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1 Introduction

Today, more than ever, there is a critical need for organizations to share data

within and across the organizations so that analysts, decision makers and control

systems can make effective decisions. However, in order for analysts and decision

makers to produce an accurate analysis and make effective decisions and take

actions, data must be trustworthy. Therefore, it is critical that data trustworthiness

issues, which also include data quality, provenance and lineage, be investigated for

organizational data sharing, situation assessment, multi-sensor data integration and

numerous other functions to support decision makers and analysts. Almost

all application domains that we may think of require the ability to assess data

trustworthiness; notable examples include: sensor networks (Lim, Moon, &

Bertino, 2010; Lim, Ghinita, Bertino, & Kantarcioglu, 2012), social networks

(Dai, Rao, Truta, & Bertino, 2012), location-based applications (Dai, Rao, Ghinita,

& Bertino, 2011) critical infrastructures, e-health, and peer marking for massive

open online courses (MOOCs).

The problem of providing trustworthy data to users and applications is an

inherently difficult problem that requires articulated solutions combining different

methods and techniques, ranging from iterative filtering (IF) algorithms (Laureti,

Moret, Zhang, & Yu, 2006) to semantic integrity and ontology-based reasoning to

digital signature techniques—just to name a few. It is however important to notice

that technology has made possible to collect data from many different, possibly

independent, sources. The advent of the Internet of Things (IoT) will further push
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such capabilities. The availability of multiple observations and data pertaining to

the same event or phenomenon in both the cyber space and the physical space

represents an important opportunity for methodologies, referred to as data aggre-

gation methodologies, aiming at assessing data trustworthiness by comparing and

aggregating such multiple observations. Such methodologies can also include

the use of IF algorithms resulting in iterative data aggregation methodologies.

However, a major problem of data aggregation methodologies is that data items

representing such observations are often inconsistent. Such inconsistencies arise

because of errors, such as human and application errors or sensor calibration errors,

or may be a result of deliberate attacks by malicious parties aiming at injecting

deceiving information.

The use of provenance techniques may help in addressing such a problem.

Provenance tracing makes it possible to trace back the source of a data item and

the path that the data item followed in a given system in order to reach the

intended recipient. Such provenance information can be used as a factor for

assessing data trustworthiness in that it allows one to assign different weights to

data items based on the source. An approach that combines IF with provenance

has been proposed by Lim et al. (2010) in the context of sensor networks. Such

approach is efficient and effective and has been widely extended. However, a

major drawback of such approach is that it is not robust against collusion attacks.

A collusion attack is one by which multiple malicious parties cooperate in order

to inject deceiving information. Under such an attack, the data aggregation

methodology will assess data as trustworthy whereas the data is not.

The problem of designing data aggregation methodologies that are robust

against collusion attacks has been recently addressed by a novel IF methodology

by Rezvani, Ignjatovic, Bertino, and Jha (2015). Such methodology is applicable to

both numerical and non-numerical data, and, compared with the “classical” IF

algorithms of Laureti et al. (2006), Yu, Zhang, Laureti, and Moret (2006) and De

Kerchove and Van Dooren (2007, 2008, 2010) greatly improve the numerical

stability of data aggregation as well as robustness against the collusion attacks.

In this paper we provide a survey of IF methodologies for assessing data

trustworthiness and introduce a research roadmap to guide future research. In

what follows, we first survey the methodology by Lim et al. (2010), Laureti

et al. (2006), Yu et al. (2006) and De Kerchove and Van Dooren (2007, 2008,

2010) to introduce the basic concepts and IF with provenance. We then show a

collusion attack against such methodology and survey the IF methodology by

Rezvani et al. (2015). Experimental results show that this methodology is highly

effective against collusion attacks. We then discuss relevant research directions and

finally outline a few conclusions.
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2 Provenance-Based Data Trustworthiness Assessment

A cyclic and provenance-aware trust computation framework was proposed by Lim

et al. (2010) in the context of sensor networks. The proposed framework is based on

a heuristic that the more trustworthy data a sensor node reports, the higher the

node’s trust score is. Moreover, the trustworthiness of a data item depends on the

trust scores of the nodes which passed it towards the server node. The nodes through

which a data item has been passed in the sensor network represent the provenance
of such data item. By taking into account such interdependency relationship

between the trustworthiness of data items and sensor nodes, a cyclic trust compu-

tation has been proposed in which the trust scores evolve gradually. This framework

which we briefly review now can be employed as an online trust computation

method. In what follows, we first introduce the network model underlying this

framework, and the relevant notions of provenance. We then describe the cyclic

framework, and finally report results from the experimental evaluation in Lim

et al. (2010).

2.1 Background Notions

A sensor network is represented by m sensor nodes ni, i ¼ 1, . . . ,m with identifier

i for node ni. In such a network, all sensor nodes are responsible for monitoring

one event (i.e. nodes report multiple independent observations for one event).

The sensor network is modeled as a graph G(N,E), where N ¼ fn1, n2, . . . , nmg
is the set of nodes and E{ei, j} denotes the set of edges, with ei, j an edge connecting
nodes ni and nj. Figure 1a shows an example of a sensor network. As one can see in
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Fig. 1 Sensor network and data provenance examples. (a) Sensor network example. (b) Simple

path example. (c) Tree path example
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this figure, network nodes in N can be categorized into three types according to their

roles in the network: a terminal, an intermediate, or a server node.

