., [Cer99]) and defects are viewed as obstructions to the construction
of a global inverse deformation. Another frequent approach (e.g., [Kon55, Nol67,
Wan67, EE07]), views the existence of defects, or inhomogeneities, as an inherent
consequence of the constitutive relation for a body. Following [ES12], the present
framework differs from the first point of view above in the sense that the analysis
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involves no kinematics of the body in space. No deformations are considered and
only the material structure of the body manifold is studied. The present approach
differs from the theory of inhomogeneities in the sense that rather than associating
the defects with a particular constitutive relation, e.g., the relation between the stress
and the deformation, the material structure is given explicitly. (See somewhat similar
approaches by Toupin [Tou68] and Eringen and Claus [EC70] who use oriented, or
micromorphic media.) For example, itis assumed that a family of Bravais hyperplanes
is given by explicitly prescribing, at each point in a body, a hyperplane as well as the
density of these hyperplanes. In other words, one specifies a distributed analog of the
Miller indices for a family of hyperplanes. Mathematically speaking, if the body is
a manifold .# of dimension n, we consider in the continuous case a distribution, an
(n — 1)-subbundle of the tangent bundle, which is induced by a differential 1-form
¢. Material structure of dimension r # n — 1, will be prescribed by a p-form for
p = n — r. Singular material structure of dimension r is given in terms of a de
Rham r-current 7', a generalized (n — r)-form. Thus, for a 3-dimensional manifold,
the interesting cases are r = 2 that gives the Bravais planes at the various points
and r = 1 that gives the inclination field of directors for the theory of disclinations.
It is observed that other descriptions of the geometry of defects based on explicit
geometric specification of material structures are available in the literature, e.g.,
[DPI1].

In the deformation theory of dislocations, the Burgers vector is defined using the
gap that opens up between the positions of neighboring points. Here, one considers
the total amount of hyperplanes that are penetrated, in one particular orientation,
when a closed loop is followed. This motivates the definition of the distribution of
defects as the exterior derivative dg of the structure form ¢ in the continuous case
and as the boundary a7 of the structure current 7 in the singular case.

An attempt was made here to introduce some of the relevant background on differ-
ential forms and de Rham currents. In Sect. 7.2 we briefly review the subject of dis-
tributions, subbundles of the tangent bundle, induced by a decomposable differential
form and the results pertaining to the submanifolds they may induce. In Sect. 7.3 we
use these results to introduce structure p-forms and the corresponding exterior deriv-
atives that represent the associated smoothly distributed defects. Section 7.4 presents
the basic notions concerning de Rham currents and Sect.7.5 uses these notions to
introduce the singular counterparts of structure forms and continuously distributed
defects. The simple cases of 0-dimensional material structures and n-dimensional
material structures are considered in Sect.7.6. Sections 7.7 and 7.8 present the phys-
ically relevant cases of dislocations and disclinations, and some examples are given.
Thus, all the cases relevant to the 3-dimensional space are covered. Section 7.9 con-
siders the motion of material structure and the associated defects, and the rate of
change of the motion. Both the continuous and singular cases are discussed for the
case where the material structure is carried with a family of diffeomorphisms of the
body manifold. Finally, we give an example in which a smooth distribution of defects
evolves into a singular defect.
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7.2 Forms and Hypersurfaces

Defects are considered in this article to be obstacles to integrability. Consider a family
Z of (n —r)-dimensional oriented hypersurfaces in the body manifold .#. We view
the family .% as a given material structure in the body. For example, a family of
2-dimensional surfaces in a 3-dimensional body may be thought of as a family of
lattice layers. Let . be an (r + 1)-dimensional submanifold with boundary (see
[p. 127][Mic08]) in the body manifold. The “amount” of hypersurfaces belonging
to .% that cross the boundary 9.7, if different from zero, indicates the generation or
annihilation of such hypersurfaces in .. We view such creation or annihilation of
material hypersurfaces as an indication for the presence of defects in ..

In this section, we describe the notions from exterior calculus used for the descrip-
tion of what is referred to above as a “family of hypersurfaces” in the body mani-
fold . .

We recall [Ste83, pp. 16—17] that an r-dimensional subspace W of a vector space
V is associated with a decomposable r-vector v which is unique up to a scalar factor
such that u € W if and only if v A u = 0. In the sequel we will use this property
for subspaces D} of the various cotangent spaces 7, .#, x € ./ of dimension
p = n —r.Itis observed that each D} determines a unique r-dimensional subspace
Dy = (D)t ={v e Tyl | o(v) = 0, forall o € D¥}. Thus, a p-dimensional
subspace D} C T).# is determined by a decomposable p-covector (alternating
tensor) ¢.

We will use the notation v w for the contraction of a p-covector @ with a vector
v, a (p — 1)-covector satisfying

vaoWi, ..., Wp_1) =0, Wi, ..., Wp_1) =0V AW A---Awp_q). (7.1)
Let w be a g-covector, g < p, such that ¢ A @ = 0. Then, recalling the identity
vilgAw)= i) Ao+ (—D"p A (vaw), (7.2)
for any tangent vector v, one has,
oA (Viw)=0 (7.3)
for every vector v that annihilates ¢ in the sense that v1¢ = 0. In the particular case
q = 1, and assuming ¢ # 0, one has w(v) = 0.

Conversely, if w(v) = 0 for every v € Dy,

i) Aw=0 (7.4)
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for every covector w such that ¢ A @ = 0. Since ¢ is decomposable, there is a basis
{o!, ..., ¢"} of Ty.# such that ¢ can be expressed as ¢ = ¢! A --- A ¢”. Hence,

p
vap =D (=D A A A AP (7.5)
i=l1

Forany j =1,..., p, ¢ A ¢/ = 0; hence,
0=ap) Al = (=DP T Wipt Ao AP, (7.6)

It follows that v/ = 0, for all j=1,...,p,sothat vop = 0. We conclude that
v € D, if and only if
vap =0 (7.7)

anddimDy, =r =n — p.

Remark 7.1 Clearly, in a dual procedure and as given in [Ste83, pp. 16-17], one
could start with a simple r-vector v at a point x € .# and define the subspace
D, = {v € Ty | v Av = 0}. Then, the orthogonal subspace is given by D} =
o e T} 4 | a(v) =0, v e Dy}. For an r-vector v and a k-covector w, with r > k,
we use the inner product notation v w, an (r — k)-vector defined by,

p(oLw) = (¢ A w)(v), (7.8)
for every (r — k)-covector ¢. The condition that « € D} may then be written as
vLa =0. (7.9)

A smooth decomposable differential p-form ¢ will induce therefore a distribution
D on ./ of dimension r = n — p. Here, by a “distribution” we mean a subbundle
of the tangent bundle rather than a Schwartz distribution. Conversely, a distribution
D of dimension r = n — p will induce a collection of forms such that if ¢ induces
D, so would the form ag for any positive, real valued function a on .Z .

Letvi,...,v, € Tx.#. We interpret ¢(x)(v1, ..., vp) as the amount of hyper-
planes belonging to the distribution that cross the infinitesimal p-dimensional ori-
ented element (a p-dimensional parallelepiped or a simplex) generated by the vectors
V1, ..., Vp.Inparticular, if forsomei =1, ..., p,v; € Dy,sothatvie(x) = 0, this
quantity will vanish as the hyperplanes and the subspace generated by vy, ..., v,
intersect on a subspace of dimension greater than zero. Multiplying the form ¢ by
a positive function a, the resulting form ag is interpreted as describing a family of
hyperplanes which are parallel to those represented by ¢, and whose density is a
times larger.
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A distribution does not represent necessarily tangent spaces to a family of hyper-
surfaces, as we wish to consider. It is recalled that an r-dimensional submanifold .
is an integral manifold of the distribution if 7. = D, for all x € .. A distrib-
ution D is referred to as involutive if at each x € .#, D, is the tangent space of
an r-dimensional integral manifold. The Frobenius theorem implies (e.g., [AMRSS,
pp. 441-442]) that the distribution D is involutive if and only if there is a 1-form g
on .# such that

dp =B Ao (7.10)

Consider the form ¢, = ag for a function a. Recalling the identity
d(u Av)y=du Av+ (=D Ady, (7.11)
for the g-form p and a form v over .#, one has
do, =da A ¢ + ade. (7.12)

Assume that condition (7.10) holds. Then, if the function a is a solution of the
equation da = —ap, (7.12) implies that dp, = 0. Conversely, assume that dg, = 0
for some positive function a. Then, the one form 8 = —da/a satisfies the integrability
condition (7.10). We conclude therefore that the distribution induced by a form ¢
is involutive if and only if it has an integrating factor, a function a on .# such that
d(ap) = 0. Thus, for a form that induces an involutive distribution, the density of
the hyperplanes at each point may be readjusted so that the exterior derivative of the
resulting form vanishes. In particular, if dp = 0, the distribution induced by ¢ is
involutive.

Remark 7.2 Let D be a distribution induced by a simple r-vector field v represented
locally by vi A --- A v, for smooth vector fields vy, ..., v.. Then, using the Lie
bracket notation, the condition that the distribution is involutive is that [v;, v;] is also
a section of D foralli, j = 1, ..., r. It is noted, however, that we did not write a
condition yet on v that will be equivalent to the condition dg = 0. The theory of de
Rham currents provides the required tools for writing such a condition.

7.3 Structure Forms, Defect Forms and the Corresponding
Frank’s Rule

From the point of view of the material structure of bodies, any decomposable p-form
represents a distribution of hyperplanes, Bravais hyperplanes, at the various points
in the body while an involutive distribution represents a collection of submanifolds
at the various material points, i.e., hyperplanes at various points may be assembled
to form tangent spaces of n — p = r-dimensional submanifolds—the material or
Bravais hypersurfaces. We will refer to such decomposable forms as structure forms.
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The material structure described by an involutive structure p-form may still con-
tain defects. Such defects are due to the creation or loss of material hypersurfaces in
some regions in the body. Let .# be an (r + 1)-dimensional manifold with a bound-
ary. The creation or loss of material hypersurfaces inside .’ will be reflected by the
integral of the structure form over the boundary, d.%. Note that the integrals of a
form over . and its boundary make sense even if the form is not involutive. In this
case, the integral over the boundary may naturally be interpreted as the creation of
hyperplanes rather than hypersurfaces.

Stokes’s theorem asserts that

/ <p=/ de. (7.13)
9.7 S

Thus, if the exterior derivative d¢ of the structure form vanishes, the total creation or
annihilation of material hypersurfaces within any (r+1)-submanifold.”, as reflected
in the total amount of hypersurfaces that cross the boundary 9.#, will vanish. In
other words, for a decomposable form ¢ satistfying (7.10), which, by the Frobenius
theorem, induces a family of hypersurfaces, the stronger condition, dp = 0, i.e., ¢
is closed, implies that the family of hypersurfaces have no sources or sinks. This
suggests that dg is the measure of the sources of material, or Bravais, hypersurfaces
inside the body .# —the measure of the distribution of defects. We will refer to dg
as the defect form corresponding to ¢.

It is recalled that the skew symmetry of the exterior derivative combined with the
symmetry of second derivatives of functions implies that for any form «,

d’a = d(da) = 0. (7.14)

Let v = dg be the defect form associated with the structure form ¢. It follows,
therefore, that 1y must satisfy the condition

dy = 0. (7.15)

This compatibility condition is the analog of Frank’s rules for defects of any dimen-
sion on manifolds, as long they are smoothly distributed.

7.4 De Rham Currents

Let ¢ be adecomposable p-covector at a pointx € . . It follows that one may choose
abasis {e;},i = 1, ..., n, of Ty.# with dual basis {¢'} such thatp = @' A--- A @P.
Let w be an (n — p)-covector such that ¢ A @ # 0. Then, @ must be of the form
o =apPT' A A" +a, with ¢ A @ = 0, for some nonvanishing number a. The
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subspaces induced by ¢ are spanned by {e, 11, ..., e,}. Let{vq, ..., v,} ben vectors
in Ty and consider g Aw(vi,...,vy) =@ AwWi A---Av,). Then, vi A--- Ay,
must be of the form

VIA---Av,=bei AN---Ney, (7.16)

for some real number b. The fact that the two forms annihilate vectors in the respective
subspaces implies that

PAOWVIA--Avy) =gler,...,epwbep 1 A Ney) =ab. (7.17)

This quantity, as well as the identical ((vi A --- A vy)L @)(w), is interpreted as the
amount of cells formed by the hyperplanes induced by the forms ¢ and w contained

in the n-parallelepiped determined by vy, ..., vj,.
Accordingly, for a p-form ¢ and an (n — p)-form w, one may interpret the integral
/ AW, (7.18)
M

as the total amount of cells in .Z .
Therefore, one may consider the linear operator 7, acting on (n — p)-forms by

Ty(w) =/ Y Aw. (7.19)
M

whose action on an (n — p)-form w gives the total amount of cells corresponding to
¢ ANwin A .

A linear functional 7, acting on differential forms as in (7.19) is a typical simple
example of a de Rham current.

A de Rham r-current is a linear operator acting on the space of smooth r-forms
with compact supports. A de Rham current 7T is required to be continuous in the
following sense. Let (wy) is a sequence of r-forms whose supports are all contained
in a compact subset of a coordinate neighborhood and whose local representatives as
well as all the partial derivatives of all orders of the local representatives tend to zero
uniformly as k — oo. Then, T (wr) — 0. Thus, for the case »r = 0, T is a Schwartz
distribution on the manifold .# . For r > 0, currents contain additional geometric
properties in comparison with Schwartz distributions.

In contrast with the example above where the r-current 7, was induced by a
smooth (n — r)-form ¢, currents may exhibit singular behavior. As a typical simple
example, an r-dimensional submanifold . C .# induces a current T defined by

Ty(w) = / w (7.20)
5%
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for every r-form w with compact support. In comparison with (7.19), the current 7 &
may be viewed as the limit of currents of the form T;, where the support of ¢ shrinks
to a small neighborhood of .#” and the value of its components tend to infinity in that
neighborhood. This process may be made rigorous by the process of regularization
(e.g., [Der84, pp. 61-70]) which is a generalization of the analogous process for
Schwartz distributions.

A current may be restricted to the domain of a chart on . by restricting its action
to forms supported in the domain of that chart. An r-form w which is supported in
the domain of a chart, may be expressed using real valued functions w,, as

® =) w,dx", (7.21)
()

where 1 is an increasing (indicated by the parenthesis around it) »-multi-index taking
values in the range 1, ..., n. By linearity,

T(w) = > T(wpdx") = > TH(wy). (7.22)
() ()

where T'* are the Schwartz distributions, O-currents, so that T#(w;) = T (w,dx").
For an m-vector field v and an r-current T, consider the (r + m)-current T A b
defined by

(T ANo)(w) =T (vow). (7.23)

Here, in analogy with (7.1) v w is the r-form such that for any r-vector field tv,
viw() = w(v A o). (7.24)

Then, the restriction of a current 7' to a chart with domain U C .# may be represented
locally by distributions 7% in the form

3
Ty =ZTA/\W. (7.25)

This representation views a current as a generalized multivector field which is the
approach of [Whi57, p. 199]. Using a partition of unity, a current may be represented
by its restrictions to the domains of charts.
For a smooth m-form « and an r-current T with r > m, the (r —m)-current 7' «
is defined by
TLa(w) =T(x N w). (7.26)
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Using this notation, de Rham’s representation of currents may be expressed as

follows. Let {7, }, where p is an increasing multi-index with u; = 1,...,n,
i =1,...,n—r,beacollection of n-currents in a coordinate neighborhood. Consider
the r-current
T = T, dx", (7.27)
()
so that
T(w) = Tu(dx" Aw). (7.28)

()

Using the linearity of the currents, it may be shown that the restriction of a current
to a coordinate neighborhood may be represented in the form (7.27). It is noted that
in (7.27), currents are viewed as generalized forms.

