
On the Value of Parameters of Use Case Points

Method

Tomas Urbanek, Zdenka Prokopova, and Radek Silhavy

Faculty of Applied Informatics
Tomas Bata University in Zlin

Nad Stranemi 4511
Czech Republic

turbanek@fai.utb.cz

Abstract. Accurate effort estimates plays crucial role in software devel-
opment process. These estimates are used for planning, controlling and
managing resources. This paper deals with the statistical value of Use
Case Points method parameters, while analytical programming for effort
estimation is used. The main question of this paper is : Are there any
parameters in Use Case Points method, which can be omitted from the
calculation and the results will be better? The experimental results show
that this method improving accuracy of Use Case Points method if and
only if UUCW parameter is present in the calculation.

Keywords: analytical programming, differential evolution, use case
points, effort estimation.

1 Introduction

Effort estimation is the activity of predicting the amount of effort that is required
to complete a software development project [1]. Accurate and consistent predic-
tion of effort estimation is a crucial point in project management for effective
planning, monitoring and controlling of software projects. Better management
decisions could be made with more accurate effort estimates. It is also very im-
portant to predict these estimates in the early stages of software development
[2]. Atkinson et al. [3] claims that regression analysis does not provide enough
accuracy. Therefore, the use of artificial intelligence may be a promising way to
improve accuracy of effort estimations.

Attarzadeh et al. [4] declare that effort estimation in software engineering is
divided into two categories.

– Algorithmic methods
– Non-algorithmic methods

Algorithmic methods are based on a mathematical formula and relies on his-
torical datasets. The most famous methods are COCOMO [5], FP [3] and UCP
method [2]. To the second category belong methods like expert judgement and
analogy based methods. The most famous method of this group is Delphi [6].

c© Springer International Publishing Switzerland 2015 309
R. Silhavy et al. (eds.), Artificial Intelligence Perspectives and Applications,
Advances in Intelligent Systems and Computing 347, DOI: 10.1007/978-3-319-18476-0_31

310 T. Urbanek, Z. Prokopova, and R. Silhavy

The quality of software could be reduced, when we underestimate the effort.
This could cause dysfunctional software and raise the cost for testing and main-
tenance [7]. With more accurate effort estimations the management of software
projects could be less challenging [2]. Therefore, we need more accurate predic-
tions to effectively manage software projects [8].

This study offers some important insights into the statistical value of Use Case
Points parameter. No previous study has investigated the importance of param-
eters of the Use Case Points method, while analytical programming method is
used. What is not yet clear is the impact of UUCW parameter of this method.
Therefore, this study makes a major contribution to research on the statisti-
cal value of Use Case Points method parameters, while analytical programming
method is used.

1.1 Related Work

Despite of a lot of effort of scientists, there is no optimal and effective method for
every software project. Very promising way is a research of Kocuganeli et al. [9],
this paper shows, that ensemble of effort estimation methods could provide better
results then a single estimator. Because we need an effort estimate as soon as
possible, there is a strong pressure to predict these estimates after requirements
are built. There is a work of Silhavy et al. [10] which proposed a method for
automatic complexity estimation based on requirements. The work of Kaushik
et al. [8] and Attarzadeh et al. [4] uses neural networks and COCOMO [5] method
for prediction. COCOMO method is widely used for testing and calibrating in
cooperation with artificial intelligence or with fuzzy logic [11]. Neural networks
in these cases search parameters of the regression function. Unlike presented
method, which search for the regression function itself. Differential evolution
and analytical programming are used for this task. Because it is very difficulty
to obtain a reliable dataset in case of Use Case Points method, this paper shows
results on a dataset from Poznan University of Technology [12] and from this
paper [13]. Presented approach is an evolution of my previous work [14], in
this research is used differential evolution instead of self-organizing migration
algorithms.

