
A Task Management in the Intranet Grid

Petr Lukasik and Martin Sysel

Department of Computer and Communication Systems
Faculty of Applied Informatics
Tomas Bata University in Zlin

nam. T.G. Masaryka 5555, 760 01 Zlin
CZECH REPUBLIC

plukasik@tajmac-zps.cz, sysel@fai.utb.cz

http://www.fai.utb.cz

Abstract. The main purpose of this work is to explain the management
and distribution of tasks in a grid middleware. The aim is to propose an
environment that enables designing the batch jobs that use the standard
software and system resources for communication and data exchange.
The article explains JSDL specification for defining and management of
one batch jobs. The motivation is to design a tool for an easy job def-
inition. The result is a tool that does not require special programming
objects for solving a specific task. This work deals with the mechanisms
for monitoring and gathering information about the result of each pro-
cessing task. The JSDL definitions provide the mechanism for the solu-
tion of these problems. Grid Scheduler more easily recognizes the status
of a specific task.

Keywords: Grid, JSDL, POSIX, fault tolerance, return code.

1 Introduction

Planning and distribution of tasks are essential elements of a grid services. A tool
that allows easy definition of the role and its distribution in the environment is a
prerequisite for high-quality and user-acceptable Grid Services. The user should
have a freedom as well as resources to easily tracking of their own processing.
An important feature is that the Grid service has the least restrictive conditions
for a successful job execution. (Type or version of software, operating system
and hardware features). The user of the grid should to have a certain freedom.
Not to be tied up of restrictive rules, except the rules relating to information
security and data processing. The POSIX interface provides extensive options in
the use of standard programs for communication and distribution of batch job.
It also provides excellent portability of applications in various types of operating
systems. This feature is convenient for defining the tasks in a grid.

2 The Job Distribution in a Grid Environment

JSDL (Job Submission Definition Language) is an XML-based computational
specification for the management and distribution of batch jobs in a Grid

c© Springer International Publishing Switzerland 2015 77
R. Silhavy et al. (eds.), Software Engineering in Intelligent Systems,
Advances in Intelligent Systems and Computing 349, DOI: 10.1007/978-3-319-18473-9_8

http://www.fai.utb.cz


78 P. Lukasik and M. Sysel

environment, developed by OGF JSDL-WG [1][2][3]. A current version 1.0 (re-
leased November 7, 2005) has also the definition of the POSIX support. This
allows implementing the requirements described above. Important is Open Grid
Forum support. JSDL should be considered as a standard [6].

The life cycle of the task instance represents the current state of the program
which is currently executed (or pending to be executed). Each instance of the job
it has a direct impact on the overall result. Status of the tasks that provides the
Grid client is very important for the scheduler. The scheduler is responsible for
the successful solution of the assigned task. Whereas it applies that in a number
of fault conditions, this information is not delivered to the planners [5].

The same mechanism of the lifecycle also applies to the run of the whole
batch job. Failure of a single part means a bad result of the entire job. The
grid scheduler has to keep track of each state of all processed instances of the
job. Scheduler based only on all available information, can successfully manage
the processing tasks and to resolve error conditions. The states that can occur
in the life cycle flow of the job are described in the fig.[1]. The task progress
can take three states. These states can be categorized into two groups. The first
group is the state when the task will return result of the processing (correct or
incorrect).In the second group, cannot send a return value. Example is violent
interruption of the task or power failure in the some parts of the infrastructure.

Fig. 1. Task and return code management

Grid scheduler has to solve the state, if the work cannot send a return value.
The principle is as follows. Scheduler receives information about the interruption
of the communication channel. If this information is not available, the planner
has to monitor timeout, which is set as a parameter to the task, which is cur-
rently running. After a timeout, the task instance is declared as lost. This means



A Task Management in the Intranet Grid 79

that an instance of task must be rescheduled again and sent back to the process-
ing. To specify a timeout value is relatively difficult. Usually effective processing
length, from which the value can be inferred is not known. Correct timeout can
be specified based on some experience with specific job. There is, of course, pos-
sibility that the problem causes the task, currently running that do not have
correctly handled error conditions (memory leak, divide zero). This task can
crash the entire grid infrastructure. Therefore, the grid scheduler must solve this
situation as well, according to predetermined rules. Job Submission Definition
Language includes support that allows you to define ranges of computing re-
sources (length of treatment, number of running threads, disk space). The task
does not run if any of the parameters is exceeded. You can also define rules for
communication with Grid scheduler while processing the return codes and rules
in case of failure of one of the running instances.