Definition 1 (Lim et al. (2010)).

A terminal node is a sensing node which generates a data item and sends it to one or

more intermediate or server nodes (black filled nodes in Fig. 1a). An intermediate
node receives data items from one or more terminal or intermediate nodes and

passes them to another intermediate or a server node; it may also perform an

aggregation function over the received data items and send the aggregate value to

an intermediate or a server node (gray filled nodes in Fig. 1a). A server node
(or base station) receives data items and evaluates continuous queries based on

those items (white nodes in Fig. 1a).

Without loss of generality, it is assumed that there is only one server node in the

network, denoted by ns. Moreover, a data item d is represented by a single numeric

value vd.
In data management, the provenance concept represents the path of provisioning

a data item. The provenance of a data item d, denoted by pd, records where and how
the data item d has been generated and how it has been passed through the sensor

network towards the server ns.

Definition 2 (Lim et al. (2010)).

The provenance pd of a data item d is a rooted tree satisfying the following

properties: (1) pd is a subgraph of the sensor network G(N,E); (2) the root node

of pd is the server node ns; and (3) for two nodes ni and nj of pd, ni is a child of nj if
and only if ni has passes the data item d to nj through a direct link.

According to the tree nature of the data provenance, intermediate nodes are

categorized into two categories: simple and aggregate.

• A simple node is an intermediate node having only one child. For example, in

Fig. 1b every intermediate node is a simple node. Accordingly, a data prove-

nance with only simple nodes can be represented by a simple path and this type

of provenance is called a simple provenance.
• An aggregate node is an intermediate node with more than one child nodes.

Figure 1c shows an intermediate node ni which is an aggregate node and

generates a new data item d by aggregating multiple data items ½d1, d2, d3, d4�
received from nodes ½n1, n2, n3, n4� and passes d to the server ns. A data

provenance with at least one aggregate node is represented as a tree rather

than a simple path and this provenance is called an aggregate provenance.

As an example of the sensor network, we can assume that a number of different

sensors are distributed in a battlefield to collect the enemy locations (Tang

et al., 2010). The sensors continuously watch the areas day and night to detect

approaching enemies and send alarms to a server node. Moreover, the sensors are

using a multihop routing scheme where each sensor may pass through the data of

other sensors towards a server node.
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2.2 Cyclic Trust Computation Framework

The main idea behind the trust computation approach by Lim et al. (2010) is to

model the interdependency relationship between the trustworthiness of data items

and their corresponding network nodes (as shown in Fig. 2). As one can see in this

figure, the trust scores are assigned to both data items and network nodes, in an

interdependent manner. The trust score of a data item is partially measured by the

trust scores of the network nodes within its provenance. On the other hand, the trust

score of a network node depends on the trustworthiness of data items that are

generated by or passed through the node.

Figure 3 shows how the cyclic framework proposed in Lim et al. (2010) uses

this interdependency to compute the trust scores of data items and network nodes.

As shown in the figure, there are three different types of trust scores, current,
intermediate, and next, for every data item and network node. The dashed line has

separated the trust computation modules for data items and network nodes; the solid

lines are traversed from one computation module to the next one.

For a set of data items received for a same event in the current window, the

methodology by Lim et al. (2010) computes the current and intermediate trust

scores for each data item in the first and second steps, respectively. The current

trust score for a data item depends on the current trust scores of the nodes in its

provenance, while its intermediate trust score is computed based on the latest set of
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Fig. 2 Interdependency between data and node trust scores
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Fig. 3 An cyclic framework for computing trust scores
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data items reported for a same event in the current streaming window. In the third

step, the next trust score for each data item is computed by aggregating the current

and intermediate trust scores of data items.

As shown in left side of Fig. 3, the intermediate trust score for each network node

is calculated based on the trust scores of its related data items (step 4). After that,

the next trust score for a network node is obtained by combination of its current and

intermediate trust scores. Finally, the next trust scores in the current streaming

window are copied to the current scores in the next window (step 6). Note that the

cyclic trust computation process needs initial trust scores for sensor nodes which

are set to one for all nodes at a very beginning of the process.

Computing Node Trustworthiness As we described, the current trust score of a

network node n, denoted by sn, is equal to the next trust score obtained in the previous
streaming window for that node. Thus, one needs to compute its intermediate and next

trust score in the current window, denoted by ŝn and s ̄n, respectively.
The intermediate trust score of a network node n is computed based on the

trustworthiness of its corresponding data items, which is a set of data items that are

generated or passed through such a node during the current streaming window,

denoted by Dn. The intermediate trust score ŝn is simply computed as the average of

the trustworthiness of its related data items, as follows:

ŝn ¼

P
d2Dn

̄sd

Dnj j , ð1Þ

where Dnj j is the number of nodes in the set Dn, and the sd̄ indicates the current trust
score of data item d obtained in the first step of the proposed trust computation

framework (see ➀ in Fig. 3).

As we described, the next trust score of a network node is computed by the

aggregation of its current and intermediate trust scores (see➄ in Fig. 3). These trust

scores are aggregated using a weighted sum as follows:

sn̄ ¼ cnsn þ ð1� cnÞŝn ð2Þ

where cn, 0� cn� 1 is a constant which represents the relative impacts of trustwor-

thiness from the current streaming window versus the previous one. In other words,

if cn is small, the trust scores of network nodes can change fast; if cn is large, the trust
scores will change more slowly from one window to the next.

