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Distinguished Professor Panos Pardalos



With our deepest appreciation, the
contributors and the editors, we dedicate this
volume to the Distinguished Professor Panos
M. Pardalos on the occasion of his 60th
birthday.





Preface

During June 15–20, 2014, a group of scientists gathered together in a conference
on “Optimization, Control and Applications in the Information Age” in order to
celebrate and honor Panos M. Pardalos on the occasion of his 60th birthday. The
meeting took place at the Meliton Hotel of Porto Carras on the middle leg (Sithonia)
of the Chalkidiki peninsula in Macedonia, northern Greece, a place of exquisite
beauty and one of Panos’s favorite places. The conference was organized by Sergiy
Butenko and Athanasios Migdalas and was attended by scientists from all over the
world. More than 50 members of this “Panos’s club” presented talks during this
event.

This volume is dedicated to Panos M. Pardalos, on the occasion of his 60th
birthday. The articles collected in this volume are based on selected talks presented
during the conference. Several members of the Panos’s club could not attend
conference, but have submitted their papers to this volume in order to honor him.

The papers published in this volume cover a wide range of topics and present
recent developments and surveys in research fields to which Pardalos has actively
contributed and promoted during his career.

In addition, Panos’s spouse, Rosemary Bakker, has written a brief biography
describing Panos’s exciting journey from a pastoral village on the high mountains
in Thessaly, central Greece, to a Distinguished Professorship at the University of
Florida, that is, Panos’s own Odyssey. We therefore dedicate to him the first verses
of Homer’s Odyssey and Cavaphes’ poem “Ithaka” believing that they accurately
describe Panos’s past, his present, and his future discovery voyages.

We are indebted to Springer publishers and particularly to Razia Amzad for their
support in making the publication of this volume possible.
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x Preface

We join our voice with all conference participants, article contributors, and
reviewers who made this volume possible in order to wish Panos “Happy Birthday!”
and “Chronia Polla!” and in order to express our deepest appreciation to him as a
scientist and as a friend.

Luleå, Sweden Athanasios Migdalas
Luleå, Sweden Athanasia Karakitsiou
February 2015



Contents

Panos M. Pardalos: A Brief Biography
Rosemary Bakker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxiii

Modular Lipschitzian and Contractive Maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Vyacheslav V. Chistyakov

A Taxonomy for the Flexible Job Shop Scheduling Problem . . . . . . . . . . . . . . . 17
Didem Cinar, Y. Ilker Topcu, and José António Oliveira

Sensitivity Analysis of Welfare, Equity, and Acceptability
Level of Transport Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
R. Connors, M. Patriksson, C. Rydergren, A. Sumalee,
and D. Watling

Calibration in Survey Sampling as an Optimization Problem . . . . . . . . . . . . . 67
Gareth Davies, Jonathan Gillard, and Anatoly Zhigljavsky

On the Sensitivity of Least Squares Data Fitting
by Nonnegative Second Divided Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Ioannis C. Demetriou

Modeling and Solving Vehicle Routing Problems with Many
Available Vehicle Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Sandra Eriksson Barman, Peter Lindroth, and Ann-Brith Strömberg

A Genetic Algorithm for Scheduling Alternative Tasks Subject
to Technical Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Dalila B.M.M. Fontes and José Fernando Gonçalves

Discrete Competitive Facility Location: Modeling
and Optimization Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Athanasia Karakitsiou

xi



xii Contents

On Nash Equilibria in Stochastic Positional Games
with Average Payoffs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Dmitrii Lozovanu and Stefan Pickl

Adaptive Tunning of All Parameters in a Multi-Swarm
Particle Swarm Optimization Algorithm: An Application to
the Probabilistic Traveling Salesman Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Yannis Marinakis, Magdalene Marinaki, and Athanasios Migdalas

Eigendecomposition of the Mean-Variance Portfolio
Optimization Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
Fred Mayambala, Elina Rönnberg, and Torbjörn Larsson

Three Aspects of the Research Impact by a Scientist:
Measurement Methods and an Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . 233
Boris Mirkin and Michael Orlov

SVM Classification of Uncertain Data Using Robust
Multi-Kernel Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
Raghav Pant and Theodore B. Trafalis

Multi-Objective Optimization and Multi-Attribute Decision
Making for a Novel Batch Scheduling Problem Based on Mould
Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Jun Pei, Athanasios Migdalas, Wenjuan Fan, and Xinbao Liu

A Time-Indexed Generalized Vehicle Routing Model and
Stabilized Column Generation for Military Aircraft Mission Planning . . 299
Nils-Hassan Quttineh, Torbjörn Larsson, Jorne Van den Bergh,
and Jeroen Beliën

On Deterministic Diagonal Methods for Solving Global
Optimization Problems with Lipschitz Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Yaroslav D. Sergeyev and Dmitri E. Kvasov

Optimization of Design Parameters for Active Control
of Smart Piezoelectric Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
Georgios Stavroulakis, Georgia Foutsitzi, and Christos Gogos

Stable EEG Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349
V. Stefanidis, G. Anogiannakis, A. Evangelou, and M. Poulos

Deriving Pandemic Disease Mitigation Strategies by Mining
Social Contact Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
M. Ventresca, A. Szatan, B. Say, and D. Aleman



Contents xiii

On an Asymptotic Property of a Simplicial Statistical Model of
Global Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Antanas Žilinskas and Gražina Gimbutienė
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Panos M. Pardalos: A Brief Biography

Rosemary Bakker

Panos Pardalos was born on June 17, 1954 to parents
Miltiades and Kalypso in the small mountain village of
Mezillo (now Drossato), Greece. He was the first-born
child of his parents. This remote village had no doctor,
no midwife, so his birth was assisted by a woman
fetched from a neighboring village who had experience
with birthing. Drossato is located in central Greece,
near the Thessaly valley, nestled in the Pindus mountain
range. Accessible via a difficult road, its remote location
was influential in Panos’ childhood. At the time of
his birth, the village population was about 400. Panos
attended school in the village, where the teacher was
boarded at different homes in the village, and taught the

first 6 grades in the elementary school. Because of the nature of the school, where all
the children were taught in the same classroom, by the time Panos reached second
grade, he knew all the lessons through the sixth grade. He was a good student, and
was often called to the blackboard to solve the challenging mathematics problems
that baffled the other students. His thirst for knowledge was great, but access to
books and new material was limited. No television, no radio, no newspaper, in
fact the village had no access via roads (only goat paths), no telephone, and no
electricity or running water. Panos tells the story of an examiner who came to the
school from the government one time to see if the children were learning from the
instructor. The examiner posed the question, “Who has travelled and where did you
go?” Panos thought for a moment and then raised his hand. Remember the poverty
and isolation of the village and consider the answer he gave. “I travelled to Sweden,”
he announced. The examiner was surprised and said, “How is that possible, Panos?”
To which Panos replied, “I travelled there in my imagination!” Thinking outside of
the box, even at that young age!
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xxiv Panos M. Pardalos: A Brief Biography

Panos attended school 6 years in the village and then, as no further schooling was
available in Drossato, started (high school) in another village, 2 h away on foot from
his village. Panos attended the school in Magiro, Petrillo for 2 years walking back
and forth every day, and then, as no high school existed anywhere in the mountains,
left his home at the age of 14, alone, to attend high school in Volos. Starting high
school, he lived for a time with some distant relatives near Volos, and, then, at one
point noticing some children at the school who lived in a children’s city, decided
that he might qualify for help, so, he wrote a letter to the Minister of Education
for Greece. Remember that he was 15 and from a poor, remote area of the Greek
mainland. Imagine his surprise to receive an answer, a registered letter from the
Minister of Education, telling him to report to a high school on the island of Crete.
He travelled to Athens for the first time and took a boat for the first time to Iraklion,
got off the boat, and took a bus to the high school in Neapolis. He gave the letter
to the school officials who were impressed at the letter, decided that he must have
very good connections, and enrolled him at the school. The letter entitled him to full
support for his high school career, including room and board and even an allowance
for clothing! He attended school there for 1 year, and then went back to Volos where
he completed his high school studies.



Panos M. Pardalos: A Brief Biography xxv

After high school, he took the entrance exams for the university in Greece, passed
with high scores and attended Athens University where he received a degree in
Mathematics. A friend who was studying in the United States urged him to come for
graduate studies, so on August 17, 1977, he left Greece with a suitcase and $200 that
his uncle Petros had loaned him and arrived in New York. He obtained a Master’s in
Computing and Mathematics from Clarkson University in Potsdam, New York. In
1978, he began studies at the University of Minnesota, where he received a Master’s
in Mathematics and a Ph.D. in Computers and Information Science, working with
J. Ben Rosen as his advisor. Panos worked at Penn State University before moving
to the University of Florida, where he is currently a Distinguished Professor in the
Industrial and Systems Engineering Department. He is married and has one son,
Miltiades.



Modular Lipschitzian and Contractive Maps

Vyacheslav V. Chistyakov

Dedicated to Professor Panos Pardalos
on the occasion of his 60th Birthday

Abstract In the context of metric modular spaces, introduced recently by the
author, we define the notion of modular Lipschitzian maps between modular spaces,
as an extension of the notion of Lipschitzian maps between metric spaces, and
address a modular version of Banach’s Fixed Point Theorem for modular contractive
maps. We show that the assumptions in our fixed point theorem are sharp and
that it guarantees the existence of fixed points in cases when Banach’s Theorem
is inapplicable.

Keywords Modular space • Modular convergence • Lipschitzian map • Fixed
point

MSC2010: 46A80, 47H10, 47H09

1 Introduction

The term modular in Functional Analysis is an extension of the term norm on a
linear space. It was introduced by Nakano [19] in 1950. The modern theory of
modular linear spaces is closely related to the theory of Orlicz spaces. Both theories
have been extensively developed by the Polish mathematical school from Poznań
[16–18, 20] and Russian mathematical school from Voronezh [14] since the end of
the 1950s.
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2 V.V. Chistyakov

According to Orlicz [20], a (classical) modular on a real linear space X is a
functional ρ : X → [0,∞] satisfying the following conditions:

• ρ(0) = 0;
• given x ∈ X, if ρ(αx) = 0 for all α > 0, then x = 0;
• ρ(−x) = ρ(x) for all x ∈ X;
• ρ(αx+βy)≤ ρ(x)+ρ(y) for all x,y ∈ X and α,β ≥ 0 such that α+β = 1.

If, instead of the inequality on the previous line, ρ satisfies

• ρ(αx+βy)≤ αρ(x)+βρ(y),

then the functional ρ is called a convex modular on X.
Although the linear structure of X brings some inflexibility, the theories of

modular linear spaces and Orlicz spaces have broad applications [1, 15–17, 21].
In this chapter, we are going to do the following:

1. extend the classical notion of a modular on a linear space to the notion of a
modular on an arbitrary set (Sect. 2);

2. define metrics by means of modulars (Sect. 3);
3. study a new type of convergence—the modular convergence (Sect. 3);
4. study modular Lipschitzian maps (Sect. 4);
5. extend Banach’s Contraction Principle to the modular context (Sect. 5);
6. present an unusual application of the modular fixed point result (Sect. 6).

This contribution is a slightly extended version of my talk Lipschitz maps in
the modular sense and Banach’s contraction principle given at the International
Conference “Optimization, Control and Applications in the Information Age” held
in Chalkidiki, Greece, June 15–20, 2014.

2 What Is a Modular?

In what follows, X is a given (nonempty) set.
The idea of a metric d on X is of a geometric nature: to any two points x,y ∈ X a

number

0 ≤ d(x,y)< ∞ (the distance between x and y)

is assigned having the usual three properties: nondegeneracy (x = y if and only
if d(x,y) = 0), symmetry (d(x,y) = d(y,x)), and the triangle inequality (d(x,y) ≤
d(x,z)+d(z,y) for z ∈ X).

The idea of a modular w on X can be naturally interpreted in physical terms: to
any time t > 0 and two points x,y ∈ X a quantity

0 ≤ wt(x,y) ≤ ∞ (the velocity between x and y in time t)

is assigned satisfying three axioms (see Definition 1). The one-parameter family
w = {wt}t>0 is a velocity field on X.
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The axioms of a modular are as follows.

Definition 1 ([5, 7]). A modular w on a set X is a one-parameter family {wt}t>0 of
functions of the form wt : X ×X → [0,∞] satisfying, for all x,y,z ∈ X, the following
conditions:

(i) x = y if and only if wt(x,y) = 0 for all t > 0;
(ii) wt(x,y) = wt(y,x) for all t > 0;

(iii) wt+s(x,y) ≤ wt(x,z)+ws(z,y) for all t > 0 and s > 0.

The modular w = {wt}t>0 on X is said to be:

• strict if, given x,y ∈ X with x �= y, we have wt(x,y) �= 0 for all t > 0;
• convex if, instead of the inequality in (iii), we have

(iv) wt+s(x,y) ≤ t
t+ s

wt(x,z)+
s

t+ s
ws(z,y).

A few comments on axioms (i)–(iv) are in order.

Axiom (i): two points x and y coincide if no movement is needed in order to get
from x to y (the velocity wt(x,y) is zero for all times t > 0).

Axiom (ii): the velocity during the movement from x to y in time t is the same as
the velocity in the opposite direction in time t.

Axiom (iii): suppose the movement from x to y is done in two ways as follows:
(a) moving straightforward from x to y or (b) passing through a third point
z ∈ X. Suppose also that the duration of time is the same in each of the two
movements, say, t+ s. Then the velocity wt+s(x,y) in case (a) does not exceed
the sum of the partial velocities wt(x,z)+ws(z,y) in case (b). This axiom may
be called the modular triangle inequality (or triangle inequality for velocities).

The strictness of a modular is the strengthening of axiom (i): if the velocity
wt(x,y) is equal to zero for a t > 0 (but not necessarily for all t > 0), then x = y.

Finally, the convexity of w means that, along with w, the family {twt}t>0 is also
a modular on X.

Example 1 (Modulars).

1. If (X,d) is a metric space with metric d, then the canonical modular on X (the
mean velocity) is given by

wt(x,y) =
d(x,y)

t
, t > 0, x,y ∈ X.

This modular (i.e., the family w = {wt}t>0) is strict and convex.
Moreover, given 0 ≤ p < ∞, the strict modular

wt(x,y) =
d(x,y)

tp , t > 0, x,y ∈ X,

is convex if and only if p ≥ 1.
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2. Modulars w on a metric space (X,d) may look unusual [7]:

wt(x,y) =

{
∞ if t < d(x,y),

0 if t ≥ d(x,y),
t > 0, x,y ∈ X,

is a nonstrict convex modular on X, and

wt(x,y) =

{
1 if t ≤ d(x,y),

0 if t > d(x,y),
t > 0, x,y ∈ X,

is a nonstrict and nonconvex modular on X.
3. Modulars w may look quite usual: given t > 0 and two sequences of real numbers

x = {xn},y = {yn} ∈ X = R
N, we set

wt(x,y) =
∞

∑
n=1

( |xn − yn|
t

)p

, where 1 ≤ p < ∞.

This is a strict and convex modular on the sequence set X.
If, in this context, we put

wt(x,y) = sup
n∈N

( |xn − yn|
t

)1/n

,

then we get an example of a strict nonconvex modular on X. (In these examples,
the set of real numbers R may be replaced by any metric space.)

4. More examples of modulars can be found in [3–11].
5. Given a real linear space X and a functional ρ : X → [0,∞], we set

wt(x,y) = ρ
(

x− y
t

)
, t > 0, x,y ∈ X.

Then we have [7, Theorem 3.11]: ρ is a classical (convex) modular on X in the
sense of Orlicz if and only if the family w = {wt}t>0 is a (convex) modular on X
in the sense of axioms (i)–(iv).

Two main properties of modulars w = {wt}t>0 on X are worth mentioning.

Lemma 1 ([7]). For any given x,y ∈ X, we have:

(a) the function t �→ wt(x,y), mapping (0,∞) into [0,∞], is nonincreasing on (0,∞);
moreover, if w is convex, then the function t �→ twt(x,y) is nonincreasing
on (0,∞);

(b) one-sided limits from the right wt+0(x,y) and from the left wt−0(x,y) exist in
[0,∞] (i.e., in the extended sense), and the following inequalities hold:

wt+0(x,y)≤ wt(x,y) ≤ wt−0(x,y).
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Remark 1. If w = {wt}t>0 is a modular on X, then the families w+ = {wt+0}t>0 and
w− = {wt−0}t>0 are also modulars on X, having the same properties as the initial
modular w.

3 Modular Spaces

In order to be more specific, we will consider convex modulars w on X. Throughout
the chapter, we fix an x◦ ∈ X, called the center or representative (of a modular
space).

Definition 2 ([5, 7]). A modular space (around x◦) is the set

X∗
w ≡ X∗

w(x
◦) = {x ∈ X : wt(x,x

◦)< ∞ for some t = t(x)> 0}

of all elements x from X, which are reachable from the center x◦ with a finite
velocity wt(x,x

◦) for at least some time t > 0.

It is known from [7] (cf. also [6]) that the modular space X∗
w is a metric space,

whose metric d∗
w (induced by w) is defined implicitly as follows:

d∗
w(x,y) = inf{t > 0 : wt(x,y) ≤ 1}, x,y ∈ X∗

w.

Remark 2. If the modular w is nonconvex, then the quantity d∗
w(x,y) may not be

(well-)defined as a metric on X∗
w (see Example 2 (item 3)). In this case, the function

(cf. [7, 11])

d0
w(x,y) = inf{t > 0 : wt(x,y) ≤ t}, x,y ∈ X∗

w,

is a well-defined metric on X∗
w.

Note also [11] that d∗
w+ = d∗

w− = d∗
w if w is convex, and d0

w+ = d0
w− = d0

w if the
modular w is nonconvex.

The pair (X∗
w,d

∗
w) (and (X∗

w,d
0
w) in the nonconvex case) is called a metric modular

space.

Example 2 (Metric Modular Spaces). Here we follow the order as in Example 1.

1. If x◦ ∈ X, p ≥ 1 and wt(x,y) = d(x,y)/tp, then

X∗
w = X and d∗

w(x,y) = inf{t > 0 : wt(x,y) ≤ 1} =
(
d(x,y)

)1/p
.

In particular, if p = 1, then we get the canonical modular wt(x,y) = d(x,y)/t, so
that X∗

w = X and d∗
w = d, and the original metric space (X,d) is restored from the

canonical modular.
Now, if 0 ≤ p < 1, then X∗

w = X and d0
w(x,y) =

(
d(x,y)

)1/(p+1)
.
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2. For the first (convex) modular w, we find X∗
w = X and d∗

w = d0
w = d. For the second

(nonconvex) modular w, we have X∗
w = X and d0

w(x,y) = min{1,d(x,y)}, x,y ∈ X.
3. Setting x◦ = 0 ∈ X = R

N (the zero sequence), for the first (convex) modular w
from Example 1(3), we find

X∗
w = X∗

w(0) =

{
x = {xn} ∈ X :

∞

∑
n=1

|xn|p < ∞
}

(p ≥ 1)

is the usual set �p of all p-summable real sequences equipped with the usual (here
modular generated) metric

d∗
w(x,y) =

( ∞

∑
n=1

|xn − yn|p
)1/p

, x,y ∈ X∗
w = �p.

For the second (nonconvex) modular w from Example 1(3), we have: X∗
w =X∗

w(0)
is the set of all sequences x = {xn} ∈ R

N such that the sequence {tnxn} is bounded
for some t > 0. The metric on X∗

w (in our nonconvex case) is given by

d0
w(x,y) = sup

n∈N
|xn − yn|1/(n+1), x,y ∈ X∗

w.

On the other hand, it is to be noted that the quantity

d∗
w(x,y) = sup

n∈N
|xn − yn|, x,y ∈ X∗

w,

is not a well-defined metric on X∗
w: in fact, the sequence x = {n}∞n=1 belongs to X∗

w,
but d∗

w(x,0) = sup
n∈N

n = ∞.

Modulars w on X give rise to a new type of convergence in X∗
w, which is weaker

than the metric d∗
w-convergence. The motivation for it is the following lemma.

Lemma 2 ([11]). Given a convex modular on X, a sequence {xn} from X∗
w and an

element x ∈ X∗
w, we have

lim
n→∞

d∗
w(xn,x) = 0 if and only if lim

n→∞
wt(xn,x) = 0 for all t > 0.

Definition 3 ([11]). A sequence {xn} from X∗
w is said to be modular convergent to

an element x ∈ X∗
w if there exists t0 > 0 such that lim

n→∞
wt0(xn,x) = 0.

The modular convergence (or w-convergence) of {xn} to x is denoted by xn
w→ x.

Any such (nonunique, in general) element x is called a modular limit of {xn}.



Modular Lipschitzian and Contractive Maps 7

From the references above, the following properties hold for the modular
convergence:

• The metric d∗
w-convergence of {xn} to x implies the modular w-convergence of

{xn} to x, but not vice versa.
• If w is a strict modular on X, then the modular limit is uniquely determined (if it

exists).

Example 3 (Modular Convergence). For all modulars w from Examples 1, 2 (items
1 and 3), the metric d∗

w-convergence of {xn} to x is equivalent to the modular
w-convergence. However, for modulars w from Examples 1, 2 (item 2), the metric
and modular convergences are not equivalent. Actually, in this case, we have: every
sequence in X, bounded in metric d, is modular w-convergent.

Since, in what follows, we address a modular version of the Banach’s Contraction
Principle, we need the notion of modular completeness of X∗

w, which replaces the
notion of completeness of the metric space (X∗

w,d
∗
w).

Definition 4 ([11]). Given a modular w on X, the modular space X∗
w is called

modular complete provided the following condition holds: for each sequence {xn}
from X∗

w, which is modular Cauchy, i.e.,

lim
n,m→∞

wt0(xn,xm) = 0 for some t0 > 0,

there exists an x ∈ X∗
w such that

lim
n→∞

wt0(xn,x) = 0. (1)

Clearly, for a metric space (X,d) equipped with the canonical modular w, the
modular completeness of X∗

w = X is equivalent to the usual metric completeness of
X (with respect to d∗

w = d).
An example of a modular complete modular space X∗

w will be given in Sect. 6
(for more examples, see [11, Sect. 4.3]).

4 Modular Lipschitzian Maps

Let w be a convex modular on X.
In order to (naturally) introduce the modular version of a Lipschitzian map, we

first describe Lipschitzian maps T : X∗
w → X∗

w with respect to metric d∗
w in terms of

the underlying modular w.

Lemma 3 ([11, Theorem 4]). Let T : X∗
w → X∗

w and k > 0 be a given constant. Then
the Lipschitz condition

d∗
w(Tx,Ty) ≤ k d∗

w(x,y) for all x,y ∈ X∗
w (2)
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is equivalent to the following one: given x,y ∈ X∗
w,

wkt+0(Tx,Ty) ≤ 1 for all t > 0 such that wt(x,y) ≤ 1.

In particular, if (X,d) is a metric space with metric d and wt(x,y) = d(x,y)/t is
the canonical modular on X, then, for a map T : X∗

w → X∗
w, we have

wkt+0(Tx,Ty) =
d(Tx,Ty)

kt
≤ 1 (x,y ∈ X)

for all t > 0 such that

wt(x,y) =
d(x,y)

t
≤ 1,

and so, setting t = d(x,y) with x �= y, we get

d(Tx,Ty) ≤ k d(x,y), (3)

which is the usual Lipschitz condition in the metric space X.
Lemma 3 implies the following assertion (global in t): if a map T : X∗

w → X∗
w and

a constant k > 0 are such that

wkt(Tx,Ty) ≤ wt(x,y) for all t > 0 and x,y ∈ X∗
w,

then condition (2) holds, i.e., T is a d∗
w-Lipschitzian map.

This motivates the following definition (local in t).

Definition 5 ([11]). A map T : X∗
w → X∗

w is said to be modular Lipschitzian
(or w-Lipschitzian) if there are constants k > 0 and t0 > 0 such that

wkt(Tx,Ty) ≤ wt(x,y) for all 0 < t ≤ t0 and x,y ∈ X∗
w.

Clearly, for a metric space (X,d) with the canonical modular, Definition 5 gives
back the usual Lipschitz condition (3).

The least modular Lipschitz constant of T is denoted by kw(T):

kw(T) = inf
{

k > 0 : there exists t0 > 0 such that wkt(Tx,Ty) ≤ wt(x,y)

for all 0 < t ≤ t0 and x,y ∈ X∗
w

}
.

Since T is modular Lipschitzian, kw(T) is well-defined and finite.
As in the case of metric Lipschitzian maps, the following properties of kw(T)

hold.
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Theorem 1. Given two modular Lipschitzian maps T and S, mapping the modular
space X∗

w into itself, we have

(a) kw(T ◦S) ≤ kw(T) · kw(S), where T ◦S is the usual composed map of T and S;
(b) the following value k∞w(T) exists:

k∞w(T) ≡ lim
n→∞

(
kw(T

n)
)1/n

= inf
n∈N
(
kw(T

n)
)1/n ≤ kw(T),

where Tn designates the nth iterate of the map T.

Proof. (a) Since kw(T) and kw(S) are finite, let k > kw(T) and l > kw(S). By the
definition of the least modular Lipschitz constants, there exist t0 > 0 and s0 > 0
such that

wkt(Tx,Ty) ≤ wt(x,y) and wls(Sx,Sy) ≤ ws(x,y)

for all 0 < t ≤ t0, 0 < s ≤ s0, and x,y ∈ X∗
w. Setting t1 = min{t0/l,s0}, for all

0 < t ≤ t1, we have (note that lt ≤ t0 and t ≤ s0)

wklt
(
(T ◦S)x,(T ◦S)y

)
= wk(lt)

(
T(Sx),T(Sy)

)
≤ wlt(Sx,Sy)

≤ wt(x,y) for all x,y ∈ X∗
w.

The definition of kw(T ◦S) implies kw(T ◦S) ≤ kl, and it remains to pass to the
limits as k → kw(T) and l → kw(S).

(b) By item (a), we find kw(T
n+m) ≤ kw(T

n) · kw(T
m) for all natural numbers n

and m.
If kw(T

n0) = 0 for some natural number n0, then

kw(T
n) ≤ kw(T

n−n0) · kw(T
n0) = 0 for all n > n0,

and so, assertion (b) follows with k∞w(T) = 0.
Suppose now that kw(T

n) > 0 for all natural n. Setting an = logkw(T
n), we find

an+m ≤ an+am for all n,m ∈N, and so, there exists the limit (in the extended sense)

a ≡ lim
n→∞

an

n
= inf

n∈N
an

n
∈ {−∞}∪R.

Since the exponential function is continuous, we obtain

lim
n→∞

(
kw(T

n)
)1/n

= inf
n∈N
(
kw(T

n)
)1/n

= ea.

Finally, inequality kw(T
n) ≤ (kw(T)

)n
implies k∞w(T)≤ kw(T). �
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5 Modular Contractions

A map T : X∗
w → X∗

w is called modular contractive (or w-contractive) if it satisfies
the conditions of Definition 5 with 0 < k < 1.

The following modular version of Banach’s Contraction Theorem was estab-
lished in [11, Theorem 6] (see also [9, 10]).

Theorem 2. Suppose the following conditions hold:

1. w is a strict convex modular on a set X;
2. the modular space X∗

w is modular complete;
3. T : X∗

w → X∗
w is a modular contractive map;

4. for each t > 0 there exists xt ∈ X∗
w such that wt(xt,Txt) < ∞ (such a map T is

called modular reachable).

Then T admits a fixed point: Tx = x for some x ∈ X∗
w.

Moreover, if wt(x,y) is finite for all t > 0 and x,y ∈ X∗
w, then

(a) condition 4 is redundant;
(b) the fixed point of T is uniquely determined;
(c) for each x0 ∈ X∗

w the sequence of iterations {Tnx0} is modular convergent to the
fixed point x.

(Banach’s Theorem is a consequence of Theorem 2: on a complete metric space
(X,d) consider the canonical modular wt(x,y) = d(x,y)/t.)

Proof (Sketch). Since T is modular contractive, there exist constants 0 < k < 1 and
t0 > 0 such that wkt(Tx,Ty) ≤ wt(x,y) for all 0 < t ≤ t0 and x,y ∈ X∗

w. Setting τ0 =
(1− k)t0, by condition 4, we find x0 = xτ0 ∈ X∗

w such that C = wτ0(x0,Tx0)< ∞.
Let x1 = Tx0 and xn = Txn−1 for all n ≥ 2.
Let us show that {xn} is a modular Cauchy sequence in X∗

w. Since kiτ0 < τ0 < t0
for all i ∈ N, we have

wkiτ0
(xi,xi+1) = wk(ki−1τ0)

(Txi−1,Txi) ≤ wki−1τ0
(xi−1,xi)

≤ ·· · ≤ wτ0(x0,x1) = C.

The convexity of the modular w implies the inequality

twt(xm,xn)≤
n−1

∑
i=m

tiwti(xi,xi+1), n > m,

where ti = kiτ0 and

t ≡ t(m,n) = tm + tm+1 + · · ·+ tn−1 = kmτ0
1− kn−m

1− k
,
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and so,

wt(xm,xn) ≤
n−1

∑
i=m

ti
t

wkiτ0
(xi,xi+1)≤ 1

t

(n−1

∑
i=m

ti

)
C = C

for all natural n > m. Taking into account that t0 = τ0/(1− k)> t, by the convexity
of w, we get, for n > m,

wt0(xm,xn) ≤ t
t0

wt(xm,xn) ≤ kmC → 0 as m → ∞,

which establishes the modular Cauchy property of the sequence {xn}.
By the modular completeness of X∗

w, there exists x ∈ X∗
w such that equality (1)

holds, i.e., {xn} is modular convergent to x, and, by the strictness of w, the modular
limit x is unique.

In order to show that Tx = x, we note that Txn = xn+1, and so, by axiom (iii),

w(k+1)t0(Tx,x) ≤ wkt0(Tx,Txn)+wt0(xn+1,x)

≤ wt0(x,xn)+wt0(xn+1,x)→ 0 as n → ∞,

whence w(k+1)t0(Tx,x) = 0. By the strictness of w, we conclude that Tx = x. �

6 An Ad Hoc Application

In [11, Sect. 6], an application of Theorem 2 to the Carathéodory-type ordinary
differential equations with the right-hand side from the Orlicz space has been given.
However, it was observed [11, Sect. 7.3] that the locality (in t) of Definition 5 was
not quite achieved, and so, “an appropriate example is yet to be found.”

In this section, we present such an example, which shows at the same time that
the assumptions in Theorem 2 are sharp (and the classical Banach’s Theorem is
inapplicable). Due to the simplicity of the example, all main features of Theorem 2
and its difference with the classical fixed point theorem are clearly emphasized.

Let X = R, x◦ = 0 (the center) and, given t > 0 and x,y ∈ R, we set

wt(x,y) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t > 0 and x = y,

∞ if 0 < t < 1 and x �= y,
|x− y|

t
if t ≥ 1 and x �= y.

We are going to show that the map T : R → R given by Tx = 2x, along with the
modular w = {wt}t>0, satisfies the assumptions of Theorem 2, and so, T admits a
fixed point (clearly, T(0) = 0).
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Claim 1. w is a strict convex modular on X =R, and X∗
w =R is the modular space.

Proof. (i) Clearly, wt(x,x) = 0 for all t > 0 and x ∈R. If t > 0, and x,y ∈R are such
that x �= y, then wt(x,y) �= 0, and so, w is strict.

(ii) The symmetry property wt(x,y) = wt(y,x) is obvious.
(iv) In order to show the convexity of w, we assume, with no loss of generality, that

wt(x,z) and ws(z,y) are finite (t,s > 0), x �= z, and z �= y. By the definition of w,
we have

wt(x,z) =
|x− z|

t
and ws(z,y) =

|z− y|
s

with t ≥ 1 and s ≥ 1. Since t+ s ≥ 2, once again the definition of w gives, for
x �= y,

wt+s(x,y) =
|x− y|
t+ s

≤ t
t+ s

· |x− z|
t

+
s

t+ s
· |z− y|

s

=
t

t+ s
wt(x,z)+

s
t+ s

ws(z,y).

The assertion that X∗
w = R is clear. �

Claim 2. The metric d∗
w on X∗

w = R, induced by w, is given by

d∗
w(x,y) = inf{t > 0 : wt(x,y) ≤ 1} =

⎧⎪⎨
⎪⎩

0 if x = y,

1 if 0 < |x− y| ≤ 1,

|x− y| if |x− y|> 1.

Claim 3. The modular convergence in X∗
w is not equivalent to the metric conver-

gence with respect to metric d∗
w.

In fact, the sequence xn = 1/n is modular convergent to zero, i.e., xn
w→ 0, because

if t0 ≥ 1, then

wt0(xn,0) =
|xn −0|

t0
=

1
nt0

→ 0 as n → ∞.

At the same time, since 0 < |xn −0| ≤ 1, we have d∗
w(xn,0) = 1 for all n.

Claim 4. The modular space X∗
w = R is modular complete.

Proof. Suppose {xn} is a modular Cauchy sequence in X∗
w, i.e., for some t0 > 0,

wt0(xn,xm) → 0 as n,m → ∞. It follows that, for each ε > 0, there exists n0(ε) ∈ N

such that wt0(xn,xm) ≤ ε for all n,m ≥ n0(ε). Consider the two possibilities: either
0 < t0 < 1 or t0 ≥ 1.
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If 0 < t0 < 1, then, setting ε = 1, we have wt0(xn,xm) ≤ 1, which implies
wt0(xn,xm) = 0, i.e., xn = xm, for all n,m ≥ n0(1). Setting x = xn0(1), we find xn = x,
and so, wt0(xn,x) = 0 for all n ≥ n0(1).

Now, if t0 ≥ 1, then, for ε > 0, we get

wt0(xn,xm) =
|xn − xm|

t0
≤ ε for all n,m ≥ n0(ε).

Therefore, lim
m→∞

xm = x for some x ∈ R, and so,

wt0(xn,x) =
|xn − x|

t0
= lim

m→∞

|xn − xm|
t0

≤ ε

for all n ≥ n0(ε), which means that lim
n→∞

wt0(xn,x) = 0. �
Claim 5. The map Tx = 2x : R → R is modular contractive and its least modular
Lipschitz constant is kw(T) = 0, but T is not contractive with respect to metric d∗

w.

Proof. Let 0 < k < 1 and 0 < t0 < 1 be arbitrary chosen and fixed. Then, by the
definition of w, for all 0 < t ≤ t0 and x,y ∈ R, we have

wkt(Tx,Ty) = wkt(2x,2y) =

{
0 if x = y,

∞ if x �= y,
= wt(x,y).

(This is a very weak and degenerate velocity contraction, which is nonintuitive from
the point of view of metric contractions!)

By the definition of kw(T), we find kw(T)≤ k for all 0< k < 1, and so, kw(T) = 0.
If we assume that d∗

w(Tx,Ty) ≤ k d∗
w(x,y) for some constant k > 0, then taking

|x− y|> 1, we get

|2x−2y| = d∗
w(Tx,Ty) ≤ k d∗

w(x,y) = k|x− y|,

and so, k ≥ 2, i.e., T is not d∗
w-contractive. �

Remark 3. The contractive condition in Claim 5 is of local character with respect
to t: it does not hold for t0 = 1. In fact, if x �= y, 0 < k < 1, and t0 = 1, then

wkt0(Tx,Ty) = wk(2x,2y) = ∞> |x− y|= w1(x,y) = wt0(x,y).

Claim 6. The map Tx= 2x is modular reachable in the sense of Theorem 2 (item 4).

In fact, setting xt = 0 for all t > 0, we find

wt(xt,Txt) = wt(xt,2xt) = wt(0,0) = 0.

Note that no other point is modular reachable for T: if x �= 0, then x �= 2x = Tx, and
so, wt(x,Tx) = ∞ for all 0 < t < 1.



14 V.V. Chistyakov

By Theorem 2, the map Tx = 2x admits a fixed point in R.

Remark 4. The map S :R→R given by Sx= x+1 is also modular contractive (with
respect to w), but it is not modular reachable: since x �= Sx for all x ∈ R (i.e., S is
fixed point free), then wt(x,Sx) = ∞ for all 0 < t < 1.

Thus, the modular reachability of the map T in Theorem 2 is essential.

Remark 5. Multiple fixed points may exist for a map T : X∗
w → X∗

w from Theorem 2
if w does not satisfy the assumption in the second half of that theorem (this is the
case for our modular w). In fact, denote by Tx = [x] the largest integer, which does
not exceed x ∈R. Then T is discontinuous at integer points (in the usual sense), and
each integer q is its fixed point: Tq = [q] = q. The map T : R → R is w-contractive:
if 0 < k < 1 and 0 < t0 < 1, then, for all 0 < t ≤ t0 and x,y ∈ R, we have

wkt(Tx,Ty) = wkt([x], [y]) =

{
0 if [x] = [y],

∞ if [x] �= [y],
≤
{

0 if x = y,

∞ if x �= y,
= wt(x,y).

Moreover, T is modular reachable: for each t > 0, we may choose (arbitrarily) an
integer q = qt, so that wt(qt,Tqt) = wt(qt, [qt]) = wt(qt,qt) = 0.

7 Conclusion

The theory of metric modular spaces [3–11], introduced by the author [5] in
2006, extends simultaneously the theory of metric spaces due to Fréchet [12] and
Hausdorff [13] on the one hand, and the theory of modular linear spaces of Nakano
[19] and Orlicz [20] on the other hand. In this chapter, we have addressed a modular
version of the Banach’s [2] Fixed Point Theorem, with no reference to the metric
notions, and showed that it can produce new fixed points.

The metric space theory is “embedded” into the modular space theory (as
a pre-limit one) via the single canonical modular w(α,x,y) = α d(x,y) with
parameter α = 1/t > 0, and so, the former theory looks as a “linear” theory (in
parameter α). The other various dependences on α in general modulars w present
broad possibilities in developing Nonlinear Analysis outside the scope of metric and
modular linear spaces.
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A Taxonomy for the Flexible Job Shop
Scheduling Problem

Didem Cinar, Y. Ilker Topcu, and José António Oliveira

Abstract This chapter aims at developing a taxonomic framework to classify
the studies on the flexible job shop scheduling problem (FJSP). The FJSP is a
generalization of the classical job shop scheduling problem (JSP), which is one
of the oldest NP-hard problems. Although various solution methodologies have
been developed to obtain good solutions in reasonable time for FSJPs with different
objective functions and constraints, no study which systematically reviews the FJSP
literature has been encountered. In the proposed taxonomy, the type of study, type
of problem, objective, methodology, data characteristics, and benchmarking are the
main categories. In order to verify the proposed taxonomy, a variety of papers from
the literature are classified. Using this classification, several inferences are drawn
and gaps in the FJSP literature are specified. With the proposed taxonomy, the aim
is to develop a framework for a broad view of the FJSP literature and construct a
basis for future studies.
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1 Introduction

The job shop scheduling problem (JSP) is one of the oldest NP-hard problems in the
scheduling literature. There are a certain number of jobs which need to be scheduled
on a certain number of machines. Each job consists of operations which need to be
carried out in a predetermined sequence. Each operation can be processed only on
one machine, which is known in advance. The aim of the JSP is to find a schedule
that minimizes a performance measure. The flexible job shop scheduling problem
(FJSP) is more complex and general than the JSP. In the FJSP, each operation can
be processed by one of the machines in a given set. Therefore, the FJSP is both an
assignment and a scheduling problem.

The JSP has a history very related to that of the FJSP. The evolution of solution
techniques used for deterministic JSPs is surveyed by Jain and Meeran in 1999
[1]. Although the first study on the JSP is not explicitly known, it is accepted
that the studies began in the 1950s. A polynomial time algorithm developed by
Johnson [2] for a two-machine flow shop scheduling problem can be considered as
the first algorithm on the JSP. Besides several polynomial time algorithms, basic
and efficient heuristics that constituted a basis for classical scheduling theory were
developed in the 1950s. During the 1960s, exact algorithms were studied to find an
optimal solution for JSPs. The branch and bound algorithm was the most widely
used exact method over the years. Because of the limitations on finding the exact
solution for many problems, the emphasis shifted to complexity theory during the
1970s and until the mid-1980s. After noticing that JSPs are NP-hard problems,
approximation techniques were developed to find good solutions for larger instances
in an acceptable amount of time. Although approximation methods do not guarantee
an optimal solution, they are efficient in terms of computational time and effective
regarding the solution quality. Priority dispatching rules were the earliest approx-
imation algorithms. In the period from 1988 to 1991, innovative approximation
algorithms were developed. The shifting bottleneck procedure developed by Adams
et al. [3] was the first approximation algorithm proposed in this period. Later, several
solution techniques were combined as hybrid methods to decrease their limitations
and increase their effectiveness [1].

Although research on the JSP began in the 1950s, the first known FJSP study was
carried out in 1990. Brucker and Schlie [4] developed a polynomial time algorithm
to solve the FJSP with two jobs. Later on, various approximation techniques
were used and miscellaneous hybrid algorithms were developed to improve the
performance of the existing techniques. The evolution of the methodologies for JSPs
and FJSPs is illustrated in Fig. 1.

This chapter contributes to the literature by developing a taxonomy for the FJSP
to create a framework for future research. Reisman et al. [5] statistically reviewed
the flowshop scheduling/sequencing research studies. They classified theoretical and
applied articles based on research strategies. Their paper provides a quantitative
review of the literature on flowshop scheduling/sequencing. Quadt and Kuhn [6]
classified the flexible flow line scheduling studies according to objective, solution
method, type of machines (identical, uniform, and unrelated), and setup occurrence.
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Fig. 1 Historical background for JSP and FJSP

Başar et al. [7] proposed a taxonomic framework for the emergency service station
location problem and classified several papers from the literature to verify the
proposed framework.

Such a taxonomic framework for the FJSP has not been encountered in the
literature review. The present chapter is organized so that the next section gives
the explanation of the classical FJSP. Section 3 presents a brief literature review
on the FJSP. Section 4 mentions the statistical inferences about the published
papers in the FJSP literature. Section 5 clarifies the methodology and defines the
proposed taxonomy. The classification of some selected papers and the derived
results are given in Sect. 6, whereas the last section is reserved for the conclusion
and recommendations.

2 The FJSP

There are n jobs {J1, . . .,Jn} and m multipurpose machines {M1, . . .,Mm}. Each
job Ji consists of ni operations, Oi1, . . .,Oini , which have to be processed in a
predetermined sequence without preemption. Operation Oij can be processed on
a machine in the given set Mij ⊆ {M1, . . .,Mm}. The processing time for operation
Oij on machine Mk is denoted by pijk. A machine cannot process more than one
operation at the same time. Furthermore, no two operations of a job can be processed
simultaneously, i.e., the predetermined operation sequence of each job has to be
enforced. The most widely used performance measure in the literature is makespan
(Cmax), which refers to the longest completion time. The problem is to find a
schedule that satisfies both the machine and precedence constraints and minimizes
makespan.
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The JSP is the special case of the FJSP where
∣∣Mij

∣∣ = 1 for all Oij. In the JSP,
since the assignment of the operations to machines is predetermined, only the order
of the operations is decided. On the other hand, in the FJSP, the aim is finding an
assignment and a corresponding schedule that minimize the performance measure
[8]. If a feasible assignment is given, then the FJSP becomes a JSP [9].

3 A Brief Literature Review

The FJSP can be divided into two subproblems, the assignment problem and the
scheduling problem. For the assignment problem a binary variable Vijk is defined
which is 1 if Oij is assigned to machine Mk, otherwise 0. Basically, there are three
binary variable definitions for scheduling subproblem.

Xijkl =

{
1 if Oij is scheduled in the lth position for processing on Mk

0 otherwise

Yijkt =

{
1 if Oij is processed by Mk during period t
0 otherwise

Zijghk =

{
1 if Oij precedes Ogh (not necessarily immediately) on Mk

0 otherwise

They were first proposed by Wagner [10], Bowman [11], and Manne [12], for
the JSP. Özgüven et al. [13] developed a mixed integer programming (MIP) model
based on Manne’s [12] binary variables. Five formulations using the above binary
variables were compared by Demir and İşleyen [14] for FJSP in terms of makespan
and computation time. The computational tests verified that the formulation having
the binary variable proposed by Manne [12] performed better than the others. In
2014, Birgin et al. [15] proposed a novel MIP formulation for the FJPS which is
more compact than the one proposed by Özgüven et al. [13] in 2010.

The solution methodologies for deterministic FJSP can be divided into three main
categories: exact algorithms, heuristics, and metaheuristics. The branch and bound
algorithm, which is one of the exact methods, finds the linear programming (LP)
optimum. The performance of this technique depends on the instance and the initial
upper bound values [1]. Fattahi et al. [16] used the branch and bound algorithm for
the FJSP. Since they could not obtain an optimum solution in a reasonable time, they
developed a methodology based on heuristic approaches.

The first developed heuristics to solve classical JSPs are based on priority dis-
patching rules. Since there is no unique rule which is effective for all problems [17],
linear or random combinations of dispatching rules are used to obtain better results.
Baykasoğlu and Özbakır [18] analysed the performance of various dispatching rules
for the FJSP with different machine flexibilities. Machine flexibility refers to the
average number of alternative machines per each operation. Statistical tests showed
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that different dispatching rules yield approximately the same performance for the
instances with high machine flexibility. Chen et al. [19] proposed a methodology
based on priority dispatching rules for a case study in a weapons production
factory. Simulation results showed that the proposed model using the combination
of earliest due date, the operations’ lowest level code of the bill of materials, and
the longest processing time outperforms the other scheduling methods. Although
priority dispatching rules are easy to implement, the quality of the results decreases
when the instance size increases. Because of this drawback and the increasing
demand for better solutions, metaheuristic algorithms have been widely used for
FJSPs.

Yazdani et al. [20] developed a parallel variable neighborhood search algorithm
to solve the FJSP. Parallelization is employed to increase the exploration in the
search space by multiple independent searches. Rajkumar et al. [21] developed a
GRASP (greedy randomized adaptive search procedure) to solve the multi-objective
FJSP with non-fixed availability constraints and compared their results with the
results of a hybrid genetic algorithm. Computational results showed that the GRASP
algorithm is more appropriate for solving the instances with partial flexibility.
Rajkumar et al. [22] also applied a GRASP algorithm to solve the multi-objective
FJSP with limited resource constraints.

Saidi-Mehrabad and Fattahi [23] used a tabu search method for the FJSP with
sequence dependent set-up times and compared this with the optimal solution
obtained by the branch and bound technique. The experimental results showed that
the tabu search algorithm achieved optimal solutions in a short computational time
for small and medium sized instances. Ennigrou and Ghedira [24] presented two
tabu search based multi-agent approaches for the FJSP. The first approach was
extended by adding new diversification techniques at both the local and global
levels. Because of this diversification, the second approach performs better in terms
of makespan. Fattahi et al. [25] applied simulated annealing, which uses stochastic
hill climbing procedure to search the solution space, to the FJSP with overlapping.

Genetic algorithms (GA) are among the most widely used approximation
algorithms in the FJSP literature. The chromosome representation is an important
factor in the performance of a GA [26]. Ho et al. [27] presented a detailed review
of chromosome representation for the FJSP. De Giovanni and Pezzella [28] used an
operation-based representation in which all the operations of a job are named by
the same symbol. The order of occurrence in the given sequence was represented
with these symbols. The whole solution space was mapped by an operation-based
representation and any permutation of operators can point to a feasible schedule
[29]. Mesghouni et al. [30] proposed a parallel job representation for the FJSP. A
chromosome was represented by a matrix in which each row refers to the ordered
sequence of each job. Saad et al. [31] used this representation to solve a multi-
objective FJSP. Parallel job representation needs a repair mechanism after crossover,
and the complexity of decoding the representation imposes a high computational
cost. Chen et al. [32] proposed an A − B string representation where the A string
contains the order of the operations for each job and the B string includes the
list of operations that are processed on each machine. The need for a repair
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mechanism to maintain feasibility and the high computational cost of checking the
consistency between the A and B strings are the drawbacks of this representation.
Kacem et al. [33] proposed an assignment table representation. Since no repair
mechanism is required after mutation and crossover, this representation is more
effective. Chan et al. [34], Pezzella et al. [8], and Al-Hinai and ElMekkawy [26]
used this permutation-based chromosome representation for the FJSP. Moreover,
Defersha and Chen [35] implemented this representation for the FJSP with sequence
dependent setup times. Ho et al. [27] developed a new chromosomal representation
to incorporate a learning mechanism. Only active schedules were generated, so as
to reduce the size of the search space. The chromosome consists of two vectors:
the operation order part and the machine selection part. The operation order part
includes all operations for a job, while the machine assignment vector indicates
the machines to which each operation is assigned. Binary values were used in the
machine selection component. Moradi et al. [36, 37] used this representation for
FJSPs. Zhang et al. [38, 39], Gao et al. [40–42], Li et al. [43, 44], Wang et al. [45],
and Xing et al. [46] used similar representations as that of Ho et al. [27], except
that the machine selection component was constructed with integer values instead
of binary values. Sun et al. [47] used integer values for the operation sequence
component that showed the position on the schedule. Frutos et al. [48] used integer
values for both components, in which a gene on the operation sequence component
represented a possible order of operations on each machines. Jang et al. [49] used
the relative operation level besides the machine assignment and operation sequences
to determine the operation sequence.

Particle swarm optimization is another evolutionary computation technique. It
is inspired by the behavior of a flock of birds. Liu et al. [50] used a multi-particle
swarm optimization approach for the multi-objective FJSP. The representation con-
sists of two components: the operation order and the machine selection. According
to computational experiments, the proposed algorithm is effective especially for
large scale multi-objective FJSP instances. Boukef et al. [51] proposed an algorithm
inspired by particle swarm optimization for the FJSP. The computational results
confirmed that the efficiency of the proposed algorithm is comparable to the GA
in terms of makespan. Pongchairerks and Kachitvichyanukul [52] proposed a new
particle swarm optimization approach for the FJSP, where the processing times do
not depend on the machines. They implemented multiple social learning topologies
in the evolutionary process of particle swarm optimization to avoid being trapped in
local optima and to explore various regions in the search space.

Xing et al. [53] proposed a knowledge-based ant colony optimization algorithm,
inspired by the behavior of ants. The performance of the proposed method was
substantially improved by integrating the ant colony optimization with a knowledge
model. Rossi and Dini [54] proposed an ant colony optimization for the FJSP with
sequence dependent set-up times. Xing et al. [55] used an ant colony optimization
algorithm for the assignment of the operations to the machines and developed a
simulation model to solve the multi-objective FJSP. Karthikeyan et al. [56] proposed
a firefly algorithm, which is a novel algorithm developed in 2008 to solve nonlinear
design problems, for multi-objective FJSPs with limited resource constraints.
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Akyol and Bayhan [57] proposed a dynamically coupled neural network for FJSP,
in which jobs were not composed of operations. In order to evaluate the performance
of the proposed approach, a simulation experiment was performed with different
parameters. Bagheri et al. [58] developed an artificial immune algorithm combined
with various strategies used for generating the initial population and selecting
the individuals for reproduction. Wang and Yu [45] used a filtered beam search
algorithm for the FJSP with fixed and non-fixed machine availability constraints.
Ziaee [59] developed an efficient heuristic that obtains high quality solutions in a
very short computational time. The proposed heuristic can be used to generate an
initial solution for metaheuristics in further studies.

In order to improve the quality of the solution, global search algorithms have
been frequently hybridized with local search in the FJSP literature. Gao et al. [41]
combined GA with a bottleneck shifting procedure to use both the global search
ability of GAs and the local search ability of the bottleneck shifting procedure
for a multi-objective FJSP. The experimental results showed that the local optima
can be improved without too much computational effort, by dynamically adjusting
the neighborhood structure. Tay and Ho [60] used composite dispatching rules
generated by genetic programming. The computational results verified that no rule
performs well on all criteria, and combining the rules increases the efficiency of
the procedure and the quality of the results. Zribi et al. [61] solved the FJSP
hierarchically as assignment and sequencing subproblems. Two methods based on
local search and the branch and bound algorithm are developed for the assignment
subproblem, while a hybridized GA is proposed for the sequencing subproblem.
Gao et al. [42] combined a two-neighborhood structure with the GA to solve an FJSP
with non-fixed availability constraints. Gao et al. [40] used a variable neighborhood
search with a GA to improve the search ability. Kacem et al. [33] developed an
algorithm called “approach by localization” which is an assignment and scheduling
procedure to assign each operation to a suitable machine considering the processing
times and workloads of machines. It was inferred that “approach by localization”
is more efficient than GA in terms of computational time, and obtained results as
good as the results obtained by GA. They also combined GA with the approach by
localization to find better results for many real problems. Pezzella et al. [8] applied
approach by localization to generate an initial solution for the GA. They also used
various dispatching rules to get the sequencing of the initial assignments.

Li et al. [43] hybridized a variable neighborhood search with GAs to solve a
multi-objective FJSP. Frutos et al. [48] combined GAs and simulated annealing
to integrate a local and global search for solving a multi-objective FJSP. Wang
et al. [45] and Zhang et al. [39] proposed a GA based on immune and entropy
principles for the multi-objective FJSP. Al-Hinai and ElMekkawy [26] hybridized
GA with an initial population generation heuristic and a local search method for
the FJSP. Moradi et al. [37] combined GA and priority dispatching rules for FJSP
with non-fixed preventive maintenance activities. Xing et al. [46] developed a multi-
population interactive coevolutionary algorithm in which both artificial ant colonies
and a GA with different configurations were applied to evolve each population
independently.
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Ho et al. [27] developed a learnable GA which yields an effective integration
between evolution and learning within a random search process. Moradi et al. [36]
also used a learnable GA to solve the FJSP with preventive maintenance activities.

The particle swarm optimization algorithm is another frequently used approx-
imation method that is combined with other algorithms. Xia and Wu [62] com-
bined simulated annealing with particle swarm optimization for a multi-objective
FJSP. Grobler et al. [63] applied four particle swarm optimization-based heuristic
approaches to the multi-objective FJSP with sequence-dependent setup times. The
priority-based particle swarm optimization algorithm has the best performance
in terms of the quality of the solution and the computational complexity. Zhang
et al. [64] hybridized a particle swarm optimization algorithm with the tabu search
algorithm to solve the multi-objective FJSP. Mosleji and Mahnam [65] combined
a particle swarm algorithm and a local search algorithm for multi-objective FJSP
with different release times. Li et al. [66, 67] hybridized an artificial bee colony
algorithm with the particle swarm methodology and tabu search, for solving the
multi-objective FJSP.

Since tabu search is an effective local search algorithm and easy to implement,
many methodologies based on tabu search have been developed in the FJSP
literature. Scrich et al. [68] developed a hierarchical and multi-start tabu search in
which the initial solution is obtained by priority dispatching rules. Fattahi et al.
[16] compared integrated and hierarchical approaches for the FJSP and found that
the results of the hierarchical algorithms are better than the integrated approaches.
According to the experimental results, combining tabu search and simulated anneal-
ing algorithms for assignment and sequencing subproblems consecutively had better
performance than the other algorithms.

Bozejko et al. [69] used tabu search for the machine selection module and a
combination of an insertion algorithm and the tabu search algorithm with back-
tracking for the operation scheduling module. It was inferred that exact algorithms
can be used on both modules to obtain an optimal solution. Li et al. [70] also
developed a hybrid algorithm with two modules for multi-objective FJSP. They used
a tabu search algorithm to produce neighboring solutions in the machine assignment
module and a variable neighborhood search algorithm to apply local search in the
operation scheduling component. Li et al. [71] hybridized tabu search with a fast
neighborhood structure to solve the FJSP. Wang et al. [72] developed a filtered beam
search-based heuristic algorithm to solve the multi-objective FJSP. In order to avoid
useless paths and decrease the computational time, heuristics based on dispatching
rules were implemented as local and global evaluation functions. Liouane et al. [73]
used an ant colony optimization metaheuristic with local search methods including
tabu search and showed the efficiency of using local search methods with an ant
colony approach.

Although various studies have developed advanced methodologies to solve
FJSPs, no review study has been encountered in the scope of this study. This paper
proposes a taxonomic framework that can be used to systematically classify the
FJPS literature.
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4 Statistical Findings

A search was done of the ISI Web of Science using “flexible job shop scheduling,”
“multipurpose machine job shop,” and “job shop scheduling with alternative
machines” as the search phrase in the “Subject/Title/Abstract” field options. Only
the research papers on deterministic FJSP are included in the statistical analysis.
Among the research papers found by this database search, the papers on dynamic
FJSPs, lot sizing, or batch splitting in FJSP and rescheduling were eliminated. As a
result, 128 research papers are considered in this study.

Initially, the countries of the studies were investigated. The country of the paper
is determined by considering the locations of the departments of the authors. For
a paper, the authors from the same country are counted once. If the authors are
from different countries, then all countries are counted. In this way, countries that
are systematically studying FJSPs can be detected. Figure 2 shows the number of
studies by country. China is the leading country: one-third of the studies on FJSPs
have been carried out there. As is easily seen in Fig. 2, FJSP is mostly studied in
eastern countries.

Figure 3 shows the cumulative number of articles with respect to years starting
from 1990. Beginning from 2010, a growing interest in FJSP is observed. Table 1
shows the number of articles for each journal where at least two articles have been
published. It can be inferred that more than 28 % of the papers have been published
by the top two journals in the list.

Fig. 2 Number of articles by country
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Fig. 3 Cumulative numbers of articles with respect to years

Table 1 Percentage of articles for each journal

International Journal of Production Research 14.84 %

International Journal of Advanced Manufacturing Technology 13.28 %

Computers and Industrial Engineering 7.03 %

Computers and Operations Research 4.69 %

Journal of Intelligent Manufacturing 4.69 %

Applied Mathematical Modelling 3.13 %

Applied Soft Computing 3.13 %

European Journal of Operational Research 3.13 %

Expert Systems with Applications 3.13 %

International Journal of Production Economics 3.13 %

IEEE Transactions on Systems Man and Cybernetics Part
C-Applications and Reviews

2.34 %

Advanced Science Letters 1.56 %

Annals of Operations Research 1.56 %

International Journal of Computers Communications & Control 1.56 %

Journal if Manufacturing Systems 1.56 %

Knowledge-Based Systems 1.56 %

Mathematical Problems in Engineering 1.56 %

Studies in Informatics and Control 1.56 %
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5 FJSP Taxonomy

In this study, a taxonomic framework is proposed and used for the classification
of studies on the static FJSP. Studies on the dynamic FJSP are ruled out. The
attribute vector description-based taxonomy method developed by Reisman [74] is
used. It has been used for the classification of vehicle routing problem [75] and data
envelopment analysis [76].

The attribute vector description-based taxonomy method proceeds in an arbores-
cent way, as shown in Fig. 4. The first level of branching includes the general
features of the classified subject in the case of the main topics. They are detailed
at the branching levels from top to bottom. At most three branching levels are gen-
erated, to yield coherence and parsimony while providing comprehensiveness [75].

The proposed taxonomy for the FJSP literature is given in Fig. 5. The main topics
that are placed at the first level of branching are type of study, type of problem,
objective, methodology, data characteristics, and benchmarking.

In the first category, a classification is performed with regard to the type of the
studies into theory, application, or literature review. Reisman et al. [5] used a classi-
fication into theoretical or application for flowshop scheduling/sequencing research
studies. According to Reisman et al. [5], “Theoretical papers may be motivated by or
even based on real-world problems and offer a wide range of potential applications.
Yet, the authors have failed to demonstrate specific examples.” They also extended
this definition to include papers “that use a previously published scheduling model
and proceed to improve the solution technique without adding to the model’s real-
world validation.” According to this definition, reviews and taxonomy studies were
considered as theoretical. The terminology used in this study differs from this
definition in that reviews and taxonomy studies are handled as a third subcategory
besides theoretical and application.

The second category includes the features of the problem and consists of six
subcategories: processing time, release time, setup, overlapping, maintenance, and
process plan.

Within the first subcategory of problem features, studies are distinguished based
on whether the machines are related or unrelated. If machines are related, an
operation Oij can be processed at the same time on any machine in the set Mij. If
machines are unrelated, the processing times may be different for each machine.

Fig. 4 Attribute vector description-based taxonomy
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Fig. 5 Taxonomy of the FJSP literature
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In the unrelated case, the processing times depend on the machine. Another
subcategory in the second level is release time, which is considered separately for
jobs and machines. If release time exists for a job, then the process of that job cannot
be initiated before the release time.

Although a setup time is often required between operations in real life, it is
not taken into consideration during the modeling of classical scheduling problems,
because it makes the problem hard to solve. On the other hand, some studies
take into account setup times as sequence dependent or sequence independent. If
the setup time is contingent on the immediately preceding operation on the same
machine, then it is called a sequence-dependent setup time. Otherwise, the setup
time required for each operation is known in advance and is called a sequence-
independent setup time [35, 54]. Since sequence-independent setup time can be
added to the processing time, it does not need any additional parameter to represent
it in the model of the problem. Therefore, a sequence-independent setup time is
referred to as “no setup” in the proposed taxonomy.

In classical scheduling problems, no two operations of a job can be processed
simultaneously. However, in some FJSPs, an operation of a job can be started before
the previous operation is finished because of its nature. The term “overlapping” is
used for this feature by Fattahi et al. [25]. Maintenance is another problem feature
which can be categorized as fixed and non-fixed maintenance. It is fixed if the
starting times of maintenance activities are defined in advance. Flexible starting
time for maintenance activities are under consideration in the case of non-fixed
maintenance. The third category includes the objectives of the problems. In general,
the problems can be classified as either single objective or multi-objective. Some
widely used objective functions are shown in Fig. 6. Makespan refers to the longest
completion time. Flowtime is the total completion times on all the machines. Total
workload is the total working time over all the machines. Critical machine workload
is the maximum working time spent on any machine. Total tardiness and mean
tardiness are in terms of the due date: tardiness occurs if a job is completed after the
due date. Production costs consist of the operating costs, inventory costs, penalty
costs for earliness or tardiness, etc. A problem that minimizes one or more of these
production costs is assigned to this category. The subcategory “Other” is also added,
for the sake of the comprehensiveness of the proposed taxonomy.

The fourth category is reserved for the solution methodologies. This category is
divided into three subcategories, depending on the class to which the methodology
belongs: exact methods, heuristics, and metaheuristics. Solution techniques in
proposed taxonomy are specified by a search of the JSP studies that have been
published in recent years. Among these techniques, the branch and bound algorithm
and decomposition approaches are the exact methods which guarantee an optimal
solution, while the rest are approximation methods. The subcategory “Other” is
added to classify the methods that do not belong to the listed techniques.

The data used in the study are the next main category, and are classified based
on their origin. According to Eksioglu et al. [75], authors might use real-world data
and/or synthetic data that are generated by random number generators or taken from
the literature. Since the FJSP is an NP-hard problem, approximation algorithms
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Fig. 6 Classification of selected FJSP papers. (a) Classification of FJSP studies with respect to
type of study, type of problem, and objective



A Taxonomy for the Flexible Job Shop Scheduling Problem 31

Fig. 6 (continued) (b) Classification of FJSP studies with respect to methodology, data and
benchmark
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have been used to find good solutions for large size instances in a convenient
computational time. Although the efficiency of the algorithms increases depending
on technological advances, an optimal solution for many large size instances has still
not been found. Therefore, the biggest dimension of the instances solved in a study
is crucial for current and future studies. The dimension of the instance is represented
by the number of machines, number of jobs, and total number of operations. Quadt
and Kuhn [6] also used such a subcategory, called the “largest instance size,” for
flexible flow line scheduling problems.

The last category is according to the type of benchmarking. In many studies,
the results of other studies are used for comparison with the results of the applied
methodology to evaluate the computational performance. Benchmarking can also
be performed by directly implementing the other solution methods. In this study,
sensitivity analyses on the parameters of a proposed method are assigned to the
results of other methods.

6 Classification of the FJSP Literature

As mentioned in Sect. 4, 128 papers were encountered during the FJSP search and
were taken into account for statistical analysis. In order to verify the proposed taxon-
omy, 65 randomly selected papers among these 128 FJSP papers are classified using
the proposed taxonomic framework. The investigated articles for the taxonomic
review are listed in Fig. 6. Each row is related to a research paper, while the columns
are for the subcategories. If a study gives no information about a main category,
the corresponding cells remain empty for that paper. An empty column specifies
that there is no study encountered in the corresponding subcategory. There are two
empty columns, which constitute 4.17 % of the subcategories. One of the empty
columns is “review,” which shows that such a taxonomic framework can be used
to fill this gap in the literature. The remaining empty column belongs to solution
techniques. “Decomposition approaches” are exact methods which have not been
previously applied to FJSPs by anyone.

Subcategories marked only once or twice constitute 2.08 % and 18.8 %, respec-
tively. So, 93.75 % of all subcategories are handled in at least two articles. These
percentages verify that the proposed taxonomy is robust enough to clearly and sys-
tematically classify the FJSP literature. According to the type of the study, 95.38 %
of all the papers are theoretical studies which proposed a solution methodology for
various FJSPs. There are only three studies addressing, as an application study, the
modeling and solving of a real-life problem as an FJSP. As mentioned before, no
review studies were encountered in the scope of this study. A total of 69.23 % of the
papers are on the classical FJSP in which all the jobs and machines are ready at the
beginning of the planning horizon (no release time), setup times and maintenance
times are not planned, and overlapping is not considered. In 87.7 % of the papers,
the processing time of an operation is related to the machine. The problems which
consider processing times depending on the machine are more complicated than
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the ones that do not. 10.77 % of the papers studied FJSPs with sequence-dependent
setup times. Maintenance, which makes the problem more complicated to solve, is
the least considered problem structure in the FJSP literature.

The percentages of the studies including single objective and multi-objective
models are approximately the same. The minimization of the makespan is the most
widely used objective function, which occurred in almost all studies (90.77 %).
Among the multiobjective studies, total workload and critical machine workload
are the most widely used objective functions besides makespan.

In order to find an optimum solution or lower bounds, exact methods can be used.
Although the branch and bound technique is encountered in the literature, other
exact algorithms, such as column generation, which can also be used to accelerate
the branch and bound algorithm, have not been used to solve FJSPs. Since the FJSP
is an NP-hard problem, various approximation algorithms have been implemented.
GA is the most used approximation technique, while neural networks, GRASP, and
filtered beam search are the least. In order to improve the quality of the solution,
various search algorithms are frequently hybridized. 47.69 % of the reviewed papers
hybridize two or more approximation methods.

There are two theoretical papers referring to “no data,” where the objective of the
paper is either analyzing the complexity of an FJSP or developing a lower bound.
The rest of the theoretical papers proposed a solution method and applied it to data.
There are only two application papers using real-world data. According to the data
structure, 93.85 % of the papers apply a methodology to synthetic data.

With the exception of application and complexity studies, all the papers com-
pared the results of their proposed methodology with the results of other method-
ologies or the literature.

7 Concluding Remarks

In this chapter, a taxonomic framework for the FJSP, which is one of the NP-
hard problems, is developed. The attribute vector description-based taxonomy
method developed by Reisman [74] is used. The main categories used for the
classification of the FJSP literature are the type of study, type of problem, objective,
methodology, data characteristics, and benchmarking. According to a statistical
analysis, a growing interest in FJSP studies is observed since 2010. More than
28 % of the papers have been published in the International Journal of Production
Research or the International Journal of Advanced Manufacturing Technology.

In order to verify the proposed taxonomy, illustrative published papers from the
literature are classified. Based on the classification of FJSP studies, the following
important inferences and gaps in the FJSP literature can be mentioned:

• Most of the papers (95.38 %) are theoretical papers that propose a methodology
for solving an FJSP. The NP-hard structure of the FJSP is an important reason
why such a large portion of studies deal with solving these problems.
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• The classified studies do not substantially focus on real-life problems. The
performance of many developed algorithms tested with synthetic data has not
been verified real cases.

• 47.69 % of the reviewed papers hybridize two or more approximation methods.
Studies containing both approximation and exact approaches in hybrid methods
for FJSPs are rare. Thus, there is an important gap in this area, in which the
time efficiency of the approximation methods and the property of convergence
in exact methods can be merged.

• Most of the papers (69.23 %) are on the classical FJSP in which setup times,
maintenance times, and overlapping are not considered. Some combinations of
release time, setup, recirculation, overlapping, and maintenance, which can be
observed in real industry problems, have not been encountered.

The main contribution of our study is that it provides a broad review of the
FJSP literature and a framework for future studies. The proposed taxonomy can be
meaningfully enhanced based on the time, evolution, and content of the subject. For
example, as new methodologies are developed and used to solve FJSPs, the “other”
sub-category in the methodology can be renamed.
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Sensitivity Analysis of Welfare, Equity,
and Acceptability Level of Transport Policies

R. Connors, M. Patriksson, C. Rydergren, A. Sumalee, and D. Watling

Abstract Transport planners face a major challenge to devise policies to meet
multiple expectations and objectives. While we know that transport networks are
complex, multi-modal, and spatially distributed systems, there is now a long history
of mathematical tools which assist planners in understanding travel movements.
However, the objectives that they are asked to achieve do not always admit such a
quantification, and so there is a potential mismatch between seemingly qualitatively
driven objectives and quantitatively expressed models of the transport system. In
the present chapter we address this mismatch, by focusing on three objectives that
we believe represent the typical interests of a planner. These are namely: is the
policy economically justifiable (efficient), is it “fair” (equitable), and is it justifiable
to a democratic society (acceptable)? We provide mathematical representations of
these three objectives and link them to mathematical theory of transport networks, in
which we may explore the sensitivity of travel behaviour (and hence the objectives)
to various multi-modal transport policies. The detailed steps for representing the
policy objectives and sensitivities in the network are set out, and the results of a
case study reported in which road tolls, road capacities, and bus fares are the policy
variables. Overall, the chapter sets out a systematic method for planners to choose
between multi-modal policies based on these three objectives.
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Keywords Urban traffic travel mode and route choice modelling • Combined
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1 Introduction

Transport planners face a major challenge to devise future transport plans to
meet multiple expectations and objectives. In doing so, they must consider the
complex nature of the transport system. This complexity derives not only from the
multimodal nature of the available transport networks, but also from the diverse
spatial distribution of the problems and remedies. It is worth noting the lack of
such a spatial dimension in the aggregate economic models commonly used for
transport policy analysis. While there may be a justification to neglect it in other
areas of population activity, it is surely central to the question of travel, given the
indisputable link between the location of transport provision and the centres of
economic, employment, education, and residential activity in an urban area. This
spatial distinction leads us to consider the distribution of impacts across socio-
economic sectors of the population, which are typically not distributed evenly
in space across a city. This in turn leads beyond whether a transport policy is
economically justifiable (efficient) to issues of whether it is “fair” (equitable) and
justifiable to a democratic society (acceptable).

Despite the critical importance of the issue of equity and acceptability of different
transport policies, there have not been many researches attempting at formulating a
quantifiable measure for these effects. On the other hand, there has been a well-
established measure for the social welfare improvement in the system rooted from
the economic theory. An advantage for having such a quantifiable measure is that
possibility of analysing the impact of different transport policy on these impacts
analytically using an appropriate transport model.

This chapter aims to formulate some meaningful indicators for measuring the
changes of equity and acceptability as results of different transport policy. In
analysing the impact of different transport policy, one of the critical questions
is related to the potential benefit/impact of different setting of the policy imple-
mentation. For instance, one may be interested in the potential gain in social
welfare improvement with different level of public transport fare reductions. Most
of this kind of analysis has been carried out simply by testing different levels of
policy exhaustively with a transport model. The main problem with doing this is
computational time. In addition, the key information needed for the decision maker
at this level of decision may be just about the direction and rough level of the
magnitude of change of the benefit or impact. This chapter applies the method of
sensitivity analysis used in [18, 24, 25] to analyse the sensitivity of each of the
outputs mentioned earlier with respect to a small perturbation of different transport
policy attributes.
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The chapter describes a model for urban traffic travel mode and route choice
when there are classes of users having different values of time. The route choice
model for private transportation is based on the Wardrop user equilibrium prin-
ciple, represented through a graph resembling the street network, and the public
transportation model is based on a simplified network without direct interaction
with the private transportation. The travellers are modelled in homogeneous user
groups, where the travellers in a group has an equal value of time. A nested logit
type choice model is used for the demand and mode choice. A car and public
transport (bus) mode is considered in the model. The combined model includes
design parameters such as monetary costs for private and public transportation,
public transport frequency, and link capacities on links in the network.

The main purpose of constructing, solving, and analyzing this model is its use for
the analysis of a bi-level network design optimization model. Within that model, the
lower level will serve the purpose of evaluating the effect of changes in the above-
mentioned design parameters upon the decisions made by the travellers. The upper
level design objective function is formulated in terms of the design parameters and
will be chosen with the end-goal of designing efficient, equitable, and acceptable
transport systems. The development of network equilibrium models that may be
formulated as optimization problems originates with the seminal contribution of
Beckmann et al. [4]. The introduction of variable demand network equilibrium
models for one mode, where the destination choice is determined by entropy type
distribution models, can be found in the contributions of Florian et al. [13] and Evans
[9]. In this work we consider the distribution fixed. The above-mentioned model,
referred to as combined trip distribution and assignment models, was extended to
two modes and mode choice by Florian and Nguyen [12], where the travel times by
two modes, say auto and transit, are not related. These models are convex cost multi-
commodity network optimization models that, at the time, were natural to attack
by using the Frank–Wolfe algorithm or by the partial linearization method first
suggested by Evans [9]. Also the remaining models listed here are of this general
form. Florian [11] formulated a two-mode network equilibrium model where the
transit travel times depend on the auto travel times, and the auto travel times account
for the pressure of the transit vehicles which share the capacity of the roads.

The first formulation of a network equilibrium model with hierarchical logit
demand functions is that of Fernandez et al. [10], where the choice of stations for the
“park-and-ride” mode is given by a lower nest of the demand function. The solution
method suggested is an adaptation of the partial linearization algorithm of Evans
[9]. A more recent contribution is that of Abrahamsson and Lundqvist [1], who
developed a model for the combined trip distribution, mode choice, and assignment
models with hierarchical choices, where distribution may precede mode choice or
vice versa. In their model, the transit travel times are independent of the auto travel
times. In the model in Florian et al. [14] the trip productions are given by class
and purpose of travel. The mode choice model is an aggregated hierarchical logit
function [8, p. 219]. There are thirteen classes of travellers, three travel purposes,
and multiple modes of travel, which include walk, auto, multiple transit modes, and
combined modes (“park-and-ride”). Their solution algorithm is based on a block
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Gauss–Seidel decomposition of the model which is akin to the partial linearization
method of Evans [9]; in a simplified case of separable cost functions, there exists a
convex multicommodity network flow optimization model also for this more general
situation. A similar model of Wong et al. [29] also includes a gravity model for the
generation of the OD movements; the model is applied to the strategic Hong Kong
network, using Evans’ algorithm for its solution.

The construction of our nested model is inspired by Fernandez et al. [10], and
our method of choice is an adaptation of Evans’ partial linearization algorithm.

Equity, like the related concepts of justice, fairness, and right, is not simple
to quantify. Different people have different concepts of equity, and the aspects
of equity that are deemed important will depend on the particular context and
circumstances [20]. There are two dimensions of equity: the vertical and horizontal
dimensions. The vertical dimension is related to the inequality of the cost and benefit
distributions amongst the different user groups. User groups can be categorized
either by socio-economic group (e.g. income level) or need for transport service
(e.g. disability). The horizontal equity concerns the distribution of cost and benefit
amongst the groups considered as equal. In transport network modelling, the
horizontal equity can be linked to the inequality in the cost and benefit of travel
between different users from different travel movements (i.e. by OD pair). This can
be viewed as the spatial equity measure.

Before defining the measure of equity, the unit of observation for the equity
impact must be defined. In the social context, the choice of the unit can be an
individual or a collective unit such as a household or a group (e.g. women, the
elderly, and the disabled). Of course, the decision upon the unit will be associated
with the dimension and context of the inequality measurement. In this chapter,
the model formulated earlier allows us to define the unit of observation by the
user classes (distinguished by income group or value of time), travel movement,
or region. For illustration purpose, we will only observe the inequality amongst
travellers from different movements (OD pairs).

In measuring the equity impact, we focus on the inequality of the distribution of
the consumer surplus (S). From economic theory, the most useful measure for this
purpose is the income distribution index. There are several measures of inequality
reflecting different perceptions of inequality. The sets of weights that different views
attach to transfers at various points in a distribution are different. This can result in
contradictory ranking of a given pair of distributions (see [19]).

The chapter is structured into further five sections. The next section briefly
describes the definition of the transport model adopted in this chapter. Then,
Sect. 3 explains the formulations of the welfare, equity, and acceptability measures.
Section 4 illustrates the application of the sensitivity analysis method with different
measures and transport policies. Numerical results are shown in Sect. 5. The
network adopted in this test is the network of the city of Norrköping in Sweden.
The last section concludes the chapter and suggests further research.
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2 Definition of Transport Model

2.1 Notation

We start by introducing the notation and the submodels used for stating the
combined network equilibrium model. Let C be the set of all origin–destination
(OD) pairs (p,q) from origin p to destination q. Let M be the set of user groups.
Let dm

pq denote the (given) number of potential travellers between origin p and
destination q, with any mode, by travellers in user group m. Let the demand for
travellers going by car be denoted by dcm

pq and the number of travellers going by bus

be denoted by dbm
pq . Let ddm

pq := dcm
pq +dbm

pq denote the total number of travellers using
the two travel modes.

2.2 The Car (Private Transportation) Network Model

Let the car network be defined by the nodes N and directed links L. Let Rm
pq denote

the nonempty set of simple routes in pair (p,q) for user group m ∈ M. Denote by
hm

r the flow on route r ∈ Rpq of users in group m ∈ M. Let the traffic flow on link l
by users in group m be denoted by wm

l . As a consequence, we must have that

vl = ∑
m∈M

wm
l , l ∈ L. (1)

The consistency between route and link flows further requires that

wm
l = ∑

(p,q)∈C
∑

r∈Rm
pq

δm
rl hm

r , l ∈ L, m ∈ M, (2)

where the value of the element δm
rl equals one if link l ∈L is present on route r ∈Rm

pq,
otherwise zero.

The travel time on link l at the flow vl is assumed to be described by tc
l (ρl,vl),

where tc
l is differentiable and tc

l (ρl, ·) is an increasing and differentiable function on
R+ for every value of ρl ∈ R. Here, ρl is a parameter in the link travel time function
that is related to the link capacity. The function tc

l is in our numerical examples
given by

tc
l (ρl,vl) = ac

l +bc
l

(
vl

σ c(kc
l +ρl)

)nc
l

where ac
l , bc

l , kc
l , and nc

l are positive parameters related to the average travel delay
and σ c is a positive car occupancy parameter. Further, an additional monetary
cost τl is associated with each link l ∈ L. Monetary costs for user group m is
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transformed into a generalized time by the use of a time parameter for each user
group, denoted βm. A generalized link travel time for user group m is therefore

given by tl(ρl,vl)+
τl

βm .

Based on the above, the route costs for a given user group are given by

ccm
r := ∑

l∈L
δm

rl

(
tc
l (ρl,vl)+

τl

βm

)
, r ∈ Rm

pq, (p,q) ∈ C, m ∈M. (3)

Given a demand dcm
pq for each OD pair and user group, the route choice is

modelled through the Wardrop user equilibrium principle. In our notation and for
the triple (h,w,v) of flow entities, it is simply stated as the combination of the
consistency conditions (1), (2), and the following:

hm
r (c

cm
r −πcm

pq ) = 0, r ∈ Rm
pq, (p,q) ∈ C, m ∈M, (4a)

ccm
r −πcm

pq ≥ 0, r ∈ Rpq, (p,q) ∈ C, m ∈M, (4b)

∑
r∈Rm

pq

hm
r = dcm

pq , (p,q) ∈ C, m ∈M, (4c)

hm
r ≥ 0, r ∈ Rm

pq, (p,q) ∈ C, m ∈M. (4d)

The entities πcm
pq introduced in (4a–4d) should of course be interpreted as the

minimal, that is, equilibrium, cost of the routes utilized in each OD pair (p,q) and
for each of the user groups m ∈ M. Also, the notation ccm

r is as defined in (3).

2.3 The Public Transport Model

The public transport (bus) mode is modelled by one direct link from each origin
node to each destination node. No direct interaction between the car and the public
transport flows is modelled. The travel time from origin p to destination q using
public transport is given by

tb
pq(αpq,ρpq,d

b
pq) = ab

pq +ρb
pq +bb

pq

(
db

pq

2αpqkb
pq

)nc
pq

,

where ab
pq and bb

pq are positive parameters related to the average travel delay, kb
pq

is a parameter related to the capacity, and αpq is a design parameter related to the
bus frequency. The design parameter ρpq is related to the travel time for the public
transport mode in pair (p,q). The travel time is assumed independent of the number
of travellers. Without affecting the theoretical and computational properties of the
model it is however possible to add to the travel time a function, convex in the
number of public transport travellers, that reflects crowding effects in the public
transport vehicles.
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Fig. 1 Nesting of trip and
mode choice

q1

q2

The generalized travel time of using the public transport route (or, rather, link)

is for each user group and OD pair computed as cbm
pq := tb

pq +
τpq

βm , where τpq is a

positive parameter related to the public transport fare.

2.4 The Travel Demand Model

The travel demand and mode choice is modelled as a nested logit model. The logit
model for make-trip versus no-trip is modelled at the first level; for the travellers
making the trip, the choice between car and public transport (bus) is modelled at the
second level. The construction of the nested model is inspired by Fernandez et al.
[10], where a nested model for mode choice and transfer point is presented. The
nested logit model is illustrated in Fig. 1.

The parameter θ1 denotes the dispersion, or uncertainty, in the logit model for
the make-trip or no-trip choice and θ2 is the corresponding dispersion parameter for
the bus or car choice on the second level.

The nested logit model can be described in the following form:

dnm
pq = dm

pq
e−θ1tnm

pq

e−θ1tnm
pq + e−θ1tdm

pq
, ddm

pq = dm
pq

e−θ1tdm
pq

e−θ1tnm
pq + e−θ1tdm

pq
, (5a)

dbm
pq = ddm

pq
e−θ2tbm

pq

e−θ2tbm
pq + e−θ2πcm

pq
, dcm

pq = ddm
pq

e−θ2πcm
pq

e−θ2tbm
pq + e−θ2πcm

pq
, (5b)

where tdm
pq is the composite cost

tdm
pq = − 1

θ2
ln
(

e−θ2πcm
pq + e−θ2tbm

pq

)
. (5c)
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2.5 The Optimization Problem

Let, for short, x= (hT,wT,vT,(db)T,(dc)T,(dn)T)T. The combined model developed
above can be stated and solved as the optimization problem to

minimizeφ(x) :=∑
l∈L

(∫ vl

0
tc
l (ρl,s)ds+ ∑

m∈M

τl

βm wm
l

)

+ ∑
(p,q)∈C

(∫ dpqb

0
tb
pq(αpq,ρpq,s)ds+ ∑

m∈M

τpq

βm

)

+ ∑
(p,q)∈C

∑
m∈M

dnm
pq tnm

pq

+
1
θ1

∑
(p,q)∈C

∑
m∈M

[
dnm

pq (lndnm
pq −1)+ddm

pq (lnddm
pq −1)

]

− 1
θ2

∑
(p,q)∈C

∑
m∈M

ddm
pq (lnddm

pq −1)

+
1
θ2

∑
(p,q)∈C

∑
m∈M

[
dcm

pq (lndcm
pq −1)+dbm

pq (lndbm
pq −1)

]
, (6a)

subject to

dcm
pq +dbm

pq = ddm
pq , (p,q) ∈ C, m ∈M, (6b)

dnm
pq +ddm

pq = dm
pq, (p,q) ∈ C, m ∈M, (6c)

∑
r∈Rm

pq

hm
r = dcm

pq , (p,q) ∈ C, m ∈M, (6d)

∑
(p,q)∈C

∑
r∈Rm

pq

δm
rl hm

r = wm
l , l ∈ L, m ∈M, (6e)

∑
m∈M

wm
l = vl, l ∈ L, (6f)

hm
r ≥ 0, r ∈ Rm

pq, (p,q) ∈ C, m ∈M. (6g)

Positive sign restrictions on the demand variables db, dc, and dn are unnecessary
due to the presence of the logarithms. In fact, in this model all demand variables
must take on positive values in the feasible set of problem (6), hence also at an
optimal solution. At an optimal solution, the variable dnm

pq takes the value of the
number of potential travellers in user group m who do not make the trip between p
and q, and tnm

pq is the corresponding cost, or disutility, of not making the trip.
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A sufficient condition for the problem to be convex is that the relation θ2 ≥ θ1

is satisfied, which henceforth will be assumed. The existence of an optimal solution
is also guaranteed by Weierstrass’ Theorem, since the objective function is lower
semicontinuous (in fact even continuous) and the (polyhedral) feasible set is closed,
nonempty, and bounded. In general one cannot guarantee that the equilibrium route
flows (hm

r ) or the user group specific link flows (wm
l ) are unique, while typically the

total link flows (vl) as well as the demands have unique optimal values.
It is an easy exercise to show that the optimality conditions of this problem

are equivalent to the conditions describing the nested logit demand model (5) and
the statements (1)–(4) of Wardrop equilibrium and the consistency of flows and
demands.

3 Definitions of Welfare, Equity and Acceptability Measures

3.1 Welfare Indicator Formulation

The structure of the proposed nested logit model in Fig. 1 locates the decision on the
travel mode on the second level and the decision on to travel or not on the first level
of the nested logit. This means a traveller will decide first whether he/she will travel,
then if he/she decides to travel that traveller will decide upon the mode choice, while
the decision on route choice follows Wardrop’s user equilibrium (for the car demand
given by the mode choice model). Thus, the measurement of utility of the travellers
should be made at the highest level of the decision (i.e. decision to travel or not to
travel). That is to say, the user equilibrium model is not part of the random utility
specification (this would give a different model if it were), but rather is considered
as a mapping from the car OD demands to car OD travel costs at equilibrium. Thus,
the car OD costs referred to below are equilibrium car OD costs.

In this case, the dispersion parameters for the first and second level are defined
as θ1 and θ2 (if θ1 = θ2, then the nested model collapses to MNL). At the second
level of the decision (mode choice decision), the expected minimum disutility (or
satisfaction function) can be defined as

Sm,travel
pq =

1
θ2

ln
(
exp
(
θ2[πm,e

pq −πm,c
pq ]
)
+ exp

(
θ [πm,e

pq −πm,b
pq ]
))

.

This satisfaction function will then be used as the aggregated disutility for the
choice of “travel” at the first level of the nested model. We can then define the
satisfaction function at the first level as

Sm
pq =

1
θ1

ln[1+ exp(θ1sm,travel
pq )]

=
1
θ1

ln
{

1+ exp
(
θ [πm,e

pq −πm,c
pq ]
)
+ exp

(
θ [πm,e

pq −πm,b
pq ]
)}

.
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In the case that θ1 = θ2, we can derive

Sm
pq =

1
θ

ln
{

1+ exp
(
ln
[
exp
(
θ [πm,e

pq −πm,c
pq ]
)
+ exp

(
θ [πm,e

pq −πm,b
pq ]
)])}

=
1
θ

ln
{

1+ exp
(
θ [πm,e

pq −πm,c
pq ]
)
+ exp

(
θ [πm,e

pq −πm,b
pq ]
)}

,

which is exactly the satisfaction function for the MNL case.

Net Economic Welfare

The evaluation of the economic welfare involves two components, the consumer
surplus and operator surplus:

ψ = consumer surplus + operator surplus.

In general, the consumer surplus can be defined as the benefit (utility) of
accessing the destination of the trip subtracted by the generalized cost (dis-utility)
of travel. The utility term for travelling is normally a constant. Thus, the part which
changes responding to transport policy is the dis-utility of travel. For simplicity, we
measure the consumer surplus by the aggregated dis-utility of travel (i.e. satisfaction
function). Note that this simplification will not change the result of the analysis
in later parts of the chapter. The consumer surplus for the whole network can be
defined as

S =∑
pq
∑
m

dm
pqSm

pq,

where the operator surplus can be defined as the net financial benefit of the scheme:
(scheme revenue − scheme cost). Thus, the welfare measure can be defined as

ψ =∑
pq
∑
m

dm
pqSm

pq + scheme revenue− scheme cost.

In the case of MNL, we can use the formulation of the satisfaction function
following Eq. (4), and we can use Eq. (6) for the case of nested logit model.

3.2 Inequality Indicator Formulation

There are many ways of measuring inequality, though some candidate measures
have undesirable properties: for example, the variance provides a simple measure of
the spread of a utility distribution, but it is not independent of the utility scale. This
is an undesirable property of an inequality measure, which should not depend on the
units of utility adopted. There are five key axioms that are common requirements for
an inequality measure.
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The Pigou–Dalton Transfer Principle (Pigou [26], Dalton [7])
The inequality measure must fall (or at least not rise) in response to a mean-
preserving spread of utility. The transfer of utility from a poorer person to a richer
person should result in a fall in the inequality measure, and conversely the transfer
of utility from a richer person to a poorer one should result in a rise [2, 3, 5, 27].

Scale Independence
The inequality measure must not depend on the units of utility. Multiplying all
utilities by a constant results in the same measure of inequality.

Principle of Population (Dalton [7])
Merging two identical populations (distributions) should not alter the inequality
measure.

Anonymity
The inequality measure must be independent of any characteristics of individuals
other than their utilities. So the inequality measure is invariant under permutations
of the “individuals”.

Decomposability
If inequality is seen to rise in each subgroup of the population, then it should rise
for the population as a whole.

The Generalized Entropy class of equality measures are easily decomposed into
intuitively appealing components of within-group and between-group inequalities.
Other measures such as the Atkinson set of equality measures can be similarly
decomposed, but the sum of the components’ equalities is not the total equality.
The Gini coefficient is only decomposable if the partitions are non-overlapping, that
is, if the subgroups of the population do not overlap in the vector of utilities (which
will not usually be the case). Cowell [6] shows that any equality measure satisfying
all of the axioms listed above is a member of the Generalized Entropy class.

3.2.1 The Generalised Entropy Class of Inequality Measures

The generalized entropy class of inequality measures are defined by the formula

GE(α) =
1

α2 −α

[
1
N

N

∑
i=1

(
Yi

YA

)]
,

where N is the total number of population, Yi is the utility for individual i, and YA is
the average utility across the population. The value of GE ranges from 0 (equality) to
∞ (maximum inequality). The parameter α can take any real value and determines
the weight placed on inequalities in different parts of the distribution. Common
values are:
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α = 0, which weights differences in the lower tail:

GE(0) =
−1
N

N

∑
i=1

log

(
Yi

YA

)
;

α = 1, which weights equally across the distribution (the Theil measure):

T = GE(1) =
1
N

N

∑
i=1

Yi

YA log

(
Yi

YA

)
;

α = 2, which gives more weight to the inequality in the upper tail of the distribution
(this is, half the squared coefficient of variation)

CV =
√

2GE (2) =
1

YA

[
1
N

N

∑
i=1

(Yi −YA)2

]1/2

.

3.2.2 Theil’s Entropy Measure

Theil’s entropy measure belongs to the GE class of inequality measures; it is the
difference between the entropy for the actual distribution (of income, or any other
values) and the entropy measure of the equal distribution [28]. The basic formula of
the Theil’s entropy is as follows:

T =
1
N

N

∑
i=1

Yi

YA log

(
Yi

YA

)
.

