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Abstract Competitive facility location problems are concerned with the following
situation: a firm wants to locate a predefined number of facilities to serve customers
located in some region where there already exist (or will be) other firms offering the
same service. Both new and existing firms compete for optimizing their market share
of profit. A discrete version of such problems arises when it is assumed that there
are a (rather small) finite number of candidate locations and the markets consist of
point demands. We review modeling and optimization approaches for this type of
problems and we emphasize and develop the bi-level programming methodology.

Keywords Competitive facility location • Bi-level programming • (r|p)-Centroid
problem • (r|Xp)-Medianoid problem • Location under customers competition

1 Introduction

Facility location analysis is one of the most well-studied areas of the operations
research. In the basic model, there is a predefined cost for opening a facility and
also connecting a customer to a facility, the goal is to minimize the total cost.

The typical facility location problem assumes that the locating facility is either
a price taker or a monopolist, so that the market competition is neglected among
the companies. However this simplified assumption does not fit in most real-life
situations and the need arises to incorporate competition among the decision-
makers. Indeed, competitive location models additionally incorporate the fact that
location decisions have been or will be made by independent decision-makers who
will subsequently compete with one another for market share, profit maximization,
etc. In addition, the assignment of customers being served by these facilities
and how these facilities are connected with each other are interesting decisions
considered within the problem.
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It is widely accepted that the competitive location analysis was initiated by
Hotelling [14]. In his two ice cream vendors game, he examined location policies
of an interdependently acting duopoly in a linear market of a given length. The
distribution of buying power along the line segment is assumed uniform. Each
customer has an inelastic demand for the good and pays the transportation cost of
obtaining the good. Therefore, he patronizes the nearest facility in order to minimize
his expenditures. He proved that a “back to back” location in the middle of the
market constitutes a long-run equilibrium. Since then, a vast number of publications
have been devoted to the subject. Thus, different classification efforts with respect
to multiple components have been proposed in the literature, see for example,
[9, 10, 19, 27] among others. Spatial representation and the nature of competition
are some of them.

The classification based on the spatial representation classifies the CFL models
into three broad categories: (a) Continuous models, where the potential location of
the facilities can be anywhere in the plane, (b) Discrete models, where facilities
are allowed to locate at a finite set of possible locations, and (c) network models,
where any point on a network is suitable for location. From the optimization point
of view, the techniques used to cope with the problems also differ. Continuous
location problems are, for most of the cases, nonlinear optimization problems, while
discrete and network location problems are integer programming/combinatorial
optimization problems.

When the nature of competition is used as a classification method then again
three different classes of problems can be identified. (a) Static problems, which
assume that a firm enters into a market, where operate same existing firms, aiming
at choosing the location of p facilities such as to attract the maximum market share.
The new competitor enters into the market by having full and in advance information
about the characteristics and the strategies of the existing firm (s). It is assumed
further that this information is fixed and no reaction is expected from the existing
competitor(s). When the assumption of the non reacting competitors is eliminated,
two new classes of CLF arise, (b) dynamic and (c) sequential location problems. The
competing firms make a location decision simultaneously in the first case, whereas
there is a hierarchy in the decision-making process in the second. The sequential
location completion is mainly formulated as a Stackelberg-type game. On the other
hand, in simultaneous location games, the Nash equilibrium constitutes the solution
of the problem.

In this work we focus on discrete bi-level CFL problems. Our aim is to provide an
up to date review of modeling and optimization approaches used in the bibliography.
Moreover, we develop a new bi-level methodology for this type of problem.