Fig. 2. Lifecycle of the job and task

3 The Standard Programs for Communication and Task
Distribution

POSIX interface and its features are used for the distribution of tasks, data
transfer and communication between the various components in the grid. This
interface provides portability of program objects and commands on the system
console. This allows the use of existing software. Grid user therefore does not
need to write a special programs or objects to solve their task and enables the use
of standard software (Python interpret, Mathworks, Scilab). The advantage is a
choice of suitable existing components and using the standard and well-known
user environment. See fig.[2].



80 P. Lukasik and M. Sysel

This solution is a perspective in the local environment, such as on the uni-
versity or corporate grid, which guarantee a certain standardization of software
and system tools. The example below defines this job. Service wget retrieves
data from various data repositories (http). The GnuPlot program generates a
graph. The result is sent to the user via email. The return value is sent to the
grid scheduler using the Web services or the Intranet Grid services fig.[3]. This
particular example shows that the task does not require special software, but
will allow the user to utilize the standard software. The JSDL has a definition for
single-program-multiple-data (SPMD) parallel techniques. This extension sup-
ports various MPI environments. (MPI, GridMPI, Torch / MPI, MPICH). Pa-
rameter Sweep definition to the JSDL is also available for a parallel tasks. This
extension defines rule to explicitly submitting various number of individual tasks
of the same base job template. One definition allows generating a large number
of parallel executable tasks [4].

<jsdl_job1>

 ...

</jsdl_job1>

<jsdl_jobN>

 ...

</jsdl_jobN>

Fig. 3. Management of return values

4 Principles for Resolving of the Error States

The weak part in communication of the grid scheduler and grid agents is a
violent termination of the currentl running job. Fatal error of the application
causes a loss of information about the job. Grid scheduler does not get back
information about this error. Fault Tolerance subsystem and its properties has
a major impact on the reliability of the entire grid services. The challenge is to
increase tolerance to the system failures, and recognize various error scenarios.
Based on the information available, choose the correct recovery procedure. JSDL
specification enables the user to define some limit values. This increases the
intelligence of the system and also allows to better evaluating error conditions.



A Task Management in the Intranet Grid 81

The basic limit values of the batch jobs is memory size, file size, number of
threads and maximum run time. Exceeding some of the limit values indicates
incorrect job status. Type of the limit value that was exceeded, allows solve to
better the error status of the job. For example, invoke the rollback or send a job
to the processing again.

5 Tools for the JSDL Support

G-Eclipse Plugin extends the Eclipse Project eclipse.org and provides support
for Grid services. This environment provides services independent of a specific
grid middleware. Plugin architecture enables developers to extend the g-Eclipse
on a new feature. Example is integration of another middleware. Support for the
gLite and GRIA middleware is also completed [6].

5.1 g-Eclipse - Support for Users

– Grid user: Has no detailed knowledge of Grid technologies. Allows you to
run and monitor the progress of a job.

– Grid operator: Has a detailed knowledge of the Grid infrastructure. Oper-
ator has support for the management of local resources, and also supports
external resources so called virtual organizations, where operators are the
members.

– Development engineer: Expert on programming in the Grid applications.
Developer has tools to develop, debug and deploy the application. Graphical
editor for generating JSDL file is also available. Editor supports POSIX and
Parameter Sweep extension.

5.2 A Program for the JSDL Parsing

The parser was designed for the Intranet Grid Middleware[7]. We use the Apache
XMLBeans library and DOM model. The DOM advantage is parsing of XML
document in the memory - no I/O operation is required. The aim was to deter-
mine the performance of the parser.

