
Chapter 15

Survival Analysis

This chapter reviews some of the fundamental concepts and basic methods in

survival analysis. Frequently, event rates such as mortality or occurrence of

nonfatal myocardial infarction are selected as primary response variables. The

analysis of such event rates in two groups could employ the chi-square statistic or

the equivalent normal statistic for the comparison of two proportions. However,

when the length of observation is different for each participant, estimating an event

rate is more complicated. Furthermore, simple comparison of event rates between

two groups is not necessarily the most informative type of analysis. For example,

the 5-year survival for two groups may be nearly identical, but the survival rates

may be quite different at various times during the 5 years. This is illustrated by the

survival curves in Fig. 15.1. This figure shows survival probability on the vertical

axis and time on the horizontal axis. For Group A, the survival rate (or one minus

the mortality rate) declines steadily over the 5 years of observation. For Group B,
however, the decline in the survival rate is rapid during the first year and then levels

off. Obviously, the survival experience of the two groups is not the same, although

the mortality rate at 5 years is nearly the same. If only the 5-year survival rate is

considered, Group A and Group B appear equivalent. Curves such as these might

reasonably be expected in a trial of surgical versus medical intervention, where

surgery might carry a high initial operative mortality.

Fundamental Point

Survival analysis methods are important in trials where participants are entered
over a period of time and have various lengths of follow-up. These methods permit
the comparison of the entire survival experience during the follow-up and may be
used for the analysis of time to any dichotomous response variable such as a
nonfatal event or an adverse event.
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A review of the basic techniques of survival analysis can be found in elementary

statistical textbooks [1–6] as well as in overview papers [7]. A more complete and

technical review is in other texts [8–11]. Many methodological advances in the field

have occurred and this book will not be able to cover all developments. The

following discussion will concern two basic aspects: first, estimation of the survival

experience or survival curve for a group of participants in a clinical trial and second,

comparison of two survival curves to test whether the survival experience is

significantly different. Although the term survival analysis is used, the methods

can be applied to any dichotomous response variable when the time from enroll-

ment to the time of the event, not just the fact of its occurrence, is an important

consideration. For ease of communication, we shall use the term event, unless death

is specifically the event.

Estimation of the Survival Curve

The graphical presentation of the total survival experience during the period of

observation is called the survival curve, and the tabular presentation is called the

lifetable. In the sample size discussion (Chap. 8), we utilized a parametric model

to represent a survival curve, denoted S(t), where t is the time of follow-up.

A classic parametric form for S(t) is to assume an exponential distribution
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Fig. 15.1 Survival experience for two groups (A and B)
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S(t)¼ e�λt¼ exp(�λt), where λ is the hazard rate [11]. If we estimate λ, we have an
estimate for S(t). One possible estimate for the hazard ratio is the number of

observed events divided by the total exposure time of the person at risk of the

event. Other estimates are also available and are described later. While this estimate

is not difficult to obtain, the hazard rate may not be constant during the trial. If λ is
not constant, but rather a function of time, we can define a hazard rate λ(t), but now

the definition of S(t) is more complicated. Specifically, S tð Þ ¼ exp

ð t

o

λ sð Þds
� �

, that

is, the exponential of the area under the hazard function curve from time 0 to time t.
Furthermore, we cannot always be guaranteed that the observed survival data will

be described well by the exponential model, even though we often make this

assumption for computing sample size. Thus, biostatisticians have relied on

parameter-free or non-parametric ways to estimate the survival curve.

This chapter will cover two similar non-parametric methods, the Cutler-Ederer

method [12] and the Kaplan-Meier method [13] for estimating the true survival

curve or the corresponding lifetable. We use the Cutler-Ederer method to motivate

the more flexible Kaplan-Meier method which is the current standard. Before a

review of these specific methods, however, it is necessary to explain how the

survival experience is typically obtained in a clinical trial and to define some of

the associated terminology.

The clinical trial design may, in a simple case, require that all participants be

observed for T years. This is referred to as the follow-up or exposure time. If all

participants are entered as a single cohort at the same time, the actual period of

follow-up is the same for all participants. If, however, as in most clinical trials, the

entry of participants is staggered over some recruitment period, then equal periods

of follow-up may occur at different calendar times for each participant, as illus-

trated in Fig. 15.2.

A participant may have a study event during the course of follow-up. The event

time is the accumulated time from entry into the study to the event. The interest is

T 

T years

T years

T years

0

4

3

2

1

Time Since Start of Trial (T years)

S
ub

je
ct

T 2T

Fig. 15.2 T year follow-up

time for four participants

with staggered entry

Estimation of the Survival Curve 321



not in the actual calendar date when the event took place but rather the interval of

time from entry into the trial until the event. Figures 15.3 and 15.4 illustrate the way

the actual survival experience for staggered entry of participants is translated for the

analysis. In Fig. 15.3, participants 2 and 4 had an event while participants 1 and

3 did not during the follow-up time. Since, for each participant, only the time

interval from entry to the end of the scheduled follow-up period or until an event is

of interest, the time of entry can be considered as time zero for each participant.

Figure 15.4 illustrates the same survival experience as Fig. 15.3, but the time of

entry is considered as time zero.
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Some participants may not experience an event before the end of observation.