2 Sequential Deterministic Facility Location Problems

The formalization of this class of problems and fundamental complexity results
were established by Hakimi [11]. Following the game introduced by von Stack-
elberg [30] Hakimi [11] presented the two basic problems in the sequential location
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analysis, the centroid and medianoid problems. These two problems are faced
by the leader and the follower, respectively. The leader attempts to locate p ≥ 1
facilities knowing that the follower will in turn locate his r ≥ 1 facilities based on
the leader’s chosen location; this is the (r|p)-centroid problem. The follower knows
the set Xp that indicates where the leader’s facilities are located and solves an (r|Xp)-
medianoid problem. Customers choose among the facilities according to a function
of the distance between them and the facilities, preferring always the closest. This
is the so-called binary customer choice. The formulation of the problems is based
on the assumption that co-location is not allowed and if, by any chance, the distance
from a customer to the closest facility of the two competitors is the same, the
customer always prefers the leader’s facility. The demand of the customer is also
considered to be inelastic with respect to distance travelled.

Given the set I of m potential facilities location and J the set of n customers
locations, let xij defines the distance between customer j and facility i. It is assumed
further that wj is the weight (profit, demand, etc.) of customer j.

If X and Y denote the location occupied by the leader and the follower,
respectively, and d(j,X) and d(j,Y) the distance between customer j and his nearest
facility from X and Y , respectively, then customer j will prefer Y over X if d(j,Y)<
d(j,X) and he prefers X over Y otherwise. If J(Y ≺ X) is the set of customers
who prefer Y over X then W(Y ≺ X) = ∑

j∈J(Y≺X)

wj denotes the total weight of the

customers who prefer Y over X.
For each X the follower’s strategy is the set of other location Y that provides the

maximal market share, W∗(X), to him. This maximal market share is obtained by
solving the following problem:

max
Y,|Y|=r

W(Y ≺ X). (1)

The leader on the other hand is interested in maximizing his own market share.
Thus, his optimal location strategy X∗ is the one that minimizes the follower’s
market share. Therefore, the leader’s maximal market share is obtained by solving
the following problem:

min
X,|X|=p

max
Y,|Y|=r

W(Y ≺ X). (2)

Hakimi [12] extended the initial formulation of the problem by considering
elastic demand and different customer choice rules, apart from the binary choice
rule, such as partially binary choice and the proportional preference choice of the
customers. Under the partially binary choice the customer uses the closest facility
of each firm. Under the proportional choice the customer proportionally distributes
his demand among the operating facilities. He came up with six different scenarios
and he stated several vertex optimality results. Particularly, he proved the existence
of a nodal solution for the partially binary problem, under both inelastic and elastic
demands. He proved also that a nodal solution exists in the proportional choice-
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elastic demand case only if the demand captured by the facilities is a linear function
of the distance. Suárez-Vega et al. [28] extended his result by considering a concave
function of the demand capture.

A 3-level formulation for both leader’s and follower’s problem and a heuristic
solution procedure based on the elimination procedure in a candidate list are
proposed in [6]. They formulated the problem as a three-stage optimization process
which included the customer selection problem, the follower location problem, and
the leader location problem. The corresponding problem, (r|p)-centroid problem,
with inelastic demand is as follows:

max
m

∑
i=1

[
n

∑
k=1

hkzki

]
xi (3)

s.t
m

∑
i=1

xi = p (4)

xi ∈ {0,1}, i ∈ [1, . . . ,m] (5)

where z solves

CUS(x,y) min
n

∑
k=1

m

∑
i=1

dkihkzki (6)

st
m

∑
i=1

zki = 1,k ∈ [1, . . . ,n] (7)

zki ≤ x̄i + ȳi,k ∈ [1, . . . ,n], i ∈ [1, . . . ,m] (8)

zki ∈ {0,1},k ∈ [1, . . . ,n], i ∈ [1, . . . ,m] (9)

where y solves

FLOr max
m

∑
i=1

n

∑
k=1

hkzik (10)

st
m

∑
i=1

yi = r, (11)

m

∑
i=1

zki ≤ 1,k ∈ [1, . . . ,n] (12)

zki − ckiyi ≤ 0,k ∈ [1, . . . ,n], i ∈ [1, . . . ,m] (13)

zki,yi ∈ {0,1},k ∈ [1, . . . ,n], i ∈ [1, . . . ,m] (14)