Let T be a current which is given in a coordinate neighborhood in .# by the single
Schwartz distribution 70 and an r-vector field v in the form

T=T"nv. (7.29)

Then, Te o = 0 for every 1-form « that takes values in the distribution D* which is
orthogonal to that induced by v. Conversely, let D* be a p-dimensional subbundle of
T*.# and assume that for a current 7', T o = 0 for every 1-form « valued in D*.
Then, T is of the form (7.29) where v is a multivector that induces the distribution
D which is orthogonal to D*.

The boundary of an r-current 7 is the (» — 1)-current 97" defined by the condition

0T (w) = T (dw). (7.30)
Consider the r-current T;, defined in terms of a smooth (n — r)-form ¢ as in (7.19).

Then, using (7.11), Stokes’s theorem and the fact that @ has a compact support in
A, one has

0Ty(w) = / o ANdw
M

= (=D"" |:/ d((p/\a))—/ d(p/\a)]
M M

:(—1)""[/ (p/\a)—/ d(p/\a):|
0. M

=(—1)"—’+1/ dg A w.
M

(7.31)
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It follows that,
AT, = (—1)" "1y, (7.32)

For an r-dimensional submanifold with boundary .7, the boundary of the current
T & defined in (7.20) satisfies

Ty (w) = Ty (dw)

= d
/y @ (7.33)
- / o,
9.7
Hence,
0Ty =Ty (7.34)

which motivates the terminology used.
Finally, since for every form w, d?w = 0, one has 3°T(w) = (3T (w)) =
T(dzw), and we conclude that
3°T =0, (7.35)

identically.

7.5 Structure Currents, Defect Currents and Frank’s Rules

It is concluded from the previous section that de Rham currents may be thought of
as generalizations of smooth differential forms to the singular, non-smooth, case,
or alternatively, as generalization of smooth multivector fields to the singular case.
In addition, the boundary of a current generalizes the exterior derivative of a form.
Thus, an r-current will be the singular counterpart of a p = n — r structure form
and will be referred to as a structure current. Accordingly, for a structure current 7',
the boundary 07 will represent the geometry of the defects and will be referred to as
the defect current. The material structure represented by the current 7' will be defect
freeif 07 = 0.

We recall that the constancy theorem for currents asserts that on a connected
manifold .#, a closed n-current T, i.e., T satisfies d7 = 0, is represented by a
constant ¢ in the form

T(w) = c/ o. (7.36)
M
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One may apply this to the de Rham representation of currents (7.27) as follows. We
observe first that by (7.27), one has

AT () = T(dw) = > T, (dx" A dw)
(D]
= (=) Z T, (d(dx™ A w))
()
= (=1)"" Z AT, (dx" A w)
(1)
= (=1)"" Z dT, L dx(w),
(1)

(7.37)

where (7.11) was used in the second line. It follows that the boundary of the current
T can always be represented by the (n — 1)-currents 97, in the form

0T = (=1)"" > 9T, dx’. (7.38)
(w)

Assume that the current 7 is given the form
T=Tog=To(p' A--Ag"") (7.39)

for an n-current Ty and a collection of n — r linearly independent1-forms ¢', i =
1,...,n—r,spanning a subbundle D* of T*.# . The current T can thus be associated
with the distribution D*. In particular, let ¢ be any 1-form valued in D*, then, for
each (r — 1)-form w,
(Tey) (@) = (Tor ) (¥ A w)
=Tolp AN Aw) (7.40)
=0.

Thus, T ¢ = 0.

Conversely, assume that for a general current 7, we are given that T ¢ = 0 for
every section v of a subbundle D*. We consider the restriction of T to a coordinate
neighborhood in which D* is induced by the form ¢ = @' A --- A ¢~ in which
gol, oo, @ span T*. 4 . Writing T = Z(A) T (p)‘, itfollows that for any (r —1)-form
w and all sections ¥ of D*,

0=(TLy)(w)

=D (T M) ()
» (7.41)

=2 @ AV Aaw).
)
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Since (pl'“”_r A = 0, it follows that 7),, = O forall A # 1,...,r. Hence, T =
Ty nri (@' A - A @" ). We conclude that Ty = 0 for every section of a
subbundle D* C T*.#, if an only if

T =ToLgp (7.42)

for an n-current Ty and an (n — r)-form ¢ associated with D*. We will refer to such
a current as a decomposable current. It is observed that the condition 7o ¢ = 0
for every section ¥ of D*, induces an ideal on the collection of forms in the sense
that for each g-form «, with g < n —r — 1, Tuy = 0 for all ¥ implies that
T (W Aa)=(TLy) Aa =0 also.

Finally, if § is a current representing the structure of defects, the identity 3°T = 0
implies that S = 0, necessarily. This is the generalization of Frank’s rules for a
possibly singular defect structure.

7.6 The Simple Cases

In this section we consider the simple, possibly trivial, cases of n-currents and 0-
currents, where it is recalled that O-currents are Schwartz distributions on the mani-
fold . .

7.6.1 0-Forms, n-Currents and Nonuniformity

A 0-form ¢ on ./ is areal valued differentiable function. One may interpret the form
@ as a field describing a certain intensive property in .# such as the temperature field,
a certain potential field, etc. A O-form does not induce nontrivial hyperplanes and
so no real material structure is represented by ¢. In addition, the condition dp = 0
is not really a condition of integrability as ¢ cannot be the exterior derivative of a
form. However, the nonuniformity of ¢, implied by dg # 0 may still be regarded
as a representation of a field of defects. This is manifested more clearly in the case
where we consider currents. The currents under consideration will be of order n.

Consider for example an n-dimensional submanifold with boundary & C ..
Let T4 be the n-current in . given by

Ty(w) = /ﬁ . (7.43)

It follows from (7.34) that 0T () = Ty (e). This identity suggests that the bound-
aries of bodies be interpreted as defects. The condition 32T = 0 simply implies in
this case that the boundary of 0% vanishes.
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7.6.2 Schwartz Distributions: The Case of 0-Currents

Differential forms of degree n may be integrated over bounded subsets of the material
manifold .#. As such, from the physical point of view, they represent densities of
extensive properties such as the mass density or electric charge density. Such forms
may be paired with smooth O-forms of compact support, that is, with test functions
over .7 . Thus, if p is an n-form, one may consider the O-current 7, given by,

Ty(p) = / pPY (7.44)
Y

for every test function ¢. Evidently, the product with the test function ¢ cuts off the
integrand so that if p is measurable, the integral is well defined. The test function ¢
may be interpreted as a potential so that ¢p may be interpreted as the corresponding
energy density.

An (n — 1)-form o induces another construction of a O-current 37, by

anw:nmm:/aAw. (7.45)
M

Itis noted that T, is a 1-current induced by the form o . If we interpret the test form ¢
as a potential, dp may be interpreted as (minus) the corresponding force field and o
may be interpreted as the flux field for some extensive property under consideration,
so that o A dg is the density of power.

For any n-form p, one has dp = 0. In analogy, O-currents have no boundary.
Hence, no defects may be associated with such densities. Nevertheless, we may
interpret the n-form p as the void fraction or density of vacancies in the body.

Singular O-currents are singular distributions defined on the manifold .# . Thus, in
addition to currents induced by n-forms as in (7.44), one may consider distributions
such as the Dirac measure 8, at a point x € ., i.e., the current defined by

8x (@) = ¢(x) (7.46)

for any test function ¢. In addition, for a O-current 7 and a vector field w, one may
consider the O-current d(w A T') which acts on test functions by

dwAT)(@) = (wAT)(d) =T (dpw)). (7.47)

For example,
Iw A 8x) () = 6x(dp(w)) = (dp(x))(Ww(x)) (7.48)

which is the directional derivative of ¢ at x in the direction of w(x).

Singular O-currents may be interpreted as concentrated vacancies or inclusions.
For example, (dg(x))(w(x)) may be interpreted as the power expended by the force
de(x) for the velocity w(x) of the concentrated inclusion.
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7.7 Dislocations

The description of smooth distributions of dislocations in terms of differential forms
on general manifolds and the generalization to singular dislocations using de Rham
currents are discussed in our previous paper [ES12]. Here, following the general
introduction below and reviewing the example of an edge dislocation, we will con-
sider the example of a screw dislocation which we did not consider in [ES 12]. Finally,
we will demonstrate how the Frank rules follow from the condition 827 = 0.

7.7.1 The Geometry of Dislocations

Continuous distributions of dislocations in the body .# are associated with the
integrability issue of a 1-form ¢. Each 1-form is trivially decomposable and as such, it
induces ateach x € .# ahyperplane D, which we interpret as the Bravais hyperplane
at that point. Multiplying ¢ be a positive function a will have the effect of changing
the density of the Bravais hyperplanes. In fact, the covector ¢ (x) is intimately related
to the Miller indices for the Bravais planes at x. It is natural therefore to refer to the
I-form ¢ as the layering form.

Rather than considering the Burgers vector obtained by tracing a loop in the non
dislocated body and evaluating the vector needed to close the loop in the dislocated
state, we envisage an integration over a closed loop of the form ¢ which is interpreted
as the total amount of hyperplanes that penetrate the loop in one particular orientation.
It is noted that, being a 1-form, the distribution induced by ¢ is not necessarily
involutive. For a smooth layering 1-form ¢, the distribution of dislocations is modeled
by dg. In case dg = 0, locally, by the Poincaré lemma there is a function u such
that w = du. We view u as a labeling function for the Bravais hypersurfaces. For
additional examples to those given below, see [ES12].

For the singular case, the layering is modeled by an (n — 1)-structure current 7
and the dislocations are described by its boundary 97 .

7.7.2 Edge Dislocations

Assume that .# is an n-dimensional manifold without boundary and let . be an
(n — 1)-submanifold with boundary of .#. We consider the (n — 1)-structure current
T & given by (7.20). Then, as shown in (7.34), the dislocation (n — 2)-current is given
by Ta B

As aconcrete example, consider the case where .7 is an oriented manifold without
boundary that may be covered by a single chart. Let x be coordinates on ./ such
that their order agrees with the orientation of .# . Without a loss of generality we may
assume that for some point xo € .#, the coordinates x(i) =0, foralli =1,...,n.



7 On the Geometry and Kinematics of Smoothly Distributed and Singular Defects 217

Let
S ={xes|x'=0,x><0) (7.49)

equipped with the orientation induced by the form dx? A dx3 A --- A dx”. The
current 7 & represents an added or a removed “half hyper-surface”. Then, 07y =
Ty, where 3.7 = {x € .# | x' = 0, x> = 0}, oriented naturally by the form
dx3 A ... A dx", is the singular dislocation submanifold. As expected, for the case
n = 3 the dislocation submanifold is the x3-curve.

7.7.3 Screw Dislocations

We present here an additional example, that of a screw dislocation.

Let L C R3 be given by L = {(0,0} x R} = {(0,0,7) | z € R} and let D C R3
be given by D = R3\L = {(x,y,2) € R? | (x,y) # (0,0)}. It is noted that on
D we may use a cylindrical coordinate system (r, 6, z), where we take the domain
[0, 27) for & without using a proper atlas on the unit circle.

Consider the layering 1-form ¢ on D defined by

b
¢ = ——df +dz. (7.50)
21

Evidently, as its components are constants, ¢ is a closed form. It thus follows from
Poincare’s lemma that locally ¢ is exact. Since D is not contractible to a point, ¢ is
not exact globally. In fact, in the open set D\{(r, 6, z) | 6 = 0}, ¢ = dF for the real
valued

bo
F(r,0,z2) =——+z (7.51)
2
whose level sets b9
z=—+C, CeR (7.52)
2

describe spiraling screw threads of pitch b.
Forany r > 0,1let S,; = {(x,y,2) € R3 | xz 4+ y2 =r z= [} be the circle of
radius r situated at z =/ and let: : S,; — D be the inclusion. Then, for example,

/ ¢ = / *(p)
Sr,l Sr,l

b
_ / LY (7.53)
Sy 2

= —b.

(It is observed that (*(¢)(3/30) = ¢(1:(3/30)) = ¢(3/30) = —b/27.)
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We now consider the structure 2-current 7;, in R3, given by
Ty(w) = / YA (7.54)
D

for any 2-form w on R? with compact support. In order to determine the associated
geometry of the dislocation, we examine the defect current, the boundary 97,. For
any 1-form o, we have,

0T, (@) = T,(da)
= d
/D Ao (7.55)

:—/d((pAa)+/d(pAa.
D D

Since dp = 0 in D, we conclude that
0T, (@) = —/Dd(go A ). (7.56)
Let Ce = {(x,y,2z,) € R} | x? + y? < £2} and let D, = R3\C,.. We may write
0T, (o) = —/Dd(go Aa) = _c}ii%/pg d(g A a). (7.57)

Now it is noted that D, is a manifold with a boundary. In fact, setting S = {(x, y) €
R? | x2 4+ y2 = ¢2}, 9D, = S, x R. We may therefore use Stokes’s theorem in
(7.57) and obtain

0Ty (a) = _f}i—{r(l)/em Flo A a), (7.58)

where (*(¢ A «) is the pullback under the inclusion ¢ : 3 D, — D, which is simply
the restriction of ¢ A « to vectors tangent to d Dy.

A 1-form o is represented by & = at,dx + oy dy + o, dz for the smooth functions
oy, Ay, and o, defined on R3. In D, the form « may also be represented using
cylindrical coordinates as & = o, dr + apd6 + a.dz. Since aydx + aydy = o,dr +
apdf, using x = rcosf, y = rsin6 and

dax ax dy ay
dr = Zar+ Zao. dy = 2ar + 2as, 7.59
=T g Y= g (7.59)

one has
ag = r(—oy, sinf + oy cos 0). (7.60)
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The restriction to d D, satisfies

b
Fo Aa) = (poa; — @ a9)d0 A dz = (—Eaz — (19) do Adz, (7.61)

and it follows that

© b
0Ty(a) = 81in%) dz |:/ (gaz + Olg) d91| ,
— —00 ;

00 b (7.62)
= dz {li — do |t .
[l [ (Groven) ]
Examining the limit in the second line of (7.62), we first note that
lim apdf = lim e(—oay sin @ + o, cos 0)d6,
e—0 Se e—0 Se (7.63)

=0,

since oy — ay(x =0,y =0,2), 0y = ay(x =0,y =0,z),as & — 0 (and thus
are independent of 6). Moreover, the integrals of the trigonometric functions over
the circle vanish. In addition,

b
lim/ —oa,df = bo; (0,0, z), (7.64)
e—>0 g, 21
and one concludes that
o0
0Ty(a) = b/ (0,0, z)dz. (7.65)
—0Q

If we assign the natural orientation to L = {(0,0)} x R C R3, we may use T to
denote the 1-current given by

TL(a)z/Lﬁi(a). (7.66)

Hereij : L — IR3 is the natural inclusion so that for any 1-form o = a,dx +oaydy+
a.dz, ij (@) = a;dz. Thus, we may write the current as

T, = bTy. (7.67)
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Remark 7.3 Using the same notation as above, consider the case where instead of ¢
given in (7.50) one has the 1-form ¢’ given by

, b
¢ = ——dé. (7.68)
2

Since ¢’ is annihilated by the vector space spanned by the base vectors d/9r and
0/0z, the layers induced by ¢’ look like the pages of a book spread evenly in all
directions. If we follow the same steps as above we obtain

b
o' Na = —Z—(arde Adr + a,df A dz), (7.69)
T

so that b
H(@' A) = ——a,df Adz. (7.70)
2

If follows that 97,y = 97T, This observation may be viewed as follows. Let Ty, be
the current induced by the form dz. Then, since d?z =0, 0Tq4; = 0. As Ty =Ty —
(b/2m) g, it follows that T, = 97, . Alternatively, one may envisage a smooth
twist of R? about the z-axis under which the pages of the book are deformed into the
screw threads. Since our objects are invariant under diffeomorphisms, both layering
structures have the same dislocations. Thus for example, a similar observation will
hold if the pages of the book are not plane but are bent perpendicularly to the z-axis
forming the shape of a whirlpool.

