
123

Hannes Federrath
Dieter Gollmann

(Eds.)

30th IFIP TC 11 International Conference, SEC 2015
Hamburg, Germany, May 26–28, 2015
Proceedings

ICT Systems Security
and Privacy Protection

IFIP AICT 455

IFIP Advances in Information
and Communication Technology 455

Editor-in-Chief

Kai Rannenberg, Goethe University Frankfurt, Germany

Editorial Board

Foundation of Computer Science
Jacques Sakarovitch, Télécom ParisTech, France

Software: Theory and Practice
Michael Goedicke, University of Duisburg-Essen, Germany

Education
Arthur Tatnall, Victoria University, Melbourne, Australia

Information Technology Applications
Erich J. Neuhold, University of Vienna, Austria

Communication Systems
Aiko Pras, University of Twente, Enschede, The Netherlands

System Modeling and Optimization
Fredi Tröltzsch, TU Berlin, Germany

Information Systems
Jan Pries-Heje, Roskilde University, Denmark

ICT and Society
Diane Whitehouse, The Castlegate Consultancy, Malton, UK

Computer Systems Technology
Ricardo Reis, Federal University of Rio Grande do Sul, Porto Alegre, Brazil

Security and Privacy Protection in Information Processing Systems
Yuko Murayama, Iwate Prefectural University, Japan

Artificial Intelligence
Tharam Dillon, Curtin University, Bentley, Australia

Human-Computer Interaction
Jan Gulliksen, KTH Royal Institute of Technology, Stockholm, Sweden

Entertainment Computing
Matthias Rauterberg, Eindhoven University of Technology, The Netherlands

IFIP – The International Federation for Information Processing

IFIP was founded in 1960 under the auspices of UNESCO, following the First World
Computer Congress held in Paris the previous year. An umbrella organization for soci-
eties working in information processing, IFIP’s aim is two-fold: to support information
processing within its member countries and to encourage technology transfer to devel-
oping nations. As its mission statement clearly states,

IFIP’s mission is to be the leading, truly international, apolitical organization which
encourages and assists in the development, exploitation and application of
information technology for the benefit of all people.

IFIP is a non-profitmaking organization, run almost solely by 2500 volunteers. It
operates through a number of technical committees, which organize events and publi-
cations. IFIP’s events range from an international congress to local seminars, but the
most important are:

• The IFIP World Computer Congress, held every second year;
• Open conferences;
• Working conferences.

The flagship event is the IFIP World Computer Congress, at which both invited and
contributed papers are presented. Contributed papers are rigorously refereed and the
rejection rate is high.

As with the Congress, participation in the open conferences is open to all and papers
may be invited or submitted. Again, submitted papers are stringently refereed.

The working conferences are structured differently. They are usually run by a work-
ing group and attendance is small and by invitation only. Their purpose is to create an
atmosphere conducive to innovation and development. Refereeing is also rigorous and
papers are subjected to extensive group discussion.

Publications arising from IFIP events vary. The papers presented at the IFIP World
Computer Congress and at open conferences are published as conference proceedings,
while the results of the working conferences are often published as collections of se-
lected and edited papers.

Any national society whose primary activity is about information processing may
apply to become a full member of IFIP, although full membership is restricted to one
society per country. Full members are entitled to vote at the annual General Assembly,
National societies preferring a less committed involvement may apply for associate or
corresponding membership. Associate members enjoy the same benefits as full mem-
bers, but without voting rights. Corresponding members are not represented in IFIP
bodies. Affiliated membership is open to non-national societies, and individual and hon-
orary membership schemes are also offered.

More information about this series at http://www.springer.com/series/6102

http://www.springer.com/series/6102

Hannes Federrath · Dieter Gollmann (Eds.)

ICT Systems Security
and Privacy Protection
30th IFIP TC 11 International Conference, SEC 2015
Hamburg, Germany, May 26–28, 2015
Proceedings

ABC

Editors
Hannes Federrath
Universität Hamburg
Hamburg
Germany

Dieter Gollmann
Technische Universität Hamburg-Harburg
Hamburg
Germany

ISSN 1868-4238 ISSN 1868-422X (electronic)
IFIP Advances in Information and Communication Technology
ISBN 978-3-319-18466-1 ISBN 978-3-319-18467-8 (eBook)
DOI 10.1007/978-3-319-18467-8

Library of Congress Control Number: 2015937365

Springer Cham Heidelberg New York Dordrecht London
c© IFIP International Federation for Information Processing 2015

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information stor-
age and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the
editors give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

Preface

These proceedings contain the papers presented at the 30th IFIP International Informa-
tion Security and Privacy Conference (SEC 2015), hosted in Hamburg, Germany, May
26–28, 2015.

IFIP SEC conferences are the flagship events of the International Federation for
Information Processing (IFIP) Technical Committee 11 on Information Security and
Privacy Protection in Information Processing Systems (TC-11).

In response to the call for papers, 232 papers were submitted to the conference,
of which 20 were withdrawn by the authors. Thus, 212 papers were distributed to the
reviewers. These papers were evaluated on the basis of their significance, novelty, and
technical quality.

Using EasyChair, each paper was reviewed by four members of the Program Com-
mittee and Additional Reviewers. The Program Committee meeting was held electron-
ically with a discussion period of one week. Of the papers submitted, 42 full papers
were accepted for presentation at the conference.

We wish to thank the 126 Program Committee members and the 180 additional re-
viewers for their great effort in managing the unexpected quantity and variety of the
papers submitted to IFIP SEC 2015. Additionally, we thank all authors for their sub-
missions and contributions to the conference.

We thank the University of Hamburg for hosting this conference, HITeC e.V. for
their organizational support, and all people who spent their time on various organization
tasks in the background and at the conference desk. A very special thank is dedicated
to the Organizing Chair Dominik Herrmann.

March 2015 Hannes Federrath
Dieter Gollmann

Organization

IFIP SEC 2015 was organized by the Department of Computer Science, University of
Hamburg, Germany.

General Chairs

Kai Rannenberg Goethe-Universität Frankfurt, Germany
Steven Furnell Plymouth University, UK

Program Chairs

Hannes Federrath University of Hamburg, Germany
Dieter Gollmann Technische Universität Hamburg-Harburg,

Germany

Organizing Chair

Dominik Herrmann University of Hamburg, Germany

Program Committee

Luca Allodi University of Trento, Italy
Frederik Armknecht University of Mannheim, Germany
Vijay Atluri Rutgers University, USA
Matt Bishop University of California, Davis, USA
Joan Borrell Universitat Autònoma de Barcelona, Spain
Joppe W. Bos NXP Semiconductors, Belgium
Christina Brzuska Microsoft Research, UK
Rainer Böhme University of Münster, Germany
William Caelli International Information Security Consultants

Pty Ltd, Australia
Jan Camenisch IBM Research, Zurich, Switzerland
Iliano Cervesato Carnegie Mellon University, USA
Eric Chan-Tin Oklahoma State University, USA
Nathan Clarke Plymouth University, UK
Frédéric Cuppens Télécom Bretagne, France
Nora Cuppens-Boulahia Télécom Bretagne, France

VIII Organization

Ernesto Damiani Università degli Studi di Milano, Italy
Sabrina De Capitani di Vimercati Università degli Studi di Milano, Italy
Bart De Decker Katholieke Universiteit Leuven, Belgium
Mourad Debbabi Concordia University, Canada
Andreas Dewald Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU), Germany
Gurpreet Dhillon Virginia Commonwealth University, USA
Theo Dimitrakos Security Research Centre, BT Group CTO, UK
Jana Dittmann University of Magdeburg, Germany
Ronald Dodge United States Military Academy, USA
Josep Domingo-Ferrer Universitat Rovira i Virgili, Spain
Paul Dowland Plymouth University, UK
Hannes Federrath University of Hamburg, Germany
Simone Fischer-Hübner Karlstad University, Sweden
William Michael Fitzgerald United Technologies Research Centre, Ireland
Sara Foresti Università degli Studi di Milano, Italy
Felix Freiling Friedrich-Alexander-Universität

Erlangen-Nürnberg (FAU), Germany
Lothar Fritsch Norsk Regnesentral - Norwegian Computing

Center, Norway
Steven Furnell Plymouth University, UK
Lynn Futcher Nelson Mandela Metropolitan University,

South Africa
Deepak Garg Max Planck Institute for Software Systems,

Germany
Dieter Gollmann Technische Universität Hamburg-Harburg,

Germany
Stefanos Gritzalis University of the Aegean, Greece
Marit Hansen Unabhängiges Landeszentrum für Datenschutz

Schleswig-Holstein, Germany
Karin Hedström Örebro University, Sweden
Andreas Heinemann Hochschule Darmstadt, Germany
Dominik Herrmann University of Hamburg, Germany
Alejandro Hevia University of Chile, Chile
Jaap-Henk Hoepman Radboud University Nijmegen, The Netherlands
Ralph Holz NICTA, Australia
Xinyi Huang Fujian Normal University, China
Sushil Jajodia George Mason University, USA
Lech Janczewski The University of Auckland, New Zealand
Christian Damsgaard Jensen Technical University of Denmark, Denmark
Thomas Jensen Inria, France
Martin Johns SAP Research, Germany
Wouter Joosen Katholieke Universiteit Leuven, Belgium
Audun Jøsang University of Oslo, Norway

Organization IX

Sokratis Katsikas University of Piraeus, Greece
Stefan Katzenbeisser Technische Universität Darmstadt, Germany
Florian Kerschbaum SAP Research, Germany
Dogan Kesdogan University of Regensburg, Germany
Kwangjo Kim KAIST, South Korea
Valentin Kisimov University of National and World Economy,

Bulgaria
Zbigniew Kotulski Warsaw University of Technology, Poland
Stefan Köpsell Technische Universität Dresden, Germany
Peter Lambert Australian Defence Science and Technology

Organisation
Christof Leng International Computer Science Institute, USA
Luigi Logrippo Université du Québec en Outaouais, Canada
Javier Lopez University of Málaga, Spain
Emil Lupu Imperial College London, UK
Heiko Mantel Technische Universität Darmstadt, Germany
Stephen Marsh University of Ontario Institute of Technology,

Canada
Fabio Martinelli IIT-CNR, Italy
Michael Meier University of Bonn, Germany
Erik Moore Regis University, USA
Martin Mulazzani SBA Research, Austria
Yuko Murayama Iwate Prefectural University, Japan
Vincent Naessens Katholieke Universiteit Leuven, Belgium
Kara Nance University of Alaska Fairbanks, USA
Eiji Okamoto University of Tsukuba, Japan
Federica Paci University of Trento, Italy
Jakob Illeborg Pagter Security Lab, The Alexandra Institute Ltd,

Denmark
Sebastian Pape Technische Universität Dortmund, Germany
Malcolm Pattinson The University of Adelaide, Australia
Philippos Peleties USB BANK PLC, Cyprus
Günther Pernul University of Regensburg, Germany
Gilbert Peterson US Air Force Institute of Technology, USA
Joachim Posegga University of Passau, Germany
Kai Rannenberg Goethe-Universität Frankfurt, Germany
Indrajit Ray Colorado State University, USA
Indrakshi Ray Colorado State University, USA
Konrad Rieck University of Göttingen, Germany
Carlos Rieder isec ag, Luzern, Switzerland
Yves Roudier EURECOM, France
Mark Ryan University of Birmingham, UK
P.Y.A. Ryan University of Luxembourg, Luxembourg
Pierangela Samarati Università degli Studi di Milano, Italy
Thierry Sans Carnegie Mellon University, USA

X Organization

Damien Sauveron XLIM/UMR University of Limoges, France
Ingrid Schaumüller-Bichl University of Applied Sciences Upper Austria,

Austria
Björn Scheuermann Humboldt University of Berlin, Germany
Sebastian Schinzel Münster University of Applied Sciences, Germany
Guido Schryen University of Regensburg, Germany
Joerg Schwenk Ruhr-Universität Bochum, Germany
Anne Karen Seip Finanstilsynet, Norway
Jetzabel Serna-Olvera Goethe-Universität Frankfurt, Germany
Abbas Shahim University of Amsterdam, The Netherlands
Haya Shulman Technische Universität Darmstadt, Germany
Adesina Sodiya Federal University of Agriculture, Nigeria
Radu State University of Luxembourg, Luxembourg
Thorsten Strufe Technische Universität Dresden, Germany
Kerry-Lynn Thomson Nelson Mandela Metropolitan University,

South Africa
Bhavani Thuraisingham University of Texas at Dallas, USA
Nils Ole Tippenhauer Singapore University of Technology and Design,

Singapore
Carmela Troncoso Gradiant, Spain
Markus Tschersich Goethe-Universität Frankfurt, Germany
Pedro Veiga University of Lisbon, Portugal
Michael Vielhaber Hochschule Bremerhaven, Germany
Teemupekka Virtanen Ministry of Social Affairs and Health, Finland
Melanie Volkamer Technische Universität Darmstadt, Germany
Rossouw Von Solms Nelson Mandela Metropolitan University,

South Africa
Jozef Vyskoc VaF, Slovak Republic
Lingyu Wang Concordia University, Canada
Christian Weber Ostfalia University of Applied Sciences, Germany
Edgar Weippl Vienna University of Technology, Austria
Steffen Wendzel Fraunhofer FKIE, Germany
Gunnar Wenngren Sweden
Jeff Yan Newcastle University, UK
Zhenxin Zhan Juniper Networks, USA
Alf Zugenmaier Hochschule München, Germany
André Zúquete DETI/IEETA, University of Aveiro, Portugal

Additional Reviewers

Abdali, Jamal
Ahn, Soohyun
Albarakati, Abdullah
Alcaraz, Cristina
Aminanto, Muhamad Erza

Arp, Daniel
Bal, Gökhan
Barrère, Martín
Beck, Martin
Belgacem, Boutheyna

Bilzhause, Arne
Bkakria, Anis
Blanco-Justicia, Alberto
Bottineli, Paul
Bou-Harb, Elias

Organization XI

Boukayoua, Fasyal
Boukoros, Spyros
Boulares, Sofiene
Budurushi, Jurlind
Buhov, Damjan
Caballero, Juan
Calviño, Aida
de La Piedra, Antonio
De Sutter, Bjorn
Denzel, Michael
Diener, Michael
Drijvers, Manu
Drogkaris, Prokopios
Engelke, Toralf
Farcasin, Michael
Fischer, Lars
Fitzsimons, Joseph
Fomichev, Mikhail
Freisleben, Bernd
Fuchs, Karl-Peter
Fuchs, Ludwig
Garcia, Fuensanta Torres
Garn, Bernhard
Gascon, Hugo
Gay, Richard
Gazeau, Ivan
Geneiatakis, Dimitris
Gerber, Christoph
Gerber, Paul
Gottschlich, Wolfram
Grewal, Gurchetan
Gruhn, Michael
Gudymenko, Ivan
Gutmann, Andreas
Hay, Brian
Heim, Stephan
Hernandez, Julio
Hils, Maximilian
Hobel, Heidi
Hu, Jinwei
Härterich, Martin
Imran Daud, Malik
Iwaya, Leonardo
Jakobsen, Thomas P.
Jakobsson, Markus
Jensen, Jonas Lindstrøm

Johansen, Christian
Jäschke, Angela
Kalloniatis, Christos
Kambourakis, Georgios
Kasem-Madani, Saffija
Katos, Vasilios
Kaur, Jaspreet
Kieseberg, Peter
Kim, Hakju
Koens, Tommy
Kokolakis, Spyros
Krasnova, Anna
Krombholz, Katharina
Kulyk, Oksana
Kunz, Michael
Kurtz, Andreas
Lackorzynski, Tim
Lancrenon, Jean
Lazrig, Ibrahim
Le, Meixing
Lemaire, Laurens
Lindemann, Jens
Liu, Jia
Liu, Joseph
Liu, Zhe
Lortz, Steffen
Lueks, Wouter
Mahalanobis, Ayan
Manzoor, Salman
Marktscheffel, Tobias
Mayer, Peter
Melissen, Matthijs
Mikhalev, Vasily
Mikkelsen, Gert Læssøe
Milutinovic, Milica
Moataz, Tarik
Morales, Roberto
Moussa, Bassam
Mulamba, Dieudonne
Muñoz-González, Luis
Müller, Tilo
Najafiborazjani, Parnian
Netter, Michael
Neumann, Stephan
Neuner, Sebastian
Nieto, Ana

Nikova, Svetla
Nishioka, Dai
Nordholt, Peter Sebastian
Nuñez, David
Octeau, Damien
Ølnes, Jon
Ordean, Mihai
Palomaki, Jussi
Perner, Matthias
Pimenidis, Lexi
Pohl, Christoph
Prigent, Nicolas
Put, Andreas
Ray, Sujoy
Reinfelder, Lena
Reiser, Hans P.
Reubold, Jan
Ribes González, Jordi
Ricci, Sara
Richthammer, Christian
Riek, Markus
Ringers, Sietse
Roman, Rodrigo
Roos, Stefanie
Roscoe, Bill
Roth, Christian
Rothstein Morris, Eric
Sabouri, Ahmad
Saito, Yoshia
Samelin, Kai
Saracino, Andrea
Schmitz, Christopher
Schöttle, Pascal
Sgandurra, Daniele
Simkin, Mark
Simos, Dimitris
Skjernaa, Berit
Skrobot, Marjan
Soria-Comas, Jordi
Starostin, Artem
Stepien, Bernard
Strizhov, Mikhail
Sänger, Johannes
Tesfay, Welderufael
Timchenko, Max
Tomandl, Andreas

XII Organization

Tonejc, Jernej
Tzouramanis, Theodoros
Ullrich, Johanna
Urquidi, Miguel
Venkatesan, Sridhar
Veseli, Fatbardh
Voelzow, Victor
Vossaert, Jan
Vullers, Pim

Wang, Ding
Wang, Zhan
Weber, Alexandra
Weber, Michael
Weishäupl, Eva
Wressnegger, Christian
Wundram, Martin
Yaich, Reda
Yamaguchi, Fabian

Yang, Shuzhe
Yasasin, Emrah
Yesuf, Ahmed Seid
Yin, Xucheng
Yu, Jiangmin
Yu, Jiangshan
Zhang, Lei
Zhang, Yuexin
Zimmer, Ephraim

Contents

Privacy

O-PSI: Delegated Private Set Intersection on Outsourced Datasets 3
Aydin Abadi, Sotirios Terzis, and Changyu Dong

Flexible and Robust Privacy-Preserving Implicit Authentication 18
Josep Domingo-Ferrer, Qianhong Wu, and Alberto Blanco-Justicia

Towards Relations Between the Hitting-Set Attack and the Statistical
Disclosure Attack . 35

Dang Vinh Pham and Dogan Kesdogan

POSN: A Personal Online Social Network. 51
Esra Erdin, Eric Klukovich, Gurhan Gunduz, and Mehmet Hadi Gunes

Strategic Noninterference. 67
Wojciech Jamroga and Masoud Tabatabaei

Verifying Observational Determinism . 82
Jaber Karimpour, Ayaz Isazadeh, and Ali A. Noroozi

Web Security

Cache Timing Attacks Revisited: Efficient and Repeatable Browser History,
OS and Network Sniffing . 97

Chetan Bansal, Sören Preibusch, and Natasa Milic-Frayling

Enforcing Usage Constraints on Credentials for Web Applications 112
Jinwei Hu, Heiko Mantel, and Sebastian Ruhleder

A Survey of Alerting Websites: Risks and Solutions. 126
Amrit Kumar and Cédric Lauradoux

Access Control, Trust and Identity Management

A Generalization of ISO/IEC 24761 to Enhance Remote Authentication
with Trusted Product at Claimant . 145

Asahiko Yamada

Enhancing Passwords Security Using Deceptive Covert Communication 159
Mohammed H. Almeshekah, Mikhail J. Atallah, and Eugene H. Spafford

Information Sharing and User Privacy in the Third-party Identity
Management Landscape. 174

Anna Vapen, Niklas Carlsson, Anirban Mahanti, and Nahid Shahmehri

An Iterative Algorithm for Reputation Aggregation in Multi-dimensional
and Multinomial Rating Systems . 189

Mohsen Rezvani, Mohammad Allahbakhsh, Lorenzo Vigentini,
Aleksandar Ignjatovic, and Sanjay Jha

A Comparison of PHY-Based Fingerprinting Methods Used to Enhance
Network Access Control . 204

Timothy J. Carbino, Michael A. Temple, and Juan Lopez Jr.

Model-Driven Integration and Analysis of Access-control Policies
in Multi-layer Information Systems. 218

Salvador Martínez, Joaquin Garcia-Alfaro, Frédéric Cuppens,
Nora Cuppens-Boulahia, and Jordi Cabot

Network Security

Authenticated File Broadcast Protocol . 237
Simão Reis, André Zúquete, Carlos Faneca, and José Vieira

Automated Classification of C&C Connections Through Malware
URL Clustering . 252

Nizar Kheir, Gregory Blanc, Hervé Debar, Joaquin Garcia-Alfaro,
and Dingqi Yang

B.Hive: A Zero Configuration Forms Honeypot for Productive
Web Applications . 267

Christoph Pohl, Alf Zugenmaier, Michael Meier, and Hans-Joachim Hof

Security Management and Human Aspects of Security

Investigation of Employee Security Behaviour: A Grounded
Theory Approach . 283

Lena Connolly, Michael Lang, and J.D. Tygar

Practice-Based Discourse Analysis of InfoSec Policies 297
Fredrik Karlsson, Göran Goldkuhl, and Karin Hedström

Understanding Collaborative Challenges in IT Security
Preparedness Exercises . 311

Maria B. Line and Nils Brede Moe

Social Groupings and Information Security Obedience
Within Organizations . 325

Teodor Sommestad

XIV Contents

Attack Trees with Sequential Conjunction . 339
Ravi Jhawar, Barbara Kordy, Sjouke Mauw, Saša Radomirović,
and Rolando Trujillo-Rasua

Enhancing the Security of Image CAPTCHAs Through Noise Addition 354
David Lorenzi, Emre Uzun, Jaideep Vaidya, Shamik Sural,
and Vijayalakshmi Atluri

Software Security

SHRIFT System-Wide HybRid Information Flow Tracking 371
Enrico Lovat, Alexander Fromm, Martin Mohr, and Alexander Pretschner

ISboxing: An Instruction Substitution Based Data Sandboxing
for x86 Untrusted Libraries . 386

Liang Deng, Qingkai Zeng, and Yao Liu

Exploit Generation for Information Flow Leaks
in Object-Oriented Programs . 401

Quoc Huy Do, Richard Bubel, and Reiner Hähnle

Memoized Semantics-Based Binary Diffing with Application
to Malware Lineage Inference . 416

Jiang Ming, Dongpeng Xu, and Dinghao Wu

Mitigating Code-Reuse Attacks on CISC Architectures
in a Hardware Approach . 431

Zhijiao Zhang, Yashuai Lü, Yu Chen, Yongqiang Lü, and Yuanchun Shi

Integrity for Approximate Joins on Untrusted Computational Servers 446
Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia,
Stefano Paraboschi, and Pierangela Samarati

Applied Cryptography

Fast Revocation of Attribute-Based Credentials for Both Users
and Verifiers . 463

Wouter Lueks, Gergely Alpár, Jaap-Henk Hoepman, and Pim Vullers

Chaotic Chebyshev Polynomials Based Remote User Authentication
Scheme in Client-Server Environment . 479

Toan-Thinh Truong, Minh-Triet Tran, Anh-Duc Duong, and Isao Echizen

A Secure Exam Protocol Without Trusted Parties . 495
Giampaolo Bella, Rosario Giustolisi, Gabriele Lenzini,
and Peter Y.A. Ryan

Contents XV

Mobile and Cloud Services Security

ApkCombiner: Combining Multiple Android Apps to Support
Inter-App Analysis . 513

Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon

Assessment of the Susceptibility to Data Manipulation of Android Games
with In-app Purchases . 528

Francisco Vigário, Miguel Neto, Diogo Fonseca, Mário M. Freire,
and Pedro R.M. Inácio

An Empirical Study on Android for Saving Non-shared Data
on Public Storage . 542

Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, and Kehuan Zhang

The Dual-Execution-Environment Approach: Analysis
and Comparative Evaluation . 557

Mohamed Sabt, Mohammed Achemlal, and Abdelmadjid Bouabdallah

On the Privacy, Security and Safety of Blood Pressure
and Diabetes Apps . 571

Konstantin Knorr, David Aspinall, and Maria Wolters

A Cloud-Based eHealth Architecture for Privacy Preserving
Data Integration . 585

Alevtina Dubovitskaya, Visara Urovi, Matteo Vasirani, Karl Aberer,
and Michael I. Schumacher

Cyber-physical Systems and Critical Infrastructures Security

Application of a Game Theoretic Approach in Smart Sensor Data
Trustworthiness Problems . 601

Konstantinos Maraslis, Theodoros Spyridopoulos, George Oikonomou,
Theo Tryfonas, and Mo Haghighi

Securing BACnet’s Pitfalls . 616
Jaspreet Kaur, Jernej Tonejc, Steffen Wendzel, and Michael Meier

On the Secure Distribution of Vendor-Specific Keys
in Deployment Scenarios . 630

Nicolai Kuntze, Andreas Fuchs, and Carsten Rudolph

Erratum to: On the Secure Distribution of Vendor-Specific Keys in
Deployment Scenarios . E1

Nicolai Kuntze, Andreas Fuchs, and Carsten Rudolph

Author Index . 645

XVI Contents

Privacy

O-PSI: Delegated Private Set Intersection
on Outsourced Datasets

Aydin Abadi, Sotirios Terzis, and Changyu Dong(B)

Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, UK

{aydin.abadi,sotirios.terzis,changyu.dong}@strath.ac.uk

Abstract. Private set intersection (PSI) has a wide range of applica-
tions such as privacy-preserving data mining. With the advent of cloud
computing it is now desirable to take advantage of the storage and com-
putation capabilities of the cloud to outsource datasets and delegate PSI
computation. In this paper we design O-PSI, a protocol for delegated pri-
vate set intersection on outsourced datasets based on a novel point-value
polynomial representation. Our protocol allows multiple clients to inde-
pendently prepare and upload their private datasets to a server, and then
ask the server to calculate their intersection. The protocol ensures that
intersections can only be calculated with the permission of all clients
and that datasets and results remain completely confidential from the
server. Once datasets are outsourced, the protocol supports an unlim-
ited number of intersections with no need to download them or prepare
them again for computation. Our protocol is efficient and has computa-
tion and communication costs linear to the cardinality of the datasets.
We also provide a formal security analysis of the protocol.

1 Introduction

Cloud computing allows clients with limited computation and storage capabili-
ties to outsource their private data and at a later time, ask the cloud to perform
computation on them. Delegation of data storage and computation to the cloud
has become common practice for individuals and big enterprises alike [1,2]. As
a result, often the need arises for clients to perform computation on their out-
sourced private data jointly, ideally without the need to download the data.

In this paper, we consider a particular such scenario, in which the private
data take the form of sets and the computation of interest is set intersection, i.e.
private set intersection (PSI).

In PSI, two parties want to find out the intersection of their sets and also
want to prevent the other party from finding out anything more about their own
set than the elements of the intersection. In general, PSI captures a wide range
of real-world applications such as privacy preserving data mining [3], homeland
security [4] and so on. For example, consider a case where a law enforcement
agency has a list of suspects and wants to compare it against flight passenger
lists. Here the names of the suspects should be kept hidden from the airlines
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 3–17, 2015.
DOI: 10.1007/978-3-319-18467-8 1

4 A. Abadi et al.

while the agency should not be able to find out about other passengers in order
to protect their privacy. As another example, consider the situation where a
social welfare organization wants to know whether any of its members receives
income from another organization, but neither organization can reveal their list
of members.

Although a number of protocols have been proposed for PSI (see section 2
for a survey), cloud computing introduces additional challenges as the private
datasets are outsourced and the private set intersection is delegated to cloud
servers. In addition to keeping their sets confidential, clients are also interested
in preventing cloud servers from finding out anything about their sets and the
intersection. In other words, clients are interested in delegated private set inter-
section on outsourced data. To allow for more flexibility it is desirable that clients
should be able to engage in PSI computation with any other client of the cloud
provider. However, they should remain in charge of deciding which clients are
allowed to use their sets. To fully take advantage of the cloud capabilities and
minimize costs, clients should not have to keep locally or download their datasets
every time an intersection needs to be computed, while their involvement to the
computation should be limited.

We propose O-PSI, a PSI protocol that addresses these requirements. Our
protocol uses homomorphic encryption and a novel point-value polynomial rep-
resentation for datasets that allows clients to independently secure their sets
and outsource them to the cloud, while cloud servers are able to calculate their
intersection. The protocol ensures that intersections can only be computed with
the permission of the clients and that the result will remain secret from the
server. The protocol also allows outsourced sets to be used an unlimited number
of times securely without the need to secure them again. More interestingly, the
novel set representation means that computation and communication costs are
linear to the size of the sets.

The paper starts with a survey of related work in section 2, followed by a
brief overview of our security model and key concepts we rely on in section 3.
Section 4 presents the design of our protocol, while section 5 proves its security.
Section 6 proposes extensions to support data integrity verification and multiple
clients, while section 7 presents an analysis of its computation and communica-
tion complexity, and a comparison to work that is closest to our aims. Section 8
concludes the paper and identifies directions for future work.

2 Related Work

Private set intersection (PSI) was introduced in [5]. Following that [6] proposed
a number of protocols supporting further set operations and multiple clients
based on additive homomorphic encryption and polynomial representation of
sets. More recently, several efficient protocols have been proposed. For exam-
ple, [4,7] use blind signatures and hash functions to provide efficient PSI in the
semi-honest and the malicious security models respectively, [8] uses Bloom fil-
ters, secret sharing and oblivious transfer to offer even more efficient protocols,

O-PSI: Delegated Private Set Intersection on Outsourced Datasets 5

and [9] extends [8] and uses hash tables and a more efficient oblivious transfer
extension protocol for better efficiency. However, all these regular PSI protocols
are interactive, in the sense that clients jointly compute the intersection. They
are not designed with the capability to outsource any data or delegate any of
the computation to a third party.

In another line of research, in [10,11] the protocols proposed for outsourced
verifiable dynamic set operations, including set intersection. These protocols
make use of bilinear map accumulators and authenticated hash tables (i.e. accu-
mulator trees) to verify the correctness of operations carried out by a server on
outsourced sets. However, these protocols are designed for a single client to out-
source a collection of sets to a server and later to compute the intersections of its
own sets. The protocols are designed to provide verifiability of computation, not
data privacy. Data are outsourced in plaintext and the protocols do not work if
data are encrypted.

More interestingly, a number of PSI protocols have been proposed in which
clients delegate computation to a server [12–16]. A protocol proposed in [14] allows
clients to outsource their sets to a server by hashing each element and adding a ran-
dom value. They then delegate the computation of the intersection to the server.
However, this protocol is not fully private, as it reveals to the server the cardi-
nality of the intersection. In addition to the above issue, because of the way the
sets are encoded if the intersection between the sets of client A and B is com-
puted, followed by that between the sets of client A and C, then the server will
also find out whether some elements are common in the sets of client B and C
without their consent. In [16] clients also delegate the computation to a server.
Clients encrypt their sets and outsource them. The server also provides a proof
that allows the clients to verify the correctness of the result. However, the proto-
col is not fully private and suffers from the same issues described above. Another
protocol that delegates computation to a server is proposed in [12]. The protocol
is based on a pseudorandom permutation (PRP) of the set elements with the key
for the PRP generated jointly by the clients at setup. One variant of the protocol
can hide the cardinality of the intersection. However, in this variant computation
is delegated to one of the clients rather than the server. The server’s role is limited
to re-encoding one client’s set to maintain the privacy of the computation. In the
protocol, clients can detect if the server provided incorrect results at the cost of
replicating a number of times all elements of the sets.

In a similar line of research, a protocol proposed in [13] allows one client, say
client A, to encrypt and outsource its set, and delegate computation to a server.
The server can then engage in a PSI protocol on this client’s behalf with another
client, say client B. However, this delegation is one-off: if A wants to compute set
intersection with C, then A must encrypt its set with a new key and re-delegate
to the server. In addition to this protocol, in [15] two clients can delegate the PSI
computation to a server. In this protocol rather than encrypting and outsourcing
their sets, the clients encrypt and outsource bloom filters of their sets that are then
used by the server to privately compute their intersection. However, in this case in
order for the clients to get the result of the intersection they need to keep a local
copy of their sets. So, this protocol does not really allow outsourcing the sets.

6 A. Abadi et al.

From the above discussion, it should be clear that none of the protocols above
allows clients to fully delegate PSI computation to the server without the need
to either maintain the sets locally or having to re-encode and re-upload the sets
for each intersection computation, namely none support delegated private set
intersection on outsourced sets. As a result, none of them are particularly suited
for a cloud computing setting.

3 Preliminaries

3.1 Security Model

We consider a setting in which static semi-honest adversaries are present. In
this setting, the adversary controls one of the parties and follows the protocol
specification exactly. However, it may try to learn more information about the
other party’s input. The definitions and model are according to [17].

In a delegated PSI protocol, three parties are involved: a server P , and two
clients A and B. We assume the server does not collude with A or B. As the
server (or cloud provider) is often a well established IT company, it is reasonable
to assume it will not collude with the clients because collusion will seriously
damage its reputation and decrease its revenue. This non-colluding assumption
is widely used in the literature [12,18,19]. The three-party protocol π computes a
function that maps the inputs to some outputs. We define this function as follows:
F : Λ × 2U × 2U → Λ × Λ × f∩, where Λ denotes the empty string, 2U denotes
the powerset of the set universe and f∩ denotes the set intersection function.
For every tuple of inputs Λ, SA and SB belong to P,A and B respectively, the
function outputs nothing to P and A, and outputs f∩(SA, SB) = SA ∩ SB to B.

In the semi-honest model, a protocol π is secure if whatever can be computed
by a party in the protocol can be obtained from its input and output only.
This is formalized by the simulation paradigm. We require a party’s view in a
protocol execution to be simulatable given only its input and output. The view
of the party i during an execution of π on input tuple (x, y, z) is denoted by
viewπ

i (x, y, z) and equals (w, ri,mi
1, ...,m

i
t) where w ∈ (x, y, z) is the input of i,

ri is the outcome of i’s internal random coin tosses and mi
j represents the jth

message that it received.

Definition 1. Let F be a deterministic function as defined above. We say that
the protocol π securely computes F in the presence of static semi-honest adver-
saries if there exist probabilistic polynomial-time algorithms SimP , SimA and
SimB that given the input and output of a party, can simulate a view that is
computationally indistinguishable from the party’s view in the protocol:

SimP (Λ, Λ)
c≡ viewπ

P (Λ, SA, SB)

SimA(SA, Λ)
c≡ viewπ

A(Λ, SA, SB)

SimB(SB , f∩(SA, SB))
c≡ viewπ

B(Λ, SA, SB)

O-PSI: Delegated Private Set Intersection on Outsourced Datasets 7

3.2 Homomorphic Encryption

A semantically secure additively homomorphic public key encryption scheme has
the following properties:

1. Given two ciphertexts Epk(a), Epk(b), Epk(a) · Epk(b) = Epk(a + b).
2. Given a ciphertext Epk(a) and a constant b, Epk(a)b = Epk(a · b).

One such scheme is the Paillier public key cryptosystem [20]. It works as follows:

Key Generation: Choose two random large primes p and q according to a given
security parameter, and set N = pq. Let u be the Carmichael value of N , i.e.
u = lcm(p − 1, q − 1) where lcm stands for the least common multiple. Choose
a random g ∈ Z

∗
N2 , and ensure that s = (L(gu mod N2))−1 mod N exists where

L(x) = (x−1)
N . The public key is pk = (N, g) and the secret key is sk = (u, s).

Encryption: To encrypt a plaintext m ∈ ZN , pick a random value r ∈ Z
∗
N , and

compute the ciphertext: C = Epk(m) = gm · rN mod N2.

Decryption: To decrypt a ciphertext C, Dsk(C) = L(Cumod N2) · s mod
N = m.

3.3 Polynomial Representation of Sets

Many PSI protocols e.g. [5,6], use a polynomial representation of sets. Let R
be a field, then we denote a polynomial ring as R[x]. The polynomial ring R[x]
consists of all polynomials with coefficients from R. Given a set S of size d,
|S| = d, we can map each element in S to an element in a sufficiently large field
R. Then we can represent this set as a polynomial in the polynomial ring R[x].
The polynomial is defined as ρ(x) =

∏
si∈S(x − si) and has the property that

every element si ∈ S is a root of it.
For two sets SA and SB represented by polynomials ρA and ρB respectively,

then gcd(ρA, ρB) represents the set intersection SA ∩SB , where gcd stands for the
greatest common divisor. For polynomials ρA and ρB of degree d and γA and γB

that are degree d polynomials chosen uniformly at random from R[x], it is proved
in [6] that γA · ρA + γB · ρB = μ · gcd(ρA, ρB) such that μ is a uniformly random
polynomial. This means that if ρA and ρB are polynomials representing sets SA

and SB, then the polynomial γA · ρA + γB · ρB contains only information about
SA ∩ SB and no information about other elements in SA or SB . This forms the
basis of their PSI protocol in which a party obtains γA · ρA + γB · ρB to find the
set intersection but learns nothing more about elements in the other party’s set.

4 O-PSI: Delegated Private Set Intersection on
Outsourced Datasets

4.1 Polynomials in Point-value Form

In section 3.3 we showed that a set can be represented as a polynomial and set
intersection can be computed by polynomial arithmetic. All previous PSI proto-
cols using polynomial representation of sets, represent a polynomial as a vector

8 A. Abadi et al.

of polynomial’s coefficients. They represent a degree d polynomial ρ =
∑d

i=0 aix
i

as a vector a = (a0, a1, ..., ad). This representation, while it allows the protocols
to correctly compute the result, has a major disadvantage. The complexity of
multiplying two polynomials of degree d in co-efficient representation is O(d2). In
PSI protocols, this leads to significant computational overheads. Usually in such
protocols, one polynomial needs to be encrypted and the polynomial multiplica-
tion has to be done homomorphically. Homomorphic multiplication operations
are computationally expensive. Thus using a co-efficient representation means
that the protocols are not scalable.

In O-PSI, we solve this problem by representing the polynomials in another
well-known form, point-value. A degree d polynomial ρ can be represented as a
set of n (n > d) point-value pairs {(x0, y0), ..., (xn−1, yn−1)} such that all xi are
distinct and yi = ρ(xi) for 0 ≤ i ≤ n − 1. If the x values are fixed, we can omit
them and represent polynomials as vectors y = (y0, y1, ..., yn−1). A polynomial
in point-value form can be translated into co-efficient form by polynomial inter-
polation [21]. Polynomial arithmetic in point-value representation can be done by
point-wise addition or multiplication. For two degree d polynomials ρA and ρB

represented in point-value form by two vectors y(A) and y(B), ρA +ρB can be com-
puted as (y(A)

1 + y(B)
1 , y(A)

2 + y(B)
2 , ..., y(A)

n−1 + y(B)
n−1), and ρA · ρB can be computed as

(y(A)
1 · y(B)

1 , y(A)
2 · y(B)

2 , ..., y(A)
n−1 · y(B)

n−1). Note because the product of ρA ·ρB is a poly-
nomial of degree 2d, ρA and ρB must be represented by at least 2d + 1 points to
accommodate the result. The key benefit of point-value representation is that mul-
tiplication complexity is reduced to O(d). This makes O-PSI much more scalable.

4.2 O-PSI Protocol

The interaction between parties in O-PSI is depicted in Fig. 1. At a high level,
the protocol works as follows. Each client first outsources its set to the server.
To do so, the client uploads a vector that encodes its set to the server. The
vector is blinded so that the server cannot figure out the client’s set, and the
other client cannot figure out any element outside the intersection. If a client,

Client B
Client A

Server (Cloud)

v
(B

) = [y
(B

)

0
· r(

B)

0
, . .

. , y
(B

)

n−1
· r(

B)

n−1
]

(1)

v (A)
= [y (A)

0 · r (A)
0 , . . . , y (A)n−1 · r (A)n−1]

(1)

e(B) = [EpkB
(r(B)

0), . . . , EpkB
(r(B)

n−1)]

(2)

e (A)
= [E

pk
B (r (B)

0 · (r (A)
0)−1

), . . . , E
pk

B (r (B)n−1 · (r (A)n−1)−1
)]

(3)

t =
[EpkB

(r
(B

)

0
· (w

(A
)

0
· y

(A
)

0
+ w

(B
)

0
· y

(B
)

0
)),

. . .
,

EpkB
(r

(B
)

n−1
· (w

(A
)

n−1
· y

(A
)

n−1
+ w

(B
)

n−1
· y

(B
)

n−1
))]

(4)

Fig. 1. Interaction between parties in O-PSI

O-PSI: Delegated Private Set Intersection on Outsourced Datasets 9

client B, wants to compute the intersection of its own set and another client’s
set, say client A’s set, it must obtain permission from A. If A agrees, A can
compute jointly with B some encrypted values. The encrypted values will be
used by the server to remove part of the blinding factors from A’s data, and
this then allows the set intersection to be computed. At the end of the protocol
client B receives an encrypted vector which it can decrypt and use the decrypted
values to interpolate a polynomial that encodes the intersection. The protocol is
described below. We will explain the rationale behind the protocol design after
the protocol description.

1. Setup Let U be the universe of set elements. There is a public finite field
R that is big enough to encode all elements in U and also when an element
is picked uniformly at random from R has only negligible probability of
representing an element of a set. Client A has a set SA ⊂ U and client B has
a set SB ⊂ U . Without loss of generality, we let |SA| = |SB | = d. The server
publishes a vector x containing n = 2d + 1 random distinct values from R.
The server also publishes a pseudorandom function f : {0, 1}l × Z → R,
which maps an l-bit string to an element in R pseudorandomly.

2. Outsource This step is the same at both clients. Let I ∈ {A,B}, then the
client I does the following:
(a) Generates a Paillier key pair (pkI , skI) (see section 3.2) and publishes

the public key. It also chooses a random private key kI for the pseudo-
random function f . All keys are generated according to a given security
parameter.

(b) Constructs a polynomial τI =
∏

s
(I)
i ∈SI

(x − s(I)
i) that represents its set

SI . Evaluates τI at every value in the x published by the server producing
y(I) such that y(I)

i = τI(xi) for 0 ≤ i ≤ n − 1.
(c) Sends v(I) to the server, where ∀v(I)

i ∈ v(I), v(I)
i = y(I)

i · r(I)
i , y(I)

i is the ith
element in y(I), r(I)

i = f(kI , i). Here, v(I) is a blinded version of its set
polynomial.

3. Set Intersection In this step, client B wants to know the intersection of
its set and client A’s set.
(a) Client B sends a request to client A. Along with the request, client B

also sends its ID and a vector e(B), such that e(B)
i = EpkB

(r(B)
i) where

r(B)
i = f(kB, i) for 0 ≤ i ≤ n − 1 are the values used to blind its set

polynomial.
(b) Client A can send a Deny message to end the protocol here, or if it

agrees to engage in the computation of the set intersection, it sends a
Permit message to client B. It also sends a Compute message that
contains its own and B’s IDs, and a vector e(A) to the server. The vector
e(A) is computed as follows: for 0 ≤ i ≤ n − 1, e(A)

i = (e(B)
i)(r

(A)
i)−1

=
EpkB

(r(B)
i · (r(A)

i)−1) where r(I)
i = f(kI , i) for I ∈ {A,B} are the values

from step 2c above.
(c) After receiving the Compute message from A, the server extracts e(A)

and retrieves the data v(A) and v(B) from its storage. The server then
chooses two degree d polynomials ωI randomly from R[x] and computes

10 A. Abadi et al.

two vectors w(I) (I ∈ {A,B}) such that w(I)
i = ωI(xi) for 0 ≤ i ≤ n − 1

where xi is the ith element in the public vector x.
(d) The server computes a result vector t such that for 0 ≤ i ≤ n − 1:

ti = (e(A)
i)v

(A)
i ·w(A)

i · EpkB
(w(B)

i · v(B)
i)

= EpkB
(r(B)

i · (r(A)
i)−1 · y(A)

i · r(A)
i · w(A)

i) · EpkB
(w(B)

i · y(B)
i · r(B)

i)
= EpkB

(r(B)
i · (w(A)

i · y(A)
i + w(B)

i · y(B)
i))

The server sends t to client B.
(e) After receiving t, client B computes a vector z such that for 0 ≤ i ≤

n − 1:

zi = DskB
(ti) · (r(B)

i)−1

= r(B)
i · (w(A)

i · y(A)
i + w(B)

i · y(B)
i) · (r(B)

i)−1

= w(A)
i · y(A)

i + w(B)
i · y(B)

i

It then interpolates the polynomial ζ using point-value pairs (xi, zi). The
roots of ζ are the elements in the set intersection.

Remark 1: In the Setup step, the server needs to publish a vector x that has
2d + 1 elements, because the polynomial ζ in step 3e is of degree 2d and at
least 2d + 1 points are needed to interpolate it. The elements in x are picked at
random from R so that the probability of xi being a root of a client’s polynomial
is negligible.

Remark 2: In step 2c, the client blinds its vector. If the client stores y directly
on the server without blinding, then the server can use y and x to interpolate
the client’s polynomial, thus revealing the client’s set. With blinding this is
not possible unless the server knows the pseudorandom function key used by
the client. The protocol blinds values by multiplication. However, multiplication
cannot blind a value if the value is 0. This is why we require the probability of
xi in x being a root of a client’s polynomial to be negligible. If xi is a root then
yi is 0 and cannot be blinded.

Remark 3: The data values stored on the server are blinded by their owner. To
compute the set intersection those blinding factors (r(I)

i in the protocol) must
be eliminated. In step 3b, client A and B jointly compute the vector e(A) to
“switch” A’s blinding factors to B’s blinding factors. In step 3d, e(A) is used to
eliminate r(A)

i and replace it with r(B)
i . This factor switching makes it possible

later to eliminate r(B)
i in step 3e. The values in e(A) are encrypted with B’s public

key, so the server learns nothing in this process.

Remark 4: The client’s original blinded dataset remains unchanged in the
server. In fact in step 3c, the server multiplies a copy of the client’s blinded
dataset by the vector w(I).

O-PSI: Delegated Private Set Intersection on Outsourced Datasets 11

5 Proof of Security

Now we sketch the security proof of O-PSI in the semi-honest model (see
section 3.1). We conduct the security analysis for the three cases where one
of the parties is corrupted.

Theorem 1. If the homomorphic encryption scheme is semantically secure, the
O-PSI protocol is secure in the presence of a semi-honest adversary.

Proof. We will prove the theorem by considering in turn the case where each of
the parties has been corrupted. In each case we invoke the simulator with the
corresponding party’s input and output. Our focus is in the case where party
A wants to engage in the computation of the intersection. If party A does not
want to proceed in the protocol, the views can be simulated in the same way up
to the point where the execution stops.
Case 1: Corrupted server In this case, we show that we can construct a
simulator SimP that can produce a computationally indistinguishable view. In
the real execution, the server’s view is as follows:

viewπ
P (Λ, SA, SB) = {Λ, rP ,v(A),v(B),Compute, e(A), Λ}

where rP are the random coins of the server, v(A),v(B) are the blinded set
representations of A’s and B’s sets, Compute is the command to proceed from
A, and e(A) is the encrypted vector that is used in the protocol to switch blinding
factors.

To simulate the view, SimP does the following: it creates an empty view,
then appends Λ and uniformly at random chosen coins r′

P to the view. It then
randomly generates two d-element sets S′

A and S′
B . It also chooses two random

keys k′
A and k′

B for a pseudorandom function f . It encodes S′
A into its polynomial

representation, evaluates the polynomial with the public values x, and blinds the
evaluation results with r

(A)′

i = f(k′
A, i) for 0 ≤ i ≤ n − 1. The result is v(A)′

.
Similarly it can generate v(B)′

. Then v(A)′
and v(B)′

are appended to the view.
Following that, the simulator generates the Compute command string with the
correct format and appends it to the view. It then computes r

(B)′

i · (r(A)′

i)−1 and
encrypts the results with B’s public key. This produces e(A)′

that is appended
to the view. Finally, the simulator appends Λ to the view and outputs the view.

We argue that the simulated view is computationally indistinguishable from
the real view. In both views, the input parts are identical, the random coins
are both uniformly random, and so they are indistinguishable. In the real view
v(A),v(B) are blinded with the outputs of a pseudorandom function, so do the
vectors in the simulated view. Since the outputs of the pseudorandom function
are computationally indistinguishable, the distributions of v(A),v(B),v(A)′

,v(B)′

are therefore computationally indistinguishable. If the homomorphic encryption
is semantically secure, then e(A) and e(A)′

are also computationally indistin-
guishable. The output parts in both views are identical. So, we conclude that
the views are indistinguishable.

12 A. Abadi et al.

Case 2: Corrupted client A In the real execution, the A’s view is as follows:

viewπ
A(Λ, SA, SB) = {SA, rA, e(B), Λ}

The simulator SimA does the following: it creates an empty view, then appends
Λ and uniformly at random chosen coins r′

A to the view. It then chooses n random
values ri and encrypts each ri with B’s public key. The result is e(B)′

and it is
appended to the view. The simulator then appends Λ to the view. It is easy to see
that If the homomorphic encryption is semantically secure, then e(B) and e(B)′

are computationally indistinguishable. So, the two views are indistinguishable.
Case 3: Corrupted client B In the real execution, the B’s view is as follows:

viewπ
B(Λ, SA, SB) = {SB , rB ,Permit, t, f∩(SA, SB)}

The simulator SimB does the following: it creates an empty view, and appends
Λ and uniformly at random chosen coins r′

B to the view. Then it generates
the Permit command string with the correct format and appends it to the
view. Following that, it creates two d-element sets S′

A and S′
B such that S′

A ∩
S′

B = f∩(SA, SB), converts S′
A to its polynomial representation, evaluates the

polynomial using the public values x and obtains y(A)′
. Similarly the simulator

can obtain y(B)′
. The simulator chooses randomly two degree d polynomials

ω′
A and ω′

B , evaluates them using the public values x and obtains w(A)′
and

w(B)′
. It also chooses a random key k′

B for a pseudorandom function f and
computes r

(B)′

i = f(k′
B , i) for 0 ≤ i ≤ n − 1. Then the simulator computes for

each i, EpkB
(r(B)′

i · (w(A)′

i · y(A)′

i + w
(B)′

i · y(B)′

i)). The result is t′. The simulator
appends t′ to the view and then appends f∩(SA, SB). It is easy to see that the
distributions of t and t′ are computationally indistinguishable. So, the two views
are indistinguishable.

Combining the above, we conclude the protocol is secure and complete our
proof.

6 Extensions

In this section we extend O-PSI to support dataset integrity verification and
multiple clients. These extensions require no major modification of the protocol.

6.1 Dataset Integrity Verification

To add data integrity verification to O-PSI we can use the verification mechanism
of any provable data possession protocol that does not reveal any information
about the confidential data to the server. For this purpose, we can adopt the
homomorphic verification tags proposed in [22]. These tags are homomorphic in
the sense that given two tags Ta and Tb for elements a and b one can combine
them Ta·Tb which is equal to the tag Taga+b of the sum a+b of the two elements.

