
Chapter 6

The Randomization Process

The randomized controlled clinical trial is the standard by which all trials are

judged. In the simplest case, randomization is a process by which each participant

has the same chance of being assigned to either intervention or control. An example

would be the toss of a coin, in which heads indicates intervention group and tails

indicates control group. Even in the more complex randomization strategies, the

element of chance underlies the allocation process. Of course, neither trial partic-

ipant nor investigator should know what the assignment will be before the partic-

ipant’s decision to enter the study. Otherwise, the benefits of randomization can be

lost. The role that randomization plays in clinical trials has been discussed in

Chap. 5 as well as by numerous authors [1–12]. While not all accept that random-

ization is essential [10, 11], most agree it is the best method for achieving compa-

rability between study groups, and the most appropriate basis for statistical

inference [1, 3].

Fundamental Point

Randomization tends to produce study groups comparable with respect to known as
well as unknown risk factors, removes investigator bias in the allocation of partic-
ipants, and guarantees that statistical tests will have valid false positive error rates.

Several methods for randomly allocating participants are used [6, 9, 12–14].

This chapter will present the most common of these methods and consider the

advantages and disadvantages of each. Unless stated otherwise, it can be assumed

that the randomization strategy will allocate participants into two groups, an inter-

vention group and a control group. However, many of the methods described here can

easily be generalized for use with more than two groups.

Two forms of experimental bias are of concern. The first, selection bias, occurs
if the allocation process is predictable [5, 15–18]. In this case, the decision to enter a
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participant into a trial may be influenced by the anticipated treatment assignment.

If any bias exists as to what treatment particular types of participants should

receive, then a selection bias might occur. All of the randomization procedures

described avoid selection bias by not being predictable. A second bias, accidental
bias, can arise if the randomization procedure does not achieve balance on risk

factors or prognostic covariates. Some of the allocation procedures described are

more vulnerable to accidental bias, especially for small studies. For large studies,

however, the chance of accidental bias is negligible [5].

Whatever randomization process is used, the report of the trial should contain a

brief, but clear description of that method. In the 1980s, Altman and Doré [15]

reported a survey of four medical journals where 30% of published randomized

trials gave no evidence that randomization had in fact been used. As many as 10%

of these “randomized” trials in fact used non-random allocation procedures. Sixty

percent did not report the type of randomization that was used. In one review in the

1990s, only 20–30% of trials provided fair or adequate descriptions, depending on

the size of the trial or whether the trial was single center or multicenter [18]. More

recently, a review of 253 trials published in five major medical journals after the

release of the Consolidated Standards for Reporting Trials (CONSORT) [19]

recommendations found little improvement in reports of how randomization was

accomplished [20]. Descriptions need not be lengthy to inform the reader, publi-

cations should clearly indicate the type of randomization method and how the

randomization was implemented.

Fixed Allocation Randomization

Fixed allocation procedures assign the interventions to participants with a prespecified

probability, usually equal, and that allocation probability is not altered as the study

progresses. A number of methods exist by which fixed allocation is achieved [6, 9, 12,

14, 21–25], and we will review three of these—simple, blocked, and stratified.

Our view is that allocation to intervention and control groups should be equal

unless there are compelling reasons to do otherwise. Peto [7] among others, has

suggested an unequal allocation ratio, such as 2:1, of intervention to control.

The rationale for such an allocation is that the study may slightly lose sensitivity

but may gain more information about participant responses to the new intervention,

such as toxicity and side effects. In some instances, less information may be needed

about the control group and, therefore, fewer control participants are required. If the

intervention turns out to be beneficial, more study participants would benefit than

under an equal allocation scheme. However, new interventions may also turn out to

be harmful, in which case more participants would receive them under the unequal

allocation strategy. Although the loss of sensitivity or power may be less than 5%

for allocation ratios approximately between 1/2 and 2/3 [8, 21], equal allocation is

the most powerful design and therefore generally recommended. We also believe

that equal allocation is more consistent with the view of indifference or equipoise
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toward which of the two groups a participant is assigned (see Chap. 2). Unequal

allocation may indicate to the participants and to their personal physicians that one

intervention is preferred over the other. In a few circumstances, the cost of one

treatment may be extreme so that an unequal allocation of 2:1 or 3:1 may help to

contain costs while not causing a serious loss of power. Thus, there are tradeoffs

that must be considered. In general, equal allocation will be presumed throughout

the following discussion unless otherwise indicated.

Simple Randomization

The most elementary form of randomization, referred to as simple or complete

randomization, is best illustrated by a few examples [9, 12]. One simple method is

to toss an unbiased coin each time a participant is eligible to be randomized. For

example, if the coin turns up heads, the participant is assigned to group A; if tails, to
group B. Using this procedure, approximately one half of the participants will be in

group A and one half in group B. In practice, for small studies, instead of tossing a

coin to generate a randomization schedule, a random digit table on which the

equally likely digits 0 to 9 are arranged by rows and columns is usually used to

accomplish simple randomization. By randomly selecting a certain row (column)

and observing the sequence of digits in that row (column) A could be assigned, for

example, to those participants for whom the next digit was even and B to those for

whom the next digit was odd. This process produces a sequence of assignments

which is random in order, and each participant has an equal chance of being

assigned to A or B.
For large studies, a more convenient method for producing a randomization

