
Chapter 8

Sample Size

The size of the study should be considered early in the planning phase. In some

instances, no formal sample size is ever calculated. Instead, the number of partic-

ipants available to the investigators during some period of time determines the size

of the study. Many clinical trials that do not carefully consider the sample size

requirements turn out to lack the statistical power or ability to detect intervention

effects of a magnitude that has clinical importance. In 1978, Freiman and col-

leagues [1] reviewed the power of 71 published randomized controlled clinical

trials which failed to find significant differences between groups. “Sixty-seven of

the trials had a greater than 10% risk of missing a true 25% therapeutic improve-

ment, and with the same risk, 50 of the trials could have missed a 50% improve-

ment.” The situation was not much improved in 1994, when a similar survey found

only 16% of negative trials had 80% power for a 25% effect, and only 36% for a

50% effect [2]. In other instances, the sample size estimation may assume an

unrealistically large intervention effect. Thus, the power for more realistic inter-

vention effects will be low or less than desired. The danger in studies with low

statistical power is that interventions that could be beneficial are discarded without

adequate testing and may never be considered again. Certainly, many studies do

contain appropriate sample size estimates, but in spite of many years of critical

review many are still too small [3, 4].

This chapter presents an overview of sample size estimation with some details.

Several general discussions of sample size can be found elsewhere [5–21].

For example, Lachin [11] and Donner [9] have each written a more technical

discussion of this topic. For most of the chapter, the focus is on sample size where

the study is randomizing individuals. In the some sections, the concept of sample

size for randomizing clusters of individuals or organs within individuals is

presented.
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Fundamental Point

Clinical trials should have sufficient statistical power to detect differences between
groups considered to be of clinical importance. Therefore, calculation of sample
size with provision for adequate levels of significance and power is an essential part
of planning.

Before a discussion of sample size and power calculations, it must be empha-

sized that, for several reasons, a sample size calculation provides only an estimate

of the needed size of a trial [6]. First, parameters used in the calculation are

estimates, and as such, have an element of uncertainty. Often these estimates

are based on small studies. Second, the estimate of the relative effectiveness of

the intervention over the control and other estimates may be based on a population

different from that intended to be studied. Third, the effectiveness is often

overestimated since published pilot studies may be highly selected and researchers

are often too optimistic. Fourth, during the final planning stage of a trial, revisions

of inclusion and exclusion criteria may influence the types of participants entering

the trial and thus alter earlier assumptions used in the sample size calculation.

Assessing the impact of such changes in criteria and the screening effect is usually

quite difficult. Fifth, trial experience indicates that participants enrolled into control

groups usually do better than the population from which the participants were

drawn. The reasons are not entirely clear. One factor could be that participants

with the highest risk of developing the outcome of interest are excluded in the

screening process. In trials involving chronic diseases, because of the research

protocol, participants might receive more care and attention than they would

normally be given, or change their behavior because they are part of a study, thus

improving their prognosis, a phenomenon sometimes called the Hawthorne or trial

effect [22]. Also, secular trends toward improved care may result in risk estimates

from past studies being higher than what will be found in current patient

populations [23]. Participants assigned to the control group may, therefore, be

better off than if they had not been in the trial at all. Finally, sample size calcula-

tions are based on mathematical models that may only approximate the true, but

unknown, distribution of the response variables.

Due to the approximate nature of sample size calculations, the investigator

should be as conservative as can be justified while still being realistic in estimating

the parameters used in the calculation. If a sample size is drastically overestimated,

the trial may be judged as unfeasible. If the sample size is underestimated, there is a

good chance the trial will fall short of demonstrating any differences between study

groups or be faced with the need to justify an increase in sample size or an extension

of follow-up [24–26]. In general, as long as the calculated sample size is realisti-

cally obtainable, it is better to overestimate the size and possibly terminate the trial

early (Chap. 16) than to modify the design of an ongoing trial, or worse, to arrive at

incorrect conclusions.

166 8 Sample Size

http://dx.doi.org/10.1007/978-3-319-18539-2_16


Statistical Concepts

An understanding of the basic statistical concepts of hypothesis testing, significance

level, and power is essential for a discussion of sample size estimation. A brief

review of these concepts follows. Further discussion can be found in many basic

medical statistics textbooks [27–37] as well as textbooks on sample size [17–21].

Those with no prior exposure to these basic statistical concepts might find these

resources helpful.

Except where indicated, trials of one intervention group and one control group

will be discussed. With some adjustments, sample size calculations can be made

for studies with more than two groups [8]. For example, in the Coronary Drug

Project (CDP), five active intervention arms were each compared against one

control arm [38]. The Antihypertensive and Lipid-Lowering Treatment to Prevent

Heart Attack trial (ALLHAT) compared four active intervention arms: three

newer drugs to an older one as first line therapy for hypertension [39]. Both trials

used the method of Dunnett [40], where the number of participants in the control

group is equal to the number assigned to each of the active intervention groups

times the square root of the number of active groups. The optimal size of the

control arm in the CDP was determined to be 2.24 times the size of each

individual active intervention arm [38]. In fact, the CDP used a factor of 2.5 in

order to minimize variance. Other approaches are to use the Bonferroni adjust-

ment to the alpha level [41]; that is, divide the overall alpha level by the number of

comparisons, and use that revised alpha level in the sample size comparison.

Before computing sample size, the primary response variable used to judge the

effectiveness of intervention must be identified (see Chap. 3). This chapter will

consider sample size estimation for three basic kinds of outcomes: (1) dichotomous

response variables, such as success and failure (2), continuous response variables,

such as blood pressure level or a change in blood pressure, and (3) time to failure

(or occurrence of a clinical event).

For the dichotomous response variables, the event rates in the intervention group

( pI) and the control group ( pC) are compared. For continuous response variables,

the true, but unknown, mean level in the intervention group (μI) is compared with

the mean level in the control group (μC). For survival data, a hazard rate, λ, is often
compared for the two study groups or at least is used for sample size estimation.

Sample size estimates for response variables which do not exactly fall into any of

the three categories can usually be approximated by one of them.

In terms of the primary response variable, pI will be compared with pC or μI will
be compared with μC. This discussion will use only the event rates, pI, and pC,
although the same concepts will hold if response levels μI and μC are substituted

appropriately. Of course, the investigator does not know the true values of the event

rates. The clinical trial will give him only estimates of the event rates, cpI and cpC .
Typically, an investigator tests whether or not a true difference exists between the

event rates of participants in the two groups. The traditional way of indicating this is

in terms of a null hypothesis, denoted H0, which states that no difference between
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the true event rates exists (H0: pC� pI¼ 0). The goal is to test H0 and decide

whether or not to reject it. That is, the null hypothesis is assumed to be true until

proven otherwise.

Because only estimates of the true event rates are obtained, it is possible that,

even if the null hypothesis is true ( pC� pI¼ 0), the observed event rates might by

chance be different. If the observed differences in event rates are large enough

by chance alone, the investigator might reject the null hypothesis incorrectly.

This false positive finding, or Type I error, should be made as few times as possible.

The probability of this Type I error is called the significance level and is denoted by

α. The probability of observing differences as large as, or larger than the difference
actually observed given that H0 is true is called the “p-value,” denoted as p.
The decision will be to reject H0 if p� α. While the chosen level of α is somewhat

arbitrary, the ones used and accepted traditionally are 0.01, 0.025 or, most com-

monly, 0.05. As will be shown later, as α is set smaller, the required sample size

estimate increases.

If the null hypothesis is not in fact true, then another hypothesis, called the

alternative hypothesis, denoted by HA, must be true. That is, the true difference

between the event rates pC and pI is some value δ where δ 6¼ 0. The observed

difference dpC � bpI can be quite small by chance alone even if the alternative

hypothesis is true. Therefore, the investigator could, on the basis of small observed

differences, fail to reject H0 even when it is not true. This is called a Type II error,
or a false negative result. The probability of a Type II error is denoted by β.
The value of β depends on the specific value of δ, the true but unknown difference

in event rates between the two groups, as well as on the sample size and α.
The probability of correctly rejecting H0 is denoted 1� β and is called the power

of the study. Power quantifies the potential of the study to find true differences of

various values δ. Since β is a function of α, the sample size and δ, 1� β is also a

function of these parameters. The plot of 1� β versus δ for a given sample size is

called the power curve and is depicted in Fig. 8.1. On the horizontal axis, values of δ
are plotted from 0 to an upper value, δA (0.25 in this figure). On the vertical axis, the

probability or power of detecting a true difference δ is shown for a given signifi-

cance level and sample size. In constructing this specific power curve, a sample size

of 100 in each group, a one-sided significance level of 0.05 and a control group

event rate of 0.5 (50%) were assumed. Note that as δ increases, the power to detect
δ also increases. For example, if δ¼ 0.10 the power is approximately 0.40. When

δ¼ 0.20 the power increases to about 0.90. Typically, investigators like to have a

power (1� β) of at least 0.80, but often around 0.90 or 0.95 when planning a study;
that is to have an 80%, 90% or 95% chance of finding a statistically significant

difference between the event rates, given that a difference, δ, actually exists.