Computing Data Trustworthiness The trustworthiness of a data item d depends

on its value vd and provenance pd. Moreover, there are three trust scores for a data

item d: the current, the intermediate, and the next scores, denoted by sd, ŝd, and sd̄,
respectively.

Current Trust Score sd The current trust score of a data item d is obtained by

aggregating the current trust scores of nodes within its provenance. In the proposed

approach, the minimum of the current scores of the nodes in pd is used as the current
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trust score. This can be explained by the fact that the trustworthiness of a data item

can be dominated by the minimum trustworthy node among all nodes which such a

data item has passed through.

If the data item d has a simple provenance, the current trust score sd is simply

computed using the minimum value of current trust scores of nodes in pd. However,
when the data item has an aggregate provenance, it is needed to take into account

the nodes with more than one child in pd. To address this problem, the average of

the current trust scores of child nodes is used as their aggregate score. Therefore,

these child nodes can be considered as a single child node with a trust score equal to

the average of the original child nodes. Using this method, an aggregate provenance

is formed as a simple provenance for the trust computation.

Intermediate Trust Score ŝd An intermediate trust score of data item d, denoted by

ŝd is computed based on the data value similarities and its provenance similarities

with other data items reported for the same event. it is assumed that D is the set of

data items reported for the same event with d.
In order to compute the value similarity for a data item dwith value vd, the proposed

approach uses the assumption that the data values inD are normally distributed and the

mean and variance are μ and σ2, respectively. Therefore, the cumulative probability of

the normal distribution is employed to compute the similarity of data value vd with
other values withinD. Basically, the computation gives high trust scores to the values

close to the mean. Thus, the initial ŝd is computed as follows:

ŝd ¼ 2

ð1
vd

f ðxÞdx ð3Þ

As shown in Fig. 4a, the shaded area represents the trust score ŝd obtained

from Eq. (3). Clearly, the intermediate trust score is obtained by considering only

the data value similarity. Thus, it is needed to adjust the computation to reflect

the provenance similarity of the data item as well. The impact of provenance

similarity on the trust score computation is computed based on some intuitive

observations, listed in Table 1. For example, it is clear that different provenances

a b
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ρ ⋅ (c σ)

ρ > ( )ρ <( )0if if 0

Fig. 4 Computing the intermediate trust score ŝd . (a) Intermediate trust score. (b) Intermediate

trust score adjusted with provenance
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of similar data values may increase the trustworthiness of data items. Accordingly,

a normalized adjustable similarity value is defined for the similarities of the

provenance of a data item d with all other data items in D, denoted by ρ ̄d. More

details can be found in a previous work on provenance-based trustworthiness

assessment (Lim et al., 2010).

The adjusted similarity value ρd̄ reflects the impact of the provenance pd on the

trust computation of the data item d. Thus, it is used to adjust the data value vd to a

new value vd̄ as follows:

v ̄d ¼ minfvd � ρ ̄dðcp:σÞ, μg ð4Þ

where cp is a constant value greater than 0.

Now, the data value vd in the Eq. (3) is replaced by the vd̄ to adjust the

intermediate trust computation for data item d. Thus,

ŝ d ¼ 2

ð1
vd

f ðxÞdx ¼ 1�
ðvd
2μ�vd

f ðxÞdx ð5Þ

Figure 4b shows how the adjusted similarity value ρd̄ reflects the value similarity

computation.

Next Trust Score sd̄ After computing the current and intermediate trust scores for a

data item d, a weighted summation of these two trust values is used to compute the

next trust score of data items, denoted by sd̄ (see ` in Fig. 3), Thus,

sd̄ ¼ cdsd þ ð1� cdÞŝd ð6Þ

where cd is a constant, 0 � cd � 1, which defines how fast the data trustworthiness

evolves as the cycle is repeated.

2.3 Experimental Evaluation

In this section, we briefly summarize the evaluation results from Lim et al. (2010)

concerning the effectiveness of the proposed trust computation approach. The

experiments were conducted by simulating the sensor networks and generating

Table 1 Impact of provenance similarity on adjusting ŝd

Similar Data Value Different Data Value

Similar Provenance score " score ###
small positive effect large negative effect

Different Provenance score """ score #
large positive effect small negative effect

36 A. Ignjatovic et al.



synthetic data. For observing the impact of provenance similarity, an interleaving

factor was defined which means the interval between the assigned leaf nodes for

generating data items in the simulated sensor network. In order to evaluate the

effectiveness of the proposed solution, Lim et al. (2010) simulated the injection of

false data items into the network and investigated how the proposed cyclic approach

reflects this situation in the computation of the trust scores.

Figure 5a (from Lim et al., 2010) shows that when the false data items are

injected, the trust scores change rapidly for smaller interleaving factors. This can be

explained by the principle that different values with similar provenances rapidly

reduce the trust scores (see Table 1). On the other hand, one can see in Fig. 5b that

when the correct data items are injected again, the trust scores are increased more

rapidly for larger interleaving factors. The reason is that similar values with

different provenances result in a large positive effect (see Table 1).

2.4 Summary

This concludes our brief summary of the cyclic trust computation framework

proposed in Lim et al. (2010). In Lim et al. (2012) the authors have proposed a

game-theoretical defence strategy to protect sensor nodes from attacks and to

guarantee a higher level of trustworthiness for sensed data. However, such approach

can be compromised with collusive (collaborative) attacks which target the sample

mean and variance of the data. In Sect. 4 we demonstrate this and then propose a

safer solution based on Iterative Filtering algorithms.
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3 IF Algorithms of Laureti et al. and De Kerchove et al.