The follow-up time or exposure time for these participants is said to be censored;
that is, the investigator does not know what happened to these participants after they

stopped participating in the trial. Another example of censoring is when participants

are entered in a staggered fashion, and the study is terminated at a common date

before all participants have had at least their complete T years of follow-up. Later

post-trial events from these participants are also unobserved, but the reason for

censoring is administrative. Administrative censoring could also occur if a trial is

terminated prior to the scheduled time because of early benefits or harmful effects

of the intervention. In these cases, censoring is assumed to be independent of

occurrence of events.

Figure 15.5 illustrates several of the possibilities for observations during follow-

up. Note that in this example the investigator has planned to follow all participants

to a common termination time, with each participant being followed for at least

T years. The first three participants were randomized at the start of the study. The

first participant was observed for the entire duration of the trial with no event, and

her survival time was censored because of study termination. The second partici-

pant had an event before the end of follow-up. The third participant was lost to

follow-up. The second group of three participants was randomized later during the

course of the trial with experiences similar to the first group of three. Participants
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Fig. 15.5 Follow-up experience of 11 participants for staggered entry and a common termination

time, with observed events (asterisk) and censoring (open circle). Follow-up experience beyond

the termination time is shown for participants 9 through 11
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7 through 11 were randomized late in the study and were not able to be followed for

at least T years because the study was terminated early. Participant 7 was lost to

follow-up and participant 8 had an event before T years of follow-up time had

elapsed and before the study was terminated. Participant 9 was administratively

censored but theoretically would have been lost to follow-up had the trial contin-

ued. Participant 10 was also censored because of early study termination, although

she had an event afterwards which would have been observed had the trial contin-

ued to its scheduled end. Finally, the last participant who was censored would have

survived for at least T years had the study lasted as long as first planned. The

survival experiences illustrated in Fig. 15.5 would all be shifted to have a common

starting time equal to zero as in Fig. 15.4. The follow-up time, or the time elapsed

from calendar time of entry to calendar time of an event or to censoring could then

be analyzed.

In summary then, the investigator needs to record for each participant the time of

entry and the time of an event, the time of loss to follow-up, or whether the

participant was still being followed without having had an event when the study

is terminated. These data will allow the investigator to compute the survival curve.

Cutler-Ederer Estimate

Though the Cutler-Ederer estimate is still in use [14–18], it has been largely

replaced as a method for estimation of survival curves by the Kaplan-Meier

estimate. Nonetheless it is useful as an introduction to survival curve estimation.

In the Cutler-Ederer or actuarial estimate [12], the assumption is that the deaths

and losses are uniformly distributed over a set of fixed-length intervals. On the

average, this means that one half the losses will occur during the first half of each

interval. The estimate for the probability of surviving the jth interval, given that the

previous intervals were survived, is p̂j, where

p̂j ¼
n j � δ j � 0:5λ j

n j � 0:5λ j

The λj losses are assumed to be at risk, on the average, one half the time and thus

should be counted as such. These conditional probabilities p̂j are then multiplied

together to obtain an estimate, Ŝ(t), of the survival function at time t.

Kaplan-Meier Estimate

The Kaplan-Meier Estimate relaxes the assumption of events distributed uniformly

across fixed length intervals. Using the time of death, observations can be ranked.
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This is a useful improvement, since in a clinical trial with staggered entry of

participants and censored observations, survival data will be of varying degrees

of completeness.

As a very simple example, suppose that 100 participants were entered into a

study and followed for 2 years. One year after the first group was started, a second

group of 100 participants was entered and followed for the remaining year of the

trial. Assuming no losses to follow-up, the results might be as shown in Table 15.1.

For Group I, 20 participants died during the first year and of the 80 survivors,

20 more died during the second year. For Group II, which was followed for only

1 year, 25 participants died. Now suppose the investigator wants to estimate the

2-year survival rate. The only group of participants followed for 2 years was Group I.

One estimate of 2-year survival, S(2), would be Ŝ 2ð Þ ¼ 60=100 or 0.60. Note that

the first-year survival experience of Group II is ignored in this estimate. If the

investigator wants to estimate 1 year survival rate, S(1), she would observe that a

total of 200 participants were followed for at least 1 year. Of those, 155 (80 + 75)

survived the first year. Thus, Ŝ 1ð Þ ¼ 155=200 or 0.775. If each group were

evaluated separately, the survival rates would be 0.80 and 0.75. In estimating the

1-year survival rate, all the available information was used, but for the 2-year

survival rate the 1-year survival experience of Group II was ignored.
Another procedure for estimating survival rates is to use a conditional probabil-

ity. For this example, the probability of 2-year survival, S(2), is equal to the

probability of 1-year survival, S(1), times the probability of surviving the second

year, given that the participant survived the first year, pr(2|1). That is,

S 2ð Þ ¼ S 1ð Þpr 2
��1� �

. In this example, Ŝ 1ð Þ ¼ 0:775. The estimate for pr(2|1) is

60/80¼ 0.75 since 60 of the 80 participants who survived the first year also

survived the second year. Thus, the estimate for Ŝ 2ð Þ ¼ 0:775� 0:75 or 0.58,

which is slightly different from the previously calculated estimate of 0.60.

Kaplan and Meier [13] described how this conditional probability strategy could

be used to estimate survival curves in clinical trials with censored observations.

Their procedure is usually referred to as the Kaplan-Meier estimate, or sometimes

the product-limit estimate, since the product of conditional probabilities leads to the

survival estimate. This procedure assumes that the exact time of entry into the trial

is known and that the exact time of the event or loss of follow-up is also known.