1.2 Use Case Points Method

This method was presented in 1993 by Gustav Karner. This method is based
on the similar principle as function point method. The project manager have to
estimate project parameters to four tables. These tables are following

– Unadjusted Use Case Weight (UUCW) can be seen in Table 1
– Unadjusted Actor Weight (UAW)can be seen in Table 2
– Technical Complexity Factor (TCF) can be seen in Table 3
– Environmental Complexity Factor (ECF) can be seen in Table 4

On the Value of Parameters of Use Case Points Method 311

Table 1. UCP table for estimation unadjusted use case weight

Use Case
Classification

No. of
Transactions

Weight

Simple 1 to 3 transactions 5

Average 4 to 7 transactions 10

Complex 8 or more transactions 15

Table 2. UCP table for actor classification

Actor
Classification

Weight

Simple 1

Average 2

Complex 3

1.3 Differential Evolution

Differential evolution is a optimization algorithm introduced by Storn and Price
in 1995 [15]. This optimization technique is evolutionary algorithm based on
population, mutation and recombination. Differential evolution is simple to im-
plement and have only four parameters to set. These parameters are Generations,
NP, F and Cr. Parameter Generations determines the number of generations, NP
is population size, parameter F is weighting factor and parameter CR is crossover
probability.[16]

1.4 Analytical Programming

Analytical programming (AP) is a tool for symbolic regression. The core of
analytical programming is a set of functions and operands. These mathematical
objects are used for synthesis a new function. Every function in the set of analyt-
ical programming core has various numbers of parameters. Functions are sorted
by these parameters into general function sets (GFS). For example GFS1par con-
tains functions that have only 1 parameter like sin(), cos() and other functions.
AP must be used with any evolutionary algorithm that consists of a population
of individuals for its run [17] [18]. In this paper is used differential evolution (DE)
as the evolutionary algorithm for analytical programming [15]. The function of
AP is following:

A new individual is generated by evolutionary algorithms. Then this indi-
vidual (the list of integer numbers) is passed to the function of analytical pro-
gramming. These integer numbers serves as an index into the general function
set, where the functions are defined. Then the algorithm of analytical program-
ming creates a new function from these indexes. After that this new function is
evaluated by cost function. The evolutionary algorithm decides either this new
equation is suited or not for the next evolution.

312 T. Urbanek, Z. Prokopova, and R. Silhavy

Table 3. UCP table for technical factor specification

Factor Description Weight

T1 Distributed system 2.0

T2 Response time/performance objectives 1.0

T3 End-user efficiency 1.0

T4 Internal processing complexity 1.0

T5 Code re-usability 1.0

T6 Easy to install 0.5

T7 Easy to use 0.5

T8 Portability to other platforms 2.0

T9 System maintenance 1.0

T10 Concurrent/parallel processing 1.0

T11 Security features 1.0

T12 Access for third parties 1.0

T13 End user training 1.0

Table 4. UCP table for environmental factor specification

Factor Description Weight

E1
Familiarity with development process
used

1.5

E2 Application experience 0.5

E3 Object-oriented experience of team 1.0

E4 Lead analyst capability 0.5

E5 Motivation of the team 1.0

E6 Stability of requirements 2.0

E7 Part-time staff -1.0

E8 Difficult programming language -1.0

2 Problem Definition

Dataset with values of Use Case Points method was obtained from Poznan Uni-
versity of Technology [12] and from this paper [13]. The Table 5 shows Use Case
Points method data from 24 projects. Only data of Use Case Points method
with transitions have been used in this paper in case of Poznan University of
Technology dataset. There are 4 values for each software project UUCW, UAW,
TCF and ECF.

Gustav Karner in his work [2] derived nominal value for calculation of staff/
hours from Use Case Points method. This value was set to 20. Thus, effort
estimate in staff/hours is calculated as

estimate = UCP ∗ 20

Table 5 shows calculated differences. The equation for calculation of MRE is
Equation 1.