A relevant class of algorithms for the assessment of information trustworthiness is

presented by the iterative filtering (IF) algorithms. Pioneering algorithms of such

kind were first proposed by Laureti, Moret, Zhang and Yu in their papers appearing

in 2006 (Laureti et al., 2006; Yu et al., 2006). Their work was a motivation for the

subsequent work of C. De Kerchove and P. Van Dooren in 2007 de Kerchove and

Van Dooren (2007) and later in De Kerchove and Van Dooren (2008, 2010).

Independently Ignjatovic rediscovered IF algorithms in 2007 (published in 2008,

Ignjatovic, Foo, & Lee, 2008) and later introduced other novel algorithms in Lee

et al. (2009), Lee, Rodrigues, Kazai, Ignjatovic, and Milic-Frayling (2009),

Ignjatovic, Lee, Compton, Cutay, and Guo (2009), Chou, Ignjatovic, and Hu (2013).

The aims of IF-based data aggregation methodologies should be

1. to provide an aggregate value with a provably minimal variance due to stochastic

errors of the sources;

2. to insure robustness against non-stochastic errors ranging from hardware faults

to collusion attacks from some of the sources, with provable estimates of the

level of robustness in terms of the fraction of misbehaving sources.

Moreover, such methodologies should be applicable to both numerical and

non-numerical data.

We now explain the essence of IF algorithms using an example of a conference

Chair. While such a problem is clearly not among the most pressing ones in the area

of data aggregation, its familiarity to the reader makes it a very convenient example

to explain both the challenges and our methods.

Let us assume that you are the Chair of a conference, and your referees have

done their job: each paper has been reviewed by several referees and every referee

has reviewed several papers and you got the scores. However, you suspect that

some of the referees might have been unreasonably harsh with their marks; some

others might have been sloppy, barely having looked at the papers and thus likely to

have made large random errors. Worse, you are worried that some of your referees

might have colluded in order to promote the papers of their friends and trash the

papers of those against whom they might hold grudges. How should you aggregate

the referee’s scores and decide which papers to accept in the fairest possible way?

To analyze such a problem, let us assume that there are R referees marking

P submitted papers, and, for the sake of simplicity of formulate, let us assume an

unusual situation in which each referee marks every single paper. We denote by

M(r, p) the mark given by a referee r to a paper p. The main feature shared by most

of IF algorithms is that they simultaneously produce approximations of the final

aggregate values μ
!¼ hμðpÞ : 1 � p � Pi (in the present case marks of papers) as

well as trustworthiness ranks for the sources τ
! ¼ hτðrÞ : 1 � r � Ri (in this case

referees), in a single iterative procedure.

An IF algorithm would typically start by giving all referees the same initial

trustworthiness τ(0)(r)¼ 1 and obtain the initial approximation of the aggregate
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mark for each paper p as the simple mean of the marks of all referees,

μð0ÞðpÞ ¼
XR

r¼1
Mðr, pÞ=R. Now, in turn, each referee can be judged on how

accurate her marks are, by computing how close her marks are to such an initial

approximation of the aggregate marks μ
!ð0Þ

. Thus, we compute for each referee r the

Euclidean distance dð0ÞðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXP

p¼1
ðMðr, pÞ � μð0ÞðpÞÞ2

r
between her marks

⟨Mðr, pÞ : 1 � p � P⟩ and the aggregate values μ
!ð0Þ ¼ hμð0Þð pÞ : 1 � p � Pi.

Since the trustworthiness of each referee should be inversely related to her

distance (or deviation) d(0)(r), we pick a monotonically decreasing penalty
function F(d ) and define the new estimate of trustworthiness of referee r as

τð1ÞðrÞ ¼ Fðdð0ÞðrÞÞ. In the next round of iteration we obtain a new estimate

μ
!ð1Þ

of the marks of papers as a weighted average of the marks of all referees,

with the marks of a referee r taken with a weight w(1)(r) proportional to a referee’s

trustworthiness τð1ÞðrÞ. In this way the outliers will be penalized, because their

distance to the coarse, initial approximation μ
!ð0Þ

of the aggregate marks will be

the largest and thus their trustworthiness and corresponding weight the smallest

(but no outlier is ever completely excluded!). This process is iterated until it has,

hopefully, converged, i.e., for a given precision threshold ε,

while
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

1� p�P
ðμðnþ1ÞðpÞ � μðnÞðpÞÞ2

q
> ε repeat:

dðnÞðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
1� p�P

ðMðr, pÞ � μðnÞðpÞÞ2
r

;

�computing the distance between r
0
smarks and estimate μ

!ðnÞ
ð7Þ

τðnþ1ÞðrÞ ¼ FðdðnÞðrÞÞ; � computing the new trustworthiness of r ð8Þ

wðnþ1ÞðrÞ ¼ τðnþ1ÞðrÞX
1�r0�R

τðnþ1Þðr0 Þ ;

� computing r
0
s weight by normalising r

0
s trustworthiness

ð9Þ
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μðnþ1ÞðpÞ ¼
X

1�r�R

wðnþ1ÞðrÞMðr, pÞ, � computing new estimate of the marks μ
!