O-PSI: Delegated Private Set Intersection on Outsourced Datasets 13

In O-PSI, client I ∈ {A,B} defines a tag for each element v(I)
i of the blinded

dataset as: T
v
(I)
i

= (h(kI ||i) · gv
(I)
i)dI mod N , where h is a secure determinis-

tic hash-and-encode function that maps strings uniformly to a unique cyclic
subgroup of Z

∗
N , QRN , kI is a random value used for all elements in the set,

g = a2, a
R← Z∗

N , and N = p′q′ is a RSA modulus, p′ = 2p′′ + 1, q′ = 2q′′ + 1 and
dI ·eI = 1 mod p′′q′′, where q′′ and p′′ are prime numbers. The hash value h(kI ||i)
binds the tag T

v
(I)
i

to the value v(I)
i and prevents the server from using the tag

to compute a proof for a different value. Note, v(I)
i = y(I)

i ·r(I)
i is a uniformly ran-

dom value. Consequently, each tag T
v
(I)
i

does not leak any information about the

private value y(I)
i to the server. In this protocol client I, along with its blinded

dataset, outsources a vector tag(I) comprising values T
v
(I)
i

(0 ≤ i ≤ n−1) to the
server. The challenge, proof generation and verification phases of the protocol
remain unchanged to those described in [22].

6.2 Multiple Clients

O-PSI can be used to compute the intersection of the outsourced datasets of
multiple clients. In this case, the client interested in the intersection, client B,
sends the same request (see step 3a of the protocol) to all other clients, Aj

(1 ≤ j ≤ m). The protocol for each client Aj remains unchanged (see step 3b).
For each client Aj , the server carries out step 3c, and computes the result vector
t such that for 0 ≤ i ≤ n − 1:

ti = EpkB
(w(B)

i · v(B)
i) ·

∏

1≤j≤m

(e(Aj)

i)v
(Aj)
i ·w(Aj)

i

= EpkB
(r(B)

i · (w(B)
i · y(B)

i +
∑

1≤j≤m

w
(Aj)

i · y
(Aj)

i))

Then the server sends t to client B, that carries out the final step, step 3e,
unchanged. Note that in this protocol, even if m − 1 clients collude, none can
infer the set elements of the non-corrupted client, as the random polynomials
ω

(Aj)

I , picked by the server, are unknown to the clients.

7 Evaluation

We evaluate O-PSI by comparing its properties to those provided by other proto-
cols that delegate PSI computation to a server. We also compare these protocols
in terms of communication and computation complexity. Table 1 summarises the
results.

Properties. The protocols in [12,13] require clients to interact with each other
at setup. In [12] clients need to generate jointly the key of the pseudorandom per-
mutation used to encode the datasets, while in [13] they need to jointly compute
some parameters that are used in the encryption of their datasets. In contrast to

14 A. Abadi et al.

Table 1. Comparison of different delegated PSI protocols. Set cardinality and inter-
section cardinality are denoted by d and k respectively.

Property O-PSI [12] [13] [14] [15] [16]

Non-interactive setup � × × � � �
Hiding the intersection size from the server � � � × � ×

Many set intersections without re-preparation � × × × × ×
Multiple clients � � � � × �

Computation integrity verification × � × × × �
Communication complexity O(d) O(d) O(d2) O(d) O(d2) O(k)

Computation complexity O(d) O(d) O(d2) O(d2) O(d2) O(d)

these protocols, in [14–16] and O-PSI the clients can independently prepare and
outsource their private datasets. This is desirable in a cloud computing context
as organizations and individuals can take advantage of the storage capabilities
of the cloud and outsource their data at different points in time and without
prior consideration of who is going to use them.

In a delegatedPSI protocol, privacy should bemaintained and the server should
not learn anything about the intersection during the computation, including its
cardinality. This is the case for the size-hiding variation of [12], protocols in [13,15],
and O-PSI. However, as discussed in section 2 this is not the case for [14,16].

More interestingly, O-PSI is the only protocol in which clients can reuse
their outsourced datasets on the server in multiple delegated PSI computations
without the need to prepare their datasets for each computation, and computing
PSI on the outsourced dataset multiple times does not reveal any information
to the server. This is an important advantage in scenarios where outsourced
datasets are expected to be used a lot of times, as it significantly reduces the
overall communication and storage cost for the clients. This is not the case
for any of the other protocols, because the clients either do not outsource their
datasets, or need to re-encode them locally for each operation in order to prevent
the server from inferring information about the intersection over time.

As we showed in section 6.2, O-PSI can be easily extended to support multiple
clients. This is also the case for [12–14,16]. However, this is not possible for [15],
as this requires an additional logical operation that is not supported by the
homomorphic encryption scheme used.

O-PSI has been designed for the semi-honest security model and as a result
does not consider the case where the server maliciously deviates from the proto-
col and computes the wrong result. This is a reasonable assumption in a cloud
computing context where cloud providers are keen to preserve their reputation
and this assumption is widely considered in the literature [13–15,23,24]. How-
ever [16] allows the client to verify the correctness of the results, while as we
have seen in section 2, [12] can detect server misbehavior at an additional cost.

In conclusion, in contrast to other protocols, O-PSI has a unique combination
of properties that make it particularly appealing for a cloud computing setting.

O-PSI: Delegated Private Set Intersection on Outsourced Datasets 15

Communication Complexity. The communication complexity of O-PSI for
the client who receives the result, client B, is O(d), where d is the dataset
size. This is because, client B sends to client A the n = 2d + 1 encrypted
random values EpkB

(r(B)
i) for 0 ≤ i ≤ n − 1 (see step 3a). The communication

complexity for client A, who authorizes the operation on its dataset, is O(d), as
for each of the n values it receives from client B it sends to the server EpkB

(r(B)
i ·

(r(A)
i)−1) (see step 3b). The communication complexity for the server is O(d), as

it sends to client B the result vector t of size n (see step 3d). Thus, the overall
communication complexity of our protocol is 3n which is linear, O(d), to the
dataset size.

In [13] for each set intersection, the client engages in a two-round protocol,
one round to upload its elements in the form of RSA ciphertexts to the server
with O(d) communication complexity, and another to interactively compute pri-
vate set intersection with the server with O(d2) communication complexity. For
the protocol in [15], the communication complexity is also quadratic O(sd2),
where s is the number of hash functions used for the bloom filter, and the mes-
sages contain BGN encryption ciphertexts. On the other hand, the protocols
in [12,14] have O(d) communication complexity with messages containing sym-
metric key encryption ciphertexts, while the protocol in [16] has O(k) complexity,
where k is the intersection size.

In conclusion, similar to the most efficient protocols, O-PSI has linear commu-
nication complexity, however at an increased message size, which results from the
additional dataset outsourcing properties and privacy guarantees that it provides.

Computation Complexity. We evaluate the computational cost of O-PSI by
counting the number of exponentiation operations, as their cost dominates that
of other operations. More specifically, client B performs n exponentiations to
encrypt the random values in step 3.a, and needs another n exponentiations
to decrypt the polynomial sent by the server in step 3.e. So, in total it carries
out 2n exponentiations. Client A performs n exponentiations to enable the set
intersection in step 3.b, while the server carries out n exponentiations to encrypt
client B’s dataset and n exponentiations to transform client A’s dataset in step
3.d, a total of 2n exponentiations. It is interesting to note that using the point-
value representation increases the overall storage costs at the server. However,
the modest increase in storage brings a significant decrease in the computational
costs, from O(d2) (when using encrypted coefficients such as in [6]) to O(d). In
total O-PSI involves 5n exponentiations. Hence, its computation complexity is
linear to the size of the dataset, O(d).

The semi-honest variant of the protocol in [12] also has linear complexity
O(d), as the client computing the result and the server invoke the pseudorandom
permutation (PRP) d times, while the other client invokes the PRP, 2d times.
On the other hand, the computational overhead in [13] is quadratic O(d2), as
it involves a joint PSI protocol (plus public key encryption of the dataset ele-
ments). The protocol in [15] also has quadratic complexity, as it involves O(d2)
BGN public key encryption operations. In [14] the client performs O(d) mod-
ular additions, while the server carries out O(d2) operations to compare the

16 A. Abadi et al.

expanded sets of the users. Finally, the protocol in [16] is based on bilinear maps
and requires 6d pairings at the server side and 2k exponentiations at the client
side, resulting in O(d) and O(k) computation complexity at the server and client
side respectively.

In conclusion, similar to the most efficient protocols, due to the use of
polynomials in point-value form, O-PSI incurs only linear computational costs.
However, the additional properties it provides come at the cost of more costly
exponentiation operations.

8 Conclusions and Future Work

In this paper we have presented O-PSI, a protocol that allows clients to out-
source their private datasets and delegate PSI computation to a server. A key
building block of O-PSI is a novel representation of sets as polynomials in point-
value form. The protocol allows clients to independently prepare and outsource
their private datasets, while allowing, with the clients’ permission, the server to
compute multiple set intersections without revealing any information about the
result or the sets, and no need for re-preparation of the sets. O-PSI has been
shown to be secure in the semi-honest model, and has linear communication and
computation complexity, with respect to the size of the datasets. O-PSI can be
easily extended to support multiple clients and dataset integrity verification. As
a result, O-PSI is a scalable protocol particularly suited for cloud computing
environments. In the future, we plan to investigate how O-PSI can be extended
to support additional set operations like set union or subset. We also plan to
explore how clients can update their sets without the need to fully re-encode
them, and verify the integrity of any computation.

Acknowledgments. We would like to thank the anonymous reviewers. Aydin Abadi
is supported by a EPSRC Doctoral Training Grant studentship.

References

1. Fiore, D., Gennaro, R., Pastro, V.: Efficiently verifiable computation on encrypted
data. In: 21st ACM Conference on Computer and Communications Security,
Scottsdale, AZ, USA, pp. 844–855 (2014)

2. Backes, M., Fiore, D., Reischuk, R.M.: Verifiable delegation of computation on
outsourced data. In: 20th ACM Conference on Computer and Communications
Security, Berlin, Germany, pp. 863–874 (2013)

3. Agrawal, R., Srikant, R.: Privacy-preserving data mining. ACM Sigmod. Record
29(2), 439–450 (2000)

4. Cristofaro, E.D., Tsudik, G.: Practical private set intersection protocols with linear
complexity. In: 14th International Conference on Financial Cryptography and Data
Security, pp. 143–159 (2010)

5. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004)

O-PSI: Delegated Private Set Intersection on Outsourced Datasets 17

6. Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

7. De Cristofaro, E., Kim, J., Tsudik, G.: Linear-Complexity Private Set Intersection
Protocols Secure in Malicious Model. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS,
vol. 6477, pp. 213–231. Springer, Heidelberg (2010)

8. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: 20th ACM Conference on Computer and Com-
munications Security, pp. 789–800 (2013)

9. Pinkas, B., Schneider, T., Zohner, M.: Faster private set intersection based on OT
extension. In: 23rd USENIX Security Symposium, San Diego, CA, USA, USENIX
(2014)

10. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal Verification of Oper-
ations on Dynamic Sets. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841,
pp. 91–110. Springer, Heidelberg (2011)

11. Canetti, R., Paneth, O., Papadopoulos, D., Triandopoulos, N.: Verifiable set oper-
ations over outsourced databases. In: 17th IACR International Conference on The-
ory and Practice of Public-Key Cryptography, pp. 113–130 (2014)

12. Kamara, S., Mohassel, P., Raykova, M., Sadeghian, S.: Scaling Private Set Inter-
section to Billion-Element Sets. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014.
LNCS, vol. 8437, pp. 193–213. Springer, Heidelberg (2014)

13. Kerschbaum, F.: Collusion-resistant outsourcing of private set intersection. In: 27th
ACM Symposium on Applied Computing, Riva, Trento, Italy, pp. 1451–1456 (2012)

14. Liu, F., Ng, W.K., Zhang, W., Giang, D.H., Han, S.: Encrypted set intersection
protocol for outsourced datasets. In: IEEE International Conference on Cloud Engi-
neering, IC2E 2014, pp. 135–140. IEEE Computer Society, Washington, DC (2014)

15. Kerschbaum, F.: Outsourced private set intersection using homomorphic encryp-
tion. In: 7th ACM Symposium on Information, Compuer and Communications
Security, ASIACCS 2012, Seoul, Korea, May 2–4, pp. 85–86 2012 (2012)

16. Zheng, Q., Xu, S.: Verifiable delegated set intersection operations on outsourced
encrypted data. IACR Cryptology ePrint Archive, 178 (2014)

17. Goldreich, O.: The Foundations of Cryptography, vol. 2. Basic Applications. Cam-
bridge University Press (2004)

18. Stefanov, E., Shi, E.: Multi-cloud oblivious storage. In: 20th ACM Conference on
Computer and Communications Security, Berlin, Germany, pp. 247–258 (2013)

19. Raykova, M., Vo, B., Bellovin, S.M., Malkin, T.: Secure anonymous database
search. In: First ACM Cloud Computing Security Workshop, Chicago, IL, USA,
pp. 115–126 (2009)

20. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, p. 223. Springer,
Heidelberg (1999)

21. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms, 1st
edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1974)

22. Ateniese, G., Burns, R.C., Curtmola, R., Herring, J., Kissner, L., Peterson, Z.N.J.,
Song, D.X.: Provable data possession at untrusted stores. In: 14th ACM Conference
on Computer and Communications Security, pp. 598–609 (2007)

23. Wang, C., Ren, K., Wang, J.: Secure and practical outsourcing of linear program-
ming in cloud computing. In: 30th IEEE International Conference on Computer
Communications, Shanghai, China, pp. 820–828 (2011)

24. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: 21st ACM Conference on Computer and Communications Security, Scottsdale,
AZ, USA, pp. 310–320 (2014)

Flexible and Robust Privacy-Preserving
Implicit Authentication

Josep Domingo-Ferrer1(B), Qianhong Wu2, and Alberto Blanco-Justicia1

1 Department of Computer Engineering and Mathematics,
UNESCO Chair in Data Privacy, Universitat Rovira i Virgili,
Av. Päısos Catalans 26, E-43007 Tarragona, Catalonia, Spain

{josep.domingo,alberto.blanco}@urv.cat
2 School of Electronics and Information Engineering, Beihang University,

XueYuan Road No. 37, Beijing, Haidian District, China
qianhong.wu@buaa.edu.cn

Abstract. Implicit authentication consists of a server authenticating a
user based on the user’s usage profile, instead of/in addition to relying
on something the user explicitly knows (passwords, private keys, etc.).
While implicit authentication makes identity theft by third parties more
difficult, it requires the server to learn and store the user’s usage profile.
Recently, the first privacy-preserving implicit authentication system was
presented, in which the server does not learn the user’s profile. It uses
an ad hoc two-party computation protocol to compare the user’s fresh
sampled features against an encrypted stored user’s profile. The proto-
col requires storing the usage profile and comparing against it using two
different cryptosystems, one of them order-preserving; furthermore, fea-
tures must be numerical. We present here a simpler protocol based on set
intersection that has the advantages of: i) requiring only one cryptosys-
tem; ii) not leaking the relative order of fresh feature samples; iii) being
able to deal with any type of features (numerical or non-numerical).

Keywords: Privacy-preserving implicit authentication · Privacy-
preserving set intersection · Implicit authentication · Active authenti-
cation · Transparent authentication · Risk mitigation · Data brokers

1 Introduction

The recent report [10] by the U.S. Federal Trade Commission calls for transpa-
rency and accountability of data brokers. On the one hand, the report describes
the pervasive data collection carried out by data brokers as clearly privacy-
invasive. On the other hand, it presents risk mitigation services offered by data
brokers as the good side of data collection, to the extent that such services protect
consumers against identity theft. Indeed, storing information on how a consumer
usually interacts with a service (time of the day, usual places, usual sequence
of keystrokes, etc.) allows using this information to implicitly authenticate a
user: implicit authentication [12] (a.k.a. transparent authentication [5] or active
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 18–34, 2015.
DOI: 10.1007/978-3-319-18467-8 2

Flexible and Robust Privacy-Preserving Implicit Authentication 19

authentication [1]) is the process of comparing the user’s current usage profile
with the stored profile. If both profiles disagree, maybe someone is impersonating
the user, e.g. after some identity theft (password theft, etc.).

The above risk mitigation argument is part a long-standing simplistic ten-
dency in digital services (and elsewhere) to justify privacy invasion in the name
of legitimate interests, as if the latter were incompatible with privacy (another
old example is intellectual property protection, which was portrayed as being
incompatible with the anonymity of digital content consumers until anonymous
fingerprinting was proposed [8,14,16]). In fact, implicit authentication turns out
to be a weak excuse to justify the storage and/or access by servers to the usage
profiles of users. In [17] it was shown how to make implicit authentication com-
patible with the privacy of users. The idea is that the server only needs an
encrypted version of the user’s usage profile.

1.1 Contribution and Plan of this Paper

The protocol in [17] needs the server to store the users’ accumulated usage pro-
files encrypted under two different cryptosystems, one that is homomorphic and
one that is order-preserving. We present here a protocol for privacy-preserving
implicit authentication based on set intersection, which has the advantage that
the server only needs to store the users’ accumulated usage profiles encrypted
under one (homomorphic) cryptosystem. This allows saving storage at the car-
rier and also computation during the protocol. Also, unlike [17], our protocol
does not leak the relative order of fresh feature samples collected by the user’s
device for comparison with the encrypted profile. Finally, our protocol can deal
with any type of features (numerical or non-numerical), while the protocol [17]
is restricted to numerical features.

The rest of this paper is organized as follows. Section 2 gives background
on implicit authentication and on the privacy-preserving implicit authentication
protocol of [17]. Section 3 discusses how to compute the dissimilarity between two
sets depending on the type of their elements. Section 4 presents a robust privacy-
preserving set intersection protocol that can effectively be used for implicit
authentication. The privacy, security and complexity of the new protocol are ana-
lyzed in Section 5. Experimental results are reported in Section 6. Finally, con-
clusions and future research directions are summarized in Section 7. Appendix A
gives background on privacy-preserving set intersection, Appendix B recalls the
Paillier cryptosystem and Appendix C justifies the correctness of the least obvi-
ous steps of our protocol.

2 Background

We first specify the usual setting of implicit authentication and we then move
to privacy-preserving implicit authentication.

20 J. Domingo-Ferrer et al.

2.1 Implicit Authentication

The usual scenario of implicit authentication is one in which the user carries
a mobile networked device (called just user’s device in what follows) such as a
cell phone, tablet, notebook, etc. The user wishes to authenticate to a server
in order to use some application. The user may (or not) use a primary pass-
word authentication mechanism. To strengthen such a primary authentication
or even to replace it, the user resorts to implicit authentication [12]. In this type
of authentication, the history of a user’s actions on the user’s device is used to
construct a profile for the user that consists of a set of features. In [12] empirical
evidence was given that the features collected from the user’s device history are
effective to distinguish users and therefore can be used to implicitly authenti-
cate them (instead or in addition to explicit authentication based on the user’s
providing a password).

The types of features collected on the user’s actions fall into three categories:
(i) device data, like GPS location data, WiFi/Bluetooth connections and other
sensor data; (ii) carrier data, such as information on cell towers seen by the
device, or Internet access points; and (iii) cloud data, such as calendar entries.
It is not safe to store the accumulated profile of the user in the user’s device,
because an intruder might compromise the device and alter the stored profile in
order to impersonate the legitimate user. Hence, for security, the profile must be
stored by some external entity. However, the user’s profile includes potentially
sensitive information and storing it outside the user’s device violates privacy.

Implicit authentication systems try to mitigate the above privacy problem
by using a third party, the carrier (i.e. the network service provider) to store the
user’s profiles. Thus, the typical architecture consists of the user’s device, the
carrier and the application servers. The latter want to authenticate the user and
they collaborate with the carrier and the user’s device to do so. The user’s device
engages in a secure two-party computation protocol with the carrier in order to
compare the fresh usage features collected by the user’s device with the user’s
profile stored at the carrier. The computation yields a score that is compared (by
the carrier or by the application server) against a threshold, in order to decide
whether the user is accepted or rejected. In any case, the application server trusts
the score computed by the carrier.

2.2 Privacy-Preserving Implicit Authentication

In the privacy-preserving implicit authentication system proposed in [17], the
user’s device encrypts the user’s usage profile at set-up time, and forwards it
to the carrier, who stores it for later comparison. There is no security problem
because during normal operation the user’s device does not store the user’s
profile (it just collects the fresh usage features). There is no privacy problem
either, because the carrier does not see the user’s profile in the clear.

The core of proposal [17] is the algorithm for computing the dissimilarity
score between two inputs: the fresh sample provided by the user’s device and
the profile stored at the carrier. All the computation takes place at the carrier

Flexible and Robust Privacy-Preserving Implicit Authentication 21

and both inputs are encrypted: indeed, the carrier stores the encrypted profile
and the user’s device sends the encrypted fresh sample to the carrier. Note that
the keys to both encryptions are only known to the user’s device (it is the device
who encrypted everything).

The carrier computes a dissimilarity score at the feature level, while provably
guaranteeing that: i) no information about the profile stored at the carrier is
revealed to the device other than the average absolute deviation of the stored
feature values; ii) no information about the fresh feature value provided by the
device is revealed to the carrier other than how it is ordered with respect to the
stored profile feature values.

The score computation protocol in [17] uses two different encryption schemes:
a homomorphic encryption scheme HE (for example, Paillier’s [15]) and an
order-preserving symmetric encryption scheme OPSE (for example, [4]). For
each feature in the accumulated user’s profile, two encrypted versions are created,
one under HE and the other under OPSE. Similarly, for each feature in the fresh
sample it collects, the user’s device computes two encrypted versions, under HE
and OPSE, respectively, and sends them to the carrier. The following process
is repeated for each feature:

1. Using the HE ciphertexts the carrier performs some computations (additions
and scalar multiplications) relating the encrypted fresh sampled feature value
and the set of encrypted feature values in the stored encrypted user’s profile.

2. The output of the previous computations is returned to the user’s device,
which decrypts it, re-encrypts it under OPSE and returns the re-encrypted
value to the carrier.

3. Using the order-preserving properties, the carrier can finally compute a dis-
similarity score evaluating how different is the fresh sampled feature from
those stored in the encrypted user’s profile. This score can be roughly descri-
bed as the number of feature values in the stored encrypted profile that are
less dissimilar from the median of the stored values than the fresh sampled
value.

The authors of [17] point out that, in case of a malicious user’s device (e.g.
as a result of it being compromised), one cannot trust the device to provide
the correct HE-encrypted version of the fresh sampled feature. Nor can it be
assumed that the device returns correct OPSE-encryptions in Step 2 above.
In [17], a variant of the privacy-preserving implicit authentication protocol is
presented in which the device proves the correctness of HE-encrypted fresh
sampled features and does not need to provide OPSE-encrypted values. This
version is secure against malicious devices, but its complexity is substantially
higher.

Other shortcomings of [17]:

– It is restricted to numerical features, due to the kind of computations that
need to be performed on them. However, among the example features listed
in Section 2.1, there are some features that are not numerical, like the list
of cell towers or Internet access points seen by the user’s device.

22 J. Domingo-Ferrer et al.

– It discloses the following information to the user’s device: i) how the fresh
sample is ordered with respect to the stored profile feature values; ii) the
average absolute deviation of the stored feature values.

We present a privacy-preserving implicit authentication protocol based on
set intersection that deals with the above shortcomings.

3 Dissimilarity Between Sets Depending on the Data
Type

Based on [2], we recall here how the dissimilarity between two data sets X and Y
can be evaluated using set intersection. If we let X be the user’s profile and Y be
the fresh sample collected by the user’s device, our privacy-preserving implicit
authentication setting presents the additional complication (not present in [2])
that X is only available in encrypted form (the carrier stores only the encrypted
user’s profile). Anyway, we describe here the case of two plaintext sets X and Y
and we will deal with encrypted sets in the following sections.

3.1 Case A: Independent Nominal Feature Values

Assume X and Y consist of qualitative values, which are independent and binary,
that is, the relationship between two values is equality or nothing. Take as an
example the names of the network or phone providers seen by the user’s device,
the operating system run by the device and/or the programs installed in the
device. In this case, the dissimilarity between X and Y can be evaluated as the
multiplicative inverse of the size of the intersection of X and Y , that is 1/|X∩Y |,
when the intersection is not empty. If it is empty, we say that the dissimilarity
is ∞.

Clearly, the more the coincidences between X and Y , the more similar is the
profile stored at the carrier to the fresh sample collected by the device.

3.2 Case B: Correlated Categorical Feature Values

As in the previous case, we assume the feature values are expressed as qualitative
features. However, these may not be independent. For example, if the feature
values are the IDs of cell towers or Internet access points seen by the device,
nearby cell towers/access points are more similar to each other than distant cell
towers/access points.

In this case, the dissimilarity between X and Y cannot be computed as the
size of their intersection.

Assume we have an integer correlation function l : E×E �→ Z+ that measures
the similarity between the values in the sets of features held by the device and
the carrier, where E is the domain where the sets of features of both players take
values. For nominal features, semantic similarity measures can be used for this
purpose [18]; for numerical features that take values over bounded and discrete

Flexible and Robust Privacy-Preserving Implicit Authentication 23

domains, standard arithmetic functions can be used. Assume further that both
the device and the carrier know this function s from the very beginning.

Here the dissimilarity between the set X and the set Y can be computed as

1/(
∑

x∈X

∑
y∈Y l(x, y))

when the denominator is nonzero. If it is zero, we say that the distance is ∞.

3.3 Case C: Numerical Feature Values

In this case, we want to compute the dissimilarity between two sets of numerical
values based on set intersection. Numerical features in implicit authentication
may include GPS location data, other sensor data, etc. Assume U = {u1, · · · , ut}
and V = {v1, · · · , vt}. A way to measure the dissimilarity between X and Y is
to compute

∑t
i=1 |ui − vi|.

4 Robust Privacy-Preserving Set Intersection for Implicit
Authentication

It will be shown further below that computing dissimilarities in the above three
cases A, B and C can be reduced to computing the cardinality of set intersections.
Furthermore, this can be done without the carrier revealing X and without the
user’s device revealing Y , as required in the implicit authentication setting. The
idea is that, if the dissimilarity stays below a certain threshold, the user is
authenticated; otherwise, authentication is refused.

In Appendix A, we give some background on privacy-preserving set intersec-
tion protocols in the literature. Unfortunately, all of them assume an honest-
but-curious situation, but we need a privacy-preserving set intersection protocol
that works even if the adversary is a malicious one: notice that the user’s device
may be corrupted, that is, in control of some adversary. Hence we proceed to
specifying a set intersection protocol that remains robust in the malicious sce-
nario and we apply it to achieving privacy-preserving implicit authentication
in Case A. We then extend it to Cases B and C. We make use of Paillier’s
cryptosystem [15], which is recalled in Appendix B.

4.1 Implicit Authentication in Case A

Set-up. Let the plaintext user’s profile be (a1, · · · , as). In this phase, the user’s
device transfers the encrypted user’s profile to the carrier. To do so, the user’s
device does:

1. Generate the Paillier cryptosystem with public key pk = (n, g) and secret
key sk.

2. Compute the polynomial p(x) =
∏s

i=1(x−ai) = p0 +p1x+p2x
2 + · · ·+psx

s.
3. Compute Enc(p0), · · · Enc(ps) where Enc(pi) = gpirn

i mod n2.

24 J. Domingo-Ferrer et al.

4. Randomly choose R′ ∈ Zn2 . Find r′
0, · · · , r′

s ∈ Zn2 such that

R′ = r′
0 · r′

1
aj · r′

2
a2
j · · · r′

s
as
j mod n2, j = 1, · · · , s (1)

Note that the system (1) has a trivial solution r′
0 = R′ and r′

1 = · · · = r′
s = 1,

but, since it is underdetermined (s + 1 unknowns and s equations), it has
many non-trivial solutions too (see correctness analysis in Appendix C).

5. Compute Ri = r′
i/ri mod n2. Randomly choose integer d ∈ Zn. Send

pk,Enc(p0), · · · Enc(ps);R0
d, · · · , Rs

d mod n2

to the carrier. Locally delete all data computed during the set-up protocol,
but keep (d,R′) secretly.

Implicit Authentication Protocol. As discussed in Section 3.1, in case of
independent nominal feature values (Case A), dissimilarity is computed as 1/|X∩
Y |. Hence, to perform implicit authentication the carrier just needs to compute
the cardinality of the intersection between the fresh sample collected by the
user’s device and the user’s profile stored at the carrier. The challenge is that
the carrier only holds the encrypted user’s profile and the user’s device does no
longer hold the plaintext user’s profile either in plaintext or ciphertext.

Let Y = {b1, · · · , bt} ⊆ E be the fresh sample collected by the user’s device.
Then the device and the carrier engage in the following protocol:

Step 1 The carrier randomly chooses θ, and sends pk, Enc(p0)θ, · · · Enc(ps)θ;
R0

d, · · · , Rs
d to the user’s device.

Step 2 The user’s device picks a random integer r(j) ∈ Zn2 for every 1 ≤ j ≤ t.
The device computes for 1 ≤ j ≤ t

Enc(r(j) · d · θ · p(bj)) = Enc(p(bj))d·θ·r(j)

= (Enc(p0) · · · Enc(ps)bsj)d·θ·r(j)

= gr(j)·d·θp(bj)γn·d·θ
j mod n2

where γj = (r0 · r1bj · r2b2j · · · rs
bsj)r(j) mod n2. The user’s device then com-

putes Υj = (R0 · R1
bj · R2

b2j · · · Rs
bsj)dr(j) mod n2. For all j, the device

randomly orders and sends

{(Enc(r(j) · d · θ · p(bj)),Υj , R
′r(j)d)} (2)

to the carrier.
Step 3 For 1 ≤ j ≤ t, the carrier does:

– Compute Enc(r(j) · d · θ · p(bj)) · Υnθ
j ;

– From Expression (1), if bj = ai for some i ∈ {1, · · · , s}, then p(bj) = 0
and hence Enc(r(j)d · θ · p(bj)) · Υnθ

j = R′r(j)dnθ; note that the carrier

can recognize R′r(j)dnθ by raising R′r(j)d received in Expression (2) to
nθ. Otherwise (if bj 	= ai for all i ∈ {1, · · · , s}) Enc(r(j) · d · θ · p(bj))
looks random. See correctness analysis in Appendix C.

If both parties are honest, then the carrier learns |X ∩ Y | but obtains no
information about the elements in X or Y .

Flexible and Robust Privacy-Preserving Implicit Authentication 25

4.2 Implicit Authentication in Case B

Here, the carrier inputs X and the user’s device inputs Y , two sets of features,
and they want to know how close X and Y are without revealing their own set.
In the protocol below, only the carrier learns how close X and Y are.

We assume that the domain of X and Y is the same, and we call it E. The
closeness or similarity between elements is computed by means of a function s.
In particular, we consider functions l : E × E → Z+. Observe that Case A is a
particular instance of this Case B in which l(x, x) = 1 and l(x, y) = 0 for x 	= y.

Let Y be the input of the user’s device. For every z ∈ E, the device computes
�z =

∑
y∈Y l(z, y). Observe that �z measures the overall similarity of z and Y .

Let Y ′ = {z ∈ E : �z > 0}. It is common to consider functions satisfying
l(z, z) > 0 for every z ∈ E, and so in general Y ⊆ Y ′.

An implicit authentication protocol for such a computation can be obtained
from the protocol in Case A (Section 4.1), by replacing Steps 2 and 3 there with
the following ones:

Step 2’ For every z ∈ Y ′, the user’s device picks �z random integers r(1), · · · ,
r(�z)∈Zn2 and for 1 ≤ j ≤ �z does

– Compute

Enc(r(j) · d · θ · p(z)) = Enc(p(z))d·θ·r(j)

= (Enc(p0) · · · Enc(ps)zs

)d·θ·r(j)

= gr(j)·d·θp(z)γn·d·θ
j mod n2

where γj = (r0 · r1
z · r2

z2 · · · rs
zs

)r(j) mod n2.
– Compute Υj = (R0 · R1

z · R2
z2 · · · Rs

zs

)dr(j) mod n2.
– Let Ej = {(Enc(r(j) · d · θ · p(z)),Υj , R

′r(j)d)}.
Finally, the user’s device randomly re-orders the sequence of all computed
Ej for all z ∈ Y ′ (a total of

∑
z∈Y ′ �z elements) and sends the randomly

re-ordered sequence of Ej ’s to the carrier.
Step 3’ For every received Ej , the carrier does

– Compute Enc(r(j)dθ · p(z)) · Υnθ
j ;

– From Expression (1), if z ∈ X, then p(z) = 0 and hence Enc(r(j)d ·
θ · p(z)) · Υnθ

j = R′r(j)dnθ (see correctness analysis in Appendix C);
otherwise (if z 	∈ X) Enc(r(j)dθ · p(z)) looks random.

Hence, at the end of the protocol, the total number of Ej which yield R′r(j)dnθ

is ∑

x∈X

�x =
∑

x∈X

∑

y∈Y

l(x, y),

that is, the sum of similarities between the elements of X and Y . This clearly
measures how similar X and Y are. At the end of the protocol, the carrier knows
|Y ′| and the device knows |X|. Besides that, neither the carrier nor the device can
gain any additional knowledge on the elements of each other’s set of preferences.

26 J. Domingo-Ferrer et al.

4.3 Implicit Authentication in Case C

Let the plaintext user’s profile be a set U of t numerical features, which we
denote by U = {u1, · · · , ut}. The device’s fresh sample corresponding to those
features is V = {v1, · · · , vt}. The carrier wants to learn how close X and Y are,
that is,

∑t
i=1 |ui − vi|.

Define X = {(i, j) : ui > 0 and 1 ≤ j ≤ ui} and Y = {(i, j) : vi > 0 and 1 ≤
j ≤ vi}. Now, take the set-up protocol defined in Section 4.1 for Case A and run
it by using X as plaintext user profile. Then take the implicit authentication
protocol for Case A and run it by using Y as the fresh sample input by the
device. In this way, the carrier can compute |X ∩ Y |. Observe that

|X ∩ Y | = |{(i, j) : ui, vi > 0 and 1 ≤ j ≤ min{ui, vi}}| =
∑

1≤i≤t

min{ui, vi}.

In the set-up protocol for Case A, the carrier learns |X| and during the implicit
authentication protocol for Case A, the carrier learns |Y |. Hence, the carrier can
compute

|X| + |Y | − 2|X ∩ Y | =
t∑

i=1

(max{ui, vi} + min{ui, vi}) − 2
t∑

i=1

min{ui, vi}

=
t∑

i=1

(max{ui, vi} − min{ui, vi}) =
t∑

i=1

|ui − vi|

5 Privacy, Security and Complexity

Unless otherwise stated, the assessment in this section will focus on the protocols
of Case A (Section 4.1), the protocols of Cases B and C being extensions of
Case A.

5.1 Privacy and Security

We define privacy in the following two senses:

– After the set-up is concluded, the user’s device does not keep any information
about the user’s profile sent to the carrier. Hence, compromise of the user’s
device does not result in compromise of the user’s profile.

– The carrier learns nothing about the plaintext user’s profile, except its size.
This allows the user to preserve the privacy of her profile towards the carrier.

Lemma 1. After set-up, the user’s device does not keep any information on the
user’s profile sent to the carrier.

Proof. The user’s device only keeps (d,R′) at the end of the set-up protocol.
Both d and R′ are random and hence unrelated to the user’s profile. �.

Flexible and Robust Privacy-Preserving Implicit Authentication 27

Lemma 2. The carrier or any eavesdropper learn nothing about the plaintext
user’s profile, except its size.

Proof. After set-up, the carrier receives pk,Enc(p0), · · · Enc(ps);R0
d, · · · , Rs

d

mod n2. Since d is random and unknown to the carrier, R0
d, · · · , Rs

d mod n2

look random to the carrier and will give him no more information about the
plaintext user’s profile than the Paillier ciphertexts Enc(p0), · · · Enc(ps). That
is, the carrier learns nothing about the user’s plaintext profile X = {a1, · · · ,
as} except its size s. The same holds true for an eavesdropper listening to the
communication between the user’s device and the carrier during set-up.

At Step 2 of implicit authentication, the carrier only gets the fresh sample
Y encrypted under Paillier and randomly re-ordered. Hence, the carrier learns
no information on Y , except its size t. At Step 3, the carrier learns |X ∩ Y |, but
not knowing Y , the size |X ∩ Y | of the intersection leaks to him no information
on X. �

If we define security of implicit authentication as the inability of a dishonest
user’s device to disrupt the authentication outcome, we can state the following
result.

Lemma 3. A dishonest user’s device has no better strategy to alter the outcome
of implicit authentication than trying to randomly guess the user’s profile.

Proof. At the end of the set-up protocol, the (still uncompromised) user’s keeps
no information about the user’s profile (Lemma 1). Hence, if the user’s device
is later compromised and/or behaves dishonestly, it still has no clue on the real
user’s profile against which its fresh sample is going to be authenticated. Hence,
either the user’s device provides an honest fresh sample and implicit authenti-
cation will be correctly performed, or the user’s device provides a random fresh
sample with the hope that it matches the user’s profile. �

5.2 Complexity

Case A. During the set-up protocol, the user’s device needs to compute:

– s + 1 Paillier encryptions for the polynomial coefficients;
– values r′

0, · · · , r′
s; as explained in Appendix C, this can be done by randomly

choosing r′
0, then solving an s × s generalized Vandermonde system (doable

in O(s2) time using [7]) and finally computing s modular powers to find the
r′
1, · · · , r′

s;
– s + 1 modular powers (raising the Ri values to d).

During the implicit authentication protocol, the user’s device needs to com-
pute (Step 2):

– t Paillier encryptions;
– ts modular powers (to compute the Υj values);
– t modular powers (to raise R′ to r(j)d).

28 J. Domingo-Ferrer et al.

Also during the implicit authentication protocol, the carrier needs to com-
pute:

– At Step 1, s + 1 modular powers (to raise the encrypted polynomial coeffi-
cients to θ);

– At Step 3, t Paillier encryptions;
– At Step 3, t modular powers (to raise the Υj values to nθ).

Case B. The set-up protocol does not change w.r.t. Case A. In the implicit
authentication protocol, the highest complexity occurs when Y ′ = E and the
similarity function l always takes the maximum value in its range, say L. In this
case, ∑

z∈Y ′
�z =

∑

z∈Y ′

∑

y∈Y

l(z, y) = |E|sL.

Hence, in the worst case the user’s device needs to compute (Step 2’):

– |E|sL Paillier encryptions;
– |E|sL modular powers (to compute the Υj values);
– |E|sL modular powers (to raise R′ to r(j)d).

Also during the implicit authentication protocol, the carrier needs to com-
pute:

– At Step 1, s + 1 modular powers (to raise the encrypted polynomial coeffi-
cients to θ);

– At Step 3’, |E|sL Paillier encryptions;
– At Step 3’, |E|sL modular powers (to raise the Υj values to nθ).

Note that the above complexity can be reduced by reducing the range of the
similarity function l(·, ·).

Case C. Case C is analogous to Case A but the sets X and Y whose inter-
section is computed no longer have s and t elements, respectively. According to
Section 4.3, the maximum value for |X| occurs when all ui take the maximum
value of their range, say, M , in which case X contains tM pairs (i, j). By a
similar argument, Y also contains at most tM pairs.

Hence, the worst-case complexity for Case C is obtained by performing the
corresponding changes in the assessment of Case A. Specifically, during the set-
up protocol, the user’s device needs to compute:

– tM + 1 Paillier encryptions for the polynomial coefficients;
– Solve a Vandermonde system tM × tM (doable in O((tM)2) time) and then

compute tM modular powers to find the r′
i values;

– Compute tM + 1 modular powers (raising the Ri values to d).

During the implicit authentication protocol, the user’s device needs to com-
pute (Step 2):

Flexible and Robust Privacy-Preserving Implicit Authentication 29

– tM Paillier encryptions;
– t2M2 modular powers (to compute the Υj values);
– tM modular powers (to raise R′ to r(j)d).

Also during the implicit authentication protocol, the carrier needs to com-
pute:

– At Step 1, tM + 1 modular powers (to raise the encrypted polynomial coef-
ficients to θ);

– At Step 3, tM Paillier encryptions;
– At Step 3, tM modular powers (to raise the Υj values to nθ).

Note that the above complexities can be reduced by reducing the range of
the numerical values in sets U and V .

6 Experimental Results

As stated in the previous section, the complexity of our implicit authentication
protocol ultimately depends on the sizes of the input sets. In Case A, the sizes
of the sets are directly given by the user inputs; in Case B, these sizes are the
product of the size of the input sets times the range of the similarity function
�; and in Case C, the sizes are given by the size of the original sets times the
range of their values. We ran an experiment to test the execution times of our
protocol, based on Case A, to which the other two cases can be reduced.

The experiment was implemented in Sage-6.4.1 and run on a Debian7.7
machine with a 64-bit architecture, an Intel i7 processor and 8GB of physical
memory. We instantiated a Paillier cryptosystem with a 1024-bit long n, and the
features of preference sets were taken from the integers in the range [1 . . . 2128].
The input sets ranged from size 1 to 50, and we took feature sets of the same
size to execute the set-up and the authentication protocols.

Step 4 of the set-up protocol (Section 4.1), in which a system of equations is
solved for r′

i for 1 ≤ i ≤ s, is the most expensive part of the set-up protocol. As
a worst-case setting, we used straightforward Gaussian elimination which takes
time O(s3), although, as mentioned above, specific methods like [7] exist for
generalized Vandermonde matrices that can run in O(s2) (such specific methods
could be leveraged in case of smartphones with low computational power). On
the other hand, Step 2 of the authentication protocol (Section 4.1), computed
by the user’s device, is easily parallelizable for each feature in the sample set.
Since parallelization can be exploited by most of the current smartphones in the
market, we also exploited it in our experiment. The results are shown in Table 1
(times are in seconds).

Note that the set-up protocol is run only once (actually, maybe once in
a while), so it is not time-critical. However, the authentication protocol is to
be run at every authentication attempt by the user. For example, if a user
implicitly authenticates herself using the pattern of her 20 most visited websites,
authentication with our proposal would take 3.37 seconds, which is perfectly
acceptable in practice.

30 J. Domingo-Ferrer et al.

Table 1. Execution times (in seconds) for different input set sizes

1 5 10 15 20 25 30 35 40 45 50

Set-up 0.89 0.79 1.1 1.83 4.67 11.45 24.65 47.6 84.99 144.81 228.6

Authentication 0.08 0.47 1.05 2.0 3.37 5.4 8.27 12.13 17.3 23.39 31.2

7 Conclusions and Future Research

To the best of our knowledge, we have presented the second privacy-preserving
implicit authentication system in the literature (the first one was [17]). The
advantages of our proposal with respect to [17] are:

– The carrier only needs to store the user’s profile encrypted under one cryp-
tosystem, namely Paillier’s.

– Dishonest behavior or compromise at the user’s device after the initial set-
up stage neither compromises the privacy of the user’s profile nor affects the
security of authentication.

– Our proposal is not restricted to numerical features, but can deal also with
all sorts of categorical features.

– In case of numerical or categorical ordinal features, our proposal does not
disclose how the fresh sample is ordered with respect to the feature values
in the stored user’s profile.

For binary or independent nominal features, the complexity of our proposal
is quite low (quadratic in the number of values in the user’s profile). For corre-
lated categorical feature values, the complexity is higher, but it can be reduced
by decreasing the range of the similarity function used. Finally, in the case of
numerical values, the complexity is also higher than in the binary/independent
nominal case, but it can be reduced by decreasing the range of the numerical
feature values.

Future research will include devising ways to further decrease the computa-
tional complexity in all cases.

Acknowledgments. The following funding sources are gratefully acknowledged: Gov-
ernment of Catalonia (ICREA Acadèmia Prize to the first author and grant 2014 SGR
537), Spanish Government (project TIN2011-27076-C03-01 “CO-PRIVACY”), Euro-
pean Commission (projects FP7 “DwB”, FP7 “Inter-Trust” and H2020 “CLARUS”),
Templeton World Charity Foundation (grant TWCF0095/AB60 “CO-UTILITY”),
Google (Faculty Research Award to the first author) and Government of China (Nat-
ural Science Foundation of China under projects 61370190 and 61173154). The first
author is with the UNESCO Chair in Data Privacy. The views in this paper are the
authors’ own and do not necessarily reflect the views of UNESCO, the Templeton
World Charity Foundation or Google.

A Background on Privacy-Preserving Set Intersection

Secure multiparty computation (MPC) allows a set of parties to compute func-
tions of their inputs in a secure way without requiring a trusted third party.

Flexible and Robust Privacy-Preserving Implicit Authentication 31

During the execution of the protocol, the parties do not learn anything about
each other’s input except what is implied by the output itself. There are two
main adversarial models: honest-but-curious adversaries and malicious adver-
saries. In the former model, the parties follow the protocol instructions but they
try to obtain information about the inputs of other parties from the messages
they receive. In the latter model, the adversary may deviate from the protocol
in an arbitrary way.

We will restrict here to a two-party setting in which the input of each party
is a set, and the desired output is the cardinality of the intersection of both
sets. The intersection of two sets can be obtained by using generic constructions
based on Yao’s garbled circuit [20]. This technique allows computing any arith-
metic function, but for most of the functions it is inefficient. Many of the recent
works on two-party computation are focused on improving the efficiency of these
protocols for particular families of functions.

Freedman, Nissim, and Pinkas [9] presented a more efficient method to com-
pute the set intersection, a private matching scheme, that is secure in the honest-
but-curious model. A private matching scheme is a protocol between a client C
and a server S in which C’s input is a set X of size iC , S’s input is a set Y of size
iS , and at the end of the protocol C learns X ∩ Y . The scheme uses polynomial-
based techniques and homomorphic encryption schemes. Several variations of the
private matching scheme were also presented in [9]: an extension to the malicious
adversary model, an extension of the multi-party case, and schemes to compute
the cardinality of the set intersection and other functions. Constructing efficient
schemes for set operations is an important topic in MPC and has been studied
in many other contributions. Several works such as [3,6,11,13,19] present new
protocols to compute the set intersection cardinality.

B Paillier’s Cryptosystem

In this cryptosystem, the public key consists of an integer n (product of two
RSA primes), and an integer g of order n modulo n2, for example, g = 1 + n.
The secret key is φ(n), where φ(·) is Euler’s totient function.

Encryption of a plaintext integer m, with m < n involves selecting a random
integer r < n and computing the ciphertext c as

c = Enc(m) = gm · rn mod n2 = (1 + mn)rn mod n2.

Decryption consists of first computing c1 = cφ(n) mod n2 = 1 + mφ(n)n mod n2

and then m = (c1 − 1)φ(n)−1 mod n2.
The homomorphic properties of Paillier’s cryptosystem are as follows:

– Homomorphic addition of plaintexts. The product of two ciphertexts
decrypts as the sum of their corresponding plaintexts:

D(E(m1, r1) · E(m2, r2) mod n2) = m1 + m2 mod n.

32 J. Domingo-Ferrer et al.

Also, the product of a ciphertext times g raised to a plaintext decrypts as
the sum of the corresponding plaintexts:

D(E(m1, r1) · gm2 mod n2) = m1 + m2 mod n.

– Homomorphic multiplication of plaintexts. An encrypted plaintext raised to
the power of another plaintext will decrypt to the product of the two plain-
texts:

D(E(m1, r1)m2 mod n2) = D(E(m1, r1)m2 mod n2) = m1m2 mod n.

More generally, given a constant k, D(E(m1, r1)k mod n2) = km1 mod n.

C Correctness

In general, the correctness of our protocol follows from direct algebraic verifi-
cation using the properties of Paillier’s cryptosystem. We go next through the
least obvious steps.

C.1 Set-up Protocol

In the set-up protocol, r′
0, · · · , r′

s are found as a solution of the following system

⎡

⎢
⎣

R′
...

R′

⎤

⎥
⎦ =

⎡

⎢
⎢
⎣

r′
0 · r′a1

1 · r′a2
1

2 · · · r′as
1

s mod n2

...

r′
0 · r′as

1 ? · r′a2
s

2 · · · r′as
s

s mod n2

⎤

⎥
⎥
⎦ .

The above system has s + 1 unknowns and s equations. Therefore it has one
degree of freedom. To avoid the trivial solution r′

0 = R′ and r′
1 = · · · = r′

s = 1,
we choose a random r′

0. Then we divide the system by r′
0 and we take logarithms

to get
⎡

⎢
⎢
⎢
⎣

log(R′/r′
0)

log(R′/r′
0)

...
log(R′/r′

0)

⎤

⎥
⎥
⎥
⎦

mod n =

⎡

⎢
⎣

a1 a2
1 · · · as

1
...

...
...

as a2
s · · · as

s

⎤

⎥
⎦ ·

⎡

⎢
⎢
⎢
⎣

log r′
1

log r′
2

...
log r′

s

⎤

⎥
⎥
⎥
⎦

mod n.

The matrix on the right-hand side of the above system is an s × s generalized
Vandermonde matrix (not quite a Vandermonde matrix). Hence, using the tech-
niques in [7] it can be solved in O(s2) time for log r′

1, · · · , log r′
s. Then s powers

modulo n2 need to be computed to turn log r′
i into r′

i for i = 0, · · · , s.

C.2 Implicit Authentication Protocol

We specify in more detail the following derivation in Step 2 of the implicit
authentication protocol of Section 4.1:

Flexible and Robust Privacy-Preserving Implicit Authentication 33

Enc(r(j) · d · θ · p(bj)) = Enc(p(bj))d·θ·r(j) mod n2

= (Enc(p0) · · · Enc(ps)bsj)d·θ·r(j) mod n2

= (gp0rn
0 · · · (gpsrn

s)bsj)d·θ·r(j) mod n2

= (gp(bj))d·θ·r(j)(r0 · r
bj
1 · · · rbsj

s)r(j)·n·d·θ mod n2

= gr(j)·d·θp(bj)γn·d·θ
j mod n2.

Regarding Step 3 of the implicit authentication protocol, we detail the case
bj = ai for some i ∈ {1, · · · , s}. In this case, p(bj) = 0 and hence

Enc(r(j)dθ · p(bj)) · Υnθ
j mod n2 = Enc(0)r(j)dθ · Υnθ

j mod n2

= (r0 · r
bj
1 · · · rbsj

s)nr(j)dθ · Υnθ
j mod n2

= (r0 · r
bj
1 · · · rbsj

s)nr(j)dθ · (R0 · R
bj
1 · · · Rbsj

s)dr(j)nθ mod n2

= (r′
0 · r′ai

1 · · · r′as
i

s)r(j)dnθ mod n2 = R′r(j)dnθ mod n2. (3)

If in Step 3, if we have bj 	= ai for all i ∈ {1, · · · , s}, then Derivation (3)
does not hold and a random number is obtained instead. On the one side, the
powers of g does not disappear from Enc(r(j)dθ · p(bj)). On the other side, the
exponents bj , · · · , bs

j cannot be changed by ai, · · · , as
i as done in the last step of

Derivation (3). Hence, a random number different from R′r(j)dnθ is obtained.