Table 15.1 Participants

entered at two points in time

(Group I and Group II) and
followed to a common

termination timea

Years of

follow-up

Group

I II

1 Participants entered 100 100

First year deaths 20 25

First year survivors 80 75

2 Participants entered 80

Second year deaths 20

Second year survivors 60
aAfter Kaplan and Meier [13]
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For some applications, time to the nearest month may be sufficient, while for other

applications the nearest day or hour may be necessary. Kaplan and Meier assumed

that a death and loss of follow-up would not occur at the same time. If a death and a

loss to follow-up are recorded as having occurred at the same time, this tie is broken

on the assumption that the death occurred slightly before the loss to follow-up.

In this method, the follow-up period is divided into intervals of time so that no

interval contains both deaths and losses. Let pj be equal to the probability of

surviving the jth interval, given that the participant has survived the previous

interval. For intervals labeled j with deaths only, the estimate for pj, which is p̂j,

is equal to the number of participants alive at the beginning of the jth interval, nj,
minus those who died during the interval, δj, with this difference being divided by

the number alive at the beginning of the interval, i.e. p̂j ¼ n j � δ j

� �
=n j. For an

interval j with only lj losses, the estimate p̂j is one. Such conditional probabilities

for an interval with only losses would not alter the product. This means that an

interval with only losses and no deaths may be combined with the previous interval.

Example Suppose 20 participants are followed for a period of 1 year, and to the

nearest tenth of a month, deaths were observed at the following times: 0.5, 1.5, 1.5,

3.0, 4.8, 6.2, 10.5 months. In addition, losses to follow-up were recorded at: 0.6, 2.0,

3.5, 4.0, 8.5, 9.0 months. It is convenient for illustrative purposes to list the deaths

and losses together in ascending time with the losses indicated in parentheses. Thus,

the following sequence is obtained: 0.5, (0.6), 1.5, 1.5, (2.0), 3.0, (3.5), (4.0), 4.8,

6.2, (8.5), (9.0), 10.5. The remaining seven participants were all censored at

12 months due to termination of the study.

Table 15.2 presents the survival experience for this example as a lifetable. Each

row in the lifetable indicates the time at which a death or an event occurred. One or

more deaths may have occurred at the same time and they are included in the same

Table 15.2 Kaplan-Meier lifetable for 20 participants followed for 1 year

Interval Interval number Time of death nj δj lj p̂j SðtÞ Var Ŝ(t)

[0.5, 1, 5) 1 0.5 20 1 1 0.95 0.95 0.0024

[1.5, 3.0) 2 1.5 18 2 1 0.89 0.85 0.0068

[3.0, 4.8) 3 3.0 15 1 2 0.93 0.79 0.0089

[4.8, 6.2) 4 4.8 12 1 0 0.92 0.72 0.0114

[6.2, 10.5) 5 6.2 11 1 2 0.91 0.66 0.0133

[10.5, 1) 6 10.5 8 1 7a 0.88 0.58 0.0161

nj: number of participants alive at the beginning of the j th interval
δj: number of participants who died during the j th interval
lj: number of participants who were lost or censored during the j th interval
p̂j: estimate for pj, the probability of surviving the j

th interval given that the participant has survived

the previous intervals

S(t): estimated survival curve

Var Ŝ(t): variance of Ŝ(t)
aCensored due to termination of study
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row in the lifetable. In the interval between two consecutive times of death, losses

to follow-up may have occurred. Hence, a row in the table actually represents an

interval of time, beginning with the time of a death, up to but not including the time

of the next death. In this case, the first interval is defined by the death at 0.5 months

up to the time of the next death at 1.5 months. The columns labeled nj, δj, and lj
correspond to the definitions given above and contain the information from the

example. In the first interval, all 20 participants were initially at risk, one died at

0.5 months, and later in the interval (at 0.6 months) one participant was lost to

follow-up. In the second interval, from 1.5 months up to 3.0 months, 18 participants

were still at risk initially, two deaths were recorded at 1.5 months and one

participant was lost at 2.0 months. The remaining intervals are defined similarly.

The column labeled p̂j is the conditional probability of surviving the interval j and is

computed as (nj� δj)/nj or (20� 1)/20¼ 0.95, (18� 2)/18¼ 0.89, etc. The column

labeled Ŝ(t) is the estimated survival curve and is computed as the accumulated

product of the p̂j (0.85¼ 0.95� 0.89, 0.79¼ 0.95� 0.89� 0.93, etc).

The graphical display of the next to last column of Table 15.2, Ŝ(t) , is given in

Fig. 15.6. The step function appearance of the graph is because the estimate of S(t),
Ŝ(t) is constant during an interval and changes only at the time of a death. With very

large sample sizes and more observed deaths, the step function has smaller steps

and looks more like the usually visualized smooth survival curve. If no censoring

occurs, this method simplifies to the number of survivors divided by the total

number of participants who entered the trial.

Because Ŝ(t) is an estimate of S(t), the true survival curve, the estimate will have

some variation due to the sample selected. Greenwood [19] derived a formula for
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Fig. 15.6 Kaplan-Meier estimate of a survival curve, Ŝ(t), from a 1-year study of 20 participants,

with observed events (asterisk) and censoring (open circle).
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estimating the variance of an estimated survival function which is applicable to

the Kaplan-Meier method. The formula for the variance of Ŝ(t), denoted V[Ŝ(t)] is
given by

V Ŝ tð Þ� � ¼ Ŝ 2 tð Þ
XK
j¼1

δ j

n j n j � δ j

� �
where nj and δj are defined as before, and K is the number of intervals. In Table 15.2,

the last column labeled V[Ŝ(t)] represents the estimated variances for the estimates

of S(t) during the six intervals. Note that the variance increases as one moves down

the column. When fewer participants are at risk, the ability to estimate the survival

experience is diminished.