Since the significance level α should be small, say 0.05 or 0.01, and the power

(1� β) should be large, say 0.90 or 0.95, the only quantities which are left to vary are
δ, the size of the difference being tested for, and the total sample size. In planning a

clinical trial, the investigator hopes to detect a difference of specified magnitude δ or
larger. One factor that enters into the selection of δ is the minimum difference
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between groups judged to be clinically important. In addition, previous researchmay

provide estimates of δ. This is part of the question being tested as discussed in

Chap. 3. The exact nature of the calculation of the sample size, given α, 1� β and δ is
considered here. It can be assumed that the randomization strategy will allocate an

equal number (N) of participants to each group, since the variability in the responses

for the two groups is approximately the same; equal allocation provides a slightly

more powerful design than unequal allocation. For unequal allocation to yield an

appreciable increase in power, the variability needs to be substantially different in

the groups [42]. Since equal allocation is usually easier to implement, it is the more

frequently used strategy and will be assumed here for simplicity.

Before a sample size can be calculated, classical statistical theory says that the

investigator must decide whether he is interested in differences in one direction

only (one-sided test)—say improvements in intervention over control—or in dif-

ferences in either direction (two-sided test). This latter case would represent testing

the hypothesis that the new intervention is either better or worse than the control.

In general, two-sided tests should be used unless there is a very strong justification

for expecting a difference in only one direction. An investigator should always keep

in mind that any new intervention could be harmful as well as helpful. However, as
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Fig. 8.1 A power curve for increasing differences (δ) between the control group rate of 0.5 and

the intervention group rate with a one-sided significance level of 0.05 and a total sample size (2N )

of 200
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discussed in Chap. 16, some investigators may not be willing to prove the inter-

vention harmful and would terminate a study if the results are suggestive of harm.

A classic example of this issue was provided by the Cardiac Arrhythmia Suppres-

sion Trial or CAST [43]. This trial was initially designed as a one-sided, 0.025

significance level hypothesis test that anti-arrhythmic drug therapy would reduce

the incidence of sudden cardiac death. Since the drugs were already marketed,

harmful effects were not expected. Despite the one-sided hypothesis in the design,

the monitoring process used a two-sided, 0.05 significance level approach. In this

respect, the level of evidence for benefit was the same for either the one-sided 0.025

or two-sided 0.05 significance level design. As it turned out, the trial was terminated

early due to increased mortality in the intervention group (see Chaps. 16 and 17).

If a one-sided test of hypothesis is chosen, in most circumstances the signifi-

cance level ought to be half what the investigator would use for a two-sided test.

For example, if 0.05 is the two-sided significance level typically used, 0.025 would

be used for the one-sided test. As done in the CAST trial, this requires the same

degree of evidence or scientific documentation to declare a treatment effective,

regardless of the one-sided vs. two-sided question. In this circumstance, a test for

negative or harmful effects might also be done at the 0.025 level. This in effect,

provides two one-sided 0.025 hypothesis tests for an overall 0.05 significance level.

As mentioned above, the total sample size 2N (N per arm) is a function of the

significance level (α), the power (1� β) and the size of the difference in response

(δ) which is to be detected. Changing either α, 1� β or δ will result in a change in

2N. As the magnitude of the difference δ decreases, the larger the sample size must

be to guarantee a high probability of finding that difference. If the calculated sample

size is larger than can be realistically obtained, then one or more of the parameters

in the design may need to be reconsidered. Since the significance level is usually

fixed at 0.05, 0.025, or 0.01, the investigator should generally reconsider the value

selected for δ and increase it, or keep δ the same and settle for a less powerful study.

If neither of these alternatives is satisfactory, serious consideration should be given

to abandoning the trial.

Rothman [44] argued that journals should encourage using confidence intervals

to report clinical trial results instead of significance levels. Several researchers [44–

46] discuss sample size formulas from this approach. Confidence intervals are

constructed by computing the observed difference in event rates and then adding

and subtracting a constant times the standard error of the difference. This provides

an interval surrounding the observed estimated difference obtained from the trial.

The constant is determined so as to give the confidence interval the correct

probability of including the true, but unknown difference. This constant is related

directly to the critical value used to evaluate test statistics. Trials often use a

two-sided α level test (e.g., α¼ 0.05) and a corresponding (1� α) confidence

interval (e.g., 95%). If the 1� α confidence interval excludes zero or no difference,

we would conclude that the intervention has an effect. If the interval contains zero

difference, no intervention effect would be claimed. However, differences of

importance could exist, but might not be detected or not be statistically significant

because the sample size was too small. For testing the null hypothesis of no
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treatment effect, hypothesis testing and confidence intervals give the same conclu-

sions. However, confidence intervals provide more information on the range of the

likely difference that might exist. For sample size calculations, the desired confi-

dence interval width must be specified. This may be determined, for example, by

the smallest difference between two event rates that would be clinically meaningful

and important. Under the null hypothesis of no treatment effect, half the desired

interval width is equal to the difference specified in the alternative hypothesis. The

sample size calculation methods presented here do not preclude the presentation of

results as confidence intervals and, in fact, investigators ought to do so. However,

unless there is an awareness of the relationship between the two approaches, as

McHugh and Le [46] have pointed out, the confidence interval method might yield a

power of only 50% to detect a specified difference. This can be seen later, when

sample size calculations for comparing proportions are presented. Thus, some care

needs to be taken in using this method.

So far, it has been assumed that the data will be analyzed only once at the end of

the trial. However, as discussed in Chaps. 16 and 17, the response variable data may

be reviewed periodically during the course of a study. Thus, the probability of

finding significant differences by chance alone is increased [47]. This means that

the significance level α may need to be adjusted to compensate for the increase in

the probability of a Type I error. For purposes of this discussion, we assume that α
carries the usual values of 0.05, 0.025 or 0.01. The sample size calculation should

also employ the statistic which will be used in data analysis. Thus, there are many

sample size formulations. Methods that have proven useful will be discussed in the

rest of this chapter.

Dichotomous Response Variables

We shall consider two cases for response variables which are dichotomous, that is,

yes or no, success or failure, presence or absence. The first case assumes two

independent groups or samples [48–59]. The second case is for dichotomous

responses within an individual, or paired responses [60–64].

Two Independent Samples

Suppose the primary response variable is the occurrence of an event over some

fixed period of time. The sample size calculation should be based on the specific test

statistic that will be employed to compare the outcomes. The null hypothesis H0

( pC� pI¼ 0) is compared to an alternative hypothesis HA ( pC� pI 6¼ 0).

The estimates of pI and pC aredpC � bpI where bpI ¼ rI=NI and cpC ¼ rC=NC with rI
and rC being the number of events in the intervention and control groups and NI and
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NC being the number of participants in each group. The usual test statistic for

comparing such dichotomous or binomial responses is

Z ¼ dpC � cp1ð Þ
. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p 1� pð Þ 1=NC þ 1=NIð Þ
p

where p ¼ rI þ rCð Þ= NI þ NCð Þ. The square of the Z statistic is algebraically

equivalent to the chi-square statistic, which is often employed as well. For large

values of NI and NC, the statistic Z has approximately a normal distribution with

mean 0 and variance 1. If the test statistic Z is larger in absolute value than a

constant Zα, the investigator will reject H0 in the two-sided test.

The constant Zα is often referred to as the critical value. The probability of a

standard normal random variable being larger in absolute value than Zα is α. For a
one-sided hypothesis, the constant Zα is chosen such that the probability that Z is

greater (or less) than Zα is α. For a given α, Zα is larger for a two-sided test than for a
one-sided test (Table 8.1). Zα for a two-sided test with α¼ 0.10 has the same value

as Zα for a one-sided test with α¼ 0.05. While a smaller sample size can be

achieved with a one-sided test compared to a two-sided test at the same α level,

we in general do not recommend this approach as discussed earlier.

The sample size required for the design to have a significance level α and a

power of 1� β to detect true differences of at least δ between the event rates pI and
pC can be expressed by the formula [11]:

2N ¼ 2 Zα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ

p
þ Zβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pC 1� pCð Þ þ pI 1� pIð Þ

pn o2.
pC � pIð Þ2

where 2N¼ total sample size (N participants/group) with p ¼ pC þ pIð Þ=2; Zα is

the critical value which corresponds to the significance level α; and Zβ is the value
of the standard normal value not exceeded with probability β. Zβ corresponds to the
power 1� β (e.g., if 1� β¼ 0.90, Zβ¼ 1.282). Values of Zα and Zβ are given in

Tables 8.1 and 8.2 for several values of α and 1� β. More complete tables may be

found in most introductory texts textbooks [27–29, 31, 33–37, 51], sample size texts

[17–21, 65], or by using software packages and online resources [66–73]. Note that

the definition of p given earlier is equivalent to the definition of p given here when
NI¼NC; that is, when the two study groups are of equal size. An alternative to the

above formula is given by

Table 8.1 Zα for sample size

formulas for various values

of α α
Zα

One-sided test Two-sided test

0.10 1.282 1.645

0.05 1.645 1.960

0.025 1.960 2.240

0.01 2.326 2.576
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2N ¼ 4 Zα þ Zβ
� �2

p 1� pð Þ
.

pC � pIð Þ2

These two formulas give approximately the same answer and either may be used for

the typical clinical trial.