On the Value of Parameters of Use Case Points Method 313

Table 5. Data used for effort estimation

ID Act. Effort [h] UCP ∗ 20 MRE [%]

1 3037 2971 2

2 1917 1094 43

3 1173 1531 31

4 742 2103 183

5 614 1257 105

6 492 883 79

7 277 446 61

8 3593 6117 70

9 1681 1599 5

10 1344 1472 10

11 1220 1776 46

12 720 1011 40

13 514 627 22

14 397 1884 375

15 3684 6410 74

16 1980 2711 37

17 3950 6901 75

18 1925 2125 10

19 2175 2692 24

20 2226 2862 29

21 2640 3901 48

22 2568 3216 25

23 3042 5444 79

24 1696 2127 25

MMRE 62

MRE =
|ActualEffort− (UCP ∗ 20)|

ActualEffort
, (1)

where MRE is calculated error for each project in Table 5. Results from MRE
calculation and Equation 2 were used for calculation of MMRE.

MMRE =
1

n

n∑

i=1

MRE , (2)

where MMRE is mean magnitude of relative error through all project in Table
5.

MMRE = 62%

The question is, there is a parameter in this dataset which can be omitted
from calculation and the accuracy of analytical programming method for effort
estimation will show better results.

314 T. Urbanek, Z. Prokopova, and R. Silhavy

Fig. 1. Difference between estimated and real effort

3 Method

From dataset was constructed matrix A. This matrix has size MxN , where
M = 5 and N = 24. Every row of this matrix A contains a calculation of Use
Case Points method and actual effort.

The columns of the matrix A from beginning to end were UUCW, UAW, TCF,
ECF and actual effort. Whole dataset could not be optimized by the evolutionary
algorithm, because no data was remained for testing purposes. Because of this
problem, the matrix A was divided into two matrices. Matrix B is training
dataset and matrix C is testing dataset.

The Matrix B contains 12 rows of data for training purposes and the matrix C
contains 12 rows for testing purposes. The matrix B was processed by analytical
programming with the differential evolution algorithm. The Result of this process
was a new equation. This new equation describes relationships between variables
in training dataset, moreover in testing dataset.

Table 6 shows the set-up of differential evolution. The set-up of differential
evolution is subject of further research.

Table 7 shows the set-up of analytical programming. Number of used function
was set to 30, because we want to find function, which can perform better and
also function complexity is not a problem. There is no need to generate short
and easily memorable equations, but equations, that will be more accurate and
predict effort estimation better. There was chosen linear functions like plus(),
multiply() because there was a possibility that final estimation will be linear,

On the Value of Parameters of Use Case Points Method 315

Table 6. Set-up of differential evolution

Parameter Value

NP 20

Generations 60

F 0.7

Cr 0.7

Table 7. Set-up of analytical programming

Parameter Value

Function number 30

Functions Plus, Subtract,
Divide, Multiply,
Tan, Sin, Cos,
Exp

Table 8. Parameter groups

One parameter Two parameters Three parameters Four parameters

UUCW UUCW,UAW UUCW,UAW,TCF UUCW,UAW,TCF,ECF

UAW UUCW,TCF UUCW,TCF,ECF

TCF UUCW,ECF UUCW,UAW,ECF

ECF UAW,TCF UAW,TCF,ECF

UAW,ECF

TCF,ECF

on the other hand, there was being chosen also functions non-linear because the
data from Poznan university contains strong non-linear behaviour.

3.1 Parameter Groups

Parameters of Use Case Points method were divided into parameter groups.
There were 15 parameter groups and these can be seen in the Table 9. Each of
these groups were calculated by an analytical programming method.

3.2 Cost Function

The new equation that is generated by the method of analytical programming
contains these parameters UUCW, UAW, TCF and ECF. There is no force
applied to analytical programming, that equations generated by this method
have to contain all of these parameters. Cost function that is used for this task
is following:

CF =

n∑

i=1

|Bn,5 − f(Bn,1, Bn,2, . . . , Bn,4)| , (3)

316 T. Urbanek, Z. Prokopova, and R. Silhavy

ECF

TCF

TCF,ECF

UAW

UAW,ECF

UAW,TCF

UAW,TCF,ECF

UUCW

UUCW,ECF

UUCW,TCF

UUCW,TCF,ECF

UUCW,UAW

UUCW,UAW,ECF

UUCW,UAW,TCF

UUCW,UAW,TCF,ECF

10000 20000 30000
Cost function + Test value [staff/hours]

P
ar

am
et

er
 g

ro
up

s
[−

]

Statistical performance of parameter groups

Fig. 2. Statistical performance of each parameter group

where n is equal to the number of projects in training dataset, Bn,5 is actual
effort, Bn,1 is UUCW, Bn,2 is UAW, Bn,3 is TCF, Bn,4 is ECF.