Other examples of this procedure, as well as a more detailed discussion of some

of the statistical properties of this estimate, are provided by Kaplan and Meier

[13]. Computer programs are available [20–23] so that survival curves can be

obtained quickly, even for very large sets of data.

The Kaplan-Meier curve can also be used to estimate the hazard rate, λ, if the
survival curve is exponential. For example, if the median survival time is estimated

as TM, then 0.5¼ S(TM)¼ exp(�λTM) and thus λ̂ ¼ lnð0:5Þ=TM as an estimate of λ.
Then the estimate for S(t) would be exp (�λ̂ t) In comparison to the Kaplan-Meier,

another parametric estimate for S(t) at time tj , described by Nelson [24], is

Ŝ tj
� � ¼ exp �

Xj

i¼1

δi=n j

( )

where δi is the number of events in the ith interval and ni is the number at risk for the

event. While this is a straightforward estimate, the Kaplan-Meier does not assume

an underlying exponential distribution and thus is used more than this type of

estimator.

Comparison of Two Survival Curves

We have just discussed how to estimate the survival curve in a clinical trial for a

single group. For two groups, the survival curve would be estimated for each group

separately. The question is whether the two survival curves SC(t) and SI(t), for the
control and intervention groups respectively, are different based on the estimates

ŜC(t) and ŜI(t).
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Point-by-Point Comparison

One possible comparison between groups is to specify a time t* for which survival

estimates have been computed using the Kaplan-Meier [13] method. At time t*, one
can compare the survival estimates ŜC(t *) and ŜI(t *) using the statistic

Z t*ð Þ ¼ ŜC t*ð Þ � ŜI t*ð Þ
V ŜC t*ð Þ� �þ V ŜI t*ð Þ� �	 
1=2

where V[ŜC(t *)] and V[ŜI(t *)] are the Greenwood estimates of variance [19]. The

statistic Z(t*) has approximately a normal distribution with mean zero and variance

one under the null hypothesis that ŜC t*ð Þ ¼ ŜI t*ð Þ. The problem with this approach

is the multiple looks issue described in Chap. 16. Another problem exists in

interpretation. For example, what conclusions should be drawn if two survival

curves are judged significantly different at time t* but not at any other points?

The issue then becomes, what point in the survival curve is most important.

For some studies with a T year follow-up, the T year mortality rates are

considered important and should be tested in the manner just suggested. Annual

rates might also be considered important and, therefore, compared. One criticism of

this suggestion is that the specific points may have been selected post hoc to yield

the largest difference based on the observed data. One can easily visualize two

survival curves for which significant differences are found at a few points. How-

ever, when survival curves are compared, the large differences indicated by these

few points are not supported by the overall survival experience. Therefore, point-

by-point comparisons are not recommended unless a few points can be justified and

specified in the protocol prior to data analysis.

Comparison of Median Survival Times

One summary measure of survival experience is the time at which 50% of the

cohort has had the event. One common and easy way to estimate the median

survival time is from the Kaplan-Meier curve. (See for example, Altman [1].)

This assumes that the cohort has been followed long enough so that over one-half

of the individuals have had the event. Confidence intervals may be computed for the

median survival times [25]. If this is the case, we can compare the median survival

times for intervention and controlMI andMC, respectively. This is most easily done

by estimating the ratio of the estimatesMI/MC. A ratio larger than unity implies that

the intervention group has a longer median survival and thus a better survival

experience. A ratio less than unity would indicate the opposite.
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We can estimate 95% confidence intervals for MI/MC by

MI=MCð Þe�1:96S, MI=MCð Þeþ1:96S

where the standard deviation, SD, of MI/MC is computed as

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= OI þ OCð Þ

p
for cases where the survival curves are approximately exponential, and OI¼ the

total number of events in the intervention group (i.e., ∑δi) and OC¼ the total

number of events in the control group.

Total Curve Comparison

Because of the limitations of comparison of point-by-point estimates, Gehan [26]

and Mantel [27] originally proposed statistical methods to assess the overall

survival experience. These two methods were important steps in the development

of analytical methods for survival data. They both assume that the hypothesis being

tested is whether two survival curves are equal, or whether one is consistently

different from the other. If the two survival curves cross, these methods should be

interpreted cautiously. Since these two original methods, an enormous literature

has developed on comparison of survival curves and is summarized in several texts

[8–11]. The basic methods described here provide the fundamental concepts used in

survival analysis.

Mantel [27] proposed the use of the procedure described by Cochran [28] and

Mantel and Haenszel [29] for combining a series of 2� 2 tables. In this procedure,

each time, tj, a death occurs in either group, a 2� 2 table is formed as follows:

Death at time tj Survivors at time tj At risk prior to time tj

Intervention aj bj aj + bj
Control cj dj cj + dj

aj + cj bj + dj nj

The entry aj represents the observed number of deaths at time tj in the interven-

tion group and cj represents the observed number of deaths at time t, in the control

group. At least aj or cj must be non-zero. One could create a table at other time

periods (that is, when aj and cj are zero), but this table would not make any

contribution to the statistic. Of the nj participants at risk just prior to time tj, aj + bj
were in the intervention group and cj+ dj were in the control group. The expected

number of deaths in the intervention group, denoted E(aj), can be shown to be

E a j

� � ¼ a j þ c j

� �
a j þ b j

� �
=n j
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and the variance of the observed number of deaths in the intervention group,

denoted as V(aj) is given by

V aj
� � ¼ a j þ c j

� �
b j þ d j

� �
a j þ b j

� �
c j þ d j

� �
n2j n j � 1

� �
These expressions are the same as those given for combining 2� 2 tables in the

