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          Introduction 

 Patients harboring brain arteriovenous malformation 
(bAVM) are at life-threatening risk of vessel rupture and 
intracranial hemorrhage (ICH) [ 1 ,  2 ], and the malformed 
vessels are fragile and prone to rupture, causing bleeding 
into the brain. ICH is the fi rst clinical symptom in about 
50 % of bAVM patients. In a past study, we showed that 
30 % of unruptured and non-hemorrhagic bAVMs demon-
strated microscopic evidence of hemosiderin deposition in 
the vascular wall [ 3 ]. The presence of silent intralesional 
microhemorrhage may be a biomarker for the risk of 
ICH. However, the underlying mechanisms for bAVM rup-
ture and microhemorrhage are not fully understood. 

 Current treatment options for bAVM are invasive. 
Approximately 20 % of patients are not offered interven-
tional therapy because of excessive treatment-related risks 
[ 4 ,  5 ]. Furthermore, treatment of unruptured bAVMs—half 
of all cases—has become increasingly controversial because 
the natural history for these patients may be less morbid than 
invasive therapy [ 6 – 10 ]. So far, there is no specifi c medical 
therapy to treat bAVMs. 

 Previous studies have focused on the association of bAVM 
angioarchitecture and the risk of hemorrhage. These studies 
have found that a small number of draining veins, excessive 
deep-draining veins, vein stenosis, deep locations in the 
brain, and diffused bAVM morphology are risk factors for 
bAVM rupture [ 11 – 16 ]. Analysis of mean pressure of feed-
ing arteries, in conjunction with other morphological or clin-
ical risk factors, indicates that high arterial input pressure 
and venous outfl ow restriction (exclusively deep venous 
drainage) are the most powerful risk predictors for hemor-
rhagic bAVM presentation [ 17 ]. Previously, because of the 

lack of an animal model, the biology behind the abnormal 
vascular remodeling could not be tested. 

 We have established several bAVM mouse models 
through conditional knockout of endoglin ( Eng ) or Activin- 
like kinase 1 ( Alk1 ;  Acvlr1 ) genes, causative genes for an 
autosomal-dominated genetic disorder, Hereditary hemor-
rhagic telangiectasia (HHT) [ 18 – 21 ]. HHT is characterized 
by solid organ AVMs (i.e., in the lung, liver, and brain) and 
mucocutaneous telangiectasias [ 22 ]. As much as 5 % of 
bAVMs may be due to HHT [ 23 ]. As a familial form, bAVM 
in HHT possesses a similar phenotype to sporadic bAVM so 
that knowledge of these inherited gene pathways can shed 
light on sporadic disease pathogenesis [ 24 ]. Our mouse mod-
els resemble some phenotypes of human bAVM that are 
related to rupture risk, for example, iron deposition from red 
blood cell (RBC) extravasation [ 3 ] and macrophage infi ltra-
tion [ 25 – 27 ]. 

 In this review, we provide evidence that vascular struc-
ture is abnormal in bAVM, which might be formatted 
through the following pathways (Fig.  1 ): (1) ALK1, ENG, 
or matrix Gla protein (MGP) deletion leads to reduced 
expression of the Notch ligand, delta-like ligand-4 (DLL4), 
in microvascular endothelial cells; (2) decreased DLL4 
results in a reduction of platelet-derived growth factor-B 
(PDGFB) signaling. As a result, mural cell recruitment is 
impaired [ 19 ,  28 ].

       Impaired Vessel Wall Structure Correlates 
with Vascular Leakage and Microhemorrhage 

 Structural imperfection and immaturity of the vascular wall 
in bAVM suggest that vessels are histoembryogenically mal-
developed. Prominent caliber dilation, hypertrophy of mus-
cular layer, hyalinization, and an abnormal increase of elastic 
fi bers might be the result of vascular remodeling in response 
to changed cerebral hemodynamics caused by an arteriove-
nous shunt [ 29 ]. 
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 Abnormal expression pattern of collagen (Col) I and Col 
III has been found in bAVMs [ 30 ]. Compared with control 
brain samples, bAVMs have a higher level of Col I and a 
lower level of Col III. The collagen fi bers in bAVM vessels 
are disorganized and interrupted in the internal elastic lam-
ina. Col I is a stiff fi brillar protein that provides resistance to 
tension, whereas Col III forms an elastic network [ 31 ] that 
prevents rupture of the vessel wall. Col I/Col III ratio is 
markedly increased in bAVM, which can increase the stiff-
ness of the bAVM vessels. Interestingly, ruptured AVMs 
have higher type-I and -III collagen content than unruptured 
AVMs [ 32 ]. 