schedule is to use a random number producing algorithm, available on most

computer systems. A simple randomization procedure might assign participants

to group A with probability p and participants to group B with probability 1� p.
One computerized process for simple randomization is to use a uniform random

number algorithm to produce random numbers in the interval from 0.0 to 1.0. Using

a uniform random number generator, a random number can be produced for each

participant. If the random number is between 0 and p, the participant would be

assigned to group A; otherwise to group B. For equal allocation, the probability cut

point, p, is one-half (i.e., p¼ 0.50). If equal allocation between A and B is not

desired ( p 6¼ 1/2), then p can be set to the desired proportion in the algorithm and

the study will have, on the average, a proportion p of the participants in group A.
This procedure can be adapted easily to more than two groups. Suppose, for

example, the trial has three groups, A, B and C, and participants are to be random-

ized such that a participant has a 1/4 chance of being in group A, a 1/4 chance of

being in group B, and a 1/2 chance of being in group C. By dividing the interval 0 to
1 into three pieces of length 1/4, 1/4, and 1/2, random numbers generated will have

probabilities of 1/4, 1/4 and 1/2, respectively, of falling into each subinterval.

Specifically, the intervals would be <0.25, 0.25–0.50, and �0.50. Then any
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participant whose random number is less than 0.25 is assigned A, any participant

whose random number falls between 0.25 and 0.50 is assigned B and the others, C.
For equal allocation, the interval would be divided into thirds and assignments

made accordingly.

The advantage of this simple randomization procedure is that it is easy to

implement. The major disadvantage is that, although in the long run the number

of participants in each group will be in the proportion anticipated, at any point in the

randomization, including the end, there could be a substantial imbalance [23].

This is true particularly if the sample size is small. For example, if 20 participants

are randomized with equal probability to two treatment groups, the chance of a 12:8

split (i.e., 60% A, 40% B) or worse is approximately 50%. For 100 participants, the

chance of the same ratio (60:40 split) or worse is only 5%. While such imbalances

do not cause the statistical tests to be invalid, they do reduce ability to detect true

differences between the two groups. In addition, such imbalances appear awkward

and may lead to some loss of credibility for the trial, especially for the person not

oriented to statistics. For this reason primarily, simple randomization is not often

used, even for large studies. In addition, interim analysis of accumulating data

might be difficult to interpret with major imbalances in number of participants per

arm, especially for smaller trials.

Some investigators incorrectly believe that an alternating assignment of partic-

ipants to the intervention and the control groups (e.g., ABABAB . . .) is a form of

randomization. However, no random component exists in this type of allocation

except perhaps for the first participant. A major criticism of this method is that, in a

single-blind or unblinded study, the investigators know the next assignment, which

could lead to a bias in the selection of participants. Even in a double-blind study,

if the blind is broken on one participant as sometimes happens, the entire sequence

of assignments is known. Therefore, this type of allocation method should be

avoided.

Blocked Randomization

Blocked randomization, sometimes called permuted block randomization, was

described by Hill [4] in 1951. It avoids serious imbalance in the number of

participants assigned to each group, an imbalance which could occur in the simple

randomization procedure. More importantly, blocked randomization guarantees

that at no time during randomization will the imbalance be large and that at certain

points the number of participants in each group will be equal [9, 12, 26].

This protects against temporal trends during enrollment, which is often a concern

for larger trials with long enrollment phases.

If participants are randomly assigned with equal probability to groups A or B,
then for each block of even size (for example, 4, 6 or 8) one half of the participants

will be assigned to A and the other half to B. The order in which the interventions

are assigned in each block is randomized, and this process is repeated for
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consecutive blocks of participants until all participants are randomized. For exam-

ple, the investigators may want to ensure that after every fourth randomized

participant, the number of participants in each intervention group is equal. Then a

block of size 4 would be used and the process would randomize the order in which

two A’s and two B’s are assigned for every consecutive group of four participants

entering the trial. One may write down all the ways of arranging the groups and then

randomize the order in which these combinations are selected. In the case of block

size 4, there are six possible combinations of group assignments: AABB, ABAB,
BAAB, BABA, BBAA, and ABBA. One of these arrangements is selected at random

and the four participants are assigned accordingly. This process is repeated as many

times as needed.

Another method of blocked randomization may also be used. In this method for

randomizing the order of assignments within a block of size b, a random number

between 0 and 1 for each of the b assignments (half of which are A and the other half

B) is obtained. The example below illustrates the procedure for a block of size four

(2As and 2Bs). Four random numbers are drawn between 0 and 1 in the order

shown.

Assignment Random number Rank

A 0.069 1

A 0.734 3

B 0.867 4

B 0.312 2

The assignments then are ranked according to the size of the random numbers.

This leads to the assignment order of ABAB. This process is repeated for another set
of four participants until all have been randomized.

The advantage of blocking is that balance between the number of participants in

each group is guaranteed during the course of randomization. The number in each

group will never differ by more than b/2 when b is the length of the block. This can
be important for at least two reasons. First, if the type of participant recruited for the

study changes during the entry period, blocking will produce more comparable

groups. For example, an investigator may use different sources of potential partic-

ipants sequentially. Participants from these sources may vary in severity of illness

or other crucial respects. One source, with the more seriously ill participants, may

be used early during enrollment and another source, with healthier participants, late

in enrollment [3]. If the randomization were not blocked, more of the seriously ill

participants might be randomized to one group. Because the later participants are

not as sick, this early imbalance would not be corrected. A second advantage of

blocking is that if the trial should be terminated before enrollment is completed,

balance will exist in terms of number of participants randomized to each group.