In the above model m is the number of possible facility locations and n is
the number of customer locations. dki = d(ck, fi) is the distance between the kth
customer location ck and the ith facility point fi. hk is the total demand of the
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customers located at ck. A set Z of location points is identified by a binary vector
z = (zi : i ∈ [1, . . . ,m]) where zi = 1 if fi ∈ Z and zi = 0 if fi �∈ Z. The decision
variables in the leader and follower location problems are the m-vectors x and y
of 0− 1 or binary decision variables corresponding to sets X and Y . zki is the 0–
1 decision variables indicating whether the customers located at the k customer
location ck prefer the location fi for the facility and cki = 1 if dki < min{dkjx̄j = 1}.
The CUS(x,y) is the customer selection problem. The objective function of this
problem represents the total distance travelled by the customers to arrive at the
corresponding facility points. The constraints state that each customer has to go
to one location in the leader location set or in the follower location set. FLOr

corresponds to the follower’s location problem. Campos Rodríguez et al. [6], based
on the observation that the mathematical programming formulation of the minimax
problem that corresponds the leader’s problem (3)–(14) is

max W (15)

st |x|= p (16)

W(Y ≺ X)≤ W,∀Y ∈ Lr, (17)

proposed a heuristic based on an elimination procedure in a candidate list in order
to solve the leaders problem. In the procedure, a leader solution provides an upper
bound for the leader follower problem. A family F of good follower candidates
is used to conclude that the upper bound provided by a leader solution cannot be
improved, and therefore, this solution is an optimal solution.

The bi-level formulation of Hakimi’s model proposed by Alekseeva et al. [1]
employs three kinds of binary variables:

xi =

{
1 if facility i is opened by leader,
0 otherwise,

(18)

yi =

{
1 if facility i is opened by follower,
0 otherwise,

(19)

zj =

{
1 if customer j is served by leader,
0 otherwise,

(20)

It assumes also that for a given solution, x, used by the leader, the set

Jj(x) = {i ∈ I|dij < min
l∈I|xi=1

dlj}, j ∈ J

defines the set of facilities which allows the follower to capture customer j.

max
x ∑

i∈J

wjz
∗
j (x) (21)
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st. ∑
i∈I

xi = p, (22)

xi ∈ {0,1},∀i ∈ I (23)

where z∗j (x) solves

max
y,z ∑

i∈J

wj(1− zj) (24)

st. ∑
i∈I

yi = r (25)

1− zj ≤ ∑
i∈Ij(x)

yi, j ∈ J, (26)

xi + yi ≤ 1, i ∈ I (27)

yi,zi ∈ {0,1}, i ∈ I, j ∈ J. (28)

Thereafter, a hybrid memetic algorithm is used for the solution of the problem.
The improvement of the elements of population at each iteration is done through a
probabilistic Tabu search procedure.

An upper bound is obtained by reformulating the bi-level problem as a single
level mixed integer problem with an exponential number of constraints and vari-
ables. If F is a family of follower solutions and Ij(y) = {i ∈ I|dij ≤ min

l∈I
(dlj|yl = 1)},

y ∈ F, j ∈ J is the set of facilities which allow the leader to keep the customer j if
the follower uses solution y, and if F contains all possible solutions of the follower
then problem (21)–(28) is equivalent to the following 0−1 program:

max W (29)

st (30)

∑
j∈J

wjxiy ≥ W,y ∈ F, (31)

ziy ≤ ∑
i∈Jj(y)

xi, j ∈ Jy ∈ F, (32)

∑
i∈I

xi = p, (33)

xi,ziy ∈ {0,1}, i ∈ I, j ∈ J,y ∈ F (34)

where W ≥ 0 is the total market share of the leader and ziy is binary variable
indicating whether customer j is serviced by the leader when the follower uses a
solution y.

