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          Introduction 

 Spontaneous intracerebral hemorrhage (ICH) is a common 
and often fatal stroke subtype [ 14 ]. Iron has a major role in 
brain damage following ICH [ 17 ,  20 ,  22 ]. We have shown a 
signifi cant increase in brain non-heme iron after ICH in rats, 
and this remains high for at least 1 month [ 19 ]. Brain iron 
overload causes brain edema in the acute phase and brain 
atrophy later after ICH, with an iron chelator, deferoxamine, 
reducing ICH-induced brain edema, neuronal death, brain 
atrophy, and neurological defi cits in young rats [ 5 ,  10 ,  16 ], 
aged rats [ 12 ,  13 ], and pigs [ 2 ]. Recent studies show that 
high levels of serum ferritin, an iron storage protein, are 
independently associated with poor outcome and severe 
brain edema in ICH patients [ 8 ,  15 ]. 

 Our previous study showed that females have less brain 
edema and a faster recovery of behavioral defi cits after 
ICH and 17β-estradiol treatment markedly reduced ICH-
induced brain injury [ 1 ,  9 ,  11 ]. Estrogen pretreatment 
attenuated iron-induced brain edema and neuronal death 
[ 3 ,  7 ]. We have shown in a model that low aerobic capacity 
(low capacity runner rats; LCRs) had more severe ICH-
induced brain injury than high capacity runners, including 

worse brain edema, brain atrophy, and neurological 
 defi cits, and that females were protected against ICH-
induced brain edema formation in both high capacity run-
ners and LCRs [ 4 ]. 

 The present study examines whether gender-specifi c 
 differences in iron-induced brain injury in LCR rats might 
contribute to the gender differences found in ICH-induced 
injury.  

    Materials and Methods 

    Animal Preparation and Intracerebral 
Infusion 

 All animal procedures were approved by the University 
Committee on Use and Care of Animals, University of 
Michigan. A detailed description of the development of low 
aerobic capacity rats has been published previously [ 18 ]. 
Adult male ( n  = 7) and female LCR rats ( n  = 6) were anes-
thetized with pentobarbital (45 mg/kg, intraperitoneally 
(IP)) and the right femoral artery was catheterized to moni-
tor arterial blood pressure, blood pH, PaO 2 , PaCO 2 , hemato-
crit, and glucose levels. Body temperature was maintained 
at 37.5 °C by a feedback-controlled heating pad. A polyeth-
ylene catheter (PE-50) was inserted into the right femoral 
artery to monitor arterial blood pressure and blood gases. 
Animals were then positioned in a stereotactic frame and 
injections administered into the right basal ganglia (coordi-
nates at 0.2 mm anterior to bregma, 5.5 mm ventral, and 
3.5 mm lateral to midline). All the animals had 50 μl FeCl 2  
(0.5 mM) or saline infused into the right caudate at 5 μl/min 
using a microinfusion pump. After injection, the needle was 
removed and the skin incisions closed. T2 magnetic reso-
nance imaging (MRI) was performed at 24 h after iron 
injection and the rats were then used for brain histology and 
Western blotting.  
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    Magnetic Resonance Imaging and Volume 
Measurement 

 Imaging was carried out in a 7.0-T Varian MR scanner (183- 
mm horizontal bore; Varian, Palo Alto, CA, USA) at the 
Center for Molecular Imaging (CMI) of the University of 
Michigan. Rats were anesthetized with 2 % isofl urane/air 
mixture throughout MRI examination. The imaging protocol 
for all rats included a T2 fast spin-echo sequence (TR/
TE = 4000/60 ms). The images were preserved as 
256 × 256 pixels images; the lesion volumes and hemisphere 
volumes were measured by a blinded observer with NIH 
ImageJ [ 23 ]. Lesion volume was calculated by multiplying 
the total lesion area across all sections by the distance between 
the sections. Brain swelling calculation was based on 7 every 
other section of which the center was the anterior commissure 
layer. The value was ((volume of right hemisphere – volume 
of left hemisphere)/volume of right hemisphere) × 100 %.  

    Immunohistochemistry 

 Immunohistochemistry was performed as described previ-
ously [ 6 ,  21 ]. Briefl y, rats were anesthetized and subjected to 
intracardiac perfusion with 4 % paraformaldehyde in 0.1 mM 
phosphate-buffered saline (pH 7.4). Brains were removed 
and kept in 4 % paraformaldehyde for 6 h, then immersed in 
30 % sucrose for 3–4 days at 4 °C. After embedding in a 
mixture of 30 % sucrose and OCT, 18 μm sections were cut 
on a cryostat. For immunohistochemistry, the primary anti-
bodies were goat anti-albumin antibody (Bethyl Laboratories, 
Inc., 1:600 dilution, Montgomery, TX) and rabbit polyclonal 
HO-1 antibody (1:600 dilution; Assay Designs/Stressgen, 
Farmingdale, NY).  

    Western Blot Analysis 

 Western blot analysis was performed as previously described 
[ 21 ]. Briefl y, brain tissue was immersed in Western sample 
buffer and sonicated. Protein concentration was determined 
by Bio-Rad protein assay kit, and 50 μg protein samples 
were separated by sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis and transferred to a Hybond-C pure nitro-
cellulose membrane. Membranes were probed with goat 

anti-albumin antibody (Bethyl Laboratories, Inc., 1:10,000 
dilution, Montgomery, TX), and rabbit polyclonal HO-1 
antibody (1:2,000 dilution; Assay Designs/Stressgen, 
Farmingdale, NY). The antigen–antibody complexes were 
visualized with the ECL chemiluminescence system and 
exposed to Kodak X-OMAT fi lm. The relative densities of 
bands were analyzed with NIH ImageJ.  