References

1. Aksari, Y.: Active authentication by mouse movements. In: 24th Intl. Symposium
on Computer and Information Sciences, ISCIS 2009, pp. 571–574. IEEE (2009)

2. Blanco, A., Domingo-Ferrer, J., Farràs, O., Sánchez, D.: Distance Computation
between Two Private Preference Functions. In: Cuppens-Boulahia, N., Cuppens,
F., Jajodia, S., Abou El Kalam, A., Sans, T. (eds.) SEC 2014. IFIP AICT, vol.
428, pp. 460–470. Springer, Heidelberg (2014)

3. Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. In:
ASIACCS 2012, pp. 40–41. Springer (2012)

4. Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-Preserving Symmetric
Encryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224–241.
Springer, Heidelberg (2009)

5. Clarke, N., Karatzouni, S., Furnell, S.: Flexible and Transparent User Authentica-
tion for Mobile Devices. In: Gritzalis, D., Lopez, J. (eds.) SEC 2009. IFIP AICT,
vol. 297, pp. 1–12. Springer, Heidelberg (2009)

6. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and Private Computation of Cardi-
nality of Set Intersection and Union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M.
(eds.) CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012)

7. Demmel, J., Koev, P.: The accurate and efficient solution of a totally positive
generalized Vandermonde linear system. SIAM Journal on Matrix Analysis and
Applications 27(1), 142–152 (2005)

8. Domingo-Ferrer, J.: Anonymous fingerprinting of electronic information with auto-
matic identification of redistributors. Electronics Letters 34(13), 1303–1304 (1998)

34 J. Domingo-Ferrer et al.

9. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient Private Matching and Set Inter-
section. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol.
3027, pp. 1–19. Springer, Heidelberg (2004)

10. Federal Trade Commission, Data Brokers: A Call for Transparency and Account-
ability (May 2014)

11. Hohenberger, S., Weis, S.A.: Honest-Verifier Private Disjointness Testing Without
Random Oracles. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258, pp.
277–294. Springer, Heidelberg (2006)

12. Jakobsson, M., Shi, E., Golle, P., Chow, R.: Implicit authentication for mobile
devices. In: Proc. of the 4th USENIX Conf. on Hot Topics in Security (2009)

13. Kissner, L., Song, D.: Privacy-Preserving Set Operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

14. Meǵıas, D., Domingo-Ferrer, J.: Privacy-aware peer-to-peer content distribution
using automatically recombined fingerprints. Multimedia Systems 20(2), 105–125
(2014)

15. Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity
Classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999)

16. Pfitzmann, B., Waidner, M.: Anonymous Fingerprinting. In: Fumy, W. (ed.)
EUROCRYPT 1997. LNCS, vol. 1233, pp. 88–102. Springer, Heidelberg (1997)

17. Safa, N.A., Safavi-Naini, R., Shahandashti, S.F.: Privacy-Preserving Implicit
Authentication. In: Cuppens-Boulahia, N., Cuppens, F., Jajodia, S., Abou El
Kalam, A., Sans, T. (eds.) SEC 2014. IFIP AICT, vol. 428, pp. 471–484. Springer,
Heidelberg (2014)

18. Sánchez, D., Batet, M., Isern, D., Valls, A.: Ontology-based semantic similarity: A
new feature-based approach. Expert Systems with Applications 39(9), 7718–7728
(2012)

19. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to asso-
ciation rule mining. Journal of Computer Security 13(4), 593–622 (2005)

20. Yao, A.C.-C.: How to generate and exchange secrets. FOCS 1986, 162–167 (1986)

Towards Relations Between the Hitting-Set
Attack and the Statistical Disclosure Attack

Dang Vinh Pham(B) and Dogan Kesdogan

University of Regensburg, Regensburg, Germany
{vinh.pham,dogan.kesdogan}@ur.de

Abstract. The Minimal-Hitting-Set attack (HS-attack) is a well-known,
provably optimal exact attack against the anonymity provided by Chau-
mian Mixes (Threshold-Mixes). This attack allows an attacker to identify
the fixed set of communication partners of a given user by observing all
messages sent and received by a Chaum Mix. In contrast to this, the Sta-
tistical Disclosure attack (SDA) provides a guess of that user’s contacts,
based on statistical analyses of the observed message exchanges.

We contribute the first closed formula that shows the influence of
traffic distributions on the least number of observations of the Mix to
complete the HS-attack. This measures when the Mix fails to hide a
user’s partners, such that the user cannot plausibly deny the identified
contacts. It reveals that the HS-attack requires asymptotically less obser-
vations to identify a user’s partners than the SDA, which guesses them
with a given bias. This number of observations is O(1

p
) for the HS-attack

and O(1
p2) for the SDA, where p the probability that the attacked user

contacts his least frequent partner.

1 Introduction

Anonymity in communication networks is an essential part of privacy. According
to the definition of Pfitzmann et al. [24]: “Anonymity is the state of being not
identifiable within a set of subjects, the anonymity set”. Anonymity systems
commonly seek to establish anonymity sets. The most influential work in this
area is the Chaumian Mix (also known as Threshold-Mix) [7] that forms the
basis of many popular services offering anonymity in open and shared networks
[29], e.g. the Internet. A Threshold-Mix collects in every round a batch of b
encrypted messages from distinct senders, who all contribute the same number
of messages1 of identical size. It changes the appearance and time characteristics
of the messages in the output batch to provide unlinkability between its input
and output messages. Therefore, the senders and recipients that use the Mix in
a round form the sender- and recipient-anonymity set in that round.

This work investigates the fundamental limit of anonymity provided by the
anonymity sets established by the Threshold-Mix with respect to a global passive

1 Otherwise, it would be trivial to identify a pair of sender and a recipient by the
number of their exchanged messages in a round.

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 35–50, 2015.
DOI: 10.1007/978-3-319-18467-8 3

36 D.V. Pham and D. Kesdogan

attacker2. Analogous to the fundamental work of Shannon’s unicity distance [30],
we focus on determining the number of observations of Mix rounds required to
disclose a profile of an arbitrary user (say Alice) and thus to break the anonymity
system. We consider the case that Alice’s profile determines a static set of friends
that are repeatedly contacted by Alice. It is motivated by the observation that
human relationships tend to be persistent and by the fact that anonymity should
also be provided in this case.

The immanent information leaked by the Mix to a global passive attacker
is the observed set of senders and recipients using the Mix in a round. Traf-
fic analysis attacks can learn Alice’s profile by accumulating this information,
although the Mix provides unlinkability between the input and output mes-
sages in a single round. We distinguish between two categories: combinatorial
attacks [2,4,16,17,26,27] and statistical attacks [8–11,20,22,23,31]. Combina-
torial attacks are basically concerned with the disclosure of exact information
about Alice’s profile that is consistent to the observations of the anonymity
system. In contrast to that, statistical attacks are concerned with classifying
whether a recipient is likely Alice’s friend, or not. Their main advantage is the
computational efficiency. However, combinatorial attacks (e.g., the HS-attack)
can also be computational efficient [27] for non-trivial cases. The classification
of recipients by statistical attacks can lead to a profile that deviates from Alice’s
profile, e.g., due to false-positive errors, which classify recipients as friends that
are not Alice’s friends, or due to omitting friends.

We consider in this work the Minimal-Hitting-Set attack (HS-attack) [17,27],
a combinatorial attack that provably requires the least number of rounds to
uniquely identify Alice’s set of friends [16]. Therefore it determines the fun-
damental limit of anonymity provided by the Threshold-Mix. This number of
rounds is dependent on the traffic distribution of the users and on the param-
eters of the anonymity system. We contribute a closed formula that estimates
the mean of this number with respect to arbitrary distributions of Alice’s com-
munication and the parameters of the Threshold-Mix. This complements past
works that could only model uniform traffic distributions [16,18,26], which are
less realistic. Therefore, we are to the best of our knowledge the first to provide
such an analytical estimate. Our estimate proves that the number of rounds to
uniquely identify Alice’s set of friends by the HS-attack is O(1p), while it is O(1

p2)
to classify all friends with some error rate by the SDA. The probability 0 < p < 1
denotes the least probability in the distribution of Alice’s traffic to her friends.

Although this work mainly addresses the anonymity of the Threshold-Mix,
it might be generalisable to analyse the anonymity of other Mix variants like the
Pool-Mix [29] that models Mixmaster. There are initial works towards this direc-
tion [25, Chap.5.2] that extends the HS-attack for the Pool-Mix and identifies
some conditions for the disclosure of Alice’s set of friends in that Mix.

Our analyses refer to high-latency Mix systems, as they seek to protect
against global passive attackers. In contrast to these, low-latency systems like

2 This attacker can observe any link in the network and can thus observe the anonymity
sets.

Towards Relations Between the Hitting-Set Attack 37

Tor [13] and JAP [3,19] (as applied in practice) do not try to withstand a global
attacker in their design.

1.1 Related Works

Our work is concerned with passive traffic analysis attacks [29]. These rely solely
on external traffic observations of an anonymity system.

The idea of combinatorial traffic analyses was first discussed by Raymond
[29] who also sketched the “intersection attack”. Later two implementations of
combinatorial approaches have been suggested in parallel, the Intersection attack
[4] and the Disclosure attack [2]. The first approach identifies the recipient of a
targeted sender for the case that this sender repeatedly contacts a recipient from
a singleton [4]. In contrast to this, the Disclosure attack uncovers an arbitrary
large set of repeated contacts of the targeted sender, which is thus more general
than the Intersection attack. These were followed by the HS-attack [17], that
unambiguously identifies a user’s communication partner set with a provably
minimal number of observations [16].3 The limitation to all these attacks are that
they require the solution of an NP-complete problem [14] to succeed, placing
a high computational burden on the attacker. However, the most recent HS-
attack that uses the ExactHS algorithm [27,28] achieves a mean polynomial
computational complexity for many non-trivial Mix configurations as proved in
[27]. Due to the optimal nature of the HS-attacks, the observations required
to conduct them provide a measurement for the anonymity provided by Mix
system. Estimates of this number were suggested in [16,18,21,26] for a simple
model of uniformly distributed communication traffic.

Statistical attacks identify users through statistical patterns in traffic data.
These attacks, introduced by the Statistical disclosure attack (SDA) [8–11,20],
and subsequently improved by the Perfect-matching disclosure attack (PMDA)
[31] and the Bayesian-interference [12], achieve significant increases in computa-
tional efficiency by relaxing the requirement for absolute correctness and allowing
misclassification or omission of actors. The Least square approach[23] attempts
to analytically analyse the deviation between a user’s profile and the classifica-
tion provided by it for the Threshold-Mix. Provided the same Threshold-Mix
model as in SDA [8] (that is often used in combinatorial analyses, as well as
in this work in Section 2) this approach is identical to the SDA. A succeeding
extension [22] of this approach considers analogous analyses for the Pool-Mix
model.

1.2 Structure

We introduce a simple model for the Threshold-Mix and the attacker, as well
as the scheme of the HS-attack in Section 2. Section 3 estimates the mean least
number of rounds to uniquely identify Alice’s set of friends by a closed for-
mula, based on this model. It compares this estimate with the number of rounds
3 The intersection attack is identical to the special case of the HS-attack, where a

targeted sender has exactly one recipient.

38 D.V. Pham and D. Kesdogan

required by the SDA mathematically which shows that the SDA requires asymp-
totically more observations. Our analyses are confirmed and illustrated by sim-
ulations and mathematical evaluations in Section 4. Section 5 finally concludes
the work and suggests future works. The proofs of all claims are provided in
Appendixes A.

2 Mix and Attacker Model

We consider the Mix system as a black box that outputs information that is
visible to the attacker (i.e. the sender-anonymity sets and recipient sets), as
illustrated in Fig. 1. It represents a generalised and simplified model of practical
real-world Threshold-Mixes.

S
en

d
er

set
S

S′ R′ R
ecip

ien
t

set
R

s6
s3

s1

s8s5
s4

r2

r5
r9

r1

r3

Mix

Fig. 1. Mix model

The Mix is abstractly described as follow:

– A communication system consists of a set of senders, S, a set of all recipients,
R, and a Mix node as shown in Fig. 1. S and R represent all users with
the ability to send or receive messages in the system4. If a sender s ∈ S
communicates with a recipient r ∈ R, then we say that r is a recipient of s.

– In each communication round, a subset S′ ⊆ S of all senders each send
precisely one message to their recipients. Let R′ ⊆ R be the set of intended
recipients.

– We call S′ the sender-anonymity set , which is the set of all senders that may
have sent a given message in a round. The recipient set R′ is the set of all
recipients that have received a message in a round.

– We label the size of the sender-anonymity set, |S′|, as b which is also called
the batch size.

– The size of the recipient set, |R′|, is less than or equal to b, as each sender
sends exactly one message per round, but several senders may communicate
with the same recipient. The size of the set of all recipients is |R| = u.

2.1 Attacker Model

We consider a global passive attacker that observes the traffic on all links between
the user and the Mix in the network. Therefore, he can observe all sending and
4 This definition allows for cases of S �= R, as well as S = R, i.e. the sender and

recipient set might be distinct or identical.

Towards Relations Between the Hitting-Set Attack 39

receiving events in the Mix system, so that the pairs of sender anonymity set
and recipient set (S′, R′) of every round is known to the attacker.

The goal of the attacker is to compute, from a set of traffic observations,
all possible sets of friends of a target sender Alice ∈ S. These possibilities form
hypotheses for the true set of Alice’s set of friends, HA , which is assumed to be
a fixed set of size m = | HA |. We call a recipient r ∈ HA a friend ; a recipient
that does not communicate with Alice, r ∈ R \ HA , is called a non-friend and r
is simply called a recipient if no distinction is required. To clarify that a variable
r ∈ R refers to a friend, it is also denoted by a, whereas it is denoted by n, if it
refers to a non-friend.

The attacker focuses on revealing Alice’s set of friends by observing only
those pairs (S′, R′), where Alice participates as a sender. Under this condition
we refer to the corresponding recipient set R′ as an observation, O. The set of
all observations collected during t communication rounds is referred to as the
observation set OS = {O1, . . . ,Ot}.

2.2 Hitting-Set Attack

Alice’s possible set of friends can be specified by computing all hitting-sets of
size m with respect to the observation set OS collected by the attacker. A
hitting-set is a set that intersects with all observations5 in OS. A hitting-set is a
minimal-hitting-set if no proper subset of it is a hitting-set. We call a hitting-set
H a unique minimum-hitting-set6, if all hitting-sets H′ �= H in OS fulfil the
condition |H| < |H′|.

By collecting sufficiently many observations, until OS contains a unique
minimum-hitting-set, the attacker can unambiguously identify Alice’s set of
friends HA . The intuition behind this attack is that at least one of Alice’s
friends in HA appears in each observation (due to the definition of observations),
while this does not hold for any set H �⊇ HA . Therefore, if there are sufficiently
many observations, then HA becomes a unique minimum-hitting-set. This attack
is known as the Minimal-Hitting-Set attack (HS-attack)[17]. We refer in the
remaining paper to its most recent version that uses the ExactHS algorithm to
compute the minimal-hitting-sets [27]. The HS-attack repeats aggregating new
observations and computing all minimal-hitting-sets of a given size m′ in the
aggregated observation set OS. It is successively applied for m′ = 1, . . . ,m. If
m′ underestimates m, then there will be no hitting-set of size m′ after a suffi-
cient number of observation. This can be detected by the HS-attack to consider
a larger value of m′ in the HS-attack, until m′ = m and HA becomes a unique
minimum-hitting-set. As proved in [16], the HS-attack requires the least num-
ber of observations to uniquely identify Alice’s set of friends with respect to the
Threshold-Mix.

5 Due to the definition of observations, HA ∩ O �= ∅ for all O ∈ OS, therefore HA is
a hitting-set in OS.

6 Every unique minimum-hitting-set is a minimal-hitting-set, but not reversely.

40 D.V. Pham and D. Kesdogan

Attack Scheme. In our Mix and attacker model, the effort of identifying Alice’s
set of friends is dependent on the Mix parameters (u, b,m) and the distribution
of the cover traffic and of Alice’s traffic. The cover traffic is induced by the
communication of senders other than Alice to the recipients in the observations.
We use the term Mix configuration to refer to a combination of Mix parameters
and these traffic distributions. The basic scheme underlying the analysis of the
HS-attack is illustrated in Fig. 2.

Mix configuration

u, b, m

Alice’s traffic distr.

Cover-traffic distr.

a
r2
...

rb

Observations

a′

r′
2

...
r′

b

{r11 , . . . , r1m}
...

{ri1 , . . . , rim}

Hypotheses

determine determine

Attack input Attack output

Fig. 2. Analysis scheme: Variables a, r represent arbitrary friend a ∈ HA and recipient
r ∈ R

Alice’s traffic distribution is modelled by the probability mass function PA(a)
for a ∈ HA , where

∑
a∈ HA

PA(a) = 1. The cover traffic distribution is indirectly
modelled by the probability function PN (r), which is the probability that any
b − 1 senders (other than Alice) of a batch contact the recipient r ∈ R in an
observation.

3 Mean Number of Observations for Unique Identification

It was proved in [16] that the 2×-exclusivity of Alice’s set of friends is a necessary
condition for the unique identification of Alice’s set of friends. The number of
observations aggregated by the attacker, until the 2×-exclusivity condition is
fulfilled provides a close estimate of the least number of observations to uniquely
identify Alice’s set of friends, as evaluated in [16].

We contribute a closed formula that estimates the expected least number of
observations to fulfil k×-exclusivity, which is for the general case of k ∈ N. As
defined in [16], a friend a ∈ HA is exclusive, if there is an observation O that
contains only a as an Alice’s friend. This means O ∩ HA = {a} and we call O
the observations that contains a exclusively. A friend a ∈ HA is k×-exclusive, if
it appears at least k times exclusively in observations, or at least one time alone
in an observation (i.e. there is an observation O′ = {a}). The k×-exclusivity is
fulfilled, if all Alice’s friends are k×-exclusive.

Towards Relations Between the Hitting-Set Attack 41

3.1 Mean Number of Observations for k×-Exclusivity

We estimate the mean of the least number of observations E(Tk×e) for k×-
exclusivity by decomposing this mean in two sub means and estimating those
sub means. These are the estimates of the following means7:

– The mean least number of observations E(Tk×), until Alice contacts all her
friends at least k times. This is regardless whether the observations are
exclusive, or not.

– The maximum of the mean least number of times E(Te,a) Alice has to contact
a given friend a ∈ HA , until it is exclusive, with respect to all Alice’s friends
a ∈ HA . For each given friend a′ ∈ HA , this mean only accounts those
observations, where Alice contacts a′, and the maximum of that mean is
maxa′∈ HA

E(Te,a′).

The variables Tk×e, Tk× and Te,a are random variables for: the least number
of observations to fulfil k×-exclusivity, the least number of observations until
Alice contacts all friends at least k times and the least number of times Alice has
to contact a friend a, until it is exclusive. We define E(Te) = maxa′∈ HA

E(Te,a′)
and set for a = argmaxa′∈ HA

E(Te,a′), the equality Te = Te,a.
Note that the value of Tk× is dependent on Alice’s traffic to her friends,

but is independent of the traffic of other senders. In contrast to that, the value
of Te,a depends on whether any sender other than Alice contacts any friend
in HA \ {a} in observations where Alice contacts a. This is dependent on the
cover-traffic, but is independent of Alice’s traffic. Therefore, Tk× and Te are
statistically independent.

Claim 1. Let E(Te,a) be the mean least number of times Alice has to contact a
friend a ∈ HA , 8until a is exclusive and E(Te) = maxa∈ HA

E(Te,a). Let E(Tk×)
be the mean least number of observations until Alice contacts all her friends at
least k times9, for k ∈ N. The mean least number of observations until all Alice’s
friends are k×-exclusive is estimated by:

E(Tk×e) ≤ E(Tk×)E(Te)

≈
(

1
p
(ln m + γ) + (k − 1)

1
p

ln lnm

)(
u − (m − 1)

u

)1−b

, (1)

where p = mina∈ HA
PA(a) and γ ≈ 0, 57721 is the Euler-Mascheroni constant.

We conclude by (1) that the 2×-exclusivity of all Alice’s friends requires on

average
(

1
p (ln m + γ) + 1

p ln lnm
)(

u−(m−1)
u

)1−b

observations. The proof of this
claim can be found in Appendix A.

7 The composition of theses estimates in Claim 1 provide an estimate of E(Tk×e).
8 This only refers to observations, in that Alice contacts a, that is OSA[a].
9 This is regardless whether the observations are exclusive, or not.

42 D.V. Pham and D. Kesdogan

3.2 Relation to Statistical Disclosure Attack

While the HS-attack aims at exact identification of friends; statistical attacks,
as introduced by the SDA, cf. [9], aim at correct classification of friends with
some probabilities. Although these two approaches are orthogonal, we can now
analytically compare the number of observations required by these attacks by (1).

The SDA [9] considers the classification of each friend as a signal to noise
problem. It virtually interprets Alice’s traffic volume to a friend a ∈ HA as a
signal and the cumulative traffic volume of other senders to any recipient r ∈ R
as a noise. Let t be the number of observations and p be the probability that Alice
contacts a in an observation, then the mean signal to a is pt with the variance
p(1−p)t. To simplify the maths it is assumed that every non Alice sender contacts
a recipient uniformly distributed, so that 1

u is the probability that r is contacted
by a single non Alice sender. As there are b−1 non Alice senders in a batch, the
mean noise to a recipient r after t observations is PN (r) = 1

u (b − 1)t, with the
variance 1

u (1 − 1
u)(b − 1)t.

The SDA classifies a friend a better than a random guess, if the mean signal
to a is higher than the sum of the standard deviation of the signal and of the
noise to a [9]. This is a necessary condition to distinguish the signal from the
noise to the same recipient. The least number of observations, such that this
condition is fulfilled with a probability determined by a confidence parameter l
is, cf. [9],

1
p2

l2
[√u − 1

u2
(b − 1) +

√
u − 1
u2

(b − 1) + p2(
1
p

− 1)
]2

. (2)

Setting l = 2, l = 3 in (2) leads to a classification with a true-positive rate of
95%, respectively 99%. Let us set p = mina∈ HA

PA(a), as the recipient which
is least frequently contacted by Alice dominates the number of observations to
classify all friends. In the case that Alice’s traffic is uniformly distributed, p = 1

m
as assumed in [9].

We can now compare (2) with (1) (for k = 2) with respect to the probability
p by fixing all other parameters u, b,m, l; they are identical in both equations.
This reveals that the SDA requires O(1

p2) observations to classify all Alice’s
friends while the HS-attack only requires O(1p) observations to uniquely identify
all Alice’s friends. This relation between the HS-attack and the SDA is visualised
for some examples in Section 4.

4 Evaluation

This section illustrates the closeness of the estimate of the least number of obser-
vations to identify Alice’s friends and compares this with the number of obser-
vations required by the SDA.

The first task applies the 2×-exclusivity evaluation an the HS-attack on sim-
ulated random observations of a Threshold-Mix. These empirically measure the
least number of observations for the 2×-exclusivity and the identification of all

Towards Relations Between the Hitting-Set Attack 43

friends. We use them to illustrate the closeness of the corresponding mathemat-
ical estimate by (1).

The second task compares the estimated mean number of observations req-
uired by the HS-attack and the SDA for some Mix configurations considered in
the simulations. This illustrates that SDA requires asymptotically more obser-
vations than the HS-attack.

The traffic distributions that we use to model Alice’s traffic and the cover
traffic in all simulative and mathematical evaluations are described next.

– Alice contacts in each observation a friend that is randomly drawn from a
Zipf(m,α) distribution of HA . The probability that she contacts her i-th
most frequent contact is PA(ai) = Pm,α

z (i) = i−α
∑m

l=1 l−α , where Pm,α
z (i) is the

probability mass function of the Zipf(m,α) distribution. Note that HA is
uniformly distributed if α = 0.

– The remaining b−1 recipients of the cover traffic in an observation are drawn
uniformly from the set of |R| = u possible recipients. This means that for all
r ∈ R, the probability that any of the b−1 senders other than Alice contacts
r in an observation is PN = 1 − (u−1

u)b−1.

Fig. 3. Zipf(m, α) distribution of
Alice’s friends, for m = 23

Alice’s traffic is modelled by a Zipf dis-
tribution, as it is known to closely model
e-mail and internet traffic [1,6,15]. An
example of this distribution is illustrated
in Fig. 3 for distinct values of α, pro-
vide that Alice has m = 23 friends. The
cover-traffic is for simplicity modelled by
a uniform distribution that represents a
bound of the real distribution. Note that
an observation contains the recipients of
senders who randomly communicate in
the same round as Alice and is therefore a random variable. The distribution
of this random variable and thus the number of observations to identify Alice’s
friends is dependent on the overall distribution of the cover-traffic and of Alice’s
traffic, regardless of differences in the communication distribution of the individ-
ual senders of the cover-traffic. Therefore we assume that all non-Alice senders
behave the same to simplify the maths and the simulation.

The HS-attack is successful (or succeeds) if it uniquely identifies Alice’s set of
friends HA . For a given Mix configuration, the simulation generates new random
observations until the HS-attack is successful and we call this an experiment . The
average number of observations required by an attack is therefore the mean of
the number of observations of all successful attacks (i.e. of all experiments with
the same Mix configuration). Note that the results of these experiments, i.e., the
number of observations to succeed the HS-attacks, are identically distributed
independent random variables with unknown positive mean μ and standard devi-
ation σ. By the law of large numbers, the empirical mean of the experiments’
results approaches μ, while its standard deviation approaches 0, for large number

44 D.V. Pham and D. Kesdogan

of experiments10. To ensure that our results are statistically significant, experi-
ments with the same Mix configuration are repeated until 95% of the results fall
within an interval of 5% around the empirically observed mean. Every experi-
ment is repeated at least 300 times and no experiment is dropped. We observed
that most of our experiments require no more than 300 repeats to fulfil the statis-
tical significance condition and therefore chose this number as a lower threshold.
It is necessary to force a sufficiently large least number of repetitions to avoid
cases like, e.g., after running two experiments, both results are within 5% around
the empirical mean, which would be too few to represent a reliable measure.

Fig. 4. Mean number of observations: to succeed HS-attack (HS) and to fulfil 2×-
exclusivity (2x-excl) versus estimated mean for 2×-exclusivity (2x-excl-est)

Number of Observations Required by HS-attack. Fig. 4 visualises the
empirical mean number of observations to succeed the HS-attack, labelled (HS)
and to fulfil 2×-exclusivity labelled (2x-excl), obtained from simulations. These
are compared with the estimate (1) of the mean of the least number of observa-
tions for 2×-exclusivity, labelled (2x-excl-est), which is: E(T2×e) ≈ 1

p ((ln m+γ)+

ln lnm)
(
1 − (m−1)

u

)1−b

. Since Alice’s traffic is Zipf(m,α) distributed, we get
p = mina∈ HA

PA(a) = Pm,α
z (m).

The plots provide these comparisons for distinct Mix configurations that are
modelled by the parameters u, b,m, α. The y-axis always shows the mean number
of observations, while the x-axis vary one of the parameters u, b,m, α. We can
observe that the estimate (1) provides reasonable approximations, even for the
cases that Alice’s traffic is non-uniformly distributed (i.e. α > 0). According

10 This law applies regardless of the magnitude of the variation of the results of single
experiments.

Towards Relations Between the Hitting-Set Attack 45

to [1,6,15], the value of α ≈ 1 typically models a user’s Zipf(m,α) distributed
traffic in the Internet. Due to a lack of experiences with running high-latency
anonymity systems in a large user base, we have no authentic empirical values
for the parameters u, b. Therefore, we choose parameter ranges that would be
reasonable for JAP. JAP was designed to be close to the Chaum Mix, so that it
contains batch mixing capabilities [19]. However, collecting messages for a batch
increases the latency that is yet not accepted by many JAP users [19], so that
this function is disabled in favour of low-latency. Therefore we refer to JAP as a
low-latency system. The total number of users that repeatedly use the Dresden-
Dresden JAP cascade is about 50000 [19] in 2009, therefore we consider u in the
range up to 60000. In every minute, the cascade relays on average 17000 HTTP
messages [19], which are 283 messages per second. JAP allows users to send
multiple parallel messages, so that the number of messages per second would
be lower, if every user is only allowed to send one message in a Mix round to
prevent linking a communication by packet counting, as in the Chaum Mix [7].
Simulating batch sizes of up to 85 thus appears to be of reasonable order.

Number of Observations Required by HS-Attack vs. SDA. We illustrate
that the SDA requires a number of observations that is by the factor of O(1p)
higher than those required by the HS-attack, where p is the least probability in
the distribution of Alice’s friends.

Table 1. Estimated number of required observations: HS-attack (2x-excl-est) versus
SDA with 95% true-positive classification (SDA95%)

u = 400, b = 10, m = 23, varying α

α p 2x-excl-est SDA95%

0.0 0.0435 186 343

0.5 0.0253 319 840

1.0 0.0116 693 3282

1.5 0.0041 1960 23036

p = mina∈ H
A

PA(a) = P 23,α
z (23)

in Zipf(23, α) distribution

u = 20000, b = 50, m = 40, varying α

α p 2x-excl-est SDA95%

0.0 0.0250 245 291

0.5 0.0140 437 637

1.0 0.0058 1047 2301

1.5 0.0017 3564 17586

p = mina∈ H
A

PA(a) = P 40,α
z (40)

in Zipf(40, α) distribution

Table 1 provides evaluations for the Mix parameters (u = 400, b = 10,m =
23), respectively (u = 20000, b = 50,m = 40) and Zipf(m,α) distributed Alice’s
traffic. The cover-traffic is uniformly distributed. The tables list the estimated
number of observations to succeed HS-attack based on (1) labelled by (2x-excl-
est) and to classify Alice’s friends with a true-positive rate of 95% by the SDA
based on (2) (for l = 2) labelled by (SDA95%). We observe that the number
of observations required by the SDA increasingly exceeds that required by the
HS-attack for increasing value of α, as p decreases with increasing α.

Note that (2) solely considers the true-positive rate of the SDA; the classi-
fication of a given friend as a friend with a certain rate (e.g. 95% in Table 1).
However, the false-positive rate can be larger. When SDA terminates, there is
thus some number of non-friends that are classified as friends, whereas there is
a unique identification of Alice’s set of friends, when HS-attack terminates.

46 D.V. Pham and D. Kesdogan

5 Conclusion

Anonymous communication systems seek to embed senders and recipients in
anonymity sets to hide their communication relations. We measure in this work
the anonymity provided by the anonymity sets constructed by the Threshold-
Mix to analyse its limit of achievable protection. This limit is determined by the
least number of observations of the Mix rounds, until Alice’s set of friends can be
exactly identified, so that the protection provided by the Mix is repealed. Alice’s
set of friends can be exactly identified with the least number of observations by
the HS-attack [16].

We contribute by (1) (for k = 2) the first closed formula that estimates the
mean least number of observations to uniquely identify Alice’s set of friends for
arbitrary distribution of her traffic. It reveals that this number is O(1p), whereas
the SDA requires O(1

p2) observations to classify Alice’s friends with some error.
The variable p = mina∈ HA

PA(a) denotes the least probability in the distribu-
tion of Alice’s communication to her friends 11. This implies that the difference
between these two number of observations is for more realistic (non-uniform)
distribution of Alice’s friends notably higher than for the uniform distribution
considered in past mathematical analyses [8,16]. Section 4 experimentally con-
firms this difference for some zipf distributed communication of Alice which is
known to model real e-mail traffic distribution [1,6,15]. Alice’s set of friends can
thus be exactly identified with a number of observations that is asymptotically
less than required by the inexact SDA. This exact identification can be even
computational feasible for non-trivial cases by using the HS-attack [27].

Our analysis shows that the mean least number of observations for the exact
identification is lowest, if Alice’s friends are uniformly distributed. Past works
[16,18,21,26,27] that measure the anonymity of the threshold Mix by the time of
exact identification assume for simplicity that uniform distribution. Therefore,
we can now confirm that those works address a lower bound of the anonymity
of Alice’s set of friends.

This work explores the least number of rounds of the Threshold-Mix, such
that the attacker’s uncertainty about Alice’s set of friends becomes 0, as a mea-
sure of anonymity. Future works might generalise this approach to quantify the
attacker’s uncertainty about the possible Alice’s set of friends with respect to
the number of observed rounds of some Mix. This would enable a more fine gran-
ular anonymity measure beyond the time of exact anonymity disclosure (i.e., 0
uncertainty), so that we can also analyse the anonymity provided by other Mix
variants like the Pool-Mixe. Pool-Mixes [29] operate like the Threshold-Mix,
but they can delay the relay of a random selection of messages in the Mix, as
implemented in Mixmaster. Therefore, an attacker might observe a recipient set
that misses the user that Alice contacts in the observed round. Such observa-
tions induce additional uncertainty about the possible Alice’s set of friends in the

11 If Alice’s friends are uniformly distributed, then p = PA(a) = 1
m

for all a ∈ HA ,
otherwise p < 1

m
.

Towards Relations Between the Hitting-Set Attack 47

generalised anonymity quantification approach so that the attacker’s uncertainty
might remain above 0.

A Proof of Claim

Proof (Claim 1). Let us consider the mean number of observations, such that
all Alice’s friends are observed at least k times exclusively, for the case that
the cover-traffic is uniformly distributed. This uniform cover-traffic implies
E(Te,ai

)=E(Te,aj
) = E(Te) for all ai, aj ∈ HA . Since the random variables Tk×

and Te are statistically independent, the mean number of observations until every
friend is observed at least k times exclusively, equals in this case: E(Tk×)E(Te).

Due to the definition of k×-exclusivity, observing every Alice’s friend at least
k times exclusively implies k×-exclusivity. Therefore, we deduce the following:

E(Tk×e) ≤ E(Tk×)E(Te) . (3)

We now estimate E(Tk×e) and E(Te), for arbitrary distribution of Alice’s traffic
and cover-traffic.

E(Te): Assume that every recipient r ∈ R, |R| = u is contacted uniformly
distributed by any (b − 1) non-Alice senders in every observation, then the
probability that r is contacted by any non-Alice sender is PN (r) = PN =
1 − (u−1

u)b−1. Given Alice contacts aj ∈ HA and the remaining (b − 1)
non-Alice senders do not, then aj is exclusive. That probability is Pe(aj) =
(u−(m−1)

u)b−1. The random variable Te,aj
is geometrically distributed with

mean:

E(Te,aj
) =

1
Pe(aj)

= (
u − (m − 1)

u
)1−b , for j = 1, . . . ,m . (4)

Therefore E(Te) = E(Te,aj
) for all aj ∈ HA , in the case of uniform cover-

traffic distribution. This E(Te) serves as an upper bound for E(T ′
e,aj

) of all
cases, where r′ ∈ R′ is non-uniformly contacted with P ′

N (r′) and maxr′∈ HA{P ′
N (r′)} ≤ PN , for any recipient sets R′ ⊃ HA .

E(k×): Let Alice contacts a friend a ∈ HA (arbitrarily distributed) according
to the probability mass function PA(a), where

∑
a∈ HA

PA(a) = 1. Deter-
mining the mean number of observations E(Tk×), until Alice contacts all her
friends at least k times is equivalent to the general coupon collector problem
(CCP) [5]. In that problem, there is a source of infinitely many coupons of
the m types represented in HA , where PA(a) is the probability of drawing a
coupon of type a from the source. The general CCP is to determine the mean
least number of coupon collections E(Tk×) to obtain all m coupon types.
The following equality was proved for large value of m (i.e. m → ∞) in [5]:

E(Tk×) =
m

δ
(ln κm + γ) + (k − 1)

m

δ
(ln lnκm + ln

1
δ
) + o(1) .

The variables in this equation have the following meaning in our context:

48 D.V. Pham and D. Kesdogan

– m = | HA | is the number of coupon types, where w.l.o.g. HA = {1, . . . , m}.
– δ = minx∈(0,1] f(x) ≤ 1, where PA(a)=

∫ a/m

(a−1)/m
f(x)dx and

∫ 1

0
f(x)dx =

1. δ is the continuous counterpart of the discrete probability mina∈ HA

PA(a). We therefore set f(x) = mPA(�xm). Therefore δ = m(mina∈ HA

PA(a)).
– κ = γ1

δk−1

(k−1)! ≤ 1, where 0 < γ1 ≤ 1 is the size of the interval, where
f(x) = δ.

– o(1) is a negligible value.
Let p = mina∈ HA

PA(a), then δ = mp. We simplify and approximate the
above equation by:

E(Tk×) =
1
p
(ln

γ1
(k − 1)!

m + γ) + (k − 1)
1
p

ln lnκm + o(1)

≈ 1
p
(ln m + γ) + (k − 1)

1
p

ln lnm . (5)

The last estimate result from approximating γ1
(k−1)! and κ by its upper

bound 1.

Applying the estimates (4) and (5) to inequality (3) result in (1) and completes
the proof. ��

References

1. Adamic, L.A., Huberman, B.A.: Zipf’s Law and the Internet. Glottometrics 3,
143–150 (2002)

2. Agrawal, D., Kesdogan, D., Penz, S.: Probabilistic treatment of MIXes to hamper
traffic analysis. In: IEEE Symposium on Security and Privacy 0, p. 16 (2003)

3. Berthold, O., Federrath, H., Köpsell, S.: Web MIXes: a system for anonymous and
unobservable internet access. In: Federrath, H. (ed.) Designing Privacy Enhancing
Technologies. LNCS, vol. 2009, pp. 115–129. Springer, Heidelberg (2001)

4. Berthold, O., Langos, H.: Dummy traffic against long term intersection attacks.
In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482, pp. 110–128.
Springer, Heidelberg (2003)

5. Brayton, R.K.: On the Asymptotic Behavior of the Number of Trials Necessary
to Complete a Set with Random Selection. Journal of Mathematical Analysis and
Applications 7(1), 31–61 (1963)

6. Breslau, L., Cao, P., Fan, L., Phillips, G., Shenker, S.: Web caching and Zipf-like
distributions: evidence and implications. In: Proceedings of Eighteenth Annual
Joint Conference of the IEEE Computer and Communications Societies, INFO-
COM 1999, vol. 1, pp. 126–134. IEEE (1999)

7. Chaum, D.L.: Untraceable Electronic Mail, Return Addresses, and Digital
Pseudonyms. Communications of the ACM 24(2), 84–88 (1981)

8. Danezis, G.: Statistical disclosure attacks: traffic confirmation in open environ-
ments. In: Proceedings of Security and Privacy in the Age of Uncertainty, pp.
421–426 (2003)

Towards Relations Between the Hitting-Set Attack 49

9. Danezis, G.: Better Anonymous Communications. Ph.D. thesis, University of Cam-
bridge (2004)

10. Danezis, G., Diaz, C., Troncoso, C.: Two-sided statistical disclosure attack. In:
Borisov, N., Golle, P. (eds.) PET 2007. LNCS, vol. 4776, pp. 30–44. Springer,
Heidelberg (2007)

11. Danezis, G., Serjantov, A.: Statistical disclosure or intersection attacks on
anonymity systems. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 293–308.
Springer, Heidelberg (2004)

12. Danezis, G., Troncoso, C.: Vida: how to use Bayesian inference to de-anonymize
persistent communications. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009.
LNCS, vol. 5672, pp. 56–72. Springer, Heidelberg (2009)

13. Dingledine, R., Mathewson, N., Syverson, P.: Tor: the second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium, pp. 303–320.
USENIX (2004)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman (1990)

15. Glassman, S.: A Caching Relay for the World Wide Web. Computer Networks and
ISDN Systems 27(2), 165–173 (1994)

16. Kesdogan, D., Agrawal, D., Pham, V., Rauterbach, D.: Fundamental limits on
the anonymity provided by the mix technique. In: Proceedings of the 2006 IEEE
Symposium on Security and Privacy, pp. 86–99. IEEE (2006)

17. Kesdogan, D., Pimenidis, L.: The hitting set attack on anonymity protocols. In:
Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 326–339. Springer, Heidelberg
(2004)

18. Kesdogan, D., Pimenidis, L.: The lower bound of attacks on anonymity systems -
a unicity distance approach. In: Quality of Protection, Advances in Information
Security, vol. 23, pp. 145–158. Springer (2006)

19. Köpsell, S.: Entwicklung und Betrieb eines Anonymisierungsdienstes für das
WWW. Ph.D. thesis, Technische Universität Dresden (2010) (in German)

20. Mathewson, N., Dingledine, R.: Practical traffic analysis: extending and resisting
statistical disclosure. In: Martin, D., Serjantov, A. (eds.) PET 2004. LNCS, vol.
3424, pp. 17–34. Springer, Heidelberg (2005)

21. O’Connor, L.: Entropy Bounds for Traffic Confirmation. Cryptology ePrint
Archive, Report 2008/365, August 2008. http://eprint.iacr.org/2008/

22. Perez-Gonzalez, F., Troncoso, C., Oya, S.: A Least Squares Approach to the
Static Traffic Analysis of High-Latency Anonymous Communication Systems.
IEEE Transactions on Information Forensics and Security 9(9), 1341–1355 (2014)

23. Pérez-González, F., Troncoso, C.: Understanding statistical disclosure: a least
squares approach. In: Fischer-Hübner, S., Wright, M. (eds.) PETS 2012. LNCS,
vol. 7384, pp. 38–57. Springer, Heidelberg (2012)

24. Pfitzmann, A., Hansen, M.: Anonymity, Unobservability, Pseudonymity, and Iden-
tity Management - A Proposal for Terminology, August 2010 (version v0.34)

25. Pham, D.V.: Towards Practical and Fundamental Limits of Anonymity Protection.
Ph.D. thesis, University of Regensburg (2013)

26. Pham, D.V., Kesdogan, D.: A combinatorial approach for an anonymity metric.
In: Boyd, C., González Nieto, J. (eds.) ACISP 2009. LNCS, vol. 5594, pp. 26–43.
Springer, Heidelberg (2009)

27. Pham, D.V., Wright, J., Kesdogan, D.: A practical complexity-theoretic analysis
of mix systems. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879,
pp. 508–527. Springer, Heidelberg (2011)

http://eprint.iacr.org/2008/

50 D.V. Pham and D. Kesdogan

28. Pham, V.: Analysis of the anonymity set of chaumian mixes. In: 13th Nordic
Workshop on Secure IT-Systems (2008)

29. Raymond, J.-F.: Traffic analysis: protocols, attacks, design issues, and open prob-
lems. In: Federrath, H. (ed.) Designing Privacy Enhancing Technologies. LNCS,
vol. 2009, pp. 10–29. Springer, Heidelberg (2001)

30. Shannon, C.: Communication Theory of Secrecy Systems. Bell System Technical
Journal 28, 656–715 (1949)

31. Troncoso, C., Gierlichs, B., Preneel, B., Verbauwhede, I.: Perfect matching disclo-
sure attacks. In: Borisov, N., Goldberg, I. (eds.) PETS 2008. LNCS, vol. 5134, pp.
2–23. Springer, Heidelberg (2008)

POSN: A Personal Online Social Network

Esra Erdin1, Eric Klukovich1, Gurhan Gunduz2,
and Mehmet Hadi Gunes1(B)

1 University of Nevada, Reno, USA
mgunes@unr.edu

2 Pamukkale University, Denizli, Turkey

Abstract. A growing concern for end users of Online Social Networks
(OSNs) is the privacy and control of user data due to the client-server
architecture of the current ecosystems. In this paper, we introduce a pri-
vacy preserving decentralized OSN platform, which mimics real life social
interactions. In particular, we decentralize the OSN platform and give
direct control of the information to the user. The distributed platform
removes central authorities from the OSN and users share their content
only with intended peers through mobile devices. This decentralized sys-
tem ensures that interaction happens between friends and third parties
cannot access the user content or relationships. To be able to efficiently
share objects and provide timely access in the POSN platform, we take
advantage of free storage clouds to distribute encrypted user content.
The combination of phone-to-phone applications with cloud infrastruc-
ture would address the availability limitation of peer-to-peer systems,
while enjoying the benefits of peer-to-peer systems, such as no central
authority and scalability.

Keywords: Decentralize · Phone-to-phone · Privacy · Social networks

1 Introduction

Online social interactions are an integral part of our daily activity. As indicated
in Milgram’s experiment, we live in a small-world [10,21]. Connecting this small-
world in the digital world has been a challenge and has been addressed in various
ways. OSNs enable frequent social interaction and expansion of knowledge or
gossip. The emergence of OSNs sparked a major reform in information spread
and how users interact with each other. From data to search to social interac-
tions, users around the world are now more deeply connected to the Internet as
user-generated content undergoes perpetual growth and expansion.

The client-server architecture of the current OSN ecosystems have raised pri-
vacy concerns. In general, users have to trust corporations (and governments) with
their personal data when using OSNs. OSNs collect considerable amount of per-
sonal information about their clients and provide new services based on collected
or derived information. For instance, a provider can filter advertisements based
on user profile or user’s circle (i.e., friends). Additionally, OSNs have predictive
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 51–66, 2015.
DOI: 10.1007/978-3-319-18467-8 4

52 E. Erdin et al.

capabilities about the users as they continuously gather user data. Researchers
have tried to address privacy concerns by user-based key management [6,12,14,
34], peer-to-peer architectures [8,9,11,13,25,27,32,36], or decentralized platforms
[1,3,20,30,31,33,35,38]. In general, peer-to-peer OSN architectures suffer from
inefficiency due to high churn rate of users. Even though some of the proposed
decentralized platforms utilize cloud resources, they rely on compute clouds which
are typically fee-based and could analyze user data.

In a decentralized architecture, efficient sharing and timely access of objects
play a vital role [22]. In two-way friendship OSNs, users typically access a small
number of objects among vast number of posts, with many users accessing only
recently posted objects. Additionally, updates by a user must be available to
his/her friends in a timely manner regardless of whether the posting user has
become offline. To address these challenges, we take advantage of free storage
clouds to distribute encrypted user content. Even though there are OSNs that
utilize cloud, they either use it as an execution platform with plaintext or as a
backup store to central servers. To best of our knowledge, this is the first study
to promote a decentralized OSN relying on mobile devices and storage clouds
with no central server. While peer-to-peer systems require a peer to be online
for data exchange, we utilize cloud to greatly enhance data availability. The
free cloud storage services allows POSN to function through user clients such as
smart phone or tablet apps with no infrastructure of its own. Moreover, smart
phones and tablets have considerable computing capabilities that is utilized to
provide direct interaction between users.

Fig. 1. Snapshots of the POSN prototype

In this paper, to
address privacy con-
cerns, we introduce a
Privacy Preserving De-
centralized Online So-
cial Network (POSN)
which mimics real life
social interactions. Fig-
ure 1 presents sample
snapshots of Android
app in development.
The main contribution
of this paper is the combination of phone-to-phone applications with cloud infras-
tructure to address the main limitation of peer-to-peer systems, i.e., availability,
due to high churn rate while enjoying the benefits of peer-to-peer systems, i.e.,
no central authority and scalability. This approach can be expanded to provide
other forms of social communications where data privacy is a concern.

2 Cloud as Storage

In proposed POSN, each user’s data is kept in a separate location and the owner
is in charge of granting access to his or her friends. The cloud can provide this

POSN: A Personal Online Social Network 53

storage resource free of charge. Users upload encrypted data to their cloud and
fetch data from the cloud’s of their friends (see Section 5). Cloud providers could
only observe encrypted data and share this encrypted data with users that have
access to it as shown in Figure 2.

Bob Alice Chris

Bob’s Cloud Alice’s
Cloud

Chris’s
Cloud

chat &

Data fetch

notification

Data fetch

chat &
notification

up
lo

ad
w

al
l p

os
ts

up
lo

ad
w

al
l p

os
ts

Fig. 2. Personal Online Social Network

In order to find online friends,
we need to check their cloud loca-
tion file where their IP address and
Port number is stored. In order to
access posted content of a friend, a
user should download the content
i.e. the wall post file. In general,
walls containing posts will be auto-
matically downloaded but the mul-
timedia content and comments will
be downloaded only when a user views it. Even though downloading a file is
straightforward, checking hundreds of user’s files across different clouds is not
efficient. Knowing if your friends have a new content will speed up the process.
Online friends can speed up the process as they can share their knowledge about
common friends (see Section 8).

In order to see whether clouds can provide communication efficiency of OSNs,
we compared the file upload/download timing of popular OSNs (i.e., Facebook
and Google+) with popular clouds (i.e., Dropbox, Google Drive, Sky Drive,
Mediafire, Copy Cloud). Figure 3 presents the average upload and download
timing of 10 measurements using an Android tablet over WiFi at our campus. In
these experiments to reduce bias due to background processes and radio status,
we closed all unnecessary services, performed a small file transfer to ensure radio
is on, and kept the measurement process in the foreground. As Facebook resizes
and compresses pictures, we were not able to download a picture of about 1MB
even though larger pictures were uploaded. Hence, 1MB and larger files are
videos doubling in size whereas below 1MB are pictures resized by Facebook.
We obtained comparable performances in our experiments at 10 different WiFi
locations throughout the city as well (results not shown due to space limits).

0.1

1

10

100

1 4 16 64 256 1024 4096 16384 65536

Ti
m
e
(s
ec
)

Uploaded Packet Size (KB)

Copy Cloud
Dropbox
Google Drive
Mediafire
Sky Drive
Facebook
Google+

0.01

0.1

1

10

100

1 4 16 64 256 1024 4096 16384 65536

Ti
m
e
(s
ec
)

Downloaded Packet Size (KB)

Copy Cloud
Dropbox
Google Drive
Mediafire
Sky Drive
Facebook
Google+

Fig. 3. Upload and Download times (log scale)

54 E. Erdin et al.

When uploading a photo, Facebook becomes progressively worse for pictures
(likely due to re-rendering) but is comparable to the rest for videos. Google+
seems worse than all but one cloud provider. Our in depth analysis revealed that
the Google+ API streams the videos, therefore the total download time is consid-
erably increased. Overall, upload performances are similar as videos of 1MB and
larger are uploaded. Download performance of OSNs are also better than clouds
for files smaller than 1MB but are comparable for larger sizes. Even though this
might impact interactive communications such as chat, performance difference
of 1 sec or less would not be considerable for humans to affect adaptation of
POSN. These experiments shows there is no significant performance difference
when uploading/downloading a file to/from an OSN or a cloud provider.

Additionally, we performed measurements with 7 mobile phones over 3G
in the Reno/SFO area. Figure 4 presents the ratio of Dropbox over Facebook
performance for transfer of the same file by the phone around the same time.
As each volunteer did not complete the same number of experiments, we present
each point separately. Note that points above 1 indicate OSN is faster than
cloud. Overall, we observe the OSN can be up to 10x faster or the cloud can be
up to 9x faster, while in most cases OSN is faster. We believe such considerable
performance variation in data transfers is due to the 3G traffic rate instability.

3 Friendship Establishment

0.1

1

10

0 20 40 60 80 100 120 140 160 180

Ra
tio

(C
lo
ud

/O
SN

)

File Size (KB)

Verizon Vortex
Samsung SGH I747
MOTO_MB860
LGE_LG P509
asus_Transformer
Samsung SGH T679
Samsung SGH T999

Fig. 4. 3G Performance Comparison (log scale)

Establishing friendship between
interested people in a decen-
tralized system is a challenge.
Hence, in POSN, we need to rely
on other mechanisms in estab-
lishing friendship and ensur-
ing identities. POSN platform
relies on users’ existing con-
tacts, i.e., phone numbers and
email addresses, in order to
establish friendship and ensure
identities. POSN platform can
exchange emails or SMS mes-
sages between users to estab-
lish certificates/tokens that will
inform the cloud location and public keys of friends as in Figure 5. As the tem-
poral identities need to be unique, POSN generates identities based on hash of
email addresses or phone numbers.

When a person wants to establish friendship with a contact, s/he sends a URI
containing her/his identity, public key, and profile location. The receiving person
may then respond with her/his information if s/he wants to establish a link. Note
that, both messages should be exchanged via e-mail or SMS so that real identities
are ensured. This approach is also in line with our focus on personalized OSN as
the links in our network should correspond to real life friendships between users.

POSN: A Personal Online Social Network 55

Alice Bob1

3

2

Fig. 5. Friendship establishment

Note that, a malicious email
provider might tamper with mes-
sage and this is a research challenge
we will focus on. To address this
issue, public key certificates can
be obtained or secure e-mails can
be sent with PGP to assure valid-
ity of public keys against potential
man-in-the-middle attackers. Dis-
tributed key agreement protocols
can also be utilized to verify public keys among friends [5,28,29].