7.7.4 The Frank Rules for Dislocations

If the 2-form 1 describes the continuous distribution of dislocations, the Frank rules
are induced by the compatibility condition dy» = 0. For the singular case, if an
(n — 2)-current R represents the geometry of the dislocations, the compatibility
condition that induces Frank’s rules is 9R = 0.

For example, let . be an (n — 1)-dimensional submanifold with boundary of .#
and consider the (n — 2)-current R so that

R(I/f)Z/ uy (7.71)
0.7



7 On the Geometry and Kinematics of Smoothly Distributed and Singular Defects 221

for some given differentiable function u defined on 9.%”. Then, the boundary 9 R is

given by
OR() :/ uda,
9.7

=/ d(uax) —/ du A «,
3.7 1.7
=/ uo —/ du A a,
2.7 1.7
= —/ du A «a.
0.7

Here, « is any (n —3)-form so for the three dimensional case « is any smooth function
of compact support. Since compatibility imposes the condition dR = 0, it follows
that for R to be a dislocation current, the function ¥ must be constant on 95 which
is Frank’s first rule.

(7.72)

7.8 Inclinations and Disclinations

Disclinations are viewed here as defects in the arrangements of 1-dimensional sub-
spaces, or directors. As in [Fra58] and [Cha77], this field may indicate the inclinations
of the optical axes of liquid crystals. The interpretation of disclinations as defects in
the orientations of the Bravais planes (e.g., [KA75]) may be viewed in some cases as
defects in the arrangements of the normal vectors to the respective Bravais planes.
Such cases can be described using the framework outlined below.

Thus, disclinations are represented as boundaries of currents of order 1. In the
smooth case such a current is represented by an (n — 1)-form ¢, the inclination form,
and the structure of the disclinations is given by the n-form d¢. It is noted that any
(n — 1)-form is decomposable. (See [Ste83, Sect. 1.V], and [SR03] for a continuum
mechanical application.) The induced distribution is necessarily involutive and the
1-dimensional integral submanifolds to which the directors are tangent may be easily
constructed as follows.

At each point x € .# where ¢(x) # 0, ¢(x) determines a unique 1-dimensional
subspace W, of the tangent space Tx.# by vig(x) = 0 for each v € W,. The
collection of subspaces W, forms a 1-dimensional distribution. The 1-dimensional
subspace W, may be determined as follows. Let 6 be a volume element on ..
Locally, & may be represented in the form

0 = 6pdx' A -+ Adx" (7.73)

for a positive real valued function 6y and ¢ may be represented locally in the form
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where a “hat” indicates the omission of an element. Then, there is a unique tangent
vector u such that w16 = ¢. If a vector u is represented by u = >". u'd/dx", then,
u 0 is represented by

n
U6 = Z(—l)"—leou"dxl Ao Adxl A Adx, (7.74)

i=1

Thus, as 8y # 0, there is always a vector field u satisfying u_160 = ¢ and its compo-
nents are given locally by

bo

If we select a different volume element, the only parameter that will change in the
equation above will be the positive number 8y and so the resulting vector will be in
the same one dimensional subspace. Thus, the form ¢ determines a unique oriented
1-dimensional subspace U, at each x such that ¢(x) 7 0. If no particular orientation
is chosen on . no orientation will be induced on U,. The space W, and U, are
isomorphic. Let 6 be a volume element and u the vector such that ¢ = u 6. Then,
any nonzerov € Uy isof the formv = au,a # 0. Thus,vi (us60) = aus(u10) =0,
because 0 (u, u, v3, ..., vy) = 0 for any collection of vectors vs3, ..., v,.

For an (n — 1)-form ¢ we interpret the distribution W of 1-dimensional sub-
spaces of the tangent space as indicating the inclinations of the directors in the body.
Multiplying the form ¢ by a positive number will affect the “density” of the directors.

Unlike the case of Bravais hyperplanes, inclination fields are always involutive,
i.e., at each point x € . there is a curve ¢y : (—&,&) — #, & > 0, such that
¢x(0) = x and the tangent vector to the curve satisfies

d& e W,. (7.76)
dr t=0

Since we have assumed that the form ¢ is differentiable, it follows that for a choice
of a smooth volume element 6, the representing vector field u is differentiable. Hence,
the theorems on the existence and uniqueness of the solutions of ordinary differential
equations imply the existence of the integral lines to the vector field u, i.e., at each
point x € .# there is a curve ¢, : (—¢, &) — A, & > 0, such that ¢, (0) = x and
the tangent vector to the curve satisfies

— u(x). (7.77)

An inclination form may be integrated over (n — 1)-dimensional submanifolds of
M . Let . be an oriented (n — 1)-dimensional submanifold of .# . Then,

Dy = / @ (7.78)
B2
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is interpreted as the total amount of directors penetrating the surface .. It should
be noted that @ o~ depends on the orientation of .#” and that the restriction of ¢ to a
point in . may be of the same orientation as . or the inverse orientation. Thus, for
a nonvanishing inclination form, the total @ &» may vanish which implies that each
of the integral lines penetrates .¥ in one orientation the same number of times that
it penetrates . in the opposite orientation.

For the inclination (n— 1)-form ¢, the distribution of smooth disclinations induced
is the exterior derivative, the n-form d¢. Thus, for a n-dimensional submanifold with
boundary # C ., letting . = A in (7.78), ;4 is interpreted as the total amount
of directors that penetrate 9.%.

Stokes’s theorem implies immediately that

quz/ do, (7.79)

so that @, 5 is the integral of the disclination field over Z. Figuratively speaking,
the disclination field represents the source term for the directors.

It is observed that for any given vector field one can label the integral lines by a
submanifold of dimension n — 1 of initial conditions (see [AMRSS, pp. 246-247]).
However, the vector fields induced by ¢ depend on the choice of volume element 6.
Thus, such labeling is not unique and the presence of disclinations will be reflected
by de.

An inclination (n — 1)-form ¢ induces a de Rham 1-current 7y, as in (7.19). In
the non-smooth case, we replace the inclination 1-form ¢ and the current it induces
by a general inclination 1-current T'. Inclination currents that are not given in terms
of smooth (n — 1)-forms represent singular, or concentrated, director fields as the
examples below illustrate.

Example 7.1 A non-coherent interface 1. Consider the locally integrable (n — 1)-

form ¢ in R" given by

dx' A ooandx™ !l forx e E’H,
p(x) = [ (7.80)

adx' Ao Adx™ Y, forx e R",

wherea € R,R"™ = {x e R" | x" < 0}, and R"" = {x € R" | x" > 0. The
inclination form ¢ induces a 1-current T, by

T(p(a))z/ ©Aw. (7.81)
]Rn

Clearly, the 1-dimensional subspace spanned by d/dx" annihilates ¢ (x) for all x for
which x" # 0. Thus, the directors are aligned in the x" direction.
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For any smooth compactly supported O-form « in R”,
0Ty(a) = / o A da
R»

=/ ¢Ada+/ﬂ+¢/\da (7.82)
n— R
= (=1"! [/ d(agp)—/ ad<p+/ d(oz(p)—/ ozdgo]
n— Rn— ]Rn+ Rn+
= (=" [/ a¢+/ tw]
oR"— IR+

where in the third line we used (7.11). Let P be the hyperplane in R” defined by
x" = 0 oriented such that P = dR"~ = —3dR"* so that Op = dx! A--- Adx""lis
the natural volume element on P. Let Tp be the O-current given by

Tp(a)z/aQP. (7.83)
P

We conclude that
AT, = (=1)" Ya — DTp, (7.84)

which is interpreted as a concentrated source of directors of magnitude @ — 1 which
is distributed over the x!, ..., x"~! hyperplane.

Example 7.2 A non-coherent interface 2. Consider the locally integrable 1-form
¢ in R" given by
f R""
o) = rre (7.85)
1, forx e R"~,

where ¢ and ¢; are uniform (n — 1)-forms in R"~ and @H, respectively. Letting
T, be the 1-current defined by

Ty(w) = / 0N w, (7.86)
it follows from (7.82) that

0Ty () = /Pa((ﬂl - ). (7.87)
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We conclude that the disclination current vanishes if ¢ and ¢, have the same restric-
tion to P, i.e., both forms have the same component relative to dx'' Ao AdxL
In particular, let v be a vector parallel to the x!, ..., x"~!-plane. Then, ¢, =
vadx! A --- A dx" is annihilated by the 1-dimensional space spanned by v and
all the components of ¢; that do not vanish correspond to basis elements of the form

dxl Ao Addb A A", k=10 -1
In this case, the directors corresponding to ¢, do notintersect the x!, ..., x”~-plane,

the component of ¢, relative to dx!' A --- A dx"~! vanishes, and

AT, (@) = /P ag;. (7.88)

Example 7.3 Anedge disclination. Let L be aconnected and oriented 1-dimensional
submanifold with a boundary of .#. Then, L induces a 1-current 7 by

TL(w)z/a), (7.89)
L

for all compactly supported smooth 1-forms w in .# . Using Stokes’s theorem, one

has
0Ty (o) =/da=/ o. (7.90)
L oL

Evidently, as dL is a 0-dimensional submanifold, and assuming it is not empty, it
may contain one or two points, each having either a positive or a negative orientation
while the other point, if exists, has the opposite orientation.

In the case where d L contains one point x; and assuming its orientation is positive,
one has dL(«x) = a(xp), representing an edge disclination originating at xg. This
will be the situation if .#Z = (—1,1)> c R3and L = {(0,0,2) | —1 < z < 0} so
that x; = (0, 0, 0). In this case the disclination does not terminate inside the body. In
the case where d L contains also the additional point x; having a negative orientation,
dL(a) = a(x) — a(xy) and the disclination terminates at x;.

Example 7.4 Directors emanating from a singular line. Using the notation intro-
duced in Sect.7.7.3 on screw dislocations, consider the inclination n — 1 = 2-form
¢ defined on D C R3 by

¢ =do Adz. (7.91)

The inclination form induces an inclination 1-current 7 on R3 by the right hand side
of (7.54). It is noted that in its domain of definition, dp = 0.
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To compute the disclination O-current 7', one observes that for any smooth func-
tion o, compactly supported in R3, (7.11) implies that

BT(a):/ d(a(p)—/ ade
D D
= lim /D dy)

= lim (o)
e—0 3D,

(7.92)

= lim adf Adz.
e—0 3D,

In analogy with the computations of Sect.7.7.3, one obtains

oo

AT (o) = 271/ (0,0, z)dz, (7.93)
Z

=—00

which we may write as
oT =2nTpudz. (7.94)

Thus, we have a uniform distribution of directors’ source along the z-axis.

7.9 Kinematics of Defect Distributions

In this section we consider the kinematics of the material structure and the distribution
of defects. Noting that material structure and the associated defects are viewed here
as intrinsic to a body and unrelated to the kinematics of the body in space, in the
following two subsections we consider the motion of material structure and defects
resulting from a family of diffeomorphisms of the body. (See [FS13] for another
application of the same mathematical notions.) In other words, the material structure,
as represented by a smooth form and its exterior derivative or ade Rham current and its
boundary, are carried with material diffeomorphisms. In contrast, the last subsection
proposes an example for an evolution of a continuously distributed material structure
to a singular one using a process which is the opposite of smoothing.

7.9.1 Smooth Evolutions of Structure Forms
and Continuously Distributed Defects

In order to study the deformation of structure forms and currents, we consider the
following setting. It is assumed that we are given a time dependent flow, or a smooth
evolution operator, ® : .2 x .# — ./ in the interval .# = [a,b] C R. That
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is, for each time instances ¢ and t, with t < 7, ¢, 7 € I, Oy + M — M
is a diffeomorphism and @;; o @; s = P . Fort > 1, &7, = <D;TI, which
implies that ¢, ; = I 4, the identity diffeomorphism. Evidently, the flow induces
a smooth homotopy 4 : [a, b] X M — # by h(t,x) = hy(x) = @ 4(x) so that
Dy = heoh, ' The time dependent flow induces a time dependent vector field
w: I x M — T.# by setting

d d
WX = - @) = he (b (x)), (7.95)

=t T=t

that is, w(z, x) is the tangent at the time t = ¢ to the curve
Crx(t) = Py (x) = he (b (X)), (7.96)

starting at x at time ¢ (see for example [AMRSS, p. 283]). Conversely, the flow is the
solution of the differential equation

0 d il _
Wi, @) = ——|  ax(® == e = —| el (x).
ot T=s ot T=§ ot T=s
(7.97)
Alternatively, setting t = a, the differential equation may be expressed as
d
wis, hs(x)) = —|  ho(x). (7.98)
dt T=s

Each diffeomorphism @ ; induces the pullback of forms @7 ; from Image 4, onto
Image &, . In particular, if w is an r-form with compact support in .#, the same holds
for its pullback @7, w.

Let ¢ be a (time independent) differentiable, material structure (n — r)-form.
Then, for each t € .#, the flow induces a time dependent (n — r)-form @;‘J(p
and in particular the form A ¢. It is also recalled that for any (n — r)-dimensional
submanifold . C .#, and a form ¢ having a compact support, one has [AMRSS,

p. 466]
/ hfw:/ . (7.99)
7 h{7}

This will hold in the particular case where the submanifold .7 is compact so that the
restriction of ¢ to . has a compact support. It is evident from the observations
above that rather than h*g, it is the pushforward h; *¢ = hi ' = h; ¢ that
represents the evolution of the structure form. Specifically, replacing i, by h; Uand

< by h,{.#’} above, one has
/ hi "¢ = / 0, (7.100)
h{S} S
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which indicates how the evolution of the structure form follows the evolution /4,{.7’}
of the submanifold. It is emphasized that we regard the flow @ to be associated with
the structure of matter only and has nothing to do with the motion in space of the
material points belonging to the body.

It is recalled that for each differentiable mapping f : .# — .4 between a
manifold.# and amanifold .4/, and a differential form ¢, one has f*(d¢) = d(f*p).
Thus, in our setting, #; *(dg) = d(h; *¢), that is, the smooth field of defects induced
by h; "¢ is obtained by the pushforward of the field of defects induced by ¢.

We also note that f*(« A B) = f*a A f*B [AMRSS, p. 420]. Thus, if T, is the
r-current on .# induced by ¢, then for any r-form w having a compact support on
M,

Ty(w) = / O A®
M
:/ h (¢ A w) (7.101)
M
:/ h "o Ah w.
M
It is concluded therefore that
T(p(h;“a)) = Tht—*(p(w). (7.102)
Next, we would like to compute the rate at which the structure form evolves under
the flow. In general, using the Lie derivative .Z;, w of a form w relative to the vector
field w; associated with the flow @ ;, one has [AMRSS, p. 372]

0

ot

PF 0 = DF (L, ). (7.103)

=S

In particular, for s = ¢ and for ¢t = a, the relation above specializes to

0

ot

0

| e =hi(Zo). (7.104)

=S

* =
70 =4,w,
=t

It is noted that the last two equations hold pointwise. It follows that for each x € .Z,

153
@;"Ltw(x) — @:‘ma)(x) = / q§:"t(fwrw)(x)dr. (7.105)

7]

For the rate of change of the pushforward of the structure form, one has to use
in the equations above the time dependent vector field w™! associated with the flow
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D, tl According to (7.97), it is given by

-1 -1 9
wo (s, D (x) = 37

O i)
P = 5

By (it (x)).

T=S§ T=

Since <1>r_,1 o @, is the identity on .#,

0=

O (®r,(x))

at
0
T

T=s
T=S§

_ _ 0
O (D (x) + TP, (E

d)‘[,t(x))

=w (s, @, (P51 (X)) + TP, (w(s, Dy (X))

T=Ss

It is implied that
w (s, x) = =T & (w(s, Dy, (1)),

or,

—1 —1
wg =-=Tog o (ws 0 Dy 1),

and in particular,
w_l(t,x) = —w(t, x).