This single level model is also used to find the global optimum. An iterative
exact algorithm is developed for this purpose. Alekseeva et al. [2] have used the
single level formulation proposed by [26] in order to improve exact iterative method
previously developed in [1].
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The authors in [7], based on the bi-level representation (21)–(28), approached
leader’s–follower’s problem using two metaheuristics methods: local search with
variable neighborhoods and stochastic Tabu search.

The bi-level models proposed by Beresnev [3] contain the fixed cost for opening
facilities. The author considers two settings of the problem that differ in the
objective functions of the follower firm: In the first, it is assumed that the goal of
the leader firm as well as the follower firm is the maximization of the profit, while
in the second, the objective of the follower is maximization of his income. It is also
assumed that each facility opened by the follower firm cannot be loss-making. The
author uses the following notation in order to build up the proposed models

• I = {1, . . . ,m} is the set of possible sites for location;
• J = {1, . . . ,n} is the set of clients;
• pij is the profit realized by facility i ∈ I opened by the leader when serving client

j ∈ J
• ≺j is a linear order on I determining the preferences of client j ∈ J, and i ≺j k

means that of the two open facilities i and k ∈ I client j selects facility i; the
relation i 	j k means that either i ≺j k or i = k;

• fi is the fixed cost of the leader firm for opening facility i ∈ I;
• gi is the fixed cost of the follower firm for opening facility i ∈ I.
• xi is the variable indicating if facility i ∈ I is opened by the leader firm,
• xij is the variable indicating if facility i ∈ I opened by the leader firm is selected

by client j ∈ J;
• zi is the variable indicating if the follower firm opens facility i ∈ I;
• zij is the variable indicating if client j ∈ J selects facility i ∈ I opened by the

follower firm

When the goal of the follower firm is to maximize the profit, it is written as follows:

max
(xi),(xij)

{
−∑

i∈I

fixi +∑
j∈J

(
∑
i∈I

pijxij

)(
1−∑

i∈I

z̃ij

)}
(35)

st ∑
i∈I

xij = 1, j ∈ J (36)

xi ≥ xij, i ∈ I, j ∈ J, (37)

xi + ∑
i≺jl

xlj ≤ 1, i ∈ I, j ∈ J (38)

xi,xij ∈ {0,1}, i ∈ I, j ∈ J (39)

(z̃i),(z̃ij) is the optimal solution of the problem

max
(zi),(zij)

{
−gizi +∑

j∈J
∑
i∈I

qijzij

}
(40)
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st ∑
i∈I

zij ≤ 1, j ∈ J (41)

zi ≥ zij, i ∈ I, j ∈ J (42)

xi + zi + ∑
i≺jl

zlj ≤ 1, i ∈ I, j ∈ J (43)

zi,zij ∈ {0,1}i ∈ I, j ∈ J (44)

Objective function (35) shows the value of profit received by the leader taking
into account that a part of his consumers will be captured by the follower.
Constraint (36) guarantees that each client can select one facility from the leader
and inequalities (37) that only one open facility can be selected. Inequalities (38)
implement the rule for choosing a facility opened by the leader to service a
consumer. The same inequalities guarantee that to service each consumer one can
choose only one facility opened by the Leader. Objective function (40) of problem
shows the value of the profit received by the follower. Inequalities (43) implement
conditions for the follower capturing consumers for given facilities opened by the
Leader.

The computational complexity of problem (35)–(44) is discussed in [23] where
the author proved that the problem is Σ p

2 -hard when the cost of opening facilities are
considered null.

In a series of publication [3–5, 24], a number of solution methods of the
problem have been proposed. Their main characteristic is that they are based on
the maximization of a pseudo-Boolean function of the form

max
x

f (x) (45)

st x ∈ Bm (46)

3 Sequential Probabilistic Competitive Facility
Location Models

Models presented in the previous sections assume that the distance traveled is the
only criterion affecting the patronizing behavior of the customers. However, in more
realistic situations, customers consider other attributes of the facilities during their
decision-making process such as size, quality of product, and service provided.