In our lower level model, the consumer surplus for all travellers from the same
user class and the same OD pair is the same. Thus, Theil’s entropy measure can be
redefined as

T =
1
Q∑pq

∑
m

dm
pq

Sm
pq

SA
log

(
Sm

pq

SA

)
,

where Q =∑
pq

dpq denotes the total number of potential travellers in the network

and SA is the average satisfaction function value across travellers from different

OD movements and user classes, i.e., SA =
1
Q∑pq

∑mdm
pqSm

pq. This is the aggregated

Theil entropy index.1 As discussed earlier, Theil’s entropy index can also be used

1Note that logN (where N is the total demand) is an upper limit of the inequality. This is particularly
useful for setting a target.
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to analyse the inequality within a group and between groups of individuals. In our
case, we define the group by OD movement. Thus, two kinds of inequalities can
be measured. The first is the inequality caused by the geography (different OD
movement), and the second is the inequality within the OD movement caused by
different user classes.

T =

(
1
Q∑pq

dpqTpq
SA

pq

SA

)
+

(
1
Q∑pq

dpqTpq
SA

pq

SA log

(
SA

pq

SA

))
, (7)

where dpq =∑
m

dm
pq, SA

pq is the mean of consumer surplus within OD pair (p,q) and

Tpq is Theil’s entropy index calculated within the group (from different user classes
within each OD pair):

Tpq =
1

dpq
∑
m

dm
pq

Sm
pq

S̄
log

(
Sm

pq

SA

)
.

The first term on the right-hand side of (7) represents the within-group inequality
(the inequality amongst different user classes from the same OD movement) and
the second term represents the between-group inequality (the inequality between
different OD movements).

3.3 Acceptability Indicator Formulation

Acceptability of a policy can be viewed as an outcome of a democratic process in
which the population of a society has a chance to express his/her opinion (to support,
be against, or be neutral) on the proposed policy. A common and formal approach
to express an opinion is to vote for or against the policy. In the case with multiple
choices of policy options, an individual can also vote for different options or for no
option. The voting decision of an individual may be modelled as a discrete-choice
decision process.

In the traditional discrete-choice theory, an economic agent is assumed to make
a choice that offers him/her the highest perceived utility. Often, the utility included
in the decision process involves only the individual’s utility:

Ui
j = Vi

j + ε i
j ,

where Ui
j denotes the utility of policy i offered to individual j, Vi

j is the deterministic

utility of policy i offered to individual j, and ε i
j is the error term. With this utility

function, one could derive the probability of policy i to be chosen by individual j
under some assumptions about ε i

j .
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However, in the context of acceptability an individual may not consider only
the effect of the policy on himself but also the benefit to a wider society (social
perspective) [16]. The choice made by a decision maker will have an impact on the
others living in the same society [22]. This is indeed an important characteristic of
a public policy. Thus, as a member of a society an indirect utility for an individual
related to the utility of the whole group may be included into the decision process of
an individual [17]. This indirect utility may be the product of either moral or social
norm effect. For instance, Mrs. A may vote for a road pricing policy despite being
worse-off, since she is aware of the public perception toward this policy (and this is
an indirect result from the benefit to the overall society).

With this concept, we can redefine the utility of a transport policy i for individual
j as

Ui
j = (Vi

j +∑
g

wi
gṼi

g)+ ε i
g,

where the second term represents the total group utility. For individual j, he or she
may consider the utility of option i for a number of groups g. Ṽi

g denotes the utility

of option i offered to group j. wi
g is the relative weight for the utility offered to

group g. These weights represent the relative importance of the change of utility
for each group to the decision of individual j. With this modified utility function,
we can formulate the probability of an option i to be chosen (or to be accepted)
following the standard random utility model. Mueller [23] also suggested a similar
framework for voting behaviour but his model interprets the social consideration
as the weighted sum of self-individual utility and other individuals’ utilities. In
our case, we explicitly define a bounded set of population considered as his or her
society for each (individual) voter.

With the modified utility function, one needs to define a potential set of groups
affecting the decision of different types of individuals. Many social research
questions arise with this group definition. For instance, does an individual consider
himself/herself as being a member of a group by his or her socio-economics
or geography? What are the relative weights for the aggregation of the group
effects? The answers to these questions are beyond the scope of the current chapter.
Nevertheless, the framework proposed here opens up a number of possibilities in
studying the issue of public acceptability both from theoretical and empirical points
of view.

In this chapter, we propose to define two types of groups associated with an
individual: income group and zoning movement group. In addition, we assume
that the error term follows the Gumbel distribution, giving us the logit model
for assessing the acceptability of a policy. Following the notation in the previous
section, we can define the acceptability level of a policy j as

ξj =
1
Q∑pq

∑
m

dm
pq

exp
(
θVm,j

pq

)
∑∀j′∈Θ exp

(
θVm,j′

pq

) , (8)
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where j denotes a transport policy option in the set of all possible proposed policy
options Θ (including do-nothing), Vm,j

pq denotes the deterministic utility of policy j
to users travelling between OD pair pq with class m. Note that in this chapter, we
consider the disutility instead of utility offered by different policy options (following
the construction of the model presented earlier). As defined earlier, Vm,j

pq can be
defined as a weighted combination of the individual disutility and the group (under
his/her consideration) disutility:

Vm,j
pq = dm

pqSm,j
pq + ∑

∀k �=m

wpq,m
k dk

pqSk,j
pq + ∑

∀rs �=pq

wpq,m
rs dm

rsS
m,j
rs (9)

where wpq,m
k and wpq,m

rs are the relative weights given by the travellers from user class
m and OD pair pq to the indirect disutilities of travellers from user class k travelling
between the same OD pair and to the indirect disutilities of travellers between OD
pair rs from the same user class, respectively, in the voting model. The first term
of (9) is the direct disutility for user class m travelling between OD pair pq. The
second term is the indirect disutility (geographical group utility) from the utilities
of the whole users from the same origin–destination. The last term is the indirect
disutility (income group utility) from the utilities of the whole users in the network
with the income class m.

Indeed in applying this acceptability measure to a real case the calibration of
the weighting factors is a crucial task. Similar works have been conducted in other
disciplines. Hudson and Jones [15] examine Mueller’s concept with the public
attitudes to tax and public expenditure. They also conducted a survey to calibrate
the weighting factors for individual and social utility.

In applying this acceptability index with the acceptability of a transport policy,
we should focus on whether the population will accept a proposed policy or not.
Therefore, the relative individual and group disutility adopted in formulation (9)
should simply compare the preference between the do-something scenario and the
do-nothing scenario. Thus Eq. (8) can be reduced to

ξ1 =
1
Q∑pq

∑
m

dm
pq

exp
(
−θVm,1

pq

)
exp
(
−θVm,1

pq

)
+ exp

(
−θVm,0

pq

) , (10)

where we denote the do-something scenario by the superscript “1” and the do-
nothing scenario by the superscript “0”, and

Vm,1
pq = Vm,do−something

pq = dm
pqSm,1

pq + ∑
∀k �=m

wpq,m
k dk

pqSk,1
pq + ∑

∀rs �=pq

wpq,m
rs dm

rsS
m,1
rs

Vm,0
pq = Vm,do−nothing

pq = dm
pqSm,0

pq + ∑
∀k �=m

wpq,m
k dk

pqSk,0
pq + ∑

∀rs �=pq

wpq,m
rs dm

rsS
m,0
rs .
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The indicator proposed in (10) basically measures the proportion of the popula-
tion who accepts the proposed transport policy. The application of this measure will
be illustrated later in Sect. 6.

4 Sensitivity Analysis of Transport Policy Indicators

The optimization model (6) includes several parameters γ = (ρl,τl,αpq,ρpq,τpq) in
the objective function, while the feasible set does not involve any; this implies that
we have access to a powerful sensitivity analysis tool presented in [24, 25], and
further adapted to the traffic equilibrium problem in Josefsson and Patriksson [24].

We will utilize the Lagrangian formulation and state the equilibrium model as a
mixed complementarity system; in fact, problem (6) is reduced to a model which
“nearly” is a system of nonlinear equations, except for the complementarity system
stemming from the Wardrop conditions on the route flows. The problem to be
analysed is the following parameterized variational inequality:

−f (γ ,x) ∈ NC(x),

where γ is a vector of parameters, x is the vector of variables, C is a fixed polyhedral
set, and NC denotes the normal cone to the set C.

In the sensitivity analysis of the equilibrium solution we consider adjusting one
or several parameter values along some direction (ρ ′

l ,τ ′
l ,α ′

pq,ρ ′
pq,τ ′

pq) and ask what
the resulting perturbation (that is, rate of change) of the equilibrium solution is.

4.1 Application to the Present Problem

We first set up our model according to the above framework, let

x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(hm
r )

(dbm
pq )

(dcm
pq )

(dnm
pq )

(ddm
pq )

(μm
pq)

(ηm
pq)

(πm
pq)

(wm
l )

(vl)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;
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C =R|R|×|M|
+ ×R|C|×|M| ×R|C|×|M| ×R|C|×|M| ×R|C|×|M|×

R|C|×|M| ×R|C|×|M| ×R|C|×|M| ×R|L|×|M| ×R|L|;

and

Φ(γ ,x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(
∑
l∈L

δm
rl [t

c
l (ρl,vl)+

τl

βm ]−πm
pq

)
r∈Rm

pq,m∈M(
tb
pq(αpq,ρpq,d

b
pq)+

1
θ2

ln dbm
pq −μm

pq

)
(p,q)∈C,m∈M(

1
θ2

lndcm
pq −μm

pq +πm
pq

)
(p,q)∈C,m∈M(

tnm
pq +

1
θ1

lndnm
pq −ηm

pq

)
(p,q)∈C,m∈M(

1
θ1

lnddm
pq − 1

θ2
lnddm

pq +μm
pq −ηm

pq

)
(p,q)∈C,m∈M(

dcm
pq +dbm

pq −ddm
pq

)
(p,q)∈C,m∈M(

dnm
pq +ddm

pq −dm
pq

)
(p,q)∈C,m∈M⎛

⎝ ∑
r∈Rm

pq

hm
r −dcm

pq

⎞
⎠

(p,q)∈C,m∈M⎛
⎝ ∑

(p,q)∈C
∑

r∈Rm
pq

δm
rl hm

r −wm
l

⎞
⎠

l∈L,m∈M(
∑

m∈M
wm

l − vl

)
l∈L

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The above problem represents our equilibrium problem: the top row of Φ is
simply the Lagrangian cost of the route flows, and the corresponding part of the
set C, that is, R|R|×|M|

+ , represents the non-negativity restriction on the route flow
variables (here, for simplicity, in the notation |R|× |M| assuming that all the users
have access to the same set of routes). Hence, the top row is nothing but the Wardrop
conditions. The remaining conditions state the nested logit demand structure and the
conservation and consistency conditions on the network flows.

Suppose now that the parameter vector γ∗ is given, and that for this value the
corresponding solution is x∗. Suppose also that the link travel time function t is
such that at the given vector γ∗ it is strictly monotone in v and moreover has a
partial Jacobian with respect to v which is positive definite at v∗. Further, we must
also assume that θ2 > θ1, in order to ensure the uniqueness of the demand and
its perturbation. These conditions will ensure that the equilibrium link flows and
demands are unique for each value of γ∗, and that it is directionally differentiable
in any direction of change γ ′; also, this value is found as the unique link flow and
demand perturbations solving the sensitivity problem.
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Theory also states that the equilibrium solution is differentiable if, and only if,
every route that has a zero flow in the original equilibrium solution has a zero
flow after every small enough perturbation in the cost functions. (This is what
the linearity of the directional derivative amounts to in our present context; strict
complementarity is a sufficient but not a necessary condition for this property to
hold.) It is then possible to produce the entire gradient of the equilibrium solution,
which is then assembled from the directional derivatives at each unit coordinate
direction γ ′.

It remains to investigate the appearance of this problem in our context:

• The sign conditions on the route flow perturbation variables h′ are not “≥ 0” as
in the original model. Here, they are as follows: if (hm

r )
∗ > 0 then (hm

r )
′ is a free

variable; if (hm
r )

∗ = 0 but this route is a shortest route, then (hm
r )

′ ≥ 0 should
hold; if (hm

r )
∗ = 0 and this route is not a shortest route, then (hm

r )
′ = 0 should

hold.
Notice the important fact that the sensitivity results are placed at the

aggregated level and is not affected by the choice of a particular equilibrium
route flow: the choice of h∗ is completely arbitrary.

• The travel cost function vl �→ tl(ρ∗
l ,vl) is changed into the following:

∂ tl
∂ρl

(ρ∗
l ,v

∗
l )ρ ′

l +
∂ tl
∂vl

(ρ∗
l ,v

∗
l )v

′
l +

τ ′
l

βm .

In other words, the perturbed cost is the sum of a fixed cost given by the
dependence on ρl in the cost formula, and a term which is given by the link-
flow derivative of the link cost. The optimization formulation of the sensitivity
problem will hence have a quadratic objective with respect to the link flow

variables, and since, by assumption,
∂ tl
∂vl

(ρ∗
l ,v

∗
l ) > 0 holds for all l ∈ L it is

also strictly convex.
• The demand functions are similarly changed into the following:

∂ tb
pq

∂ρpq
(α∗

pq,ρ∗
pq,(d

b
pq)

∗)α ′
pq +

∂ tb
pq

∂αpq
(α∗

pq,ρ∗
pq,(d

b
pq)

∗)α ′
pq +

τ ′
pq

βm +
1
θ2

1
(dbm

pq )
∗ (d

bm
pq )

′;

1
θ2

1
(dcm

pq )
∗ (d

cm
pq )

′;

1
θ1

1
(dnm

pq )
∗ (d

nm
pq )

′;

(
1
θ1

− 1
θ2

)
1

(ddm
pq )

∗ (d
dm
pq )

′;

for db, dc, dn, and dd travel demands, respectively. Notice that also for the
demand variables the sum of integrals of the above cost functions is strictly
convex, due to the property that every demand variable is positive at equilibrium
and θ2 > θ1 holds.
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Let, for short, x′ = ((h′)T,(w′)T,(v′)T,(db′
)T,(dc′)T,(dn′

)T)T. The optimization
problem for the sensitivity has the following form:

minimizeφ ′(x′) :=∑
l∈L

[
1
2
∂ tl(ρ∗

l ,v
∗
l )

∂vl
(v′

l)
2 +

∂ tl(ρ∗
l ,v

∗
l )

∂ρl
ρ ′

l v
′
l + ∑

m∈M

τ ′
l

βm (wm
l )

′
]

+ ∑
(p,q)∈C

∑
m∈M

[
∂ tb

pq(α∗
pq),ρ∗

pq,(d
b
pq)

∗)
∂αpq

α ′
pq(d

bm
pq )

′

+
∂ tb

pq(α∗
pq),ρ∗

pq,(d
b
pq)

∗)
∂ρpq

ρ ′
pq(d

bm
pq )

′+
τ ′

pq

βm (dbm
pq )

′
]

+ ∑
(p,q)∈C

∑
m∈M

1
2θ2

1
(dbm

pq )
∗
(
(dbm

pq )
′)2

+ ∑
(p,q)∈C

∑
m∈M

1
2θ2

1
(dcm

pq )
∗
(
(dcm

pq )
′)2

+ ∑
(p,q)∈C

∑
m∈M

1
2θ1

1
(dnm

pq )
∗
(
(dnm

pq )
′)2

+ ∑
(p,q)∈C

∑
m∈M

1
2

(
1
θ1

− 1
θ2

)
1

(ddm
pq )

∗
(
(ddm

pq )
′)2

, (11a)

subject to

(dcm
pq )

′+(dbm
pq )

′ = (ddm
pq )

′, (p,q) ∈ C, m ∈M, (11b)

(dnm
pq )

′+(ddm
pq )

′ = 0, (p,q) ∈ C, m ∈M, (11c)

∑
r∈Rpq

(hm
r )

′ = (dcm
pq )

′, (p,q) ∈ C, m ∈M, (11d)

∑
(p,q)∈C

∑
r∈Rpq

δm
rl (h

m
r )

′ = (wm
l )

′, l ∈ L, m ∈M, (11e)

∑
m∈M

(wm
l )

′ = (vl)
′, l ∈ L. (11f)

(hm
r )

′ free, r ∈ (Rm
pq)

1, (p,q) ∈ C, m ∈M, (11g)

(hm
r )

′ ≥ 0, r ∈ (Rm
pq)

2, (p,q) ∈ C, m ∈M, (11h)

(hm
r )

′ = 0, r ∈ (Rm
pq)

3, (p,q) ∈ C, m ∈M, (11i)
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where (Rm
pq)

1 is the subset of the routes where (hm
r )

∗ > 0, the set (Rm
pq)

2 consists
of the routes where (hm

r )
∗ = 0 but the route is an equilibrium route (that is, has a

minimal cost) and (Rm
pq)

3 is the set of routes for which (hm
r )

∗ = 0 and the route is
not an equilibrium route.

Solving problem (11) provides the demand and link flow perturbation from the
marginal change in the design parameters.

Some of the aggregate sensitivity measures can be found as dual variables to the
constraints; for example, the OD pair cost perturbations by travel mode can be found
from (11d). The OD pair cost perturbations for the other modes cannot be found
directly from the solution to the optimization model (11). However, these costs can
be found also by introducing additional definitional constraints in the model or by
computing them based on the demand and flow perturbations.

The OD pair cost perturbations for the car mode can directly be computed by

(πcm
pq )

′ = min
r∈Rm

pq
∑
l∈L

δm
rl

(
∂ tl(ρ∗

l ,v
∗
l )

∂vl
v′

l +
∂ tl(ρ∗,v∗

l )

∂ρl
ρ ′

l +
τ ′

l

βm

)
,

where Rpq includes the two route sets (Rm
pq)

1 and (Rm
pq)

2. The OD pair cost
perturbations for the bus mode is given by

(πbm
pq )

′ =
∂ tbm

pq ((d
bm
pq )

∗,α∗
pq)

∂αpq
α ′

pq ++
τ ′

pq

βm
.

5 Numerical Experiments

Numerical tests have been made on a Norrköping, Sweden, case network. The
case includes a network model of the street network for the car trips and a tram
network. Data for the spatial description of the network, the travel demands, and
travel elasticity parameters has been based on data supplied by the Norrköping
municipality and has been extracted from their VIPS traffic model. The spatial
description of the street network consists of 1,251 links, 500 nodes, and 7,660 travel
relations modelling the potential trips during the morning peak hour. The travel
demand used is an estimated future demand for the year 2035. One user group is
modelled. The two tram lines in Norrköping are modelled. A generalized travel
time (in minutes) for using the tram is given for each travel relation. The generalized
travel times include walking times, waiting times, and in-vehicle times. A walking
time estimate is computed by multiplying the distance from each origin node to the
nearest tram line by an average walking speed of 5 km/h. The same is made for each
destination node. The waiting time is estimated to 60 over the tram frequency for the
tram line divided by two. The in-vehicle tram time is computed based on the tram
travel distance and an average tram speed. The logit model elasticity is calibrated
such that in the equilibrium solution 5 % of the assigned travel demand is assigned
to the tram network.
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Fig. 2 Norrköping equilibrium flows

5.1 Equilibrium Model Results

The traffic equilibrium problem is solved using a procedure based on the partial
linearization scheme of Evans [9]. A computer code has been implemented in
Matlab. The equilibrium problem is solved, and in each iteration re-optimized, using
a route based procedure (see Larsson and Patriksson [21]). The car network model
is depicted in Fig. 2. The link widths in the figure are proportional to the car flow on
the links.

5.2 Sensitivity Analysis Results

We provide three example uses of the sensitivity computations.
In the first one we have introduced a unit toll on the bridges in the central parts

of Norrköping and computed the directional derivatives on link flows and travel
demands with respect to these tolls. The unit toll corresponds here to an increase in
the generalized travel time on each link by 1 min. The placements of the four tolls
are marked in Fig. 3 by the thick black lines.

Results from this bridge toll experiment can be seen in Fig. 4, where dark (red)
links indicate a decrease in car flows and lighter (green) links indicate an increase in



60 R. Connors et al.

Fig. 3 Equilibrium flows for the central parts of Norrköping

Fig. 4 Norrköping equilibrium car flow changes with the bridge tolls
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Fig. 5 Norrköping equilibrium car flow changes with increased link capacity on the bridge
Hamnbron

car flows. The link widths are proportional to the level of the flow change. (Note that
the scale is different in the sensitivity result figures compared to that in Fig. 3.) From
the sensitivity information we have also observed that the total number of travellers
in the network will decrease but the number of tram trips will increase, as a result
from these tolls.

In the second example we have increased the link capacity on the bridge
Hamnbron. The bridge is marked in Fig. 2 as the right-most black line. The resulting
changes in car traffic flow are shown in Fig. 5. Links with lighter colour (green) have
got an increase in car flows, and links with darker colour (red) have got a decrease
in car flows. From the figure it is noted that routes passing the bridge where the
capacity is increased have got an increase in flow.

The third example is constructed by increasing the tram fare. In Fig. 6 the change
in car traffic flows is shown, as resulting from a marginal change in the tram fare.
Almost all links have got an increased car flow, as a result of an increase of the car
demand, and a decrease in tram trips.

Ultimately, these forecasts may be used to examine changes in the evaluation
measures per unit increase/decrease in the policy variables. Below, these results
are shown, first, in Fig. 7, for the case of uniform capacity increases to the two
main bridges in Norrköping, and second, in Fig. 8, for the case of uniform tolls
(expressed in units of an equivalent travel time penalty) applied to these bridges.
Note that the only reason to choose uniform changes is for ease of illustration on
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Fig. 6 Norrköping equilibrium car flow changes from increased tram fares
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Fig. 7 Bridge capacity sensitivity analysis

a two-dimensional plot—the analysis is otherwise quite general. For the toll case,
the plots illustrate that while overall social welfare (SW) increases over the range of
tolls considered, this comes at the price of an increase in inequality, and that public
acceptability will decline with higher tolls. The increase in capacity is, however,
attractive from the viewpoint of all three measures, though in practice there are
likely to be other targets (e.g. a reduction of emissions from car traffic) that are likely
to weigh against such considerations. In time, given experience with the scale and
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Fig. 8 Bridge toll sensitivity analysis

interpretation of such results, the intention is that planners will be able to trade off
the aggregate efficiency with the equitable distribution of benefits and their public
acceptance.

6 Conclusions

We have developed a multi-modal traffic equilibrium model with which one can
predict changes in traffic flows, congestion effects, and travel demands and costs,
as parameters in costs and demands change. With this computational model one
can analyse the effect of socio-economic policies on a given traffic system, with
the end goal of proposing an optimal policy. To that end, we have also developed
an algorithm for computing the traffic equilibrium flows and demands and their
sensitivities to changes in parameter values, such as link tolls and bus fares, and
established for a realistic test case that it is also efficient in producing reliable
solutions.

Planned future research topics include the construction of a hierarchical (that is,
bi-level) optimization model through which one can automatically select the best
policy, according to the specification of socio-economic measures of equity, and the
testing of the model on realistic network data.
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Calibration in Survey Sampling
as an Optimization Problem

Gareth Davies, Jonathan Gillard, and Anatoly Zhigljavsky

Dedicated to Professor Panos Pardalos on the occasion of his
60th birthday

Abstract Calibration is a technique of adjusting sample weights routinely used
in sample surveys. In this chapter, we consider calibration as an optimization
problem and show that the choice of optimization function has an effect on the
calibrated weights. We propose a class of functions that have several desirable
properties, which includes satisfying necessary range restrictions for the weights.
In this chapter, we explore the effect these new functions have on the calibrated
weights.

Keywords Sampling calibration • Weights calibration optimization problem •
g-weights

1 Introduction

Calibration of survey samples is one of the key issues in official statistics and
analysis of panel data (in particular, in market research). The problem of calibration
can be defined informally as follows. Suppose there are some initial weights
d1, . . .,dn assigned to n objects of a survey. Suppose further that there are m
auxiliary variables and that for these auxiliary variables the sample values are
known, either exactly or approximately. The calibration problem seeks to improve
the initial weights by finding new weights w1, . . .,wn that incorporate the auxiliary
information. In a typical practical problem, the sample size n is rather large (samples
of order 104 and larger are very common). The number of auxiliary variables m can
also be large although it is usually much smaller than n.

Three main reasons are advocated for using calibration in practice (see for
example [2]). The first of these is to produce estimates consistent with other sources
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of data. Indeed, when a statistical office publishes the same statistics via two data
sources, the validity of the statistics will be questioned if there are contradictions
between the sources. The second reason is to reduce the sampling variance of
estimates as the inclusion of the additional calibration information can lead to
a reduction in the variance of the estimators (see for example [11]). The third
argument for calibration is a reduction of the coverage and/or non-response bias
(see for example [10]).

In this chapter, we properly formulate the problem of calibration of weights as an
optimization problem, study properties of the corresponding optimization problems
and give recommendations on how to choose the objective function. We claim that
the literature on calibration has ignored this important issue which lead to the recipes
which were inefficient or even incorrect.

Notation

We use the following key notation throughout the chapter:

D = (d1, . . .,dn)
′: Vector of initial weights,

W = (w1, . . .,wn)
′: Vector of calibrated weights,

G = (g1, . . .,gn)
′: Vector of the g-weights gi = wi/di,

L = (l1, . . ., ln)
′: Vector of lower bounds for the g-weights,

U = (u1, . . .,un)
′: Vector of upper bounds for the g-weights,

X = (xij)
n,m
i,j=1: Given n×m matrix,

A = (aij)
n,m
i,j=1: n×m matrix with entries aij = di xij,

T = (t1, . . ., tm)
′: An arbitrary m×1 vector,

1 = (1,1, . . . ,1)′ n×1 vector of ones,
G Feasible domain in the calibration problem.

2 Calibration as an Optimization Problem

A vector of initial weights D = (d1, . . .,dn)
′ is given. The di are always assumed to

be positive: di > 0 for all i. Our aim is to calibrate (improve) these initial weights in
view of some additional information. The vector of calibrated (improved) weights
will be denoted by W = (w1, . . .,wn)

′.
We are given a matrix X = (xij)

n,m
i,j=1 of realizations of m auxiliary variables.

The (i, j)th entry xij of X denotes the value which the ith member of the sample
takes on the jth auxiliary variable. Formally, X is an arbitrary n×m matrix. Given
the vector T = (t1, . . ., tm)

′, exact (hard) constraints can be written as X′W = T ,
whereas approximate (soft) constraints are X′W � T . These constraints, whether
exact or approximate, define the additional information we use in the calibration of
the weights.
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It is sometimes natural to impose a constraint on the sum of the weights. In this

chapter, we shall consider the sum of weights constraint
n

∑
i=1

wi =
n

∑
i=1

di or, in vector

notation, 1′W = 1′D, where 1 = (1,1, . . . ,1)′. This constraint is motivated in [17].
The condition 1′W = 1′D can be added to the set of the main constraints X′W = T
(see, for example [16]). Hence we do not formally distinguish the cases when the
condition 1′W = 1′D is required or not.

In most practical cases of survey sampling and panel data analysis, the ratios of
the weights wi and di are of prime importance rather than the weights wi themselves
and the so-called g-weights gi = wi/di are considered. Denote the vector of g-
weights by G = (g1, . . .,gn)

′ and consider this vector as the vector of calibrated
weights we are seeking.

Since di > 0 for all i, the hard constraints X′W = T can be written in the form
A′G = T , where the matrix A = (aij)

n,m
i,j=1 has elements aij = dixij. Correspondingly,

soft constraints X′W � T have the form A′G � T .
In addition to either hard or soft constraints, the following constraints on G have

to be imposed. First of all, the calibrated weights must be nonnegative, that is gi ≥ 0
for all i. Moreover, much of the calibration literature, see for example [4] and [18],
recommends imposing stricter constraints on the g-weights of the form L ≤ G ≤ U,
where L = (l1, . . ., ln)

′ and U = (u1, . . .,un)
′ are some given n× 1 vectors such that

0 ≤ li < 1 < ui ≤ ∞ for all i. That is the g-weights should satisfy li ≤ gi ≤ ui for
some sets of lower and upper bounds li and ui. If li = 0 and ui = ∞ for all i, then the
constraint li ≤ gi ≤ ui coincides with the simple non-negativity constraint gi ≥ 0. In
the majority of practical problems li = l and ui = u for all i with 0 ≤ l < 1 < u ≤ ∞,
where the strict inequalities l > 0 and u < ∞ are very common.

In the process of calibration, the weights W have to stay as close as possible
to the initial weights D. Equivalently, the g-weights G have to stay as close as
possible to the vector 1. To measure the closeness of G and 1, we use some function
Φ(G) = Φ(g1, . . . ,gn). This function is required to satisfy the following properties
(see [5] for a related discussion): (a) Φ(G)≥ 0 ∀G, (b) Φ(1) = 0, (c) Φ(G) is twice
continuously differentiable, and (d) Φ(G) is strictly convex. The function Φ often
has the form

Φ(G) =Φ(g1, . . . ,gn) =
n

∑
i=1

qiφi(gi) , (1)

where q1, . . . ,qn are given non-negative numbers; in the majority of applications
qi = di for all i. We shall concentrate on this form of Φ ; in Sect. 3, we discuss the
choice of the functions φi.

Hard constraints A′G = T enter the definition of the feasible domain of G. Soft
constraints A′G � T can either enter the definition of the feasible domain of G in
the form ‖A′G−T‖ ≤ ε for some vector norm ‖ ·‖ and some given ε > 0, or can be
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put as a penalty Ψ(A′G,T) into the objective function. The properties required for
Ψ (as a function of G) are similar to those required for Φ . The most common choice
forΨ is

Ψ(A′G,T) = β (A′G−T)′C(A′G−T), (2)

where C is some user-specified m × m positive definite (usually, diagonal) matrix
and β > 0 is some constant (see for example [2, equation (2.3)]).

Summarizing, we have the following versions of the calibration problem formu-
lated in terms of the g-weights G.

Hard constraint case:

Φ(G)→ min
G∈G

, where G= {G : L ≤ G ≤ U and A′G = T}. (3)

Soft constraint case I:

Φ(G)→ min
G∈G

, where G= {G : L ≤ G ≤ U andΨ(A′G,T) ≤ 1}. (4)

Soft constraint case II:

Φ(G)+Ψ(A′G,T) → min
G∈G

, where G= {G : L ≤ G ≤ U}. (5)

In problems (3)–(5), the matrix A and the vectors T,L and U are given, and
in the majority of applications the functions Φ and Ψ have the forms (1) and (2)
correspondingly.

Optimization problems (3) and (4) may have no solutions, that is the feasible
domain G in these problems may be empty. The case when G is empty means that
the constraints on G are too strong. The feasible domain G in problem (5) is always
non-empty and the optimal solution always exists. In view of the strict convexity
of Φ and Ψ as well as the compactness of G, if the optimal solution exists then
it is necessarily unique. Optimization problem (4) is considered too difficult by
practitioners and hence it is never considered (despite it looking rather natural).
We therefore consider problems (3) and (5) only.

3 Choice of Functions φi in (1)

Here we discuss the choice of the functions φi in (1). See Sect. 4 for examples
of calibrated weights obtained using different forms of functions φi. By slightly
modifying the assumptions of [4], we require the function φi : (li,ui)→R+ to satisfy
the following properties: (i) φi(g)≥ 0 for all g ∈ (li,ui), (ii) φi(1) = 0, (iii) φi is twice
continuously differentiable and strictly convex. The function φi does not have to be
defined outside the open interval (li,ui). If all φi satisfy conditions (i)–(iii) then the
function Φ defined in (1) satisfies conditions (a)–(d) formulated above.



Calibration in Survey Sampling as an Optimization Problem 71

Since these functions are chosen in the same manner for all i, the subscript i will
be dropped and the function φi will be denoted simply by φ . Correspondingly, the
lower and upper bounds li and ui for the g-weights gi will be denoted by l and u,
respectively.

We will illustrate the shape of several functions φ in Figs. 1, 2, and 3. In all
these figures, we choose l = 1/4,u = 4 and plot all the functions in the interval

(l,u) = (
1
4
,4), despite some of the functions are defined in a larger region. As our

intention in this section is illustrating shapes of the possible calibration functions φ

a b

Fig. 1 Classical calibration functions of Type I scaled so that ckφ (k)(3) = 1, k = 1, . . .,5. (a) φ (1)

(line), φ (2) (dot-dash) and φ (3) (dash). (b) φ (1) (line), φ (4) (dot-dash) and φ (5) (dash)

a b

Fig. 2 Functions φ (1), φ (6), φ (7) and φ (8) scaled so that c1φ (1)(3) = 1 and ckφ (k)(3;
1
4
,4) = 1,

k = 6,7 and c8,1φ (8)(3;
1
4
,4,1) = 1. (a) φ (6) (line) and φ (7) (dot-dash) and φ (1) (dash). (b) φ (6)

(line), φ (7) (dot-dash) and φ (8) with α = 1 (dash)
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a b

Fig. 3 Function φ (8)(g; l,u,α) for various values of α with l = 1/4 and u = 4. (a) φ (8) scaled so
that c8,αφ (8)(3; l,u,α) = 1: α = 0.2 (line), α = 1 (dot-dash) and α = 5 (dash). (b) φ (8) scaled so

that c8,αφ (8)(
1
2

; l,u,α) =
1
2

: α = 0.2 (line), α = 1 (dot-dash) and α = 5 (dash)

we thus plot scaled versions of these functions using appropriate multiples (so that
different functions become visually comparable).

We distinguish the following two types of functions φ :

Type I φ(g) is defined for all g either in R or R+ = (0,∞) and does not depend on
l and u.

Type II φ(g) is defined for g ∈ (l,u) but not outside the interval [l,u]. The functional
form of g depends on l and u and hence we will use the notation φ(g; l,u) for
the functions φ of this type.

The authors of the classical papers [4] and [5] suggest six choices for the function
φ . Five of these are Type I and are φ (1)(g) = (g−1)2, φ (2)(g) = g lng − g + 1,
φ (3)(g) = (

√
g − 1)2, φ (4)(g) = − lng+ g − 1 and φ (5)(g) = (g−1)2 /g. Figure 1

shows the shapes of these five functions.
The function φ (1) is simply quadratic; in the literature on calibration it is usually

referred to as the “chi-square” function (see for example [14, equation (2.10)]). It
is by far the most popular in practice. The function φ (2) is often referred to as the
multiplicative or raking function in literature, (see for example [1]).

Many authors consider solving optimization problem (3) without the constraint
L ≤ G ≤ U. However, in this case using the function φ (1) in the optimization may
lead to extreme and negative weights. Whilst the function φ (2), by the nature of its
domain, only permits non-negative values for the optimized weights, the weights
may still take very large values. This also applies to functions φ (3), φ (4) and φ (5).
The functions φ (3), φ (4) and φ (5) have received much less attention in the literature
on calibration.

The above criticism of the functions φ (1)–φ (5) can be extended to all functions of
Type I. Note that if we use the functions φ of Type I then optimization problem (3)
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is an optimization problem with many variables and many constraints (recall that n
is typically very large).

Let us consider three functions φ of Type II:

φ (6)(g; l,u) = (g− l) ln

(
g− l
1− l

)
+(u−g) ln

(
u−g
u−1

)
,

φ (7)(g; l,u) = (1− l) ln

(
1− l
g− l

)
+(u−1) ln

(
u−1
u−g

)
, (6)

φ (8)(g; l,u,α) =
(g−1)2

[(u−g)(g− l)]α
, α > 0 . (7)

In Fig. 2, we plot the functions c1φ (1)(g), c6φ (6)(g;
1
4
,4), c7φ (7)(g;

1
4
,4) and

c8,1φ (8)(g;
1
4
,4,1) with the constants c1, c6, c7 and c8,1 chosen so that c1φ (1)(3) = 1,

ckφ (k)(3;
1
4
,4) = 1 for k = 6,7 and c8,1φ (8)(3;

1
4
,4,1) = 1.

In Fig. 3, we plot function φ (8) for various values of the parameter α . In Fig. 3a,

we choose the constants c8,α so that c8,αφ (8)(3;
1
4
,4,α) = 1. In Fig. 3b, we choose

the constants c8,α so that c8,αφ (8)(
1
2

;
1
4
,4,α) =

1
2

.

The function φ (6) is defined on the closed interval g ∈ [l,u] so that by continuity

we have φ (6)(l; l,u) = (u− l) ln
u− l
u−1

and φ (6)(u; l,u) = (u− l) ln
u− l
1− l

. The function

φ (6)(g; l,u) is not defined outside the interval [l,u]. Using this function in (1)
creates difficulties for the algorithms that optimize the function (1) because of the
discontinuity (and the loss of convexity) of φ (6)(g; l,u) at g = l and g = u. A way
around this is the use of constrained optimization algorithms but then the criticism
above directed to the functions of Type I can be extended to the function φ (6).

The functions φ (7)(g; l,u) and φ (8)(g; l,u,α) are derived by us. These two
functions are defined only in the open interval g ∈ (l,u) and tend to infinity as g tends
to either l or u so that they can be classified as interior penalty functions. We have
derived the expression for the function φ (7) by applying a suitable transformation
(including taking a logarithm) to the density of the Beta-distribution on [0,1]. The
convexity of the function φ (7) follows from the expression for its second derivative:

∂ 2φ (7)(g; l,u)
∂g2 =

(u− l)
(
g2 − lu−2g+ l+u

)
(g− l)2 (u−g)2

=
(u− l)

[
(g−1)2 +(u−1)(1− l)

]
(g− l)2 (u−g)2 .
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Since 0 < l < 1 < u < ∞, this second derivative is positive for all g ∈ (l,u) so that
the function φ (7)(g; l,u) is convex. The analytic forms of the functions φ (6) and φ (7)

are very similar but we believe the properties of the function φ (7) are much more
attractive for the problem at hand than the properties of the function φ (6).

For any α > 0, the function φ (8) has properties similar to the function φ (7): it
is defined in the open interval g ∈ (l,u), it is convex in this interval and it tends to
infinity as g → l or g → u. The function φ (8) depends on an extra shape parameter
α , see Fig. 3, so that the penalty for g deviating from 1 can be adjusted by the user.

A very important special case of the function φ (8) occurs when α = 1:

φ (8)(g; l,u,1) =
(g−1)2

(u−g)(g− l)
. (8)

The most attractive property of the function φ (8) is its invariance with respect to
the change g ↔ 1/g in the case l = 1/u (which is a very common case in practice).
Recall that g = w/d is the ratio of the calibrated weight w to the initial weight d
and therefore the multiplicative scale for measuring deviations of g from 1 is the
most appropriate. This means that it is very natural to penalize g as much as 1/g for
deviating from 1. Assuming α = 1 and l = 1/u we have

φ(g;u) = φ (8)(g;1/u,u,1) =
(g−1)2

(u−g)(g−1/u)
.

For this function, we have φ(g;u) = φ(1/g;u) so that this function possesses the
additional property of equally penalizing g and 1/g.

4 Hard Calibration

In Sect. 2, we introduced the calibration problem with both hard and soft constraints.
In this section we consider optimization problem (3), namely calibration with hard
constraints. We shall refer to this class of calibration problems as hard calibration.
For several examples, we shall compare the calibrated weights obtained using each
of the functions considered in Sect. 3.

We solve optimization problem (3) using the “solnp” function within R’s Rsolnp
package (see [6]). Using this software, we directly solve optimization problem (3)
using the Augmented Lagrange Multiplier (ALM) method (see [9] for more details)
for any choice of Type I or Type II function. For a comprehensive optimization
software guide, see [12].

We consider two approaches to the hard calibration problem. The first of these is
the classical approach considered in [4]. For this approach, the constraint L ≤ G ≤ U
is not included within the optimization. This means negative and extreme weights
are in the domain of the feasible solution. This motivates the second approach that



Calibration in Survey Sampling as an Optimization Problem 75

considers the optimization problem (3) including the constraint L ≤ G ≤ U. The
classical approach can be considered a particular case of the second approach, with
L and U chosen to be vectors whose entries are l = −∞ and u = ∞, respectively.

We remark that there are software packages that solve the calibration problem
using an iterative Newton method as detailed in [5]. Examples of these include the
“calib” function within R’s sampling package (see [19]), the G-CALIB-S module
within SPSS (see [20]) and the package CALMAR in SAS (see [4]). These packages
allow the user to solve the hard calibration problem using the classical approach (no
constraint L ≤ G ≤ U) for the functions φ (1) and φ (2). The packages also allow the
user to solve the hard calibration problem including the constraint L ≤ G ≤ U for
functions φ (1) and φ (6) (see [5] for more details).

Many statistical offices throughout Europe use these packages to perform
calibration. When comparing the weights obtained using direct optimization with
the weights given by these packages, the answers in our examples were the same to
within computer error (despite the running time was in some cases very different).
Therefore, for the remainder of this chapter, we only solve optimization problem (3)
using the ALM method.

To illustrate the case of negative and extreme weights, we consider the following
example adapted from [8] using data from [3].

4.1 Example 1: A Classical Example

Throughout this example, we are working in units of thousands of people. Suppose
we have a sample of n = 12 cities, sampled from 49 possible cities. We wish to
weight our sample of cities appropriately to estimate the population total of the 49
cities.

For the 12 sampled cities, we know their size in 1920. Suppose we also know
the population total of the 49 cities in 1920, namely T = 5,054. We begin with the
vector G = 1 and take the initial weights D = (49/12,49/12, . . .,49/12)′. These
initial weights are derived using the classical Horvitz–Thompson estimator [7].

Recall from Sect. 2, that the hard calibration constraint can be written in the form
X′W = T or equivalently A′G = T , with aij = dixij. We only have one auxiliary
variable in this example, thus X and A reduce to 12 × 1 vectors. Suppose we are
given the sample values for the auxiliary variable in the 12×1 vector X, where X =
(93,77,61,87,116,2,30,172,36,64,66,60)′. Note that in this case X′D = A′1 =
3528 �= 5054. Therefore, for the initial weights G = 1, the constraint A′G = T is not
satisfied. This motivates the need to calibrate.

Figure 4 shows the g-weights obtained when optimizing (3) for functions φ (1),
φ (2) and φ (3) using classical hard calibration (recall L and U are taken as vectors
whose entries are −∞ and ∞, respectively). We consider the case qi = di in (1).
Figure 4a shows the calibrated weights when we do not impose the constraint 1′G =
12. The calibrated weights obtained when we impose the constraint 1′G = 12 are
shown in Fig. 4b.
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Fig. 4 Comparison of g-weights with 1 (line) for the functions φ (1), φ (2) and φ (3). (a) g-weights
for functions φ (1) (cross), φ (2) (plus) and φ (3) (circle) with the sum of weights unconstrained.
(b) g-weights for functions φ (1) (cross), φ (2) (plus) and φ (3) (circle) with the sum of weights
constrained

For these functions, observe that when we do not impose the constraint 1′G = 12,
all the weights increase from, or remain at, their initial value of 1. It can be verified
that the calibrated weights for each of these functions satisfy the constraint A′G =
T . We remark that 1′G = 15.883 for the calibrated weights using function φ (1),
1′G = 15.738 for the calibrated weights using function φ (2) and 1′G = 15.653 for
the calibrated weights using function φ (3); in all cases 1′G> 12 due to the calibrated
weights being larger than the initial weights of 1.

Imposing the extra constraint 1′G= 12 results in weights that are distributed both
above and below the initial g-weights of 1. One of the g-weights for function φ (1)

(indexed 6 in Fig. 4b) is negative, whilst the weight indexed 8 has taken a large value
in comparison to the other g-weights. For functions φ (2) and φ (3), we do not have a
negative weight at index 6; however, the value of the weight at index 8 is still large
in comparison with the other weights. Thus, whilst functions φ (2) and φ (3) prevent
negative weights, they do not prevent large positive weights.

We remark that the behaviour of the weights for functions φ (4) and φ (5) is very
similar to that for functions φ (2) and φ (3). Plots of the weights comparing functions
φ (1), φ (4) and φ (5) are very similar to the plots in Fig. 4a, b. Hence we do not plot
the weights for functions φ (4) and φ (5) here.

To overcome the issue of negative and extreme weights, we include constraint
L ≤ G ≤ U, where L and U have entries l and u, respectively, with 0 ≤ l< 1< u ≤∞.
Any feasible solution to this problem is guaranteed to be within the bounds pre-
specified by the user. However, recall from Sect. 2 that the feasible solution of this
problem may be empty depending on the choice of L and U.

Returning to the example, suppose the calibrated weights G must satisfy the
bounds L ≤ G ≤ U where L = (l, l, . . ., l)′ and U = (u,u, . . .,u)′ are both 12 × 1
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Fig. 5 Comparison of g-weights with 1 (line) for the functions φ (1), φ (2) and φ (3), dotted lines
indicate the upper and lower bounds. (a) g-weights for functions φ (1) (cross), φ (2) (plus) and φ (3)

(circle) with the sum of weights unconstrained. (b) g-weights for functions φ (1) (cross), φ (2) (plus)
and φ (3) (circle) with the sum of weights constrained

vectors. Consider the particular case of l =
12
49

and u =
120
49

. This means the g-

weights gi will be bounded between the lower bound of
12
49

and the upper bound of

120
49

, whilst the weights wi will be bounded between the lower bound of ldi = 1 and

the upper bound of udi = 10 for all i.
Figure 5 shows the g-weights obtained by optimizing (3) for functions φ (1),

φ (2) and φ (3). Figure 5a shows the calibrated weights when we do not impose the
constraint 1′G = 12. Figure 5b shows the calibrated weights when we include this
constraint.

For the weights in Fig. 5a, we observe that imposing the constraint 1′G = 12
results in all the weights increasing from, or remaining at, their initial value of 1.
The weights in Fig. 5a are identical to those in Fig. 4a.

However, in Fig. 5b, we see that imposing the extra constraint 1′G = 12 results in
weights that are at, or very close to, the upper and lower bounds u and l, respectively.
The weights in Fig. 5b are different from those in Fig. 4b.

In this case, the behaviour of the weights for functions φ (4) and φ (5) is very
similar to that for functions φ (2) and φ (3), both with and without the constraint
1′G = 12 included in the optimization. Hence we do not plot the weights for these
functions here.

Recall the relationship wi = digi. Since the vector of initial weights D is given,
and we have calculated the g-weights, we can compute the weights wi. Computing
the weights wi for function φ (1) from the corresponding g-weights in Fig. 5b gives
the same weights as those derived in [8].
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Fig. 6 Comparison of g-weights with 1 (line) for functions φ (1), φ (6) and φ (7), dotted lines indicate
the upper and lower bounds. (a) g-weights for functions φ (1) (cross), φ (6) (plus) and φ (7) (circle)
with the sum of weights unconstrained. (b) g-weights for functions φ (1) (cross), φ (6) (plus) and
φ (7) (circle) with the sum of weights constrained
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Fig. 7 Comparison of g-weights with 1 (line) for function φ (8), dotted lines indicate the upper and
lower bounds. (a) g-weights for function φ (8) with α = 0.2 (cross), α = 1 (plus) and α = 5 (circle)
with the sum of weights unconstrained. (b) g-weights for function φ (8) with α = 0.2 (cross), α = 1
(plus) and α = 5 (circle) with the sum of weights constrained

Figure 6 shows the g-weights obtained by optimizing (3) for the functions φ (1),
φ (6) and φ (7). Figure 6a shows the calibrated weights when we do not impose the
constraint 1′G = 12. Figure 6b shows the calibrated weights when the constraint is
included within the optimization.

Figure 7 shows the g-weights obtained by optimizing (3) for function φ (8) with
α chosen to be 0.2, 1 and 5. Figure 7a shows the calibrated weights when we do not
impose the constraint 1′G = 12. Figure 7b shows the calibrated weights when we
include this constraint within the optimization.
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Observe that when the constraint 1′G = 12 is not imposed, the weights all
increase or remain at the initial values of 1. When the constraint is imposed, we
see that the weights are distributed both above and below the initial values of 1,
with several weights clustered at the bounds.

In summary, we have seen that not imposing the constraint 1′G = 12 results in
calibrated weights exhibiting less variability than the calibrated weights obtained
including the constraint. For this example, the calibrated weights all increased from
the initial values of 1 but did not exhibit any extremal behaviour, lying well within
the considered bounds. However, including the constraint 1′G = 12 gave calibrated
weights that were more variable and likely to move towards the boundaries.

For the remaining examples in this chapter, we shall explore the effects the choice
of L and U have on the calibrated weights G. In all the examples we will include the
constraint 1′G = n, and take qi = di in (1).

4.2 Example 2

Suppose we are given the vector X = (93,77,87,116,2,30,172,36,64,60)′ and
the 10 × 1 vector of initial weights D = (4,4, . . .,4)′. The parameter value T =
3,900 is assumed known. Recall that we impose the upper and lower bounds
U = (u,u, . . .,u)′ and L = (l, l, . . ., l)′, where U and L are both 10 × 1 vectors whose
entries are u and l, respectively. Consider the case l = 1/u. We wish to find the
smallest value of u such that optimization problem (3) has a feasible solution. In
this example, experimentation gave the smallest value of u as approximately 2.0.

In Fig. 8 we plot the calibrated weights when we take l = 1/2 and u = 2. In this
case, solving optimization problem (3) for functions φ (1), φ (6) and φ (7) gives the
weights in Fig. 8a. Figure 8b shows the weights for function φ (8) with α = 0.2,
α = 1 and α = 5.

For this example, a feasible solution to problem (3) exists for the (approximate)
bounds 0 ≤ l ≤ 1/2 and u ≥ 2. Let us consider the effect of changing the values of l
and u.

Figure 9 shows the calibrated weights when l = 1/4 and u = 2. In Fig. 9a we plot
the weights for functions φ (1), φ (6) and φ (7) whilst in Fig. 9b we plot the weights for
function φ (8) with α = 0.2, α = 1 and α = 5. We see that reducing the lower bound
results in less weights taking values at the lower bound. Generally, the calibrated
weights for function φ (8) appear to move towards the boundaries more than the
weights obtained for functions φ (1), φ (6) and φ (7).

We now consider the effect of increasing u. In Fig. 10, we keep l = 1/4 and
consider the calibrated weights when u = 4. In Fig. 10a we plot the calibrated
weights for the functions φ (1), φ (6) and φ (7) whilst in Fig. 10b we plot the calibrated
weights for function φ (8) with α = 0.2, α = 1 and α = 5. We see that increasing the
upper bound has resulted in some of the weights increasing slightly in comparison
to the weights in Fig. 9. However, there are no weights on the upper bound.
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Fig. 8 Comparison of weights for functions φ (1), φ (6), φ (7), and φ (8) for various α with l = 1/2
and u = 2 (dotted lines indicate bounds). (a) Weights obtained for φ (1) (cross), φ (6) (plus) and φ (7)

(circle). (b) Weights obtained for φ (8) with α = 0.2 (cross), and α = 1 (plus) and α = 5 (circle)
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Fig. 9 Comparison of weights for functions φ (1), φ (6), φ (7), and φ (8) for various α with l = 1/4
and u = 2 (dotted lines indicate bounds). (a) Weights obtained for φ (1) (cross), φ (6) (plus) and φ (7)

(circle). (b) Weights obtained for φ (8) with α = 0.2 (cross), and α = 1 (plus) and α = 5 (circle)

To conclude, this example has shown that taking l = 1/u and minimizing the
value of u such that the calibration problem (3) has a feasible solution often results
in many of the weights taking values at the boundaries. Increasing the value of u
gives extra freedom to the weights and, as a result, there are typically less weights
at the boundaries.

In the remaining two examples, we only consider the smallest value of u for
which the optimization problem (3) has a feasible solution when l = 1/u. We further
explore the phenomenon of weights clustering at the boundary and investigate
whether different functions are more or less likely to give weights that approach
the boundaries.
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Fig. 10 Comparison of weights for functions φ (1), φ (6), φ (7), and φ (8) for various α with l = 1/4
and u = 4 (dotted lines indicate bounds). (a) Weights obtained for φ (1) (cross), φ (6) (plus) and φ (7)

(circle). (b) Weights obtained for φ (8) with α = 0.2 (cross), and α = 1 (plus) and α = 5 (circle)

4.3 Example 3

Suppose we are given the 100 × 1 vector of initial weights D = (5, . . .,5)′ and
suppose that T = 49,500. The vector of auxiliary values X is formed by extending
the auxiliary vector from Example 4.2. We form a 100×1 vector that has the values
from the auxiliary vector in Example 4.2 as its first ten entries. The next ten entries
are formed by taking the auxiliary vector from Example 4.2 and adding 2 to each
value. In a similar way, we subtract 3 from each value to give the next ten values.
In a similar way, we then repeat the vector, add 4 to all the entries, add 3 to all
the entries, subtract 1, subtract 2, repeat the vector and finally add 4 to give the
remaining 70 values.

We impose the upper and lower bounds U = (u,u, . . .,u)′ and L = (l, l, . . ., l)′,
where L and U are both 100 × 1 vectors whose entries are u and l = 1/u,
respectively. For this example, experimentation gives the smallest value of u as
approximately u = 2 and so l = 1/2.

In Fig. 11, we compare the calibrated weights for functions φ (6), φ (7) and φ (8)

with those for function φ (1). In Fig. 11a, we observe that most of the points in
the scatterplot are on the diagonal. This indicates the similarity of the weights
for functions φ (1) and φ (6). However, in Fig. 11b, we observe that there are fewer
weights on the diagonal. This indicates that, for function φ (7), more of the weights
approach the boundary. In Fig. 11c, we see this even more clearly with a distinct

band of weights at the upper and lower bounds of 2 and
1
2

for function φ (8),

compared with the weights for φ (1) that are more evenly distributed between the
upper and lower bounds.
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Fig. 11 Comparison of weights for function φ (1) against functions φ (6), φ (7) and φ (8), with l= 1/2
and u = 2. (a) Weights for function φ (1) against φ (6). (b) Weights for function φ (1) against φ (7).
(c) Weights for function φ (1) against φ (8)

For the next example, we keep the sample size at n= 100 and increase the number
of auxiliary variables to m = 3.

4.4 Example 4

Suppose we are given a 100× 1 vector of initial weights D = (5,5, . . .,5)′, and let
T = (49500,49540,41000)′. Suppose that the 100×3 matrix of auxiliary values X
is defined as follows: for the first column of X we take the auxiliary vector from
Example 3 in Sect. 4.3. For the second column of X, we form a 100 × 1 vector
whose first ten values are formed by taking the auxiliary vector in Example 4.2 and
subtracting 1. The next ten entries are formed by adding one to each of the values
of the auxiliary vector in Example 4.2. In a similar way, we subtract 2 from each
value to give the next ten values, then repeat the vector, add 5 to all the entries,
repeat the vector twice, subtract 1, add 1 and finally add 3 to give the remaining
70 values. For the third column, we take 100 values generated at random from a
Normal distribution with mean 80 and standard deviation 48 (these are similar to
the mean and standard deviations for the other columns).

We impose the upper and lower bounds U = (u,u, . . .,u)′ and L = (l, l, . . ., l)′,
where L and U are both 100 × 1 vectors whose entries are u and l= 1/u respectively.
For this example, experimentation gives the smallest value of u as approximately
u = 2, and so l = 1/2.

In Fig. 12, we compare the calibrated weights using function φ (1) with the
calibrated weights for functions φ (6), φ (7) and φ (8) (α = 1).

Figure 12 has many similarities with Fig. 11 in Example 4.3. We observe that
the weights for functions φ (1) and φ (6) are very similar. However, the calibrated
weights for functions φ (7) and φ (8) show clear differences to the calibrated weights
for function φ (1). Again, we observe the distinct band of weights at the upper and
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Fig. 12 Comparison of weights for the function φ (1) against φ (6), φ (7) and φ (8) (α = 1). (a)
Weights for function φ (1) against φ (6). (b) Weights for function φ (1) against φ (7). (c) Weights
for function φ (1) against φ (8) with α = 1

Table 1 CPU times for
various functions φ in solving
optimization problem (3) in
Example 4

Function CPU time (s)

φ (1) 0.609

φ (6) 0.734

φ (7) 0.544

φ (8) (α = 0.2) 0.569

φ (8) (α = 1) 0.559

lower bounds of 2 and
1
2

for functions φ (7) and φ (8), compared with the weights

for functions φ (1) and φ (6) that are more evenly distributed between the upper and
lower bounds.

We now compare the CPU times taken to obtain the weights in Fig. 12. These
CPU times were computed on a computer with an Intel(R) Core(TM) i7-4500U
CPU Processor with 8 GB of RAM. The CPU times are given in Table 1. We observe
that the CPU times for functions φ (7) and φ (8) (α = 0.2) are less than those for
the classical functions φ (1) and φ (6). CPU time is related to the complexity of the
optimization problem, see [13] on a comprehensive discussion of how to measure
numerical complexity of an optimization problem.

In these examples, we have seen that problem (3) does not necessarily have a
feasible solution for all choices of the vectors L and U. We address this issue in the
next section by introducing soft calibration.

5 Soft Calibration

In this section, we consider optimization problem (5). Recall that this requires a
choice of the functions Φ andΨ . In this section, we choose Φ to be of the form (1)
with φ taken to be φ (1) and consider the penalty functionΨ of the form (2). We do
not consider other choices of Φ orΨ in this section.
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Rewriting problem (5) with our choice of Φ and Ψ gives the following
optimization problem:

n

∑
i=1

qi(gi −1)2 +β (A′G−T)′C(A′G−T)→ min
G∈G

, (9)

where G = {G : L ≤ G ≤ U}, q1, . . .,qn are given non-negative numbers, C is a
user-specified m×m positive definite (usually diagonal) matrix and β > 0 is some
constant.

In Sect. 4, we considered two approaches to solving the hard calibration prob-
lem (3). We now consider two similar approaches for solving problem (9). The
first approach is the classical soft calibration approach (see for example [2]). In
this approach, the constraint L ≤ G ≤ U is not included within the optimization.
Practitioners vary the value of the parameter β so that the weights are within some
pre-specified bounds. The second approach is to include the constraint L ≤ G ≤ U
within the optimization algorithm, i.e. to solve optimization problem (5). We remark
that classical soft calibration is a special case of the second approach where L and
U are vectors whose entries are −∞ and ∞, respectively.

For the example in Sect. 4.1, we considered the calibrated weights obtained when
solving optimization problem (3) without imposing the constraint L ≤ G ≤ U. In this
case, we saw that it is possible to obtain negative and extreme weights.

The classical soft calibration problem was proposed as a way to deal with these
negative and extreme weights. Classical soft calibration allows an analytic solution
to be found to optimization problem (9). Let D be an n×n diagonal matrix, whose

entries are the weights d1,d2, . . .dn. Furthermore, take qi = di and let γ =
1
β

. Then,

for the classical soft calibration approach, the analytic form of the weights that
satisfy optimization problem (9) is given by

G = 1+A
(
A′
D

−1A+ γC−1)−1 (
T −A′1

)
. (10)

This is an equivalent formulation of equation (2.4) from [2], expressed in terms

of g-weights. The term
(
A′
D

−1A+ γC−1)−1
is similar to the inverse matrix term in

ridge regression (see for example [15]).
Let us consider the effect of changing the parameter β in (9). Recall that γ = 1/β

or equivalently β = γ−1. We consider the effect of changing the parameter γ . As
γ tends to zero, γ−1 tends to infinity and so optimization problem (9) reduces
to minimising (A′G − T)′C(A′G − T) for G ∈ G. As this term is quadratic, the
minimum occurs when A′G − T = 0 or equivalently A′G = T . This is the hard
calibration constraint. Therefore, the case γ → 0 corresponds to solving the hard
calibration problem (3). We remark that this is consistent with (10), since taking
γ = 0 in this formula gives the expression for the g-weights in classical hard
calibration.
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Fig. 13 Plots of classical soft calibration weights (10) as a function of γ . (a) Soft weights for γ
between 0 and 40. (b) Soft weights for γ from 0 to 1.6×106

As γ tends to infinity, γ−1 tends to zero and so the term (A′G−T)′C(A′G−T)
becomes negligible. This results in optimization (9) reducing to the problem of

minimizing Φ(G) =
n

∑
i=1

qiφ (1)(gi) for G ∈ G, which is minimized at G = 1 (by

definition of the function Φ). Again, this is consistent with (10), since when γ → ∞
the term A

(
A′
D

−1A+ γC−1)−1 (
T −A′1

)
tends to zero giving G = 1.

To illustrate this, let us revisit the example of Sect. 4.1. Recall that T =
5,054, D = (49/12,49/12, . . .,49/12)′ and X = (93,77,61,87,116,2,30,172,36,
64,66,60)′. In Fig. 13, we plot the weights given by (10) as the value of γ varies.
We take C = Im, where Im denotes the m×m identity matrix. Figure 13a plots the
weights for values of γ from 0 to 40. This plot confirms our earlier assertions that
as γ → 0, G tends to the classical hard calibration weights. Figure 13b plots the
weights for values of γ between 0 and 1.6×106. This plot confirms that as γ → ∞,
the g-weights tend to their initial values of 1.

When obtaining the explicit solution, (10), to the classical soft calibration
problem, we did not specify any constraints on the weights G. Suppose that we
wish to impose the constraint L ≤ G ≤ U. Observe from Fig. 13a that as the value
of γ increases, the range of the weights decreases. In classical soft calibration,
having obtained the analytic solution (10) for the calibrated weights, the approach to
satisfying the constraint L ≤ G ≤ U is to choose the smallest value of γ for which the
weights in (10) are within the specified bounds. Clearly, the value of γ that satisfies
the constraints L ≤ G ≤ U is sample dependent.

Consider again Example 1 from Sect. 4.1. We previously saw that, in the case of
classical hard calibration, we obtain negative and extreme weights for this sample.
Suppose we wish to impose the lower and upper bounds of l = 12/49 and u =
120/49. We saw that we were able to satisfy these bounds by solving problem (3).
In order to satisfy these bounds for classical soft calibration, experimentation gives
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the smallest value of γ as approximately γ = 9.0 in order to find a solution that lies
between these bounds. This is a relatively large value of γ .

Note that in this case we have 1′G = 13.527 �= 12 and A′G = 5053.899 �= 5054,
therefore our constraints 1′G = 12 and A′G = T are no longer satisfied. Having
relaxed these constraints in the soft calibration penalty (2), the larger the value of
γ , the smaller the value of β and the less importance we assign to the penalty (2)
in (9). This allows greater variation between A′G and T and between 1′G and 12.
However, for large values of γ there is less variation in the weights. In contrast, for
small values of γ , the penalty (2) is given more importance allowing less variation
between A′G and T and between 1′G and 12. However, in this case there will be
greater variability in the weights.

We illustrate this in Figs. 14 and 15. To produce these figures, we took 10,000
simple random samples of size 12 from the data in [3]. Figure 14 shows the
distribution of weights and values of A′G when we take γ = 0.1. Figure 15 shows
the distribution of weights and values of A′G when we take γ = 9, as required for
this example to ensure the weights are between L and U. We observe that although
γ = 9 gave g-weights satisfying the bounds L ≤ G ≤ U for one sample, this value of
γ does not guarantee that the g-weights will satisfy these bounds for every sample.

Let us now consider the second approach of directly optimizing (5). As stated in
Sect. 2, optimization problem (5) has a solution for any value of β > 0. Therefore,
given any L and U, we can find a solution to optimization problem (5) independent
of the choice of β . That is what makes this approach different to classical soft
calibration.

Let us return again to Example 1 from Sect. 4.1. Consider the problem (5) with
L ≤ G ≤ U where L = (l, . . ., l)′ and U = (u, . . .,u)′ are 12× 1 vectors with entries
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Fig. 14 Plots of A′G and g-weights that satisfy optimization problem (10) for γ = 0.1. (a) A′G
for 10,000 random samples of size 12, vertical line at 5,054 (A′G = 5,054 is hard constraint).
(b) g-weights for 10,000 random samples of size 12, vertical line at 1 (initial weights), dashed
lines indicate bounds
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Fig. 15 Plots of A′G and g-weights that satisfy the optimization problem (10) for γ = 0.1. (a) X′W
for 10,000 random samples of size 12, vertical line at 5,054 (X′W = 5,054 is hard constraint). (b)
g-weights for 10,000 random samples of size 12, vertical line at 1 (initial weights), dashed lines
indicate bounds

l=
12
49

and u=
120
49

, respectively. We know that small values of γ give a solution that

is close to the hard calibration solution. Taking γ = 0.01, we obtain soft calibration
weights that are very similar to those derived for hard calibration in Sect. 4.1.
Therefore, in this instance, solving problem (5) has little advantage over solving
the corresponding hard calibration problem (3).

However, suppose we want to impose the bounds l = 24/49 and u = 96/49,
corresponding to bounding the weights wi between the lower and upper bounds of 2
and 8, respectively. In this case, there is no feasible solution to the hard calibration
problem (3). Solving this problem using classical soft calibration requires a value of
γ = 16 to ensure that the weights are between these bounds.

We now consider the direct optimization approach. Recall that for small values of
γ , the solution to problem (5) is approximately equal to the solution to problem (3).
Assuming we have the lower bounds l = 24/49 and u = 96/49, taking γ = 10−9

we obtain weights G such that A′G = 5,053.910 and 1′G = 13.435. Under hard
calibration, we would require A′G = 5,054 and 1′G = 12. We have almost satisfied
the constraint A′G = 5,054; however, we have not satisfied the constraint 1′G = 12.
This suggests that the condition 1′G = 12 was too restrictive.

6 Conclusions

The problem of calibrating weights in surveys is a very important practical problem.
In the literature on calibration, there are many recipes but no clear understanding of
what calibration is. In this chapter, we have formally formulated the calibration
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problem as an optimization problem and defined the desired conditions for the
components of the objective function and feasible region. We have demonstrated
that the commonly used calibration criteria do not fully satisfy the desired criteria.
The corresponding optimization problems are not flexible enough, harder than they
have to be, or have some common recipes leading to wrong and contradictory
recommendations. An example of the latter is the use of ridge estimators for trying
to achieve positivity of the calibrated weights, see Sect. 5.

We have studied the influence of the function φ , the main component of objective
function, on the complexity of the optimization problem and the final solution. We
claim that the new functions φ (7) and φ (8) suggested in this chapter are much more
transparent and more flexible than the functions adopted in the standard calibration
literature and classical calibration software packages. The functions suggested by
us lead to easier optimization problems as they automatically take into account the
constraint L ≤ G ≤ U. This could be of high importance in practice as the dimension
of the problem (which is the size of the sample) may be very large.

In the case of large samples, one of our recommendations is to replace the hard
calibration problem defined by (1) and (3) with a soft calibration problem defined

by (1), (2) and (5), where β in (2) is large and the functions φi in (1) are either φ (7)
i

or φ (8)
i , see (6) and (7), respectively. In doing so we replace a potentially difficult

constrained optimization problem (3) with a much simpler problem (5), which is
an unconstrained convex optimization problem (recall that all constraints in (5) are
taken into account due to a clever choice of the functions φi). If β is large then the
solution of this problem is guaranteed to be very close to the solution of the original
problem (3).
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On the Sensitivity of Least Squares Data Fitting
by Nonnegative Second Divided Differences

Ioannis C. Demetriou

Abstract Let measurements of a real function of one variable be given. If the
function is convex but convexity has been lost due to errors of measurement, then
we make the least sum of squares change to the data so that the second divided
differences of the smoothed values are nonnegative. The underlying calculation
is a quadratic programming algorithm and the piecewise linear interpolant to the
solution components is a convex curve. Problems of this structure arise in various
contexts in research and applications in science, engineering and social sciences.
The sensitivity of the solution is investigated when the data are slightly altered.
The sensitivity question arises in the utilization of the method. First some theory
is presented and then an illustrative example shows the effect of specific as well
as random changes of the data to the solution. As an application to real data, an
experiment on the sensitivity of the convex estimate to the Gini coefficient in the
USA for the time period 1947–1996 is presented. The measurements of the Gini
coefficient are considered uncertain, with a uniform probability distribution over a
certain interval. Some consequences of this uncertainty are investigated with the aid
of a simulation technique.

Keywords Least squares • Data fitting • Quadratic programming • Piecewise
linear interpolation • Sensitivity analysis

1 Introduction

The purpose of this chapter is to investigate the sensitivity of the least squares
convex fit to discrete data with respect to changes in the data, where convexity
enters in terms of nonnegative second divided differences of the data. Problems
of this structure arise in various contexts, for example in estimating certain supply,
demand and production relations in economics, where increasing returns (convexity)
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and diminishing returns (concavity) are assumed [14]. Other examples arise from
estimating a utility function that is represented by a finite number of observations
[16], from calculating the piecewise convex/concave approximation to discrete
noisy data [6] and from determining the dopant profile in semiconductors [17], for
instance.

We assume that the data come from an unknown underlying convex function
f (x), but convexity has been lost due to errors of measurement. The data are
the coordinates (xi,φi) ∈ R2, for i = 1,2, . . . ,n, where the abscissae satisfy the
inequalities x1 < x2 < · · · < xn, φi is the measurement of f (x) at xi and, in view
of our assumption, φi ≈ f (xi). We regard the measurements as components of a
n-vector φ . Vectors will be considered column vectors unless the superscript “T”
denotes transposition to a row vector.

Demetriou and Powell [5] studied the problem of calculating a n-vector y that
minimizes the objective function

Φ(y) =
n

∑
i=1

(φi − yi)
2 (1)

subject to the convexity constraints

y[xi−1,xi,xi+1] ≥ 0, i = 2,3, . . . ,n−1, (2)

where

y [xi−1,xi,xi+1] =
yi−1

(xi−1 − xi)(xi−1 − xi+1)
+

yi

(xi − xi−1)(xi − xi+1)
+

yi+1

(xi+1 − xi−1)(xi+1 − xi)
(3)

is the ith second divided difference on the components of y (see [2] for a definition).
We call feasible any n-vector that satisfies the constraints (2). Since the constraints
on y are linear, we introduce the scalar product notation

y[xi−1,xi,xi+1] = aT
i y, i = 2,3, . . . ,n−1, (4)

where ai, for i = 2,3, . . . ,n − 1 denote the constraint normals with respect to y.
By taking into account that each divided difference depends on only three adjacent
components of y, one can immediately see that the constraint normals are linearly
independent vectors. In view of the strict convexity of (1) and the linearity and the
consistency of constraints (2), the solution to this problem, say it is y∗, is unique.
Throughout the chapter we use occasionally the descriptive term convex fit for the
solution.

The Karush–Kuhn–Tucker conditions (see, [8, p. 200]) provide necessary and
sufficient conditions for optimality. They state that y∗ is optimal if and only if
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constraints (2) are satisfied and there exist nonnegative Lagrange multipliers {λ ∗
i :

i ∈A∗} such that the first order conditions

y∗ −φ = 1
2 ∑

i∈A∗
λ ∗

i ai (5)

hold, where A∗ is a subset of the constraint indices {2,3, . . . ,n−1} with the property

aT
i y∗ = 0, i ∈A∗. (6)

It is straightforward to calculate the solution of this optimization problem by
standard strictly convex quadratic programming methods (see for example [8]), but
a special version of the quadratic programming algorithm of Goldfarb and Idnani
[10] has been developed by Demetriou and Powell [5] that is faster than general
quadratic programming algorithms.

In Sect. 2 we give an outline of the algorithm for calculating y∗ and we introduce
notation, terminology and definitions that are needed for the presentation of this
work. In Sect. 3 we give some results on sensitivity analysis by considering the
sensitivity of the solution with respect to changes in the data. In Sect. 4 we give
an example with as many as 12 measurements that make it easy to present and
discuss the effect of specific as well as random changes to the solution. In Sect. 5
an experiment on the sensitivity of the convex estimate to the Gini coefficient
measurements in the USA for the time period 1947–1996 is presented. The Gini
coefficients are considered uncertain, with a uniform probability distribution over a
certain interval. The consequences of this uncertainty are investigated with the aid
of a simulation technique. In Sect. 6 we present some concluding remarks.

The numerical experiments were carried out by the Fortran software L2CXFT
that has been written by Demetriou [3]. This package consists of about 1,600 lines
including comments. The calculations were performed on a HP 8770w portable
workstation with an Intel Core i7-3610QM, 2.3 GHz processor, which was used
with the standard Fortran compiler of the Intel Visual Fortran Composer XE2013
in double precision arithmetic (first 15 decimal digits are significant) operating on
Windows 7 with 64 bits word length.

2 An Outline of the Method of Calculation

In this section we outline the quadratic programming method of Demetriou and
Powell [5] for calculating the solution of the problem of Sect. 1. We also introduce
notation, terminology and definitions that are needed for presenting some results
on sensitivity analysis. This method is by far faster than a general quadratic
programming algorithm because it takes into account the structure of the constraints.
A large part of its efficiency is due to a linear B-spline representation of the solution
and the banded matrices that occur. For proofs, one may consult the above reference.
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The method begins by calculating an initial approximation to the convex fit in
only O(n) computer operations, which is an advantage to the subsequent quadratic
programming calculation because either it identifies set A∗ or it comes quite close
to it. The quadratic programming algorithm generates a finite sequence of subsets
{A(k) : k = 1,2, . . .} of the constraint indices {2,3, . . . ,n−1} with the property

aT
i y = 0, i ∈ A(k). (7)

For each k, we denote by y(k) the vector that minimizes (1) subject to Eq. (7)
and we call each constraint in (7) an active constraint. All the active constraints
constitute the active set. Since the constraint normals are linearly independent,

unique Lagrange multipliers {λ (k)
i : i ∈A(k)} are defined by the first order optimality

condition

y(k)−φ = 1
2 ∑

i∈A(k)

λi
(k)ai. (8)

Quadratic programming starts by deleting constraints if necessary from the active
set derived by the mentioned O(n) approximation until all the remaining active
constraints have nonnegative Lagrange multipliers. This gives A(1). If A(k), for k ≥ 1
is not set A∗, then the quadratic programming algorithm adds to the active set the
most violated constraint and deletes constraints with negative multipliers alternately,
until the Karush–Kuhn–Tucker conditions are satisfied. Related to each A(k), this
process requires the calculation of y(k) and λ (k). Specifically, for each integer i in

A(k) we pick the ith row of (8) multiplied by (xi−1 − xi+1), so the first or last row is
never chosen, which gives a block tridiagonal positive definite system of equations.
For example, if 2,3 and 4, but not 5 are in A(k), then the first of the blocks is

⎛
⎜⎜⎜⎜⎜⎝

x3 − x1

(x2 − x1)(x3 − x2)

1
x3 − x2

0

1
x3 − x2

x4 − x2

(x3 − x2)(x4 − x3)

1
x4 − x3

0
1

x4 − x3

x5 − x3

(x4 − x3)(x5 − x4)

⎞
⎟⎟⎟⎟⎟⎠ , (9)

which is a positive definite matrix. It follows that λ (k) can be derived efficiently and
stably by a Cholesky factorization in only O(|A(k)|) computer operations, where
|A(k)| is the number of elements of A(k).

The equality constrained minimization problem of y(k) forms an important
part of the calculation, because it is solved very efficiently by a reduction to
an equivalent unconstrained one with fewer variables due to a linear B-spline
representation (for a definition see for example de Boor [2]). If y(x), x1 ≤ x ≤ xn

is the piecewise linear interpolant to the points {(xi,y
(k)
i ) : i = 1,2, . . . ,n}, then y(x)

has its knots on the set {xi : i ∈ {1,2, . . . ,n}\A(k)} including x1 and xn. Indeed, the
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equation y(k)[xi−1,xi,xi+1] = 0, when i ∈ A(k) implies the collinearity of the points

(xi−1,y
(k)
i−1), (xi,y

(k)
i ) and (xi+1,y

(k)
i+1), but if y(k)[xi−1,xi,xi+1]> 0, then i is the index

of a knot of y(x). Thus the knots of y(x) are determined from the abscissae due
to the active set. Let j = n − 1 − |A(k)|, let {ξp : p = 1, . . . , j − 1} be the interior
knots of y(x) in ascending order, let also ξ−1 = ξ0 = x1 and ξj = ξj+1 = xn, and let
{Bp : p = 0,1, . . . , j} be a basis of normalized linear B-splines that are defined on
{xi : i = 1,2, . . . ,n} and satisfy the equations Bp(ξp) = 1 and Bp(ξq) = 1, p �= q:

Bp(x) =

⎧⎨
⎩

(x−ξp−1)/(ξp −ξp−1), ξp−1 ≤ x ≤ ξp

(ξp+1 − x)/(ξp+1 −ξp), ξp ≤ x ≤ ξp+1

0, otherwise.
(10)

Then y(x) may be written uniquely in the form

y(x) =
j

∑
p=0

σpBp(x), x1 ≤ x ≤ xn, (11)

where the coefficients {σp : p= 0,1, . . . , j} are the values of y(x) at the knots and are
calculated by solving the normal equations associated with the minimization of (1),

j

∑
p=0

[
n

∑
i=1

Bk(xi)Bp(xi)]σp =
n

∑
i=1

Bk(xi)φi, k = 0,1, . . . , j. (12)

Since

n

∑
i=1

Bk(xi)Bp(xi) = 0, for |k−p|> 1, (13)

system (12) simplifies to a positive definite tridiagonal system of equations, which
can be solved for {σp : p = 0,1, . . . , j} efficiently and stably by a Cholesky
factorization in O(j) computer operations. The intermediate components of y(k) are
found by linear interpolation to the spline coefficients due to (10) and (11). Further,
the numerical results of [5] show that |A(k)| in practice is usually large, so j is small,
which is a major saving for the calculation.

3 Changes in the Solution Due to Changes in the Data

In this section we study the changes that occur in the solution of the minimization
of function (1) subject to constraints (2) when the data are slightly altered. Stating
formally, the perturbed problem requires to minimize the objective function

Φ̃(y) = yTy−2yT(φ +θ)+(φ +θ)T(φ +θ) (14)
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subject to the convexity constraints (2), where θ is a n-vector such that its Euclidian
norm ||θ ||2 is small. For a general treatment of perturbation in nonlinear program-
ming see Fiacco and McCormick [7]. We assume that strict complementarity holds,
that is λ ∗

i > 0 when y∗[xi−1,xi,xi+1] = 0, and we state the following theorem.

Theorem 1. Let y∗(θ) be the solution to the perturbed problem and let λ ∗(θ) be
the vector of the associated Lagrange multipliers. Then y∗(θ) and λ ∗(θ) tend to y∗

and λ ∗, respectively, as θ tends to zero.

Proof. Let A be the matrix whose columns are the vectors ai, i ∈A∗. The system of
the vector equations (5) and (6) can be written in terms of A as

y∗ = φ + 1
2 Aλ ∗ (15)

and

ATy∗ = 0, (16)

where we write AT for the transpose of A. We multiply (15) by AT and after taking
into account (16) we solve for λ ∗ and obtain

λ ∗ = −2(ATA)−1ATφ . (17)

Then we substitute (17) into (15) and obtain

y∗ = (I −A(ATA)−1AT)φ . (18)

We are going to prove that the solution of the perturbed problem satisfies the
Karush–Kuhn–Tucker conditions for y∗. Let y(θ) and λ (θ) provide the unique
solution to the system of the n+ |A∗| linear equations

y− (φ +θ) = 1
2 Aλ (19)

ATy = 0. (20)

We solve this system for λ (θ) and y(θ) and obtain

λ (θ) = −2(ATA)−1AT(φ +θ) (21)

and

y(θ) = (I −A(ATA)−1AT)(φ +θ). (22)
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Next we show that y(θ) and λ (θ) are feasible. Indeed, since, in view of (20), the

equations aT
i y(θ) = 0, i ∈ A∗ hold, it remains to prove that aT

i y(θ) > 0, i /∈ A∗.
By substituting (22) on the left-hand side of the latter inequality we have

aT
i y(θ) = aT

i (I −A(ATA)−1AT)(φ +θ)

= aT
i (I −A(ATA)−1AT)φ +aT

i (I −A(ATA)−1AT)θ

= aT
i y∗+aT

i (I −A(ATA)−1AT)θ . (23)

As aT
i y∗ > 0, i /∈ A∗, it follows that for sufficiently small ||θ ||2 the inequalities

aT
i y(θ)> 0, i /∈A∗ are satisfied.

Further, we define λi(θ) = 0 for all integers i /∈ A∗ and we prove that λi(θ) >
0, i ∈A∗. From (21) we obtain

λ (θ) = −2(ATA)−1ATφ −2(ATA)−1ATθ

= λ ∗ −2(ATA)−1ATθ (24)

and since λ ∗
i > 0, i ∈ A∗, we deduce that λi(θ) > 0, i ∈ A∗ for sufficiently small

||θ ||2. The feasibility of y(θ) and λ (θ) and Eqs. (19) and (20) constitute the
Karush–Kuhn–Tucker conditions for the perturbed problem. Thus y∗(θ) = y(θ) and
λ ∗(θ) = λ ∗(θ). The proof of the theorem is complete. �

The theorem states that in the absence of degeneracy (i.e. aT
i y = 0, for some

indices i /∈ A∗) small changes in the elements of φ do not affect the optimal set of

active constraints. For if λ ∗
i > 0, i ∈ A∗ and aT

i y∗ > 0, i /∈ A∗, they will remain so

for sufficiently small changes; in addition, the row rank of AT retains its value in the
perturbed problem. However, these changes do induce some changes to y∗ and λ ∗.

A corollary of Theorem 1 that provides useful information regarding the
sensitivity of the convex fit is that, treating (18) as an identity in φ , differentiating
and evaluating at y∗ yields

dy∗

dφT =

⎛
⎜⎜⎜⎜⎜⎝

∂y∗
1

∂φ1
· · · ∂y∗

1

∂φn
...

...
∂y∗

n

∂φ1
· · · ∂y∗

n

∂φn

⎞
⎟⎟⎟⎟⎟⎠= I −A(ATA)−1AT . (25)

This relation shows that the effects of small finite non-zero data changes to the
solution components are determined by the elements of A. Given that A has full col-
umn rank, the matrix I −A(ATA)−1AT is positive semi-definite. Hence the diagonal
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elements ∂y∗
i /∂φi are nonnegative and ∂y∗

i has the sign of ∂φi. Using (22), (18)
and (25) we derive the expression

y(θ) = y∗+
dy∗

dφT θ .

Analogously, treating (17) as an identity in φ , differentiating and evaluating at
λ ∗ yields

dλ ∗

dφT =

⎛
⎜⎜⎜⎜⎜⎝

∂λ ∗
1

∂φ1
· · · ∂λ ∗

1

∂φn
...

...
∂λ ∗

|A∗|
∂φ1

· · ·
∂λ ∗

|A∗|
∂φn

⎞
⎟⎟⎟⎟⎟⎠= −2(ATA)−1AT . (26)

Using (21), (17) and (26) we derive the expression

λ (θ) = λ ∗+
dλ ∗

dφT θ .

We have stated the changes in the solution and the Lagrange multipliers due
to small changes in the data. Further, considering specific changes of one or a
few components of φ also deserves some attention. We let φ̃ be the vector of
data after we replace one or a few components by their perturbed values. If the
original components are perturbed by a sufficiently small amount then, according to
Theorem 1, the feasibility of the constraints y∗[xi−1,xi,xi+1]≥ 0, for i= 2,3, . . . ,n−
1 is preserved. However, we assume that these components are moved so much
from their original positions, that the active set is changed. Thus, another optimal
vector should be calculated. We elaborate on this by assuming that the difference
y∗[xk−1,xk,xk+1], for some k ∈ [2,n−1] is positive and that φ moves from its original
position, so much as the kth constraint is violated by ỹ, say, the vector that minimizes

the sum of the squares
n

∑
i=1

(φ̃i − yi)
2 subject to the equality constraints satisfied by

y∗, while all the other constraints remain feasible. Then the kth constraint has to be
added to the active set as it is justified below [4].

Proposition 1. We assume the conditions and we employ the notation of the
previous paragraph. We assume that ỹ gives the inequality

ỹ[xk−1,xk,xk+1]< 0 (27)

and that ỹ∗ minimizes

||φ̃ − y||22 =
n

∑
i=1

(φ̃i − yi)
2

subject to constraints (2). Then ỹ∗ satisfies the equation ỹ∗[xk−1,xk,xk+1] = 0.
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Proof. Due to the constraints satisfied by ỹ and the definition of ỹ∗, the set of
constraints satisfied by ỹ∗ includes the set of constraints satisfied by ỹ. Hence,

||φ̃ − ỹ||2 ≤ ||φ̃ − ỹ∗||2.

Because, in view of (27), ỹ is not feasible while ỹ∗ is optimal, we deduce that ỹ �= ỹ∗.
Therefore the former inequality is strict. Then, we assume that ỹ∗[xk−1,xk,xk+1]> 0
and we obtain a contradiction. Indeed, there exists a real number ρ ∈ (0,1) such that
the n-vector ψ(ρ) = ρ ỹ∗+(1−ρ)ỹ satisfies the constraints on ỹ∗. Hence

||φ̃ −ψ(ρ)||2 < ρ ||φ̃ − ỹ∗||2 +(1−ρ)||φ̃ − ỹ||2<||φ̃ − ỹ∗||2,

which contradicts the optimality of ỹ∗. It follows that ỹ∗ satisfies the equation
ỹ∗[xk−1,xk,xk+1] = 0. �

For perturbation analyses concerning quadratic programming and least squares
one may consult, for example [1, 11, 15].

4 An Illustrative Example

We consider the following data set, in order to illustrate some points concerning
the effect of changes of specific data values to the solution. Let n = 12 and let the
data be {(xi,φi) : i = 1,2, . . . ,n}, where xi and φi are shown in the second and third
columns of the upper left part of Table 1. Except of φ1, the data are symmetric.
This data set has been written by Demetriou and Powell [5] to clarify some features
of the O(n) initial procedure referred to in Sect. 2. In our work the small size and
the symmetry of the data set make it easy to display and compare the results of the
mentioned changes in short.

We applied the software package L2CXFT to {(xi,φi) : i = 1,2, . . . ,12} and
the solution components y∗

i , i = 1,2, . . . ,12, the Lagrange multipliers λ ∗
i , i =

2,3, . . . ,11 and the associated second divided differences δ 2(y∗
i ) = y∗[xi−1,xi,xi+1],

i = 2,3, . . . ,11 are presented in the fourth column (label y∗
i ), the fifth column (label

λ ∗
i ) and the sixth column (label δ 2(y∗

i )), respectively, of the upper left part of

Table 1. The sum of squares of residuals has the value Φ(y∗) =
n

∑
i=1

(φi − y∗
i )

2 = 3.2.

Figure 1a displays the data and the solution. We see that the solution interpolates
the data at xi, for i = 1,3,7 and 11 and that A∗ = {3,4,5,9,10,11}, for it consists
of the integers {i : δ 2(y∗

i ) = 0}.
The nonnegativity of the sequence of the second divided differences in column 6

shows the feasibility, i.e. convexity, of the values presented in column 4. Since points
with zero second divided differences lie on a straight line and since the positive
second divided differences are centred at the abscissae with indices {2,6,7,8},
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Fig. 1 Illustration of the data sets in Table 1. Convex fit (circle) to the data (plus): Figures (a)–(d)
correspond to the data sets of the upper part of Table 1 and figures (e)–(h) correspond to the data
sets of the lower part. Solid lines are for illustration
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namely the knots, the calculated smoothed values lie on a convex polygonal line
that consists of five consecutive line segments which join the smoothed values at
the abscissae x1,x2,x6,x7,x8 and x12.

Further, it is straightforward to calculate the rates of change of the fit, i.e. the
slopes of the sides of the polygon between these abscissae. Indeed, the rates are
−5,−1.4,−0.3, 0.3 and 1.4, with respect to the intervals [0.999,1], [1,5], [5,6], [6,7]
and [7,11]. Thus the solution components decrease in the range [0.999,6] and
subsequently increase in the range [6,11], with a rate of change that increases
gradually from negative to positive values.

The Lagrange multipliers in column 5 are all nonnegative and strict complemen-
tarity is immediately verified due to

λ ∗
i y∗[xi−1,xi,xi+1] = 0, i = 2,3, . . . ,11.

Moreover, since an active constraint corresponds to a positive Lagrange multiplier,
there are no instances of degeneracy in this calculation.

We consider next how changes in the data φ influence the components of the

solution y∗. In view of the 6×12 matrix AT

AT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0.5 −1 0.5 0 0 0 0 0 0 0 0
0 0 0.5 −1 0.5 0 0 0 0 0 0 0
0 0 0 0.5 −1 0.5 0 0 0 0 0 0
0 0 0 0 0 0 0 0.5 −1 0.5 0 0
0 0 0 0 0 0 0 0 0.5 −1 0.5 0
0 0 0 0 0 0 0 0 0 0.5 −1 0.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
,

which is associated with A∗, these results are given by formula (25), which takes
the form

dy∗

dφT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0 0
0 0.6 0.4 0.2 0 −0.2 0 0 0 0 0 0
0 0.4 0.3 0.2 0.1 0 0 0 0 0 0 0
0 0.2 0.2 0.2 0.2 0.2 0 0 0 0 0 0
0 0 0.1 0.2 0.3 0.4 0 0 0 0 0 0
0 −0.2 0 0.2 0.4 0.6 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0.6 0.4 0.2 0 −0.2
0 0 0 0 0 0 0 0.4 0.3 0.2 0.1 0
0 0 0 0 0 0 0 0.2 0.2 0.2 0.2 0.2
0 0 0 0 0 0 0 0 0.1 0.2 0.3 0.4
0 0 0 0 0 0 0 −0.2 0 0.2 0.4 0.6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Therefore the total effect on y∗ of a change in φ by θ , provided that A∗ is preserved,

can now be obtained as
dy∗

dφT θ .

A distinctive feature of this data set is that the inequalities

φ [x6,x7,x8] = −0.5 < 0 and y∗[x6,x7,x8] = 0.3 > 0

occur simultaneously. In words, a negative second divided difference at the data
need not correspond to an active second divided difference at the solution. Now, if
y∗

7 is allowed to move subject to the feasibility of the solution, then feasibility is
preserved for any value of y∗

7 up to −0.2, where the point (x7,−0.2) lies on the line
segment that joins the points (x6,y

∗
6 = −0.2) and (x8,y

∗
8 = −0.2).

Next, we allow φ7 to move a certain distance from its value φ7 = −0.5 and
see what happens in the values of the perturbed solution. To be specific, φ7 is
allowed to move to −5, −2 and 1 and the associated solutions are presented in
the corresponding columns of Table 1 as we explain below. An immediate result is
that the quadratic programming algorithm has to change some of the components of
y∗ in order to remove any constraint violations. In the notation of Sect. 3, let φ̃ be the
vector of data after we replace the component φ7 by its perturbed value φ̃7 and let
ỹ∗ be the associated solution vector. The actual values of φ̃i are given in the seventh
column of Table 1. Some calculated results similar to those for y∗ in columns 4, 5
and 6 are presented in columns 8, 9 and 10, respectively. In this manner, besides
that Table 1 presents the results concerning y∗, it presents also results for further
data changes in two parts of rows as follows. The upper part includes three more
quadruples of columns with similar results for the cases φ̃7 = −5, φ̃7 = −2 and
φ̃7 = 1. The lower part of Table 1 consists also of similar quadruples of columns
for the cases φ̃10 = 2.9, φ̃10 = 5 and φ̃12 = 2.5 and one more quadruple where the
data are random perturbations of the original φi labelled “φ̃i = rnd”. The underlined
numbers throughout Table 1 indicate the changed data components with respect to
the data φi in column 3.