4 Results

It was calculated 100 equations for each parameter group. Each calculation was
generated in approximately 22 seconds. Simple statistical analysis was used to
evaluate these calculations.

The Figure 2 shows the statistical performance of each parameter group. What
is interesting in this data is that the performance of these calculations can be
divided into two groups. The parameter groups which contain UUCW param-
eter, perform better than parameter groups without UUCW parameter. Fur-
ther analysis showed that the best results give parameter groups UUCW,ECF
and UUCW,UAW. On the other hand the worst result gives parameter group
TCF,ECF.

The Figure 3 shows generated data for 15000 equations after removing extreme
values. These extreme values have not been calculated in training data, because
these values have been removed by natural selection of the differential evolution
algorithm. On this figure can be seen a lot of calculations, which have estimation

On the Value of Parameters of Use Case Points Method 317

Fig. 3. Scatter plot of generated data

Table 9. Simple statistical analysis of parameter groups

Parameter group N Minimum Quartile 25 Median Quartile 75 Maximum

UUCW,UAW 100 8704 9439.25 9916.5 13362.00 1000000

UUCW,ECF 100 8750 9474.00 10072.0 12906.00 1000000

UUCW,UAW,ECF 100 8355 9731.00 10115.5 12296.25 1000000

UUCW,UAW,TCF 100 7642 9632.50 10440.5 14325.25 1000000

UUCW,TCF 100 7620 9371.50 10946.0 13262.25 1000000

UUCW,UAW,TCF,ECF 100 7722 9621.50 11630.5 15158.00 1000000

UUCW,TCF,ECF 100 7678 9604.25 12068.5 15525.00 1000000

UUCW 100 8611 9647.50 12551.5 27409.25 1000000

ECF 100 14693 20932.00 21801.5 22644.50 1000000

UAW,ECF 100 14142 21071.75 22919.0 42457.50 1000000

TCF,ECF 100 14433 21632.00 23308.5 27956.75 1000000

UAW,TCF,ECF 100 17327 21009.25 23345.0 55521.25 1000000

TCF 100 14142 21953.00 24351.5 26871.25 1000000

UAW,TCF 100 15804 20498.00 24886.0 48705.00 1000000

UAW 100 20348 22621.00 25537.0 40015.50 1000000

improving parameters. The cluster of calculations near point [5000, 5000] were
the calculation of parameter groups which contained parameter UUCW. And the
cluster of calculation near point [5000,16000] were calculated without UUCW
parameter.

318 T. Urbanek, Z. Prokopova, and R. Silhavy

The Table 9 contains simple statistical analysis for each parameter group. As
can be seen the minimum can be found in UUCW,TCF group. Nevertheless the
median with minimal value can be found in UUCW,UAW parameter group. The
same maximum value in each parameter group means that at least one equation
of 100 calculations of each parameter group contains pathological equation and
value 1000000 is penalization.

5 Conclusion

The main goal of the current study was to determine the statistical value of
Use Case Points method parameters, while the analytical programming method
is used. This study shown that calculation without UUCW parameter results
in significant statistical differences. This finding suggests that in general the
UUCW parameter is the most important parameter in Use Case Points method.
It was also shown that this method could improve estimation with error of
7620 staff/hours in this dataset of 24 software projects. This research extends
our knowledge about significance of the UUCW parameter in Use Case Points
method. Further research might explore the significance of these parameters,
whether some of the projects will be omitted from the calculations.This research
has thrown up many questions in need of further investigation.