Huff [15] suggested to measure the attraction felt by a customer for a facility as a
measure of his patronizing probability. In his model the attraction felt by a customer
at zone i towards a facility j located at place xj is proportional to the size of the
facility and inversely proportional to a power of the distance between zone i and xj.
A general formulation of the attraction function is given by
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uij =
Aj

f (dij)
(47)

where Aj is the attractiveness or quality of the facility j and f is a non-decreasing
function of distance.

In the multiplicative competitive interaction (MCI) model of Nakanishi and
Cooper [25] different attributes of the facility were used together by taking their
product after weighting them by raising each to a power:

uij =
s

∏
k=1

xβk
ijk (48)

where s is the set of facility’s attributes, xijk is the kth attribute describing a facility
j by customers at i, and βk is the weight of the kth attribute.

The additive utility function is utilized in [8]. A general form of this function
can be

U =
s

∑
k=1

βkfk(xk) (49)

where xk is the kth attribute and βk its associated weight.
Other models (see for example [13]) make use of the exponential attraction

function which is generally given by

Aij = aα
j e−βdij (50)

where aj measures the quality of the facility j and α,β are parameters determined
empirically.

The aim of the model proposed in [21] is to determine the optimal location and
the attractiveness of the new facilities to be opened by a firm in a market where
there are r existing facilities that belong to a competitor or several competitors.
The goal is the maximization of the firm’s profit. The customers are aggregated at
N = 1, . . . ,n demand points and the number of candidate facility site is M = 1, . . . ,m.
The parameters of the problem are

• aj annual buying power at point j
• ci unit attractiveness cost at site i
• fi annualized fixed cost of opening and operating a facility at i
• dij Euclidean distance between site i and point j
• bj total utility of the existing facility depending on its attractiveness and distance

from point j
• ui maximum attractiveness level of facility to be opened at site i
• qk attractiveness of existing facility j
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and variables

• Qi attractiveness of the facility opened at site i
• Xi binary variable that is equal to 1 if a facility is opened at site i and 0 otherwise.

By using Huff’s model the utility of a facility opened at site i with attractiveness
Qi is defined by Qi/d2

ij. By using the same rule the total utility felt by customers

at j for the existing facilities is bj =
r

∑
k=1

qk/d2
kj, where dkj is the distance between

demand point j and existing facility k. Hence, the market share of the facility at i is
expressed as

Pij =
Qi/d2

ij

∑m
i=1(Qi/d2

ij)+∑r
k=1 qk/d2

kj

(51)

As a result the total revenue captured by the new facility is given by

n

∑
j=1

aj
∑m

i=1(Qi/d2
ij)

∑m
i=1(Qi/d2

ij)+∑r
k=1(qk/d2

kj)
(52)

Then the problem can be formulated as

max
Q,X

z =
n

∑
j=1

aj
∑m

i=1(Qi/d2
ij)

∑m
i=1(Qi/d2

ij)+∑r
k=1(qk/d2

kj)

−
m

∑
i=1

fiXi −
m

∑
i=1

ciQ1 (53)

s.t Qi ≤ uiXi, i = 1, . . . ,m (54)

Xi ∈ {0,1}, i = 1, . . . ,m (55)

Qi ≥ 0, i = 1, . . . ,m (56)

To solve the problem three solution methods are presented. One is a heuristic based
on the Lagrangian relaxation of the model, while the other two are exact procedures
based on the branch and bound technique.