Once φ7 has been moved low enough to the value φ̃7 = −5, the difference
φ [x6,x7,x8] became 0.4, thus positive, and the solution gave ỹ∗[x6,x7,x8] = δ 2(ỹ∗

7) =
1.706 > 0; the rest of the divided differences became equal to zero as we can see in
column 10 of Table 1. The value of Φ(ỹ∗) has now been 10.78. Figure 1b displays
the current data and solution. When φ7 has been moved to −2, a value lower than
the original φ7 =−0.5 but higher than −5, the components of the perturbed solution
were nested between the components of y∗ and ỹ∗ as it is verified by comparing the
values in the relevant columns 4, 8 and 12. The value of Φ at the new solution has
been 3.305. Figure 1c displays the current data and solution. When φ7 has been
moved to 1, the difference φ̃ [x6,x7,x8] became −2, but the constraint violation was
removed at the solution resulting to the active constraint ỹ∗[x6,x7,x8] = δ 2(ỹ∗

7) = 0.
The value of Φ has been 4.308. Figure 1d displays the current data and solution.

So far, the changes in the value of the mid-range component φ7 have shown that
the active set at the perturbed solution need not preserve A∗. Hence, we consider
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changes in the solution when the component φ10 = 3, which lies at the right-half of
the data range, moves to the values 2.9 (small change) and 5 (large change). Now
the corresponding solutions have the values presented in the columns 3–10 of the
lower part of Table 1. Figure 1e, f displays the data and the solutions. The active
set of the solution associated with φ̃10 = 2.9 preserves the active set of y∗ as well
as the values of the first seven components of y∗. Furthermore, small changes are
observed in the remaining solution components (column 4, lower part) as compared
with the components of y∗. Similar results are observed in the solution associated
with φ̃10 = 5, except that the changes in the solution components are more noticeable
than before.

Furthermore, we show that the first and the last component of an optimal convex
fit cannot be less than the corresponding data. Indeed, y∗

1 cannot be less than
φ1, otherwise increasing it towards φ1 cannot violate the first constraint, while it
reduces the value of the objective function. Similarly, y∗

n cannot be less than φn.
Notice also that whenever the strict inequality y∗[xi−1,xi,xi+1]> 0 is obtained, then
the inequality y∗

i ≥ φi occurs. Assuming otherwise, we obtain a contradiction by
increasing y∗

i so much as to retain feasibility and reduce the value of the objective
function. Now we consider reducing the value of the extreme component φ12 from
5 (see column 2, upper part) to 2.5 (see column 11, lower part). The active set of the
perturbed problem solution preserves A∗ and gives ỹ∗

i = y∗
i , for i = 1,2, . . . ,7, while

some changes are observed in the remaining solution components (see column 12,
lower part) as compared with the components of y∗. Figure 1g displays the data

and the solution, but notice that the knot at x8 due to the value δ 2(ỹ∗
8) = 0.05 is

non-visible because of low display resolution.
It will have been observed that these changes in a single φi have given changes in

y∗
i of the same sign. For instance, when φ̃7 =−2, the value of φ7 has been decreased

by 1.5 and the value of y∗
7 has been decreased by 1.238. Up to now, we have seen that

even the change of a single component of the data is actually sufficient to introduce
changes to all or almost all the components of the solution. When this change is
small, the perturbations in the solution are usually insignificant. However, when
several data values change, no matter how insignificant the changes are, the resulting
influences on the solution vector spread over the data range. We present in columns
15–18 of the lower part of Table 1 the data after adding to the original φi (see column
2, upper part) a random number from the uniform distribution on [−1.2,1.2]. It is
worth noticing that although all the data have been changed, the solution preserved
most of the active set of y∗, giving three non-active constraints that are centred at x6,
x7 and x8. Figure 1h displays the data and the solution.

Table 1 gives the solution values as well as the Lagrange multipliers associated
with the active constraints for alternative values of φ̃7, φ̃10, etc. The size of a
Lagrange multiplier shows the sensitivity of the solution upon the associated active
constraint. Thus, the larger the value of λ ∗

i , the stronger the dependence of the
solution to the placement of the ith constraint.
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5 The Simulation Experiment

In this section some numerical results demonstrate the effects of changes in the
annual Gini coefficients in the USA for the time period 1947 to 1996. The Gini
coefficient is a measure of statistical dispersion intended to represent the income
distribution of a nation’s residents. It is the most commonly used measure of
inequality. The coefficient varies between 0, which reflects complete equality, and
1 or 100, which indicates complete inequality. Our example has some importance
since these coefficients are rather uncertain. Fifty data points were retrieved from the
World Income Inequality Database of the US Bureau of Census 1997 and presented
in the second and third columns of Table 2. We see that the macroeconomic trend
of the Gini coefficient at the given period indicates convexity, a statement supported
also by the convexity test of Georgiadou and Demetriou [9]. The convex fit to
the Gini data is given in the column labelled y∗

i and the corresponding Lagrange
multipliers are given in the column labelled λ ∗

i . The convex fit is a linear spline
with seven interior knots at the abscissae x7,x10,x23,x29,x30,x33 and x45. Also the
number of active constraints is |A∗| = 41. We see that the Lagrange multipliers
indexed at these knots are zero, while all the other multipliers are non-zero. A
non-zero Lagrange multiplier corresponds to an active constraint. For example, it
is straightforward to verify that the values λ ∗

2 = 0.2964 and λ ∗
7 = 0 are associated

with the constraints y∗[x1,x2,x3] = 0 and y∗[x6,x7,x8] = 0.1254 > 0, respectively.
The convex fit is illustrated in Fig. 2.

In the example of Sect. 4 we discuss effects of certain changes in the data, while
the conclusions depend on each particular case. Our interest in this section lies on
investigating how changes in the Gini coefficients influence the values of the convex
fit. By means of a simulation technique, we make use of a large number of possible
sets of data changes and compute the resulting influence on the solution vector for
each of these sets. This in turn is likely to give an idea about the influence on the
solution of the fact that the Gini data are uncertain. Formulae (22) and (21), which
show that changes in any data values always give changes to the solution and the
Lagrange multipliers, provided the theoretical ground for this computation.

In our experiment the changes were random perturbations of the n = 50 values
of the Gini coefficient that are presented in the third column of Table 2. We
provided the software L2CXFT with the data {(xi,φi) : i = 1,2, . . . ,n}, where each
component φi was generated by adding to the ith Gini coefficient a random number
from the uniform distribution on [−r,r], where we let r = 0.1. M = 1,000 such
sets of data have been produced. Then, assuming y to be the solution, the changes
were computed for each of the sets of random numbers, so that M vectors ∂y

were obtained of the form ∂y = (∂y1,∂y2, . . . ,∂yn)
T . We thus have M values for

each element of the set {∂y1,∂y2, . . . ,∂yn} and similarly for {∂λ2,∂λ3, . . . ,∂λn−1}.
The resulting changes are summarized in Table 2. We present four columns of
the average and average absolute value of these elements, namely ∑∂yj/M,

∑ |∂yj|/M, ∑∂λj/M and ∑ |∂λj|/M. In these 1,000 simulations the average of
the instances of the numbers of final active constraints is 41 and the average of the
instances of the number of the interior knots is 7 for 97% of the cases.
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Fig. 2 Convex fit (circle) to the Gini coefficients (plus) in the USA for the time period 1947–1996

The averages of the differences between the components of the initial solution
and each perturbed solution are roughly of the order of 10−4 and the averages of
the differences between the Lagrange multipliers of the initial solution and each
perturbed solution are roughly of the order of 10−3. This remark is further supported
by the values of the corresponding average absolute changes to the solution and to
the Lagrange multipliers, which are roughly of the same order as before. These are
rather minor changes indicating that the results of Sect. 3 are at least qualitatively
correct. Some more experiments were tried when r = 0.001,0.01, but the differences
to the results are either negligible or smaller than those presented in Table 2, so we
do not consider them here.

The conclusion is that the changes to the Gini coefficients considered in Table 2
made little difference to the numerical results of the initial best convex fit and the
associated Lagrange multipliers. In fact, the changes in each of the considered cases
either have left the initial active set unchanged or have made minor changes to it.
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Indeed the knots x7,x10,x23 and x45 of the initial convex fit have been preserved
by the solutions of all perturbed problems and the knots x30 and x33 have been
preserved by the majority of the solutions of the perturbed problems as we deduce
from the corresponding small values of the sums∑∂λj/M and∑ |∂λj|/M. Further,
the check shows that the constraint centred at the abscissa 29, which has initially the
small value y∗[x28,x29,x30] = 0.00125, becomes active in about 3% of the solutions
of the perturbed problems, while all the resulting fits maintained the rest of the knots
as already being stated. Thus the solution is robust with respect to the uncertainty of
the values of the Gini coefficients at least to the accuracy considered in this section.

6 Discussion

We have been concerned with the question of sensitivity of the least squares convex
fit to discrete noisy data with respect to changes in the data. The statement of the
convexity in terms of nonnegative second divided differences of the data defines
a strictly convex quadratic programming problem. This problem is solved very
efficiently by a method that takes into account the structure of the constraints, a
linear B-spline representation of the solution and the banded matrices that occur.
Further, some statistical properties of the solution are studied by Hanson and Pledger
[13] and Groeneboom et al. [12].

A practical question that arises in the utilization of this method is to what extent
changes in the data affect the values of the solution vector. In Sect. 2 we outlined the
quadratic programming method of [5] for calculating the solution that resorts upon
solving positive definite tridiagonal system of equations, thus indicating stability. In
Sect. 3 we stated formulae for changes in the solution and the associated Lagrange
multipliers due to small changes in the data. In Sect. 4 we discussed by means of a
small size illustrative example the effects of specific as well as random changes of
the data to the solution. We concluded that even the change of a single component of
the data is actually sufficient to introduce changes to all or almost all the components
of the solution. For small changes, the perturbations in the solution are usually
insignificant, but when several data values change, no matter how insignificant the
changes are, the resulting influences on the solution vector spread over the data
range.

As an application to real data, the sensitivity of the convex estimate to the
Gini coefficient in the USA for the time period 1947–1996 was investigated in
Sect. 5. The macroeconomic trend of the Gini coefficient at the given period
indicates convexity. We assumed that the measurements of the Gini coefficient
are considered uncertain, with a uniform probability distribution over a certain
interval. The consequences of this uncertainty were investigated with a simulation
technique. We computed 1,000 different sets of uniform random numbers from the
interval [−0.1,0.1] that were added to the Gini measurements; these data sets were
supplied to the software package L2CXFT and the changes between the solution
vector of each perturbed problem and the best convex fit to the original Gini data
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were calculated. The average values of these changes provided an idea about the
sensitivity of the best convex fit in the original situation. In fact the average change
to the solution components was of the order of 10−4 and the average change to the
Lagrange multipliers was of the order of 10−3, which shows that the convex fit is
robust with respect to the uncertainty of the Gini coefficient values at least to the
accuracy considered.

As a whole the results confirm that small changes to the data give only small
changes to the convex fit. Furthermore, there is room for empirical analyses in
utilizing the convex fit calculation as well as in investigating sensitivities, because
convexity has a wide range of applications and uncertainty is everywhere in real life
measurements. Our Fortran software package for the least squares convex fit would
be helpful for real problem applications.
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Modeling and Solving Vehicle Routing Problems
with Many Available Vehicle Types

Sandra Eriksson Barman, Peter Lindroth, and Ann-Brith Strömberg

Abstract Vehicle routing problems (VRPs) involving the selection of vehicles from
a large set of vehicle types are hitherto not well studied in the literature. Such
problems arise at Volvo Group Trucks Technology, that faces an immense set of
possible vehicle configurations, of which an optimal set needs to be chosen for each
specific combination of transport missions. Another property of real-world VRPs
that is often neglected in the literature is that the fuel resources required to drive a
vehicle along a route is highly dependent on the actual load of the vehicle.

We define the fleet size and mix VRP with many available vehicle types,
called many-FSMVRP, and suggest an extended set-partitioning model of this
computationally demanding combinatorial optimization problem. To solve the
extended model, we have developed a method based on Benders decomposition,
the subproblems of which are solved using column generation, and the column
generation subproblems being solved using dynamic programming; the method is
implemented with a so-called projection-of-routes procedure. The resulting method
is compared with a column generation approach for the standard set-partitioning
model. Our method for the extended model performs on par with column generation
applied to the standard model for instances such that the two models are equivalent.
In addition, the utility of the extended model for instances with very many available
vehicle types is demonstrated. Our method is also shown to efficiently handle cases
in which the costs are dependent on the load of the vehicle.

Computational tests on a set of extended standard test instances show that our
method, based on Benders’ algorithm, is able to determine combinations of vehicles
and routes that are optimal to a relaxation (w.r.t. the route decision variables) of the
extended model. Our exact implementation of Benders’ algorithm appears, however,
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too slow when the number of customers grows. To improve its performance, we
suggest that relaxed versions of the column generation subproblems are solved and
that the set-partitioning model is replaced by a set-covering model.

Keywords Vehicle routing problem • Fleet size and mix • Heterogeneous fleet •
Many vehicle types • Set partitioning • Benders decomposition • Projection-of-
routes

1 Introduction

Vehicle routing problems (VRPs) have been studied for many years. The first model
and algorithm were proposed in 1959 by Dantzig [9], and since then hundreds of
models and algorithms have been developed; see [25]. The VRP is a computationally
demanding combinatorial optimization problem with applications in many fields,
including transportation, logistics, communication, and manufacturing; they are
among the most studied combinatorial optimization problems. The classical version,
the capacitated VRP (CVRP), consists of the search for a solution to a simplified
transport mission in which customers are serviced by a set of identical vehicles
delivering goods from a central depot, and in which the configuration of customers
that each vehicle can service on one route obeys a capacity restriction. The
CVRP is an extension of the traveling salesperson problem (TSP) and is NP-
hard in the strong sense; see [28, p. 8]. Nevertheless, there is a wide range of
extensions of the CVRP. Research on the VRP has been successful and proved
relevant in industrial applications. There is also a growing industry of software for
transportation planning based on methods developed by the scientific community
for the VRP, and increasingly complex models and larger sized problems are being
solved [24, 28].

When modeling this type of real-world combinatorial optimization problems,
decisions have to be made about what aspects should be included. A heterogenous
fleet of vehicles is one aspect of real-life problems that may be important to consider.
Hoff et al. [17, p. 2043] state that “there is generally a strong dependency between
fleet composition and routing”; therefore the corresponding decisions need to be
integrated. Given a transport mission, the optimal routing solution depends strongly
on the characteristics of the available fleet of vehicles. For a company such as the
Volvo Group Trucks Technology (Volvo GTT), that faces an immense set of possible
vehicle configurations, the inclusion of a very large set of vehicle types is of great
interest. Volvo GTT wishes to determine an optimal set of vehicle configurations
for any specific combination of transport missions. This will help their customers
to make more qualified vehicle purchasing decisions, which in turn will make
them more satisfied. This type of optimization tool can also help Volvo GTT to
better understand their customers’ needs, which may then influence strategic vehicle
development decisions and make Volvo GTT even more competitive on the tough
global vehicle market.
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Most successful heuristic methods for the VRP combine different classical
heuristics. Recently combinations of exact methods—based on mathematical pro-
gramming—and meta-heuristics were proposed. According to Drexl [11, p. 61],
“[a]n exact solution of real-world problems with many additional side constraints
will remain impossible in the short and medium term. However, close-to-optimal
solutions of more and more complex and integrated problems, increasingly based on
incomplete optimization approaches and mathematical-programming-based heuris-
tics, are possible, and this is sufficient to provide useful decision support in
practice”.

This work focuses on developing models and algorithms appropriate for VRPs
with a very large set of vehicle types. We have taken as a starting point the so-called
fleet size and mix VRP (FSMVRP), in which a heterogeneous fleet of vehicles is
available. Standard models and algorithms for the VRP with a heterogeneous fleet
consider only a few vehicle types. We consider a large set of vehicle types and denote
the corresponding problem many-FSMVRP. We have adapted a mathematical
optimization model and an algorithm based on column generation, which has proved
to be a successful heuristic for the FSMVRP, to accommodate a very large set of
vehicle types. In addition a new model, in which the number of vehicle types that
are allowed in a feasible solution is limited, and an algorithm, based on Benders
decomposition, are proposed. The limit on the number of vehicles allowed, in
addition to being a relevant part of the model, proves technically useful in the
decomposition algorithm, for cases when the set of possible vehicle types is very
large. Load-dependent costs, which are not included in standard models for the
FSMVRP, are also developed and implemented, in order to illustrate how the
solution framework developed can be extended to include additional properties of
real transportation problems.

This chapter is structured as follows. In Sect. 2 we review relevant scientific
literature. The mathematical models and algorithms developed are presented in
Sects. 3 and 4, respectively. In Sect. 5 we present computational tests and results
while conclusions are drawn in Sect. 6.

2 Literature Review of the VRP with a Heterogeneous Fleet

The VRP with a set of non-identical vehicle types was first formulated in 1984 by
Golden [16]. When the number of vehicles of each type is constrained, the problem
is generally known as the heterogeneous VRP (HVRP), otherwise it is known as the
FSMVRP. The objective function may include a fixed cost for each vehicle that is
used, and/or routing costs dependent on the length of each route and possibly also
on the vehicle type; see [2].

Algorithms for the HVRP are often tested on the twelve instances introduced
in [16] (denoted G12 in [2]) and on eight of those instances adapted by Taillard
[23] to include vehicle-dependent variable costs (denoted T8 in [2]); see also [28].
However, none of the test instances in G12 and T8 possesses a combination of fixed
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and variable costs that both depend on the vehicle type. Choi and Tcha [6] combined
the instances G12 and T8 to a set of twelve test instances, here denoted CT12, in
each of which both the fixed and the variable costs depend on the vehicle type. The
instances in G12, T8, and CT12 contain three to six vehicle types each.

Until recently, no exact algorithm had been implemented for the HVRP “[d]ue to
the intrinsic difficulty of this family of routing problems” [2, p. 13]. Exact solution
methods have now been developed based on branch-and-cut-and-price in [21] and
on a set-partitioning formulation using additional constraints in [1], the latter being
able to solve instances with up to 75 customers, and some instances with 100
customers; it works well for other variants of VRPs as well (see [28]).

Hoff et al. [17] and Baldacci et al. [2] review numerous heuristic methods
applied to the HVRP; both report that the column generation-based heuristic of
Choi and Tcha in [6], which employs a set-covering formulation, provides good
results as compared with other heuristic methods. In that heuristic, each vehicle
type determines one column generation subproblem, which in turn is relaxed—
both by using a state-space relaxation and by relaxing the elementary constraint
of the routes—and solved using dynamic programming with a 2-cycle elimination
procedure. In [17, p. 2048] it is stated that “[t]he results confirm the dominance of
this algorithm, both in terms of quality and computation time”. When applying the
column generation algorithm in [6] to the instances in G12, solutions were found,
for which the average relative gap with respect to the best known solution values at
the time was 0.004%; for T8 the best known solutions were found; see [2, Tables 4
and 6]. Optimal solutions for all but one of the instances in CT12 are presented in
[1, Table 7]; the average of the relative differences between the values of each of
these optimal solutions and the corresponding solution in [6] is 0.09%.

3 Mathematical Models for the Many-FSMVRP

Algorithms for the FSMVRP presented in the literature have hitherto been focused
on instances with few vehicle types, and to the standard test instances for the VRP
with a homogeneous fleet contain relatively few vehicle types. An efficient handling
of large instances of the FSMVRP requires models and solution techniques tailored
for a large set of vehicle types. The many-FSMVRP developed and studied in this
chapter is an extension of the FSMVRP adapted to the case when the number of
available vehicle types is very large.

Based on the solution technique for the HVRP presented in [6], and a (simple)
set-partitioning model, we have developed and implemented a column generation
algorithm for the many-FSMVRP. We have also developed an extended set-
partitioning model, which restricts the number of vehicle types that may be used in a
solution to the many-FSMVRP, due to two main reasons: (a) A limit on the number
of vehicle types allowed is a natural property for practical routing problems, e.g.,
since a fleet with fewer vehicle types can be more flexible. (b) By restricting the
number of vehicle types used in a solution, a Benders decomposition of a relaxed
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model is enabled, the resulting Benders subproblem being essentially equivalent to
the simple set-partitioning model, although with fewer vehicle types. The number of
vehicle types allowed in the extended set-partitioning model determines the number
of vehicle types considered in Benders subproblem, influencing its computational
complexity.

To the best of our knowledge, a limit on the number of vehicle types used in a
solution to the extended set-partitioning model has not previously been implemented
for the HVRP. To illustrate how our models adapt to more complex problem settings
they have also been modified to consider load-dependent costs.

The proposed models of the many-FSMVRP are defined on a directed graph
(N,A), where N := {0}∪N0, N0 := {1, . . . ,N} denotes the set of nodes represent-
ing the customers, node 0 represents the depot, and A denotes the set of directed
links between pairs of nodes in N. Each customer i ∈ N0 has a demand di > 0. The
set K := {1, . . . ,K} represents the vehicle types and each vehicle type k ∈ K has a
limited capacity Dk > 0.

Associated with each vehicle type k ∈ K are a variable cost, clink
ijk , for each

link (i, j) ∈ A, and a fixed cost fk. The variable costs are modeled as clink
ijk :=

αk dist(i, j), where dist(i, j) denotes the length of link (i, j) ∈ A and the coefficient
αk increases with an increasing capacity Dk, k ∈ K. For each vehicle type k ∈ K

the feasible routes are implicitly defined by the index set Rk. A route is a sequence
of nodes (i0, i1, . . . , iH−1, iH), such that (ih−1, ih) ∈ A, h = 1, . . . ,H. A route r :=
(i0, i1, . . . , iH−1, iH) is feasible if it starts at the depot, visits each customer at most
once, and ends at the depot, i.e., H ≥ 2, i0 = iH = 0, {i1, . . . , iH−1}⊆N0, and ih1 �= ih2

whenever h1,h2 ∈ {1, . . . ,H −1} and h1 �= h2. A route–vehicle pair (r,k) is feasible
if route r ∈ Rk is feasible and does not exceed the capacity constraints of vehicle
type k ∈K, i.e., if∑H−1

h=1 dih ≤ Dk. The cost of a feasible route–vehicle pair (r,k) is

defined as crk := fk +∑H
h=1 clink

ih−1ihk.

3.1 A Set-Partitioning Formulation of the FSMVRP

The FSMVRP is to minimize the sum of the costs of the routes traveled by
the vehicles, while each customer is visited by exactly one vehicle. Defining the
parameters

δirk :=

⎧⎪⎪⎨
⎪⎪⎩

1, if the route r, of the route-vehicle

pair (r,k), visits customer i,

0, otherwise,

i ∈N0, r ∈ Rk, k ∈K,
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and the decision variables

xrk :=

{
1, if the route-vehicle pair (r,k) is used,

0, otherwise,
r ∈ Rk, k ∈K,

the set-partitioning formulation of the FSMVRP is given by

z∗ := min
x ∑

k∈K
∑

r∈Rk

crkxrk, (1a)

s.t. ∑
k∈K

∑
r∈Rk

δirkxrk = 1, i ∈N0, (1b)

xrk ∈ {0,1}, r ∈ Rk, k ∈K. (1c)

The objective (1a) is to minimize the sum of the costs over the routes that are used.
The constraints (1b) ensure that each customer is visited by exactly one vehicle.
This type of set-partitioning formulation of the VRP was originally proposed in
[3]. The model is general and has the advantage that many restrictions can easily
be incorporated, since the feasibility of routes is implicitly defined by the sets
Rk, k ∈ K. The linear programming (LP) relaxation of this type of model for the
VRP is often very tight; see [24, p. 22]. Since, for realistic problem instances,
the number, ∑k∈K |Rk|, of feasible routes is extremely large (tens of customers
may yield billions of feasible routes), column generation, possibly combined with a
branch-and-bound algorithm or cut generation, is an appropriate solution method.

3.2 An Extended Set-Partitioning Model
of the many-FSMVRP

Considering the huge set K of vehicle types in the many-FSMVRP, we propose
an extended set-partitioning formulation, in which the number of vehicle types that
may be used is limited. We define the parameters C = the maximum allowed number
of vehicle types (the vehicle type limit) and M = the maximum allowed number of
vehicles of each type, and the variables

yk :=

{
1, if vehicle type k is allowed,

0, otherwise,
k ∈K.

The extended set-partitioning formulation is then given by

z∗EXT := min
x,y ∑

k∈K
∑

r∈Rk

crkxrk, (2a)

s.t. ∑
k∈K

∑
r∈Rk

δirkxrk = 1, i ∈N0, (2b)
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∑
r∈Rk

xrk ≤ Myk, k ∈K, (2c)

∑
k∈K

yk ≤ C, (2d)

xrk ∈ {0,1}, r ∈ Rk, k ∈K, (2e)

yk ∈ {0,1}, k ∈K. (2f)

This extends the formulation (1) by the constraints (2c)–(2d) and the binary
variables yk, k ∈ K. The constraints (2c) limit the number of vehicles of each type,
and the constraint (2d) sets the vehicle type limit. Hence, the inequality z∗EXT ≥ z∗

holds.

3.3 Load-dependent Costs

Most VRP settings restrict the variable travel costs to depend on the distance
traveled only. Since travel costs depend on many factors, this may be too limiting
for a practical application. According to [29], factors determining real travel costs
can be divided into two groups, of which the first includes distance, but also speed,
load, fuel consumption, and road conditions. The factors in the second group are
less related to the route traveled and include vehicle depreciation and maintenance
costs, wages, and taxes. Most of the factors in the first group are related to fuel
consumption, which is highly dependent on the distance traveled and on the vehicle
load. The authors argue, using statistical data, that fuel consumption can be modeled
as an affine function involving the fuel consumption rates of a fully loaded and an
empty vehicle. We define the parameters a = the fuel unit cost and ρDk

k (ρ0
k ) = the

fuel consumption rate of a fully loaded (empty) vehicle of type k ∈ K, and assume
that the customer demands di, i ∈ N0, are given in weight units. The cost of the
route–vehicle pair (r,k), where r = (0, i1, . . . , iH−1,0), is then defined as

cload
rk := fk +a

H−1

∑
h=1

dist(ih−1, ih)

[
ρ0

k +
ρDk

k −ρ0
k

Dk

(
H−1

∑
t=h

dit

)]
+a dist(iH−1,0)ρ0

k ,

where ∑H−1
t=h dit represents the load of the vehicle after its visit at customer ih−1

along route r. Hence, the cost of the route–vehicle pair (r,k) is given by the sum
of the fixed cost fk and a weighted sum of the distances dist(ih−1, ih), h = 1, . . . ,H,
where the weights increase with the vehicle load on the links.
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To adapt the modeling of load-dependent costs to our test instances we define the
weight parameters Qdist > 0 and Qload > 0 (see Sect. 5.3 for the derivation of these
values) and define the load-dependent cost of the route–vehicle pair (r,k) as

cload
rk := fk +

H−1

∑
h=1

clink
ih−1ihk

[
Qdist +Qload

(
H−1

∑
t=h

dit

)]
+ clink

iH−10k Qdist, (3)

where the link costs clink
ijk , (i, j) ∈A, correspond to the load-independent costs.

4 Algorithms for the many-FSMVRP

We use a column generation algorithm to solve the model (1) and a combined
Benders decomposition and column generation algorithm to solve the extended
model (2). The load-dependent costs are implemented by replacing crk by cload

rk in
both models and altering the column generation subproblems accordingly. For the
extended model, this has implications for the Benders subproblems. The property of
the set-partitioning model—on which both of our models are based—that only the
subproblems need to be altered is quite useful, as will be demonstrated.

4.1 Column Generation Applied to the Set-Partitioning Model

For combinatorial optimization problems that can be formulated as set-partitioning
problems with binary variables, e.g., the VRP and the crew pairing assignment
problem, column generation has shown to be a successful solution strategy. Column
generation is often implemented in a branch-and-bound algorithm, then called
branch-and-price, and in which columns are generated in each node of the branch-
and-bound tree; see [26]. The most successful exact algorithms for the VRP are
based on branch-and-price with additional cut generation, the so-called branch-and-
cut-and-price; see [11].

Column generation can also be used to find good, but not necessarily optimal,
solutions, as a mathematical programming-based heuristic; see [27, pp. 352–
353]. The algorithm implemented here for the model (1) is based on the column
generation heuristic of Choi and Tcha in [6], which has proved successful for the
HVRP. For a thorough account of column generation, see [26].

To apply the column generation principle, the binary requirements (1c) on the
variables xrk are relaxed according to

xrk ≥ 0, r ∈ Rk, k ∈K. (4)
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We formulate the column generation restricted master problem as

[CGRMP] z̃CGRMP := min
x ∑

k∈K
∑

r∈R̃k

crkxrk,

s.t. ∑
k∈K

∑
r∈R̃k

δirkxrk = 1, i ∈N0,

xrk ≥ 0, r ∈ R̃k, k ∈K,

where R̃k ⊆Rk, k ∈K. Note that, when R̃k =Rk it holds that [CGRMP] is equivalent
to (1a)–(1b), (4). The LP dual of [CGRMP] is formulated as

[CGRMPDual] z̃CGRMP = max
πππ ∑

i∈N0

πi,

s.t. ∑
i∈N0

δirkπi ≤ crk, r ∈ R̃k, k ∈K.

The sets R̃k are initialized such that there exists a feasible solution to [CGRMP].
In each iteration of the column generation algorithm, the sets R̃k are expanded
by routes r ∈ Rk \ R̃k, possessing low (negative) reduced costs, until an optimal
solution to the model (1a)–(1b), (4) is found and verified (i.e., until all reduced costs
are nonnegative). We denote the corresponding optimal value by z∗LP. Finally, to
obtain a feasible solution to (1), binary restrictions on the variables xrk are added to
[CGRMP], which is solved to optimality with respect to the columns generated.

4.1.1 Adding Routes to the Restricted Master Problem

For r ∈ Rk, k ∈K, the reduced cost of the variable xrk, denoted ĉrk, is given by

ĉrk := crk − ∑
i∈N0

δirkπ∗
i , (6)

where πππ∗ denotes an optimal solution to [CGRMPDual]. Defining

ĉlink
ijk := clink

ijk −π∗
j , (i, j) ∈A, j ∈ N0, (7a)

ĉlink
i0k := clink

i0k , (i,0) ∈A. (7b)

the reduced cost ĉrk can be expressed as

ĉrk = fk +
H

∑
h=1

clink
ih−1ihk −

H−1

∑
h=1

π∗
ih = fk +

H

∑
h=1

ĉlink
ih−1ihk.
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Following [6], define one column generation subproblem per vehicle type k∈K as

ĉ∗
k := min

r∈Rk

{ĉrk} = min
r∈Rk

{
crk − ∑

i∈N0

δirkπ∗
i

}
= fk + min

r∈Rk

{
H

∑
h=1

ĉlink
ih−1ihk

}
. (8)

Each problem (8) is an elementary shortest path problem with resource constraints,
denoted ESPPRC in [18], which is NP-hard in the strong sense. This is related to
the fact that the network may contain at least one cycle, such that the sum over its
links of the reduced link costs (7) is negative; see [18, 22]. Dynamic programming
is commonly used for solving the ESPPRC subproblems when column generation
is used to solve the VRP. Due to the complexity of the ESPPRC, often a (relaxed)
non-elementary shortest path problem with resource constraints (SPPRC), which
possesses a pseudo-polynomial complexity, is solved; see [14, 22]. We solve the
ESPPRC using dynamic programming—following [14]—in the first part of the
column generation algorithm. As a means to improve the computational complexity
of the algorithm, we suggest that these subproblems are relaxed into SPPRCs.

The following measures were found to provide substantial savings in compu-
tation time. In order to speed up the convergence towards the optimal value of
the model (1a)–(1b), (4), the column generation subproblems have been solved
approximately (except in the last iteration, when verifying that the solution to
[CGRMP] is optimal in the relaxed model); see [20]. Hence, a route r ∈ Rk \ R̃k,
such that the variable xrk possesses a negative but not necessarily minimal reduced
cost ĉrk = crk −∑i∈N0

δirkπ∗
i , has been added to R̃k. In addition, since the original

subproblem—finding a variable xrk with minimal reduced cost—is divided into one
subproblem for each vehicle type k, the subproblem for each vehicle type does not
have to be solved in every iteration. Instead a so-called partial column generation
has been employed in which only a subset of the subproblems is considered in each
iteration. However, at least one variable xrk with a negative reduced cost must be
added to [CGRMP], provided that such a variable exists; see [20]. Since there are
as many subproblems as vehicle types, the set of which is assumed to be very large,
the use of partial column generation has shown to be beneficial.

We have used two different approaches to solve the subproblems (8), one based
on a mathematical model solved by AMPL and CPLEX, and the other based
on dynamic programming implemented in Matlab. Both approaches have been
implemented such that the solution algorithm can be interrupted before an optimal
solution to the subproblem has been found, either when a predefined time limit
has been exceeded or after a certain number of routes with negative reduced cost
have been found. We noted that often when no route with a negative reduced cost
had been found for a given subproblem in the later column generation iterations,
then no such route was found in the next couple of iterations either. Therefore, a
kind of tabu strategy of partial column generation was also implemented for the
subproblems (see [15] for an introduction to tabu search) according to the following.
If, for one specific subproblem, no route with a negative reduced cost has been
found during a predetermined number of consecutive column generation iterations,
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this subproblem is not solved for a predetermined number of iterations. We also
noted that subproblems corresponding to vehicles with similar capacities sometimes
yielded the same routes—both when solved to optimality and when not. The tabu
strategy was then updated, so that only the route–vehicle pair possessing the lowest
reduced cost was added to the restricted master problem, and the other subproblems
(which yielded the same route) were recorded as not providing a route with negative
reduced cost—thus potentially leading to these not being solved for a number of
iterations. For more details about the implementation of the subproblem solver,
see [12].

4.1.2 Terminating the Column Generation Algorithm

As previously mentioned, the optimal solution to the final [CGRMP] is an optimal
solution to the model (1a)–(1b), (4), when the reduced costs of all the feasible
route–vehicle pairs are nonnegative. However, in the later iterations of the column
generation often only very small improvements are made; the so-called tailing off
effect; see [20]. Hence, terminating the algorithm prior to convergence may be
beneficial.

In each iteration of the column generation algorithm, the optimal solution to
[CGRMP] is feasible in the model (1a)–(1b), (4), which possesses the optimal value
z∗LP. Hence, z̃CGRMP is and upper bound on z∗LP. A lower bound on z∗LP is given by
z :=N ·mink∈K{ĉ∗

k}+ z̃CGRMP, where ĉ∗
k is found by solving the subproblem in (8) to

optimality (see [12, Sect. 4.1.2] for a derivation of z). These upper and lower bounds
on z∗LP have been used to terminate the column generation prior to convergence, i.e.,
when z̃CGRMP − z ≤ ε , for some predetermined value of ε > 0.

4.2 Benders’ Decomposition Algorithm for the Extended
Set-Partitioning Model

To handle the large set of vehicle types in the many-FSMVRP, decomposing
the problem in several levels has shown fruitful. For routing and scheduling
problems arising in airline planning, Benders decomposition combined with column
generation was successfully applied by Cordeau et al. in [8] when considering the
simultaneous aircraft routing and crew pairing—due to the high complexity of the
problem this has traditionally been done in sequence. In a Benders decomposition of
an optimization problem, in each iteration one set of variables—called complicating
variables—is fixed, and the (restricted) problem with respect to the remaining
variables is solved to optimality. This is iterated: in each iteration, information about
solutions from former iterations is used to fix the complicating variables, until an
optimal solution to the restricted problem is verified to be optimal in the original
problem. See [19] for an account of Benders decomposition.
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One advantage of Benders decomposition compared to column generation is that
the former procedure can handle binary requirements on the variables. For the many-
FSMVRP, this allows for keeping the binary requirements on the variables yk in the
extended set-partitioning model, resulting in Benders subproblems in which only
subsets of the vehicle types are allowed. These subproblems can then be solved by
the column generation algorithm described in Sect. 4.1.

First, to use Benders’ algorithm, we relax the binary requirements (2e) on the
variables xrk, according to (4). The optimal value of the resulting model (2a)–
(2d), (2f), (4) is denoted v∗. We consider the variables yk, k ∈K, as complicating and
define the set Kcap :=

{
k ∈ K

∣∣Dk ≥ maxi∈N0{di}
}

of the vehicle types possessing
a capacity large enough to service any of the customers. The set

S :=

{
y ∈ {0,1}K

∣∣∣∣∣ ∑k∈Kyk ≤ C, ∑
k∈Kcap

yk ≥ 1

}

contains the values of the complicating variables y for which the remaining problem
in the variables x—i.e., the Benders subproblem—possesses at least one feasible
solution. For fixed values of the variables y := ỹ this subproblem appears as

[BendersSP(ỹ)] w∗(ỹ) := min
x ∑

k∈K
∑

r∈Rk

crkxrk,

s.t. ∑
k∈K

∑
r∈Rk

δirkxrk = 1, i ∈N0,

∑
r∈Rk

xrk ≤ Mỹk, k ∈K,

xrk ≥ 0, r ∈ Rk, k ∈K,

and its corresponding LP dual problem is given by

[BendersSPDual(ỹ)] w∗(ỹ) = max
πππ,γγγ

[
∑

i∈N0

πi +M ∑
k∈K

ỹkγk

]
, (9a)

s.t. ∑
i∈N0

δirkπi + γk ≤ crk, r ∈ Rk, k ∈K, (9b)

γk ≤ 0, k ∈K. (9c)

We denote the dual feasible set by

FBendersSPDual :=
{
(πππ,γγγ) ∈ R

N+K
∣∣ (πππ,γγγ) satisfies (9b)–(9c)

}
.
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Defining a constrained set of vehicles as K̃(y) := {k ∈ K |yk = 1}, an equivalent
formulation to [BendersSP(ỹ)] is given by

w∗(ỹ) = min
x ∑

k∈K̃(ỹ)
∑

r∈Rk

crkxrk, (10a)

s.t. ∑
k∈K̃(ỹ)

∑
r∈Rk

δirkxrk = 1, i ∈ N0, (10b)

∑
r∈Rk

xrk ≤ M, k ∈ K̃(ỹ), (10c)

xrk ≥ 0, r ∈ Rk, k ∈ K̃(ỹ). (10d)

If M is chosen large enough (e.g., M := N), then the constraints (10c) are
nonrestrictive and can be removed. We assume from now on that M is nonrestrictive;
then, the model (10) is equivalent to the model (1a)–(1b), (4), except that the set
of allowed vehicle types is smaller in the former. Hence, the column generation
algorithm for the model (1a)–(1b), (4), described in Sect. 4.1, can be used to
solve (10a)–(10b), (10d) [a solution to [BendersSP(ỹ)] is then constructed by setting
xrk := 0 for r ∈ Rk and k ∈ K\ K̃(ỹ)].

Now, let L ≥ 2 denote the current Benders iteration and {1, . . . ,L−1} the set of
former iterations, and let ỹL ∈ S be the fixed values of the variables y at iteration
L (ỹ1 ∈ S are set manually). The model [BendersSP(ỹL)] is solved by column
generation applied to (10a)–(10b), (10d), and an optimal extreme point (πππL,γγγL) to
[BendersSPDual(ỹL)] is calculated (details in Sect. 4.2.1), defining the constraint

v ≥ ∑
i∈N0

πL
i +M ∑

k∈K
γL

k yk, (11)

to be added to the Benders restricted master problem, which is given by

[BendersRMP] ṽL := min
v,y

v,

s.t. v ≥ ∑
i∈N0

π�
i +M ∑

k∈K
γ�k yk, � ∈ {1, . . . ,L−1},

y ∈ S.

After adding the constraint (11) to [BendersRMP], it is solved for optimal values
(ṽL+1, ỹL+1). This defines the new problem [BendersSP(ỹL+1)]. This process is
iterated—adding one constraint (11) in each Benders iteration—until an optimal
solution to (2a)–(2d), (2f), (4) is found and verified.

With (ṽL, ỹL) optimal in [BendersRMP], x̃L optimal in [BendersSP(ỹL)], and
(πππL,γγγL) optimal in [BendersSPDual(ỹL)], it follows that (x̃L, ỹL) is an optimal
solution to (2a)–(2d), (2f), (4) if it holds that

ṽL = ∑
i∈N0

πL
i +M ∑

k∈K
γL

k ỹL
k . (12)
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This is due to the fact that the inequalities ṽL ≤ v∗ [v∗ being the optimal value
of (2a)–(2d), (2f), (4)] and ∑i∈N0

πL
i + M∑k∈K γL

k ỹL
k = ∑k∈K∑r∈Rk

crkx̃L
rk =

w∗(ỹL)≥ v∗ hold [where the second equality holds since (x̃L, ỹL) is feasible in (2a)–
(2d), (2f), (4)]. If Eq. (12) does not hold, then the inequality

ṽL < ∑
i∈N0

πL
i +M ∑

k∈K
γL

k ỹL
k

must hold. Therefore, by adding the constraint (11) to [BendersRMP], the current
solution (ṽL, ỹL) becomes infeasible. Since the set S is finite, Benders’ algorithm
will converge after a finite1 number of iterations.

Since the inequalities ṽL ≤ wL ≤ w∗(ỹL), and possibly also ṽL = wL < w∗(ỹL),
hold, we have also implemented a stronger optimality criterion than (12), given by

ṽL = min
�∈{1,...,L}

{
w∗(ỹ�)

}
=: wL.

Benders’ algorithm is then set to terminate when, for some ε > 0, the inequality
wL − ṽL ≤ ε has become fulfilled, in which case the difference between the objective
value of the best feasible solution to (2) found so far and that of an optimal solution
to (2a)–(2d), (2f), (4) (i.e., wL − v∗) is not greater than ε .

Since Benders’ algorithm is applied to (2a)–(2d), (2f), (4), the optimal value
of [BendersRMP] is a lower bound on that of (2), i.e., ṽL ≤ z∗EXT. However, after
solving [BendersSP(ỹL)] binary requirements have been incurred on the variables
xrk, r ∈ R̃k, k ∈ K̃(ỹL), in [CGRMP] (when the column generation for (10a)–
(10b), (10d) has converged). For the solution, x̃L

binary say, to the resulting problem, it

holds that (ỹL, x̃L
binary) is feasible in (2). Hence, the corresponding objective value is

an upper bound on z∗EXT.

4.2.1 An Optimal Extreme Point to the Benders Subproblem

In each Benders iteration the compact model (10a)–(10b), (10d) is solved in place
of the equivalent model [BendersSP(ỹ)]. Therefore, some extra effort must be
put into finding an extreme point to the set FBendersSPDual that is also optimal in
[BendersSPDual(ỹ)].

1Finite convergence is guaranteed if an optimal solution (πππL,γγγL) to [BendersSPDual(ỹL)] is used
to generate a new constraint to [BendersRMP] in each iteration, since if ỹ�1 = ỹ�2 , for two Benders
iterations �1 < �2, then the optimality criterion (12) will be fulfilled at iteration �2.
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The final column generation iteration in the solution course for the model (10a)–
(10b), (10d) yields optimal variable values, π̄ππ , for its dual, which is expressed as

max
πππ ∑

i∈N0

πi, (13a)

s.t. ∑
i∈N0

δirkπi ≤ crk, r ∈ Rk, k ∈ K̃(ỹ). (13b)

For k ∈K and π̄ππ ∈ R
N we define the problem

γ∗k :=max
γk

{
γk ≤ 0

∣∣∣∣∣γk ≤ crk − ∑
i∈N0

δirkπ̄i, r ∈ Rk

}
(14a)

=min

{
0; min

r∈Rk

{
crk − ∑

i∈N0

δirkπ̄i

}}
, (14b)

which is closely related to [BendersSPDual(ỹ)]: The optimal values γγγ∗ equal the
maximum possible values of γγγ in [BendersSPDual(ỹ)] for πππ := π̄ππ . We have the
following result, the proof of which is found in [12, Sect. 4.2.2].

Proposition 1. Consider the following properties of a vector (π̄ππ, γ̄γγ) ∈ R
N+K.

(i) π̄ππ is optimal in (13).
(ii) π̄ππ is an extreme point to the set

{
πππ ∈ R

N
∣∣ πππ satisfies (13b)

}
.

(iii) γ̄k = 0 for all k ∈ K̃(ỹ).
(iv) γ̄k = γ∗k , where γ∗k is optimal in (14), for all k ∈ K\ K̃(ỹ).

The following statements hold for a vector (π̄ππ, γ̄γγ) ∈ R
N+K.

(a) If (i), (iii), and (iv) hold, then (π̄ππ, γ̄γγ) is optimal in [BendersSPDual(ỹ)].
(b) If (ii), (iii), and (iv) hold, then (π̄ππ, γ̄γγ) is an extreme point to the set FBendersSPDual.

After solving (10a)–(10b), (10d)—the solution of which, with the excluded
variables set to zero, is optimal in [BendersSP(ỹ)]—using column generation, values
of π̄ππ satisfying property (i) results from the last iteration.

The important consequences of Proposition 1 are the following: If γ̄γγ fulfills
properties (iii) and (iv) then (π̄ππ, γ̄γγ) is optimal in [BendersSPDual(ỹ)]. If π̄ππ also
fulfills property (ii)—implying that π̄ππ is an optimal extreme point to (13)—and γ̄γγ
fulfills properties (iii) and (iv) for the chosen values of π̄ππ , then (π̄ππ, γ̄γγ) is an extreme
point to FBendersSPDual that is optimal in [BendersSPDual(ỹ)]. Note that the values γ̄γγ
that fulfill properties (iii) and (iv) are given by γ̄k = min

{
0;minr∈Rk {ĉrk}

}
, which

equals the optimal value γ∗k of (14) for all k ∈K.
In the context of the LP model (1a)–(1b), (4), ĉrk is the reduced cost of

the variable xrk [cf. the model (14) and the reduced cost (6)]. Hence, according
to Proposition 1, the right-hand side of each constraint (11) that is added to
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[BendersRMP] equals the sum of ∑i∈N0
πL

i (being the optimal objective value of

the Benders subproblem in iteration L) and M∑k∈K γL
k yk [the sum of the scaled

minimal reduced costs, γL
k , from the Benders iteration L, for all vehicle types in

the set K̃(y)]. So when solving [BendersRMP] in iteration L, the resulting variable
values ỹL are the most promising with respect to the objective value∑i∈N0

π�
i plus

the corresponding minimal reduced costs γ̄�k (scaled by M), k ∈ K̃(ỹL), taking into
account each former Benders iteration � ∈ {1, . . . ,L−1}.

4.2.2 Extensions of Benders’ Algorithm

To improve the speed of convergence of Benders’ algorithm, we have implemented
the following projection-of-routes procedure, in which optimal solutions, x̃�, to
[BendersSP(ỹ�)] are investigated to determine whether the corresponding routes
can yield a better objective value when used by other types of vehicles. Since only
vehicle types in the set K̃(ỹ�) are allowed in [BendersSP(ỹ�)], it may occur that a
route that is used in an optimal solution to [BendersSP(ỹ�)] can be taken by a vehicle
type in K\ K̃(ỹ�) at a lower cost than that corresponding to any of the vehicle types
in K̃(ỹ�). Consider a subset K̂ ⊂ K such that

∣∣K̂ ∣∣ ≤ C. If, for some � = 1, . . . ,L,
the routes in an optimal solution to [BendersSP(ỹ�)] can be assigned to the vehicle
types in K̂ at a cost that is lower than wL (i.e., the lowest value of a feasible solution
found so far), then K̂ is used to define the variable values ỹL+1 in the next iteration.
Thus, instead of solving [BendersRMP] for (ṽL+1, ỹL+1), we set

ỹL+1
k :=

{
1, if k ∈ K̂,

0, otherwise.

Our implementation of the selection of the set K̂ is described in [12, Sect. 4.2.4].
The projection-of-routes procedure, which proved to greatly reduce the time

until an optimal solution to (2a)–(2d), (2f), (4) is found, is set to be performed
each Benders iteration, starting from iteration three, and solutions to former
[BendersSP(ỹ)] that are tested is restricted to the 100 latest Benders iterations.

To reduce the solution time of Benders subproblems, a so-called warm start can
be utilized in which the routes that are part of optimal solutions to former Benders
subproblems, and which can also be taken by some vehicle in the current Benders
iteration, are included in the set of routes used to initialize the column generation
algorithm for solving the Benders subproblem. This has greatly reduced the time
spent in the column generation phase. In many Benders iterations, even an optimal
solution to the Benders subproblem is found among the routes provided in the warm
start.
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4.2.3 Suggestions for Further Improvements of Benders’ Algorithm

To obtain an optimal extreme point to FBendersSPDual, according to Proposition 1 the
Benders subproblem should first be solved to optimality using column generation,
yielding an optimal extreme point π̄ππ to (13). While in the later column generation
iterations typically only very small improvements are made, a constraint (11) of
high quality can be provided by a point that is not necessarily extreme in the set
FBendersSPDual and near-optimal in the current Benders subproblem. For any (π̄ππ, γ̄γγ)∈
FBendersSPDual a valid inequality for [BendersRMP] is given by (see [5, p. 308])

v ≥ ∑
i∈N0

π̄i +M ∑
k∈K

γ̄kyk.

Thus, the column generation algorithm for the Benders subproblem can be termi-
nated before an optimal extreme point to (13) is found, and the variable values π̄ππ that
are optimal in the current [CGRMPDual] can be used to define a new constraint (11)
due to the fact that any point (π̄ππ, γ̄γγ) ∈ R

N+K such that γ̄γγ ≤ γγγ∗ (where γ∗k is optimal
in (14), k ∈K) belongs to the set FBendersSPDual.

Instead of solving the problems (14), k ∈ K, in each Benders iteration [as
prescribed in Proposition 1(a)] lower bounds on γγγ∗ can be used to define a new
constraint (11). This may greatly reduce the computational effort required, since the
problems (14) are essentially equivalent to the computationally expensive column
generation subproblems (i.e., the ESPPRC; see Sect. 4.1.1) for the model (1).
Dynamic programming applied to the SPPRC with 2-cycle elimination is an efficient
and commonly used method for solving relaxed column generation subproblems in
connection with the VRP [13, p. 417]; it also yields good-quality lower bounds
on the values γγγ∗. This usage of lower bounds was employed in [6] in a column
generation solution approach for the HVRP; it has not been implemented here, but
is suggested as a means for improving our algorithm.

5 Tests and Results

The tests of our algorithms were performed on a Linux computer with a Pentium
Dual-Core CPU 2.5 GHz with 2,048 KB cache. The mathematical models and algo-
rithms were implemented using the modeling software AMPL and the optimization
solver CPLEX 12. Dynamic programming for the column generation subproblems
and some other calculations (e.g., finding the initial solutions to [CGRMP], the
warm start, and the projection-of-routes) were implemented in Matlab.
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5.1 Test Settings

The instances CT12 were constructed as follows. First, the instances G12 were con-
structed using the instances in [7]—these were downloaded from [10]—following
the instructions in [16]. The networks of customer nodes of the instances CT12 are
equivalent to those of G12. The capacities and the fixed and variable costs for the
vehicle types of the instances CT12 were taken from [6, Table 1] (each instance
contains three to six vehicle types). A smaller vehicle is always less expensive than
a larger one, i.e., for any two indices k1,k2 ∈ K such that Dk1 < Dk2 holds, the
inequalities fk1 < fk2 and αk1 < αk2 hold.

To test our models for the many-FSMVRP, we then extended the instances 3–6
in CT12 (with N = 20) and the instance 13 in G12 (with N = 50) to include a larger
set of vehicle capacities within the ranges of their respective original capacities.
Since all customer demands are integer valued, we included all the integer values
in each capacity interval (see the Appendix for details). We denote these individual
test instances by mFSM-3, . . . ,mFSM-6, and mFSM-13, following the numbering
in [16]; the collection of instances is denoted by many-FSMVRP5. Each of the
instances in many-FSMVRP5 comprises 91–181 vehicle types (e.g., for mFSM-3,
K = 101 and Dk ∈ {20, . . . ,120}), which are numbered such that k1 < k2 implies
Dk1 < Dk2 .

Our tests are performed using the following algorithmic settings. The column
generation algorithm is applied to the relaxation (1a)–(1b), (4) of the model (1); it is
in this section abbreviated as column generation. Benders’ algorithm, with column
generation used to solve the Benders subproblems, is applied to the relaxation (2a)–
(2d), (2f), (4) of the extended model (2); it is in this section abbreviated as Benders’
algorithm and is applied with or without the projection-of-routes procedure.

5.2 Comparison of the Algorithms

We first compare the column generation, and Benders’ algorithm with and without
the projection-of-routes, using the four smallest instances, mFSM-3, . . ., mFSM-6.
The comparison is enabled by the choice of a nonrestrictive vehicle type limit C in
the extended model, such that the two relaxed models share an optimal solution and
z∗LP = v∗. Benders’ algorithm has been initiated with those vehicle types that were
included in the corresponding instances in CT12. Detailed results for the column
generation, and for Benders’ algorithm with the projection-of-routes, are presented
in Tables 1 and 2, respectively.

Benders’ algorithm without the projection-of-routes procedure performs better
than the column generation algorithm for mFSM-4 and mFSM-6, but quite a lot
worse for mFSM-3 and mFSM-5.
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Table 1 Results obtained by the column generation

Instance z̄ z∗LP T (CPU s) Tz∗LP
(CPU s) (z̄−z∗LP)/z

∗
LP (%)

mFSM-3 1,010.0 1,010.0 2,376 2,310 0

mFSM-4 6,550.7 6,366.0 4,608 4,607 2.90

mFSM-5 1,187.0 1,180.6 3,066 2,285 0.54

mFSM-6 6,691.7 6,436.6 3,681 3,650 3.96

z̄ denotes the value of the best feasible solution to (1) found (at the last column
generation iteration, with the binary requirements (1c) reinserted), and z∗LP
denotes the optimal value of (1a)–(1b), (4). Note that the inequalities z∗LP ≤
z∗ ≤ z̄ and z∗LP ≤ z̃CGRMP ≤ z̄ hold, where z∗ denotes the optimal value of (1).
The total computation time in AMPL/CPLEX and Matlab is denoted by T , and
Tz∗LP

denotes the computation time of the column generation algorithm until an
optimal solution to (1a)–(1b), (4) is found

Table 2 Results obtained by Benders’ algorithm applied with the projection-of-routes

Instance C a z̄EXT wL ṽL T (CPU s) Tv∗ (CPU s) L (z̄EXT−v∗)/v∗ (%)

mFSM-3 10 1,010.0 1,010.0 900.7 9,963 2,078 100 0

mFSM-4 4 6,484.7 6,366.0 6,366.0 1,107 980 3 1.86

mFSM-5 13 1,188.7 1,180.6 1,089.6 58,801 9,666 100 0.69

mFSM-6 6 6,580.8 6,436.6 6,436.6 1,300 1,140 4 2.24

C denotes the (nonrestrictive) vehicle type limit. z̄EXT denotes the value of the best solution found,
when reinserting the binary restrictions in the last iteration of the column generation applied to
[BendersSP(ỹL)]. wL (≥ v∗) is the best value of [BendersSP(ỹ�)] obtained (actually, wL = v∗ for
each of the four instances). ṽL is the optimal value of [BendersRMP] in the Benders iteration L, and
v∗ is the optimal value of (2a)–(2d), (2f), (4). Note that the inequalities ṽL ≤ v∗ ≤ z∗EXT ≤ z̄EXT hold,
where z∗EXT denotes the optimal value of (2). The total computation time in AMPL/CPLEX and
Matlab is denoted by T , and Tv∗ denotes the computation time for the Benders iterations until the
optimal solution to (2a)–(2d), (2f), (4) is found. L is the number of Benders iterations performed
(maximally 100) until the optimality is verified. Since the vehicle type limit C is nonrestrictive,
v∗ = z∗LP holds (see Table 1)
aC :=∑k∈K

⌈
N−1∑r∈Rk

x̄∗
rk

⌉
+2, where x̄∗ denotes an optimal solution to (1a)–(1b), (4)

For the instances mFSM-4 and mFSM-6, Benders’ algorithm without the
projection-of-routes converges to an optimal solution to (2a)–(2d), (2f), (4) [which
is optimal also to (1a)–(1b), (4)] in just two and three iterations, respectively, taking
less computing time than the column generation approach for the model (1).

For none of the instances mFSM-3 and mFSM-5, Benders’ algorithm without
the projection-of-routes manages to pick a combination of vehicle types that is used
in an optimal solution to (2a)–(2d), (2f), (4), not even after 100 Benders iterations,
which calls for a lot more computing time than does the column generation approach
for the model (1). Each of these vehicle types is, however, chosen quite frequently,
which is illustrated in Fig. 1 for the instance mFSM-3. For mFSM-4 and mFSM-
6, the cost structure is such that only vehicle types among the five smallest are
used in the respective optimal solutions to (2a)–(2d), (2f), (4), while there is a
larger spread of the optimal vehicle types for the instances mFSM-3 and mFSM-
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Fig. 1 The percentage of 100 Benders iterations without the projection-of-routes, in which each of
the vehicle types (1–101) is picked, for mFSM-3 with C = 10. The optimal solution uses vehicles
in K̃(ỹL) = {1,2,10,17,18,22,23,25} (light bars). Although K̃(ỹ1) = {1,11,21,51,101}, only
vehicle types among the 39 smallest are picked in any Benders iteration
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Fig. 2 The best objective value, wL, of (2a)–(2d), (2f), (4) found at Benders iteration L. (a)
The instance mFSM-3; when using the projection-of-routes, w15 = 1,010.0 = v∗; without the
projection-of-routes, w100 = 1,010.5. (b) The instance mFSM-5; when using the projection-of-
routes, w12 = 1,180.6 = v∗; without the projection-of-routes, w100 = 1,181.4

5; this may explain the difference in convergence speed. Benders’ algorithm with
the projection-of-routes, however, finds optimal solutions to the instances mFSM-3
and mFSM-5 within 15 Benders iterations.

When the projection-of-routes is not employed, for the instance mFSM-3, the
best objective value, wL = 1,010.5, of the Benders subproblem over 100 Benders
iterations is attained at iteration 81. When employing the projection-of-routes, this
value is attained at iteration six and the optimal value of (2a)–(2d), (2f), (4), v∗ =
1,010.0, is attained at iteration 15. Similar results are obtained for mFSM-5 (see
Fig. 2).
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Benders’ algorithm, with the projection-of-routes, finds the optimal value, v∗,
of (2a)–(2d), (2f), (4), for the instances mFSM-3, . . . ,mFSM-6. For the instances
mFSM-3, mFSM-4, and mFSM-6, it attains the optimal value faster than does the
column generation algorithm. Verifying optimality for the instances mFSM-3 and
mFSM-5 using Benders’ algorithm, however, calls for a very long computing time
(our computations were interrupted after more than 1 week).

We also compared our column generation algorithm applied to (1) with the
column generation of Choi and Tcha in [6], using the instances in CT12. Employing
the relaxed column generation subproblems (i.e., SPPRC), a set-covering model
in place of the set-partitioning model (1), and an implementation in C, the latter
algorithm definitely outperforms our column generation implementation (it finds
better solutions and is at least two orders of magnitude faster than our method). This
suggests that great improvements can be made to our implementations of the column
generation as well as of Benders’ algorithm, since the latter uses column generation
for solving the subproblems. Another interesting result is that the solution times
seem to scale quite well with an increasing size of the sets of vehicle types (while
increasing the sizes of the sets of vehicle types with an average factor of 25, the
solution times increased with an average factor of six).

5.3 Comparison of the Solutions Obtained
Using Different Models

When the aim is to choose a limited number of vehicle types from a very large set,
the model (1) cannot be used. The possibility to impose such a limit constitutes a
valuable property of the extended model (2) and may result in a more flexible fleet.

Figure 3 illustrates the best feasible solutions found for the instance mFSM-13,
(a) with an unlimited number of vehicle types, obtained by the column generation,
and (b) with the vehicle type limit C = 4, obtained by Benders’ algorithm without
the projection-of-routes. For the limited case, z̄EXT = 2,834.4 and four vehicle types
with Dk ∈ [18,31] are used, whereas for the unlimited case, z̄ = 2,753.6 and 16
vehicle types with Dk ∈ [1,32] are used. Hence, for mFSM-13, out of the totally
181 vehicle types, only vehicles among the 32 smallest types are used in each case.
The corresponding instance in CT12, which includes totally only six vehicle types,
possesses the optimal objective value 2,964.7; see [1, Table 7].

We have compared the column generation with Benders’ algorithm, without
the projection-of-routes, employing load-dependent costs according to (3) for the
instance mFSM-13. The parameter values Qdist := 1.4 and Qload := 0.05 chosen
yielded the most reasonable solutions among the values tried when applying the
column generation. The corresponding best solutions found are illustrated in Fig. 4.
For ease of comparison, the load-dependent objective values have been converted
to the original costs, by calculating the cost of the optimal route–vehicle pairs (r,k)
using (1a) instead of (3). Apparently, smaller vehicle types are used to a larger extent
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Fig. 3 Illustrations of the best solutions found for the instance mFSM-13, employing the original
costs crk, without/with a vehicle type limit. The depot is centrally located among the customer
nodes, whose areas are proportional to their respective demand. The routes are marked by a dashed
line for the first link (leaving the depot), solid lines for intermediate links, and a (thin) dotted
line for the last link (returning to the depot). Different colors represent different vehicle types.
Here, z∗LP = 2,748.9 ≤ z∗ ≤ z∗EXT. (a) The best solution found using column generation. Here,
z̄ = 2,753.6 ≥ z∗. (b) The best solution found using Benders’ algorithm. Here, C = 4 and z̄EXT =
2,834.4 ≥ z∗EXT
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Fig. 4 Illustrations of the best solutions found for the instance mFSM-13, using the load-
dependent costs cload

rk , without/with a vehicle type limit. For an interpretation of the plot, see
Fig. 3. Only vehicles among the 27 smallest (out of 181) types are used in each solution. Here,
z∗LP = 2,801.9. (a) The best solution found using column generation. Here, z̄ = 2,808.1 ≥ z∗. (b)
The best solution found using Benders’ algorithm. Here, C = 4 and z̄EXT = 2,883.8 ≥ z∗EXT

for the case of load-dependent costs (Fig. 4) compared to that of load-independent
costs (Fig. 3). Since the vehicle is empty when returning to the depot, routes, for
which the last link is long compared with the total length of the route, are more
common for the case of load-dependent costs.
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Interestingly, the total solution times are generally shorter for the case of load-
dependent costs than for that of load-independent costs; this may depend on the
lack of symmetries in the former case. An instance of the VRP with time-windows,
possessing tight time-windows, may be solved faster than the corresponding
instance without time-windows; see [4]. Similarly, the load-dependent costs may
lead to a more constrained problem, which may also explain the shorter solution
times.

6 Conclusions

We have extended the fleet size and mix vehicle routing problem (FSMVRP) to
include a large set of vehicle types, then denoted many-FSMVRP. Further, we
have developed and tested mathematical models and algorithms for the many-
FSMVRP. The results of the test performed on a set of instances indicate that
the extended set-partitioning model solved using Benders’ algorithm performs on
par with the set-partitioning model solved using column generation (when the
two models share an optimal solution), with the exception that for some of the
instances Benders’ algorithm requires a very long time to verify the optimality.
The extended set-partitioning model with a restrictive limit on the number of vehicle
types—for which Benders’ algorithm is required—yields solutions with different
characteristics than with a nonrestrictive limit. When extending the many-FSMVRP
to include load-dependent costs—hence increasing the practical applicability of the
model—solutions with different characteristics were found; the solution times were,
however, not greatly impacted.

The advantages of using Benders’ algorithm for the extended set-partitioning
model are indicated by the following: a clear pattern emerges in which some vehicle
types, which are part of an optimal set of vehicle types, are chosen more often than
other types. Each constraint that is added to the Benders restricted master problem
has a nice interpretation as the objective value of the optimal solution to the Benders
subproblem plus a weighted sum of reduced costs (see Sect. 4.2.1); hence, the
collected information gained from the reduced costs of solutions to former Benders
subproblems is used when new vehicle types are chosen in each Benders iteration;
this provides a guide for choosing new vehicle types.

Also, the set of optimal routes for a given problem instance depends to a
large extent on the available vehicle types. The improvements gained by using the
projection-of-routes procedure suggest that Benders’ algorithm succeeds in choos-
ing vehicle-type configurations which yield Benders subproblems whose optimal
solutions are composed by high-quality routes. Using only those routes that are
part of former optimal solutions to Benders subproblems, the projection-of-routes
is found to consistently determine an optimal combination of vehicles and routes.
Thus, for problem instances with a considerably larger set of vehicle types than
the instances in many-FSMVRP5, we suggest the following approach. Temporarily
restrict the set of vehicle types and—similarly to the projection-of-routes, in which
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vehicle types that are not part of the restricted set are allowed to be matched
with routes from solutions to the Benders subproblems—update the set using the
information from the former Benders iterations, including vehicle types that are
similar to those that have been chosen often and excluding vehicle types that have
not been chosen.

To improve the performance of the proposed algorithms we propose the follow-
ing adjustments. For the column generation algorithms (which are employed also
within Bender’s algorithm), the dynamic programming solution of the subproblems
should gain from an improved implementation. Also, the column generation
subproblems should be relaxed, as suggested in Sect. 4.1.1, and the set-partitioning
constraints should be relaxed to set-covering constraints. The results in [6] indicate
that these changes would result in shorter computing times and solutions with lower
objective values. For Benders’ algorithm, the relaxation suggested for the column
generation subproblems should be applied to the problems (14), which are solved
for each vehicle type k in each Benders iteration (see Sect. 4.2.3).

The models should also be altered to allow for the inclusion of more properties
of real problem settings; see [17] for numerous possible extensions. In [4] a HVRP
with multiple depots and time-windows is solved using a branch-and-cut-and-
price heuristic, with a dynamic programming solution of the column generation
subproblems. The authors state that it is probably the heterogeneous fleet that
“really complicates the problem” (see [4, p. 735]), but also that their implementation
often performs better than other heuristics from the literature. Heuristics based
on mathematical programming techniques are becoming increasingly popular; see
[11]. The findings in [4], along with the strong competitiveness for the HVRP of
the column generation algorithm in [6], indicate that the models and algorithms
developed and presented in this chapter may be competitive as heuristics for the
many-FSMVRP.

Appendix: The Extended Test Instances many-FSMVRP5

The sets of vehicle types of the instances in CT12 are extended as follows: the fixed
and variable costs are defined using the spline function in Matlab according to

fcostEXT = interp1(capacity, fcost, capacityEXT,
’spline’);

vcostEXT = interp1(capacity, vcost, capacityEXT,
’spline’);

Here, capacity denotes a vector with the capacities of the original vehicle types,
fcost (vcost) denotes a vector with the fixed (variable) costs of the original
vehicle types, capacityEXT denotes a vector with the capacities of the extended
set of vehicle types, and fcostEXT (vcostEXT) denotes the resulting vector with
the fixed (variable) costs of the corresponding extended set of vehicle types.
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For each of the instances in many-FSMVRP5, a vehicle type is removed if no
route in the set ∪k∈KRk has a total customer demand that is equal to the capacity of
this vehicle type (except for the smallest capacity). This removal of a vehicle type
does not exclude any optimal solution from the feasible set, since any route assigned
to such a vehicle can be assigned to a smaller vehicle at a lower cost. No vehicle
type was, however, removed from any of the instances in CT12.
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A Genetic Algorithm for Scheduling Alternative
Tasks Subject to Technical Failure

Dalila B.M.M. Fontes and José Fernando Gonçalves

Abstract Nowadays, organizations are often faced with the development of
complex and innovative projects. This type of projects often involves performing
tasks which are subject to failure. Thus, in many such projects several possible
alternative actions are considered and performed simultaneously. Each alternative
is characterized by cost, duration, and probability of technical success. The cost of
each alternative is paid at the beginning of the alternative and the project payoff is
obtained whenever an alternative has been completed successfully. For this problem
one wishes to find the optimal schedule, i.e., the starting time of each alternative,
such that the expected net present value is maximized. This problem has been
recently proposed in Ranjbar (Int Trans Oper Res 20(2):251–266, 2013), where a
branch-and-bound approach is reported. Since the problem is NP-Hard, here we
propose to solve the problem using genetic algorithms.

Keywords Scheduling under activity failure • Maximization of expected net
present value • Biased random-key genetic algorithms

1 Introduction

Companies must plan and optimize their activities in a uncertain environment.
The uncertainties may come from several different parts of their business. The
uncertainties most commonly addressed in the literature are related to the costs
and returns associated with the business. Regarding scheduling problems the most
frequently studied uncertainties are resource breakdowns and duration variability.
However, other sources of uncertainty exist. For example, Research and Devel-
opment (R&D) companies, highly dependent on innovation, also face uncertainty
regarding the success of their initiatives. These initiatives, usually called projects,
may fail. Thus, in order to deal with this kind of uncertainty companies may have
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to consider several alternative ways of developing their projects (see, e.g., [27, 28]).
In this type of projects, the alternatives are of the same kind, although different,
and pursue a similar goal. For example, their execution may represent the repetition
of trials until success in one is achieved. Usually, the alternatives are related and
some alternatives may imply the execution of some other alternatives, i.e., there are
precedence relations between some of the alternatives.

This work addresses the scheduling of alternatives subject to technical failure, in
order to maximize the expected Net Present Value (NPV) of the project. The NPV
of a project is the discounted value of the project cash flows. The NPV is affected by
the project schedule and in capital-intensive industries, the timing of expenditures
has a major impact on project feasibility and profitability.

Most of the relevant sources of literature considering activity failure come from
chemical engineering applications, where Grossmann and his colleagues have been
addressing such problems. In [25] a mixed integer linear programming model was
proposed to schedule the activities of a single product considering precedence con-
straints. Activities have associated a cost, a duration, and a probability of success.
The objective was to minimize the expected cost. This model was subsequently used
on a specific application [26]. In [19] the authors propose a two-stage stochastic
optimization approach to account for the uncertainty in the outcome of the trials.
A recent survey on optimization challenges and opportunities in the pharmaceutical
industry can be found in [21].

Other scheduling problems involving activity failures have been addressed, see
the survey in [8]. De Reyck and colleagues study the scheduling of activities
with uncertain outcomes, where project success is achieved only if all individual
activities succeed. In [7], the authors have considered the project scheduling
problem with uncertain activity outcomes and known durations. This work was
extended in [4, 5] where activity durations are stochastic. More recently, in [2] the
scheduling of projects subject to failure has been considered. In this problem, several
projects, each consisting of several activities, have to be scheduled. If an activity
of a project fails, the project fails. The authors also consider resource constraints
and the possibility of outsourcing. Modular projects, i.e., projects that include
the execution of several modules, each of which consisting of several activities,
have been considered in [3, 6]. For such a project to be successful every module
must succeed. A module succeeds if at least one of its activities succeeds. In the
former work, activity durations are deterministic and activities must be performed
sequentially, while in the latter, the durations are stochastic and the resources
unlimited.

Following on the work of Ranjbar and Morteza [23], we focus on a single firm
facing a R&D project or the development of a new product. There are several
alternatives of executing the project and its success requires the successful execution
of at least one of the available alternatives. Each alternative consists of a single
activity and is characterized by a cost, a duration, and a probability of technical
success. The successful completion of the project provides a given payoff. These
alternatives can be pursued either in parallel or sequentially. The objective is to
schedule the activities in such a way as to maximize the expected Net Present Value
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(eNPV) of the project. The eNPV takes into account the activity costs, the cash flows
generated by the successful completion of project, the activity durations and starting
times, and the probability of failure of each of the activities. Some alternatives may
imply the implementation of other alternatives. This is a recently proposed problem
and it has been addressed by exact methods only [22, 23]. Since this is an NP-hard
problem (see [23]), an exact algorithm without an exponential time complexity is
unlikely to exist. Thus, in here we propose a genetic algorithm since only heuristic
methods are able to solve real sized problems.

Section 2 defines and provides a mathematical programming model for this
problem. Section 3 discusses the methodology proposed to solve the problem
and in Sect. 4 the computational experiments are reported. Finally in Sect. 5 some
conclusions are drawn.

2 Problem Definition and Formulation

Given a project for which there are several alternative ways of execution, one wishes
to determine the order in which these alternatives should be executed such that
the project expected net present value is maximized. Alternatives pursue a similar
target and consist of one activity.1 Activities should be executed without interruption
and are characterized by a cost, a duration, a set of precedence constraints, and
a probability of technical success. Activity costs are to be paid at the start of the
activity. The outcomes of the different tasks are considered to be independent.
The successful completion of a project provides a payoff and is achieved if at least
one alternative is successfully executed.

Before introducing the mathematical programming model, let us illustrate the
problem by resorting to the example used in [23]. Consider a project consisting
of five alternatives, for which the information is given in Table 1. Note that the
execution of activity 4 requires activity 1 to be previously executed. Nevertheless,
activity 4 can be executed and be successful regardless of the outcome of the
execution of activity 1. It is assumed a 5 % monthly discount rate, a project deadline
of 29 months, and a project payoff, achieved in case of technological success, of
2,770 dollars.

These alternatives can be scheduled in many different ways. The two extreme
ones being the parallel and the sequential schedules. These schedules are given in
Fig. 1.

Note that, while the parallel schedule anticipates the project completion and thus
the net payoff is larger, it also leads to the highest costs since it starts activities
without waiting to find out if the previously started one has had success. Thus, in
this type of schedules some, in progress, alternatives of the project will be ignored.

1Since each alternative consists of a single activity, here and hereafter we will use indifferently
alternative and activity.
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Table 1 Alternatives data (the costs are given in dollars and the duration in months)

Alternative number Costs ($) Duration (months) PTS Precedent activities

1 51 8 0.73 –

2 31 6 0.62 –

3 87 3 0.91 2

4 28 7 0.57 1

5 80 4 0.86 –

Fig. 1 Extreme schedules: parallel and serial schedules

Consider that activity 5 is successfully executed, which happens at time 4. Thus, at
time 4 the project has been successfully completed, as it only requires that at least
one alternative is successfully executed. Activities 1 and 2 have been initiated and
paid for at time 0, and at time 4, although they are still undergoing, the outcome
of their execution becomes irrelevant and they will be ignored. Here the costs are
typically higher. In the serial schedule, since only one activity is being performed
at any time this risk does not exist. Therefore, it is more conservative in terms of
costs. However, in this case if an alternative fails it takes longer to be able to have
another tried and thus, the project payoff is typically smaller since it is obtained later.
Therefore, a trade-off between costs and project payoff (project duration) must be
searched for.

At time t the project payoff C is obtained if and only if at least one of the activities
finishing at time t (At) succeeds and all activities that have finished before time t
(Bt) have failed; otherwise the payoff had already been received. Thus, the expected
payoff at time t is given by

∏
j∈Bt

(1−pj)×
(

1−∏
k∈At

(1−pk)

)
×C. (1)

As said before, each activity i has a cost (ci) associated to its execution that
must be paid up-front, i.e., at the time that the activity is started (si). In addition, an
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Table 2 Notation used for the mathematical programming model

Symbols Description

N Set of available alternatives

i, j,k Alternative indices

ci Cost of alternative i

di Duration of alternative i

pi Probability of technical success of alternative i

tmax Project deadline

t Time index

C Project payoff

r Discount rate

A Set of precedence constraints

Bt Auxiliary decision variable: set of alternatives finishing before t

At Auxiliary decision variable: set of alternatives finishing at t

si Decision variable: starting time of alternative i

activity is only started if all activities that have finished before (Bsi) or at (Asi) its
starting time have failed; otherwise the project had already been concluded. Thus,
the expected cost incurred with activity i at its starting time si can be written as

∏
j∈{Bsi

⋃
Asi}

(1−pj)× ci. (2)

A summary of the notation used is provided in Table 2.
The project net value is then obtained by subtracting all expected costs from

all expected payoffs. However, since we are maximizing the project expected net
present value, the costs and payoffs given by Eqs. (1) and (2) need to be discounted.
The scheduling decisions are only constrained by the precedence relations amongst
the alternatives. Therefore, the complete mathematical model is as given in Eqs. (3)
to (5):

Minimize
tmax

∑
t=1

(
∏
j∈Bt

(1−pj)×
(

1−∏
k∈At

(1−pk)

)
×C × e−rt

− ∏
j∈{Bsi

⋃
Asi}

(1−pj)× ci × e−rsi

⎞
⎠ (3)

Subject to

si +di ≤ sj, ∀j ∈ A and ∀i ∈ N. (4)

si ∈ N, ∀i ∈ N
+. (5)
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3 Methodology

In this section, we provide an overview of the proposed solution process. This is
followed by a discussion on the proposed Biased Random-Key Genetic Algorithm
(BRKGA), including detailed descriptions of the solution encoding and decoding
procedures, evolutionary process, and fitness function.

3.1 Overview

The new approach is based on a constructive heuristic algorithm which inserts
activities, one at a time, in a partial schedule for the problem. Once all the activities
are inserted, a solution is obtained. The new approach proposed in this chapter
combines a BRKGA with a novel insertion decoding procedure. The role of the
genetic algorithm is to evolve the encoded solutions, or chromosomes, which
represent the parameters that will be used by the solution builder to construct a
schedule. For each chromosome, the following phases are applied to decode the
chromosome:

1. Decoding of the parameters: this first phase decodes the chromosome into a
sequence of activities, as well as each activity scheduling mode (SM). The
former determines the activities to be started, while the latter determines whether
each activity is scheduled forward or backward.

2. Construction of a solution: The second phase makes use of the activities and
SMs defined in phase 1 and uses the solution builder procedure to construct a
schedule.

3. Fitness evaluation: The final phase computes the fitness of the solution, by
computing the expected net present value as given in Eq. (3).

Figure 2 illustrates the sequence of decoding steps applied to each chromosome
generated by the BRKGA. The remainder of this section describes in detail the
genetic algorithm.

3.2 Biased Random-Key Genetic Algorithm

Random-key genetic algorithms (RKGAs) or genetic algorithms with random keys
were introduced in [1] for solving sequencing or optimization problems whose
solutions can be represented as permutations. In an RKGA, chromosomes are
represented as vectors of randomly generated real numbers in the interval [0,1].
A deterministic algorithm, the decoder, takes as input a chromosome and associates
with it a solution of the combinatorial optimization problem for which an objective
value or fitness value can be computed.
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Fig. 2 Architecture of the algorithm

RKGAs are particularly attractive for sequencing problems and/or when the
chromosomes have several parts (see for example [10–12, 14–17, 24], and [18]).
Unlike traditional GAs, which need to use special repair procedures to handle
permutations or sequences, RKGAs move all the feasibility issues into the objective
evaluation procedure and guarantee that all offspring formed by crossover result
into feasible solutions. When the chromosomes have several parts, traditional GAs
need to use different genetic operators for each part. However, since RKGAs use
the parameterized uniform crossover of Spears and Dejong [29] (instead of the
traditional one-point or two-point crossovers), they do not need to have different
genetic operators for each part.

An RKGA evolves a population of random-key vectors over a number of
generations (iterations). The initial population is made up of p vectors of r
random keys. Each component of the solution vector, or random key, is generated
independently at random in the real interval [0,1]. After the fitness of each individual
is computed by the decoder in generation g, the population is partitioned into two
groups of individuals: a small group of pe elite individuals, i.e., those with the best
fitness values, and the remaining set of p − pe non-elite individuals. To evolve a
population g, a new generation of individuals is produced. All elite individuals of
the population of generation g are copied without modification to the population
of generation g+ 1. RKGAs implement mutation by introducing mutants into the
population. A mutant is a vector of random keys generated in the same way that an
element of the initial population is generated. At each generation, a small number
pm of mutants is introduced into the population. With pe +pm individuals accounted
for in population g+ 1, p− pe − pm additional individuals need to be generated to
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complete the p individuals that make up population g+1. This is done by producing
p−pe −pm offspring solutions through the process of mating or crossover.

A BRKGA [13] differs from an RKGA in the way parents are selected for mating.
While in the RKGA of Bean [1] both parents are selected at random from the entire
current population, in a BRKGA each element is generated by combining a parent
selected at random from the elite partition of the current population with another
from the rest of the population, also randomly selected. Repetition in the selection of
a parent is allowed and therefore an individual can produce more than one offspring
in the same generation. As in RKGAs, parameterized uniform crossover is used to
implement mating in BRKGAs. Let ρe be the probability that the vector component
of an elite parent is inherited by the offspring. For i = 1, . . . ,r, the ith component
c(i) of the offspring vector c takes on the value of the ith component e(i) of the elite
parent e with probability ρe and the value of the ith component ē(i) of the non-elite
parent ē with probability 1−ρe.

Once the next population is complete, the corresponding fitness values are
computed for all of the newly created random-key vectors and the population is
partitioned into elite and non-elite individuals to start a new generation.

A BRKGA searches the solution space of the combinatorial optimization
problem indirectly by searching the r-dimensional continuous hypercube, using the
decoder to map solutions in the hypercube to solutions in the solution space of the
combinatorial optimization problem where the fitness is evaluated.

To specify a BRKGA, one simply needs to specify how solutions are encoded
and decoded and how their corresponding fitness values are computed. This is done
in the next sections.

3.2.1 Chromosome Representation and Decoding

A chromosome encodes a solution to the problem as a vector of random keys. In
a direct representation, a chromosome represents a solution to the original problem
and is called genotype, while in an indirect representation, it does not and special
procedures are needed to obtain from it a solution called a phenotype. In the present
context, the solutions will be represented indirectly by parameters that are later used
by a decoding procedure to obtain a solution. To obtain the solution (phenotype) we
use the decoding procedures described in Sect. 3.2.2.

In this chapter, a solution to the problem is represented indirectly by the
chromosome structure given in Fig. 3, where n is the number of activities. Overall
the chromosome has n+(n−1)2n genes.

The genes in blue are used by the solution builder (decoding procedure) to
determine which activity or activities are to be scheduled at each iteration into the
partial schedule and the genes in red are used to decide whether the activity chosen
is going to be scheduled forward or backward. Note that in the first iteration the
activities must always be scheduled forward. An activity is considered schedulable
if all of its predecessors have already been scheduled and if its blue gene value is
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Fig. 3 Chromosome representation

Fig. 4 Chromosome example used in the illustration of the solution builder

greater than or equal to 0.5. If the value of the red gene is greater than or equal to 0.5
then the chosen activity is scheduled backward; otherwise it is scheduled forward.

The decoding (mapping) of each chromosome into a schedule is performed by
the solution builder, which is described in the next section.

3.2.2 Solution Builder

The solution builder follows a sequential process that inserts activities into a partial
schedule. The order in which activities are inserted into the partial schedule and
the corresponding mode (forward or backward) are evolved by the BRKGA. The
solution builder comprises the following two main steps:

1. Selection of activities to be inserted;
2. Selection of the mode used for the insertion in the partial solution of the activities

selected in step 1.

The possible insertion times for scheduling an activity are provided by the starting
(S) or ending times (E) of the activities already scheduled. Amongst these, we
are only interested on the ones that are feasible regarding the precedence relations
between activities.

To illustrate how the solution builder works we used again the example provided
in Table 1. A solution will be constructed using the chromosome in Fig. 4.

Initially only time zero is available for scheduling one or more activities.
According to the precedence constraints the activities which are schedulable are
1, 2, and 5. However, only activity 1 has a blue gene value greater than or equal to
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Fig. 5 Step 1 of solution builder: partial schedule after inserting activity 1

Fig. 6 Step 2 of solution builder: partial schedule after inserting activity 5

0.5 (0.7), so activity 1 is the only one selected for insertion into the partial schedule.
Since this activity is scheduled at time 0, it must be scheduled forward. At this point
the partial schedule looks like the one given in Fig. 5.

The next time to be considered for insertion is time 8. Only activities 2, 4, and 5
can be considered since due to the precedence constraints activity 3 cannot yet be
scheduled. According to the second column only activity 5 has a blue gene value
greater than or equal to 0.5 (0.85), thus only activity 5 can be scheduled. Given that
the value in sub-column S/E of column 2 for activity 5 is 0.62 (>0.5), then activity
5 is scheduled backward. At this point the partial schedule looks like the one given
in Fig. 6.

The next time to be considered for insertion is time 4, the only one available
not yet considered. According to the precedence constraints only activity 2 can be
started and its blue gene has a value greater than or equal to 0.5 (0.9), thus activity
2 is inserted into the partial schedule. Since the value in sub-column S/E of column
3 for activity 2 is smaller than 0.5 (0.3), then activity 2 is scheduled forward. The
partial schedule obtained is illustrated in Fig. 7.

The next time to be considered for insertion is time 10. According to the
precedence constraints and the fourth column of the chromosome, the activities
which can be started are activities 3 and 4. Since the value for both in sub-column
S/E is smaller than 0.5 (0.37 and 0.14, respectively), both are scheduled forward.
Given that there are no more activities to be scheduled the final schedule is the one
given in Fig. 8.
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Fig. 7 Step 3 of solution builder: partial schedule after inserting activity 2

Fig. 8 Step 4 of solution builder: final schedule after inserting activities 3 and 4

Finally, the fitness of the solution, i.e., the project expected net present value, is
computed according to Eq. (3) and in this case it is 1,702.87 dollars.

4 Computational Experiments

The methodology proposed here was tested on the randomly generated test problem
instances used by Ranjbar and Morteza [23].

The 60 problem instances used have been generated using RanGen [9]. Four
different problem sizes and three different order strength values2 have been con-
sidered. For each of these 12 combinations five problem instances were generated
by choosing uniform random values for durations, costs, and PTS in the intervals
[1,10], [10,100], and [0.5,1], respectively. For each problem instance the payoff has
been chosen to be five times the sum of the alternatives cost and the discount rate
was set to 5 %.

2The number of precedence-related activity pairs divided by the theoretically maximum number of
such pairs in the network [20].



150 D.B.M.M. Fontes and J.F. Gonçalves

The genetic algorithm has been coded using C++ and the experiments have been
carried out on a computer with an Intel Core i7-2630QM @2.0 GHz CPU running
the Linux operating system with Fedora release 16.

We compare the best solutions obtained with the genetic algorithm with those of
the branch and bound developed by Ranjbar and Morteza [23]. The BRKGA was
able to find an optimal solution to 47 of the 60 problem instances considered. The
computational time required by the BRKGA was always below 10 s and on average
was about 7 s.

The BRKGA proposed here, when compared to the best alternative method [23],
provides an enormous improvement since it improves substantially the computa-
tional time performance. In addition, it finds very good solutions, actually optimal
for most problems. It should be noticed that for the worst case class of problems
(problems with 12 alternatives and order strength of 0.4), the alternative method
takes around 1 h and 45 min. The optimality gaps are always below 2.5 % and the
average optimality gap for the 60 problems solved is below 0.2 %.

5 Conclusions

We have presented a genetic algorithm for scheduling projects with alternative
tasks subject to technical failure. This is a newly proposed problem and thus far
only branch-and-bound algorithms have been proposed. Results obtained compare
favorably with the ones reported in current literature.

The genetic algorithm proposed finds nearly optimal solutions, actually optimal
for most solved problem instances. The idea is that it improves for all cases. How-
ever, the improvement is praticularly relevant for larger size problem instances. The
magnitude of the improvement grows with problem size. For the 12 alternative prob-
lems with order strength of 0.4 the BRKGA requires less than 10 s, while the litera-
ture reports about 1 h and 44 min. Nevertheless, the average gap is only about 0.2 %.
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Discrete Competitive Facility Location:
Modeling and Optimization Approaches

Athanasia Karakitsiou

Abstract Competitive facility location problems are concerned with the following
situation: a firm wants to locate a predefined number of facilities to serve customers
located in some region where there already exist (or will be) other firms offering the
same service. Both new and existing firms compete for optimizing their market share
of profit. A discrete version of such problems arises when it is assumed that there
are a (rather small) finite number of candidate locations and the markets consist of
point demands. We review modeling and optimization approaches for this type of
problems and we emphasize and develop the bi-level programming methodology.

Keywords Competitive facility location • Bi-level programming • (r|p)-Centroid
problem • (r|Xp)-Medianoid problem • Location under customers competition

1 Introduction

Facility location analysis is one of the most well-studied areas of the operations
research. In the basic model, there is a predefined cost for opening a facility and
also connecting a customer to a facility, the goal is to minimize the total cost.

The typical facility location problem assumes that the locating facility is either
a price taker or a monopolist, so that the market competition is neglected among
the companies. However this simplified assumption does not fit in most real-life
situations and the need arises to incorporate competition among the decision-
makers. Indeed, competitive location models additionally incorporate the fact that
location decisions have been or will be made by independent decision-makers who
will subsequently compete with one another for market share, profit maximization,
etc. In addition, the assignment of customers being served by these facilities
and how these facilities are connected with each other are interesting decisions
considered within the problem.
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It is widely accepted that the competitive location analysis was initiated by
Hotelling [14]. In his two ice cream vendors game, he examined location policies
of an interdependently acting duopoly in a linear market of a given length. The
distribution of buying power along the line segment is assumed uniform. Each
customer has an inelastic demand for the good and pays the transportation cost of
obtaining the good. Therefore, he patronizes the nearest facility in order to minimize
his expenditures. He proved that a “back to back” location in the middle of the
market constitutes a long-run equilibrium. Since then, a vast number of publications
have been devoted to the subject. Thus, different classification efforts with respect
to multiple components have been proposed in the literature, see for example,
[9, 10, 19, 27] among others. Spatial representation and the nature of competition
are some of them.

The classification based on the spatial representation classifies the CFL models
into three broad categories: (a) Continuous models, where the potential location of
the facilities can be anywhere in the plane, (b) Discrete models, where facilities
are allowed to locate at a finite set of possible locations, and (c) network models,
where any point on a network is suitable for location. From the optimization point
of view, the techniques used to cope with the problems also differ. Continuous
location problems are, for most of the cases, nonlinear optimization problems, while
discrete and network location problems are integer programming/combinatorial
optimization problems.

When the nature of competition is used as a classification method then again
three different classes of problems can be identified. (a) Static problems, which
assume that a firm enters into a market, where operate same existing firms, aiming
at choosing the location of p facilities such as to attract the maximum market share.
The new competitor enters into the market by having full and in advance information
about the characteristics and the strategies of the existing firm (s). It is assumed
further that this information is fixed and no reaction is expected from the existing
competitor(s). When the assumption of the non reacting competitors is eliminated,
two new classes of CLF arise, (b) dynamic and (c) sequential location problems. The
competing firms make a location decision simultaneously in the first case, whereas
there is a hierarchy in the decision-making process in the second. The sequential
location completion is mainly formulated as a Stackelberg-type game. On the other
hand, in simultaneous location games, the Nash equilibrium constitutes the solution
of the problem.

In this work we focus on discrete bi-level CFL problems. Our aim is to provide an
up to date review of modeling and optimization approaches used in the bibliography.
Moreover, we develop a new bi-level methodology for this type of problem.