Example: Suppose the annual event rate in the control group is anticipated to be

20%. The investigator hopes that the intervention will reduce the rate to 15%. The

study is planned so that each participant will be followed for 2 years. Therefore, if

the assumptions are accurate, approximately 40% of the participants in the control

group and 30% of the participants in the intervention group will develop an event.

Thus, the investigator sets pC¼ 0.40, pI¼ 0.30, and, therefore,

p ¼ 0:4þ 0:3ð Þ=2 ¼ 0:35. The study is designed as two-sided with a 5% signifi-

cance level and 90% power. From Tables 8.1 and 8.2, the two-sided 0.05 critical

value is 1.96 for Zβ and 1.282 for Zβ. Substituting these values into the right-hand

side of the first sample size formula yields 2N to be

2 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 0:35ð Þ 0:65ð Þ

p
þ 1:282

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:4 0:6ð Þ þ 0:3 0:7ð Þ

pn o2.
0:4� 0:3ð Þ2

Evaluating this expression, 2N equals 952.3. Using the second formula, 2N is

4(1.96 + 1.202)2 (0.35)(0.65)/(0.4� 0.3)2 or 2N¼ 956. Therefore, after rounding

up to the nearest ten, the calculated total sample size by either formula is 960, or

480 in each group.

Sample size estimates using the first formula are given in Table 8.3 for a variety

of values of pI and pC, for two-sided tests, and for α¼ 0.01, 0.025 and 0.05 and

1� β¼ 0.80 or 0.90. For the example just considered with α¼ 0.05 (two-sided),

1� β¼ 0.90, pC¼ 0.4 and pI¼ 0.3, the total sample size using Table 8.3 is 960.

This table shows that, as the difference in rates between groups increases, the

sample size decreases.

The event rate in the intervention group can be written as pI¼ (1� k) pC where

k represents the proportion that the control group event rate is expected to be

reduced by the intervention. Figure 8.2 shows the total sample size 2N versus

k for several values of pC using a two-sided test with α¼ 0.05 and 1� β¼ 0.90.

In the example where pC¼ 0.4 and pI¼ 0.3, the intervention is expected to reduce

Table 8.2 Zβ for sample size

formulas for various values

of power (1� β)

1� β Zβ

0.50 0.00

0.60 0.25

0.70 0.53

0.80 0.84

0.85 1.036

0.90 1.282

0.95 1.645

0.975 1.960

0.99 2.326
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the control rate by 25% or k¼ 0.25. In Fig. 8.2, locate k¼ 0.25 on the horizontal

axis and move up vertically until the curve labeled pC¼ 0.4 is located. The point on

this curve corresponds to a 2N of approximately 960. Notice that as the control

group event rate pC decreases, the sample size required to detect the same propor-

tional reduction increases. Trials with small event rates (e.g., pC¼ 0.1) require large

sample sizes unless the interventions have a dramatic effect.

In order to make use of the sample size formula or table, it is necessary to know

something about pC and k. The estimate for pC is usually obtained from previous

studies of similar people. In addition, the investigator must choose k based on

preliminary evidence of the potential effectiveness of the intervention or be willing

to specify some minimum difference or reduction that he wants to detect. Obtaining

this information is difficult in many cases. Frequently, estimates may be based on a

small amount of data. In such cases, several sample size calculations based on a

range of estimates help to assess how sensitive the sample size is to the uncertain

estimates of pC, k, or both. The investigator may want to be conservative and take

the largest, or nearly largest, estimate of sample size to be sure his study has

sufficient power. The power (1� β) for various values of δ can be compared for a

given sample size 2N, significance level α, and control rate pC. By examining a

power curve such as in Fig. 8.1, it can be seen what power the trial has for detecting

various differences in rates, δ. If the power is high, say 0.80 or larger, for the range

of values δ that are of interest, the sample size is probably adequate. The power

Table 8.3 Sample size

Alpha/power

2α (Two-sided)

0.01 0.025 0.05

pC pI 0.90 0.80 0.90 0.80 0.90 0.80

0.6 0.5 1470 1160 1230 940 1040 780

0.4 370 290 310 240 260 200

0.3 160 130 140 110 120 90

0.20 90 70 80 60 60 50

0.5 0.40 1470 1160 1230 940 1040 780

0.30 360 280 300 230 250 190

0.25 220 180 190 140 160 120

0.20 150 120 130 100 110 80

0.4 0.30 1360 1060 1130 870 960 720

0.25 580 460 490 370 410 310

0.20 310 250 260 200 220 170

0.3 0.20 1120 880 930 710 790 590

0.15 460 360 390 300 330 250

0.10 240 190 200 150 170 130

0.2 0.15 3440 2700 2870 2200 2430 1810

0.10 760 600 630 490 540 400

0.05 290 230 240 190 200 150

0.1 0.05 1650 1300 1380 1060 1170 870
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curve can be especially helpful if the number of available participants is relatively

fixed and the investigator wants to assess the probability that the trial can detect any

of a variety of reductions in event rates.

Investigators often overestimate the number of eligible participants who can be

enrolled in a trial. The actual number enrolled may fall short of goal. To examine

the effects of smaller sample sizes on the power of the trial, the investigator may

find it useful to graph power as a function of various sample sizes. If the power falls

far below 0.8 for a sample size that is very likely to be obtained, he can expand the

recruitment effort, hope for a larger intervention effect than was originally

assumed, accept the reduced power and its consequences or abandon the trial.

To determine the power, the second sample size equation in this section is solved

for Zβ:

Zβ ¼ �Zα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 p 1� pð Þ

p
þ

ffiffiffiffi
N

p
pC � pIð Þ

n o. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pC 1� pCð Þ þ pI 1� pIð Þ

p
where p as before is ( pC + pI)/2. The term Zβ can be translated into a power of 1� β
by use of Table 8.2. For example, let pC¼ 0.4 and pI¼ 0.3. For a significance level

of 0.05 in a two-sided test of hypothesis, Zα is 1.96. In a previous example, it was

Fig. 8.2 Relationship

between total sample size

(2N ) and reduction in event

rate (k) for several control
group event rates ( pC), with
a two-sided significance

level of 0.05 and power

of 0.90
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shown that a total sample of approximately 960 participants or 480 per group is

necessary to achieve a power of 0.90. Substituting Zα¼ 1.96, N¼ 480, pC¼ 0.4 and

pI¼ 0.3, a value for Zβ¼ 1.295 is obtained. The closest value of Zβ in Table 8.2 is

1.282 which corresponds to a power of 0.90. (If the exact value of N¼ 476 were

used, the value of Zβ would be 1.282.) Suppose an investigator thought he could get
only 350 participants per group instead of the estimated 480. Then Zβ¼ 0.818

which means that the power 1� β is somewhat less than 0.80. If the value of Zβ
is negative, the power is less than 0.50. For more details of power calculations, a

standard text in biostatistics [27–29, 31, 33–37, 51] or sample size [17–21, 65]

should be consulted.

For a given 2N, α, 1� β, and pC the reduction in event rate that can be detected

can also be calculated. This function is nonlinear and, therefore, the details will not

be presented here. Approximate results can be obtained by scanning Table 8.3, by

using the calculations for several pI until the sample size approaches the planned

number, or by using a figure where sample sizes have been plotted. In Fig. 8.2, α is

0.05 and 1� β is 0.90. If the sample size is selected as 1000, with pC¼ 0.4, k is

determined to be about 0.25. This means that the expected pI would be 0.3. As can

be seen in Table 8.3, the actual sample size for these assumptions is 960.

The above approach yields an estimate which is more accurate as the sample size

increases. Modifications [49, 51–55, 58, 59, 74] have been developed which give

some improvement in accuracy to the approximate formula presented for small

studies. However, the availability of computer software to perform exact compu-

tations [66–73] has reduced the need for good small sample approximations. Also,

given that sample size estimation is somewhat imprecise due to assumptions of

intervention effects and event rates, the formulation presented is probably adequate

for most clinical trials.

