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          Introduction 

 Germinal matrix hemorrhage (GMH) is the most common 
neurological disease of premature infants, partly because this 
germinal region is most vulnerable to spontaneous bleeding 
within the fi rst 3 days of preterm life [ 1 ]. Intracerebroventricular 
expansion partly contributes to long-term brain injury 
through mechanical compression of surrounding tissues 
[ 2 – 4 ]. Devastating outcomes include hydrocephalus, mental 
retardation, and cerebral palsy [ 1 ,  5 ,  6 ]. Current treatment 
modalities are largely ineffective, and GMH has been thus 
far not preventable [ 7 ]. 

 Importantly, the blood constituent thrombin is an estab-
lished factor in hydrocephalus formation [ 8 – 10 ], which 
binds and trans-activates a subfamily of G protein-coupled 
receptors named proteinase-activated receptors (specifi cally 
PAR-1 and PAR-4) [ 11 ], theoretically leading to increased 
COX-2 expression [ 12 ]. Therefore, we hypothesized that 
modulation of brain injury through thrombin, PAR-1,-4, and 
COX-2 could be an eventual strategy to help improve out-
comes after GMH.  

    Methods 

 All studies, protocols, and procedures were approved by the 
Institutional Animal Care and Use Committee at Loma Linda 
University. Postnatal day 7 (P7) neonatal rats were subjected 
to stereotactic ganglionic eminence collagenase infusion. 
Groups were as follows: animals were euthanized at either of 
two time points 72 h (short-term) or 4 weeks (long-term). 
Short-term COX-2 expression was evaluated in the context 
of PAR-1 (SCH-79797) and PAR-4 (P4pal10) inhibition; 
pups in the long-term group were administered the selective 
COX-2 inhibitor (NS-398) as routinely performed [ 13 ]. 

    Animal Surgeries 

 P7 Sprague-Dawley rat pups (14–19 g) were randomly allo-
cated to either GMH or sham operation. A stereotactically 
guided, 0.3 U bacterial collagenase infusion model was used 
to model preterm right-sided ganglionic eminence bleeds 
[ 14 – 16 ]. Timed pregnant rats were purchased from Harlan 
Laboratories (Indianapolis, IN, USA), and pups of equally 
both genders were subjected to collagenase infusion [ 15 ]. 
Briefl y, general anesthesia was obtained by using isofl urane 
(3 % in 30/70 % oxygen/medical air). Anesthetized pups 
were positioned prone, with heads secured onto the neonatal 
stereotactic frame (Kopf Instruments, Tujunga, CA, USA). 
The scalp was then sterilized (using betadine solution), and a 
small midline incision made to expose the bregma. Using a 
standard dental drill, a 1-mm cranial burr hole was made 
(bregma coordinates: 1.8 mm anterior, 1.5 mm lateral, 
2.8 mm deep), through which a 26-gauge needle was low-
ered, and at this position, clostridial collagenase VII-S (0.3 
U: Sigma, St. Louis, MO, USA) was infused at 0.25 μl/min 
into the right basal ganglion. Needles were left in place for 
10 min after infusion to prevent backfl ow. Thereafter, the 
needle was slowly withdrawn at rate of 1 mm/min; burr holes 
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were sealed with bone wax; and the scalp was sutured closed. 
All animals were allowed to recover under observation on a 
37 °C warm heating blanket before being returned to their 
dams. Shams received all the above without collagenase 
infusion, as routinely performed [ 13 ].  

    Animal Perfusion and Tissue Extraction 

 The animals were fatally anesthetized with isofl urane (≥5 %) 
followed by cardiovascular perfusion with ice-cold PBS for 
Western blot analyses. Forebrains were dissected and snap- 
frozen with liquid nitrogen and then stored in –80 °C freezer, 
awaiting quantifi cation as routinely performed [ 13 ].  

    Western Blotting 

 For the protein immunoblot [ 13 ], the concentration was 
determined using the DC protein assay (Bio-Rad, Hercules, 
CA, USA). The samples were then subjected to SDS-PAGE 
on 4–20 % gels, and then transferred to nitrocellulose mem-
brane X 100 min at 100 V (Bio-Rad). Blotting membranes 
were incubated for 1 h with 5 % nonfat milk in Tris-buffered 
saline containing 0.1 % Tween 20, and these were then incu-
bated overnight with the primary antibody, anti-COX2 
(1:200; Cayman Chemical, Ann Arbor, MI, USA). 
Membranes were then incubated using secondary antibodies 
(1:1,000; Santa Cruz Biotechnology, Santa Cruz, CA, USA) 
and processed with an ECL Plus kit (GE Healthcare and Life 
Science, Piscataway, NJ, USA). For an internal control, the 
same membrane was probed using an antibody against 
β-actin (1:1,000; Santa Cruz Biotechnology, Santa Cruz, 
CA, USA) after being stripped. Relative densities of resul-
tant protein immunoblot images were semiquantitatively 
analyzed by Image J software (4.0, Media Cybernetics, 
Silver Spring, MD, USA) as described elsewhere [ 17 ].  