The model proposed in [20] allows the competitor to react in every location
decision made by the firm by adjusting the attractiveness level of his own existing
facilities with the objective to maximize his profit. The resulting formulation is a bi-
level programming model where the entering firm is consider as the leader and the
existing competitor as the follower. In this bi-level formulation, the attractiveness
level at the competitor’s facility qk becomes the decision variable of the follower.
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Thus, the leader solves problem (53)–(56), while the follower the problem

max
q

n

∑
j=1

aj
∑r

i=1(qk/d2
kj)

∑m
i=1(Qi/d2

ij)+∑r
k=1(qk/d2

kj)
−

−
r

∑
k=1

c̃k(qk − q̃k), (57)

s.t. qk ≤ q̄k,k = 1, . . . ,r (58)

qk ≤ 0,k = 1, . . . ,r (59)

where the first term of the objective function represents the follower’s market
share, and q̃k, q̄k, c̃k are parameters representing the current attractiveness level, the
maximum attractiveness level, and the unit attractiveness cost of the competitor’s
facility k, respectively. The author proves the concavity of the follower’ objective
function with respect to attractiveness level q. Making use of this property the author
transforms the bi-level model into an equivalent single level mixed integer program
so that it can be solved by global optimization methods. The transformation is done
by substituting the KKT first order conditions into the leader’s problem.

The model was further developed in [22] so as to allow the follower to make
decisions not only regarding the attractiveness level but also regarding location.

4 Competitive Facility Location with Competition
of Customers

The research work dealing with the bi-level formulation of location problems is
limited only to the competition among the locators, that is, it is supposed that either
both the locator and the allocator are the same or the customer knows the optimality
criterion of the locator and agrees passively with it. Customers’ preferences as well
as externalities such as road congestion, facility congestion and emissions caused by
the location decisions are either ignored or “controlled” by incorporating constraints
in order to “ensure” the achievement of a predetermined target. However, this
approach treats customers as irresolute beings. Thus, if, for example, the customers
travel to the facilities to obtain the offered service, then there is no compulsion
or incentive for them to attend the designated facility. This means that, once the
facilities are open, what the locator wishes the customers to do may not coincide
with their own wish and behavior.

The first attempt to study the influence of market competition on location
decisions is done by Tobin and Friesz [29]. They analyze the case of a profit
maximizing firm which is entering into spatially separated markets and knows that
its location decisions will have impact on market prices.
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To address the problem they proposed two different models to capture the
market competition and its effect on price and production quantities: a spatial price
equilibrium (SPE) which determines equilibria in price and production levels for
perfectly competitive market and a Cournot Nash oligopolistic model in which a
few profit maximizing firms compete in spatially separated markets. They used
sensitivity analysis on variational inequalities to relate changes in price to changes
in production to obtain optimal locations.

In [16] a bi-level programming model is presented to seek the optimal location
for logistics distribution centers. The upper-level model is to determine the optimal
location by minimizing the planner’s cost and the lower gives an equilibrium
demand distribution by minimizing the customer’s cost:

min
m

∑
i=1

n

∑
j=1

Cij(Xij)Xij +
n

∑
j=1

fjzj (60)

st
n

∑
J=1

zj ≥ 1 (61)

zj ∈ {0,1} (62)

where Xij solves

min
m

∑
i=1

n

∑
j=1

∫ Xij

0
D−1(w)dw (63)

st
n

∑
j=1

Xij = wi,∀i = 1, . . . ,m, (64)

m

∑
i=1

Xij ≤ sj,∀j = 1, . . . ,n, (65)

Xij ≤ Mzj,∀i = 1, . . . ,m, j = 1, . . . ,n, (66)

Xij ≥ 0,∀i = 1, . . . ,m, j = 1, . . . ,n (67)

where Cij(·) is the unit generalized cost of meeting the demand of customer i from
the distribution center j, and it is usually a nonlinear function; Xij is the demand of
the customer i supplied by distribution center j; fj is the fixed investment associated
with building distribution center j; zj is a 0− 1 variable, if distribution center j is
built, then zj takes the value of 1, and 0 otherwise; D1(·) is the inverse of demand
functions; wi is the total demand of customer i; sj is the capacity of distribution
center j; M is an arbitrarily large positive constant.