Appendix of Chap. 17. The Mantel-Haenszel (MH) statistic is given by

MH ¼
XK
j¼1

a j � E a j

� �( )2,XK
j¼1

V a j

� �

and has approximately a chi-square distribution with one degree of freedom, where

K is the number of distinct event times in the combined intervention and control

groups. As an asymptotic approximation,

ZMH ¼
XK
j¼1

a j � E a j

� �( )
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
j¼1

V a j

� �vuut

the (signed) square root of MH, can be compared to a standard normal distribution

[30, 31].

Application of this procedure is straightforward. First, the times of events and

losses in both groups are ranked in ascending order. Second, the time of each event,

and the total number of participants in each group who were at risk just before the

death (aj + bj, cj + dj) as well as the number of events in each group (aj, cj) are
determined. With this information, the appropriate 2� 2 tables can be formed.

Example Assume that the data in the example shown in Table 15.2 represent the data

from the control group.Among the 20 participants in the intervention group, two deaths

occurred at 1.0 and 4.5 months with losses at 1.6, 2.4, 4.2, 5.8, 7.0, and 11.0 months.

The observations, with parentheses indicating losses, can be summarized as follows:

Intervention: 1.0, (1.6), (2.4), (4.2), 4.5, (5.8), (7.0), (11.0)

Control: 0.5, (0.6), 1.5, 1.5, (2.0), 3.0, (3.5), (4.0), 4.8, 6.2, (8.5), (9.0), 10.5.

Using the data described above, with remaining observations being censored at

12 months, Table 15.3 shows the eight distinct times of death, (tj), the number in

each group at risk prior to the death, (aj + bj, cj + dj), the number of deaths at time tj,
(aj, cj), and the number of participants lost to follow-up in the subsequent interval

(lj). The entries in this table are similar to those given for the Kaplan-Meier lifetable

shown in Table 15.2. Note in Table 15.3, however, that the observations from two

groups have been combined with the net result being more intervals. The entries in

Table 15.3 labeled aj + bj, cj + dj, aj + cj, and bj + dj become the entries in the eight

2� 2 tables shown in Table 15.4.
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Table 15.3 Comparison of survival data for a control group and an intervention group using the

Mantel-Haenszel procedures

Rank Event times Intervention Control Total

j tj aj + bj aj lj cj + dj cj lj aj + cj bj + dj

1 0.5 20 0 0 20 1 1 1 39

2 1.0 20 1 0 18 0 0 1 37

3 4.5 19 0 2 18 1 1 2 35

4 3.0 14 0 1 15 2 2 1 31

5 4.5 16 1 0 12 0 0 1 27

6 4.8 15 0 1 12 0 0 1 26

7 6.2 14 0 1 11 2 2 1 24

8 10.5 13 0 13 8 7 7 1 20

aj + bj¼ number of participants at risk in the intervention group prior to the death at time tj
cj + dj¼ number of participants at risk in the control group prior to the death at time tj
aj¼ number of participants in the intervention group who died at time tj
cj¼ number of participants in the control group who died at time tj
lj¼ number of participants who were lost or censored between time tj and tj+1
aj + cj¼ number of participants in both groups who died at time tj
bj + dj¼ number of participants in both group who are alive minus the number who died at time tj

Table 15.4 Eight 2� 2 tables corresponding to the event times used in the Mantel-Haenszel

statistic in survival comparison of intervention (I ) and control (C) groups

1. (0.5 mo)a D{ A{ R§ 5. (4.5 mo) D A R

I 0 20 20 I 1 15 16

C 1 19 20 C 0 12 12

1 39 40 1 27 28

2. (1 mo) D A R 6. (4.8 mo) D A R

I 1 19 20 I 0 15 15

C 0 18 18 C 1 11 12

1 37 38 1 26 27

3. (1.5 mo) D A R 7. (6.2 mo) D A R

I 0 19 19 I 0 14 14

C 2 16 18 C 1 10 11

2 35 37 1 24 25

4. (3 mo) D A R 8. (10.5 mo) D A R

I 0 17 17 I 0 13 13

C 1 14 15 C 1 7 8

1 31 32 1 20 21
aNumber in parenthesis indicates time, tj, of a death in either group

D{¼ number of participant who died at time tj
A{¼ number of participants who are alive between time tj and time tj+1
R§¼ number of participants who were at risk before death at time tj (R¼D+A)
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The Mantel-Haenszel statistic can be computed from these eight 2 � 2 tables

(Table 15.4) or directly from Table 15.3. The term
X8

j¼1
a j ¼ 2 since there are

only two deaths in the intervention group. Evaluation of the term
X8

j¼1
E a j

� �
¼ 20=40þ 20=38þ 2� 19=37þ 17=32þ 16=28þ 15=27þ 14=25þ 13=21 orX8

j¼1
E a j

� � ¼ 4:89. The value for
X8

j¼1
V a j

� �
is computed as

X8
j¼1

V a j

� � ¼ 1ð Þ 39ð Þ 20ð Þ 20ð Þ
40ð Þ2 39ð Þ þ 1ð Þ 37ð Þ 20ð Þ 18ð Þ

38ð Þ2 37ð Þ þ . . .