4 Data Dissemination

POSN utilizes cloud storage system where users upload their content to a cloud
and obtain wall posts of friends from their clouds. Even though one might think
the overhead would be prohibitive (e.g., Facebook has 1.2 billion users), each
user needs to manage content of their friends. On average, a Facebook user has
130 friends (while the number is 214 in the United States) [18] who are typically
clustered into 12 groups [37]. We keep users in groups similar to most OSNs and
have a wall post file for each group in addition to individual wall file. When the
user makes a post it is appended to the appropriate group.

To better understand how data is being generated in OSNs, we monitored
the activities of 16 Facebook users and their circles (i.e., posts shared by their
friends) for 15 days with explicit permission from the users. On average; for
analyzed users, number of friends is 220 (146 of whom used a smart device) who
are divided into 9 groups. Similarly, per day, average number of text posts in
the user’s circle is 53, links is 37, pictures is 51, videos is 7, and chat messages
is 85. The monitored users themselves uploaded just a total of 25 pictures and
2 videos in total over the same period.

Figure 6 shows how multimedia (i.e., pictures and videos) posts are generated
by circles of each user. We observe majority of photos are less than 100KB while

1

10

100

1000

1 10 100 1000

Ph
ot

o
Si

ze
(K

B)

Number of posts

10

100

1000

10000

100000

1 10 100

Vi
de

o
Si

ze
(K

B)

Number of posts

Fig. 6. Multimedia posting pattern of the circles of users (log-scale)

56 E. Erdin et al.

none is greater than 1MB. Likewise, majority of videos are less than 10MB but
exceptionally there are videos larger than 100MB.

0.0001

0.001

0.01

0.1

1

10

100

1000

10000

80 85 90 95 100
Da

ta
Se
nt

(M
B)

Number of Online Connections

Direct
Cloud

Fig. 7. Sender overhead for multimedia (log-scale)

As multimedia can be very
large, the multimedia should be
distributed through the cloud
where the user lets online
friends know that there is a
new post with a direct link to
download data from the cloud.
Otherwise, the user would send
multiple copies of the file (i.e.,
as many as the number of online
friends). Figure 7 shows the
sender bandwidth overhead for
a user if s/he was to post her/his
friend’s posts. It indicates that user overhead considerably increases if the user
directly sends multimedia files to online friends. For sending average file of 93KB
to 90 online friends, the user would need to send over 8MB data. Hence, rather
than sending multiple copies of the file, the poster notifies online friends about
the post that has been uploaded to the cloud.

0

20

40

60

80

100

120

140

160

55 65 75 85 95

N
um

be
ro

fP
os
ts

Number of Online Friends

Fig. 8. Non-multimedia posts in a
user’s circle (log-scale)

Moreover, Figure 8 shows the frequency of
non-multimedia posts (e.g., wall update, link,
like, and comment) for the circle of a user.
In the figure, points show the average num-
ber of posts when x number of friends were
online and the line is the moving average. On
average, during a session, a user posts 66 non-
multimedia content while there are on aver-
age 81 online friends. Even though, cloud is
utilized for efficient distribution of content,
non-multimedia posts can directly be deliv-
ered to online friends.

5 Privacy Protection

In order to provide security and privacy in the POSN platform, data is encrypted
before uploading into the cloud. Every user in the POSN would have a public key.
This public key is exchanged at the time of friendship establishment and shared
through the cloud. However, this would be very inefficient as a separate wall
post would be made for each friend. Instead, POSN keeps a wall for each group
as most users forms clusters of friends [17,24]. Therefore, each group needs a
symmetric key for the group wall, and these keys need to be exchanged securely.
In order to handle the access to the wall post that belongs to a specific group,
the poster embeds a symmetric key into the file as shown in Figure 9. Using
this mechanism, POSN ensures security without adding considerable overhead

POSN: A Personal Online Social Network 57

Alice’s Cloud

Multimedia Folder(s)

EKey Video1(Video1)
EKey Video2(Video2)
….
EKey Picture1(Picture1)
EKey Picture2(Picture2)
EKey Picture3(Picture3)
….

KeyAll{AllWall}

KeyFamily{FamilyWall} KeySchool{SchoolWall}......
Video2Link

KeyVideo2

......
Archive2Link

KeyArchive2
Archive1Link

KeyArchive1

......
Picture2Link

KeyPicture2

...

......
Picture3Link

KeyPicture3

.....
Archive School1Link

KeyArchive School1

KeyAll {SharedWall}

.....
Picture1Link

KeyPicture1

.....
Video1Link

KeyVideo1

AlicePub
EKey.All (IP, Port, LastOnline,)
BobID, BobComment

Link, EBob.Public({AllLink, KeyAll
Ver, KeyAll})

ChrisID, ChrisComment
Link, EChris.Public(AllLink, KeyAll

Ver, KeyAll, FamilyLink, KeyFamily
Ver, KeyFamily)

DavidID, DavidComment
Link, EDavid.Public(AllLink, KeyAll

Ver, KeyAll, SchoolLink, KeySchool
Ver, KeySchool)

…

…

Alice’s Repository

Fig. 9. Key Hierarchy to Protect User Content

to the system since the symmetric keys do not need to be exchanged but rather
recovered through public keys. Furthermore, as multimedia files might be posted
to different groups, we encrypt multimedia files with individual symmetric keys,
which are shared in the wall post for the group.

Each user’s repository provides group keys encrypted with each user’s public
key along with the comment file for that user (see Section 6 for commenting).
In Figure 9, Bob just has access to the “All” group while Chris has access to
“All” and “Family” groups. As the symmetric keys for groups can be updated,
the Keyver indicates the version number of the keys. Note that, each user has a
different repository file and hence can not see other’s by default.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 20 40 60 80 100 120 140 160 180

Ra
tio

(C
lo
ud

/O
SN

)

File Size (KB)

Network and Crypto
Network

Fig. 10. Cryptography overhead

In order to assess encryption
overhead, we analyzed performance
overhead of encryption (using stan-
dard Android AES library) using an
Android tablet over WiFi at our cam-
pus. Figure 10 presents performance
ratio of Dropbox over Facebook where
blue points indicate transfer without
encryption and red points indicate
transfer with encryption for average of
10 measurements. Overall, we observe
that encryption increases the ratio on
an average from 1.40 to 1.71, an average of 22% increase in time with encryption.
This results are encouraging as the extra encryption is not adding significant
delay overhead.

6 Commenting

Commenting is one of the important feature of OSNs since people typically care
about their friends opinion and it should be incorporated into the framework.
However, majority of the peer-to-peer and decentralized OSN platforms ignore

58 E. Erdin et al.

POSTFriend List

Alice’s Cloud

David Eric Frank George

Bob’s Cloud

BACKENDUSER INTERFACE

POSTED PICTURE

Chris: Nice pic!......................
Bob: Cool, isn’t it George?....
Frank: Amazing.....................
George: Yes, beautiful!!.......
David: I didn’t like................
Chris: Where is this place?...
Eric : I think, it is Reno..........

11:45
14:30

Alice’s Profile

Chris’s Cloud

Comment
s

13:18

Last Online: 12:00
Last Online: 13:20

Last Online: 13:05

WALL POSTS

11:30
11:45
12:00
12:10
13:00
13:18
14:30

11:30
11:45
12:00
12:10
13:00

Chris:
Bob:
Frank:
George:
David:

Comments

to Alice
to AliceComments Comments Comments Comments

Bob
Chris
David
Eric
Frank
George

Comments

Comments

Fig. 11. Comment propagation

this feature as it is very challenging to provide in a decentralized structure (see
Section 10). In POSN, each user posts her/his items into the cloud. In order for
friends to post a comment, they should be granted with write permission to the
wall. This might introduce security problems since friends might intentionally or
accidentally mess up a shared file.

One way of incorporating commenting in this framework would be open-
ing a file with a shared write permission for each friend (such as David, Eric,
Frank, and George in Figure 11). If a friend wants to make a comment about
a specific post, then this comment can be posted into a file that belongs to
that specific friend. Associating the comments with the posts can be done by
using the previously assigned IDs of wall posts. The next challenge is how to
spread this comment to friends viewing the original post. So far, we assumed
wall post file will be used to exchange data. Now, we would need to look into as
many as the number of friends’ files to see if they have a comment about posts.
The owner can aggregate all the comments under friend’s comment files to be
included under the original post file and remove them from individual comment
files. Unfortunately, this process can be accomplished only if the owner is online.

Moreover, users have different cloud providers and might not have an account
with the poster’s cloud (such as Bob and Chris in Figure 11). Such users will
have comment files for their friends’s post in their own cloud. To handle these
distributed commenting files, the original poster needs to have a file that holds
the friend’s information where a link to each friends commenting location is
provided (such as Friend List in Figure 11). In this case Alice will not be able
to erase Bob’s comment after populating it to her wall.

The last issue with the commenting is the efficiency. Gathering comments
from each friends’ cloud will introduce considerable overhead to the system. To
minimize this overhead, we implement caching schemes as described in Section 8.
When making a comment to a post, the user sends this comment to all (common)
online friends who can further propagate to other common friends.

POSN: A Personal Online Social Network 59

7 Search Optimization

Another feature of OSNs that is challenging in distributed platforms is the search
for objects. In POSN, the cloud is used only for storage purposes and friends’
encrypted content is scattered across several locations. In order to search for
content of friends, the wall files from all friends should be downloaded to a client
to be searched through. Such a scheme is very inefficient since the number of
content belonging to a user’s circle can be very high. In order to overcome this
problem in POSN, an index structure is implemented as described in Figure 12.
Whenever a post is made, its keywords or tags are inserted into the index file
by the content creator and uploaded to the cloud along with the post.

KeyAll-Index{AllIndex} KeyFamily-Index {FamilyIndex}KeyBob
All-Index {AllIndex}

Chris’s Client

My-Index

Alice’s CloudBob’s Cloud

######
######
######
…

- - - - - -
- - - - - -
- - - - - -
- - - - - -
…

xxxxxxxx
xxxxxxxx
xxxxxxxx
...

- - - - - -
######
xxxxxxx
xxxxxxx
- - - - - -
xxxxxxx

…

...

...

David’s Cloud

Eric’s Cloud

...

Fig. 12. Multi-level Indexing for Searching

Considering there are several
groups for a user, one index file
will not be enough to handle differ-
ent groups. Because an owner might
post a multimedia content to a spe-
cific group, inserting its tag informa-
tion into a common index will hint
other users of its existence. Hence,
POSN keeps a different index file
for each group encrypted with the
symmetric key of the group that it
belongs to as shown in Figure 9.

Since an index file is needed by
all of our friends, it needs to be dis-
seminated to them. If a user wants
to search for a multimedia content, s/he needs to download the index files of
each friend. These index files are then searched for the desired content, which is
not very efficient either. To improve search efficiency, POSN will preemptively
process the index files of all friends and create a new index structure on the
client whenever the user is online.

8 Data Distribution Optimization

Fig. 13. Friends inter-connections

The lack of a central server results in access-
ing several locations to gather the posts from
friends. In the worst case, the user has to
check all of friends’ cloud locations, which
may introduce significant overhead. In POSN
framework clients establish direct connec-
tion with online friends’ clients. When online,
clients can exchange information about com-
mon friends that are not necessarily online.
The number of connections that a client
needs to aggregate the information from can

60 E. Erdin et al.

considerably be reduced as friends typically form clusters (i.e., communities).
Figure 13 presents the network between 635 friends of a monitored user where
they form several clusters among themselves. Online friends can exchange infor-
mation about common friends’ latest posts. As a result, the number of connec-
tions that a client needs to aggregate the information from will decrease.

B

A
DC

H

G

FJ E

I

Fig. 14. Phone-to-
Phone exchange

In POSN, when a client (such as client A in Figure 14)
becomes online, it will look for friends’ cloud to see if they
have a new post and learn their communication address (i.e.,
IP address and port number) if they are online. If the friend
(such as client D) is online then the client can establish
direct connection and ask the friend about common friends
(clients C, E, F, and G in the example). The online friend
then provides its knowledge about common friends. Once
other online friends (such as C) are reported then the new-
comer can recursively query these friends. This operation is
carried out only when a client comes online. Thereafter, rather than periodically
checking for new wall posts at every friend’s cloud, post notifications are pushed
to online friends. As users might become online simultaneously, they need to
first update the online status in the cloud and then look up for friends to assure
that they are aware of each other.

The order of lookup is important as finding online friends early on has con-
siderable benefits and there can be several approaches. The first one is to rank
friends by the number of common friends. The second method is to rank friends
by their expected online duration. In order to implement these approaches, a
user needs to keep and share the relevant information. The success rate of these
methods is a research issue that we will try to optimize in our system.

20

30

40

50

60

70

80

90

7 9 11 13 15 17 19 21

Pe
rc
en

to
fC

on
ne

ct
io
n
Sa
vi
ng

s

Percent of Online Friends

ideal Most online duration most common friends Random

Fig. 15. Help from online friends

In Figure 15, we
compare four meth-
ods namely, ideal,
most online dura-
tion, most common
friends, and ran-
dom for our mea-
sured data. In the
figure, the x-axis
indicates the per-
centage of online
friends when a user
becomes online and
the y-axis indicates
percentage of con-
nections that could
be eliminated. One issue is to determine when to take a snapshot of online activ-
ity. To mimic real user activity, we assumed the user came online one minute
before one of her/his friends actually became online. Hence, we obtain a much

POSN: A Personal Online Social Network 61

larger number of data points than an individuals online pattern. The marks
indicate one instance in our measurements for the user whose circle is shown in
Figure 13. On average, 14.6% of friends were online while ideally one could save
76.5% of connections on average. Heuristics to first lookup at friends that are
most online saves 57.9% of connections while prioritizing most common friends
saves 53.2% of connections on average. Even, random ordering saves 45.7% of
connections on average. Our evaluations with the user with 435 friends yield
very close results (difference of less than 1% in each average).

0.01

0.1

1

10

100

1000

0.01 0.1 1 10

To
ta
lS
ize

(M
B)

Time between Logins (Hours)

Fig. 16. Multimedia data to download when a
user becomes online (log-scale in both axis)

Figure 16 presents the amount
of multimedia data a user would
need to download when s/he
became online based on the mea-
surement of user in Figure 13.
Similar to Figure 15, we assume
the friends’ online pattern as the
user’s online duration. As the time
between logins increase, theamount
of data the user might download
from her/his friends increases. In
extreme cases, we observe there
is about 1GB of data when the
user has not logged in for about a
day and friends have posted large
videos. Hence, rather than auto-downloading all multimedia content, POSN
would parse most recent posts and wait for the user to fetch subsequent content
as s/he is scrolling through the posts (especially for large videos).

9 Discussion

9.1 Social Challenges

Friendships might not last forever or the level of friendship might change, as
a result the content that friends exchange will change. The POSN framework
should reflect changes in the friendship status. To reduce the level of information
exchange with a friend, the group or groups that friend belongs to could be
changed. As we might not want the person to be aware of unfriending, we move
all other friends to new group(s) with new key(s). Hence, the unfriended person
would think that there are no new posts even if they analyzed the raw data.

Another challenge in real life is stalking. In order to stalk someone in our
system, s/he has to know the victim in real life and be a friend in the POSN
platform. If the stalker is a friend of victims friend, s/he can only see the com-
ments of the victim. There is no way that the stalker can see the shared content
of the victim through POSN if they are not friends.

To allow third party application support without harming user privacy, each
user can keep an App File for each authorized application in their cloud. This
App file is encrypted with a key as any other group wall. Applications will

62 E. Erdin et al.

write the relevant data into the files without revealing it to the app developer.
Moreover, friends who want to partner in specific app can exchange their App
file location and keys so that they can collaborate/compete. Online applications
can also exchange information over the socket connection that is created by the
online clients.

9.2 Security Challenges

Stolen devices pose a security risk. The owner of the stolen device should send
notifications immediately. This notification could be send either by email or
SMS or through some automated mechanisms to minimize the damage. Once a
notification is received every key that is paired with that user would be renewed.
On the other side, the mechanism should be carefully deployed so that this is not
employed for denial of service attacks. Hence, we will investigate a solution that
provides immediate notification mechanism while it can not be used for DoS.

Finally, a cloud provider might track who is accessing individual files and gain
knowledge about interactions of a user [15,23]. Note that, to download content,
a friend just uses direct link to the file without logging into the cloud. Also,
online users do not need to connect to the cloud to exchange non-multimedia
content. To prevent even IP based analysis by cloud provider, the user might
utilize multiple clouds for different groups s/he is managing. Moreover, friends
can utilize proxies and anonymizer technologies in her/his communications with
the cloud [16,19]. Likewise, a user’s online friends (who are not necessarily friend
with the person whose encrypted data is downloaded) can be utilized in accessing
clouds so that the cloud is not certain of who is accessing the content.

10 Related Work

We have analyzed some of the decentralized OSNs that we could identify, and
found several decentralized OSNs currently in use: Diaspora [3], Friendica [1],
and RetroShare [2]. Diaspora has tens of thousands of active users. Diaspora
is a set of pods (currently about 130 are publicly available) that decentralize
the system and is accessible through browsers. Even though an individual can
deploy their private pod, the main issue with Diaspora is that each pod is a
central server of many users. Similarly, Friendica builds a social web platform
using set of decentralized servers. RetroShare is a peer-to-peer PC application
that provides decentralized OSN support.

Additionally, there are several decentralized OSNs proposed in academia, but
none of them seems to be actively used. Cachet [27], PeerSon [8], Safebook [9],
and LifeSocial [13] build a peer-to-peer (p2p) system where peers are not neces-
sarily trusted. Polaris [36], My3 [25] and Vegas [11] build a p2p network among
friends to replicate data. Confidant [20], Tent [4], and Vis-a-Vis [31] build a dis-
tributed platform by building a protocol among servers that process user data.
Persona [6] proposes to use attribute based encryption to store user data in

POSN: A Personal Online Social Network 63

untrusted storage servers with web based OSN platform. PrPl [30] allows a user
to use personal or 3rd party server to store their encrypted content.

Finally, there are privacy preserving social networks that are not tradi-
tional OSNs. Pythia attempts to present a privacy aware p2p network for social
search [26]. Gossple is an anonymous social network that helps users build new
relationships with others based on mutual interests [7]. Priv.io [38] builds a
decentralized web based platform to securely share data. Contrail is a com-
munication platform that provides content filtering in decentralized social net-
works [33]. NOYB [14] and Lockr [34] can be integrated into current social
networks in order to guarantee the users privacy in OSNs.

Friendship Establishment: The decentralized networks that provide security
as a feature tend to be more careful with revealing the very existence of certain
users, thus finding friends becomes a challenge. Others are more cavalier with
this information so making more friends is easier. There is a tradeoff of how
privacy protecting the system is and how difficult it is for users to find and add
their friends. As Diaspora and Friendica has member directories, friends can can
easily be found. In Cachet, LifeSocial, and Vis-a-Vis users can locate friends
through a DHT. PeerSon, Persona, Polaris, RetroShare, and Vegas exchange
certificate files to establish friendship. In proposed POSN, we rely on existing
identities, i.e., email addresses, to exchange credentials and establish friendship.

Data Storage: In a decentralized OSN, the data is, by definition, not stored in
a single location. Some applications store the data in a distributed manner as a
security precaution, some do it in order to promote inter-connectivity between
users, and others do it for a combination of reasons. Diaspora and Friendica store
data in a set of servers, which can be private. P2p systems store encrypted data
amongst all peers (i.e., Cachet, LifeSocial, and PeerSon) or only in trusted peers
(i.e., My3, Safebook, and Vegas). Confidant, Tent, and Vis-a-Vis decentralize
the data among the users selected servers (potentially cloud providers), but the
servers actually process the user data. Persona stores data in servers but only
stores encrypted data. Some store data only in the user’s PC (i.e., RetroShare)
or smart phone (i.e., Polaris). In the proposed POSN, we build a p2p platform
between mobile devices and utilize the cloud for encrypted data storage.

Support for Content Search: Among analyzed systems only Confidant, Dias-
pora, and Friendica users can search for content in their own server (or other
servers in case of Diaspora), and Vegas users can perform controlled friend flood-
ing to search for content. Different from p2p platforms that typically do not allow
search function, POSN provides search of encrypted content by preemptively
building search indexes.

Support for Commenting: Among analyzed systems only Confidant, Dias-
pora, and Friendica allow comments to posts as content is stored on a set of
servers. Different from p2p platforms that do not allow commenting function,
POSN provides commenting by propagating comments through the system.

64 E. Erdin et al.

11 Conclusions

OSNs have gained a great importance in our daily life. People prefer to commu-
nicate and interact with their friends through OSNs. In this paper, we propose
a privacy preserving decentralized OSN so that users have direct control of their
information. POSN can be easily deployed by installing an application and using
a free-of-charge cloud storage provider. The POSN platform focuses on the com-
munity of individuals and tries to optimize the system through encrypted cloud
storage. The combination of phone-to-phone applications with cloud infrastruc-
ture addresses the main limitation of peer-to-peer systems, i.e., availability, while
enjoying the benefits of peer-to-peer systems, i.e., no central authority and scala-
bility. POSN ensures that interactions happen between friends and third parties
cannot access the user content or relationships.

Acknowledgments. We would like to thank James Bridegum for initial App devel-
opment and Davut Ucar for collecting public WiFi measurements.

This material is based upon work supported by the National Science Foundation
under grant number EPS- IIA-1301726.

References

1. Friendica: The internet is our social network. http://friendica.com
2. Retroshare: secure communications with friends. http://retroshare.sourceforge.net
3. Diaspora: community-run, distributed social-network. https://joindiaspora.com
4. Tent: All your data in one place. https://tent.io
5. Ateniese, G., Steiner, M., Tsudik, G.: New multiparty authentication services and

key agreement protocols. IEEE Journal on Selected Areas in Communications
18(4), 628–639 (2000)

6. Baden, R., Bender, A., Spring, N., Bhattacharjee, B., Starin, D.: Persona: an online
social network with user-defined privacy. In: ACM SIGCOMM 2009

7. Bertier, M., Frey, D., Guerraoui, R., Kermarrec, A.-M., Leroy, V.: The gossple
anonymous social network. In: Gupta, I., Mascolo, C. (eds.) Middleware 2010.
LNCS, vol. 6452, pp. 191–211. Springer, Heidelberg (2010)

8. Buchegger, S., Schiöberg, D., Vu, L.-H., Datta, A.: Peerson: P2p social networking:
early experiences and insights. In: SNS 2009 (2009)

9. Cutillo, L., Molva, R., Strufe, T.: Safebook: feasibility of transitive cooperation for
privacy on a decentralized social network. In: WOWMOM 2009 (2009)

10. Dodds, P.S., Muhamad, R., Watts, D.J.: An experimental study of search in global
social networks. Science (2003)

11. Durr, M., Maier, M., Dorfmeister, F.: Vegas - a secure and privacy-preserving
peer-to-peer online social network. In: SocialCom/PASSAT (2012)

12. Feldman, A.J., Blankstein, A., Freedman, M.J., Felten, E.W.: Social networking
with frientegrity: privacy and integrity with an untrusted provider. In: USENIX
Security 2012

13. Graffi, K., Gross, C., Mukherjee, P., Kovacevic, A., Steinmetz, R.: Lifesocial.kom:
a p2p-based platform for secure online social networks. In: P2P 2010

http://friendica.com
http://retroshare.sourceforge.net
https://joindiaspora.com
https://tent.io

POSN: A Personal Online Social Network 65

14. Guha, S., Tang, K., Francis, P.: Noyb: privacy in online social networks. In: WOSN
2008

15. Gunes, M.H., Evrenosoglu, C.: Blind processing: securing data against system
administrators. In: IEEE/IFIP NOMS 2010

16. Karaoglu, H.T., Akgun, M.B., Gunes, M.H., Yuksel, M.: Multi path considerations
for anonymized routing: challenges and opportunities. In: IFIP NTMS 2012

17. Kardes, H., Sevincer, A., Gunes, M.H., Yuksel, M.: Six degrees of separation among
US researchers. In: IEEE/ACM ASONAM 2012

18. Kirschner, P.A., Karpinski, A.C.: Facebook and academic performance. Computers
in Human Behavior (2010)

19. Li, B., Erdin, E., Gunes, M.H., Bebis, G., Shipley, T.: An Overview of Anonymity
Technology Usage. Computer Communications 36(12), 1269–1283 (2013)

20. Liu, D., Shakimov, A., Cáceres, R., Varshavsky, A., Cox, L.P.: Confidant: protect-
ing osn data without locking it up. In: Kon, F., Kermarrec, A.-M. (eds.) Middleware
2011. LNCS, vol. 7049, pp. 61–80. Springer, Heidelberg (2011)

21. Milgram, S.: The small world problem. Psychology Today (1967)
22. Narayanan, H.A.J., Gunes, M.H.: Ensuring access control in cloud provisioned

healthcare systems. In: IEEE CCNC 2011
23. Naruchitparames, J., Gunes, M.H.: Enhancing data privacy and integrity in the

cloud. In: HPCS 2011
24. Naruchitparames, J., Gunes, M.H., Louis, S.J.: Friend recommendations in social

networks using genetic algorithms and network topology. In: IEEE CEC 2011
25. Narendula, R., Papaioannou, T., Aberer, K.: My3: a highly-available p2p-based

online social network. In: Peer-to-Peer Computing (2011)
26. Nilizadeh, S., Alam, N., Husted, N., Kapadia, A.: Pythia: a privacy aware, peer-

to-peer network for social search. In: WPES 2011
27. Nilizadeh, S., Jahid, S., Mittal, P., Borisov, N., Kapadia, A.: Cachet: a decen-

tralized architecture for privacy preserving social networking with caching. In:
CoNEXT 2012

28. Perrig, A.: Efficient collaborative key management protocols for secure autonomous
group communication. In: CrypTEC 1999

29. Rafaeli, S., Hutchison, D.: A survey of key management for secure group commu-
nication. ACM Comput. Surv. 35(3), 309–329 (2003)

30. Seong, S.-W., Seo, J., Nasielski, M., Sengupta, D., Hangal, S., Keat, S., Chu, T.R.,
Dodson, B., Lam, M.S.: Prpl: a decentralized social networking infrastructure. In:
MCS 2010

31. Shakimov, A., Lim, H., Caceres, R., Cox, L., Li, K., Liu, D., Varshavsky, A.: Vis-
a-vis: privacy-preserving online social networking via virtual individual servers. In:
COMSNETS 2011

32. Sharma, R., Datta, A.: Supernova: super-peers based architecture for decentralized
online social networks. In: COMSNETS 2012

33. Stuedi, P., Mohomed, I., Balakrishnan, M., Mao, Z.M., Ramasubramanian, V.,
Terry, D., Wobber, T.: Contrail: enabling decentralized social networks on smart-
phones. In: Kon, F., Kermarrec, A.-M. (eds.) Middleware 2011. LNCS, vol. 7049,
pp. 41–60. Springer, Heidelberg (2011)

34. Tootoonchian, A., Saroiu, S., Ganjali, Y., Wolman, A.: Lockr: better privacy for
social networks. In: CoNEXT 2009

66 E. Erdin et al.

35. Yeung, C.-M.A., Liccardi, I., Lu, K., Seneviratne, O., Berners-lee, T.: Decentral-
ization: the future of online social networking. In: W3C Workshop on the Future
of Social Networking Position Papers (2009)

36. Wilson, C., Steinbauer, T., Wang, G., Sala, A., Zheng, H., Zhao, B.Y.: Privacy,
availability and economics in the polaris mobile social network. In: HotMobile 2011

37. Wilson, R.E., Gosling, S.D., Graham, L.T.: A review of Facebook research in the
social sciences. Perspectives on Psychological Science, May 2012

38. Zhang, L., Mislove, A.: Building confederated web-based services with priv.io. In:
COSN 2013

Strategic Noninterference

Wojciech Jamroga1 and Masoud Tabatabaei2(B)

1 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
w.jamroga@ipipan.waw.pl

2 Interdisciplinary Centre for Security and Trust, University of Luxembourg,
Walferdange, Luxembourg
masoud.tabatabaei@uni.lu

Abstract. Noninterference is a property that captures confidentiality
of actions executed by a given process. However, the property is hard to
guarantee in realistic scenarios. We show that the security of a system
can be seen as an interplay between functionality requirements and the
strategies adopted by users, and based on it we propose a weaker notion
of noninterference which we call strategic noninterference. We also give a
characterization of strategic noninterference through unwinding relations
for specific subclasses of goals and for the simplified setting where a
strategy is given as a parameter.

1 Introduction

The term noninterference was first introduced in the seminal work by Goguen
and Meseguer [4] as a formalisation of information flow security. The concept
can be informally described as follows: one group of users, using a certain set
of actions, is noninterfereing with another group of users if what the first group
does has no effect on what the second group of users can see. The idea is to
prevent any information about the behaviour of the first group (which we call
High players) to flow to the second group (which we call Low players). From its
appearance in [4], noninterference has been vastly used to define confidentiality
properties in programs and concurrent processes.

As much as the notion is appealing in theory, several challenges make it less
useful in practice. Noninterference is a very restrictive concept, and implement-
ing a practical system that satisfies it entirely is hard or even impossible. It
becomes even harder when integrating an already implemented infrastructure
with an information flow policy defined on top of it (cf. [28]). Last but not least,
in many applications, downward flow of information is either permitted or is
inevitable in some possible runs of the system. In this paper, we propose to
restrict the property of noninterference to only a subset of possible behaviors of
the system. The proposal follows an observation that, in most systems, not all
possible behaviors actually happen. If the High players pursue a particular goal,
they may do so by executing a strategy. Then, only those runs of the system can
occur, which are consistent with the strategy. But in that case it should suffice
to preserve confidentiality only in the runs that can happen when the strategy
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 67–81, 2015.
DOI: 10.1007/978-3-319-18467-8 5

68 W. Jamroga and M. Tabatabaei

is executed. In other words, High do not need to worry about the leakage of
information that their own strategy prevents.

Examples of strategies include institutional policies in organizations, imple-
mentation guidelines for programs etc. The following scenario shows how one
may ensure noninterference in an intrinsically insecure system, by committing
to a strategy which both satisfies a desired goal and prevents information flow.

Example 1 (Motivating example). A health care data center is responsible for
gathering medical data from the hospitals in the area and storing them in the
servers of the center. The center also provides limited internet access for public
users who can run allowed queries on the database. The querying interface is
accessible all of the time. Moreover, the data center runs an updating procedure
whenever new data is available at one of the hospitals. In order to ensure integrity
of answers, the querying interface returns “out of service” while the update is
running. Unfortunately, it has turned out that a user may be able to relate the
time of update (= the time of observing the “out of service” message) to the
hospital from which the data comes, and then by checking the results of queries
before and after the update, gain unauthorized information about the hospital.

The data center provides multiple functionalities (storing, updating, and pro-
viding access to the data). Moreover, requirements on the functionalities can
be specified differently. Our main observation is that, depending on the actual
functionality requirement, there might a strategy that fulfils the requirement
and satisfies a given security property (in our case, noninterference). Consider,
for instance, the following requirement: “the system should be updated as soon
as new data is available, and the querying interface should be running all day”.
It is easy to see that, for this functionality requirement, the system is bound to
be vulnerable. More formally, there is no strategy that satisfies the requirement
and at the same time guarantees noninterference. However, if the functionality
requirement is changed to a weaker one: “the system should be updated at most
24 hours after new data is available, and the querying interface should be running
at least 22 hours a day”, then there exist a strategy for the data center which
both satisfies the requirement and prevents the unwanted information flow. The
strategy can be to close the interface for one hour every day, and to postpone
the updates to the nearest closing time of the interface. ��

The main idea behind this paper can be summarized as follows. For sophisti-
cated systems, different security strategies are available that constrain the behav-
ior of the system. Such a strategy can consist in fixing some parameters of the
software (e.g., the schedule of automated updates, time windows for entering
new data, etc.) as well as imposing constraints on the behavior of human com-
ponents (e.g., who is allowed to enter new data). We propose that security of
the system can be seen as an interplay between the goal of the system, phrased
in terms of a functionality requirement, and the security strategy being used.

We begin by recalling the standard notion of noninterference and formally
defining agents’ strategic behavior (Section 2). Then, we propose our new concept
of strategic noninterference in Section 3, and present its theoretical characteri-
zation for certain types of objectives in Section 4.

Strategic Noninterference 69

Related Work. Since the introduction of noninterference in [4], several varia-
tions have been suggested for the concept, such as nondeducibility [22],
noninference [12], and restrictiveness [10]. Although noninterference was orig-
inally introduced for systems modeled as finite state machines, it was later
redefined, generalized, and extended in the framework of process algebras [1,14–
16,18]. Noninterference and its variants have been studied from different per-
spectives. Some works dealt with composability of noninterference [10,20,27].
Another group of papers studied the properties of intransitive noninterference
[2,3,15,25]. Probabilistic noninterference and quantitative noninterference have
been investigated, e.g., in [6,9,11,13,21,26]. Out of all the works, only [18] comes
closer to our proposal, as the authors suggest that, for systems that do not satisfy
noninterference in general, the property can be possibly restored for a suitably
constrained version of the system. However, the behavioral constraint has to be
given explicitly, and it can be of a completely abstract nature. In particular, it
does not have to specify an executable strategy for any participants. Moreover,
the functionality-related side (i.e., goals) is not treated explicitly in [18].

When reasoning about information leakage, it is important to distinguish
between two methodological views on confidentiality. According to the first view,
the Low users may attempt to read directly or deduce indirectly information
that they are not authorized to obtain, and they are trying to do this on their
own. The second view assumes possible cooperating agents among the High
players, for example malicious spy processes, that help the Low players to get the
unauthorized information. This is usually done through covert channels [8,26].
In our approach we assume that either the High players are not malicious, or the
commitment mechanism is powerful enough so that even malicious players follow
the selected strategy. We should also mention that our proposal is inherently
different from so called nondeducibility on strategies [26]. While in [26] strategies
are considered as a means to transfer information from the High player to the
Low player, in our approach it is used by the High player to prevent the leakage
of information.

2 Preliminaries: Noninterference and Strategies

2.1 Standard Concept of Noninterference

We first recall the standard notion of noninterference by Goguen and Meseguer [4].
The system is modeled by a multi-agent asynchronous transition network M =
〈St, s0,U,A, do,Obs, obs〉 where: St is the set of states, s0 is the initial state, U
is the set of agents (or users), A is the set of actions, do : St × U × A → St
is the transition function that specifies the (deterministic) outcome do(s, u, a) of
action a if it is executed by user u in state s; Obs is the set of possible observations
(or outputs); obs : St × U → Obs is the observation function. We will sometimes
write [s]u instead of obs(s, u). Also, we will call a pair (user,action) a personalized
action. We construct the multi-step transition function exec : St× (U×A)∗ → St
so that, for a finite string α ∈ (U × A)∗ of personalized actions, exec(α) denotes
the state resulting from execution of α from s0 on.

70 W. Jamroga and M. Tabatabaei

If U ⊆ U, A ⊆ A, and α ∈ (U × A)∗, then by PurgeU (α) we mean the
subsequence of α obtained by eliminating all the pairs (u, a) with u ∈ U . Also,
PurgeU,A(α) denotes the subsequence of α obtained by eliminating all the pairs
(u, a) with u ∈ U and a ∈ A.

Definition 1 (Noninterference [4]). Given a transition network M and sets
of agents H and L, we say that H is non-interfering with L iff for all α ∈ (U ×
A)∗ and all ul ∈ L we have [exec(α)]ul

= [exec(PurgeH(α))]ul
. We denote the

property by NIM (H,L). Throughout the paper, we assume that H,L are disjoint.

In other words, for every sequence of actions αH that H can execute, there
is no “response” sequence from L which, interleaved with αH , might reveal that
H have done anything. Assuming that H need to hide only occurrences of some
“sensitive” actions A ⊆ A, the concept of noninterference is refined as follows.

Definition 2 (Noninterference on sensitive actions [4]). Given a transi-
tion network M , sets of agents H,L, and a set of actions A ⊆ A, we say that H
is non-interfering with L on A iff for all α ∈ (U × A)∗ and all ul ∈ L we have
[exec(α)]ul

= [exec(PurgeH,A(α))]ul
. We denote the property by NIM (H,L,A).

It is easy to see that NIM (H,L) iff NIM (H,L,A).

2.2 Strategies and Their Outcomes

Strategy is a game-theoretic concept which captures behavioral policies that an
agent can consciously follow in order to realize some objective. We assume that
each subset of agents U ⊆ U is assigned a set of available coalitional strate-
gies ΣU . The most important feature of a strategy is that it constrains the
possible behaviors of the system. We represent it formally by the outcome func-
tion outM as follows. First, let T ′ be a U -trimming of tree T iff T ′ is a subtree
of T starting from the same root and obtained by removing an arbitrary sub-
set of transitions labeled by actions of agents from U . Moreover, let T (M) be
the tree unfolding of M . Then, for every σU ∈ ΣU , its outcome outM (σU) is a
U -trimming of T (M).

Let h be a node in tree T corresponding to a particular finite history of
interaction. We denote the sequence of personalized actions leading to h by
act∗(h). Furthermore, act∗(T) = {act∗(h) | h ∈ nodes(T)} is the set of finite
sequences of personalized actions that can occur in T .

Observation 1. In a transition network M , if u ∈ U, σH ∈ ΣH , and u /∈ H
then for all α ∈ act∗(outM (σH)) and a ∈ A we have that α.(u, a) ∈ act∗(outM (σH)),
where α.(u, a) denotes concatenation of α and (u, a). This is because M is asyn-
chronous and in each state any agents may get its action executed before the
others. On the other hand, σH only restricts the behaviour of agents in H. There-
fore any outgoing transition from a node in T (M) by an agent outside H must
remain in the trimmed tree given by outM (σH).

Strategic Noninterference 71

How do strategies and their outcomes look in concrete scenarios? We men-
tion here one natural type of strategies. Positional strategies represent condi-
tional plans where the decision is solely based on what the agents see in the
current state of the system. Formally, for u ∈ U, the set of individual positional
strategies of u is ΣPos

u = {σu : St → P(A) | [q]u = [q′]u ⇒ σu(q) = σu(q′)},
where P(X) denotes the powerset of X. Notice the “uniformity” constraint which
enforces that the agent must specify the same action(s) in states with the same
observations. Now, coalitional positional strategies for group of agents U ⊆ U
are simply tuples of individual strategies, i.e., ΣPos

U = ×u∈U (ΣPos
u). The out-

come of σU ∈ ΣPos
U in model M is the tree obtained from T (M) by removing

all the branches that begin from a node containing state q with a personalized
action (u, a) ∈ U × A such that a /∈ σU (q). We will assume positional strategies
throughout the paper to make our presentation more accessible.

3 Strategic Noninterference

Our main idea can be summarized as follows. If the High agents H are going to
behave in a certain way, they do not need to worry about information leakage
in all executions of the system but only in those executions that can actually
happen. In particular, if H execute strategy σH then they should not care about
the traces that are outside the outcome traces of σH . Moreover, the agents
can actually choose σH in such a way that they avoid leaks. This leads to the
following attempt at refining noninterference for agents who play strategically.

Definition 3 (Strategic Noninterference, first attempt). Given a tran-
sition network M , a set of High agents H with coalitional strategies ΣH , a
set of Low agents L, and a set of “sensitive” actions A, we say that H is
strategically non-interfering with L on A iff there exists a strategy σH ∈ ΣH

such that for all α ∈ act∗(outM (σH)) and all ul ∈ L we have [exec(α)]ul
=

[exec(PurgeH,A(α))]ul
.

Unfortunately, the above definition is not very practical. True, in many cases
the High agents could avoid leakage of information – for instance, by refraining
from doing anything but the most conservative actions. In that case, however,
they would never obtain what they want. Thus, we need to take into account
the goals of H in the definition of noninterference.

3.1 Goal-Driven Strategic Noninterference

Let traces(M) be the set of finite or infinite sequences of states that can be
obtained by subsequent transitions in M . Moreover, paths(M) will denote the
set of maximal traces, i.e., those sequences that are either infinite or end in
a state with no outgoing transitions. Additionally, we will use pathsM (σ) as a
shorthand for paths(outM (σ)).

72 W. Jamroga and M. Tabatabaei

Definition 4 (Goal). A goal in M is any Γ ⊆ traces(M). Note that traces
(M) = traces(T (M)), so a goal can be also seen as a subset of traces in the tree
unfolding of M .

A goal is a property that some agents may attempt to enforce by selecting
their behavior accordingly. Note that, in the models of Goguen and Meseguer,
strategies of any group except for the grand coalition U yield only infinite paths.
We will typically assume goals to be sets of paths definable in Linear Temporal
Logic [19]. Most common examples of such goals are safety and reachability
goals. For example, a goal of user u1 can be that message m is, at some future
moment, communicated to user u2. Or, the users u1 and u2 may have a joint
goal of keeping the communication channel c operative all the time. The former
is an example of a reachability goal, the latter a safety goal.

Definition 5 (Safety and reachability goals). Formally, given a set of safe
states S ⊆ St, the safety goal ΓS is defined as ΓS = {λ ∈ paths(M) | ∀i.λ[i] ∈ S}.
Moreover, given a set of target states T ⊆ St, the reachability goal ΓT can be
defined as ΓT = {λ ∈ paths(M) | ∃i.λ[i] ∈ T}.

We can now propose a weaker concept of noninterference, parameterized with
the goal that the High agents pursue.

Definition 6 (Strategic Noninterference). Given a transition network M ,
a set of High agents H with goal ΓH and coalitional strategies ΣH , a set of Low
agents L, and a set of “sensitive” actions A, we say that H is strategically non-
interfering with L on actions A for goal ΓH iff there exists a strategy σH ∈ ΣH

such that: (i) pathsM (σH) ⊆ ΓH , and (ii) for every α ∈ act∗(outM (σH)) and
ul ∈ L we have [exec(α)]ul

= [exec(PurgeH,A(α))]ul
.

We will denote the property by SNIM (H,L,A, ΓH).

Example 2 (Strategic noninterference). Consider the model in Figure 1 for the
health care scenario from Example 1. There are two agents H and L, and the ini-
tial state is s0. The possible observations for agent H are updated and outdated,
showing if the data center is up-to-date or not. The possible observations for
agent L are on and off , showing if L sees the working interface or the “out of
service” message. The available actions are: newData used by H to signal that
new data is available from a hospital, startUpdate used by H to start the updat-
ing process, endUpdate used by H to finish the process, openInt and closeInt
used by H to open and close the interface, and query used by L to run a query.

Let A = {newData, startUpdate, endUpdate}. Clearly, it is not the case
that H noninterferes with L on A, because PurgeH,A(〈(H,newData), (H, start
Update)〉 = 〈〉, but [s2]L �= [s0]L. However, if the goal ΓH is defined as the system
being updated after any opening of the interface, then player H can obtain ΓH

by avoiding action startUpdate in state s1 and avoiding openInt in s4. For this
strategy, H’s behavior is noninterfering with L on A. ��

Note that the variant of strategic noninterference from Definition 3 is cap-
tured by SNIM (H,L,A, traces(M)). Moreover, the following is straightforward:

Strategic Noninterference 73

s3

s0 s1

s2

s4

s5

(H,newData)

(H,newData)

(H, endUpdate)

(H, endUpdate)

(H, startUpdate)

(H, startUpdate)

(H, openInt) (H, openInt)(H, closeInt) (H, closeInt)

obs(s3, H) = updated
obs(s3, L) = off

obs(s0, H) = updated
obs(s0, L) = on

obs(s4, H) = outdated
obs(s4, L) = off

obs(s1, H) = outdated
obs(s1, L) = on

obs(s2, H) = outdated
obs(s2, L) = off

obs(s5, H) = outdated
obs(s5, L) = off

Fig. 1. Transition network for the healthcare example. Reflexive arrows for transitions
that do not change the state of the system are omitted from the picture.

Proposition 1. SNIM (H,L,A, ΓH) if and only if there exists σH ∈ ΣH such
that pathsM (σH) ⊆ ΓH and NIoutM (σH)(H,L,A).

3.2 Private vs. Public Strategies

According to Definition 6, L can only use what they observe to determine if
H have done a sensitive move. We implicitly assume that L do not know the
strategy being executed by H; in this sense, the strategy of H is private. Another
possibility is to assume that L are aware of the strategy of H. Then, L can detect
in two ways that an action of H has occurred: (i) by getting to an observation
that could not be obtained with no interleaved action from H, or (ii) by passing
through a state where H’s strategy forces H to execute something.

It is often appropriate to assume that H’s strategy is known to the adver-
saries. This can be adopted as a worst case assumption, e.g., when a long-term
pattern of H’s behavior is used by L to predict their future strategy. A similar
situation arises when H’s goals and/or incentives are easy to guess. It is also
known that announcing a strategy publicly and committing to it can sometimes
increase security, especially in case of a government agency (cf. e.g. [7,23]).

Definition 7 (Strategic Noninterference in Public Strategies). Given
a transition network M , a set of High agents H with goal ΓH and coalitional
strategies ΣH , a set of Low agents L, and a set of “sensitive” actions A ⊆ A,
we say that H is strategically non-interfering with L on A for goal ΓH in public
strategies iff there exists a strategy σH ∈ ΣH such that: (i) pathsM (σH) ⊆ ΓH ,

74 W. Jamroga and M. Tabatabaei

s0 s1

s2 s3

(H, d)

(H, c)

(H, c)

(H, d)

(H, b) (H, b)
(H, a) (H, a)

(H, d) (H, c)

(H, d), (H, a), (H, b) (H, c), (H, a), (H, b)

obs(s0, H) = 0
obs(s0, L) = 0

obs(s1, H) = 1
obs(s1, L) = 0

obs(s2, H) = 2
obs(s2, L) = 1

obs(s3, H) = 3
obs(s3, L) = 1

Fig. 2. Noninterference in public and private strategies

and (ii) for every α ∈ act∗(outM (σH)) and ul ∈ L we have that [exec(α)]ul
=

[exec(PurgeH,A(α))]ul
and PurgeH,A(α) ∈ act∗(outM (σH)).

We will denote the property by SNI-PubM (H,L,A, ΓH).

Example 3 (Public vs. private strategies). Consider the transition system in
Figure 2, with two agents H and L and the initial state s0. The set of possible
actions is A = {a, b, c, d} and the set of sensitive actions is A = {c, d}. The
observations for both agents are shown in the picture. Let goal ΓH be that
whenever system goes to s3, it must have been at some previous point in s2.
Agent H can obtain this goal by using strategy σ1 of avoiding action b in s0
and avoiding action a in s1. Moreover, when using σ1, H noninterferes with L
on A in private strategies but not in public strategies. To see why, note that if
α = 〈(H, c)(H, b)〉 then α ∈ act∗(out(σ1)) but PurgeH,A(α) = 〈(H, b)〉 is not in
act∗(out(σ1)). Therefore, although H can obtain ΓH by using strategy σ1 while
preserving noninterference, the security can be only achieved if L does not know
the strategy of H. ��

Strategic noninterference is a weaker notion than ordinary noninterference.
Out of the two notions of SNI, noninterference in public strategies is stronger.

Proposition 2. NIM (H,L,A) ⇒ SNI-PubM (H,L,A, ΓH) ⇒ SNI(H,L,
A, ΓH). The converse implications do not universally hold.

Proof. The implications are straightforward from the definitions. Non-validity
of the converse implications follows from Examples 2 and 3.

Models of Goguen and Meseguer allow only to represent systems that are
fully asynchronous and where all actions are available to each user at each state.
As it turns out, revealing H’s strategy makes a difference only when H have
both sensitive and insensitive actions. Thus, if H are to conceal all their actions
then it actually doesn’t matter whether their strategy is publicly known. Before
showing this formally, we make the following observation.

Strategic Noninterference 75

Observation 2. In the tree given by outM (σH), sequences of actions are
prefix-closed. In other words, for every sequence α, we have α.(u, a) ∈ act∗(outM
(σH)) ⇒ α ∈ act∗(outM (σH)).

Proposition 3. SNIM (H,L,A, ΓH) iff SNI-PubM (H,L,A, ΓH).

Proof. By Proposition 2 we have that SNI-PubM (H,L,A, ΓH) implies SNIM

(H,L,A, ΓH). For the other direction it suffices to show that if SNIM (H,L,A, ΓH)
then for every α ∈ act∗(outM (σH)) and σH ∈ ΣH it holds that PurgeH,A(α) ∈
act∗(outM (σH)). We prove this by induction on the size of α.
Induction base: if α = 〈〉, then PurgeH,A(α) = 〈〉 and also 〈〉 ∈ act∗(outM (σH)),
therefore PurgeH,A(α) ∈ act∗(outM (σH)).
Induction step: We want to show that if

(I) α ∈ act∗(outM (σH)) ⇒ PurgeH,A(α) ∈ act∗(outM (σH))
then for all u ∈ U and a ∈ A:

(II) (α.(u, a)) ∈ act∗(outM (σH)) ⇒ PurgeH,A(α.(u, a)) ∈ act∗(outM (σH))
We prove it as follows. If (I) then either α /∈ act∗(outM (σH)), in which case by
Observation 2 we have α.(u, a) /∈ act∗(outM (σH)) and therefore (II) is true; or
PurgeH,A(α) ∈ act∗(outM (σH)), in which case we have two possibilities: (a) If
u ∈ H then PurgeH,A(α.(u, a)) = PurgeH,A(α). We assumed that PurgeH,A ∈
act∗(outM (σH)) so PurgeH,A(α.(u, a)) ∈ act∗(outM (σH)) and hence (II) is true.
(b) If u /∈ H then PurgeH,A(α.(u, a)) = PurgeH,A(α).(u, a). This together
with Observation 1, u /∈ H and PurgeH,A(α) ∈ act∗(outM (σH)) implies that
PurgeH,A(α.(u, a)) ∈ act∗(outM (σH)), therefore (II) is true.

4 Formal Characterization of Strategic Noninterference

Noninterference is typically characterized through so called unwinding relations
[5,17,24]. Intuitively, an unwinding relation connects states that are indistin-
guishable to the Low agents, in the sense that Low have no “diagnostic proce-
dure” that would distinguish one from the other. Thus, if High proceed from
one such state to another, no information leaks to the adversaries. Unwinding
relations are important because they characterize noninterference in purely struc-
tural terms, similar to well-known bisimulation relations. Moreover, existence of
an unwinding relation is usually easier to verify than proving noninterference
directly.

4.1 Unwinding Relations for Standard Noninterference

We first recall the unwinding characterization of the original noninterference .

Definition 8 (Unwinding for Noninterference [5,17]). ∼NIL
⊆ St × St

is an unwinding relation iff it is an equivalence relation satisfying the conditions
of output consistency (OC), step consistency (SC), and local respect (LR). That
is, for all states s, t ∈ St:

76 W. Jamroga and M. Tabatabaei

(OC) If s ∼NIL
t then [s]L = [t]L;

(SC) If s ∼NIL
t, u ∈ L, and a ∈ A then do(s, u, a) ∼NIL

do(t, u, a);
(LR) If u ∈ H and a ∈ A then s ∼NIL

do(s, u, a).

Proposition 4 ([5,17]). NIM (H,L) iff there exist an unwinding relation ∼NIL

on the states of M that satisfies (OC), (SC) and (LR).

4.2 Unwinding for Strategic Noninterference

In this part, we try to characterize strategic noninterference in a similar way.
That is, we look for unwinding relations corresponding to strategies that obtain
a given goal and at the same time prevent information leakage. There are two
possible perspectives to this. First, we can look for unwinding relations whose
existence corresponds to existence of a suitable strategy. Secondly, we may look
for unwindings whose existence guarantees strategic noninterference for a given
strategy. We focus on the former here; the latter will be studied in Section 4.3.
We begin with the following negative result.