The rate at which the structure form ¢ evolves is therefore

3 _ _
P D1 (p) =D, (L, -19)

T=S

= _(ps_,t*(gTq§;[lo(wsoq%.t)w).

229

(7.106)

(7.107)

(7.108)

(7.109)

(7.110)

(7.111)

We also recall [AMRSS, p. 361] that in general, for a diffeomorphism f : .#Z — A/,

a vector field w and a form w,
f (Lrrwmw) = Lo fo.

Substituting @ ,1 for f, one has

ot

D1 (@) ==L (D [9).

T=¢§

In particular,
0

8‘[ cD;;k(@) = _DiﬂWt(p

=t

is the rate in which the structure form evolves.

(7.112)

(7.113)

(7.114)
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Since the Lie derivative commutes with exterior differentiation [AMRSS, p. 428],
the rate of change of the distribution of defects is the exterior derivative of the rate
of change of the structure form, i.e.,

d _ d
P @ () = -L,,dp = —dZ,, 0 =d (5

@;t*(ga)) . (7.115)

=t =t

7.9.2 Evolutions of General Structure Currents and Defects

We wish to extend the kinematic analysis for smooth deformations of structure forms
and continuously distributed defects to general, possibly singular currents. The way
thisis done is suggested by (7.102) where we observed that for a current 7, induced by
asmooth form ¢, the current induced by the evolving form ;"¢ satisfies Th;* p(@) =
Ty (hjw).

Since for each time ¢, /; is a diffeomorphism of ., given any smooth form w
having a compact support in ./, the pullback /] has a compact support in .#, also.
In fact, i} is a continuous, linear operator on the space of smooth forms with compact
supports in .# . Thus, for a diffeomorphism f, the dual operator, the pushforward of
currents (or images of currents [Der84, p. 47]), f, is defined by

(fsT)(w) =T(f*w). (7.116)

Thus, the evolution of a structure current 7 under the flow is described by the evo-
lution A, T for which the analysis above is a special case.

It is observed that
d(hexTY() = hes T (dYr)

= T (h{(dy))
= T(d(h;y)) (7.117)
=T (h{vr)
= (h«(0T)) (),
and so,
0(hixT) = hy (T). (7.118)

We conclude that the evolution of the defects follows the evolution of the structure
current, consistently.

To present a typical example for the evolution of a current which is not induced
by a smooth structure form, consider the r-current 7' induced by an r-dimensional
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submanifold with boundary . of . as in (7.20). Then,

his Ty () = Ty (hiw)

_ *
“Z;h”“ (7.119)
= / Cl),
he{)
and we conclude that
Ty = Ti (7). (7.120)

i.e., the image of the structure current induced by . is the structure current induced
by h:{-7}. As expected, the defect current satisfies

A(hixTy) = h1x(0T7) = hix(Ty 7). (7.121)

Next, we consider the rate of change of the pushforward of the structure current
and the associated defect current. One has,

0

3
= O 1 T(w) = — T(®*
81’ T=S( T,I% ((1))) aT r:S( ( T,tw))
T (% — T(®F
 im L Prran®) — (@) (7.122)
AT—0 AT
— lim T (¢j+Ar,zw - (D:,tw) .
At—0 AT
If o o
w — w
lim —An! o (7.123)
AT—0 AT

exists in the sense of test forms (not merely pointwise), then, one may switch the
order of the limit and the action of T in the last line of (7.122) above. This is indeed
the case (see [Der84, pp. 57-61], and also [GMS98, pp. 132-135], [Fed69, p. 363]).
Hence, using (7.103) and (7.104),

E T=s§ ( R ((1))) - (E T:S( -[’t(,()))
=T(®], (L)) (7.124)
= (¢S,Z‘*T)($wsa))_

It is noted that the Lie derivative operator on smooth forms with compact supports
is linear and continuous, so that one may define its dual transformation £ on the
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space of currents as
(ZiT)(w) =T(ZLw). (7.125)

It is also recalled that Cartan’s magic formula for the Lie derivative asserts that (e.g.,
[AMRSS, p. 429])
Lo =dwiw) +wodw, (7.126)

so that

(D514 T) (L, ) = (P 15T ) (d(Ws 1)) + (P 15T ) (Wy 2 dw)
= (095,15 T)(Wsa@) + (Ws A Dy 1 T) (dw) (7.127)
= (Ws AN (acps,t*T) + 0(wg A st,t*T)) (w).

Thus, the rate of change of the structure current may be expressed as

0

| PenT =L 0 BT = Wy A @PunT) + 00wy A D). (1.128)

=S

In particular,

0
Py hes T = ZZ 0 g (T) = wyg A (Ohgs T) + 0wy A hgs T), (7.129)
T=§
and
8 *
37 ;1T = fw,(T) =w, AT +0(wsg AT). (7.130)
T =t

7.9.3 Evolution of Smooth Distributions of Defects
to Singular Ones

The theory of currents provides a mathematical construction that may be used to
model the process at which a smooth distribution of defects evolves and they coalesce
into a “macroscopic” singular defect.

Similarly to Schwartz distributions, the action of general currents can be approxi-
mated using currents induced by smooth forms through the process of regularization
or smoothing (see [Der84, pp. 61-70], [Fed69, pp. 346-348], [GMS98, pp. 505—
511]). Specifically, given an r-current 7', one can construct a family of smooth
(n — r)-forms ¢, ¢ € (0, 1] and corresponding 7, defined by

Tg(w)=/ e N, (7.131)
Vi
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so that
lin}) T:(w) = T (w). (7.132)
E—>

In other words, 7, converge to T weakly. Furthermore, recalling that a7 is the
current induced by dgg, i.e.,

AT, (¥) = (1" "1 Ty, () = (—1)" 7! /% dg. A, (7.133)

for each (r — 1)-form 1, the regularization process commutes with the boundary
operator so that

lim 87, (¥) = (=1)" ! lim/ dge Ay = 0T (V). (7.134)
e—0 e=>0) y

Thus, setting Tp = T, and t = 1 — ¢, rather than a formal mathematical approx-
imation process, one could view the family 7, ¢t € [0, 1], as an evolution process
of structure currents in the time interval [0, 1] in which the smooth structure forms
evolve into a discrete structure current. Finally, the fact that smoothing commutes
with the boundary operator, implies that the smooth defect forms evolve into the
defect current.

Acknowledgments This work was partially supported by the Perlstone Center for Aeronauti-
cal Engineering Studies and the H. Greenhill Chair for Theoretical and Applied Mechanics at
Ben-Gurion University and by the Natural Sciences and Engineering Research Council of Canada.

References

[AMRS88] Abraham R, Marsden J, Ratiu T (1988) Manifolds, tensor analysis and applications.
Springer, New York

[Cer99] Cermelli P (1999) Material symmetry and singularities in solids. Proc R Soc Lond A
455:299-322

[Cha77]  Chandrasekhar S (1977) Liquid crystals. Cambridge University Press, Cambridge

[DPI91] Davini C, Parry G (1991) A complete list of invariants for defective crystals. Proc R
Soc Lond A 432:341-365

[Der84] de Rham G (1984) Differentiable manifolds. Springer, New York

[EEQ7] Elzanowski M, Epstein M (2007) Material inhomogeneities and their evolution.
Springer, Berlin

[ES12] Epstein M, Segev R (2012) Geometric aspects of singular dislocations. Mathematics
and Mechanics of Solids. doi:10.1177/1081286512465222

[EC70] Eringen A, Claus W (1970) A micromorphic approach to dislocation theory and its rela-
tion to several existing theories. In: Simmons J, de Wit R, Bullough R (eds) Fundamental
aspects of dislocation theory. U.S. National Bureau of Standards, pp 1023-1040

[FS13] Falach L, Segev R (2014) Reynolds transport theorem for smooth deformations of
currents on manifolds. Mathematics and Mechanics of Solids, 2014. Volume for the
occasion of R. Ogden’s 70th anniversary, doi:10.1177/1081286514551503

[Fed69]  Federer H (1969) Geometric measure theory. Springer, Berlin


http://dx.doi.org/10.1177/1081286512465222
http://dx.doi.org/10.1177/1081286514551503

234

[Fra58]
[GMS98]

[Kon55]

[KA75]
[LKO06]
[Mic08]
[Nol67]
[Sah84]
[SRO3]

[Ste83]
[Tou68]

[Wan67]

[Whi57]

M. Epstein and R. Segev

Frank F (1958) 1. Liquid crystals. On the theory of liquid crystals. Discuss Faraday Soc
25:19-28

Giaquinta M, Modica G, Soucek J (1998) Cartesian currents in the calculus of variation
1. Springer, Berlin

Kondo K (1955) Geometry of elastic deformation and incompatibility. In: Kondo K (ed)
Memoirs of the unifying study of the basic problems in engineering science by means of
geometry, vol 1. Division C-1. Gakujutsu Bunken, Fukyo-kai, 5-17 (=361-373), Tokyo
Kroner E, Anthony K (1975) Dislocations and disclinations in material structures: the
basic topological concepts. Ann Rev Mater Sci 5:43-72

Lurie S, Kalamkarov A (2006) General theory of defects in continous media. Int J Solids
Struct 43:91-111

Michor P (2008) Topics in differential geometry. American Mathematical Society, Prov-
idence

Noll W (1967) Materially uniform bodies with inhomogeneities. Arch Ration Mech
Anal 27:1-32

Sahoo D (1984) Elastic continuum theories of lattice defects: a review. Bull Mater Sci
6:775-798

Segev R, Rodnay G (2003) Worldlines and body points associated with an extensive
property. Int J Non-Linear Mech 38:1-9

Sternberg S (1983) Lectures on differential geometry. AMS Chelsea, Providence
Toupin R (1968) Dislocated and oriented media. Continuum theory of inhomogeneities
in simple bodies. Springer, New York, pp 9-24. doi:10.1007/978-3-642-85992-2
Wang CC (1967) On the geometric structure of simple bodies, a mathematical founda-
tion for the theory of continuous distributions of dislocations. Arch Ration Mech Anal
27:33-94

Whitney H (1957) Geometric integration theory. Princeton University Press, Princeton


http://dx.doi.org/10.1007/978-3-642-85992-2

Chapter 8
Non-metricity and the Nonlinear Mechanics
of Distributed Point Defects

Arash Yavari and Alain Goriely

Abstract We discuss the relevance of non-metricity in a metric-affine manifold
(a manifold equipped with a connection and a metric) and the nonlinear mechanics
of distributed point defects. We describe a geometric framework in which one can
calculate analytically the residual stress field of nonlinear elastic solids with distrib-
uted point defects. In particular, we use Cartan’s machinery of moving frames and
construct the material manifold of a finite ball with a spherically-symmetric distribu-
tion of point defects. We then calculate the residual stress field when the ball is made
of an arbitrary incompressible isotropic solid. We will show that an isotropic distri-
bution of point defects cannot be represented by a distribution of purely dilatational
eigenstrains. However, it can be represented by a distribution of radial eigenstrains.
We also discuss an analogy between the residual stress field and the gravitational
field of a spherical mass.

8.1 Introduction

The first mathematical study of line defects in solids goes back to the work of Volterra
[Vol07] more than a century ago. The close connection between the mechanics of
solids with distributed defects and non-Riemannian geometries was independently
discovered in the 1950s by Kondo [Kon55a, Kon55b], Bilby et al. [BBS55], and
Bilby and Smith [BS56]. Defects influence many of the mechanical properties of
solids and have been the focus of intense research in the last few decades. Moti-
vated by applications of metals in industry and the need to take into account plastic
deformations, the micro mechanism of plasticity, i.e., dislocations have been stud-
ied by many researchers but mostly in the framework of linearized elasticity. Other
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line defects, e.g., disclinations have also been the subject of many investigations.
However, point defects have not received much attention even in the linearized set-
ting after the original works of Love [Lov27], and Eshelby [Esh54]. In particular,
Love [Lov27] calculated the stress field of a single point defect in an infinite linear
elastic solid and observed a 1/r3 singularity. Recently, we [YG12b] showed how
one can calculate the residual stress field of a nonlinear elastic solid with distributed
point defects. Non-metricity proved to be an essential geometric entity in describing
the zero-stress configuration (material manifold) of solids with point defects. Here,
material manifold (B, G, V) is a flat, torsion-free 3-manifold with non-metricity in
which the body is stress free. We should mention that many researches have known
the relevance of non-metricity to the mechanics of point defects [Fal81, deW8l1,
Gra89, Kro90, MRO2]. However, there has not been a concrete use of non-metricity
in the literature for calculating residual stresses. The geometric framework discussed
here has been recently used by the authors in the analysis of distributed dislocations
and disclinations as well [YG12a, YG13b].

In this book chapter we review the results of [YG12b], extend the residual stress
calculation to arbitrary incompressible isotropic solids, and make some new obser-
vations. In particular, we discuss an analogy with relativity and the gravitational field
of a spherical ball of mass m in an infinite empty space-time.

Another problem that can benefit from geometric ideas is the stress analysis of
inclusions in nonlinear elastic solids [YG13a]. In [YG13a] we showed that collaps-
ing a small spherical inclusion with pure dilatational eigenstrain while keeping the
strength of the inclusion fixed one recovers the stress field of a single point defect
in a linear elastic solid. Earlier in [YG12b] we had shown that using the nonlinear
solution one can recover the classical linear solution for small strength point defect
distributions supported in a small ball. Now one may be tempted to think that any
isotropic distribution of point defects can be represented by pure dilatational eigen-
strains. We will show that this is not the case and that material metric calculated in
[YG12b] is equivalent to a distribution of radial eigenstrains with no circumferential
eigenstrains.

8.2 Non-Riemannian Geometries and Anelasticity

To make this book chapter self contained, in the following we tersely review the
necessary geometric background.

Riemann-Cartan manifolds. On a manifold B a linear (affine) connection is an
operation V : X (B) x X (B) — X' (B), where X (B) denotes the set of vector fields on
B.In alocal coordinate chart { X4}, Vp 0B = I'C 430c, where I'C 4 g are Christoffel
symbols of the connection and 04 = 0 7,4 are the natural bases for the tangent space.
V is compatible with a metric G of the manifold if VG = 0. The torsion of V is
defined by T(X,Y) = VxY — VyX — [X, Y], where [.,.] is the commutator of
vector fields. V is symmetric if it is torsion-free, i.e., VXY — VyX = [X, Y]. In
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(B, V, G) the curvature is amap R : X(B) x X(B) x X(B) — X (B) defined by
R(X, Y)Z = VxVyZ—VyVXxZ—V|x y|Z. A Riemann-Cartan manifold (B, V, G)
is a metric-affine manifold in which the metric and the connection are compatible.

Cartan’s moving frames. Let us consider a frame field {e,} 2’:1 that forms a basis
for the tangent space of BB everywhere. We assume that this frame is orthonormal,
i.e., (e es))q = dus- {e.}"_, is, in general, a non-coordinate basis for the tangent
space, i.e., it is not necessarily induced from a coordinate chart. The frame field {e,}
naturally defines the co-frame field {¥}* 2]:1 such that 9% (eg) = 5:;. The connection
1-forms are defined by Ve, = ey ® w”,. The corresponding connection coefficients
are defined as Ve,eq = (wa.e5)e, = w¥geey, e, wly = w598, Similarly,
Vi = —w*, 7, and Ve, 0" = —w® 3,47 In an orthonormal frame, the metric has
the simple representation G = d,39" ® 0.