From the point of decision-makers, the first term of objective function (60)
represents the total costs of meeting customers’ demand. Constraint (61) ensures
that at least one distribution center is built, and constraint (62) represents the
binary restrictions of the decision variables. The lower-level problem represents the
customers’ choice behaviors. Constraint (64) ensures that the total demand of each
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customer must be met by supply from some distribution centers. Constraint (65)
is the capacity constraint, which ensures that all the demands distributed in a
distribution center will not exceed its capacity. Constraint (66) prohibits the demand
on any proposed distribution center that is not actually constructed. Based on
the special form of constraints (66), a simple reaction function is proposed. This
reaction function is obtained by transforming (66) into the form

Xij = Mzj − y∗ij (68)

where y∗ij is the optimal relaxation variable obtained after solving the second-level
problem by any existing algorithm. This reaction function is substituted in the first
level of the problem which results to an integer programming problem with variables
z which can be solved by any well-known non-linear programming model

In [17] and [18] the effects of customers’ competition for the offered service level
on the facility location decisions are examined. Two types of decision-makers are
considered, the producer who tries to provide at facilities the best level of service
at minimum cost and the customers who make their choices in order to minimize
their perceived costs. The customers are involved in a Nash-type game in their
effort to ensure the best level of services for themselves. A bi-level programming
model is formulated in order to take into consideration the effects of customers’
competition. Furthermore an extension is also proposed. It is assumed that there are
two producers who constitute a duopoly in the network. The producers compete with
one another with respect to the service level they offer in order to attract customers.
A bi-level model with two leaders is proposed in order to take into account both the
competition between producers and the competition among customers.

It is assumed that the producer tries to provide to the customers the best service
level at minimum cost. The evaluation of the offered service is based on the delay
faced by the customers at each distribution center i. If xij is the amount that the
customer j buys from the distribution center i, then the performance function di(xi)

measures the level of service offered by the distribution center i where xi =
n

∑
j=1

xij.

Suppose that m is the set of potential sites for the location of the distribution centers.
We assume that the establishment of a distribution center to the candidate site i
implies a fixed location cost fi. Furthermore, suppose rj is the demand of customer
j(j = 1 . . . ,n), pi is the unit price paid by customers, and qi is the capacity of the
distribution center i(i = 1 . . . ,m). Under the assumption that a central coordinator
chooses the location of the distribution center in such a manner that the total cost of
the system is minimized, the mathematical model can be formulated as follows:

(SO−FL) min
m

∑
i=1

di(xi)xi +
m

∑
i=1

pixi +
m

∑
i=1

n

∑
j=1

tijxij (69)

+
m

∑
i=1

Fiyi
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s.t
m

∑
i=1

xij = rj, ∀j (70)

xi ≤ yiqi, ∀i (71)

xi −
n

∑
j=1

xij = 0, ∀i (72)

yi ∈ {0,1},∀i (73)

xij ≥ 0, ∀i, ∀j (74)

The objective function of problem (70) minimizes the total cost consisting
of the cost of the delay, plus the transportation and purchasing costs plus the
cost involved in setting up a distribution center. Constraints (70) ensure that the
quantities purchased by the customer j at all distribution centers meet his overall
demand. Constraints (71) impose that the total amount of the product available
at each distribution center i does not exceed its capacity. In addition, it enables
the assignment of the customers’ demand only in sited distribution. Relations (72)
are the defining constraints of the model, ensuring the maintenance of flow in the
network.

In a second model producer takes into account the free will and the competitive
preference of the customers and determines the final location of the distribution
centers based on the prediction of their behavior as delivered by the outcome of a
Nash game. Thus, problem is formulated as bi-level programming model:

(BSO−FL) min
[yi]

m

∑
i=1

Fiyi +
m

∑
i=1

di(x̄i)x̄i

+
m

∑
i=1

pix̄i +
m

∑
i=1

n

∑
j=1

tijx̄ij (75)

s.t yi ∈ {0,1}, ∀i (76)

where [x̄i] and [x̄ij] solve

(UO−TP) min
m

∑
i=1

∫ xi

0
di(t)dt

+
m

∑
i=1

pixi +
m

∑
i=1

n

∑
j=1

tijxij (77)

s.t
m

∑
i=1

xij = rj, ∀j (78)

xi ≤ qiyi, ∀i (79)
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xi −
n

∑
j=1

xij = 0, ∀i (80)

xij ≥ 0 ∀i, j (81)