ð10Þ

When such iteration terminates after, say, t many rounds of iteration, we get not

only the aggregate values of marks of papers μ( p)¼ μ(t)( p) but also an estimate of

the trustworthiness of the referees τðpÞ ¼ τðtÞðrÞ. As we will see, choosing “the

best” function F(x) which provides an inverse relationship between distances and

trustworthiness ranks is a tricky problem; the most commonly used functions are:

ðiÞ FðdðrÞÞ ¼ 1

d2ðrÞ; ðiiÞ FðdðrÞÞ ¼ e�dðrÞ; ðiiiÞ FðdðrÞÞ ¼ 1� k � dðrÞ,

where k appearing in the third function is allowed to be different for each round of

iteration, and is chosen so that if r
0
is the referee with the largest (square of the)

distance dðnÞðr0 Þ, then FðdðnÞðr0 ÞÞ ¼ 0. We now briefly discuss the performance of

the above algorithm with the first, reciprocal penalty function; other choices suffer

from their own problems.

If (in a simulation experiment) each referee produces true marks plus some

independent Gaussian noise with no bias and with variance vr, then the perfor-

mance of the above algorithm depends on the distribution of the variances vr of
the referees. For some distributions the algorithm produces an unbiased estimate

of the true values with a variance which is remarkably low and essentially equal

to the lowest possible variance as dictated by Information Theory, reaching the

Cramer-Rao lower bound (CRLB). Note that in such a case the Maximum

Likelihood Estimator (MLE) also reaches the CRLB; however, unlike the

MLE, the above algorithm does not require prior knowledge of the variances

of the referees; in fact, this particular form of the algorithm with the reciprocal

function can be seen as alternating between estimations of variances of the

referees (step 7) and applications of MLE with such estimated approximate

variances (step 10).

4 Collusion Attacks

Although the above IF algorithm exhibits better robustness compared to the simple

averaging techniques, for some distributions of variances the performance of this

algorithm is very bad, with the algorithm producing an estimate of the true marks

equal to the marks assigned by one of the referees. The reason for such a behavior is

that the penalty function FðdÞ ¼ 1=d2 has a pole at d¼ 0, and thus the marks

of referees act as attractors for the iterative procedure: if in the process of iteration
the estimated marks get sufficiently close to the marks of any particular referee, the
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iterative procedure converges in only a few additional steps to the marks provided

by that particular referee.

Worse, we have shown Rezvani, Ignjatovic, Bertino, and Jha (2013),

Rezvani et al. (2015), such behavior makes the algorithm extremely vulnerable

to a collusion attack. Assume that there are R referees among whom

C are colluders. The colluders first do their best to estimate the true marks tp; then
C� 1 of them report heavily skewed marks sp while the last colluder reports values
ððR� Cþ 1Þt p þ ðC� 1Þ s pÞ=ðR� 1Þas his marks. In such a case the first iteration

of the procedure, which takes the mean of all marks, is very likely to produce

aggregate marks very close to the marks proposed by the last attacker, causing the

algorithm to quickly converge to the marks of the last attacker whose marks are still

considerably skewed.

5 Data Aggregation with Protection from Collusions

In order to overcome such instability of the above IF algorithm and make it

applicable to compressive sensing in wireless sensor networks in the presence of

sensor faults, Chou et al. proposed Chou et al. (2013) to modify the penalty function

by adding a small regularisation constant a> 0 and define FðdÞ ¼ 1=ðd2 þ aÞ.
While this does make the algorithm more robust, it also has a serious drawback:

if a is sufficiently large to make the algorithm stable, then the values returned by

the algorithm might not differ significantly from the simple mean of the marks of

all sources.

In trying to solve this problem in a more satisfactory manner, Rezvani et al.

have proposed Rezvani et al. (2015) a better way to provide an initial approxima-

tion μ
!ð0Þ

. Clearly, without knowing the true values, the algorithm cannot determine

the error of each source; however, denoting again the true value of item

p (in our example the true mark of a paper p) as tp, we have that for every pair of

sources r1, r2 (in the above example referees),

X
1� p�P

ðMðr1, pÞ �Mðr2, pÞÞ2
P

¼
X

1� p�P

ððMðr1, pÞ � t pÞ � ðMðr2, pÞ � t pÞÞ2
P

¼
X

1� p�P

ðMðr1, pÞ � t pÞ2
P

þ
X

1� p�P

ðMðr2, pÞ � t pÞ2
P

þ 2
X

1� p�P

ðMðr1, pÞ � t pÞðMðr2, pÞ � t pÞ
P

:

ð11Þ
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The first two terms on the second line are estimators for the variances vr1 and vr2 ,
and, assuming that the errors of the sources are reasonably uncorrelated, the

last term on the second line should be small. In this way we obtainX
1� p�P

ðMðr1, pÞ �Mðr2, pÞÞ2 � vr1 þ vr2 , which results in RðR� 1Þ=2 equa-

tions in R variables v1, v2, . . . , vR, that can be solved in the sense of the Least