Designing a trial comparing proportions using the confidence interval approach,

we would need to make a series of assumptions as well [6, 42, 52]. A 100(1� α)%
confidence interval for a treatment comparison θ would be of the general form

θ̂ � ZαSE θ̂
� �

, where θ̂ is the estimate for θ and SE θ̂
� �

is the standard error of θ̂ . In
this case, the specific form would be:

cpC � bpIð Þ � Zα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ 1=NI þ 1=NCð Þ

p
If we want the width of the confidence interval (CI) not to exceedWCI, whereWCI is

the difference between the upper confidence limit and the lower confidence limit,

then if N¼NI¼NC, the width WCI can be expressed simply as:

WCI ¼ 2 Zα
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ N=2ð Þ

p
or after solving this equation for N,

N ¼ 8Z2
α p 1� pð Þ= WCIð Þ2

Thus, if α is 0.05 for a 95% confidence interval, pC¼ 0.4 and pI¼ 0.3 or 0.35,

N¼ 8(1.96)2(0.35)(0.65)/(WCI)
2. If we desire the upper limit of the confidence
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interval to be not more than 0.10 from the estimate or the width to be twice that,

then WCI¼ 0.20 and N¼ 175 or 2N¼ 350. Notice that even though we are essen-

tially looking for differences in pC� pI to be the same as our previous calculation,

the sample size is smaller. If we let pC� pI¼WCI/2 and substitute this into the

previous sample size formula, we obtain

2N ¼ 2 Zα þ Zβ
� �2

p 1� pð Þ=�WCI=2
�
2

¼ 8 Zα þ Zβ
� �2

p 1� pð Þ= WCIð Þ2

This formula is very close to the confidence interval formula for two proportions. If

we select 50% power, β is 0.50 and Zβ is 0 which would yield the confidence

interval formula. Thus, a confidence interval approach gives 50% power to detect

differences of WCI/2. This may not be adequate, depending on the situation. In

general, we prefer to specify greater power (e.g., 80–90%) and use the previous

approach.

Analogous sample size estimation using the confidence interval approach may

be used for comparing means, hazard rates, or regression slopes. We do not present

details of these since we prefer to use designs which yield power greater than that

obtained from a confidence interval approach.

Paired Dichotomous Response

For designing a trial where the paired outcomes are binary, the sample size estimate

is based on McNemar’s test [60–64]. We want to compare the frequency of success

within an individual on intervention with the frequency of success on control (i.e.,

pI� pC). McNemar’s test compares difference in discordant responses within an

individual pI� pC, between intervention and control.

In this case, the number of paired observations, Np, may be estimated by:

N p ¼ Zα
ffiffiffi
f

p
þ Zβ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f � d2

q� �2,
d2

where d¼ difference in the proportion of successes (d¼ pI� pC) and f is the

proportion of participants whose response is discordant. An alternative approximate

formula for Np is

N p ¼ Zα þ Zβ
� �2

f=d2

Example: Consider an eye study where one eye is treated for loss in visual acuity by
a new laser procedure and the other eye is treated by standard therapy. The failure

rate on the control, pC is estimated to be 0.40 and the new procedure is projected to

reduce the failure rate to 0.20. The discordant rate f is assumed to be 0.50. Using the
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latter sample size formula for a two-sided 5% significance level and 90% power, the

number of pairs Np is estimated as 132. If the discordant rate is 0.8, then 210 pairs of

eyes will be needed.

Adjusting Sample Size to Compensate for Nonadherence

During the course of a clinical trial, participants will not always adhere to their

prescribed intervention schedule. The reason is often that the participant cannot

tolerate the dosage of the drug or the degree of intervention prescribed in the

protocol. The investigator or the participant may then decide to follow the protocol

with less intensity. At all times during the conduct of a trial, the participant’s

welfare must come first and meeting those needs may not allow some aspects of

the protocol to be followed. Planners of clinical trials must recognize this possibil-

ity and attempt to account for it in their design. Examples of adjusting for

nonadherence with dichotomous outcomes can be found in several clinical trials

[75–82].

In the intervention group a participant who does not adhere to the intervention

schedule is often referred to as a “drop-out.” Participants who stop the intervention

regimen lose whatever potential benefit the intervention might offer. Similarly, a

participant on the control regimen may at some time begin to use the intervention

that is being evaluated. This participant is referred to as a “drop-in.” In the case of a

drop-in a physician may decide, for example, that surgery is required for a partic-

ipant assigned to medical treatment in a clinical trial of surgery versus medical care

[77]. Drop-in participants from the control group who start the intervention regimen

will receive whatever potential benefit or harm that the intervention might offer.

Therefore, both the drop-out and drop-in participants must be acknowledged

because they tend to dilute any difference between the two groups which might

be produced by the intervention. This simple model does not take into account the

situation in which one level of an intervention is compared to another level of the

intervention. More complicated models for nonadherence adjustment can be devel-

oped. Regardless of the model, it must be emphasized that the assumed event rates

in the control and intervention groups are modified by participants who do not

adhere to the study protocol.

People who do not adhere should remain in the assigned study groups and be

included in the analysis. The rationale for this is discussed in Chap. 18. The basic

point to be made here is that eliminating participants from analysis or transferring

participants to the other group could easily bias the results of the study. However,

the observed δ is likely to be less than projected because of nonadherence and thus

have an impact on the power of the clinical trial. A reduced δ, of course, means that

either the sample size must be increased or the study will have smaller power than

intended. Lachin [11] has proposed a simple formula to adjust crudely the sample

size for a drop-out rate of proportion RO. This can be generalized to adjust for drop-

in rates, RI, as well. The unadjusted sample size N should be multiplied by the factor
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{1/(1�RO�RI)}
2 to get the adjusted sample size per arm, N*. Thus, if RO¼ 0.20

and RI¼ 0.05, the originally calculated sample should be multiplied by 1/(0.75)2, or

16/9, and increased by 78%. This formula gives some quantitative idea of the effect

of drop-out on the sample size:

N* ¼ N= 1� RO � RIð Þ2

However, more refined models to adjust sample sizes for drop-outs from the

intervention to the control [83–89] and for drop-ins from the control to the inter-

vention regimen [83] have been developed. They adjust for the resulting changes in

pI and pC, the adjusted rates being denoted pI* and pC*. These models also allow for

another important factor, which is the time required for the intervention to achieve

maximum effectiveness. For example, an anti-platelet drug may have an immediate

effect; conversely, even though a cholesterol-lowering drug reduces serum levels

quickly, it may require years to produce a maximum effect on coronary mortality.

Example: A drug trial [76] in post myocardial infarction participants illustrates the

effect of drop-outs and drop-ins on sample size. In this trial, total mortality over a

3-year follow-up period was the primary response variable. The mortality rate in the

control group was estimated to be 18% (pC¼ 0. 18) and the intervention was believed

to have the potential for reducing pC by 28% (k¼ 0.28) yielding pI¼ 0.1296.

These estimates of pC and k were derived from previous studies. Those studies also

indicated that the drop-out rate might be as high as 26% over the 3 years; 12% in the

first year, an additional 8% in the second year, and an additional 6% in the third year.

For the control group, the drop-in rate was estimated to be 7% each year for a total

drop-in rate of 21%.

Using these models for adjustment, pC*¼ 0.1746 and pI*¼ 0.1375. Therefore,

instead of δ being 0.0504 (0.18� 0.1296), the adjusted δ* is 0.0371

(0.1746� 0.1375). For a two-sided test with α¼ 0.05 and 1� β¼ 0.90, the adjusted

sample size was 4020 participants compared to an unadjusted sample size of 2160

participants. The adjusted sample size almost doubled in this example due to the

expected drop-out and drop-in experiences and the recommended policy of keeping

participants in the originally assigned study groups. The remarkable increases in

sample size because of drop-outs and drop-ins strongly argue for major efforts to

keep nonadherence to a minimum during trials.

Sample Size Calculations for Continuous Response
Variables

Similar to dichotomous outcomes, we consider two sample size cases for response

variables which are continuous [9, 11, 90]. The first case is for two independent

samples. The other case is for paired data.
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Two Independent Samples

For a clinical trial with continuous response variables, the previous discussion is

conceptually relevant, but not directly applicable to actual calculations. “Continuous”

variables such as length of hospitalization, blood pressure, spirometric measures,

neuropsychological scores and level of a serum component may be evaluated.

Distributions of such measurements frequently can be approximated by a normal

distribution. When this is not the case, a transformation of values, such as taking their

logarithm, can often make the normality assumption approximately correct.

Suppose the primary response variable, denoted as x, is continuous with NI and

NC participants randomized to the intervention and control groups respectively.

Assume that the variable x has a normal distribution with mean μ and variance σ2.
The true levels of μI and μC for the intervention and control groups are not known,

but it is assumed that σ2 is known. (In practice, σ2 is not known and must be

estimated from some data. If the data set used is reasonably large, the estimate of σ2

can be used in place of the true σ2. If the estimate for σ2 is based on a small set of

data, it is necessary to be cautious in the interpretation of the sample size

calculations.)