Non-metricity. Given a metric-affine manifold (5, V, G)l, the non-metricity is a
map Q : X(B) x X(B) x X(B) — R defined as Q(U, V, W) = (VyV, W)g +
(V, VuW)g — U[(V, W)g]. In other words, @ = —VG. In the frame {e,}, Qa5 =
Q(ey, €4, €3). Non-metricity 1-forms are defined by Q5 = Q- 397. One can show
that Q.03 = Wgya + Waryg — (dGag. €,), where d is the exterior derivative. Thus,
Qnp = wap+wga—dGag =: —DG s, where D is the covariant exterior derivative.
This is Cartan’s zeroth structural equation. For an orthonormal frame G, = 6.3
and hence Q.3 = wag + Wgq. In a metric-affine manifold with non-metricity, the
Weyl 1-form is defined as Q = %QaﬂGaﬁ. Therefore, Q.3 = Qa/} + 0G,3,
where Q is the traceless part of the non-metricity. If Q = 0 and if V is torsion-
free, (B, V, G) is called a Weyl manifold. The torsion and curvature 2-forms are
defined by

T = d9™ + w5 AP, (8.2.1)
Raﬁ = dwo‘g + wa,y A wﬁyg. (8.2.2)

These are, respectively, Cartan’s first and second structural equations.

The compatible volume element on a Weyl manifold. A volume element on 5 is
any non-vanishing n-form. In the orthonormal coframe field {¥/*} the volume form
is written as gt = h¥! A ... A 9", for some positive function /4. In a coordinate chart
{X4} we have . = h+/detG dX! A ... A dX". Divergence of an arbitrary vector
field W on B is defined as (Div W) = £wp, where £ is the Lie derivative. Having
a connection divergence can also be defined as the trace of the covariant derivative,
i.e., Divgy W = WA|A = WA,A + 4,43 WE. The volume element L is compatible

with V if Cwp = (WA 0)p. which is equivalent to D (h\/det G) — 0 [Saa%5].

Thus, % =dInh = 5 Q. Note that this implies that d Q = 0. Therefore, to be able
to define a compatible volume element the Weyl one-form must be closed.

!In a metric-affine manifold the torsion, curvature, and non-metricity, are, in general, non-vanishing.
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Geometric anelasticity. Let us briefly review geometric nonlinear elasticity. We
identify a body B with a Riemannian manifold B and a configuration of 5 is a
mapping ¢ : B — S, where S is another Riemannian manifold (53, G). It is assumed
that the body is stress free in the material manifold. The deformation gradient is the
tangent map of ¢ and is denoted by F = Tp. At every point X € B, F is a linear
map F(X) : TxB — T, x)S. Choosing local coordinate charts {x“} and {X “YonS
and B, respectively, the components of F read

a

a
FA) = 5 (X). (8.2.3)

The transpose of F is defined by FT : T,S — TxB, (FV, V)g = <(V FTV)>G,
forall V e TxB, v € TxS. In components (FT(X))4, = gap(X) F? 5(X)GAB(X),
where g and G are metric tensors on S and B, respectively. The right Cauchy-Green
deformation tensor C(X) : TxB — TxBis defined by C(X) = FX)TFX) = (gabo
P)FuF b p. The relation between the Riemannian volume element dV at X € B
and its corresponding deformed volume element at x = ¢(X) € Sis dv = JdV,
where J = /det g/ det G det F is the Jacobian.

The left Cauchy-Green deformation tensor is defined as B¥ = ¢*(g”) with com-
ponents BAB = (F~1)A,(F~1)B, ¢?b. The spatial analogues of C* and B? are

A B
= 0x(G), cap = (F_l) a (F_l) » Gag, (8.2.4)
b = (G, b = FI F"5G*5, (8.2.5)

where * and @, are the pull-back and push-forward by ¢, respectively. b* is called
the Finger deformation tensor. Note that C and b have the same principal invariants
denoted by I, I, and I3 [Ogd84]. For an isotropic material the strain energy function
W depends only on the principal invariants of b. One can show that for a compressible
and isotropic material the Cauchy stress has the following representation [DES6,
SM83]

Z f42-—pt—2-—"—pl 8.2.6
LonL o )% e ol (8.26)

_ (12 ow 8W) ow ow
Similarly, for an incompressible and isotropic material the Cauchy stress has the
following representation [DE56, SM83]

ow ow ow
= 21 L) —2—p . 2.
o ( p+ 28[)g+ 31b 312b (8.2.7)

Material manifold. We assume that the defect-free body is stress-free in Euclid-
ean space in the absence of external loads. This body may be made of a material
with multiple stress-free configurations (corresponding to multiple wells of a strain-
energy density) but we assume that all the material points are in the same energy well
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(that is we are not considering phase transformations). Next, we assume that some
distribution of defects appears in this body and induces residual stresses (we are
not considering nucleation or the work associated with the creation of defects). The
stress-free configuration with defects (referred to as the material manifold) explicitly
depends on the distribution of defects and their types but not on the constitutive equa-
tions. Of course, residual stresses explicitly depend on the choice of the constitutive
equations.

Point defects. The classical continuum picture of a single vacancy is the following.
Remove a small spherical ball from the body and identify all the points on its boundary
sphere. A single interstitial or “extra matter” can be visualized by inserting a larger
elastic ball inside the spherical cavity and letting the system relax. Consider a distribu-
tion of point defects or “extra matter” in a solid. If one imagines partitioning this body
into a large number of small cubes of the same size and let them relax the resulting
stress-free cubes will have different sizes (and hence volumes) depending on the dis-
tribution of point defects. The relaxed volumes are the local embedding of the under-
lying Riemannian material manifold into the ambient (Euclidean) space. In other
words, in the stress-free configuration of the defective-solid volume elements vary
depending on the distribution of point defects. It is known that in a metric-affine man-
ifold (B, V, G) with non-metricity the Riemannian volume element is not covariantly
constant. More specifically, Dv/det G = dv/det G — w®,v/det G = —5 0/ det G.
This shows that the Weyl one-form Q is somehow related to the volume density of
point defects.

In the following example, we will use a semi-inverse method and start with a
coframe field with some unknown function(s). This then implies that the material
metric is known up to the unknown function(s). To relate this unknown function(s)
to the volume density of point defects we will find a compatible volume element on
the material manifold B, i.e., a volume element that is covariantly constant.

8.3 Point Defects in an Incompressible Isotropic Ball

In [YG12b] we considered a ball of radius R, with a spherically-symmetric isotropic
distribution of point defects. We constructed the material manifold and calculated the
residual stress field for an incompressible neo-Hookean solid. Here we first construct
the material manifold and then calculate the residual stress field when the defective
ball is made of an arbitrary incompressible isotropic solid. We also consider a special
class of compressible solids for a particular example of distributed point defects.

8.3.1 Construction of the Flat Weyl Material Manifold

In a body with only point defects the material manifold is a flat Weyl manifold,
i.e., the torsion and the curvature of the material connection both vanish. In order to
find a solution, we start by an ansatz for the material coframe field. In the spherical
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coordinates (R, ®, ), R >0, 0 <® <, 0 < ® < 27, we assume the following
coframe field

W' = f(R)dR, ¥* = Rd®, ¥ =Rsin® do, (8.3.1)

for some unknown function f(R) > 0 to be determined. Assuming that the non-
metricity is traceless and isotropic, i.e., Qa3 = 2003 ¢ (R)Y', the matrix of connec-
tion 1-forms has the following form

1 1 3

w'p w2 —wi
w=[wg]= —wly W W], (8.3.2)
Wt ws

where w!] = w?) = w33 = q(R)191, for a function ¢ (R) to be determined. We now

need to enforce 7% = 0. Note that

1 1 t®
d9' =0, d9* = —— ' A2, AP = ———— 9P A0 + 22 AP
Rf(R) Rf(R)
(8.3.3)
Cartan’s first structural equations read
T'=wh a? =W Ad =0, (8.3.4)
1
T? = R |9 A9 =Wl A9l w3 AP =0, (835
[Rf(R)_HI( )} w2 + w3 . ( )
cot ® 1 1
T3 = 02 A9 — - — R) |9 A 0!
R RfR) R IR
+ WA w3 A =0. (8.3.6)

This implies that

t O
+q<R>}92, Wiy = -3, w31:[

R

1. _ 3
v [Rf(R) “’(R)}ﬂ'

(8.3.7)

Rf(R)

It can be shown that R'} = R%; = R33 = 0 are trivially satisfied. The remaining
Cartan’s second structural equations read

Ry = -R? =dw'h + Wi AW =0, (8.3.8)
R%=-R% =duvs +wh A’ =0, (8.3.9)
R = —RY3 = dw’ | +wi Aw's = 0. (8.3.10)
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The first equation gives us the following ODE

1 d 1
[ +q(R)] +

[ : +q(R)}=O. (8.3.11)

f(R)dR | Rf(R) Rf(R) L Rf(R)
The solution is c
Rf(R) —i—q(R):E. (8.3.12)

Note that when g(R) = 0, we have f(R) = 1 and hence C = 1. Therefore

1 1
q(R) = E |:1 - m} . (8.3.13)

In this example the Weyl 1-form is written as

0 =2q(R)V = % [1 - %} 9 = Ww. (8.3.14)

The function f(R) is determined using the volume density of point defects n(X) and
using the equation py — pt = Ny [YG12b]. In the particular example of a defective
ball py = R2sin®dR A d® A dd and pn = f(R)h(R)pg, and hence
1 —n(R)
R .
L=z Jo 3y2n()dy

f(R) = (8.3.15)

8.3.2 Calculation of the Residual Stress Field

In this section we extend our previous calculation in [YG12b] to arbitrary incom-
pressible isotropic solids and a certain class of compressible isotropic solids. We
consider a ball of radius R, and assume that a point defect density Nn(R) is given.

Incompressible Isotropic Solids

The material metric has the following form

1
AR 0 0 7® 0
G= 0 R? 0 . Gi= 0 % 0 . (8.3.16)
2 in2 @ 1
0 0 R°sin“® 0 0 TS

Having the underlying Riemannian material manifold, we obtain the residual stress
field by embedding it into the Euclidean ambient space, which is the Euclidean
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3-space. We look for solutions of the form (r, ¢,z) = (r(R), ®, Z), and hence
detF = r/(R). Assuming an incompressible solid we have

_|detg r? .
=,/ T detF = f(R)Rzr "(R) = 1. (8.3.17)

Assuming that r(0) = 0, we obtain

R 3
r(R) = (/ 3x2f(x)dx) 3 . (8.3.18)
0

The Finger tensor b? (b* = F?, Fb 5 GAB) is found to be

R4
2® 0 0
b =| 0 % 0 ) (8.3.19)
1
0 0 R%sin’ ©
The principal invariants of b read
5 =R + P 5 + r'(R) (8.3.20)
TR T AR PTAm TR .
Now (b~ 1) = ¢ = gamgbmc, has the following representation
r*(R)
W 00
—1
b~ = 0 AR 1?2 . (8.3.21)
0 0 r4(R) sin? ©
Therefore, the Cauchy stress can be written as
—p+akf 1288 0 0
o= P P+ L +5 ( R—z) 0
_ o 22
0 0 sin12®|:r72p+ﬁ+ﬁ(%+ﬁ)]
(8.3.22)

_ oW ow
where o = 28_11 and 8 = 2812
The only non-trivial equilibrium equation reads

2
"+ =0 —re% — rsin? 0 0% = 0. (8.3.23)
r
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Or

2fR? (1
o R+ frz (;U” — raao) =0. (8.3.24)

This gives us the differential equation p’(R) = k(R), where

, R* , R? R?
k(R) = &/ (R) -y +28 (R)rz(R) +2 (ﬁ(R) + a(R)m)

2R R R* R r(R)
[—rz(R)—f( )—r5(R)—f( )R2 ]

Suppose that at the boundary ¢""(R,) = — pso. Thus

(8.3.25)

R4 R2 R,
P(R) = po + a(RO)WIOQ) + 26(R,) VZ(IZ ) —/R k(&)dE. (8.3.26)

Once p(R) is known all the stress components are easily calculated from (8.3.22).
Example 8.3.1 In [YGI12b] we considered the following point defect distribution
np 0<R<R,

n(R) = 8.3.27
) [0 R; < R < Ry, ( )

where R; < R,. Thus, one can see that

0<R<Ri: f(R) =1, (8.3.28)
1

S
()

R>Ri: f(R) = (8.3.29)

This yields

O<R<R;: r(R)=R, (8.3.30)
(R/R:) — nO)T

R>R;: r(R) = [R3+n0Rl-31n(
1—ng

(8.3.31)

Note that for R < R;j, A\{ = A» = A3 = 1 and hence I} = I, = 3. Therefore,
a = ag and 8 = [y are constants and consequently for R < R;, k(R) = 0. Thus

a(R)RE _B(R,)R?
r4(Rn) rz(Ro)

R,)R* R,)R? Ro
a(Ry)R, B( )1,7/ k().

O0<R<R;: p(R)= poo +

R,
- / K(E)dE = pi. (8.3.32)

i

Ri<R=R,: p(R) = pec + +2

R (k) (8.3.33)




244 A. Yavari and A. Goriely

Itis seen that pressure is uniform for R < R;. Now the radial stress has the following
distribution

0<R<R: " (R)=ay+2080— pi =o0i, (8.3.34)
. e Q(RRY BR)R? a(Ry) Ry
Ri=R<Ro: on (B == 2 T2k ~ P~ 4R,
BRHRS | [Fe
— W-F/R k(&)dE. (8.3.35)

It is seen that the radial stress is uniform and equal to o; for R < R;. Note that the
other two physical components of stress are also equal to o; for R < R;.

Remark 8.3.2 Note that the defective ball does not have to be homogenous. One
can have different energy functions for R < R; and R > R;. In this case W =
W (R, I, I») and hence o and § will have jumps at R = R;. This will not affect the
pressure for R < R;. However, for R > R;, one should add the term [« 4 23], to
the pressure field.

Compressible Isotropic Solids

Next we consider a spherically-symmetric point defect distribution in a ball made
of a compressible isotropic solid. For an isotropic solid instead of considering the
strain energy density as a function of the principal invariants of C one can assume
that W explicitly depends on the principal invariants of U, i.e. W = W (i1, ia, i3),
where

i1=A4+X+ N3, 2= A+ A3+ A3, i3 =A1\2A3. (8.3.36)
Carroll [Car88] rewrote the representation of the Cauchy stress for isotropic elas-

tic solids in terms of the left stretch tensor. In our geometric framework [Car88]’s
Eq. (2.15) is rewritten as [YG13a]

i OW  OWY , 1OW_. OW__,
=\-—"——+— ——V ——V . 8.3.37
7 (i3 Oip + 0i3 )g + i3 0i; Ois ( )

In components this reads

w  [20W  OWYN ,  1OW_ . OW , _yab
= 25+ — Sl yab 22 (y-1) 8.3.38
7 (z’3 o on )0 T non oi ( ) (8.3.38)

where b = V“’"Vb”gmn and ¢?? = (V_l)am (V‘l)bn gmn- Carroll [Car88]
considered a special class of compressible materials for which W(il, i,13) =
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u(i1) + v(iz) + w(iz), where u, v, and w are arbitrary C? functions. For this class
of materials we have

o= (i‘zv/(m + w/m)) g + @Vﬁ —v(i)V". (8.3.39)
3 3

In the case of a ball with a spherically-symmetric point defect distribution, we have

"(R R
=B =R (8.3.40)
f(R) R
Thus
r(R)  2r(R) . 2r(R)F(R) | r*(R) . r'(R)r*(R)
] = — 2= , 3= —————. (8.341)
S(R) R Rf(R) R? R2f(R)
A simple calculation gives us
'(R) S(R)
t ™ 0 0 I I 0
Vi=1 0 =mm 0 V= Y ER 2
0 Rr(R)sin? © 0 0 r3(R)sin? ©
(8.3.42)
Hence, the non-zero stress components read
2
o (R) = u'(iy) + 0@ )2—R + w'(i3) (8.3.43)
Vr® R > ~
.. Rf(R) . S(R) w'(i3)
60 / /
R = — k)
7R = Ry my T (r3(R) 2R ®)) TR
(8.3.44)
1
o (R) = ——c"(R). (8.3.45)
sin” ®
The equilibrium equation (8.3.23) is simplified to read
R>du’ 2RdV  dw Ru' vV
—_—t —— 2(1 — — 4+ —)=0. 8.3.46
r2 dr + rodr + dr +20=7) (rzr’+rr/) ( )

We first consider a harmonic material [Joh60] for which v(i;) = ¢2(i — 3) and
w(i3) = c3(i3 — 1), where ¢, and c3 are constants (Class I materials according to
Carroll [Car88]). In this case the above ODE is reduced to

LLAP Y LU N (8.3.47)
dr Rr'  R%') 7 o



246 A. Yavari and A. Goriely

Let us now consider the point defect distribution (8.3.27). For R < R;, f(R) =1

and hence fi—“r, = 0. This implies that /| must be a constant and therefore

C

r(R)=CiR+ 5.