2 Sequential Deterministic Facility Location Problems

The formalization of this class of problems and fundamental complexity results
were established by Hakimi [11]. Following the game introduced by von Stack-
elberg [30] Hakimi [11] presented the two basic problems in the sequential location
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analysis, the centroid and medianoid problems. These two problems are faced
by the leader and the follower, respectively. The leader attempts to locate p ≥ 1
facilities knowing that the follower will in turn locate his r ≥ 1 facilities based on
the leader’s chosen location; this is the (r|p)-centroid problem. The follower knows
the set Xp that indicates where the leader’s facilities are located and solves an (r|Xp)-
medianoid problem. Customers choose among the facilities according to a function
of the distance between them and the facilities, preferring always the closest. This
is the so-called binary customer choice. The formulation of the problems is based
on the assumption that co-location is not allowed and if, by any chance, the distance
from a customer to the closest facility of the two competitors is the same, the
customer always prefers the leader’s facility. The demand of the customer is also
considered to be inelastic with respect to distance travelled.

Given the set I of m potential facilities location and J the set of n customers
locations, let xij defines the distance between customer j and facility i. It is assumed
further that wj is the weight (profit, demand, etc.) of customer j.

If X and Y denote the location occupied by the leader and the follower,
respectively, and d(j,X) and d(j,Y) the distance between customer j and his nearest
facility from X and Y , respectively, then customer j will prefer Y over X if d(j,Y)<
d(j,X) and he prefers X over Y otherwise. If J(Y ≺ X) is the set of customers
who prefer Y over X then W(Y ≺ X) = ∑

j∈J(Y≺X)

wj denotes the total weight of the

customers who prefer Y over X.
For each X the follower’s strategy is the set of other location Y that provides the

maximal market share, W∗(X), to him. This maximal market share is obtained by
solving the following problem:

max
Y,|Y|=r

W(Y ≺ X). (1)

The leader on the other hand is interested in maximizing his own market share.
Thus, his optimal location strategy X∗ is the one that minimizes the follower’s
market share. Therefore, the leader’s maximal market share is obtained by solving
the following problem:

min
X,|X|=p

max
Y,|Y|=r

W(Y ≺ X). (2)

Hakimi [12] extended the initial formulation of the problem by considering
elastic demand and different customer choice rules, apart from the binary choice
rule, such as partially binary choice and the proportional preference choice of the
customers. Under the partially binary choice the customer uses the closest facility
of each firm. Under the proportional choice the customer proportionally distributes
his demand among the operating facilities. He came up with six different scenarios
and he stated several vertex optimality results. Particularly, he proved the existence
of a nodal solution for the partially binary problem, under both inelastic and elastic
demands. He proved also that a nodal solution exists in the proportional choice-
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elastic demand case only if the demand captured by the facilities is a linear function
of the distance. Suárez-Vega et al. [28] extended his result by considering a concave
function of the demand capture.

A 3-level formulation for both leader’s and follower’s problem and a heuristic
solution procedure based on the elimination procedure in a candidate list are
proposed in [6]. They formulated the problem as a three-stage optimization process
which included the customer selection problem, the follower location problem, and
the leader location problem. The corresponding problem, (r|p)-centroid problem,
with inelastic demand is as follows:

max
m

∑
i=1

[
n

∑
k=1

hkzki

]
xi (3)

s.t
m

∑
i=1

xi = p (4)

xi ∈ {0,1}, i ∈ [1, . . . ,m] (5)

where z solves

CUS(x,y) min
n

∑
k=1

m

∑
i=1

dkihkzki (6)

st
m

∑
i=1

zki = 1,k ∈ [1, . . . ,n] (7)

zki ≤ x̄i + ȳi,k ∈ [1, . . . ,n], i ∈ [1, . . . ,m] (8)

zki ∈ {0,1},k ∈ [1, . . . ,n], i ∈ [1, . . . ,m] (9)

where y solves

FLOr max
m

∑
i=1

n

∑
k=1

hkzik (10)

st
m

∑
i=1

yi = r, (11)

m

∑
i=1

zki ≤ 1,k ∈ [1, . . . ,n] (12)

zki − ckiyi ≤ 0,k ∈ [1, . . . ,n], i ∈ [1, . . . ,m] (13)

zki,yi ∈ {0,1},k ∈ [1, . . . ,n], i ∈ [1, . . . ,m] (14)

In the above model m is the number of possible facility locations and n is
the number of customer locations. dki = d(ck, fi) is the distance between the kth
customer location ck and the ith facility point fi. hk is the total demand of the
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customers located at ck. A set Z of location points is identified by a binary vector
z = (zi : i ∈ [1, . . . ,m]) where zi = 1 if fi ∈ Z and zi = 0 if fi �∈ Z. The decision
variables in the leader and follower location problems are the m-vectors x and y
of 0 − 1 or binary decision variables corresponding to sets X and Y . zki is the 0–
1 decision variables indicating whether the customers located at the k customer
location ck prefer the location fi for the facility and cki = 1 if dki < min{dkjx̄j = 1}.
The CUS(x,y) is the customer selection problem. The objective function of this
problem represents the total distance travelled by the customers to arrive at the
corresponding facility points. The constraints state that each customer has to go
to one location in the leader location set or in the follower location set. FLOr

corresponds to the follower’s location problem. Campos Rodríguez et al. [6], based
on the observation that the mathematical programming formulation of the minimax
problem that corresponds the leader’s problem (3)–(14) is

max W (15)

st |x| = p (16)

W(Y ≺ X)≤ W,∀Y ∈ Lr, (17)

proposed a heuristic based on an elimination procedure in a candidate list in order
to solve the leaders problem. In the procedure, a leader solution provides an upper
bound for the leader follower problem. A family F of good follower candidates
is used to conclude that the upper bound provided by a leader solution cannot be
improved, and therefore, this solution is an optimal solution.

The bi-level formulation of Hakimi’s model proposed by Alekseeva et al. [1]
employs three kinds of binary variables:

xi =

{
1 if facility i is opened by leader,
0 otherwise,

(18)

yi =

{
1 if facility i is opened by follower,
0 otherwise,

(19)

zj =

{
1 if customer j is served by leader,
0 otherwise,

(20)

It assumes also that for a given solution, x, used by the leader, the set

Jj(x) = {i ∈ I|dij < min
l∈I|xi=1

dlj}, j ∈ J

defines the set of facilities which allows the follower to capture customer j.

max
x ∑

i∈J

wjz
∗
j (x) (21)
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st. ∑
i∈I

xi = p, (22)

xi ∈ {0,1},∀i ∈ I (23)

where z∗j (x) solves

max
y,z ∑

i∈J

wj(1− zj) (24)

st. ∑
i∈I

yi = r (25)

1− zj ≤ ∑
i∈Ij(x)

yi, j ∈ J, (26)

xi + yi ≤ 1, i ∈ I (27)

yi,zi ∈ {0,1}, i ∈ I, j ∈ J. (28)

Thereafter, a hybrid memetic algorithm is used for the solution of the problem.
The improvement of the elements of population at each iteration is done through a
probabilistic Tabu search procedure.

An upper bound is obtained by reformulating the bi-level problem as a single
level mixed integer problem with an exponential number of constraints and vari-
ables. If F is a family of follower solutions and Ij(y) = {i ∈ I|dij ≤ min

l∈I
(dlj|yl = 1)},

y ∈ F, j ∈ J is the set of facilities which allow the leader to keep the customer j if
the follower uses solution y, and if F contains all possible solutions of the follower
then problem (21)–(28) is equivalent to the following 0−1 program:

max W (29)

st (30)

∑
j∈J

wjxiy ≥ W,y ∈ F, (31)

ziy ≤ ∑
i∈Jj(y)

xi, j ∈ Jy ∈ F, (32)

∑
i∈I

xi = p, (33)

xi,ziy ∈ {0,1}, i ∈ I, j ∈ J,y ∈ F (34)

where W ≥ 0 is the total market share of the leader and ziy is binary variable
indicating whether customer j is serviced by the leader when the follower uses a
solution y.

This single level model is also used to find the global optimum. An iterative
exact algorithm is developed for this purpose. Alekseeva et al. [2] have used the
single level formulation proposed by [26] in order to improve exact iterative method
previously developed in [1].
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The authors in [7], based on the bi-level representation (21)–(28), approached
leader’s–follower’s problem using two metaheuristics methods: local search with
variable neighborhoods and stochastic Tabu search.

The bi-level models proposed by Beresnev [3] contain the fixed cost for opening
facilities. The author considers two settings of the problem that differ in the
objective functions of the follower firm: In the first, it is assumed that the goal of
the leader firm as well as the follower firm is the maximization of the profit, while
in the second, the objective of the follower is maximization of his income. It is also
assumed that each facility opened by the follower firm cannot be loss-making. The
author uses the following notation in order to build up the proposed models

• I = {1, . . . ,m} is the set of possible sites for location;
• J = {1, . . . ,n} is the set of clients;
• pij is the profit realized by facility i ∈ I opened by the leader when serving client

j ∈ J
• ≺j is a linear order on I determining the preferences of client j ∈ J, and i ≺j k

means that of the two open facilities i and k ∈ I client j selects facility i; the
relation i �j k means that either i ≺j k or i = k;

• fi is the fixed cost of the leader firm for opening facility i ∈ I;
• gi is the fixed cost of the follower firm for opening facility i ∈ I.
• xi is the variable indicating if facility i ∈ I is opened by the leader firm,
• xij is the variable indicating if facility i ∈ I opened by the leader firm is selected

by client j ∈ J;
• zi is the variable indicating if the follower firm opens facility i ∈ I;
• zij is the variable indicating if client j ∈ J selects facility i ∈ I opened by the

follower firm

When the goal of the follower firm is to maximize the profit, it is written as follows:

max
(xi),(xij)

{
−∑

i∈I

fixi +∑
j∈J

(
∑
i∈I

pijxij

)(
1−∑

i∈I

z̃ij

)}
(35)

st ∑
i∈I

xij = 1, j ∈ J (36)

xi ≥ xij, i ∈ I, j ∈ J, (37)

xi +∑
i≺jl

xlj ≤ 1, i ∈ I, j ∈ J (38)

xi,xij ∈ {0,1}, i ∈ I, j ∈ J (39)

(z̃i),(z̃ij) is the optimal solution of the problem

max
(zi),(zij)

{
−gizi +∑

j∈J
∑
i∈I

qijzij

}
(40)
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st ∑
i∈I

zij ≤ 1, j ∈ J (41)

zi ≥ zij, i ∈ I, j ∈ J (42)

xi + zi +∑
i≺jl

zlj ≤ 1, i ∈ I, j ∈ J (43)

zi,zij ∈ {0,1}i ∈ I, j ∈ J (44)

Objective function (35) shows the value of profit received by the leader taking
into account that a part of his consumers will be captured by the follower.
Constraint (36) guarantees that each client can select one facility from the leader
and inequalities (37) that only one open facility can be selected. Inequalities (38)
implement the rule for choosing a facility opened by the leader to service a
consumer. The same inequalities guarantee that to service each consumer one can
choose only one facility opened by the Leader. Objective function (40) of problem
shows the value of the profit received by the follower. Inequalities (43) implement
conditions for the follower capturing consumers for given facilities opened by the
Leader.

The computational complexity of problem (35)–(44) is discussed in [23] where
the author proved that the problem is Σ p

2 -hard when the cost of opening facilities are
considered null.

In a series of publication [3–5, 24], a number of solution methods of the
problem have been proposed. Their main characteristic is that they are based on
the maximization of a pseudo-Boolean function of the form

max
x

f (x) (45)

st x ∈ Bm (46)

3 Sequential Probabilistic Competitive Facility
Location Models

Models presented in the previous sections assume that the distance traveled is the
only criterion affecting the patronizing behavior of the customers. However, in more
realistic situations, customers consider other attributes of the facilities during their
decision-making process such as size, quality of product, and service provided.

Huff [15] suggested to measure the attraction felt by a customer for a facility as a
measure of his patronizing probability. In his model the attraction felt by a customer
at zone i towards a facility j located at place xj is proportional to the size of the
facility and inversely proportional to a power of the distance between zone i and xj.
A general formulation of the attraction function is given by
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uij =
Aj

f (dij)
(47)

where Aj is the attractiveness or quality of the facility j and f is a non-decreasing
function of distance.

In the multiplicative competitive interaction (MCI) model of Nakanishi and
Cooper [25] different attributes of the facility were used together by taking their
product after weighting them by raising each to a power:

uij =
s

∏
k=1

xβk
ijk (48)

where s is the set of facility’s attributes, xijk is the kth attribute describing a facility
j by customers at i, and βk is the weight of the kth attribute.

The additive utility function is utilized in [8]. A general form of this function
can be

U =
s

∑
k=1

βkfk(xk) (49)

where xk is the kth attribute and βk its associated weight.
Other models (see for example [13]) make use of the exponential attraction

function which is generally given by

Aij = aαj e−βdij (50)

where aj measures the quality of the facility j and α,β are parameters determined
empirically.

The aim of the model proposed in [21] is to determine the optimal location and
the attractiveness of the new facilities to be opened by a firm in a market where
there are r existing facilities that belong to a competitor or several competitors.
The goal is the maximization of the firm’s profit. The customers are aggregated at
N = 1, . . . ,n demand points and the number of candidate facility site is M = 1, . . . ,m.
The parameters of the problem are

• aj annual buying power at point j
• ci unit attractiveness cost at site i
• fi annualized fixed cost of opening and operating a facility at i
• dij Euclidean distance between site i and point j
• bj total utility of the existing facility depending on its attractiveness and distance

from point j
• ui maximum attractiveness level of facility to be opened at site i
• qk attractiveness of existing facility j
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and variables

• Qi attractiveness of the facility opened at site i
• Xi binary variable that is equal to 1 if a facility is opened at site i and 0 otherwise.

By using Huff’s model the utility of a facility opened at site i with attractiveness
Qi is defined by Qi/d2

ij. By using the same rule the total utility felt by customers

at j for the existing facilities is bj =
r

∑
k=1

qk/d2
kj, where dkj is the distance between

demand point j and existing facility k. Hence, the market share of the facility at i is
expressed as

Pij =
Qi/d2

ij

∑m
i=1(Qi/d2

ij)+∑r
k=1 qk/d2

kj

(51)

As a result the total revenue captured by the new facility is given by

n

∑
j=1

aj
∑m

i=1(Qi/d2
ij)

∑m
i=1(Qi/d2

ij)+∑r
k=1(qk/d2

kj)
(52)

Then the problem can be formulated as

max
Q,X

z =
n

∑
j=1

aj
∑m

i=1(Qi/d2
ij)

∑m
i=1(Qi/d2

ij)+∑r
k=1(qk/d2

kj)

−
m

∑
i=1

fiXi −
m

∑
i=1

ciQ1 (53)

s.t Qi ≤ uiXi, i = 1, . . . ,m (54)

Xi ∈ {0,1}, i = 1, . . . ,m (55)

Qi ≥ 0, i = 1, . . . ,m (56)

To solve the problem three solution methods are presented. One is a heuristic based
on the Lagrangian relaxation of the model, while the other two are exact procedures
based on the branch and bound technique.

The model proposed in [20] allows the competitor to react in every location
decision made by the firm by adjusting the attractiveness level of his own existing
facilities with the objective to maximize his profit. The resulting formulation is a bi-
level programming model where the entering firm is consider as the leader and the
existing competitor as the follower. In this bi-level formulation, the attractiveness
level at the competitor’s facility qk becomes the decision variable of the follower.
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Thus, the leader solves problem (53)–(56), while the follower the problem

max
q

n

∑
j=1

aj
∑r

i=1(qk/d2
kj)

∑m
i=1(Qi/d2

ij)+∑r
k=1(qk/d2

kj)
−

−
r

∑
k=1

c̃k(qk − q̃k), (57)

s.t. qk ≤ q̄k,k = 1, . . . ,r (58)

qk ≤ 0,k = 1, . . . ,r (59)

where the first term of the objective function represents the follower’s market
share, and q̃k, q̄k, c̃k are parameters representing the current attractiveness level, the
maximum attractiveness level, and the unit attractiveness cost of the competitor’s
facility k, respectively. The author proves the concavity of the follower’ objective
function with respect to attractiveness level q. Making use of this property the author
transforms the bi-level model into an equivalent single level mixed integer program
so that it can be solved by global optimization methods. The transformation is done
by substituting the KKT first order conditions into the leader’s problem.

The model was further developed in [22] so as to allow the follower to make
decisions not only regarding the attractiveness level but also regarding location.

4 Competitive Facility Location with Competition
of Customers

The research work dealing with the bi-level formulation of location problems is
limited only to the competition among the locators, that is, it is supposed that either
both the locator and the allocator are the same or the customer knows the optimality
criterion of the locator and agrees passively with it. Customers’ preferences as well
as externalities such as road congestion, facility congestion and emissions caused by
the location decisions are either ignored or “controlled” by incorporating constraints
in order to “ensure” the achievement of a predetermined target. However, this
approach treats customers as irresolute beings. Thus, if, for example, the customers
travel to the facilities to obtain the offered service, then there is no compulsion
or incentive for them to attend the designated facility. This means that, once the
facilities are open, what the locator wishes the customers to do may not coincide
with their own wish and behavior.

The first attempt to study the influence of market competition on location
decisions is done by Tobin and Friesz [29]. They analyze the case of a profit
maximizing firm which is entering into spatially separated markets and knows that
its location decisions will have impact on market prices.
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To address the problem they proposed two different models to capture the
market competition and its effect on price and production quantities: a spatial price
equilibrium (SPE) which determines equilibria in price and production levels for
perfectly competitive market and a Cournot Nash oligopolistic model in which a
few profit maximizing firms compete in spatially separated markets. They used
sensitivity analysis on variational inequalities to relate changes in price to changes
in production to obtain optimal locations.

In [16] a bi-level programming model is presented to seek the optimal location
for logistics distribution centers. The upper-level model is to determine the optimal
location by minimizing the planner’s cost and the lower gives an equilibrium
demand distribution by minimizing the customer’s cost:

min
m

∑
i=1

n

∑
j=1

Cij(Xij)Xij +
n

∑
j=1

fjzj (60)

st
n

∑
J=1

zj ≥ 1 (61)

zj ∈ {0,1} (62)

where Xij solves

min
m

∑
i=1

n

∑
j=1

∫ Xij

0
D−1(w)dw (63)

st
n

∑
j=1

Xij = wi,∀i = 1, . . . ,m, (64)

m

∑
i=1

Xij ≤ sj,∀j = 1, . . . ,n, (65)

Xij ≤ Mzj,∀i = 1, . . . ,m, j = 1, . . . ,n, (66)

Xij ≥ 0,∀i = 1, . . . ,m, j = 1, . . . ,n (67)

where Cij(·) is the unit generalized cost of meeting the demand of customer i from
the distribution center j, and it is usually a nonlinear function; Xij is the demand of
the customer i supplied by distribution center j; fj is the fixed investment associated
with building distribution center j; zj is a 0 − 1 variable, if distribution center j is
built, then zj takes the value of 1, and 0 otherwise; D1(·) is the inverse of demand
functions; wi is the total demand of customer i; sj is the capacity of distribution
center j; M is an arbitrarily large positive constant.

From the point of decision-makers, the first term of objective function (60)
represents the total costs of meeting customers’ demand. Constraint (61) ensures
that at least one distribution center is built, and constraint (62) represents the
binary restrictions of the decision variables. The lower-level problem represents the
customers’ choice behaviors. Constraint (64) ensures that the total demand of each
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customer must be met by supply from some distribution centers. Constraint (65)
is the capacity constraint, which ensures that all the demands distributed in a
distribution center will not exceed its capacity. Constraint (66) prohibits the demand
on any proposed distribution center that is not actually constructed. Based on
the special form of constraints (66), a simple reaction function is proposed. This
reaction function is obtained by transforming (66) into the form

Xij = Mzj − y∗
ij (68)

where y∗
ij is the optimal relaxation variable obtained after solving the second-level

problem by any existing algorithm. This reaction function is substituted in the first
level of the problem which results to an integer programming problem with variables
z which can be solved by any well-known non-linear programming model

In [17] and [18] the effects of customers’ competition for the offered service level
on the facility location decisions are examined. Two types of decision-makers are
considered, the producer who tries to provide at facilities the best level of service
at minimum cost and the customers who make their choices in order to minimize
their perceived costs. The customers are involved in a Nash-type game in their
effort to ensure the best level of services for themselves. A bi-level programming
model is formulated in order to take into consideration the effects of customers’
competition. Furthermore an extension is also proposed. It is assumed that there are
two producers who constitute a duopoly in the network. The producers compete with
one another with respect to the service level they offer in order to attract customers.
A bi-level model with two leaders is proposed in order to take into account both the
competition between producers and the competition among customers.

It is assumed that the producer tries to provide to the customers the best service
level at minimum cost. The evaluation of the offered service is based on the delay
faced by the customers at each distribution center i. If xij is the amount that the
customer j buys from the distribution center i, then the performance function di(xi)

measures the level of service offered by the distribution center i where xi =
n

∑
j=1

xij.

Suppose that m is the set of potential sites for the location of the distribution centers.
We assume that the establishment of a distribution center to the candidate site i
implies a fixed location cost fi. Furthermore, suppose rj is the demand of customer
j(j = 1 . . . ,n), pi is the unit price paid by customers, and qi is the capacity of the
distribution center i(i = 1 . . . ,m). Under the assumption that a central coordinator
chooses the location of the distribution center in such a manner that the total cost of
the system is minimized, the mathematical model can be formulated as follows:

(SO−FL) min
m

∑
i=1

di(xi)xi +
m

∑
i=1

pixi +
m

∑
i=1

n

∑
j=1

tijxij (69)

+
m

∑
i=1

Fiyi
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s.t
m

∑
i=1

xij = rj, ∀j (70)

xi ≤ yiqi, ∀i (71)

xi −
n

∑
j=1

xij = 0, ∀i (72)

yi ∈ {0,1},∀i (73)

xij ≥ 0, ∀i, ∀j (74)

The objective function of problem (70) minimizes the total cost consisting
of the cost of the delay, plus the transportation and purchasing costs plus the
cost involved in setting up a distribution center. Constraints (70) ensure that the
quantities purchased by the customer j at all distribution centers meet his overall
demand. Constraints (71) impose that the total amount of the product available
at each distribution center i does not exceed its capacity. In addition, it enables
the assignment of the customers’ demand only in sited distribution. Relations (72)
are the defining constraints of the model, ensuring the maintenance of flow in the
network.

In a second model producer takes into account the free will and the competitive
preference of the customers and determines the final location of the distribution
centers based on the prediction of their behavior as delivered by the outcome of a
Nash game. Thus, problem is formulated as bi-level programming model:

(BSO−FL) min
[yi]

m

∑
i=1

Fiyi +
m

∑
i=1

di(x̄i)x̄i

+
m

∑
i=1

pix̄i +
m

∑
i=1

n

∑
j=1

tijx̄ij (75)

s.t yi ∈ {0,1}, ∀i (76)

where [x̄i] and [x̄ij] solve

(UO−TP) min
m

∑
i=1

∫ xi

0
di(t)dt

+
m

∑
i=1

pixi +
m

∑
i=1

n

∑
j=1

tijxij (77)

s.t
m

∑
i=1

xij = rj, ∀j (78)

xi ≤ qiyi, ∀i (79)
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xi −
n

∑
j=1

xij = 0, ∀i (80)

xij ≥ 0 ∀i, j (81)

According to this model, the leader (producer) decides the location of distribution
centers solving problem (75)–(76), but he does not control the variables xi and xij

since they describe the choices of his customers. The values of the variables [x̄i] and
[x̄ij] are derived from model (77)–(81) corresponding to an oracle. In other words,
the leader uses (77)–(81) as an oracle to discover trends/reactions of the customers
in each potential location and tries to minimize the total cost of the system based on
these discoveries.

In a supply chain network where there are more than one producers, none of
them have the power to direct customers to distribution centers. Thus, as a result,
the offered service level and customer satisfaction are the basic differentiation and
discrimination components among economic units of the same sector. In order to
take into account both levels of competition we formulate the following bi-level
problem with two leaders:

Let us assume that the potential location of distribution centers i = 1, . . . ,m
is dispersed between the two producers who in turn are involved in a competi-
tion for customer attraction through the provided service level. Let M1 and M2

(m = |M1|+ |M2|) be the nodes of the two producers. Then, under the assumption
that both producers “announce their strategies simultaneously,” we obtain a Nash
game with two players who are dealing (for K = 1,2) with the following problems:

The facility location problem of producer 1:

(CFL1) min ∑
i∈M1

Fiyi

+ ∑
i∈M1

di(x̄i)x̄i + ∑
i∈M1

pix̄i + ∑
i∈M1

n

∑
j=1

tijx̄ij (82)

s.t yi ∈ {0,1},∀i ∈ M1 (83)

The facility location problem of producer 2:

(CFL2) min ∑
i∈M2

Fiyi

+ ∑
i∈M2

di(x̄i)x̄i + ∑
i∈M2

pix̄i + ∑
i∈M2

n

∑
j=1

tijx̄ij (84)

s.t yi ∈ {0,1},∀i ∈ M2 (85)

where [x̄i] and [x̄ij] solve (77)–(81)
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The producers compete with each other with respect to the service level they offer
in order to attract customers involved in a Nash game. A Nash equilibrium for this
duopolistic game corresponds to a set of location and capacity choices (strategies),
which ensure that none of the players are better off by unilaterally changing his
strategy.

Let Y = {yi|yi ∈ {0,1},∀i ∈ Mk} be the feasible sets of the players for k = 1,2,

yk = [yi]i∈Mk and y =

[
y1

y2

]
. We have already mentioned the existence of optimal

solutions x̄i and x̄ij for given capacity [q̄i]. Thus, there is a function from R
m to R

m,
such that for a given ȳ it returns the unique equilibrium point [x̄i] from (77)–(81)
and a corresponding mapping from R

m to R
m·n such that for a given ȳ it returns an

optimal transportation plan [x̄ij] which corresponds to the equilibrium point [x̄i], thus
it holds that x̄i = xi(ȳ) and x̄ij = xij(ȳ), respectively.

Hence problems (CFLk) could be formulated as a single level problems:

(SCFLk) min
yk∈Yk

∑
i∈Mk

di(xi(y),yi)xi(y)+ ∑
i∈Mk

pixi(y) (86)

+ ∑
i∈Mk

n

∑
j=1

tijxij(y) (87)

Each problem (SCFLk) corresponds to player k who is involved in the Nash game.

5 Conclusion and Future Research

The literature concerning the competitive facility location is vast. The main contri-
bution of our study is that it provides a broad review of modeling and optimization
approaches of the discrete bi-level version of the problem. The proposed taxonomy
can be meaningfully enhanced based on time, evolution, and content of the subject.
In addition it could be the basis of a framework for future studies.
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On Nash Equilibria in Stochastic Positional
Games with Average Payoffs

Dmitrii Lozovanu and Stefan Pickl

Abstract We consider a class of stochastic positional games that extends deter-
ministic positional games with average payoffs. The considered class of games
we formulate and study applies the game-theoretical concept to finite state space
Markov decision processes with an average cost optimization criterion. Necessary
and sufficient conditions for the existence of Nash equilibria in stochastic positional
games with average payoffs are proven and some approaches for determining
the optimal stationary strategies of the players are analyzed. For antagonistic
positional games are proposed. Iterative algorithms for determining the saddle
points. Additionally we show that the obtained results can be used for studying
the problem of the existence of Nash equilibria in Shapley stochastic games with
average payoffs.

Keywords Stochastic positional games • Finite space • Markov processes •
Nash equilibrium • Saddle point algorithm • Shapley stochastic games

1 Introduction

We consider a class of stochastic positional games that extends deterministic
positional games with average payoffs from [1, 2, 5, 9, 14] and can be used for
studying the problem of the existence of Nash equilibria for Shapley stochastic
games with average payoffs[18]. The considered class of games we formulate and
study applies the concept of positional games to finite state space Markov decision
processes with an average cost optimization criterion. We assume that the Markov
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process is controlled by several actors (players) as follows: The set of states of the
system is divided into several disjoint subsets which represent the corresponding
position sets of several players. Additionally, the starting position of the game is
fixed and the cost of system’s transition from one state to another is given for each
player separately. Each player has to determine which action should be taken in each
state of his position set of Markov process in order to minimize (or maximize) his
own average cost per transition. In these games we are seeking a Nash equilibrium.

The main results of the chapter are concerned with the existence of Nash
equilibria for the considered class of games and determining the optimal strategies
of the players. Necessary and sufficient conditions for the existence of Nash
equilibria in stochastic positional games with average payoffs that extend Nash
equilibria conditions for deterministic positional games are proven. Based on the
constructive proof of these results we propose some approaches for determining the
optimal strategies of the players. For the antagonistic positional games we show
that a saddle point always exists and an iterative algorithm for determining the
optimal stationary strategies of the players is proposed. Additionally we show that
the stochastic positional games are tightly connected with Shapley stochastic games
and the obtained results can be used for studying the problem of the existence of
Nash equilibria for Shapley stochastic games with average payoffs.

2 Problem Formulation and Some Preliminary Results

In this section we formulate the stochastic positional game with average payoffs and
describe some preliminary results from [8, 11, 12] that we shall use in the following
to prove the basic theorems concerned with the existence of Nash equilibria in this
game. We formulate our game model using the framework of a Markov decision
process (X,A,p,c) with a finite set of states X, a finite set of actions A, a transition
probability function p : X ×X ×A → [0,1] that satisfies the condition

∑
y∈X

pa
x,y = 1, ∀x ∈ X, ∀a ∈ A

and a transition cost function c : X × X → R which gives the costs cx,y of state
transitions of the dynamical system from an arbitrary state x ∈ X to an arbitrary state
y ∈ X (see [6, 17]). For the stochastic positional game with m players we assume that
m transition cost functions

ci : X ×X → R, i = 1,2, . . . ,m

are given, where ci
x,y expresses the cost of the system’s transition from the state x ∈ X

to the state y ∈ X for the player i ∈ {1,2, . . . ,m}. In addition we assume that the set
of states X is divided into m disjoint subsets X1,X2, . . . ,Xm
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X = X1 ∪X2 ∪·· ·∪Xm (Xi ∩Xj = /0, ∀i �= j),

where Xi represents the position set of player i ∈ {1,2, . . . ,m}.
The game starts at given position x0 = x(0) where the player who is the owner of

this position starts the game by fixing an action a ∈ A(x0). After that the dynamical
system passes randomly to the next position x(1) according to distribution transition
probabilities that correspond to a selected action a in x0. Then the player who
is the owner of new position x(1) fixes an action a ∈ A(x(1)) and the dynamical
system passes randomly to the next position x(2) according to distribution transition
probabilities that correspond to the action a in x(1) and so on indefinitely. Each
player in this game selects actions in his position set in order to minimize his
own average cost per transition. In the considered game we are seeking for a Nash
equilibrium.

More precisely we can formulate the considered stochastic positional game in
terms of stationary strategies. In the following we can see that if a Nash equilibrium
exists in this game then it is reached in the set of stationary strategies. The stationary
strategies of the players we define as m maps:

si : x → a ∈ Ai(x) for x ∈ Xi, i = 1,2, . . . ,m,

where Ai(x) is the set of actions of the player i in the state x ∈ Xi. Without loss of
generality we may consider |Ai(x)| = |Ai| = |A|, ∀x ∈ Xi, i = 1,2, . . . ,m. In order
to simplify the notation we denote the set of possible actions in a state x ∈ X for
an arbitrary player by A(x). A stationary strategy si, i ∈ {1,2, . . . ,m} in the state
x ∈ Xi means that at every discrete moment of time t = 0,1,2, . . . the player i uses
the action a = si(x). Players fix their strategy independently and do not inform each
other which strategies they use in the decision process.

If the players 1,2, . . . ,m fix their stationary strategies s1,s2, . . . ,sm, respectively,
then we obtain a situation s = (s1,s2, . . . ,sm). This situation corresponds to a simple

Markov process determined by the probability distributions psi(x)
x,y in the states x ∈ Xi

for i = 1,2, . . . ,m. We denote by Ps = (ps
x,y) the matrix of probability transitions of

this Markov process. If the starting state x0 is given, then for the Markov process
with the matrix of probability transitions Ps we can determine the average cost per
transition ω i

x0
(s1,s2, . . . ,sm) with respect to each player i ∈ {1,2, . . . ,m} taking into

account the corresponding matrix of transition costs Ci = (ci
x,y). So, on the set of

situations we can define the payoff functions of the players as follows:

Fi
x0
(s1,s2, . . . ,sm) = ω i

x0
(s1,s2, . . . ,sm), i = 1,2, . . . ,m.

In such a way we obtain a discrete noncooperative game in normal form
which is determined by a finite set of strategies S1,S2, . . . ,Sm of m players
and the payoff functions defined above. In this game we are seeking a Nash
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equilibrium [15], i.e., we consider the problem of determining the stationary
strategies s1∗

,s2∗
, . . . ,si−1∗

,si∗,si+1∗
, . . . ,sm∗ such that

Fi
x0
(s1∗

,s2∗
, . . . ,si−1∗

,si∗,si+1∗
, . . . ,sm∗)

≤ Fi
x0
(s1∗

,s2∗
, . . . ,si−1∗

,si,si+1∗
, . . . ,sm∗), ∀si ∈ Si, i = 1,2, . . . ,m.

The game defined above is determined uniquely by the set of states X, the
position sets X1,X2, . . . ,Xm, the set of actions A, the cost functions, ci : X ×X →
R, i = 1,2, . . . ,m, the probability function p : X × X × A → [0,1] and the starting
position x0. Therefore, we denote this game (X, A, {Xi}i=1,m, {ci}i=1,m, p, x0).

In the case m = 2 and c2 = −c1 we obtain an antagonistic stochastic
positional game. If pa

x,y = 0 ∨ 1, ∀x,y ∈ X, ∀a ∈ A the stochastic positional

game (X, A, {Xi}i=1,m, {ci}i=1,m, p, x0) is transformed into the cyclic
game [5, 9, 10]. Some results concerned with the existence of Nash equilibria for
stochastic positional games with average payoffs have been derived in [8, 11, 12].
In particular the following theorem has been proven [8].

Theorem 1. If for an arbitrary situation s = (s1,s2, . . . ,sm) of the stochastic
positional game with average payoffs the matrix of probability transitions Ps =
(ps

x,y) induces an ergodic Markov chain then for the game there exists a Nash
equilibrium.

Based on a constructive proof of this theorem in [8] an algorithm is proposed
for determining the optimal stationary strategies of the players if the conditions of
theorem hold. If the matrix Ps for some situations do not correspond to an ergodic
Markov chain then for the stochastic positional game with average payoffs a Nash
equilibrium may not exist. This follows from the constructive proof of this theorem.
An example of a deterministic positional game with average payoffs for which Nash
equilibrium does not exist has been constructed in [5]. However, in the following we
can see that for an arbitrary antagonistic stochastic positional games saddle points
always exist.

Note that in [8, 12] studied also stochastic positional games with discounted
payoffs have been and it is shown that for such games a Nash equilibrium always
exists.

3 Nash Equilibria Conditions for Stochastic Positional
Games with Average Payoffs

The aim of this section is to formulate Nash equilibria conditions for stochastic
positional games in terms of bias equations for Markov decision processes. We can
see that Nash equilibria conditions in such terms may be useful for determining the
optimal strategies of the players.
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Theorem 2. Let (X,A,{Xi}i=1,m,{ci}i=1,m,p,x) be a stochastic positional game
with a given starting position x ∈ X and average payoff functions

F1
x (s

1, s2, . . . , sm), F2
x (s

1, s2, . . . , sm), . . . , Fm
x (s

1, s2, . . . , sm)

of the players 1,2, . . . ,m, respectively. Assume that for an arbitrary situation s =
(s1,s2, . . . ,sm) of the game the transition probability matrix Ps = (ps

x,y) corresponds
to an ergodic Markov chain. Then there exist the functions

ε i : X → R, i = 1,2, . . . ,m

and the values ω1,ω2, . . . ,ωm that satisfy the following conditions:

1) μ i
x,a +∑

y∈X

pa
x,yε i

y − ε i
x −ω i ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x), i = 1,2, . . . ,m,

where μ i
x,a = ∑

y∈X

pa
x,yci

x,y;

2) min
a∈A(x)

{μ i
x,a +∑

y∈X

pa
x,yε i

y − ε i
x −ω i}= 0, ∀x ∈ Xi, i = 1,2, . . . ,m;

3) on each position set Xi, i ∈ {1,2, . . . ,m} there exists a map si∗ : Xi → A such that

si∗(x) = a∗ ∈ Arg min
a∈A(x)

{
μ i

x,a +∑
y∈X

pa
x,yε i

y − ε i
x −ω i

}

and

μ j
x,a∗ +∑

y∈X

pa∗
x,yε j

y − ε j
x −ω j = 0, ∀x ∈ Xi, j = 1,2, . . . ,m.

The set of maps s1∗
,s2∗

, . . . ,sm∗ determines a Nash equilibrium situation s∗ =
(s1∗

,s2∗
, . . . ,sm∗) for the stochastic positional game (X, A, {Xi}i=1,m, {ci}i=1,m,

p, x
)

and

Fi
x(s

1∗
,s2∗

, . . . ,sm∗) = ω i, ∀x ∈ X, i = 1,2, . . . ,m.

Moreover, the situation s∗ =(s1∗
,s2∗

, . . . ,sm∗) is a Nash equilibrium for an arbitrary
starting position x ∈ X.

Proof. Let a stochastic positional game with average payoffs be given and assume
that for an arbitrary situation s of the game the transition probability matrix Ps =
(ps

x,y) corresponds to an ergodic Markov chain. Then according to Theorem 1 for

this game there exists a Nash equilibrium s∗ = (s1∗
,s2∗

, . . . ,sm∗) and we can set

ω i = Fi
x(s

1∗
,s2∗

, . . . ,sm∗), ∀x ∈ X, i = 1,2, . . . ,m.
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Let us fix the strategies s1∗
,s2∗

, . . . ,si−1∗
,si+1∗

, . . . ,sm∗ of the players 1,2, . . . , i −
1, i+1, . . . ,m and consider the problem of determining the minimal average cost per
transition with respect to player i. Obviously, if we solve this decision problem then
we obtain the strategy si∗. We can determine the optimal strategy of this decision
problem with average cost optimization criterion using the bias equations with
respect to player i. This means that there exist the functions ε i : X → R and the
values ω i, i = 1,2, . . . ,m that satisfy the conditions:

1) μ i
x,a +∑

y∈X

pa
x,yε i

y − ε i
x −ω i ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x);

2) min
a∈A(x)

{
μ i

x,a +∑
y∈X

pa
x,yε i

y − ε i
x −ω i

}
= 0, ∀x ∈ Xi.

Moreover, for fixed strategies s1∗
,s2∗

, . . . ,si−1∗
,si+1∗

, . . . ,sm∗ of the corresponding
players 1,2, . . . , i−1, i+1, . . . ,m we can select the strategy si∗ of player i where

si∗(x) ∈ Arg min
a∈A(x)

{
μ i

x,a +∑
y∈X

pa
x,yε i

y − ε i
x −ω i

}

and ω i = Fi
x(s

1∗
,s2∗

, . . . ,sm∗), ∀x ∈ X, i = 1,2, . . . ,m. This means that conditions
1)–3) of the theorem holds. �
Corollary 1. If for a stochastic positional game (X, A, {Xi}i=1,m, {ci}i=1,m, p, x)

with average payoffs there exists a Nash equilibrium s∗ = (s1∗
,s2∗

, . . . ,sm∗) which
is a Nash equilibrium for an arbitrary starting position of the game x ∈ X and for
arbitrary two different starting positions x,y ∈ X it holds Fi

x(s
1∗
,s2∗

, . . . ,sm∗) =
Fi

y(s
1∗
,s2∗

, . . . ,sm∗) then exist the functions

ε i : X → R, i = 1,2, . . . ,m

and the values ω1,ω2, . . . ,ωm that satisfy the conditions 1)–3) from Theorem 2.
So, ω i = Fi

x(s
1∗
,s2∗

, . . . ,sm∗), ∀x ∈ X, i = 1,2, . . . ,m and an arbitrary Nash
equilibrium can be found by fixing

si∗(x) = a∗ ∈ Arg min
a∈A(x)

{
μ i

x,a +∑
y∈X

pa
x,yε i

y − ε i
x −ω i

}
.

Using the elementary properties of non-ergodic Markov decision processes with
average cost optimization criterion the following lemma can be gained.

Lemma 1. Let (X, A, {Xi}i=1,m, {ci}i=1,m, p, x) be an average stochastic

positional game for which there exists a Nash equilibrium s∗ = (s1∗
,s2∗

, . . . ,sm∗),
which is a Nash equilibrium for an arbitrary starting position of the game with
ω i

x = Fi
x(s

1∗
,s2∗

, . . . ,sm∗). Then s∗ = (s1∗
,s2∗

, . . . ,sm∗) is a Nash equilibrium for
the average stochastic positional game (X, A, {Xi}i=1,m, {ci}i=1,m, p, x), where

ci
x,y = ci

x,y −ω i
x, ∀x,y ∈ X, i = 1,2, . . . ,m
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and

F
i
x(s

1∗
,s2∗

, . . . ,sm∗) = 0, ∀x ∈ X, i = 1,2, . . . ,m.

Now using Corollary 1 and Lemma 1 we can prove the following results.

Theorem 3. Let (X,A,{Xi}i=1,m,{ci}i=1,m,p,x) be an average stochastic posi-
tional game. Then in this game there exists a Nash equilibrium for an arbitrary
starting position x ∈ X if and only if there exist the functions

ε i : X → R, i = 1,2, . . . ,m

and the values ω1
x ,ω2

x , . . . ,ωm
x for x ∈ X that satisfy the following conditions:

1) μ i
x,a +∑

y∈X

pa
x,yε i

y − ε i
x −ω i

x ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x), i = 1,2, . . . ,m,

where μ i
x,a = ∑

y∈X

pa
x,yci

x,y;

2) min
a∈A(x)

{μ i
x,a +∑

y∈X

pa
x,yε i

y − ε i
x −ω i

x}= 0, ∀x ∈ Xi, i = 1,2, . . . ,m;

3) on each position set Xi, i ∈ {1,2, . . . ,m} there exists a map si∗ : Xi → A such that

si∗(x) = a∗ ∈ Arg min
a∈A(x)

{
μ i

x,a +∑
y∈X

pa
x,yε i

y − ε i
x −ω i

}

and

μ j
x,a∗ +∑

y∈X

pa∗
x,yε j

y − ε j
x −ω j = 0, ∀x ∈ Xi, j = 1,2, . . . ,m.

If such conditions hold then the set of maps s1∗
,s2∗

, . . . ,sm∗ determines a Nash
equilibrium of the game for an arbitrary starting position x ∈ X and

Fi
x(s

1∗
,s2∗

, . . . ,sm∗) = ω i
x, i = 1,2, . . . ,m.

Proof. The sufficiency condition of the theorem is evident. Let us prove the
necessity one. Assume that for the considered average stochastic positional game
there exists a Nash equilibrium s∗ = (s1∗

,s2∗
, . . . ,sm∗) which is a Nash equilibrium

for an arbitrary starting position of the game. Denote

σ i
x = F̂i

x(s
1∗
,s2∗

, . . . ,sm∗), ∀x ∈ X, i = 1,2, . . . ,m

and consider the following auxiliary game (X, A, {Xi}i=1,m, {ci}i=1,m, p, x),
where

ci
x,y = ci

x,y −ω i
x, ∀x,y ∈ X, i = 1,2, . . . ,m.
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Then according to Lemma 1 the auxiliary game has the same Nash equilibrium
s∗ = (s1∗

,s2∗
, . . . ,sm∗) as the initial one. Moreover, this equilibrium is a Nash

equilibrium for an arbitrary starting position of the game and

F
i
x(s

1∗
,s2∗

, . . . ,sm∗) = 0, ∀x ∈ X, i = 1,2, . . . ,m.

Therefore, according to Corollary 1, for the auxiliary game there exist the functions

ε i : X → R, i = 1,2, . . . ,m

and the values ω1,ω2, . . . ,ωm (ω i = 0, i = 1,2, . . . ,m) that satisfy the conditions of
Theorem 2, i.e.,

1) μ i
x,a +∑

y∈X

pa
x,yε i

y − ε i
x −ω i

x ≥ 0, ∀x ∈ Xi, ∀a ∈ A(x), i = 1,2, . . . ,m,

where μ i
x,a = ∑

y∈X

pa
x,yci

x,y;

2) min
a∈A(x)

{μ i
x,a +∑

y∈X

pa
x,yε i

y − ε i
x −ω i

x}= 0, ∀x ∈ Xi, i = 1,2, . . . ,m;

3) on each position set Xi, i ∈ {1,2, . . . ,m} there exists a map si∗ : Xi → A such that

si∗(x) = a∗ ∈ Arg min
a∈A(x)

{
μ i

x,a +∑
y∈X

pa
x,yε i

y − ε i
x −ω i

}

and

μ j
x,a∗ +∑

y∈X

pa∗
x,yε j

y − ε j
x −ω j = 0, ∀x ∈ Xi, j = 1,2, . . . ,m.

Taking into account that ω i
x = 0, and μ i

x,a = μ i
x,a −ω i

x (because ci
x,y = cx,y −ω i

x) we
obtain conditions 1)–3) of the theorem. �

4 Saddle Point Conditions for Antagonistic Stochastic
Positional Games and an Algorithm for Determining
the Optimal Strategies

The antagonistic stochastic positional game with the average payoff corresponds to
the case of the game from Sect. 2 in the case m = 2 when c = c1 =−c2. So, we have
a game (X,A,X1,X2,c,p,x) where the stationary strategies s1 and s2 of the players
are defined as two maps

s1 : x → a ∈ A1(x) for x ∈ X1; s2 : x → a ∈ A1(x) for x ∈ X2



On Nash Equilibria in Stochastic Positional Games with Average Payoffs 179

and the payoff function Fx(s
1,s2) = F1

x (s
1,s2) = −F2

x (s
1,s2) of the players is

determined by the values of average costs ωs
x in the Markov processes with the

corresponding probability matrices Ps induced by the situations s = (s1,s2) ∈ S. We
show that for this game saddle points s1∗

,s2∗
always exist, i.e. for a given starting

position x ∈ X it holds

Fx(s
1∗
,s2∗

) = min
s1∈S1

max
s2∈S2

Fx(s
1,s2) = max

s2∈S2
min
s1∈S1

Fx(s
1,s2).

Theorem 4. Let (X, A, X1,X2,c, p,x) be an arbitrary antagonistic stochastic posi-
tional game with average payoff function Fx(s1,s2). Then the system of equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εx +ωx = max
a∈A(x)

{
μx,a +∑

y∈X

pa
x,yεy

}
, ∀x ∈ X1;

εx +ωx = min
a∈A(x)

{
μx,a +∑

y∈X

pa
x,yεy

}
, ∀x ∈ X2;

has a solution under the set of solutions of the system of equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ωx = max
a∈A(x)

{
∑
y∈X

pa
x,yωy

}
, ∀x ∈ X1;

ωx = min
a∈A(x)

{
∑
y∈X

pa
x,yωy

}
, ∀x ∈ X2,

i.e. the last system of equations has such a solution ω∗
x , x ∈ X for which there exists

a solution ε∗
x , x ∈ X of the following system of equations

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

εx +ω∗
x = max

a∈A(x)

{
μx,a +∑

y∈X

pa
x,yεy

}
, ∀x ∈ X1;

εx +ω∗
x = min

a∈A(x)

{
μx,a +∑

y∈X

pa
x,yεy

}
, ∀x ∈ X2.

The optimal stationary strategies of players

s1
∗ : x → a1 ∈ A(x) for x ∈ X1;

s2
∗ : x → a2 ∈ A(x) for x ∈ X2

in the antagonistic stochastic positional game can be found by fixing arbitrary maps
s1

∗(x) ∈ A(x) for x ∈ X1 and s2
∗(x) ∈ A(x) for x ∈ X2 such that
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s1
∗(x) ∈

(
Arg max

a∈A(x)

{
∑
y∈X

pa
x,yω∗

y

})⋂(
Arg max

a∈A(x)

{
μx,a +∑

y∈X

pa
x,yε∗

y

})

∀x ∈ X1

and

s2
∗(x) ∈

(
Arg min

a∈A(x)

{
∑
y∈X

pa
x,yω∗

y

})⋂(
Arg min

a∈A(x)

{
μx,a +∑

y∈X

pa
x,yε∗

y

})
.

∀x ∈ X2

For the strategies s1∗
,s2∗

the corresponding values of the payoff function
Fx(s

1∗
,s2∗

) coincides with the values ω∗
x for x ∈ X and

Fx(s
1∗
,s2∗

) = min
s1∈S1

max
s2∈S2

Fx(s
1,s2) = max

s2∈S2
min
s1∈S1

Fx(s
1,s2) ∀x ∈ X.

.

Proof. Let x ∈ X be an arbitrary state and consider the stationary strategies s1 ∈
S1, s2 ∈ S2 for which

Fx(s
1,s2) = min

s2∈S2
max
s1∈S1

Fx(s
1,s2).

We show that

Fx(s
1,s2) = max

s1∈S1
min
s2∈S2

Fx(s
1,s2),

i.e., we show that s1 = s1∗
, s2 = s2∗

.
According to the properties of the bias equations for the situation s = (s1,s2) the

system of linear equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx +ωx = μx,a +∑
y∈X

pa
x,yεy, ∀x ∈ X1, a = s1(x);

εx +ωx = μx,a +∑
y∈X

pa
x,yεy, ∀x ∈ X2, a = s2(x);

ωx = ∑
y∈X

pa
x,yωy, ∀x ∈ X1, a = s1(x);

ωx = ∑
y∈X

pa
x,yωy, ∀x ∈ X2, a = s2(x)

(1)

has the solution ε∗
x , ω∗

x (x ∈ X) which for a fixed strategy s2 ∈ S2 satisfies the
condition:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε∗
x +ω∗

x ≥ μx,a +∑
y∈X

pa
x,yε∗

y , ∀x ∈ X1, a ∈ A(x);

ε∗
x +ω∗

x = μx,a +∑
y∈X

pa
x,yε∗

y , ∀x ∈ X2, a = s2(x);

ω∗
x ≥ ∑

y∈X

pa
x,yω∗

y , ∀x ∈ X1, a ∈ A(x);

ω∗
x = ∑

y∈X

pa
x,yω∗

y , ∀x ∈ X2, a = s2(x)

and Fx(s
1,s2) = ω∗

x , ∀x ∈ X.
Taking into account that Fx(s

1,s2) = min
s2∈S2

Fx(s
1,s2) then for a fixed strategy s1 ∈

S1 the solution ε∗
x , ω∗

x (x ∈ X) satisfies the condition⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε∗
x +ω∗

x = μx,a +∑
y∈X

pa
x,yε∗

y , ∀x ∈ X1, a = s1(x);

ε∗
x +ω∗

x ≤ μx,a +∑
y∈X

pa
x,yε∗

y , ∀x ∈ X2, a ∈ A(x);

ω∗
x = ∑

y∈X

pa
x,yω∗

y , ∀x ∈ X1, a = s1(x);

ω∗
x ≤ ∑

y∈X

pa
x,yω∗

y , ∀x ∈ X2, a ∈ A(x)

So, the following system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εx +ωx ≥ μx,a +∑
y∈X

pa
x,yεy, ∀x ∈ X1, a ∈ A(x);

εx +ωx ≤ μx,a +∑
y∈X

pa
x,yεy, ∀x ∈ X2, a ∈ A(x);

ωx ≥ ∑
y∈X

pa
x,yωy, ∀x ∈ X1, a ∈ A(x);

ωx ≤ ∑
y∈X

pa
x,yωy, ∀x ∈ X2, a ∈ A(x)

has a solution, which satisfies condition (1).
This means that s1∗

= s1,s2∗
= s2 and

max
s1∈S1

min
s2∈S2

Fx(s
1,s2) = min

s2∈S2
max
s1∈S1

Fx(s
1,s2), ∀x ∈ X,

i.e., the theorem holds. �
Based on Theorem 4 we can propose the following algorithm for determining the

optimal stationary strategies of the players in the antagonistic stochastic positional
game with average payoff function.
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4.1 An Algorithm

Preliminary step (Step 0): Fix the arbitrary stationary strategies

s0
1 : x → a ∈ A(x) for x ∈ X1

s0
2 : x → a ∈ A(x) for x ∈ X2

that determine the situation s0 = (s0
1,s

0
2).

General step (Step k, k ≥ 1): Determine the probability matrix Psk−1
that

corresponds to the situation s = (sk−1
1 ,sk−1

2 ) and find ωsk−1
and εsk−1

which satisfy
the conditions ⎧⎨

⎩
(Psk−1 − I)ωsk−1

= 0;

μsk−1
+(Psk−1 − I)εsk−1 −ωsk−1

= 0.

Then find a situation sk = (sk
1,s

k
2) such that

sk
1(x) ∈ Arg max

a∈A(x)

{
∑
y∈X

pa
x,yω

sk−1
1

y

}
, ∀x ∈ X1;

sk
2(x) ∈ Arg min

a∈A(x)

{
∑
y∈X

pa
x,yω

sk−1
2

y

}
, ∀x ∈ X2

and set sk = sk−1 if

sk−1
1 (x) ∈ Arg max

a∈A(x)

{
∑
y∈X

pa
x,yω

sk−1
1

y

}
, ∀x ∈ X1;

sk−1
2 (x) ∈ Arg min

a∈A(x)

{
∑
y∈X

pa
x,yω

sk−1
2

y

}
, ∀x ∈ X2

After that check if sk = sk−1. If sk = sk−1 then go to next step k+1; otherwise choose
a situation sk = (sk

1,s
k
2) such that

sk
1(x) ∈ Arg max

a∈A(x)

{
μx,a +∑

y∈X

pa
x,yε

sk−1
1 (x)

y

}
∀x ∈ X1;

sk
2(x) ∈ Arg min

a∈A(x)

{
μx,a +∑

y∈X

pa
x,yε

sk−1
2 (x)

y

}
∀x ∈ X2

and set sk = sk−1 if
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sk−1
1 (x) ∈ Arg max

a∈A(x)

{
μx,a +∑

y∈X

pa
x,yε

sk−1
1 (x)

y

}
∀x ∈ X1;

sk−1
2 (x) ∈ Arg min

a∈A(x)

{
μx,a +∑

y∈X

pa
x,yε

sk−1
2 (x)

y

}
∀x ∈ X2

After that check if sk = sk−1. If sk = sk−1 then STOP and set s∗ = sk−1; otherwise
go to next step k+1.

Remark. If px,y ∈ {0,1}∀x,y ∈ X then the algorithm is transformed in the algorithm
for determining the optimal stationary strategies of the players in the deterministic
parity games.

The convergence of the algorithm described above can be grounded in a similar
way as the convergence of the iterative algorithm for determining the optimal
solution of the Markov decision problem with average cost optimization criteria
(see [6, 17]).

5 Application of Stochastic Positional Games for Studying
Shapley Stochastic Games

The aim of this section is to show on the relationship between stochastic positional
games and Shapley stochastic games [18]. Based on this relationship and the
obtained results we show that in general for Shapley stochastic games with average
payoffs a Nash equilibrium may not exist.

A stochastic game in the sense of Shapley [18] is a dynamic game with
probabilistic transitions played by several players in a sequence of stages, where
the beginning of each stage corresponds to a state of the dynamical system. The
game starts at a given state from the set of states of the system. At each stage
players select actions from their feasible sets of actions and each player receives
a stage payoff that depends on the current state and the chosen actions. The game
then moves to a new random state the distribution of which depends on the previous
state and the actions chosen by the players. The procedure is repeated at a new state
and the play continues for a finite or infinite number of stages. The total payoff of a
player is either the limit inferior of the average of the stage payoffs or the discounted
sum of the stage payoffs.

So, an average Shapley stochastic game with m players consists of the following
elements:

1. A state space X (which we assume to be finite);
2. A finite set Ai(x) of actions with respect to each player i ∈ {1,2, . . . ,m}

for an arbitrary state x ∈ X;
3. A stage payoff f i(x,a) with respect to each player i ∈ {1,2, . . . ,m}

for each state x ∈ X and for an arbitrary action vector a ∈∏
i

Ai(x);
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4. A transition probability function p : X ×∏
x∈X
∏

i

Ai(x)×X → [0,1]

that gives the probability transitions pa
x,y from an arbitrary x ∈ X

to an arbitrary y ∈ Y for a fixed action vector a ∈∏
i

Ai(x), where

∑
y∈X

pa
x,y = 1, ∀x ∈ X, a ∈∏

i

Ai(x);

5. A starting state x0 ∈ X.

The stochastic game starts in state x0. At stage t players observe state xt and
simultaneously choose actions ai

t ∈ Ai(xt), i = 1,2, . . . ,m. Then nature selects
state xt+1 according to probability transitions pat

xt,y for a fixed action vector at =

(a1
t ,a

2
t , . . . ,a

m
t ). A play of the stochastic game x0,a0,x1,a1, . . . ,xt,at, . . . defines

a stream of payoffs f i
0, f

i
1, f

i
2, . . . , where f i

t = f i(xt,at), t = 0,1,2, . . . . The t-stage
average stochastic game is the game where the payoff of player i ∈ {1,2, . . . ,m} is

Fi
t =

1
t

t−1

∑
τ=1

f i
τ .

The infinite average stochastic game is the game where the payoff of player i ∈
{1,2, . . . ,m} is

F
i
= lim

t→∞
Fi

t .

In a similar way is a Shapley stochastic game with expected discounted payoffs of
the players is defined. In such a game along with elements described above also a
discount factor λ (0 < λ < 1) is given and the total payoff of a player represents the
expected discounted sum of the stage payoffs.

By comparing Shapley stochastic games with stochastic positional games we
can observe the following. The probability transitions from a state to other states as
well as the stage payoffs of the players in a Shapley stochastic game depend on the
actions chosen by all players, while the probability transitions from a state to other
states as well the stage payoffs (the immediate costs of the players) in a stochastic
positional game depend only on the action of the player that controls the state in
his position set. This means that a stochastic positional game can be regarded as a
special case of the Shapley stochastic game. Nevertheless we can see that stochastic
positional games can be used for studying some classes of Shapley stochastic games.

The main results concerned with determining Nash equilibria in Shapley
stochastic games have been obtained in [3, 4, 7, 13, 16]. The existence of Nash
equilibria for such games is proven in the case of stochastic games with a finite set
of stages and in the case of the games with infinite stages when the total payoff
of each player is the discounted sum of stage payoffs. If the total payoff of a
player represents the limit inferior of the average of the stage payoffs then the
existence of a Nash equilibrium in Shapley stochastic games is an open question.
Based on results mentioned in previous sections we can show that in the case
of the average non-antagonistic stochastic games a Nash equilibrium may not
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exist. In order to prove this we can use the average stochastic positional game
(X, A, {Xi}i=1,m, {ci}i=1,m, p, x0) from Sect. 2. It is easy to observe that this game
can be regarded as a Shapley stochastic game with average payoff functions of the
players, where for a fixed situation s = (s1,s2, . . . ,sm) the probability transition ps

x,y

from a state x = x(t) ∈ Xi to a state y = x(t+1) ∈ X depends only on strategy si of
player i and the corresponding stage payoff in the state x of player i ∈ {1,2, . . . ,m} is
equal to ∑

y∈X

ps
x,yci

x,y. Taking into account that the cyclic game represents a particular

case of the average stochastic positional game and for the cyclic game a Nash
equilibrium may not exist (see example from [5]) we obtain that for the average
non-antagonistic Shapley stochastic game a Nash equilibrium may not exist.

6 Conclusion

Stochastic positional games with average payoffs represent a special class of
Shapley stochastic games. The obtained results in this chapter show that for the
considered positional games a Nash equilibrium may not exist. This involves that for
Shapley stochastic games with average payoffs in general case a Nash equilibrium
also may not exist. However necessary and sufficient conditions for the existence
of Nash equilibria in stochastic positional games with average payoff are derived.
For antagonistic positional games it is proven that saddle points always exist
and an iterative algorithm for determining the optimal strategies of the players is
proposed. The obtained results for the general positional game model can be used
for determining the optimal stationary strategies of the players in the case when a
Nash equilibrium exists.
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Adaptive Tunning of All Parameters
in a Multi-Swarm Particle Swarm Optimization
Algorithm: An Application to the Probabilistic
Traveling Salesman Problem

Yannis Marinakis, Magdalene Marinaki, and Athanasios Migdalas

Abstract One of the main issues in the application of a particle swarm optimization
(PSO) algorithm and of every evolutionary optimization algorithm is the finding of
the suitable parameters of the algorithm. Usually, a trial and error procedure is used
but, also, a number of different procedures have been applied in the past. In this
chapter, we use a new adaptive version of a PSO algorithm where random values
are assigned in the initialization of the algorithm and, then, during the iterations
the parameters are optimized together and simultaneously with the optimization
of the objective function of the problem. This idea is used for the solution of
the probabilistic traveling salesman problem (PTSP). The algorithm is tested on
a number of benchmark instances and it is compared with a number of algorithms
from the literature.

Keywords Particle swarm optimization • Variable neighborhood search • Proba-
bilistic traveling salesman problem

1 Introduction

Particle Swarm Optimization (PSO) is a population-based swarm intelligence
algorithm that was originally proposed by Kennedy and Eberhart [29]. Usually in
a PSO algorithm and, in general, in all evolutionary optimization algorithms, a set
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of parameters are selected or calculated in the beginning of the algorithm and, then,
this set is used for the whole process. These parameters are calculated for some
instances, in which they probably give best solutions, and, then, they are used for
all the other instances. The questions that arise from this procedure are: “Are these
parameters the optimum for every instance of the selected problem?” And if they
are not: “Is there an efficient procedure that could estimate the best parameters for
all instances?” And the final question: “Is there a set of best parameters for every
instance in an optimization problem?” In this chapter, we are trying to answer all
these questions. It should be noted that it is almost impossible to have the same
parameters for all the instances of the problem but, then, which parameters will we
use for the solution of the problem? As it is difficult to optimize the parameters
for each instance independently and, then, to use it for the rest of the instances, we
present a procedure that uses a simple optimization phase inside the algorithm to
optimize the parameters together and simultaneously with the optimization of the
objective function. The reason that a classic Constriction PSO algorithm is used
is that we would like to test the idea of the optimization of the parameters in the
most commonly used version of the PSO algorithm. The algorithm is tested on
the probabilistic traveling salesman problem (PTSP) for a number of reasons. The
first one is that it is an interesting NP-hard problem, the second is that there are
a number of benchmark instances in the literature that could be used for testing
the proposed algorithm, the adaptive multi-swarm particle swarm optimization
(AMPSO) algorithm, and the third one is that we have published in the past another
paper [38] for the same problem with PSO variants and parameters of the algorithms
calculated in the beginning of the process and, thus, it would be interesting to make
comparisons with these approaches.

The finding of the optimal set of parameters is not a new idea. In the literature and
for the various variants of the PSO algorithm, authors have proposed different ways
for calculating the main parameters of the algorithms. The most common way is to
use the parameters that most researchers have used in the literature. However, this is
not the most efficient way as the best parameters for one optimization problem may
not necessarily be the best parameters for another optimization problem. A more
efficient, but still not totally effective way, especially, when a huge number of
instances exist, is to test for some instances a number of different sets of parameters,
find the best values of the parameters for these instances, and, then, use these values
for the rest of the instances. In this case, there is not any assurance that these values
will give the best results for all instances. Nowadays, a number of algorithms have
been proposed for automated tunning of the parameters inside the procedure. Most
of the papers are using an adaptive way to increase or decrease through the iterations
the inertia factor [17, 32, 36, 42, 44, 56, 58, 60, 62], the acceleration coefficients
[12, 57], or both [22, 23, 26, 46, 50, 51, 53, 54, 59]. Most of these algorithms are
denoted as adaptive particle swarm optimization (APSO) algorithms [59]. In all
researches, the equations used to adapt the selected parameters are not the same;
however, the main idea is the same. Another way to adapt some parameters (usually
the inertia weight) is by using a fuzzy system [1, 28, 43, 45, 47].
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In [6] the authors present a variant of the PSO algorithm using a strategy
that changes the population size and simultaneously preserves the diversity of
the population. The adjustment of the population size is performed automatically
according to the value of diversity of the population in ultimate time of current
ladder. (The authors divide the generations of the PSO algorithm in equal time
periods that are denoted as ladders.) Using grey relational analysis the authors in
[30, 31] proposed two grey-based parameter automation strategies for PSO. These
two strategies are used, the one in the inertia weight and the other in acceleration
coefficients. TRIBES [7] avoids manual tuning by defining adaptation rules which
aim at automatically changing the particles, behaviors as well as the topology of
the swarm. In TRIBES, the topology is changed according to the swarm behavior
and the strategies of displacement are chosen according to the performances of the
particles [9, 10]. Apart from the authors who proposed TRIBES, a number of other
authors have applied them [48, 52].

In [11] a multilevel approach is used in order to determine the most appropria-
te set of parameters for the choice function. The parameters are fine-tuned by a
PSO algorithm which trains the choice function carrying out a sampling phase. In
[27] age-group topology is proposed for the tunning of the parameters and for the
adaptation of the population. In order to keep population diversity during searching,
the particles are separated to different age groups by their age and particles in each
age group can only select the ones in younger groups or their own groups as their
neighborhoods. In [61] an APSO with an adaptation strategy for swarm size, inertia
factor, and acceleration coefficients is presented. A number of papers that are using
Learning Automata with different learning strategies in order to adapt the basic
parameters of PSO have been presented [19–21, 55].

In this chapter, a new algorithm, the AMSPSO, is presented where all parameters
(acceleration coefficients, iterations, local search iterations, upper and lower bounds
of the velocities and of the positions, number of swarms, and number of particles
in each swarm) are optimized during the procedure and, thus, the algorithm
works independently and without any interference from the user. All parameters
are randomly initialized and, afterwards, during the iterations the parameters are
adapted using three different conditions: the first is used for all parameters except the
number of particles, the second is used for the increase of the number of particles,
and the third is used for the decrease of the number of particles.

The rest of the chapter is organized as follows: In the next section a brief
description of the PTSP is given while in the third section the proposed algorithm,
the AMSPSO algorithm, is presented and analyzed in detail. Computational results
are presented and analyzed in the fourth section while in the last section conclusions
and future research are given.



190 Y. Marinakis et al.

2 Probabilistic Traveling Salesman Problem

The problem studied in this chapter is the Probabilistic Traveling Salesman Problem
(PTSP). A number of publications concerning the PTSP are given in [3, 24, 25,
49]. In this problem, which is a variant of the traveling salesman problem (TSP),
a customer will be present (with probability p) or not (with probability 1− p) in a
specific route during a day. Thus, while in the TSP, a tour with minimum cost should
be calculated, in the PTSP the objective is the minimization of the expected length
of the a priori tour where each customer requires a visit only with a given probability
[38]. The a priori tour is a template for the visiting sequence of all customers. When
an instance is needed to be solved, initially, the a priori tour will be calculated and,
then, the customers should be visited based on the sequence of the a priori tour
while the customers who do not need to be visited will simply be skipped [34].
PTSP is an NP-hard problem [3]. The main formulation of the PTSP can be found
in [4, 24]. In this formulation the expected length for the a priori tour τ = (1,2, ...,n)
is minimized:

E[Lτ ] =
n

∑
i=1

n

∑
j=i+1

dijpipj

j−1

∏
k=i+1

(1−pk)

+
n

∑
i=1

n

∑
j=i+1

dijpipj

n

∏
k=i+1

(1−pk)
j−1

∏
l=1

(1−pl) (1)

where the length of the tour τ is denoted by Lτ , n are the potential customers
(V = {1,2....n}), and dij is the distance between the nodes i and j. For analytical pre-
sentation and analysis of the formulation that is used in this chapter please see [38].

3 Adaptive Multi-Swarm Particle Swarm
Optimization Algorithm

In the following, an analytical description of the proposed algorithm, the AMSPSO
algorithm, is given. In a PSO algorithm, initially, a set of particles is created
randomly where each particle corresponds to a possible solution. Each particle has
a position in the space of solutions and moves with a given velocity. Each particle
is recorded via the path representation of the tour, that is, via the specific sequence
of the nodes. As the calculation of the velocity of each particle is performed by
Eq. (2) (see below), the above-mentioned representation should be transformed
appropriately. We transform each element of the solution into a floating point in
the interval (0,1], calculate the velocities and the positions of all particles and, then,
convert back the particles’ positions into the integer domain using relative position
indexing [33].
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The position of each particle is represented by a d-dimensional vector in problem
space xi = (xi1,xi2, . . . ,xid), i = 1,2, . . . ,N (N is the population size and d is
the number of the vector’s dimension), and its performance is evaluated on the
predefined fitness function. The velocity vij represents the changes that will be made
to move the particle from one position to another. Three possible directions a particle
can follow: the particle can follow its own path, it can move towards the best position
it had during the iterations (pbestij), or it can move to the best particle’s position
(gbestj). The velocity and position equations are updated as follows (constriction
PSO) [8]:

vij(t+1) = χ(vij(t)+ c1rand1(pbestij − xij(t))+ c2rand2(gbestj − xij(t))) (2)

and

xij(t+1) = xij(t)+ vij(t+1) (3)

where

χ =
2

|2− c−√
c2 −4c| and c = c1 + c2,c > 4 (4)

t is the iterations counter, c1 and c2 are the acceleration coefficients, rand1 and rand2

are two random variables in the interval (0, 1). A modified version of a local search
strategy based on the variable neighborhood search (VNS) algorithm [18] is applied
[39] in each particle in the swarm in order to improve the solutions produced from
the PSO algorithm. Finally, a modified version of a Path Relinking strategy [16]
with starting solution the best particle and target solution one of the other particles
of the swarm is applied [39]. In each iteration of the algorithm, the best solution of
the whole swarm and the best solution of each particle are kept.

The most important and novel part of the algorithm is the optimization of the
parameters during the iterations of the algorithm. Initially, random values of the
parameters are given taking into consideration the fact that these values should not
violate some specific bounds. For example, the sum of c1 and c2 should be greater
than 4 due to Eq. (4). The parameters that should be optimized are the number
of swarms, the number of particles, the number of iterations, the number of local
search iterations, the c1 and c2, and the upper and lower bounds in positions and in
velocities. In order to have less values to optimize, the lower bounds in positions
and velocities are always set equal to the negative values of the upper bounds in
positions and velocities, respectively. The upper bounds could not have a value less
than a specific value, in this chapter this value is selected equal to 0.1, as if the
upper bounds take negative values, then the PSO algorithm could not work properly.
Another value that was selected as a threshold value is a value corresponding to
the number of consecutive iterations (Max iterations) with no improvement in the
results of the best solution (this value is selected to be equal with the initial number
of particles).
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After the initialization of the particles, the fitness function of each particle is
calculated. The initial velocities are set equal to zero. Also, the average values in
the fitness function of all particles and the average values of the best solutions of all
particles are calculated too. In the first iteration, these average values are equal for all
particles. The initial random values of all parameters are the best values so far, and
the algorithm proceeds as a constriction PSO. The best values for each parameter are
updated when the average values of the best solutions of all particles in a specific
iteration are improved. Three different conditions are controlling the parameters
during the iterations of the algorithm. In the first one, if for a consecutive number of
iterations the best solution has not been improved, the values of the number of local
search iterations, the c1 and c2, and the upper and lower bounds in positions and in
velocities are updated as follows:

c1 = c1opt +α (5)

c2 = c2opt +α1 (6)

upositions = UB+α2 (7)

lpositions = −upositions (8)

uvelocities = V +α3 (9)

lvelocities = −uvelocities (10)

Local Search iter = LS+α4 (11)

where c1opt, c2opt, UB, V , and LS are the best values for the c1, c2, upper bounds in
positions, upper bounds in velocities, and local search iterations, respectively, and
α,α1,α2,α3, and α4 are calculated from the following equations:

α =
c1 − c1opt

c1opt
(12)

α1 =
c2 − c2opt

c2opt
(13)

α2 =
upositions −UB

UB
(14)

α3 =
lpositions −V

V
(15)

α4 =
Local Search iter −LS

LS
(16)

and, thus, for all these parameters, if the value of the parameter in the current
iteration (e.g., the c1 value) is less than the best value of the corresponding parameter
(e.g., the c1opt value), then the parameter is reduced, otherwise it is increased. In
the second condition, the increase of the number of particles and of the number of
swarms is performed. If for a consecutive number of iterations, the best solution,
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the average best solution of all particles, and of all swarms are not improved, then a
number of new particles are created. All new particles are initialized from random
values and create a new swarm and they use as initial values of the parameters
the current values. The reason that a number of new particles are created is that
probably the old particles have stuck in a local optimum and the new particles will,
probably, give to the swarm the opportunity to escape from this local optimum. The
main advantage of the new particles is that they begin with different values in all
parameters and, thus, they have the possibility to search in a completely different
place in the solution space. The reason that we use, except of the improvement of
the best solution, the average solutions of all particles is that it is probable that all
the best solutions of the particles in this iteration are not improved and, thus, the
possibility of finding a better best solution is decreased. The increase of the number
of particles is performed using the following equation:

Particles = NP+α5 (17)

where NP is the optimum value of particles and α5 is calculated from the following
equation:

α5 =
Particles−NP

NP
(18)

Finally, in the third condition, the decrease of the number of particles is
performed. If for a consecutive number of iterations the best solution has not been
improved and the best value of a particle is more than 5 % of the best value of the
swarm, then this particle is deleted from the swarm. Also, if for the whole swarm,
the same condition is hold, then the whole swarm is deleted. The decrease of the
particles is necessary for two reasons. Initially, if we have only the increase of
the particles, the number of particles, probably, after a number of iterations will
lead to a very difficult to handle number of particles. Second, a particle with bad
solution will, probably, not give anything more in the swarm and only will delay the
convergence of the algorithm. The number of consecutive iterations was set equal
to abs(Initial Number of Particles−Particles) if the number of particles has been
changed at least one time during the iterations, otherwise the value was set equal to

Initial Number of Particles− Max iterations
abs(Max iterations−Local Search iter

). The reason

that the absolute value of the difference was used is because there is a possibility to
increase or to decrease the number of particles and this value is needed to be always
positive. We increase and decrease the number of particles during an iteration as we
would like to take into advantage all the possibilities of replacing bad solutions with
new probably good ones and to explore different places in the solution space. When
the algorithm converges, except of the optimum solution, the optimum parameters
have, also, been calculated.
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4 Computational Results

All algorithms were implemented in modern Fortran and compiled with the Lahey
f95 compiler. PTSP instances were generated starting from TSP instances and
assigning to each customer a probability p of requiring a visit. The test instances
were taken from the TSPLIB (http://www.iwr.uni-heidelberg.de/groups/comopt/
software/TSPLIB95). The algorithm was tested on a set of Euclidean sample
problems with sizes ranging from 51 to 1,400 nodes. The instances in all tables
are described with their name and the size which means that the instance Pr1002
has 1,002 nodes. The efficiency of the AMSPSO algorithm is calculated using the

quality ω of the solutions (ω =
(cAMSPSO − cBKS)

cBKS
%, where cAMSPSO is the cost of

the solution produced by AMSPSO and cBKS is the cost of the best known solution
(BKS)). To test the performance of the proposed algorithm we applied AMSPSO
(and the other algorithms used in the comparisons) ten times to each test instance.

In Table 1, the most important results of the proposed algorithm are presented
analytically. The table is divided into three parts. In the first part the results of three
instances (eil51, kroA100 and eil101) are presented, while in the second and third
parts the result of the other six instances (d198, pr439, and p654 for the second
part; rat783, pr1002, and fl1400 for the third part) are presented. For each instance
the results concern the quality of the solutions, the optimization of the parameters
of the AMSPSO, and the average values of the ten runs. All results of the tables,
except the average values of the ten runs, are referring to the best run out of the ten
runs for each instance.

More precisely, in the first row (denoted by BKS) of each part of Table 1, the BKS
from the literature is presented while in the second row the solution of the best run
(denoted by AMSPSO) of the proposed algorithm is given and in the third row the
quality of this solution (denoted by ω) is presented. In the next eight rows of each
part of the table, the results concerning the optimization of the parameters for the
best run of the algorithm are presented. More precisely, in row three the iteration
number (Iter) where the algorithm converged for each set is presented while in
the fourth row the optimized number of particles (NP) needed for each instance
is presented. When we mention that the optimized number of a parameter, i.e.,
particles, is presented we do not mean that this number is the optimum number of the
parameter but we mean that the algorithm converged to this number and using this
number the algorithm gave the best results. However, this number was not used in all
iterations of the algorithm but only when it converged to this number. This means
that if we begin the algorithm from random solutions using the optimized (best)
parameters found during the iterations, the algorithm will probably find a different
solution than the one produced with the procedure of the proposed algorithm. This
was expected as the reason that we proposed this algorithm is to avoid to search
before the beginning of iterations for a set of good parameters and to succeed to
converge to a set, different in each instance and in each run, during the iterations
of the algorithm without the interference of the user in any stage of the algorithm.

http://www.iwr.uni-heidelberg.de/groups/ comopt/software/TSPLIB95
http://www.iwr.uni-heidelberg.de/groups/ comopt/software/TSPLIB95
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In the sixth and seventh rows of each part of the table, the optimized values of c1

and c2 (c1opt and c2opt) are presented, respectively, while in the next two rows the
optimized values for the upper bound (UB) for the positions and the velocities (V)
are presented, respectively. The lower bounds for the positions and for the velocities
are the negative values of the upper bounds. In rows ten and eleven, the optimized
number of local search (LS) iterations and of the number of swarms (Swarm) are
presented. Finally, in the last four rows of the table, the average values of the ten runs
are presented. More precisely, initially the average solution of each particle (AvPar)
and then its quality (ωAvPar) are presented and finally the average best solution of
each particle (AvOpt) and its quality are given (ωAvOpt).

Initially, we have to mention that each instance was tested with three different
probability values (0.1, 0.5, and 0.9) and, thus, the total number of different
instances instead of 9 is 27. The proposed algorithm found new best solution in
two instances, in the eil51 with probability equal to 0.1 and in the rat783 with
probability equal to 0.9. In the other 20 instances, the proposed algorithm found the
BKS from the literature. In three instances, the quality of the solution is between
0.01 and 0.70 and in, only, two instances the quality of the solutions is larger than
1 (in rat783 with probability 0.5 the quality of the solution is equal to 1.15 and in
the same instance with probability 0.1 the quality of the solution is equal to 2.04).
Simultaneously, the average of ten runs of the algorithm shows that the proposed
methodology is very efficient. This is proved by the fact that in the average of ten
runs, with different parameters as in each run the algorithm converged in different
parameters (the parameters are optimized for the specific run), the algorithm found
in 1 instance average quality less than zero, in 4 instances average quality equal to
zero, in 13 instances average quality between 0.01 and 0.10, in 3 instances between
0.22 and 0.89, and, only, in 6 instances the algorithm found average quality larger
than 1.

The most important values of Table 1 are the values where the optimized parame-
ters for each of the main parameters of the algorithm are presented. Usually, these
parameters are given in the initial phase of the algorithm and, then, are constant
for all the iterations of the algorithm. The novelty of the proposed algorithm is
that, initially, a random value for each of these parameters is given and, then, an
optimization of each of these parameters is performed inside the algorithm. As it can
be seen, the convergence of the algorithm is succeeded using between 49 iterations
and 223 iterations. The optimum number of particles varies between 49 and 128.
The c1opt and the c2opt vary between 2.28 and 2.86 and between 2.28 and 2.89,
respectively. The upper bounds of the positions and the velocities vary between 1.98
and 4.05 and between 3.94 and 6.42, respectively. The values of the local search
iterations vary between 71 and 150. Finally, the number of swarms varies between
1 and 8. These variations of the values are very important as they indicate that for
two different instances the most probable is that the algorithm needs at least one
different parameter (possibly more than one different parameters) to find its best
solution. Thus, the optimization of the parameters in addition to the optimization of
the objective function improves the effectiveness of the AMSPSO algorithm.
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In Table 2, a comparison of the proposed algorithm with three other versions of
PSO is presented. More precisely, the algorithms used in these comparisons are a
classic PSO algorithm with one swarm and a simple local search, a more efficient
PSO algorithm denoted as HybPSO with a more advanced local search algorithm,
and one swarm and a multi-swarm PSO (HybMSPSO) algorithm. The HybPSO
algorithm was first used for the solution of the Vehicle Routing Problem [41] and
the HybMSPSO algorithm was first used for the solution of the same problem
studied in this chapter, the PTSP [38]. For analytical presentation and analysis of
these algorithms please see [38, 41]. The comparison of the results of the proposed
algorithm with the results of these three algorithms, especially the HybMSPSO, are
very important as there are three algorithms that have been applied in the past [38]
in the same problem with remarkable results, the HybMSPSO is one of the most
efficient algorithms published for the PTSP, and they are all algorithms that use a
variant of PSO algorithm. Moreover, the HybMSPSO algorithm is a multi-swarm
PSO algorithm as the proposed one. The parameters of HybMSPSO optimized off-
line before the procedure starts and they are the same for all instances. Thus, in
this table, initially, the results of the BKS from the literature for every probability
are given, and, then, in the next eight columns the solutions and the quality of
the solutions of PSO algorithm, HybPSO algorithm, HybMSPSO algorithm, and
of the proposed AMSPSO algorithm are presented. If we compare the results of
the proposed algorithm with the results of PSO algorithm, the proposed algorithm
finds better solutions in 29 instances and the two algorithms find the same solutions
in 1 instance. When we compare the results of the proposed algorithm with the
results of HybPSO algorithm, the proposed algorithm finds better solutions in 25
instances and the two algorithms find the same solutions in 5 instances. Finally, the
comparison of the results of the proposed algorithm with the results of HybMSPSO
shows that the proposed algorithm outperforms the HybMSPSO in 20 instances and
in the other 10 instances the two algorithms find the same solutions. Thus, as both
algorithms are multi-swarm PSO algorithms the use of the automated tunning of
the parameters in the proposed algorithm gave a more effective algorithm than the
one where the parameters are optimized before the procedure begins. Thus, with
the use of the automated tunning of the parameters the algorithm gave better results
and we avoided the procedure of finding the suitable parameters before testing all
instances.

In Table 3, a comparison of the proposed algorithm with three other algorithms
is presented. The first one is an implementation of a classic Tabu Search [14, 15],
the second one is a variant of GRASP algorithm [13], the ENS-GRASP [40],
and the last one is a variant of Honey Bees Mating Optimization algorithm, the
HBMOPTSP [37]. The way these three algorithms are applied in the PTSP and the
results produced are presented and analyzed in [40] for the first two algorithms and
in [37] for the third one. The comparison of the results of these three algorithms
with the results of the proposed algorithm is important in order to see what is
the effectiveness of the proposed algorithm in relation with two very powerful
metaheuristics, as the Tabu Search and the GRASP and one very efficient nature
inspired algorithm as the HBMOPTSP algorithm. The structure of the table is the
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Table 3 Comparison of the results of the proposed algorithm with the results of other algorithms

Tabu search ENS-GRASP HBMOPTSP AMSPSO

Cost ω Cost ω Cost ω Cost ω
eil51 0.1 130.82 0.54 130.30 0.14 130.12 0.00 129.42 −0.54

0.5 313.50 0.88 311.04 0.09 310.75 0.00 310.75 0.00

0.9 411.63 0.91 407.92 0.00 407.92 0.00 407.92 0.00

kroA100 0.1 9116.64 0.91 9079.86 0.51 9071.72 0.42 9034.97 0.01

0.5 16658.46 0.54 16584.32 0.09 16581.64 0.08 16569.70 0.00

0.9 20510.21 0.01 20508.77 0.00 20508.77 0.00 20508.77 0.00

eil101 0.1 202.42 3.28 200.03 2.06 200.03 2.06 197.37 0.70

0.5 461.52 1.29 455.73 0.02 455.65 0.00 455.65 0.00

0.9 602.35 0.14 601.51 0.00 601.50 0.00 601.50 0.00

ch150 0.1 2554.59 3.05 2520.10 1.66 2509.98 1.25 2482.54 0.14

0.5 5071.51 1.35 5016.85 0.26 5016.82 0.26 5016.14 0.24

0.9 6294.32 0.04 6292.01 0.00 6292.01 0.00 6292.01 0.00

d198 0.1 7525.03 1.18 7525.03 1.18 7490.09 0.71 7437.24 0.00

0.5 12606.23 1.52 12538.45 0.98 12492.62 0.61 12438.54 0.17

0.9 15227.34 0.11 15225.26 0.10 15210.40 0.00 15210.40 0.00

pr439 0.1 50848.29 1.85 50402.09 0.95 49926.89 0.00 49926.89 0.00

0.5 90463.31 1.96 88914.76 0.21 88728.37 0.00 88728.37 0.00

0.9 104828.21 0.23 104735.27 0.14 104584.67 0.00 104584.67 0.00

p654 0.1 20034.61 1.89 19766.74 0.52 19663.66 0.00 19663.66 0.00

0.5 28510.05 0.45 28388.01 0.02 28383.71 0.00 28383.71 0.00

0.9 33737.12 0.31 33646.79 0.05 33631.26 0.00 33631.26 0.00

rat783 0.1 3705.31 14.15 3618.01 11.46 3616.44 11.41 3312.15 2.04

0.5 7123.76 4.06 7097.85 3.68 7085.48 3.50 6924.51 1.15

0.9 8677.34 0.85 8625.26 0.24 8604.28 0.00 8592.21 −0.14

pr1002 0.1 113868.22 2.80 111959.65 1.08 110764.63 0.00 110764.63 0.00

0.5 210639.29 1.65 207916.81 0.34 207210.53 0.00 207210.53 0.00

0.9 255001.23 0.25 254819.95 0.18 254365.75 0.00 254365.75 0.00

fl1400 0.1 9767.43 0.80 9727.04 0.39 9689.55 0.00 9689.55 0.00

0.5 16570.99 0.94 16541.93 0.77 16416.11 0.00 16416.11 0.00

0.9 19857.28 0.90 19729.55 0.26 19679.24 0.00 19679.24 0.00

same with the structure of Table 3. If we compare the results of the proposed
algorithm with the results of Tabu Search algorithm, the proposed algorithm finds
better solutions in all 30 instances. When we compare the results of the proposed
algorithm with the results of ENS-GRASP algorithm, the proposed algorithm finds
better solutions in 26 instances and the two algorithms find the same solutions
in 4 instances. Finally, the comparison of the results of the proposed algorithm
with the results of HBMOPTSP shows that the proposed algorithm outperforms
the HybMSPSO in 11 instances and in the other 19 instances the two algorithms
find the same solutions.
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The results of the algorithm are, also, compared (Table 4) with the results of a
number of implementations of ant colony optimization (ACO) metaheuristic taken
from [2, 4], and [5], with the results of a number of estimation-based metaheuristics
(ILS-EE, MAGX-EE, ACS-EE) proposed by Balaprakash et al. [2] and with the
results of a number of evolutionary algorithms with different generators of the
initial solutions (RAN, NN1, and NN2) [35]. Also, in this table, for completeness
reasons, the results of the two most efficient algorithms of the two previous tables
(Tables 2 and 3) are given. In this table, if from a specific instance there are not
any values in the table it means that in the paper that the specific algorithm was
published the authors did not run their algorithm for this specific instance. Thus,
the proposed algorithm performs better from the ACO and pACS algorithms in all
instances, in 18 out of 20 instances from RAN (in the other two the RAN algorithm
performs better), in 7 out of 13 instances from ILS-EE (in the other 6 instances,
the ILS-EE algorithm performs better), in 6 out of 13 instances from MAGX-EE
(in the other 7 instances, the MAGX-EE algorithm performs better), in 5 out of 13
instances from ACS-EE (in the other 8 instances, the ACS-EE algorithm performs
better), in 4 out of 13 instances from pACS+1-shift (in the other 9 instances, the
pACS+1-shift algorithm performs better), in 11 out of 20 instances from NN1 (in
1 instance the two algorithms find the same results and in the other 8 instances,
the NN1 algorithm performs better), and in 14 out of 20 instances from NN2 (in
2 instances, the two algorithms find the same results and in the four instances, the
NN2 algorithm performs better). In general, none of all these algorithms perform
better in all instances. However, the proposed algorithm is a competitive algorithm
and gives better results in some instances (in most cases more than 50 % of the
testing instances) from all algorithms.

5 Conclusions

In this chapter, a new hybridized algorithm based on PSO with adaptive selection
of parameters for the solution of the PTSP has been proposed. The resulting
hybrid algorithm was tested on a set of benchmark instances and gave new best
solutions in a number of them. The algorithm was compared with a number of PSO
implementations for the same problem and gave better results. Also, the algorithm
was compared with other metaheuristic, nature-inspired and evolutionary algorithms
from the literature and gave competitive results with the best of them and better
results from all the others. Our future research will be focused on the application of
this algorithm to other difficult stochastic routing problems.
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Eigendecomposition of the Mean-Variance
Portfolio Optimization Model

Fred Mayambala, Elina Rönnberg, and Torbjörn Larsson

Abstract We provide new insights into the mean-variance portfolio optimization
problem, based on performing eigendecomposition of the covariance matrix. The
result of this decomposition can be given an interpretation in terms of uncorrelated
eigenportfolios. When only some of the eigenvalues and eigenvectors are used, the
resulting mean-variance problem is an approximation of the original one. A solution
to the approximation yields lower and upper bounds on the original mean-variance
problem; these bounds are tight if sufficiently many eigenvalues and eigenvectors
are used in the approximation. Even tighter bounds are obtained through the use of
a linearized error term of the unused eigenvalues and eigenvectors.

We provide theoretical results for the upper bounding quality of the approx-
imate problem and the cardinality of the portfolio obtained, and also numerical
illustrations of these results. Finally, we propose an ad hoc linear transformation of
the mean-variance problem, which in practice significantly strengthens the bounds
obtained from the approximate mean-variance problem.

Keywords Modern portfolio theory • Markowitz model • Eigendecomposition •
Quadratic programming

1 Introduction

The mean-variance portfolio optimization model introduced by Markowitz [19] in
1952 continues to be the backbone of modern portfolio theory up to date. This is
demonstrated by the huge amount of research that still goes on in this area 63 years
later; see for example [24] and [14] for surveys of the field.
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The two central inputs to the mean-variance model are the asset returns and
the covariance matrix of the returns. However, because the mean-variance model
is very sensitive to input data [5, 7], the need for proper methods to estimate the
expected returns and the covariance matrix is inevitable. The work by Sharpe [23]
is one of the first attempts to formulate models to estimate the covariance matrix.
Sharpe developed a single-factor model in which the asset returns depend on only
one observable market factor, the market return. This work was later expounded by
Lintner [18] and Mossin [21], among others.

However, a single-factor model was later deemed inappropriate for the estimation
of asset returns and covariance matrices. This led to the birth of multi-factor models,
which make use of a number of observable market variables. For example, Fama and
French [10] used a three-factor model to estimate asset returns and the covariance
matrix. These factors are the returns on a market portfolio, portfolio size and the
book-to-market equity. One more factor, known as the momentum factor of a stock,
was added in [6] to give a four-factor model. More studies on multi-factor models
have been done in for example [9, 17, 20] and [13]. Attempts to approximate the
number of factors required in multi-factor models have been given in [2, 12] and [8],
among others. Other methods to estimate covariance matrices have still been sought.
For example, in [16] the covariance matrix is estimated as an optimal combination
of the sample covariance matrix and the covariance matrix obtained from the single
factor model, a method which in the literature is commonly referred to as shrinkage.