A potential, but solvable problem with basic blocked randomization is that if the

blocking factor b is known by the study staff and the study is not double-blind, the

assignment for the last person entered in each block is known before entry of that

person. For example, if the blocking factor is 4 and the first three assignments are
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ABB, then the next assignment must be A. This could, of course, permit a bias in the

selection of every fourth participant to be entered. Clearly, there is no reason to

make the blocking factor known. However, in a study that is not double-blind, with

a little ingenuity the staff can soon discover the blocking factor. For this reason,

repeated blocks of size 2 should not be used. On a few occasions, perhaps as an

intellectual challenge, investigators or their clinic staff have attempted to break the

randomization scheme [27]. This curiosity is natural but nevertheless can lead to

selection bias. To avoid this problem in the trial that is not double-blind, the

blocking factor can be varied as the recruitment continues. In fact, after each

block has been completed, the size of the next block could be determined in a

random fashion from a few possibilities such as 2, 4, 6, and 8. The probabilities of

selecting a block size can be set at whatever values one wishes with the constraint

that their sum equals 1.0. For example, the probabilities of selecting block sizes

2, 4, 6, and 8 can be 1/6, 1/6, 1/3, and 1/3 respectively. Randomly selecting the

block size makes it very difficult to determine where blocks start and stop and thus

determine the next assignment.

A disadvantage of blocked randomization is that, from a strictly theoretical point

of view, analysis of the data is more complicated than if simple randomization were

used. Unless the data analysis performed at the end of the study reflects the

randomization process actually performed [26, 28–30] it may be incorrect since

standard analytical methods assume a simple randomization. In their analysis of the

data most investigators ignore the fact that the randomization was blocked. Matts

and Lachin [26] studied this problem and concluded that the measurement of

variability used in the statistical analysis is not exactly correct if the blocking is

ignored. Usually the analysis ignoring blocks is conservative, though it can be

anticonservative especially when the blocks are small (e.g. a block size of two).

That is, the analysis ignoring blocks will have probably slightly less power than the

correct analysis, and understate the “true” significance level. Since blocking guar-

antees balance between the two groups and, therefore, increases the power of a

study, blocked randomization with the appropriate analysis is more powerful than

not blocking at all or blocking and then ignoring it in the analysis [26]. Also, the

correct treatment of blocking would be difficult to extend to more complex ana-

lyses. Being able to use a single, straightforward analytic approach that handles

covariates, subgroups, and other secondary analyses simplifies interpretation of the

trial as a whole. Performing the most correct analysis is even more problematic for

adaptive designs, as discussed in the next section.

Stratified Randomization

One of the objectives in allocating participants is to achieve between group compara-

bility of certain characteristics known as prognostic or risk factors [12, 31–44].

These are baseline factors which correlate with subsequent participant response

or outcome. Investigators may become concerned when prognostic factors are not
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evenly distributed between intervention and control groups. As indicated previ-

ously, randomization tends to produce groups which are, on the average, similar in

their entry characteristics, known or unknown, or unmeasured. This is a concept

likely to be true for large studies or for many small studies when averaged. For any

single study, especially a small study, there is no guarantee that all baseline

characteristics will be similar in the two groups. In the multicenter Aspirin Myo-

cardial Infarction Study [45] which had 4,524 participants, the top 20 cardiovascu-

lar prognostic factors for totalmortality identified in theCoronaryDrugProject [43]

were compared in the intervention and control groups and no major differences

were found (Furberg CD, unpublished data). However, individual clinics, with an

average of 150 participants, showed considerable imbalance for many variables

between the groups. Imbalances in prognostic factors can be dealt with either after

the fact by using stratification in the analysis (Chap. 18) or can be prevented by

using stratification in the randomization. Stratified randomization is a method

which helps achieve comparability between the study groups for those factors

considered.

Stratified randomization requires that the prognostic factors be measured either

before or at the time of randomization. If a single factor is used, it is divided into

two or more subgroups or strata (e.g., age 30–34 years, 35–39 years, 40–44 years).

If several factors are used, a stratum is formed by selecting one subgroup from each

of them. The total number of strata is the product of the number of subgroups in

each factor. The stratified randomization process involves measuring the level of

the selected factors for a participant, determining to which stratum she belongs and

performing the randomization within that stratum.

Within each stratum, the randomization process itself could be simple random-

ization, but in practice most clinical trials use some blocked randomization strategy.

Under a simple randomization process, imbalances in the number in each group

within the stratum could easily happen and thus defeat the purpose of the stratifi-

cation. Blocked randomization is, as described previously, a special kind of strat-

ification. However, this text will restrict use of the term blocked randomization to

stratifying over time, and use stratified randomization to refer to stratifying on

factors other than time. Some confusion may arise here because early texts on

design used the term blocking as this book uses the term stratifying. However, the

definition herein is consistent with current usage in clinical trials.

As an example of stratified randomization with a block size of 4, suppose an

investigator wants to stratify on age, sex and smoking history. One possible

classification of the factors would be three 10-year age levels and three smoking

levels.