(8.3.48)

For r(R) to be bounded at the origin we must have C; = 0. Now for R < R;,
i1 = 3C and hence the physical components of Cauchy stress read

u'(3C1)  2c

5" (R)y =0""(R) = = oy, 8.3.49
0" (R)=0"(R) c? C1+C3 o1 ( )
'(3C 2
FR) = 2R (R) = O L 22 Lo (8350)

C? C
(R = 5" (R), (8.3.51)

i.e., the Cauchy stress inside the point defect sphere is uniform and hydrostatic.

For Classes II and III materials according to Carroll [Car88], u(i1) = c1(i1 — 3),
w(i3) = c3(iz — 1) and u(iy) = c1(iy — 3), v(iz) = c2(in — 3), respectively. For
R < R;, for Class II materials, we have r2(R) =C R? + %. Similarly, for Class III
materials we have r3(R) = C R3+C». Assuming that7(0) = Oinboth cases C; = 0
and hence for R < R;, we have r(R) = aR, where « is a constant. This is identical
to what we observed for harmonic materials. Therefore, the above result holds for
materials of Types II and III as well. The unknown constant C; is determined after
one solves a nonlinear second-order ODE for r in the interval R; < R < R, and
imposes the continuity conditions r(R;") = r(Ri*), o""(R;) = 0" (R;"), and the
boundary condition 0"" (R,) = — peo-

8.3.3 An Analogy Between the Point Defect Metric
and the Schwarzschild Metric

Einstein’s vacuum field equations can be solved exactly for a spherically-symmetric
distribution of matter with gravitational mass m. The solution is called the Schwarz-
schild (exterior) solution. In the coordinates (¢, R, ®, ®) for space-time, the Schwarz-
schild metric reads [HE73]

2 2m\ !
ds? = — (1 - Tm) dr2+(1 - ?m) AR+ R2d©*+ R? sin? Od 2. (8.3.52)

This metric represents the gravitational field outside of a ball of mass m. Note that
this solution is valid only for R > 2m. The interior solution can be determined
using the energy-momentum tensor of the matter inside the ball. When restricted to
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(R, ©, ®) this metric looks very similar to our point defect metric if one replaces

(1 - 27’”)_] by f(R). Next we consider a single point defect and observe another
interesting similarity between our metric and that of Schwarzschild.

8.3.4 Singularity in the Material Metric in the Case
of a Single Point Defect

We consider a single point defect with strength Jv at the center of the ball. In this

case
v

47 R?

n(R) = 5(R), (8.3.53)

where §(R) is the one-dimensional Dirac delta distribution. Therefore

35v

h(R)=1— . 8.3.54
(R) i (8.3.54)
Hence
1— 2% 6(R)  R3— URS(R) 1
_ 47 R? _ 1 _
f(R) = " _” 350 = j E T T (8.3.55)
47 R3 4 47 R3
Note that f(R) > 0 and hence this expression is meaningful only when
1
36v)3
R> (—”) : (8.3.56)
4

8.3.5 Exterior Residual Stress Field of a Ball of Point Defects

In Yavari and Goriely [YG12b] we considered a finite ball of radius R, with a uniform
defect distribution Ny in a small ball of radius R; and showed that the stress inside the
defective ball is uniform for R < R;. Let us now assume that n(R) = 0 for R > R;
but is elsewhere arbitrary. The total volume of the point defects is

R;
Sv = / 47 R’n(R)dR. (8.3.57)
0

Note that for R > R;, we have

1
f(R) = T (8.3.58)

47R3
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Itisseenthatfor R > R;, f(R) depends only on Jv and not on the specific distribution
of n(R) for R < R;. Therefore, r (R) and consequently all the stress components for
R > R; depend only on §v. Thus, we have proved the following proposition.

Proposition 8.3.3 Consider a ball of radius R, made of an isotropic elastic material
or a material with anisotropy respecting the spherical symmetry. Assume that the
ball is defect free outside a ball of radius R; < R,. Then, the residual stress field
for R > R; depends only on the total volume of the point defects in R < R; and is
independent of the specific form of N(R) for R < R;.

Remark 8.3.4 Note that this result is similar to the effect of a spherical ball of matter
with mass m on the gravitational field. The gravitational field of the space-time
outside the ball depends only on m and not on the specific distribution of density
inside the ball (as long as it is spherically symmetric).

8.3.6 Isotropic Distribution of Point Defects and Pure
Dilatational Eigenstrains

We know that in the limit of a vanishing inclusion with pure dilatational eigenstrain
the linearized solution for a single point defect in an isotropic linear elastic solid
is recovered as shown in [YG12b] by fixing dv = 47rRl.3n0 /3 and in the limit of
small R;. Note that our point defect metric is equivalent to that of a distributed radial
eigenstrain. A natural question is: can we represent an isotropic distribution of point
defects by a pure dilatational eigenstrain distribution? We will see in the following
that the answer is negative.
Consider a coframe field of the following form

V' = K(R)dR, 9% = K(R)Rd®, > =K(R)Rsin® dd, (8.3.59)

for some unknown function K (R) to be determined. Assuming that the non-metricity
is traceless and isotropic Q.3 = 2004 g (R)Y", the matrix of connection 1-forms has
the following form

wll wlz —w31
_ « _ 1 2 2 8.3.60
w=[w'g]= who wh w3 |, (8.3.60)
w31 —w23 w33

where w!] = w?) = w33 = q(R)191, for a function g (R) to be calculated. Note that

1 1 K’(R
dv' =0, dﬁzz—[——i— ( )}9%192,
KR |R KRB

1 [l+K/(R)]03Aﬁ1 cot ®
KR |R ' KR RK(R)

a9’ = 92 A 93, (8.3.61)
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Cartan’s first structural equations read

T'=wh A =W A9 =0, (8.3.62)
[ 1 1 K'(® o921 1
T_IK(R)[R+K(R)}+q(R)]19 AYE—wlhhy A
+ WA =0, (8.3.63)
3_ CotO 55 1 1 K'(R) 3 |
_RK(R)ﬁ AU [_K(R)[R+—K(R)}+q(m]ﬂ AU
+ A9 = AE=0. (8.3.64)
This gives us
L[ KR 2 o cot®
v lK(R)[fK(R)}”(R)P’ “RETRE®
s L 1, K® 3
w 1_[K(R)[R+ K(R)]+q(R)]19. (8.3.65)

It can be shown that R!| = R?, = R*; = 0 are trivially satisfied. The remaining
Cartan’s second structural equations read

Ry = —R* =dw'y + W Aw?3 =0, (8.3.66)
R%3 = —RYH =dw’3+w'h Aw? =0, (8.3.67)
R} =R =dw’ + W Awh =0. (8.3.68)

The first equation gives us the following ODE

d 1 [1 KR
% | 7 T ) o)

dR | KR |R " K(R)
1 K'(R) 1 [1 K'(®
+(§+K(R))[K(R) [E+K(R)]+q(R)]=0’ (8.3.69)
with solution
1 [1 K@® c
) [E + ) } +q(R) = XKD (8.3.70)

Note that when ¢ (R) = 0, we have K (R) = 1 and hence C = 1. Therefore

R — 1 1 1 K'(R] K® 1Y 8371
1R =2k® " K®) [E+ K(R)}__K%R) _(K<R>) - 637D
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Interestingly, the other two curvature 2-forms trivially vanish. The Weyl 1-form is

written as ,
0 =2¢(RW' = 22K R) iR = —2dn K(R). (8.3.72)
K (R)

The governing differential equation for the function 4 (R) reads

dInh(R) =

| W

Q0 =-3dInK(R). (8.3.73)

Therefore, h(R) = CK ~3(R). Because for K(R) = 1, h(R) = 1, C = 1, and
hence h(R) = K ~3(R). Note that p = h9' A 9> A9 = h(R)K3(R) g = pg, and
hence N(R) = 0. This means that the metric (8.3.59) cannot represent a spherically-
symmetric distribution of point defects.

8.4 Conclusions

We discussed the relevance of non-metricity in the nonlinear mechanics of distributed
pointdefects. An anelasticity problem is transformed to a classical nonlinear elasticity
problem if one can construct the material manifold, i.e., a 3-manifold in which the
defective body is stress-free by construction. The material manifold of a solid with
distributed point defects is a flat Weyl manifold, i.e., a manifold with a connection and
metric such that the non-metricity is traceless and both the torsion and the curvature
tensors vanish. We revisited the problem of a finite ball with a spherically-symmetric
and isotropic distribution of point defects. We constructed the material manifold and
calculated the residual stress field when the ball is made of an arbitrary incompressible
isotropic solid. We observed an interesting analogy between the residual stress field
and the gravitational field of space-time with a ball made of matter. We also showed
that an isotropic distribution of point defects cannot be represented by a distribution
of pure dilatational eigenstrains.
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Chapter 9

Are Microcontinuum Field Theories

of Elasticity Amenable to Experiments?
A Review of Some Recent Results

Christian Liebold and Wolfgang H. Miiller

Abstract It is well known that the material behavior at the micro- and even more
at the nano-scale is size dependent, which is, for example, reflected in a stiffer elas-
tic response. Thus modeling of micro- and nanoelectromechanical systems should
be ready to incorporate size dependency as well. However, the classical Boltzmann
continuum fails to reproduce the size effect. In this work special attention is paid to
higher gradient theories such as the strain gradient theory (of Mindlin’s form-II), the
modified strain gradient theory and the couple stress theory for linear elasticity. In
particular, the latter will also be investigated in terms of finite elements. A confronta-
tion to the Cosserat- or micropolar theory, the non-local continuum, the fractional
calculus and the surface elasticity is carried out.

9.1 Introduction

The so called size effect of materials science refers to a different deformation behav-
ior on the micro- and nano-scale when compared to that of a macroscopic system.
In particular, the modeling of the size effect related to elastic deformation is of
great importance for micro- and nanoelectromechanical systems in their early design
phase. The present contribution aims at giving an overview of higher order theories
and their applicability in modeling the size effect in elastostatics. In Sect. 9.2, higher
gradient theories will be motivated from the viewpoint of analytical mechanics,
leading to Mindlin’s postulated forms of strain gradient theory and to the so-called
modified strain gradient theory. In Sect.9.3, a motivation of the concept of micro-
morphic continua, leading to micropolar and couple stress theory will be given. In
Sect. 9.4, the calculation of higher order parameters from experimental data will be
presented, in context with simple elastostatic experiments and analytical, as well
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as numerical parameter identification strategies. Section9.5 will give a brief intro-
duction to some other theoretical approaches, which are potential candidates for the
successful modeling of the size effect. The first observations of a material behav-
ior deviating during quasi-static deformations from the traditional macroscopic one
have been made in metals and polymers deforming plastically (cf., [PAF96, GFLO05]).
Concerning a size effect in elasticity, Lam et al. [LYCWTO03] reported an increase in
bending rigidities of micro-beams made of epoxy. As the beam thicknesses decreased
from 120 to 20 wm, the values for the bending rigidities were about 2.4 times larger
than predicted by the conventional theory. McFarland et al. [MCO05] have observed
similar variations in bending rigidities of polypropylene micro cantilevers during
reversible bending. Other authors report an apparent increase in Young’s modu-
lus by decreasing the sample size without referring to higher order theories (cf.,
[CFDNO04, LWLI10]). On the other hand, it was also reported by Yao etal. [YYBL12]
that Young’s modulus decreases in particular crystal orientations for single crystal
materials if the sample thickness decreases. This observation could be attributed
to surface elasticity. In addition, Lam et al. [LYCWTO03] have shown, that in uni-
axial tensile tests the elastic behavior of epoxy is independent of the thickness of
the sample. This observation is attributed to the absence of strain gradients in pure
tension. Other than this type of experiments, the phonon dispersion relation also
allows analysis of higher order continuum theories. This technique is essentially
dynamic and based on measuring lattice vibrations. The measured frequency-curves
are not predictable by using the concept of a Cauchy continuum but by higher order
continua approaches, such as the micromorphic or the strain gradient continuum
(cf., [CLEO4]). In addition to phonon dispersion, the velocity dispersion of waves
can be modeled well by using strain gradient theory (cf., Vavva et al. [VPGCFP09]).

9.2 Strain Gradient Theory

The first strain gradient theories were initially presented by Toupin [Tou62] in a non-
linear manner. Linearized forms were developed by Mindlin and Tiersten [MT62],
Mindlin and Eshel [ME68] and Koiter [Koi64] in the early 60s of the 20th century. A
short introduction to accounting higher order gradients is given below, based on the
principles of analytical mechanics: The starting point is to extend the list of conven-
tional kinematic variables by defining second order derivatives of the displacement
vector. This definition leads directly to a second order strain tensor of rank three.
In higher gradient theories, the balance laws of continuum mechanics need to be
modified with respect to the additional kinematics. The following notation will be

used: .
. a(f)
fi= 3) . 9.1)
0X;
where X; stands for the position vector in the reference frame. All small Latin indices,
e.g.,i, j,k,etc.,runfrom 1 to 3. A dotrefers to the material time derivative. Following
the summation convention for repeated indices, the local form of the balances of mass
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and linear momentum in a strain gradient theory read [ME68]:

P + pv; ;i =0, 9.2)

PO = 0ji j = Wijkkj T P fi,
respectively, where p denotes the density of the material, f; the body-force, u; the
velocity of the material point, o;; the Cauchy stresses and u;;; the higher order
stresses (or so-called double stresses). Spatial partial derivatives are denoted by
commas in the subscript. In order to connect the known variables (such as the field
of body-forces or boundary conditions) to the unknowns (namely the density p, the
motion y;, and the temperature 6), constitutive equations need to be developed. The
most generalized constitutive equations for the stresses o;; and the double stresses
Wijk at the point x,, in the actual frame and at the time ¢ read:

oo
[o(pr,t —s), xi(pr,t —5),60(p1, t —5); xul,

0ij(xp, 1) = F°
s=0

pieB

(9.3)

o0
Wijk(xp, 1) = FH ‘ [o(pi,t —s), xi(pi,t —5),0(pi, t —5); xu],
pi1eB ls=0

in which the dependencies on all points p; of the body 8 and on all times s in the
past manifest themselves in the corresponding functional F*. A Taylor series in
space decomposes the dependence on all points of the body into a dependence on
the gradients on the variables, respectively:

A~ |00
0ij X =F° | {00, 18), 0.ms Pomr s s Xi(Xns 15)s Xisns Xisnos wer OCns 15), 0.k, ),
s=0

A |OO
it 050, D=F| (P06, D P X s 5)s Xims Ximos s Ot -5), 0.3
94
By definition, the deformation gradient reads: F;; := dx;/0X ;. The dependencies
of the density and the gradients of the density are expressed by the relationship:
p = po/ det | F;;|, taking advantage of the conservation of mass (Eq.9.21). Thus, in
what follows, the density and its gradients are excluded from Eq. 9.4. Moreover, the
influence of the temperature is neglected in Eq. 9.4. Referring to “non-simple bodies
of gradient type” (cf., Eringen [Eri10]), the Taylor expansion of the variables will be
limited to the incorporation of second order derivatives. By doing so, the principle of
local action is affected. For materials without memory, the stress and double stress
expansions read (cf., Bertram [Ber13]):

0ij(Xp, 1) = FO (i (xn, 1), Fij(xu, 1), Fijx(xq, D)},

R 9.5)
Wijk (Xn, 1) = F*{xi(xy, 1), Fij(xXn, 1), Fijx(xn, D)}

The Principle of Euclidean Invariances (cf., Bertram [Ber05], [Ber13]), which is
not a general natural law but widely accepted in the field of technical applications,
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higher gradient theories
no directors

K
4% & & % 7 -

i

ox ox
. +———dX, dX +...
ax, ' axiox, "t

Fig. 9.1 Deformation mapping of a line element in higher gradient theories

leads to the reduced functions:

0ij(xn, 1) = F(AT(Fija Fiji)s

. (9.6)

Wijk (xn, 1) = F*(Fij, Fij ).
One benefit of this principle is that the motion itself can be neglected in the consti-
tutive equations, Eq.9.5.