Proposition 5. There is no succinct characterization of strategic noninterfer-
ence with respect to goals definable in Linear Time Logic.

Proof. Suppose, to the contrary, that there exists a deterministic1 condition Φ
which: (i) is of polynomial size with respect to the size of the model and the
length of the goal formula, and (ii) guarantees that SNIM (H,L,A, Γ) iff there
is an unwinding relation satisfying Φ for M,H,L,A, Γ . Note that the model
checking problem for Linear Time Logic can be embedded in checking strategic
noninterference by assuming that H = ∅ and that L have the same observation
in every state. Then, SNIM (H,L,A, Γ) iff Γ is satisfied on every possible path
in M . But this, together with our assumption, would give us a nondeterminis-
tic polynomial-time procedure for model checking Linear Time Logic, which is
impossible since the problem is PSPACE-complete [19].

It is clear from the proof that the impossibility stems from the hardness
of finding a strategy that obtains a given goal, and not necessarily from the
noninterference part. We will now show that strategic noninterference can indeed
be succinctly characterized for a specific class of goals, namely safety goals.

Definition 9 (Unwinding Relation for Safety Goal). Let M,H,L be as
usual, and ΓS be a safety goal with safe states S ⊆ St. Moreover, let reach(U) =
{s | ∃α ∈ (U,A)∗ , s = exec(α)} denote the set of reachable states for agents U .
We say that ∼ΓS

⊆ St × St is an unwinding relation for ΓS iff ∼ΓS
satisfies the

following properties:

1 By “deterministic”, we essentially mean “quantifier-free”. Note that quantification
over elements of the model (e.g., states, agents, and actions) is not a problem, since
it can always be unfolded to a quantifier-free form by explicitly enumerating all the
possible values. Such an unfolding incurs only polynomial increase of the size of Φ.

Strategic Noninterference 77

(OCS) For all s, t ∈ reach(L), if s ∼ΓS
t then [s]L = [t]L;

(SCS) For all s, t ∈ reach(L), u ∈ L, and a ∈ A, if s ∼ΓS
t then do(s, u, a) ∼ΓS

do(t, u, a).

Proposition 6. SNI(H,L,A, ΓS) iff reach(U \ H) ⊆ S and there exists an
unwinding relation ∼ΓS

for the safety goal ΓS.

Proof. “⇐⇐⇐” Suppose that reach(U \ H) ⊆ S and there exists an unwinding
relation ∼ΓS

. We show that there exists a strategy σH for agents H such that
(i) pathM (σH) ⊆ ΓS, and (ii) for every α ∈ act∗(outM (σH)) and ul ∈ L we have
[exec(α)]ul

= [exec(PurgeH,A(α))]ul
. We choose σH to be a positional strategy

defined as σH(s) = ∅ for all s ∈ St.
i) By the definition of σH , we know that act∗(outM (σH)) ⊆ (U\H,A)∗. This

together with reach(U \ H) ⊆ S and the definition of safety goal, implies that
pathM (σH) ⊆ ΓS.

ii) For every α ∈ act∗(outM (σH)) and ul ∈ L, we have α ∈ (U\H,A)∗ by (i),
and hence PurgeH,A(α) = α. Therefore [exec(PurgeH,A(α)]ul

= [exec(α)]ul
.

By i) and ii) we have that SNI(H,L,A, ΓS) holds.
“⇒⇒⇒” Suppose that SNI(H,L,A, ΓS), and σH is a strategy that satisfies the
conditions of strategic noninterference. We show that there exists an unwinding
relation ∼ΓS

for the safety goal ΓS. Let ∼ΓS
be the relation such that s ∼ΓS

t
if s, t ∈ nodes(outM (σH)) and for all α ∈ (L,A)∗ and ul ∈ L, [exec(s, α)]ul

=
[exec(t, α)]ul

. We show that ∼ΓS
is an unwinding relation for the safety goal ΓS.

i) If α ∈ (U\H,A)∗ then by Observation 1 we have that α ∈ act∗(outM (σH)),
and therefore exec(α) ∈ S (by strategic noninterference). So reach(U \ H) ⊆ S.

ii) If we take α = 〈〉, then by definition of ∼ΓS
we have that for all ul ∈

L and all s, t ∈ reach(L), [exec(s, α)]ul
= [exec(t, α)]ul

. So [exec(s, 〈〉)]ul
=

[exec(t, 〈〉)]ul
, or [s]ul

= [t]ul
which proves that ∼ΓS

satisfies (OCS).
iii) Lastly, we need to prove that ∼ΓS

satisfies (SCS). Suppose there exists
s, t ∈ reach(L), u ∈ L and a ∈ A such that s ∼ΓS

t and do(s, u, a) �∼ΓS

do(t, u, a). Then there exists α ∈ (L,A)∗ such that [exec(do(s, u, a), α)]ul
�=

[exec(do(t, u, a), α)]ul
for some ul ∈ L. It implies that [exec(s, ((u, a).α))]ul

�=
[exec(t, ((u, a).α))]ul

, which contradicts s ∼ΓS
t. Therefore ∼ΓS

satisfies (SCS).

It would be interesting to characterize strategic noninterference for other sub-
classes of goals in a similar way. We are currently working on a characterization
result for reachability goals. Goals that can be achieved by fixpoint computation
of strategies are another promising class that we leave for future work.

4.3 Strategy-Specific Unwinding Relations

We now turn to characterizing strategic noninterference when a strategy is
given as a parameter of the problem. Let σH be a strategy for H in M . We
define the maximum coverage of σH in state s as maxcover(σH , s) = {a ∈
A | ∃α ∈ act∗(outM (σH)), uh ∈ H, such that exec(α) = s and α.(uh, a) ∈
act∗(outM (σH))}.

78 W. Jamroga and M. Tabatabaei

Definition 10 (Strategy-Specific Unwinding Relation). Let M,H,L be
as usual, Γ be a goal, and σH a strategy for H. We call ∼σH

⊆ St×St a strategy-
specific unwinding relation for σH iff it satisfies the following properties:

(OCσ) For all s, t ∈ nodes(outM (σH)) and u ∈ L, if s ∼σH
t then [s]u = [t]u;

(SCσ) For all s, t ∈ nodes(outM (σH)), u ∈ L, and a ∈ A, if s ∼σH
t then

do(s, u, a) ∼σH
do(t, u, a);

(LRσ) For all s ∈ nodes(outM (σH)), u ∈ H, and a ∈ maxcover(σH , s), we
have that s ∼σH

do(s, u, a).

Proposition 7. Let M,H,L, Γ be as before, and σH be a positional strategy
for H that obtains Γ (formally: pathsM (σH) ⊆ ΓH). If there exists a strategy-
specific unwinding relation for σH then M satisfies strategic noninterference with
respect to σH (formally: for every α ∈ act∗(outM (σH)) and ul ∈ L we have that
[exec(α)]ul

= [exec(PurgeH,A(α))]ul
).

Proof. By (OCσ) it is enough to show that for all α ∈ act∗(outM (σH)),
exec(α) ∼σH

exec(PurgeH,A(α)). We prove this by induction on the size of α.
Induction base: For α = 〈〉, we have 〈〉 ∈ act∗(outM (σH)) and PurgeH,A(〈〉) =
〈〉. Therefore exec(〈〉) ∼σH

exec(PurgeH,A(〈〉)), because ∼σH
is reflexive.

Induction step: Suppose that for some α ∈ act∗(outM (σH)), exec(α) ∼σH

exec(PurgeH,A(α)). We show that for any (u, a) such that u ∈ L and a ∈ A, either
exec(α.(u, a)) ∼σH

exec(PurgeH,A(α.(u, a)), or α.(u, a) /∈ act∗(outM (σH)). We
consider three cases:
(i) If u ∈ H and a /∈ σH(exec(α)), then α.(u, a) /∈ act∗(outM (σH)).
(ii) If u ∈ H and a ∈ σH(exec(α)), then PurgeH,A(α.(u, a)) = PurgeH,A(α). By
(LRσ) we have that exec(α) ∼σH

exec(α.(u, a)). This together with induction
step assumption and transitivity of ∼σH

implies that exec(PurgeH,A(α)) ∼σH

exec(α.(u, a)). By substituting PurgeH,A(α) with PurgeH,A(α.(u, a)) we have
exec(α.(u, a)) ∼σH

exec(PurgeH,A(α.(u, a)).
(iii) If u ∈ L then exec(PurgeH,A(α.(u, a))) = do(exec(PurgeH,A(α)), u, a).
This, together with the induction step assumption and (SCσ), implies that
do(exec(α)), u, a) ∼σH

do(exec(PurgeH,A(α)), u, a). Therefore exec(α.(u, a))
∼σH

exec(PurgeH,A(α.(u, a)).

Proposition 8. Let M,H,L, Γ, σH be as in Proposition 7. If M satisfies strategic
noninterference with respect to σH then there exists a strategy-specific unwinding
relation for σH .

Proof. Let ∼σH
be the relation such that s ∼σH

t if s, t ∈ nodes(outM (σH)) and
for all α ∈ (L,A)∗ and ul ∈ L, [exec(s, α)]ul

= [exec(t, α)]ul
. We show that ∼σH

has the conditions of strategy-specific unwinding relation for strategy σH .
(i) Proving (OCσ) for ∼σH

is analogous to the proof of part ⇒⇒⇒.(ii) in Proposi-
tion 6.
(ii) Proving (SCσ) for ∼σH

is analogous to the proof of part ⇒⇒⇒.(iii) in Propo-
sition 6.

Strategic Noninterference 79

(iii) Suppose that s ∈ nodes(outM (σH)), a ∈ maxcover(σH , s), α ∈ (L,A)∗,
ul ∈ L and uh ∈ H . Then there exist λ ∈ act∗(outM (σH)) such that exec(λ) = s.
By strategic noninterference property, [exec(λ.α)]ul

= [exec(PurgeH,A(λ.α)]ul

and [exec(λ.(uh, a).α)]ul
= [exec(PurgeH,A(λ.(uh, a).α))]ul

. We also know that
PurgeH,A(λ.(uh, a).α) = PurgeH,A(λ.α). Using these equalities we have that
[exec(λ.α)]ul

= [exec(λ.(uh, a).α)]ul
, i.e [exec(s, α)]ul

= [exec(do(s, uh, a), α)]uh
,

therefore s ∼σH
do(s, uh, a) (by the definition of ∼σH

) and so (LRσH
) holds.

5 Conclusions

In this paper, we propose how to relax the classical requirement of noninterfer-
ence by taking into account a strategy that the High players may follow in order
to achieve their goals. The idea is especially important for analysis and design of
confidentiality in realistic systems where full noninterference and nondeducibil-
ity can seldom be guaranteed. Moreover, strategic noninterference in a system
can be obtained not only by strengthening security measures, but also by “fine-
tuning” functionality requirements: even if it does not hold for the current goals,
there may exist weaker yet still acceptable goals that allow for confidentiality-
preserving behavior. Thus, the new concept helps to realize which objectives can
be achieved while avoiding information leakage.

In terms of technical results, we study characterization of strategic nonin-
terference through unwinding relations. On one hand, we prove that a general
characterization result is impossible for arbitrary goals. On the other hand, we
present some characterizations for specific subclasses of goals and for the simpli-
fied setting where a strategy is given as a parameter. The proofs are constructive
and can be used to obtain practical algorithms that check for strategic nonin-
terference. We also show that, in the classical models of Goguen and Meseguer,
knowing the strategy of High usually does not increase the ability of Low to break
noninterference. The models used in this paper are deterministic asynchronous
transition networks of the original definition of noninterference [4]. We plan to
extend our study to richer models in future work. In particular, the generalized
form of non-interference by Ryan and Schneider [18] seems very promising for a
formulation of strategic noninterference in process-algebraic models.

It is worth mentioning that, in a realistic system, the usefulness of strategic
noninterference relies heavily on the ability of High to select specific behaviors.
In a system where High has no such ability, the notions of noninterference and
strategic noninterference coincide.

Acknowledgments. Wojciech Jamroga acknowledges the support of National Re-
search Fund (FNR) Luxembourg under project GALOT (INTER/DFG/12/06), as well
as the support of the 7th Framework Programme of the European Union under the
Marie Curie IEF project ReVINK (PIEF-GA-2012-626398). Masoud Tabatabaei also
acknowledges the support of the National Research Fund Luxembourg under project
GAIVS (AFR Code:5884506).

80 W. Jamroga and M. Tabatabaei

References

1. Allen, P.G.: A comparison of non-interference and non-deducibility using CSP. In:
Proceedings of CSFW, pp. 43–54 (1991)

2. Backes, M., Pfitzmann, B.: Intransitive non-interference for cryptographic pur-
poses. In: Proceedings of S&P, pp. 140–152. IEEE (2003)

3. Engelhardt, K., van der Meyden, R., Zhang, C.: Intransitive noninterference in
nondeterministic systems. In: Proceedings of CCS, pp. 869–880 (2012)

4. Goguen, J.A., Meseguer, J.: Security policies and security models. In: Proceedings
of S&P, pp. 11–20. IEEE Computer Society (1982)

5. Goguen, J.A., Meseguer, J.: Unwinding and inference control. In: IEEE Symposium
on Security and Privacy, pp. 75–75. IEEE Computer Society (1984)

6. Gray III, J.W.: Probabilistic interference. In: Proceedings of S&P, pages 170–179.
IEEE (1990)

7. Korzhyk, D., Yin, Z., Kiekintveld, C., Conitzer, V., Tambe, M.: Stackelberg vs.
Nash in security games: An extended investigation of interchangeability, equiva-
lence, and uniqueness. Journal of Artif. Intell. Research 41, 297–327 (2011)

8. Lampson, B.W.: A note on the confinement problem. Communications of the ACM
16(10), 613–615 (1973)

9. Li, P., Zdancewic, S.: Downgrading policies and relaxed noninterference. In: ACM
SIGPLAN Notices, vol. 40, pp. 158–170. ACM (2005)

10. McCullough, D.: Noninterference and the composability of security properties. In:
Proceedings of S&P, pp. 177–186. IEEE (1988)

11. McIver, A., Morgan, C.: A probabilistic approach to information hiding. Program-
ming Methodology, pp. 441–460 (2003)

12. O’Halloran, C.: A calculus of information flow. In: Proceedings of ESORICS, pp.
147–159 (1990)

13. Di Pierro, A., Hankin, C., Wiklicky, H.: Approximate non-interference. Journal of
Computer Security 12(1), 37–81 (2004)

14. Roscoe, A.W.: CSP and determinism in security modelling. In: Proceedings of S&P,
pp. 114–127. IEEE (1995)

15. Roscoe, A.W., Goldsmith, M.H.: What is intransitive noninterference? In: Pro-
ceedings of CSF, pp. 228–228. IEEE (1999)

16. Roscoe, A.W., Woodcock, J.C.P., Wulf, L.: Non-interference through determinism.
In: Proceedings of ESORICS, pp. 31–53. Springer (1994)

17. Rushby, J.: Noninterference, transitivity, and channel-control security policies. SRI
International, Computer Science Laboratory (1992)

18. Ryan, P.Y.A., Schneider, S.A.: Process algebra and non-interference. Journal of
Computer Security 9(1), 75–103 (2001)

19. Schnoebelen, Ph.: The complexity of temporal model checking. In: Advances in
Modal Logics, Proceedings of AiML 2002. World Scientific (2003)

20. Seehusen, F., Stølen, K.: Information flow security, abstraction and composition.
IET Information Security 3(1), 9–33 (2009)

21. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

22. Sutherland, D.: A model of information. In: Proc. 9th National Computer Security
Conference, pp. 175–183 (1986)

23. Tabatabaei, M., Jamroga, W., Ryan, P.Y.: Preventing coercion in e-voting: be
open and commit. In: Proceedings of the 1st Workshop on Hot issues in Security
Principles and Trust (HotSpot) (2013)

Strategic Noninterference 81

24. van der Meyden, R., Zhang, C.: A comparison of semantic models for noninterfer-
ence. Theoretical Computer Science 411(47), 4123–4147 (2010)

25. van der Meyden, R.: What, Indeed, Is Intransitive Noninterference? In: Biskup,
J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 235–250. Springer,
Heidelberg (2007)

26. Wittbold, J.T., Johnson, D.M.: Information flow in nondeterministic systems. In:
IEEE Symposium on Security and Privacy, pp. 144–144 (1990)

27. Zakinthinos, A., Lee, E.S.: The composability of non-interference. Journal of Com-
puter Security 3(4), 269–281 (1995)

28. Zdancewic, S.: Challenges for information-flow security. In: Proceedings of the 1st
International Workshop on the Programming Language Interference and Depen-
dence (PLID04) (2004)

Verifying Observational Determinism

Jaber Karimpour, Ayaz Isazadeh, and Ali A. Noroozi(B)

Computer Science, University of Tabriz, Tabriz, Iran
{karimpour,isazadeh,noroozi}@tabrizu.ac.ir

Abstract. This paper proposes an approach to verify information flow
security of concurrent programs. It discusses a hyperproperty called
observational determinism which aims to ensure secure information flow
in concurrent programs, and proves how this hyperproperty can be ver-
ified by stutter equivalence checking. More precisely, it defines observa-
tional determinism in terms of stutter equivalence of all traces having
the same low initial value and shows how stutter trace equivalence can
be verified by computing a divergence stutter bisimulation quotient. The
approach is illustrated by verifying a small example.

Keywords: Secure information flow · Observational determinism ·
Verification · Bisimulation

1 Introduction

To perform an effective security analysis of a given program, program model,
security policy and attacker (observer) model should be defined precisely [1].
In secure information flow analysis, the program model can be represented as
a state machine, which produces a set of executions and is considered public
knowledge. In this model, program variables are classified into different security
levels. A nave classification is to label some variables as L, meaning low security,
public information; and other variables as H, meaning high security, private
information. The goal of a security policy is to prevent information in H from
flowing to L and being leaked [2], [3]. Other classifications of program variables
are possible via a lattice of security levels [4]. In this case, the security policy
should ensure that information flows only upwards in the lattice.

The security policy is a property that needs to be satisfied by the program
model. The attacker is assumed to be able to observe program executions. Con-
fidentiality policies are of major concern in security policies. These policies are
connected to the ability of an attacker to distinguish two program executions
that differ only in their confidential inputs. Noninterference is a confidentiality
policy that stipulates an observer able to see only low security data (low observer)
learns nothing about high security inputs by watching low security outputs [5].
Observational determinism is another confidentiality policy which is a general-
ized notion of noninterference for concurrent programs. Inspired by earlier work
by McLean [6] and Roscoe [7], Zdancevic and Myers [5] proposed observational
determinism which requires the program to produce indistinguishable traces to
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 82–93, 2015.
DOI: 10.1007/978-3-319-18467-8 6

Verifying Observational Determinism 83

avoid information leaks. Thus, a program satisfying this condition appears deter-
ministic to a low observer who is able to observe low variables and unable to
distinguish states which differ only in high variables. As stated by Huisman
et al. [8] ”concurrent programs are often used in a context where intermediate
states can be observed.” That’s why Zdancevic and Myers require determinism
on all the states of a trace, instead of final states. Observational determinism is a
widely accepted security property for concurrent programs. Observational deter-
ministic programs are immune to refinement attacks [5], because observational
determinism is preserved under refinement [9].

This paper concentrates on the problem of verifying observational determin-
ism for concurrent programs. We define observational determinism in terms of
stutter equivalence on all low variables. Our contributions include (1) a theorem
showing that verifying secure information flow can be reduced to equivalence
checking in the quotient system and (2) a sound model checking approach for
verifying secure information flow in concurrent programs. In fact, our approach
is the first that uses quotient space to reduce the state space and check for
secure information flow simultaneously. We illustrate the progress made by the
verification of a small example program. It is expected that these contributions
constitute a significant step towards more widely applicable secure information
flow analysis.

The remainder of the paper is organized as follows. In section 2, preliminaries
are explained. In section 3, observational determinism is formally defined and
section 4 discusses how to verify it. In section 5, some related work is discussed.
Finally, Section 6 concludes, and discusses future work.

2 Preliminaries

In this section, at first we introduce the program model considered throughout
the paper. Then, some preliminary concepts about bisimulation are discussed.
Most of these preliminaries are taken from [10].

Definition 1 (Kripke structure). A Kripke structure KS is a tuple (S,→
, I, AP,La) where S is a set of states, →⊆ S × S is a transition relation, I ⊆ S
is a set of initial states, AP is the set of atomic propositions, and La : S → 2AP

is a labeling function. Here, atomic propositions are possible values of the low
variables. KS is called finite if S and AP are finite. The set of successors of a
state s is defined as Post(s) = {s′ ∈ S|s → s′}. A state s is called terminal if
Post(s) = ∅. For a Kripke structure modelling a sequential program, terminal
states represent the termination of the program.

Definition 2 (Execution or Path). A finite path fragment π̂ of KS is a finite
state sequence s0s1 . . . sn such that si ∈ Post(si−1) for all 0 < i ≤ n. An infinite
path fragment π is an infinite state sequence s0s1s2 . . . such that si ∈ Post(si−1)
for all 0 < i. A maximal path fragment is either a finite path fragment that ends
in a terminal state, or an infinite path fragment. A path fragment is called initial
if it starts in an initial state, i.e., if s0 ∈ I. A path of KS is an initial, maximal

84 J. Karimpour et al.

path fragment. Paths(s) denotes the set of paths starting in s. All paths of a
Kripke structure with no terminal state are infinite.

Definition 3 (Trace). The trace of a path π = s0s1 . . . is defined as T =
trace(π) = La(s0)La(s1) Thus, the trace of a path is the sequence of sets
of atomic propositions that are valid in the states of the path. T [0] extracts the
first atomic proposition of the trace, i.e., T [0] = La(s0). Let Traces(s) denote
the set of traces of s, and Traces(KS) the set of traces of the initial states of
KS: Traces(s) = trace(Paths(s)) and Traces(KS) = ∪s∈ITraces(s).

Definition 4 (Combination of Kripke structures KS1 ⊕KS2). For KSi =
(Si,→i, Ii, AP,Lai), i = 1, 2: KS1 ⊕ KS2 = (S1 � S2,→1 ∪ →2, I1 ∪ I2, AP,La)
where � stands for disjoint union and La(s) = Lai(s) if s ∈ Si.

Definition 5 (Stutter equivalence). Traces T1 and T2 over 2AP are stutter
equivalent, denoted T1 � T2, if they are both of the form A+

0 A+
1 A+

2 . . . for
A0, A1, A2, · · · ⊆ AP where A+

i is the Kleene plus operation on Ai and is defined
as A+

i = {x1x2 . . . xk|k > 0 and each xi = Ai}. Kripke structures KSi over AP ,
i = 1, 2 , are stutter trace equivalent, denoted KS1 � KS2, if KS1 � KS2 and
KS2 � KS1, where � is defined by:

KS1 � KS2 iff ∀T1 ∈ Traces(KS1)(∃T2 ∈ Traces(KS2). T1 � T2)

Definition 6 (Stutter bisimulation). A stutter bisimulation for KS is a
binary relation R on S such that for all (s1, s2) ∈ R, the following three con-
ditions hold: (1) La(s1) = La(s2). (2) If s′

1 ∈ Post(s1) with (s′
1, s2) �∈ R, then

there exists a finite path fragment s2u1 . . . uns′
2 with 0 ≤ n and (s1, ui) ∈ R,

i = 1, . . . , n and (s′
1, s

′
2) ∈ R. (3) If s′

2 ∈ Post(s2) with (s1, s′
2) �∈ R, then

there exists a finite path fragment s1v1 . . . vns′
1 with 0 ≤ n and (vi, s2) ∈ R,

i = 1, . . . , n and (s′
1, s

′
2) ∈ R.

Definition 7 (Divergence stutter bisimulation). Let R be an equivalence
relation on S. A state s ∈ S is R-divergent if there exists an infinite path fragment
π = ss1s2 · · · ∈ Paths(s) such that (s, sj) ∈ R for all 0 < j. Stated in words,
a state s is R-divergent if there is an infinite path starting in s that only visits
states in [s]R. [s]R is the equivalence class of s under the equivalence relation R.
R is divergence-sensitive if for any (s1, s2) ∈ R: if s1 is R-divergent, then s2 is
R-divergent. States s1, s2 are divergent stutter bisimilar, denoted s1 ≈div s2, if
there exists a divergence sensitive stutter bisimulation R such that (s1, s2) ∈ R.

Definition 8 (Divergent stutter bisimilar paths). For infinite path frag-
ments πi = s0,is1,is2,i . . . , i = 1, 2 in KS, π1 is divergent stutter bisimilar to
π2, denoted π1 ≈div π2 if and only if there exists an infinite sequence of indices
0 = j0 < j1 < j2 < . . . and 0 = k0 < k1 < k2 < . . . with:

sj,1 ≈div sk,2 for all jr−1 ≤ j < jr and kr−1 ≤ k < kr with r = 1, 2, . . .

The following lemma follows directly from the definition of ≈div on paths
and � on paths.

Verifying Observational Determinism 85

Lemma 1. For all infinite paths π1 and π2, we have π1 ≈div π2 implies π1 � π2.

Lemma 2. Divergent stutter bisimilar states have divergent stutter bisimilar
paths:

s1 ≈div s2 implies ∀π1 ∈ Paths(s1) (∃π2 ∈ Paths(s2). π1 ≈div π2)

Proof : see [10], page 549.

Definition 9 (Divergence stutter bisimulation quotient KS/ ≈div). The
quotient of a Kripke structure KS is defined by KS/ ≈div= (S/ ≈div,→′

, I ′, AP,La′), where S/ ≈div= {[s]≈div |s ∈ S}, La′([s]≈div) = La(s), and →′

is defined by

s → s′ ∧ s �≈div s′

[s]≈div →′ [s′]≈div

and
s is ≈div −divergent

[s]≈div →′ [s]≈div

Theorem 1. For any Kripke structure KS, we have KS ≈div KS/ ≈div.

Proof : Follows from the fact that R = {(s, [s]≈div)|s ∈ S} is a divergence stutter
bisimulation for (KS,KS/ ≈div). �

3 Observational Determinism

A concurrent program is secure if it appears deterministic to a low observer
and produces indistinguishable executions. Zdancevic and Myers [5] call this
observational determinism and define it as:

∀ T, T ′ ∈ Traces(P). T [0] =L T ′[0] =⇒ T ≈L T ′

where KS is a model of the program (e.g., a Kripke structure, modelling the
program executions). Indistinguishability to a low observer is expressed as state
equivalence relation =L and trace equivalence relation ≈L. Zdancevic and Myers
define trace equivalence as prefix and stutter equivalence of the sequence of
states in each trace. However, Huisman et al. [8] argue that allowing prefixing
causes information flows. That’s why they propose stutter equivalence instead
of prefix and stutter equivalence. For example, consider the following program:

l:=0; while(h>0) then {l++} (P1)

where h is a high variable and l is a low veriable. The set of traces of this
program is {< 0 >,< 0, 1 >,< 0, 1, 2 >, . . . }. These traces are prefix and stutter
equivalent, hence considered secure by the definition of Zdancevic and Myers;
But, the attacker can easily get the value of h by observing the traces. Huisman
et al. [8] require stutter equivalence of traces of each low variable, but as Terauchi
[11] shows, this kind of definition is not as restrictive as possible and accepts leaky
programs. Thus, Terauchi requires prefix stutter equivalence of all traces w.r.t.
all low variables.

86 J. Karimpour et al.

Consequently, we define observational determinism in terms of stutter equiv-
alence on all low variables:

∀ T, T ′ ∈ Traces(P). T [0] =L T ′[0] =⇒ T �L T ′

where �L is stutter trace equivalence. For example, consider the following inse-
cure program that can reveal the value of h:

l1:=0; l2:=0;
l1:=1 || if(l1=1) then l2:=h (P2)

where || is the parallel operator. If the right program is executed first, the
corresponding trace of low variables would be: < (0, 0), (0, 0), (1, 0) >. Each
ordered pair (l1, l2) shows the values of low variables in each state of the pro-
gram. If the left program is executed first, the following traces are produced:
< (0, 0), (1, 0), (1, h) >. As you can see, these traces are not stutter equivalent,
so the program is insecure. As another example, consider the following secure
program:

l1:=0; l2:=0;
l1:=2 || if(l1=1) then l2:=h (P3)

If the right program is executed first, the corresponding trace would be: <
(0, 0), (0, 0), (2, 0) >, but if the left program is executed first, the following trace
is produced: < (0, 0), (2, 0), (2, 0) >. These two traces are stutter equivalent,
hence the program is secure. Thus, this paper defines trace indistinguishability
in observational determinism as stutter equivalence.

4 Verification of Observational Determinism

Let us assume KS = (S,→, I, AP,La) is a Kripke structure that models the
behavior of the concurrent execution of the processes (or threads) of a concurrent
program. AP is the set of the values of low variables and the function La labels
each state with these values. It is assumed that the state space of KS is finite.
If KS has a terminal state sn, we include a transition sn → sn, i.e., a self-loop,
ensuring that the Kripke structure has no terminal state. Therefore, all traces
of KS are infinite.

The main steps of the verification algorithm are outlined in Algorithm 1.
The input of this algorithm is a finite Kripke structure KS modeling the pro-
gram, and the output is yes or no. The first step is to partition the set I of
initial states into sets of low equivalent initial states called initial state clusters
ISC1, . . . , ISCm, and define ISC = {ISC1, . . . , ISCm}. The second step is to
extract an arbitrary trace Ti from KS for each initial state cluster and build
a Kripke structure KSTi from the path in KS corresponding to trace Ti. As
the next step, we combine Kripke structures KSTi (i = 1, . . . , |ISC|), forming
a single Kripke structure KST = (SKST ,→KST , IKST , APKST , LaKST), where
KST = KST1 ⊕KST2 ⊕ . . . KST|ISC|. The following theorem reduces the prob-
lem of verifying observational determinism to checking divergence stutter bisim-
ulation of KS and KST .

Verifying Observational Determinism 87

Algorithm 1. Verification of observational determinism

Theorem 2. The problem of the verification of observational determinism is
reduced to the following problem:

∀C ∈(S � SKST)/ ≈div
KS⊕KST , ∀s0, s

′
0 ∈ ISCi, 1 ≤ i ≤ |ISC|.

s0 ∈ C ⇔ s′
0 ∈ C and ISCi ∩ C �= φ ⇔ IKST ∩ C �= φ

where � stands for disjoint union and (S � SKST)/ ≈div
KS⊕KST denotes the quo-

tient space with respect to ≈div
KS⊕KST , i.e., the set of all divergence stutter bisim-

ulation equivalence classes in S � SKST .

Proof : To prove that KS is observational deterministic, one should prove that
for every initial state of KS, all traces starting in that state are stutter equiv-
alent. Thus, for all traces starting from an initial state s0 of KS, there should
be a stutter equivalent trace of KST starting from an initial state st0 of KST .
By Lemma 1, stutter equivalence of traces reduces to divergence stutter bisimu-
lation. From Lemma 2, it follows that each initial state of KS should be divergent

88 J. Karimpour et al.

stutter bisimilar to an initial state in KST , and vice versa. Thus, KS and KST
should be divergent stutter bisimilar. Then, KS ≈div KST if and only if

∀C ∈ (S � SKST)/ ≈div
KS⊕KST . I ∩ C �= φ ⇐⇒ IKST ∩ C �= φ

where (S � SKST)/ ≈div
KS⊕KST denotes the quotient space with respect to

≈div
KS⊕KST . Considering that some initial states may be low equivalent and con-

sequently they form initial state clusters, it is sufficient to take an arbitrary trace
for only each initial state cluster. Of course, all states of an initial state clus-
ter should have stutter equivalent traces and thus should be divergent stutter
bisimilar. As a result, KS is observational deterministic if and only if

∀C ∈ (S � SKST)/ ≈div
KS⊕KST , ∀s0, s

′
0 ∈ ISCi, 1 ≤ i ≤ |ISC|.

s0 ∈ C ⇔ s′
0 ∈ C and ISCi ∩ C �= φ ⇔ IKST ∩ C �= φ �

The input finite Kripke structure KS has no terminal states. Hence, all traces
are infinite and form a cycle in KS. To take an arbitrary trace from KS, we
can use cycle detection algorithms of graphs. In order to detect cycle, a modified
depth first search called colored DFS may be used. In colored DFS, all states
are initially marked white. When a state is encountered, it is marked grey, and
when its successors are completely visited, it is marked black. If a grey state
is ever encountered, then there is a cycle and sequence of states pushed in the
stack of the DFS so far forms a path.

It remains to explain how to compute divergence stutter bisimulation quo-
tient of KS ⊕KST . The algorithm to compute the quotient relies on a partition
refinement technique, where the finite state space S � SKST is partitioned in
blocks. Starting from a straightforward initial partition, where all states with
the same label (low variable values) form a partition, the algorithm successively
refines these partitions until a stable partition is reached. A partition is stable if
it only contains divergent stutter bisimilar states and no refinement is possible
on it. Further details can be found, e.g. in [12], [10].

Complexity. The time complexity of finding an arbitrary trace is O(M), where
M denotes the number of transitions of KS. Thus, the time complexity of con-
structing KST is O(|I|.M). The quotient space of KS ⊕ KST under ≈div can
be computed in time O((|S| + M) + |S|.(|AP | + M)) under the assumption that
M = |S| [10]. Thus, the costs of verifying observational determinism for con-
current programs are dominated by the costs of computing the quotient space
under ≈div, which is polynomial-time.

Using the quotient space to verify observational determinism has two advan-
tages: (1) Instead of analyzing the concrete model of the program, a minimized
abstract model is analyzed. Provided the quotiening preserves stutter equiva-
lence, the analysis of the minimized model suffices to decide the satisfaction of
observational determinism in the program. (2) The proposed approach can easily
be adapted to verify programs with infinitely many states, as there are efficient
algorithms for computing the quotient space of infinite state programs [13].

Verifying Observational Determinism 89

Fig. 1. The Kripke structure KS of P5 and the Kripke structure KST of an arbitrary
trace of KS

Example. Consider the following program from [14]:

l:=0;
if(h) then {l:=0; l:=1} || l:=0
else {l:=0; l:=1} || {l:=0; l:=0} (P4)

where h is a boolean and high variable and l is a low variable. The Kripke
structure KS of the program P4 and the Kripke structure KST of an arbitrary
trace of KS are shown in Figure 1. The equivalence classes of KS ⊕KST under
≈div are [s0]div = {s0, s7}, [s1]div = {s1, s8, st0, st1}, [s2]div = {s2, s9, st2},
[s3]div = {s3, s10, s11, st3}, [s4]div = {s4, s5, s12, s13, s14} and [s6]div = {s6, s15}.
Therefore, the divergence stutter bisimulation quotient of it is computed as
depicted in Figure 2. Since the initial state s0 of KS and the initial state st0 of
KST are not in the same equivalence class, the program is labelled as insecure.

5 Related Work

Zdancevic and Myers [5] define observational determinism in terms of prefix and
stutter equivalence each low variable. Huisman et al. [8] show that allowing pre-
fixing permits some leaks, so they define observational determinism in terms of
stutter equivalence on each low variable. Terauchi [11] shows that independent
consideration of low variables is not correct and information flows may occur.

90 J. Karimpour et al.

Fig. 2. The divergence stutter bisimulation quotient of KS ⊕ KST for P5

Hence, he proposes prefix and stutter equivalence on all low variables. Huisman
and Blondeel [15] define observational determinism in terms of stutter equiva-
lence on all low variables. Ngo et al. [16] defines observational determinism with
two conditions: condition 1 requires stutter equivalence on each low variable and
condition 2 requires stutter equivalence on all low variables. Ngo et al. argue
that a concurrent program satisfying both of these conditions is secure.

A common approach to verify information flow properties is the use of type
systems. A type system is a collection of type inference rules for assigning types
to variables of a programming language and making judgments about programs
[17]. With a type system developed for secure information flow, a program can be
type checked for secure-flow violations [18]. But type systems are not extensible,
as for each variation of confidentiality policy and programming language to be
verified, a new type system should be redefined and proven sound. For more
details about disadvantages of type systems, see [19].

Accordingly, logic-based verification and model checking has been advocated.
But as security policies are not trace properties [6], [21], standard logic-based
verification and model checking methods can’t be utilized and need to be mod-
ified. Trace properties, e.g. safety or liveness properties [10], are properties of
individual traces; But most of security policies, such as secure information flow,
are properties of sets of traces, called hyperproperties [21]. For instance, observa-
tional determinism is a hyperproperty because a trace is allowed if it is indistin-
guishable from all other traces having the same low vales. Various attempts for
logical specification of information flow properties has been made. One promis-
ing one is self-composition which composes a program with a copy of it, with

Verifying Observational Determinism 91

all variables renamed. Then, the problem of verifying secure information flow is
reduced to a trace property for the composed program. Huisman and Blondeel
[15] use this idea to model check observational determinism for multi-threaded
programs. They specify observational determinism in μ-calculus. A disadvantage
with these kinds of methods that exploit logical verification and self-composition
is the common problem of state space explosion [22], [23].

The concept of stutter equivalence in the definition of observational determin-
ism brings weak bisimulation to mind. Ngo et al. [16] use bisimulation to verify
observational determinism in multi-threaded programs. They make a copy of the
program for each initial state of the program and check bisimilarity of each pair
of the programs after removing stutter steps and determinizing them. But the
cost of determinizing a program is exponential in the size of the program. This
method suffers from state space explosion problem too, as it makes a copy of the
program for each initial state of it.

Another line of research for verifying hyperproperties is to extend temporal
logics and introduce new logics to specify these properties. Many attempts have
been made, including HyperLTL, HyperCTL* [9], HyperCTL [24], SecLTL [25],
etc. Clarkson et al. [9] specify observational determinism and many other security
properties in HyperLTL and provide model checking techniques for verifying
HyperLTL and HyperCTL*. Finkbeiner et al. [24] introduce HyperCTL, which
extends CTL* with path variables. They reduce the model checking problem for
HyperCTL to the satisfiability problem for QPTL to obtain a model checking
algorithm for HyperCTL. Dimitrova et al. [25] add a new modal operator, the
hide operator, to LTL and name the resulting logic SecLTL. They propose an
automata-theoretic technique for model checking SecLTL.

A similar research to our work is Mantel’s unwinding possibilistic security
properties [26]. In this work, he proposes a modular framework in which most
security properties can be composed from a set of basic security predicates
(BSPs); he also presents unwinding conditions for most BSPs. These unwind-
ing conditions can be seen as simulation relations on system states. Intuitively,
unwinding conditions require that each high transition is simulated in such a way
that a low observer cannot infer whether such high transition has been performed
or not. Thus the low observation of the process is not influenced in any way by its
high behavior. In 2011, D’Souza et al. [27] propose an automata-theoretic tech-
nique for model checking Mantel’s BSPs. The proposed model checking approach
is based on deciding set inclusion on regular languages.

6 Conclusion

This paper discusses a bisimulation-based approach for model checking observa-
tional determinism in concurrent programs. Concretely, we extract some trace(s)
of the program and check stutter trace equivalence between the trace(s) and the
program. This is done by computing a bisimulation quotient. The time complex-
ity of the verification is polynomial. The advantage of our proposed approach is
that the analysis is done on a minimized abstract model of the program. Hence,

92 J. Karimpour et al.

the state explosion problem may be avoided. Another advantage is that the
approach can be easily adapted for infinite state programs.

As future work, we plan to implement the proposed approach. We will also
study whether bisimulation-based modular minimization algorithms are appro-
priate for verifying observational determinism. We also aim to modify our algo-
rithm and use compositional verification techniques to benefit from modular
structure of the concurrent program.

References

1. Balliu, M.: Logics for information flow security: from specification to verification
(2014)

2. Smith, G.: Principles of secure information flow analysis. In: Malware Detection,
pp. 291–307. Springer, US (2007)

3. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE Jour-
nal on Selected Areas in Communications 21(1), 5–19 (2003)

4. Denning, D.: A lattice model of secure information flow. Communications of the
ACM 19(5), 236–243 (1976)

5. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Computer Security Foundations Workshop, Proceedings. 16th IEEE
(2003)

6. McLean, J.: Proving noninterference and functional correctness using traces. Jour-
nal of Computer security 1(1), 37–57 (1992)

7. Roscoe, A.W.: CSP and determinism in security modelling. In: IEEE Symposium
on Security and Privacy, Proceedings (1995)

8. Huisman, M., Worah, P., Sunesen, K.: A temporal logic characterisation of obser-
vational determinism. In: Computer Security Foundations Workshop, 19th IEEE
(2006)

9. Clarkson, M.R., Finkbeiner, B., Koleini, M., Micinski, K.K., Rabe, M.N., Sánchez,
C.: Temporal logics for hyperproperties. In: Abadi, M., Kremer, S. (eds.) POST
2014 (ETAPS 2014). LNCS, vol. 8414, pp. 265–284. Springer, Heidelberg (2014)

10. Baier, C., Katoen, J.P.: Principles of model checking, vol. 26202649. MIT press,
Cambridge (2008)

11. Terauchi, T.: A type System for observational determinism. In: Computer Security
Foundations, pp. 287–300 (2008)

12. Groote, J.F., Vaandrager, F.: An Efficient Algorithm for Branching Bisimulation
and Stuttering Equivalence. Springer, Berlin Heidelberg (1990)

13. Chutinan, A., Krogh, B.H.: Verification of infinite-state dynamic systems using
approximate quotient transition systems. IEEE Transactions on Automatic Control
46(9), 1401–1410 (2001)

14. Ngo, T.M.: Qualitative and quantitative information flow analysis for multi-thread
programs. University of Twente (2014)

15. Huisman, M., Blondeel, H.-C.: Model-checking secure information flow for multi-
threaded programs. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011.
LNCS, vol. 6993, pp. 148–165. Springer, Heidelberg (2012)

16. Ngo, T.M., Stoelinga, M., Huisman, M.: Effective verification of confidentiality for
multi-threaded programs. Journal of Computer Security 22(2), 269–300 (2014)

17. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure flow analysis.
Journal of computer security 4(2), 167–187 (1996)

Verifying Observational Determinism 93

18. Smith, G., Volpano, D.: Secure information flow in a multi-threaded imperative
language. In: Proceedings of the 25th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pp. 355–364. ACM (1998)

19. Barthe, G., D’argenio, P.R., Rezk, T.: Secure information flow by self-composition.
Mathematical Structures in Computer Science 21(06), 1207–1252 (2011)

20. McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. In: IEEE Computer Society Symposium on Research in
Security and Privacy, Proceedings, pp. 79–93 (1994)

21. Clarkson, M.R., Schneider, F.B.: Hyperproperties. Journal of Computer Security
18(6), 1157–1210 (2010)

22. Clarke, E.M.: The Birth of Model Checking. In: Grumberg, O., Veith, H. (eds.) 25
Years of Model Checking. LNCS, vol. 5000, pp. 1–26. Springer, Heidelberg (2008)

23. Emerson, E.A.: The beginning of model checking: a personal perspective. In:
Grumberg, O., Veith, H. (eds.) 25 Years of Model Checking. LNCS, vol. 5000,
pp. 27–45. Springer, Heidelberg (2008)

24. Finkbeiner, B., Rabe, M.N., Snchez, C.: A temporal logic for hyperproperties. In:
arXiv preprint arXiv:1306.6657 (2013)

25. Dimitrova, R., Finkbeiner, B., Kovcs, M., Rabe, M.N., Seidl, H.: Model check-
ing information flow in reactive systems. In: Verification, Model Checking, and
Abstract Interpretation, pp. 169–185. Springer, Berlin Heidelberg (2012)

26. Mantel, H.: Unwinding possibilistic security properties. In: Computer Security-
ESORICS 2000, pp. 238–254. Springer, Berlin Heidelberg (2000)

27. D’Souza, D., Holla, R., Raghavendra, K.R., Sprick, B.: Model-checking trace-based
information flow properties. Journal of Computer Security 19(1), 101–138 (2011)

http://arxiv.org/abs/1306.6657

Web Security

© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 97–111, 2015.
DOI: 10.1007/978-3-319-18467-8_7

Cache Timing Attacks Revisited:
Efficient and Repeatable Browser History,

OS and Network Sniffing

Chetan Bansal1(), Sören Preibusch2, and Natasa Milic-Frayling2

1 Microsoft Research, Bangalore, India
chetanb@microsoft.com

2 Microsoft Research, Cambridge, UK

Abstract. Cache Timing Attacks (CTAs) have been shown to leak Web brows-
ing history. Until recently, they were deemed a limited threat to individuals’
privacy because of their narrow attack surface and vectors, and a lack of ro-
bustness and efficiency. Our attack implementation exploits the Web Worker
APIs to parallelise cache probing (300 requests/second) and applies time-outs
on cache requests to prevent cache pollution. We demonstrate robust cache at-
tacks at the browser, operating system and Web proxy level. Private browsing
sessions, HTTPS and corporate intranets are vulnerable. Through case studies
of (1) anti-phishing protection in online banking, (2) Web search using the ad-
dress bar in browsers, (3) publishing of personal images in social media, and (4)
use of desktop search, we show that CTAs can seriously compromise privacy
and security of individuals and organisations. Options for protection from CTAs
are limited. The lack of effective defence, and the ability to mount attacks with-
out cooperation of other websites, makes the improved CTAs serious contend-
ers for cyber-espionage and a broad consumer and corporate surveillance.

Keywords: Privacy · Cache timing attacks · Cyber-security · Cyber-espionage ·
Browser history sniffing

1 Introduction

Web caching is a common performance enhancing mechanism. It improves Web
browsing speed, for the convenience of the consumer, and reduces the network traffic,
thus decreasing the cost for the provider and the user. Caching is not limited to the
Web browser but also used by the operating system and network proxies to improve
the user experience (Fig. 1). This convenience comes at the cost of decreased user
privacy since caches store persistent information that can be interrogated by attacker
websites.

Since the early Internet days, browsers have adopted the same-origin principle to
limit the interaction between websites from different domains and to have cookies and
JavaScript’s from different sites coexist without interfering [1]. However, this prin-
ciple is not applied to the entire persistent browser state.

98 C. Bansal et al.

Fig. 1. Interaction among different caching facilities with the user PC and Web network

The ability for one site to learn about visits of individuals to other sites has fuelled a
lucrative Internet economy around advertising services and user tracking across web-
sites [2]. Despite the privacy risks, only rudimentary technical support and policy-
based protection have been offered to users to control their exposure. At the same
time, browsing history is considered personal information [3], and consumers dislike
advertisers using their browsing history even when they are assured to remain ano-
nymous [4].

While cookie-based user tracking is gaining attention of the general public and pol-
icy makers, privacy violations due to cache timing attacks (CTAs) are still an obscure
matter. Whereas history sniffing through ‘coloured hyperlinks’ has been fixed by
browser manufacturers, CTAs are harder to detect and difficult to prevent [5] [6].
Instead of placing new objects into the cache, CTAs probe the cache for the existence
of specific items and make inferences about user activities that leave traces in the
cache (e.g., visits to websites). More precisely, the attackers time the browser’s re-
sponse to an item request to determine whether the item was cached (fast response) or
fetched from the website (slow response). In the former case, they can conclude that
the user has visited the Web resource in the recent past.

Since CTAs require active probing for specific items and careful measurement of
the time responses, they have been considered limited in the damage they can cause
and the scale they can achieve. A limiting factor in CTAs is the need to lure the vic-
tim to the attacker’s Web page that hosts the JavaScript for carrying out the attack.
Furthermore, a simplistic probing of the cache only allows one-time inquiry since
checking for the presence of an item requires reading the corresponding file which is
then added to the cache. This side effect contaminates (or ‘pollutes’) the cache and
precludes iterative probing. We revisit the implementation of CTAs and investigate
the scope of their effectiveness in the contemporary ecosystem.

New Web paradigms (e.g., HTML5 and AJAX) enable rich, interactive end-user
applications. Modern browsers expose comprehensive APIs and position the browser
as an ‘operating system’ that hosts third-party applications (e.g., Chrome OS). At the
same time, the scope of Web activities has expanded considerably to include high-
stakes activities such as banking, e-commerce, and e-governance that are attractive

CTAs Revisited: Efficient and Repeatable Browser History, OS and Network Sniffing 99

targets for attacks. Also, in online social media activities, personal information flows
in abundance.

In this paper we demonstrate how CTAs can be implemented to overcome the dis-
cussed limitations. We use two specific techniques: (a) time-outs on cache requests
and (b) multi-threaded cache probing using Web Worker APIs, to create repeatable
and efficient CTAs, making them a serious contender for cyber-espionage and for
individual and enterprise-level surveillance by any third party. As a consequence,
CTAs become a serious privacy threat both to individuals and enterprises.

Our research makes the following contributions: (1) extended the scope of CTAs by
including practical attacks on operating systems, browser components, banking and
social websites, as well as first real-world, practical attacks on proxy caches that open
door for enterprise level tracking and surveillance and (2) improved efficiency and re-
peatability of CTAs by eliminating cache ‘contamination’ during cache probing.

We begin by situating our work within CTA research and follow with the technical
description of our approach. We present four case studies that demonstrate the im-
provements in CTAs. We then discuss remedies to reduce the damage of CTAs before
concluding with the summary of our contributions and an outlook on future work.

2 Related Work

2.1 Browsing History Extraction

The ability of a website to probe whether a hyperlink is displayed as a visited link,
through a CSS a:visited rule, was at the heart of the first sniffing attacks on browser
history [7]. Fortunately, the vulnerability due to the leak of the visited link colour has
now been fixed by all major browser manufacturers, defending from attacks based
upon it.

Timing attacks have been well-known for over a decade but remained limited to
browser caches and were not considered in detail to achieve robustness and scale.
Image-loading times in a browser are a cache-based side channel that can leak infor-
mation about browsing history. The initial discussion dates back to 2000 by Felten et
al. [5] who introduced web timing attacks and showed how they can be used to com-
promise users’ browsing histories. They also discussed timing attacks on DNS and
proxy caches.

Considering further the cache timing for DNS and browser, Jackson et al. [6] re-
fined the same-origin policy to also cover the browser cache. They implemented their
proposal as a Firefox extension, but the impact on the overall ecosystem remained
small. The add-on gained no traction amongst users and browser vendors did not
adopt the design [8]. We discuss mitigations in more detail in Section 5.

2.2 Cache Timing for Inference of Private Information and Identity

More recently, targeted timing attacks have been shown to leak very specific informa-
tion about the users. Jia et al. demonstrated leakage of users’ geo-location through
CTAs [9]. According to them, 62% of the Alexa top 100 websites enable attackers to

100 C. Bansal et al.

infer users’ geo-location based on cached resources. For instance, websites like
Google or Craigslist are personalised by user location (e.g., country or city specific
domains and URLs or location-sensitive images). However, due to the lack of empiri-
cal studies, user damages from the described leakage of country or city information
are unclear. It seems that, unless geo-location attack is combined with other non-
trivial attacks, it can only be exploited for targeted phishing attacks. The robustness
and accuracy of the attack are questionable, as is the effectiveness with a cache loo-
kup frequency of 5 to 10 URLs per second. In our work, we consider these limita-
tions, as well as the repeatability of the attacks.

Cache timing techniques also misuse the browser cache as a persistent data store,
similar to cookies, and thus support identity attacks. Cache cookies can be created by
interpreting each cache hit or miss as a single bit [5]. In this manner, a series of URLs
can be used to persist several bits of information such as session ids or even unique
tracking ids, despite the users’ efforts to suppress cookies in their browsers. In the
absence of access control for the browser cache, cache fingerprints can be read or
written across origins akin to third-party cookies.

