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franklin.johnson@upla.cl
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Abstract. This research present an applied case of the resolution of a
timetabling problem called the University course Timetabling problem
(UCTP), the resolution technique used is based in Ant Colony Optimiza-
tion metaheuristic. Ant Colony Optimization is a Swarm Intelligence
technique which inspired from the foraging behavior of real ant colonies.
We propose a framework to solve the University course Timetabling prob-
lem effectively. We show the problem and the resolution design using
this framework. First we tested our proposal with some competition in-
stances, and then compare our results with other techniques. The results
show that our proposal is feasible and competitive with other techniques.
To evaluate this framework in practice way, we build a real instance using
the case of the school of Computer Science Engineering of the Pontifi-
cal Catholic University of Valparáıso and the Department of Computer
Engineering at Playa Ancha University.

Keywords: Ant Colony Optimization, Swarm Intelligence, University
Course Timetabling Problem.

1 Introduction

The timetabling problems are commonly faced by many institutions as schools
and universities. The basic problem is defined as a set of events that must be
assigned to a set of timeslot of a way that all the students can attend to all of
their respective events. With the reservation of which hard constraints neces-
sarily must be satisfied, and soft constraints that deteriorate the quality of the
generated timetabling. Of course, the difficulty can vary in any particular case of
the UCTP. [10]. The problem difficulty depends on many factors and in addition
the assignment of rooms makes the problem more difficult. Many techniques have
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been used in the resolution of this problem. We can find evolutionary algorithms,
tabu-search, constraint programming and genetic algorithms [2]. We present the
resolution using an Ant Colony Optimization (ACO) algorithm through the im-
plementation of Hypercube framework (HC). ACO is a Swarm Intelligence tech-
nique which inspired from the foraging behavior of real ant colonies. The artificial
ants seek the solutions according to a constructive procedure as described in [9].
This ACO exploits an optimization mechanism for solving discrete optimization
problems in various engineering domain [8]. We establish the representation for
the problem to be solved with ACO, generating an appropriate construction
graph and the respective pheromone matrix associated. In the following sections
we present the UCTP problem, and the ACO Metaheuristic. Later we present
the experimental results. Finally the conclusions of the work appear.

2 University Course Timetabling Problem

The UCTP is an adaptation of an original timetabling problem presented initially
by Paechter in [13,12]. It consists of a set of events E and must be scheduled in
a set of timeslots T = {t1, ..., tk} (k = 45, they correspond to 5 days of 9 hours
each), a set of rooms R in which the events will have effect, a set of students
S who attend the events, and a set of features F required by the events and
satisfied by the rooms. Each student attends a number of events and each room
has a maximum capacity.

We present below a mathematical formulation of the problem. The simplest
formula for this problem can be described as a problem of binary integer pro-
gramming numbers in which the variable Xij = 1 if course i is assigned to the
classroom j is equal to 0 otherwise . The time in which a classroom can take in
a day is divided into k periods:

m∑

i=1

n∑

j=1

cijxij (1)

n∑

j=1

xij = 1, ∀i (2)

n∑

i∈Pk

xij ≤ 1, ∀i, ∀k (3)

xij ∈ {0, 1}∀i∀j (4)

where Pk is the set of all courses offered in the period k, and Cij is the cost
of assigning the course i to the classroom j. The first constraint ensures that
each course is assigned to one classroom. The second in a given period, in most
courses offered i during the period k is assigned to each classroom. Implicitly
each course is assigned to an only classroom.
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A feasible timetable is one in which all the events have been assigned to a
timeslot and a room so that the following hard constraints H[1-3] and soft
constraints S[1-3] are satisfied.

• H1: No student attends more than one event at the same time.
• H2: The rooms must be sufficiently great for all students who attend a class
and to satisfy all the features required by the event.

• H3: Only one event per each room at any timeslot.

In addition, all possible generated timetables are penalized for the number of
soft constraint violated. these constrint appear next:

• S1: A student has a class in the last slot of the day.
• S2: A student has more than two classes in a row.
• S3: A student has exactly one class on a day.

Feasible solutions are always considered to be superior to infeasible solutions,
independently of the numbers of soft constraint violations (SCV). One feasible
solution is better than another, if it minimizes the SCV.