A visualization of the transformation of a line element in the present type of
theory is given in Fig. 9.1. It shows how an infinitesimal line element in the reference
configuration will be transformed into the current one. This scheme is also observed
in the microcontinuum theories that will follow later on in this work (see Fig.9.2
in Sect.9.3). For reasons of consistency it is pointed out that in higher gradient
theories no directors are used. Suitable reduced forms of the elastic laws in Eq.9.6
are developed by using deformation measures that are invariant under superimposed
rigid body motions, such as the right stretch tensor Uj;, the right Cauchy-Green
tensor C;; or Green’s strain tensor Eg . In the following, the linearized form of
Green’s strain tensor ¢;; is used:

eij = 5 (Fij + Fji) = 8ij = 5 (i j +uj), 9.7

where §;; denotes the Kronecker symbol (identity tensor) and u; the displacement
field.

9.2.1 MINDLIN’s Strain Gradient Theory

The potential energy density in these theories now includes the components of the
first gradient of strain in different groupings. For example, the postulated potential
energy densities W of Mindlin’s Ist, 2nd and 3rd strain gradient theory (SG) are
equal (cf., [ME68]):

WSS = Wy, ije) = W eij, miji) = W eij Ty 1) 9.8)
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where 7); jx=uy ;; denotes the second gradient of displacement, n,-jkz%(uk,ij + uj ki)
= ¢&j,; the gradient of strain, 7; i = %qldul,ki the gradient of rotation and ﬁi ik =
%(uk,i j Ui jx + uj i) the symmetric part of the second gradient of displacement,
and ¢;j stands for the alternating tensor (or Levi-Civita symbol). For linear isotropic
materials, Mindlin’s postulated 2nd form of potential energy density is [ME68]:

2W = oyj61) + ijiniji
= 2a18;8ij +ongii&jj + BinijkNijk + BamiikNjjk 9.9)
+ B3niikNkjj + Banijinikk + BsnijkNkij»

including five additional material parameters B, ..., B5 (o1 and oy can be adapted
into Lamé’s constants).

9.2.2 Modified Strain Gradient Theory

In the modified strain gradient theory (MSG), as described in Lam et al. [LYCWTO3],
the linear elastic potential energy density and proposed constitutive relations for non-
simple isotropic materials of gradient type read explicitly:

MSG _ 1 1 i+ ST
W = 70ijéij + 3 Pi¢kki + 3 M;jNijk T 71451 (9.10)
] 5 2= = 2—-S =S ’
= yheiie)j + 16];61; + 1CGEmm iEnni + T ik + ST T

where slf ; is the deviatoric part of the strain tensor, exx,; the dilatation gradient vector,
ﬁ; jk the deviatoric part of the symmetric part of the second gradient of displacement

and ﬁisj the symmetric part of the gradient of rotation. o;;, p;, ﬁisj and ﬁ: jk are the
corresponding stress and hyperstress measures. A and p are Lamé’s constants. £,
£1 and ¢, are corresponding material constants carrying the dimension of a length,
often considered as equal (g = €1 = £, = £) for practical reasons but without
further rational reasoning. Application of the principal of virtual displacements on
an assumed displacement field gives a differential equation to be solved analytically.
By doing so, Chong [Cho02] found the bending rigidity DMSC of Euler-Bernoulli
beams to be size-dependent under the modified strain gradient theory:

MSG >
D by 2 2 2 2 p
B =t Withb] =60 =206 + 34— +30 -G, O

where ¢ denotes the thickness of the beam structure, v the Poisson’s ratio and Dy
the classical bending rigidity. The derivation of the bending rigidity from the couple
stress theory is presented in Sect. 9.3.2, with a similar result.
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9.3 Micromorphic Continua

A quite different formulation of a higher order continuum has been developed in the
field of the so-called micromorphic continuum. Here, the starting point is to attribute
additional degrees of freedom to the material points instead of adding higher order
derivatives to their kinematic variables (as it was done in higher gradient theory). In
this case, material points are interpreted as “elastic particles.” As a result, the strain
energy density does not only depend on the deformation gradient of the material
point but in addition on the gradient of the particle’s deformation. A visualization of
the transformation of a particle from reference to actual configuration is presented
in Fig.9.2. This figure shows how a material point is equipped with D; and d; in its
reference and in its current configuration, respectively, each with three directors. The
directors account for the orientation and the deformation of the elastic particle. Most
frequently, the directors are considered deformable, which leads to the micromorphic
continuum formulation. A so-called microstretch continuum is obtained if the direc-
tors are only stretchable, i.e., their angles do not change with respect to each other
(no shear deformation). If, in addition to that, the directors do not change their length
and angles with respect to each other, one refers to it as a micropolar continuum.
In this case, only rotational degrees of freedom are assigned to the particle, which
makes it “rigid.”

Q;; is a tensor that transforms the directors between the two configurations. In the
case of a micromorphic continuum, Q;; is arbitrary. In a micropolar continuum, Q;;
can be any (proper) orthogonal tensor. In all continua that rise from the micromorphic

micromorphic continuum: Vij 2 i
. _ T
deformable directors
d. —

micro-stretch continuum: t el 22273 / \
directors with stretch only E/ w5 = fﬁ/'

]

I
I

)
I

micropolar continuum: ? Fy .05
rigid directors @/ = =

IS
I

77— \\

i
F
\I
classical continuum:
no directors
F
= ox
S dr.= —1 dx.
: o )

Fig. 9.2 Structure of micromorphic continua (according to Eringen 1999 [Eri99])
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one, the additional rotational degrees of freedom lead to the independence of the
principle of the linear momentum from the principle of angular momentum. Rumor
has it, that even in the very early days of mechanics, namely in the middle of the 18th
century, Euler, Bernoulli and Lagrange (cf., [Tru64]) discussed the independence of
the angular momentum. To quote the words of Truesdell [Tru68], “[we] do not regard
the principle of moment of momentum as a consequence of the principle of linear
momentum.”

9.3.1 Micropolar Continuum

Based on the ideas of E. and F. Cosserat [CC09], who introduced the concept of
“point couples,” so-called micropolar continuum theories (MP) have been detailed
for example in [Eri66, Eri99, Eril0]. Analogously to the higher gradient theories
discussed before, the elastic laws of the micropolar theory will be derived in what
follows. Again, the starting point is the conservation laws. The balance of mass
(Eq.9.21) is not affected. The local form of the balance of linear momentum reads:

POk =0k + P fis (9.12)

where &; is a non-symmetric force stress tensor (6;x # ;). In the following,
the time derivation of the angular momentum (or the moment of momentum, cf.,
[Eril0]), is provided as a conserved quantity and consists of x x v and s (where x,
v and s are the vectors of position, velocity and spin of the particle, respectively),
cf. [Eri76], pp. 13:

/<e,,kac,Uk+s,>dm j{”l(ﬁjkxjdlk‘FMlz)dA—F / ple fi+1)dV=0. (9.13)
A% 1%

Next, Gauss’ theorem is applied and the rules of tensor calculus are followed to
derive the local relation:

Gijkx]'[pl'}k — Okl — /Ofk] = [—/051' + wiig + pli 4 €iok ] 9.14)

balance of momentum balance of spin

The vector of spin is given by: s = <Z'5191k, where 6y, denotes the (constant) moment
of inertia of the (rigid) particle and ¢; stands for its rotation vector (axial vector).
refers to the so-called couple stress tensor (i 7 ). The angular Ve1001ty of a par-
ticle is connected to its orientation tensor Q;; (cf., Fig.9.2) by: ¢n = e, in Oki Qk,
(cf., Eremeyev et al. [ELA13]). Constitutive equations have been developed to con-
nect the known variables to the unknowns, namely the density p, the motion g,
the orientation tensor Q;;, and the temperature 6. The most generalized constitutive
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equations for the stresses &;; and the couple stresses i read:

o0

Gij(xn, 1) = F°

lo(pr, t —5), xi(pi,t — ), Qij(pi, t —5),0(pi, 1 — $); xnl,
DIEDB

s=0

o0

Wij(xp, t) = F¥ ’ lo(pr, t —s), xi(pi,t — ), Qij(pi, t —5),0(pi, t — $); xnl,
preB ls=0

(9.15)

in which the dependencies on all points p; of the body B and on all times s in the
past manifest themselves in the corresponding functional F#. A Taylor series in
space decomposes the dependence on all points of the body into a dependence on
the gradients of the variables, respectively:

0o, )=F°

0 ~ ~ ~ ~
S*O{p(xn’t)’ p,}'na ooy Xi(xn’t)’ Xi,na ooy Ql] ('xnat)’ Ql],ka ey e(x}’ht)a e,k’ "'}a

~ |00 - ~ ~ ~
Ml](‘xn’t):Fu ‘S*O{p(xn’t)’ /O,ma sy Xl(xna t)a Xi,n’ sy Ql] (xl’lvt)a Qlj,k’ sy e(xnat)a G,ka "'}'
9.16)

where 7 represents the term ‘¢t —s.” The dependencies on the density and on the
gradients of the density can be eliminated by the relationship p = po/det|Fj;l, i.e.,
by taking advantage of the conservation of mass (Eq.9.21). Thus, in what follows,
the density and its gradients are dropped in Eq.9.16. Further on, the influence of
the temperature is neglected in Eq.9.16. By referring to simple bodies (or simple
materials), the Taylor expansion of the variables will be limited up to the incorporation
of first order derivatives. For materials without memory, the stress and couple stress
expansions read:

0j(xp, 1) = FO (i (xn, 1), Fij(xn, 1), Qij(xn, 1), Qijx(xu, D},

; 9.17)
Wij(Xn, 1) = F*{xi (Xn, 1), Fij(Xn, 1), Qij(Xn, 1), Qijk (X, 1)}

Again, the Principle of Euclidean Invariances (cf., Bertram [Ber05], [Ber13]) leads
to the reduced functions:
0ij(xp, 1) = F&(Fij» Qij, Qijk)s

. (9.18)
Wij(xn, t) = F¥(Fij, Qijy Qijk)-

Suitable reduced forms of the elastic laws shown in Eq.9.18 are developed by using
deformation measures that are invariant under superimposed rigid body motions,
like:

Eg = QikFij — éij.

1 9.19)
E< = —§€irm(ka ervk)’
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where Ei? is the relative stretch tensor and [73; the relative wryness tensor (cf.,
Eremeyev et al. [ELA13]). The reduced forms read:

5. — 0 r.
- 1 bl 9
th(xnvt) k(Ej Iij)

0 (9.20)

/‘Lij(xnv ) = K(EU , Fz/)
A physically' linear potential energy density for isotropic micropolar elastic solids
is given as (cf., [ELA13]):

2W = OtlEi?Eka +Ot2EgEle- +063E3Eg + B1lGi ik + Balijlji + B3 155155
9.21)

With the assumption of small deformations the constitutive equations for the force
stress tensor o;; and the couple stress tensor u;; read (cf., [Lak95]):

0jj = Askikdij + 2+ K)&ij + Ke€jjk (re — i),

(9.22)
Wij = V1¢r.rbij + V2ij + v3Pji,

respectively. y1, 2, ¥3, and « denote the additional material coefficients, called
Cosserat elastic constants. The micro-rotation vector ¢ is kinematically distinct
from the macro-rotation r;. Remézani et al. [REJB12] have described the multi-
scale behavior of trabecular human bone, involving size effect explicitly. To some
extent, their work has been enabled by the knowledge of all Cosserat elastic constants
of the material human bone, measured before and listed by Lakes [Lak95].

9.3.2 Couple Stress Theory

The simplest case of a micropolar continuum is given by the couple stress theory
(CS) in which the particle’s rotation is directly related to the macroscopic rotation
vector: ¢; = %ei ki, j for small displacements. By considering the total kinetic and
internal energy of a body, it can be shown that the force stress tensor turns out to
be symmetric (cf., Liebold and Miiller [LM13]). By using this fact, the products of
the relative stretch tensors Eg EJQl and Ei? Eg in Eq.9.21, are equal to each other.
As a consequence, the force stresses can still be represented in terms of classical
linear isotropic elastic materials by utilizing the two Lamé’s constants. in couple
stress theory the wryness tensor turns out to be traceless and symmetric. The product
of the wryness tensors I;; I'x in Eq.9.21 vanishes and the products of the wryness
tensors I;;1j; and I};1}; in Eq.9.21 are equal to each other. Consequently, there
is just one additional material parameter in couple stress theory (also termed the

IPhysical linearity denotes a linear dependency of the stress measures on the strain measures.
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Table 9.1 Experimental data for length scale parameters in higher order theories for different

materials

Lexp (Lm) Material Higher order Experimental Reference
theory design

11.0 Ni (nickel) Couple stress Beam bending Ji and Chen
elasto-plasticity [JCO06]

6.0 LiGA Ni (nickel) | Couple stress Beam bending Ji and Chen
elasto-plasticity [JCO06]

0.057 CNT (carbon Modified strain Beam bending? Lietal. [LWLI10]

nanotubes) gradient elasticity

0.007 ZnO (zinc oxide) | Modified strain | Nanowires® Liet al. [LWLI10]
gradient elasticity

17.6 Epoxy Modified strain | Beam bending Lam et al.
gradient elasticity [LYCWTO3]

3.0 Cu (copper) Modified strain | Torsion Yang et al.
gradient elasticity [YCLTO02]

4Performed by Cuenot et al. [CCN00, CFDN04]
bperformed by Stan et al. [SCPCO07]

pseudo-Cosserat model). The potential energy density of couple stress theory, the
symmetric part of the gradient of rotation (of Eq.9.10), the force stress tensor and
the couple stress tensor read:

WSS = Jeiiej; + pej el + wl .,

7. = Lo . Sy = Lee : . .
nij = 2(¢l,] +¢j,l) = 4(€tlkuk,l] + 6]/{11’”,/{1)9 9.23)
Oij = Aekidij + 2uueij,

pij = 2uL°7;.