In line with the mean-variance model, Fan et al. [11] use a factor model
to estimate a covariance matrix with a high dimension compared to the sample
size. The obtained covariance estimator is used to demonstrate that under some
conditions, it is better than the sample covariance in mean-variance portfolio
allocation.

When the set of factors used to estimate the covariance matrix are nonmarket
variables, or rather unobservable, then the models are called latent factor models [4].
One latent factor approach for estimating the covariance matrix is principal compo-
nent analysis. This method involves eigendecomposition of the sample covariance
matrix or correlation matrix into eigenvalues and eigenvectors, which are referred to
as the principal components. These act as the risk factors. Techniques and theoretical
properties for covariance matrices generated using principal component analysis are
covered in, for example, [2, 3] and [25].

In relation to portfolio optimization, Avellaneda and Lee [1] use principal
component analysis on a sample correlation matrix to generate risk factors, which
are shown to carry economic sense. It is shown that the eigenvectors correspond to a
new set of portfolios which are uncorrelated, a fact which we exploit in the context
of the mean-variance optimization problem with general investment constraints. In
essence, principal component analysis is a variable reduction procedure in which
most of the variance in the variables is captured within a few largest eigenvalues
and their corresponding eigenvectors. The simple question which arises is “What
are the implications on the mean-variance model if not all the eigenvalues and
corresponding eigenvectors are considered?” This is the question that we address.
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We provide insights into the mean-variance problem, based on performing
eigendecomposition of the covariance matrix. When using only a subset of the
eigenvalues and eigenvectors, the resulting mean-variance problem is a relaxation
of the original mean-variance problem. A solution to the relaxed problem provides
lower and upper bounds to the original problem; the upper bounding quality is
determined by the largest eigenvalue and corresponding eigenvector that is not
included in the approximate problem, and the bounds become tight if enough
largest eigenvalues and corresponding eigenvectors are used. The addition of an
approximate, linearized, error term for the unused eigenvalues and eigenvectors
yields even tighter lower and upper bounds on the original mean-variance problem.
We further note that the linearized relaxed problem has a solution whose cardinality
is governed by the number of eigenvalues and eigenvectors used. The linearized
relaxed problem can thus be used to get lower and upper bounds to the mean-
variance problem with a cardinality constraint. We also propose an ad hoc linear
transformation of the mean-variance model which alters the eigenvalue distribution
of the covariance matrix and can be used to greatly improve the lower and upper
bounds. The results we provide give a new insight into the problem and create a
basis for further research into possible new solution methods.

The remainder of the chapter is organized as follows. Section 2 introduces the
approximation method based on eigendecomposition. Inclusion of a linearized error
term for the unused eigenvalues and eigenvectors is done in Sect. 3. A numerical
illustration of the developed results is provided in Sect. 4, on three different sets
of data. As a way to improve the bounds derived in Sect. 2, a transformation of
the mean-variance model is made in Sect. 5. Numerical results to demonstrate the
effectiveness of the transformation are also given.

2 Eigendecomposition of the Mean-Variance Model

We consider the Mean-Variance (MV) model with n assets of the form

V∗ = min
x∈ℜn

xTΣx

s.t. μTx ≥ μP

x ∈ S,

(MV)

where μ = (μ1,μ2, . . . ,μn)
T is a vector of expected returns, Σ is a positive semi-

definite (� 0) covariance matrix of the returns, μP is the minimum expected return
on the portfolio and x = (x1,x2, . . . ,xn)

T is the vector of fractions of the capital
invested in the n assets. Further, S ⊆ ℜn is a convex set that describes the possible
investment options. It is assumed that the set S is described by differentiable
constraints and that the feasible set of (MV) is nonempty and satisfies Slater’s
constraint qualification. Note that from the definition of the vector x, it follows that
S ⊆ {x ∈ℜn | eTx = 1}, where e is a vector of ones.



212 F. Mayambala et al.

Let λi, i = 1, . . . ,n, be the eigenvalues of the covariance matrix Σ. Without loss
of generality it is assumed that λ1 ≥ λ2 ≥ . . .≥ λn. Further, let P be an orthonormal
matrix whose columns are the eigenvectors of Σ. As is well known, the matrix Σ can
then be decomposed into

Σ= PΛPT, (1)

where Λ= diag(λ1,λ2, . . . ,λn). We study model (MV) when the covariance matrix
Σ has been decomposed as in (1) and analyse the effects of using only a subset of
the eigenvalues and eigenvectors.

2.1 Approximation of the Mean-Variance Model

Relationship (1) gives that the covariance matrix Σ can be expressed as

Σ=
n

∑
i=1

λiPiP
T
i , (2)

where Pi is the ith eigenvector. Using (2), the objective in (MV) can be expressed as

xTΣx =
n

∑
i=1

λixTPiP
T
i x =

n

∑
i=1

λi(P
T
i x)2.

Introducing the rewritten zi = PT
i x, i = 1,2, . . . ,n, the model (MV) can be rewritten

as

V∗ = min
n

∑
i=1

λiz
2
i

s.t. zi = PT
i x, i = 1, . . . ,n

μTx ≥ μP

x ∈ S.

(3)

Remark 1. The transformation of the model (MV) into model (3) in essence
corresponds to the construction of a mean-variance model in n independent
composite assets, or eigenportfolios [1], each of which is a specific portfolio of
the n original assets. To see this, we consider for simplicity the easiest case with
S = {x ∈ ℜn | eTx = 1}. Assuming that eTPi �= 0 holds for all i and letting
vi = (eTPi)zi, i = 1, . . . ,n, the model (MV) can be rewritten as
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V∗ = min
n

∑
i=1

λi

(eTPi)2 v2
i

s.t.
n

∑
i=1

μTPi

eTPi
vi ≥ μP

n

∑
i=1

vi = 1.

The interpretation of this rewriting is that the composition of the ith eigenportfolio
in terms of fractions of the original assets is Pi/(eTPi), where a negative fraction
means short selling, the expected return of the ith eigenportfolio is (μTPi)/(eTPi)
and its variance is λi/(eTPi)

2, while all eigenportfolio covariances are zero. �
Introducing the index set I ⊆ {1,2, . . . ,n}, the model (MV) is approximated by

V∗
I = min ∑

i∈I

λiz
2
i

s.t. zi = PT
i x, i ∈ I

μTx ≥ μP

x ∈ S.

(4)

Note that problem (4) is always feasible, since (MV) is feasible. The following
theorem shows that problem (4) is a relaxation of (3) and (MV), thus providing a
lower bound on V∗, and that its solution also provides an upper bound.

Theorem 1. Let x∗
I be optimal in (4) and define V̂∗

I = x∗
I

TΣx∗
I . Then

V∗
I ≤ V∗ ≤ V̂∗

I .

Proof. Let x∗ be optimal in (3). We note that

V∗ =
n

∑
i=1

λi(P
T
i x∗)2 =∑

i∈I

λi(P
T
i x∗)2 +∑

i/∈I

λi(P
T
i x∗)2

≥∑
i∈I

λi(P
T
i x∗)2 ≥∑

i∈I

λi(P
T
i x∗

I )
2 = V∗

I ,

where the first inequality holds because Σ� 0 and the second because x∗
I is optimal

in (4), which completes the proof for the first inequality in the theorem. For the
second inequality,

V∗ =
n

∑
i=1

λi(P
T
i x∗)2 ≤

n

∑
i=1

λi(P
T
i x∗

I )
2 = V̂∗

I

where the inequality holds because x∗ is optimal in (3). �
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Note that if λi > 0 holds for all i ∈ I, then the objective function of (4) is strictly
convex with respect to the variables zi, i ∈ I, which together with the convexity of the
problem imply that these variables have unique optimal values. The lower bound V∗

I
is clearly nondecreasing if the set I is augmented with some i ∈ {1, . . . ,n}\ I.

We next analyse the behaviour of the upper bound V̂∗
I with respect to the set I.

Let us define

ΣI =∑
i∈I

λiPiP
T
i .

The next theorem gives a bound on the deviation of the upper bound V̂∗
I from V∗.

Theorem 2. Let λmax be the largest eigenvalue for Σ− ΣI and let ε > 0. If I is
chosen so that λmax ‖x∗

I ‖2
2/V∗

I ≤ ε , then

V̂∗
I −V∗

V∗ ≤ ε .

Proof. Using that the Rayleigh quotient of a symmetric matrix is bounded from
above by the largest eigenvalue, it holds for any x that

xT (Σ−ΣI)x ≤ λmax ‖x‖2
2 .

Thus, if x∗
I is optimal in (4), then

V̂∗
I −V∗

I = x∗
I

TΣx∗
I −x∗

I
TΣIx∗

I = x∗
I

T (Σ−ΣI)x∗
I ≤ λmax ‖x∗

I ‖2
2 .

Hence,

V̂∗
I −V∗

V∗ ≤ V̂∗
I −V∗

I

V∗
I

≤ λmax ‖x∗
I ‖2

2

V∗
I

where the first inequality follows from Theorem 1. �
Corollary 1. Assume that S⊆ℜn

+ and let λmax be the largest eigenvalue for Σ−ΣI .
Then

V̂∗
I −V∗ ≤ λmax

holds.

Proof. Since {x ∈ S | μTx ≥ μP} ⊆ {x ∈ℜn | ‖x‖1 = 1}, then ‖x∗
I ‖2

2 ≤ ‖x∗
I ‖2

1 = 1
holds. Therefore,

V̂∗
I −V∗ ≤ V̂∗

I −V∗
I ≤ x∗

I
T (Σ−ΣI)x∗

I ≤ λmax‖x∗
I ‖2

2 ≤ λmax‖x∗
I ‖2

1 = λmax.

�
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Hence, a near-optimal solution to (MV) with an a priori known quality can be found
by selecting an appropriate set of eigenvalues and corresponding eigenvectors in (4).
The following corollary also follows from Theorem 2.

Corollary 2. Let x∗
I be optimal in (4) and let XI be the set of all such points.

Consider a fixed cardinality of the set I, say k. Then

min
I:|I|=k

max
x∗

I ∈XI

(
V̂∗

I −V∗)

is achieved for the choice I = {1,2, . . . ,k}.

We conclude that, for a fixed cardinality of the set I, the best possible worst-case
outcome of the gap V̂∗

I −V∗ is obtained by constructing the approximate problem (4)
from |I| largest eigenvalues and corresponding eigenvectors.

3 An Improved Approximation Strategy

We have shown in Sect. 2 that the approximation of (MV) becomes better as we
increase the number of eigenvalues and eigenvectors according to decreasing order
of eigenvalues. As a way to further improve the approximation and get tighter
bounds, we can add a linear approximation of the error introduced by not making
use of all eigenvalues and eigenvectors in (4). The introduction of a linearized error
term was inspired by the work in [15].

3.1 A Linearized Error Term

The objective function in (MV) can be rewritten as

xTΣx = xTΣIx+xT (Σ−ΣI)x.

The first term is the objective of (4) and we thus define the function e :ℜn →ℜ with

e(x) = xT(Σ−ΣI)x

as the error introduced by using |I| eigenvalues and eigenvectors of the total n. This
function is convex, since the matrix Σ−ΣI has n−|I| eigenvalues that are λi, i /∈ I,
and the remaining are zero.

A Taylor series expansion of e at some point x̄ ∈ ℜn up to the linear term gives
the function ê : ℜn →ℜ defined by

ê(x) = x̄T(Σ−ΣI)x̄+2 [(Σ−ΣI)x̄]
T (x− x̄).
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However noting that the function ê can take negative values although e cannot, we
choose the approximate error function as ē : ℜn →ℜ+ defined by

ē(x) = max{ê(x),0}. (5)

Model (4) with error term (5) becomes

M∗
I = min ∑

i∈I

λiz
2
i + ē(x)

s.t. zi = PT
i x, i ∈ I (6a)

μTx ≥ μP (6b)

x ∈ S. (6c)

By introducing an auxiliary variable w, model (6) can be rewritten as

M∗
I = min ∑

i∈I

λiz
2
i +w

s.t. w ≥ 0

w ≥ ê(x)

(6a), (6b), (6c).

(7)

The following theorem shows that (6) is also a relaxation of (MV) and that it also
provides upper bounds.

Theorem 3. Let x∗
E be optimal in (6) and define M̂∗

I = x∗
E

TΣx∗
E. Then

M∗
I ≤ V∗ ≤ M̂∗

I .

Proof. Using the definition of e, its convexity and nonnegativity, and the optimality
of x∗

E in (6), we obtain

V∗ =
n

∑
i=1

λi(P
T
i x∗)2 =∑

i∈I

λi(P
T
i x∗)2 +∑

i/∈I

λi(P
T
i x∗)2

=∑
i∈I

λi(P
T
i x∗)2 + e(x∗)≥∑

i∈I

λi(P
T
i x∗)2 + ē(x∗)

≥∑
i∈I

λi(P
T
i x∗

E)
2 + ē(x∗

E) = M∗
I .

This proves the first inequality in the theorem. The proof for the second inequality
is as in the proof of Theorem 1. �
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The following proposition shows that (6) gives a lower bound that is at least as
good as that of (4) for the same set I.

Proposition 1. M∗
I ≥ V∗

I

Proof. Let x∗
E and x∗

I be optimal in (6) and (4), respectively. Using that ē(x)≥ 0, we
then see that

M∗
I = x∗

E
TΣIx∗

E + ē(x∗
E) ≥ x∗

E
TΣIx∗

E ≥ x∗
I

TΣIx∗
I = V∗

I . �
Then a result analogous to Theorem 2 is given.

Theorem 4. Let λmax be the largest eigenvalue of Σ−ΣI and let ε > 0. If I is chosen
so that λmax ‖x∗

E‖2
2/M∗

I ≤ ε , then

M̂∗
I −V∗

V∗ ≤ ε .

Proof. Following similar arguments as in the proof of Theorem 2,

M̂∗
I −M∗

I = x∗
E

T (Σ−ΣI)x∗
E − ē(x∗

E)≤ λmax ‖x∗
E‖2

2 − ē(x∗
E) ≤ λmax ‖x∗

E‖2
2 .

Hence,

M̂∗
I −V∗

V∗ ≤ M̂∗
I −M∗

I

M∗
I

≤ λmax ‖x∗
E‖2

2

M∗
I

.
�

Results analogous to Corollaries 1 and 2 also follow easily from Theorem 4.

Corollary 3. Assume that S⊆ℜn
+ and let λmax be the largest eigenvalue for Σ−ΣI .

Then

M̂∗
I −V∗ ≤ λmax

holds.

Proof. Following similar arguments as in the proof of Corollary 1, we see that

M̂∗
I −V∗ ≤ M̂∗

I −M∗
I = x∗

E
TΣx∗

E −x∗
E

TΣIx∗
E − ē(x∗

E)

≤ x∗
E

T (Σ−ΣI)x∗
E ≤ λmax‖x∗

E‖2
2 ≤ λmax‖x∗

E‖2
1 = λmax. �

Corollary 4. Let x∗
E be optimal in (6) and let XE be the set of all such points.

Consider a fixed cardinality of the set I, say k. Then

min
I:|I|=k

max
x∗

E∈XE

(
M̂∗

E −V∗)

is achieved for the choice I = {1,2, . . . ,k}.
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We next show that if the approximate problem (6) is constructed from an optimal
solution to (MV), then in fact it becomes equivalent to (MV) with respect to the
optimal objective value.

Theorem 5. If the linearization point x̄ in (6) is chosen as optimal in (MV), then
x̄ is also optimal in (6) and M∗

I = V∗ holds.

Proof. Problem (6) can be rewritten as

min xTΣIx+max{ê(x),0}
s.t. (6b), (6c).

(8)

The two problems (MV) and (8) have the same feasible set and they are both convex.
Let us consider first the problem

min xTΣIx+ ê(x)

s.t. (6b), (6c).
(9)

Then, from

∇(ê(x))x=x̄ = ∇
(
xT(Σ−ΣI)x

)
x=x̄

it follows that

∇
(
xTΣIx+ ê(x)

)
x=x̄ = ∇

(
xTΣx

)
x=x̄ .

This implies that any KKT point for (MV) is also a KKT point for (9), from which
we conclude that x̄ is also an optimal solution in (9), and therefore also optimal in

min xTΣIx+w

s.t. w ≥ ê(x)

(6b), (6c).

(10)

Then the optimal value of w in (10) is

w̄ = ê(x̄) = x̄T(Σ−ΣI)x̄.

Noting that ê(x̄)≥ 0, we conclude that (x̄, w̄) is optimal in

min xTΣIx+w

s.t. w ≥ 0

w ≥ ê(x)

(6b), (6c),
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which implies that x̄ is optimal in (8) and (6). Further still, if x̄ is optimal in (6),
then, since ê(x̄) = x̄T(Σ−ΣI)x̄ ≥ 0,

M∗
I =x̄TΣI x̄+max{ê(x̄),0}= x̄TΣI x̄+ ê(x̄) =

=x̄TΣI x̄+ x̄T(Σ−ΣI)x̄ = x̄TΣx̄ = V∗. �

3.2 Cardinality of the Solution

We here show that a further analysis of problems (4) and (6) provides an insight into
the cardinality of their solutions. Here, Card(·) denotes the cardinality of a vector.

Theorem 6. Assume that S= {x ∈ℜn | eTx = 1, x ≥ 0}. Let z∗I be optimal in (4).
Then there exists an x∗

I that is optimal in (4) with

Card(x∗
I )≤ |I|+2.

Proof. For fixed z∗i , i ∈ I, any x that is feasible in the system

z∗i = PT
i x, i ∈ I

μTx ≥ μP

eTx = 1

x ≥ 0

(11)

is optimal in (4). Any extreme point of the set described by system (11) has at most
|I|+2 nonzero components. �
Theorem 7. Assume that S= {x ∈ℜn | eTx = 1, x ≥ 0}. Let z∗E be optimal in (6).
Then there exists an x∗

E that is optimal in (6) with

Card(x∗
E) ≤ |I|+3.

Proof. If augmenting system (11) with the nonnegative variable w and the constraint
w ≥ ê(x̄), then any extreme point of the corresponding set has at most |I|+3 nonzero
components. Further, w = 0 can hold at an extreme point, in which case the vector
x contains at most |I|+3 nonzero components. �
Corollary 5. Assume that S = {x ∈ ℜn | eTx = 1, x ≥ 0}. Then optimal solutions
to (4) and (6) that are extreme points with respect to x and (x,w), respectively,
correspond to portfolios that include at most |I|+2 and |I|+3 assets, respectively.
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This results is of interest since linear programming based solvers can be expected
to produce extreme point solutions to (4) and (6), even though alternative solutions
exist.

Remark 2. For the case S = {x ∈ ℜn | eTx = 1, x ≥ 0}, an optimal solution
of (6) with cardinality K provides both lower and upper bounds to the cardinality
constrained mean-variance problem

min
x∈ℜn

xTΣx

s.t. μTx ≥ μP

eTx = 1

Card(x)≤ K

x ≥ 0.
�

We finally note that an optimal solution obtained from solving (MV) using the
state-of-the-art software (like CPLEX, which we used) usually contains many very
small variable values, which can make it difficult when it comes to deciding which
variables shall actually take the value zero and which shall not. Note that (7) also
suffers from this numerical difficulty. To circumvent such a problem, one can solve
problem (7) in order to obtain optimal values z∗i , i ∈ I, and then resolve the problem
in the variables x only, that is

min ē(x)+ constant

s.t. z∗i = PT
i x, i ∈ I

μTx ≥ μP

x ∈ S,

where constant =∑
i∈I

λiz
∗
i

2. In contrast to (MV), this problem is a linear program and

a solver will produce an optimal basic feasible solution that contains zero-valued
variables.

4 Numerical Illustrations

In this section we perform numerical computations to demonstrate the results given
in Sects. 2 and 3 on three data sets.

One of the data sets, with 225 assets, is obtained from the OR-library [22].
The other two data sets, with 500 and 1,000 assets, are obtained using historical
data from NYSE. We collected daily opening and closing prices for 500 and 1,000
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Table 1 Problem instances used

n [minμi, maxμi] Problem instance μP V∗ card(x∗)
225 [−0.008489,0.003971] 225A 0.003 5.15395e−4 8

225B 0.001 3.25288e−4 14

500 [−0.00034669 ,0.0077343] 500A 0.003 1.71429e−3 10
500B 0.001 8.03068e−5 31

1,000 [−0.00051135, 0.0076479] 1000A 0.003 1.30006e−3 13
1000B 0.001 6.55035e−5 40

randomly selected assets from NYSE from the year 2005 to 2014 and used these to
calculate the daily expected returns and the covariance matrices using MATLAB’s
inbuilt functions. For each of the three data sets, we construct two different problem
instances which are used for the computations. One of the instances is a high-risk
and high-return portfolio optimization problem and the other a low-risk and low-
return. The instances are summarized in Table 1. In all instances, we use the set
S= {x ∈ℜn | eTx = 1, x ≥ 0}.

4.1 Upper and Lower Bounds

The purpose of this section is to illustrate the effect of increasing the number of
eigenvalues and eigenvectors, on the quality of an optimal solution obtained by
solving (4) and (6) for the same set I. Eigenvalues and eigenvectors are added in
order of increasing eigenvalues and the lower and upper bounds are plotted against
|I| = k for the six problem instances in Table 1.

From Figs. 1, 2 and 3, it can be seen that the addition of a linearized error
term improves both the lower and the upper bounds for the optimal value V∗. For
the high-risk portfolios, near-optimal solutions can in fact be obtained by using
less than 20 % of the eigenvalues and corresponding eigenvectors. However, low-
risk portfolios require a large number of eigenvalues and eigenvectors to attain an
optimal solution. As noted from the figures, a good upper bound of the optimal
objective value can always be obtained using the approximate problem (6) and
approximately 20 % of the largest eigenvalues and their corresponding eigenvectors.

4.2 Deviation in Solution

The purpose of the experimental results presented here is to illustrate the conclu-
sions of Corollaries 1 and 3. For each of the six problem instances in Table 1, we
compute the difference between the upper bound obtained by eigendecomposition
and the optimal solution of the problem, for an increasing number, k, of eigenvalues
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Fig. 1 Lower and upper bounds versus the number of eigenvalues for 225 assets. (a) Instance
225A. (b) Instance 225B
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Fig. 2 Lower and upper bounds versus the number of eigenvalues for 500 assets. (a) Instance
500A. (b) Instance 500B

and corresponding eigenvectors used in problems (4) and (6). The deviation V̂∗
I −V∗,

for the case without an error term, is compared with the deviation M̂∗
I −V∗, for the

case with a linearized error term, and also with the theoretical upper bound λmax.
For 225 assets in Fig. 4, it is seen that the approximate model that includes

a linearized error term requires less number of eigenvalues and eigenvectors to
produce a very good approximation of the solution to (MV). Note also that the
computed deviations are always significantly smaller than the upper bound λmax.

Considering the case of 500 assets in Fig. 5, less than 20 % of the eigenvalues and
eigenvectors are required to produce an exact optimal solution for instance 500A.
However, the cardinality of the optimal solution is so high for instance 500B that it
requires almost all the eigenvalues and eigenvectors to produce an exact solution.
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Fig. 3 Lower and upper bounds versus the number of eigenvalues for 1,000 assets. (a) Instance
1000A. (b) Instance 1000B
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Fig. 4 Upper bounding quality versus the number of eigenvalues for 225 assets. (a) Instance 225A.
(b) Instance 225B

The solution quality is improved greatly on addition of a linearized error term for
the case of 1,000 assets, shown in Fig. 6. For the high-return instance 1000A, the
solution can be obtained with less than 100 eigenvalues and eigenvectors, while for
the low-risk instance 1000B, much more eigenvalues and eigenvectors are needed.

For the instances considered, it can be seen from Figs. 4, 5 and 6 that computation
of an exact optimal solution, or a very good approximation, can be obtained
with a number of eigenvalues and eigenvectors that is less than n and in some
cases significantly less than n. All the computations also show that inclusion of a
linearized error term further improves the solution quality and allows a less number
of eigenvalues and eigenvectors to yield a better approximation. The instances with a
lower value of portfolio return require more eigenvalues and eigenvectors for a good
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Fig. 5 Upper bounding quality versus the number of eigenvalues for 500 assets. (a) Instance 500A.
(b) Instance 500B
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Fig. 6 Upper bounding quality versus the number of eigenvalues for 1,000 assets. (a) Instance
1000A. (b) Instance 1000B

approximation, as compared to the instances with a higher value of portfolio return.
This is attributed to the fact that portfolios with lower portfolio returns contain
more assets, since this lessens the risk taken, and hence require a higher number
of eigenvalues and eigenvectors to be approximated.

4.3 Efficient Frontier

We compute an approximation of the efficient frontier using both models (4) and (6)
for 10, 20, 40 and 50 % of the total number of eigenvalues and eigenvectors. Again,
the eigenvalues are included according to decreasing values. The lower bounds V∗

I



Eigendecomposition of the Mean-Variance Portfolio Optimization Model 225

10
−4

10
−310

−4

10
−3

μP

O
p

ti
m

a
l 
v
a
lu

e M∗
23

M∗
45

M∗
90

M∗
113

V∗

M̂∗
23

M̂∗
45

M̂∗
90

M̂∗
113

10
−4

10
−310

−4

10
−3

μP

O
p

ti
m

a
l 
v
a
lu

e M∗
23

M∗
45

M∗
90

M∗
113

V∗

M̂∗
23

M̂∗
45

M̂∗
90

M̂∗
113

a b

Fig. 7 Exact and approximate efficient frontiers for 225 assets. (a) With no error term. (b) With a
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10
−3

10
−210

−6

10
−5

10
−4

10
−3

10
−2

10
−1

µP

O
p

ti
m

a
l 

v
a

u
e

V∗
50

V∗
100

V∗
200

V∗
250

V∗

V̂∗
50

V̂∗
100

V̂∗
200

V̂∗
250

10
−3

10
−210

−6

10
−5

10
−4

10
−3

10
−2

10
−1

µP

O
p

ti
m

a
l 

v
a

lu
e

M∗
50

M∗
100

M∗
200

M∗
250

V∗

M̂∗
50

M̂∗
100

M̂∗
200

M̂∗
250

a b

Fig. 8 Exact and approximate efficient frontiers for 500 assets. (a) With no error term. (b) With a
linearized error term

and M∗
I obtained from (4) and (6), respectively, and the corresponding upper bounds

V̂∗
I and M̂∗

I , are compared with the correct optimal value V∗. The results are shown
in Figs. 7, 8 and 9.

For the case of 225 assets, the efficient frontier can be fairly well approximated
using 45 largest eigenvalues and corresponding eigenvectors, as shown in Fig. 7. The
approximation improves with an increasing portfolio return, and it gets even better
when a linearized error term is added. In Fig. 8, showing the case of 500 assets,
the approximate efficient frontier also improves with increasing values of portfolio
return and number of eigenvalues and eigenvectors. For higher values of portfolio
return, 50 eigenvalues and eigenvectors are sufficient whereas 250 eigenvalues and
eigenvectors are needed for smaller values of portfolio return. For the case of 1,000
assets, in Fig. 9, the behaviour is similar to those of the other instances.
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Fig. 9 Exact and approximate efficient frontiers for 1,000 assets. (a) With no error term. (b) With
a linearized error term

As observed from Figs. 7, 8 and 9, the whole efficient frontier can be well approx-
imated using less than 50 % of the total number of eigenvalues and eigenvectors.
The amount of computations needed to find these approximate efficient frontiers
are actually light compared to solving the model (MV) using the state-of-the-art
software. For practitioners who need a quick computation of the frontier, this
strategy can thus be handy.

4.4 Cardinality of the Solution

We here study the cardinality of an optimal solution x∗
E of (6) for the problem

instances given in Table 1. For an increasing number of eigenvalues and eigenvec-
tors, again added in decreasing eigenvalue order, we compute the cardinality of each
optimal solution, Card(x∗

E), for |I|= k eigenvalues and corresponding eigenvectors.
Here, any value of the optimal solution x∗

E smaller than 10−5 is considered to be
zero.

For problem instance 225A in Fig. 10a, less than 50 eigenvalues and eigenvectors
are required to attain the correct cardinality of the optimal solution. However, more
than 50 eigenvalues and eigenvectors are required for problem instance 225B.

In Fig. 11a, a high number of eigenvalues and eigenvectors is required to reach
the correct cardinality, whereas a much smaller number is required for instance
500A in Fig. 11b.

As shown in Fig. 12, the correct cardinality of the optimal solution is obtained
with much fewer eigenvalues for problem instance 1000A than for instance 1000B.

Note from Figs. 10, 11 and 12 that the cardinality of the optimal solution x∗
E never

exceeds the correct cardinality of the optimal solution of (MV), which is given in
Table 1. Common for all three data sets is that the low-risk instances require more
eigenvalues and eigenvectors in problem (6) in order to reach the correct cardinality
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Fig. 10 Cardinality of an optimal solution obtained from (6) versus the number of eigenvalues
and eigenvectors considered for the 225 asset instances. (a) Instance 225A. (b) Instance 225B
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Fig. 11 Cardinality of an optimal solution obtained from (6) versus the number of eigenvalues
and eigenvectors considered for the 500 asset instances. (a) Instance 500A. (b) Instance 500B

of an optimal solution. This is because these instances have optimal solutions that
include more assets, which in turn, according to the results in Sect. 3.2, require more
eigenvalues and eigenvectors to be considered.

5 A Proposed Transformation

According to Theorems 2 and 4, the quality of an optimal solution obtained from
solving problems (4) or (6) depends on the eigenvalue distribution of the covariance
matrix. It is then natural to try to improve this quality by changing the eigenvalue
distribution through a linear transformation. However, in order to avoid that such
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Fig. 12 Cardinality of an optimal solution obtained from (6) versus the number of eigenvectors
and eigenvalues considered for the 1,000 asset instances. (a) Instance 1000A. (b) Instance1000B

a transformation turns the constraints x ≥ 0 into general linear constraints, only
diagonal transformations are considered. We here propose the transformation

yi = (μi − rb)xi, i = 1,2, . . . ,n (12)

for a constant parameter rb. In order to have a one-to-one correspondence between
the variables xi and yi, we insert the requirement that rb �= μi, i = 1, . . . ,n. The
objective in (MV) then becomes

xTΣx = yTQy,

where

Q = DΣD,

with D= diag

(
1

μ1 − rb
,

1
μ2 − rb

, . . . ,
1

μn − rb

)
. We note that the matrix Q is clearly

symmetric and positive semidefinite. Further, letting Ri, i = 1, . . . ,n, denote the
stochastic return on asset i, the ijth element of Q is

Qij =
Cov(Ri,Rj)

(μi − rb)(μj − rb)
= Cov

(
Ri

μi − rb
,

Rj

μj − rb

)
.

The purpose of this transformation is to capture a large portion of the variation
of the objective of (MV) in only a few eigenvalues and eigenvectors. Figure 13
shows that the eigenvalue structure of the matrix Σ is altered considerably as we
change the value of rb. Some preliminary experiments led to the conclusion that
only values of rb that are of the same magnitudes as the expected portfolio returns
are of interest.
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Fig. 13 Cumulative eigenvalue distribution for the matrix Q with different rb values, compared to
the matrix Σ. (a) For 225 assets. (b) For 1,000 assets

Figure 13a shows that more than 99 % of the cumulative sum of the eigenvalues
for matrix Q is captured in less than 5 eigenvalues for rb = 0.004, while about 150
eigenvalues are required to capture the same cumulative sum for the matrix Σ. From
Fig. 13b, most cumulative sum of eigenvalues is captured within a few eigenvalues
when using rb = 0.0077. Note that some values of rb can give the matrix Q a more
dispersed eigenvalue structure compared to Σ. The behaviour is similar for the 500
asset instance.

The intuition we get from Fig. 13 is that the objective function in (4) can capture
a larger portion of the variation in the objective function of (MV) with only a few
eigenvalues and eigenvectors if matrix Σ is replaced with Q. Problems (3) and (MV)
can then be well approximated along the directions of a few largest eigenvalues.

Transformation of the model (MV) using the change of variable (12) leads to the
following new model:

min
y∈ℜn

yTQy

s.t. eTy ≥ μP − rb

Dy ∈ S

(13)

Since matrix Q is also a covariance matrix, it can, like Σ, be decomposed
into eigenvalues and eigenvectors. Following similar arguments as those used in
Sect. 2.1, we get an approximate problem for (13), whose optimal value we denote
by T∗

I for a subset I of eigenvalues and eigenvectors. If y∗
I is an optimal solution of

such an approximate problem, then similarly an upper bound for V∗ becomes

T̂∗
I = y∗

I
TQy∗

I .
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Fig. 14 Comparison of upper bounding quality between the transformed and untransformed
model for 225 assets. (a) Instance 225A. (b) Instance 225B
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Fig. 15 Comparison of upper bounding quality between the transformed and untransformed
model for 1,000 assets. (a) Instance 1000A. (b) Instance 1000B

Again, still following similar arguments as those used in Sect. 3.1 to get model (6), a
model with a linearized term for the transformed model (13) can be constructed. We
denote its optimal value by E∗

I for a chosen subset I of eigenvalues and eigenvectors.
The upper bound of such a transformed model shall be denoted as Ê∗

I . Below we
present computational illustrations of the transformed model. We use the same
problem instances as in Sect. 4.2, and the results obtained therein are compared
to those obtained using the transformed model. The results are shown in Figs. 14
and 15, which are compared to Figs. 4 and 6, respectively.

For problem instance 225A, the transformed models with and without a lin-
earized error term both perform better than even the untransformed model with
a linearized error term. Although the transformed model without an error term in
Fig. 14b for instance 225B performs relatively the same as the untransformed with
a linearized error term, the transformed model with a linearized error term performs
better than the other cases.
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The transformation also reduces the deviations from optimality for the 1,000
asset instances, as shown in Fig. 15. For the low-risk scenario, exact solutions can
be obtained with less than 30 % of the total number of eigenvalues and eigenvectors,
as compared to almost 70 % for the untransformed model.

The intuition we draw from using the transformation is that it can alter the
eigenvalue distribution of the covariance matrix to a desired one such that the
problem (MV) can be well approximated using fewer largest eigenvalues.

6 Conclusion and Further Research

We have given a new insight into the mean-variance portfolio optimization problem
which is based on performing a decomposition of the covariance matrix by means of
its eigenvalues and eigenvectors. This decomposition amounts to restating the mean-
variance problem in terms of uncorrelated eigenportfolios. When only a subset of
the eigenportfolios is considered, we obtain a mean-variance problem that is a well-
defined approximation of the original one. Our theoretical analysis and numerical
illustrations reveal close relationships between the risk-return characteristic of the
mean-variance problem under consideration, the cardinality of an optimal portfolio,
and which, and how many, of the eigenportfolios that needed to be considered in
order to well approximate the mean-variance problem.

According to the result of Corollary 5, the eigendecomposition enables the
computation of near-optimal portfolios with controlled cardinalities. Further, as
noted in Remark 2, an optimal solution to the approximate mean-variance prob-
lem (6) with cardinality K gives lower and upper bounds to a cardinality constrained
mean-variance problem. These observations indicate that the eigendecomposition
approximation can be employed for developing algorithms for the cardinality
constrained mean-variance problem. We are currently exploring this possibility.

The numerical results presented in Sect. 5 are interesting and promising. A solid
theoretical motivation for the transformation used, and an explanation for its effect
on the eigenvalue distribution and the performance of model (6), is however lacking.
This is an intriguing subject for further research.

We are presently investigating the use of the approximate model (6) in an
iterative manner, as a vehicle for solving the mean-variance problem exactly.
Another opportunity for further research is the extension of the eigendecomposition
approach to other classes of quadratic programming problems, including cardinality
constrained quadratic programs.
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Three Aspects of the Research Impact
by a Scientist: Measurement Methods
and an Empirical Evaluation

Boris Mirkin and Michael Orlov

Abstract Three different approaches for evaluation of the research impact by a
scientist are considered. Two of them are conventional ones, scoring the impact
over (a) citation metrics and (b) merit metrics. The third one relates to the level of
results. It involves a taxonomy of the research field, that is, a hierarchy representing
its composition. The impact is evaluated according to the taxonomy ranks of the
subjects that have emerged or have been crucially transformed due to the results by
the scientist under consideration Mirkin (Control Large Syst Spec Issue 44:292–
307, 2013). To aggregate criteria in approaches (a) and (b) we use an in-house
automated criteria weighting method oriented towards as tight a representation of
the strata as possible Orlov (Bus Inf, 2014). To compare the approaches empirically,
we use publicly available data of about 30 scientists in the areas of data analysis
and machine learning. As our taxonomy of the field, we invoke a corresponding part
of the ACM Computing Classification System 2012 and slightly modify it to better
reflect results by the scientists in our sample. The obtained ABC stratifications are
rather far each other. This supports the view that all the three approaches (citations,
merits, taxonomic rank) should be considered as different aspects, and, therefore, a
good method for scoring research impact should involve all the three.
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1 Introduction: The Problem and Background

The issue of measuring research impact is attracting intense attention of scientists
because metrics of research impact are being widely used by various managing
bodies and by public at large as easy-to-get shortcuts for judging of comparative
strengths among scientists, research centers, and universities. The citation index
and such its derivatives as Hirsch index are produced by a number of organizations
including the inventors, currently named Thomson Reuters [32], and Google. These
indexes are used sometimes in evaluation and management in sciences, which can
be subject to debate because of over-simplifications immanent to bibliometrics [2].
There have been a number of proposals to amend the indexes, say, by using less
extensive characteristics, such as centrality indexes in the intercitation graphs [5]
or by following only citations in “lead scientists” work [4], see also [8]. Other
proposals deny the usefulness of bibliometrics altogether; some propose such drastic
measures as the “careful socialization and selection of scholars, supplemented by
periodic self-evaluations and awards” [25], that is, moving back to the closed
orders of monk-scientists. Other, more practical systems, such as the UK Research
Assessment Exercise (RAE, recently rebranded as REF) intends to assess most
significant contributions only, and in a much informal way, which seems a better
option. Yet there have been criticisms of the RAE-like systems as well: on the
one hand, in the absence of a citation index, the peer reviews do not manifest
any consistency in evaluations [1, 10], and, on the other hand, in the long run,
the system has cut off everything which is out of the mainstream [17]. Therefore,
a recent initiative by a group of influential scientists DORA [28], while rejecting
the bibliometrics as the only assessment source, proposes to switch from counting
publications only to checking for the whole list of scientific production including
data sets, patents, and codes among others. The US National Science Foundation
already modified its instructions so that the outputs of scientific research include
products rather than just publications [28]. This goes in line with what Alfred Nobel,
the founder of the most prestigious science prize, has expressed in his will: the prize
goes to those who “have conferred the greatest benefit on mankind” which is further
detailed, say for physics, as “ have made the most important discovery or invention
within the field of physics” [22].

We adhere to this opinion. This chapter is an attempt at exploring aspects of the
concept of larger than papers researcher’s productivity. Looking from a practical
side, one can recognize that currently there are at least four types of products of
scientific research:

1. producing novel scientific results to be described in papers and monographs;
2. participating in the organization of sciences such as being a journal editor or

running a research conference;
3. transferring knowledge to and training of younger generations such as under-

graduate and postgraduate students;
4. developing technology innovations including patents and other industry-related

products.
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They all should be counted as parts of the impact by a scientist.
Therefore, we are going to explore how these can be reasonably measured and

aggregated to derive a reasonable measure of research impact. We recognize the
difficulties in measuring the last item, of technical innovations, for the currently
living scientists because not so many of them ever get patents. To justfully
abandon this item we restrict ourselves with university-based researchers only, since
academics normally are not required to get a practical use of their research results.

Another issue is in finding a direct measure to score the research results, item 1,
which is so remarkably avoided by using bibliometrics instead. Here we are going
to employ a recently proposed idea of using a hierarchical taxonomy of a research
field for mapping research results in the field to those subjects that have been created
or drastically revised in the light of these results. The ranks of the receiving nodes
define the rank of the research results [19].

Another innovation reported in this chapter is in the way of combining multiple
criteria. A number of popular approaches to multicriteria rank aggregation rely
on weighted combinations of criteria in such a way that the weights are defined
either manually or in a supervised manner. For example, the former applies to
computing university league tables, and the latter is characteristic for defining
ABC classifications of inventory items. Automatically deriving the weights has
been pursued as well, mostly in the format of the eigenvector corresponding to
the maximum eigenvalue for a similarity-between-criteria matrix such as RankClus
[26, 29] and PCA [18]. This approach is much relevant when the criteria are well
correlated so that a better entity over one criterion would be better over most other
criteria. If, however, criteria are essentially conflicting at different entities, the first
eigenvector would take into account too little of the data scatter and, therefore,
may be somewhat inappropriate. We develop an approach which is adequate at
both correlated and conflicting criteria. According to our approach, the issue is
to be solved by finding such a direction in the criteria space that all the entities
are projected into compact well-separated clusters on it so that the orthogonal
hyperplanes may be considered as boundaries between different multicriterial strata
of entities. This approach was introduced and substantiated recently in [23, 24].

One more innovation described here is a case of practical implementation
of our approaches. To be specific, we focus on the field of Computer Science
related to data analysis, machine learning, cluster analysis, and data mining. As
a relevant taxonomy of the domain we take relevant parts of the ACM Computing
Classification System 2012 [30]. We pick up a sample of 30 leading scientists in
the field such that the information of their research results is publicly available. We
consider three sets of criteria for research contributions: (a) one comprises three
Google citation criteria, (b) the second, criteria for items of merit, 2 and 3 from
the list above, and (c) the third utilizes adjusted ranks of research results within the
taxonomy.

Our preliminary hypothesis is that the aggregate scales of both (a) citation and
(b) merit relate to popularity of scientists rather than anything else. Therefore, the
combined scales for (a) and (b) should have a rather high correlation between
them. On the other hand, the level of results has no straightforward relation to
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popularity—the latter much depends on the scientist’s character and communication
skills, while the former, on talent and luck. So any reasonable scale of the level of
results should have rather low correlation with both citation index and merit index.
Our computations do show that this is largely true at our data, although the level
of correlation between (a) and (b) is not that high. To an extent, this observation
supports the views expressed in DORA declaration [28]. Also, we may conclude
that our method of mapping research results to a taxonomy of the field (MMRRTF)
could be considered a good way forward. It does involve a great deal of manual
component, of course. However, it is based on an agreed upon taxonomy of the
domain and explicitly mapping the results to taxonomy nodes. Therefore, its results
are explicitly expressed and admit public discussions of them, which leads to much
less inconsistency in the assessments than just mere subjective evaluations by panel
members.

The remainder is organized as follows. The next section provides an algorithmic
background for the Linstrat method for aggregating criteria in the format of a
weighted sum of them [23, 24]. Our method for mapping research results to a
taxonomy of the fields is presented there too. Section 3 describes how our sample of
scientists has been formed and how scientists’ ranks have been defined by adapting
an extract from the taxonomy in ACM CCS [30]. Section 4 presents data related
to features of (a) citation and (b) merit for our sample. Our results in determining
stratifications and criteria weights are presented here as well. Section 5 concludes
with a summary and future work directions.

2 Methodology

2.1 The Problem of Stratification

There is a general understanding that in the ranking problem one usually looks
for an ordered partition in which entities in the same class are considered to be
equivalent over a pre-specified set of criteria, rather than for just a linear ordering
of the entities. Reasons for this may include a degree of indifference of the decision
makers (as reflected, say, in the concept of ABC ranking in inventories) or a degree
of imprecision in the measurement of criteria or both. We refer to a partition, classes
of which are linearly ordered by a relation of precedence, as a stratification. Such
areas as sociology and mineralogy use this term exactly in this sense to express
social inequality in the former and depth/time precedence in the latter.

Consider an example. Table 1 contains normalized food and housing prices for a
foreigner in 10 cities of the world [7].

The left part of Fig. 1 presents a three cluster partition found using k-means
clustering method with cities Copenhagen, New York, and Peking taken as the initial
centers. The right part of Fig. 1 presents a three strata stratification corresponding to
the direction of a combined criterion F = 0.4789∗HousingP+0.5211∗FoodP. This
combined criterion can be interpreted as a measure of “cost of living” that takes into
account the difference in the relative importance of the criteria.
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Table 1 Prices of housing
and food for a foreigner in ten
cities normalized so that the
minimum is zero and
maximum, the hundred

City Housing Food

Moscow 96.7284 56.0364

London 93.2099 62.4146

Tokyo 100.0000 44.4191

Copenhagen 42.7160 100.0000

New York 96.7284 38.9522

Peking 59.9383 12.0729

Sydney 34.4444 19.5900

Vancouver 12.9630 10.2506

Johannesburg 0 5.2392

Buenos Aires 14.1975 0
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Fig. 1 Ten cities over two normalized criteria: Housing price and Food price. They are partitioned
in three clusters (on the left) and in three strata (on the right)

As expected, clusters consist of similar cities (see Fig. 1 on the left). Those
labeled by a square have relatively low prices for both foods and housing. Cluster
labeled by a circle is a singleton consisting of just Copenhagen, with a highest food
price and moderate housing prices. The cluster of triangles on the right, in contrast,
is of highest housing prices and moderate food prices. The strata, on the right side,
are organized over a different principle. The first stratum, for example, is not a
cluster but rather a Pareto boundary at highest prices. Each of the remaining cities
is dominated, over both criteria, by a city from the first stratum. It is formed not
according to similarity but rather according to the combined weighted criterion as a
set of a higher cost of living. The second stratum is a set of a moderate living cost,
and the third, of the lowest living cost in the set.

One can classify methods for multicriteria stratification according to the extent
of the assumed elasticity of the criteria to each other or the value trade-off [15].
A constant elasticity e of criterion f1 towards criterion f2 would mean that a change
of criterion f2 by a unity is equivalent to the opposite change of f1 in e units,
independently of values of these and other criteria. That is, criteria f1 and f2 can be



238 B. Mirkin and M. Orlov

combined into weighted sum f1 + ef2 in this case. The case of a constant elasticity
between all the criteria f1(x), f2(x), . . . , fm(x) assumes that they can be equivalently
substituted by an aggregate criterion f (x) which is expressed as their weighted sum
f (x) = w1f1(x) + w2f2(x) + . . .+ wmfm(x), where w1,w2, . . . ,wm are non-negative
constant weight coefficients summing to 1.

An opposite case is when all the criteria are mutually incomparable and there
is no way that a change in one criterion can be equivalently represented by a
change in another criterion. That is, each criterion must be taken into consideration
whatever the other criteria values are. The absence of interrelation among criteria
leads to the multivariate relation “better than,” that is, “better over every single
criterion,” and the concept of Pareto boundary as the only solution that needs no
interrelation between criteria at all. Yet there is a kind of equivalence between
these two extremes: under rather mild mathematical conditions on the criteria and
the sets at which they are defined, every x maximizing the combined criterion

f (x) =
m

∑
t=1

wtft(x) does belong to the Pareto boundary. And vice versa, any point

x belonging to the Pareto boundary can be found as a maximizer of the combined

criterion f (x) =
m

∑
t=1

wtft(x) for some x-specific set of weights w (see Fig. 2).

For a detailed review of various interpretations of criteria weight coefficients
one may refer to [9]. Much work on multicriterion ranking has been done along
the lines of using an external information, say from a Decision Maker, to try
to reveal as much information on comparability of criteria at various preference
profiles (see, for example, Electre method [12] or PROMETHEE method [6]).
Papers [21, 27] develop methods for dividing resources in ABC groups according
to their importance for the company by using a criteria weighting system. The
groupings are determined by using a combined weighted criterion in which weights
are found by solving a linear programming problem. These weights are not constant
but depend on the variants being compared.

Fig. 2 An illustration of the equivalence between two approaches; one of weighted combined
criteria and the other, of Pareto boundary solutions
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As we concentrate on the case of a weighted combined criterion with constant
weights, we should mention the following. In the real world, there are some
applications in which weighted combined criteria are used in such a way that the
weights are chosen manually by experts; such are methods applied in composition
of university league ranking tables (see, for instance, [31]). In some works, weights
are learned in a supervised or semi-supervised manner [16].

2.2 Linstrat Criterion and Method

We think of our Linstrat method as that inspired by the idea that Pareto boundaries,
formed by consecutive “shaving” off the current Pareto boundary from the data set,
can be approximated as strata between parallel hyperplanes whose normal vector,
that is, the vector of criteria weights, is taken such that the projections of entities
under consideration within each stratum are as close to each other as possible. This
idea leads to an optimization problem described below.

Consider a set of N items evaluated over M criteria so that the evaluation scores
can be represented as a matrix (xij), where i ∈ 1, . . . ,N are the items or actions,
j ∈ 1, . . . ,M criteria, and xij is the value of jth criterion at the ith item. Assume some
criteria weights w = (w1,w2, . . . ,wM) such that wj ≥ 0 at every j and ∑

j

wj = 1.

These weights are taken into account in the combined criterion f =
M

∑
j=1

wjxj where

xj is jth column of matrix X = (xij). The problem is to divide the item set in K
disjoint subsets S = {S1, ..Sk, . . . ,SK},k = 1, . . . ,K referred to as strata, according to
values of the combined criterion f . Each stratum is characterized by a value of the
combined criterion ck, referred to as the stratum value, or center. These values are
ordered so that ck > cl whenever k < l. That means that any item from kth stratum
is ranked higher, or is more preferable, than any item from stratum l if k < l.

Geometrically, strata are formed by layers between parallel planes in the space
of criteria. At any stratum Sk, we assume that the value of the combined criterion

fi =
M

∑
j=1

wjxij at any i ∈ Sk approximates the stratum value ck as much as possible.

That is, in the equation xi1w1 + xi2w2 + . . .+ xiMwM = ck + ei, ei is an error to be
minimized over unknown weights w. The problem of finding an optimal w can be
formulated as the following optimization problem with respect to weights w, centers
{c}, and partitions S:

min
w,c,S

K

∑
k=1
∑
i∈Sk

(
M

∑
j=1

xijwj − ck)
2

such that
M

∑
j=1

wj = 1

wj ≥ 0, j ∈ 1 . . .M.

(1)
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At any given weight vector w, the criterion in (1) is the conventional square-
error clustering criterion of K-means clustering algorithm over a single feature, the

combined criterion f =
M

∑
j=1

wjxj. This implies that finding the optimal stratification

S, at a pre-specified K, amounts to finding K − 1 points dividing the f -axis in K
intervals to minimize the within-cluster variance, and the optimal centers ck are
just within-cluster means of f . An optimal stratification over a single feature can be
found by using Fisher’s dynamic programming clustering algorithm [13]. Therefore,
the difficulty in the minimization of (1) is concentrated in the task of finding an
appropriate w at a given stratification S. If an algorithm for this is specified, then one
can proceed in the manner of an alternating minimization algorithm: starting from
some weight vector w(0), find optimal S and c. Based on these, find an appropriate
weight vector w(1), etc.

At first, we used an evolutionary algorithm for minimizing (1) with respect to w
at a given S and c. However, such an algorithm as a whole leads to unstable solutions
at some data sets and, moreover, the solutions at times are inferior to those found by
using other approaches [20]. A modification based on a direct algorithm for solving
the quadratic programming problem is proposed in [23]. It starts from a random
w, but leads to a stable solution in most cases. Moreover, in our experiments with
synthetic data sets it typically outperforms its competitors by a high margin [23, 24].
Therefore, we use this version of Linstrat through the entire material reported in this
chapter.

2.3 Taxonomic Rank of a Scientist

The concept of taxonomic rank is not uncommon in the sciences. Moreover, it is
quite popular in biology: “A Taxonomic Rank is the level that an organism is placed
within the hierarchical level arrangement of life forms.”, according to a dictionary
(see http://carm.org/dictionary-taxonomic-rank). Say, Eukaryota is a domain (rank
1) containing Animals kingdom (rank 2). The latter contains Cordata phylum (rank
3) which contains Mammals class (rank 4) which contains Primates order (rank 5)
which contains Hominidae family (rank 6) which contains Homo genus (rank 7)
which contains, at last, Homo sapiens species (rank 8).

According to the proposal in [19], the taxonomic rank of a scientist should be
defined in a similar way. The relevant science domain should be structured by a
hierarchical taxonomy such as that in Fig. 3. The rank of a scientist is defined then
as the rank of a subdomain which has appeared because of the scientist’s work
or has been substantially transformed because of that. For example, if a domain
has been structured as shown in Fig. 3 and a scientist’s work has highly affected
the subdomain labeled as A.1.2 (see the triangle indicating that), then her/his rank
would be 3, the number of characters, other than dot, in the code of the subdomain.
Of course, this goes in the opposite direction: the higher the rank, the lower the
level.

http://carm.org/dictionary-taxonomic-rank
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Domain

A B

A.1 A.2 B.1

A.1.1 A.1.2 A.2.1

A.1.1.1 A.1.1.2 A.1.1.3 A.1.2.1 A.1.2.2

Rank 1

Rank 2

Rank 3

Fig. 3 An illustrative taxonomy of a domain. The triangle shows that subdomain A.1.2 has been
seriously affected by the results in example

In a practical implementation, when scoring the level of results for currently
living scientists, it is much easier to map their individual papers to the taxonomy
rather than the overall achievements. Indeed, the overall achievement is not easy
to formulate, whereas an individual paper usually represents a single individual
achievement which is not difficult to map to the taxonomy, even if onto two or
more subdomains. Together with the plurality of one’s results, this leads to the issue
of multiple subdomains developed or transformed by a scientist. If the work of a
scientist has affected a number of subdomains in a taxonomy, what rank should be
assigned to the contribution her/him?

It seems natural that the contribution of an achievement at a lower layer to that
of the highest layer achievement is less by an order of magnitude at scoring the
taxonomic rank of a scientist. Therefore, of all the levels of the taxonomic hierarchy
affected by them first and foremost the highest level is to be used. In the case that
only one subdomain is considered as highly affected by the scientist, then her/his
rank is defined as the taxonomy layer to which the subdomains belong. Such is the
case illustrated in Fig. 3 if the subdomain in question is A.1.2, then the scientist’s
rank is 3. In the case when two or more subdomains on the highest level are affected
by a scientist, the rank should be further decreased within the unit interval separating
the current rank from the higher one. The scale of the drop should depend on the
range of number of possibly affected subdomains. In our empirical investigation, we
considered, for each of the scientists in our sample, at most five papers leading to
ground-breaking discoveries or methods within the taxonomy. Thus, we thought that
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each additional subdomain of the highest level affected should make a drop in the
rank equal to 0.1. Then, an additional drop caused by a node of a lower layer should
be about 0.01. For example, if a scientist’s results highly affected 4 subdomains of
rank 4 and 3 subdomains of rank 3, then the taxonomy rank of the scientist will be
2.76. Indeed, 4 subdomains of rank 4 contribute -0.01 each; one affected subdomain
of rank 3 leads to the rank value 3, and each of the two remaining rank 3 subdomains
decreases that by 0.1 so that the final rank is 3−2∗0.1−4∗0.01 = 2.76. To make
it simpler, we can assume that additionally 0.1 is subtracted from each of the ranks
found—this will not affect the results of the data normalization to 0–100 scale, but
the formula for computing the rank gets very simple. To formulate it, let us denote
R the set of nodes assigned to a scientist. Let it be partitioned in subsets Rh, h ∈ H, of
the same rank where H =(h1,h2, . . . ,hp) and h1 < h2 < .. .< hp. Then the taxonomic
rank of the scientist is defined as

r = h1 −
p

∑
k=1

(0.1)k ∗hk.

This method for assigning a scientist her/his taxonomic rank suffers of issues of
which the following three seem of importance. First, the method is not automated.
The mapping of a research paper to the taxonomy is done manually, so that the result
is highly affected by the person(s) performing the mapping; it depends on both the
knowledge of the domain and its history as well as on the extent of understanding
of the result. Still, any mapping decision is an explicitly stated judgement which
can be discussed openly and corrected if needed. What is important is that the
subjective part in the decision is quite minor. This much differs from the currently
used method of peer-reviewing. Indeed, peer-based results can be highly subjective
and dependent on various external features such as citation scores [10, 11, 33].
Second, there can be no regular service for updating the taxonomy of the domain.
In this case, a ground-breaking paper can be assigned to a wrong subdomain just
because the proper one is not yet present in the taxonomy under consideration. In
our assignments reported in the next section this did happen more than once. In such
cases, because of the presence of the senior coauthor whose career spans for the past
50 years, we did not hesitate to expand the taxonomy with updated subdomains. This
means that this drawback can be dealt with, at least partly. Third, and foremost,
unlike in biology, the taxonomies of specific research domains, especially those
being under development, are subject to debate. Some popular concepts may go in
a few years, some new concepts may emerge, some new links can be discovered,
whereas some old links become obsolete. This is especially true for such a dynamic
area as computer-related computations and services in which the theoretical thinking
is highly affected by the industrial progress in hardware. Say, initially computers
were oriented at computations, then at data processing, and nowadays, it seems they
are oriented at networking. Change in the overall perspective necessarily leads to
a drastic change in the taxonomy of the domain. For example, if one compares
the current ACM Computing Classification System 2012 [30] with its previous
version, the ACM Classification of Computing Subjects 1998, one cannot help
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but notice great differences in both the subdomain list and the structure of their
mutual arrangement. Yes indeed, the current taxonomies of domains can be not
well structured and, thus, unstable. However, the appreciation of the level of results
goes in line with the taxonomic structure of the domain. The more important is a
subdomain, the more important are ground-breaking results of it. Indeed, unlike the
level of citations, the recognition of the relative importance of this or that subdomain
is subject to change. This just shows that the domain taxonomy cannot be considered
stable while the domain is being developed, so is the level of results.

3 Developing an Empirical Testing Base for the Taxonomic
Rank Evaluation

To put a testing to our methods we need, first of all, to take a sample of scientists
working in the same domain and score their contributions. The following steps
should suffice:

1. Specify a knowledge domain
2. Take its appropriate taxonomy
3. Collect a representative sample of scientists with results in the domain
4. For each of the scientists in the sample, map her/his ground-breaking results to

the taxonomy
5. Compute the taxonomic rank of each of the scientists in the sample

Further on we describe our work on implementation of these steps.

3.1 A Taxonomy of the Data Analysis Subjects

For an empirical evaluation, we decided to focus on the domain of intelligent data
analysis including what is referred to as machine learning and data mining areas. We
know some of its history and the current state. We feel that our expertise in other
domains is even more embryonic. As to the taxonomy of the domain, we tried first
to consider taxonomy from textbook [18], then from textbook [14]—both appear to
be difficult to use for mapping individual research results into because both cover
rather basic subjects only, and it remains entirely unclear at which places in them
real-world research results should be mapped to. In this aspect, the ACM CCS 2012
taxonomy has provided us with much better guidance. Parts of ACM CCS 2012
related to the domain under consideration can be considered as composed of the
branches in the ACM CCS presented in Tables 2 and 3.

This part extended by the less general concepts from ACM CCS 2012 is
presented in Table 3. For the sake of saving room, parts of the hierarchy not
affected by the mapping of research results are minimized. On the other hand,
the part under consideration is updated by adding items concerning the outstanding
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Table 2 ACM CCS 2012 high rank items covering data analysis,
machine learning, and data mining

Subject index Subject name

1. Theory of computation

1.1. Theory and algorithms for application domains

2. Mathematics of computing

2.1. Probability and statistics

3. Information systems

3.1. Data management systems

3.2. Information systems applications

3.3. World Wide Web

3.4. Information retrieval

4. Human-centered computing

4.1. Visualization

5. Computing methodologies

5.1. Artificial intelligence

5.2. Machine learning

results by scientists from our sample that have not been covered in the taxonomy.
These concern, as a rule, only leaves of the tree, as can be seen in Table 3. This
table represents that part of the taxonomy which has been used for mapping there
outstanding results by scientists from our sample. The subdomains (taxonomy
nodes) affected by these results are marked by one or two stars. A one star node
refers to a subdomain being part of ACM CCS 2012; a two star node refers to a
subdomain added by the authors.

3.2 Sample of Scientists and Their Taxonomic Ranks

In our sampling, we rely on Google citation indexes and try to pick up those with
maximum citations. Ideally, we wanted to take about 15–20 scientists from the
USA and a couple of scientists from a country such as Australia, Canada, China,
France, Germany, Netherlands, Russia, and the UK so that the relative contributions
by countries would be reflected in the sample. This also would warrant a variation
in citation levels: from many dozen thousands at some of the USA scientists to a
very few thousands at those in Europe. This ideal composition, though, was difficult
to achieve because for any scientist from the sample we needed data not only on
citation and taxonomic rank but on merit as well. The merit data were not always
available so that we went as far as to contact over e-mail those of sampled scientists
for whom the merit data were not easily available, asking them to fill in the slots of
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Table 3 ACM CCS 2012-based taxonomy of data analysis, machine
learning, and data mining

Subject index Subject name

1. Theory of computation

1.1. Theory and algorithms for application domains

1.1.1. Machine learning theory

1.1.1.1. Sample complexity and generalization bounds

1.1.1.2. Boolean function learning

1.1.1.3.* Unsupervised learning and clustering

1.1.1.4. Kernel methods

1.1.1.4.1. Support vector machines

1.1.1.4.2. Gaussian processes

1.1.1.4.3.** Modelling

1.1.1.5. Boosting

1.1.1.6.* Bayesian analysis

1.1.1.7.− 1.1.2.12. · · ·
2. Mathematics of computing

2.1. Probability and statistics

2.1.1. Probabilistic representations

2.1.1.1. Bayesian networks

2.1.1.2.* Markov networks

2.1.1.3.− 2.1.1.8. · · ·
2.1.1.8.1. Kernel density estimators

2.1.1.8.2. Spline models

2.1.1.8.3.* Bayesian nonparametric models

2.1.2. Probabilistic inference problems

2.1.2.1.− 2.1.3.6. · · ·
2.1.3.7. Kalman filters and hidden Markov models

2.1.3.7.1** Factorial HMM

2.1.3.8.− 2.1.5.3. · · ·
2.1.5.3.1.* Robust regression

2.1.5.4.− 2.1.5.10. · · ·
2.1.6.− 2.1.9. · · ·
3. Information systems

3.1. Data management systems

3.1.1. Database design and models

3.1.1.1.− 3.1.1.5. · · ·
3.1.1.5.2.* Data streams

3.1.1.5.3.− 3.1.1.5.7. · · ·
3.1.2. Data structures

3.1.2.1. Data access methods

3.1.2.1.1.* Multidimensional range search

3.1.2.1.2.− 3.1.2.1.5. · · ·
3.1.2.2.− 3.1.5.9. · · ·

(continued)
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Table 3 (continued)

Subject index Subject name

3.2. Information systems applications

3.2.1. Data mining

3.2.1.1. Data cleaning

3.2.1.2. Collaborative filtering

3.2.1.2.1** Item-based

3.2.1.2.2** Scalable

3.2.1.3.* Association rules

3.2.1.3.1** Types of association rules

3.2.1.3.2** Interestingness

3.2.1.3.3** Parallel computation

3.2.1.4. Clustering

3.2.1.4.1** Massive data clustering

3.2.1.4.2** Consensus clustering

3.2.1.4.3** Fuzzy clustering

3.2.1.4.4** Additive clustering

3.2.1.4.5** Feature weight clustering

3.2.1.4.6** Conceptual clustering

3.2.1.4.7** Biclustering

3.2.1.5. Nearest-neighbor search

3.2.1.6.* Data stream mining

3.2.1.7** Graph mining

3.2.1.7.1** Graph partitioning

3.2.1.7.2** Frequent graph mining

3.2.1.7.3** Graph based conceptual clustering

3.2.1.7.4** Anomaly detection

3.2.1.7.5** Critical nodes detection

3.2.1.8.** Process mining

3.2.1.11** Text mining

3.2.1.11.1** Text categorization

3.2.1.11.2** Key-phrase indexing

3.2.1.10.** Data mining tools

3.2.1.9** Sequence mining

3.2.1.9.1.** Rule and pattern discovery

3.2.1.9.2.** Trajectory clustering

3.2.1.9.3** Market graph

3.2.1.12** Formal concept analysis

3.3. World Wide Web

3.3.1. Web mining

3.3.1.1.− 3.3.1.5. · · ·
3.3.1.6** Knowledge discovery

3.4. Information retrieval

3.4.1. Document representation

3.4.1.1.− 3.4.1.5. · · ·
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3.4.1.6.* Ontologies

3.4.1.7. Dictionaries

3.4.1.8. Thesauri

3.4.2.− 3.4.3. · · ·
3.4.4. Retrieval models and ranking

3.4.4.1.* Rank aggregation

3.4.4.2.− 3.4.4.4. · · ·
3.4.4.5.* Learning to rank

3.4.4.6.− 3.4.7.3. · · ·
4. Human-centered computing

4.1. Visualization

4.1.2. Visualization techniques

4.1.2.1.− 4.1.2.6. · · ·
4.1.2.7** Elastic maps

4.1.3. Visualization application domains

4.1.3.1.−4.1.3.4. · · ·
4.1.4.− 4.1.7. · · ·
5. Computing methodologies

5.1. Artificial intelligence

5.1.1. Natural language processing

5.1.1.2.− 5.1.1.7. · · ·
5.1.1.7.1** Wikipedia based semantics

5.1.1.8. Phonology/morphology

5.1.1.9. Language resources

5.1.2. Knowledge representation and reasoning

5.1.2.1.− 5.1.2.3. · · ·
5.1.2.4.* Probabilistic reasoning

5.1.2.5.− 5.1.2.12. · · ·
5.1.3. Computer vision

5.1.3.1. Computer vision problems

5.1.3.1.1. Interest point and salient region detections

5.1.3.1.2. Image segmentation

5.1.3.1.3.− 5.1.3.1.10. · · ·
5.1.3.2. Computer vision representations

5.1.3.2.1. Image representations

5.1.3.2.1.1* 2D PCA

5.1.3.2.2. Shape representations

5.1.3.2.3. Appearance and texture representations

5.1.3.2.4. Hierarchical representations

5.2. Machine learning

5.2.1. Learning paradigms

5.2.1.1. Supervised learning

5.2.1.1.1.* Ranking

(continued)
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Table 3 (continued)

Subject index Subject name

5.2.1.1.2. Learning to rank

5.2.1.1.3.* Supervised learning by classification

5.2.1.1.4.− 5.2.1.1.6. Supervised learning by regression

5.2.1.2. Unsupervised learning

5.2.1.2.1.* Cluster analysis

5.2.1.2.2.* Anomaly detection

5.2.1.2.3.* Mixture modeling

5.2.1.2.4. Topic modeling

5.2.1.2.5. Source separation

5.2.1.2.6. Motif discovery

5.2.1.2.7.* Dimensionality reduction and manifold learning

5.2.1.2.7.1** Graph embedding

5.2.1.2.7.2** Supervised dimensionality reduction

5.2.1.3.− 5.2.2.6. · · ·
5.2.2.7.* Semi-supervised learning settings

5.2.2.7.1.** Kernel approach

5.2.3. Machine learning approaches

5.2.3.1. Classification and regression trees

5.2.3.1.1** Parallel implementation

5.2.3.1.2** Splitting criteria

5.2.3.1.3** Model trees

5.2.3.2. Kernel methods

5.2.3.2.1.** Kernel support vector machines

5.2.3.2.1.1** Dynamic kernel SVM

5.2.3.2.2. Gaussian processes

5.2.3.2.3** Kernel matrix

5.2.3.2.4** Kernel independent components

5.2.3.2.5** Kernel-based clustering

5.2.3.3. Neural networks

5.2.3.3.1** Self-organized map

5.2.3.3.2** Training approaches

5.2.3.3.2.1** Evolutionary approach

5.2.3.3.3** Representation

5.2.3.3.3.1** Rule-based network architecture

5.2.3.3.3.2** Fuzzy representation

5.2.3.3.4** Evolving NN

5.2.3.3.5** Ensembling

5.2.3.4. Logical and relational learning

5.2.3.4.1. Inductive logic learning

5.2.3.4.2. Statistical relational learning

5.2.3.5.* Learning in probabilistic graphical models
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5.2.3.5.1.* Maximum likelihood modeling

5.2.3.5.2. Maximum entropy modeling

5.2.3.5.3. Maximum a posteriori modeling

5.2.3.5.4.* Mixture models

5.2.3.5.5. Latent variable models

5.2.3.5.6.* Bayesian network models

5.2.3.5.7.** Markov network models

5.2.3.6. Learning linear models

5.2.3.6.1. Perceptron algorithm

5.2.3.6.2** Linear discriminant analysis

5.2.3.6.2.1** Tensor representation

5.2.3.7.* Factorization methods

5.2.3.7.1.* Non-negative matrix factorization

5.2.3.7.2. Factor analysis

5.2.3.7.3. Principal component analysis

5.2.3.7.3.1** 2D PCA

5.2.3.7.3.2** Sparse PCA

5.2.3.7.4. Canonical correlation analysis

5.2.3.7.5.* Latent Dirichlet allocation

5.2.3.7.6.** Independent component analysis

5.2.3.7.7** Nonlinear principal components

5.2.3.7.8** Multidimensional scaling

5.2.3.7.8.1** Least moduli

5.2.3.8. Rule learning

5.2.3.8.1.** Neuro-fuzzy approach

5.2.3.9.− 5.2.3.13. · · ·
5.2.3.13.1.* Deep belief networks

5.2.3.14** Multiresolution

5.2.3.15** Support vector machines

5.2.4. Machine learning algorithms

5.2.4.1. Dynamic programming for Markov decision processes

5.2.4.1.1.− 5.2.4.2.2. · · ·
5.2.4.2.3.** Fusion of classifiers

5.2.4.3. Spectral methods

5.2.4.3.1** Spectral clustering

5.2.4.4. Feature selection

5.2.4.5. Regularization

5.2.4.5.1** Generalized eigenvalue

5.2.5. Cross-validation

Taxons that have been seriously affected by a scientist from our sample are marked
with a star. Taxons added to better reflect ground-breaking results from the sample
are marked with two stars
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the number of successful PhDs supervised, journal editing positions, and chairing at
conferences. Unfortunately, not all of the addressees replied to our messages, so we
had to remove from the sample those whose merit data were missing. In our final
sample there are 30 active scientists in the domain.

Now comes a most controversial part of this project—establishing which areas
of the domain have been developed or transformed by this or that scientist from the
sample. One of the aspects under fire is crediting somebody for this or that result.
Indeed, in the current era of globalization any idea of merit can be traced back to,
usually, multiple origins. We accept an easy touch position so that individuals are
credited with innovations if this is what they claim themselves, and an important part
of the community does support the claim. Another issue is a correct interpretation
of the set of main contributions by a person. How can one select the most important
items from a few hundred publications? In no way can we claim that our selections
have been correct in all the cases; we only hope that did not do much harm because
we selected a number of publications, usually from 4 to 6, (co)authored by each
scientist from our sample. Another, even more, controversial issue is of choosing
subdomains in the taxonomy drastically affected by this or that publication. This is
accompanied with a bunch of more-or-less arbitrary decisions starting from deciding
was this or that effect drastic indeed and finishing by a decision to add this or that
node to the taxonomy. Luckily, the ACM CCS 2012 taxonomy is flexible enough to
admit different interpretations of the same term. For example, “Clustering” appears
in it as part of 1.1 Theory and algorithms for application domains, as well as part
of 3.2. Information systems applications, as well as part of 5.2. Machine learning.
This allows to properly choose a location within the taxonomy for both algorithms,
systems and applications.

All in all, our main argument for the usefulness of our approach is a clear
visibility of the entire argument from a piece of work (paper) to formulation of a
result to mapping that to a specific (set of) node(s). This gives an opportunity to
operationally discuss and correct, if needed, any part of the picture. The only issue
preventing us from presenting all the detail of the data set and its mapping to the
taxonomy is that the project involves scientists’ names. We think that there is a kind
of an implicit universal nondisclosure agreement making it inconvenient to collect
a dataset about peer scientists for publicly ranking them without their consent or
even their knowledge of that. The only exception from this “agreement” that can be
admitted here are the names of Dr. Panos Pardalos and Dr. Boris Mirkin. There are
two reasons for that. First, each of the two did want to be included into the sample.
Second, this disclosure makes an evidence that our data relate to real, not imaginary,
scientists. Therefore, we report here that P. Pardalos is labeled S19 and Boris Mirkin
S5, in our sample.

The results of mapping of scientists from our sample to the taxonomy are
presented in Table 4. The table also presents the derived taxonomic ranks and the
same ranks, 0–100 normalized. The normalization went according to the accepted
rule except that the minimum rank, 3.50, gets a 100 mark, and the maximum one,
4.89, gets a 0. By looking at the values of the taxonomic rank, it seems quite obvious
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Table 4 Mapping main research results to the taxonomy; layers of the nodes affected; Tr,
taxonomic ranks derived from them; Trn, taxonomic ranks normalized to the range 0–100; and
three strata obtained by k-means partitioning of the ranks

Scientist Mapping to taxonomy Layers Tr Trn Stratum

S1 4.1.2.7, 5.2.1.2.7, 5.2.3.7.7 4,5,5 3,88 73 1

S2 2.1.1.2, 2.1.1.2, 5.2.2.7, 5.2.3.5, 5.2.3.5 4,4,4,4,4 3,50 100 1

S3 3.2.1.4.2, 5.2.1.2.3, 5.2.1.2.7, 5.2.3.5.4,
5.2.3.7.6

5,5,5,5,5 4,50 29 2

S4 1.1.1.4.3, 3.4.4.5, 5.2.1.1.1,5.2.1.2.7,
5.2.3.2.1,5.2.3.7.8

5,4,5,5,5,5 3,90 71 1

S5 3.2.1.4.4, 3.2.1.4.4, 3.2.1.4.5, 3.2.1.4.6,
3.2.1.11.1

5,5,5,5,5 4,50 29 2

S6 3.1.1.5.2, 3.1.2.1.1, 3.1.2.1.1, 3.2.1.6.,
3.2.1.7

5,5,5,4,4 3,77 81 1

S7 5.2.3.5.6, 5.2.3.5.7 5,5 4,80 7 3

S8 3.2.1.3.1, 3.2.1.4.1, 5.2.3.3.1, 5.1.3.2.1,
5.1.3.2.4

5,5,5,5,5 4,50 29 2

S9 5.2.1.2.3, 5.2.3.3.2, 5.2.3.5.1, 5.2.3.5.4,
5.2.3.6.2

5,5,5,5,5 4,50 29 2

S10 5.2.3.3.2, 5.2.3.13.1 5,5 4,80 7 3

S11 3.2.1.2, 3.2.1.2.1, 3.2.1.3.3, 3.2.1.4.1,
3.2.1.7.2

4,5,5,5,5 3,86 74 1

S12 3.2.1.9.1.1, 3.2.1.10, 3.2.1.11.2, 5.1.1.7.1,
5.2.3.1.3, 5.2.3.4.1

6,4,5,5,5,5 3,86 74 1

S13 1.1.1.3, 5.2.1.2.1, 5.2.1.2.1, 5.2.2.7.1,
5.2.3.7.1

4,5,5,5,5 3,86 74 1

S14 3.2.1.3.1 5 4,90 0 3

S15 5.2.4.3.1 5 4,90 0 3

S16 5.2.4.2.3 5 4,90 0 3

S17 2.1.3.7.1, 5.2.4.3.1, 5.2.3.7.5., 5.2.1.2.4,
5.2.3.2.4, 5.2.3.7.3.2, 5.2.3.5.4., 5.2.4.3.1

5,5,5,5,6,5,5 4,39 36 2

S18 3.2.1.9.1, 3.2.1.9.2, 5.2.3.3.3.1 5,5,6 4,79 8 3

S19 3.2.1.7.5, 3.2.1.9.3, 5.2.3.2.1.1, 5.2.4.5.1 5,5,6,5 4,69 15 3

S20 3.2.1.4.3, 5.2.3.7.7, 5.2.3.7.8.1 5,5,6 4,79 8 3

S21 1.1.1.6, 2.1.1.2, 2.1.1.8.3, 3.2.1.6, 3.4.1.6,
5.1.2.4, 5.2.1.1.3

4,4,5,4,4,4,5 3,57 95 1

S22 3.2.1.2.2, 5.2.1.2.7.1, 5.2.3.1.2, 5.2.3.6.2.1 5,6,5,6 4,78 9 3

S23 3.2.1.3, 3.2.1.3.1, 3.4.4.1 4,5,4 3,79 79 1

S24 2.1.5.3.1 5 4,90 0 3

S25 5.2.3.3.3.2, 5.2.3.8.1 6,5 4,89 1 3

S26 3.2.1.11.1, 3.2.1.11.1, 3.3.1.6, 5.2.2.7,
5.2.3.5.6

5,5,4,4,5 3,77 81 1

S27 3.2.1.3.2, 3.2.1.4.1, 5.2.1.2.1, 5.2.3.1.1 5,5,5,5 4,60 21 2

S28 3.2.1.8 4 3,90 71 1

S29 5.2.3.3.2.1, 5.2.3.3.3.3, 5.2.3.3.4 6,6,5 4,88 1 3

S30 5.1.3.2.1.1, 5.2.1.2.7.2, 5.2.3.3.5 6,6,5 4,88 1 3
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that the number of strata should be set to 3, as most values concentrate around 0, 30,
and 70 or more. This specifies the number of strata to look for over all the criteria
under consideration.

3.3 Scoring Citation and Merit

There are a number of engines to score citation indexes of scientists. They are
slightly differing over the databases of publications involved or the time periods
used in evaluations or some measure modifications. Yet there are no verified claims
of superiority or inferiority of ones over others. Therefore, we limit ourselves with
the citation indexes routinely available at Google Scholar. The three metrics readily
available for every scientist who has arranged her/his Scholar Google profile are:

• Number of citations that the scientist has received (Citations);
• Number of her/his papers that received at least 10 citations (#10);
• Hirsch index (H): The number h of papers that received at least h citations.

Table 5 contains values of the three criteria in July 2013 as well as the gain values,
percent, showing how much they increased to September 2014. Three columns
on the right present criteria values in 2014 normalized so that the minimum is
0 and maximum, 100. Although some empirical proof of stability of the Linstrat
stratification method has been described in [23], these two data sets can be used to
further test the stability of the method.

Merit of a scientist is a rather vague concept to represent the level of services
to and appreciation of the scientist by the “research community.” Of many possible
criteria we select those related to the success of the “research school” established
by the scientists and the level of recognition of them. Of course, the levels of
citations reflect both. Yet here we are going to use measures related to personal
efforts made and personal positions taken by a scientist. The success manifests
itself both scientifically and administratively. The former can be measured by the
number of successful PhD students by the scientist. The latter can be measured by
the number of research publishing journals at which the scientist has a role. The level
of recognition can be measured by the number of conferences at which the scientist
has been invited to give a plenary presentation or to participate in organization of.
Therefore, we use the following criteria of merit:

• Number of successful PhD students supervised (PDS);
• Number of scientific journals in which they have been chief or associate editor

(at any time) or a member of the editorial board currently (EJ);
• Number of conferences at which they have participated as either chair or co-

chair or program-chair or keynote-chair or deputy chair or global chair (CC).

These data over our sample of 30 scientists are presented in Table 6.
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Table 5 Citation metric scores: total number of citations, number of papers received 10 or
more citations, and Hirsch index

In 2013 Gain (%) Normalized
Scientist Citations #10 Hirsch Citations #10 Hirsch Citations #10 Hirsch

S1 5,138 101 32 11 6 3 0 8 9

S2 37,371 175 78 15 4 4 20 20 46

S3 113,240 476 144 14 6 4 68 70 100

S4 70,932 292 98 17 15 5 41 40 63

S5 5,205 61 31 16 7 3 0 2 8

S6 47,844 316 96 15 10 8 27 44 61

S7 38,862 299 97 16 44 4 21 41 62

S8 9,400 119 46 14 7 2 3 11 20

S9 26,630 134 42 18 12 8 14 14 17

S10 92,538 239 102 32 4 15 55 31 66

S11 39,468 182 73 13 6 6 22 22 42

S12 55,831 220 65 16 4 5 32 28 36

S13 14,653 104 53 18 12 6 6 9 26

S14 95,598 608 122 19 40 7 57 91 82

S15 84,127 179 83 25 7 4 50 21 50

S16 12,028 86 45 17 10 7 4 6 20

S17 77,512 342 116 19 12 9 45 48 77

S18 30,009 150 65 14 8 7 16 16 36

S19 26,220 402 76 7 7 1 13 58 45

S20 5,408 50 21 2 6 0 0 0

S21 24,117 121 70 14 7 9 12 12 40

S22 18,665 260 70 26 12 11 9 34 40

S23 82,781 203 89 10 4 1 49 25 55

S24 164,251 280 108 16 10 7 100 38 71

S25 5,530 50 29 16 11 7 0 0 7

S26 29,334 155 65 11 8 5 15 17 36

S27 54,579 661 87 11 23 4 31 100 54

S28 54,098 472 111 1 1 0 31 69 73

S29 23,773 309 69 16 14 10 12 42 39

S30 14,954 179 61 31 20 13 6 21 33

Columns 2–4 contain values of criteria in 2013. Columns 5–7 show the gains of the
corresponding metrics in 2014. Last three columns are 2014 values normalized from 0 to 100

3.4 Combined Criteria and Stratifications Obtained

Here are the Linstrat based analyses that we conducted over the data in Tables 4, 5,
and 6:

1. Found a 3-strata stratification over three citation features in Table 5. The
combined criterion is formed with weights 0.5, for Citations, 0.5, for #10, and 0
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Table 6 Three merit criteria:
PDS, number of successful
PhDs supervised, CC,
number of conferences
(co)chaired, EJ, the number
of journals (co)edited

Merits Normalized values
Scientist PDS CC EJ PDS CC EJ

S1 28 5 2 49 6 3

S2 15 12 4 22 16 8

S3 38 24 9 69 31 22

S4 9 5 8 10 6 19

S5 16 21 4 24 27 8

S6 18 6 1 29 8 0

S7 4 0 1 0 0 0

S8 7 19 6 6 25 14

S9 11 5 16 14 6 42

S10 30 36 2 53 47 3

S11 12 7 5 16 9 11

S12 5 20 6 2 26 14

S13 8 7 5 8 9 11

S14 8 11 2 8 14 3

S15 31 3 2 55 4 3

S16 5 1 2 2 1 3

S17 34 2 8 61 3 19

S18 12 6 6 16 8 14

S19 53 77 27 100 100 72

S20 10 2 5 12 3 11

S21 9 7 1 10 9 0

S22 6 18 8 4 23 19

S23 9 9 9 10 12 22

S24 17 3 8 27 4 19

S25 7 7 3 6 9 6

S26 30 30 6 53 39 14

S27 25 28 12 43 36 31

S28 16 29 37 24 38 100

S29 13 28 15 18 36 39

S30 7 16 17 6 21 44

Columns 2 through 4 contain real counts, and
columns 5–7 are those 0–100 normalized

for Hirsch over the data at 2014. For the data of 2013, the respective weights
are 0.44 (Citations), 0.56 (#10), 0 (Hirsch). Given that the Citations criterion
grew by two-digit percentage points from 2013 to 2014 at 90 % of the sample
while the #10 criterion by only a one-digit percent value in most cases, the
change of the weights between the two criteria from 2013 to 2014 is consistent.
The fact that the Hirsch index criterion’s weight is 0 in both cases goes in line
with the overwhelming critiques the criterion has been exposed to recently, see
[2, 25, 28, 33].
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Table 7 Weights of individual criteria in those combined,
Citation combined, Merit combined, and Research impact
panoramic

Citation Merit Panoramic

Citations 0.5 PDS 0.22 Taxonomic rank 0.80

#10 0.5 CC 0.10 Citation combined 0.04

Hirsch 0.0 EJ 0.69 Merit combined 0.16

2. Found a 3-strata stratification over three merit features in Table 6. The combined
criterion is formed with weights 0.22 at PDS, 0.10 at CC, and 0.69 at EJ. The
relative weight values are consistent with our intuition based upon the prevailing
practice of maintaining a heavy and just submission reviewing process in
leading journals.

3. Took the two found combined criteria, for citation and merit, and considered
them together with the taxonomic rank to find a panoramic stratification
embracing all the three aspects of the researcher’s impact: level of results, level
of citation, and level of merit. The combined panoramic criterion is formed by
summing those three with the weights 0.80 (Taxonomy rank), 0.04 (Combined
citation), and 0.16 (Combined merit), which also corresponds to our intuition.

For the sake of convenience, we summarize these results in Table 7, for the
weights, and in Table 8, for the combined criteria and stratifications.

To summarize these results in general, let us take Pearson correlation coefficients
between the four criteria, Cc, Mc, T, and P, as well as Spearman correlation
coefficients between the stratification rankings, Cs, Ms, Ts, and Ps. They are
presented in Table 9.

As one can see, Pearson and Spearman results are much similar. The three aspects
under consideration, Citation, Merit, and Taxonomy rank, are rather uncorrelated
pairwise, which justifies, up to the extent of the representativeness of our sample,
the choice for measurement scales of these aspects. Yet the two indirect scales,
Citation and Merit, are somewhat positively correlated, probably to that extent at
which they both relate to the popularity of a scientist. Of course, the comprehensive
Panoramic criterion much correlates with its major constituent, the Taxonomy rank.
Especially impressive this correlation is at the stratifications: Ps almost coincides
with Ts, differing from Ts by just one scientist’s move from stratum 3 to stratum 2.

On the level of individual researchers, S5 and S19, their lot put them into the
middle lane, stratum 2, of the Panoramic scale. Yet the trajectories are different.
Scientist S5, Boris Mirkin, makes very little on both, Citation and Merit, scales,
yet falls in stratum 2 over the Taxonomy. In contrast, scientist S19 is good on both
Citation and Merit, especially on the latter, where he is the best of the entire sample
and shares the stratum Ms = 1 with just one other researcher. He falls within Ps = 2
just because the papers that have been published by him on data analysis, although
quite fine from the optimality point of view, did not pay much attention to the
structure of the data analysis area. It seems rather obvious that with the publication
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Table 8 Stratifications and combined criteria values at the sample of scien-
tists over various sets of criteria: Cc and Ccn, citation combined criterion
values as computed and normalized to 0–100 scale, respectively; Mc and
Mcn, merit combined criterion values as computed and normalized to 0–100
scale, respectively; Trn, taxonomic rank normalized; P and Pn, panoramic
combined criterion values as computed and normalized to 0–100 scale,
respectively; Cs, Ms, Ts, and Ps, three-strata stratifications over criteria Ccn,
Mcn, Trn, and Pn, respectively

Scientist Cc Ccn Mc Mcn Tr P Pn Cs Ms Ts Ps

S1 4 5 13 17 73 61 73 3 3 1 1

S2 20 27 12 15 100 84 100 3 3 1 1

S3 69 93 33 41 29 33 39 1 2 2 2

S4 41 55 16 19 71 62 74 2 3 1 1

S5 1 1 13 17 29 26 30 3 3 2 2

S6 35 48 7 9 81 68 81 2 3 1 1

S7 31 42 0 0 7 7 8 2 3 3 3

S8 7 9 13 16 29 26 31 3 3 2 2

S9 14 19 32 40 29 30 36 3 2 2 2

S10 43 58 18 23 7 11 13 2 3 3 3

S11 22 30 12 15 74 63 75 3 3 1 1

S12 30 41 12 15 74 63 76 2 3 1 1

S13 7 10 10 13 74 62 74 3 3 1 1

S14 74 100 5 6 0 5 5 1 3 3 3

S15 36 48 15 18 0 5 5 2 3 3 3

S16 5 7 3 3 0 1 0 3 3 3 3

S17 46 63 27 33 36 37 43 2 2 2 2

S18 16 22 14 17 8 10 11 3 3 3 3

S19 35 48 81 100 15 30 35 2 1 3 2

S20 0 0 10 13 8 8 9 3 3 3 3

S21 12 16 3 4 95 78 93 3 3 1 1

S22 21 29 16 20 9 11 13 3 3 3 3

S23 37 50 18 23 79 70 83 2 3 1 1

S24 69 93 19 24 0 7 8 1 3 3 3

S25 0 0 6 8 1 2 2 3 3 3 3

S26 16 22 25 31 81 71 84 3 2 1 1

S27 65 88 34 42 21 27 32 1 2 2 2

S28 50 68 77 96 71 75 89 2 1 1 1

S29 27 36 34 42 1 9 10 2 2 3 3

S30 13 18 33 41 1 8 9 3 2 3 3
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Table 9 Pairwise correlation between criteria and between stratifications

Pearson Spearman

Criterion Ccn Mcn P Stratification Cs Ms Ps

Tr −0.12 −0.04 0.99 Ts −0.12 −0.02 0.98

Cc 0.31 −0.04 Cs 0.25 −0.10

Mc 0.10 Ms 0.06

of results in this volume, P. Pardalos will be getting a higher rank of the ACM CCS
taxonomy, which should propel him to much higher scores on that in a very near
future.

4 Conclusion

This chapter attempts at taking a more rounded view on the problem of evaluating
impact of a researcher than it is assumed usually. Rather than concentrate on
conventional citation scoring or more recent network related scoring or even
somewhat controversial peer-review evaluations, we come up with an idea that the
impact cannot be properly evaluated without looking at the meaning and level of the
research results obtained by scientists. We realize that the idea is not quite novel. Yet
we suggest an operational approach to implement the idea by mapping the published
research results to a taxonomy of the domain and we show how this can be done by
developing an example of such an evaluation. The example concerns the very area
at which we conduct our research projects ourselves, the domain of data analysis,
data mining, and machine learning. We take a small sample of scientists in this area
so that we are able to manually map their research results to a suitable taxonomy,
which is an adaptation of the ACM CCS 2012 taxonomy.

We also tackle two other dimensions of the impact, citation and merit, by
taking three operationally defined criteria for each. To combine the criteria, we use
another in-house idea of finding such a weighting of them which approximates the
Pareto slices with between-hyperplane layers. Although rather unconventional, this
approach has been found competitive in our previous work [23, 24].

Our empirical results are well matching the conventional wisdom, which may
seem rather suspicious. But they all have been computed from the data without
any attempt at trimming them. We make our data available so that everybody could
make her/his own computations. First of all, the controversial Hirsch index to score
the citation levels appears quite homely here: it gets a zero weight, so it is out of the
picture by itself. Second, when combining the found scales for all three dimensions,
Citation combined, Merit combined, and Taxonomic rank, the latter much outweighs
the others by getting the weight of 80 % in the combined, Panoramic, criterion.
Third, the three dimensions are mutually uncorrelated, except for a small positive
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correlation between the Citation and Merit combined, probably because both reflect
popularity of a scientist.