3 Framework for UCTP

According to the constraints presented in the previous section and the charac-
teristics of the problem, we can now consider the option to design an effective
scheme for the UCTP. We have to decide how to transform the assignment prob-
lem (to assign events to timeslots) into an optimal path problem which the ants
can solve [3] and then optimize the problem.

We propose the following: an instance of the problem is received as input, then
it assigned events to a timeslot, later a matching algorithm [14,11] is used for
makes the assignation from rooms to each one of events associated to timeslot.
In this point a solution is complete, but a low quality one. Then a local search
algorithm [4] is applied that improves the quality of the solution and gives as
final optimized result

3.1 Using Max-Min Ant System

Ant colony optimization is a metaheuristic algorithm based on a graph repre-
sentation in which a colony of artificial ants cooperate in finding good solutions
to discrete optimization problems [9]. The ants travel through the construction
graph starting from an initial point and selecting the nodes which travel ac-
cording to a probability function that is given by the pheromone and heuristic
information of the problems.

We choose the Max-Min Ant System (MMAS) algorithm to solve the UCTP.
The Max-Min Ant System is one of the best performing ACO algorithms [16].
MMAS can easily be extended by adding local search algorithms.

Contruction Graph: One of the main elements of the ACO metaheuristic
is to model the problem on a construction graph [7,5], that way a trajectory
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through the graph which represents a problem solution. In this formulation of
the UCTP is required to assign each one of |E| events to |T | timeslots. Where
direct representations of the construction graph is given by E × T ; given this
graph we can then establish that the ants travel throughout a list of events
choosing timeslot for each event. The ants follow one list of events. For each
event, the ants decide timeslot t, each event is a single time in a timeslot, thus
in each step an ant chooses any possible transition as showed in figure 1.

start end 

e1 e2 eE 

t1 
...... 

...... 

...... 

...... 

...... 

...... 

t2 

tT 

Fig. 1. Construction graph: For each event e, the ant chooses a timeslot t

Now we present the probabilistic function. This function adapting to MMAS
according to HC and allows the ants travel through the construction graph se-
lecting a path. We use the probability function, defined in [7]. This function
directly depends on the pheromone information τ , and the importance is deter-
minate for the parameter α, and the heuristic information η is determinate for
β, for the possible path for a k ant.

pkij =
[τij ]

α
[ηij ]

β

∑T
l=0 [τil]

α
[ηil]

β
, j ∈ {1, ..., T } (5)

The pheromone matrix represents the pheromones in the path where the ants
travels, and indicates the absolute position where the events must be placed.
With this representation the pheromone matrix the pheromone does not depend
on the partial assignments.

Heuristic Information and Pheromone Update: We define as heuristic
information a function that calculates a weighted sum of a set of the soft and
hard constrains in each assignation. This function has a high computational
cost [14]. In the hypercube framework the pheromone trails are forced to stay in
the interval [0, 1]. We represent computationally the evaporation of pheromone
and in addition the amount of pheromone in the best ant path through the graph,
once is completed a tour. The pheromone update rule for MMAS to UCTP is as
follows:

τij = ρτij + (1 − ρ)Δτkbest (6)

where ρ is a rate of evaporation ρ ∈ ]0, 1]. And Δτ it is associated with quality
of the current solution of ant kbest. We can use an updating pheromone strategy
considering the quality of timetabling solution:
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Δτkbest =
1

fitnessfunction(kbest)
(7)

where fitnessfunction determines the quality of the solution of kbest ant, ac-
cording to the SCV.

3.2 UCTP-MMAS Algorithm

The general structure of the algorithm is presented, in which some modifications
added to the ones presented in [14,16]. A new assignation values to τmax,τmin,
a new pheromone update rules.