    Statistical Analysis 

 All the data in this study are presented as mean ± standard 
deviation (SD). Data were analyzed by Student’s  t -test or 
analysis of variance (ANOVA). Differences were considered 
signifi cant at  p  < 0.05.   

    Results 

 The LCR rats used in this study were from generation 29–33 
of the breeding program. All physiological parameters were 
monitored during intracerebral infusions. No rats died 
postoperatively. 

 T2 lesion volumes at 24 h after iron infusion were larger 
in males (120 ± 28 mm 3 ) than in females (87 ± 27 mm 3 , 
 p  < 0.05); Fig.  1a, b ). There was also more severe brain swell-
ing in males (16.6 ± 4.1 %) compared with females 
(11.1 ± 2.6 %,  p  < 0.05; Fig.  1a, c ).

   Albumin is normally excluded from the brain by the 
blood-brain barrier (BBB), and entry of albumin is a marker 
of BBB disruption. Intracaudate FeCl 2  injection caused 
marked BBB disruption in the ipsilateral hemisphere 24 h 
after injection (Fig.  2 ) with much higher albumin protein lev-
els in the ipsilateral basal ganglia than in the contralateral 
( p  < 0.01, Fig.  2 ). The albumin-positive area was larger in the 
ipsilateral hemisphere in males than females (Fig.  2 ) and 
albumin protein levels (Western blot) were signifi cantly 
higher in males (7,717 ± 1,502 vs 5,287 ± 1,342 pixels in 
females,  p  < 0.05; Fig.  2 ).

   HO-1 is a marker for brain stress that is expressed at very 
low levels in normal brain. The number of cells immunoreac-
tive for HO-1 at 24 h after FeCl 2  injection was greater in 
male than female LCR rats (Fig.  3 ). Similarly, as assessed by 
Western blot, HO-1 protein levels in the ipsilateral basal gan-
glia were higher in males than females (HO-1/β-actin: 
1.31 ± 0.44 vs 1.03 ± 0.05,  p  < 0.05; Fig.  3 ).
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       Discussion 

 In the present study, we found that male rats had compara-
tively more severe hemispheric swelling, BBB disruption, 
and larger T2 lesions after intracerebral iron injection into 
the caudate. In addition, iron induced much stronger expres-
sion of HO-1 in males than females. 

 Brain iron overload has an important role in ICH-
induced brain injury. The current results suggest that differ-
ences in iron-mediated damage contribute to gender 
differences in ICH-induced brain injury. It is still unknown 
why iron- induced brain swelling is less in female LCRs. 
For iron- induced brain injury, most research has focused on 
oxidative injury. The reduction in the iron-induced upregu-
lation of brain HO-1 expression (a cellular stress marker) in 

females may refl ect reduced oxidative stress. This needs 
investigation. 

 Iron-induced brain edema could be vasogenic and cyto-
toxic. Our results showed that BBB leakage was more severe 
in males than females, suggesting less vasogenic brain edema 
in females. We have previously shown that females have less 
severe ICH-induced brain injury than males through an 
estrogen receptor-dependent mechanism [ 9 ]. More experi-
ments are needed to determine whether estrogen and its 
receptors have a role in ameliorating iron-induced BBB dis-
ruption and vasogenic brain edema. 

 In conclusion, iron caused less brain damage, BBB leak-
age, and brain swelling in female LCRs compared with 
males. Gender differences in iron-induced injury may con-
tribute to differences between females and males in ICH- 
induced brain injury.     
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  Fig. 1    ( a ) Representative T2 MRI scans of the brains of female and 
male LCR rats 24 h after an intracaudate injection of FeCl 2 . ( b ) Lesion 
volumes calculated from such MRI scans. ( c ) Brain swelling calculated 

from such scans. Male LCR rats had signifi cantly greater lesion vol-
umes and brain swelling than females after FeCl 2  injection. Values are 
mean ± SD,  n  = 6–7, * p  < 0.05       
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  Fig. 3    Heme oxygenase 1 ( HO-1 ) immunohistochemistry (ipsilateral 
caudate) and Western blot (basal ganglia) 24 h after intracaudate injec-
tion of FeCl 2  in LCR and HCR rats. The  bar graph  quantifi es the 
Western blot normalizing the data to β-actin. FeCl 2  injection caused 
unilateral HO-1 upregulation and that upregulation was signifi cantly 
greater in male rats. Values are mean ± SD, n = 3–4, * p  < 0.05 male vs 
female; # p  < 0.01 ipsi- vs contralateral       
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  Fig. 2    Albumin immunohistochemistry and Western blot demonstrat-
ing protein extravasation into brain 24 h after intracaudate injection of 
FeCl 2  in female and male LCR rats. Albumin extravasation is a marker 
of BBB disruption.  Bar graph  quantifi es the Western blot data. FeCl 2  
injection caused unilateral BBB disruption that was signifi cantly greater 
in male rats. Values are mean ± SD,  n  = 3–4, * p  < 0.05 male vs female; 
# p  < 0.01 ipsi- vs contralateral       
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