The fact that Eq.9.23, handles a second gradient of displacement, shows its close
relation to the higher gradient formalism, although it was derived from micropolar
theory. From an experimental perspective, theories with a smaller number of addi-
tional parameters are preferred. Following the so-called methods of size effect (cf.,
Lakes [Lak95]), a few authors report some quantitative values for the additional pa-
rameter £ (see Table 9.1) for couple stress theory and modified strain gradient theory
(the latter with equated length scale parameters £y =£¢1 =10, =1).
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9.4 Methods of Experimental Analysis of Higher Order
Parameters

9.4.1 Beam Bending

Experimental procedures have been defined, which allow for the determination of
material length scale parameters. One of these size effect methods described in the
literature (cf., [Lak95]) is bending tests, using different outer dimensions for the
specimen samples. As pointed out in this work, there is an experimental indication for
a different material behavior at the micron scale which manifests itself, in particular,
in micro beam bending tests (see Table9.1). The resistance to bending, which is
quantifiable in terms of bending rigidities, is influenced by the choice of the material,
its outer dimensions, and the clamping conditions. In the experiments mentioned
above, all of these variables have been controlled, and the bending rigidities have
been calculated from the experimental data in order to fit to a certain theory. In this
section the possibility to extract bending rigidities analytically and experimentally in
order to find the best correlation will be demonstrated. For this purpose, in Sect. 9.3:
the potential energy density of the couple stress theory (CS) is chosen. The Euler-
Bernoulli beam assumptions, the (closed form) Kirchhoff plate model as well as a
finite element approach will be used. The displacement field of an Euler-Bernoulli
beam reads:

aw(x)

ox

Uy = —2 , Uy =0, u; =w). (9.24)
Henceforward, strains and stresses are derived according to Eqs.9.23,-9.234 in a
straightforward manner. By using the variational principle on the equivalence of the
potential energy and the work done by the external forces, the following ordinary
differential equation (ODE) for the beam bending problem arises:

(EI 4+ pnAWY (x) =qg(x), Vxel0,L]. (9.25)

This derivation has been done in more detail by the authors in Liebold and Miiller
[LM13]. E denotes Young’s modulus, A the cross-sectional area, L the length of
the beam, / the second moment of inertia, g(x) the distributed load, u the shear
modulus (to be formed by Poisson’s ratio v and E), and £ denotes the material’s
intrinsic length scale parameter of the couple stress model. The solution of the ODE
for the case of a clamped beam reads:

F [x3 sz]

wcs(x) = | — - —
(EI +pAt2)L 6 2

(9.26)

The bending rigidity D is obtained from the relationship between the acting force F
and the deflection of the point at where the force acts: D = % By normalization to
the bending rigidity Dy of the conventional continuum theory, an inverse quadratic
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function that depends on the thickness ¢ of the beam will form:

DCS 2
— =14+ -2 withb? =6(1+v)" 12 (9.27)
Do 12’ h

With this equation in mind it is straightforward to exploit the bending rigidities of
beams with known thicknesses experimentally and find a best fit for the only left
unknown, £. This procedure has been used by various experimentalists. The same
approach could of course be applied to other displacement fields, entering Eq.9.24.

9.4.2 Plate Bending

In this context, the displacement field for a Kirchhoff plate is given as:

ow(x,y) Iw(x, y)
-, -

- Uy = oy u; = w(x). (9.28)

x =

Again, by using the variational principle on the equivalence of the potential energy
and the work done by the external forces over the whole plate B, the following partial
differential equation for the plate bending problem will arise, cf. [Tsi09]:

3 2
KSSAAW = px,y), Vx,y € B, with KCS = Et + Eit , (9.29)
12(1 —v2)  2(1+v)

where p is the function for the load distribution and K® the plate stiffness in the
couple stress theory. For a plate clamped on all sides, the general solution w of
Eq.9.29 can be represented in a double Fourier sine series:

— . /mmX\ . (NTY
w(x,y) = ;;wmn sm( P )sm (T),
px,y) = éipmn sin (m;rx) sin (MTy)

By entering Eq. 9.30 into the partial differential Eq. 9.29, a relationship of the coeffi-
cients wy,, and pp,, is derived. A numerical evaluation of the Taylor expansion of the
deflection field w has been performed by the authors using the commercial software
Mathematica®. If one hundred sum terms are taken into account, the discrepancy
between solutions has reached a value of below 0.001 % per increase of number of
sum terms. By setting the material length scale parameter equal to zero, the bend-
ing rigidity for the conventional continuum theory has been calculated. Following
the corresponding method of size effect, the results of the plate bending problem

(9.30)
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Fig. 9.3 Normalized bending rigidities of Kirchhoff plates of different thicknesses at a constant
length scale parameter of £ = 0 wm (straight line) and £ = 3.5 wm (curved line)

using the couple stress model and plates of different thicknesses have been plotted
in Fig. 9.3 (assuming a length scale parameter of £ = 3.5 um).

9.4.3 Finite Element Approach

The exemplary results for Euler-Bernoulli beams and Kirchhoff plates necessitate
strong assumptions with regards to the displacement fields. In contrast to these closed-
form approaches a finite element solution is not restricted in terms of displacements.
Due to that property a solution strategy is presented for the couple stress theory in
the context of an open-source finite element project, called FEniCS®. It provides
a collection of open-source packages for automated, efficient solutions of various
differential equations (cf., Logg et al. [LMW12]). The finite element mesh consists
of equidistantly distributed tetrahedral continuous Lagrange elements with a poly-
nomial degree of two. In order to arrive at a suitable finite element formulation, the
starting point is the balance of linear momentum, including the rotation of micro-
particles in the balance of angular momentum, Eqs.9.12 and 9.14. For simplicity
body-forces and body-couples are neglected. Next, static conditions are assumed and
the conservation of linear momentum and the conservation of angular momentum
(cf., Lam et al. [LYCWTO3]) of the couple stress theory are written down (compare
Eqs.9.12 and 9.14):

Oji,j =0 and Mji,j =0. (9.31)

By multiplying the balance of linear momentum with arbitrary test functions of
translation duy and the balance of angular momentum with test functions of rotation
8¢;, which so far were independent of each other, both balances read:
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/G]iﬁl5uidV =0

v = /(Gli,15ui+ﬂzi,15¢i)dV -0.
Vv —— N——

/.u-/i‘la(PidV =0 (1) @)

v

(9.32)

Due to the arbitrariness and independence of both sets of test functions, the informa-
tion contained in the original two equations is not affected by the summation. The
expression denoted by (1) in Eq.9.32 is transformed into a surface integral by means
of Gauss’ theorem. Hence, force boundary conditions in terms of the applied loads
will result. The expression (2) in Eq.9.32 is also transformed with Gauss’ theorem.
Hence, the derivative of the third order of the displacement field in the couple stress
tensor is eliminated. Note that in anticipation of the finite element formulation the
Gauss’ theorem is used in its more general form including jump terms:

0= —/miau,,,dv +%n1(ali8ui)dA . / [[o;l-Sui]]nldAs
Ay

v av
- /M1i5fpi,1dV +%nl(ﬂli5(ﬂi)dA —/[[Mzi5¢i]:|nzdz4s- (9.33)
|4 A% Ag

n; denotes the surface normal of the volume surface and, in what follows, of the finite
elements. Ag stands for the surface of singularity. Since the force stress tensor and
the couple stress tensor are related to displacements and to rotations by a constitutive
law, they will also be approximated polynomially. However, the continuity of the
displacement fields between the elements is not guaranteed yet, and needs to be
accounted for by jumps of the form shown in Eq.9.33. A jump is denoted by double
parenthesis, and it is assumed that the material parameters in all finite elements are
the same. From this point on, the rotation vector is denoted by the macroscopic
rotation vector of the isotropic elasticity ¢; = %eimnun,m and its variation by §¢; =
€imndUn,m. The nodes of neighboring finite elements and their test functions for the
displacements duy are identified by “+” and “—.” Regarding the force stresses, the
jump condition at the element’s faces reads:

[orbue]Jnr = (ko = o8u0m,. (9.34)

As far as couple stresses at the element’s faces are concerned, the jump condition
reads:

([ruicirksu [ = it e, = wggendug m. 9.35)

Note that the corresponding stress measure inside the jump conditions (containing a
certain order of derivation of displacements) is multiplied with a derivation of a test
function of a lower order. Eventually, reasonable results have only been achieved
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by demanding the jump term of the couple stresses to equal zero. The stress and
couple stress vectors, which act on the boundary of the body, are denoted by ¢#; and
m; respectively, as becomes evident by the extension of Eq.9.33:

0= /[cmSui,z — %mieimnwm,nz]dV — 74 [nzazi Sui + ny i %eimntSum,n]dA
p ~—— —
v v ti m;=0

+/%|:[/Lzl'6irk5uk,r]]nldAs- (9.36)

As

The couple stress vector, in representation of an external load, is set equal to zero
since it is difficult to apply in practice. As shown in Lam et al. [LYCWTO3], the
couple stress tensor pyx in the couple stress theory is naturally symmetric (compare
Eq.9.234). Next, the strain tensor for small displacements ; = %(u k. +ur k) isused
for representing u; ; and the rotation gradient tensor ﬁ,.sj for representing %q mnOUm.nl-
In conclusion, the following final variational form is acquired:

/ (01,-88,-1 + m,ﬁﬁ?,)dv — % tréupdA +/ %[I:/Lliaum,n]]eimnnldAs =0.

|4 A% Ag
(9.37)

The local form of Eq.9.37 describes an elliptic partial differential equation of
rank two.

For spatial discretization the Galerkin method is applied. The routine of solving
the system matrix has been based on the method of Gaussian elimination (LU, for a
lower/upper decomposition) with low effort in time. The selected material data was
taken in agreement with the values for epoxy (cf., [LYCWTO03]). These properties
are reported to be: E = 3.8 GPa, v = 0.38 and ¢ = 17.6 wm. The results for a beam
model and a plate model, which were loaded with a localized force at the end of the
beam and at the center of the plate, are shown in Figs. 9.4 and 9.5. The results show,
that bending rigidities increase while the outer dimension decreases. Qualitatively
the usability of the couple stress theory in closed form as well as numerical and the
successful modeling of a size effect in linear elasticity is demonstrated.

9.5 Other Theoretical Approaches

In the literature there exist further theories that are able to predict the size effect.
Without claiming completeness, the non-local elasticity, fractional calculus, and
surface elasticity will be discussed in this section.
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9.5.1 Non-local Theory

In non-local theory, there are neither higher gradients of kinematical variables nor
additional degrees of freedom for material points. In the mechanics of a non-local
continuum, as introduced by Eringen [Eri66], it is assumed that the stress at a point
Xy is a function of the stresses at all points of a well defined sub volume in the
neighborhood of x:

mmmaﬁymw—mwmuMﬁ,w=%mmm. 9.38)
1%

t;j stands for the macroscopic stress tensor, for which a generalized Hooke’s law is
assumed. C;jx; denotes the tensor of elastic constants, and K represents a non-local
modulus, which depends on the Euclidean distance |x; —xx| and the material constant
7. This construction of a stress tensor is referred to as the “attenuating neighborhood
hypothesis” (cf., [Eri66]). Reddy [Red07] applied this kind of non-local theory to
bending, buckling, and vibration of beams and successfully demonstrated an influ-
ence of the outer dimensions to various deformation quantities.
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Fig. 9.4 Normalized beam bending rigidities of classical-, couple stress- and present finite element
solutions of different thicknesses at a constant length scale parameter of £ = 17.6 um
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Fig. 9.5 Normalized bending rigidities of plates in the couple stress elasticity model, incorporating
Kirchhoff plate- and present finite element solutions for different thicknesses at a constant length
scale parameter of £ = 3.5 um

9.5.2 Fractional Calculus

A very similar approach to the non-local continuum theory is encountered in frac-
tional calculus. The conventional spatial derivatives of kinematic variables are
replaced by fractional derivatives. Referring to Sumelka [Sum13], a Riesz-Caputo
(RC) fractional derivative consists of left and right-sided Caputo derivatives and is
represented as follows:

1rQ-ow)

DL =55

[aCD‘,"f(t) + (=1 ?sz(t)], (9.39)

where « denotes the order of the derivative D(-), and ¢ an element of the interval
[a, b] of the function f. I" stands for the factorial function. The left-sided Caputo’s
fractional derivative reads:

I OIS

n—a)) G—oenti s

(DIF0) = (9.40)

with n = [a] 4+ 1 ([«r] represents the largest integer which is smaller than «). The
right-sided Caputo’s fractional derivative reads:
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If o equals one, the classical first derivative of a function will be obtained. In general,
the effect of the fractional calculus can be controlled by changing « (the fractional
order of the derivative) and by the definition of the size of the spatial interval [a, D].
Carpinteri et al. [CCKO04] have presented computational results of the tensile and
flexural strength of beams calculated by fractional derivatives and pointed out that
size effects can be observed.

9.5.3 Surface Elasticity

Core-Surface Model

In contrast to the considerations above, there exists another explanation for repro-
ducing size dependent material behavior. In some cases it is apparent that the surface
of the body shows a different material structure and a different mechanical behavior
than the bulk material (e.g., by a different chemical composition, like oxidation). Sev-
eral continuum concepts will be used here. First, the core-surface model as described
in Gurtin & Murdoch [GM75] and Javili et al. [JMS13] will be presented, and in
the following section, the core-shell model will be discussed. Referring to Yao et al.
[YYBL12], there can be a material surface (with a theoretical thickness equal to zero)
or a shell like surface layer (with a certain thickness). In general, surface elasticity
is based on a surface energy density o related to the free Gibbs surface energy. By
using the notation o, 8, y = 1, 2 the surface stress tensor 74 is defined within a
conventional continuum framework (cf., Vermaak et al. [VMKG68]) as:

30(82/3)
Tup = 080p + ——— (9.42)
Saﬂ

where sgﬂ denotes the surface strain tensor depending on the symmetric part of
the surface displacement gradient. According to [GM75, JMS13] the constitutive
equation for linear isotropic surface elastic materials, neglecting surface tension (or
residual surface stresses 1), is written as:

Tap = M0 €7, 855 + 210 E0s. (9.43)

where A(S) and u(s) are the two isotropic surface elastic constants, SS);, denotes the
trace of the surface strain tensor and 82 represents the unit tensor of the surface.
In the case of arbitrary shaped but smooth surfaces, a curvilinear-coordinate-based
continuum description is needed (see Fig.9.6). Co- and contravariant coordinates
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Fig. 9.6 Representation of
the initial framework ¢; and
the curvilinear coordinate
system s,, in core-surface
elasticity
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are indicated using sub- and superscripts of «, 8, y with the addition that complete
derivations of vector and tensor valued quantities are represented by a semicolon.
Then the surface stress tensor satisfies the equilibrium equations:

™ +1% =0, tPiap = oijninj . Kep = Xiap i, ©.44)

with 7, being the component of the traction o;;n; along the « direction of the sur-
face, and k4 denotes the curvature tensor. The tangential vectors s, of the surface
coordinate system are defined as:

3)6,‘
Sy = @ e;. (9.45)
Taking into account that the curvature tensor vanishes if the surface is (piecewise)
flat, Miller & Shenoy [MSO00] derived appropriate formulae for simple beam bending
under small deflections. The normalized bending rigidity of this approach (in contrast
to Eq.9.27) reads:

S
D—=M, K:/yzdl, §=h, (9.46)
Dy El E
3A
incorporating the bulk modulus E and a surface modulus S. K is the so-called
“perimeter moment of inertia,” in analogy to the moment of inertia / in the bulk.
The ratio of bulk modulus and surface modulus is named % and can be thought as a
characteristic length, similar to £ in higher order theories. When considering a simple
rectangular beam, / and K are well defined quantities, and the normalized bending
rigidity will form a simple inverse function with respect to the thickness ¢ of the beam:

g_z 14 8(7;) 9.47)

Such kind of dependence on an outer dimension is widely used in the literature to
describe size effects of nanowires. In addition, the tensor of surface elastic constants
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is supposed to handle negative components as well, which leads to negative charac-
teristic lengths and finally to a softer elastic response in the small scale. Sadeghian
et al. [SYGDBFKO09] have demonstrated this experimentally for cubic silicon (cf.,
Table9.2). According to Miller and Shenoy [MS00] the normalized tensile stiffness of
arectangular bar in an axial loading configuration is given by: TTZ =1+ 47h. This char-
acteristic is unique to surface elasticity: Neither micropolar nor strain gradient theo-
ries predict a size effect in simple tension. A constant influence like surface tension
can only be imitated by applying additional double stresses as a boundary condition
in a strain gradient theory. In summary, there are different types of functions for the
particular mechanical rigidities: in couple stress and strain gradie