Age (years) Sex Smoking history

1. 40–49 Male Current smoker

2. 50–59 Female Ex-smoker

3. 60–69 Never smoked
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Thus, the design has 3� 2� 3¼ 18 strata. The randomization for this example

appears in Table 6.1.

Participants who were between 40 and 49 years old, male and current smokers,

that is, in stratum 1, would be assigned to groups A or B in the sequences ABBA
BABA .... Similarly, random sequences would appear in the other strata.

Small studies are the ones most likely to require stratified randomization,

because in large studies, the magnitude of the numbers increases the chance of

comparability of the groups. In the example shown above, with three levels of the

first factor (age), two levels of the second factor (sex), and three levels of the third

factor (smoking history), 18 strata have been created. As factors are added and the

levels within factors are refined, the number of strata increase rapidly. If the

example with 18 strata had 100 participants to be randomized, then only five to

six participants would be expected per stratum if the study population were evenly

distributed among the levels. Since the population is most likely not evenly

distributed over the strata, some strata would actually get fewer than five to six

participants. If the number of strata were increased, the number of participants in

each stratum would be even fewer. Pocock and Simon [41] showed that increased

stratification in small studies can be self-defeating because of the sparseness of data

within each stratum. Thus, only important variables should be chosen and the

number of strata kept to a minimum.

In addition to making the two study groups appear comparable with regard to

specified factors, the power of the study can be increased by taking the stratification

into account in the analysis. Stratified randomization, in a sense, breaks the trial

down into smaller trials. Participants in each of the “smaller trials” belong to the

same stratum. This reduces variability in group comparisons if the stratification is

used in the analysis. Reduction in variability allows a study of a given size to detect

smaller group differences in response variables or to detect a specified difference

with fewer participants [22, 26].

Table 6.1 Stratified

randomization with block

size of 4

Strata Age Sex Smoking Group assignment

1 40–49 M Current ABBA BABA. . .

2 40–49 M Ex BABA BBAA. . .

3 40–49 M Never etc.

4 40–49 F Current

5 40–49 F Ex

6 40–49 F Never

7 50–59 M Current

8 50–59 M Ex

9 50–59 M Never

10 50–59 F Current

11 50–59 F Ex

12 50–59 F Never

(etc.)
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Sometimes the variables initially thought to be most prognostic and, therefore

used in the stratified randomization, turn out to be unimportant. Other factors may

be identified later which, for the particular study, are of more importance.

If randomization is done without stratification, then analysis can take into account

those factors of interest and will not be complicated by factors thought to be

important at the time of randomization. It has been argued that there usually does

not exist a need to stratify at randomization because stratification at the time of

analysis will achieve nearly the same expected power [7]. This issue of stratifying

pre- versus post-randomization has been widely discussed [35–38, 42]. It appears

for a large study that stratification after randomization provides nearly equal

efficiency to stratification before randomization [39, 40]. However, for studies of

100 participants or fewer, stratifying the randomization using two or three prog-

nostic factors may achieve greater power, although the increase may not be large.

Stratified randomization is not the complete solution to all potential problems of

baseline imbalance. Another strategy for small studies with many prognostic factors

is considered below in the section on adaptive randomization.

In multicenter trials, centers vary with respect to the type of participants random-

ized as well as the quality and type of care given to participants during follow-up.

Thus, the center may be an important factor related to participant outcome, and the

randomization process should be stratified accordingly [33]. Each center then repre-

sents, in a sense, a replication of the trial, though the number of participants within a

center is not adequate to answer the primary question. Nevertheless, results at

individual centers can be compared to see if trends are consistent with overall results.

Another reason for stratification by center is that if a center should have to leave the

study, the balance in prognostic factors in other centers would not be affected.

One further point might need consideration. If in the stratified randomization, a

specific proportion or quota is intended for each stratum, the recruitment of eligible

participants might not occur at the same rate. That is, one stratum might meet the

target before the others. If a target proportion is intended, then plans need to be in

place to close down recruitment for that stratum, allowing the others to be completed.

Adaptive Randomization Procedures

The randomization procedures described in the sections on fixed allocation above

are non-adaptive strategies. In contrast, adaptive procedures change the allocation

probabilities as enrollment progresses. Two types of adaptive procedures will be

considered here. First, we will discuss methods which adjust or adapt the allocation

probabilities according to imbalances in numbers of participants or in baseline

characteristics between the two groups. Second, we will briefly review adaptive

procedures that adjust allocation probabilities according to the responses of partic-

ipants to the assigned intervention.
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Baseline Adaptive Randomization Procedures

Two common methods for adaptive allocation which are designed to make the

number of participants in each study group equal or nearly equal are biased coin

randomization and urn randomization. Both make adaptations based only on the

number of participants in each group, though they can be modified to perform

allocation within strata in the same way as blocked randomization, and operate by

changing the allocation probability over time.

The Biased Coin Randomization procedure, originally discussed by Efron [46],

attempts to balance the number of participants in each treatment group based on the

previous assignments, but does not take participant responses into consideration.