This suggests directions for future work. First of all, one needs to extend the
empirical research both in getting larger samples and tackling on other research
domains. Second, we should try automating the task of mapping one’s research
results to the taxonomy. Third, we should take a look whether other uncorrelated
dimensions for research impact exist and, if yes, what are they and how one could
measure them. Making these and similar steps will bring us closer to the final goal
of developing a comprehensive measure of research impact.
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SVM Classification of Uncertain Data Using
Robust Multi-Kernel Methods

Raghav Pant and Theodore B. Trafalis

Abstract In this study we have developed a robust Support Vector Machines
(SVM) scheme of classifying uncertain data. In SVM classification data uncertainty
is not addressed efficiently. Furthermore, while traditional SVM methods use
a single kernel for learning, multiple kernel schemes are being developed to
incorporate a better understanding of all the data features. We combine the multiple
kernel learning methods with the robust optimization concepts to formulate the
SVM classification problem as a semi-definite programming (SDP) problem and
develop its robust counterparts under bounded data uncertainties. We present some
preliminary experimental results with some known datasets by introducing noise in
the data. Initial analysis shows the robust SDP-SVM model improves classification
accuracy for uncertain data.

Keywords Classification • Support vector machines • Multiple kernel learning •
Robust optimization

1 Introduction

Over the years data mining algorithms have become popular due to their ability
to find patterns and make predictions for large and complex data sets. Machine
learning techniques such as support vector machines (SVMs) [13] provide good
classifiers for most type of data. In many cases the data sets contain uncertain or
noisy data. The term noisy data is typically meant to represent those samples that
do not lie on the intended side of the separation margin. In this work, we extend
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the term to include the uncertainty that manifests itself in every data point. Hence,
our interpretation of noisy data consists of both (a) an error in measurement of each
data point that must be considered during classification and (b) situations where data
points are classified incorrectly.

Traditional SVM methods adjust for the misclassification error relative to the
maximum margin of classification, but do not consider individual data uncertainties,
as they are based on deterministic formulations. Bhattacharyya et al. [2] addressed
such issues by developing second order conic programming (SOCP) SVM for-
mulations for Gaussian uncertainty in data, which bore resemblance to the Total
SVM methods of [3] that provided SVM formulations for bounded uncertainties.
While these methods were developed separately they fall under the scheme of
robust SVM approaches detailed in works of Trafalis et al. [10, 11], which use
concepts developed in robust optimization (RO) literature [1]. The SOCP robust
SVM approach is a particular case of the broader semi-definite programming
(SDP) [12] approach for solving such problems.

Generally in the traditional SVM approach the input data reside in a kernel
matrix, which is fixed when the optimization problem is solved. The kernel function
is generally tuned via bootstrapping techniques to infer the best kernel matrix
for classification. Using one kernel matrix is sometimes disadvantageous because
there could be multiple patterns of data, which are not best represented through a
single kernel function. Lanckriet et al. [8] have suggested that using a weighted
linear combination of different kernel matrices can improve the SVM classification
problem. Moreover when using multiple kernel matrices we do not need to tune
their parameters, but instead the weights in the linear combination can be made as
decision variables in the SVM classification problem. Such kernel-based learning
methods of the SVM classification generally are formulated as SDP models [8],
which is explained later in the chapter. Also the penalty parameter for misclassi-
fication errors is generally assumed priori before solving the SVM optimization
problem. In the kernel-based learning SDP model this misclassification penalty term
is also incorporated as a decision variable in the optimization problem, which means
we solve for misclassification via theoretical methods rather than the traditional
bootstrapping techniques.

The main contribution of the chapter is the theoretical development of a
computationally tractable robust SDP-SVM formulation of the nominal multiple
kernel learning SDP formulation derived from the 2-norm soft margin SVM
classification problem, when we have data points with bounded uncertainties. While
we deal specifically with Euclidean uncertainty sets, our formulation applies to any
norm-bounded data uncertainty set. We have also addressed the issue of mapping
uncertainties from the input space to the feature space, which is important for
developing robust approaches for bounded uncertainty sets. While the problem size
of the robust SDP is considerably increased, leading to computational issues, it is
able to produce satisfactory classification results.

This chapter is organized in the following order. In Sect. 2 we provide some
mathematical notation used in the rest of the chapter. Section 3 introduces the
SVM learning problem, and Sect. 4 discusses our SDP formulation that makes the
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problem dependent upon learning of the kernel matrix and the penalty parameter.
In Sect. 5 we present the concept of bounded uncertainty in the input space and
its extension into the feature space. We propose the robust extensions to the SDP
learning problem and show the proof for getting such formulations. Finally, we
present the robust SDP problem for SVM classification. In Sect. 6 we show how
our methods are applicable for data sets with uncertainties and present some initial
computational results of our scheme for benchmark data sets, with concluding
remarks given in Sect. 7.

2 Notation

Vectors are represented in bold, e.g., a ∈R
n and em is an m×1 vector of ones, while

scalars are in lower case italics, e.g., z. Matrices are represented in upper case bold,
e.g., X ∈ R

m×n and Im is used for denoting the m×m identity matrix. For a vector
the relation a ≥ 0 means that each element of the vector is non-negative, while for
a matrix the relation X � 0 implies that the matrix is positive semi-definite. The dot
product between two vectors a and b is represented either as aTb or as

〈
a,b
〉
.

3 Two-Norm Support Vector Classification

In a two-class classification problem we assume we are given a set of training
data {xi,yi}m

i=1, where xi ∈ R
n represents an input data sample and yi ∈ {−1,+1}

represents its assigned class (output). The aim of the SVM classification problem is
to find the best hyperplane that separates the two classes of data. If the input data are
linearly separable then this hyperplane is of the form

〈
w,x
〉
+b. In most real-world

problems linear separation is not possible, so to address the problem of non-linearity
we map the input data points {xi}m

i=1 to a higher dimensional feature space F where
the data are linearly separable. If we are able to compute a function φ : x → φ(x)∈F

to map the input co-ordinates onto the feature space, our hyperplane is now of
the form

〈
w,φ(x)

〉
+ b. In SVM classification the hyperplane that divides the

two classes with maximum distance is the best hyperplane. Mathematically this
hyperplane (w∗,b∗) is obtained by solving the optimization problem

min
w,b

1
2

〈
w,w

〉
subject to yi(

〈
w,φ(xi)

〉
+b)≥ 1, (i = 1,2, . . . ,m), (1)

producing the maximum margin (γ = 1/||w∗||2) of separation between the classes
of data. Solution (1) is generally referred to as a hard margin solution, which exists
when the data are perfectly linearly separable in the feature space. Since this mostly
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is not the case we generally solve a soft margin SVM classification problem for non-
separable data. In this chapter we take the 2-norm soft margin SVM classification
to find the maximal margin hyperplane (w∗,b∗) that separates the data, via the
optimization problem

min
w,b,ξ

1
2

〈
w,w

〉
+

1
2τ
〈
ξ ,ξ

〉
subject to yi(

〈
w,φ(xi)

〉
+b)≥ 1−ξi, (i = 1,2, . . . ,m), (2)

Here in (2) {ξi}m
i=1 are slack variables that signify misclassification errors for

each data point φ(xi), and τ > 0 is the penalty parameter on these misclassification
errors. Smaller values of τ indicate that the width of the margin of separation (γ =
1/||w∗||2) is smaller as more weight is given to correctly classified points near the
separation boundary. As τ increases the separation margin increases as farther points
are also used as support vectors to the separating hyperplane [7].

In most cases it is impossible to compute the function φ(xi) but it is easier to
find the inner product between pair of co-ordinates in the feature space [4]. For
two points xi and xj, the inner product between the mappings φ(xi) and φ(xj) in
the F space is called the kernel function, k(xi,xj) =

〈
φ(xi),φ(xj)

〉
. The matrix

K ∈ R
m×m is the kernel matrix, in which each element is given by kij = k(xi,xj).

Since the kernel matrix specifies the inner product between all possible pairs of
training vectors, it is a measure of the relative positions of these points in the feature
space [4].

To utilize the kernel matrix instead of solving for the optimization problem given
by (2) we look at its Lagrangian dual formulation as given by (3):

g(τ ,K) = max
α

[
αTem − 1

2
αT(H(K)+ τIm)α

]
: αTy = 0,α ≥ 0, (3)

where H(K) is the matrix that contains the data and labels and is defined as H(K) =[
hij
]
=
[
yiyjk(xi,xj)

]
, showing its dependence on the kernel matrix. y ∈ R

m is the
vector of class labels {yi}m

i=1.
Given values for τ and K we can obtain the optimal α∗ as the solution to the

SVM classification problem. Those elements of α∗ that are non-zero correspond to
the support vectors for classification. The kernel-based SVM classification problem
of (3) is convenient to compute because it is a quadratic optimization problem with
linear constraints. From the Karush–Kuhn–Tucker optimality relations between

the primal in (2) and the dual in (3) we obtain w∗ =
m

∑
i=1

α∗
i yiφ(xi) and b∗ =

1
M

M

∑
j=1

(
yj −

m

∑
i=1

α∗
i yik(xi,xj)

)
. Here we have computed b∗ by averaging over the

number of elements M of α∗ that are non-zero, since each one of them is a support
vector. For classification of any new unlabelled data point x we find the value of the
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function f (x) =
m

∑
i=1

yiα∗
i k(xi,x)+ b∗ to infer the class of x. In binary classification

with ±1 labels the decision rule defined by sign( f (x)) is used to classify the point x
into one of the two classes. If f (x) is positive then x belongs to the class labelled as
+1, while a negative f (x) results in x belonging to the class labelled −1.

4 Kernel Learning

The solution of the classification problem specified by (3) is dependent upon H(K),
and hence K as these matrices contain the information about the training samples.
In a standard classification problem the data points {xi}m

i=1 are assumed to be deter-
ministic and as such fixed K values give a particular optimal separating hyperplane.
The performance of the classification is improved by tuning K parameters through
cross-validation schemes. Such a solution approach is therefore making use of K as
a decision variable in optimization, which allows us to look at the classification
problem (3) in terms of K. In addition, the penalty parameter τ influences the
misclassification and separation margin. It is also tuned through cross-validation
schemes, which can lead to approximations that do not control the errors effectively.
We can improve the estimation of τ by incorporating it as a decision variable in the
optimization problem. We look at g(τ ,K) from (3) and make the observation that

g(τ ,K) =

⎧⎨
⎩αTem if

1
2
αT(H(K)+ τIm)α ≥ 0

+∞ otherwise
. (4)

Equation (4) shows that g(τ ,K) has a finite upper bound and feasible solution only
when αT(H(K)+τIm)α ≥ 0, otherwise the system becomes infeasible. Also, it can
be seen that HT(K) =

[
hji
]
=
[
yjyik(xj,xi)

]
=
[
yiyjk(xi,xj)

]
= H(K), which proves

that H(K)+ τIm � 0. Thus, the semi-definiteness of the matrix is important for a
barrier on the feasible solution to the optimization problem.

It can also be observed that the semi-definite matrix H(K)+ τIm will affect the
optimal value of the objective g(τ ,K). If τ grows then it can drive g(τ ,K) towards
a very low threshold. Hence, as is done in a SDP approach, we choose to have a
H(K)+ τIm matrix with a bounded trace (r > 0). Imposing such a condition makes
sure that the optimum is bounded and also computationally the problem is easier to
solve.

Function g(τ ,K) is the maximum of affine functions of both τ and K and hence
convex. Also the set of constraints αTy = 0,α ≥ 0 is convex. If the kernel matrix
belongs to a convex set K then we can obtain different realizations for g(τ ,K) for
varying kernel matrices in K. Moreover, we can use a combination of kernels to
improve the learning instead of using a single kernel. There are multiple patterns
in data, which are not best represented through a single kernel function. A linear
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combination of different kernel matrices has been shown useful in improving
pattern recognition and learning [8]. Assuming l = 1,2, ,d different kernel matrices
each denoted by Kl, the matrix K can be represented as a linear combination of

different kernels as K =
d

∑
l=1

βlKl , for some constants βl ≥ 0. The linear combination

preserves the convexity of the problem.
Using the concepts developed so far, the best separating hyperplane for classifi-

cation is the one that will solve the SDP problem

min
τ≥0,K∈K

g(τ ,K)

subject to H(K)+ τIm � 0,

trace(H(K)+ τIm) ≤ r,

K =
d

∑
l=1

βlKl,∀βl ≥ 0. (5)

Lanckriet et al. [8] present a similar approach for solving the problem of
obtaining labels for new data points when some of the labels are missing in
classification. One of the major advantages of the above approach lies in the
fact that instead of cross-validation techniques, τ is obtained through optimization
techniques. Also, solutions depend upon the structures of the K matrix, which being
positive semi-definite leads to SDP approaches to solve (5).

5 Robust SDP Formulation for Classification problem

When the available data set contains uncertain data points, the SDP in (5) becomes
stochastic. For multiple linear combinations of Kl matrices leading to K we can
obtain an ensemble of separating hyperplanes. Our interest lies in finding the
maximal separation margin under the worst case uncertainty, which would give us a
robust classification solution. In order to investigate data uncertainty in the feature
space we look at the datapoint-wise worst case uncertainty in the input space and
then transform it onto the feature space. The process of obtaining the robust SDP
formulations follows in the subsections below.

5.1 Uncertainty Mapping for Input to Feature Space

It is assumed that every data point (xi) can be represented as the sum of a nominal
value (x̂i) that is free of any uncertainties and a perturbation (Δxi), which contains
information about the nature of the data uncertainty. It is important to consider a
convex bound for the data uncertainty because we want to preserve the convexity
of the SVM classification formulations built so far. A common convex uncertainty
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set for data perturbation is the spherical uncertainty set in which it is assumed that
each data perturbation is contained with a sphere whose radius controls the amount
of deviation from its nominal value. Hence, the data points {xi}m

i=1 in our analysis
belong to a convex uncertainty set X, defined as

X= {xi : xi = x̂i +Δxi, ||Δxi||2 ≤ ρi}, (6)

where ρi is the radius of the spherical uncertainty.
The transformation of the uncertainty from the input space to the feature space

can become complicated because of the feature mapping. For most cases we know
the kernel function and not the feature mapping; hence, such estimations are not
always possible and can become more complex and dimensions increase. Since we
are interested in the kernel function instead of the feature mapping, we look at the
first order truncated Taylor series expansion of the kernel function in terms of the
data perturbations. This is given as

k(x̂i +Δxi, x̂j +Δxj) =
〈
φ(x̂i +Δxi),φ(x̂j +Δxj)

〉
� k(x̂i, x̂j)+ΔxT

i k
′
xi
(x̂i, x̂j)+ΔxT

j k
′
xj
(x̂i, x̂j) (7)

where k
′
xi
(x̂i, x̂j) is the gradient of the kernel function with respect to xi evaluated at

the point (x̂i, x̂j). Using (7) formulation K is divided into a nominal part K̂ and a
perturbed part ΔK. This affects the H matrix also and it is expressed as H= Ĥ+ΔH.
We rewrite the ΔH matrix as follows

ΔH =
[
diag(yT

i )
]([

diag(ΔxT
i )
]⎡⎢⎣

k
′
x1
(x̂1, x̂1) · · · k

′
x1
(x̂1, x̂m)

...
. . .

...
k
′
xm
(x̂m, x̂1) · · · k

′
xm
(x̂m, x̂m)

⎤
⎥⎦

+

⎡
⎢⎢⎣

k
′T
x1
(x̂1, x̂1) · · · k

′T
xm
(x̂1, x̂m)

...
. . .

...
k
′T
x1
(x̂m, x̂1) · · · k

′T
xm
(x̂m, x̂m)

⎤
⎥⎥⎦[diag(Δxi)

])[
diag(yi)

]

= YTΘTRY+YTRTΘY. (8)

We observe that in (8) Y is an m×m diagonal matrix of labels,Θ is a mn×m matrix
of data perturbations and R is a mn×m matrix of the gradient of the kernel functions
with respect to the data points. Using the fact that the ith data point has a spherical
bound of ρi, the ith column of matrix Θ will have an Euclidean norm bound given
as ||θ i||2 ≤ ρi. Instead of defining the uncertainty set K for the K matrix we can
thus define an uncertainty set, H, for the realizations of the H matrix as

H =
{
[hij] : [hij] = [ĥij]+YTΘTRY+YTRTΘY, ||θ i||2 ≤ ρi

}
. (9)
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5.2 Robust Counterparts to Uncertain Constraints

Using the uncertainty set of (9) for the feature space, in this subsection we derive
expressions for the robust SDP formulations of (5), for which we need to construct
the robust counterparts of the semi-definite constraints of (5). Before stating our
theorem and its proof, we need to state the S-Lemma, used for relating quadratic
inequalities, as it is relevant to our derivations.

Definition 1. For two symmetric matrices A and B of same size, the quadratic
expressions zTAz+2aTz+c ≥ 0 =⇒ zTBz+2bTz+d ≥ 0 hold true if and only if
∃λ ≥ 0, such that [

B−λA b−λa
bT −λaT d −λc

]
� 0.

Theorem 1. The Robust Counterpart

Ĥ+YTΘTRY+YTRTΘY+ τIm � 0 ∀(Θ ∈ R
m×mn : ||θ i||2 ≤ ρi) (10)

of the matrix equation H(K)+ τIm � 0 can be equivalently represented as[
Ĥ+ τIm −λYTRTRY diag(ρi)Y

diag(ρi)Y λ Im

]
� 0

for some λ ≥ 0

Proof. Since (10) is semi-definite we can choose a non-zero real-valued vector ξ ∈
R

m for which the following conditions are equivalent

⇐⇒ ξ T[Ĥ+YTΘTRY+YTRTΘY+ τIm
]
ξ ≥ 0 ∀(ξ ,Θ : ||θ i||2 ≤ ρi)

⇐⇒ ξ T[Ĥ+ τIm
]
ξ +2ξ TYTRTΘYξ ≥ 0 ∀(ξ ,Θ : ||θ i||2 ≤ ρi)

⇐⇒ ξ T[Ĥ+ τIm
]
ξ +2 min

||θ i||2≤ρi

ξ TYTRTΘYξ ≥ 0 ∀(ξ )
⇐⇒ ξ T[Ĥ+ τIm

]
ξ −2||diag(ρi)||2||ξ TYTRT ||2||Yξ ||2 ≥ 0 ∀(ξ )

[from Cauchy-Schwarz inequality]

⇐⇒ ξ T[Ĥ+ τIm
]
ξ −2||diag(ρi)||2||RYξ ||2||Yξ ||2 ≥ 0 ∀(ξ )

⇐⇒ ξ T[Ĥ+ τIm
]
ξ +2ηTdiag(ρi)Yξ ≥ 0

∀(ξ ,η ∈ R
m×1 : ηTη ≤ ξ TYTRTRYξ )

⇐⇒ ∃λ ≥ 0 :

[
Ĥ+ τIm diag(ρi)Y

diag(ρi)Y

]
� λ

[
YTRTRY

−Im

]

⇐⇒ ∃λ ≥ 0 :

[
Ĥ+ τIm −λYTRTRY diag(ρi)Y

diag(ρi)Y λ Im

]
� 0 [Definition 1]

�
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We also need to find the bound for the robust constraint, trace(Ĥ+YTΘTRY+
YTRTΘY+ τIm) ≤ r in (5). Applying the Cauchy–Schwarz inequality, we observe
the following:

trace(YTΘTRY) =
m

∑
i=1

ΔxT
i k

′
xi
(x̂i, x̂i)

≤
m

∑
i=1

ρi||k′
xi
(x̂i, x̂i)||2 = trace(diag(pi)D), (11)

where D(∈ R
m×m) is given as D =

[
dij
]
=
[||k′

xi
(x̂i, x̂j)||2

]
. Hence, in (9) the robust

counterpart for the bounds on the matrix trace becomes

trace(Ĥ+ τIm)+2trace(diag(pi)D)≤ r. (12)

5.3 Robust SDP Formulation

We collect the semi-definite robust inequalities derived in Theorem 1 and (12), to
present the robust SDP formulation for the 2-norm soft margin SVM classification
problem. Our SDP constraints are expressed as Linear Matrix Inequalities (LMIs),
due to the linear nature of the kernel matrix. This preserves convexity and provides
computational solvability. The final robust SDP problem is

min
τ≥0,K∈K

g(τ ,K)

subject to

⎡
⎢⎢⎢⎣

d

∑
l=1

βlĤ(K̂)+ τIm −
d

∑
l=1

λlYTRTRY diag(ρi)Y

diag(ρi)Y
d

∑
l=1

λlIm

⎤
⎥⎥⎥⎦� 0,

trace(
d

∑
l=1

βlĤ(K̂)+ τIm)+2trace(diag(ρi)
d

∑
l=1

βlD)≤ r. (13)

6 Empirical Results

We choose three benchmark data sets called the iris [5], breast cancer [14],
and ionosphere [9] available in the UCI repository. The iris data set contains
150 data samples consisting of 50 samples from three species of Iris (Iris Setosa,
Iris Virginica, and Iris Versicolor). Here we assign the 50 samples of the species
Iris Setosa to the minority class +1 class and the rest 100 (Iris Virginica and Iris
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Versicolor) to the majority class −1. The breast cancer data set contains 239 data
samples belonging to the minority class +1 (malignant cancer) and 444 samples in
the majority class −1 (benign cancer). For the ionosphere data set 125 samples
belong to the minority class +1 (bad) and 226 samples belong to the majority
class −1 (good).

Our aim is to compare how the robust SDP-SVM model in (13) performs in
comparison to the 2-norm SVM model of (2). For brevity, from this point onwards
in the discussion we refer to the solution of (13) as “rSDP-SVM”, while we refer the
solution of (2) as “CSVM.” All model analysis was run using the software CVX [6],
which is a MATLAB-based modelling system developed for disciplined convex
programming. For solving SDP models CVX uses the general-purpose optimization
solver SeDuMi. All analysis is run on an Apple Mac computer having a 2.9 GHz
processor and a 8 GB Memory.

To solve our models we first decide on the choice of kernel functions. The
iris data set has been shown to be linearly separable [14], so we use the linear
kernel, kij =

〈
xi,xj

〉
, for classification of the Iris data set. For the breast cancer and

ionosphere data sets we use the radial basis kernel function, kij = exp(−0.5||xi −
xj||22/σ2).

We first solve the CSVM (2) model to tune the values for the kernel parameters
without any data uncertainties. These tuned parameters will be used for the rest
of the analysis. For the CSVM method we fix the value of τ = 0.01 for all three
data sets. A tenfold cross-validation for the CSVM (2) model results in σ = 84.5
for the breast cancer data set and σ = 10 for the ionosphere data set. In the rSDP-
SVM (13) model we are not concerned with tuning the kernel parameters as τ ,βl,λl

found through the optimization adjust for kernel tuning. Computationally the rSDP-
SVM (13) model has an O(m2n2.5) polynomial time complexity [8], which makes
it difficult to solve these problems. Our aim here in this initial analysis is to show
that the model can work. Hence, at present we have taken one kernel matrix instead
of multiple matrices, and hence we need to only find τ for the model. We chose the
same kernel matrices given by the CSVM analysis and use these in the rSDP-SVM
model. Since, tuning the kernel parameters is not required, we randomly choose data
samples for training and testing. For the three data sets the training-testing sample
sizes are, respectively, 70 and 30 % of entire data. We found that the rSDP-SVM
gives τ = 2.0 for all three data sets.

To demonstrate the usefulness of the robust SDP-SVM approach, uncertainty in
these benchmark data sets is manufactured. As discussed previously, the level of
uncertainty added to the data sets is determined by taking the Euclidean norm of
the nominal data points and making the radius of uncertainty to be a percentage
of those values. Hence, a 10 % perturbation level means that for each data point
the maximum radius of the sphere of uncertainty around the nominal data point
is 0.1 times the 2-norm of that nominal value. The 2-norm of the actual level of
perturbation added to each data point is always kept below the radius of uncertainty.
We choose 9 levels of uncertainty called pert levels, by incrementing the uncertainty
from 0 % in steps of 5 % up to levels of 40 %. For each level of uncertainty, we
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Table 1 Maximum test set accuracy for each level of uncertainty in data

Iris Breast cancer Ionosphere
Pert.(%) CSVM rSDP-SVM CSVM rSDP-SVM CSVM rSDP-SVM

0 100 100 98.54 99.51 91.89 94.59
5 100 100 99.03 99.03 91.89 94.59
10 100 100 99.03 99.03 91.89 94.59
15 100 100 99.03 99.03 94.59 94.59

20 100 100 98.54 99.03 91.89 94.59
25 100 100 98.54 99.03 91.89 94.59
30 100 100 98.54 99.51 94.59 97.2
35 100 100 99.03 99.03 91.89 97.3
40 100 100 98.54 99.03 91.89 97.3

Table 2 Number of support vectors and computation time for
CSVM and rSDP-SVM simulations for each data set

#SV Time (s)

Iris CSVM 3.53 ± 0.68 0.29 ± 0.06
rSDP-SVM 12.96 ± 11.15 3.85 ± 0.36

Breast cancer CSVM 177.04 ± 22.99 3.76 ± 0.25
rSDP-SVM 478 76.78 ± 6.04

Ionosphere CSVM 84.56 ± 8.11 1.44 ± 0.08
rSDP-SVM 304.31 ± 3.48 32.71 ± 2.17

run 60 simulations again with 70–30 % training-testing division. In the rSDP-SVM
procedure the value of the trace r is calculated from the given data to be equal to
trace(H(K)+ τIm).

Two initial computational results obtained at present are discussed here. The best
performances of the two methods, for each level of uncertainty, are summarized in
Table 1. From Table 1 we note that the best test accuracy of both methods is same
in case of the Iris dataset, but the rSDP-SVM method performs same or better than
the CSVM method for the Breast Cancer and Ionosphere datasets. The cases where
the rSDP-SVM method performs better are emphasized in bold in Table 1.

Table 2 shows the mean and standard deviation for the number of support vectors,
across all simulations, given by the two methods for each data set. The rSDP-SVM
has more support vectors than the CSVM, and it is shown in the second column of
Table 2. In the rSDP-SVM method the support vectors contribute equally towards
the separation margin, which also gives wider margins compared to the CSVM,
where only a few points are support vectors.

Table 2 also shows the simulation time taken for each method. The rSDP-SVM
is a larger problem to solve than the CSVM; hence, it is considerably slower
than the CSVM. This is one of the drawbacks of using SDP methods as the
computational complexity of the problem increases significantly with problem size.
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We have also found out that problem sizes are limited when using CVX, which makes
analysis of larger data sets an issue. Further development in algorithms and powerful
computational tools would surely help in solving such issues.

7 Conclusion

The robust SDP framework developed in this chapter improves the capability of the
2-norm soft margin SVM classification. This work contributes to the development
of SDP approaches to enhance pattern recognition and learning. Solving the
SVM classification problem using an SDP approach helps us in better learning
of the kernel matrix and also provides a theoretical justification to estimate the
misclassification penalty. Data uncertainties affect the classification results and
we address this problem by constructing robust counterparts of the SDP. Our
robust SDP formulations involve solving LMIs which makes them computationally
tractable. Hence, the main contribution of this chapter is to present the theory for
deriving a computational tractable robust SDP-SVM model.

Initial computational results show that the robust SDP-SVM performs as well as,
and in some cases better than, the 2-norm SVM method. The testing accuracy of
the robust SDP method is high and performs better than the 2-norm SVM method.
Hence, our method is capable of improving upon existing methods.

At present the drawback of the method is the increased computational complexity
and large size of the problems. Due to this in the current analysis we have been
limited to computing the robust SDP-SVM problem for a single kernel matrix
rather that multiple kernels. Further development of this work will concentrate on
improving this aspect of the analysis. Moreover the models developed here will be
tested on several other data sets using several kernel matrices.
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Abstract This chapter investigates a novel multi-objective model of a batch
scheduling problem with constraint of the mould capability, and the objective is
to minimize both the total completion time of the jobs and the total cost of the
moulds. It is extremely difficult to obtain an optimal solution to this type of complex
problems in a reasonable computational time. In view of this, this chapter presents
a new multi-objective algorithm based on the features of Gravitational Search
Algorithm to find Pareto optimal solutions for the given problem. In the proposed
algorithm a novel Pareto frontier adjustment strategy is designed and proven to
improve the convergence of solutions and increase convergence speed. We examined
a set of test problems to validate the high efficiency of the proposed multi-objective
gravitational search algorithm based on a variety of metrics. Finally, a multi-attribute
decision making method is employed to determine the trade-off solutions derived
from the Pareto optimal set and thus solve the problem optimally.
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1 Introduction

Batch scheduling problems widely exist in many industrial areas, such as aluminum
productions, logistics transportation, semiconductor manufacturing, and production
in the chemistry industry. For batch scheduling problems, multiple jobs in a batch
are processed by batching machine at the same time, and the total size of all jobs in
one batch cannot exceed the capacity of the machine. Optimizing the utilization
of space is usually not considered in traditional scheduling problems, while for
batch scheduling problems, ordering in time and spatial organization are considered.
Therefore, compared to traditional scheduling problems, batch scheduling problems
are more complicated.

The batch production can be divided into two types: serial batch and parallel
batch. Serial batches are related to a group of jobs processed on a machine one
after another, while parallel batches require that a number of jobs within a batch
go through a machine and are processed simultaneously [35]. In this chapter, we
consider a novel serial batch scheduling problem, for solving which we propose
a new mathematical model and the objective is to minimize the total completion
time of the jobs and the total cost of the moulds. Our proposed problem is on
the basis of the real production of a Chinese aluminum production enterprise. The
characteristics of this problem are included as follows:

1. The jobs processing needs not only the machines but also the coordination of the
moulds.

2. The utilization of the moulds is limited by their capacity, and they cannot be used
after their capacity is achieved.

3. The serial jobs processed in the same mould on one machine can form several
batches. The batch processing time is the sum of the processing time of all jobs
in the batch.

Different from traditional serial batch scheduling problems, the jobs have twofold
resource constraints of both machines and moulds when they are processed. Also,
the jobs are batched based on mould capacity, and the sum of the capacity consumed
by a batch cannot exceed the capacity of the moulds which are used to process the
batch. For this complex batch scheduling problem, we propose an effective approach
that combines multi-objective gravitational search algorithm (MOGSA) and multi-
attribute decision making (MADM) method to solve it.

This chapter is organized as follows: We start Sect. 2 with a literature review. The
modeling of multi-objective batch scheduling problem based on mould capability
is described in Sect. 3. Section 4 provides and proves three properties of the
optimal solutions. We propose the MOGSA algorithm in Sect. 5. The MADM
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method is provided in Sect. 6. The computational experiments are conducted and the
computational results are discussed in Sect. 7. We conclude the chapter in Sect. 8.

2 Literature Review

Previous literature related to our considered scheduling problem in this chapter
can be classified into two categories. They are (1) batch scheduling problems, and
(2) scheduling problems with mould constraint.

2.1 Batch Scheduling Problems

The batch scheduling problems include two types: batch scheduling problems with
single-objective and batch scheduling problems with multi-objective, which are as
follows:

2.1.1 Batch Scheduling Problems with Single-Objective

Several recent studies have provided methods to obtain solutions for serial batch
scheduling problem with single-objective. Coffman et al. [5] provided an O(nlogn)
algorithm to solve the problem 1|s−batch|∑Cj. Albers and Bruker [1] presented an
O(n2) algorithm to solve the problem 1|prec;pj = p;s−batch|∑wjCj. Webster and
Baker [32] proposed an algorithm to solve the problem 1|s − batch|Lmax in o(n2)
time. Baptice [3] gave an O(n14) algorithm to solve the problem. Ng et al. [19]
reduced the problem 1|prec;s−batch|Lmax to the problem 1|s−batch|Lmax and used
a revised Webster–Baker algorithm to solve it in O(n2) time. Xuan and Tang [35]
considered the problem of serial batch scheduling jobs in an s-stage hybrid flow shop
at the last stage. And the objective is to minimize a given criterion with respect to
the completion time, and the authors proposed a batch decoupling-based Lagrangian
relaxation algorithm for this problem.

In recent years, there have been extensive studies of parallel batch scheduling
problems with single-objective, using heuristic algorithms and/or intelligent algo-
rithms. Potts and Kovalyov [26] conducted an extensive review in the field of
parallel batching literature, gave details of the basic algorithms, and referenced
to other significant results. Nong et al. [20] investigated the problem of single
machine parallel batching to minimize the makespan by considering family setups
and release date, and they developed a polynomial approximation scheme for their
problem that yielded to an algorithm with worst case ratio of 2.5. Mirsanei et al. [18]
considered the parallel batch scheduling problem of a two-stage flow shop with two
batch processing machines to minimize the makespan and developed two different
simulated annealing (SA) algorithms based on two constructive heuristics. Due to
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the importance of on-time delivery in semiconductor manufacturing, Mathirajan
et al. [17] studied the parallel batch scheduling problem with the objective of
minimizing total weight and proposed a simulated annealing (SA) algorithm to
solve it. Su and Chen [30] studied a two-machine flow shop problem in which
a parallel batch processor is followed by a discrete processor, and presented a
heuristic algorithm and a branch-and-bound algorithm. Manjeshwar [16] studied
the problem F2|p− batch|Cmax and proposed a genetic algorithm (GA) to solve it.
Damodaran et al. [6] proposed a particle swarm optimization (PSO) algorithm to
solve the problem. In recent years, we also published some papers on the serial
batch scheduling problems, where multiple manufacturers and deteriorating jobs
were considered [21–25]

2.1.2 Batch Scheduling with Multi-Objective

Multi-objective batch scheduling problem has less been considered than single-
objective problem. Chinchuluun and Pardalos [4] did a survey of recent devel-
opments in multi-objective optimization, including optimality conditions, applica-
tions, global optimization techniques, the new concept of epsilon Pareto optimal
solution, and heuristics. Fontes and Gaspar-Cunha [9] discussed some details
of multi-objective evolutionary algorithms. They gave a summary of the main
algorithms behind approaches and applications, including advantages and disadvan-
tages, degree of applicability, and some applications. Loukil et al. [15] discussed
a production scheduling problem in a flexible job-shop with batch production, and
they proposed a multi-objective simulated annealing approach to tackle this problem
with four different objectives of the makespan, the mean completion time, the
maximal tardiness and the mean tardiness, respectively. Li et al. [27] modeled the
dry strip operations in a real wafer fab as a PBPM scheduling problem and used
an Ant Colony Optimization (ACO) algorithm to simultaneously minimize the total
weighted tardiness (TWT) and makespan of the jobs. Zhang et al. [36] studied a
hot-rolling batch scheduling problem. Their goal was to minimize changes in the
characteristics of all neighbor steel strips and maximize the machine utilization.
They formulated this problem as a combinatorial multi-objective optimization
problem and developed a new heuristic approach by enhancing the framework of
PSO for the problem. Kashan et al. [14] investigated the problem of scheduling
jobs with non-identical sizes on a single batch processing machine and proposed
two different multi-objective genetic algorithms based on different representation
schemes for bi-criteria minimization of makespan and maximum tardiness. Haddad
et al. [12] proposed a new mathematical model for a serial batch scheduling
problem to minimize the maximum lateness and delivery cost, and the authors
gave simulation annealing meta-heuristic to solve it. Azzi et al. [2] studied the
HFS scheduling problem in a flexible multi-stage batch production system, and they
offered a heuristic procedure to minimize the production makespan and increase the
productive capacity utilization using a batch aggregation and splitting strategy.
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2.2 Scheduling Problems with Mould Constraint

Gao et al. [10] addressed the problem of scheduling job groups on identical parallel
machines with single mould constraint to implement the objective of minimizing
total tardiness penalties, and they proposed a heuristic run-based sequencing
scheduling algorithm. Xi et al. [33] established a multi-resources-constrained
scheduling optimization model with machine and mould constraints. According
to this model, a three-level optimization heuristic algorithm including parts level,
resources level, and optimization level was designed, and an example was illustrated
to verify its feasibility and effectiveness. Based on the multi-agent system and
the immunity information processing mechanism, they proposed a multi-agent
immune algorithm to solve the problem. Hong et al. [13] focused on minimizing the
makespan of identical-machines scheduling problems with mould constraints, and
they designed an adjustment operator to fill up the empty time slot due to the mould
constraint. Ren et al. [29] established a dual-resource (i.e., the machines and the
moulds resources)-constrained job-shop scheduling problem model and employed
a heuristic active algorithm combined with priority rules to give the solution. Xu
et al. [34] gave the model of the fuzzy flexible Job-shop scheduling problem with
a variety of batches, considering various resource constraints, including moulds,
machines, operators, the uncertainty factors of processing time, and due date in the
practical diffuser shops.

2.3 Summary

Based on the above brief review, we find that there is a gap between theory
development and practical applications. Despite a broad body of literature on the
batch scheduling problems, only few approaches have been implemented for real
industrial applications. Besides, there is limited research work on multi-objective
batch scheduling problems and most of them only consider the machine capacity,
which is not always in accordance with the actual case. Only a few papers consider
mould constraints, while most of them just consider the constraint by the number
of moulds, i.e., at any given time one mould can only process one job, and the total
number of moulds used by jobs cannot exceed the inventory number of the moulds.
However, in the real production, the mould usage may not be only reflexed by their
number, but also by their capacity, which are found in the literature. To the best
of our knowledge, our work is the first effort on studying the scheduling problems
which consider the mould capacity constraint. This research is also an attempt to
bridge the gap between theory development and practice applications by proposing
a comprehensive solution to this practical case that can integrate all characteristics.
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3 Problem Description and Modelling

3.1 Notation

Parameters:

i index of the machines, the ith machine is denoted as Mi.
j index of the jobs, the jth job is denoted as Jj.
k index of the batches, the kth batch is denoted as bk.
h index of the moulds, the hth mould is denoted as Hh.
n total number of jobs.
m total number of machines.
s total number of moulds.
p processing time of each job.
e cost of each mould.
nk number of jobs in the batch bk.
wj weight of the job Jj.
Bi set of all batches processed on the machine Mi.
Ki number of batches processed on the machine Mi.
dk number of moulds which are used to process the batch bk.
pik processing time of the batch bk processed on the machine Mi.
K total number of batches, i.e., K = K1 +K2 + . . .+ Km.

Decision variables:

xij 1, if the machine Mi processes the job Jj; 0, otherwise.
yih 1, if the machine Mi uses the mould Hh; 0, otherwise.
zjk 1, if the job Jj belongs to the batch bk; 0, otherwise.
gjh 1, if the mould Hh processes the job Jj; 0, otherwise.
Ti the completion time of the jobs processed on the machine Mi.
Cj the completion time of the job Jj.

3.2 Problem Description

Definition 1. The capacity of the mould means the maximum total weight of jobs
that a single mould can process continuously.

In this chapter, the capacity of each mould is set fixed, denoted as a. Suppose there
are n jobs which can be processed on m parallel machines, and their processing
time lasts in a same period, denoted as p. During the job processing, the moulds are
required to cooperate with the machines. The weight of each job may be different.
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Fig. 1 The layout of the batch scheduling problem based on mould capabilities

The jobs are divided into several batches based on moulds before being processed.
A single mould can process no more than one batch of job at once. The moulds
can be combined to process a batch of the jobs. Thus, the total mould capacity in a
possible batch may change when multiple moulds are combined. The jobs in each
batch can be randomly processed on no more than one machine. The processing
time of the batch bk is represented by pk, and pk = ∑

Jj∈bk

pj. The start and completion

times of processing the batch bk are denoted by sk and ck, and we have ck = sk +pk.
The completion time of each job in a batch is equal to its batch completion time, i.e.,
cj = ck(Jj ∈ bk). If a mould is unloaded from a machine, it will not be used any more.
The layout of the scheduling problem is shown in Fig. 1. The model assumptions are
summarized as follows:

1. All the resources (moulds and machines) are all available at time zero in the
usage time.

2. The mould resources can meet the task requirements for production scheduling.
3. The mould capacity consumed by a single job is no larger than the corresponding

mould capacity.
4. Preemption is prohibited, i.e., once the processing of a batch has begun, it cannot

be stopped.

In order to differentiate our problem from previous batch scheduling problem,

we can denote the problem as P| ∑
Jj∈bk

wj ≤ n · a,pj = p,s − batch|
n

∑
j=1

Cj,
K

∑
k=1

edk by

adopting the three-field notion ψ1|ψ2|ψ3 of Graham et al. [11], where P denotes the
machines of the same type, ∑

Jj∈bk

wj ≤ n ·a denotes that the mould capacity consumed

by the jobs in the same batch is no larger than the total capacity of the moulds
which are used to process the batch, pj = p denotes that the processing time of the
jobs are the same, s − batch denotes that it is a serial batch scheduling problem,
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n

∑
j=1

Cj denotes the total completion time of jobs, and
K

∑
k=1

edk denotes the total cost

of moulds. For simplicity, we use to represent our proposed problem. There are
similarities between the batch scheduling problems based on mould capacity and
traditional ones. However, there is still an essential difference in the way of batching.
In the traditional batch scheduling problems, if the maximum capacity space of the
machine is assumed to be a constant B, then the total size of the jobs in each batch
is no larger than B, and the machine capacity constraint is only considered during
the jobs processing. In our problem, if the number and capacity of the moulds are
assumed to be two constants M and a, respectively, then any one mould from M
moulds can be combined together to process a batch. We have to consider not only
the mould capacity constraint in job batches processing but also the combination of
moulds, i.e., the mould capacity for possible batches may be a,2a, . . . ,(M−1)a, and
Ma. Therefore, the number of jobs in a batch depends on the number and capacity
of used moulds.

3.3 Mixed Integer Programming Model

Minimize f1 =
n

∑
j=1

Cj (1)

Minimize f2 =
K

∑
k=1

edk (2)

Subject to
m

∑
i=1

xij = 1 j = 1,2, . . . ,n (3)

K

∑
k=1

zjk = 1 j = 1,2, . . . ,n (4)

m

∑
i=1

s

∑
h=1

yih ≤ s (5)

n

∑
j=1

wj ≤ s ·a (6)

n

∑
j=1

wjqjh ≤ a h = 1,2, . . . ,s (7)

xij,yihzjk,qjh ∈ {0,1} i = 1,2, . . . ,m; j = 1,2, . . . ,n;

k = 1,2, . . . ,K;h = 1,2, . . . ,s (8)
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Objective function (1) minimizes the total completion time of jobs. Objective
function (2) minimizes the total cost of the used moulds. Constraint (3) specifies that
one machine cannot process more than one job at one time. Constraint (4) guarantees
that any one job should belong to only a batch. Constraint (5) ensures that the total
number of the moulds used by all machines is less than the inventory number of the
moulds. Constraint (6) indicates that the total weight of the jobs is no more than the
total capacity of the moulds in inventory. Constraint (7) ensures the total weight of
the jobs processed by one mould is no larger than its mould capacity. Constraint (8)
defines the range of the variables.

4 Properties of Optimal Solutions

An optimal solution is denoted as Λ ∗. The optimal function values of the total job
completion time and the total cost of the used moulds in Λ ∗ are represented as U∗

1
and U∗

2 , respectively. The number of batches processed on the machine Mi in Λ ∗ is
represented as di. The residual capability of the moulds which are used to process
the kth batch bk is denoted as rk. The minimum job weight of all jobs in the batch
bk is denoted as wk.

Property 15.1. In Λ ∗, the optimal solution will remain unchanged when any two
batches processed on the machine Mi(i = 1,2, . . . ,m) are swapped.

Proof. Suppose there are two batches bk and bk′ processed on the machine in the
optimal solution. The total processing time of the jobs on all machines except the
machine mi is denoted as c, the total processing time of the jobs processed on the
machine Mi except the batches bk and bk′ is denoted as c′, and the number of the jobs
processed between the two batches on the machine Mi is denoted as nx. When sk >

sk′
, the optimal value of fi is U∗ = c+c′+nk(s

k+nkp)+nk′(sk+nkp+nk′p+nxp). A
new solution Λ ′ is generated after swapping the batches bk and bk′ , and the updated
function value of f1 is U′ = c+ c′ + nk′(sk + nk′p) + nk(s

k + nkp+ nk′p+ nxp). It
is obtained that U′ − U∗ = 0. Similarly, when sk < sk′

, it can be also inferred that
U′ −U∗ = 0. Thus, the new solution Λ ∗ is still the optimal solution, and the proof
is completed.

Property 15.2. In Λ ∗, if ∃bk ⊆ Bi,bk′ ⊆ Bi, and wk′
< rk, then nk′ −nk ≤ 1.

Proof. The total processing time of the jobs on all machines except the machine
Mi is denoted as c, the total processing time of the jobs on the machine Mi

except the batches bk and bk′ is denoted as c′, and the number of jobs processed
between the two batches on Mi is nx. When sk > sk′

, there is U∗
1 = c + c′ +

nx(s
k + nkp) + nk′(sk + nkp+ nxp+ nk′p). Because wk′

< rk, Jj can be transferred
from the batch bk′ to the batch bk. The processing batches on the machine Mi

become (. . . ,bk ∪{Jj}, . . . ,bk′\{Jj}, . . .) after interchanging, and a new solution
Λ ′ is created. Since the mould cost remains unchanged, we get that U′

2 = U∗
2 .
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Furthermore, U′
1 = c+c′+(nk+1)[sk+(nk+1)p)]+nxp+nk′ −1)[sk+(nk+1)p+

nxp+(nk′ −1)p], and it can be inferred that U∗
1 −U′

1 = (nk′ −nk −1)p. BecauseΛ ∗ is
an optimal solution, it is obtained that U∗

1 −U′
1 ≤ 0, which means (nk′ −nk −1)p ≤ 0.

Because p > 0, we get that nk′ −nk ≥ 1 . Similarly, when sk ≤ sk′
, the conclusion is

also satisfied. Therefore, the proof is completed.

5 The Proposed MOGSA

5.1 Gravitational Search Algorithm

Gravitational Search Algorithm (GSA) is an optimal search algorithm based on
simulation to gravity in physics proposed by E. Rashedi et al. [28]. In GSA, the
mass of individual depends on the quality of solution, i.e., the better the solution, the
larger the individual mass. It is to search optimal solution by seeking the individual
with maximum mass. The movement of individuals follows Newton’s second law, so
each individual will move towards the one with maximum mass because of gravity,
and their location will also change. In the end, all the individuals will gather around
the individual with maximum mass, so that the optimal solution will be found.
According to E. Rashedi et al. [28], the mass of individual Xp is defined by

mp(l) =
fitp(l)−worst(l)

best(l)−worst(l)
(9)

Mp(l) =
mp(l)

∑N
p=1 mp(l)

(10)

where p = 1,2, . . . ,N4, and N represents the number of individuals, mp(l) and Mp(l)
indicate the function value and mass of individual Xp in the lth iteration, respectively,
and the optimal and worst function values of all individuals in the lth iteration are
denoted as best(l) and worst(l), which are defined as Eqs. (11) and (12) (E. Rashedi
et al. [28]):

best(l) = min
p∈{1,2,...,N}

fitp(l) (11)

worst(l) = min
p∈{1,2,...,N}

worstp(l) (12)
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In the dth dimension, the gravity formula between individual Xp and Xq is given
as follows (E. Rashedi et al. [28]):

Fd
pq(l) = G(l)

Mp(l)Mq(l)

Rpq(l)+ ε
(xl

qd − xl
pd) = G

−α 1
T

0e
Mp(l)Mq(l)

Rpq(l)+ ε
(xl

qv − xl
pv) (13)

where Rpq(l) represents the Euclidean distance between individuals Xp and Xq in
the lth iteration; ε is a tiny constant; G(l) denotes the gravitational constant in the
lth iteration; both G0 and α are constants; T represents the maximum number of
iterations; xl

qv and xl
pv represent the location of individuals Xp and Xq on the dth

dimension in the lth iteration, respectively.
The accelerated speed of individual Xp on the dth dimension in the lth iteration

can be denoted as Eq. (14) (E. Rashedi et al. [28]):

al
pd =

Fd
p(l)

Mp(k)
=

∑
q=1,q �=p

randFd
pq(l)

Mp(k)
(14)

where Fd
p(l) represents the resulting force on individual Xp on the dth dimension

in the lth iteration; rand is a random number in [0,1], which follows uniform
distribution. The update formula of the speed and location of individual Xp are as
Eqs. (15) and (16) (E. Rashedi et al. [28]):

vl+1
pd = randvl

pd +al
pd (15)

xl+1
pd = xl

pd + vl+1
pd (16)

Based on GSA, we propose MOGSA to solve the multi-objective optimization
problem.

5.2 Key Procedure of MOGSA

5.2.1 Encoding

Previous encoding schemes mainly just mark the individuals of the jobs and
hardly reflect the grouping of the jobs. Aiming to this problem, we propose an
encoding scheme of two n-dimension vectors, which are denoted as A and B vectors,
respectively. The element values in A vector are real numbers, and each element
represents a job number of which the sequence indicates the processing order of the
job. The element values in B vector are equal to 0 or 1, and the corresponding jobs
between two elements of value 1 can form a batch. The first and last element values
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Table 1 Encoding example T 1 2 3 4 5 6 7 8 9 10

A vector 7 8 5 1 6 4 9 2 10 3

B vector 1 0 0 1 0 1 0 0 0 0

Table 2 Individual encoding modification

T 1 2 3 4 5 6 7 8 9 10

A vector before iteration 7 8 5 1 6 4 9 2 10 3

B vector before iteration 1 0 0 1 0 1 0 0 0 0

A vector after iteration 9.2 1.1 8.7 4.2 4.5 0.9 6.7 5.5 4.9 3.6

B vector after iteration 1 0.3 0.2 0.6 0.7 0.2 0.8 0.4 0.3 0

A vector before modification 10 2 9 4 5 1 8 7 6 3

B vector before modification 1 0 0 1 1 0 1 0 0 0

in B vector are set as 1 and 0, respectively. Table 1 provides a simple encoding
example. As shown in Table 1, the first job batches are {7,8,5}, the second job
batches are {1,6}, and the third job batches are {4,9,2,10,3}.

5.2.2 Decoding

When GSA is applied in the scheduling problems, some illegal solutions may be
generated. Thus, these illegal solutions need to be modified. For A vector, we apply
decreasing decoding method to modify it, i.e., sorting the values in A vector after
iteration in descending order and then replacing them with the job numbers. With
respect to B vector, we use the method of replacing similar values to modify it.
If the value of B vector after iteration is smaller than 0.5, it will be replaced by
0; otherwise it will be replaced by 1. In Table 2, the detailed adjustments of one
example are shown. For A vector, jobs are sorted in descending order. The first time
we replace the maximum value 9.2 with job 10, the second time we replace the
second maximum value 8.7 with job 9, and so on. For B vector, the first element
remains unchanged, and second element becomes 0, and so on.

In the process of decoding, the job batching is determined by B vector. The
processing sequence of the batches is based on their generation order. The rule of
selecting machine for the batches is to select the machine which can start earliest.
The objective function values are calculated based on Eqs. (1) and (2). The mould
cost in batch bk is calculated by Eq. (17):

f (k) = e floor

(
∑

Jj∈bk

wj/a

)
(17)

where floor() is a floor function.
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5.2.3 Selector Operator

After the two objective function values of each individual are determined, we
apply fast non-dominated sort algorithm [8] to divide rank of Pareto solution
set of each individual. Then, we apply the method proposed by Davis [7] to
compute the individual congestion degree, and each individual Xp in population has
two attributions after fast non-dominated sort and congestion degree calculation:
domination level attribution prank and congestion distance attribution pdis. The rule
of the individual comparison operator is as follows: if prank > qrank or prank =
qrank and pdis > qdis, then keep the individual Xp and eliminate the individual Xq,
otherwise keep the individual Xq and eliminate the individual Xp.

We apply the best individual preservation strategy to increase the search speed of
the algorithm add a best individual Xbest to keep the best individual in each iteration.
Let Ft denote the non-dominated individual set of the tth level. The selection of Xbest

in the lth iteration is as follows:

1. If the number of individuals in F1 is 1, then Xbest is set as the individual included
in F1.

2. If the number of individuals in F1 is larger than 1, then each individual’s standard
value of congestion degree is calculated. There is an individual Xq ∈ F1, and the
calculation of the congestion degree of the individual Xq’s standard value is as
Eq. (18):

λq =

qdis − min
Xp∈F1

pdis

max
Xp∈F1

pdis − min
Xp∈F1

pdis
(18)

Select an individual Xq from F1 and generate a random number rand ∈ [0,1].
If rand ≤ λq, then set Xbest as Xq, otherwise repeat the process. If the selected
individual’s congestion degree is the largest in F1, then the standard value of
congestion degree is 1 by Eq. (18), and the individual must be set as Xbest. At the
same time, other individuals may be selected as Xbest. This keeps the diversity of
Xbest. Xbest and other N individuals involve the (l+1)th iteration.

5.2.4 Mutation Operator

In order to improve global search ability of the proposed algorithm, we introduce
mutation operator here, i.e., to proceed mutation on the B vector of all individuals.
The probability of mutation on individuals in Ft is calculated as Eq. (19):

μt = 0.02+0.08× exp

(
t

tmax
−1

)
(19)
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where tmax is the maximum number of levels in Pareto set. In respect to each
individual Xp in Ft, generate a random number rand ∈ [0,1]. If rand ≤ μt, then
proceed mutation, and select randomly a dimension of value in B vectors of
individual Xp, if the value is 1, then shift to 0, otherwise 0 to 1. The larger the number
of individual’s level, the larger the probability of mutation. Mutation operation
avails to find better individual for dominated solutions.

5.2.5 Pareto Frontier Adjustment Strategy

Based on the Property 2 of optimal solutions, we should adjust the batches of each
solution in Pareto frontier. In respect to some solution, we select two batches bk and
bk′ processed on a machine randomly. If wk′

< rk and nk′ −nk < 1, then transfer the
lightest job from the batch bk′ to the batch bk until wk′

or nk′ ≥ 1 .

5.3 Algorithm Processes of MOGSA

A detailed flowchart of the proposed MOGSA is shown in Fig. 2.

6 Multi-Attribute Decision Making

Since production staff in enterprises usually follow and execute only one decision
plan, we need to select an ideal solution from Pareto frontier solution set. This
chapter applies TOPSIS method (Technique for Order Preference by Similarity to
an Ideal Solution) to do MADM [31]. The detailed procedures are as follows:

Step 1 Build decision making matrix based on Pareto optimal solution set [31].

X =

⎡
⎢⎢⎢⎣

x11 x12

x21 x22
...

...
xm1 xm2

⎤
⎥⎥⎥⎦ (20)

where xij denotes the attribution value of the jth objective evaluation attribute
corresponding to the ith solution in Pareto optimal solution set, and m represents
the number of solutions in Pareto optimal solution set.

Step 2 Standardize the decision making matrix.
Because there is incommensurability between each objective, we need to
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Fig. 2 The flowchart of
MOGSA
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Y

N
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Individualsupdate as Eqs.(9)-(16)

Mutation operator

standardize all the objective value before evaluation. Since the two objective
functions in this batch scheduling problem we discuss are both cost type, the
standardization formula is as Eq. (21) [31]:

yij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
j

xij − xij

max
j

xij −min
j

xij
max

j
xij �= min

j
xij

1 max
j

xij = min
j

xij

(21)
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where i = 1,2, . . . ,m, yij denotes the attribution value of the jth objective
evaluation attribute corresponding to the ith solution, and yij ∈ [0,1].

Step 3 Determine the weighted standardized decision making matrix.

Z = (zij)m×2

where zij = ωjyij, i = 1,2, . . . ,m, and j = 1,2.
We apply entropy weighting method to determine the weight wj of each
attribute, and the basic processes are as follows [31]:

1. Compute the entropy value Hj of the jth objective evaluation attribute, and
the calculation is as Eq. (22):

Hj = − 1
lnm

m

∑
i=1

fij, j = 1,2 (22)

where fij =
yij

∑m
i=1 yij

i = 1,2, . . . ,m, and j = 1,2

2. Compute weight according to the entropy value of jth objective evaluation
attribute:

ωj =
1−Hj

2−∑2
j=1 Hi

(23)

Step 4 Calculate ideal solution and negative ideal solution [31]:

Z+ = {z+1 ,z
+
2 }= {max

i
zij|j = 1,2} (24)

Z− = {z−1 ,z
−
2 }= {min

i
zij|j = 1,2} (25)

Step 5 Compute the Euclidean distance between each objective function and ideal
solution and negative ideal solution as Eqs. (26) and (27) [31], and they are
denoted as d+

i and d−
i , respectively.

d+
i = ‖zi − z+‖=

√√√√ 2

∑
j=1

(z+i − zij)2, i = 1,2, . . . ,m (26)

d−
i = ‖zi − z−‖=

√√√√ 2

∑
j=1

(zij − z−j )2, i = 1,2, . . . ,m (27)
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Step 6 Compute the relative nearness degree of each objective function and ideal
solution as Eq. (28) [31]:

ci = d−
i /(d

+
i +d−

i ), i = 1,2, . . . ,m (28)

Step 7 Sort the relative nearness degree ci by descending order, and the former
one is better than the latter one. We choose the solution which has the largest
relative nearness degree ci as the final scheduling plan.

7 Experimental Results

7.1 Test Problems

The experiment contains 9 test problems of different sizes generated, which is
presented in Table 3. The other parameters are randomly generated based on the real
aluminum production as follows: Weight of the jobs wj(j = 1,2, . . . ,m) generated
from the continuous uniform distribution U = [3,23]. Processing time of each job p
generated from the continuous uniform distribution U = [0.05,0.2]. Cost of each
mould generated e from the discrete uniform distribution U = [5,15]. Capacity
of each mould a generated from the discrete uniform distribution U = [28,32].
The proposed MOGSA is applied to these problems and we use a number of
comparison metrics to assess its performance.

7.2 Results of MADM and the Schedule’s Gantt Chart
Corresponding to Optimal Solutions

Tables 4, 5, and 6 display the results of non-dominated solutions obtained by
MOGSA and the values of similarity degree obtained by TOPSIS method of 9
problems. Based on the values of similarity degree in the 9 problems, the solutions

Table 3 Size characteristics
of 9 problem sets

Problem Jobs (n) Machines (m)

1 30 3

2 30 4

3 30 5

4 60 3

5 60 4

6 60 5

7 90 3

8 90 4

9 90 5
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Table 4 Results of
non-dominated solutions
obtained by MOGSA

Problem 1 Problem 2 Problem 3
f1 f2 ci f1 f2 ci f1 f2 ci

17.1 250 0.5 13.4 250 0.52 11.1 250 0.52

17.3 240 0.55 13.6 240 0.55 11.3 240 0.55

17.4 230 0.58 13.7 230 0.58 11.4 230 0.58

17.6 210 0.67 13.8 220 0.62 11.6 220 0.62

18 200 0.71 13.9 210 0.66 11.7 210 0.66

18.4 190 0.74 14.2 200 0.7 12 200 0.7

18.7 180 0.78 14.7 190 0.73 12.4 190 0.74

19.9 170 0.7 15 180 0.76 12.8 180 0.76

23.6 160 0.48 16.2 170 0.69 13.9 170 0.71

19.8 160 0.48 18 160 0.48

Table 5 Results of
non-dominated solutions
obtained by MOGSA
(continued)

Problem 4 Problem 5 Problem 6
f1 f2 ci f1 f2 ci f1 f2 ci

65.1 470 0.52 50.1 470 0.51 41.2 470 0.52

65.3 460 0.54 50.4 460 0.53 41.4 460 0.54

65.5 450 0.56 50.5 450 0.55 41.6 450 0.56

65.6 440 0.58 50.6 440 0.57 41.7 440 0.58

65.8 430 0.61 50.9 430 0.6 41.9 430 0.61

66.1 420 0.63 51.1 420 0.63 42.1 420 0.64

66.5 410 0.66 51.1 420 0.63 42.5 410 0.67

66.9 400 0.69 51.5 410 0.66 42.9 400 0.7

67.6 390 0.72 51.8 400 0.69 43.6 390 0.72

68.5 380 0.73 52.6 390 0.71 44.6 380 0.73

68.8 370 0.75 53.7 380 0.72 45 370 0.75

69.4 360 0.76 53.9 370 0.75 45.5 360 0.76

71.8 350 0.67 54.4 360 0.76 48 350 0.68

79.1 340 0.48 57 350 0.68 55.5 340 0.48

64.6 340 0.49

with maximum ci of each problem are taken as the satisfactory solutions. The
schedule’s Gantt chart corresponding to optimal trade-off solutions of 9 problems
are shown from Figs. 3, 4, 5, 6, 7, 8, 9, and 10.

8 Conclusions

This chapter presents a MOGSA to solve a novel batch scheduling problem with
mould capacity constraint to minimize the total completion time of jobs and the
total cost of moulds. We analyze this problem through proving three properties
of optimal solutions, based on which the solutions in Pareto frontier are adjusted
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Table 6 Results of
non-dominated solutions
obtained by MOGSA
(continued)

Problem 7 Problem 8 Problem 9
f1 f2 ci f1 f2 ci f1 f2 ci

143.1 750 0.5 109.4 750 0.5 89.1 750 0.52

143.2 720 0.54 109.5 720 0.54 89.3 720 0.55

143.5 710 0.54 109.8 710 0.55 89.4 710 0.57

143.7 690 0.57 110 680 0.6 89.7 690 0.59

143.8 680 0.59 110.3 670 0.61 89.8 680 0.61

144.1 650 0.65 110.5 640 0.68 90.1 670 0.62

144.2 640 0.67 111.5 620 0.69 90.2 650 0.66

145.2 630 0.65 111.7 610 0.71 90.3 640 0.68

145.3 620 0.67 112.2 600 0.7 91.2 630 0.67

145.5 610 0.68 113.2 590 0.67 91.3 620 0.69

145.9 600 0.68 114.1 580 0.63 91.6 610 0.7

146.9 590 0.64 115.1 570 0.59 92.1 600 0.69

147.9 580 0.59 116.4 560 0.54 92.9 590 0.66

148.7 570 0.56 116.8 550 0.54 93.9 580 0.62

150 560 0.51 118.3 540 0.5 94.9 570 0.57

150.4 550 0.51 96.4 560 0.52

151.1 540 0.5 96.5 550 0.53

98.2 540 0.48

in algorithm iteration. Various problems are experimented based on the proposed
MOGSA. By the MADM method, decision-makers can obtain satisfactory solutions
of each problem from the Pareto optimal set.

Fig. 3 Optimal trade-off
solution 1 of problem 2
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Fig. 4 Optimal trade-off
solution 1 of problem 3

Fig. 5 Optimal trade-off
solution 1 of problem 4

Fig. 6 Optimal trade-off solution 1 of problem 5
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M 3

M 2

M 1 J24,5,20,42,28 J7 J9 J 45,30 J 52,10 J 35,15,41,48

J60 J 19,32 J 3,54 J 46,23,56,50,36 J 29,11 J25

J 16,51,31,6 J 40,12,43 J 34,55,18,37 J 14,26J 49,58

0.5 0.7 1.10.90.6

1.10.7 1.51.30.4

1.5

1.00.50.3 1.40.1

M 4 J 47,21,8 J 4,13J27 J 1,57,44,2,22 J53 J 33,17J38

1.31.10.60.40.3

J 59,39

1.5

1.5

1.2

1.2

Fig. 7 Optimal trade-off solution 1 of problem 6

Fig. 8 Optimal trade-off solution 1 of problem 7

Fig. 9 Optimal trade-off solution 1 of problem 8
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Fig. 10 Optimal trade-off solution 1 of problem 9
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A Time-Indexed Generalized Vehicle Routing
Model and Stabilized Column Generation
for Military Aircraft Mission Planning

Nils-Hassan Quttineh, Torbjörn Larsson, Jorne Van den Bergh,
and Jeroen Beliën

Abstract We introduce a time-indexed mixed-integer linear programming model
for a military aircraft mission planning problem, where a fleet of cooperating
aircraft should attack a number of ground targets so that the total expected
effect is maximized. The model is a rich vehicle routing problem and the direct
application of a general solver is practical only for scenarios of very moderate
sizes. We propose a Dantzig–Wolfe reformulation and column generation approach.
A column here represents a specific sequence of tasks at certain times for an
aircraft, and to generate columns a longest path problem with side constraints is
solved. We compare the column generation approach with the time-indexed model
with respect to upper bounding quality of their linear programming relaxations and
conclude that the former provides a much stronger formulation of the problem.

Keywords Aircraft mission planning problem • Time-indexed mixed-integer
linear program • Vehicle routing problem • Dantzig–Wolfe method • Column
generation

1 Introduction

We study a military aircraft mission planning problem (MAMPP), which was
introduced by Quttineh et al. [27]. In general, a military aircraft mission might
involve various tasks, such as surveillance, backup support, rescue assistance, or
an attack. We only consider the situation where a set of ground targets needs to be
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attacked with a fleet of aircraft. The planning of such aircraft missions is still to a
large extent carried out manually, and it takes an experienced planner several hours
to create a feasible plan.

The research presented here has been performed in collaboration with an
industrial partner and is a continuation of the work by Quttineh et al. [25–27].
The MAMPP is recognized as a generalized vehicle routing problem (GVRP) with
precedence relationships and synchronization in time and position between multiple
vehicles. Examples of mathematical optimization approaches to military routing
problems can be found in [7, 29, 30, 34]. To the best of our knowledge, the MAMPP
has not been analyzed by optimization methods by others.

Synchronization in a vehicle routing problem (VRP) might be exhibited with
regard to spatial, temporal, and load aspects. A recent survey of VRPs with
synchronization constraints (VRPS) is given in Drexl [10] and shows that this
topic is challenging and emerging. Following the definitions from this paper, the
synchronization in our problem can be classified as operation synchronization, in
which one has to decide about time and location of some interaction between
vehicles. In [11], Drexl presents modeling techniques for a VRP with trailers and
transshipments (VRPTT), which is an application of the VRP with all the previously
mentioned synchronization constraints. Different transformations of classic VRPs
and of several types of VRPS are described. Recently, Drexl [12] presented two
mixed-integer programming formulations and five branch-and-cut algorithms for
the VRPTT.

Bredström and Rönnqvist [6] give a daily homecare planning problem, which is
modeled as a vehicle routing and scheduling problem with precedence constraints
on visits as well as time windows and pairwise synchronization (because two staff
members are required to visit an elderly person simultaneously). Redjem et al. [28]
also consider routing with time windows and synchronized visits for a homecare
planning problem. Synchronized routing and scheduling problems need to be solved
also in the forestry industry. El Hachemi et al. [14], for instance, include multiple
aspects such as pickup and delivery, and inventory stock, and solve the decomposed
problem using constraint-based local search. Other examples of work on routing
with synchronization are [1, 3, 21].

Already in the 1970s, Golden [17] touched the GVRP as a variation of the classic
VRP. One of the first dedicated papers on GVRP is by Ghiani and Improta [16],
who give a transformation to the capacitated arc routing problem. Baldacci et al. [4]
discuss some applications for the GVRP, whereas formulations and branch-and-cut
algorithms are given in the recent paper of Bektaş et al. [5]. Hà et al. [18] solve
the GVRP with the number of vehicles as a decision variable, both heuristically
and exact using a branch-and-cut approach. For the same problem, Afsar et al. [2]
present an exact method based on column generation, and two metaheuristics.

In Sigurd et al. [31], vehicle routing with precedence constraints and time
windows is considered in order to schedule transportation of live animals to avoid
the spread of diseases. A general framework for VRP with time windows and
temporal dependencies, including exact synchronization, is given in Dohn et al. [9].
In the context of GVRP, a time windows extension is considered by Moccia
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et al. [24], who suggest a metaheuristic solution method. Their work concerns an
application to the design of home-to-work transportation plans.

By taking into account multiple non-standard characteristics of the GVRP, such
as precedence relationships and operation synchronization, we believe to contribute
to the existing literature. Our chapter reads as follows. In Sect. 2, the problem setting
is described, followed by a time-indexed mathematical formulation in Sect. 3.
Section 4 develops a column generation method for a Dantzig–Wolfe reformulation
of the time-indexed model, followed in Sect. 5 by a description of a stabilized
column generation method. In Sect. 6, we give theoretical bounding results. Further,
in Sect. 7, numerical results of our approach are discussed, followed by a conclusion
in Sect. 8.

2 Problem Setting

This section provides a concise description of the problem setting. A detailed
report on the complex problem characteristics and how to transform them into a
mathematical formulation can be found in Quttineh et al. [27]. As mentioned above,
we only consider military aircraft missions involving attacks. The geographical
area of interest, referred to as the target scene, includes the targets that need to
be attacked and other objects such as enemy defense positions, like surface-to-air
missiles (SAMs), and protected objects, like hospitals and schools. We consider all
objects to be stationary with known positions. The target scene is defined by a line
of entrance and a line of exit for the aircraft. These are typically deployed from a
base situated far away from the target scene and enter the scene by the entry line,
carry out the mission and return to a base after leaving the scene at the exit line. The
diameter of a target scene is usually of the order of 100 km, the distances between
targets are of the order of a few kilometers, and the time span of the attacks is around
a quarter of an hour. Typically, a mission involves 6–8 targets and 4–6 aircraft. At the
end of this section, an example of a target scene is depicted, together with a solution.

The goal of a mission is to find an attack plan where maximal total expected
effect is gained within short time span. The mission time is defined by the time the
first aircraft passes the entry line and the time the last aircraft passes the exit line.
Since the entire target scene is located in hostile area, the mission time needs to
be minimized. To take into account the threat from defense positions, aircraft are
restricted not to fly through defended airspace. Weapons, on the other hand, are
allowed to pass through defended airspace, but at the risk of being shot down, that
is, with a lower expected effect on the target.

In order to plan a mission, the aircraft characteristics need to be taken into
account. Each aircraft has an armament capacity, limiting the number of attacks
it can perform. It can also be equipped with an illumination laser pod to guide
weapons. Each target needs to be attacked exactly once and requires one aircraft that
illuminates the target with a laser beam and one aircraft that launches the weapon.
Since an attack requires continuous illumination from the launch of the weapon until
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X

Fig. 1 The feasible attack space defined by inner and outer radii and divided into six sectors, each
with three attack and two illumination alternatives. A pair of compatible attack and illumination
positions is marked, where the arrows indicate the flight directions

its impact, the two aircraft need to team up. This rendezvous not only depends on the
time but also on the location of both aircraft, so that the illumination is continuously
visible for the weapon.

Figure 1 illustrates how a target is modeled. The feasible attack space can
be derived from the type of aircraft and the type of weapon being used and is
represented by the inner and outer radii. This attack space is then divided into
six sectors, which each holds at most three discretized attack positions and two
compatible illumination positions. If a protected object is inside the estimated
area of risk for collateral damage of a given attack position, this position is
considered unfeasible. For any attack position, the expected effect on the target can
be calculated. It depends on the kind of weapon being used, which is decided in
advance, and on the direction of the impact and the weapon’s kinetic energy. The
two illumination alternatives per sector differ in flight direction, roughly clockwise
or counterclockwise, but are both compatible with all attack positions of the sector.
In our problem setting we consider only one altitude layer, but one could of course
extend the target modeling by allowing attack options on different discrete altitude
layers.

Not all attack sequences are allowed. Depending on the wind direction and the
proximity between targets, dust and debris might reduce the visibility and hinder an
attack. Hence, we assume that precedence constraints are given, specifying which
targets are not allowed to be attacked before other targets.

In summary, the problem involves three types of decisions. First, the choice of
attack direction against each target. Second, which two aircraft shall be assigned
against the targets. Third, the order in which each aircraft fulfils its assigned tasks in
the mission. Now it is clear that the problem belongs to the class of VRPs, describing
the attack and illumination positions by nodes, each of which being associated with
an expected effect on the target. By further introducing dummy nodes associated
with the crossings of the entry and exit lines of the target scene, and modeling
possible aircraft movements by arcs, the mission planning problem can partly be
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Fig. 2 Optimal solution to a problem instance that includes three targets and nearby SAMs (times
symbol) and hospitals (plus symbol). Shown are aircraft routes, chosen attack and illumination
positions against each target, the times of the attacks, and the times when the two aircraft pass the
exit line

represented by a network. Because of the precedence relationships, some arcs are
eliminated from the network. The restriction that every target should be attacked
exactly once results in a network that only contains arcs between different targets,
or from or to the dummy nodes.

Each of the arcs has two attributes: an expected effect and a travel time. The effect
attribute is different from zero only for an arc that is leaving an attack node, and it
then equals the resulting expected effect against the target. A flight path between
two positions has to comply with restrictions on the aircraft dynamics and that the
aircraft cannot pass through defended airspace. By using a flight path generator
provided by our industrial partner, we are able to find the path with minimal time
between any pair of positions. In general, travel times will be asymmetric because
each position is also associated with a flight direction.

To illustrate the essential aspects of a solution to the MAMPP, Fig. 2 depicts
a target scene and an optimal solution. For this problem instance, two aircraft are
used, there are no precedence constraints on the targets, and each aircraft can attack
at most two targets. All numerical data used in the scenario were provided by our
industrial partner.

The aircraft routes are shown as solid and dashed lines. The attack sequence is
2–1–3, with a total mission time of tend = 338 s. The expected effects of the attacks
on targets 2 and 3 are maximal, among the available attack positions for these
targets, while the attack position against target 1 renders an effect that is slightly
below the maximal possible. Achieving maximal effect against this target would
require a longer tour for both aircraft, which makes this alternative nonoptimal.
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3 A Time-Indexed Mathematical Model

We here present a time-indexed mixed-integer linear programming (MILP) math-
ematical model of the MAMPP. This MILP model can be derived from the one
introduced by Quttineh et al. [27], through a discretization of time. In particular, this
discretization allows an alternative modeling of the time propagation constraints.
We divide the nomenclature into indices and sets, parameters and coefficients, and
decision variables, given in Tables 1, 2, and 3.

The primary objective is to maximize the total expected effect against all the
targets. However, in order to achieve this effect, the use of long flight paths within
the target scene might be necessary, which exposes the aircraft to a higher risk of
being detected and engaged by enemy defense. A secondary objective is therefore to
limit the mission time span. We thus have a multi-objective optimization problem,
with two objectives that are typically in conflict.

Table 1 Indices and sets

R Fleet of aircraft, r

M Set of targets, m, to be attacked

N Set of nodes in the network, excluding the origin (o) and destination (d) nodes

G,Gm Set of all sectors for all targets and for target m, respectively

NA
m,N

I
m Set of feasible attack (A) and illumination (I) nodes, respectively, for target m

A,Ag,Ig Set of arcs in the network (including from o and to d) and sets of arcs (i, j) such
that node j is an attack (A) node or illumination (I) node in sector g, respectively

P Set of ordered pairs (m,n) of targets such that the attack on target m cannot
precede the attack on target n

S Set of time periods within a discretized planning horizon, each of step length Δ t

Table 2 Parameters

cr
ij For arcs (i, j) with i ∈ NA

m, that is, for arcs leaving attack nodes, the value of cr
ij is

the expected effect of the attack, and otherwise the value is zero

Sr
ij The time needed for aircraft r to traverse arc (i, j), expressed in number of time

periods; equals actual time to traverse the arc divided by Δ t, rounded upwards

Ts The ending time of period s, which equals s ·Δ t, s = 0,1, . . . , |S|
Γ r Armament capacity of aircraft r

qm Weapon capacity needed towards target m

μ Positive parameter that weights mission time span against expected effect on
targets

Table 3 Decision variables

xr
ij Routing variable, equals 1 if aircraft r traverses arc (i, j) and 0 otherwise

yr
is Time indicator variable, equals 1 if node i is visited by aircraft r in time period s

and 0 otherwise

tend The time that the last aircraft passes the exit line
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Since the maximal allowed mission time span is given by |S| · Δ t, an explicit
way of limiting the mission time span is to reduce the cardinality of S, which
might however cause the MAMPP to become infeasible. A further drawback of this
approach is that it can allow mission time spans that are unnecessarily long with
respect to the obtained target effect.

Instead, we have chosen to optimize a weighted combination of the two
objectives, using the positive parameter μ which reflects the trade-off between effect
on target and mission time span. This yields a solution that is Pareto optimal. As part
of a decision support tool, the value of μ can be either chosen by a mission planner
or varied systematically in order to generate a population of mission plans with
different properties with respect to effect and time, to be further evaluated by a
mission planner. Since target effect is the primary goal, the value of μ is typically
small.

The time-indexed mathematical model for the MAMPP is given below:

z∗IP = max ∑
r∈R

∑
(i,j)∈A

cr
ijx

r
ij −μ tend [TI-MAMPP]

subject to

∑
(o,j)∈A

xr
oj = 1, r ∈ R (1)

∑
(i,d)∈A

xr
id = 1, r ∈ R (2)

∑
(i,k)∈A

xr
ik = ∑

(k,j)∈A

xr
kj, k ∈ N, r ∈ R (3)

∑
r∈R

∑
g∈Gm

∑
(i,j)∈Ag

xr
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ij ≤ Γ r, r ∈ R (8)

yr
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|S|
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ij

yr
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is −1, (i, j) ∈ A, s ∈ {0}∪S, (10)

r ∈ R
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is ≤ 1, (m,n) ∈ P, s ∈ S, r ∈ R (14)

∑
s∈S
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is ≤ 1, i ∈ N∪{o,d}, r ∈ R (15)

∑
s∈{0}∪S

Tsy
r
ds ≤ tend, r ∈ R (16)

xr
ij ∈ {0,1}, (i, j) ∈ A, r ∈ R (17)

yr
is ∈ {0,1}, i ∈ N∪{o,d}, s ∈ {0}∪S, (18)

r ∈ R

Constraints (1) and (2) describe that each aircraft leaves and enters the target scene
via the origin and destination nodes, respectively, while constraint (3) is the node
balance equation for each aircraft. The requirement that each target shall be attacked
and illuminated exactly once is modeled by constraints (4) and (5), respectively,
while constraint (6) synchronizes these tasks to the same sector. Constraint (7)
states that each aircraft can visit each target at most once. This constraint is actually
redundant, but it strengthens the column generation problems to be presented. The
armament limitation is modeled by constraint (8).

Further, constraint (9) states that each aircraft is leaving the origin at time zero.
Constraint (10) ensures that if aircraft r is visiting node j directly after node i, then
the time of visiting node j cannot be earlier than the time of visiting node i plus the
time needed to traverse arc (i, j). Constraint (11) enforces that if node i is not visited
by an aircraft, no outgoing arc (i, j) from that node can be traversed by the aircraft.

Constraint (12) states that the attack and the illumination of a target need
to be synchronized in time. Constraint (13) imposes the precedence restrictions
on the attacking times of pairs of targets. Similarly, constraint (14) imposes the
precedence restrictions for an individual aircraft. This constraint is also redundant,
but it strengthens the column generation problems. Constraint (15) states that each
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aircraft can visit each node in at most one time period, and constraint (16) defines
the total mission time, since all aircraft end up at the destination node. Finally, (17)
and (18) are definitional constraints.

The optimal value of the linear programming (LP) relaxation of TI-MAMPP is
denoted z∗LP.

4 Column Generation

The planning of a military aircraft mission is typically made close to when the
mission actually takes place (say, within 24 h); one reason for this is that the
planning can then be based on the most recent information. The time needed for
the chain of planning is of the order of several hours. Solving the continuous time
version of MAMPP presented in Quttineh et al. [27] to optimality takes a general
MIP solver several hours for already moderate-sized problem instances. This is also
the case for the model TI-MAMPP presented above. Hence, efficient algorithms
are needed to meet the needs and expectations in a real-life setting. We propose
a column generation method based on a Dantzig–Wolfe reformulation [8] of the
model TI-MAMPP. For overviews of column generation, see, for example, [22]
and [33].

The Dantzig–Wolfe reformulation is defined in the following steps. Suppose that
constraints (1)–(3), (7)–(11), (14)–(15), and (17)–(18) have Nr feasible solutions
for aircraft r ∈ R. Each of these describes a possible route for the aircraft, involving
specific tasks at specific targets at certain times. Assume that nr < Nr of the routes
for aircraft r ∈ R is explicitly available. Typically, nr � Nr holds. Let the values
of the variables for each feasible solution to the above-mentioned constraints be
denoted by xrk

ij and yrk
is , k = 1, . . . ,nr.

Next, we relax the binary variable restrictions from the TI-MAMPP and intro-
duce variables zr

k as convexity weights on the solutions xrk
ij and yrk

is , k = 1, . . . ,nr.
Further, we impose the relationships

xr
ij =

nr

∑
k=1

xrk
ij zr

k and yr
is =

nr

∑
k=1

yrk
is zr

k.

Substitution of these relationships into the objective function and into
constraints (4)–(6), (12), (13), and (16) yields the following restricted Dantzig–
Wolfe master problem:

z∗RMP = max ∑
r∈R

nr

∑
k=1

(
∑

(i,j)∈A

cr
ijx

rk
ij

)
zr

k −μ tend [DW–RMP]
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subject to
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(m,n) ∈ P

[τr]
nr
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k=1

(
∑

s∈{0}∪S

Ts · yrk
ds

)
zr

k ≤ tend, r ∈ R (24)

[νr]
nr

∑
k=1

zr
k = 1, r ∈ R (25)

zr
k ≥ 0, k = 1, . . . ,nr, (26)

r ∈ R

Each column of this problem represents a route for a specific aircraft, and the
restricted master problem is to find the best way to combine all available routes into
a solution that is feasible and optimal with respect to the restrictions that couple all
aircraft, in a linear programming sense.

Comparing DW–RMP with TI-MAMPP, constraints (19)–(21) correspond to the
attack, illumination, and synchronization constraints (4)–(6), while constraints (22)
and (23) match the time synchronization and precedence constraints (12) and (13).
Further, constraint (24) defines the total mission time, similarly to (16). Finally,
constraints (25) and (26) are definitional.

If all feasible routes for each aircraft are known, that is, if nr = Nr holds for
all r ∈ R, the restricted master problem becomes a full master problem, with an
optimal objective value denoted z∗MP. Further, any optimal solution to DW–RMP
that is integral yields a feasible solution to TI-MAMPP and a lower bound to z∗IP,
denoted zIP.
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Assume that DW–RMP has a feasible solution. Each of its constraints is associ-
ated with a dual variable, indicated in the square brackets to the left. The optimal
values of these dual variables are used to define a Dantzig–Wolfe subproblem, or
column generation problem, for each aircraft r ∈ R. The objective function in each
subproblem describes the reduced cost of any feasible column, that is, any possible
route for the aircraft. As long as there is a route with a positive reduced cost, such
routes should be generated and their corresponding columns added to DW–RMP.
Generating columns with positive reduced costs boils down to solving the following
subproblem for each aircraft r ∈ R:

c̄ r
nr+1 = max ∑

(i,j)∈A

cr
ijx

r
ij − τr ∑
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subject to (1),(2),(3),(7),(8),(9),(10),(11),(14),(15),(17),(18).

The problem DW–SUBr can be described as a side constrained longest path
problem in a time-layered network where all nodes in N have |S| time copies.
Constraints (9)–(11) are taken into account implicitly in the construction of the
network, while constraints (7), (8), (14), and (15) are side constraints. This problem
does not possess the integrality property.

An upper bound on z∗MP is given by z∗RMP +∑r∈R c̄ r
nr+1. The lowest such upper

bound ever found is denoted by z̄MP.

5 Stabilized Column Generation

As is well known, column generation methods are dually equivalent to cutting
plane methods. The latter are known to be inherently instable [19] in the sense
that successive iterates can be very distant, which may cause slow convergence.



310 N.-H. Quttineh et al.

In column generation methods, the dual instability manifests itself as oscillations
in the values of the dual variables, which slows down the convergence also in the
primal space.

In order to improve the efficiency of the column generation scheme, it is therefore
common to apply a stabilization of the values of the dual variables. This technique
was introduced by Marsten et al. [23] back in 1975, and examples of applications
from more recent years can be found in [13] and [32], to mention some.

The idea is to prevent the dual solution of the DW–RMP to fluctuate between
successive iterations. This is accomplished by including a box constraint for each
dual variable, centered around its current value and preventing the value to change
drastically from one iteration to the next. These additional constraints in the dual
problem correspond to auxiliary variables in the primal problem, and the effect of
these variables is a relaxation of the original primal constraints. Consequently, the
parameters that specify the size of the box appear as penalty weights in the objective
function for the auxiliary variables.

We stabilize constraints (19)–(23) in DW–RMP, and the optimal objective value
of the stabilized DW–RMP is denoted z∗SRMP. An upper bound on z∗MP is calculated
as z∗SRMP +∑r∈R c̄ r

nr+1. (The reason that a formula similar to the one used in non-
stabilized column generation applies also in the stabilized case is that both formulas
are in fact equivalent to a Lagrangian dual bound and that it is of no significance
how the dual point is obtained.)

The size of each box slowly shrinks every iteration, and it is re-centered every
time it becomes binding (that is, every time an auxiliary variable becomes nonzero).

6 Bounding Properties

The relationships between the various optimal values and bounds in our column
generation approach become rather intricate. These relationships are illustrated
in Fig. 3.

� z

zIP z∗IP z∗MP z∗LP

�z∗RMP � z̄MP

z∗SRMP

Fig. 3 Bounding relationships for the column generation approach
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The optimal value z∗IP for TI-MAMPP is trivially bounded from below by the
objective value, zIP, of any feasible solution, and bounded above by the optimal LP
value z∗LP. This bound has proven to be very weak, see [25, 27]. Further, z∗IP can be
bounded from above by the optimal LP value of the full master problem, z∗MP. It
always holds that z∗MP ≤ z∗LP, but since the column generation problem DW–SUBr

does not have the integrality property, z∗MP < z∗LP can be expected to hold.
Assume first that no stabilization is used. As routes are added to the restricted

master problem, its optimal value z∗RMP converges monotonically towards z∗MP. Note
that the relationship between z∗RMP and z∗IP is unknown. Further, z̄MP is convergent
towards z∗MP from above.

Considering the case with stabilization, the relationship between z∗SRMP and z∗MP
is unknown, since the stabilized restricted master problem includes both a restriction
and a relaxation, as compared to the full master problem. However, the value z∗SRMP
becomes a lower bound for z∗MP if the dual box is not binding (that is, all auxiliary
variables in the primal problem are zero). Finally, z̄MP, as calculated in Sect. 5, is an
upper bound for z∗MP. Further, it converges towards z∗MP.

7 Numerical Validation

We have made a preliminary assessment of TI-MAMPP and the column generation
approach by using a few small problem instances that are identical to, or slight
modifications of, instances used in [27]. All experiments have been carried out using
the modeling language AMPL [15] and the solver CPLEX [20].

Table 4 shows problem characteristics and results obtained with the continuous-
time model of MAMPP in [27] and TI-MAMPP. We observe that even for rather
large time steps, the optimal solutions found by the continuous-time and time-
indexed models are very similar, with respect to attack sequences and to attack
and illumination nodes. Although not reported in the table, we also observe that
the solution times of the continuous-time and time-indexed models are similar for

Table 4 Problem characteristics and comparison of the continuous-time and time-indexed
models

Problem Cont. Δ t = 60 Δ t = 45 Δ t = 30
No. |M| prec. Γ r Eff. tend Eff. tend Eff. tend Eff. tend

1 3 – 3 0.974 333 0.808 420 0.974 405 0.974 390

2 3 – 2 0.974 338 0.808 420 0.974 405 0.974 390

3 3 {1|23} 3 0.863 352 0.808 420 0.863 405 0.808 390

4 4 {1|2|3|4} 3 0.917 628 1.000 840 0.917 720 0.917 720

5 4 {1|2|3|4} 2 0.917 638 1.000 840 0.917 720 0.917 720

Here, μ = 0.005 and all instances include two aircraft. The notation {1|23} means that
target 1 is attacked before targets 2 and 3. The maximal possible total effect on targets is
1.000
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Table 5 Comparison of the time-indexed model and column generation

Time-indexed CG: Δ t = 45 CG: Δ t = 30
No. z∗LP z∗IP[45] z∗IP[30] z∗MP zIP Iter. z∗MP zIP Iter.

1 23.173 1.933 2.683 1.933 1.933 16 2.683 2.683 22

2 23.173 1.887 2.674 1.887 1.887 11 2.674 2.674 15

3 22.813 0.346 0.080 0.346 0.346 22 1.271 – 22

4 30.117 −7.677 −7.730 −6.532 – 37 −4.744 – 37

5 30.115 −7.730 −7.730 −7.083 – 29 −6.002 – 60

The optimal LP value z∗LP of the time-indexed model varies very little with the step size;
we give the value for Δ t = 60. The columns z∗IP[45] and z∗IP[30] are the optimal values
of the time-indexed model with different time steps. Further, zIP are the objective values
obtained when solving the integer version of the final master problem (and a feasible
solution exists), and Iter. is the number of column generation iterations needed to reach
optimality

large time steps, while the latter is much more demanding when the steps are
small. Further, the upper bounds given by the linear programming relaxations of
the continuous-time and time-indexed versions of the MAMPP are very similar,
independent of the sizes of the time steps, and very weak.

Table 5 shows a comparison between the time-indexed model and the column
generation approach. Here, initial values for the dual variables for the stabilized
constraints (19)–(23), used to initialize the dual boxes, are obtained by solving the
LP relaxation of TI-MAMPP. (The radii of the boxes were initially set to 0.3 and
shrinked by a factor of 0.97 in each iteration.) To create an initial set of routes and
columns, the DW–SUBr problem is solved for an ad hoc fixed set of sectors to be
visited, for each aircraft r ∈ R.

Comparing the columns z∗LP and z∗MP with the columns z∗IP, we conclude that the
upper bound on z∗IP obtained from z∗MP is much tighter than the bound z∗LP. The bound
z∗MP is indeed very close to z∗IP while the bound z∗LP is very weak. Further, comparing
the columns z∗IP and zIP, we see that whenever the restricted master problem has an
integral feasible solution, it is also of high quality.

8 Conclusion

Clearly, the Dantzig–Wolfe reformulation and column generation approach provide
vastly superior upper bounds on the optimal value of TI-MAMPP. We conclude
that the Dantzig–Wolfe reformulation gives rise to a very strong formulation of
the TI-MAMPP. This model by itself is not very efficient in terms of solving the
military aircraft mission planning problem, but it was helpful in the development of
the column generation procedure.

The solution times of our implementation of the column generation approach
are not competitive compared to direct methods. The solution of DW–RMP takes
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very little time. This holds even for the integer version of this problem. The
column generation problem DW–SUBr is however very time-consuming to solve
to optimality.

There are several opportunities for tailoring and streamlining the computations,
and especially to reduce the computational burden of the column generation problem
DW–SUBr. For example, in early column generation iterations it might be more
efficient to terminate the column generation solver as soon as the objective value
gets positive, since this is enough to ensure progress. Further, a tailored solver
for DW–SUBr can be developed by exploiting its underlying time-layered network
structure. This is an interesting opportunity for further research.

The column generation approach can be applied to obtain an upper bound, to be
used for assessing the quality of any feasible solution to TI-MAMPP, for example,
generated by a metaheuristic. Also, feasible solutions generated by metaheuristics
can be used to provide high quality initial columns to the restricted master problem.
This combination is another topic for further research.

A great advantage of the column generation approach to MAMPP in a real-life
planning situation would be its creation of many possible routes for all aircraft. This
is of practical interest since a real-life MAMPP can never be expected to include
all possible aspects of the mission to be planned, and because of the multi-objective
nature of the problem. The access to multiple aircraft routes can then be exploited
in an interactive decision support system.