 In a study analyzing surgical specimens of four adult 
cases of cerebral pial AVM [ 33 ], severe mural fi brosis was 
found in arteriovenous shunts larger than 700 μm located in 
the subarachnoid space. The authors found that vessels adja-
cent to shunting segments were arterialized veins and have 
segmental loss of the internal elastic membrane (IEM) and/

or smooth muscle cells (SMCs). The smaller shunts in the 
cerebral parenchyma were dilated small arteries, which 
showed abrupt loss of IEM and gradual loss of SMCs and 
transformed into dilated and tortuous veins [ 33 ]. These fi nd-
ings suggest that AVM rupture is caused not only by dilated 
veins but also by a segmental loss of IEM and SMCs. 

 SMCs in AVMs are in various stages of differentiation 
[ 34 ]. The expression of smoothelin is less prevalent in large 
AVM vessels than in the normal brain, which may refl ect the 
loss of contractile property associated with hemodynamic 
stress [ 34 ]. Hoya et al. [ 35 ] analyzed the expression of SMC 
marker proteins, including smooth muscle alpha-actin and 
four myosin heavy chain isoforms (SM1, SM2, SMemb, and 
NMHC-A) in bAVM specimens. Although the arterial com-
ponents of AVM showed the same staining pattern as mature 
normal arteries, two different types of abnormal veins were 
noticed in the AVM specimens: large veins with a thick and 
fi brous wall (so-called “arterialized” veins) and intraparen-
chymal thin-walled sinusoidal veins. The former express 
alpha-actin, SM1, SM2, and SMemb, and the latter, alpha- 
actin, SM1, and SM2. These markers are normally expressed 
in cerebral arteries. The results were compatible with arteri-
alization of the cerebral veins caused by arteriovenous shunt-
ing [ 35 ,  36 ]. 

 Abnormal vessel wall structure has also been noticed in 
the bAVM vessels in our mouse models [ 18 ,  37 ]. Compared 
with normal brain angiogenic foci, the lesion in bAVM 
mouse models have more vessels with diameters larger than 
15 μm that lack α-SMA positive cells and have fewer peri-
cytes. Reduced SMC and pericyte coverage is associated 
with increased vascular permeability and microhemorrhage. 

 All of the data cited thus far suggest that vessels in bAVMs 
have impaired wall structure, which may be the cause of 
AVM microhemorrhage and rupture. Currently, it is not clear 
which molecular signaling pathway is involved in the forma-
tion of these abnormal vascular structures. Through analysis 
of the surgically sectioned human bAVM specimens and 
bAVM in the HHT mouse models, we found Notch and 
Pdgf-b signaling pathways are involved in abnormal vascular 
formation and remodeling.  

    Altered Notch Signaling Causes Abnormal 
Angiogenesis in bAVM 

 There is empirical evidence that proteins involved in Notch 
signaling—including receptors, ligands, and downstream 
signals—are expressed in excised surgical specimens [ 38 , 
 39 ]. Animal experiments support a potential link between 
Notch signaling and human diseases. In mice, both gain 
and loss of Notch function cause arteriovenous shunts 
to form during prenatal development [ 40 ]. Endothelial 
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  Fig. 1    Speculated pathways involved in AVM pathogenesis. Angiogenic 
factors, such as VEGF, induce endothelial mitogenesis. When mutation 
of AVM causative genes occurs, the angiogenic response leads to the 
formation of leaky vessels with abnormal vessel wall structure through 
altered Notch signaling and reduced Pdgf-b signaling       
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 overexpression of a constitutive active Notch-4 intracellu-
lar domain (Notch 4*) results in bAVMs in young mice 
[ 41 ,  42 ], and normalizing Notch 4* expression results in 
lesion regression [ 43 ]. In addition, the expression of Notch 
ligands, Jagged 1 and 2, are increased in Mgp defi cient 
mice [ 44 ]. All these data indicate that Notch signaling is 
involved in bAVM pathogenesis. 