Several variations to this approach have been discussed [47–63]. The purpose of the

algorithm is basically to randomize the allocation of participants to groups A and

B with equal probability as long as the number of participants in each group is equal

or nearly equal. If an imbalance occurs and the difference in the number of

participants is greater than some prespecified value, the allocation probability ( p)
is adjusted so that it is higher for the group with fewer participants. The investigator

can determine the value of the allocation probability. The larger the value of p, the
faster the imbalance will be corrected, while the nearer p is to 0.5, the slower the

correction. Efron suggests an allocation probability of p¼ 2/3 when a correction is

indicated. Since much of the time p is greater than 1/2, the process has been named

the “biased coin” method. As a simple example, suppose nA and nB represent the

number of participants in groups A and B respectively. If nA is less than nB and the

difference exceeds a predetermined value, D, then we allocate the next participant

to group A with probability p¼ 2/3. If nA is greater than nB by an amount of D,
we allocate to group B with probability p¼ 2/3. Otherwise, p is set at 0.50.

This procedure can be modified to include consideration of the number of consec-

utive assignments to the same group and the length of such a run. Some procedures

for which the allocation probability also depend on differences in baseline charac-

teristics, as discussed below, are sometimes also called “biased coin” designs.

Another similar adaptive randomization method is referred to as the Urn Design,

based on the work of Wei and colleagues [64–67]. This method also attempts to

keep the number of participants randomized to each group reasonably balanced as

the trial progresses. The name Urn Design refers to the conceptual process of

randomization. Imagine an urn filled with m red balls and m black balls. If a red

ball is drawn at random, assign the participant to group A, return the red ball, and

add one (or more than one) black ball to the urn. If a black ball is drawn, assign the

participant to group B, return that ball, and add one (or more than one) red ball to

the urn. This process will tend to keep the number of participants in each group

reasonably close because, like the biased coin procedure it adjusts the allocation

probability to be higher for the smaller group. How much imbalance there might be

over time depends on m and how many balls are added after each draw.

Since the biased coin and urn procedures are less restrictive than block random-

ization, they can be less susceptible to selection bias, but by the same token they do
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not control balance as closely. If there are temporal trends in the recruitment pool

during enrollment, imbalances can create difficulties. This happened in the Stop

Atherosclerosis in Native Diabetics Study (SANDS), a trial comparing intensive

intervention for cholesterol and blood pressure with less intensive intervention in

people with diabetes [68, 69]. Randomization was done using a stratified urn

design, but partway through the trial there was in imbalance in the intervention

groups at the same time new and more aggressive guidelines regarding lipid

lowering treatment in people who had known coronary heart disease came out.

The participants in SANDS who met those guidelines could no longer be treated

with the less intensive regimen and no new participants with a history of prior

cardiovascular events could be enrolled. Not only was there a possibility of

imbalance between study groups, the sample size needed to be reconsidered

because of the lower average risk level of the participants.

The most correct analysis of a randomized trial from a theoretical point of view

is based on permutation distributions modeling the randomization process.

For adaptive procedures this requires that the significance level for the test statistic

be determined by considering all possible sequences of assignments which could

have been made in repeated experiments using the same allocation rule, assuming no

group differences. How well population models approximate the permutation distri-

bution for adaptive designs in general is not well understood [6, 14, 70]. Efron [46]

argues that it is probably not necessary to take the biased coin randomization into

account in the analysis, especially for larger studies. Mehta and colleagues [71]

compared analyses ignoring and incorporating biased coin and urn procedures and

concluded that the permutation distribution should not be ignored. Smythe and

Wei [30, 46] and Wei and Lachin [46, 66] indicate conditions under which test

statistics from urn designs are asymptotically normal, and show that if this random-

ization method is used, but ignored in the analyses, the p-value will be slightly

conservative, that is, slightly larger than if the strictly correct analysis were done.

Thus the situation for analysis of biased coin and urn designs is similar to that for

permuted block designs. Ignoring the randomization is conservative, though not

likely to be excessively conservative. Unlike the permuted block design, however,

strong temporal trends can create problems for adaptive randomization, and make the

permutation-based analysis more important. Although the biased coin method does

not appear to be as widely used, stratified urn procedures have been used successfully,

as in the multicenter Diabetes Control and Complication Trial [72, 73].

Minimization

In the Enforcing Underage Drinking Laws (EUDL) randomized community trial,

68 communities in five states were selected to receive either an intervention or a

control condition. Matched pairs were created using community characteristics

including population size, median family income, percentage of the population

currently in college, and percentages that were black, Hispanic and spoke Spanish.
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The specific set of pairings used was determined by sampling from all possible

pairings and selecting the set of pairs with the smallest Mahalanobis distance

measure. One community in each pair was then randomly assigned to receive the

intervention [74]. In this situation, all the communities to be randomized and the

key prognostic covariates are known in advance. The treatment and control groups

are guaranteed to be well-balanced, and randomization provides a foundation for

later statistical inference using standard population models. This type of a priori

matching is a common feature of group-randomized trials [75].

Unfortunately, this is almost never possible in a clinical setting, where patients

typically arrive sequentially and must be treated immediately. To accommodate the

sequential nature of participant enrollment, some compromise between manipula-

tion of allocation to achieve balance of prognostic covariates and a less restrictive

treatment allocation must be made. Stratified block designs can balance a small

number of selected prognostic covariates, and randomization will tend to balance

unselected as well as unmeasured covariates, but such methods do not perform well

when it is important to balance a large number of prognostic covariates in a small

sample. For such settings, procedures which adapt allocation to achieve balance on

prognostic covariates have been developed.