It has been shown the low requirements of the JSDL tools to system resources.
Two types of tasks were measured. The simple Sweep-loop in the first task, (see
the fig.[4] sweep(1) label) and the triple Sweep-loop in the second task, (fig.[4]
sweep(3) label). There were generated the scripts in the number from one to
10000. Five measurements were performed for each job, and was carried out on
two systems with different performance. It was verified by the linear increase of
the time and a low system load, inspite of the XML based JSDL. In the fig.[4] is
only average value presented. Detail of the measurement is in the 1 presented.

eclipse.org


82 P. Lukasik and M. Sysel

Table 1. Results for the sweep loop (1) and sweep loop (3)

sweep(1) M420
number of the jobs time[s]

1 0.555 0.555 0.554 0.557 0.558
2 0.559 0.558 0.564 0.559 0.560
5 0.537 0.533 0.536 0.536 0.537

27 0.606 0.606 0.608 0.604 0.606
256 0.842 0.830 0.810 0.828 0.819

2000 2.067 2.070 2.142 2.056 2.030
13824 9.218 9.088 9.209 9.233 9.177

sweep(3) M420
number of the jobs time[s]

1 0.553 0.559 0.550 0.548 0.548
10 0.559 0.557 0.600 0.556 0.566

100 0.672 0.661 0.679 0.676 0.706
1000 1.445 1.425 1.404 1.454 1.489

10000 7.412 7.524 7.438 7.501 7.625

sweep(1) T1700
number of the jobs time[s]

1 0.156 0.155 0.158 0.157 0.156
2 0.160 0.160 0.175 0.158 0.156
5 0.149 0.152 0.150 0.151 0.151

27 0.168 0.170 0.170 0.170 0.170
256 0.233 0.230 0.228 0.228 0.226

2000 0.595 0.552 0.571 0.539 0.482
13824 2.613 2.355 2.591 2.546 2.482

sweep(3) T1700
number of the jobs time[s]

1 0.155 0.152 0.155 0.156 0.151
10 0.158 0.158 0.158 0.157 0.157

100 0.197 0.193 0.193 0.191 0.190
1000 0.457 0.497 0.483 0.506 0.455

10000 2.534 2.607 2.504 2.590 2.493

5.3 The XML Schema of the Sweep(1) Loop

<!-- SWEEP(1) - job_NNNNNN.sh -->

<!-- LEVEL1.1 -->

<sweep:Sweep>

<sweep:Assignment>

.

</sweep:Assignment>

</sweep:Sweep>



A Task Management in the Intranet Grid 83

5.4 The XML Schema of the Sweep(3) Loop

<!-- SWEEP(3) - job_XXYYXX.sh -->

<!-- LEVEL1.1 -->

<sweep:Sweep>

<sweep:Assignment>

.

</sweep:Assignment>

<!-- LEVEL2.1 -->

<sweep:Sweep>

<sweep:Assignment>

.

</sweep:Assignment>

<!-- LEVEL3.1 -->

<sweep:Sweep>

<sweep:Assignment>

.

</sweep:Assignment>

</sweep:Sweep>

</sweep:Sweep>

</sweep:Sweep>

6 Result

The text describes the use of JSDL generator as a batch jobs. The primary
objective was to take maximum advantage of the standard and existing software
and system services. This allows the user, to be more creative in the design of
task. At the first glance, it may also appear that JSDL brings some complications

0

10

20

30

40

50

60

70

80

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05

ti
m

e
[s

]

Number of jobs (log[n])

JSDL - performance of the script generator

Legend
sweep(1) M420
sweep(3) M420

sweep(1) T1700
sweep(3) T1700

Fig. 4. Sweep parm and system load



84 P. Lukasik and M. Sysel

Table 2. A list of workstations where measurements were made

A List the hardware where it has been JSDL parser tested

1 DELL T1700 64 bits
Memory 16GB RAM
CPU Intel(R) Xeon(R) CPU E31225 @ 3.10GHz 64 bits
OS Ubuntu 14.4 LTS
Java OpenJDK 1.7

2 Fujitsu Siemens Celsius M420 32 bits
Memory 1.96 GB RAM
CPU Intel(R) CPU E 6750 @ 2.66GHz 32 bits
OS Ubuntu 12.4. LTS
Java OpenJDK 1.6

(XML parser, job generator). The advantage is obvious when it is necessary to
generate and manage thousands of concurrent instances of a single task.

Another direction for development of intranet grid middleware will be design
and use of JSDL for applications in the Apache Hadoop cloud. Hadoop is the
executive and promising platform. Problem of forcibly terminated task is solved
by using redundant processes.