Algorithm 1. UCTP-MMAS Algorithm

1: Input: Problem Instance I
2: initialize feromone values τmax and τmin

3: calculate dependencies between events ei, i ∈ {1, ..., E}
4: sort Events according dependencies
5: repeat
6: for a = 1 to m do
7: construction process of ant a
8: for i = 1 to |E| do
9: chooser timeslots tj according to probabilities pi,j for de event ei
10: storing partial route for ka ant
11: end for
12: apply matching algorithm for assign rooms
13: select the best solution for iteration
14: end for
15: applying local serach to best solution according to the fitness
16: select the best global solution
17: apply pheromone update for kbest ant
18: until the termination condition is satisfied (iterations or time)
19: Output: An optimized solution for I

Only the solution that causes the fewest number of hard constraint violations
is selected for improvement by the Local Search. The pheromone matrix is up-
dated only once by each iteration, and the global best (kbest) solution is used
for the update. The description is illustrated in algorithm 1. This algorithm use
it a matching function to associate events with rooms. To optimize the solution
uses 1OPT, 2OPT and 3OPT Local Search algorithm [1].

4 Comparisons

The algorithm was implemented and submitted to a series of tests. The behavior
of the proposed framework was observed in the resolution of the UCTP.
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Instances of the UCTP are structured using a generator1. This generator al-
lows generating classes of small,medium instances which reflect varied timetabling
problems. In addition it was used a series of 20 instances created for International
TimetablingCompetition2, these instances aremadewith the same generator.The
instances with different parameters are presented in the following table.

Table 1. Parameter for the small and medium instances

Parameter small medium

Number of events 100 400
Number of rooms 5 10
Number of features 5 5
Features by room 3 3
Usage percentage 70 80

Number of students 80 200
Events Maximum for students 20 20
Maximum students per event 20 20

We firstly studied the best parameters configuration using the small instances.
The UCTP-MMAS was tested without local search, making an evaluations with
different ants numbersm and with different evaporations factors ρ, the parameters
of α= 1, number on attempts = 10 and a maximum time by attempt = 90 seconds
for all the tests. The results are in table 2:

Table 2. Evaluation of parameters m and ρ using small1.tim

Parameter m ρ

Values 5 10 20 0.2 0.5 0.8
SCV 17 16 16 15 13 17

Seconds 6.79 7.46 6.06 7.11 8.1 6.79

According to table 2, we observe that the best results are obtained using the
parameter m = 20, obtaining an evaluation of 16 in 6.06 seconds. And for the
case of evaporation factor, the best value is ρ = 0,5 in 8.1 seconds.

4.1 Comparative Results

Table 3 presents comparative results between the solutions obtained for different
instances3 the UCTP solved with different techniques such as Simulated anneal-
ing (SA), Advanced Search (AS) and Simulated Annealing with Local Search
(SA-LS). These algorithms are compared according to SCV.

1 http://www.dcs.napier.ac.uk/~benp
2 http://www.or.ms.unimelb.edu.au/timetabling
3 http://www.idsia.ch/Files/ttcomp2002/

http://www.dcs.napier.ac.uk/~benp
http://www.or.ms.unimelb.edu.au/timetabling
http://www.idsia.ch/Files/ttcomp2002/
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Table 3. Number of SCV obtained with International Timetabling Competition in-
stances

Algorithm com01 com02 com03 com04 com05 com06 com07 com08 com09 com10

SA 45 25 65 115 102 13 44 29 17 61
AS 257 112 266 441 299 209 99 194 175 308

SA-LS 211 128 213 408 312 169 281 214 164 222
UCTP-MMAS 240 133 204 426 406 179 261 204 157 263

Algorithm com11 com12 com13 com14 com15 com16 com17 com18 com19 com20

SA 44 107 78 52 24 22 86 31 44 7
AS 273 242 364 156 95 171 148 117 414 113

SA-LS 196 282 315 345 185 185 409 153 281 106
UCTP-MMAS 268 212 341 329 172 234 371 124 245 101

For these instances and compared with the other solutions, the UCTP-MMAS
presents two characteristics to evaluate. First, it has the capacity to generate fea-
sible solutions for these instances. These instances are difficult because they are
from competitions Timetabling. Second, the quality of the generated solutions
is very low compared with to Simulated Annealing, which has the best found
historical results for these instances, but in comparison with the other instances
it does not present great difference. It is not possible to decide if a technique is
better than other, since the differences in results can be explained by different
external agent.

Table 4 presents the comparison for the small and medium instances for the
algorithm for UCTP with HC and local search (UCTP-MMAS) and MMAS pure
(MMAS-p).