3 Attack Principles and Improvements

3.1 Attack Mechanics

Attack Principle. Although the same-origin policy [1] restricts cross-origin access to
security critical APIs, such as DOM, Cookies, Local Storage, XMLHttpRequest, it
allows for shared caches and cross-origin embedding of resources—a fundamental
principle of hypermedia. For instance, if the domain A.com embeds a resource
A.com/file.ext then the resource is cached by the browser on page load. Subsequently,
any other origin can load A.com/file.ext and measure the loading time to infer wheth-
er the resource already existed in the cache or not. This can be further used to imply
that the targeted user requested A.com/file.ext earlier.

Delivery of the Attacks. CTAs can be executed without help from the legitimate site
and by any Web-savvy user who is able to implement (or copy) a cache probing Java-
Script. Delivery of a malicious JavaScript is not difficult to achieve due to the many
ways to distribute URLs, including emails and social media. Advertisements and so-
cial networks are the most common channels to distribute JavaScript based malware
[10] [11]. Cache probing JavaScripts can be embedded in advertising banners, or
delivered through the attacker page by ensuring that it ranks high in search results.

Unlike other JavaScript attacks, like CSR, XSS, etc., timing attacks are based on a
polling mechanism. The malicious script has to make a request for each URL and
time the response to make an inference. The larger the number of URLs, the longer
the script has to run. Thus, cache probing requires a very speed-efficient attack. Oth-
erwise, the victim needs to be exposed to the attack for a prohibitively long time.
Finally, previous attacks were limited in their scope; they could only be executed
once due to cache contamination with requested URLs.

CTAs Revisited: Efficient and Repeatable Browser History, OS and Network Sniffing 101

Attack deployment. Our CTA implementation does not require any custom hardware
or software. We have tested the attacks on common browsers, OS, services and real
world proxies and banking websites. Our exact setup was a Windows 8.1 PC, on the
corporate network of the authors. Attacks are done using JavaScript which can be
hosted on any website. The minimum browser requirements for the Web Worker API
are Internet Explorer 10, Chrome 4 and Firefox 3.5. Some attacks, like the one de-
scribed in Section 4.4, require the attacker to host a website within the intranet.

function isRequestCached(URI, callback) {
 var timeStamp, timedOut = false;
 var xhr = new XMLHttpRequest();
 xhr.open('GET', URI, true);
 xhr.onreadystatechange = function() {
 setTimeout(function() { callback(!timedOut); }, 2);
 };
 xhr.timeout = 5; // milliseconds
 xhr.ontimeout = function() { timedOut = true; }

 timeStamp = getTimeStamp();
 xhr.send(null);
}

Listing 1: JavaScript function snippet for timing queries

3.2 Improved CTAs

Overall Performance. In order to make the timing attacks scalable and avoid cache
contamination, we use Web Workers and timeouts on probing requests. Previously,
cache contamination was avoided through the same-origin policy and iframes [12].
However, that approach requires DOM access which creates a considerable overhead
and leads to poor performance. Furthermore, the DOM is not available to Web Work-
ers due to concurrency issues. As seen in Fig. 2, our parallel implementation of cache
attacks is 15 times more efficient than the best-performing approach so far: it takes
0.5 seconds to complete 150 requests, compared to 7.4 sec for the same 150 requests
using the CoreDump algorithm [12]. It is also more resilient to cache contamination.

Web Workers. Prior to HTML5, JavaScript did not have any notion of multi-
threading. All the scripts on a given web page executed in a single thread. Asyn-
chronous timers using setTimeout and setInterval functions were used to simulate
multi-threading. With the introduction of Web Workers, concurrent background tasks
can be spawned as OS-level threads. The worker thread can perform tasks without
interfering with the user interface. The feature is supported by all major desktop and
mobile browsers. Our experimental setup included successful tests with Internet Ex-
plorer, Firefox, Chrome, and Opera.

Time-out. We use high resolution timeouts for the XMLHttpRequests to avoid cache
contamination during attacks. Listing 1 shows a code snippet where we use very small

102 C. Bansal et al.

Fig. 2. Total time in seconds to complete 150 requests. Benchmark of our cache probing tech-
nique (single-threaded or multi-threaded) against the existing geo-inference algorithm [9] and
the CoreDump algorithm [12]. Smaller numbers are better.

timeout values (5ms) to terminate the request before it is completed. This makes sure
that the cache does not include the requested URLs due to probing.

The timeout value depends on the type of cache we probe (e.g., a browser or a
proxy cache). We extensively tested the timeout technique using Chrome and Opera;
similar can be done for other browsers. For attacking the browser cache, the timeout
value of 5ms was sufficient while for proxies it was 15ms. The values vary based on
the client configuration, bandwidth and network latency. The attacker can pre-
compute these values for a specific victim by running benchmarks. We apply a simple
method; for browser and proxy caches we make 5 requests, each for cached and un-
cached resources, and calculate the mean and max timeout values.

Extended Attack Surfaces. First, we consider scenarios beyond the browsing history
attacks and show that sensitive resources like security images, commonly used on
banking website, and XML/JSON based API calls can be targeted to leak user’s pri-
vate information. Second, we exploit Web caches that are not limited to browsers but
included in the operating system and network proxies.

4 Case Studies

In this section we demonstrate how CTAs render existing anti-phishing defences use-
less (Section 4.1) and how they can be used to revive and improve previous user de-
anonymisation attacks (Section 4.2). We also present two novel case studies of CTAs
applied to monitoring Web search and OS file-system queries (Sections 4.3 and 4.4).

CTAs Revisited: Efficient and Repeatable Browser History, OS and Network Sniffing 103

4.1 Online Banking Security Images

Site-to-user is an anti-phishing product by RSA Security based on the challenge-
response model. The product is used by major financial institutions like Virgin Mon-
ey, HDFC Bank Ltd., and many others. Through Site-to-user a legitimate website can
authenticate itself to the user and prove that it is not a phishing site. When a user
creates her account, she is asked to choose an image and a text phrase as part of the
Site-to-user protection. Now, whenever the user visits the website to log-in, the same
Site-to-user image and text are displayed after she enters her customer id and before
she enters her password. Thus, the user can verify that the site is legitimate.

The Site-to-user protection is not completely secure. It is vulnerable to man-in-the-
middle attacks [13] where a malicious phishing website first asks the user to enter the
customer id. Subsequently, serving as a proxy, the attacker makes a request to the real
banking website to fetch the image and display it back to the user. Albeit simple to
implement, this attack is also easy to detect in real-time because of multiple requests
from different clients for the same customer id, in a very short time span.

We describe a new attack against Site-to-user that is difficult to detect by the bank-
ing service and equally difficult to prevent. In this instance a phishing site recovers
the image directly from the user through a CTA. We confirmed the attack against a
real banking website (Fig. 3).

Attack Implementation. Since the Site-to-user images are accessible to any individ-
ual at the time of subscribing to the service, the attacker has an opportunity to acquire
the entire collection of images used by the service. This one-off effort in preparing the
resources enables phishing attack across a broad population of customers. Figure 3
illustrates the time (in milliseconds) to get a response from the cache of the selected
283 Site-to-user images.

Responses by Manufacturer. RSA Security acknowledged the vulnerability in both
the on-premise and hosted versions of RSA Adaptive Authentication. They fixed the
vulnerability by setting no-cache headers for the hosted deployment and they also
communicated the mitigation to their on-premise customers.

Fig. 3. Request response times in milliseconds for 283 Site-to-user images, colour-coded by
magnitude. Green and framed, the correctly identified, cached image (2ms). Red, an outlier that
does not impact the success of the attack (1600ms).

104 C. Bansal et al.

4.2 User Identification in Social Networks

Social Networking Sites (SNS) like Facebook, Twitter or LinkedIn are among the
most popular destinations on the Web [14]. Facebook has more than 800 million daily
active users [15]. SNS store and expose more current and historical personal informa-
tion about their users and their relations than any other public websites. Personal data
on SNS is not limited to personal information, like demographics (age, name, sex,
etc.) and profile pictures, but often includes real-time location and status of off-
line/online friends [16].

Social networking services used in the workplace include data about the organisa-
tion, internal team documents, and internal communication. They may also include
more personal matter, such as job applications and inquiries of the team members.
Linking and exposing such information could be incriminatory. Consequently, secu-
rity and privacy attacks on these sites could have detrimental effects for their users.

Past SNS attacks involved methods for browser history sniffing based on CSS vis-
ited link vulnerability [7], aiming to de-anonymise a person within a set of known
users. While the CSS vulnerability has been fixed, alternative attacks resorted to the
analysis of the Transport Layer Security (TLS) traffic. Because TLS does not hide the
length of the response, user identification can be done based on the pre-computed size
of the users’ profile images [17].

Attack Scenario. Methods for de-anonymising users can be applied to track audi-
ences beyond SNS. For example, a marketing campaign team posts a link to the new
promotion on the corporate Facebook page and wants to know who among the com-
pany's followers have clicked on the link. Such data is normally concealed from the
company by the SNS platform due to privacy reasons. Similarly, in the case of a pro-
fessional network like LinkedIn, clicks on job adverts could be traced and linked back
to employees’ profiles. The attack can also be used to circumvent privacy-enhancing
techniques built into SNS, such as anonymous groups.

Fig. 4. Request response times in milliseconds for the same Twitter profile picture in the three
standard sizes (100 repetitions). For un-cached media, response times vary but are always
above response times for cached media, which are all consistently negligible.

0

500

R
eq

ue
st

 T
im

e
(m

s)

400px 73px 48px

un
ca

ch
ed

ca
ch

ed

CTAs Revisited: Efficient and Repeatable Browser History, OS and Network Sniffing 105

Attack Implementation. Our attack enables any malicious website to de-anonymise
an SNS user by checking if she is within a pre-defined set of users. It exploits the
mapping between SNS users and their unique, self-uploaded profile images, a defin-
ing feature of SNS [16]. Uploaded pictures are assigned public, stable and unique
URLs, cacheable by browsers for long durations. The user’s cache is probed for all
the images to determine which might be the user’s. Figure 4 demonstrates the ability
of our attack to consistently measure the difference in response times for cached ver-
sus un-cached Twitter profile pictures.

Our attack is easier to execute than previously described de-anonymisation attacks.
As noted, history sniffing through differential colouring of visited links has long been
fixed and is no longer possible. Furthermore, in contrast to the traffic analysis, our
adversary only needs to set up a third-party website; there is no need for network
eavesdropping. This increases the effectiveness of the attack because SNS members
can be geographically distributed, i.e., not confined to a single physical network.

Mitigation. SNS like Twitter have two options to prevent the attack: first, by making
profile pictures un-cacheable; second, by making URLs of profile pictures dependent
on the requesting users, so that attackers cannot compile a set of probing URLs.

4.3 Monitoring Search Queries in Real-time

The CTA scenarios covered in the existing literature are limited to targeting image
objects. As we noted in Section 3, images are not the only cacheable content type.
Other types include XML, JSON, CSV, and HTML. XML and JSON objects are par-
ticularly interesting because they typically carry users’ personal data in the requested
URLs, for example, user identifiers and search keywords.

We demonstrate the threat of XML/JSON caching by constructing attacks that tar-
get information entered by the user into the address bar of a Web browser. The impli-
cations are serious because the address bars of modern browsers allow users to type in
search queries and have them processed directly by a default search engine. Thus,
such queries are exposed to malicious websites which can scan the browser cache. As
per our tests, these attacks work on most of the commonly used browsers (Internet
Explorer, Firefox, and Chrome) and across multiple search providers such as Bing,
Yahoo!, Google, and Wikipedia; Ask and AOL do not show the same vulnerability.

Attack Scenario. In many instances, browsers are configured to provide real-time
suggestions to the users as they type in their queries or Web addresses. Continuous
AJAX calls are made to the search provider during this user interaction. For instance,
a call made by Chrome to Yahoo! (non-essential parameters omitted):

http://ff.search.yahoo.com/gossip?output=fxjson&command=userquery.

where “userquery” refers to the query typed by the user in the Omnibox. Calls made
to Google, Bing and other search engines look similar. The following sequence of
AJAX calls are made when the user types in “sec15”:

/gossip?output=fxjson&command=s
/gossip?output=fxjson&command=se

106 C. Bansal et al.

/gossip?output=fxjson&command=sec
/gossip?output=fxjson&command=sec1
/gossip?output=fxjson&command=sec15.

The search engine responds to each call with a JSON or XML object that is placed in
the browser cache. Because this cache is shared with Web domains, a malicious web-
site can use CTAs to extract the queries using the techniques described in Section 3.
Our attack is stronger than the packet size based attacks by Chen et al. [18] in two
ways: (1) their adversary model is a network eavesdropper [18], while ours is simply
a third party website; (2) their attack is based on the packet sizes of responses [18],
while ours is based on cache timing and enables the attacker to leak information at
any later time as well. Listing 1 shows our script to carry out the probing.

Mitigation. Ideally, the cache for the address bar, search box and all other browser
components should be isolated. Furthermore, one could append a user specific nonce
to the requests (Section 5).

Responses by Manufacturers. After our report, Bing enabled no-caching headers,
effectively preventing CTAs on searches entered into the Browser address bar.

4.4 Windows Operating System Caches

Windows 8.1 comes with an integrated search fea-
ture based on Bing SmartSearch. Search results are
fetched from the local computer and from the Inter-
net, as seen in Fig. 5. To provide auto-suggest, all
keystrokes are forwarded to a Web service:
https://www.windowssearch.com/suggestions?q=w

hateveryoutype that returns a cacheable XML re-
sponse (“Cache-Control: private” response header).
The search requests are cached by the INET cache
built into Windows. This cache is shared between
Internet Explorer, Windows components and even
applications such as the Outlook mail client. Hence,
SmartSearch and query completion work as side
channels which can potentially leak data.

Attack Implementation. Any intranet hosted web
page opened in Internet Explorer can probe the
cache. The intranet requirement stems from the
security model of the Internet Explorer (IE) where-
by Web content is classified into five security
zones, each with a separate cache. However, from
our observations, the auto-suggest feature is

Fig. 5. Windows search provide
auto-suggest across PC settings,
local and cloud documents, the
Web and Windows Store

CTAs Revisited: Efficient and Repeatable Browser History, OS and Network Sniffing 107

powered by requests made to Bing by the IE process running in the local intranet
zone. The attacker has to be associated with an intranet site rather than the local net-
work; that is lowering the hurdle.

Impact. The attack is critical because any attacker that can publish in the intranet
zone can sniff users’ activities in the OS from within the browser. Brute force and
dictionary techniques can recover users’ searches which might contain software
names (e.g., unreleased codenames, confidential intellectual property), personal files
or Web searches. The requirement for the attacker to publish a website within an
intranet is a hurdle but much lower than for traffic analysis-attacks that require access
to the local network.

Mitigation. The cache for each OS component should be isolated, from any Internet
or intranet Web pages.

Response by Manufacturer. After our report, Bing enabled no-caching headers,
effectively preventing CTAs on searches entered into the Windows SmartSearch.

5 Potential Defences and Their Limits

Despite the previous research in this area, browser vendors have not yet taken actions
to mitigate against CTAs. With deeper integration of Web services, it is critical that
Web caches are carefully designed, by considering the timing side channel. Further-
more, with significant performance improvements of browsers in recent years [19],
timing attacks have become more precise. Finally, as described in Section 3, multi-
threading in JavaScript makes highly scalable brute force CTAs efficient. Thus, it is
necessary to re-evaluate previously proposed mitigations and implement additional
ones to address these issues.

5.1 Failed Mitigations

Felten et al. [5] proposed various hypothetical solutions such as disabling caches and
JavaScript, and altering hit or miss timings. Unfortunately, disabling JavaScript will
break most of the modern websites and disabling caching will lead to significant per-
formance degradation for the Internet. Furthermore, altering hit or miss timings is not
possible without affecting user experience and slowing Web applications. Solutions in
the form of “domain tagging” [5], i.e., tagging each request with the domain that is
making a request, could help with stopping attackers but poses a problem when re-
sources need to be shared across multiple domains. That is the case for content deli-
very networks (CDNs), in use at over 55% of the top Alexa 1000 websites [20]. The
same applies to the “domain tagging” method by Jackson et al. [6].

108 C. Bansal et al.

5.2 HTTPS and Private Browsing Don’t help

HTTPS responses that are cached in the browser or by the OS are as vulnerable as
HTTP responses. Caching is controlled only through the headers; thus, there is no
differentiation between HTTPS and HTTP requests [21, 22]. Private browsing is a
feature of modern browsers designed to sandbox a session. Data (history, cookies,
local storage) pertaining to the private session are discarded when the session is
closed. This may seem like a reasonable mitigation; however, the cache is shared
between all websites, tabs, and the search-box/address bar opened within the private
session. A malicious website can still leak data from any website accessed within the
private session. Furthermore, it can still sniff data from the proxy cache.

5.3 Our Proposed Mitigations

We have demonstrated how various Web caches can be exploited to leak data using
CTAs. Any counter-measure which impacts performance or requires Web scale
changes cannot be expected to be implemented. Furthermore, there is no single miti-
gation that can fix all the attacks we have described.

Cache Segmentation: Browser and OS. As discussed in Section 4.4, browser and
OS components currently leak information because they share the cache with Web
pages. Unlike proxy caches, even HTTPS requests are stored in browser caches, mak-
ing this more critical. Segmentation is an easy yet effective fix. Each component,
plugin or extension should have a separate cache so that there is no side channel leak
to a malicious Web page or a malicious component.

Proxy Cache. To prevent CTAs on Web proxies, appropriate no-cache headers
should be set on all responses with any private data (e.g., API calls, image requests,
etc.). The “Cache-control: private” header can be set to prevent any public proxy
caching.

Browser Cache. Because of the current design of the browser cache, this is the hard-
est case of CTAs to fix. To begin with, we recommend that none of the security criti-
cal resources (such as Site-to-user images) are cached at all. Website developers
should disable caching by setting the appropriate no-cache headers. Eliminating cach-
ing altogether is simply not practical; the Web architecture relies on caches.

Issues with the “domain tagging” method can be resolved by using the recently in-
troduced Web standard for “resource timing” API [23]. By default, the cache is shared
among all origins. However, for privacy sensitive resources, a list of origins can be
provided in the response. These are allowed to load a resource from the cache without
having requested it earlier. However, this requires changes in the standards, browsers
and also Web servers.

A more pragmatic approach is to append a user or session specific nonce (‘number
used once’) to all URLs with privacy-sensitive data. The CTAs attacker would then
need to know or guess the URL in order to probe for it. This mediation does not
require Web-scale changes and can be implemented with a minimal effort by devel-
opers. Most of the requests by Google and YouTube, for instance, append a nonce.

CTAs Revisited: Efficient and Repeatable Browser History, OS and Network Sniffing 109

Probing Detection and Prevention. As an alternative defence, JavaScript engines
could be augmented to detect and then prevent cache probing, thereby blocking the
attack vector. Detection could be through the source code [24], or through behav-
ioural analyses. Such mitigation adopts the route of antivirus software: instead of
fixing the vulnerability we hinder its exploitation. Despite its near-term effectiveness,
this approach incurs long-term costs and may result in an arms’ race between attack-
ers and their targets.

6 Discussion and Concluding Remarks

6.1 Cyber-Espionage of Corporate Intranets

We have demonstrated how an attacker can de-identify users even on professional
social networks (Section 4.2), monitor Web search queries in real-time (Section 4.3),
and trace files that users are searching for on their desktop PCs (Section 4.4). An at-
tacker can combine these mechanisms to harvest data from corporate intranets as well.
For the exploitation of OS search, the attacker has to be on the intranet (e.g., a rogue
employee), but for the rest, any Internet website can deploy the attack.

The caches built into Web proxies (Fig. 1) expand the CTA surface. All major
commercial proxy server software have a built-in cache to enable faster loading of
frequently accessed resources across users behind the proxy. They are susceptible to
the same side channel attack as the browser cache. However, such CTAs are more
critical since a malicious Web page can sniff traffic from closed intranets such as
hospitals and educational institutions and corporate networks. In some cases, users
may not be aware that they share a proxy with others, or cannot change the proxy
settings. That particularly applies to the mobile Internet. In our experiments we were
able to use a malicious web page to sniff users’ queries and traffic from a corporate
network.

Taken together, cache attacks at the browser, operating system, and proxy level
open door to targeted cyber-espionage. Confidential information can be sniffed from a
corporate network. Gathered information can also be used to mount a credible social
engineering attack in a second step, for instance, in combination with targeted indi-
viduals, identified over Facebook (Section 4.2).

6.2 Policy Recommendations and Managerial Implications

Finding the balance between surveillance and national security is an essential chal-
lenge for each society that recognises its citizens’ preference for privacy and self-
determination. Availability of ad-hoc surveillance “of anyone by anyone”, within and
outside the workspace, can be easily monetised by a service and, without proper in-
tervention, can become a common practice and an economically viable enterprise.
Once such practices take root, they are hard to weed out, as was the case with super
cookies [25]. Thus, one would need to act swiftly to prevent the emergence of ser-
vices that allow attack at scale.

110 C. Bansal et al.

At the corporate level, CIOs and system administrators need to be vigilant in
guarding corporate information that can be revealed through employees’ activities.
This needs to go hand-in-hand with the policy recommendations and work with stan-
dardisation bodies to consider adaptations of the cache design.

7 Summary and Future Work

In this paper, we broadened the scope of cache timing attacks by demonstrating CTAs
against banking sites, social networks, browser components, and operating systems.
Our case studies show that cache timing attacks are applicable to much more critical
scenarios than those previously considered. Our technique leverages fine-grained
timeouts and HTML5 Web Workers to make the attacks more efficient, without con-
taminating the cache while probing. The robustness, effectiveness, and the non-
cooperative nature of the attack increase the risk to undetectable, widespread attacks
as part of the cyber espionage, ad-hoc surveillance of individuals and groups,
un-consented identification and de-anonymisation. We discussed potential counter-
measures and identified practical mitigations for each scenario that can be easily
incorporated in the application design without requiring Web-scale changes.

Our future research will involve empirical studies of attack scenarios to evaluate
both the applicability and the effectiveness of the CTAs. We plan a large-scale survey
of cache implementations in operating systems across platforms (desktop, mobile,
embedded), Web browsers and Web and desktop applications (e.g., mail, document
authoring). Our work on systems security will be complemented by a user study to
gauge reactions to the unexpected privacy invasions. We foresee outreach efforts to
raise awareness amongst consumers and IT professionals.

Acknowledgements. The authors would like to thank Pushkar Chitnis, B. Ashok, Cedric
Fournet, Sriram Rajamani and the reviewers for their helpful comments leading to significant
improvements to this paper. We would also like to acknowledge the Microsoft and RSA Securi-
ty teams for prompt and constructive discussions about our attacks.

References

1. Mozilla Developer Network and individual contributors, Same-origin policy (2014).
https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy

2. Gomer, R., Rodrigues, E.M., Milic-Frayling, N., Schraefel, M.: Network analysis of third
party tracking: User exposure to tracking cookies through search. In: IEEE/WIC/ACM Int.
J. Conf. on Web Intelligence and Intelligent Agent Tech. (2013)

3. Carrascal, J.P., Riederer, C., Erramilli, V., Cherubini, M., de Oliveira, R.: Your browsing
behavior for a big mac: economics of personal information online. In: Proceedings of the
22nd International Conference on World Wide Web (WWW 2013) (2013)

4. TRUSTe, Behavioral Targeting: Not that Bad? TRUSTe Survey Shows Decline in Con-
cern for Behavioral Targeting, March 4, 2009. http://www.truste.com/about-TRUSTe/
press-room/news_truste_behavioral_targeting_survey

5. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: Proceedings of the 7th
ACM Conference on Computer and Communications Security (2000)

CTAs Revisited: Efficient and Repeatable Browser History, OS and Network Sniffing 111

6. Jackson, C., Bortz, A., Boneh, D., Mitchell, J.C.: Protecting browser state from web priva-
cy attacks. In: Proc. of the 15th Int. Conf. on World Wide Web (WWW) (2006)

7. Wondracek, G., Holz, T., Kirda, E., Kruegel, C.: A Practical attack to de-anonymize social
network users. In: IEEE Symposium on Security and Privacy (SP) (2010)

8. Jackson, C.: SafeCache: Add-ons for Firefox (2006). https://addons.mozilla.org/
en-US/firefox/addon/safecache/

9. Jia, Y., Dongy, X., Liang, Z., Saxena, P.: I Know Where You’ve Been: Geo-Inference
Attacks via the Browser Cache. IEEE Internet Computing (2014) (forthcoming)

10. Yan, G., Chen, G., Eidenbenz, S., Li, N.: Malware propagation in online social networks:
nature, dynamics, and defense implications. In: Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security (ASIACCS) (2011)

11. Provos, N., McNamee, D., Mavrommatis, P., Wang, K., Modadugu, N: The ghost in the
browser: analysis of web-based malware. In: First Workshop on Hot Topics in Under-
standing Botnets (HotBots) (2007)

12. Zalewski, M.: Chrome & Opera PoC: rapid history extraction through non-destructive
cache timing, December 2011. http://lcamtuf.coredump.cx/cachetime/chrome.html

13. Youll, J.: Fraud vulnerabilities in sitekey security at Bank of America (2006). www.
cr-labs.com/publications/SiteKey-20060718.pdf

14. Alexa Internet, Inc., Top Sites in United States (2014). http://www.alexa.com/topsites/
countries/US

15. Facebook, Company Info | Facebook Newsroom (2014). https://newsroom.fb.com/
company-info/

16. Bonneau, J., Preibusch, S.: The privacy jungle: on the market for data protection in social
networks. In: Eighth Workshop on the Economics of Information Security (WEIS 2009)
(2009)

17. Pironti, A., Strub, P.-Y., Bhargavan, K.: Identifying Website Users by TLS Traffic Analy-
sis: New Attacks and Effective Countermeasures. INRIA (2012)

18. Chen, S., Wang, R., Wang, X., Zhang, K.: Side-Channel Leaks in Web Applications: A
Reality Today, a Challenge Tomorrow. In: IEEE Symposium on Security and Privacy (SP
2010) (2010)

19. The BIG browser benchmark (January 2013 edition). http://www.zdnet.com/the-big-
browser-benchmark-january-2013-edition-7000009776/

20. Datanyze.com, CDN market share in the Alexa top 1K (2014). http://www.datanyze.com/
market-share/cdn/?selection=3

21. MSDN, HTTPS Caching and Internet Explorer - IEInternals (2010). http://blogs.msdn.
com/b/ieinternals/archive/2010/04/21/internet-explorer-may-bypass-cache-for-cross-domain-
https-content.aspx

22. MozillaZine Knowledge base, Browser.cache.disk cache ssl (2014). http://kb.mozillazine.
org/Browser.cache.disk_cache_ssl

23. W3C, Resource Timing (2014). http://www.w3.org/TR/resource-timing
24. Acar, G., Juarez, M., Nikiforakis, N., Diaz, C., Gürses, S., Piessens, F., Preneel, B.: FPDe-

tective: dusting the web for fingerprinters. In: ACM SIGSAC Conference on Computer
and Communications Security (CCS) (2013)

25. Holter, M.: KISSmetrics Settles ETags Tracking Class Action Lawsuit. Top Class Actions
LLC, October 22, 2012. http://topclassactions.com/lawsuit-settlements/lawsuit-news/
2731-kissmetrics-settles-etags-tracking-class-action-lawsuit/

Enforcing Usage Constraints on Credentials
for Web Applications

Jinwei Hu(B), Heiko Mantel, and Sebastian Ruhleder

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{hu,mantel}@mais.informatik.tu-darmstadt.de

sebastian.ruhleder@googlemail.com

Abstract. For using credential-based access control effectively, recent
work identified the need to enforce usage constraints also on credentials.
The enforcement of such constraints has not yet been investigated for web
applications, although it is relevant when credential-based access control
is employed in a web application. This article proposes an approach suit-
able for enforcing usage constraints on credentials in web applications.
More concretely, we present a novel algorithm and an implementation of
this algorithm that construct constraint-compliant proofs for credential-
based access control policies. We proved that our solution is correct and
showed that it is also efficient through extensive experiments.

1 Introduction

Many web applications control access to their resources using policies that state
which attributes a client must have in order to obtain access. For example, an
online svn system in a university might allow a client to view a directory if some
employee of the university owns the directory and if the employee nominates the
client as a collaborator. One promising approach to enforce a policy like this is
credential-based access control (CBAC) [1].

In CBAC, credentials are used to encode attributes of clients. The represen-
tation of credentials may vary, but usually digitally-signed certificates are used
as representation. Which credentials a client must provide in order to obtain a
particular access is specified by an access control policy. Hence, before granting
access, an enforcement mechanism needs to check that the provided credentials
legitimate the desired access. This last step is known as proof construction.

Recent work on CBAC identified a need to also restrict the usage of cre-
dentials [2,3], in particular, if CBAC is employed in open systems. In an open,
distributed system, a credential might be issued with a particular purpose, but it
is hardly possible for a credential issuer to exclude the possibility that the creden-
tial might be exploitable in other, unintended ways. The danger is that a creden-
tial is used in the construction of proofs that result in authorizations unforeseen
by the issuer. Usage constraints on credentials enable credential issuers to better
control the use of their credentials. They allow issuers to encode the purpose of
a credential, thus, reducing the threat of misuse.

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 112–125, 2015.
DOI: 10.1007/978-3-319-18467-8 8

Enforcing Usage Constraints on Credentials 113

Usage constraints on credentials are obviously relevant for web applications
that employ CBAC. However, the enforcement of usage constraints on creden-
tials has not been investigated in this domain yet. Moreover, solutions in other
domains cannot be transferred to web applications in a straightforward manner,
as web applications pose new challenges to enforcing usage constraints on cre-
dentials. For instance, if a web application needs to respond to requests with
low latencies, even under high workloads, then a web application developer is
likely reluctant to adopt a usage constraint for credentials that causes substantial
overhead. This is the challenge that we address in this article.

We present a novel algorithm for constructing proofs (1) that soundly certify
compliance with a given CBAC policy and (2) that respect all usage constraints
of credentials used during proof construction. Moreover, our algorithm is com-
plete in the sense that it is able to generate all proofs that comply with (1) and
(2). The feature of generating all constraint-compliant proofs is driven by the
need to strategically manage credential disclosure to, for example, minimize the
number or sensitivity of credentials sent to an application [4,5]. With all proofs
at hand, one could choose a proof that meets a strategy.

In the implementation of our solution, we followed the idea of proof-carrying
authorization to web applications [6]. More concretely, we implemented a browser
extension for deploying our proof-construction algorithm. A client adds this
extension for requesting resources at a web application. A web application sim-
ply checks the validity of a proof received from a client which uses the browser
extension. In this way, the application only needs to incorporate a proof-checking
functionality.

To sum up, our main technical contribution is a novel algorithm for construct-
ing constraint-compliant proofs. We proved the correctness of our algorithm and
demonstrated its effectiveness and efficiency in experiments.

The rest of the article is organized as follows. We present preliminaries and
our problem statement in Section 2. In Section 3, we present our algorithm,
including the algorithm description and the correctness theorem. We describe
our implementation in Section 4, followed by the performance evaluation of our
algorithm in Section 5. Finally, we discuss related work and conclude in Section 6.

2 Preliminaries and Problem Statement

Credential-based access control. We use the policy language RT0 [7], a role-
based trust management language, to express credentials. RT0 has four types of
credentials:

– Simple membership A.R ← D: principal D is assigned to role A.R.
– Simple containment A.R ← B.R1: principals assigned to role B.R1 are also

assigned to role A.R.
– Linking containment A.R ← A.R1.R2: principals assigned to role B.R2 with

B being assigned to role A.R1 are also assigned to role A.R.

114 J. Hu et al.

A.R ← D
D in A.R

sm
D in B.R1 A.R ← B.R1

D in A.R
sc

B in A.R1 D in B.R2 A.R ← A.R1.R2

D in A.R
lc

D in B1.R1 · · · D in Bk.Rk A.R ← B1.R1 ∩ . . . ∩ Bk.Rk

D in A.R
ic

Fig. 1. The inference rules for RT0 credentials

– Intersection containment A.R ← B1.R1∩ . . .∩Bn.Rn: a principal is assigned
to role A.R if the principal is also assigned to all the roles B1.R1, . . ., and
Bn.Rn.

The semantics of RT0 credentials is formalized by the inference rules in Figure 1,
where D in A.R denotes the principal D’s membership of role A.R. For a cre-
dential of the form X ← Y , we say X is the head and Y is the body of the
credential. Readers are referred to [7] for more details of RT0.

In RT0, roles are used to model particular accesses to particular resources.
For example, one could introduce a role Univ.network, where Univ is a principal
and network is a role name, to model access to networks of Univ. In turn, to
access a particular resource one needs to have a membership in the role to which
this resource corresponds.

Role memberships are granted based on credentials. For example, the creden-
tial Univ.network ← Alice grants the membership in Univ.network to Alice.
For another example, the credentials in the following set jointly grant to Alice
the membership in the role Univ.network. In both cases, one actually derives a
proof of the membership using the provided credentials.

Univ.network ← Univ.guest Univ.guest ← Univ.Prof.collaborator
Univ.Prof ← Bob Bob.collaborator ← Alice

Definition 1 (Proofs). Given a principal p, a role r, and a set CS of creden-
tials, we say a tuple (p, r, c, ∅) is a base proof of p in r based on CS if c is a
simple membership credential r ← p. We say (p, r, c, s) is a proof of p in r based
on CS if either it is a base proof or s is a set of proofs based on CS, called
sub-proofs, such that for any (pi, ri, ci, si) ∈ s, (1) there exists c ∈ CS such that

p1 in r1 . . . pk in rk c

p in r
l

for some l ∈ {sm, sc, lc, ic} and (2) (pi, ri, ci, si) is also a proof based on CS.

Enforcing Usage Constraints on Credentials 115

A proof (p, r, c, s) shows the membership of p in r. Thus, upon seeing the
proof, a system deploying credential-based access control allows the access of p
to the resource represented by r. We say a proof (p, r, c, s) uses a credential if it
is c or it is used by the sub-proofs in s.

Usage Constraints on Credentials. As discussed in [2,3], credential issuers
are in need of specifying constraints on how their credentials are used, in addition
to the language support (e.g., RT). Typical example constraints include delega-
tion depth and final-usage constraints. Following [3], we define a constraint as a
deterministic finite automaton (DFA) (Q,Σ, δ, q0, F), where Q is a finite set of
states, Σ is a finite set of input symbols, δ : Q × Σ �→ Q is a transition function,
q0 ∈ Q is an initial state, and F ⊆ Q is a set of final states. The input set Σ of a
constraint shall be instantiated with the set of roles in the set CS of credentials
when constructing proofs based on CS.

To define the semantics of constraints, we let words(P) be words of a proof
P = (p, r, c, s) such that words(P) = {r} if s = ∅ and, otherwise, words(P) =
{r;w ∈ Σ∗ | ∃P ′ ∈ s : w ∈ words(P ′)}. A proof (p, r, c, s) based on CS satisfies
a constraint if all words of the proof are accepted by the constraint. Informally,
a constraint restricts which roles may appear in a proof and where they may
appear in the proof.

q0 q1

q2

Univ.internal

ΣΣ\{Univ.internal}

Σ

Fig. 2. An example constraint

For example, suppose that Univ wants to
prevent its credential c1 = Univ.network ←
Univ.guest from being used for proving mem-
berships in role Univ.internal, regardless of
whichever credentials have been issued or may
be issued later. This is a final usage constraint
on c1; Univ could specify the DFA in Figure 2
as a constraint and attach the constraint to
c1. This constraint excludes any proof of the
form (p, Univ.internal, c, s). Receiving words
of such a proof, the automaton transits from
state q0 to q1 with the input Univ.internal;
if s
= ∅, the automaton stays at state q1 with
input ri for any sub-proofs (pi, ri, ci, si) ∈ s. Hence, the automaton could not
reach a final state, which means that the proof does not satisfy the constraint.
On the other hand, for a proof of the form (p, r, c, s) where r
= Univ.internal, its
words are accepted by the automaton and thus the proof satisfies the constraint.

In principle, each credential may come along with a constraint specifying its
usage. We say a proof is constraint-compliant if it satisfies all constraints that
are attached to the credentials used in the proof.

Definition 2 (Problem statement). Given a set CS of credentials, a prin-
cipal p, and a role r, the problem is to find all constraint-compliant proofs of
p in r based on CS.

116 J. Hu et al.

Sage-Prove(credentials, r , p)

let nodes = Create-Nodes(credentials) and cons = ∅
return Construct-Proofs(r , p,nodes, (), cons)

Construct-Proofs(r , p,nodes, rolepath, cons)

1 r ′ = Extend-Role-Path(rolepath, r)
2 for every constraint con ∈ cons
3 if con cannot reach a final state after the input r ′

4 return ∅
5 if nodes contains no node for r
6 return ∅
7 let node = node for r and proofs = ∅
8 for each {c, p′} ∈ node.members with p′ == p
9 let proofs = proofs ∪ New-Proof(r , p, c, ∅)

10 for each credential c ∈ node.credentials
11 let sets = ∅ and cons ′ = cons ∪ {c’s constraint}
12 if c is a simple containment credential
13 let sets = Handle-SC(c, p,nodes, r ′, cons ′)
14 elseif c is an intersection containment credential
15 let sets = Handle-IC(c, p,nodes, r ′, cons ′)
16 elseif c is a linking containment credential
17 let sets = Handle-LC(c, p,nodes, r ′, cons ′)
18 for each set of subproofs s ∈ sets
19 let proofs = proofs ∪ New-Proof(r , p, c, s)
20 return Filter-Valid-Proofs(proofs)

Fig. 3. The Sage algorithm for constructing constraint-compliant proofs

3 Algorithm

This section presents our algorithm Sage that solves the problem in Definition 2.
We first describe the algorithm and then discuss its correctness.

Overview. The Sage algorithm, as shown in Figure 3, is essentially a depth-
first search algorithm. It makes use of a dependency between c and s in a proof
P = (p, r, c, s): The inference rule used to conclude the role membership p in r
must take the credential c and all sub-proofs si ∈ s as its premise; further, the
rule must match one of the four inference rules sm, sc, ic, and lc. Consequently,
the type of the credential c directly determines what proofs must be present in s
for this to be possible. The Sage algorithm utilizes this dependency between c and
s to construct proofs recursively: When a role membership p in r shall be proven,
(1) select all credentials with r as the head; (2) for every such credential, (2i)
identify the role memberships that must be proven in order to satisfy the premise
of an appropriate inference rule, and (2ii) then call the Sage algorithm again
with the same principal for every identified role membership. If all necessary

Enforcing Usage Constraints on Credentials 117

role memberships can be proven, construct (and later return) a proof with the
recursively constructed proofs and the associated, previously selected credential.

Main Procedure. The entry point of Sage is the Sage-Prove function: It
takes a set of credentials, a role, and a principal as input and returns a set of
proofs showing the membership of the principal in the role. Sage consists mainly
of two parts: initialization and proof construction.

Initialization. Sage first converts the credentials into nodes. Sage uses nodes,
each of which is a container for credentials with the same head role. Sage stores
every credential c ∈ CS in exactly one node, i.e. the node associated to its head
role. The use of nodes provides a simplified way to access different credentials
in the set CS. Sage initializes the constraints as an empty set, as no credential
has been used for proofs yet.

Proof Construction. Sage calls the Construct-Proofs function to compute
the set of proofs. Function Construct-Proofs consists of three stages: pre-
processing (Lines 1 - 7), sub-proof construction (Lines 8 - 19), and post-processing
(Line 20). The pre-processing stage checks whether any proofs may be constructed;
the sub-proof construction stage proceeds to construct sub-proofs with different
types of credentials. The post-processing stage checks additional constraints that
proofs should comply with.

Pre-processing. Line 1 extends the role path with the provided role r . Given
a proof (p, r, c, s), a role path is a sequence of roles, starting with r and being
followed by a role path of a proof in s. Note that a proof may have multiple role
paths. This extended role path serves as a trace at which point the algorithm is
in relation to the overall structure of the constructed proofs. In lines 2 - 4, this
extended role path is used to check whether all constraints in the set constraints
can still reach a final state from it. If not, any further proofs do not comply with
at least one of the constraints. Line 5 checks whether there is any credential
available to construct further proofs. If so, the associated node is then assigned
to the variable node and the set proofs is initialized as an empty set. The set
proofs serves as a container for proofs.

Sub-proof Construction. Lines 8 - 19 construct sub-proofs for each type of cre-
dentials. First, lines 8 - 9 traverse all simple member credentials of node and add
to the set proofs a proof for each credential r ← p. Lines 10 - 19 traverse the
set of credentials of node to construct proofs for the three remaining types of
credentials (simple, intersection, or linking containment). Depending on the type
of credentials, a helper function is invoked (lines 12 - 17). Each function returns
a collection of sets of sub-proofs that can be used to construct proofs in com-
bination with c. Note that the helper functions also call Construct-Proofs
for proof construction. Please see Appendix A for the helper functions. Line
19 combines the returned sets of sub-proofs with credential c to a proof of p’s
membership in r .

118 J. Hu et al.

Post-processing. Line 20 (Filter-Valid-Proofs) filters proofs that satisfy all
remaining constraints. Recall that the filtering at lines 2 - 4 checks constraints
of a selected credential; this check does not concern constraints introduced
posterior to the selected credential. Filter-Valid-Proofs checks those lat-
ter constraints. In combination, these two checks ensure that Sage returns only
constraint-compliant proofs.

Algorithm Correctness. Given a set of credentials CS, a principal p, and a
role r, we let Proofs(C, r, p) be the set of constraint-compliant proofs of p in r.
That is, Proofs(C, r, p) contains all the proofs that show the membership of p in
r, according to the semantics of RT0 and constraints. Let Sage-Prove(C, r, p)
be the set of proofs returned by the algorithm in Figure 3.

Theorem 1. Given a set of credentials CS, a principal p, and a role r,

Sage-Prove(C, r, p) = Proofs(C, r, p).

Proof sketch: We prove two lemmas:

1. Sage-Prove(C, r, p) ⊆ Proofs(C, r, p) (i.e., any proof returned by the algo-
rithm is constraint-compliant), and

2. Sage-Prove(C, r, p) ⊇ Proofs(C, r, p) (i.e., any constraint-compliant proof
will be generated by the algorithm).

We first map a proof (p, r, c, s) to a tree where the root is the proof itself and
its children are the sub-proofs in the set s. The height of a proof is then defined
as the height of this tree. We then prove the two lemmas by induction on the
height. The full proof of the theorem is available on the authors’ website.

4 Implementation

To implement the proposed approach for web applications, we first adapt the
communication process between a client and a web application. As shown in
Figure 4, the communication takes four steps: (1) The client sends a request
for a resource to the application. (2) Upon receiving a request, the application
returns a policy for the client to prove. (3) The client constructs a proof of
the policy and sends the proof and the credentials together to the application.
(4) The application sends the response to the client. If the proof is checked
constraint-compliant, the resource is sent to the client; otherwise not.

Among the four steps, step (2) employs the Sage algorithm proposed in
Section 3. We implement the algorithm in a browser extension. As such, users at
the client need not interact with CBAC when requesting resources. At the web
application side, we implement a reference monitor which checks the proof and
returns the check results to the application.

Enforcing Usage Constraints on Credentials 119

Client
Web Ap-
plication

Browser
extension

Reference
monitor

1. send a request for a resource

2. send a policy to prove

3. send a proof of the policy and the used credentials

4. send a response

2a. forward
the policy

2b. return the proof and
the used credentials

3a. send the proof

3b. return the
check result

Fig. 4. The proposed architecture of CBAC in web applications

4.1 Browser Extension

We developed a Chrome1 extension. This extension intercepts policies from web
applications at step (2) in Figure 4. With the policy, the extension then invokes
a library Sage.js, which is a JavaScript implementation of Sage. Obtaining the
proofs, the extension selects one proof and re-sends the request to the web appli-
cation. Note that we leave the investigation of proof selection as future work.

Alternatively, one may write client-side scripts to construct proofs. This will
remove the need of a browser extension. However, based on our experiences,
a browser extension could use more computational resources and thus lead to
better performance. Hence, we chose the extension over client-side scripts.

4.2 Reference Monitor

We chose to implement a reference monitor for Ruby on Rails2 (or Rails in
short) applications. This choice is motivated by the use of model-view-controller
pattern of Rails applications. In such a pattern, the notion of resources are
directly linked to that of models; each resource is associated with a model. This
logical connection between resources and models provides an entry point for
incorporating a reference monitor. Also, at the code level, the separation of the
view of resources from the model enables us to introduce custom methods to
intercept resource requests.

Function-wise, our reference monitor maintains a relation between resources
and policies that should be proved in order to access the respective resources.

1 https://www.google.com/chrome/browser/
2 http://rubyonrails.org/

https://www.google.com/chrome/browser/
http://rubyonrails.org/

120 J. Hu et al.

The monitor also enforces the policies by checking proofs of the policies pro-
vided by each requester. To make the monitor effective, we modify Rails con-
trollers which handle authorization logics. We implemented a reference monitor
for BrowserCMS3 as a case study.

5 Experiments

We evaluated the performance of our Javascript implementation of the algorithm
Sage with synthetic credentials. The experimental results demonstrate the effi-
ciency of Sage. We first describe a generator we used to synthesize credentials
for experiments. Then, we present the experimental results.

5.1 Credential Generator

In order to generate credentials, we make use of a template of credentials avail-
able for proving p in r for randomly chosen principal p and role r . In a template,
leaf nodes are labeled “sm”, indicating simple membership credentials shall be
generated, and non-leaf nodes are labeled “sc”, “ic”, or “lc”, indicating the other
three types of credentials shall be generated, respectively. A template with a root
node rn means that a proof (p, r, c, s) can be obtained where c is a type rn cre-
dential and rn has a child node ch corresponding to a sub-proof (p′, r′, c′, s′)
in s such that c′ is a type ch credential. Then random, concrete credentials are
generated whenever a node is reached when traversing a template. In addition,
we also generate some “noisy” credentials which are useless for proving p in r.

The generator takes as input four parameters: (1) a tree template, (2) the
height of a tree, (3) variant: the number of credentials that shall be created
for each type of credentials at each node of the template, and (4) the number of
noisy credentials. The generator outputs, in addition to credentials, the following
parameters: the size of a generated credential set (i.e., the number of credentials
in the set) and the number of credentials of each type in a credential set.

5.2 Experimental Credential Sets

We generated credentials by letting, all uniformly, the template be one of tem-
plates in Figure 6, height range from 1 to 5, the number of variant be 1 or 2, and
the number of noisy credentials range from 0 to 20. We obtained 945 generated
credential sets in total and used them as input to Sage. Note that the templates
cover example policies like “Co-workers can see all photos and music” in the case
studies of [8].

Figure 7 shows the distribution of the size of the generated credential sets,
when the size is smaller than 200. The most of the generated credentials sets
have a size smaller than 80. On the other hand, for the ranges between 80 and
180, each range contains 2-10 credentials sets. Also, there are 147 generated
credential sets whose size is larger than 200.
3 http://www.browsercms.org/

http://www.browsercms.org/

Enforcing Usage Constraints on Credentials 121

sc

ic

sc

lc

sm sm

sc

ic

sm sm

Template #1

ic

sc

lc

sm sc

sm

ic

sc

sc

sm

ic

sm sc

sm

Template #2

lc

sm sc

ic

sc

sm

ic

sm sm

Template #3

Fig. 6. Templates that were used to generate credentials

0 20 40 60 80 100 120 140 160 180
0

20

40

60

80

Size

T
he

nu
m
be

r
of

cr
ed

en
ti
al

se
ts

Fig. 7. The size distribution of the generated credential sets of size smaller than 200

5.3 Experimental Results

For each of the 945 generated credential sets, we invoked Sage, which is imple-
mented as a JavaScript library, to compute all constraint-compliant proofs of
p in r, where p and r were chosen when generating the credential set. For each
credential set, we attached usage constraints to 30% of the credentials in the
set: half are delegation depth constraints and the other half are final-usage con-
straints. The experiments were performed on a machine with 8 GB 1600 MHz
DDR3 memory and Intel Core i5-3570 3.4 GHz RAM.

Figure 8 shows the time Sage took to return proof sets for each generated
credential set. When the size of the credential sets is smaller than 100, the time
is less than 1 ms, with four exceptions. When the size is smaller than 200, the
time is always less than 10 ms. And when the size is smaller than 1000, the
time is always less than 100 ms. In all cases, the time is less than 1 second.
The computation time grows exponentially with the size of the credential sets.
However, assuming the size of credential sets used in practice is smaller than
1000, the overhead, being less than 100 ms, is moderate.

122 J. Hu et al.

100 101 102 103
10−2

10−1

100

101

102

103

The size of credential sets

T
he

av
er
ag

ed
co
m
pu

ta
ti
on

ti
m
e
(m

s)

Fig. 8. The time Sage took to return proof sets

Figure 9 depicts the time Sage took with respect to the size of the returned
proof sets. The time increases exponentially with the size of the proof sets.
However, when the size is smaller than 1000, the time is less than 100 ms, which
we think is moderate. When the size is smaller than 10, the time is less than 1
ms except for two cases. When the size is smaller than 100, the time is less than
10 ms. In all cases, the computation time is less than 1 second.

Figure 10 shows the impact of noisy credentials on the computation time.
In the figure, the computation time is the average of the time needed for the
generated credential sets of the same size. The ratio of noisy credentials in the
generated credential sets ranges from 0% to 50%. When the ratio is greater than
10%, the computation time is less than 100 ms. In all cases of the ratios, the time
increases along with the growth of the size of the credential sets. Comparing the
ratios, however, it appears that the higher the ratio is, the less computation time
Sage took on average; the reason for this remains unclear to us.

6 Related Work and Conclusion

Seamons et al. [9] define two variants of the compliance checking problem: type-1
and type-2. The type-1 problem is to determine whether a policy is entailed by
a set of credentials. The type-2 problem is to find a proof of a policy together
with the used credentials in the proof. Lee and Winslett [4] propose a type-3
compliance checking problem – find all minimal proofs of a policy for a given set
of credentials. While an algorithm for the type-2 problem shall be more efficient
than an algorithm for the type-3 problem, the latter enables to apply strategies
to proof and credential disclosure. This is also the main reason why we address
a variant of the type-3 problem.

This variant of the type-3 problem is different in that we construct all
constraint-compliant proofs of a policy. With respect to usage constraints on

Enforcing Usage Constraints on Credentials 123

100 101 102 103 104 105
10−2

10−1

100

101

102

103

The size of returned proof sets

T
he

co
m
pu

ta
ti
on

ti
m
e
(m

s)

Fig. 9. The time Sage took when the size of returned proof sets varies

100 101 102 103
10−2

10−1

100

101

102

103

The size of credential sets

T
he

av
er
ag

ed
co
m
pu

ta
ti
on

ti
m
e
(m

s)

0.0 ≤ ratio ≤ 0.1
0.1 < ratio ≤ 0.2
0.2 < ratio ≤ 0.3
0.3 < ratio ≤ 0.4
0.4 < ratio ≤ 0.5

Fig. 10. The averaged computation time with different ratios of noisy credentials

credentials, this work shares the same problem with [3]. While Hu et al. propose
a solution by encoding credentials in answer set programming, we develop a novel
algorithm and implement it for web applications. Unlike [4] and [3], this work did
not consider searching only minimal proofs of a policy. Concerning usage con-
straints on credentials, Bauer et al. [2] propose an approach for proof-carrying
authorization. It is not clear how to generate all constraint-compliant proofs with
their approach. Approaches to CBAC for web applications include, for exam-
ple, [1,6]. However, neither of them addresses enforcing usage constraints on
credentials.