The biased coin and urn procedures achieve balance in the number of random-

izations to each arm. Other stratification methods are adaptive in the sense that

intervention assignment probabilities for a participant are a function of the

distribution of baseline covariates for participants already randomized.

This concept was suggested by Efron [46] as an extension of the biased coin

method and also has been discussed in depth by Pocock and Simon [41], and

others [47, 48, 51, 52, 59, 63, 76, 77]. In a simple example, if age is a prognostic

factor and one study group has more older participants than the other, this

allocation scheme is more likely to randomize the next several older participants

to the group which currently has more younger participants. Various methods can

be used as the measure of imbalance in prognostic factors. In general, adaptive

stratification methods incorporate several prognostic factors in making an “over-

all assessment” of the group balance or lack of balance. Participants are then

assigned to a group in a manner which will tend to correct an existing imbalance

or cause the least imbalance in prognostic factors. Proschan and colleagues [70]

distinguish between minimization procedures which are deterministic [59, 68], as

‘strict minimization’, reserving the term mimimization for the more general

procedure described by Pocock and Simon [41] [see Appendix]. Generalization

of this strategy exists for more than two study groups. Development of these

methods was motivated in part by the previously described problems with

non-adaptive stratified randomization for small studies. Adaptive methods do

not have empty or near empty strata because randomization does not take place

within a stratum although prognostic factors are used. Minimization gives unbi-

ased estimates of treatment effect and slightly increased power relative to strat-

ified randomization [68]. These methods are being used, especially in clinical

trials of cancer where several prognostic factors need to be balanced, and the

sample size is typically 100–200 participants.
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The major advantage of this procedure is that it protects against a severe baseline

imbalance for important prognostic factors. Overall marginal balance is maintained

in the intervention groups with respect to a large number of prognostic factors. One

disadvantage is that minimization is operationally more difficult to carry out,

especially if a large number of factors are considered. Although White and Freed-

man [63] initially developed a simplified version of the minimization method by

using a set of specially arranged index cards, today any small programmable

computer can easily carry out the calculations. Unlike blocked, biased coin and

urn procedures, however, the calculations for minimization cannot be done in

advance. In addition, the population recruited needs to be stable over time, just as

for other adaptive methods. For example, if treatment guidelines change during a

long recruitment period, necessitating a change in the inclusion or exclusion

criteria, the adaptive procedure may not be able to correct imbalances that devel-

oped beforehand, as with the SANDS example cited above.

For minimization, assuming that the order of participant enrollment is random

and applying the allocation algorithm to all permutations or the order can provide a

null distribution for the test statistic [14, 70]. Considerable programming and

computing resources are required to do this, and biostatisticians prefer to use

conventional tests and critical values to determine significance levels. Unfortu-

nately, for minimization there are no general theoretical results on how well the

standard analysis approximates the permutation analysis [6, 14, 70], though there

are some simulation-based results for specific cases [78].

General advice for stratified block randomization and minimization is to include

the baseline variables used to determine the allocation as covariates in the analysis

[51, 79]. This seems to produce reliable results in most actual trials using stratified

block randomization, and in most trials using minimization, though trials using

minimization designs rarely examine the permutation distribution. Proschan

et al. [70] however, report an example of an actual trial using minimization for

which conventional analysis greatly overstated the significance of the intervention

effect relative when compared to the permutation distribution. The use of unequal

allocation contributed to the discrepancy in this case, but the Proschan

et al. recommend that the permutation test be used to control type 1 error whenever

allocation is done using minimization. Several regulatory guidelines make the

similar recommendations [80–83].

Despite the appeal of improved balance on more prognostic covariates, most

biostatisticians approach minimization and other dynamic allocation plans with

caution. As conditions vary considerably from trial to trial, it is expected that the

best choice for method of allocation also varies, with the primary goal of avoiding a

method which is poorly suited for the given situation.

Response Adaptive Randomization

Response adaptive randomization uses information on participant response to

intervention during the course of the trial to determine the allocation of the next

participant. Examples of response adaptive randomization models are the Play the
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Winner [84] and the Two-Armed Bandit [85] models. These models assume that the

investigator is randomizing participants to one of two interventions and that the

primary response variable can be determined quickly relative to the total length of

the study. Bailar [86] and Simon [87] reviewed the uses of these allocation

methods. Additional modifications or methods were developed [88–94].

The Play the Winner procedure may assign the first participant by the toss of a

coin. The next participant is assigned to the same group as the first participant if the

response to the intervention was a success; otherwise, the participant is assigned to

the other group. That is, the process calls for staying with the winner until a failure

occurs and then switching. The following example illustrates a possible randomi-

zation scheme where S indicates intervention success and F indicates failure:

Assignment

Participant

1 2 3 4 5 6 7 8 . . .

Group A S F S F

Group B S S F S

Another response adaptive randomization procedure is the Two Armed Bandit
method which continually updates the probability of success as soon as the outcome

for each participant is known. That information is used to adjust the probabilities of

being assigned to either group in such a way that a higher proportion of future

participants would receive the currently “better” or more successful intervention.

Both of these response adaptive randomization methods have the intended

purpose of maximizing the number of participants on the “superior” intervention.