Acknowledgement. This study was supported by the internal grant of TBU
in Zlin No. IGA/FAI/2014/019 funded from the resources of specific university
research.

References

1. Keung, J.W.: Theoretical Maximum Prediction Accuracy for Analogy-Based Soft-
ware Cost Estimation. In: 2008 15th Asia-Pacific Software Engineering Conference,
pp. 495–502 (2008)

2. Karner, G.: Resource estimation for objectory projects. Objective Systems SF AB
(1993)

3. Atkinson, K., Shepperd, M.: Using Function Points to Find Cost Analogies. In: 5th
European Software Cost Modelling Meeting, Ivrea, Italy, pp. 1–5 (1994)

4. Attarzadeh, I., Ow, S.H.: Software development cost and time forecasting using a
high performance artificial neural network model. In: Chen, R. (ed.) ICICIS 2011
Part I. CCIS, vol. 134, pp. 18–26. Springer, Heidelberg (2011)

5. Boehm, B.W.: Software Engineering Economics. IEEE Transactions on Software
Engineering SE-10, 4–21 (1984)

6. Rowe, G., Wright, G.: The Delphi technique as a forecasting tool: issues and anal-
ysis. International Journal of Forecasting 15, 353–375 (1999)

7. Jiang, Z., Naudé, P., Jiang, B.: The effects of software size on development effort
and software quality. Journal of Computer and Information Science, 492–496 (2007)

8. Kaushik, A., Soni, K., Soni, R.: An adaptive learning approach to software cost
estimation. In: 2012 National Conference on Computing and Communication Sys-
tems, pp. 1–6 (November 2012)

On the Value of Parameters of Use Case Points Method 319

9. Kocaguneli, E., Menzies, T., Keung, J.W.: On the value of ensemble effort estima-
tion. IEEE Transactions on Software Engineering 38(6), 1403–1416 (2011)

10. Silhavy, R., Silhavy, P., Prokopova, Z.: Automatic complexity estimation based on
requirements. In: Latest Trends on Systems, Santorini, Greece, vol. II, p. 4 (2014)

11. Reddy, C., Raju, K.: Improving the accuracy of effort estimation through fuzzy
set combination of size and cost drivers. WSEAS Transactions on Computers 8(6),
926–936 (2009)

12. Ochodek, M., Nawrocki, J., Kwarciak, K.: Simplifying effort estimation based on
Use Case Points. Information and Software Technology 53, 200–213 (2011)

13. Subriadi, A.P., Ningrum, P.A.: Critical review of the effort rate value in use case
point method for estimating software development effort. Journal of Theroretical
and Applied Information Technology 59(3), 735–744 (2014)

14. Urbanek, T., Prokopova, Z., Silhavy, R., Sehnalek, S.: Using Analytical Program-
ming and UCP Method for Effort Estimation. In: Modern Trends and Techniques
in Computer Science. Springer International Publishing (2014)

15. Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme
for global optimization over continuous spaces. Technical Report TR-95-012 (1995)

16. Storn, R.: On the usage of differential evolution for function optimization. In: Fuzzy
Information Processing Society, NAFIPS (1996)

17. Zelinka, I., Davendra, D., Senkerik, R., Jasek, R., Oplatkova, Z.: Analytical
programming-a novel approach for evolutionary synthesis of symbolic structures.
InTech, Rijeka (2011)

18. Zelinka, I., Oplatkova, Z., Nolle, L.: Analytic programming-symbolic regression by
means of arbitrary evolutionary algorithms. Int. J. of Simulation, Systems, . . . 6
(2005)

	On the Value of Parameters of Use Case PointsMethod
	1 Introduction
	1.1 Related Work
	1.2 Use Case Points Method
	1.3 Differential Evolution
	1.4 Analytical Programming

	2 Problem Definition
	3 Method
	3.1 Parameter Groups
	3.2 Cost Function

	4 Results
	5 Conclusion
	References