Squares. We can now take as the initial approximation μ
!ð0Þ

of the marks the MLE

estimation with the obtained approximations of the variances vr, i.e.,

μð0ÞðpÞ ¼

X
1�r�R

Mðr, pÞ
vrX

1�r�R

1
vr

: ð12Þ

Remarkably, experiments have demonstrated that, even when the errors are

significantly correlated, such initial value dramatically improves the stability of

the algorithm without any sacrifice in performance. It also improves its robustness

against a collusion attack, because the attackers have no way of estimating the

variances of other referees (Rezvani et al., 2015). However, in general, the above

algorithm can have several fixed points (de Kerchove & Van Dooren, 2010); for

that reason, since it does not provide a unique solution, it is not suitable for a real

life deployment. Moreover, the algorithm has another serious drawback: it is not

applicable to non-numerical data because it crucially depends on using a distance

function, d(r).
For that reason the present authors have looked for IF algorithms which are

both provably convergent and also applicable to non-numerical data. This was

partly addressed by Allahbakhsh and Ignjatovic (2015), Allahbakhsh et al. (2015),

Allahbakhsh, Ignjatovic, Benatallah, and Motahari-Nezhad (2013) by altering the

main feature of the previously introduced IF algorithms, namely by separating the

process of assessment of the trustworthiness of the sources from the actual data

aggregation process. We explain the main idea using a Q&A website example.

At a typical Q & A website each question is open for new answers for a certain

period of time, say 30 days, before the question is closed; users are allowed to vote

for the best answer to a particular question for an additional period of time, say

10 days, before the votes are counted and the best answer is declared. In general,

there are other, concurrently open questions on the same topic and, as it can be

easily observed on such websites, users with the same interest tend to vote for the

best answer to a number of questions in the same field, open during the past

30 days or so. For that reason, the following policy of such a social website would

not be very restrictive: only the votes of members who are “active” at the time are

taken into account, and a member is considered active if he or she has cast her vote

for the best answer to a certain number of questions Q> 1 which were recently

closed. This gives an opportunity to make vote aggregation significantly more

robust by deciding simultaneously which are the best answers to all questions

which have been recently closed, using the following algorithm proposed in
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Allahbakhsh and Ignjatovic (2015), Allahbakhsh et al. (2015), Allahbakhsh

et al. (2013) by the present CI and his student.

Assume that there areQ recently closed questions; for each question qiwe have a
corresponding list Λi of ni answers, Λi ¼ ⟨aði; 1Þ; aði; 2Þ; . . . ; aði; niÞ⟩. We also

assume that there are V voters v1, v2, . . . , vV . Again, for the simplicity of presen-

tation, we assume that each voter has chosen her best answer for every question; for

a sparse pattern of votes all quantities involved can be appropriately normalized,

according to the total number of questions each voter has participated in choosing

the best answer for, see Allahbakhsh and Ignjatovic (2015), Allahbakhsh

et al. (2013), Allahbakhsh et al. (2015). The algorithm for vote aggregation is

again iterative, and it simultaneously evaluates the ratings ρ(i, k) of all answers to
each question posed in the given interval of time as well as the trustworthiness τ(m)
of each voter vm who participated in voting during that period of time, in the

following manner:

Let p be a real number, p� 1, and let us denote bym ! i, k the fact that voter vm
has voted for the answer a(i, k) as the best answer to question qi. In the initial round of
iteration, for each question qi and all of its answers aði, kÞ, 1 � k � ni, we

simply count the number ν(i, k) of votes which a(i, k) has received. We now obtain

the initial ranks of answers as the normalized number of votes, ρð0Þði, kÞ ¼ νði, kÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
1� j�ni

νði, jÞ2
r

; thus, for all answers a(i, k) to a question qi we have

X
1�k�ni

ρð0Þði,kÞ2 ¼ 1. We are now again in a position to judge for every voter

vm how good his choices are, namely, to what degree their voting is in

agreement with the community sentiment, and assign to them his initial trustwor-

thiness τð0ÞðmÞ ¼
XQ

i¼1
fρð0Þði, kÞ : m ! i, kg, which is simply a sum of the

normalized number of votes received by all the answers which he voted for. Clearly,

a voter vmwill get a large initial trustworthiness only if he has chosen answers which

many other community members have also chosen. In the next round of iteration of

our vote aggregation procedure not every vote has an equal value, but its value

depends on the trustworthiness of the voter. Thus, at every consecutive stage of

iteration n + 1 we have:

τðnþ1ÞðmÞ ¼
X
1�i�Q

fρðnÞði, kÞ : m ! i, kg;� computing the trustworthiness of voter vm

ρðnþ1Þði, kÞ ¼
X

m : m!ik
ðτðnþ1ÞðmÞÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

1� j�ni

�X
m : m!ik

ðτðnþ1ÞðmÞÞ p
�2r ;

� computing the new rank of answer aði, kÞ to question qi

iterating until
X

1�m�V
ðτðnþ1ÞðmÞ � τðnÞðmÞÞ2 < ε:We note that the purpose of the

denominator in the expression for ρðnþ1Þði, kÞ is a normalization which keeps the
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iteration stable and allows an elegant convergence proof by ensuring that at every

stage of iteration
X

1�k�ni
ρðnÞði,kÞ2 ¼ 1, see Allahbakhsh and Ignjatovic (2015).

The parameter p controls filtering; the larger the value of p the more the algorithm is

robust against collusion attacks, but larger values also increasingly marginalize

honest voters who do not vote entirely in accordance with the prevailing sentiment

of the community.

With such a vote aggregation procedure the colluding voters must vote for the

best answer for a significant number of other questions posed during the same

period of time, and they cannot vote randomly, but must vote in accordance with the

prevailing sentiment of the community, in order to receive sufficient trustworthi-

ness. Only then can they vote differently from other voters for the answer to the

question they are attacking, and hope that they can prevail over the honest voters.