    Neurological Defi cits 

 All neurobehavior assessments were conducted in a blinded 
manner by experienced investigators [ 13 – 16 ]. Animals were 
assessed using a series of tests. Neurological defi cit was 
quantifi ed using a series of six tests measuring functional 
defi cits (100 = severe, 50 = moderate, 0 = none): (1) proprio-
ceptive limb placing, (2) lateral limb placement, (3) forelimb 
placement, (4) postural refl ex, (5) back pressure toward edge, 
and (6) lateral pressure toward edge. These are routinely per-
formed in brain-injured juvenile rats [ 18 ]. A T-maze was 

used to assess short-term (working) memory ability [ 19 ]; for 
each trial, rat were placed into the stem (40 cm × 10 cm) of 
the T-maze and allowed to explore until either the left or 
right path was chosen. Following a sequence of 10 trials, the 
rate of spontaneous alternation (0 % = none and 100 % = com-
plete; alternations/trial) was recorded [ 18 ,  20 ].  

    Histological Slides 

 Animals were terminally anesthetized with isofl urane 
(≥5 %), followed by cardiovascular perfusion with ice-cold 
PBS and 10 % paraformaldehyde. Brains were removed and 
separated from surrounding tissues and post-fi xed in 10 % 
paraformaldehyde and then 30 % sucrose (weight/volume) 
for total of 3 days. Histopathological pictographs used 10-μm 
thick coronal sections, caudally cut every 600 μm on a cryo-
stat (Leica Microsystems LM3050S), then mounted and 
stained on poly- l -lysine-coated slides.  

    Statistical Analysis 

 Signifi cance was based on <0.05. Data were statistically ana-
lyzed using one-way ANOVA, followed by Tukey post hoc 
test for signifi cant analyses. Statistical analyses were per-
formed using SigmaPlot version 10.0 for Windows.   

    Results 

 Early combined PAR-1 and PAR-4 signal inhibition reduced 
COX-2 expression ( p  < 0.05; Fig.  1 ) in a dose-responsive 
manner measured 72 h after collagenase infusion. Thereafter, 
in a separate cohort of animals, direct inhibition of COX-2 
by NS-398 further reduced hydrocephalus (Fig.  2 ) and also 
improved long-term neurobehavioral outcome ( p  < 0.05; 
Fig.  3 ).

         Conclusion 

 Translational stroke studies, in particular those involving 
animal modeling, are greatly needed to safely integrate 
basic preclinical investigations ahead of eventual clinical 
applications [ 21 – 25 ]. This study therefore investigated the 
value of modulating thrombin–PAR-1 and PAR-4 with 
reversing COX-2 upregulation, as well as the effect of direct 
COX-2 inhibition on post-hemorrhagic hydrocephalus and 
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on  neurological defi cits. In prior studies, others hypothe-
sized that hydrocephalus mechanisms involved increased 
production of infi ltrating extracellular matrix (ECM) pro-
teins throughout the cerebroventricular system and that 
these would lead to the obstruction of CSF outfl ow [ 1 ,  2 ,  10 , 
 14 ,  15 ,  26 – 30 ]. Our data suggest that thrombin-induced 
PAR-1, -4 stimulation could upregulate harmful signaling, 
exacerbating infl ammatory signaling (i.e., COX-2 mediated) 

upstream of ECM dysregulation [ 1 ,  8 ,  12 ,  14 ,  15 ,  31 – 34 ]. 
Thus, we hypothesized that thrombin binding to PAR-1, -4 
receptors could consequently upregulate COX-2 protein. 
Furthermore, we investigated inhibition of PAR-1, -4 using 
a combined treatment with SCH79797 (PAR-1 antagonist) 
and p4pal10 (PAR-4 antagonist), which also signifi cantly 
improved COX-2 after 72 h. Next, we asked whether directly 
inhibiting COX-2 following GMH could circumvent long-
term negative outcomes. Our fi ndings demonstrated that 
vehicle-treated animals had signifi cantly worsened out-
comes compared with shams, and treatment with NS398 
(COX-2 inhibitor) signifi cantly improved not only neuropa-
thology but also and neurological ability. Therefore, by 
decreasing the early infl ammatory COX-2 signaling path-
way, we improved long- term outcome in juvenile animals. 
In  summary, this study is the fi rst to show that normalization 
of thrombin–PAR-1, -4 signals positively affect early COX-2 
expression levels and improve long-term outcomes  following 
collagenase infusion- mediated GMH.     
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  Fig. 1    COX-2 expression post-GMH; dose response following PAR-1 
and PAR-4 co- administration; 72 h after collagenase infusion; ( aster-
isk ) <0.05 compared with sham; ( cross ) <0.05 compared with GMH 
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  Fig. 2    Pictographs showing 
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  Fig. 3     Left panel , Neurological 
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 Right panel , T-maze (spontane-
ous alterations) measured 1 
month following collagenase 
infusion; ( asterisk ) <0.05 
compared with sham;  SEM  
standard error of the mean;  n  = 4/
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