The null hypothesis is H0: δ¼ μC� μI¼ 0 and the two-sided alternative hypoth-

esis is HA: δ¼ μC� μI 6¼ 0. If the variance is known, the test statistic is:

Z ¼ xC � xIð Þ=σ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=NC þ 1=NIð Þ

p
wherexI andxC represent mean levels observed in the intervention and control groups

respectively. For adequate sample size (e.g. 50 participants per arm) this statistic has

approximately a standard normal distribution. The hypothesis-testing concepts pre-

viously discussed apply to the above statistic. If Z> Zα, then an investigator would

reject H0 at the α level of significance. By use of the above test statistic it can be

determined how large a total sample 2Nwould be needed to detect a true difference δ
between μI and μC with power (1� β) and significance level α by the formula:

2N ¼ 4 Zα þ Zβ
� �2σ2=δ2

Example: Suppose an investigator wishes to estimate the sample size necessary to

detect a 10 mg/dL difference in cholesterol level in a diet intervention group

compared to the control group. The variance from other data is estimated to be

(50 mg/dL)2. For a two-sided 5% significance level, Zα¼ 1.96 and for 90% power,

Zβ¼ 1.282. Substituting these values into the above formula, 2N¼ 4(1.96

+ 1.282)2(50)2/102 or approximately 1,050 participants. As δ decreases, the value

of 2N increases, and as σ2 increases the value of 2N increases. This means that the

smaller the difference in intervention effect an investigator is interested in detecting

and the larger the variance, the larger the study must be. As with the dichotomous

case, setting a smaller α and larger 1� β also increases the sample size. Figure 8.3

shows total sample size 2N as a function of δ/σ. As in the example, if δ¼ 10 and

σ¼ 50, then δ/σ¼ 0.2 and the sample size 2N for 1� β¼ 0.9 is approximately 1,050.
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Paired Data

In some clinical trials, paired outcome data may increase power for detecting

differences because individual or within participant variation is reduced. Trial

participants may be assessed at baseline and at the end of follow-up. For example,

instead of looking at the difference between mean levels in the groups, an inves-

tigator interested in mean levels of change might want to test whether diet inter-

vention lowers serum cholesterol from baseline levels when compared to a control.

This is essentially the same question as asked before in the two independent sample

case, but each participant’s initial cholesterol level is taken into account. Because of

the likelihood of reduced variability, this type of design can lead to a smaller sample

size if the question is correctly posed. Assume that ΔC and ΔI represent the true, but

unknown levels of change from baseline to some later point in the trial for the

control and intervention groups, respectively. Estimates of ΔC and ΔI would be dC
¼ xC1

� xC2
and dI ¼ xI1 � xI2 . These represent the differences in mean levels of

the response variable at two points for each group. The investigator tests H0:

ΔC�ΔI¼ 0 versus HA: ΔC�ΔI¼ δ 6¼ 0. The variance σ2 in this case reflects the

variability of the change, from baseline to follow-up, and is assumed here to be the

same in the control and intervention arms. This variance is likely to be smaller than

the variability at a single measurement. This is the case if the correlation between the

first and second measurements is greater than 0.5. Using δ and σ2Δ, as defined in this

manner, the previous sample size formula for two independent samples and graph are

applicable. That is, the total sample size 2N can be estimated as

2N ¼ 4 Zα þ Zβ
� �2σ2Δ=δ2

Another way to represent this is
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2N ¼ 4 Zα þ Zβ
� �2

1� ρð Þσ2=δ2

where σ2Δ ¼ 2σ2 1� ρð Þ and σ2 is the variance of a measurement at a single point in

time, the variability is assumed to be the same at both time points (i.e. at baseline

and at follow-up), and ρ is the correlation coefficient between the first and second

measurement. As indicated, if the correlation coefficient is greater than 0.5, com-

paring the paired differences will result in a smaller sample size than just comparing

the mean values at the time of follow-up.

Example: Assume that an investigator is still interested in detecting a 10 mg/dL

difference in cholesterol between the two groups, but that the variance of the change

is now (20mg/dL)2. The question being asked in terms of δ is approximately the same,

because randomization should produce baseline mean levels in each group which are

almost equal. The comparison of differences in change is essentially a comparison of

the difference inmean levels of cholesterol at the secondmeasurement. Using Fig. 8.3,

where δ/σΔ¼ 10/20¼ 0.5, the sample size is 170. This impressive reduction in sample

size from 1,050 is due to a reduction in the variance from (50mg/dL)2 to (20 mg/dL)2.

Another type of pairing occurs in diseases that affect paired organs such as lungs,

kidneys, and eyes. In ophthalmology, for example, trials have been conducted

where one eye is randomized to receive treatment and the other to receive control

therapy [61–64]. Both the analysis and the sample size estimation need to take

account of this special kind of stratification. For continuous outcomes, a mean

difference in outcome between a treated eye and untreated eye would measure the

treatment effect and could be compared using a paired t-test [9, 11],

Z ¼ d=Sd
ffiffiffiffiffiffiffiffiffi
1=N

p
, whered is the average difference in response and Sd is the standard

deviation of the differences. The mean difference μd is equal to the mean response

of the treated or intervention eye, for example, minus the mean response of the

control eye; that is μd¼ μI� μC. Under the null hypothesis, μd equals δd. An
estimate of δd, d, can be obtained by taking an estimate of the average differences

or by calculating xI � xC. The variance of the paired differences σ2d is estimated by

S2d. Thus, the formula for paired continuous outcomes within an individual is a

slight modification of the formula for comparison of means in two independent

samples. To compute sample size, Nd, for number of pairs, we compute:

Nd ¼ Zα þ Zβ
� �2σ2d=δ2d

As discussed previously, participants in clinical trials do not always fully adhere

with the intervention being tested. Some fraction (RO) of participants on interven-

tion drop-out of the intervention and some other fraction (RI) drop-in and start

following the intervention. If we assume that these participants who drop-out

respond as if they had been on control and those who drop-in respond as if they

had been on intervention, then the sample size adjustment is the same as for the case

of proportions. That is, the adjusted sample size N* is a function of the drop-out

rate, the drop-in rate, and the sample size N for a study with fully compliant

participants:
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N* ¼ N= 1� RO � RIð Þ2

Therefore, if the drop-out rate were 0.20 and the drop-in 0.05, then the original

sample size N must be increased by 16/9 or 1.78; that is, a 78% increase in

sample size.

Sample Size for Repeated Measures

The previous section briefly presented the sample size calculation for trials where

only two points, say a baseline and a final visit, are used to determine the effect of

intervention and these two points are the same for all study participants. Often, a

continuous response variable is measured at each follow-up visit. Considering only

the first and last values would give one estimate of change but would not take

advantage of all the available data. Many models exist for the analysis of repeated

measurements and formulae [13, 91–97] as well as computer software [66, 67, 69–73]

for sample size calculation are available for most. In some cases, the response variable

may be categorical. We present one of the simpler models for continuous repeated

measurements. While other models are beyond the scope of this book, the basic

concepts presented are still useful in thinking about how many participants, how

many measurements per individual, and when they should be taken, are needed.

In such a case, one possible approach is to assume that the change in response variable

is approximately a linear function of time, so that the rate of change can be summa-

rized by a slope. This model is fit to each participant’s data by the standard least

squares method and the estimated slope is used to summarize the participant’s

experience. In planning such a study, the investigator must be concerned about the

frequency of the measurement and the duration of the observation period.

As discussed by Fitzmaurice and co-authors [98], the observed measurement x can

be expressed as x¼ a+ bt+ error, where a¼ intercept, b¼ slope, t¼ time, and error

represents the deviation of the observed measurement from a regression line.

This error may be due to measurement variability, biological variability or the

nonlinearity of the true underlying relationship. On the average, this error is expected

to be equally distributed around 0 and have a variability denoted as σ2ðerrorÞ. Though it
is not necessary, it simplifies the calculation to assume that σ2ðerrorÞ is approximately

the same for each participant.

The investigator evaluates intervention effectiveness by comparing the average

slope in one group with the average slope in another group. Obviously, participants

in a group will not have the same slope, but the slopes will vary around some

average value which reflects the effectiveness of the intervention or control.

The amount of variability of slopes over participants is denoted as σ2b.
If D represents the total time duration for each participant and P represents the

number of equally spaced measurements, σ2b can be expressed as:
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σ2b ¼ σ2B þ 12 P� 1ð Þ σ2errorð Þ= D2P Pþ 1ð Þ� �n o
where σ2B is the component of variance attributable to differences in participants’

slope as opposed to measurement error and lack of a linear fit. The sample size

required to detect difference δ between the average rates of change in the two

groups is given by:

2N ¼ 4 Zα þ Zβ
� �2

=δ2
h i

σ2B þ 12 P� 1ð Þ σ2errorð Þ= D2P Pþ 1ð Þ� �n oh i
As in the previous formulas, when δ decreases, 2N increases. The factor on the

right-hand side relates D and P with the variance components σ2B and σ2ðerrorÞ.
Obviously as σ2B and σ2ðerrorÞ increase, the total sample size increases. By increasing

P and D, however, the investigator can decrease the contribution made by σ2ðerrorÞ.
The exact choices of P and D will depend on how long the investigator can feasibly

follow participants, how many times he can afford to have participants visit a clinic

and other factors. By manipulating P and D, an investigator can design a study

which will be the most cost effective for his specific situation.

Example: In planning for a trial, it may be assumed that a response variable declines

at the rate of 80 units/year in the control group. Suppose a 25% reduction is

anticipated in the intervention group. That is, the rate of change in the intervention

group would be 60 units/year. Other studies provided an estimate for σ(error) of
150 units. Also, suppose data from a study of people followed every 3 months for

1 year (D¼ 1 and P¼ 5) gave a value for the standard deviation of the slopes,

σb¼ 200. The calculated value of σB is then 63 units. Thus, for a 5% significance

level and 90% power (Zα¼ 1.96 and Zβ¼ 1.282), the total sample size would be

approximately 630 for a 3-year study with four visits per year (D¼ 3, P¼ 13).