References

1. Afifi, S., Dang, D.-C., Moukrim, A.: A simulated annealing algorithm for the vehicle routing
problem with time windows and synchronization constraints. In: Nicosia, G., Pardalos, P.
(eds.) Learning and Intelligent Optimization. Lecture Notes in Computer Science, pp. 259–265.
Springer, Berlin (2013)

2. Afsar, H.M., Prins, C., Santos, A.C.: Exact and heuristic algorithms for solving the generalized
vehicle routing problem with flexible fleet size. Int. Trans. Oper. Res. 21, 153–175 (2014)

3. Andersson, H., Duesund, J.M., Fagerholt, K.: Ship routing and scheduling with cargo coupling
and synchronization constraints. Comput. Ind. Eng. 61, 1107–1116 (2011)

4. Baldacci, R., Bartolini, E., Laporte, G.: Some applications of the generalized vehicle routing
problem. J. Oper. Res. Soc. 61, 1072–1077 (2010)
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On Deterministic Diagonal Methods for Solving
Global Optimization Problems with Lipschitz
Gradients

Yaroslav D. Sergeyev and Dmitri E. Kvasov

Abstract In this chapter, a global optimization problem is considered where both
the objective function f (x) and its gradient ∇f (x) are multidimensional black-
box functions. It is supposed that ∇f (x) satisfies the Lipschitz condition over the
search hyperinterval with an unknown Lipschitz constant K. Different techniques for
estimating K are presented and their advantages and disadvantages are emphasized.
In what regards exploring the multidimensional search domain, several adaptive
partitioning strategies are discussed that can be applied in Lipschitz global opti-
mization methods: (1) one-point-based algorithms evaluating the objective function
and its gradient at one point within each subregion; (2) diagonal partitions where
f (x) and ∇f (x) are evaluated at two points within each subregion; (3) more complex
partitions based, for instance, on simplices or auxiliary functions of various nature.
This chapter deals with diagonal deterministic methods that show a promising
performance both in tests and applications. Several geometric methods based on
diagonal partitions and auxiliary functions are presented and compared on eight
hundred of differentiable problems randomly produced by the GKLS-generator of
classes of test functions.

Keywords Black-box optimization • Lipschitz global optimization methods
• Diagonal partitions - Lipschitz gradients

1 Problem Statement

The global optimization problem with a differentiable objective function having
the Lipschitz gradient (with an unknown Lipschitz constant) is an important
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class of Lipschitz global optimization problems (see, e.g., the references given in
[5, 44, 48]). This class of problems can be defined as follows:

f ∗ = f (x∗) = min
x∈D

f (x), (1)

‖∇f (x′)−∇f (x′′)‖ ≤ K‖x′ − x′′‖, x′,x′′ ∈ D, 0 < K < ∞, (2)

where

D = [a,b] = {x ∈ Rn : a(j) ≤ x(j)≤ b(j), 1 ≤ j ≤ n}. (3)

It is assumed here that the objective function f (x) can be black-box and

multiextremal, its gradient ∇f (x) =

(
∂ f (x)
∂x(1)

,
∂ f (x)
∂x(2)

, . . . ,
∂ f (x)
∂x(n)

)T

(which can be

itself an expensive black-box vector-function) can be calculated during the search,
and ∇f (x) is Lipschitz-continuous with some unknown constant K, 0 < K < ∞,
over D.

Problem (1)–(3) is frequently met in engineering applications (see, e.g., [10, 11,
23, 33, 43, 48]), for instance, in electrical engineering design (see, e.g., [46, 48]).
Each evaluation of both f (x) and∇f (x) at a point x ∈ D (this operation is often called
‘trial’) is supposed to be a time-consuming operation, therefore, it is desirable to
obtain a solution to the stated problem by evaluating f (x),∇f (x) at the less possible
number of trial points.

Different methods for solving problem (1)–(3) have been proposed (see, e.g.,
[2–6, 21, 30, 43–45, 47, 48]). They can be distinguished either by the strategy
of exploration of the search hyperinterval D from (3) or by the mode in which
information about the Lipschitz constant K from (2) is obtained.

In exploring the multidimensional search domain, various adaptive partitioning
strategies can be applied. For example, one-point-based algorithms subsequently
subdivide the search region in smaller ones and evaluate the objective function
and its gradient at one point within each subregion (see, e.g., [4, 6, 21]). Diagonal
partitions that evaluate f (x) and ∇f (x) at two points within each subregion are very
interesting for practical applications with expensive black-box functions (see, e.g.,
[23, 33, 42, 43]). More complex partitions, based, for instance, on simplices or auxil-
iary functions of various nature can be also used (see, e.g., [5, 12, 27, 30, 31, 47, 49]).

In specifying the Lipschitz constant K from (2), several ways can be considered:
this constant can be given a priori (see, e.g., [1, 2, 4]); its adaptive estimates (local or
global) can be obtained during the search (see, e.g., [6, 12, 22, 26, 36, 37, 43, 45, 48]);
multiple estimates of the Lipschitz constant can be also used (see, e.g., [20, 21]).

This chapter discusses some promising deterministic methods constructed in the
framework of the diagonal approach for solving problem (1)–(3). An introduction
into the diagonal technique is given in Sect. 2 where different strategies for parti-
tioning the search domain D from (3) are considered. Several methods belonging
to this framework are presented in Sect. 3. Results of their numerical comparison
on eight hundred of multidimensional GKLS test functions (see [7]) with respect to
different criteria are given in the conclusive Sect. 4.
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2 Diagonal Partition Strategies

In global optimization, a variety of techniques for an iterative partition of the
admissible hyperinterval D from (3) into a set of M(l) hyperintervals Di, 1 ≤
i ≤ M(l) (where l ≥ 1 is the iteration counter) can be used during the search
for the global minimum (see, e.g., [15, 17, 33, 40, 43]). Over each hyperinterval
Di, 1 ≤ i ≤ M(l), the approximation of f (x) is based on results obtained from
evaluating f (x) (and ∇f (x)) at some points x ∈ D. For example, the widely used
global optimization method DIRECT [17] involves partitioning with evaluation of
f (x) at the central points of hyperintervals.

In this chapter, the main attention is devoted to diagonal algorithms introduced
in [32, 33] for derivative-free global optimization problems with the Lipschitz
objective functions. This approach has attractive theoretical properties and has
proved to be efficient in solving applied problems. In these algorithms, both the
objective function f (x) and its gradient ∇f (x) (diagonal methods using gradients
have been proposed, e.g., in [8, 21, 39, 43, 45]) are evaluated—independently of the
problem dimension—only at the vertices corresponding to the main diagonal [ai,bi]
of each generated hyperinterval Di (either at both the vertices, as usually done, see
[8, 18, 24, 33, 40, 43, 45], or at only one of them, as used in [21, 41, 43]). Results
of these trials are then used to estimate the function behavior over the generated
hyperintervals and to select a hyperinterval (or a set of hyperintervals) for the further
subdivision.

Particularly, at every iteration l ≥ 1 of a diagonal method the ‘merit’ of each
hyperinterval Di, 1 ≤ i ≤ M(l), of the current partition is estimated. A higher ‘merit’
of hyperinterval Di corresponds to a higher possibility that the global minimizer x∗

of f (x) from (1) belongs to Di. The ‘merit’ is measured by a real-valued function
Ri called characteristic (introduced in its general form within the framework of
divide-the-best algorithms [38, 43] which diagonal methods belong to). In order
to calculate the characteristic Ri of a multidimensional hyperinterval Di, some one-
dimensional characteristics can be used as prototypes (see, e.g., [9, 13, 14]). They
can be applied to the one-dimensional segment being the main diagonal [ai,bi] of the
hyperinterval Di. A hyperinterval having the ‘best’ characteristic (e.g., the smallest
lower bound of f (x) over the hyperintervals) is partitioned (by hyperplanes passing
through some chosen point on the main diagonal) by means of a diagonal partition
strategy and new trials are performed, thus improving the approximation of the
solution to problem (1)–(3).

For example, in Fig. 1, both f (x) and ∇f (x) are evaluated at points ai and bi of
a hyperinterval Di. The function f (x) is approximated along the diagonal [ai,bi]
of Di by means of a specially constructed auxiliary function ϕi(γ), γ ∈ [ai,bi]. The
minimum value ϕ∗

i (at the point γ∗i ) of this approximating function estimates the
lower bound of f (x) over the segment [ai,bi]. Then, the estimate ϕ∗

i is multiplied
by a coefficient in order to be a lower estimate for f (x) not only over the diagonal
but also over the whole multidimensional hyperinterval Di. This modified lower
estimate is accepted as the characteristic Ri of the hyperinterval Di.
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Fig. 1 Obtaining characteristic Ri of a hyperinterval Di in a diagonal global optimization method

As already mentioned, the diagonal algorithms belong to the class of divide-
the-best methods [38]. Therefore, on the one hand, general convergence theory
developed for analysis of divide-the-best algorithms (described, e.g., in [38, 43])
can be successfully applied to the analysis of the diagonal algorithms too. On
the other hand, the diagonal approach provides a natural generalization (see,
e.g., [33, 40, 43, 47]) of many one-dimensional algorithms to the multidimensional
case.

The concrete choice of both the partition strategy and the function Ri deter-
mines a particular diagonal method for solving problem (1)–(3). Some consider-
ations regarding diagonal partition strategies are given in this section, while the
issues related to the characteristics of diagonal methods are presented in the next
section.

Two strategies for hyperinterval partitioning are often used in diagonal algo-
rithms to partition a hyperinterval Dt = Dt(l) at iteration l (see Fig. 2): 2n-Partition
(see, e.g., [16, 17, 24, 29, 33]) and Bisection (see, e.g., [8, 16, 24, 33, 39]). In
2n-Partition strategy (see Fig. 2a), the chosen (at the iteration l) hyperinterval Dt

is partitioned into 2n new hyperintervals [n is the problem dimension from (3)]
generated by the intersection of the boundary of Dt and the hyperplanes that
contain a point γ∗t belonging to the main diagonal of Dt and are parallel to the
boundary hypersurfaces of Dt. In Bisection strategy (see Fig. 2b), the hyperinterval
Dt is subdivided into two hyperintervals (not necessarily of the same volume) by
a hyperplane passing through γ∗t (without performing a trial in this point) and
orthogonal to the longest edge of Dt. In both the cases, the new trials are performed
at both vertices of the main diagonal of each newly generated hyperintervals
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a b

Fig. 2 Partition of a two-dimensional hyperinterval Dt = [at,bt] executed at iteration l of a
diagonal method based on 2n-Partition (a) and Bisection (b) strategies (black dots indicate trial
points)

(that is, 2×2n −3 and two new trials are performed—except those already executed
at the vertices at(l) and bt(l)—after subdividing a hyperinterval by 2n-Partition and
Bisection strategies, respectively, as indicated by black dots in Fig. 2).

The usage of the diagonal approach has the goal to decrease the computational
efforts needed to describe the behavior of f (x) over every hyperinterval Di by
evaluating f (x),∇f (x) at only two vertices of Di instead of evaluating it at all
2n vertices. Therefore, the evaluation of both f (x) and ∇f (x) at 2n+1 − 3 points
during each iteration can impose too high computational demand on solving
problem (1)–(3) by a diagonal algorithm using 2n-Partition strategy (see Figs. 2a
and 3a). Therefore, the diagonal Bisection partition strategy seems to be more
computationally economic for solving expensive global optimization problems
(as confirmed, e.g., by [8, 24, 39]).

However, as shown, e.g., in [19, 40, 43], Bisection strategy also generates too
many trial points in the course of the algorithm execution (irrespective of the form
of the characteristic that determines which hyperinterval is to be subdivided at each
iteration). This fact is mainly due to the following reason (see [40] for more details).
When the number of hyperintervals in the current partition of D increases, each
hyperinterval contains more and more trial points on its edges. These points can
be closely spaced or even coincide but it is not easy to establish efficiently this
adjacency. Thus, both f (x) and ∇f (x) are often re-evaluated at the same or close
points during different iterations while it would be sufficient to evaluate them only
at one of these points (2n-Partition strategy has similar drawbacks).

In Fig. 3, an illustration of this redundancy problem for both the 2n-Partition and
Bisection strategies is presented. Each digit is the number of the iteration at which
f (x) and ∇f (x) have been evaluated at the corresponding point (at the first iteration,
the trials have been performed at the vertices a and b). It can be seen that several
trial points generated at different iterations are very close to one another (these
points are circled in Fig. 3). Notice also the two coincident points corresponding to
the seventh and eighth iterations in Fig. 3b: a diagonal method using the Bisection
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a b

Fig. 3 Partition of a two-dimensional hyperinterval D after eight iterations executed by a diagonal
algorithm based on 2n-Partition (a) and Bisection (b) strategies (black dots indicate trial points,
redundant points are circled)

strategy would evaluate f (x) and ∇f (x) at the same point twice and store the results
of the trials twice in different areas of the computer memory.

This redundancy slows down a diagonal algorithm using traditional partition
strategies because of the high computational resources needed for the functions eval-
uations. Therefore, traditional diagonal schemes often do not fulfill the requirements
of computational efficiency in black-box global optimization.

The so-called non-redundant diagonal partition strategy, proposed in [40], allows
one to avoid the computational redundancy of traditional diagonal partition strate-
gies. It trisects a hyperinterval by two parallel hyperplanes into three hyperintervals
of equal volume, performing new trials exactly at two new points. This strategy
produces regular meshes of trial points in such a way that one vertex where f (x)
and ∇f (x) are evaluated can belong to several hyperintervals (up to 2n). As shown,
e.g., in [18, 40, 43], a special indexation of the hyperintervals can be proposed in
order to efficiently establish links between hyperintervals having common facets but
generated during different iterations. In this way, the time-consuming procedure of
the functions evaluation is replaced by a significantly faster operation of reading (up
to 2n times) the functions values obtained at some previous iterations and saved in
a special database. Hence, the non-redundant partition strategy considerably speeds
up the search and also leads to saving computer memory. It is particularly important
that the advantages of this strategy become more pronounced when the problem
dimension n increases.

Let us give an example of the application of a diagonal algorithm based on
the non-redundant partition strategy. In Fig. 4, partitions of a two-dimensional
admissible region D produced by such an algorithm at several initial iterations l ≥ 1
are presented starting from the first two trials at the points a and b. As in Fig. 3, black
dots represent trial points and the numbers around these dots indicate iterations at
which these trial points have been generated. Hyperintervals shown in light gray
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a b

c d

Fig. 4 An example of subdivisions by the non-redundant diagonal partition strategy (see the
explanation in the text)

are chosen for the subdivision at the current iteration of the algorithm. In Fig. 4a,
the situation after the first two iterations is presented. Particularly, at the second
iteration, the hyperinterval D is partitioned into three new hyperintervals of equal
volume. This subdivision is performed by two hyperplanes orthogonal to the longest
edge of D that pass through points u and v (see Fig. 4a). Thus, at the third iteration,
three smaller hyperintervals are generated (see Fig. 4b). As one can see from Fig. 4c,
the trial point of the fourth iteration coincides with the point 3 at which the trial
has already been executed. Therefore, there is no need to perform a new (costly)
evaluation of f (x) and ∇f (x) at this point, since the values obtained at the previous
iteration can be used. These values can be stored in a specially designed vertex
database and is simply retrieved on demand without re-evaluations of the functions.
For example, Fig. 4d illustrates the situation after 11 iterations. It can be seen from
this figure that 21 hyperintervals have been generated by 17 trial points and four
times the functions values have been retrieved from the database. The more higher
is the problem dimension, the more pronounced is the computational advantage of
the considered diagonal partition strategy.

Surprisingly (see [41]), this strategy developed for the diagonal methods can
be also applied for the one-point-based algorithms (consequently, such algorithms
will be called diagonal too). Instead of evaluating f (x) and ∇f (x) at two vertices
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a b

c d

Fig. 5 One-point partition strategy based on the non-redundant diagonal strategy (see the expla-
nation in the text)

u and v (as in Fig. 4a), it is possible to do this initially for one of the vertices
(let us take the vertex b) of the region D and then at the corresponding vertex v
(see Fig. 5a) during every splitting (the point u is used just for partitioning goals).
The operation of verifying whether a trial has been already performed at a vertex
is done by using the same efficient procedure as for the non-redundant diagonal
strategy (compare Figs. 4a–d and 5a–d). For example, in Fig. 5d the distribution of
trial points generated during the first 11 iterations by an algorithm using this one-
point-based strategy is given: here, 21 hyperintervals have been produced by only
seven trial points. It can be seen from this figure that each hyperinterval contains
exactly one vertex where f (x) and ∇f (x) have been evaluated.

In the next section, some methods for solving problem (1)–(3) based on the
mentioned partition strategies will be briefly described.

3 Diagonal Global Optimization Methods

As known, the Lipschitz condition (2) can be used to obtain the lower bound
of the global minimum value (1) of the objective function f (x) at each iteration
l ≥ 1 of a Lipschitz global optimization algorithm, thus allowing one to construct
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numerical methods and to prove their convergence in a unified manner in the
framework of the divide-the-best scheme. The methods of this type form the class
of geometric algorithms that are based on constructing, updating, and improving
auxiliary functions (see function ϕi(γ) in Fig. 1) built by using an estimate of the
Lipschitz constant K from (2) (see, e.g., [1, 2, 20–22, 26, 45, 47]). Similar ideas are
used in many other surrogate-based optimization methods (see, e.g., [5]).

Since at each point x ∈ D from (3) it is possible to evaluate both the objective
function and its gradient, more information about the problem is available (espe-
cially, regarding its local properties expressed by the gradient values). The usage
of this information allows one to construct auxiliary functions that fit closely the
objective function and to accelerate the global search.

A particular attention in this contribution is given to three diagonal algorithms
proposed in the literature for solving problem (1)–(3). They differ both in the
used partition strategies (see Sect. 2) and estimates of the Lipschitz constant for
the gradient of f (x). In the context of these diagonal methods, the directional
derivative f ′(ci) evaluated at a vertex ci along the main diagonal [ai,bi] of Di (i. e.,
either ci = ai or ci = bi) is used in what follows instead of the gradient vector∇f (ci):

f ′(ci) =

(
n

∑
j=1

∂ f (ci)

∂x(j)
(bi(j)−ai(j))

)
/Δi, (4)

where

Δi = ‖ai −bi‖=
√

n

∑
j=1

(ai(j)−bi(j))2 (5)

is the length of the main diagonal of hyperinterval Di ⊂ D, n is from 3.
The first algorithm (denoted hereafter as BISECTION) is from [8]; it is based

on Bisection diagonal partition and at each its iteration l uses estimate of local
Lipschitz constants Ki over hyperintervals Di, 1 ≤ i ≤ M(l). The second method
(denoted hereafter as SMOOTHD) is from [45]; the non-redundant diagonal partition
strategy is applied in this algorithm together with the usage of smooth auxiliary
functions to estimate f (x) over main diagonals of hyperintervals. Finally, the third
method (denoted hereafter as MULTK) is from [21]; it uses the non-redundant one-
point-based diagonal strategy and multiple estimates of the Lipschitz constant K.
The latter algorithm is also characterized by a smart usage of the local information
during its work, whilst the first two algorithms are taken in their basic versions that
can be further improved (for example, by adopting the local tuning technique from
[24, 34, 35, 37] in the SMOOTHD scheme, by involving both the methods in a two-
phase approach as in [21, 31, 42], and so on).

More details on these methods can be found in [8, 21, 45], respectively. Here,
let us only give an insight into the construction of diagonal auxiliary functions
employed in the methods to assign the hyperintervals characteristics.
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a b

Fig. 6 Obtaining characteristics Ri for hyperintervals Di = [ai,bi] in the methods BISECTION and
SMOOTHD (a) and MULTK (b) (see formulae (9), (10), and (12), respectively)

Given an estimate K̃ ≥ K of the Lipschitz constant K from (2) and taking into
account the Taylor expansion of f (x) limited to the second order term, the next
inequality can be obtained for f (x) in Di = [ai,bi] ⊂ D, once a trial at vertex ci ∈
[ai,bi] is executed:

f (x)≥ f (ci)+ 〈∇f (ci),(x− ci)〉−0.5K̃‖x− ci‖2, x ∈ Di, (6)

where 〈·, ·〉 is the scalar product, ‖ · ‖ is the Euclidean norm in Rn.
Inequality (6) can be then used in the framework of geometric diagonal algo-

rithms to construct auxiliary functions along main diagonals of hyperintervals
(see Fig. 1) and to calculate the hyperintervals characteristics (see Fig. 6).

For example, in the BISECTION method, a non-smooth piecewise quadratic
auxiliary function φ i(γ), γ ∈ [ai,bi] (see Fig. 6a) can be considered along the main
diagonal [ai,bi] of Di [as consequence of (6)], with estimates K̃i of local Lipschitz
constants Ki in (6) over Di, 1 ≤ i ≤ M(l), calculated as follows:

K̃i = 0.5K̃(1+(K̂i/K̃)2), (7)

where K̃ is an estimate of the Lipschitz constant K from (2) over the whole search
domain D:

K̃ =

{
r max

1≤i≤M(l)
K̂i, if max

1≤i≤M(l)
K̂i > 0,

1, otherwise,
(8)

r > 1 is the reliability parameter of the method, and

K̂i = max

⎧⎨
⎩

|f ′(ai)− f ′(bi)|/Δi,

2[−(f (ai)− f (bi))+ f ′(bi)Δi]/Δ 2
i , 1 ≤ i ≤ M(l),

2[(f (ai)− f (bi))− f ′(ai)Δi]/Δ 2
i ,

with f ′(ai), f ′(bi) and Δi calculated by (4) and (5), respectively.
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Then, the characteristic Ri of hyperinterval Di = [ai,bi], 1 ≤ i ≤ M(l), corre-
sponds to the minimum of the function φ i(γ) for γ ∈ [ai,bi] (see value Rφ

i in Fig. 6a):

Ri = f (bi)+ f ′(bi)δi −0.5K̃iδ 2
i , (9)

where

δi =
−(f (ai)− f (bi))+ f ′(ai)Δi +0.5K̃iΔ 2

i

K̃iΔi +(f ′(ai)− f ′(bi))
.

The BISECTION method iteratively subdivides a hyperinterval (and, hence,
adaptively performs new trials) with the smallest characteristic by using Bisection
partition strategy until its volume (or the length of its main diagonal) becomes
smaller than the accuracy related to a preset constant ε > 0.

Let us now consider the SMOOTHD method from [45] which extends the one-
dimensional techniques from [37] to the multidimensional case through the diagonal
approach. Particularly, in [37], it has been demonstrated (for one-dimensional
problems) how to obtain smooth auxiliary functions making them closer to f (x) than
the previously used ones (as, for example, non-smooth functions of the BISECTION

method) and, therefore, accelerating the global search (see also [1, 28] where
similar constructions are discussed). A general scheme describing one-dimensional
methods using smooth bounding procedures has been presented in [37] with several
approaches for the Lipschitz constant estimation (including a global estimate K̃ of
the Lipschitz constant K considered here).

As observed in [37, 45], the objective function is above the function φ i(γ) for
all γ ∈ (y ′

i,yi) (see Fig. 6a) because due to (2) its curvature along this segment is
bounded by a parabola

π i(γ ) = 0.5K̃γ 2 +Biγ+Ci.

The unknowns y ′
i, yi, Bi, and Ci can be determined by solving the following system

of equations:

⎧⎪⎪⎨
⎪⎪⎩
φ i(y

′
i) = π i(y

′
i),

φ i(yi) = π i(yi),

φ i
′(y ′

i) = π i
′(y ′

i),

φ i
′(yi) = π i

′(yi).

Here, the first equation provides the coincidence of φ i(γ ) and π i(γ ) at the point y ′
i

and the third one provides the coincidence of their derivatives φ i
′(γ ) and π i

′(γ )
at the same point. The second and fourth equations provide the fulfilment of these
conditions at the point yi.
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Thus, once the values y ′
i, yi, Bi, and Ci are determined (see [45] for details), it

may be concluded that the following function

ϕi(γ ) =
{
φ i(γ ), γ ∈ [ai,y

′
i)∪ [yi,bi],

π i(γ ), γ ∈ [y ′
i,yi),

is a smooth piecewise quadratic auxiliary function over the main diagonal [ai,bi]
of Di. Its minimum value

ϕi(γ∗i ) = f (bi)− f ′(bi)Δi −0.5K̃Δ 2
i + K̃y2

i −0.5K̃(γ∗i )2 = Rϕi (10)

obtained at the point

γ∗i = 2yi − K̃−1f ′(bi)−Δi

corresponds to the characteristic Ri of hyperinterval Di, 1 ≤ i ≤ M(l) (as usual,
f ′(ai), f ′(bi) and Δi are calculated by (4) and (5), respectively).

The current estimate K̃ of the Lipschitz constant K from (2) for the objective
function gradient is found in the SMOOTHD method as:

K̃ =

{
r max

1≤i≤M(l)
K̂i, if max

1≤i≤M(l)
K̂i > ξ = 10−6,

rξ , otherwise,
(11)

where r > 1 is the reliability parameter of the method, ξ is a small positive value (it
ensures the correct algorithm execution when the values K̂i are too small), and K̂i

are calculated as

K̂i =
|2(f (ai)− f (bi))+(f ′(ai)+ f ′(bi))Δi|+di

Δ 2
i

,

with

di = {[2(f (ai)− f (bi))+(f ′(ai)+ f ′(bi))Δi]
2 +(f ′(bi)− f ′(ai))

2Δ 2
i }

1
2 .

The local tuning technique [leading, e.g., to a formula similar to (7)] can be also
used for estimating the Lipschitz constant K.

The stopping criterion of the SMOOTHD method is similar to that of the
BISECTION method, i. e., the method stops when the volume (or the length of the
main diagonal) of a hyperinterval with the smallest characteristic until becomes
smaller than the accuracy related to a preset constant ε > 0.

Finally, let us consider the MULTK method from [21]. With respect to the
BISECTION and SMOOTHD methods, that do not use any local improvement
technique, the MULTK method consists of the two explicitly defined phases:
(1) an exploration phase, at which an examination of large hyperintervals (possibly
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located far away from the current best point) is performed in order to capture new
subregions with better function values; (2) a record improvement phase, at which the
algorithm tries to better inspect the subregion around the record point. The record
improvement phase reflects the already well-established fact in global optimization
affirming the benefits of the local improvement during the global search (see, e.g.,
the references given in [15, 20, 25, 26, 43, 47]).

The MULTK method generalizes the approach proposed in [20] for the one-
dimensional problems by means of the one-point-based diagonal scheme and uses
during its work a series of non-smooth (discontinuous) piecewise quadratic auxiliary
functions. Each of these functions [based on the right-hand part of inequality (6)]
corresponds to a particular estimate K̃ of the Lipschitz constant K taken from zero to
infinity. Given the estimate K̃, a lower bound Ri of the objective function values over
hyperinterval Di = [ai,bi] (i. e., the hyperinterval characteristic) can be calculated as

Ri = Fi − K̃di, (12)

where

Fi = f (ci)+min
x∈Di

〈∇f (ci),(x− ci)〉, di = 0.5‖bi −ai‖2. (13)

In (13), the value of ci is equal either to ai or to bi, depending on the partition
scheme used (ai-point-based scheme has been used in [21] while bi-point-based
scheme is considered in this contribution). The minimum in (13) is attained at one
of the vertices of Di and is easily found (see [21]).

Both a hyperinterval Di and the respective characteristic Ri from (12) can be
represented in a two-dimensional diagram similar to that proposed in [17, 42] for
derivative-free methods. In this diagram (see Fig. 6b), the dot with the coordinates
(Fi,di) from (13) corresponds to the hyperinterval Di, 1 ≤ i ≤ M(l). The char-
acteristic Ri of the hyperinterval Di can be graphically obtained as the vertical
coordinate of the intersection point of the line passed through the point Di with
the slope K̃ and the vertical coordinate axis (see Fig. 6 where a partition of D into
three hyperintervals D1, D2, and D3 is represented). In this way, the hyperinterval
with the best characteristic for a given estimate of the Lipschitz constant is easily
identified. For example, in Fig. 6b, given the estimate K̃, hyperinterval D1 has the
smallest characteristic with respect to the other hyperintervals. If a higher estimate
K̂ > K̃ of the Lipschitz constant K is considered, the characteristic of hyperinterval
D1 still remains better than that of hyperinterval D2, but it becomes worse than the
characteristic of hyperinterval D3 with respect to K̂, because R3(K̂) < R1(K̂) for a
K̂ sufficiently higher than K̃ (see Fig. 6b).

Since the exact Lipschitz constant K for the gradient of f (x) (or its valid
overestimate) is unknown in the stated global optimization problem, a set of
possible estimates for K from zero to infinity is used in the MULTK method,
thus introducing a set of nondominated hyperintervals (i.e., hyperintervals with the
smallest characteristics (12) for some particular estimate of the Lipschitz constant
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for the gradient of f (x)). For example, in Fig. 6b the hyperintervals D1 and D3

are nondominated. The set of nondominated hyperintervals corresponds graphically
to the lower-right convex hull of the set of dots representing the hyperintervals
of the current partition of D and can be efficiently found by applying algorithms
for identifying the convex hull of the dots (see, e.g., [17, 43]). A number of
nondominated hyperintervals are then subdivided at the exploration phase of the
MULTK method. The MULTK method stops when a preset trials budget is depleted.

To conclude, let us report results of convergence analysis of the three methods.

Theorem 1 (BISECTION [8], SMOOTHD [45]). For any function f (x) with the
gradient satisfying the Lipschitz condition (2) with the constant K, 0 < K < ∞,
and for the algorithms BISECTION and SMOOTHD, there exists a value r∗ of the
reliability parameter r from (8) and (11) such that for any r ≥ r∗ the infinite (ε = 0 in
the methods stopping criterion) sequence of trial points, generated by these methods
during minimization of f (x), will converge only to the global minimizers of f (x).

Theorem 2 (MULTK [21]). For any point x ∈ D and any ρ > 0 there exist an
iteration number l(ρ) ≥ 1 and a trial point x′ = ci(l), l > l(ρ), generated by the
MULTK method with the unlimited trial budget, such that ‖x− x′‖ < ρ .

Since all the three methods belong to the class of divide-the-best algorithms
(see [38]), results of Theorems 1 and 2 can be obtained as particular cases of the
general convergence study of divide-the-best algorithms from [38].

Both the BISECTION and SMOOTHD methods have strong convergence prop-
erties. The reliability of these methods is improved by increasing the reliability
parameter r [see formulae (8) and (11)]. If this parameter is correctly defined (either
after experimental or theoretical investigations of problem (1)–(3), see [45]), the
methods converge to the points of the global minimum of f (x). As this parameter
decreases, the search rate increases, but the probability of convergence to a local
point within some hyperinterval other than the global minimizer of f (x) grows as
well. In fact, if a value of r smaller than r∗ is used in these algorithms, they can
converge (see the general analysis executed for divide-the-best methods in [38]) to
a local minimizer of f (x) or to the boundary of a subregion of D corresponding to
the best characteristics. This situation indicates the necessity to increase the value
of the reliability parameter, i. e., it is also a practical hint for the choice of r.

In contrast, the MULTK method manifests the so-called everywhere dense
convergence and has no any internal stopping criterion, useful to demonstrate
the goodness of the found solution to the problem (important in many applied
problems).

4 Results of Numerical Comparison

In this section, we present numerical results performed to compare the described
algorithms between themselves and with the DIRECT algorithm from [17]. The lat-
ter one has been taken as a benchmark method due to its extensive use in
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solving applied global optimization problems (see, e.g., [5]). It uses the center-
sampling partitioning strategy and works with a set of Lipschitz constants for the
objective function f (x) from (1), without evaluating ∇f (x). The implementation
of this method from http://www4.ncsu.edu/~ctk/SOFTWARE/DIRECTv204.tar.gz
was used in the experiments.

In our numerical experiments, eight GKLS D-type classes of dimensions n = 2,
3, 4, and 5 were considered, each of 100 continuously differentiable functions,
produced by the GKLS-generator (see [7]) as in [45]. For each particular problem
dimension n a “simple” and a “hard” classes were taken for the comparison
to highlight the influence of the problems complexity on the methods behavior
(see [42, 45] for a detailed description of the classes).

As in [21, 31, 42, 45], the global minimizer x∗ ∈ D from (1) was considered to
be found when a method generated a trial point x′ inside a hyperinterval with a
vertex x∗ and the volume smaller than the volume of the initial hyperinterval D =
[a,b] multiplied by an accuracy coefficient ε , 0 < ε ≤ 1, i. e.,

|x′(j)− x∗(j)| ≤ n
√
ε(b(j)−a(j)), 1 ≤ j ≤ n, (14)

where n is from (3). This coefficient was taken equal to 10−4 for n = 2, 10−6 for
n = 3 and n = 4, and 10−7 for n = 5. The tested algorithm was stopped either
when the maximal number of trials Pmax equal to 100,000 was reached, or when
condition (14) was satisfied (see [42] and the previous section for a discussion about
different stopping criteria in global optimization methods).

The balancing parameter equal to 10−4 was used in the DIRECT method, as
recommended by many authors (see [5, 17, 31]). Several values of the reliability
parameter r were used in the BISECTION method, starting from the initial value
r = 1.1 (the maximal values of this parameter equal to 1.7, 3.3, 2.1, 2.8, 3.2 were
chosen for the first five classes and were increased up to 10.0 for the last three GKLS
classes used in the experiments). An adaptive reliability parameter

r = r̄+C/l

was used in the SMOOTHD method, as investigated in [45], where l ≥ 1 is the
iteration counter and C is a positive constant (set in relation to the problems
dimension as 50 for n = 2, 100 for n = 3, 150 for n = 4, and 200 for n = 5). The
maximal values of the coefficient r̄ were equal to 2.8, 5.8, 3.6, 4.3, 5.8, 6.6, 4.1, and
7.8 for the GKLS functions from the first class to the last one, respectively. More
details on the choice of the reliability parameter can be found, e.g., in [45].

The methods were compared on the following criteria (see [42, 43] for more
details):

Criterion 1. (a) maximal number of trial points required for a method to satisfy con-
dition (14) for all 100 functions of a particular test class and (b) the corresponding
number of generated hyperintervals (see Tables 1 and 2).

http://www4.ncsu.edu/~ctk/SOFTWARE/DIRECTv204.tar.gz
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Table 1 Maximal number of trial points for GKLS test functions (Criterion 1a)

n ε Class DIRECT BISECTION SMOOTHD MULTK

2 10−4 Simple 1,159 1,106 332 257

2 10−4 Hard 3,201 2,084 893 323

3 10−6 Simple 12,507 6,963 3,092 2,091

3 10−6 Hard "100,000 (4) 13,230 4,807 3,875

4 10−6 Simple "100,000 (4) 82,435 20,059 18,054

4 10−6 Hard "100,000 (11) >100,000 (1) 50,699 23,769

5 10−7 Simple >100,000 (2) >100,000 (1) 10,912 17,543

5 10−7 Hard "100,000 (42) >100,000 (7) 93,245 85,047

Table 2 Corresponding number of hyperintervals for GKLS test functions
(Criterion 1b)

n ε Class DIRECT BISECTION SMOOTHD MULTK

2 10−4 Simple 1,159 553 599 861

2 10−4 Hard 3,201 1,042 1,669 1,119

3 10−6 Simple 12,507 3,482 10,389 11,813

3 10−6 Hard "100,000 6,615 16,749 23,653

4 10−6 Simple "100,000 41,218 119,345 187,717

4 10−6 Hard "100,000 >50,000 188,219 230,797

5 10−7 Simple >100,000 >50,000 89,343 257,583

5 10−7 Hard "100,000 >50,000 321,913 1,496,629

Table 3 Average number of trial points for GKLS test functions (Criterion 2a)

n ε Class DIRECT BISECTION SMOOTHD MULTK

2 10−4 Simple 198.89 432.75 151.11 74.75

2 10−4 Hard 1,063.78 707.03 404.79 162.11

3 10−6 Simple 1,117.70 3,369.76 1,011.00 783.49

3 10−6 Hard "6,322.65 4,934.85 1,756.18 618.32

4 10−6 Simple "11,282.89 4,061.15 4,598.97 3,512.92

4 10−6 Hard "29,540.12 >59,581.96 7,276.23 6,127.09

5 10−7 Simple >6,956.97 >40,772.45 4,281.42 3,583.20

5 10−7 Hard "72,221.24 >50,223.86 33,246.18 19,688.68

Criterion 2. (a) average number of trial points required for a method to satisfy
condition (14) for 100 functions of a particular test class and (b) the corresponding
number of generated hyperintervals (see Tables 3 and 4).

Results based on the first criterion are mainly influenced by minimization
of the most difficult functions of a class whilst the second criterion deals with
average data of the class. The number of generated hyperintervals provides an
important characteristic of any partition algorithm for solving problem (1)–(3) and
corresponds to the qualitative examination of the search domain D during the work
of the method.



Diagonal Methods for Solving GO Problems with Lipschitz Gradients 331

Table 4 Corresponding number of hyperintervals for GKLS test functions
(Criterion 2b)

n ε Class DIRECT BISECTION SMOOTHD MULTK

2 10−4 Simple 198.89 216.38 253.64 233.02

2 10−4 Hard 1,063.78 353.52 736.20 540.94

3 10−6 Simple 1,117.70 1,684.88 3,051.16 2,890.72

3 10−6 Hard "6,322.65 2,467.43 5,628.76 4,388.24

4 10−6 Simple "11,282.89 20,305.58 22,913.25 33,160.98

4 10−6 Hard "29,540.12 >29,790.98 49,083.08 61,810.38

5 10−7 Simple >6,956.97 >20,386.23 32,588.80 44,163.18

5 10−7 Hard "72,221.24 >123,920.70 96,764.18 272,344.60

Results of the numerical comparison of the methods with respect to the used
criteria with the eight GKLS test classes are shown in Tables 1, 2, 3, and 4. The
notation “>100,000 (j)” in Tables 1 and 3 means that after 100,000 function trials
the method under consideration was not able to solve j problems (the DIRECT
method was not able to solve many of these problems even after 1,000,000 trials
as reported in [42], with the consequent increase of the average values in Tables 3
and 4—this fact is marked by ‘"; it should be, however, noticed that each trial in
the DIRECT method is computationally lighter than that of the other three methods).
The data from unsolved problems were not taken in computation of the averages in
Tables 3 and 4.

As demonstrated by the results of the extensive numerical experiments per-
formed, the usage of the gradient information together with the efficient partitioning
strategy allows one to obtain a serious acceleration in comparison with the
derivative-free DIRECT method on the given classes of test problems.

According to Tables 1, 2, 3, and 4, the algorithms SMOOTHD and MULTK based
on the non-redundant diagonal partition strategy require much fewer trials than the
BISECTION method to ensure a thorough examination of the search domain for the
considered test classes. The advantage of these methods becomes more pronounced
as the problem dimension grows or the problem complexity increases. This confirms
the observations of Sect. 2 regarding the redundancy of Bisection partition strategy,
traditionally used in diagonal algorithms.

In its turn, the MULTK method behaves generally better than the SMOOTHD
algorithm on the used GKLS classes. This result is explained by the usage of a
strong local improvement phase incorporated in the MULTK method, particularly
suitable for the stopping criterion (14) (it should be mentioned that this algorithm
has no an internal stopping criterion as in the SMOOTHD method). Adding such a
record improvement phase to the SMOOTHD method (tested here in its basic version
as given in [45]) would significantly speed up the algorithm execution in terms of
the function trials, as suggested by investigations performed in [21, 26, 47].
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31. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased DISIMPL algo-

rithm for expensive global optimization. J. Glob. Optim. 59(2–3), 545–567 (2014)
32. Pintér, J.D.: Extended univariate algorithms for N-dimensional global optimization. Comput-

ing 36(1–2), 91–103 (1986)
33. Pintér, J.D.: Global Optimization in Action (Continuous and Lipschitz Optimization: Algo-

rithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht (1996)
34. Sergeyev, Y.D.: An information global optimization algorithm with local tuning. SIAM

J. Optim. 5(4), 858–870 (1995)
35. Sergeyev, Y.D.: A one-dimensional deterministic global minimization algorithm. Comput.

Math. Math. Phys. 35(5), 705–717 (1995)
36. Sergeyev, Y.D.: A method using local tuning for minimizing functions with Lipschitz deriva-

tives. In: Bomze, I.M., Csendes, T., Horst, R., Pardalos, P.M. (eds.) Developments in Global
Optimization, pp. 199–216. Kluwer Academic Publishers, Dordrecht (1997)

37. Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math.
Program. 81(1), 127–146 (1998)

38. Sergeyev, Y.D.: On convergence of “Divide the Best” global optimization algorithms. Opti-
mization 44(3), 303–325 (1998)

39. Sergeyev, Y.D.: Multidimensional global optimization using the first derivatives. Comput.
Math. Math. Phys. 39(5), 711–720 (1999)

40. Sergeyev, Y.D.: An efficient strategy for adaptive partition of N-dimensional intervals in the
framework of diagonal algorithms. J. Optim. Theory Appl. 107(1), 145–168 (2000)

41. Sergeyev, Y.D.: Efficient partition of N-dimensional intervals in the framework of one-point-
based algorithms. J. Optim. Theory Appl. 124(2), 503–510 (2005)

42. Sergeyev, Y.D., Kvasov, D.E.: Global search based on efficient diagonal partitions and a set of
Lipschitz constants. SIAM J. Optim. 16(3), 910–937 (2006)

43. Sergeyev, Y.D., Kvasov, D.E.: Diagonal Global Optimization Methods. FizMatLit, Moscow
(2008) (in Russian)

44. Sergeyev, Y.D., Kvasov, D.E.: Lipschitz global optimization. In: Cochran, J.J. et al. (eds.)
Wiley Encyclopedia of Operations Research and Management Science, vol. 4, pp. 2812–2828.
Wiley, New York (2011)

45. Sergeyev, Y.D., Kvasov, D.E.: A deterministic global optimization using smooth diagonal
auxiliary functions. Commun. Nonlinear Sci. Numer. Simul. 21(1–3), 99–111 (2015)



334 Y.D. Sergeyev and D.E. Kvasov

46. Sergeyev, Y.D., Daponte, P., Grimaldi, D., Molinaro, A.: Two methods for solving optimization
problems arising in electronic measurements and electrical engineering. SIAM J. Optim. 10(1),
1–21 (1999)

47. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting
Space-Filling Curves. Springer, New York (2013)

48. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential
and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht (2000)

49. Zhigljavsky, A.A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)



Optimization of Design Parameters for Active
Control of Smart Piezoelectric Structures

Georgios Stavroulakis, Georgia Foutsitzi, and Christos Gogos

Abstract The objective of this work is to design an optimal controller for plate
structures to control their response under the influence of external excitation.
The finite element method based on the Mindlin–Reissner plate theory has been
extended to incorporate the piezoelectric effects. A genetic algorithm is applied
to find the optimal placement of piezoelectric actuators and input voltages for
static shape control. The objective function is the error in transverse displacements
between the desired and the achieved shape.

In addition, the optimal placement of actuators and sensors for vibration control
of laminated plates is studied. The objective taken into consideration is the
controllability index, which is the singular value decomposition of a control matrix
as can be found at the bibliography. The index measures the input energy required
to achieve the desired structural control using piezoelectric actuators.

Finally, the linear quadratic regulator (LQR) closed loop control is applied to
study the control effectiveness. A comparison is made between the optimal locations
of piezoactuators obtained through controllability index and a nonoptimal case.

Keywords Optimal actuator/ sensor placement • Mindlin-Reissner plate • Finite
element method • Genetic algorithm • Linear quadratic regulator control

1 Introduction

Smart composite structures are receiving increasing attention due to their significant
potential applicability in various industrial and research areas. Excellent sensing and
actuating capabilities of piezoelectric materials made them the most practical, smart
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materials to integrate with laminated composite structures. Optimal distribution of
the piezoelectric material in the structure to induce controlled actuation has been a
subject of interest in recent years.

In static shape control applications, the objective is to optimize control parame-
ters such as the placement of actuators and the applied electric voltage so that the
desired shapes are achieved or best matched. Optimization of such parameters and
configurations of piezoelectric actuators for acquiring efficient and precise shape
control have been an interesting subject of research in recent years [1, 2, 7]. The
review article by Irschik [9] describes relevant applications of static and dynamic
shape control of structures by piezoelectric actuation.

In addition, piezoelectric material technology has found application in active
vibration control of smart structures. As it is well known in the area of smart
structures and control engineering, the performance of active vibration control
depends not only upon the control law but also on the placement of piezoelectric
sensors and actuators. Optimal actuator placement is the topic of a large portion
of the recent work in smart structures’ optimization and is based on several
criteria (from rigorous measures of controllability and observability, coming from
optimal control theory, to more intuitive measures of deviation from a desired
response) [8, 10, 12]. A “technical review” until 2010 that presents the “most used”
optimization criteria by researchers for optimal placement of piezoelectric sensors
and actuators on a smart structure can be found in [6].

Following the theory of optimal control is only possible for the design of linear
systems with linear control feedback. The more general approach for the design of
controllers that cover nonlinear mechanical models and nonlinear control laws is
based on numerical optimization. Active control applications of smart composite
structures usually involve large, nonconvex, integer programming problems that
are discrete in nature. Global optimization algorithms (such as genetic algorithms,
evolutionary algorithms, and particle swarm optimization algorithms) are often
suitable for these types of problems. Moreover, they are simple to implement
when compared to other optimization techniques, allowing for their application in
a wide range of problems in this area of study [2, 4, 7, 8, 10, 12]. GA methods
are computationally effective in finding the global optimal solution for a nonconvex
function which has no derivative. Several authors have already used this method to
optimize the actuator and sensor locations, for example [4, 10, 12].

The objective of this work is to design an optimal controller to control the
response of plate structures to control its response under the influence of external
excitation. The finite element method based on the Mindlin–Reissner plate theory
has been extended to incorporate the piezoelectric layers that are used as sensors and
actuators. An improved genetic algorithm is applied to find the optimal placement
of piezoelectric actuators and input voltages for static shape control. The objective
function is the error in transverse displacements between the desired shape and the
achieved one.

In addition, the optimal placement of actuators and sensors for vibration control
of laminated plates is studied. The objective taken into consideration is the
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controllability index, which is the singular value decomposition of a control matrix
[13]. The index measures the input energy required to achieve the desired structural
control using piezoelectric actuators.

Finally, the linear quadratic regulator (LQR) closed loop control is applied to
study the control effectiveness. A comparison is made between the optimal locations
of piezo-actuators obtained through controllability index.

2 Finite Element Modeling of Piezoelectric Smart Structures

Consider a flexible structure with Na piezoelectric actuators and Ns piezoelectric
sensors bonded to its upper surface and lower surface, respectively. From finite
element analysis, the equations of motion and charge equilibrium of the system
can be written as follows:

[M]
{

d̈
}
+[Kuu]{d}+ [Kuφ

]{φ} = {Fm}[
Kφu
]{d}+ [Kφφ

]{φ}= {Fq
}

(1)

where, {d} and {φ} are the global mechanical and electrical DoF vectors, [M] is the

global mass matrix, [Kuu],
[
Kuφ
]
=
[
Kuφ
]T

, and
[
Kφφ

]
are the global mechanical

stiffness, mechanical-electrical coupling stiffness, and dielectric stiffness matrices
respectively. {Fm} and

{
Fq
}

are the respective global mechanical and electrical
loads vectors.

Next, we assume that the electrical DoF vector in Eq. (1) can be divided into the
actuating and sensing DoFs, {φ}e = {φa,φs}T , where the subscripts a and s denote
the actuating and sensing capabilities. Hence, considering open-circuit electrodes,
and in that case

{
Fq
}
= 0, the nonspecified potential differences in (1) can be

statically condensed and the equations of motion and charge equilibrium become

[M]
{

d̈
}
+[Kuu]{d} = {Fm}− [Kuφ

]
a {φ}a

{φ}s = −[Kφφ
]−1

s

[
Kφu
]

s {d} (2)

where [K∗
uu] = [Kuu]−

[
Kuφ
]

s

[
Kφφ

]−1
s

[
Kφu
]

s.
Equation (2) can be used in smart structure applications such as vibration control

and static or dynamic shape control. In shape control applications, the piezoelectric
layers are used as actuators. In addition the time-dependent momentum forces
become zero. Thus, all the electrical degrees are considered as known quantities
and the coupled Eq. (2) reduce to pure mechanical ones:

[
Kuφ
]{d} = {Fm}−{Fel} (3)

where {Fel}=
[
Kuφ
]{φ} is the electrical force vector due to the actuation.
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2.1 State Space Formulation of the Modal Control Problem

The application of the active control methods in dynamic structural problem requires
the use of a state space model. Before we obtain this kind of equations, a mode
superposition method is adopted to obtain an approximate reduced-order dynamic
model of the system with uncoupled equations of motion in the modal coordinates.
This step is essential for two reasons. First modal analysis gives a lot of qualitative
information about the dynamical response of a system and helps us design an
effective smart system. In addition, reduction of the size is essential for the design
of the controller. Hence {d(t)} can be approximated by

{d} ≈
r

∑
i=1

Φjηj = [Φ ]{η} (4)

where [Φ ] = [Φ1,Φ2, · · · ,Φr] is the truncated modal matrix and [η ] =
[η1,η2, · · · ,ηr] is the modal coordinate vector. Substituting Eqs. (4) into (2) leads to

{η̈}+ [Ω 2]{η} = [Φ ]T {Fm}− [Φ ]T
[
Kuφ
]
α {φ}α (5)

{φ}s = −[Kφφ
}−1

s

[
Kuφ
]

s [Φ ]T {η} (6)

Also using the modal approach, structural damping can be easily introduced as

{η̈}+[Λ ]{η̇}+[Ω ]{η} = [Φ ]T {Fm}− [Φ ]T
[
Kuφ
]
α {φ}α (7)

where [Λ ] is a diagonal modal damping matrix with the generic term 2ξiωi, where
ξi is the modal damping ratio and ωi the undamped natural frequency of the ith
mode. For control design, Eqs. (5) and (6) are transformed into state-space forms as
follows:

{ẋ}= [A]{x}+[B]
{

uφ
}
+{f}

{φ}s = {y} = {C}{x} (8)

where {x} = {η , η̇}T is the state vector, [A] is the system matrix, [B] is the control
matrix, {f} is the disturbance input vector, and

{
uφ
}
= {φ}α is the control input to

the actuator. These matrices are given by

[A] =

[
[0] [I][−Ω 2] [Λ ]

]
[B] =

[
[0]

− [Φ ]T
[
Kuφ
]

a

]

{f}=
[

[0]
[Φ ]T {Fm}

]
[C] =

[
−[Kφφ

]−1
s

[
Kφu
]

s [Φ ] [0]
]

(9)
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2.2 Controllability Index for Actuator Location

In this section, the controllability index is introduced which is based on the state
equation (8). This index will be used to determine the optimal placements of
piezoelectric actuators in vibration control of plate structures.

From the expressions of matrices [A] and [B] in state equation (8), it is clear that
all control designs depend on the placement and size of the piezoelectric actuators
as well as the vibration modes used in the modal analysis.

Performing the singular value decomposition of control matrix [B] we get the
singular values

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ1 . . . 0
.

.

.

σnp

0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,np < n (10)

where np is the number of piezoelectric actuators and n is the number of modes used
in the modal analysis. The magnitude of σi is a function of the location and size of
piezoelectric actuators. Wang and Wang [13] proposed that the controllability index
(CI) is defined by

Ω̂ =
np

∏
i=1

σi (11)

The higher the CI, the lower the power consumption required for control, i.e.,
the better the control effectiveness. The index measures the input energy required to
achieve a desired structural control by the piezoelectric actuators.

3 Optimal Controller Design

In the following, controller parameters such as actuator locations and/or actuation
voltages are optimized in shape control and vibration control of plate structures.

The shape control of smart plate structures has been formulated as an opti-
mization problem to find out the optimal actuator locations as well as the actuator
voltages in a plate structure.

In addition the vibration control of the plate has been formulated as an opti-
mization problem with design variables the locations of collocated piezoelectric
actuators–sensors (S/As) pairs.
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In this work, it is assumed that every actuator covers exactly the length of one
element and possible actuator locations are described through a vector a of binary
variables whose elements ai are 1 to indicate the presence and 0 the absence of an
actuator.

3.1 Optimization of Actuator Location and Voltages
in Shape Control

Shape control consists of finding a set of design variables (i.e., actuator size,
location, and voltages) that minimizes the difference between achieved and desired
shape under certain constraints.

When considering plate elements, the shape of a structure is mainly described by
the shape of its midplane, which itself is described by the transverse displacement
of the finite element mesh nodes. Therefore, the error between the predefined
displacement field function and the achieved displacement field can be defined as
the sum of the errors at the r nodal points, and the fitness or objective function, f , is
then given by

f =
r

∑
i=1

|wi −wd
i | (12)

where wd
i is the desired nodal displacement value and r is the number of concerned

displacements.
In general the transverse displacement is a function of the electric potential, the

location, and the size of actuators. In this framework, the shape control problem
studied consists of finding the optimal position of actuators and the applied voltages
for a given number of actuators, which minimize the cost function f under the
following constraint

φmin ≤ φi ≤ φmax

ai ∈ {0,1}
nac

∑
i=1

ai ≤ p (13)

where φi is the actuation voltage of the ith actuator and φmin and φmax are the lower
and upper saturation voltages of the actuators, nac is the number of actuators, p is
a given number which is lower than the number of finite elements and ai takes the
value 1 or 0 to indicate the presence or the absence of an actuator.

The Mixed Integer Problem that arises is highly nonlinear and is solved using
a genetic algorithm procedure in order to accommodate two different types of
information: the location of each piezoelectric element and the voltage needed to
apply to each of them.
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3.2 Optimization of Actuator Location in Vibration Control

In active control of smart structures, the placement of actuators and sensors on the
structure is a very important issue in order to achieve the most effective actuation.
Optimal placement of sensors and actuators over a structure might vary for different
criteria. Next, in order to propose performance criteria for S/A locations, the
maximization of CI defined above has been considered. In the current analysis, CI
has been used as a measure of control effectiveness. The problem is to determine
the optimal placements ai of piezoelectric collocated sensor–actuator pairs on the
plate which maximize the CI:

f1 = Ω̂ (14)

3.3 Optimization Implementation Using Genetic Algorithms

The two optimization problem formulated in Sects. 3.2 and 3.3 can be stated in the
following general form:

Find a design variable x= (φ ,a) for the first case or find a design variable x= (a)
for the second case that

Minimize f (x)

Subject To xmin
i ≤ xi ≤ xmax

i , i = 1,2, · · · ,Nd

gj(x) ≤ 0, j = 1,2, · · · ,N (15)

where f (x) is the objective function, x is the vector of design variables xj, gj(x)
are the N inequality behavioral constraint equations, xmin

i and xmax
i are the lower

and upper limits of the design variables, respectively, and Nd is the total number of
design variables.

Both problems are solved using genetic algorithms (GAs). Genetic Algorithms
are a general purpose global optimization method that are known for their wide
applicability to several engineering optimization problems [5]. For the case of the
shape control the GA is fed with a number of initial solutions generated by the local
search optimization method Great Deluge [3]. For the case of the vibration control
problem GA achieved equally good results starting from a random initial population.

The computational difficulty of the shape control problem of plate structures
is discussed below. The objective is to simultaneously determine locations and
voltages for a set of actuators so that the difference between the desired and the
achieved shapes is minimized. The underlying equations of the problem formulation
are non-linear. Furthermore, the search domain space is quite large since k out
of n binary variables have to be designed assuming value 1 while the rest ones
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should assume value 0. In this study n = 36 and k = 10, which accounts for over
250 million possible combinations. Additionally, k continuous variables have to be
decided corresponding to the voltage applied to each actuator. Each of these k values
is bounded by problem-specific lower and upper limits which are for this work 0 and
100 V, respectively. So, the domain space of the problem is substantially big and
combined with the fact that the evaluation of the plate position for each possible
solution involves a nontrivial amount of computations results in an interesting
optimization problem.

For the case of the vibration control of plate structures the problem is simpler
since no voltages have to be determined but only the actuator locations. One might
expect that the best solution might exhibit symmetry since from a symmetrical
initial shape of the plate we try to return to another symmetrical target shape. If
this hypothesis is correct that means that by activating some actuators on the left
half of the plate and their mirrors at the right half of it, this will then result to the
best possible solution. Since the problem in this case is rather small it is possible
to try a full enumeration of all possible combinations for the left half of the plate,
mirror the solution to the right half and evaluate each solution. In our experiments
where n = 36 and k = 10, only 8,568 cases had to be examined. Nevertheless, the
solution that resulted by picking the best among the above combinations was not as
good as the solution that the GA provided.

4 Numerical Applications

In this section, we present two applications about active control of rectangular plates
with piezoelectric patches. The MatLab software package combined with the Global
Optimization Toolbox was used for the development of the algorithm. The algorithm
is able to solve the optimization problems stated in the previous paragraphs given
the number of actuators/sensors alongside with the plate dimensions and properties.
The computer code developed makes no assumption of linearity between the
displacements and the electric voltages; thus, it can be used for non-linear models
as well.

After validating the present formulation with the existing results in the literature,
the problem of optimal designing the variables for active control of the cantilever
plate shown in Fig. 1 is considered. The plate has a dimension of 200 × 200 ×
1.2 mm. The composite plate consists of four composite substrate layers and two
outer PZT layers. The stacking sequence of the substrate is antisymmetric angle-
ply [−45◦/45◦/−45◦/45◦]. The substrate is made of T300/976 graphite–epoxy
composite and the PZT is PZT G1195N. The elastic moduli and Poisson’s ratios
for the graphite–epoxy material and the piezoceramic are those proposed in [11]:
E1 = 150.0 GPa, E2 = E3 = 9.0 GPa, G12 = 7.1 GPa, G23 = G13 = 2.5 GPa,
v12 = v13 = v23 = 0.3 and Ep

1 = 63.0 GPa, Gp
12 = Gp

23 = Gp
13 = 24.2 GPa, vp

12 =

vp
23 = vp

13 = 0.3. The piezoelectric constants are d13 = d23 = 254 × 10−12 and
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Fig. 1 The cantilever plate

d42 = d51 = 584×10−12. The total thickness of the composite plate is 1 mm and each
layer has the same thickness (0.25 mm). The thickness of each PZT is hp = 0.1 mm.
The length of one piezoelectric patch is assumed to be equal to the length of one
finite element. For the finite element analysis the beam is divided into 36 (6 × 6)
elements and the total number of piezoelectric patches is assumed to be ten. Next, all
the 36 elements are candidates for locations of the ten piezoelectric actuator patches
of length equal to finite element mesh. The stiffness and mass of the piezoelectric
patches are taken into account in the model.

In all applications, plates have the same size and the same piezoelectric material
is used.

4.1 Shape Control

In this section the optimal voltages and locations of ten actuators are calculated for
shape control of a plate with two different kinds of disturbances. In the case of shape
control, all piezoceramics on the upper and lower surfaces of the plate are used as
actuators. The lower limit of the voltage is set to be 0 V and the upper limit is set to
be 100 V (limit imposed due to depoling of actuators). The desired shape is given
by wd(x) = 0.

4.1.1 A Cantilever Plate Subject to a Point Force at the Tip

The problem of the cantilever laminated composite plate when a point load of
1N is applied at point A is studied in this section. The genetic algorithms were
run using the following parameters: Generations = 1,000, Population = 100,
EliteCount = 4. Table 1 shows the optimal solutions for placement of the actuators
and the corresponding optimal values of the actuated voltages. We observe that the
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Table 1 Optimal locations of ten actuators on the cantilever plate for the desired shape
wd(x) = 0

Optimal locations Corresponding optimal voltages

2, 7, 8, 9, 10, 19, 21, 25, 27, 35 100, 100, 100, 100, 100, 100, 100, 85.74, 100, 100

31

1 2 3 4 5 6

7 8 9 10 11 12

13

19

25 26 27 28 29 30

20 21 22 23 24

14 15 16 17 18

33 34 35 3632

Fig. 2 Optimal actuator locations for the cantilever plate subject to a point force at the tip

optimal actuation voltages are close to the upper saturation limit. Figure 2 shows the
optimal locations of the ten actuators on this plate when the presented hybrid GA is
applied. The optimal value of the cost function is 3.983514e−03.

In Fig. 3, the achieved shape, when actuators are optimally located and the
optimal voltages are applied on the plate, is compared with the desired position.
By comparing the shapes in Fig. 3, it can be seen that the controlled deflection is
quite close to the desired shape.

4.1.2 A Cantilever Plate Subject to a Uniform Load

In this example, the plate is originally flat and then is exposed to a uniform
distributed load of 1Nm−2. In order to determine the optimal placements of the
piezoelectric actuators to flatten the plate, the GA is used with the following values:
Generations = 1,000, Population = 50, and EliteCount = 2. The optimal values of
the applied voltages as well as the optimal locations of actuators are given in Table 2
(see also Fig. 4).
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Fig. 3 Comparison between the achieved shape and the desired shape wd(x) = 0 for a point load
at the tip

Table 2 Optimal locations of ten actuators on the cantilever plate for the desired shape
wd(x) = 0

Optimal locations Corresponding optimal voltages

1, 2, 5, 9, 10, 13, 19, 21, 22, 36 0.095, 2.994, 0.962, 0.307, 0.794, 2.198, 3.033, 1.412,
1.409, 0.003

31

1 2 3 4 5 6

7 8 9 10 11 12

13

19

25 26 27 28 29 30

20 21 22 23 24

14 15 16 17 18

33 34 35 3632

Fig. 4 Optimal actuator locations for the cantilever plate subject to a uniform load
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Fig. 5 Comparison between the achieved shape and the desired shape wd(x) = 0 for uniform load
condition

Genetic algorithm results in an objective value of 2.114123e-05. Figure 5 shows
the achieved plate shapes from optimal placement. It should be noted that the values
of the applied voltages are very small, showing that effective control can be achieved
with suitable placement of actuators.

4.2 Optimal Actuator Locations in Vibration Control

Consider now the problem of optimizing the locations of piezoelectric patch
actuators on a cantilever plate for active vibration control. In vibration control, the
upper piezoceramics are severed as sensors and the lower ones as actuators. The first
twelve modes are used in the modal space analysis and an initial modal damping
ratio for each of the modes is assumed to be 0.8 %. The parameters taken for the
genetic algorithm are: Generations = 100, Population = 100, EliteCount = 2. The
negative of the controllability index in Eq. (14) has been taken as the fitness function.
The optimal placement of actuators is shown in Fig. 6a.

To verify the optimization results, the plate is subjected to a vertical impulse at
its tip and the disturbance in a structure is suppressed by using the LQR as a control
measure with weight matrices Q = 107 ∗ I and R = I. The response at the free end of
the plate is shown in Fig. 7 for the optimal placements that the genetic algorithm has
developed. The responses from a non-optimal actuator placements are also included
in the same figure. The nonoptimal placements are shown in Fig. 6b. Figure 7 shows
that with the optimal placement the vibrations are suppressed much faster than the
other nonoptimal locations.
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Fig. 6 (a) Optimal actuator location and (b) nonoptimal actuator location
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Fig. 7 Displacements at the plate tip: (a) optimal actuator location and (b) nonoptimal actuator
location

5 Conclusions

Optimal design of smart structures leads to difficult optimization problems that must
be solved numerically. Academic examples of optimal design in a piezoelectric
controlled plate subjected to static and dynamic loadings have demonstrated that
even with up-to-date general-purpose algorithms the calculation of global optimum
is a challenge. In fact, optimal placements calculated in Fig. 4, for statics, and
Fig. 6a, for dynamics, are not symmetric as expected. Nevertheless, the results are
still useful for practical applications. Much more complicated problems arise in
plate and shell structures with arbitrary shape and/or usage of more sophisticated
design criteria.
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Stable EEG Features

V. Stefanidis, G. Anogiannakis, A. Evangelou, and M. Poulos

Abstract The aim of this chapter is to identify stable points and stationary wavelets
in EEG signals. Generally an EEG signal is a very complex nonstationary signal. It
is very difficult to recognize specific EEG features such as Biometric patterns and
Pathological changes. Using a repeated autocorrelation procedure and symmetry
features of EEG time series on real EEG Time Series Data, we experimentally
investigate stable points in EEG signals. Also we investigate standing waves shafts
around these stable points, which reveals the existence of stationary wavelets in
EEG signals.

Keywords EEG signal • Data mining • Stationarity • Time series • Autocorre-
lation coefficients • LVQ neural network

1 Introduction

Time-frequency analysis of electroencephalogram (EEG) through several mental
tasks received significant consideration. As EEG is nonstationary, time-frequency
analysis is crucial to analyze brain states during different mental tasks [1]. In partic-
ular, it has been exposed that large-scale patterns of matched neuronal EEG activity
are ever varying and thus exhibit a substantial variability over time. Therefore, until
now, analysis of the EEG signal has been based mostly on statistical data processing
in order to acquire stable and reliable characteristics. The assumption underlying
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such statistical analyses is the “stationarity” of the registered signal [1]. However,
in studies [1, 2], the EEG sources are considered quasi-stationary. In study [3] is
introduced that the length of EEG of which is so short that signal within it can be
treated as stationary or quasi-stationary [3].

The basic aim of the research study is to examine the stationary lengths of each
EEG in order to be corroborated the hypothesis of the previous study [3]. Thus, for
this implementation a novel EEG signal analysis is introduced.

It is known that the time-frequency information of EEG signal can be used as a
feature for classification in brain–computer interface (BCI) applications [4–14] or
for Diagnostic Purpose [7].

There are two alternative approaches to examining stationarity, the parametric
and the nonparametric. Parametric approaches are widely used by those undertaking
research in the time domain, such as economists, who are building certain assump-
tions about the nature of their data.

Nonparametric approaches are most commonly seen by researchers working in
the frequency domain, such as electrical engineers, who often treat the system as an
unknown entity and cannot make any inferences or reckoning based on the nature
of the data.

Nonparametric tests are not based on the knowledge that the population data
are normally distributed. By making no assumptions about the nature of the data,
non parametric tests are more widely applicable than parametric tests which often
require normality in the data.

While more widely applicable, the downside is that nonparametric tests are also
less powerful than parametric tests merely because the assumptions underlying their
use are fewer and weaker than those associated with parametric tests.

In this study, the symmetrical features of EEG are investigated using a well-fitted
autocorrelation coefficients (ACC) procedure. For this the schedule of this algorithm
is developed in the following three steps:

1. The ACC calculation using symmetrical features
2. Polynomial procedure on ACC
3. Graph Interpolation Procedure

2 The Method

2.1 The ACC Algorithm

This study is based on the hypothesis that the shape of a segment of a Time Series
may be described by the degree of asymmetry around a characteristic point. The
degree of asymmetry of a segment is obtained via the Pearson criterion [9] and is
described by the following equation:

S =
X −Mo

s
(1)
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where S is the degree of asymmetry, X is the mean value of a time series segment,
Mo is the value of the characteristic time series (data) point, which is received as
the maximum value, s is the standard deviation of a time series segment. The degree
of asymmetry may be characterized as a necessary characteristic coefficient of the
time series segment in our case because this depicts a total geometry picture of
the segment. In this stage, the time series segment xt is subjected to power-spectral-
density analysis of each time series overlap segment, and computed using frequency
estimation of the standard periodogram, as follows:

Sx(f ) =
1
T
|

T

∑
t=1

xte
j−2πtf |2 (2)

The samples xt are replaced by the values of the periodogram given by |fn| where,
which can be computed using the fast Fourier transform (FFT) algorithm [10] thus,
according to the Inverse Function of formula 1, which is given as follows:

fn = (S−1
n (Snf )) (3)

This approach has also been applied to several cases, e.g., EEG study [4–14].
Using Eqs. (2) and (3), Eq. (1) is transformed into 4:

Sk =
T
√

T −2(|f̂ |− |fg|)√
2T∑T/2

k=1 f 2
n −4(∑T/2

k=1 fn)2
(4)

where fg = max(fn) for 1 � g � (int[T/2]).
Thereafter, we considered set D of sequences, which consists of the following

coefficients:

{D} = {D̂1, D̂2, . . . , D̂k−1}

where

D̂1 = {S1,S2}, D̂2 = {S1,S2,S3,}
D̂3 = {S1,S2,S3,S4}, . . . , D̂k−1 = {S1,S2,S3, . . . ,Sk}

Then, the ACC of the proposed method are computed as follows:

Ĉ = [Cm] (5)

where m = 3, . . . ,k+2 is calculated via the condition of Eq. (6) which expresses the
corresponding weighing function using a Power Spectral Density window:

wm = int(
T
m
), where wm � 3 (6)
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Then, the ACC are given by

Sk =

√
2k∑k+2

m=1(D̂kD̂T
k )−4 | ∑k+2

m=1(D̂k) |2
m(m−2)

(7)

2.2 Polynomial Procedure on ACC

After that, we have to find the coefficients of the sixth degree polynomial p(x) (see
[4–14], as a justification of this option of 6 degrees of freedom for the fitting), in
order to achieve best fitting of p(x(i)) to C(i), where x(i) are the horizontal axis
elements (time or points) and C(i) are the ACC. The produced polynomial is known
as “Interpolation Polynomial.” The result p is a row vector of length n+1 containing
the polynomial coefficients in descending powers:

p(x) = p1xn +p2xn−1 + . . .+pnx+pn+1 (8)

2.3 Interpolation Procedure

Then, in order to find exactly the graph which best fits the coefficients of the
Interpolation Polynomial, for each element of the horizontal axis (x) we compute
the corresponding element on the vertical axis (y) according to following equation:

y = p1xn +p2xn−1 + . . .+pnx+pn+1 (9)

where pi is the previously computed Interpolation Polynomial. This is achieved
using delta error estimation, in which delta is an estimate of the standard deviation
of the error in predicting a future observation at x by p(x) [see Eq. (8)]

3 Experimental Part

As input for our experiments we used EEG signals which we received from people
who were in the process of relaxation. Three men and a woman participated in this
procedure. The duration of the EEGs was approximately 46 s (46,000 ms). The input
files approximately consist of 23,000 points (1 point/2 ms).

For the implementation of the experiments we made a function at Matlab,
which had an input of two parameters. The first parameter (k) is the number of
windows (samples) we will use from the EEG section, the second parameter (w)
is the size of the window (sample length). In case the number of windows is more
than one (k>1), we have overlapping of used points (for instance 5000. . . 5020,
5001. . . 5021, etc). We executed the experiments with several combinations of the
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two parameters and we received several results which we present below. We used
mostly samples (w) of 20 points. From such a sample, of 20 points length, 28 ACC
{D} are isolated.

As we said in the previous chapter, we have to compute the coefficients of the
sixth degree “Interpolation Polynomial” p(x) [Eq. (8)], in order to achieve best
fitting of p(x(i)) to C(i), where x(i) are the horizontal axis elements (time or points)
and C(i) are the ACC. To achieve that we used the Matlab polyfit function:

p = polyfit(x,s,n) (10)

Figure 1 we can see a plot of these coefficients.
Then, in order to find exactly the graph which best fits the coefficients of the

Interpolation Polynomial, for each element of the horizontal axis (x) we compute
the corresponding element on the vertical axis (y) according to following equation:

y = p1xn +p2xn−1 + . . .+pnx+pn+1

where pi is the previously computed Interpolation Polynomial.
For every value x of the horizontal axis (time or points), the polyval function of

Matlab returns the value of a polynomial of degree n evaluated at x:

p = polyval(p,x) (11)

In Fig. 2 we can see the graph produced by the procedure described above.
The diagram we see in Fig. 2 corresponds to the representation of the polynomial

[Eq. (9)] which is the result of the execution of the function with k = 1 and w =
20 for a “man” subject. In Fig. 3 we can see a similar representation of the same
polynomial of a woman and another man EEG.

If we increase the number of samples k = 10 we get the representation of Fig. 4.
The representations we get, as we said before, have overlapped points.

Fig. 1 Coefficients of
interpolation polynomial



354 V. Stefanidis et al.

Fig. 2 Polynomial of degree
n evaluated at x [Eq. (9)]
graphical representation

Fig. 3 Polynomial [Eq. (9)] representation for a woman and a man, respectively

In Fig. 4 also, we can clearly distinguished the points we have stationarity. We
can easily distinguish these stable points (points with approximate zero amplitude
of motion) among which standing wave shafts are formed.

At the female signal we were forced to increase the width of the sample in order
to find the points for which stationarity appears. In Fig. 5, in the first diagram k is
equal to 10 (k = 10), w is equal to 20 (w = 20) and as signal section, we received,
randomly, the points from 5,000 up to 5,500. In the first diagram the stable points
are not easily distinguished. In the second diagram of the same figure k is equal to
10, w is equal to 20, and as a signal section, we received the points from 3,000 up
to 5,500 (we increased the section length). In this figure the stable points as well as
the shafts of standing waves are easily distinguished (Fig. 5).

A standing wave pattern is not actually a wave, but rather a pattern of a wave.
Thus, it does not consist of crests and troughs, but rather nodes and antinodes. In
other words, shafts are formed. The pattern is the result of the interference of two
waves to produce these nodes and antinodes. The parameters of this pattern are
shown in Fig. 6. In Fig. 7 we can see 6 EEG’s per person which depicted with a
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Fig. 4 Polynomial [Eq. (9]
representation for a man
(k = 10,w = 20), stable points

Fig. 5 Polynomial [Eq. (9)] representation for a woman (5,000–5,500 and 3,000–5,500 points)

Fig. 6 Static waves pattern
parameters (wavelength and
amplitude of oscillation)

color and (total 5 persons). Each EEG is submitted (auto repeat 20 times). In this
figure we can have a more cautious approach of standing waves.

4 Conclusions

According to above findings we conclude that stable points are presented clearly
during many intersections of the polynomials. These findings are consistent with
the theory [15] in which a common stable point may be shown to exist then
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Fig. 7 Static waves in 6 EEG’s per person

the commuting polynomials have a common stable point and the community
polynomials yield a certain homomorphisms [16]. However, the homomorphisms
are continuous functions that preserve topological properties [17] and these are very
significant for pattern recognition reasons such as biometric EEG features [18] and
for diagnostic purposes [19].

Furthermore, the Data Mining of Time Series using Autocorrelation Coefficients
and symmetry features of EEG time series is addressed in this work. A repeated
autocorrelation procedure was performed on real EEG Time Series Data, in an
attempt to experimentally investigate and establish the connection between Time
Series data and hidden information relating to the properties of stationary Time
Series. These results are in agreement with previously proposed research methodol-
ogy/methods, exhibiting a Time-Series Analysis of real EEG, which carries genetic
information, as well as demonstrating the potential relevance of our approach for
Stationary Identification as a tool in Time Series Analysis.

Results show that the proposed algorithm can provide an optimal time-frequency
resolution using autocorrelation procedure in order to highlight stable EEG points
around a trust region. Although it is generally accepted that the EEG signals are
not stationary, we could isolate points which are stable and we can distinguish
stationarity.

Our future research will be focused on the following points:

• The verification of these results with more EEG data is the next step of the
proposed research.

• More extensive experimentation is needed in order to obtain statistically signifi-
cant results and, thus, check and verify assumptions on a Real Data set about the
existence of a one-to-one correspondence between the Time Series and symmetric
spectral features.

• The wavelet pattern recognition in order to create personal wavelet is the next aim.
• The comparison of the verification of the unique feature of each wavelet using

neural network is asked in the third researcher step.
• Finally, the connection of the findings and the possible biological-biometric

features are considered as further target of this research.
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Deriving Pandemic Disease Mitigation Strategies
by Mining Social Contact Networks

M. Ventresca, A. Szatan, B. Say, and D. Aleman

Abstract In this chapter we propose a robust approach to deriving disease
mitigation strategies from contact networks that are generated from publicly
available census data. The goal is to provide public policy makers additional
information concerning the type of people they should aim to target vaccination,
quarantine, or isolation measures towards. We focus on pandemic disease
mitigation, but the approach can be applied to other domains, such as bioterrorism.
The approach begins by constructing a representative contact network for the
geographic area (we use the Greater Toronto Area of ≈ 5.5 million individuals)
from census information. Then, network centrality measures are employed to
ascertain the importance of each individual to the proper topological functioning
of the network. The top-ranked individuals’ characteristics, as defined by census
information, are then used as input to decision tree classifiers. The resulting output
is a set of high-level rules that identify potential types of individuals to target in
order to mitigate disease spread. Experimental evidence for the efficacy of the
approach is also provided.

Keywords Pandemic planning • Contact network • Decision tree • Public policy
generation

1 Introduction

Estimates of the potential impact of a pandemic disease range to upwards of
hundreds of millions of global deaths and trillions of dollars in socioeconomic costs
[36, 48]. While immunization remains the preferred strategy, during the early onset
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of a pandemic vaccines are unlikely to be available or will require many months
to produce en masse [46]. For diseases that spread through social contact, early
public policy intervention strategies concentrate on social distancing. However,
if the strategies are too burdensome they will needlessly disrupt socioeconomic
circumstances [42, 43, 62]. Thus, the development of high quality public policies
for mitigating pandemic diseases is of critical importance [7, 10, 11, 19, 23, 31, 47,
50, 51, 57].

In this chapter we investigate the implied public policy decisions that result from
using network centrality measures to identify a subset of individuals to target public
policies towards. We construct our social contact network from publicly available
census and travel information of the Greater Toronto Area (GTA) and perform
subsequent decision tree mining of the population constituents using information
such as age and travel distance to work. Each branch of the resulting decision
tree implies a particular subset of individuals to target, to which a number of
corresponding public policies may exist. The resulting decision tree will correspond
to a number of potential strategies for containing the disease.

One traditional approach to devising better policies is by examining past policy
decisions and their observed consequences, within the demographic context at that
time. Another approach focuses on simulating of “what if” scenarios and policies
through the use of a variety of computational approaches. Whatever the decided
policies to implement, it is unlikely to observe a low public compliance unless
the policies are overly disruptive to their income or career [15]. Consequently,
low-income families may have a tougher time than others. This also suggests that
communities should be in continuous preparation for mitigating an outbreak. As
indicated in [14], businesses will play a large role in minimizing these issues through
programs such as working from home and paid sick leave. The ability to discover
quality mitigation policies can be greatly improved if subsets of individuals to target
can be accurately and efficiently identified, which is the goal of this work.

The problem of developing a large-scale and effective pandemic mitigation
strategy involves a number of considerations, and sometimes conflicting studies
to consider. Nevertheless, mathematical models can be an invaluable tool for
uncovering potential implications of disease transmission characteristics and the
impact of public policy decisions on mitigation. Traditional epidemiology models
of disease spread assume homogeneous and random mixing of individuals and
are governed by differential equations [4, 37]. The assumption of homogeneity
abstracts away much of the epidemiologically important sources of variability, such
as age, sex, contact rate, and compliance to public health recommendations [8].
This individual-level diversity can have profound effects on the population level
disease dynamics, and as such there has been a recent trend towards network-based
heterogeneous models [2, 5, 8, 24, 27, 49, 59].

Using a large-scale agent-based simulation model [28] studied contact networks
representing the city of Portland. They considered the impact of different vacci-
nation strategies based on network structure and described how to construct the
contact network from survey, census, and transportation data. In a subsequent
study [29], the question of whether sufficient detail is included in a contact network
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to adequately represent the region’s contact network is discussed with a statistical
test being proposed. Salathe et al. [50] focus on controlling diseases on networks
having community structure. They find that community structure strongly affects
disease dynamics, and develop an efficient algorithm for identifying individuals
for targeted vaccination. A method for optimizing disease interventions during an
outbreak was proposed in [61] that uses information available during the early stages
of a pandemic. The approach provides rules to determine which measure should be
taken given observed disease characteristics. If groups are appropriately identified
in the population then it is possible to achieve high quality interventions.

Recent studies suggest that a large amount of the variation in simulated endemic
disease levels can be described by structural properties of mean degree, clustering
coefficient, and average path length measures of graphs having exponential degree
distributions [3]. Unfortunately, the latter metric requires significant computational
overhead for large graphs, but achieving high levels of accuracy is attainable using
only the former two measures, which are much more computationally feasible for
the very large graphs considered here. In comparison, network-based simulations
require enormous amounts of computational effort (usually many hours or days)
and have high computer memory requirements [9, 18, 21, 25, 27, 56].

The rest of this chapter is organized as follows. Section 2 describes how the
representative population is constructed from census data, and how mixing patterns
between individuals are generated. The approaches to identifying a subset of
individuals who play an important role in the proper functioning of the contact
network are outlined in Sect. 3, as are decision trees. Experimental results that
highlight a sample of decision trees and their implied public policy targets are
presented in Sect. 4. The final section provides a brief discussion of the results and
directions for future work.

2 The Contact Network

Contact networks can be thought of as a graphical representation of social interac-
tions over a fixed period of time. Individuals of the population are the nodes of the
network and interactions between them are the edges. Often edges are weighted to
correspond to the strength of interaction between pairs of individuals. In the context
of pandemic disease mitigation edge weights are typically related to the likelihood
that the disease will transmit between the individuals [34]. An important assumption
underlies the manner in which the edges are constructed. Specifically, it is assumed
that edges accurately represent the method of disease transmission. That is to say, a
social contact network is not likely the best model for understanding a disease that
is spread through drinking water. Throughout this work we assume that avenues for
transmission are well represented by a social network. We also assume a standard
SIR-based model whereby all individuals are initially susceptible to the disease and
can only be infected once.
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In this study we concentrate on the GTA, which has a population of approx-
imately 5.5 million people. Each individual in the contact network is generated
with characteristics representative of those reported in publicly available census
information [53] such as age, type of career, and approximate home and work
address. For privacy reasons only marginal distributions per characteristic are made
available to the public. However, a number of reasonable assumptions can be made
to enforce the construction of more realistic contact structures, as described below.

2.1 Generating a Representative Population

The GTA is partitioned into a number of adjacent units called dissemination blocks,
which are the smallest grouping by which census data are reported. Typically, these
blocks are bounded by roadways and may correspond to city blocks in urban areas
or represent a group of adjacent rural blocks in sparsely populated areas. The GTA
contains 7,684 dissemination blocks and each individual lives in exactly one of
them.

The census includes a number personal characteristics such as age and family
structure and the type of occupation as listed in Table 1. Despite being reported
as marginal distributions, a number of societal structures can be safely assumed in
order to construct a contact network from this information. For instance, it is safe
to assume that each household must contain at least one adult (age ≥ 18). If other
adults are present they are most likely to be a spouse, but in some cases children
live with grandparents or parents are near retirement and their children are young
adults who live at home. In order to model these different situations we presume that
a parent or legal guardian of a child must be at least 18 years older than the child.
Using the statistics of the census data we can regenerate the exact number of total
households with an appropriate family structure and age distribution.

It is also important to accurately model the major public transportation routes
given the role they can play in disease spread [54]. While mitigation strategies
focused on limiting public transportation use are cumbersome, they have been
shown as measures that most individuals would strongly consider during a pandemic
[39]. The GTA contains four subway routes and sixteen major train and bus lines
[55]. Usage statistics are publicly available per stop along a route [55], which are
used in conjunction with census information (i.e., home and work dissemination
blocks) to assign individuals to a particular route, representing their journey to and
from work.

Children aged 4–18 are all assumed to attend an educational institution. However,
it cannot be assumed that children attend a school within their dissemination
block since a number of rural areas lack the sufficient number of children to
support a public school. Moreover, a number of schools may exist in a particular
dissemination block, or an individual may live near the border of a dissemination
block with a school in an adjacent dissemination block. To resolve this issue a
partitioning of the GTA is performed using a Veroni tessellation [6] such that
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Table 1 Characteristics for each individual of the population as used by the Canadian census
[53]

Attribute Description

Age Uniformly distributed over each of 18 subintervals of [0,100)

Home location One of the 7,684 dissemination blocks

Household size [1, . . . ,6+]

Family structure {Lone parent,couple,other structure}
Public transportation {Not taken,subway,public transit}
Transit route If public transportation is used, one of [0, . . . ,19] routes

Worker type {Skilled trades,office/clerical,high volume, low volume,other}
Workplace location If applicable, one of the 7,684 dissemination blocks

Distance to work Distance (0,∞) in meters between home and work dissemination blocks

Commuter Whether working individuals commute to work or not

Office size If applicable, [1,500]

School attended If applicable, one of 2,232 schools

School size If applicable, maximum school size is 5,000 students

Health network One of 5 health networks that cover all health-based services

Clinician type If applicable, {nurse,doctor}
Patient Whether the individual is hospitalized or not

Hospital If applicable, one of 50 local hospitals (as patient or employee)

Corresponding reported statistics are used to create the population

each resulting area contains exactly one school. We then assume students attend
schools closer to their home, and assign them accordingly. If the closest school
becomes full during the assignment process, the student is assigned to the next
closest institution, and so on. Students’ individual grade levels are also generated
to accurately represent the information provided in the census.

Working-age adults (age 18–64) inform the census bureau of the type of job
they work in, classified as skilled trades, office/clerical, high volume service, low
volume service or other, in addition to clinicians (both doctors and nurses). Office
size and locations are also publicly available and individuals are assigned to work
in a particular area/office based on their job-related census information. Hospitals
are treated as an office place with specialized employees. Retired individuals (age
≥ 65) are considered roaming members of the community and not assigned to any
school or workplace.

2.2 Generating Appropriate Contact Patterns

After generating a representative population of individuals and assigning them to
households, schools, workplaces, and transportation routes, the network of social
interactions must be created, weighted by the strength of each interaction. In
general, the connection strength between individuals i and j will be approximated by
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a combination of contact duration tij (in minutes) and the likelihood, per unit time,
of disease transmission occurring sij. That is, edge weights wij can be computed as
wij = tijsij.

Methods for accurately quantifying the likelihood of disease transmission
between individuals are the subject of current investigations, for instance
[12, 22, 52]. As a simplification we let T ∈ [0,1] represent an upper bound on
the expected transmission likelihood between any two individuals, per unit time.
This parameter depends on the disease being considered and allows us to simplify
the edge weights to wij = tij. This contact duration is uniformly generated and tuned
for the GTA network based on contact matrices in literature [2, 26, 35, 45, 59, 60].
Below we indicate the manner in which individuals are connected within each
environment.
Households: A common assumption is that members of the same household
will have a relatively large total contact duration. Hence, we model connections
within a household as a complete graph. Edge weights are chosen according to
a uniform probability distribution over the interval [1,800], where the age of the
two interacting individuals is used to narrow the range to more realistic values. For
instance, a randomly selected infant (age < 4 years) will have a higher contact, on
average, with adults than a random adult will have with an infant. The nonsymmetric
4× 4 contact duration matrix represents the interaction between individuals of age
groups {[0,4], [5,18], [19,64], [65,99+]} and closely resembles that of [26, 27].

Workplaces: The number of workplace contacts and their duration are affected
by the type of business and number of employees. We utilize a Poisson-based
sampling strategy where the rate parameter λ = 7 is the expected number of contacts
the individual in question is estimated to make during a random day with fellow
employees. Individuals who work in high volume positions will make an additional
number of contacts as determined according to a uniform distribution over the
interval [10,80], with contact duration between [1,8] minutes per interaction.

Schools: As children age the total duration spent with classmates will often exceed
the total duration spent with family members [34]. The number of connections is
determined according to the Poisson sampling approach used for workplaces, but
with λ = 8. The individuals who make interactions are chosen randomly from
among the individuals in their school and grade level. Teachers are assumed to
make contact with half of their class, on average. It should be noted that the Poisson
connection strategy is an approximation that is unlikely to accurately reproduce
community structures.

Public transportation: Public transportation presents an interesting challenge due
to the large number of people who typically utilize such services and the problem
of assigning individuals to transportation routes given their geographic constraints.
We assign individuals to one of the 20 transportation routes based on daily usage
statistics at each station and the location of their home and workplace. The duration
of contact in the public transportation system is modeled similarly to that of high
volume work places, but over the range [1,60] minutes. The number of interactions
with other travelers also uses a Poisson sampler with rate tuned to λ = 10.
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Community contacts: Random contact with individuals in the larger community is
an important type of interaction to model [1, 34]. These contacts are made between
two random people, where the contact duration is chosen in a similar fashion as for
public transportation but at a lower connection rate of λ = 5 and maximum contact
duration based on the age of the individuals taking part in the interaction.

2.3 Resulting Network Structure

The GTA model contains precisely 5,476,158 individuals, and approximately 110
million edges are created through the aforementioned connection process. This
amounts to a mean vertex degree of approximately 40 and standard deviation of
typically between 43 and 47. Validation of the network structure is performed
by comparing the resulting mixing patterns to those of known contact network
models (that were based on other urban areas/census data) and allowing for minor
differences in resulting demographics. Specifically, we compared the total number
of connections and the average duration of contact between all pairs of ages,
in addition to vertex degree and edge weight distributions, to those reported in
[26, 28, 33, 44, 60]. It should be noted that while results are given for a single
generated network, the model generates statistically similar networks. Hence, the
connection patterns and statistics between generated networks are likely to have
negligible differences. Figure 1 shows the total number of contacts made between
individuals. Figure 2 depicts the degree distribution on a log–log scale and a
histogram of contact duration.
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Fig. 2 Network (a) degree distribution (log-log scale) and (b) histogram of contact durations

2.4 Calculating R0 from the Network Structure

The basic reproduction number R0 quantifies the number of secondary infections
caused, on average, over the time an individual is infectious. It is commonly utilized
to quantify the severity of a pandemic. The pandemic will likely die out if R0 < 1 or
become endemic if R0 > 1. A number of methods for accurately estimating R0 have
been proposed [13, 20, 30, 32], although issues in its estimation and interpretation
still remain [41].

From the network perspective, computing R0 can be accomplished using the
technique of Newman [45]:

R0 = T

⎛
⎜⎜⎜⎝

∞

∑
d=1

pdd2

∞

∑
d=1

pdd
−1

⎞
⎟⎟⎟⎠= T

( 〈d2〉
〈d〉 −1

)
(1)

where pd is the observed probability of degree d, T is the disease transmissibility
(we assume T = 1 unless otherwise noted), and 〈d〉 and 〈d2〉 are the mean degree
and mean squared degree of the network, respectively. Thus, removing vertices or
edges from the network through mitigation strategies will impact the values of 〈d〉
and 〈d2〉, and thus the prevalence of the disease.

2.5 Calculating the Probability of a Pandemic

It is also possible to estimate the probability of pandemic occurring from an initially
infected individual by examining the structure of the network [45]. The value is
attained by first calculating the probability that a single infection will only lead to
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an outbreak of the disease, and not a pandemic. If the infection does not die out (i.e.,
it is a local outbreak), then it must be a pandemic. That is, we can subtract from 1
the probability of the infection being an outbreak to attain the probability that it will
be a pandemic:

Pr[pandemic] = 1−
∞

∑
d=1

pd(1+(u−1)T)d (2)

where u is the probability a person interacting with the infected individual does not
have the disease. The value for u can be ascertained using traditional root finding
methods:

u =

∞

∑
d=1

dpd(1+(u−1)T)d−1

∞

∑
d=1

dpd

(3)

3 Mitigating Disease Spread

3.1 Identifying Critical Individuals

Since constructing a representative contact network is possible, a natural follow-
up question is whether one can identify a subset of nodes in the network that
are structurally important for the easy transmission of disease throughout the
population. In general, this problem is referred to as a problem of detecting critical
nodes and a variety of strategies have been proposed that aim to quantify how central
or important each node of the network is under different assumptions about the
problem context [16, 40, 58]. Here, we investigate the utility of common centrality
measures for identifying important individuals to disease spread and subsequently
utilize this information to derive potential public policy strategies. These measures
do not consider any information about individuals other than their connection
structure (number of edges and weights on the edges). Since the network is only
a statistical representation of the population, even if highly specialized centrality
measures were proposed to actually target individuals for disease mitigation there
would be no way to map the solution to reality (unless privacy laws are abolished).