We have presented a new algorithm for constructing constraint-compliant
policy proofs. We have proved the correctness of the algorithm and shown its
efficiency by experiments. The algorithm is implemented as a JavaScript library,

124 J. Hu et al.

used in a browser extension, and integrated for an example Ruby on Rails appli-
cation.

A The Helper Functions

This appendix lists the helper functions that are called by the Sage algorithm
in Figure 3. More details of the algorihtm can be found on authors’ website.

Handle-SC(c, p,nodes, rolepath, cons)

1 return Construct-Proofs(Body(c), p,nodes, rolepath, cons)

Handle-IC(c, p,nodes, rolepath, cons)

1 sets = ∅
2 ip = ∅
3 for each role ri ∈ Body(c)
4 ip = ip ∪ Construct-Proofs(ri, p,nodes, rolepath, cons)
5 let a1, . . . , an denote all sets in ip, with ai = aj ⇔ i = j
6 for each combination e = {e1, . . . , en} with ei ∈ ai

7 sets = sets ∪ e
8 return sets

Handle-LC(c, p,nodes, rolepath, cons)

1 sets = ∅
2 defining-role = defining role of Body(c)
3 linked -role-term = linked role of Body(c)
4 for each principal p who defines a role r with the role term linked -role-term
5 dp = Construct-Proofs(defining-role, p,nodes, (), ∅)
6 if dp is not empty
7 lp = Construct-Proofs(r, p,nodes, rolepath, cons)
8 for each e ∈ dp × lp
9 sets = sets ∪ e

10 return sets

If the input credential c is a simple containment credential, Handle-SC is
called. It simply calls Construct-Proofs with a new role parameter: the roles
in the body of c. Every such proof is then later used in Construct-Proofs in
combination with c to add proofs to the set proofs.

If c is an intersection containment credential, Handle-IC is called. In lines
3 - 4, for every role in the intersection of the body of c proofs are created by
evaluating Construct-Proofs and then assigned to the variable ip. Finally, in
lines 5 - 7, the Cartesian product of all proofs in ip is calculated. Note that the
Cartesian product is used to model that an intersection containment credential
allows a principal to obtain the head role if the principal is assigned to all roles
in the body.

If c is a linking containment credential, Handle-LC is called. First, in line 4,
all principals who define a role using the linked role term are traversed. For
each such principal, Construct-Proofs is called in line 5 to calculate proofs

Enforcing Usage Constraints on Credentials 125

showing the principal is assigned to the defining role of c, which are assigned
to the variable dp. If there exist proofs of this form, i.e., if dp is non-empty,
Construct-Proofs is called again for the actual principal and the linked role,
and the result is assigned to the variable lp. Then, in line 8, the Cartesian product
of dp and lp is calculated and later returned.

Acknowledgments. This work was supported by CASED (www.cased.de).

References

1. Vimercati, S.D.C.D., Foresti, S., Jajodia, S., Paraboschi, S., Psaila, G., Samarati, P.:
Integrating trust management and access control in data-intensive web applications.
ACM Trans. Web 6(2), 6:1–6:43 (2012)

2. Bauer, L., Jia, L., Sharma, D.: Constraining credential usage in logic-based access
control. In: CSF pp. 154–168 (2010)

3. Hu, Jinwei, Khan, Khaled M., Bai, Yun, Zhang, Yan: Compliance checking for usage-
constrained credentials in trust negotiation systems. In: Gollmann, Dieter, Freiling,
Felix C. (eds.) ISC 2012. LNCS, vol. 7483, pp. 290–305. Springer, Heidelberg (2012)

4. Lee, A.J., Winslett, M.: Towards an efficient and language-agnostic compliance
checker for trust negotiation systems. In: Proceedings of the 2008 ACM Symposium
on Information, Computer and Communications Security, ASIACCS 2008.
pp. 228–239 (2008)

5. Oster, Zachary J., Santhanam, Ganesh Ram, Basu, Samik, Honavar, Vasant: Model
checking of qualitative sensitivity preferences to minimize credential disclosure.
In: Păsăreanu, Corina S., Salaün, Gwen (eds.) FACS 2012. LNCS, vol. 7684,
pp. 205–223. Springer, Heidelberg (2013)

6. Bauer, L.: Access Control for the Web via Proof-carrying Authorization. Ph.D
thesis, Princeton University (2003)

7. Li, N., Winsborough, W.H., Mitchell, J.C.: Distributed credential chain discovery
in trust management. Journal of Computer Security 11(1), 35–86 (2003)

8. Mazurek, M.L., Liang, Y., Melicher, W., Sleeper, M., Bauer, L., Ganger, G.R.,
Gupta, N., Reiter, M.K.: Toward strong, usable access control for shared dis-
tributed data. In: Proceedings of the 12th USENIX Conference on File and Storage
Technologies (2014)

9. Seamons, K.E., Winslett, M., Yu, T., Smith, B., Child, E., Jacobson, J., Mills, H.,
Yu, L.: Requirements for policy languages for trust negotiation. In: 3rd International
Workshop on Policies for Distributed Systems and Networks (POLICY 2002)
pp. 68–79 (2002)

A Survey of Alerting Websites:
Risks and Solutions

Amrit Kumar(B) and Cédric Lauradoux

INRIA, Grenoble, France
{amrit.kumar,cedric.lauradoux}@inria.fr

Abstract. In the recent years an incredible amount of data has been
leaked from major websites such as Adobe, Snapchat and LinkedIn.
There are hundreds of millions of usernames, email addresses, pass-
words, telephone numbers and credit card details in the wild. The after-
math of these breaches is the rise of alerting websites such as http://
haveibeenpwned.com, which let users verify if their accounts have been
compromised. Unfortunately, these seemingly innocuous websites can be
easily turned into phishing tools. In this work, we provide a comprehen-
sive study of the most popular ones. Our study exposes the associated
privacy risks and evaluates existing solutions towards designing privacy-
friendly alerting websites. In particular, we study three solutions: private
set intersection, private set intersection cardinality and private infor-
mation retrieval adapted to membership testing. Finally, we investigate
the practicality of these solutions with respect to real world database
leakages.

Keywords: Data leakages · Phishing · Private set intersection · Private
information retrieval · Bloom filter

1 Introduction

In the recent years, we have witnessed an increasing number of data leaks from
major Internet sites including Adobe, Snapchat, LinkedIn, eBay, Apple and
Yahoo ! (see bit.ly/19xscQO for more instances). While in most of the cases
passwords’ files have been targeted; database of identifiers, phone numbers and
credit card details have also been successfully exfiltrated and published. These
leakages dealt a substantial blow to the trust of people in computer security.

The aftermath of these leakages has led to three pivotal developments. First,
the bad security policies of major websites have been exposed, and better poli-
cies have been proposed to survive leakages (see [27], [20], [18]). In [27], Parno
et al. design an architecture to prevent database leakage. At CCS 2013, Kontaxis
et al. propose SAuth [20], an authentication scheme which can survive password
leakage. At the same conference, Juels and Rivest present the Honeywords [18]
to detect if a passwords’ file has been compromised.

Second, security community has obtained datasets to study the password
habits of users. In [7], Das et al. consider several leaked databases to analyze
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 126–141, 2015.
DOI: 10.1007/978-3-319-18467-8 9

http://haveibeenpwned.com
http://haveibeenpwned.com
bit.ly/19xscQO

A Survey of Alerting Websites: Risks and Solutions 127

password reuse. De Carnavalet et al. [8] use these datasets to test the effectiveness
of password meters.

Third, a new kind of websites has appeared: alerting website. Users can
check through these sites whether their accounts have been compromised or
not. In order to check whether a user is a victim of data leakage, alerting web-
sites ask for an identifying data such as username or email address and some-
times even password. These websites are maintained by security experts such
as haveibeenpwned.com by Troy Hunt, security companies e.g., LastPass, and
even government institutions like the German Federal Office for Information
Security (Bsi): sicherheitstest.bsi.de.

On one hand, these websites are very useful in alerting users, while on the
other hand, they are real “booby traps”. The problem is the following: when a
user submits a username or an email address or a password, the site searches
whether it exists or not in the leaked database. If it exists, the user is warned
and the website has accomplished its purpose. However, if it is not present in
the database, the site owner learns for free a username/email address/password.

Most of these sites advert to the users that they do not indulge in phishing
activities but this is the only guarantee available to the user. The goal of alert-
ing websites is to reduce the effect of data leakage but not amplify it!
Considering the risks of using alerting websites, we naturally raise the following
question: How to design alerting websites which cannot be turned into a phishing
trap? The user must have a guarantee that it is not possible for the database
owner to collect his information during a search query.

With the increasing frequency of data leakages, these websites are fast becom-
ing a sine qua non for the victims of data leakages. Consequently, an analysis
of these websites and their service is necessary. Our work presents a comprehen-
sive study of alerting websites from two angles: the associated privacy risks and
possible solutions to improve the service.

Contribution. The contribution of the paper is threefold:

1. We examine 17 popular alerting websites (Section 2) and analyze their work-
ing mechanism, and their approach to deal with privacy. Our findings reveal
that several of these websites have huge phishing potential and hence users
should be careful while visiting any of these websites.

2. We evaluate existing solutions for designing privacy-friendly alerting web-
sites. Two different scenarios have been considered depending on whether or
not the database is public. In case of private database (Section 4), private set
intersection protocol and its variant private set intersection cardinality proto-
col yield an immediate solution. The scenario of public database (Section 5)
requires us to adapt private information retrieval protocol for membership
testing. This is achieved by combining it with Bloom filters (Section 5.1).
These protocols subsumed under the name of Private Membership Query
protocols ensure user’s privacy in the honest-but-curious model.

3. Finally, we experimentally analyze the merits of these solutions with respect
to real world data leakages (Section 6).

haveibeenpwned.com
sicherheitstest.bsi.de

128 A. Kumar and C. Lauradoux

2 Alerting Websites: Risks

Users can be alerted on the fact that their account or personal information has
been leaked. We discuss the characteristics of these websites which evidently
offer opportunities for sophisticated phishing attacks.

Websites alerting users about their account or data leakage can be divided
into three types according to their sources of information. In the sequel, we
categorically discuss our findings.

Single-source (S). Some websites are associated with a single data leakage.
This is the case for adobe.cynic.al, bit.ly/1by3hd9, lucb1e.com/credgrep and
adobe.breach.il.ly. These websites are related to the Adobe data leakage of
153 million accounts which occurred in October 2013. The last three websites
were successfully tested on 22/12/2014 but cannot be accessed anymore. Other
websites for instance snapcheck.org,1 findmysnap.com, and lookup.gibsonsec.org
are similarly associated with the SnapChat leakage (4.6 million usernames,
phone numbers and city exposed in January 2014).

Aggregator (A). We observe that 5 of these websites search through sev-
eral databases to inform users if their data has been exposed. For instance,
shouldichangemypassword.com (bit.ly/1aJubEh for short) allegates to use 3346
leaked databases while only 194 are officially known. The remaining four are
maintained by private companies: lastpass.com, bit.ly/1fj0SqV, bit.ly/1aJubEh
and dazzlepod.com/disclosure. The last remaining site haveibeenpwned.com is
designed and maintained by security expert Troy Hunt.

Harvester (H). Three sites claim to have created their own databases from
harvested data. Two of these are maintained by famous security companies
hacknotifier.com and pwnedlist.com/query. The last site is maintained by the
German Federal Office for Information Security (Bsi).

The rue89.nouvelobs.com site is slightly different from the others. In Septem-
ber 2014, this French news website bought on the Darknet 20 million French email
addresses for 0.0419 bitcoins (see article bit.ly/1lKAxsB). The article offers the
opportunity to check if the reader’s addresses are included in the leak.

We have reviewed 17 alerting sites and our findings are summarized in Table 1.
To measure if a user can trust the service offered by these sites, we have considered
four criteria:

– The usage of a secure connection through HTTPS.
– The existence or not of a security/privacy statement.
– The fact that the site responds or not with an answer.
– A technical description of all the operations performed on the data.

From Table 1, we observe that ten of these sites do not use HTTPS which
means that the traffic towards them can be easily eavesdropped. Single-source
1 The database cannot be accessed anymore (10/12/2014).

adobe.cynic.al
bit.ly/1by3hd9
lucb1e.com/credgrep
adobe.breach.il.ly
snapcheck.org
findmysnap.com
lookup.gibsonsec.org
shouldichangemypassword.com
bit.ly/1aJubEh
lastpass.com
bit.ly/1fj0SqV
bit.ly/1aJubEh
dazzlepod.com/disclosure
haveibeenpwned.com
hacknotifier.com
pwnedlist.com/query
bit.ly/1lKAxsB

A Survey of Alerting Websites: Risks and Solutions 129

Table 1. Analysis of 17 alerting websites (* result as on 22/12/2014).

Websites Type Database(s) https Statement Answer Descrip.

rue89.nouvelobs.com S Unknown ✗ � � ✗

adobe.cynic.al S

Adobe

✗ ✗ � �
bit.ly/1by3hd9* S � � � ✗

lucb1e.com/credgrep* S ✗ ✗ ✗ ✗

adobe.breach.il.ly* S ✗ ✗ ✗ ✗

snapcheck.org S
SnapChat

✗ ✗ � ✗

findmysnap.com S ✗ ✗ � ✗

lookup.gibsonsec.org S ✗ ✗ � ✗

didigetgawkered.com S Gawker ✗ ✗ ✗ ✗

lastpass.com A 6 � � � ✗

haveibeenpwned.com A 9 � � � �
bit.ly/1fj0SqV A 12 � ✗ ✗ ✗

dazzlepod.com/disclosure A 28 ✗ � � ✗

bit.ly/1aJubEh A 3346/194 � ✗ � ✗

hacknotifier.com H Unknown ✗ � � ✗

pwnedlist.com/query H Unknown � ✗/� � �
sicherheitstest.bsi.de H Botnets � � � ✗

alerting sites are the least trustworthy of all because most of them do not have a
privacy statement. The website bit.ly/1by3hd9 is a notable exception. Aggrega-
tor sites in general perform better. Most of them use HTTPS and have a state-
ment concerning privacy or phishing. The website haveibeenpwned.com even has
a description of how it works.

The harvesters are more controversial: hacknotifier.com claims that “we use
a 256-bit secured and encrypted SSL connection”, but does not use HTTPS
or any encryption.2 The website pwnedlist.com/query claims that “this is not a
phishing site”, but they also state (pwnedlist.com/faq) that “Over the past years
we’ve built an advanced data harvesting infrastructure that crawls the web 24/7
and gathers any potentially sensitive data ...”.

Four sites do not give any answer: either they are not working anymore (like
lucb1e.com/credgrep) or they are real phishing traps.

Almost all the sites receive account information in clear. However, there are
two notable exceptions lastpass.com and dazzlepod.com/disclosure. The former
uses cryptographic hash functions and truncation to obfuscate the query and
seems to be the most transparent and trustworthy of all. Table 2 presents a
summary of our observations on lastpass.com. The latter source, dazzlepod.com/
disclosure only recommends to truncate the email address. With pwnedlist.com/
query, it is also possible to submit the SHA-512 digest of the email address
instead of the address itself.

Cryptographic hash functions, e.g. MD5, SHA-1 or SHA-3 are however not
enough to ensure the privacy of passwords, identifiers or email addresses: these
2 Actually, subscribing for the hacknotifier.com watchdog is also not secure.

rue89.nouvelobs.com
adobe.cynic.al
bit.ly/1by3hd9
lucb1e.com/credgrep
adobe.breach.il.ly
snapcheck.org
findmysnap.com
lookup.gibsonsec.org
didigetgawkered.com
lastpass.com
haveibeenpwned.com
bit.ly/1fj0SqV
dazzlepod.com/disclosure
bit.ly/1aJubEh
hacknotifier.com
pwnedlist.com/query
sicherheitstest.bsi.de
bit.ly/1by3hd9
haveibeenpwned.com
hacknotifier.com
pwnedlist.com/query
pwnedlist.com/faq
lucb1e.com/credgrep
lastpass.com
dazzlepod.com/disclosure
lastpass.com
dazzlepod.com/disclosure
dazzlepod.com/disclosure
pwnedlist.com/query
pwnedlist.com/query
hacknotifier.com

130 A. Kumar and C. Lauradoux

Table 2. Detailed analysis of lastpass.com.

Victim Query Policy Privacy method

Adobe Email non-storage None

LinkedIn password non-storage and non-logging SHA-1

Snapchat user name non-storage and non-logging SHA-1

Apple UDID Truncation

Last.fm password non-storage and non-logging MD5

eHarmony password non-storage and non-logging MD5

data do not have full entropy. Email addresses were recovered from Gravatar
digests [2] as well as passwords (see [25] for instance). Apple’s Unique Device
IDs aka UDIDs are no exceptions. They are computed by applying SHA-1 on a
serial number, IMEI or ECID, the MAC address of WiFi and the MAC address of
Bluetooth. The values used to produce a UDID can be guessed and LastPass asks
only for the first 5 characters of UDID. It reduces the amount of information
submitted to the site but the user is not warned if he provides more than 5
characters.

As a general conclusion, the measures taken by these websites are clearly not
adequate to ensure the privacy of users’ queries. In the remainder of the paper, we
evaluate how existing cryptographic and privacy preserving primitives can solve
the problems associated to alerting websites. These privacy-friendly solutions
should guarantee that the websites cannot harvest any new data from a user’s
query.

3 Privacy-Friendly Solutions: Private vs. Public Database

As previously discussed, the existing alerting websites in general do not respect
the privacy of a user and entail huge phishing potential. The need of the hour is
to design privacy-friendly alerting websites. These websites would rely on what
we refer as Private Membership Query protocols – allowing a user to privately
test for membership in a given set/database. Such a protocol would guarantee
that no new data can be harvested from a user’s query.

To this end, two different privacy objectives can be defined depending on the
privacy policy of the database owner. One that we henceforth refer as Private
Membership Query to Public Database, and the other as Private Membership
Query to Private Database. This classification arises due to the fact that most
of these leaked databases are available on the Internet (as hackers have acquired
the database dump) and hence can be considered as public in nature. However,
even though they are public in terms of availability, an ethical hacker might
want to ensure that the leaked information is not used for malicious purposes
and hence the database cannot be accessed in a public manner to consult private
information corresponding to other users. Rendering the database private could
also be of interest for government agencies such as bsi sicherheitstest.bsi.de.

lastpass.com
sicherheitstest.bsi.de

A Survey of Alerting Websites: Risks and Solutions 131

We highlight that a private membership query protocol provides a direct
solution to the problem of designing privacy-friendly alerting websites. A user
wishing to know whether his data has been leaked would be required to invoke
the private membership protocol with the database owner and learns whether he
is a victim of the breach. Thanks to the user’s privacy provided by the protocol,
no new data can then be harvested by the website. Consequently, in the rest of
this work, we concentrate on evaluating solutions for private membership query
problem. In the sequel, we formalize the privacy policies and examine viable
solutions in the two database scenarios.

4 Solutions for Private Databases

The scenario of private membership query to private database involves a private
database DB and a user U . The database DB = {y1, . . . , yn}, where yi ∈ {0, 1}�

consists of n bit-strings each of length �. User U owns an arbitrary string y ∈
{0, 1}�. Private membership query to DB consists in knowing whether or not
user’s data y is present in the database while keeping y private to the user and
DB private to the database.

Adversary model: The client and the database-owner are supposed to be
honest-but-curious i.e. each follows the protocol but tries to learn information
on the data held by the other player.

The above problem is very closely related to the problem of Private Set
Intersection, hence we examine its applicability to designing privacy-friendly
alerting websites.

Private Set Intersection (PSI). PSI protocol introduced by Freedman et al. [13]
considers the problem of computing the intersection of private datasets of two
parties. The scenario consists of two sets U = {u1, . . . , um}, where ui ∈ {0, 1}�

and DB = {v1, . . . , vn},where vi ∈ {0, 1}� held by a user and the database-owner
respectively. The goal of the user is to privately retrieve the set U ∩ DB. The
privacy requirement of the scheme consists in keeping U and DB private to their
respective owner. Clearly, the private membership query to private database
problem reduces to PSI for m = 1.

There is an abounding literature on novel and computationally efficient PSI
protocols. The most efficient protocols are the ones by De Cristofaro et al. [10],
Huang et al. [17] and Dong et al. [12]. The general conclusion being that for
security of 80 bits, protocol by De Cristofaro et al. performs better than the one
by Huang et al., while for higher security level, the latter protocol supersedes
the former. The most efficient of all is the protocol by Dong et al. as it primarily
uses symmetric key operations. We however note that the communication and
the computational complexity of these protocols is linear in the size of the sets.

Private Set Intersection Cardinality (PSI-CA). PSI-CA is a variant of PSI where
the goal of the client is to privately retrieve the cardinality of the intersection
rather than the contents. While generic PSI protocols immediately provide a

132 A. Kumar and C. Lauradoux

solution to PSI-CA, they however yield too much information. While several
PSI-CA protocols have been proposed [13], [19], [16], [29], we concentrate on
PSI-CA protocol of De Cristofaro et al. [9], as it is the most efficient of all. We
also note that PSI-CA clearly provides a solution to the membership problem: if
the size of the intersection is 0, then the user data is not present in the database.

5 Solutions for Public Databases

This scenario is modeled using a public database DB and a user U . The database
as in the previous scenario is DB = {y1, . . . , yn}, where yi ∈ {0, 1}�. User U owns
an arbitrary string y ∈ {0, 1}� not necessarily in DB. Private membership query
consists in knowing whether or not user’s data y is present in the database while
keeping y private to the user.

The difference to the previous problem (Section 4) is that the database in
this context is public. This leads to a trivial solution ensuring absolute privacy
consisting in sending the database to the user, who using the available resources
performs a search on the database. With huge databases of order GB, the trivial
solution is not the most desirable one for low memory devices. In this scenario, a
user would wish to securely outsource the search to the database-owner. In the
following we present tools which provide a solution in the public database case.

5.1 Tools

In the first place we present a protocol called Private Information Retrieval [6],
which is the closest to our needs. In the sequel we present Bloom filter and
finally show that combining these tools allows us to obtain a protocol for private
membership query to public database.

Private Information Retrieval (PIR). PIR first introduced in the semi-
nal work by Chor et al. [6] is a mechanism allowing a user to query a pub-
lic database while keeping his intentions private. In the classical setting of
PIR [6], a user wants to retrieve the bit at index 1 ≤ j ≤ n in a database
DB = {y1, . . . , yn}, where yi ∈ {0, 1}, but does not want the database to learn
j.

Adversary model: The database owner is supposed to be honest-but-
curious.

Since the work by Chor et al., several variants of PIR have been studied which
include Private Block Retrieval (PBR) scheme – where the goal is to retrieve
a block instead of a bit and PrivatE Retrieval by KeYwords (PERKY) [5] –
where the user only holds a keyword kw instead of an index j. While PIR may
either be built on single or replicated database copies, most of the latter works
only consider the more realistic single database scenario. These works improve
on the communication complexity [3,4], [14], [21,22]. The current best bound of
O(log2 n) is independently achieved in [22], [14]. In this work, we only consider
single database protocols. The principle reason being that in our context a user
interacts with only one website.

A Survey of Alerting Websites: Risks and Solutions 133

Bloom Filter. Bloom filter [1] is a space and time efficient probabilistic data
structure that provides an algorithmic solution to the set membership query
problem, which consists in determining whether an item belongs to a predefined
set.

Classical Bloom filter as presented in [1] essentially consists of k independent
hash functions {h1, . . . , hk}, where {hi : {0, 1}∗ → [0,m − 1]}k and a bit vector
z = (z0, . . . , zm−1) of size m initialized to 0. Each hash function uniformly
returns an index in the vector z. The filter z is incrementally built by inserting
items of a predefined set S. Each item x ∈ S is inserted into a Bloom filter by
first feeding it to the hash functions to retrieve k indices of z. Finally, insertion
of x in the filter is achieved by setting the bits of z at these positions to 1.

In order to query if an item y ∈ {0, 1}∗ belongs to S, we check if y has been
inserted into the Bloom filter z. Achieving this requires y to be processed (as in
insertion) by the same hash functions to obtain k indexes of the filter. If any of
the bits at these indexes is 0, the item is not in the filter, otherwise the item is
present (with a small false positive probability).

The space and time efficiency of Bloom filter comes at the cost of false pos-
itives. If |S| = n, i.e., n items are to be inserted into the filter and the space
available to store the filter is m bits, then the optimal number of hash functions
to use and the ensuing optimal false positive probability f satisfy:

k =
m

n
ln 2 and ln f = −m

n
(ln 2)2 . (1)

Membership Query to Bloom Filter: 2-party setting. Let us assume that Alice
wants to check if her value y is included in the Bloom filter z held by Bob. The
easiest way to do so consists for Alice to send y to Bob. Bob queries the filter on
input y. He then sends 0 or 1 to Alice as the query output. If the canal between
Alice and Bob has limited capacity, another strategy is possible and is described
in Fig. 1.

Alice A Bob B
y z

count=0

for i ∈ {1, . . . , k}
ai = hi(y)

ai−−−−−−−−−→ ri = zai

if ri = 1 then count++
ri←−−−−−−−−−

if count=k then YES
else NO

Fig. 1. Verification on a constraint channel.

Alice cannot send y due to some channel constraints but she can send ai =
hi(y), for 1 ≤ i ≤ k. We suppose that Alice and Bob first agree on the hash

134 A. Kumar and C. Lauradoux

functions to be used. Then Alice sends ai to Bob. In reply, Bob returns the bit
at index ai of z to her. If she only receives 1, y is included in z (with a small
false positive probability f) otherwise it is not.

Remark 1. A possible private membership query protocol in the case of private
database can be built by combining PSI/PSI-CA and Bloom filter. The idea
would be to build a Bloom filter corresponding to the database entries and gen-
erate the set DB = supp(z), where supp(z) represents the set of non-zero coordi-
nate indices of z. The client on the other hand generates U = {h1(y), . . . , hk(y)}
for a data y. Finally, the client and the database owner invoke a PSI/PSI-CA
protocol to retrieve the intersection set/cardinality of the intersection respec-
tively. However, this solution is less efficient than a PSI/PSI-CA protocol on the
initial database itself. The reason being the fact that, with optimal parameters
the expected size of supp(z) = m/2 = 2.88kn (see [24] for details) . Hence, the
number of entries of the database in PSI/PSI-CA when used with Bloom filter
is greater than the one of the original database.

We note that despite the similarity of the two problems: PIR and private
membership to public database, PIR stand-alone does not provide a solution to
our problem. Nevertheless, we show that when combined with a Bloom filter,
PIR behaves as a private membership query protocol. Details are given in the
following section.

5.2 Membership Query Using PIR

To start with, we note that classical PIR per se cannot be applied to our context
since the user holding a data (email address, password, etc.) present in a database
does not know its physical address in the database. Furthermore, PIR does not
support non-membership queries as the database is constructed in a predefined
manner and has only finite entries, while the set of all possible queries is infinite.
PERKY resolves the problem of physical address as it only needs kw, and not
the index. However, stand-alone it still suffers from the non-membership issue
for the same reason as that in case of PIR.

Despite these issues, we can still design a private membership query protocol
using PIR as a subroutine and by changing the database representation to Bloom
filters which support non-membership queries as well. The idea then is to invoke
PIR on each query to the filter.

The protocol explained below requires that the database owner builds a
bloom filter z using the entries and a user queries the filter and not the database.

– Database owner builds the Bloom filter z using k hash functions {h1, . . . , hk}.
– User for a data y generates {h1(y), . . . , hk(y)}.
– For each 1 ≤ i ≤ k, the user invokes a single-server PIR on index hi(y) and

retrieves zhi(y).
– If zhi(y) = 0 for any i, then y is not in the database, else if all the returned

bits are 1, then the data is present (with a false positive probability f).

A Survey of Alerting Websites: Risks and Solutions 135

The only difference with the classical use of Bloom filter (Fig. 1) in the protocol
is that the bit is retrieved using PIR.

Remark 2. As in the case of PIR, the database owner in our scenario is honest-
but-curious. This attack model for instance does not allow the database owner to
return a wrong bit to the user. Under this adversary model, the above protocol
modification is private (i.e., keeps user’s data private), if the underlying PIR
scheme is private. PIR hides any single query of the user from the database
owner. Therefore, any k different queries of the user are also hidden by PIR.

5.3 Extension with PBR Protocol

The adapted protocol in its current form requires a bit retrieval PIR scheme.
Nevertheless, it can be easily modified to work even with a block retrieval aka
PBR protocol. The essential advantage of using a PBR protocol instead of a clas-
sical PIR protocol would be to increase the throughput i.e. decrease the number
of bits communicated to retrieve 1 bit of information. In fact, the most efficient
PIR schemes [14], [22] are block retrieval schemes. The modification required to
incorporate PBR would consist in using a Garbled Bloom filter (see [12]) instead
of a Bloom filter. We briefly explain below the garbled Bloom filter construction,
and later we present the modification required.

Garbled Bloom Filter. At a high level Garbled Bloom Filter (k,m,Hk, λ)
GBF [12] is essentially the same as a Bloom filter. The parameter k denotes the
number of hash functions used, while Hk is a family of k independent hash func-
tions as in a Bloom filter. The size of the filter is denoted by m, and λ is the size
of the items to be included in the filter. The difference with respect to a Bloom
filter is that at each index in GBF, a bit string of length λ is stored instead of just
storing the bit 1. In order to include an item y ∈ {0, 1}λ, one randomly generates
k shares {ry

1 , . . . , ry
k},where ry

i ∈ {0, 1}λ such that y = ⊕ir
y
i . As in a Bloom filter,

one then generates the k indices iy1, . . . , i
y
k by computing the hashes as iyj = hj(y)

and truncating them by taking modulo m. Finally, at index iyj of the filter, the bit
string ry

j is stored. Collisions on two values y and y′ for a certain hash function hj

are handled by choosing the same rj for both the values.
To check if a given item is in GBF, one computes the truncated hashes and

retrieves the shares stored at these indices in GBF. If the XOR of these shares
is the same as the given item, then the item is in the filter, or else not. More
details on the probability of collisions and the probability of false positives can
be found in [12].

Private Membership Query using PBR. This protocol essentially follows the
same principle as the one which combines PIR and a Bloom filter. The database
owner now builds a GBF (k,m,Hk, λ) using the entries and a user queries the
GBF instead of the database. Again k PBR invocations are required to retrieve
the k random shares. This adapted protocol is private if the underlying PBR
scheme is private, i.e., does not reveal the user’s queries.

136 A. Kumar and C. Lauradoux

Remark 3. At this juncture, we have two solutions for private membership query
to public database: 1) k invocations of single server PIR/PBR to Bloom fil-
ter/GBF, 2) Send the complete filter for a local query. On one hand, any PIR
based solution only provides computational privacy, has a communication cost,
the best being O(log2 m) and involves cryptographic computations and hence
entails a significant time complexity. While on the other hand sending the fil-
ter ensures absolute privacy, but has a larger communication complexity m bits
(still much better than the trivial PIR i.e., sending the initial database) but has
a very low time complexity (has to invoke the protocol in Fig. 1 locally). Since
the size of the database gets drastically reduced with Bloom filter, this solution
provides a competitive alternative to trivial PIR even for low memory devices.

6 Practicality of the Solutions

We reiterate that a private membership query protocol provides an immediate
solution for designing privacy-friendly alerting websites. For the sake of practi-
cality, any realistic privacy-friendly alerting websites should provide response to
a user’s query in real time. It is hence highly important to evaluate the practi-
cality of the underlying protocol.

We first discuss the practicality of the solutions based on PIR/PBR and
Bloom filter in case of public database and in the sequel we discuss the practi-
cality of PSI/PSI-CA protocol in case of private database.

Since Bloom filter is highly efficient in space and time, the practicality of
PIR/PBR based protocol depends on the practicality of the underlying PIR/PBR
scheme. Hence we first discuss its practicality as perceived in the literature and
later by experimentally evaluating PIR/PBR protocols.

For experimental evaluation, the tests were performed on a 64-bit processor
desktop computer powered by an Intel Xeon E5410 3520M processor at 2.33
GHz with 6 MB cache, 8 GB RAM and running 3.2.0-58-generic-pae Linux. We
have used GCC 4.6.3 with -O3 optimization flag.

6.1 Applicability of PIR

Sion and Carbunar [28] evaluate the performance of single database PIR scheme.
The authors show that the deployment of non-trivial single server PIR protocols
on real hardware of the recent past would have been orders of magnitude less
time-efficient than trivially transferring the entire database. The study primarily
considers the computational PIR protocol of [21]. The authors argue that a PIR
is practical if and only if per-bit server side complexity is faster than a bit
transfer. With a normal desktop machine, trivial transfer (at 10MBps) of the
database is 35 times faster than PIR. This ultimately restricts the use of PIR
protocols for low bandwidths (tens of KBps).

Olumofin and Goldberg [26] refute the general interpretation [28] that no
PIR scheme can be more efficient that the trivial one. Authors evaluate two

A Survey of Alerting Websites: Risks and Solutions 137

multi-server information-theoretic PIR schemes by Chor et al. [6] and by Gold-
berg [15] as well as a single-server lattice-based scheme by Aguilar-Melchor and
Gaborit [23]. The later scheme is found to be an order of magnitude more effi-
cient over the trivial scheme for situations that are most representative of today’s
average consumer Internet bandwidth. Specifically, for a database of size 16 GB,
the trivial scheme outperforms the lattice based scheme only at speeds above
100 Mbps.

6.2 Experimental Analysis

We have implemented two PIR/PBR protocols: 1) Cachin et al. [3], which is
the most efficient (in terms of communication) bit retrieval scheme 2) Aguilar-
Melchor and Gaborit [23] (implemented in parig-gp3) which is the most compu-
tationally efficient PBR protocol. We have also implemented RSA-OPRF PSI
protocol of De Cristofaro et al. [10] and PSI-CA protocol of De Cristofaro
et al. [9]. The existing implementation4 of protocol by Dong et al. [12] seems
not to execute correctly. Even after correcting the initial compilation errors,
the code seems not to be executing the protocol till the end. We hence do not
consider it for our evaluation.

Table 3. Results for the leaked databases using SHA-1. Databases contain single data
for a user, for instance Snapchat contains only username and ignores other auxiliary
leaked information.

Database Size n − log2 f m (MB) Build time (mins) Compress. ratio

Snapchat 49 MB 4609621
128 102 6 0.48
64 52 2 0.94
32 26 1 1.88

LinkedIn 259 MB 6458019
128 142 10 1.82
64 72 3 3.60
32 36 1.5 7.19

Adobe 3.3 GB 153004872
128 412 198 8.20
64 206 72 16.4
32 102 30 33.13

Public Database. The cost of using PIR-based schemes reduces to the cost
of building the filter combined with the cost of k PIR invocations on the filter.
We present the time required to build a Bloom filter for the leaked databases
corresponding to Snapchat, LinkedIn and Adobe in Table 3. The filter is
constructed using SHA-1 which generates 20 bytes’ digest.

From Table 3, we can observe that the filter size grows slowly and that the
computational time of the filter is reasonable. Initially, all the computations are
performed in a sequential manner. We have then distributed the computation
3 pari.math.u-bordeaux.fr/
4 Available at bit.ly/1k75nu6

pari.math.u-bordeaux.fr/
bit.ly/1k75nu6

138 A. Kumar and C. Lauradoux

on 4 computers (with similar characteristics). Parallelizing the creation of the
Bloom filter is straightforward and we nearly achieved a 4× speedup (50 mins).
With a few computers, it is possible to reduce the computational time for creating
the filter to a desired threshold. We further note that building a Bloom filter
involves only a one-time cost.

Despite the space and time efficiency of Bloom filter, the huge cost of PIR
invocation (using the existing primitives) makes such protocols impractical. The
protocol [3] takes over 6 hours in case of Snapchat database for one invoca-
tion. If the probability of false positive is 2−32 i.e. k ≈ 32, the estimated time
for 32 PIR invocations is over 32 × 6 hours i.e. over 8 days. The PBR proto-
col [23], takes around 2 hours for 1 PBR invocation on Snapchat garbled Bloom
filter. The security level considered here is of 100 bits. However, considering the
household network bandwidth of 10 Mbps, the time to download the filter would
take 20 seconds. The time efficiency of the trivial PIR with Bloom filter seems
unmatchable.

Private Database. Table 4 presents results obtained for the PSI protocol by
De Cristofaro et al. [10] for 80 bits of security.

Table 4. Cost for PSI protocol [10]
with 80 bits of security using SHA-1

Database Cost (mins)

Snapchat 48

LinkedIn 68

Adobe 1600

Table 5. Cost for PSI-CA protocol [9]
with 80 bits of security using SHA-1

Database Cost (mins)

Snapchat 9

LinkedIn 12

Adobe 301

As the user’s set has only one data, his computational cost is negligible. To
be precise, a user’s computational cost consists in computing a signature and n
comparisons. The authors in [11] claim that the result of the server’s computation
over its own set can be re-used in multiple instances. Hence, the server’s cost
can be seen as a one-time cost, which further makes it highly practical.

Table 5 presents results obtained using PSI-CA protocol by De Cristofaro
et al. [9]. Recommended parameters of |p| = 1024 and |q| = 160 bits have been
chosen.

Clearly, PSI-CA outperforms PSI by a factor of 5. The reason behind this
performance leap is that the exponents in modular exponentiations are only 160
bits long in PSI-CA as opposed to 1024 bits in PSI.

Table 6 summarizes the results obtained on Snapchat database for f = 2−32.
Clearly, in the public database case, sending the Bloom filter is the most com-
putationally efficient solution. While, in the private database scenario, PSI-CA
provides a promising solution. Comparing the two cases, we observe that the
private database slows down the query time by a factor of 9.

A Survey of Alerting Websites: Risks and Solutions 139

Table 6. Summary of the results on Snapchat with f = 2−32

Cost

Protocol Type Commun. Comput.

Trivial PIR with Bloom filter PIR 26 MB 1 min

Cachin et al. [3] PIR 7.8 KB > 8 days

Melchor et al. [23] PBR 12.6 TB > 2.5 days

De Cristofaro et al. [10] PSI 562 MB 48 mins

De Cristofaro et al. [9] PSI-CA 87.92 MB 9 mins

We highlight that PSI/PSI-CA protocols perform much better than PIR/PBR
protocols. This is counter-intuitive, as in case of PIR the database is public while
in PSI the database is private. A protocol on private data should cost more than
the one on public data. With a theoretical stand-point, there are two reasons why
private set intersection protocols perform better than PIR protocols: 1) the com-
putational cost in PSI/PSI-CA protocols is reduced at the cost of communication
overhead, 2) the size of the security parameter is independent of the size of the
database. More precisely, the communication cost of the most efficient PSI/PSI-
CA protocols [9,10], [17], [12] is linear while the goal of PIR protocols is to achieve
sub-linear or poly-logarithmic complexity. This indeed comes at a cost, for instance
the size of RSA modulus in PSI [10] for 80 bits of security is 1024 bits and hence
independent of the size of the sets involved. While in case of PIR [3], the size of the
modulus used is log3−o(1)(n) bits. Hence for a million bit database, the modulus
to be considered is of around 8000 bits, which leads to a very high computational
cost.

7 Conclusion

In this work, we examined websites alerting users about data leakage. With the
current rate of leakage, these websites will be needed for a while. Unfortunately,
it is currently difficult to determine whether or not these websites are phishing
sites since they do not provide any privacy guarantee to users. Our work exposes
the privacy risks associated to the most popular alerting websites. We further
evaluate how state-of-the-art cryptographic primitives can be applied to make
private query to an alerting site possible. Two different scenarios have been con-
sidered depending on whether the database is public. While PSI/PSI-CA proto-
cols provide a straightforward solution in the private database scenario, a tweak
using Bloom filter transforms PIR/PBR into private membership protocols for
public database.

Our experimental evaluation shows that PSI/PSI-CA protocols perform much
better than PIR/PBR based protocol. This is an encouraging result for the ethical
hacking community or security companies. Yet the cost incurred by these ad hoc
solutions is considerable and hence there remains the open problem of designing
dedicated and more efficient solutions.

140 A. Kumar and C. Lauradoux

Acknowledgements. This research was conducted with the partial support of the
Labex persyval-lab(anr–11-labx-0025) and the project-team SCCyPhy.

References

1. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM 13, July 1970

2. Bongard, D.: De-anonymizing users of french political forums. In: Passwords 2013
(2013)

3. Cachin, C., Micali, S., Stadler, M.A.: Computationally private information retrieval
with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999.
LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999)

4. Chang, Y.-C.: Single database private information retrieval with logarithmic com-
munication. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004.
LNCS, vol. 3108, pp. 50–61. Springer, Heidelberg (2004)

5. Chor, B., Gilboa, N., Naor, M.: Private information retrieval by keywords (1998)
6. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.

In: Annual Symposium on Foundations of Computer Science, FOCS 1995 (1995)
7. Das, A., Bonneau, J., Caesar, M., Borisov, N., Wang, X.: The tangled web of

password reuse. In: Network and Distributed System Security Symposium, NDSS
2014 (2014)

8. de Carné de Carnavalet, X., Mannan, M.: From very weak to very strong: ana-
lyzing password-strength meters. In: Network and Distributed System Security
Symposium, NDSS 2014 (2014)

9. De Cristofaro, E., Gasti, P., Tsudik, G.: Fast and private computation of cardinality
of set intersection and union. In: Pieprzyk, J., Sadeghi, A.-R., Manulis, M. (eds.)
CANS 2012. LNCS, vol. 7712, pp. 218–231. Springer, Heidelberg (2012)

10. De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Proceedings of the 14th International Conference on Financial
Cryptography and Data Security (2010)

11. De Cristofaro, E., Tsudik, G.: Experimenting with fast private set intersection. In:
Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M., Zhang, X.
(eds.) Trust 2012. LNCS, vol. 7344, pp. 55–73. Springer, Heidelberg (2012)

12. Dong, C., Chen, L., Wen, Z.: When private set intersection meets big data: an
efficient and scalable protocol. In: ACM Conference on Computer and Communi-
cations Security (2013)

13. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set
intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 1–19. Springer, Heidelberg (2004)

14. Gentry, C., Ramzan, Z.: Single-database private information retrieval with constant
communication rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer, Heidelberg
(2005)

15. Goldberg, I.: Improving the robustness of private information retrieval. In: IEEE
Symposium on Security and Privacy, 2007. S&P 2007 (2007)

16. Hohenberger, S., Weis, S.A.: Honest-verifier private disjointness testing without
random oracles. In: Danezis, G., Golle, P. (eds.) PET 2006. LNCS, vol. 4258,
pp. 277–294. Springer, Heidelberg (2006)

17. Huang, Y., Evans, D., Katz, J.: Private set intersection: are garbled circuits better
than custom protocols? In: NDSS (2012)

A Survey of Alerting Websites: Risks and Solutions 141

18. Juels, A., Rivest, R.L.: Honeywords: making password-cracking detectable. In:
ACM SIGSAC Conference on Computer and Communications Security, CCS
201313 (2013)

19. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

20. Kontaxis, G., Athanasopoulos, E., Portokalidis, G., Keromytis, A.D.: SAuth: pro-
tecting user accounts from password database leaks. In: ACM SIGSAC Conference
on Computer and Communications Security, CCS 2013 (2013)

21. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: single database,
computationally-private information retrieval. In: Proceedings of the 38th Annual
Symposium on Foundations of Computer Science (1997)

22. Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In:
Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650,
pp. 314–328. Springer, Heidelberg (2005)

23. Melchor, C.A., Gaborit, P.: A fast private information retrieval protocol. In: IEEE
International Symposium on Information Theory, 2008. ISIT 2008 (2008)

24. Mitzenmacher, M.: Compressed bloom filters. In: ACM Symposium on Principles
of Distributed Computing - PODC 2001 (2001)

25. Narayanan, A., Shmatikov, V.: Fast dictionary attacks on passwords using time-
space tradeoff. In: ACM Conference on Computer and Communications Security,
CCS 2005 (2005)

26. Olumofin, F., Goldberg, I.: Revisiting the computational practicality of pri-
vate information retrieval. In: Danezis, G. (ed.) FC 2011. LNCS, vol. 7035,
pp. 158–172. Springer, Heidelberg (2012)

27. Parno, B., McCune, J.M., Wendlandt, D., Andersen, D.G., Perrig, A.: CLAMP:
Practical prevention of large-scale data leaks. In: IEEE Symposium on Security
and Privacy - S&P 2009 (2009)

28. Sion, R., Carbunar, B.: On the Practicality of Private Information Retrieval. In:
NDSS (2007)

29. Vaidya, J., Clifton, C.: Secure set intersection cardinality with application to asso-
ciation rule mining. J. Comput. Secur. 13(4), 593–622 (2005)

Access Control, Trust and Identity
Management

© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 145–158, 2015.
DOI: 10.1007/978-3-319-18467-8_10

A Generalization of ISO/IEC 24761 to Enhance Remote
Authentication with Trusted Product at Claimant

Asahiko Yamada()

National Institute of Advanced Industrial Science and Technology,
1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan

yamada.asahiko@aist.go.jp

Abstract. In this paper, a data structure to enhance remote authentication is
proposed generalizing the concept of ISO/IEC 24761. Current technologies do
not provide sufficient information on products which are used in the authentica-
tion process at the Claimant to the Verifier. As a result, the Verifier cannot suf-
ficiently distinguish the authentication result executed with a trusted product
from that without a trusted product. The difference is made clear if an evidence
data of the execution of authentication process at the Claimant is generated by
the trusted product and used for verification by the Verifier. Data structure for
such a data is proposed in this paper as client Authentication Context (cAC) in-
stance. Relation to other works and extension of the proposal are also described
for further improvement of remote authentication. For this proposal to realize,
standardization activities are to be taken as the next steps.

Keywords: Biometric authentication · Cryptographic Message Syntax (CMS) ·
Digital signature · IC card · Initial authentication · Public Key Infrastructure
(PKI) · Remote authentication · Tamper-resistant device · Trusted device

1 Introduction

In networked IT environments, remote authentication is essential. Remote authenti-
cation is one of the most important elements of the security of innumerous applica-
tions of governmental, commercial, academic systems and so forth and it is applied to
them. Although policy-based authorization makes the Relying Party (RP) possible to
change the service level reflecting the level of assurance of the identity, the level of
trust of the environment of the Claimant where the authentication protocol is executed
is not taken into account appropriately and sufficiently. This paper proposes a me-
chanism with which the Verifier can know the level of trust in the authentication
process executed at the Claimant of remote authentication under the condition that a
trusted product with the digital signature generation function such as a tamper-
resistant IC card is used for authentication at the Claimant. There are two cases for the
activation of the private key, with passphrase or biometrics. Both cases are discussed
in this paper, extending the former to the latter.

146 A. Yamada

2 Current Technologies

Progresses in authentication technologies have been significant in the last decade.
Single Sign-On (SSO) technologies such as Security Assertion Markup Language
(SAML) and OpenID have made general service providers free from authentication
itself and only consume the assertion generated by the Verifier, which is called Identi-
ty Provider (IdP) in SAML and OpenID Provider (OP) in OpendID. While the tech-
nologies in subsequent authentication between the Verifier and the RP, the consumer
of the assertion, have been progressed, the technologies in initial authentication be-
tween the Claimant and the Verifier have been stable. In Web systems, Transport
Layer Security (TLS) protocol including its predecessor Secure Sockets Layer (SSL)
has been dominant for about twenty years and is still the most major and standard
technology. The variation of tokens has not changed, something you know, something
you have, and something you are.

In SAML [1], authentication context is optionally used in assertions to give addi-
tional information for the RP in determining the authenticity and confidence of asser-
tions. Authentication context contains information how the user is authenticated at the
Claimant. Although the IdP generates an authentication context at the initial authenti-
cation, the IdP does not always have sufficiently trustable information about the au-
thentication process at the Claimant in order to generate an authentication context,
considering that the execution environment of the Claimant is not always so suffi-
ciently trustable to the IdP as that of the IdP to the RP. For example, the IdP does
not have sufficient information to judge whether a tamper-resistant IC card with digi-
tal signature function is used at the Claimant or not. It is true that a private key stored
in a tamper-resistant IC card can be distinguished with the qualified certificate speci-
fied in RFC 3739[16] with the qualified certificate statement 5.2.4 in ETSI TS 101
862 [3] which is for secure signature-creation devices with the conditions in Annex III
of Directive 1999/93/EC of the European Parliament and of the Council of 13
December 1999 on a Community framework for electronic signatures [4]. But the
purpose of X.509 certificate itself is to describe the attributes of the user and his/her
public key. So the use of the extension of X.509 certificate in such ways does not
match its original purpose.

Guidelines and requirements on authentication have been also studied well. One of
the most important results in this area is NIST SP 800-63-2 Electronic Authentication
Guideline [13]. It assigns requirements on tokens, token and credential management,
authentication process, and assertions to each Level of Assurance (LoA) from Level 1
to Level 4 each of which was introduced in OMB M-04-04 [14]. Although SP 800-63-
2 requires Level 4 to use Multi-Factor (MF) hardware cryptographic token such as
tamper-resistant cryptographic IC card, any of the current authentication protocols
does not show sufficient evidence that such a token is used at the Claimant. At Level
4, such a protocol may be unnecessary because only in-person registration is allowed
at Level 4 and it can be assured that such a token is issued and used in authentication
process at the Claimant. But in Level 2 and Level 3 to which remote registration is
allowed, it is not evident for the Registration Authority (RA) or the Credential Service
Provider (CSP) whether a public key pair is generated and stored in a tamper-resistant
IC card in registration process or not, and it is not evident either to the Verifier
whether such a product is used in authentication process or not, for example. In Level

 A Generalization of ISO/IEC 24761 to Enhance Remote Authentication 147

2 and Level 3, it would be desirable for the RP to know more information about the
trust level of the authentication process executed at the Claimant. Then the RP can
provide its services according to the level of trust.

In the area of biometric authentication, a similar motivation and the solution can be
found in ISO/IEC 24761 Authentication Context for Biometrics (ACBio) [10]. The
work in this paper is a generalization of the idea in ISO/IEC 24761.

In the following, terms and definitions in SP 800-63-2 are basically applied unless
otherwise specified.

3 ISO/IEC 24761, A Related Work in Biometric Authentication

ISO/IEC 24761 referred as ACBio is an enhancement using evidence data generated
by execution environment for biometric authentication while this proposal is that for
PKI based authentication.

ACBio is a solution to the technological issues of biometric authentication used in
the Internet environment. The issues are listed in the threat analysis done in [15] and
they are categorized into three. The first is that subprocesses may be replaced with
malware. Here a subprocesses is an execution component in biometric authentica-
tion, namely data capture to sense human body to output raw biometric sample, in-
termediate signal processing to process raw biometric sample to intermediate
processed biometric sample, final signal processing to process intermediate biometric
sample to processed biometric sample, storage to store and retrieve enroled biometric
reference template , biometric comparison to compare and calculate the score of simi-
larity of processed biometric sample to biometric reference template, or decision to
decide match or non-match from the score. The second is that the enroled biometric
reference template may be replaced with that of another person such as an attacker.
The last is that the data transmitted between subprocesses may be replaced with
another data.

ACBio has solved these issues by generation and verification of evidence data of
the executed biometric processing under the assumption that trusted biometric prod-
ucts are used. Authentication using the specification of ACBio is called ACBio au-
thentication. A trusted biometric product is called a Biometric Processing Unit (BPU)
in ACBio.