Increasing the follow-up time to 4 years, again with four measurements per year,

would decrease the variability with a resulting sample size calculation of approx-

imately 510. This reduction in sample size could be used to decide whether or not to

plan a 4-year or a 3-year study.

Sample Size Calculations for “Time to Failure”

For many clinical trials, the primary response variable is the occurrence of an event

and thus the proportion of events in each group may be compared. In these cases, the

sample size methods described earlier will be appropriate. In other trials, the time to

the event may be of special interest. For example, if the time to death or a nonfatal

event can be increased, the intervention may be useful even though at some point the

proportion of events in each group are similar. Methods for analysis of this type of

outcome are generally referred to as life table or survival analysis methods (see

Chap. 15). In this situation, other sample size approaches are more appropriate than
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that described for dichotomous outcomes [99–118]. At the end of this section, we also

discuss estimating the number of events required to achieve a desired power.

The basic approach is to compare the survival curves for the groups. A survival

curve may be thought of as a graph of the probability of surviving, or not having an

event, up to any given point in time. The methods of analysis now widely used are

non-parametric; that is, no mathematical model about the shape of the survival

curve is assumed. However, for the purpose of estimating sample size, some assump-

tions are often useful. A commonmodel assumes that the survival curve, S(t), follows
an exponential distribution, S(t)¼ e�λt¼ exp(�λt) where λ is called the hazard rate or
force of mortality. Using this model, survival curves are totally characterized by λ.
Thus, the survival curves from a control and an intervention group can be compared

by testingH0: λC¼ λI. An estimate of λ is obtained as the inverse of the mean survival

time. If the median survival time, TM, is known, the hazard rate λ may also be

estimated by� ln(0.5)/TM. Sample size formulations have been considered by several

investigators [103, 112, 119]. One simple formula is given by

2N ¼ 4 Zα þ Zβ
� �2

= ln λC=λIð Þ½ �2

where N is the size of the sample in each group and Zα and Zβ are defined as

before. As an example, suppose one assumes that the force of mortality is 0.30 in

the control group and expects it to be 0.20 for the intervention being tested; that is,

λC/λI¼ 1.5. If α¼ .05 (two-sided) and 1� β¼ 0.90, then N¼ 128 or 2N¼ 256.

The corresponding mortality rates for 5 years of follow-up are 0.7769 and 0.6321

respectively. Using the comparison of two proportions, the total sample size

would be 412. Thus, the time to failure method may give a more efficient design,

requiring a smaller number of participants.

The method just described assumes that all participants will be followed to the

event. With few exceptions, clinical trials with a survival outcome are terminated at

time T before all participants have had an event. For those still event-free, the time

to event is said to be censored at time T. For this situation, Lachin [11] gives the

approximate formula:

2N ¼ 2 Zα þ Zβ
� �2 φ λCð Þ þ φ λIð Þ½ �= λI � λCð Þ2

where φ(λ)¼ λ2/(1� e�λT) and where φ(λC) or φ(λI) are defined by replacing λwith
λC or λI, respectively. If a 5 year study were being planned (T¼ 5) with the same

design specifications as above, then the sample size, 2N is equal to 376. Thus, the loss

of information due to censoring must be compensated for by increasing the sample

size. If the participants are to be recruited continually during the 5 years of the trial,

the formula given by Lachin is identical but with φ(λ)¼ λ3T/(λT� 1 + e�λT).

Using the same design assumptions, we obtain 2N¼ 620, showing that not having

all the participants at the start requires an additional increase in sample size.
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More typically participants are recruited uniformly over a period of time, T0,
with the trial continuing for a total of T years (T> T0). In this situation, the sample

size can be estimated as before using:

ϕ λð Þ ¼ λ2= 1� e�λ T�T0ð Þ � e�λT
	 


= λT0ð Þ
h i

Here, the sample size (2N ) of 466 is between the previous two examples suggesting

that it is preferable to get participants recruited as rapidly as possible to get more

follow-up or exposure time.

One of the methods used for comparing survival curves is the proportional

hazards model or the Cox regression model which is discussed briefly in Chap. 15.

For this method, sample size estimates have been published [101, 115]. As it turns

out, the formula by Schoenfeld for the Cox model [115] is identical to that given

above for the simple exponential case, although developed from a different point of

view. Further models are given by Lachin [11].

All of the above methods assume that the hazard rate remains constant during the

course of the trial. This may not be the case. The Beta-Blocker Heart Attack Trial [76]

compared 3-year survival in two groups of participants with intervention starting one

to 3 weeks after an acute myocardial infarction. The risk of death was high initially,

decreased steadily, and then became relatively constant.

For cases where the event rate is relatively small and the clinical trial will have

considerable censoring, most of the statistical information will be in the number of

events. Thus, the sample size estimates using simple proportions will be quite

adequate. In the Beta-Blocker Heart Attack Trial, the 3 year control group event

rate was assumed to be 0.18. For the intervention group, the event rate was assumed

to be approximately 0.13. In the situation of ϕ(λ)¼ λ2(1� e�λT), a sample size

2N¼ 2,208 is obtained, before adjustment for estimated nonadherence. In contrast,

the unadjusted sample size using simple proportions is 2,160. Again, it should be

emphasized that all of these methods are only approximations and the estimates

should be viewed as such.

As the previous example indicates, the power of a survival analysis still is a

function of the number of events. The expected number of events E(D) is a

function of sample size, hazard rate, recruitment rate, and censoring distribution

[11, 106]. Specifically, the expected number of events in the control group can be

estimated as

E Dð Þ ¼ Nλ2C=ϕ λCð Þ

where ϕ(λC) is defined as before, depending on the recruitment and follow-up

strategy. If we assume a uniform recruitment over the interval (0,T0) and follow-

up over the interval (0,T ), then E(D) can be written using the most general form for

ϕ(λC);

E Dð Þ ¼ N 1� e�λ T�T0ð Þ � e�λT
	 


= λT0ð Þ
h i

186 8 Sample Size

http://dx.doi.org/10.1007/978-3-319-18539-2_15


This estimate of the number of events can be used to predict the number of

events at various time points during the trial including the end of follow-up.

This prediction can be compared to the observed number of events in the control

group to determine if an adjustment needs to be made to the design. That is, if the

number of events early in the trial is larger than expected, the trial may be more

powerful than designed or may be stopped earlier than the planned T years of

follow-up (see Chap. 16). However, more worrisome is when the observed number

of events is smaller than what is expected and needed to maintain adequate power.

Based on this early information, the design may be modified to attain the necessary

number of events by increasing the sample size or expanding recruitment effort

within the same period of time, increasing follow-up, or a combination of both.

This method can be illustrated based on a placebo-controlled trial of congestive

heart failure [82]. Severe or advanced congestive heart failure has an expected

1 year event rate of 40%, where the events are all-cause mortality and nonfatal

myocardial infarction. A new drug was to be tested to reduce the event rate by 25%,

using a two-sided 5% significance level and 90% power. If participants are

recruited over 1.5 years (T0¼ 1.5) during a 2 year study (T¼ 2) and a constant

hazard rate is assumed, the total sample size (2N) is estimated to be 820 participants

with congestive heart failure. The formula E(D) can be used to calculate that

approximately 190 events (deaths plus nonfatal myocardial infarctions) must be

observed in the control group to attain 90% power. If the first year event rate turns

out to be less than 40%, fewer events will be observed by 2 years than the required

190. Table 8.4 shows the expected number of control group events at 6 months and

1 year into the trial for annual event rates of 40, 35, 30, and 25%. Two years is also

shown to illustrate the projected number of events at the completion of the study.

These numbers are obtained by calculating the number of participants enrolled by

6 months (33% of 400) and 1 year (66% of 400) and multiplying by the bracketed

term on the right hand side of the equation for E(D). If the assumed annual event

rate of 40% is correct, 60 control group events should be observed at 1 year.

Table 8.4 Number of expected events (in the control group) at each interim analysis given

different event rates in control group

Number of expected events

Calendar time into study

Yearly event rate

in control group

6 Months 1 Year 1.5 Years 2 Years

(N¼ 138/group) (N¼ 275/group) (N¼ 412/group) (N¼ 412/group)

40% 16 60 124 189

35% 14 51 108 167

30% 12 44 94 146

25% 10 36 78 123

Assumptions

1. Time to event exponentially distributed

2. Uniform entry into the study over 1.5 years

3. Total duration of 2 years
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However, if at 1 year only 44 events are observed, the annual event rate might be

closer to 30% (i.e., λ¼ 0.357) and some design modification should be considered

to assure achieving the desired 190 control group events. One year would be a

sensible time to make this decision, based only on control group events, since

recruitment efforts are still underway. For example, if recruitment efforts could be

expanded to 1220 participants in 1.5 years, then by 2 years of follow-up the

190 events in the placebo group would be observed and the 90% power maintained.