 In mammals, there are 4 Notch receptors (Notch-1, -2, -3 
and -4) and 5 ligands (Jagged1 and 2, Dll1, 3, and 4). Notch 
interacts with VEGF signaling during tip-cell and stalk-cell 
specifi cation [ 45 ]. Dll4 is predominantly expressed in tip cells, 
and Jagged-1 in stalk cells. Dll4-Notch1 signaling suppresses 
tip cell formation leading to nonproductive sprouting, whereas 
Jagged-1 antagonizes the Dll4 ligand, thereby promoting 
sprouting angiogenesis [ 46 ]. We and others have found 
through analysis of human bAVM specimens and animal 
model development that a pro-angiogenic signal is needed for 
bAVM development [ 18 ,  47 – 51 ]. Without Dll4 signaling, a 
pro-angiogenic state is favored, for example, proliferation of 
tip at the expense of stalk cells [ 46 ,  52 ]. Blocking Dll4 in 
tumor models leads to an excessively branched, chaotic vascu-
lar network and impaired mural cell recruitment [ 53 ,  54 ]. 

 In addition to its interaction with angiogenesis, Notch sig-
naling is also essential in regulating arterial fate specifi cation 
[ 55 ]. Notch and its downstream signaling are important in 
directing arterial-venous segregation and stabilizing brain 
endothelial-pericyte interaction during vasculogenesis in the 
embryos [ 55 – 57 ]. Absence of Notch results in expression of 
venous markers in the arteries [ 58 ]. We found that endothe-
lial cells in some vessels in the bAVM lesion in a mouse 
model express both arterial and venous markers [ 18 ], sug-
gesting that  Alk1  deletion impairs the endothelial cell speci-
fi cation during angiogenesis. This altered specifi cation may 
be the cause of irregular SMC coverage of AVM vessels. 

 The interaction of Alk1 or Eng with Notch signaling is 
just beginning to be examined [ 52 ,  59 ]. Notch signaling is 
important in vascular homeostasis and response to injury 
(angiogenesis) [ 59 – 62 ]. 

 Gain and loss of Notch function may affect venous and 
arterial cells differently [ 63 ].  ALK1  knockdown in human 
umbilical artery endothelial cells (HUAEC) causes a reduc-
tion in EPHRIN B2, a marker for artery endothelial cells 
[ 63 ]. Defi ciency of Mgp, a bone morphogenetic protein 
(Bmp) inhibitor, causes alternation of Notch ligand- 
expression, dysregulation of endothelial differentiation, and 
development of bAVM [ 44 ]. Increased Bmp activity due to 
the lack of Mgp induces the expression of Alk1 in the cere-
brovascular endothelium, which enhances the expression of 
Notch ligands (Jagged 1 and 2) and alters the expression of 
arterial and venous endothelial markers (Ephrin B2 and Eph 
B4). Expression of Alk1 does not change when Jagged 
expression is reduced [ 44 ], suggesting that Jagged 1 and 2 
act downstream of Alk1. 

 Together, the data above suggest that Notch signaling is 
located downstream of bAVM causative genes, such as Alk1 
or Mgp. Notch and its downstream signaling participate in 
bAVM pathogenesis in several ways: (1) enhancement of 
angiogenesis; (2) impairment of vessel wall structure; and 
(3) alteration of arterial and venous specifi cation in endothe-
lial cells.  

    Reduced PDGF-B Signaling Results 
in Abnormal Mural Cell Coverage in Brain 
AVM 

 PDGFs are important mitogens for various types of mesen-
chymal cells, such as fi broblasts, SMC, and pericytes [ 64 ]. 
They exert critical function during organogenesis in mamma-
lian embryonic and early postnatal development. Increase or 
loss of function of PDGF is also noticed in diseases such as 
cancer, tissue fi brosis, and cardiovascular diseases in adults 
[ 65 ]. The PDGF family includes PDGF-A, -B, -C and -D, 
which are assembled as disulfi de-linked homo- or heterodi-
mers. PDGFs have two types of receptors: PDGFR-α and -β 
[ 64 ,  66 ]. Among PDGFs, PDGF-B has intrinsic pro- angiogenic 
effects. Microvascular integrity can be compromised when 
PDGF-B expression is too high [ 67 ] or too low [ 68 ,  69 ]. 
PDGF-B signaling through PDGFR-β regulates pericyte 
recruitment and differentiation to nascent capillaries. The dif-
ferentiation of mesenchymal cells into the pericyte/SMC- lin-
eage is dependent on PDGFR-β expression in mice [ 70 ]. 

 Knockout  Pdgf-b  or  Pdgfr -β in mice results in loss of 
pericytes from the microvessels [ 68 ]. The absence of peri-
cytes also leads to endothelial hyperplasia (associated with 
abnormal endothelial junctions), and excessive endothelial 
luminal membrane folds [ 69 ].  Pdgfr -β or  Pdgf - b  null mice 
have cerebral hemorrhage with an absence of microvascular 
pericytes in the brain vessels and endothelial hyperplasia 
[ 69 ]. Reduction of vascular pericytes correlates with impair-
ment of vascular integrity [ 71 ,  72 ]. Higher PDGF-B expres-
sion has been detected in some, but not all, resected sporadic 
human bAVM specimens compared with control tissue [ 73 , 
 74 ]. Other cells in the brain can also express PDGF-B, which 
could obscure the analysis of PDGF-B expression [ 75 ]. 