This term is equal to 2.21. The computed statistic is MH¼ (2� 4.89)2/

2.21¼ 3.78. This is not significant at the 0.05 significance level for a chi-square

statistic with one degree of freedom. The MH statistic can also be used when the

precise time of death is unknown. If death is known to have occurred within an

interval, 2� 2 tables can be created for each interval and the method applied.

For small samples, a continuity correction is sometimes used. The modified

numerator is

XK
j¼1

a j � E a j

� �� ������
����� � 0:5

( )2

where the vertical bars denote the absolute value. For the example, applying the

continuity correction reduces the MH statistic from 3.76 to 2.59.

Gehan [26] developed another procedure for comparing the survival experience

of two groups of participants by generalizing the Wilcoxon rank statistic. The

Gehan statistic is based on the ranks of the observed survival times. The null

hypothesis, SI(t)¼ SC(t), is tested. The procedure, as originally developed, involved
a complicated calculation to obtain the variance of the test statistic. Mantel [32]

proposed a simpler version of the variance calculation, which is most often used.

The NI observations from the intervention group and the NC observations from

the control group must be combined into a sequence of NC+NI observations and

ranked in ascending order. Each observation is compared to the remaining

NC +NI� 1 observation and given a score Ui which is defined as follows:

Ui ¼ number of observations ranked definitely less than the ith observation
� �
� number of observations ranked definitely greater than the ith observation:
� �

The survival outcome for the ith participant will certainly be larger than that for

participants who died earlier. For censored participants, it cannot be determined

whether survival time would have been less or greater than the ith observation. This
is true whether the ith observation is a death or a loss. Thus, the first part of the score
Ui assesses how many deaths definitely preceded the ith observation. The second

part of the Ui score considers whether the current, i
th, observation is a death or a loss.
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If it is a death, it definitely precedes all later ranked observations regardless of

whether the observations correspond to a death or a loss. If the ith observation is a

loss, it cannot be determined whether the actual survival time will be less than or

greater than any succeeding ranked observation, since there was no opportunity to

observe the ith participant completely.

Table 15.5 ranks the 40 combined observations (NC¼ 20, NI¼ 20) from the

example used in the discussion of the Mantel-Haenszel statistic. The last 19 obser-

vations were all censored at 12 months of follow-up, 7 in the control group and

12 in the intervention group. The score U1 is equal to the zero observations that

were definitely less than 0.5 months, minus the 39 observations that were definitely

greater than 0.5 months, or U1¼�39. The score U2 is equal to the one observation

definitely less than the loss at 0.6 months, minus none of the observations that will

be definitely greater, since at 0.6 months the observation was a loss, orU2¼ 1. U3 is

equal to the one observation (0.5 months) definitely less than 1.0 month minus the

37 observations definitely greater than 1.0 month giving U3¼ 36. The last

Table 15.5 Example of Gehan statistics scores Ui for intervention (I ) and control (C) groups

Observation I Ranked observed time Group Definitely less Definitely more Ui

1 0.5 C 0 39 �39

2 (0.6)a C 1 0 1

3 1.0 I 1 37 �36

4 1.5 C 2 35 �33

5 1.5 C 2 35 �33

6 (1.6) I 4 0 4

7 (2.0) C 4 0 4

8 (2.4) I 4 0 4

9 3.0 C 4 31 �27

10 (3.5) C 5 0 5

11 (4.0) C 5 0 5

12 (4.2) I 5 0 5

13 4.5 I 5 27 �22

14 4.8 C 6 26 �20

15 (5.8) I 7 0 7

16 6.2 C 7 24 �17

17 (7.0) I 8 0 8

18 (8.5) C 8 0 8

19 (9.0) C 8 0 8

20 10.5 C 8 20 �12

21 (11.0) I 9 0 9

22–40 (12.0) 12I,7C 9 0 9
aParentheses indicate censored observations
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19 observations will have scores of 9 reflecting the nine deaths which definitely

precede censored observations at 12.0 months.

The Gehan statistic, G, involves the scores Ui and is defined as

G ¼ W2=V Wð Þ

where W ¼ Σ Ui, (for Ui’s in control group only) and

V Wð Þ ¼ NC NI

NC þ NIð Þ NC þ NI � 1ð Þ
XNC þ NI

i¼1

U2
i

� �

The G statistic has approximately a chi-square distribution with one degree of

freedom [26, 32]. Therefore, the critical value is 3.84 at the 5% significance level

and 6.63 at the 1% level. In the example, W ¼ �87 and the variance V(W )¼
2,314.35. Thus, G¼ (�87)2/2,314.35¼ 3.27 for which the p-value is equal to

0.071. This is compared with the p-value of 0.052 obtained using the Mantel-

Haenszel statistic.

The Gehan statistic assumes the censoring pattern to be equal in the two groups.

Breslow [33] considered the case in which censoring patterns are not equal and used

the same statistic G with a modified variance. This modified version should be used

if the censoring patterns are radically different in the two groups. Peto and Peto [34]

also proposed a version of a censored Wilcoxon test. The concepts are similar to

what has been described for Gehan’s approach. However, most software packages

now use the Breslow or Peto and Peto versions.