If recruitment efforts were to continue for another 6 months at a uniform rate

(T0¼ 2 years), another 135 participants would be enrolled. In this case, E(D) is
545� 0.285¼ 155 events which would not be sufficient without some additional

follow-up. If recruitment and follow-up continued for 27 months (i.e.,

T0¼ T¼ 2.25), then 605 control group participants would be recruited and E(D)
would be 187, yielding the desired power.

Sample Size for Testing “Equivalency” or Noninferiority
of Interventions

In some instances, an effective intervention has already been established and is

considered the standard. New interventions under consideration may be preferred

because they are less expensive, have fewer side effects, or have less adverse

impact on an individual’s general quality of life. This issue is common in the

pharmaceutical industry where a product developed by one company may be tested

against an established intervention manufactured by another company. Studies of

this type are sometimes referred to as trials with positive controls or as

noninferiority designs (see Chaps. 3 and 5).

Given that several trials have shown that certain beta-blockers are effective in

reducing mortality in post-myocardial infarction participants [76, 120, 121], it is

likely that any new beta-blockers developed will be tested against proven agents.

The Nocturnal Oxygen Therapy Trial [122] tested whether the daily amount of

oxygen administered to chronic obstructive pulmonary disease participants could

be reduced from 24 to 12 h without impairing oxygenation. The Intermittent

Positive Pressure Breathing [80] trial considered whether a simple and less expen-

sive method for delivering a bronchodilator into the lungs would be as effective as a

more expensive device. A breast cancer trial compared the tumor regression rates

between subjects receiving the standard, diethylstilbestrol, or the newer agent,

tamoxifen [123].

The problem in designing noninferiority trials is that there is no statistical

method to demonstrate complete equivalence. That is, it is not possible to show

δ¼ 0. Failure to reject the null hypothesis is not a sufficient reason to claim two

interventions to be equal but merely that the evidence is inadequate to say they are

different [124]. Assuming no difference when using the previously described

formulas results in an infinite sample size.
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While demonstrating perfect equivalence is an impossible task, one possible

approach has been discussed for noninferiority designs [125–128]. The strategy is

to specify some value, δ, such that interventions with differences which are less

than this might be considered “equally effective” or “noninferior” (see Chap. 5 for

discussion of noninferiority designs). Specification of δ may be difficult but it is a

necessary element of the design. The null hypothesis states that pC> pI + δ while

the alternative specifies pC< pI + δ. The methods developed require that if the two

interventions really are equally effective or at least noninferior, the upper 100

(1� α)% confidence interval for the intervention difference will not exceed δ
with the probability of 1� β. One can alternatively approach this from a hypothesis

testing point of view, stating the null hypothesis that the two interventions differ by

less than δ.
For studies with a dichotomous response, one might assume the event rate for the

two interventions to be equal to p (i.e., p¼ pC¼ pI). This simplifies the previously

shown sample size formula to

2N ¼ 4p 1� pð Þ Zα þ Zβ
� �2

=δ2

where N, Zα and Zβ are defined as before. Makuch and Simon [127] recommend for

this situation that α¼ 0.10 and β¼ 0.20. However, for many situations, β or Type II
error needs to be 0.10 or smaller in order to be sure a new therapy is correctly

determined to be equivalent to an older standard. We prefer an α¼ 0.05, but this is a

matter of judgment and will depend on the situation. (This formula differs slightly

from its analogue presented earlier due to the different way the hypothesis is stated.)

The formula for continuous variables,

2N ¼ 4 Zα þ Zβ
� �2

= δ=σð Þ2

is identical to the formula for determining sample size discussed earlier.

Blackwelder and Chang [126] give graphical methods for computing sample size

estimates for studies of equivalency.

As mentioned above and in Chap. 5, specifying δ is a key part of the design and

sample size calculations of all equivalency and noninferiority trials. Trials should

be sufficiently large, with enough power, to address properly the questions about

equivalence or noninferiority that are posed.

Sample Size for Cluster Randomization

So far, sample size estimates have been presented for trials where individuals are

randomized. For some prevention trials or health care studies, it may not be possible

to randomize individuals. For example, a trial of smoking prevention strategy for

teenagers may be implemented most easily by randomizing schools, some schools

to be exposed to the new prevention strategy while other schools remain with a
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standard approach. Individual students are grouped or clustered within each school.

As Donner et al. [129] point out, “Since one cannot regard the individuals within

such groups as statistically independent, standard sample size formulas underesti-

mate the total number of subjects required for the trial.” Several authors [129–133]

have suggested incorporating a single inflation factor in the usual sample size

calculation to account for the cluster randomization. That is, the sample size per

intervention arm N computed by previous formulas will be adjusted to N* to

account for the randomization of Nm clusters, each with m individuals.

A continuous response is measured for each individual within a cluster of these

components. Differences of individuals within a cluster and differences of individ-

uals between clusters contribute to the overall variability of the response. We can

separate the between-cluster variance σ2b and within cluster variance σ2w. Estimates

are denoted S2b and S2w, respectively and can be estimated by standard analysis of

variance. One measure of the relationship of these components is the intra-class

correlation coefficient. The intra-class correlation coefficient ρ is σ2b= σ2b þ σ2w
� �

where 0� ρ� 1. If ρ¼ 0, all clusters respond identically so all of the variability is

within a cluster. If ρ¼ 1, all individuals in a cluster respond alike so there is no

variability within a cluster. Estimates of ρ are given by r ¼ S2b= S2b þ S2w
� �

. Intra-

class correlation may range from 0.1 to 0.4 in typical clinical studies. If we

computed the sample size calculations assuming no clustering, the sample size

per arm would be N participants per treatment arm. Now, instead of randomizing

N individuals, we want to randomize Nm clusters with m individuals each for a

total of N*¼Nm � m participants per treatment arm. The inflation factor [133] is

[1 + (m� 1)r] so that

N* ¼ Nm � m ¼ N 1þ m� 1ð Þρ½ �

Note that the inflation factor is a function of both cluster size m and intra-class

correlation. If the intra-cluster correlation (ρ¼ 0), then each individual in one

cluster responds like any individual in another cluster, and the inflation factor is

unity (N*¼N ). That is, no penalty is paid for the convenience of cluster random-

ization. At the other extreme, if all individuals in a cluster respond the same (ρ¼ 1),

there is no added information within each cluster, so only one individual per cluster

is needed, and the inflation factor ism. That is, our adjusted sample N*¼N�m and

we pay a severe price for this type of cluster randomization. However, it is unlikely

that ρ is either 0 or 1, but as indicated, is more likely to be in the range of 0.1–0.4 in

clinical studies.

Example: Donner et al. [129] provide an example for a trial randomizing house-

holds to a sodium reducing diet in order to reduce blood pressure. Previous studies

estimated the intra-class correlation coefficient to be 0.2; that is

ρ̂ ¼ r ¼ S2b= S2b þ S2w
� � ¼ 0:2. The average household size was estimated at 3.5

(m¼ 3.5). The sample size per arm N must be adjusted by 1 + (m� 1)ρ¼
1 + (3.5� 1)(0.2)¼ 1.5. Thus, the normal sample size must be inflated by 50% to

account for this randomization indicating a small between cluster variability. If

190 8 Sample Size



ρ¼ 0.1, then the factor is 1 + (3.5� 1)(0.1) or 1.25. If ρ¼ 0.4, indicating a larger

between cluster component of variability, the inflation factor is 2.0 or a doubling.

For binomial responses, a similar expression for adjusting the standard sample

size can be developed. In this setting, a measure of the degree of within cluster

dependency or concordancy rate in participant responses is used in place of the

intra-class correlation. The commonly used measure is the kappa coefficient,

denoted κ, and may be thought of as an intra-class correlation coefficient for

binomial responses, analogous to ρ for continuous responses. A concordant cluster

with κ¼ 1 is one where all responses within a cluster are identical, all successes or

failures, in which a cluster contributes no more than a single individual. A simple

estimate for κ is provided [129]:

κ ¼ p* pm
C þ 1� pCð Þm� �

= 1� pm
C þ 1� pCð Þm� �� �

Here p* is the proportion of the control group with concordant clusters, and pC is the
underlying success rate in the control group. The authors then show that the

inflation factor is [1 + (m� 1)κ], or that the regular sample size per treatment arm

N must be multiplied by this factor to attain the adjust sample size N*:

N* ¼ N 1þ m� 1ð Þκ½ �

Example: Donner et al. [129] continues the sodium diet example where couples

(m¼ 2) are randomized to either a low sodium or a normal diet. The outcome is the

hypertension rate. Other data suggest the concordancy of hypertension status

among married couples is 0.85 (p*¼ 0.85). The control group hypertension rate

is 0.15 ( pC¼ 0.15). In this case, κ¼ 0.41, so that the inflation factor is 1 + (2� 1)

(0.41)¼ 1.41; that is, the regular sample size must be inflated by 41% to adjust for

the couples being the randomization unit. If there is perfect control group concor-

dance, p*¼ 1 and κ¼ 1, in which case, N*¼ 2N.
Cornfield proposed another adjustment procedure [130]. Consider a trial where

C clusters will be randomized, each cluster of size mi (i¼ 1, 2, . . ., C) and each

having a different success rate of pi (i¼ 1, 2, . . ., C). Define the average cluster size
m ¼ Σmi=C and p ¼ Σmi pi=Σmi as the overall success rate weighted by cluster

size. The variance of the overall success rate is σ2p ¼ Σmi pi � pð Þ2=Cm2. In this

setting, the efficiency of simple randomization to cluster randomization is

E ¼ p 1� pð Þ2mσ2p. The inflation factor (IF) for this design is IF ¼ 1=E ¼
mσ2p= 1� pð Þ. Note that if the response rate varies across clusters, the normal

sample size must be increased.