7 Conclusion

This work is focused on the job definition in Grid computing environment. The
Grid usually have a large amount of heterogeneous sources that have many differ-
ent configuration and many different internal rules. JSDL has a set of instructions
that unify these rules. JSDL has the tools, for example G-Eclipse Plugin that
facilitate definition of the tasks. Users do not to have detailed JSDL knowledge.
Measurements that have been made not demonstrated great demands on the
computing performance of the parser. The advantage JSDL is easy definition
of parallel tasks. Parameter sweep easily defines the number of jobs and their
identification.

Comparing JSDL and similar technologies, which are used to define the job
in grid computing, for example JDL (Job Definition Language), we came to this
conclusion. JSDL is suitable for the commercial applications that require easy
design and definition of the task.

JDL is a Python-based language for describing jobs.[9] It requires an experi-
enced user. Provides more possibilities for the definition of the job. Deployment
JDL is preferable in the research centres or universities.



A Task Management in the Intranet Grid 85

References

1. Anjomshoaa, A., Brisard, F., Drescher, M., Fellows, D., Ly, A., McGough, S., Pul-
sipher, D., Savva, A.: GFD-R.136 Job Submission Description Language (JSDL)
Specification (July 28, 2008), http://forge.gridforum.org/projects/jsdl-wg,
Copyright (C) Open Grid Forum (2003-2005, 2007-2008). All Rights Reserved

2. Humphrey, M., Smith, C., Theimer, M., Wasson, G.: JSDL HPC Profile Application
Extension, Version 1.0 (July 14, 2006) (Updated: October 2, 2006) Copyright Open
Grid Forum (2006-2007). All Rights Reserved

3. Drescher, M., Anjomshoaa, A., Williams, G., Meredith, D.: JSDL Parameter Sweep
Job Extension Copyright c© Open Grid Forum 2006–2009. All Rights Reserved (May
12, 2009)

4. Savva, A.: JSDL SPMD Application Extension, Version 1.0 (draft 008) Copyright
Open Grid Forum (2006, 2007). All Rights Reserved

5. Theimer, M., Smith, C.: An Extensible Job Submission Design May 5, 2006 Copy-
right (C) Global Grid Forum (2006). All rights reserved, Copyright (C) 2006 by
Microsoft Corporation and Platform Computing Corporation All rights reserved

6. Bylec, K., Mueller, S., Pabis, M., Wojtysiak, M., Wolniewicz, P.: Parametric Jobs
– Facilitation of Instrument Elements Usage In Grid Applications. In: Remote In-
strumentation Services on the e-Infrastructure. Springer US (2011),
http://dx.doi.org/10.1007/978-1-4419-5574-62 , 978-1-4419-5573-9

7. Lukasik, P., Sysel, M.: An Intranet Grid Computing Tool for Optimizing Server
Loads. In: Silhavy, R., Senkerik, R., Oplatkova, Z.K., Silhavy, P., Prokopova, Z.
(eds.) Modern Trends and Techniques in Computer Science. AISC, vol. 285, pp.
467–474. Springer, Heidelberg (2014)

8. Rodero, I., Guim, F., Corbalan, J., Labarta, J.: How the JSDL can exploit the
parallelism? In: Sixth IEEE International Symposium on Cluster Computing and
the Grid, CCGRID 2006, May 16-19, vol. 1, pp. 275–282 (2006),
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=

&arnumber=1630829&isnumber=34197, doi:10.1109/CCGRID.2006.55
9. Developer Guide and Reference, Novell R© PlateSpin Orchestrate 2.0.2 (July 9,

2009), https://www.netiq.com/documentation/pso_orchestrate25/

http://forge.gridforum.org/projects/jsdl-wg
http://dx.doi.org/10.1007/978-1-4419-5574-62
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1630829&isnumber=34197
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1630829&isnumber=34197
https://www.netiq.com/documentation/pso_orchestrate25/

	A Task Management in the Intranet Grid
	1Introduction
	2The Job Distribution in a Grid Environment
	3The Standard Programs for Communication and Task Distribution
	4Principles for Resolving of the Error States
	5Tools for the JSDL Support
	5.1g-Eclipse - Support for Users
	5.2A Program for the JSDL Parsing
	5.3The XML Schema of the Sweep(1) Loop
	5.4The XML Schema of the Sweep(3) Loop

	6Result
	7Conclusion