3.2 Network Centrality

We focus on weighted undirected networks G = (V,E) that are simple (contain no
multi-edges or self-loops). We assume the network is composed of |V| = n nodes
and |E| = m connections. For simplicity in notation we assume that G is defined by
its adjacency matrix A:
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(Aij)n×n =

{
wij, if edge (i, j) ∈ E

0, otherwise
(4)

where wij represents the weight of the edge (i.e., contact duration).
A path between vertices u,v ∈ G is a sequence of edges 〈u, . . . ,v〉 that one would

need to traverse if starting at vertex u and arriving at vertex v. Edges are weighted
with the contact duration between adjacent individuals. Thus, the distance between
u and v will be the sum of the contact duration along a connecting path. Many paths
are possible between pairs of vertices, but the most interesting in this context is the
geodesic path, which is the path of shortest total contact duration between u,v ∈ V .
Several shortest paths between vertices u,v may exist.

The removal of a vertex v ∈ V from the graph G is commonly referred to as
an attack on the network, but corresponds to a vaccination or quarantine of an
individual in the context of disease mitigation. In either case, the remaining graph
will be denoted G(V \ {v}), where it is implied that any edge adjacent to v is
also removed from the graph when v is attacked. Upon vertex removal the graph
may split into a number of connected components whereby no path exists between
vertices in different components.
Degree centrality: For vertex i the degree centrality is computed as the sum of the
ith row of the adjacency matrix while disregarding edge weights

di =
n

∑
j=1

{
1, if Aij > 0

0, otherwise
(5)

Strength centrality: For vertex i this is determined by summing the weights of all

its adjacent edges si =
n

∑
j=1

Aij.

PageRank: The principal computation behind PageRank [17] is a modification
of the basic eigenvector centrality measure by replacing adjacency matrix A with
A = αP+(1−α)Q, where matrix (Qij)n×n = 1/n captures randomly visiting one
of n nodes in the network, and matrix P models random walks through connections
between nodes. The parameter α ∈ [0,1] is a user-defined dampening parameter
usually equal to 0.85. A will have a unique eigenvector v = Av with eigenvalue 1,
which is used to rank the nodes by largest vi value.

Kleinberg’s hub and authority scores: When searching for an influential spreader
of the disease in a population, one can classify people as either spreaders or those
(directly or indirectly) infected by spreaders. The problem is therefore to assign
a spreader score and a non-spreader score to each individual. In the lingo of the
algorithm, the spreaders are authorities and the non-spreaders are hubs [38].

Calculating the hub and authority scores for each node can be accomplished by an
iterative technique. Let h(i) be the hub weight for node i and let a(i) be its authority
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weight. The weights are then recursively computed as h(i) =
n

∑
j=1

Aija(j) ∀i =

1, . . . ,n and a(j) =
n

∑
i=1

Aijh(i) ∀j = 1, . . . ,n.

4 Computational Results

In this section we investigate the ability of decision trees to indicate potentially
useful public policies. We consider the centrality measures described in Sect. 3.2
for identifying vertices who may be important to the structural integrity of the
network. For pandemic disease mitigation the ideal scenario would be one that
leads to maximal network destruction by removing the most central vertices, thereby
limiting potential avenues for disease to spread and hopefully averting the pandemic
entirely. Results are presented based on a single network of the GTA region;
however, the results do not significantly differ when averaged over a family of
generated networks.

The centrality measure will score each node and we subsequently assign each
node a rank based on this score, where lower ranks are considered more important
to disease spread. To ensure the decision trees are robustly created a subset of the
original data set D containing the 5.5 million individuals of the GTA is designated
as the training set. The training data are determined by selecting the top R centrality
ranks, and a new attribute is created for each individual that indicates whether the
individual is to be targeted for mitigation or not. That is, each individual will be
designated a classification

Class(i) =

{
1, if rank(i) ≤ p

0, otherwise
(6)

where rank(i) returns the rank of the ith observation in the original data set. Thus,
the training set is defined as Y= {x | rank(x) ≤ p}. The full data set D is employed
for testing. In all cases, computing both the centrality measure for the network and
an associated decision tree do not require significant time (typically a few seconds
if selecting nodes by batch, otherwise a few hours if greedily selecting a node at a
time and recomputing the remaining centrality score for the remaining nodes of the
network).
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4.1 Decision Trees

Decision trees have a number of important advantages over other machine learning
methods, including the relatively simple interpretation of resulting classification
rules. The robustness of decision trees to combinations of ordinal and numeric
data is another important aspect since census information is composed of both
types of variables. Moreover, the data set requires minimal preparation before being
analyzed and validation is also simple and straightforward through the use of a
number of statistical tests. The resulting trees are surprisingly robust to changes
in the input data, and for large data sets the computation time needed to construct
the trees is minimal.

Another important aspect of decision trees is the ability to easily analyze
and adjust the acceptable degree of social disruption. The confusion matrix of
a classification tree quantifies the number of correctly and incorrectly classified
observations by considering all pairwise possibilities. For binary problems the 2×2
matrix M has correctly identified observations as diagonal entries (mnn and mpp) and
misclassified results are off-diagonal (mfp and mfn):

M =

[
mnn mfn

mfp mpp

]
(7)

This matrix is particularly useful due to its implications on quickly assessing
the potential quality and feasibility of the policies implied by the decision tree.
Specifically, false-negative classifications mfn indicate the number of individuals
who will not be targeted by the policies, but should have been. The smaller this
number is, the more likely the policy adheres to the selection strategy used to
identify the nodes. On the other hand, the false-positive mfp entry indicates the
number of people who will likely be effected by the policy, but who may not need
to have been. These can be interpreted as, or indicative of, the trade-off between
population health and socioeconomic costs of the policies.

Incorporating costs into the decision tree model can also be easily accomplished
using a cost matrix L, which indicates the cost for misclassifying an individual.
Thus, policies can be directly tuned during tree construction by adjusting this cost
matrix

L=

[
0 Lfn

Lfp 0

]
(8)

The choice of cost matrix values is based on whether or not dissemination
blocks may be quarantined and whether public transportation routes can be shut
down. If both transportation and dissemination blocks are considered then L1 is
used; however, if dissemination block quarantine is possible but transportation route
closure is not then L2 is employed, otherwise L3 is chosen.

L1 =

[
0 9

10 0

]
L2 =

[
0 3
2 0

]
L3 =

[
0 1
1 0

]
(9)
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yes noHouse_Location = 70,79,109,113

House_Location = 8,10,18,23,25

Work_Location = −1,10,15,22,46

Work_Location = 46,54,55,77,13

Student_At_School = −1,6,13,14

House_Location = 8,10,18,28,31

Student_At_School = 14,19,35,3

No
0.19  39%

No
0.19  2%

No
0.48  10%

No
0.40  1%

Yes
0.66  16%

Yes
0.87  2%

Yes
0.94  3%

Yes
0.80  27%

yes no

Fig. 3 Decision tree created from individuals identified using degree centrality. Mitigation by
dissemination block is permitted, but closing public transport routes is not

Fig. 4 Decision tree created
from individuals identified
using strength centrality.
Mitigation by dissemination
block is permitted, as are
public transport routes

yes noHouse_Location = 1,5,10,22,31,

No
0.38  64%

Yes
0.71  36%

yes no

4.2 Mitigation by Dissemination Block

We examine the consequences of home and work dissemination block information
being considering by the decision tree learner. That is, the network centrality
measure may identify individuals who live or work in certain dissemination blocks.
Figure 3 shows a derived decision tree considering all attributes except those related
to public transportation. There are four positive outcomes; however, only two cover
a sufficiently large proportion of the population to warrant serious consideration.
One rule implies a potential quarantine of homes in certain locations (due to
space limitations not all blocks are listed in the diagram) and covers 27 % of the
population. The implied rule is able to correctly classify 0.80 of those individuals.
The other dominant rule is a combined strategy of quarantine by the household and
school dissemination blocks, in addition to targeted school closures. Overall 16 % of
the test population was classified according to this rule, which was able to correctly
identify 0.66 of those individuals.

A simpler decision tree is derived when additionally considering transportation
routes, as shown in Fig. 4. The only split deemed of sufficient relevance was
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Fig. 5 Map of the GTA indicating all dissemination blocks. Areas of higher population density
are smaller and highlighted blocks are those identified by the decision tree of Fig. 4

according to house dissemination block. From the test data set only 36 % of
individuals are classified using this rule, although 0.71 of them are classified
correctly. Figure 5 depicts the GTA and all of the dissemination blocks. The colored
areas are those identified by the decision tree shown in Fig. 4 and should be
considered for mitigation by some set of public policies. These areas are mostly
along major public transit routes. However, the statistically better approach to
identifying the individuals was by ignoring the transportation route attribute.

4.3 Not Considering Dissemination Block

Targeting by dissemination block may be an effective idea in theory but is imprac-
tical due to the socioeconomic disturbance such policies could create. We therefore
also construct decision trees that do not include the dissemination block information
as a feature of each individual. This will force the utilization of other attributes
such as school location and age. School closures are a common consideration when
pandemic planning. However, through this approach a more fine-tuned selection of
schools may be provided to policy makers.
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yes noTransit_Route = 14,15,16,17,18

Transit_Route = 0,1,2,3,10,11,

Transit_Route = 0,1,3,10,13

House_Size = 1,3,4

Age < 46

Transit_Route = 1

Worker_Type = 0,1,2,3

Age < 36

Worker_Type = 2,4

No
0.19  3%

No
0.50  43%

No
0.48  7%

Yes
0.51  5%

Yes
0.56  1%

No
0.49  4%

Yes
0.52  12%

Yes
0.52  15%

Yes
0.54  7%

Yes
0.62  3%

yes no

Fig. 6 Decision tree created from individuals identified using strength centrality. Mitigation by
dissemination block is not permitted, but public transportation routes may be closed

Figure 6 presents an example decision tree created based on strength centrality
and also suggests the closure of some public transportation routes. All of the
discovered rules involve closing a subset of routes, but targeting by age group, type
of job, and number of people living in a household is also deemed useful targeting
information. Other centrality measures also led to more specific trees in these data
context and included rules focusing on hospitals and distance traveled, for example.

The decision tree shown in Fig. 7 was created based on degree centrality and does
not allow the closure of public transportation routes. The tree has 13 rules; however,
of those with positive outcomes only two cover 9 % or greater of the test population.
Both rules focus on school closures. The first is only targeted to schools and has a
correct classification rate of 0.77. The other rule also closes a subset of schools, but
additionally targets working-age individuals who live within a 44,000 m radius from
their workplace dissemination block. Figure 8 highlights the exact schools that were
targeted for closure by the first rule.

4.4 Effect on the Potential Pandemic

We provide an analysis of the residual network after a policy has been put in
place. That is, we consider decision tree branches that lead to a positive outcome
and that also cover at least 9 % of the training data at a correct classification rate
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yes noStudent_At_School = 0,1,7,10,1

Student_At_School = −1,4,5,6,1

Distance_To_Work < 44e+3

Student_At_School = −1,5,6,14,

Student_At_School = 19,23,122,

Distance_To_Work >= 28e+3

Office_Size >= 28

Commuter = 1

Worker_Type = 0

Worker_Type = −1,0

Office_Size >= 34

Distance_To_Work >= 20e+3

No
0.16  8%

No
0.40  2%

No
0.43  11%

No
0.44  1%

Yes
0.52  4%

Yes
0.64  0%

No
0.48  34%

No
0.48  4%

Yes
0.53  5%

Yes
0.55  7%

Yes
0.59  4%

Yes
0.61  10%

Yes
0.77  9%

yes no

Fig. 7 Decision tree created from individuals identified using degree centrality. Mitigation by
dissemination block is permitted, but public transportation routes are not

of at least 0.5. These rules are then forced upon the graph topology, resulting in
the removal of a number of network connections. The rules were chosen from
decision trees that use 20 % of the training during the learning stage. We do not
consider policies that can be targeted towards dissemination blocks. Table 2 presents
some example rules that are implied from each decision tree. Interestingly, strength
centrality only selected transit routes as targets, whereas each of the three other
centrality attack strategies suggested a mixture of individuals’ attributes.

Table 3 shows the effect of each rule given in Table 2 with respect to properties of
the residual network after implementing the policy, as well as R0 and the probability
of a pandemic occurring. For these results we set T = 0.1, which corresponds to a
disease that spreads with relative but not extreme ease. For each strategy we also
examine the impact of individual compliance on the ability of the implied policy
to mitigate disease spread. We distinguish between policies that can be complied
to and those that are imposed, for example, targeting individuals who travel a
certain distance to work versus targeting transportation routes. In the latter case, the
implication is that the route is closed whereas the former is impossible to restrict
in reality and is left to the individual as to whether to comply with such a public
policy. Any member for whom the policy applies will comply with it with a certain
probability, which we vary over [0,1]. Each strategy is able to significantly decrease
the basic reproduction number R0 and the probability of a pandemic occurring to
approximately 0.5. Pagerank and degree centrality have the additional benefits of
decreasing the largest graph component to approximately half of the original 5.5
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Fig. 8 The GTA with school closures highlighted in accordance with one of the implied rules in
Fig. 7

million individuals. Thus, each of these strategies may be reasonable candidates
as a basis for actual policies. The overall properties of PageRank indicate that if
100 % compliance is reached then it will have generated the most useful strategies
among the centrality measures considered, with degree centrality and authority close
afterwards. However, authority centrality yields more desirable results for lower
amounts of compliance. Figure 9 presents the decrease in probability of a pandemic
occurring with respect to the probability of public compliance to the policies.

5 Discussion and Conclusions

Pandemic diseases have the potential to devastate large populations by causing enor-
mous socioeconomic costs and an unimaginable number of deaths. Unfortunately,
we do not yet understand well enough the dynamics and evolution of pathogens
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Table 2 Example policy guidelines implied by the decision tree for each of the
four centrality measures considered

Strategy Policy guidelines

Authority Transit route ∈ {0,1,2,3,6,8,10,12,13}
Worker type ∈ {NA,Office/Clerical,High volume,Low volume}
Age ∈ [25,45]

Clinician Type ∈ {Doctor}
Hospital ∈ {0, . . . ,9}
Office size < 417

House size ∈ [3,6+]

Coverage: 31 %, classification rate: 0.50

Degree Transit route ∈ {0,1,2,3,10,11,12,13}
Distance to work < 24,500 m

House size >= 3

Student at School (set too large to list)

Office size ∈ [7,287]

Age ≥ 41

Coverage: 18 %, classification rate: 0.53

PageRank Transit route ∈ {1,3,11,12,13}
Teacher at school of size < 2,166

Distance to work ∈ [6650,17500]m

Age > 32

Office size ∈ [6,491]

Hospital ∈ {0,1,2,4,5,6,10}
Coverage: 9 %, classification rate: 0.55

Strength Transit route ∈ {0,1,2,3,4,5,6,7,8,9,10,11,12,13}
Coverage: 97 %, classification rate: 0.51

to be able to predict when or where the next pandemic will begin, or even how it
will transmit. Consequently, a range of efforts have focused on creating efficient
pandemic mitigation plans and tools for use by public health officials so that
they may be better prepared when pandemics are detected. We presented a novel
approach that combines the use of centrality measures as a proof of concept that
targeting individuals based on residual social contact network topology may be a
viable method for determining appropriate subsets of individuals to target policies
towards in order to contain disease spread. Subsequent data mining of census data
using decision trees is performed on the subset of identified individuals in order
to provide potentially informative feedback to policy decision makers. It must be
stressed that the presented work is proof-of-concept and a number of advancements
and practical considerations must be incorporated before the tool can provide truly
insightful information.
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Table 3 Summary statistics of residual networks after policies of Table 2 have been imple-
mented, and individuals comply with the policy according to a certain rate

Strategy Comp # Edges μdegree σdegree maxC |C| R0 PrP

Authority 0.0 47,225,721 17.25 29.78 5,476,158 1 2.404 0.68

Authority 0.1 44,529,165 16.28 29.93 5,470,659 103 2.447 0.64

Authority 0.2 43,150,278 15.81 30.30 5,458,893 648 2.483 0.62

Authority 0.3 42,259,472 15.53 30.97 5,438,402 1,795 2.523 0.60

Authority 0.4 41,598,725 15.37 31.87 5,406,441 3,805 2.587 0.58

Authority 0.5 41,062,673 15.29 33.02 5,355,687 7,083 2.647 0.57

Authority 0.6 40,629,770 15.32 34.43 5,276,420 12,365 2.716 0.55

Authority 0.7 40,272,317 15.51 36.17 5,147,377 20,953 2.802 0.54

Authority 0.8 39,977,696 15.94 38.30 4,936,971 34,719 2.901 0.54

Authority 0.9 39,731,849 16.81 41.04 4,634,278 42,867 3.005 0.55

Authority 1.0 39,543,434 18.55 44.88 4,262,366 47,264 2.912 0.53

Degree 0.0 100,351,408 36.65 34.47 5,476,158 1 4.811 0.90

Degree 0.1 90,049,222 32.89 32.95 5,475,995 1 4.483 0.87

Degree 0.2 82,062,670 29.98 31.54 5,475,276 4 4.222 0.84

Degree 0.3 74,791,671 27.33 30.23 5,472,936 12 3.984 0.81

Degree 0.4 67,886,974 24.84 29.04 5,466,592 76 3.772 0.78

Degree 0.5 61,227,165 22.46 27.82 5,450,478 388 3.577 0.74

Degree 0.6 54,783,296 20.24 26.76 5,410,985 1,380 3.404 0.70

Degree 0.7 48,443,959 18.20 25.88 5,311,878 5,173 3.237 0.65

Degree 0.8 42,237,379 16.56 25.31 5,063,532 17,538 3.079 0.61

Degree 0.9 36,236,150 15.85 25.46 4,478,214 43,629 2.910 0.59

Degree 1.0 30,608,045 19.28 28.05 3,175,502 49,836 2.711 0.55

PageRank 0.0 101,424,113 37.04 42.44 5,476,155 1 4.511 0.90

PageRank 0.1 88,934,391 32.48 39.60 5,475,837 1 4.138 0.86

PageRank 0.2 79,206,265 28.93 36.91 5,474,869 6 3.854 0.82

PageRank 0.3 70,638,981 25.82 34.37 5,471,872 29 3.651 0.78

PageRank 0.4 62,579,887 22.91 32.00 5,463,963 125 3.405 0.74

PageRank 0.5 54,882,960 20.16 29.68 5,442,846 483 3.213 0.68

PageRank 0.6 47,474,574 17.62 27.62 5,385,537 2,014 3.054 0.62

PageRank 0.7 40,234,487 15.36 25.95 5,221,545 8,313 2.907 0.57

PageRank 0.8 33,392,418 13.75 24.98 4,782,891 33,309 2.728 0.52

PageRank 0.9 27,124,492 13.49 25.61 3,835,836 84,381 2.558 0.52

PageRank 1.0 21,530,549 17.99 30.49 2,393,549 96,531 2.407 0.47

Strength 0.0 95,540,686 34.89 42.34 5,476,155 1 4.163 0.90

The compliance probability Comp, mean degree μdegree, standard deviation of degree σdegree,
largest component maxC, number of components |C|, reproductive number R0, and probability
of a pandemic PrP are all reported
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Fig. 9 Probability of pandemic occurring as a function of compliance to the public policies in
Table 2

Incorporating real-world cost estimates into the model could allow for better
tuning of the cost matrix used to determine decision tree splits. Additionally,
more information about the costs of real-world scenarios (such as advertising
campaigns) may provide enough information to begin measuring the potential
implementation strategies that public policy makers can take in order to target
the indicated individuals. The longer term goal would be for the system to return
a portfolio of immediately implementable strategies to the decision maker, with
already performed cost-benefit analyses, etc.

The centrality measures used in this study to target individuals were chosen
because they have been shown to work well in other domains for similar network
attack problems. We find that they may be useful in the pandemic context as well,
but considering more advanced formulations of the problem is likely to result
in improved performance. Another possible consideration is timing. Specifically,
determining when policies should be implemented and what observations of public
behavior are important to trigger certain policies in order to achieve the opti-
mal balance between minimizing socioeconomic impact and maximizing disease
mitigation.
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On an Asymptotic Property of a Simplicial
Statistical Model of Global Optimization

Antanas Žilinskas and Gražina Gimbutienė

Abstract A homogeneous isotropic Gaussian random field is accepted as a
statistical model of objective functions, aiming to construct global optimization
algorithms. The asymptotic of the conditional mean and variance is considered,
assuming that the random field values are known at the vertices of a simplex,
and that the latter is contracting. The obtained result theoretically substantiates
the construction of the recently proposed bi-variate global optimization algorithm,
which arouses interest due to good performance in testing experiments and the
established convergence rate. The obtained result also enhances motivation to
extend the aforementioned algorithm to higher dimensions.

Keywords Statistical models for global optimization • Black-box optimization
• Simplicial statistical models

1 Introduction

A statistical model for global optimization is considered, where the objective
function is available as a black box, i.e. the analytic expression of the objective
function is not known and only the computation of function values is allowable.
Further, it is assumed that a lot of time is needed to compute a single function value.
In such a situation a conceptual design of an optimization algorithm is difficult.
We consider the development of an algorithm based on the rational decision theory
and statistical models of uncertainty. More precisely, an asymptotic property of
the statistical model is proved which theoretically substantiates a computational
simplification of the recently proposed methods [2, 20].

For the basics of statistical model-based approach to global optimization, we
refer to the following monographs [9, 13, 14, 16]. The main advantages of the
proposed algorithms are their optimality with respect to such criteria as the
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maximum mean improvement, maximum improvement probability, and maximum
information. However, the applicability of the original versions of these algorithms
is limited to the optimization of surely expensive objective functions. The latter
disadvantage is caused by the inherent complexity of the algorithms implying their
computationally intensive implementations. Therefore, simplifications of auxiliary
computational problems here are especially valuable. Similarly, original versions of
the Lipschitzian algorithms also involve intensive auxiliary computations [5]. How-
ever, by implementing various simplifications advanced Lipschitzian algorithms
have been developed that are efficient for rather a broad field of applications with not
necessarily expensive objective functions. For example, from the point of view of
implementation simplicity, the diagonal algorithms [10, 11] are especially attractive.
The implementation advantages can also be gained by selecting an appropriate
partition method [1, 3, 6–8, 12, 15]. Similar ideas can also be helpful in reducing
the computational complexity of statistical model-based global optimization algo-
rithms. In the present paper, we focus on the statistical models of global optimization
related to simplicial partition of the feasible region.

The simplicial version of statistical models is promising in the construction of
global optimization algorithms, as shown, e.g., in [21]. A subsequent heuristic
simplification of computations, proposed in [2], considerably reduces the compu-
tational burden. In the present paper, we provide a theoretical foundation and some
generalisation of that simplification.

2 Motivation of the Research

The global minimisation problem min
X∈A

f (x), A ⊂ R
d, is considered, where f (x) is a

continuous function and A is a compact set. It is assumed that f (x) is available either
as a complicated computational model or unfamiliar software. Consequently, the
analytic properties of f (x) are unavailable and unfavourable properties of f (x) such
as non-differentiability, non-convexity or multi-modality cannot be ruled out. In
such a situation, to construct an optimization algorithm in the frame of the theory of
rational decisions under uncertainty [4], a model of uncertainty and a utility function
of an optimizer are needed. The corresponding axiomatic, proposed in [17, 18],
validates the use of a family of random variables ξx, x ∈ A, as a statistical model
of the objective function and the so-called P-algorithm. The latter is defined at the
n-th minimisation step as follows. The values of the objective function yi = f (xi)
are supposed to be computed at the previous optimization steps, where xi ∈ A,
i = 1, . . . ,n, and an unknown value f (x), x �= xi, is interpreted as a random variable
ξx. The current function value is computed at the point of maximum probability to
improve the solution found at the previous optimization steps:

xn+1 = argmax
x∈A

P{ξ (x) ≤ yon |ξ (x1) = y1, . . . ,ξ (xn) = yn}, (1)
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where the probability in question is defined by the chosen statistical model and
yon < min

1≤i≤n
yi is a minimal known objective function value desirable to get at the

(n+1)-th minimisation step.
Normally the random variables ξx are assumed to be distributed according to the

Gaussian probability density. In that case the probability in (1) is defined by the
formula

P{ξ (x) ≤ yon |ξ (xi) = yi, i = 1, . . . ,n} =Φ
(

yon −m(x|(xi,yi), i = 1, . . . ,n)
s(x|(xi,yi), i = 1, . . . ,n)

)
,

(2)

where Φ(·) denotes the Gaussian cumulative distribution function, while m(·) and
s2(·) denote the conditional mean and conditional variance of ξx, respectively.

Since Φ(t) is monotonically increasing, the maximum in (1) can be found as
follows:

xn+1 = argmax
x∈A

(
yon −m(x|(xi,yi), i = 1, . . . ,n)

s(x|(xi,yi), i = 1, . . . ,n)

)
. (3)

The recent results in [2, 20] validate the algorithm (3) by simpler arguments than
those in [17, 18] and without the assumption of Gaussian distribution. Nevertheless,
the computations of m(·) and s(·) are relatively complicated, implying time-
consuming auxiliary computations of the considered algorithm.

Simplicial statistical models have been invented to simplify the implementation
of the corresponding algorithms. The two-dimensional P-algorithm, based on a
simplicial statistical model, was originally proposed in [19] under the title “select
and clone”. It was implemented as a sequential triangular partition of the feasible
region. The optimization starts from covering the feasible region by equilateral
triangles and computing the objective function values at their vertices. Further, the
algorithm loops over triangles, selecting one of them for subdivision. The selection
criterion is similar to that used by the original P-algorithm to find the point for the
current computation of the objective function value (3). However, the conditional
mean and variance are computed with respect to the known function values at the
vertices of the triangle. The maximisation over the complete feasible region at every
optimization step (2) is replaced by the maintenance of the priority queue comprised
of triangle sub-regions of A, where the priority of the triangle Sj is related to the
maximum improvement probability

pj =
yon −m(xcj|(xi,yi), xi ∈ Sj)

s(xcj|(xi,yi), xi ∈ Sj)
, (4)

where xcj is the weight centre of Sj. For the generalisation of this algorithm as d > 2,
we refer to [16].

A further reduction of computational burden proposed in [2] for two-dimensional
(d = 2) algorithms is also based on triangular partitions of the feasible region.
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However, the proposed algorithm differs from the “select and clone” by the partition
method and by the priority criterion. The Delaunay triangulation is used for partition
of the feasible region. The priority criterion of Sj ∈ A is defined by the following
formula

πj =
Qj

mj − yon
, (5)

where mj is the average of objective function values computed at the vertices of Sj,
and Qj is the area of Sj.

The high convergence rate of that algorithm has been shown in [2] as well as
its good performance in the testing experiments. Since the priority criterion (5)
was justified in [2] only heuristically, it was important to continue the investigation
aimed at the mathematical proving the relation between (5) and the improvement
probability (2). Thus, we want to show that, under some assumptions, the appli-
cation of criteria (4) and (5) is equivalent. In the follow-up sections, the relevant
mathematical results are presented.

3 Statement of the Problem

Let ξ (x), x ∈ A ⊆ R
d, be a homogeneous isotropic Gaussian random field with the

mean value μ , variance σ2, and the correlation function ρ(t) = exp(−ct2). At the
points aj ∈ A the values of ξ (x) are known: ξ (aj) = zj, where aj, j = 1, . . . ,n+ 1,
are vertices of a regular n-simplex with the edge length equal to δ . Let a be the
weight centre of the simplex. We are interested in the behaviour of the conditional
mean and conditional variance of ξ (a) when the edge length δ of the simplex
vanishes. To compute the conditional mean and variance, the correlation coefficients
between ξ (ai) and ξ (ak), as well as between ξ (ai) and ξ (a), are needed. The
former is obviously equal to ρik = exp(−cδ 2), and the latter is equal to ρi =

exp(−cδ 2 d
2(d+1)

) (since the distance between a and ai is equal to δ

√
d

2(d+1)
).

In the upcoming discussion, the following notation and formulas of conditional
mean and conditional variance will be used:

E(ξ (a)|ξ (aj) = zj, j = 1, . . . ,d+1) = m(a|(aj,zj), j = 1, . . . ,d+1) =

= M(δ ,Z) = μ+ exp

(
−cδ 2 d

2(d+1)

)
· IT ·C−1 · (Z −μI), (6)

Var(ξ (a)|ξ (aj) = zj, j = 1, . . . ,d+1) = s2(a|(aj,zj), j = 1, . . . ,d+1) =

= S2(δ ) = σ2
(

1− exp

(
−cδ 2 d

d+1

)
· IT ·C−1 · I

)
, (7)
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where I denotes the (d + 1)-dimensional unit vector, Z = (z1, . . . ,zd+1)
T , and C

is a (d + 1)× (d + 1) matrix with all the elements equal to exp(−cδ 2) except the
diagonal elements which are equal to 1.

The improvement probability related criterion (4) for the considered simplex can
be expressed by the following formula

p(δ ) =
yon −M(δ ,Z)

S(δ )
, (8)

where the essential variables are presented explicitly. To avoid computations with
fractions, the denominators of which are close to zero, instead of p(δ ) its reciprocal
value with an inverse sign

p̃(δ ) =
S(δ )

M(δ ,Z)− yon
, (9)

is used for the implementation of the algorithm, as well as in a further analysis.
Formula (5), adapted to the special case considered, can be written as follows:

π(δ ) =
Q

z̃− yon
, (10)

where z̃ denotes the average of zi, i = 1, . . . ,d + 1, Q is the area of the considered
simplex and yon < min

1≤i≤d+1
zi.

We aim to show that (10) well approximates the special case (d = 2) of (9) for
small δ . It is expected that, for small δ , (9) can be approximated by an expression
similar to (5) in the case d > 2 as well.

4 Assessment of Approximation

It is obvious that both criteria (5) and (9) converge to zero as δ → 0, moreover, it is
expected that p̃(δ )# π(δ ). The asymptotic behaviour of π(δ ), as δ → 0, is obvious
after substituting Q by its expression via δ :

π(δ ) =
√

3δ 2

4(z̃− yon)
. (11)

To investigate the asymptotic behaviour of (9), the explicit form of C−1 is of
interest, since C−1 is included into the expression of p̃(δ ) via M(δ ,Z) and S2(δ ).
Recall that the matrix C is of the structure represented by the m×m matrix
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U =

⎛
⎜⎜⎝

1 a . . . a
a 1 . . . a
. . . . . . . . . . . .

a a . . . 1

⎞
⎟⎟⎠ , (12)

where a ∈ R.

Lemma 1. The following equality holds

V = U−1 =
1
u

⎛
⎜⎜⎝

t a . . . a
a t . . . a
. . . . . . . . . . . .

a a . . . t

⎞
⎟⎟⎠ , (13)

where t = −(m−2)a−1, and u = (m−1)a2 − (m−2)a−1.

Proof. The statement is proved simply by computing the elements of W = U ·V:

wii =
(
(m−1)a2 + t

)
/u =

(
(m−1)a2 − (m−2)a−1

)
/u = 1,

wij =
(
a+at+(m−2)a2)/u =

(
a+a(−(m−2)a−1)+(m−2)a2)/u = 0, i �= j.

Thus, we have proved that W is a unit matrix. �
Corollary 1. The inverse correlation matrix C−1 is a (d + 1)× (d + 1) matrix of
the structure, presented by formula (13), where t = −(d − 1)exp(−cδ 2)− 1, and
u = d exp(−2cδ 2)− (d −1)exp(−cδ 2)−1 = (d exp(−cδ 2)+1)(exp(−cδ 2)−1).

In order to investigate the convergence of p̃(δ ) to 0, as δ → 0, we start from the
convergence of its constituent parts, M(δ ,Z) and S2(δ ).

The substitution of C−1 in (6) by its expression, defined in Corollary 1, yields

M(δ ,Z) = μ+ exp

(
−cδ 2 d

2(d+1)

)
· IT · 1

u

⎛
⎜⎜⎝

t a . . . a
a t . . . a
. . . . . . . . . . . .

a a . . . t

⎞
⎟⎟⎠ · (Z −μI) =

= μ+
1
u

exp

(
−cδ 2 d

2(d+1)

)(
exp(−cδ 2)−1

)
IT · (Z −μI) =

= μ+
exp
(
−cδ 2 d

2(d+1)

)(
exp(−cδ 2)−1

)
∑d+1

i=1 (zi −μ)

(d exp(−cδ 2)+1)(exp(−cδ 2)−1)
=

= μ+
exp
(
−cδ 2 d

2(d+1)

)
∑d+1

i=1 (zi −μ)

d exp(−cδ 2)+1
. (14)
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The expansion

exp(−cx2) = 1− cx2 +o(x2), (15)

applied to all the exponential terms in (14), gives the following asymptotic
expression of M(δ ,Z)

M(δ ,Z) = μ+
(1− cδ 2 d

2(d+1) +o(δ 2))∑d+1
i=1 (zi −μ)

d+1−dcδ 2 +o(δ 2)
=

= z̃+o(δ ). (16)

Similarly, the substitution of C−1 in (7) by its expression, defined in Corollary 1,
yields

S2(δ ) = σ2(1− exp

(
−cδ 2 d

d+1

)
· IT · 1

u

⎛
⎜⎜⎜⎝

t a . . . a
a t . . . a
. . . . . . . . . . . .

a a . . . t

⎞
⎟⎟⎟⎠ · I =

= σ2(1− 1
u

exp

(
−cδ 2 d

d+1

)(−(d+1)((d −1)exp(−cδ 2)+1)+(d2 +d)exp(−cδ 2)
)
=

= σ2(1− exp
(−cδ 2 d

d+1

)
(d+1)

(
exp(−cδ 2)−1

)
(d exp(−cδ 2)+1)(exp(−cδ 2)−1)

=

= σ2

(
1− (d+1)exp(− cd

d+1δ
2)

d exp(−cδ 2)+1

)
. (17)

The expansion

exp(−cx2) = 1− cx2 +
1
2

c2x4 +o(x4), (18)

applied to all the exponential terms in (17), yields the following asymptotic
expression of S2(δ )

S2(δ ) = σ2 d exp(−cδ 2)− (d+1)exp(− cd
d+1δ

2)+1

d exp(−cδ 2)+1
=

= σ2 d(1− cδ 2 + 1
2 c2δ 4 +o(δ 4))− (d+1)(1− cd

d+1δ
2 + 1

2

(
cd

d+1

)2 δ 4 +o(δ 4))+1

d exp(−cδ 2)+1

= σ2 d(−cδ 2 + 1
2 c2δ 4 +o(δ 4))− (d+1)(− cd

d+1δ
2 + 1

2

(
cd

d+1

)2 δ 4 +o(δ 4))

d exp(−cδ 2)+1
=
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= σ2 −cdδ 2 + 1
2 c2dδ 4 +o(δ 4)+ cd(d+1)

d+1 δ 2 − 1
2

(
cd

d+1

)2
(d+1)δ 4 +o(δ 4)

d exp(−cδ 2)+1
=

= σ2
(−cd+ cd)δ 2 + 1

2

(
c2d − c2d2

d+1

)
δ 4 +o(δ 4)

d exp(−cδ 2)+1
=

= σ2
c2d

2(d+1)δ
4 +o(δ 4)

d exp(−cδ 2)+1
= σ2

c2d
2(d+1)δ

4 +o(δ 4)

d(1− cδ 2 +o(δ 2))+1
=

= σ2
c2d

2(d+1)δ
4 +o(δ 4)

d+1+d(−cδ 2 +o(δ 2))
= σ2

c2d
2(d+1)δ

4 +o(δ 4)

d+1+o(δ )
=

= σ2c2δ 4 d
2(d+1)2 +o(δ 4). (19)

The obtained assessments of asymptotic expressions (16) and (19) can be
summarized as the following theorem.

Theorem 1. The following equation is valid

p̃(δ ) =
σcδ 2

(d+1)(z̃− yon)

√
d
2
+o(δ 2). (20)

Corollary 2. In the case d = 2, the following relation of asymptotic equivalence is
valid

p̃(δ )∼ 4
√

3
9

σcπ(δ ). (21)

5 Conclusions

Two criteria used for justification of the construction of global optimization
algorithms, based on simplicial statistical models, are considered. The first criterion
refers to the improvement probability at the current optimization step, and the other
is defined by a computationally simpler formula, but without a theoretical back-
ground, and is restricted to bi-variate problems. In the present paper, the asymptotic
equivalence of both criteria is shown for the contracting simplices. The obtained
result not only theoretically substantiates the application of the computationally
simple criterion in the bi-variate case, but also supports its extension to higher
dimensions.
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Advanced Statistical Tools for Modelling
of Composition and Processing Parameters
for Alloy Development

Greg Zrazhevsky, Alex Golodnikov, Stan Uryasev, and Alex Zrazhevsky

Abstract The paper presents new statistical approaches for modeling highly
variable mechanical properties and screening specimens in development of new
materials. Particularly, for steels, Charpy V-Notch (CVN) exhibits substantial scatter
which complicates prediction of impact toughness. The paper proposes to use
Conditional Value-at-Risk (CVaR) for screening specimens with respect to CVN.
Two approaches to estimation of CVaR are discussed. The first approach is based
on linear regression coming from the Mixed-Quantile Quadrangle, and the second
approach builds CVN distribution with percentile regression, and then directly
calculates CVaR. The accuracy of estimated CVaR is assessed with some variant
of the coefficient of multiple determination. We estimated discrepancy between
estimates derived by two approaches with the Mean Absolute Percentage error. We
compared VaR and CVaR risk measures in the screening process. We proposed a
modified procedure for ranking specimens, which takes into account the uncertainty
in estimates of CVaR.
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1 Introduction

Development of new steels is an extremely costly and time-consuming process.
The process involves two main stages: (1) deciding on chemical composition
and processing parameters of the steel, based on previous experiences; (2) for
the suggested composition of steel, production and testing of trial commercial
specimens (see some description of the test of steel specimen at this link1). This
testing process generates data on important mechanical characteristics of new
steels such as yield tensile strength, elongation, and impact toughness (Charpy
V-notch—CVN). The CVN impact test is designed to provide a measure of metal
resistance to fast fracture in the presence of a flaw or notch. It has been used
extensively in mechanical testing of steel products, in research, and in procurement
specifications for over three decades. These mechanical characteristics are the basis
for evaluation of obtained experimental specimens and selection of steels with the
best properties for further development and more extensive testing. The selection
of experimental specimens is not a trivial task. The experimental values of the
mechanical characteristics in the selection process are not reliable, since they are
random by its nature and may significantly depend on non-controlled conditions of
physical experiments. The first stage in the development process can be done with
statistical models such as ordinary linear regression model predicting underlying
mean values of corresponding mechanical characteristics. While the tensile strength
can be predicted with reasonable accuracy [1], the prediction of impact toughness is
a much more difficult problem because experimental CVN data exhibit substantial
scatter. The Charpy test does not provide a measure of an invariant material property,
and CVN values depend on many parameters, including specimen geometry, stress
distribution around the notch, and microstructural inhomogeneities around the notch
tip. More on the CVN test, including the reasons behind the scatter and statistical
aspects of this type of data analysis, can be found in [2–6]. Creating alloys with
the best CVN values, therefore, results in multiple specimens for each experimental
condition, leading to complex and expensive experimental programs.

To overcome this difficulty of predicting CVN, paper [1] suggested to use
quantile regression, a nonparametric generalization of the ordinary least square
regression introduced by Koenker and Bassett [7]. This technique predicts any given
quantile (or percentile) of the distribution of CVN, rather than a single mean value
(as in standard mean square regression). The quantile regression imposes minimal
distributional assumptions on the data (the response is not required to be normal;
data may be heteroscedastic, that is the variability in the response can vary for
different values of the explanatory variables). Quantile regression combines results
of measurement of the same dependent variable (CVN) that were collected from
different specimens. Paper [1] used the quantile regression for predicting 20 %
of CVN in the screening phase to assure that a specimen satisfies the toughness
requirement (i.e., model-predicted 20 % value is higher than specified threshold).

1http://theconstructor.org/structural-engg/tensile-test-on-mild-steel-specimen/3514/.

http://theconstructor.org/structural-engg/tensile-test-on-mild-steel-specimen/3514/
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In financial risk management, quantile, called the Value-at-Risk (VaR), is used
to estimate tails of distributions. However, in recent years, Conditional Value-at-
Risk (CVaR) is frequently used instead of VaR. Risk measure VaR provides a lower
bound for the right tail of the distribution. Therefore, VaR does not measure the
outcomes which of the most concern. In contrast to VaR, risk measure CVaR is an
average of values upper VaR when right tail is estimated. More on the VaR, CVaR,
and quantile regression can be found in [8–14].

This paper expands the approach described in [1] and considers CVaR instead
of VaR for the estimating the right tail of CVN distribution. Simulation results
presented in the paper are based on real-life data set described in [1]. This data
set includes alloy chemical composition, plate thickness, and processing parameters
(treating and ageing temperatures) for 34 specimens. Apart from these parameters,
there correspond also to each specimen three values of CVN at −84◦C.

Section 2 outlines the Risk Quadrangle [8] theory. Within this theory quantile
(VaR) regression, which was pioneered in statistics by Koenker and Bassett [7],
can be estimated using linear regression by minimizing Koenker–Bassett error
(see [8]). CVaR is presented as mixed quantile (mixed VaR), and can be estimated
using Linear Regression by minimizing Rockafellar error (see [8]). Thus, the first
approach to estimation of CVaR is based on a Mixed-Quantile-Based Quadrangle.

Section 3 proposes the second approach to estimation of CVaR, which first
generates sample of large size and builds CVN distribution, and then directly calcu-
lates CVaR of CVN. Accuracy of generated CVN distribution is assessed by using
quantile regression equivalent of the coefficient of multiple determination. This
section compares numerical performance of two approaches to CVaR estimations:
(1) mixed percentile regression based on Rockafellar error; (2) distribution built
with percentile regression.

Section 4 analyzes probabilistic models of CVN for different specimens, and
compares three rules of specimens screening: (1) rule suggested in [3], which is
based on the average and the 20th VaR of the CVN distribution; (2) rule suggested
in [1] which is based only on the 20th VaR of the CVN distribution; (3) rule which
is based only on the 20th CVaR of the CVN distribution. This section compares also
performance of two approaches to estimation of CVaR in the process of screening
specimens with respect to CVN.

Section 5 investigates precision of CVaR estimation based on distribution built
with percentile regression. This section proposes a modified procedure for screening
specimens, which takes into consideration uncertainty in estimates of CVaR.

2 Percentile and Mixed Percentile Regression

The Risk Quadrangle [8] theory defines groups of stochastic functionals called
Quadrangles. Every quadrangle contains so-called Risk, Deviation, Error and Regret
(negative utility). These elements of quadrangle are linked by so-called Statistics
functional.
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CVaR and VaR are elements of Percentile Quadrangle, in particular, CVaR is
Risk and VaR is Statistics in this quadrangle (see [8]). Quadrangle is named after
its Statistics, in this case Statistics is percentile (VaR). The Koenker–Bassett error
is the Error in Percentile Quadrangle. Therefore, percentile (VaR) can be estimated
using Linear Regression by minimizing Koenker–Bassett error (see [8]).

This section considers also Mixed Percentile Quadrangle. Mixed Percentile is
Statistics and Rockafellar error is Error in Mixed Percentile Quadrangle. Mixed
percentile (mixed VaR) can be estimated using Linear Regression by minimizing
Rockafellar error (see [8]). CVaR for discrete distribution can be presented as Mixed
VaR. Therefore, CVaR is Statistics in Mixed Percentile Quadrangle. It is interesting
to observe that CVaR is Risk in Percentile Quadrangle and Statistics in Mixed
Percentile Quadrangle.

Let us explain described concepts with exact mathematical terms. Let X be
a random cost; Xi(x), i = 0,1, . . . ,m, is a family of random costs depending on
a decision vector x = (x1, . . . ,xn) belonging to a subset S. Measure of risk R
aggregates the overall uncertain cost in X into a single numerical value R(X).
This measure is used to model the statement “X adequately ≤ C” by the inequality
R(X)≤ C.

Consider a family of random costs Xi(x), i = 0,1, . . . ,m, depending on a decision
vector x = (x1, . . . ,xn) belonging to a subset S. A potential aim in choosing x from S
would be to keep the random variable Xi(x) adequately ≤ ci for i = 1, . . . ,m, while
achieving the lowest c0 such that X0(x) is adequately ≤ c0. The way “adequately”
could have different meaning for different i, and the notion of a risk measure
addresses this issue. A selection of risk measure Ri that pins down the intended
sense of “adequately” in each case leads to a optimization problem having the form

choose x ∈ S to minimize R0(X0(x)) subject to Ri(Xi(x))≤ ci for i = 1, . . . ,m.

A measure of deviation D deals with uncertainty in a random variable X quan-
tifying its nonconstancy. Thus D(X) is a generalization of the standard deviation
σ(X). Consideration of nonstandard measures of deviation in place of standard
deviation is motivated by their ability to capture “heavy tail behavior” in probability
distributions.

A measure of regret, v, is introduced to quantify the net displeasure v(X)
perceived in the potential mix of outcomes of random “costs” X. Regret comes up
in penalty approaches to constraints in stochastic optimization and, in mirror image,
corresponds to measure of “utility” U in a context of gains Y instead of losses X
(which is typical in economics: v(X) =−U(−X), U(Y) =−v(−Y)). In applying U
to Y the last is considered not as absolute gain but gain relative to some threshold,
e.g., Y = Y0 −B where Y0 is absolute gain and B is a benchmark.

A measure of error, ε , assigns to a random variable X a value ε(X) that quantifies
the nonzeroness in X. Classical examples are the norms

‖X‖1 = E |X| , ‖X‖p = [E |X|p]1/p for p ∈ (1,∞), ‖X‖∞ = sup |X| .
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Given an error measure ε and a random variable X, one can look for a constant
C nearest to X in the sense of minimizing ε(X − C). The resulting minimum “ε-
distance,” denoted by D(X), is a deviation measure (see [8]). The C value in the
minimum, denoted by S(X), can be called the “statistic” associated with X by ε .
The case ε(X) = ‖X‖2 produces S(X) = EX and D(X) = σ(X). The generation
of a particular deviation measure D and statistic S from an error measure ε has
implications for statistical estimation in the sense of generalized regression.

Regression is a way of approximating a random variable Y by a function
f (X1, . . . ,Xn) of one or more random variables Xj. The regression evaluates with
error measure ε how far the random difference Zf = Y − f (X1, . . . ,Xn) is from 0.
For an error ε and a collection C of regression functions f , the basic problem of
regression for Y with respect to X1, . . . ,Xn is to

minimize ε(Zf ) over f ∈ C, where Zf = Y − f (X1, . . . ,Xn). (1)

To illustrate richness of the quadrangle scheme and the interrelationships
between quadrangle objects, consider the Quantile Quadrangle, and a Mixed
Quantile Quadrangle [8].

The Quantile Quadrangle combines quantile statistics with concepts from
risk. By tying “Conditional Value-at-Risk”, on the optimization side, to Quantile
Regression as pioneered in statistics by Koenker and Bassett [7], it underscores a
relationship that might go unrecognized without the risk quadrangle scheme.

Let us consider the (cumulative) distribution function FX(x) = P{X ≤ x} of a
random variable X and the quantile values associated with it. If, for a probability
level α ∈ (0,1), there is a unique x such that FX(x) = α , then x, by definition, is the
α-quantile qα(X). In general, however, there are two values to consider as extremes:

q+α (X) = inf{x|FX(x)> α} , q−
α (X) = sup{x|FX(x)< α} .

It is customary, when these differ, to take the lower value as the α-quantile,
noting that, because FX is right-continuous, this is the lowest x such that FX(x) = α .
Consider the entire interval between the two competing values as the quantile,

qα(X) =
[
q−
α (X),q

+
α (X)

]
.

In finance, the Value-at-Risk term is used for quantile, and upper VaR
VaR+

α (X) = q+α (X) along with a lower VaR VaR−
α (X) = q−

α (X), and the VaR interval
VaRα(X) =

[
VaR−

α (X),VaR+
α (X)

]
is identical to the quantile interval qα(X).

Besides VaR, the example coming under consideration involves the CVaR of X
at level α ∈ (0,1), defined by

CVaRα(X) = expectation of X in its α-tail,

which is also expressed by

CVaRα(X) =
1

1−α

1∫
α

VaRτ(X)dτ . (2)
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Conditional Value-at-Risk CVaRα(X) is also called in [8] by superquantile
qα(X).

Let X+ = max{0,X}, X− = max{0,−X}, X = X+−X−.
A Quantile Quadrangle has the following elements:

• statistic S(X) = VaRα(X) = qα(X) = quantile;
• risk R(X) = CVaRα(X) = qα(X)= superquantile;
• deviation D(X) = CVaRα(X −EX) = qα(X −EX) = superquantile-deviation;

• regret v(X) =
1

1−α
EX+ = average absolute loss, scaled;

• error ε(X) = E

[
α

1−α
X++X−

]
= normalized Koenker–Basset error.

The original Koenker–Bassett Error expression differs from the normalized
Koenker-Basset error in Quantile Quadrangle by a positive factor. In order to build
regression function f (X1, . . . ,Xn) which approximates percentile of random variable
Y one should solve the optimization problem (1) with normalized Koenker–Basset
error.

Consider the case when random variable Y is approximated by the linear
function of a vector of K+1 explanatory variables x′ = [1,x1, . . . ,xK ], Y = x′β +δ ,
where β ′ = [β0,β1, . . . ,βK ]. The δ is zero-mean random term that accounts for the
surplus variability or scatter in Y that cannot be explained by explanatory variables
x1, . . . ,xK . The cumulative effects of unmeasured and/or unforeseen variables are
usually lumped into the stochastic δ term.

Let Y denote the logarithm of CVN, ln(CVN), and Y1, . . . ,Yn are observations of
the random variable Y at points x′

i =
[
1,xi

1, . . . ,x
i
K

]
, i = 1, . . . ,n. Then estimates of

coefficients of the α-th quantile regression function can be found by minimizing the
normalized Koenker–Basset error

1
n

⎧⎨
⎩ ∑

i:Yi≥x′
iβα

α
(1−α)

∣∣Yi −x′
iβα
∣∣+ ∑

i:Yi≤x′
iβα

∣∣Yi −x′
iβα
∣∣
⎫⎬
⎭ . (3)

A Mixed-Quantile Quadrangle has the following elements for confidence levels

αk ∈ (0,1) and weights λk > 0,
r

∑
k=1

λk = 1:

• statistic S(X) =
r

∑
k=1

λkqαk(X) =
r

∑
k=1

λkVaRαk(X) = mixed quantile;

• risk R(X) =
r

∑
k=1

λkqαk
(X) =

r

∑
k=1

λkCVaRαk(X) = mixed superquantile;

• deviation D(X) =
r

∑
k=1

λkqαk
(X−EX) =

r

∑
k=1

λkCVaRαk(X−EX) = corresponding

mixture of superquantile deviations;
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• regret v(X) = min
B1,...,Br

{
r

∑
k=1

λkvαk(X −Bk)

∣∣∣∣∣
r

∑
k=1

λkBk = 0

}
= derived balance of

the regrets vαk(X) =
1

1−αk
EX+;

• error ε(X) = min
B1,...,Br

{
r

∑
k=1

λkεαk(X −Bk)

∣∣∣∣∣
r

∑
k=1

λkBk = 0

}
= Rockafellar error

function,

where εαk(X) = E

[
αk

1−αk
X++X−

]
= normalized Koenker–Basset error with αk.

Relationship between CVaRα(Y) and Mixed-Quantile Quadrangle is established
by the formula (2). Classical numerical integration uses a finite subdivision of
the interval [α,1] and replaces the integrand in (2) by a nearby step function or
piecewise linear function based on the quantiles marking that subdivision. It is easy
to see that the value of the integral for that approximated integrand is actually a
mixed quantile expression. Thus for confidence levels αr ∈ (α,1), r = 1, . . . ,R, and

weights λr > 0,
R

∑
r=1

λr = 1, CVaRα(Y) in (2) can be approximated by the mixed

quantile

CVaRα(Y)≈
R

∑
r=1

λrVaRαr(Y). (4)

CVaR regression function is a generalization of the mixed quantile (4) to the
case when Y is a linear function of a vector of K + 1 explanatory variables x′ =
[1,x1, . . . ,xK ] plus random error, Y = x′β + ε , where β ′ = [β0,β1, . . . ,βK ].

It is estimated by minimizing Rockafellar error function with

εαk(X) = E

[
αk

1−αk
X++X−

]
=

=
1
n

⎧⎨
⎩ ∑

i:Yi≥x′
iβα

αk

(1−αk)

∣∣Yi −x′
iβα
∣∣+ ∑

i:Yi≤x′
iβα

∣∣Yi −x′
iβα
∣∣
⎫⎬
⎭ .

An important issue in regression with many independent variables is how to
choose a subset of variables so that a large portion of variability of Y is explained
by these few x variables. In the ordinary least squares model, one can measure the
proportion of variability through a quantity known as R2; e.g., R2 = 90% means
that only 10 % of the variation in Y cannot be accounted for by the x variables.
In the quantile regression, criteria R2 is not applicable. To assess the goodness of
fit, Koenker and Machado [11] introduced a quantile regression equivalent of the
coefficient of multiple determination, R1(α), which measures the proportion of the
variability in the response that is accounted for by the fitted α-th quantile surface.
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In order to exclude variables that contribute little to the explanation of Y , we applied
the stepwise variable selection method. As in its standard least squares regression
counterpart, this procedure adds and removes explanatory variables alternately
from the model using significance tests, eventually converging to a final subset of
variables.

3 Building CVN Distributions and Estimation
of CVaR for Specimens

In Sect. 2 we considered methods for estimating VaR and CVaR using the Quantile
Quadrangle, and a Mixed Quantile Quadrangle. This section suggests an alternative
approach to estimation of VaR and CVaR for CVN distributions. The idea of
the approach is to build CVN distribution for each specimen. Then with these
distributions we estimate VaR and CVaR.

With quantile regression we can estimate any quantile of the CVN distribution.
Moreover, quantile regression can estimate the whole distribution by estimating all
quantiles (or at least estimating quantiles with some fine grid). The idea here is to
use information over a large number of quantiles to reduce the approximation error
and enhance the accuracy of the estimated whole distribution for each specimen.
By definition, quantile is the inverse function of the corresponding cumulative
probability distribution function.

We constructed distribution of CVN for each specimen using the following
procedure, repeated 10,000 times:

1. Draw a random value from the Uniform (0,1) distribution and treat it as a
probability level α;

2. Build quantile regression model for this probability level;
3. For each specimen calculate quantile by substituting specimen-specific compo-

sition and processing parameters into quantile regression model with parameter
α and treat it as a random realization of specimen-specific CVN random value.

Thus, for each specimen we generated specimen-specific large sample of CVN
values, which is used for building empirical specimen-specific CVN distribution.

This procedure together with quantile regression techniques is the tool, which
transforms available information about all produced and tested trial commercial
specimens (chemical composition, processing parameters, and CVN) in the dis-
tribution of CVN for each specimen. The more values of probability levels α
are involved in this procedure, the more accurate is the transformation. Thus
our current-state of knowledge about interrelation between chemical composition,
processing parameters, and CVN values is completely presented in form of the
CVN distribution. In this sense for large sample size (10,000 or more) we can
consider such distributions as a good probabilistic models of CVN for corresponding
specimen.
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Table 1 Accuracy of
different regions of the
generated CVN distribution

Range of α Range of coefficients R1(α)
0.050–0.250 0.4219–0.4424

0.251–0.350 0.3488–0.4400

0.351–0.533 0.4400–0.4871

0.534–0.665 0.3400–0.3796

0.666–0.750 0.3015–0.3399

0.751–0.832 0.2500–0.3015

0.833–0.928 0.2001–0.2500

0.929–0.980 0.1954–0.3765

Accuracy of generated CVN distribution may be assessed by using quantile
regression equivalent of the coefficient of multiple determination, R1(α), which
measures the proportion of the “variability” in the response that is accounted for
by the fitted α-th quantile surface.

Table 1 shows that for the wide range of probability levels (0.05 ≤ α ≤ 0.832)
the quantile regression functions capture more than 25 % of the variability in the
response that is accounted for by the fitted α-th quantile surface. The most accurate
portion of the generated CVN distribution is in the range of probability levels
0.351 ≤ α ≤ 0.533. Quantile regression functions corresponding to this range of
α account for 44–48.71 % of the response variability.

For constructed CVN distributions we can determine for each specimen the
following characteristics: average, α-th quantile, and α-th CVaR. We used these
characteristics in the process of screening specimens with respect to CVN.

Let us compare numerical performance of two approaches to CVaR estima-
tions: (1) mixed percentile regression based on Rockafellar error; (2) distribu-
tion built with percentile regression. We transformed specimen-specific CVN
distributions into corresponding distributions of ln(CVN) and calculated α-th
CVaR for each distribution. Let J denote the total number of specimens, and
let CVaRα(ln(CVNj)) be α-th CVaR of ln(CVN) for j-th specimen, j = 1, . . . ,J.

Suppose that CVaRα(ln(CVN)) = x
′
β is CVaR regression function found by

minimizing Rockafellar error function, x
′
= [1,x1, . . . ,xK ] are explanatory variables,

β
′
= [β0,β1, . . . ,βK ] are coefficients of CVaR regression function. Here x′

j =[
1,xj

1, . . . ,x
j
K

]
are values of explanatory variables for j-th specimen, j = 1, . . . ,J.

Then x′
jβ is estimate of α-th CVaR of ln(CVN) derived from CVaR regression.

Discrepancy between estimates based on Rockafellar error and on distribution
built with percentile regression can be measured by Mean Absolute Error (MAE),

MAE =
1
J

J

∑
j=1

∣∣CVaRα(ln(CVNj))−x′
jβ
∣∣ , (5)
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Table 2 Average
discrepancy between
estimates based on
Rockafellar error and on
distribution built with
percentile regression for
equal weights λ1, . . . ,λR

Number of VaRs in
Mixed Quantile, R MAE MAPE (%)

5 0.1519 4.04

10 0.1643 4.31

15 0.1631 4.27

20 0.167 4.36

25 0.1680 4.38

30 0.1754 4.55

or Mean Absolute Percentage Error (MAPE),

MAPE =
1
J

J

∑
j=1

∣∣∣∣∣CVaRα(ln(CVNj))−x′
jβ

CVaRα(ln(CVNj))

∣∣∣∣∣ . (6)

Using original data with three observed values of CVN for each specimen, we
built 20 %-CVaR regression functions for different values of VaRs in the mixed
quantile (4), with equal distance between adjacent values of confidence levels
αr ∈ (0.2,1), r = 1, . . . ,R, and with equal values of weights λ1, . . . ,λR. Average
discrepancies between these estimates are presented in Table 2.

Analyzing Table 2 we draw the following conclusions:

1. Two approaches to CVaR estimations (based on Rockafellar error and on distri-
bution built with percentile regression) provide on average similar estimates of
CVaR0.2(ln(CVN)) for all specimens. The average discrepancy between these
estimates does not exceed 4.55 % in the conducted numerical experiments.

2. This result only slightly depends on the number of VaRs in the mixed quantile.
The average discrepancy between these estimates increases from 4.04 to 4.55 %
with increase of number of VaRs in mixed quantile from 5 to 30.

We investigated also the case when for a given set of confidence levels αr ∈
(0.2,1), r = 1, . . . ,R, corresponding weights λ1, . . . ,λR are chosen to get the best

approximation of CVaRα(ln(CVNj)) by the sum
R

∑
r=1

λrVaRαr(ln(CVNj)) in (4). For

this purpose we minimized MAE of such approximation for all specimens

min
λ1,...,λR

1
J

J

∑
j=1

∣∣∣∣∣CVaRα(ln(CVNj))−
R

∑
r=1

λrVaRαr(ln(CVNj))

∣∣∣∣∣ (7)

subject to

R

∑
r=1

λr = 1, (8)

λr ≥ 0, r = 1, . . . ,R. (9)
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Table 3 Average
discrepancy between
estimates based on
Rockafellar error and on
distribution built with
percentile regression with
weights λ ∗

r ,r = 1, . . . ,R

Number of VaRs in
Mixed Quantile, R MAE MAPE (%)

5 0.1422 3.74

10 0.1906 4.93

15 0.1763 4.54

20 0.1802 4.63

25 0.1798 4.63

30 0.1816 4.67

We solved optimization problem (7)–(9) for different number of VaRs in
mixed quantile, R = 5,10,15,20,25,30. For all values of r optimal solutions, λ ∗

r ,
r = 1, . . . ,R, are not equal. For example, for R = 5, λ ∗

1 = 0.390, λ ∗
2 = 0, λ ∗

3 = 0.198,
λ ∗

4 = 0, λ ∗
5 = 0.412.

Average discrepancies between these estimates for optimal values λ ∗
r ,

r = 1, . . . ,R, are presented in the Table 3.
Comparing Tables 2 and 3 we conclude that goodness of fit of CVaR regression

in cases when all weights are equal and when optimal values λ ∗
r , r = 1, . . . ,R are

used is approximately the same.

4 Comparison of VaR, and CVaR Risk Measures
in Screening Process

As described in [3], the alloy development process includes three rounds of
laboratory melting, processing and testing of candidate steels. Round 1 involves
screening of several exploratory compositions. Round 2 consists of additional
laboratory testing of new heats for the best compositions from Round 1. The most
promising steel from Round 2 (the prime candidate steel) is the subject of more
extensive testing in Round 3, in which several heats are tested. The ranking and
selection of best alloys are based on combinations of yield strength and CVN
at −84◦C.

In [1] we have shown that the tensile yield strength can be accurately predicted
with ordinary linear regression. At the same time, we encountered difficulty in
attempting to build a linear regression model for CVN at −84◦C. Whereas each
specimen is characterized by a single value of yield strength, three values are
observed for CVN. This setting and the fact that there is a substantial variability in
these values complicates the process of screening specimens with respect to CVN.

As specified in [3], an acceptable specimen must satisfy the following toughness
requirement: the average of three values of CVN must be greater than specified
threshold c, with no single value below c by more than some specified value d.

It is clear that this ranking criterion is not perfect, since it is based on a very
small number of random observations (only three values of CVN). In fact, screening
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with this rule is random and unstable. To overcome this shortcoming we (see [1])
screened specimens with respect to CVN with quantile (percentile) regression.
Quantile regression involves CVN values from testing of several specimens (not
only one specimen). Therefore, ranking criterion based on quantile regression is
more stable.

In order to determine which quantile corresponds to the smallest of the three
values of CVN, we successively drew three random values from a standard normal
distribution, each time selecting only the smallest value. This was repeated 10,000
times, producing an average value of 0.19. The interpretation in [1] was that the
smallest of three such CVN values approximately corresponds to the 20th percentile
of the CVN distribution. The ranking criterion in [1] was based solely on the 20th
percentile of the CVN distribution.

Nevertheless, quantile regression does not evaluate the tail of CVN distribution.
In contrast to quantile, the CVaR is an average of outcomes exceeding this quantile.
Conceptually, CVaR is preferable to quantile for screening specimens with respect
to CVN.

We analyzed probabilistic models of CVN for different specimens using the
following rules of specimens screening:

1. Rule suggested in [3] which is based on the average and the 20th VaR of the
CVN distribution;

2. Rule suggested in [1] which is based on the 20th VaR of the CVN distribution;
3. Rule which is based on the 20th CVaR of the CVN distribution.

Figure 1 shows that specimen 2 has larger value of 20 % percentile (20 %–VaR)
of the CVN distribution than the specimen 1, but smaller values of average and
20 % CVaR. Therefore, the screening rule 1 could not select the better specimen
from these two specimens; rule 2 should classify the specimen 2 as better one than
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2 35.37 91.75 79.63

Fig. 1 Probabilistic models for specimen 1 and 2, and their characteristics
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2 35.37 91.75 79.63
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22 45.00 89.42 80.13

Fig. 2 Probabilistic models for specimen 2, and 22, and their characteristics

specimen 1; rule 3 should classify the specimen 1 as better one than specimen 2.
Since CVaR is preferable to quantile for screening specimens with respect to CVN,
the correct classification provides only rule 3.

Figure 2 shows that the specimen 22 has larger value of 20 % percentile (20 %–
VaR) and the mean of the CVN distribution than the specimen 2, but smaller value
of 20 % CVaR. Therefore, the screening rules 1 and 2 should classify the specimen
22 as a better one than specimen 2, but rule 3 should classify the specimen 2 as
a better one than specimen 22. Since CVaR is preferable to quantile for screening
specimens with respect to CVN, the correct classification provides only rule 3.

These examples demonstrate that results of screening with rules 1, 2, and 3
contradict each other. Rule 3 which is based on the CVaR of the CVN distribution is
more appropriate and it is recommended for screening process. We also emphasize
that in regression and in probabilistic modeling, all available information should be
used to increase accuracy of screening process. For instance, screening of specimens
in Round 1 can use CVN distributions derived from data generated during this
Round. According to observations from Round 1, these CVN distributions are
considered as “correct”. Round 2 generates additional information, which should be
combined with information from Round 1 and utilized for derivation of new CVN
distributions. These new CVN distributions are used for screening of specimens in
Round 2. Finally, screening of specimens in Round 3 should use CVN distributions
derived from data generated during three rounds.

We compared performance of the two approaches to estimation of CVaR in the
process of screening with respect to CVN by using 33 pairs of specimens.

The first approach, which is based on a Mixed Quantile Quadrangle, utilizes
original experimental data for direct estimating of 20 %-CVaR for ln(CVN).
Therefore, in screening two specimens with numbers j1, and j2 the first approach
should compare two values CVaR0.2(ln(CVNj1)), and CVaR0.2(ln(CVNj2)), j1,
j2 = 1, . . . ,J.
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The second approach estimates 20 %-CVaR in two steps. At the first step, the
original experimental data are used for building distributions of CVN for each
specimen. At the second step we directly calculated 20 %-CVaR for each specimen
using these CVN distributions. In screening, two specimens with numbers j1,
and j2 the second approach should compare two values CVaR0.2(CVNj1), and
CVaR0.2(CVNj2), j1, j2 = 1, . . . ,J.

Since logarithm is an increasing function, the inequalities CVaR0.2(CVNj1) >
CVaR0.2(CVNj2), and CVaR0.2(ln(CVNj1))> CVaR0.2(ln(CVNj2)), are equivalent.
Both approaches provide the same result only in screening of 20 pairs. In the
13 pairs results of screening were different. Despite the fact that the average
discrepancy between estimates of CVaR0.2(ln(CVN)) obtained by using these two
approaches do not exceed 4.55 % (see results in the Table 2), discrepancy in results
of screening exceeds 39 %. Since the second approach uses 10,000 CVN values for
each specimen, while the first approach uses only 3 values, we consider the second
approach is more accurate.

5 Precision of Estimates of CVaR Derived
From Small Samples

Section 3 describes procedure for building a CVN distribution for each specimen
and determining characteristics of these distributions. The procedure is based on
generating large samples of CVN values for each specimen by using quantile
regressions. If size of the sample is large, it can be considered as a population
corresponding to a specimen, and characteristics of CVN distribution such as
average, 20 %-quantile, and 20 %-CVaR can be considered as “true” characteristics
corresponding to the specimen. Therefore, these characteristics can be used in the
screening process. We considered that samples containing 10,000 values can be clas-
sified as large, although for high precision, sample size 100,000 or 1,000,000 may
be needed. For such large sample sizes, procedure of building CVN distributions is
time consuming.

However, usually, samples of small and moderate size are used. In this case
estimates of average, VaR, and CVaR derived from small samples (with size 100,
200, 500) may have large uncertainty, which should be taken into consideration
in the screening process. This uncertainty can be quantitatively characterized by
90 %-th or 95 %-th confidence intervals. The “confidence interval probability” is the
probability that the calculated confidence interval encompasses the true value of the
population parameter (average, VaR, or CVaR). The size of the confidence interval,
and the confidence levels provide information on the accuracy of the estimation.

In order to build confidence interval, we randomly sample from a population
of size N to produce k new samples of fixed size n. Each sample consists of
random realizations of random variables ξ1, . . . ,ξn. Functions of these random
variables, average, 20 % VaR, and 20 % CVaR, called statistics, are also random.
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Fig. 3 Empirical sampling distributions of 20 % CVaR for CVN for Specimen 2 (number of
generated samples = 10,000, sample sizes =100; 500; 3,000)

From each generated sample we calculated random realizations of these statistics.
With a large number of new samples, k = 10,000, we generated empirical sampling
distributions separately for average, 20 % VaR, and 20 % CVaR. For each of these
empirical sampling distributions we determined average, 5 %- and 95 %-quantiles,
which specify point estimate as well as lower and upper confidence limits for
corresponding statistics.

In our calculations we used the following sampling parameters:

1. population size N = 10,000;
2. number of generated small samples k = 10,000;
3. sizes of small samples n = 100,200,300,500,1,000,3,000;

Figures 3 and 4 show empirical sampling distributions of the population param-
eters (20 % CVaR, and 20 % VaR for CVN) in case when random samples of
fixed sizes (n = 100, 500, and 3,000) were drawn from the population. Figure 3
demonstrates that sample 20 % CVaR distribution gradually converges to the normal
distribution when sample size increases from 100 to 3,000. But this is not the case
for 20 % VaR distributions (see Fig. 4).
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Fig. 4 Empirical sampling distributions of 20 % VaR for CVN for Specimen 2 (number of
generated samples = 10,000, sample sizes =100; 500; 3,000)

Empirical sampling distributions of the population parameters were used for
determining their point estimates, 90 % confidence intervals, and the accuracy
of estimation calculated as the ratio of length of the confidence interval to the
corresponding point estimate. The point estimate for a population parameter was
determined as the mean of its empirical sampling distribution. Estimates of 20 %
VaR for CVN distribution for Specimen 2 obtained for samples of size 100, 200,
300, 500, 1,000, and 3,000 are in Table 4.

The Table 4 shows the rapid growth of accuracy of the 20 % VaR for CVN
(Specimen 2) estimation while a sample size increases from 100 to 3,000. The best
accuracy, 0.20 %, is achieved for sample size = 3,000, it is significantly better than
for sample size = 1,000.

Similar results of estimation for 20 % CVaR for CVN (Specimen 2) are presented
in Table 5.
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Table 4 Estimates of 20 % VaR for CVN (Specimen 2)

90 % Confidence interval
Sample size Point estimate 5 %-Quantiles 95 %-Quantiles Accuracy of estimation (%)

100 35.30 33.43 36.65 9.11

200 35.28 33.81 36.23 6.86

300 35.31 34.44 36.23 5.07

500 35.34 34.44 36.23 5.06

1,000 35.36 34.61 36.05 4.10

3,000 35.39 35.37 35.44 0.20

Table 5 Estimates of 20 % CVaR for CVN (Specimen 2)

90 % Confidence interval
Sample size Point estimate 5 %-Quantiles 95 %-Quantiles Accuracy of estimation (%)

100 91.82 84.51 99.02 15.80

200 91.79 86.63 96.96 11.25

300 91.74 87.51 95.95 9.20

500 91.77 88.57 94.99 7.00

1,000 91.75 89.43 94.06 5.05

3,000 92.09 90.76 93.40 2.86

The Table 5 shows the moderate growth of accuracy of the 20 % CVaR for
CVN (Specimen 2) estimation while a sample size increases from 100 to 3,000.
However, the comparison of Tables 4 and 5 shows that estimates of 20 % VaR are
more accurate than estimates of 20 % CVaR for all sample sizes. For instance, for
samples size = 3,000 accuracy of estimation of 20 % CVaR is 10 times worse than
accuracy of estimation of 20 % VaR. Therefore, in the screening procedure based
on estimation of CVaR derived from samples of moderate sizes we have to use
confidence intervals.

All values in the 90 % confidence interval for CVaR are plausible values for
the CVaR with probability 0.9, whereas values outside the interval are rejected as
plausible values for CVaR. Therefore, in screening process based on estimates of
CVaR, which were derived from samples of moderate sizes, we should compare
confidence intervals of two specimens instead of their point estimates as described in
Sect. 4. If these confidence intervals do not overlap, these specimens are necessarily
significantly different. In this case, the specimen, corresponding to the confidence
interval with lower values, should be disqualified. However, if these specimens have
overlapping confidence intervals, the screening procedure cannot select the best
specimen. In this case, we should increase sample size and repeat the procedure
of estimation of confidence interval.

For instance, consider confidence intervals for 20 %-CVaR, corresponding to
specimen 2 and specimen 10, shown in Fig. 5.

Figure 5 shows that, if sample size equals 100, then these specimens have
overlapping confidence intervals. In this case, the screening procedure cannot select
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Fig. 5 Confidence intervals for 20 %-CVaR, corresponding to specimens 2 and 10, which were
derived from 10,000 samples of fixed size 100, 200, 300, 500, and 1,000
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Fig. 6 Confidence intervals for 20 %-CVaR, corresponding to specimens 1 and 21, which were
derived from 10,000 samples of fixed size 100, 200, 300, and 3,000

the best specimen. Then, we produced 10,000 samples of fixed size 200 and derived
new confidence intervals for these specimens. Figure 5 shows that for this sample
size, specimens 2 and 10 have also overlapping confidence intervals. Successively
building confidence intervals for samples of fixed size 300 and 500, we found that in
the latter case these confidence intervals do not overlap. Therefore, for sample size
500 screening rule should classify the specimen 10 as a better one than specimen 2.

However, not always increasing of sample size results in separation of confidence
intervals for two specimens.

Figure 6 shows that specimens 1 and 21 have overlapping confidence intervals for
sample sizes 100, 200, 300, and 3,000. In this case, the screening procedure cannot
select the best specimen. Therefore, both these specimens should be classified as
promising steel samples.

This section demonstrated that the approach to CVaR estimation based on
distribution built with percentile regression allows calculating confidence interval
in addition to point estimate for CVaR. Utilization of confidence intervals in the
screening procedure enables to reduce screening errors related with uncertainty in
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point estimates of CVaR. For this purpose, we should compare confidence intervals
of two specimens instead of their point estimates, as described in Sect. 4. If these
confidence intervals do not overlap, these specimens are significantly different. In
this case, the specimen, corresponding to the confidence interval with lower values,
should be disqualified. However, if these specimens have overlapping confidence
intervals, the screening procedure cannot select the best specimen. In this case, we
should increase the sample size and repeat the procedure of estimation of confidence
interval.

6 Summary and Conclusions

We presented new statistical approaches for modeling mechanical properties and
screening specimens in development of new materials with highly variable prop-
erties. Paper [1] suggested to use quantile regression for screening specimens.
However, quantile regression does not take into account tails of distributions.
In contrast to quantile, CVaR is an average of observations exceeding quantile.
Therefore, CVaR which takes into account tails may be preferable to quantile for
screening specimens.

We investigated two approaches for CVaR estimation. The first approach, based
on a Mixed-Quantile Quadrangle, uses experimental data for direct estimating 20 %-
CVaR. In particular, we considered a Mixed-Quantile regression for ln(CVN) with
the Rockafellar error function. The second approach estimates 20 %-CVaR in two
steps. The first step uses quantile regression for generating a large number of
samples of CVN values and building distributions of CVN for each specimen. The
second step calculates 20 %-CVaR for each specimen from these distributions.

Accuracy of generated CVN distribution was evaluated with the coefficient of
multiple determination, R1(α), which measures the proportion of the ‘variability’
in the response that is accounted for the fitted α-th quantile surface. We found that
for a wide range of probability levels (0.05 ≤α ≤ 0.832) the corresponding quantile
regression functions capture more than 25 % of the variability in the response (that
is accounted for by the fitted α-th quantile surface). The most accurate portion
of the generated CVN distribution corresponds to the range of probability levels
0.351 ≤ α ≤ 0.533. The quantile regression functions corresponding to this range
of α account for 44–48.71 % of the variability in the response.

Discrepancy between estimates of CVaR based on Rockafellar error and on
distribution from the percentile regression was measured by the MAE. We found that
two approaches to CVaR estimation provide similar estimates of CVaR0.2(ln(CVN))
for all specimens. The numerical experiments demonstrated that the average
discrepancy between these estimates does not exceed 4.55 %.

We compared performance of these two approaches for CVaR estimation for
screening specimens with respect to CVN. The dataset included 33 pairs of
specimens. Both approaches resulted in the same ranking for 20 pairs. However,
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results of screening were different for 13 pairs. Although the average discrepancy
between estimates of CVaR0.2(ln(CVN)) with these two approaches does not
exceed 4.55 % (see results in the Table 2), discrepancy in screening exceeds 39 %.
Since in the second approach we considered 10,000 sampled CVN values for each
specimen, while in the first approach we used only 3 values, the second approach is
more accurate.

We also analyzed probabilistic models of CVN for different specimens using the
following rules of specimens screening:

1. Rule suggested in [3], based on the average and the 20th VaR of the CVN
distribution;

2. Rule suggested in [1], based only on the 20th VaR of the CVN distribution;
3. Rule based only on the 20th CVaR of the CVN distribution.

Results of screening by using Rules 1, 2, and 3 sometimes contradicted each
other. We think that the Rule 3 which is based on the CVaR of the CVN distribution
is the more appropriate, and it should be used for screening process.

CVaR estimation based on distribution (built with percentile regression) allows
for calculating confidence interval, in addition to point estimate of CVaR. The
confidence intervals in the screening procedure reduce screening errors coming from
the uncertainty in estimates of CVaR. We compared confidence intervals of two
specimens, instead of their point estimates as described in Sect. 4. If confidence
intervals do not overlap, the specimens are significantly different. However, for
specimens with overlapping confidence intervals the screening procedure cannot
select the best specimen. In this case, we can increase the sample size and repeat the
procedure of estimation of confidence interval.

Approaches proposed in this paper could identify promising compositions
of materials and processing parameters for developing better steels. This may
reduce cost of experimental programs, shifting resources to cost-effective computer
modeling techniques.

References

1. Golodnikov, A., Macheret, Y., Trindade, A., Uryasev, S., Zrazhevsky, G.: Statistical Modeling
of Composition and Processing Parameters for Alloy Development. Model. Simul. Mater. Sci.
Eng. 13, 633–644 (2005)

2. McClintock, F.A., Argon A.S.: Mechanical Behavior of Materials. Addison-Wesley, Reading,
MA (1966)

3. Goldren, A.P., Cox, T.B.: AMAX Report, CPR-2, AMAX Materials Research Center, Ann
Arbor, MI (1986)

4. Corwin, W.R., Houghland, A.M.: Effect of Specimen Size and Material Condition on the
Charpy Impact Properties of 9Cr-1Mo-V-Nb Steel. In: Corwin, W.R., Lucas, G.E. (eds.) The
Use of Small-Scale Specimens for Testing Irradiated Material. ASTM STP 888, Philadelphia,
PA, pp. 325–338 (1986)



Advanced Statistical Tools for Modelling 413

5. Lucon, E., et al.: Characterizing Material Properties by the Use of Full-size and Sub-size
Charpy Tests. In: Siewert, T.A., Manahan, M.P. (Sr. eds.) Pendulum Impact Testing: A Century
of Progress. ASTM STP 1380, pp. 146–163. American Society for Testing and Materials, West
Conshohocken, PA (1999)

6. Todinov, M.T.: Uncertainty and Risk Associated with the Charpy Impact Energy of Multi-run
Welds. Nucl. Eng. Des. 231, 27–38 (2004)

7. Koenker, R., Bassett, G.: Regression Quantiles. Econometrica 46, 33–50 (1978)
8. Rockafellar, R.T., Uryasev, S.: The Fundamental Risk Quadrangle in Risk Management,

Optimization, and Statistical Estimation. Surv. Oper. Res. Manag. Sci. 18, 33–53 (2013)
9. Rockafellar, R.T., Uryasev, S.: Optimization of Conditional Value-at-risk. J. Risk 2, 21–42

(2000)
10. Rockafellar, R.T., Uryasev, S.: Conditional Value-at-risk for General Loss Distributions. J.

Bank. Financ. 26, 1443–1471 (2002)
11. Koenker, R., Machado, J.A.F.: Goodness of Fit and Related Inference Processes for Quantile

Regression. J. Am. Stat. Assoc. 94, 1296–1310 (1999)
12. Taylor, J.W., Bunn, D.W.: Combining Forecast Quantiles Using Quantile Regression: Inves-

tigating the Derived Weights, Estimator Bias and Imposing Constraints. J. Appl. Stat. 25,
193–206 (1998)

13. Bassett, G., Koenker, R.: An Empirical Quantile Function for Linear Models with iid Errors.
J. Am. Stat. Assoc. 77, 407–415 (1982)

14. Koenker, R., d’Orey, V.: Computing Regression Quantiles. Appl. Stat. 43, 410–414 (1994)


	Preface
	Contents
	Contributors
	List of Participants
	Panos M. Pardalos: A Brief Biography
	Modular Lipschitzian and Contractive Maps
	1 Introduction
	2 What Is a Modular?
	3 Modular Spaces
	4 Modular Lipschitzian Maps
	5 Modular Contractions
	6 An Ad Hoc Application
	7 Conclusion
	References

	A Taxonomy for the Flexible Job Shop Scheduling Problem
	1 Introduction
	2 The FJSP
	3 A Brief Literature Review
	4 Statistical Findings
	5 FJSP Taxonomy
	6 Classification of the FJSP Literature
	7 Concluding Remarks
	References

	Sensitivity Analysis of Welfare, Equity, and Acceptability Level of Transport Policies
	1 Introduction
	2 Definition of Transport Model
	2.1 Notation
	2.2 The Car (Private Transportation) Network Model
	2.3 The Public Transport Model
	2.4 The Travel Demand Model
	2.5 The Optimization Problem

	3 Definitions of Welfare, Equity and Acceptability Measures
	3.1 Welfare Indicator Formulation
	Net Economic Welfare

	3.2 Inequality Indicator Formulation
	3.2.1 The Generalised Entropy Class of Inequality Measures
	3.2.2 Theil's Entropy Measure

	3.3 Acceptability Indicator Formulation

	4 Sensitivity Analysis of Transport Policy Indicators
	4.1 Application to the Present Problem

	5 Numerical Experiments
	5.1 Equilibrium Model Results
	5.2 Sensitivity Analysis Results

	6 Conclusions
	References

	Calibration in Survey Sampling as an Optimization Problem
	1 Introduction
	Notation
	2 Calibration as an Optimization Problem
	3 Choice of Functions ϕi in (1)
	4 Hard Calibration
	4.1 Example 1: A Classical Example
	4.2 Example 2
	4.3 Example 3
	4.4 Example 4

	5 Soft Calibration
	6 Conclusions
	References

	On the Sensitivity of Least Squares Data Fitting by Nonnegative Second Divided Differences
	1 Introduction
	2 An Outline of the Method of Calculation
	3 Changes in the Solution Due to Changes in the Data
	4 An Illustrative Example
	5 The Simulation Experiment
	6 Discussion
	References

	Modeling and Solving Vehicle Routing Problems with Many Available Vehicle Types
	1 Introduction
	2 Literature Review of the VRP with a Heterogeneous Fleet
	3 Mathematical Models for the Many-FSMVRP
	3.1 A Set-Partitioning Formulation of the FSMVRP
	3.2 An Extended Set-Partitioning Model of the many-FSMVRP
	3.3 Load-dependent Costs

	4 Algorithms for the many-FSMVRP
	4.1 Column Generation Applied to the Set-Partitioning Model
	4.1.1 Adding Routes to the Restricted Master Problem
	4.1.2 Terminating the Column Generation Algorithm

	4.2 Benders' Decomposition Algorithm for the Extended Set-Partitioning Model
	4.2.1 An Optimal Extreme Point to the Benders Subproblem
	4.2.2 Extensions of Benders' Algorithm
	4.2.3 Suggestions for Further Improvements of Benders' Algorithm


	5 Tests and Results
	5.1 Test Settings
	5.2 Comparison of the Algorithms
	5.3 Comparison of the Solutions Obtained Using Different Models

	6 Conclusions
	Appendix: The Extended Test Instances many-FSMVRP5
	References

	A Genetic Algorithm for Scheduling Alternative Tasks Subject to Technical Failure
	1 Introduction
	2 Problem Definition and Formulation
	3 Methodology
	3.1 Overview
	3.2 Biased Random-Key Genetic Algorithm
	3.2.1 Chromosome Representation and Decoding
	3.2.2 Solution Builder


	4 Computational Experiments
	5 Conclusions
	References

	Discrete Competitive Facility Location: Modeling and Optimization Approaches
	1 Introduction
	2 Sequential Deterministic Facility Location Problems
	3 Sequential Probabilistic Competitive Facility Location Models
	4 Competitive Facility Location with Competition of Customers
	5 Conclusion and Future Research
	References

	On Nash Equilibria in Stochastic Positional Games with Average Payoffs
	1 Introduction
	2 Problem Formulation and Some Preliminary Results
	3 Nash Equilibria Conditions for Stochastic Positional Games with Average Payoffs
	4 Saddle Point Conditions for Antagonistic Stochastic Positional Games and an Algorithm for Determining the Optimal Strategies
	4.1 An Algorithm

	5 Application of Stochastic Positional Games for Studying Shapley Stochastic Games
	6 Conclusion
	References

	Adaptive Tunning of All Parameters in a Multi-Swarm Particle Swarm Optimization Algorithm: An Application to the Probabilistic Traveling Salesman Problem
	1 Introduction
	2 Probabilistic Traveling Salesman Problem
	3 Adaptive Multi-Swarm Particle Swarm Optimization Algorithm
	4 Computational Results
	5 Conclusions
	References

	Eigendecomposition of the Mean-Variance Portfolio Optimization Model
	1 Introduction
	2 Eigendecomposition of the Mean-Variance Model
	2.1 Approximation of the Mean-Variance Model

	3 An Improved Approximation Strategy
	3.1 A Linearized Error Term
	3.2 Cardinality of the Solution

	4 Numerical Illustrations
	4.1 Upper and Lower Bounds
	4.2 Deviation in Solution
	4.3 Efficient Frontier
	4.4 Cardinality of the Solution

	5 A Proposed Transformation
	6 Conclusion and Further Research
	References

	Three Aspects of the Research Impact by a Scientist: Measurement Methods and an Empirical Evaluation
	1 Introduction: The Problem and Background
	2 Methodology
	2.1 The Problem of Stratification
	2.2 Linstrat Criterion and Method
	2.3 Taxonomic Rank of a Scientist

	3 Developing an Empirical Testing Base for the Taxonomic Rank Evaluation
	3.1 A Taxonomy of the Data Analysis Subjects
	3.2 Sample of Scientists and Their Taxonomic Ranks
	3.3 Scoring Citation and Merit
	3.4 Combined Criteria and Stratifications Obtained

	4 Conclusion
	References

	SVM Classification of Uncertain Data Using Robust Multi-Kernel Methods
	1 Introduction
	2 Notation
	3 Two-Norm Support Vector Classification
	4 Kernel Learning
	5 Robust SDP Formulation for Classification problem
	5.1 Uncertainty Mapping for Input to Feature Space
	5.2 Robust Counterparts to Uncertain Constraints
	5.3 Robust SDP Formulation

	6 Empirical Results
	7 Conclusion
	References

	Multi-Objective Optimization and Multi-Attribute Decision Making for a Novel Batch Scheduling Problem Based on Mould Capabilities
	1 Introduction
	2 Literature Review
	2.1 Batch Scheduling Problems
	2.1.1 Batch Scheduling Problems with Single-Objective
	2.1.2  Batch Scheduling with Multi-Objective

	2.2 Scheduling Problems with Mould Constraint
	2.3 Summary

	3 Problem Description and Modelling
	3.1  Notation
	3.2 Problem Description
	3.3 Mixed Integer Programming Model

	4 Properties of Optimal Solutions
	5 The Proposed MOGSA
	5.1  Gravitational Search Algorithm
	5.2 Key Procedure of MOGSA
	5.2.1 Encoding
	5.2.2 Decoding
	5.2.3 Selector Operator
	5.2.4 Mutation Operator
	5.2.5 Pareto Frontier Adjustment Strategy

	5.3 Algorithm Processes of MOGSA

	6 Multi-Attribute Decision Making
	7 Experimental Results
	7.1  Test Problems
	7.2 Results of MADM and the Schedule's Gantt Chart Corresponding to Optimal Solutions

	8 Conclusions
	References

	A Time-Indexed Generalized Vehicle Routing Model and Stabilized Column Generation for Military Aircraft Mission Planning
	1 Introduction
	2 Problem Setting
	3 A Time-Indexed Mathematical Model
	4 Column Generation
	5 Stabilized Column Generation
	6 Bounding Properties
	7 Numerical Validation
	8 Conclusion
	References

	On Deterministic Diagonal Methods for Solving Global Optimization Problems with Lipschitz Gradients
	1 Problem Statement
	2 Diagonal Partition Strategies
	3 Diagonal Global Optimization Methods
	4 Results of Numerical Comparison
	References

	Optimization of Design Parameters for Active Control of Smart Piezoelectric Structures
	1 Introduction
	2 Finite Element Modeling of Piezoelectric Smart Structures
	2.1 State Space Formulation of the Modal Control Problem
	2.2 Controllability Index for Actuator Location

	3 Optimal Controller Design
	3.1 Optimization of Actuator Location and Voltages in Shape Control 
	3.2 Optimization of Actuator Location in Vibration Control
	3.3 Optimization Implementation Using Genetic Algorithms

	4 Numerical Applications
	4.1 Shape Control
	4.1.1 A Cantilever Plate Subject to a Point Force at the Tip
	4.1.2 A Cantilever Plate Subject to a Uniform Load

	4.2 Optimal Actuator Locations in Vibration Control

	5 Conclusions
	References

	Stable EEG Features
	1 Introduction
	2 The Method
	2.1 The ACC Algorithm
	2.2 Polynomial Procedure on ACC
	2.3 Interpolation Procedure

	3 Experimental Part
	4 Conclusions
	References

	Deriving Pandemic Disease Mitigation Strategies by Mining Social Contact Networks
	1 Introduction
	2 The Contact Network
	2.1 Generating a Representative Population
	2.2 Generating Appropriate Contact Patterns
	2.3 Resulting Network Structure
	2.4 Calculating R0 from the Network Structure
	2.5 Calculating the Probability of a Pandemic

	3 Mitigating Disease Spread
	3.1 Identifying Critical Individuals
	3.2 Network Centrality

	4 Computational Results
	4.1 Decision Trees
	4.2 Mitigation by Dissemination Block
	4.3 Not Considering Dissemination Block
	4.4 Effect on the Potential Pandemic

	5 Discussion and Conclusions
	References

	On an Asymptotic Property of a Simplicial Statistical Model of Global Optimization
	1 Introduction
	2 Motivation of the Research
	3 Statement of the Problem
	4 Assessment of Approximation
	5 Conclusions
	References

	Advanced Statistical Tools for Modelling of Composition and Processing Parameters for Alloy Development
	1 Introduction
	2 Percentile and Mixed Percentile Regression
	3 Building CVN Distributions and Estimation of CVaR for Specimens
	4 Comparison of VaR, and CVaR Risk Measures in Screening Process
	5 Precision of Estimates of CVaR Derived From Small Samples
	6 Summary and Conclusions
	References