While cluster randomization may be logistically required, the process of making

the cluster the randomization unit has serious sample size implications. It would be

unwise to ignore this consequence in the design phase. As shown, the sample size

adjustments can easily be factors of 1.5 or higher. For clusters which are schools or

cities, the intra-class correlation is likely to be quite small. However, the cluster size
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is multiplied by the intra-class correlation so the impact might still be nontrivial.

Not making this adjustment would substantially reduce the study power if the

analyses were done properly, taking into account the cluster effect. Ignoring the

cluster effect in the analysis would be viewed critically in most cases and is not

recommended.

Multiple Response Variables

We have stressed the advantages of having a single primary question and a single

primary response variable, but clinical trials occasionally have more than one of

each. More than one question may be asked because investigators cannot agree

about which outcome is most important. As an example, one clinical trial involving

two schedules of oxygen administration to participants with chronic obstructive

pulmonary disease had three major questions in addition to comparing the mortality

rate [122]. Measures of pulmonary function, neuro-psychological status, and qual-

ity of life were evaluated. For the participants, all three were important.

Sometimes more than one primary response variable is used to assess a single

primary question. This may reflect uncertainty as to how the investigator can

answer the question. A clinical trial involving participants with pulmonary embo-

lism [134] employed three methods of determining a drug’s ability to resolve

emboli. They were: lung scanning, arteriography, and hemodynamic studies. Another

trial involved the use of drugs to limit myocardial infarct size [135]. Precordial

electrocardiogram mapping, radionuclide studies, and enzyme levels were all used

to evaluate the effectiveness of the drugs. Several approaches to the design and

analysis of trials with multiple endpoints have been described [136–139].

Computing a sample size for such clinical trials is not easy. One could attempt to

define a single model for the multidimensional response and use one of the

previously discussed formulas. Such a method would require several assumptions

about the model and its parameters and might require information about correla-

tions between different measurements. Such information is rarely available. A more

reasonable procedure would be to compute sample sizes for each individual

response variable. If the results give about the same sample size for all variables,

then the issue is resolved. However, more commonly, a range of sample sizes will

be obtained. The most conservative strategy would be to use the largest sample size

computed. The other response variables would then have even greater power to

detect the hoped-for reductions or differences (since they required smaller sample

sizes). Unfortunately, this approach is the most expensive and difficult to undertake.

Of course, one could also choose the smallest sample size of those computed. That

would probably not be desirable, because the other response variables would have

less power than usually required, or only larger differences than expected would be

detectable. It is possible to select a middle range sample size, but there is no

assurance that this will be appropriate. An alternative approach is to look at the

difference between the largest and smallest sample sizes. If this difference is very
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large, the assumptions that went into the calculations should be re-examined and an

effort should be made to resolve the difference.

As is discussed in Chap. 18, when multiple comparisons are made, the chance of

finding a significant difference in one of the comparisons (when, in fact, no real

differences exist between the groups) is greater than the stated significance level. In

order to maintain an appropriate significance level α for the entire study, the

significance level required for each test to reject H0 should be adjusted [41].

The significance level required for rejection (α0) in a single test can be approxi-

mated by α/k where k is the number of multiple response variables. For several

response variables this can make α0 fairly small (e.g., k¼ 5 implies α0 ¼ 0.01 for

each of k response variables with an overall α¼ 0.05). If the correlation between

response variables is known, then the adjustment can be made more precisely

[140, 141]. In all cases, the sample size would be much larger than if the use of

multiple response variables were ignored, so that most studies have not strictly

adhered to this solution of modifying the significance level. Some investigators,

however, have attempted to be conservative in the analysis of results [142].

There is a reasonable limit as to how much α0 can be decreased in order to give

protection against false rejection of the null hypothesis. Some investigators have

chosen α0 ¼ 0.01 regardless of the number of tests. In the end, there are no easy

solutions. A somewhat conservative value of α0 needs to be set and the investi-

gators need to be aware of the multiple testing problem during the analysis.

Estimating Sample Size Parameters

As shown in the methods presented, sample size estimation is quite dependent

upon assumptions made about variability of the response, level of response in the

control group, and the difference anticipated or judged to be clinically relevant

[16, 143–148]. Obtaining reliable estimates of variability or levels of response

can be challenging since the information is often based on very small studies or

studies not exactly relevant to the trial being designed. Applying Bayesian

methods to incorporate explicitly uncertainty in these estimated parameters has

been attempted [149]. Sometimes, pilot or feasibility studies may be conducted to

obtain these data. In such cases, the term external pilot has been used [148].

In some cases, the information may not exist prior to starting the trial, as was the

case for early trials in AIDS; that is, no incidence rates were available in an

evolving epidemic. Even in cases where data are available, other factors affect

the variability or level of response observed in a trial. Typically, the variability

observed in the planned trial is larger than expected or the level of response is lower

than assumed. Numerous examples of this experience exist [143]. One is provided

by the Physicians’ Health Study [150]. In this trial, 22,000 U.S. male physicians

were randomized into a 2� 2 factorial design. One factor was aspirin versus

placebo in reducing cardiovascular mortality. The other factor was beta-carotene

versus placebo for reducing cancer incidence. The aspirin portion of the trial was
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terminated early in part due to a substantially lower mortality rate than expected. In

the design, the cardiovascular mortality rate was assumed to be approximately 50%

of the U.S. age-adjusted rate in men. However, after 5 years of follow-up, the rate

was approximately 10% of the U.S. rate in men. This substantial difference reduced

the power of the trial dramatically. In order to compensate for the extremely low

event rate, the trial would have had to be extended another 10 years to get the

necessary number of events [150]. One can only speculate about reasons for low

event rates, but screening of potential participants prior to the entry almost certainly

played a part. That is, screenees had to complete a run-in period and be able to

tolerate aspirin. Those at risk for other competing events were also excluded.

This type of effect is referred to as a screening effect. Physicians who began to

develop cardiovascular signs may have obtained care earlier than non-physicians.

In general, volunteers for trials tend to be healthier than the general population, a

phenomenon often referred to as the healthy volunteer effect.

Another approach to obtaining estimates for ultimate sample size determination is

to design so-called internal pilot studies [148]. In this approach, a small study is

initiated based the best available information. A general sample target for the full

study may be proposed, but the goal of the pilot is to refine that sample size estimate

based on screening and healthy volunteer effects. The pilot study uses a protocol very

close if not identical to the protocol for the full study, and thus parameter estimates

will reflect those effects. If the protocol for the pilot and the main study are essentially

identical, then the small pilot can become an internal pilot. That is, the data from the

internal pilot become part of the data for the overall study. This approach was used

successfully in the Diabetes Control and Complications Trial [151]. If data from the

internal pilot are used only to refine estimates of variability or control group response

rates, and not changes in treatment effect, then the impact of this two-step approach

on the significance level is negligible. However, the benefit is that this design will

more likely have the desired power than if data from external pilots and other sources

are relied on exclusively [147]. It must be emphasized that pilot studies, either

external or internal, should not be viewed as providing reliable estimates of the

intervention effect [152]. Because power is too small in pilot studies to be sure that

no effect exists, small or no differences may erroneously be viewed as reason not to

pursue the question. A positive trend may also be viewed as evidence that a large

study is not necessary, or that clinical equipoise no longer exists.

Our experience indicates that both external and internal pilot studies are quite

helpful. Internal pilot studies should be used if at all possible in prevention trials,

when screening and healthy volunteer effects seem to cause major design problems.

Design modifications based on an internal pilot are more prudent than allowing an

inadequate sample size to create yield misleading results.

One approach is to specify the number of events needed for a desired power

level. Obtaining the specified number of events requires a number of individuals

followed for a period of time. How many participants and how long a follow-up

period can be adjusted during the early part of the trial, or during an internal pilot

study, but the target number of events does not change. This is also discussed in

more detail in Chaps. 16 and 17.
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Another approach is to use adaptive designs which modify the sample size based

on an emerging trend, referred to as trend adaptive designs (see Chaps. 5 and 17).

Here the sample size may be adjusted for an updated estimate of the treatment

effect, δ, using the methods described in this chapter. However, an adjustment must

then be made at the analysis stage which may require a substantially larger critical

value than the standard one in order to maintain a prespecified α level.
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