Generalizations

The general methodology of comparing two survival curves using this methodology

has been further evaluated [35–40]. These two tests by Mantel-Haenzel and Gehan,

can be viewed as a weighted sum of the difference between observed number of

events and the expected number at each unique event time [7, 40]. Consider the

previous equation for the logrank test and rewrite the numerator as

W ¼
XK
j¼1

w j a j � E a j

� �� �

where

V Wð Þ ¼
XK
j¼1

w2
j

a j þ c j

� �
b j þ d j

� �
a j þ b j

� �
c j þ d j

� �
n2j n j � 1
� �
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and wj is a weighting factor. The test statistic W2/V(W ) has approximately a

chi-square distribution with one degree of freedom or equivalently W=
ffiffiffiffiffiffiffiffiffiffiffiffi
V Wð Þp

has approximately a standard normal distribution. If wi¼ 1, we obtain the

Mantel-Haenszel or logrank test. If wi¼ nj/(N+ 1), where N¼NC+NI or the com-

bined sample size, we obtain the Gehan version of the Wilcoxon test. Tarone and

Ware [40] pointed out that the Mantel-Haenszel and Gehan are only two possible

statistical tests. They suggested a general weight function wi¼ [nj/(N+ 1)] θ where

0< θ< 1. In particular, they suggested that θ¼ 0.5. Prentice [38] suggested a

weight w j ¼ II j
i¼1ni= ni þ dið Þ where di¼ (ai + ci) which is related to the product

limit estimator at tj as suggested by Peto and Peto [34]. Harrington and Fleming [35]

generalize this further by suggesting weights w j ¼
Q j

i¼1 ni= ni þ dið Þ
n oρ

for ρ> 0.

All of these methods give different weights to the various parts of the survival

curve. The Mantel-Haenszel or logrank statistic is more powerful for survival

distributions of the exponential form where λI (t)¼ θ λC(t) or SI (t)¼ {SC (t)}θ

where θ 6¼ 1 [32]. The Gehan type statistic [26], on the other hand, is more powerful

for survival distributions of the logistic form S(t,θ)¼ et+ θ/(1+et+ θ). In actual

practice, however, the distribution of the survival curve of the study population is

not known. When the null hypothesis is not true, the Gehan type statistic gives more

weight to the early survival experience, whereas the Mantel-Haenszel weights the

later experience more. Tarone and Ware [40] indicate other possible weighting

schemes could be proposed which are intermediate to these two statistics

[35, 40]. Thus, when survival analysis is done, it is certainly possible to obtain

different results using different weighting schemes depending on where the survival

curves separate, if they indeed do so. The logrank test is the standard in many fields

such as cancer and heart disease. The condition λI (t)¼ θ λC (t) says that risk of the

event being studied in the intervention is a constant multiple of the hazard λC (t).
That is, the hazard rate in one arm is proportional to the other and so the logrank test

is best for testing proportional hazards. This idea is appealing and is approximately

true for many studies.

There has been considerable interest in asymptotic (large sample) properties of

rank tests [37, 39] as well as comparisons of the various analytic methods

[36]. While there exists an enormous literature on survival analysis, the basic

concepts of rank tests can still be appreciated by the methods described above.

Earlier, we discussed using an exponential model to summarize a survival curve

where the hazard rate λ determines the survival curve. If we can assume that the

hazard rate is reasonably constant during the period of follow-up for the interven-

tion and the control group, then comparison of hazard rates is a comparison of

survival curves [1]. The most commonly used comparison is the ratio of the

hazards, R¼ λI/λC. If the ratio is unity, the survival curves are identical. If R is

greater than one, the intervention hazard is greater than control so the intervention

survival curve falls below the standard curve. That is, the intervention is worse. On

the other hand, if R is less than one, the control group hazard is larger, the control

group survival curve falls below the intervention curve, and intervention is better.
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We can estimate the hazard ratio by comparing the ratio of total observed events

(O) divided by expected number of events (E) in each group; that is, the estimate of

R can be expressed as

R̂ ¼ OI=EI

OC=EC

That is, OI¼ Σai, OC¼ Σ bi, EI¼ ΣE(ai), and EC¼ΣE(bi). Confidence intervals for
the odds ratio R are most easily determined by constructing confidence intervals for

the log of the odds ratio ln R [41]. The 95% confidence interval for ln R isK � 1:96

=
ffiffiffiffi
V

p
toK þ 1:96=

ffiffiffiffi
V

p
where K¼ (OI�EI )/V and V is the variance as defined in the

logrank or Mantel-Haenszel statistics. (That is, V equals V(ai).) We then connect

confidence intervals for ln R to confidence intervals for R by taking antilogs of the

upper and lower limit. If the confidence interval excludes unity, we could claim

superiority of either intervention or control depending on the direction. Hazard

ratios not included in the interval can be excluded as likely outcome summaries of

the intervention. If the survival curves have relatively constant hazard rates, this

method provides a nice summary and complements the Kaplan-Meier estimates of

the survival curves.

Covariate Adjusted Analysis

Previous chapters have discussed the rationale for taking stratification into account.

If differences in important covariates or prognostic variables exist at entry between

the intervention and control groups, an investigator might be concerned that the

analysis of the survival experience is influenced by that difference. In order to

adjust for these differences in prognostic variables, she could conduct a stratified

analysis or a covariance type of survival analysis. If these differences are not

important in the analysis, the adjusted analysis will give approximately the same

results as the unadjusted.

Three basic techniques for stratified survival analysis are of interest. The first

compares the survival experience between the study groups within each stratum,

using the methods described in the previous section. By comparing the results from

each stratum, the investigator can get some indication of the consistency of results

across strata and the possible interaction between strata and intervention.