They were developed in response to ethical concerns expressed by some clinical

investigators about the randomization process. Although these methods do maxi-

mize the number of participants on the “superior” intervention, the possible imbal-

ance will almost certainly result in some loss of power and require more

participants to be enrolled into the study than would a fixed allocation with equal

assignment probability [92]. A major limitation is that many clinical trials do not

have an immediately occurring response variable. They also may have several

response variables of interest with no single outcome easily identified as being the

one upon which randomization should be based. Furthermore, these methods assume

that the population from which the participants are drawn is stable over time. If the

nature of the study population should change and this is not accounted for in the

analysis, the reported significance levels could be biased, perhaps severely [93].

Here, as before, the data analysis should ideally take into account the randomization

process employed. For response adaptive methods, that analysis will be more com-

plicated than it would be with simple randomization. Because of these disadvantages,

response adaptive procedures are not commonly used.

One application of response adaptive allocation can be found in a trial evaluating

extra-corporeal membrane oxygenator (ECMO) in a neonatal population suffering

from respiratory insufficiency [95–99]. This device oxygenates the blood to com-

pensate for the inability or inefficiency of the lungs to achieve this task. In this trial,
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the first infant was allocated randomly to control therapy. The result was a failure.

The next infant received ECMO which was successful. The next ten infants were

also allocated to ECMO and all outcomes were successful. The trial was then

stopped. However, the first infant was much sicker than the ECMO-treated infants.

Controversy ensued and the benefits of ECMO remain unclear. This experience

does not offer encouragement to use this adaptive randomization methodology.

Mechanics of Randomization

The manner in which the chosen randomization method is actually implemented is

very important [100]. If this aspect of randomization does not receive careful

attention, the entire randomization process can easily be compromised, thus voiding

any of the advantages for using it. To accomplish a valid randomization, it is

recommended that an independent central unit be responsible for developing the

randomization process and making the assignments of participants to the appropri-

ate group [27, 101]. For a single center trial, this central unit might be a biostatis-

tician or clinician not involved with the care of the participants. In the case of a

multicenter trial, the randomization process is usually handled by the data coordi-

nating center. Ultimately, however, the integrity of the randomization process will

rest with the investigator.

Chalmers and colleagues [102] reviewed the randomization process in 102 clin-

ical trials, 57 where the randomization was unknown to the investigator and

45 where it was known. The authors reported that in 14% of the 57 studies, at

least one baseline variable was not balanced between the two groups. For the

studies with known randomization schedules, twice as many, or 26.7%, had at

least one prognostic variable maldistributed. For 43 non-randomized studies, such

imbalances occurred four times as often or in 58%. The authors emphasized that

those recruiting and entering participants into a trial should not be aware of the next

intervention assignment.

In many cases when a fixed proportion randomization process is used, the

randomization schedules are made before the study begins [103–107].

The investigators may call a central location, and the person at that location

looks up the assignment for the next participant [103]. Another possibility, used

historically and still sometimes in trials involving acutely ill participants, is to have a

scheme making available sequenced and sealed envelopes containing the assign-

ments [106]. As a participant enters the trial, she receives the next envelope in the

sequence, which gives her the assignment. Envelope systems, however, are more

prone to errors and tampering than the former method [27, 101]. In one study,

personnel in a clinic opened the envelopes and arranged the assignments to fit their

own preferences, accommodating friends and relatives entering the trial. In another

case, an envelope fell to the bottom of the box containing the envelopes, thus

changing the sequence in which they were opened. Many studies prefer web-based

or telephone systems to protect against this problem. In an alternative procedure that
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has been used in several double-blind drug studies, medication bottles are numbered

with a small perforated tab [105]. The bottles are distributed to participant in

sequence. The tab, which is coded to identify the contents, is torn off and sent to

the central unit. This system is also subject to abuse unless an independent person is

responsible for dispensing the bottles. Many clinical trials using a fixed proportion

randomization schedule require that the investigator access a website or call the

central location to verify that a participant is eligible to be in the trial before any

assignment is made. This increases the likelihood that only eligible participants will

be randomized.

For many trials, especially multicenter and multinational trials, logistics require

a central randomization operations process. Web-based approaches to randomiza-

tion and other aspects of trial management predominate now [108]. In some cases,

the clinic may register a participant by dialing into a central computer and entering

data via touchtone, with a voice response. These systems, referred to as Interactive

Voice Response Systems or IVRS, or Interactive Web Response Systems, IWRS,

are effective and can be used to not only assign intervention but can also capture

basic eligibility data. Before intervention is assigned, baseline data can be checked

to determine eligibility. This concept has been used in a pediatric cancer cooper-

ative clinical trial network [109] and in major multicenter trials [110, 111].

Whatever system is chosen to communicate the intervention assignment to the

investigator or the clinic, the intervention assignment should be given as closely as

possible to the moment when both investigator and participant are ready to begin

the intervention. If the randomization takes place when the participant is first

identified and the participant withdraws or dies before the intervention actually

begins, a number of participants will be randomized before being actively involved

in the study. An example of this occurred in a non-blinded trial of alprenolol in

survivors of an acute myocardial infarction [112]. In that trial, 393 participants with

a suspected myocardial infarction were randomized into the trial at the time of their

admission to the coronary care unit. The alprenolol or placebo was not initiated

until 2 weeks later. Afterwards, 231 of the randomized participants were excluded

because a myocardial infarction could not be documented, death had occurred

before therapy was begun, or various contraindications to therapy were noted. Of

the 162 participants who remained, 69 were in the alprenolol group and 93 were in

the placebo group. This imbalance raised concerns over the comparability of the

two groups and possible bias in reasons for participant exclusion. By delaying the

randomization until initiation of therapy, the problem of these withdrawals could

have been avoided.