While this does not preclude entirely collusion attacks, it obviously makes them

harder to execute.

Also note that in this case the data (the choice of the best answer) is not only

non-numerical but also does not have any natural ordering. However, the same

algorithm is applicable to numerical choices with values which are integers in a

limited range as well as ordered choices. For example, customer feedback is

usually in the range of one to five “stars” and the same applies to movie ranking.

Market analyst’s recommendations are an example of non-numerical but ordered

choices (strong_buy< buy< neutral< sell< strong_sell). After such an iterative

procedure has converged and ranks ρ(i, k) of all choices have been determined, in

case of numerical data one can form a weighted average of such numerical

choices, with weights obtained from the ranks; in case of ordered choices it can

be left to the user to choose the particular numerical values for the ordered

alternatives to reflect user’s preferences, and then obtain the aggregate value as

a corresponding weighted average.

Allahbakhsh at al. proved that the above algorithm always converges, and

extensive tests not only on simulated data but also on real data, such as the publicly

available movie rating dataset MovieLens, have shown that in terms of robustness

against large collusion attacks such an algorithm outperforms the previous IF

algorithms, see Allahbakhsh et al. (2015), Allahbakhsh et al. (2013).

Moreover, for cases where we can also rely on historic data, or in a case of a

refereeing process where each referee can declare his level of competence for each

paper, such additional information can be included into the iterative procedure of

such an algorithm in a way that preserves the proof of convergence (Allahbakhsh

et al., 2013).

The continuous case, such as aggregation of measurements of sensors, appears to

be a significantly harder problem. An aggregation algorithm must be robust against

collusion attacks without sacrificing its performance when the sources have only

stochastic errors. In fact, even in the presence of a collusion attack, if the fraction of
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the colluding sources is reasonably small, the algorithms should provide output

values which are close to the optimal, MLE estimate based on the data obtained

from the sources with stochastic errors only. Rezvani et al. have designed an

algorithm which, in extensive tests, appears to meet these requirements (Rezvani,

Ignjatovic, Bertino, & Jha, 2014a). This algorithm is based on an idea of propaga-

tion of credibility crðrÞ of one source to another source. It again takes the simple

mean as the initial approximation of the aggregate values μ(0)( p) and assigns equal

initial variance estimates vð0ÞðrÞ ¼ 1
ðP�1ÞR

XR

s¼1

XP

p¼1
ðMðs, pÞ � μð0ÞðpÞÞ2 to all

sources; we then repeat until convergence:

crðnþ1ÞðrÞ ¼
YR
j¼1

exp �
1

P�1

X
1� p�P

ðMðr, pÞ�μðnÞð pÞÞ2

2vðnÞð jÞ

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2πvðnÞð jÞ

p

0
BBBB@

1
CCCCA

1
R

;

� computing the credibility of source r

ð13Þ

μðnþ1Þð pÞ ¼
XR
i¼1

crðnþ1ÞðiÞXR

k¼1
crðnþ1ÞðkÞ

Mði, pÞ; � computing the new aggregate values

ð14Þ

varðnþ1ÞðrÞ ¼ 1

P� 1

XP
k¼1

ðMði, kÞ � μðnþ1ÞðkÞÞ2 � computing the new variance of sourcer

ð15Þ

Thus, at each stage of the iteration, the credibility of the values supplied by a

source r is assessed by estimating the likelihood that the values supplied by rmight

have been obtained by every other source. The credibility is defined as the geomet-

ric mean of all of these likelihoods; see Eq. (13). The heuristic underlying such

methodology is that the stability of such algorithm should come from the smoothing

property of taking a mean of all of these likelihoods. The geometric mean was

chosen with a hope that to be able to rigorously prove that, in case of purely

stochastic normally distributed unbiased errors, the algorithm converges to the

MLE estimation which could have been obtained if the non-colluding sources and

their exact variances were a priori known; this would clearly ensure that our

algorithm has the minimal possible variance, equal to the CRLB. Figure 6 shows

a typical result obtained with 25 sources; 20 sources are “honest” providing the true

mark tp of item p plus a normally and independently distributed unbiased noise with

randomly chosen variances between 1 and 5. The remaining 5 sources collude,

with the first 4 sources reporting skewed values sp¼ 3tp and the fifth colluder the

mean ððR� Cþ 1Þt p þ ðC� 1Þ s pÞ=ðR� 1Þ.
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As it can be seen from Fig. 6, the weights obtained by the IF algorithm with the

reciprocal penalty function 1∕d2, (filled circle), are all essentially zero except for

the weight of the last attacker which is 1 (out of range on the graph); the weights

obtained by IF algorithm with the affine penalty function FðdÞ ¼ 1� k d, (filled
square), are 0 for all attackers except the last one, but all other, non zero weights are

essentially equal thus resulting in the simple mean of all honest sources and the last

attacker. Finally, the weights produced by the algorithm based on the credibility

propagation (filled diamond) are almost indistinguishable from the (normalized)

reciprocals of the true variances of the “honest” sources (filled triangle), which in

this case represent the optimal weights resulting in an estimator with the smallest

possible variance. The RMS values of errors shown on the legend of Fig. 6

demonstrate the superiority of the credibility propagation algorithm. In fact, several

IF algorithms—more than a dozen of them—were implemented and test and in all

cases the algorithm by Rezvani et al. had the lowest RMS error, only slightly higher

than the CRLB, even in the presence of a collusion attack. A Mathematica code

which produced the above results is available online at http://www.cse.unsw.edu.

au/~ignjat/IF.nb.