The second and third methods are basically adaptations of the Mantel-Haenszel

and Gehan statistics, respectively, and allow the results to be accumulated over the

strata. The Mantel-Haenszel stratified analysis involves dividing the population into

S strata and within each stratum j, forming a series of 2� 2 tables for each Kj event,

where Kj is the number of events in stratum j. The table for the ith event in the jth

stratum would be as follows:
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Event Alive

Intervention aij bij aij + bij
Control cij dij cij + dij

aij + cij bij + dij nij

The entries aij, bij, cij, and dij are defined as before and

E aij
� � ¼ aij þ cij

� �
aij þ bij
� �

=nij

V aij
� � ¼ aij þ cij

� �
bij þ dij
� �

aij þ bij
� �

cij þ dij
� �

n2ij nij � 1
� �

Similar to the non-stratified case, the Mantel-Haenszel statistic is

MH ¼
XS
j¼1

XK j

i¼1

aij � E aij
� �( )2�XS

j¼1

XK j

i¼1

V aij
� �

which has a chi-square distribution with one degree of freedom. Analogous to the

Mantel-Haenszel statistic for stratified analysis, one could compute a Gehan statis-

tic Wj and V(Wj) within each stratum. Then an overall stratified Gehan statistic is

computed as

G ¼
XS
j¼1

W j

( )2�XS
j¼1

V W j

� �

which also has chi-square statistic with one degree of freedom.

If there are many covariates, each with several levels, the number of strata can

quickly become large, with few participants in each. Moreover, if a covariate is

continuous, it must be divided into intervals and each interval assigned a score or

rank before it can be used in a stratified analysis. Cox [42] proposed a regression

model which allows for analysis of censored survival data adjusting for continuous

as well as discrete covariates, thus avoiding these two problems.

One way to understand the Cox regression model is to again consider a simpler

parametric model. If one expresses the probability of survival to time t, denoted
S(t), as an exponential model, then S(t)¼ e�λt where the parameter, λ, is called the

force of mortality or the hazard rate as described earlier. The larger the value of λ,
the faster the survival curve decreases. Some models allow the hazard rate to

change with time, that is λ¼ λ(t). Models have been proposed [43–45] which

attempt to incorporate the hazard rate as a linear function of several baseline

covariates, x1, x2, . . ., xp that is, λ(x1, x2, . . ., xp)¼ b1x1 + b2x2 + . . .+ bpxp. One of

the covariates, say x1, might represent the intervention and the others, for example,

might represent age, sex, performance status, or prior medical history. The coeffi-

cient, b1, then would indicate whether intervention is a significant prognostic factor,
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i.e., remains effective after adjustment for the other factors. Cox [42] suggested that

the hazard rate could be modeled as a function of both time and covariates, denoted

λ(t, x1, x2, . . ., xp). Moreover, this hazard rate could be represented as the product of

two terms, the first representing an unadjusted force of mortality λ0(t) and the

second the adjustment for the linear combination of a particular covariate profile.

More specifically, the Cox proportional hazard model assumes that

λ t, x1, x2, . . . , x p

� � ¼ λ0 tð Þ exp b1x1 þ b2x2 þ . . .þ b px p

� �
That is, the hazard λ(t, x1, x2, . . ., xn) is proportional to an underlying hazard

function λ0(t) by the specific factor exp (b1x1 + b2x2 . . .). From this model, we can

estimate an underlying survival curve S0(t) as a function of λ0(t). The survival curve
for participants with a particular set of covariates X, S(t,x) can be obtained as

S t; xð Þ ¼ S0 tð Þ½ �exp b1x1þb2x2þ...ð Þ
. Other summary test statistics from this model are

also used. The estimation of the regression coefficients b1,b2, . . ., bp is complex,

requiring non-linear numerical methods, and goes beyond the scope of this text.

Many elementary texts on biostatistics [1, 3, 5, 46] or review articles [7] present

further details. A more advanced discussion may be found in Kalbfleish and

Prentice [10] or Fleming and Harrington [9]. Programs exist in many statistical

computing packages which provide these estimates and summary statistics to

evaluate survival curve comparisons [20–23]. Despite the complexity of the

parameter estimation, this method is widely applied and has been studied exten-

sively [47–55]. Pocock, Gore, and Kerr [52] demonstrate the value of some of these

methods with cancer data. For the special case where group assignment is the only

covariate, the Cox model is essentially equivalent to the Mantel-Haenszel statistic.

One issue that is sometimes raised is whether the hazard rates are proportional

over time. Methods such as the Mantel-Haenszel logrank test or the Cox Propor-

tional Hazards model are optimal when the hazards are proportional [9]. However,

though there is some loss of power, these methods perform well as long as the

hazard curves do not cross, even if proportionality does not hold [56]. When the

hazards are not proportional, which intervention is better depends on what time

point is being referenced. If a significant difference is found between two survival

curves using the Mantel-Haenszel logrank test or the Cox Proportional Hazards

model when the hazards are not proportional, the two curves are still significantly

different. For example, time to event curves are shown in Chap. 18. Figure 18.2a

shows three curves for comparison of two medical devices with best medical or

pharmacologic care. These three curves do not have proportional hazards but the

comparisons are still valid and in fact the two devices demonstrate statistically

significant superiority over the best medical care arm. The survival curves do not

cross although are close together in the early months of follow-up.

The techniques described in this chapter as well as the extensions or generaliza-

tions referenced are powerful tools in the analysis of survival data. Perhaps none is

exactly correct for any given set of data but experience indicates they are fairly

robust and quite useful.
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