Problems of implementation can also affect the integrity of the randomiza-

tion procedure. Downs and colleagues [101] relate their experiences with prob-

lems caused by errors in programming, incomplete and missing data for

stratification variables, and other problems. They also recommend testing of

the proposed procedure before the trial begins, and monitoring of the allocation

after it begins.
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Recommendations

For large studies involving more than several hundred participants, the randomiza-

tion should be blocked. If a large multicenter trial is being conducted, randomiza-

tion should be stratified by center. Randomization stratified on the basis of other

factors in large studies is usually not necessary, because randomization tends to

make the study groups quite comparable for all risk factors. The participants can

still, of course, be stratified once the data have been collected and the study can be

analyzed accordingly.

For small studies, the randomization should also be blocked, and stratified by

center if more than one center is involved. Since the sample size is small, a few

strata for important risk factors may be defined to assure that balance will be

achieved for at least those factors. For a larger number of prognostic factors, the

adaptive stratification techniques should be considered and the appropriate analyses

performed. As in large studies, stratified analysis can be performed even if stratified

randomization was not done. For many situations, this will be satisfactory.

Appendix: Adaptive Randomization Algorithm

Adaptive randomization can be used for more than two intervention groups, but for

the sake of simplicity only two will be used here. In order to describe this procedure

in more detail, a minimum amount of notation needs to be defined. First, let

xik¼ the number of participants already assigned intervention k
(k¼ 1, 2) who have the same level of prognostic factor i
(i¼ 1, 2, . . . , f ) as the new participant.

and define

x tik ¼ xik if t 6¼ k

¼ xik þ 1 if t ¼ k

The xtik represents the change in balance of allocation if the new participant is

assigned intervention t. Finally, let

B(t)¼ function of the xtik’s, which measures the “lack of balance” over all prognostic

factors if the next participant is assigned intervention t.

Many possible definitions of B(t) can be identified. As an illustrative example, let

B tð Þ ¼
X f

i¼1
wi Range

�
x ti1, x

t
i2

�

where wi¼ the relative importance of factor i to the other factors and the range is

the absolute difference between the largest and smallest values of xti1 and xti2.
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The value of B(t) is determined for each intervention (t¼ 1 and t¼ 2). The

intervention with the smaller B(t) is preferred, because allocation of the participant

to that intervention will cause the least imbalance. The participant is assigned, with

probability p> 1/2, to the intervention with the smaller score, B(1) or B(2). The
participant is assigned, with probability (1� p), to the intervention with the larger

score. These probabilities introduce the random component into the allocation

scheme. Note that if p¼ 1 and, therefore, 1� p¼ 0, the allocation procedure is

deterministic (no chance or random aspect) and has been referred to by the term

“minimization” [51, 59].

As a simple example of the adaptive stratification method, suppose there are two

groups and two prognostic factors to control. The first factor has two levels and the

second factor has three levels. Assume that 50 participants have already been

randomized and the following table summarizes the results (Table 6.A1).

In addition, the function B(t) as defined above will be used with the range of the

xik’s as the measure of imbalance, where w1¼ 3 and w2¼ 2; that is, the first factor is

1.5 times as important as the second as a prognostic factor. Finally, suppose p¼ 2/3

and 1� p¼ 1/3.

If the next participant to be randomized has the first level of the first factor and

the third level of the second factor, then this corresponds to the first and fifth

columns in the table. The task is to determine B(1) and B(2) for this participant as
shown below.

1. Determine B(1)

(a) Factor 1, Level 1

K x1k x11k Range (x111, x
1
12)

Group 1 16 17 j17�14j ¼ 3

2 14 14

(b) Factor 2, Level 3

K x2k x12k Range (x121, x
1
22)

Group 1 4 5 j5�6j ¼ 1

2 6 6

Using the formula given, B(1) is computed as 3� 3 + 2� 1¼ 11.

Table 6.A1 Fifty

randomized participants by

group and level of factor

(xik’s)
a

Factor 1 2

Total

Level 1 2 1 2 3

Group

1 16 10 13 9 4 26

2 14 10 12 6 6 24

30 20 25 15 10 50
aAfter Pocock and Simon [41]
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2. Determine B(2)

(a) Factor 1, Level 1

K x1k x21k Range (x211, x
2
12)

Group 1 16 16 j16�15j ¼ 1

2 14 15

(b) Factor 2, Level 3

K x2k x11k Range (x121, x
1
22)

Group 1 4 4 j4�7j ¼ 3

2 6 7

Then B(2) is computed as 3� 1 + 2� 3¼ 9.

3. Now rank B(1) and B(2) from smaller to larger and assign with probability p the
group with the smaller B(t).

t B(t) Probability of assigning t

2 B(2)¼ 9 p¼ 2/3

1 B(1)¼ 11 1� p¼ 1/3

Thus, this participant is randomized to Group 2 with probability 2/3 and to

Group 1 with probability 1/3. Note that if minimization were used ( p¼ 1), the

assignment would be Group 2.
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