In addition, Rezvani et al. have applied ideas of the provenance of data (Lim

et al., 2010) to design an iterative algorithm for computing the risk of flows and

hosts in a computer network (Rezvani, Ignjatovic, Bertino, & Jha, 2014b; Rezvani,

Ignjatovic, & Jha, 2013; Rezvani, Sekulic, Ignjatovic, Bertino, & Jha, 2014). For

such iterative risk assessment algorithm as introduced in Rezvani et al. (2014b),

Rezvani et al. were able to prove its convergence and also obtain sharp analytic

estimates for its performance (Rezvani et al., 2014). Future research will aim to

integrate the idea of provenance of data with IF algorithms in a single (possibly

nested) iterative procedure. Such an integration should be done in a way which

preserves the convergence proof of the resulting algorithm

Loreti with reciprocal penalty function (RMS error = 6.73832);

Loreti with affine penalty function (RMS error = 0.75659);

our credibility propagation algorithm (RMS error = 0.448635);

optimal weights if variances were known (Cramer−Rao bound = 0.445869);

5 10 15 20 25

0.2

0.4

Fig. 6 Reciprocals of normalized variances of sources, estimated using: IF with FðdÞ ¼ 1d2

( filled circle), IF with FðdÞ ¼ 1� k d ( filled square), credibility propagation ( filled diamond),
normalized reciprocals of the true variances ( filled triangle). Also shown are the corresponding

RMS value of errors of the aggregate values (discrete values are joined by lines for better visual
representation)
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6 Research Roadmap

In many real-life distributed systems such as social networks, rating system,

participatory sensing networks and WSNs, the trustworthiness of participants has

a significant role in the decision-making processes. While we believe that past

results have demonstrated the potential of our IF algorithms as a robust trust

framework for these distributed systems, achieving the objective requires much

wider research efforts.

Most IF algorithms are still mostly “ad hoc” solutions which do not have a

unified mathematical foundation. For example, in the discrete case we still lack an

algorithm which, in case of domains which are integers (for example one to five star

ratings) takes into account the proximity of votes, rather than just the coincidence of

votes. This is clearly unsatisfactory: if a number of voters give a five star ranking to

a movie, then a voter which gives it four stars should get some credit from them, and

certainly more credit than a voter which gives the same movie only three stars.

However, in algorithms by Allahbakhsh and Ignjatovic (2015), Allahbakhsh et al.

(2015) both such dissent voters get no credit from the voters giving the movie five

stars. Moreover, the degree of such credibility propagation from a voter to the

voters who propose similar but not equal scores should depend on the estimated

variances of the voters. It is also crucial that domain knowledge be incorporated

into the data trustworthiness methodologies. For example, in a sensor network, a

sensor that has been deployed for a long time may be considered less trustworthy

than recently deployed sensors. Also metrics and methodologies from the area of

data quality should be considered here (Reznik & Bertino, 2013).

In some distributed systems such as participatory sensing networks, preserving

the privacy and anonymity of participants is mandatory (Wang, Cheng, Mohapatra,

& Abdelzaher, 2013). Clearly, if the participatory networks fully anonymize the

reported data, it is difficult to accurately estimate the trustworthiness of participants

using the current state of our IF algorithms. Decentralization of our trust computa-

tion approach could improve the privacy of participant (Hasan, Brunie, Bertino, &

Shang, 2013). Thus, proposing a decentralized privacy preserving IF algorithm for

robust trust computation is an interesting open research area.

A tremendous volume of data generated by recent technological advances,

referred to as Big Data can be used to provide data-driven decision-making.

Moreover, the interconnected Big Data forms a large data redundancy which can

be used to validate data trustworthiness (Labrinidis & Jagadish, 2012). An inter-

esting research direction is to scale the IF algorithms to Big Data in order to extract

hidden relationships within the data redundancy.

We will investigate applications of our IF algorithms other than just data

aggregation or ranking. One such application was already implemented and tested

as a part of an Honors Thesis project (D’Souza, 2011), where it was used to produce

a novel recommender system. Taking as an example movie ranking, our algorithm

aggregates ratings of movies provided by users, and, as we have explained, besides

Robust Aggregation of Inconsistent Information: Concepts and Research Directions 47



producing robust ratings of movies it also produces weights for users which reflect

to what degree their ratings agree with the prevailing “community sentiment”

ranks, as produced by our IF algorithm. We now use the observation that if two

users have similar tastes, their weights must also be similar, because their movie

ratings, being close to each other, must also be at a similar distance to the

community sentiment ranks. Thus, to make recommendations for a particular

user, we can restrict our attention only to users whose weights are close to the

weight of that particular user.

In conclusion, we believe that the IF algorithms have demonstrated a promising

potential for providing robust trust assessment methods for inconsistent informa-

tion. Moreover, such algorithms provide a robust aggregate of such inconsistent

information and can thus play a critical role in WSNs as a method of resolving a

number of important problems, such as secure routing, fault tolerance, false data

detection, compromised node detection, cluster head election, and outlier detection.

They are also applicable to social networks, web services, and many other fields

which involve inconsistent information.
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