According to this model, the leader (producer) decides the location of distribution
centers solving problem (75)–(76), but he does not control the variables xi and xij

since they describe the choices of his customers. The values of the variables [x̄i] and
[x̄ij] are derived from model (77)–(81) corresponding to an oracle. In other words,
the leader uses (77)–(81) as an oracle to discover trends/reactions of the customers
in each potential location and tries to minimize the total cost of the system based on
these discoveries.

In a supply chain network where there are more than one producers, none of
them have the power to direct customers to distribution centers. Thus, as a result,
the offered service level and customer satisfaction are the basic differentiation and
discrimination components among economic units of the same sector. In order to
take into account both levels of competition we formulate the following bi-level
problem with two leaders:

Let us assume that the potential location of distribution centers i = 1, . . . ,m
is dispersed between the two producers who in turn are involved in a competi-
tion for customer attraction through the provided service level. Let M1 and M2

(m = |M1|+ |M2|) be the nodes of the two producers. Then, under the assumption
that both producers “announce their strategies simultaneously,” we obtain a Nash
game with two players who are dealing (for K = 1,2) with the following problems:

The facility location problem of producer 1:

(CFL1) min ∑
i∈M1

Fiyi

+ ∑
i∈M1

di(x̄i)x̄i + ∑
i∈M1

pix̄i + ∑
i∈M1

n

∑
j=1

tijx̄ij (82)

s.t yi ∈ {0,1},∀i ∈ M1 (83)

The facility location problem of producer 2:

(CFL2) min ∑
i∈M2

Fiyi

+ ∑
i∈M2

di(x̄i)x̄i + ∑
i∈M2

pix̄i + ∑
i∈M2

n

∑
j=1

tijx̄ij (84)

s.t yi ∈ {0,1},∀i ∈ M2 (85)

where [x̄i] and [x̄ij] solve (77)–(81)
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The producers compete with each other with respect to the service level they offer
in order to attract customers involved in a Nash game. A Nash equilibrium for this
duopolistic game corresponds to a set of location and capacity choices (strategies),
which ensure that none of the players are better off by unilaterally changing his
strategy.

Let Y = {yi|yi ∈ {0,1},∀i ∈ Mk} be the feasible sets of the players for k = 1,2,

yk = [yi]i∈Mk and y =

[
y1

y2

]
. We have already mentioned the existence of optimal

solutions x̄i and x̄ij for given capacity [q̄i]. Thus, there is a function from R
m to R

m,
such that for a given ȳ it returns the unique equilibrium point [x̄i] from (77)–(81)
and a corresponding mapping from R

m to R
m·n such that for a given ȳ it returns an

optimal transportation plan [x̄ij] which corresponds to the equilibrium point [x̄i], thus
it holds that x̄i = xi(ȳ) and x̄ij = xij(ȳ), respectively.

Hence problems (CFLk) could be formulated as a single level problems:

(SCFLk) min
yk∈Yk

∑
i∈Mk

di(xi(y),yi)xi(y)+ ∑
i∈Mk

pixi(y) (86)

+ ∑
i∈Mk

n

∑
j=1

tijxij(y) (87)

Each problem (SCFLk) corresponds to player k who is involved in the Nash game.

5 Conclusion and Future Research

The literature concerning the competitive facility location is vast. The main contri-
bution of our study is that it provides a broad review of modeling and optimization
approaches of the discrete bi-level version of the problem. The proposed taxonomy
can be meaningfully enhanced based on time, evolution, and content of the subject.
In addition it could be the basis of a framework for future studies.
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