Table 4. It present the SCV obtained with small and medium instances for UCTP-
MMAS and MMAS-p

Algorithm small1 small2 small3 medium1 medium2

UCTP-MMAS 0 4 1 138 186

MMAS-p 3 6 3 152 250

We can observe for these instances that the UCTP-MMAS present a superi-
ority in the quality of the generated solutions (smaller SCV). We can say the our
proposed improves the quality of the ant algorithm applied. Table 5 presents the
comparison with other ACO algorithm such as Ant Colony System algorithm
of Krzysztof Socha (ACS) and to algorithm based on Random Restart Local
Search (RRLS).

According to the results of UCTP-MMAS performs better than the other
algorithms for small and medium instances, improving in all tested instances.
only in the medium2 instance was surpassed by ACS.
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Table 5. Results obtained with small and medium instances

Algorithm small1 small2 small3 medium1 medium2

UCTP-MMAS 0 4 1 138 186

ACS 1 3 1 195 184

RRLS 11 8 11 199 202

4.2 Practical Case

To test this project on a practice way, we implement a the UCTP-MMAS with
2 real cases. We created an instance of the Pontificia Universidad Católica de
Valparáıso (PUCV) and specifically for the school of Informatics Engineering.
We implemented a tool in C language, to enter the courses, semester, assistants
and assistantship, and indicate the times to the week that are dictated and
his characteristics. In addition the number of rooms and their characteristics
are entered to him. The system generates an instance introducing a factor of
correlation between the events, generated an instance with the same format as
competition instances. Stored this information, the algorithm is ready to be used.
Table 6 presents the characteristics for the PUCV instance.

Table 6. Characteristics of UCV instance

Characteristic value

Rooms and lab 9

Events 194

Total Attending 600

Features 5

maximum events by student 8

maximum students by event 20-45

Before using the instance it was necessary to correct some parameters of the
algorithm implemented, since for the instance of PUCV the number of timeslot
that they are used are 40 and not 45 like for other problems of the UCTP. In
addition we create an adaptation to the soft constraint.

The instance was executed using a number of ants m= 20, evaporation factor
ρ= 0.5. Time to local search 100 seconds, total time by reboots = 900 seconds,
number of reboots = 10. The best solution was obtained approximately in 600
seconds with an evaluation of SCV = 0, which implies that the algorithm gen-
erated a complete timetable feasible and with the best possible quality.

For the quality of the obtained solution, it can be inferred that the generated
instance that simulate the hour load of a semester of the school of computer
science engineering had a low degree of correlation between courses of different
semesters, thus a high performance solution was obtained.
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We also implemented a real instance of Universidad de Playa Ancha (UPLA).
This instance has 40 timeslots and their characteristics are presented in table 7:

Table 7. UPLA instance characteristic

Characteristic value

Rooms and lab 22

Events 112

Total Attending 154

Features 5

maximum events by student 8

maximum students by event 40

The instance was executed using a number of ants m= 15, evaporation factor
ρ= 0.01, total time by reboots = 600 seconds, number of reboots = 2. The best
solution was obtained approximately to the 270 seconds with an evaluation of
SCV = 0, which implies that the algorithm generated a feasible solution. This
occurs because the instance is very simple, given the high number of rooms
available, the few events to program and the low number of attendants.

5 Conclusion

In this research we have presented a formal model in order to apply the Hy-
percube framework to solve the University course timetabling problem (UCTP)
making use of Max-Min Ant System, an efficient model was generated to solve in-
stances of this problem creating good construction graph and a good pheromone
matrix. We presented the test result made for the UCTP-MMAS. We observed
that the UCTP-MMAS presented good results for instances of small and medium.
Although the results were of low quality for the instances of the competition, we
emphasize the fact that our approach always generates feasible solutions and for
instances of normal difficulty have a good evaluation. We applied our algorithm
to solve a real instance to the school of Computer Science of the PUCV and
UPLA, for which created a feasible solution, this validates the use of a technique
useful in real applications. As future work, we hope to improve the proposed
algorithm and develop a suitable interface to apply the algorithm to other real
instances and integrate the constraints of teachers in future instances. In addition
we will try to integrate our algorithm with Autonomous Search [15,6].
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