 We have demonstrated that expression of Pdgfr-β is 
reduced in the bAVM lesions of  Alk1 -defi cient mice [ 19 ], 
suggesting a possible link between Alk1 and Pdfgr-β/Pdgf-b 
signaling pathways. However, it is not clear whether the 
reduced expression of Pdfgr-β is caused by the reduced 
 number of pericytes in the tissue. Many AVM vessels in 
Alk1   - defi cient mice do not have the SMC-layer and have 
less pericyte coverage. 

 PDGF-B/PDGFR-β has also been implicated in skin and 
retina AVMs, as well as Eng-associated signaling pathway. 
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Oral administration of thalidomide reduces the frequency 
and the duration of nosebleeds and blood transfusion require-
ments in a small group of HHT patients [ 28 ]. Thalidomide 
treatment does not inhibit endothelial cell proliferation and 
migration, but increases mural cell coverage of the vascula-
ture through increasing Pdgf-b expression in endothelial 
cells [ 28 ]. 

 The data above indicate that: (1) AVM-causative genes, 
such as Alk1 and Eng, play an important role in maintaining 
cerebrovascular integrity; (2) mutations of these genes result 
in abnormal angiogenic response, which leads to abnormal 
vessel formation; (3) PDGF-B signaling is one of the down-
stream signaling pathways involved in brain AVM pathogen-
esis; (4) upregulation of PDGF-B signaling may reduce the 
severity of bAVM phenotype, and thus could be developed 
into a therapeutic strategy to treat bAVM.  

    Other Signalings 

 Angiopoietin/TIE2 signaling also plays a role in the recruit-
ment of peri-endothelial support structures. Alternations of 
angiopoietin/TIE2 expression in human bAVM specimens 
have been noticed [ 76 ], which could be a cause of defective 
vessel wall in bAVM. For example, angiopoietin-2 
 (ANG-2), which allows loosening of cell-to-cell contacts, 
is overexpressed in the perivascular region in AVM vascu-
lar channels [ 76 ]. 

 A key downstream consequence of VEGF and ANG-2 
signaling contributing to the angiogenic phenotype is matrix 
metalloproteinase (MMP) expression. MMP-9 expression, in 
particular, appears to be higher in bAVM than in control tis-
sue [ 27 ,  77 ]. Similarly, TIMP-1 and TIMP-3, which are natu-
rally occurring MMP inhibitors, are also increased in bAVM 
but to a lesser degree. 

 Exactly how the dysplastic response propagates and leads 
to bAVM formation is not known. Recruitment of progenitor 
cell populations may be one source infl uencing AVM growth 
and development, an area that needs further exploration. For 
example, endothelial progenitor cells are present in the nidus 
of the brain and spinal cord AVMs, and may mediate patho-
logical vascular remodeling and impact the clinical course of 
AVMs. 

 More generally, circulating bone marrow-derived cells 
have a major role in both microcirculatory angiogenesis [ 78 , 
 79 ] and conductance vessel remodeling [ 80 ,  81 ]. If bAVM 
pathogenesis involves these two processes, it is reasonable to 
infer that bone marrow-derived cells may have an underap-
preciated role in lesion formation and growth. An unresolved 
issue with stem cell interaction is the extent to which pro-
genitor cells actually integrate into existing tissue compart-
ments, or whether they provide a nursing function by 

supplying critical components of the repair response, such as 
cytokines, growth factors, and enzymes, to the tissue. 

 In summary, we have reviewed the possible roles of Notch 
and Pdgf-b signaling in bAVM pathogenesis. In both brain and 
non-brain endothelial cells, Alk1 is upstream of Notch signal-
ing [ 59 ], and Notch signaling is upstream of Pdgf-b, which 
appears to be an important regulator of cerebrovascular Pdgf-b 
expression [ 67 ]. The relationship between Eng function and 
Pdgf-β [ 28 ] and Notch signaling is not as well understood [ 52 ]. 
However, animal studies show that either correcting Notch sig-
naling [ 43 ] or increasing Pdgf-b [ 28 ] expression resumes 
abnormal vascular structure in bAVM. Thus, by modulating 
these two pathways, new therapies could be developed.     
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