In production process, the BPU manufacturer has to generate the BPU report to
BPU product in ACBio authentication. In the BPU report which is a data of type
SignedData digitally signed by the BPU manufacture, information about the BPU
such as the modality which the BPU processes, the subprocesses implemented and the
data flow in the BPU are contained. In ACBio authentication, a key pair for the BPU
is generated and the X.509 certificate for the public key of the BPU is issued. The
data generated at production process are all stored in the BPU.

At registration process, Biometric Reference Template (BRT) certificate is issued
to BRT by BRT certificate authority in ACBio authentication. The BRT certificate is
a digitally signed data by a BRT certificate authority and links a BRT to a user. For
privacy reasons, the BRT certificate does not contain the BRT itself but contains the
hash value of the BRT. There is an evidence data named ACBio instance for
enrolment, which is digitally signed with the private key of the BPU, to show the

148 A. Yamada

generation and storage of the BRT is securely done in the BPU. In ACBio authentica-
tion, each BPU used in the enrolment generates its ACBio instance for enrolment. The
ACBio instances for enrolment show the BPUs used in the enrolment and the integrity
of the data transmitted between the BPUs if the enrolment is done with multiple
BPUs. The ACBio instances for enrolment are optionally set in the BRT certificate.
From the ACBio instances for enrolment, the BPU where the BRT is stored is also
identified. ACBio instances for enrolment may be used to check whether the enrol-
ment satisfies the security requirement or not by the BRT certificate authority to issue
the BRT certificate, and also by the Verifier later in authentication process, depending
on the security policies of the BRT certificate authority and the Verifier respectively.

Fig. 1. Simplified data structure of ACBio instance

At authentication process, ACBio authentication assumes challenge response me-
chanism. An ACBio instance is generated in each BPU which takes part in biometric
authentication process. Fig. 1 overviews the data structure of ACBio instance.

An ACBio instance contains the BPU report. This gives information to the Verifier
about the product which executes authentication protocol at the Claimant.

The triple of the challenge which is called Control Value in ACBio, the Biometric
Process Block, and the BRT certificate, which is contained only if the BPU stores the
BRT, is contained in an ACBio instance. This shows that the authentication process at
the Claimant is successfully executed.

ACBio instance

BPU report

BRT certificate (optional)

Information about BPU

X.509 certificate of BPU manufacturer

Signature value

Information about BRT

X.509 certificate of BRT certificate authority

Signature value

X.509 certificate of BPU

Signature value

Challenge

Biometric Process Block
(Information about the data transmitted between BPUs)

ACBio instance for enrolment (optional)

 A Generalization of ISO/IEC 24761 to Enhance Remote Authentication 149

The ACBio instance contains all the data mentioned above and the digital signature
of those with the private key of the BPU. This gives the evidence of the successful
execution of the authentication protocol done at the Claimant.

Toshiba Solutions Corporation in Japan has already implemented ACBio authenti-
cation into a product. Using this product, its customer company has built an in-house
system.

The idea of ACBio enhances biometric authentication used in the Internet but the
name ACBio (Authentication Context for Biometrics) is inappropriate. As written in
2, authentication context in SAML is information in assertions, i.e., information sent
from the Verifier to the RP while ACBio instance is not but is sent form the Claimant
to the Verifier. In this context, the name cAC (client Authentication Context) is used
in this paper.

4 Problem Definition

In an environment where a trusted product is not used at the Claimant for PKI based
authentication protocol, there may be possibilities that the private key is compro-
mised, i.e., an attacker may get and misuse it for spoofing. When a trusted product is
used, it will be assured that the private key is not stolen under certain conditions, as
assumptions listed in 5. There should be an authentication protocol for the Verifier to
distinguish the above two cases.

5 Assumptions

In this paper, suppose that the trusted products considered have the following assump-
tions.

(A) The trusted product has digital signing function.
(B) The trusted product has generation function of public key pairs.
(C) The private key embedded in production process or generated in the trusted

product cannot be exported.
(D) The trusted product has a function to manage the triples of private key, pub-

lic key, and X.509 certificate of the public key.
(E) The trusted product can digitally sign only with a private key embedded in

production process or one generated in the trusted product.
(F) The trusted product has functions proposed in this paper for authentication

process.
In addition to the above assumption to the trusted products, assume that the whole

production process of trusted products is trusted. Therefore the private key embedded
to the trusted product is never leaked in the production process.

The assumptions (A) and (D) are necessary to generate data such as SignedData in
a product. If a trusted product can digitally sign with an imported private key, then the
private key may have been already compromised before it is imported. Therefore
the assumption (E) is necessary to assure that the digital signature is generated by the
trusted product. To assume (E), the private key has to be generated in production

150 A. Yamada

process or it has to be generated in the trusted product after production process.
Therefore the assumption (B) is necessary. Without (C) the private key may be mi-
sused.

These assumptions are appropriate since tamper-resistant PKI cards conformant to
ISO/IEC 7816-4 [5] and 8 [6] satisfy (A) to (E). The implementation of (F) is not
difficult as is to be seen later.

In the following, the detailed communication protocol including negotiation is not
discussed.

6 Proposal

In this paper, a data structure named client Authentication Context (cAC) is proposed
to enhance the PKI based authentication protocol under the condition that a trusted
product with assumptions from (A) to (F) is used at the Claimant. Hereafter a trusted
product with the assumptions is called a cAC product and authentication using cAC is
called cAC authentication. The cAC authentication enables the Verifier to judge
whether a cAC product is used for the authentication process or not. In short, this is
done with a combination of product authentication and user authentication techniques,
PKI based user authentication assured by PKI based product authentication. Authenti-
cation protocol for cAC authentication is also discussed. The problem cannot be
solved only with the authentication protocol but with a series of processes beginning
from the production process as in ACBio. This proposal tries to give a solution to the
problem as universal as possible.

6.1 Production Process

In the production process of cAC products, the cAC product manufacturer needs sev-
eral procedures for cAC authentication afterwards.

The cAC product manufacturer has to generate its public key pair and have the
X.509 certificate issued in advance. The private key is used to digitally sign cAC
product report which gives information about the cAC product. Digitally signed by
the cAC product manufacturer, cAC product report becomes a trusted data if there is
an assumption that the Verifier trusts the cAC product manufacturer. Hereafter
certificateMnf denotes the X.509 certificate of the cAC product manufacturer.

In the following, type means ASN.1 type.
For generation of cAC product report, a type SignedData, specified in RFC

3852 [17] /RFC 5911 [18] Cryptographic Message Syntax (CMS), is applied. In
SignedData, the signed object is the field encapContentInfo of type
EncapsulatedContentInfo which consists of two fields. The first is a field to
indicate the data type of the data which is DER encoded in the second field. To indi-
cate the data type, OBJECT IDENTIFIER type is used. The second is the content
itself carried as an octet string whose data type is identified with the first field.

There are some categories of cAC products. For example, in a category, a cAC
products activates the private key with a passphrase, in another it may activate the
private key with biometric authentication. Here only the former category is discussed.
The latter will be discussed later.

 A Generalization of ISO/IEC 24761 to Enhance Remote Authentication 151

There is another categorization of products into a category of software and one of
hardware.

The type identifier for the content of cAC product report is defined as
id-content-cPR-passphrase of type OBJECT IDENTIFIER. The corres-
ponding content type ContentCPRPassphrase identified by id-content-
cPR-passphrase, is define to have four fields. The first field productType
gives information that the product is a software or hardware product. The second field
levelCMVP is to show the level of Cryptographic Module Validation Program spe-
cified in FIPS 140-2 [12] and ISO/IEC 19790 [9] if the cryptographic module in the
cAC product is certified. The third reqLengthPassPhrase and fourth
minLength are a field to show whether there is a requirement for the length of
passphrase, and a field for the required minimal length of passphrase if there is. With
the above information, the Verifier knows the extent to which it can trust the cAC
product. In ASN.1 notation, ContentCPRPassphrase is specified as follows:

ContentCPRPassphrase :: = SEQUENCE {
 productType ProductType,
 levelCMVP LevelCMVP,
 reqLengthPassPhrase BOOLEAN,
 minLength INTEGER OPTIONAL}
ProductType ::= ENUMERATED {
 software (0),
 hardware (1) }
LevelCMVP ::= ENUMERATED {
 none (0),
 level1 (1),
 level2 (2),
 level3 (3),
 level4 (4) }

Let SIGNEDDATA(eCTypeID, ContentType) denote a type which is derived
from SignedData where the fields eContentType in encapContentInfo
is specified to take eCTypeID and eContent in encapContentInfo is
OCTET STRING of the DER encoding of a data of type ContentType.

Then a type CACProductReport for cAC product report is defined as
SIGENDDATA(id-content-cPR-passphrase, ContentCPRPassphrase).
A data of this type shall be digitally signed with the private key of a cAC product manu-
facturer. Therefore certificateMnf is set in one of certificates in the cAC product
report.

At the last of production process of cAC product, a public key pair shall be generated
and the X.509 certificate for the public key, which is denoted by certificatePrd
hereafter, shall be issued. In the X.509 certificate, the field subject of type Name in the
field tbsCertificate of type TBSCertificate shall contain the name of the
cAC product and that of the cAC product manufacturer. The name of the cAC product
manufacturer in the field subject shall be the same as that in the field subject in
the X.509 certificate of the cAC product manufacturer in the cAC product report. The
public key pair and the X.509 certificate shall be stored in the cAC product together
with the already generated cAC product report.

152 A. Yamada

6.2 Registration Process

To become a Claimant in PKI based authentication process, a user has to generate the
public key pair and get the X.509 certificate. It is also the same in cAC authentication,
but the Claimant has to generate the key pair in the cAC product. Otherwise, if the
public key pair is generated outside the cAC product, the imported key pair cannot
generate digital signature because of assumption (E).

There is no corresponding data in cAC authentication to the ACBio instance for
enrolment. There seems to have to be “key generating context” in cAC authentication.
But it is redundant because the private key used in authentication process is assured to
have been generated in the same cAC product in registration process by assumptions
(B) and (E). Furthermore it is assured that the digital signature is generated in the
cAC product by assumption (C) and (E).

6.3 Authentication Process

In the cAC product, the pair of the private key and X.509 certificate for the cAC
product, the pair of the private key and X.509 certificate for the user, and the cAC
product report are stored before the authentication process starts. With these data, a
cAC instance, an evidence data of the cAC authentication process at the Claimant, is
defined. In this paper, challenge response mechanism is assumed to be applied in the
authentication protocol in order to prevent replay attacks. This assumption is appro-
priate since most of the protocols used in remote authentication apply challenge re-
sponse mechanism. But before defining the authentication protocol, the data structure
is defined.

A type ChallengeSignedByUser is defined as SIGNEDDATA(id-data,
OCTET STRING). When the Claimant receives a challenge from the Verifier, a data
of type ChallengeSignedByUser is generated at the Claimant setting the chal-
lenge of type OCTET STRING into eContent and digitally signing with the user’s
private key which is activated with a passphrase input by the user. Hereafter a data of
type ChallengeSignedByUser is called a CSBU. A type ContentClientAC
identified by the type identifier id-contentClientAC is defined as:

ContentClientAC :: = SEQUENCE {
 cACProductReport CACProductReport,
 challengeSignedByUser ChallengeSignedByUser }

Then a type ClientACInstance is defined as:
SIGNEDDATA(id-contentClientAC, ContentClientAC). To generate a
cAC instance of type ClientACInstance, the cAC product report and the data of
ChallengeSignedByUser generated as in the above are used. For digital sign-
ing, the private key of the cAC product is used. Therefore the X.509 certificate set in
certificates in the cAC instance is certificatePrd. Fig. 2 shows a simplified data
structure of cAC instance where shaded boxes indicate data specified in RFC 3852.

 A Generalization of ISO/IEC 24761 to Enhance Remote Authentication 153

Fig. 2. Simplified data structure of cAC instance

At the Verifier, a cAC instance is verified as follows:
(1) The Verifier checks the cAC product report. This consists of signature verifi-

cation, checking of the product type, the level of cryptographic function, and the
passphrase policy implemented on the cAC product. By checking the cAC product
report, the Verifier can know if the cAC product satisfies the authentication policy of
the RP for example, and that the cAC product is manufactured by the cAC product
manufacturer with the X.509 certificate in the cAC product report.

(2) The Verifier checks the CSBU. The Verifier can know whether there was a
replay attack or not by checking the challenge in the CSBU, and whether the Claimant
generated the digital signature or not. The digital signature of the challenge is verified
with the public key in the X.509 certificate in the CSBU.

(3) The Verifier verifies the digital signature of the cAC instance. With this veri-
fication, the Verifier can conclude that the Claimant has done the authentication
process in the cAC product because the digital signature has been calculated with
the private key of the cAC product which has been stored in the cAC product since
key generation because of assumptions from (A) to (E). This solves the problem
stated in 4.

Fig. 3 summarizes all the operations in all the processes that are proposed in this
paper. In the region of processing in cAC product in Fig.3, surrounded by the dotted
line, the relations of "contained" and "digitally sign" are assured by the assumption
from (A) to (F). These make the evidence of the execution of authentication process
in cAC product trusted.

cAC instance

cAC product report

CSBU

Data of type ContentCPRPassphrase

X.509 certificate of cAC product manufacturer

Signature value

Challenge

X.509 certificate of user

Signature value

X.509 certificate of cAC product

Signature value

154 A. Yamada

Fig. 3. Trust relation in cAC authentication

7 Considerations

7.1 Comparison with the Qualified Certificate Model

The qualified certificate can be used to show that the private key paired to the public
key to which the certificate is issued is stored and used in a trusted product. If a vul-
nerability of the trusted product concerning the storage of the private key is found,
then all the qualified certificates to the users who use the trusted product to digitally
sign with have to be revoked while only one cAC product report of the trusted product
has to be invalidated in the proposed model. There is a big difference in efficiency of
the validation process at the Verifier. For the CA to revoke the qualified certificates,
the information about the trusted product has to be stored to each of the qualified
certificates issued.

The qualified certificate does not show which trusted product the private key is
stored and used in. As a result, the Verifier can know nothing about the trusted prod-
uct used in the authentication process and can give less information about the authen-
tication process to the RP than in the proposed model. This information to the RP is
important for policy-based authorization. Therefore the proposed model is more ap-
propriate for the policy-based authorization than the qualified certificate model.

7.2 Application of the Proposal to ITU-T X.1085 | ISO/IEC 17922 BHSM

In ITU-T SG 17 and ISO/IEC JTC 1/SC 27, a project to make a common text on Bio-
metric Hardware Security Module (BHSM) is going on. It is at Committee Draft stage

Private keys of CAs

key pair

cAC product
report key pair

cAC

challenge

digitally sign

digitally sign

X.509
ceritificate

X.509
ceritificate

digitally sign

digitally sign

digitally sign

key pair
X.509

certificate

contained

contained

CSBU

contained

digitally sign contained

contained

digitally sign

contained

contained

Su
bj

ec
ts

Production Registration Authentication
Verifier

user
(Claimant)

cAC product

cAC product
manufacturer

CA of X.509
certificate

Region of processing in cAC product

 A Generalization of ISO/IEC 24761 to Enhance Remote Authentication 155

in SC 27 at the time of writing this paper. A typical example of BHSM is a PKI card in
which the private key is activated by biometric authentication. To show that a BHSM is
used in the authentication process, cAC can be applied with modification where the
modification depends on the security policy on authentication. If only the modality used
has to be known by the Verifier, then replacement of ContentCPRPassphrase in
CACProductReport with ContentCPRBiometicsSimple, which is defined as
follows, suffices to apply cAC to BHSM:

ContentCPRBiometicsSimple ::= SEQUENCE {
 productType ProductType,
 levelCMVP LevelCMVP,
 biometricType BiometricType,
 biometricSubype BiometricSubtype OPTIONAL }

Here BiometricType and BiometricSubtype are types for modalities defined
in ISO/IEC 19785-3 [8]. This is the simplest case of the application of cAC to BHSM.

If the Verifier needs to validate the biometric authentication executed in the BHSM
through the authentication protocol, the combination of cAC and ACBio will be re-
quired. This is the most complex case of the application of cAC to BHSM. To deal
with this issue, ContentCPRBiometicsFull shall be defined as follows to re-
place ContentCPRBiometicsSimple:

ContentCPRBiometicsFull ::= SEQUENCE {
 productType ProductType,
 levelCMVP LevelCMVP,
 bpuFunctionReport BPUFunctionReport,
 bpuSecurityReport BPUSecurityReport}

Here BPUFunctionReport and BPUSecurityReport are types defined in
ACBio to show the specification of function and security of BPU. In this case, a
BHSM is also considered as a BPU from the view point of ACBio. A cAC product
report with ContentCPRBiometicsFull is regarded as an extension of BPU
report with two fields, productType and levelCMVP, added to the data structure
of BPUReportContentInformation in a BPU report.

In registration process, X.509 certificate and BRT certificate shall be issued. The is-
suance of these two types of certificate will be done at different TTPs. In ACBio, har-
monization with PKI authentication has been considered. When both PKI and biome-
trics are used, the X.509 certificate shall be issued before the BRT certificate is issued.
From a BRT certificate, the corresponding X.509 can be referenced with the field
pkiCertificateInformation of type PKICertificateInformation in
the BRT certificate. This correlates PKI authentication and biometric authentication.

156 A. Yamada

Fig. 4. Simplified data structure of extended cAC instance

In authentication process, extended cAC instance whose data structure is depicted
in Fig.4 shall be used. The extended cAC instance can be also regarded as extended
ACBio instance. If it is regarded as extended ACBio instance, the BPU report and the
control value shall be replaced with the above defined cAC product report and CSBU
respectively. With this extended cAC instance (or extended ACBio instance), cAC
authentication and ACBio authentication are unified.

7.3 Future Works

In this paper, there is an assumption that the Verifier trusts the cAC product manufac-
turer. This is a strong assumption because it is difficult for the Verifier to know all the
cAC product manufacturers that are trusted beforehand. It is desirable to weaken this
assumption.

For security evaluation and certification of products, there is a scheme Common
Criteria (CC) [2] which is also internationally standardized as ISO/IEC 15408 [7]. In
the CC world, there is a movement to specify collaborative Protection Profile (cPP) to
share security requirements for certain categories of security related products. At the
time of writing this paper, Full Disk Encryption cPPs are posted for comments. For
informing security features of a CC certified product, it is appropriate to show the
cPPs which the product conforms to because cPPs are security requirements.

extended cAC instance /extended ACBio instance

extended cAC product report/extended BPU report

BRT certificate (optional)

Data of type ContentCPRBiometicsFull

X.509 certificate of cAC product/BPU manufacturer

Signature value

X.509 certificate of cAC product/BPU

Signature value

Biometric Process Block

CSBU
Challenge

X.509 certificate of user

Signature value

 A Generalization of ISO/IEC 24761 to Enhance Remote Authentication 157

Let CPPsConformantTo be a type defined as follows:

 CPPsConformantTo ::= SEQUENCE OF IdentifierCPP
 IdentifierCPP ::= OBJECT IDENTIFIER

Here IdentifierCPP is used to assign an object identifier to a cPP. Then the type
CPPsConformantTo can mean a set of cPPs which a CC certified product con-
forms to. Let ContentCCCertificate be a type defined as follows:

ContentCCCertificate::= SEQUENCE {
 nameProduct Name,
 cPPsConformantTo CPPsConformantTo }

and let id-content-CCCertificate be the object identifier for the type
ContentCCCertificate. Then the type CCCertificate defined as
SIGNEDDATA(id-cPPs-ConformantTo,CPPsConformantTo) is used to
express a CC certificate of a product if the private key of a CC certificate authority is
used to digitally sign in generating a data of this type. The operation of the verifica-
tion of this digital CC certificate will be easy to deal with for the Verifier since it
needs to prepare only seventeen X.509 certificates in advance as there are only seven-
teen CC certification authorities worldwide (See http://www.commoncriteriaportal.
org/ccra/members/). If signed CC certificate is standardized, the Verifier only needs
to trust seventeen CC certification authorities. This will weaken the assumption stated
at the beginning of this subsection. When CCCertificate becomes commonly
used, the redefinition of type ContentCPRPassphrase adding a new field of type
CCCertificate will make the cAC product report a more trustable data to the
Verifier.

As is written at the end of 5, the communication protocol including negotiation is
not discussed and to be specified in the next step. Adding new authentication contexts
corresponding to cAC authentications to the OASIS standard related to authentication
context is also necessary.

8 Conclusion

A new data cAC instance is proposed to improve the authentication process between
the Claimant and the Verifier in remote authentication by giving the evidence data of
execution of authentication process at the Claimant. To realize this proposal, standar-
dization activities on the specification of cAC instance, the authentication protocol
applying cAC authentication are necessary as the next steps.

Acknowledgement. The author appreciates Mr. Tatsuro Ikeda of Toshiba Solutions Corpora-
tion for a lot of discussions related to this work. Without these discussions, the author could not
have reached the basic concept of this proposal.

158 A. Yamada

References

1. Advancing open standards for the information society (OASIS). Authentication Context
for the OASIS Security Assertion Markup Language (SAML) V2.0, OASIS Standard
(2005)

2. Common Criteria Recognition Arrangement. Common Criteria for Information Technolo-
gy Security Evaluation, Part 1: Introduction and general model, September 2012, Version
3.1 Revision 4, CCMB-2012-09-001 (2012)

3. Directive 1999/93/EC of the European Parliament and of the Council of 13 December
1999 on a Community framework for electronic signatures (2000)

4. European Telecommunications Standards Institute (ETSI). ETSI TS 101 862 V1.3.1 Quali-
fied Certificate profile (2004)

5. International Organization for Standardization (ISO), International Electrotechnical Com-
mittee (IEC). ISO/IEC 7816-4:2013, Identification cards – Integrated circuit cards — Part
4: Organization, security and commands for interchange (2013)

6. International Organization for Standardization (ISO), International Electrotechnical Com-
mittee (IEC). ISO/IEC 7816-8:2004, Identification cards – Integrated circuit card — Part
8: Commands for security operations (2004)

7. International Organization for Standardization (ISO), International Electrotechnical Com-
mittee (IEC). ISO/IEC 15408-1:2009, Information technology — Security techniques —
Evaluation criteria for IT security — Part 1: Introduction and general model (2009)

8. International Organization for Standardization (ISO), International Electrotechnical Com-
mittee (IEC). ISO/IEC 19785-3:2007, Information technology — Common Biometric
Exchange Formats Framework — Part 3: Patron format specifications (2007)

9. International Organization for Standardization (ISO), International Electrotechnical Com-
mittee (IEC).ISO/IEC 19790:2012, Information technology — Security techniques —
Security requirements for cryptographic modules (2012)

10. International Organization for Standardization (ISO), International Electrotechnical Com-
mittee (IEC). ISO/IEC 24761:2009, Information technology — Security techniques —
Authentication context for biometrics (2009)

11. International Organization for Standardization (ISO), International Electrotechnical Com-
mittee (IEC). ISO/IEC 24761:2009/Cor 1:2013 (2013)

12. National Institute of Standards and Technology (NIST). Federal Information Processing
Standardization (FIPS) 140-2 (2001)

13. National Institute of Standards and Technology (NIST). NIST Special Publication (SP)
800-63-2 Electronic Authentication Guideline (2013)

14. Office of Management and Budget (OMB). E-Authentication Guidance for Federal Agen-
cies, M-04-04 (2003)

15. Ratha, N.K., Connell, J.H., Bolle, R.M.: A biometrics-based secure authentication system,
Proc. of IEEE Workshop on Automatic Identification Advanced Technologies (AutoId
99), Summit, NJ, pp. 70-73 (1999)

16. Santesson, S., Nystrom, M., Polk, T.: Requests for Comments (RFC) 3739, Internet X.509
Public Key Infrastructure: Qualified Certificates Profile, The Internet Engineering Task
Force (IETF) (2004)

17. Housley, R.: Requests for Comments (RFC) 3852, Cryptographic Message Syntax (CMS),
The Internet Engineering Task Force (IETF) (2004)

18. Hoffman, P., Schaad, J.: Requests for Comments (RFC) 5911, New ASN.1 Modules for
Cryptographic Message Syntax (CMS) and S/MIME, The Internet Engineering Task Force
(IETF) (2010)

Enhancing Passwords Security Using Deceptive
Covert Communication

Mohammed H. Almeshekah(B), Mikhail J. Atallah,
and Eugene H. Spafford

Computer Science Department and CERIAS, Purdue University,
305, N. University St., West Lafayette, IN 47907, USA

{malmeshe,spaf,matallah}@purdue.edu
https://www.cs.purdue.edu/

Abstract. The use of deception to enhance security has shown promising
results as a defensive technique. In this paper we present an authentication
scheme that better protects users’ passwords than in currently deployed
password-based schemes, without taxing the users’ memory or damag-
ing the user-friendliness of the login process. Our scheme maintains com-
parability with traditional password-based authentication, without any
additional storage requirements, giving service providers the ability to
selectively enroll users and fall-back to traditional methods if needed. The
scheme utilizes the ubiquity of smartphones; however, unlike previous pro-
posals it does not require registration or connectivity of the phones used.
In addition, no long-term secrets are stored in any user’s phone, mitigat-
ing the consequences of losing it. Our design significantly increases the
difficulty of launching a phishing attack by automating the decisions of
whether a website should be trusted and introducing additional risk at
the adversary side of being detected and deceived. In addition, the scheme
is resilient against Man-in-the-Browser (MitB) attacks and compromised
client machines. We also introduce a covert communication mechanism
between the user’s client and the service provider. This can be used to
covertly and securely communicate the user’s context that comes with
the use of this mechanism. The scheme also incorporates the use of decep-
tion that makes it possible to dismantle a large-scale attack infrastructure
before it succeeds. As an added feature, the scheme gives service providers
the ability to have full-transaction authentication.

With the use of our scheme, passwords are no longer communicated
in plaintext format to the server, adding another layer of protection
when secure channels of communication are compromised. Moreover, it
gives service providers the ability to deploy risk-based authentication.
It introduces the ability to make dynamic multi-level access decisions
requiring extra authentication steps when needed. Finally, the scheme’s
covert channel mechanisms give servers the ability to utilize a user’s con-
text information — detecting the use of untrusted networks or whether
the login was based on a solicitation email.

Keywords: Authentication · Smartphone · Deception · Covert channel

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 159–173, 2015.
DOI: 10.1007/978-3-319-18467-8 11

160 M.H. Almeshekah et al.

1 Introduction

A recent American Banking Association (ABA) report identified internet bank-
ing as the preferred method for customer banking [4]: 62% of customers named
online banking as their preferred banking method, a substantial rise from 36%
in 2010. At the same time, phishing has been an increasing threat — rising at an
alarming rate despite all the security mechanisms banks have in place. Criminals
have been stealing money by means of exploiting the ubiquity of online banking.
It is estimated that the Zeus trojan alone resulted in $70 million dollars stolen
from bank accounts [22]. Many of the currently deployed two factor authenti-
cation schemes by banks remain vulnerable to a number of attacks [17]. Zeus
managed to bypass two factor authentication schemes employed by banks [22].
Adham et al. presented a prototype of a browser add-ons that, even with two
factor authentication, can successfully manipulate banking transactions on-the-
fly [1]. There is clearly a need to improve the currently deployed schemes and
address their shortcomings.

Deployed schemes need to tackle the issues of stolen credentials and phishing,
and to mitigate man-in-middle (MitM) and man-in-the-browser (MitB) attacks –
we discuss these two attacks in the next section. In this paper we present a
mechanism that address these challenges. The scheme has the following desirable
characteristics:

1. It automates the decision whether a website should be trusted before the
user submits her password. This enhances the ability to detect, and further
deceive, an adversary launching a phishing attack by increasing the risk of
conducting such attacks.

2. Resilience against the common case of using an untrusted computer and/or
network for a login session (e.g., at a hotel lobby or using a guest-account
when visiting another organization).

3. A hidden/covert channel facility to convey information to the server about
the current authentication context. This can be utilized by the user herself
and/or her client – without user involvement. Users can convey their status
or doubts they harbor about the trustworthiness of the computer or network
they are using for the login session. Users often know that an activity is
hazardous yet engage in it nevertheless because of perceived necessity (they
need to check their account balance, even in unsafe circumstances). The bank
can use this user-conveyed information to grant limited access (e.g., reading
account balances and paying utility bills but not carrying out transfers to
other bank accounts).

4. Unlike previous schemes, our use of smartphones does not necessitate storing
any permanent information on the phone, does not require the phone to have
network connectivity or ability to communicate with the computer, and does
not require the phone to be registered. It merely uses the smartphone’s
computing capability.

5. The user-friendly covert channel facility facilitates the use of honeyaccounts
through which service providers can learn about the attackers, their methods
of operation, which other banks and laundering accounts they use, etc.

Enhancing Passwords Security 161

Throughout the paper we are using the notion of a bank generically, for two
reasons. First, banking is one of the prominent use-cases necessitating the use of
secure authentication. Second, banks are quickly becoming the target of choice
for malfeasance by evildoers. The scheme we propose is, of course, more generally
applicable.

2 Background

2.1 Authentication Schemes

We are concerned with two general classifications of attacks against client-server
communication: man-in-the-middle (MitM) and man-in-the-browser (MitB) as
shown in figure 1. In the former case, the adversary places herself in the com-
munication channel between the user’s computer and the server. End-to-end
encryption schemes, such as SSL/TLS and IPSec, are intended to address this so
that the adversary cannot observe or alter the data in the communication chan-
nel. Attackers overcome this protection by forcing the user to have an end-to-end
encrypted channel with them instead of the real server, which is the case in phish-
ing attacks. In the latter case, MitB, the attacker places herself between the user
and his computer by altering the interface (browser) and manipulates the infor-
mation displayed to the user in real-time. In this case even if the user employs
an end-to-end encryption scheme, such as SSL/TLS, the attacker accesses the
information when it is decrypted and can actively modify it before it is shown
to the user.

Fig. 1. Man-in-the-Middle (MitM) vs. Man-in-the-Browser (MitB)

Adham et al. identified three main authentication schemes built on the
traditional username and password in the area of online banking [1]. These
schemes are one-time password (OTP), partial transaction authentication, and
full transaction authentication. They have shown that OTP schemes such as
HMAC-Based One-time Password (HOTP) [18] or Time-based One-time Pass-
word (TOTP) [19] are not secure against active man-in-the-middle attacks
(MitM) or man-in-the-browser (MitB) attacks [1]. The former can be orchestrated

162 M.H. Almeshekah et al.

using an active phishing attack, in which the adversary immediately uses the
stolen credentials to impersonate the user to the bank, while the latter can be
seen, as an example, in the Zeus trojan.

To address the problem of active MitB attacks, banks started to use transac-
tion authentication [1,7]. The Chip Authentication Program (CAP) introduced
by many banks requires a piece of dedicated hardware, and its protocol has a
number of vulnerabilities [7]. A number of these hardware devices degrade the
full transaction authentication to authenticate only part of the transaction, as a
consequence of usability challenges [1]. CrontoSign [8] is a smartphone-based full-
transaction authentication that uses the smartphone to verify the information.
The scheme requires a new phone registration process that stores information
on the phone, which makes the user vulnerable if her phone is compromised or
stolen. In addition, it ties the user to a specific phone, hindering the usability of
the scheme if the user does not have this particular phone at transaction time.
Moreover, this scheme only deals with transaction authentication, and does not
focus on providing enhanced user authentication.

Full transaction authentication gives a bank the ability to ask the user to
confirm her banking transaction to detect if MitB attacks are taking place and
modifying the transaction on-the-fly. It is an essential step to enhance the secu-
rity of online banking, as pointed out by Adham et al. [1]. The scheme we
present in this paper achieves such goals without the need for additional hard-
ware, as in CAP [7] or hPIN/hTAN [15], or for a long term secret stored in the
user’s smartphone. It also has the other features mentioned earlier, of covertly
conveying information to the bank and supporting deceiving the adversary (hon-
eyaccounts).

2.2 Use of Smartphones

Clarke et al. were the first to suggest the use of a camera-based device when con-
necting from untrusted computers [6]. While they did not explicitly discuss the
use of QR codes, their paper is considered seminal in this approach of enhancing
authentication. A number of follow-on proposals presented other camera-based
schemes, using smartphones and other devices to improve authentication (see,
e.g., [11,13,14,16,20,23], to mention a few).

Each one of these schemes suffers from one or more of the following short-
comings; (i) requiring an extra piece of hardware; (ii) storage of long-term secret
on the smartphone; (iii) requiring a new registration process for associating the
user’s bank account with a particular smartphone; (iv) requiring the smartphone
to have (network or cellular) connectivity to carry out the authentication pro-
cess. The scheme we present in this paper does not suffer from any of these
shortcomings.

2.3 Use of Deception and Covert Messages

The use of deception has shown a number of promising results in aiding computer
defenses. Almeshekah et al. discussed the advantages of incorporating deception

Enhancing Passwords Security 163

into computer security defenses [3]. We incorporate deceptive elements in our
scheme in two ways: (i) active MitM will be deceived such that he is forwarding
the covert messages back-and-forth that sends an alarm to the service provider,
(ii) we introduce honeyaccounts in our scheme to dismantle an attack before it
takes place, and to gather information about the attacker’s goals, objectives, and
resources.

The covert channel term was introduced by Lampson in 1973 and defined as
“channels not intended for information transfer at all” [12]. Such a channel has
been extensively studied as a security vulnerability that undermines the security
of a system and leaks out private information. The covert channel we are intro-
ducing in this scheme is observed to “not carry information” by the adversary
and is created by design to enhance the overall security of the system. In this
work we are overloading the term, although we see the functionality as similar.

Our method introduces the use of covert deceptive messages between the
user and/or her client and the service provider. One of the choices of covert
message is that the user is logging in as a response to an email; we discuss
how this can be achieved in the next section. If the bank has no record of a
recent communication, that response may trigger an enhanced defense, such as
enabling read-only access. This would directly address many forms of phishing.
Other messages can be automatically embedded by the user’s client, such as the
use of a public network.

Honeyaccounts are fake bank accounts that banks can use to lure attackers
and deceive them into believing that they have successfully broken into the user’s
account at the bank. They provide an effective mechanism to monitor attackers’
activities – to learn who is targeting a certain bank, and learn the other accounts
being used to launder users’ stolen funds. This information is usually gathered by
banks during the forensic investigations following a money-theft episode (when
it is too late to follow the money trail leading overseas). A user who covertly
conveys to the bank her belief in the present transaction offers some hope of
dismantling the financial infrastructure of a large-scale phishing campaign before
it does real damage. We all experience situations where we know that an email
is a phishing attempt, yet many of us limit our reaction to not falling prey
to it — it would be nice to have an easy-to-use mechanism for conveying our
belief and thereby triggering the deception mechanisms of the bank. The covert
communication we propose can achieve this.

3 Technical Specification

This section discusses the technical specifications of our scheme. We show how to
perform the initial setup at the server and seamlessly enroll users. We also discuss
how the covert channel can be deployed within the authentication scheme. At
the end of this section, we discuss some the potential enhancements that our
scheme brings which can be incorporated in future work.

164 M.H. Almeshekah et al.

3.1 Attack Scenarios

There are many attacks against password-based authentication systems includ-
ing the following common attacks.

– Stolen Passwords. The security of password-based authentication systems
fundamentally relies on the fact that each user’s password is only known to
the user alone. When an adversary obtains the user’s password he has the
ability to continuously impersonate the user to the server, without any of
the two parties noticing. Many attacks, such as phishing, keylogging, and
shoulder-surfing are centered on the goal of obtaining users’ passwords to
gain unbounded access to their accounts.

– Stolen Password Hashes File. An adversary who obtains the passwords
hashes file of many users can apply an offline cracking process (such as
dictionary attacks) to retrieve the users’ passwords from their hashes.

– Poor/Easily Guessable Passwords. When the user chooses an easily
guessable password, an adversary can easily guess it and impersonate the
user to the server.

– Repeated Password Use. A person may use the same passwords across
multiple systems where a compromise against one system undermines the
security of all other systems.

The focus of our design is primarily to address the first attack scenario. In
addition, it provides a minor improvement to address the problem of cracking
passwords.

3.2 Scheme – Setup

As depicted in figure 2, there is no new registration required for bank customers,
and the bank can roll out the deployment of the scheme either all at once, or
progressively by selecting a specific subset of their customers (in which case a
user who prefers the old system can easily be accommodated). In addition to a
cryptographic one-way hash function H and a cryptographic message authen-
tication code such as HMAC, we use a one-way accumulator function A whose
output is to have the same number of bits as H (so that the format of the bank
server’s password file does not need to be modified – only the nature of the bits
stored changes).

As discussed by Fazio and Nicolosi, an accumulator function can be con-
structed such that it behaves as a one-way function [10]. In addition to the usual
one-way property required of cryptographic hashes, a one-way accumulation of n
items has the properties that (i) the order of the accumulation does not matter
(i.e., any two permutations of the same n items give rise to the same result) [i.e.
A(x1, x2) = A(x2, x1)]; and (ii) given a new item/s and the accumulation of a
previous item A(x1), a new accumulation that includes the new item/s (as well
as the old one) can be efficiently obtained without needing to know the previous
item (x1) which equals A(x1, new items). To illustrate the second property using
an example, if we have the modular exponentiation of x1 (gx1) and we want to

Enhancing Passwords Security 165

compute the new accumulation including a new item x2, we compute this as
gx

x2
1 = gx1∗x2 . A real world realization of such a function can be done by using

a modular exponentiation where the accumulation of x1 can be implemented as
A(x1) = gx1 .

As the most common ways of implementing such an accumulator A function
involve modular exponentiation, it is typically the case that A(x, y) = A(x ∗ y)
(where arithmetic is modular). In that case the security of A hinges on the
Computational Diffie-Hellman assumption: That given A(x1) and A(x2) it is
computationally intractable to compute A(x1, x2) without knowing either x1

or x2. We give our presentation assuming the existence of such an A, without
going into any details of how it is actually implemented (our scheme depends
only on A’s one-way property, its above-mentioned order-independence, and its
above-mentioned incremental accumulation).

Recall that a user’s entry in a traditional password file contains h=H(passwd
|| salt) and salt, where the purpose of the salt bits is to make a wholesale
dictionary attack against all users harder (but it does not make it harder to
attack an individual user, because the salt is in-the-clear). To switch to the new
system, the bank simply replaces h with A(h). This can handle users who select
to remain in the traditional username/password authentication (in the obvious
way). But replacing h by A(h) is essential for users who select to switch to our
proposed smartphone-based scheme, which we describe next.

Fig. 2. Protocol Run

166 M.H. Almeshekah et al.

3.3 Scheme – Login

As usual, the login starts with the user entering her username on the computer.
We assume that the smartphone has the needed app (which knows nothing about
the user or the bank).

– The bank verifies that the username exists and, if so, generates a nonce R.
Then it computes and sends the following information to the user’s browser,
encoded in a QR-code (recall that a QR code is an optically machine-readable
two-dimensional barcode).

• A(R).
• HMACkey(A(R)) where key = A(A(h), R) = A(h,R).
• The user’s salt.

– The user scans the QR code using the smartphone app and inputs his pass-
word to the smartphone. The app computes h′ = H(password || salt) and
then generates the HMAC key by computing A(A(R), h′) = A(R, h′) —
the user’s phone does not need a copy of R to make this computation. The
HMAC is recomputed locally and then the app verifies that the received
HMAC matches the HMAC it just computed. If the check succeeds (mean-
ing the user entered the correct password and h == h′) the user moves into
the next step of the protocol – phase 5. If the check fails there are two scenar-
ios for what comes next: A safe case (branch a), and a decoy case (branch b).
With the safe case the scheme continues to phase 5; in the decoy case the
scheme jumps to phase 6 to send the MitM/MitB to a honeyaccount. In the
latter case, the app can simply skip the covert messaging part if it detects a
MitM/MitB impersonating the bank, and either terminate or continue with
a honeyaccount. In this case, the failure of the HMAC verification can be
treated as a special kind of covert message.

– In phase (5), the user is provided with the optional facility to covertly signal
a simple message to the server. This covert messaging mechanism enables
different behaviors from the current practice of “all-or-nothing” authenti-
cation and access. We give users the ability to choose from a fixed set of
possible messages they could convey to the server. Giving users the ability
to convey their level of trust in the computing or network facilities being
used, e.g., using a public or a friend’s computer, wireless network at an air-
port, etc. Later in this section, we show how these messages can be easily
embedded in the code generated, in phase (6) of the scheme. Users can use
this same facility to covertly request a limited-access login (e.g., read-only),
in cases where they are following an email-solicited invitation to login to view
an “important message.” This covert message can alternatively be realized
by other means than the above, such as those proposed by Almeshekah
et al. [2].

– In phase (6), a one-time code is generated by the smartphone by computing
the following accumulation:

y = A(A(R), h,msg1, ..,msgi) = A(R, h,msg1, ..,msgi)

Enhancing Passwords Security 167

The covert messages are conveyed by setting up the bit of any covert message
(of the i possible messages) to one.

– In phase (7), the user types the generated code into the computer (copied
from the smartphone screen). To make the code readable we can use base64
encoding and selecting the first n characters (the size of n is discussed later).
Branch (a) of the previous phase, i.e. the existence of networking facility in
the phone, will be discussed shortly.

– When the bank receives the code, in phase (8), it will check the validity of
the code and whether a covert message has been signaled or not. It first
accumulates into A(h) the item R, if it matches the y sent by the user sent
then the login succeeds (and the user did not convey a message), if it does
not match y then the bank further accumulates (in turn) every possible
covert message until the result matches y (or, if none matches, the login
fails). In the safe case, if the bank receives a valid code with no message,
phase (9) of the protocol is reached. However, if a message is sent, there are
two possible options depending on the message:

1. Take policy-specified action as per to the message conveyed before reach-
ing phase (9). This can incorporate a variety of policies including the
requirement of carrying out additional authentication measures or offer
limited access. This gives service providers the ability to implement risk-
based authentication and access control, and enforce a rich set of policies.

2. Redirect the authentication session to a honeyaccount and, optionally,
notifying the user of this access decision.

Length of code (y). As we will discuss below, the accumulator function is a
one-way function and its output can be viewed as a random sequence of bits. As
a result, the adversary succeeds if he can guess all the characters in this code. If
we have 64 possible characters (including alphanumeric characters and symbols),
the probability of guessing a single character is 2−6. If we set the length of y
to 5, the probability of guessing the code y is roughly equal to 2−30.

In addition, as presented above, the calculation of y includes a random num-
ber R. As a result, the adversary gains no advantage by learning any previous
runs of the protocol and the value of y as it is a one-way function of a number
of variables including a random variable.

3.4 Incorporating Deception and Covert Communication

The introduction of covert channels in our scheme gives the user and app the
ability to convey a number of pre-determined messages without the knowledge
of any party positioning itself at any place in the communication channels. This
can be done by appending a number of bits to the input of the accumulation
function in step (6). To give an example, assume the protocol is designed to
signal two different messages to the server; (i) msg1 the user is accessing from a
new wireless network, (ii) msg2 the user selected read only access. When the app
computes y in step (6) it can append two bits to the hash output as the following;

168 M.H. Almeshekah et al.

y = A(A(R), h(passwd||salt)||msg1||msg2) where msg1 and msg2 are single bits
that are set to 1 if the user want to signal this message and 0 if the message is
not being signaled.

The multitude of applications that can utilize such a mechanism is large and
it incorporates status communication as part of the authentication protocol. For
example, the bank can take extra precautions if the user is authenticating from
a new networking environment. Another example, is the user can signal duress if
he has been threatened and forced to transfer money to other accounts. Duress
can be signaled covertly, for example, by measuring rapid changes in the phone’s
built-in accelerometer where the user can subtly shake his phone during login.
Another example to signal duress is when the user presses the physical volume
buttons during the authentication process.

3.5 Security Analysis

Within our scheme when the bank sends A(R), the only party that can success-
fully respond with y is one who knows the password and gets the smartphone to
compute h = H(password||salt) and thus the code y that is conveyed back to
the server. This is true because an adversary who gets A(h) and A(R) is unable
to compute y = A(h,R) without knowing either R or h, neither of which is
available to the attacker. Also note that, if the credentials database at the bank
is leaked, no one can impersonate the user without cracking the passwords, as
in traditional password schemes. One minor advantage this scheme provides is
that cracking is slower for the adversary because of the introduction of the accu-
mulation function A – it is significantly slower to accumulate every password in
the cracking dictionary than to simply hash it.

Central to the security of our scheme is the fact that the only information of
use to an adversary (the password) is entered on the cell phone and not on the
client computer being used to remotely access the bank. The cell phone has no
permanent record of any sensitive information. In addition, the bank’s server
never contains (even ephemerally) the user’s password in the clear, providing a
measure of defense against a snooping insider at the bank.

Finally, we point out that there are a number of additional security advan-
tages of entering the user’s password in a smartphone application instead of the
browser:

– The use of Software Guards. Traditional password based-schemes ask the
user to enter her password in the browser running on the client operating
system. Current browsers are not self-protected, as identified in [5], and they
are a complex piece of software that is exposed to many vulnerabilities. For
that, our scheme uses a specific phone application that can have an intrinsic
software protection against tampering as illustrated in [5,9].

– Automated Trust Decision. Adversaries using social-engineering attacks
to lure users to give up their credentials, such as in the case of phish-
ing, exploit the users’ decision-making process by presenting them with
legitimate-looking web pages. Our scheme aids users in making trust decision

Enhancing Passwords Security 169

about the authenticity of a web page mandating that the website provides a
cryptographic proof of their knowledge of a shared secret; namely the pass-
word. This process is done in total transparency to the user and the user is
only asked to capture the picture of a QR code.
This cryptographic proof can be computed by the web server without the
need of explicitly storing the password value and, more importantly, with-
out storing any information on the user’s phone. This significantly increases
the difficulty of social engineering attacks, such as phishing, as it reverses
the game – demanding that the web site provides proof of authenticity
before the user logs in.

– Smaller Chance for Shoulder-Surfing. Traditionally, users enter their
passwords using a large keyboard where shoulder surfing is an easy task for
adversaries. Asking the user to input their password on their phone increases
the difficulty of such activity.

It worth noting that if the user logs-in to the service provider using a phone
browser, our scheme cannot be directly used to scan the QR code as we discussed
above. However, the basic protocol and feature can still be applicable with only
a change in how the QR is input. This can be achieved by developing a browser
extension that can automatically detect a QR code in the webpage and button
on the corner of such codes to be clicked by users to launch the authentication
app where the QR is automatically read. Nevertheless, the advantages of sepa-
rating the service login, previously done on the computer, and the authentication
process on the phone are slightly degraded. If the phone browser is infected with
a MitB trojan, it would be easier to circumvent the security on the scheme as it
can communicate directly with the authentication app. However, we note that
most security sensitive transactions on a phone are done using dedicated apps
that are hardened for a specific application. In addition, the underlying principle
of using a covert channel presented in this paper can be incorporated in these
dedicated apps.

3.6 Scheme – Enhancements

Full-Transaction Authentication – After the user logs in, the same steps can be
repeated for every sensitive transaction with two main differences: (i) instead
of sending the username, it is the transaction information that is sent, so that
the QR code will contain additional information about the transaction details
along with the HMAC and the user can verify those details on the app itself
and make sure it is what they really want; and (ii) the covert message part can
be eliminated, only keeping the part related to the failure of MAC checks. This
part can be used, as we discussed before, to lure attackers who are launching
MitB attacks manipulating transactions “on-the-fly.”

Phone Connectivity – If the smartphone happens to have (optional) network
connectivity (step (a) in figure 2), it can spare the user the trouble of manually
entering the code displayed on its screen, and send it itself to the bank’s server
(user sessions can be uniquely identified by the server using the nonce R).

170 M.H. Almeshekah et al.

Storage of Insensitive Information – The security of our scheme does not require
the long term storage of any information in the phone itself. Nevertheless, we
can benefit from storing information that can increase the utility of the covert
communication. As an example, the app can store the name(s) of user’s home
network(s) and automatically send a covert message when the user is using a
non-trusted network to login. Such knowledge gives service providers the ability
to deploy a risk-based authentication. For example, when the user is using an
untrusted network to login, a limited control can be provided and extra level of
authentication can be enforced when powerful transactions are required.

4 Comparison with Other Schemes

In table 1 we evaluate the different schemes using the following criteria.

Requirement of phone enrollment — schemes such as CrontoSign and QRP
[21] require the user to register her phone with the bank, i.e. phone enrollment.
Such schemes store phone information, such as IMEI number, and use it as part
of their protocol to achieve assurances about the user’s identity. One of the
major issue of tying the user’s identity to his phone is that the user may lose
his phone, forget it or run out of battery. In these circumstances, the user wants
to be able to use an alternative phone to login to his account. If the user loses
his phone he is vulnerable to the threat of impersonation until he reports the
incident to every bank he banks with. In the case where he does not have his
phone the usability of such a scheme becomes an issue as the user cannot login
to his account anymore. This could result in lost business if the user moves to
other banks that are using more usable schemes.

Our approach addresses these concerns in two ways. First, we allow users to
use many phones without degrading the security of the scheme or asking the
user to register all his phones. Second, we challenge the all-or-nothing assump-
tion allowing users to fall back to other authentication mechanisms dynamically,
possibly setting the privileges to only allow non-sensitive transactions.

Requirement of long-term secrets — many of the previously proposed
schemes require the storage of long-term secret(s) either on the users’ phones or
on another piece of specialized hardware [15,21,23]. To the best of our knowl-
edge, our scheme is the first scheme that provides full transaction authentication
and user authentication that resist MitB without the need to store long-term
secrets or require additional hardware.

Resisting MitB — a recent paradigm in banking Trojans is to bypass two
factor authentication by launching MitB attacks that change transaction infor-
mation on-the-fly. We compare the schemes in table 1 based on their resistance
to MitB. When our scheme is used to authenticate transactions, as discussed
in section 3.6, a MitB attack can be defeated. This is because the MitB needs
to send the modified transaction information to the bank, where an HMAC is

Enhancing Passwords Security 171

created. However, when the user verifies this information on his phone after scan-
ning the QR-code he can see that the transaction details have been changed. He
can click on a button to say that the details have been changed and a deceptive
code can be generated. The MitB attacker would end up in phase (10) where
they will be deceived.

Table 1. Schemes Comparison

no
phone
enroll-
ment

no
long-
term
secret

resists MitB no
special
hard-
ware

no
phone
connec-
tivity

compatible
with exist-
ing

Our Scheme � � � � � �
CrontoSign [8] – – � � � –
QR-Tan [23] – – � � � –
hPin/hTan [15] N/A – � – N/A –
QRP [21] – – � � � –

Use of special Hardware — many proposals introduce a new piece of hardware
to the authentication scheme to achieve a higher level of assurance and to verify
banking transactions, such as the CAP scheme [7]. There are two major disad-
vantages with those approaches: cost and usability. As an illustrative example,
Barclay’s bank in the UK equipped users with special full-transaction authenti-
cation hardware, but ended up having to reduce the functionality to only partial
transaction authentication because of many customer complaints. This degrada-
tion led to a number of security vulnerabilities [1].

Requiring phone connectivity — a number schemes are intended to maxi-
mize their usability by making the smartphone or the special hardware act on
the users’ behalf. In all the mechanisms we examined this comes with the cost
of either requiring the phone to have network connectivity, which is not always
possible, or requiring a direct communication between the users’ computers and
their smartphones, which hinders usability. In our proposal we share the same
goals and enhance the usability of our scheme by giving users the ability to login
even though they do not have any connectivity in their phone and without hav-
ing to connect their phones to their computers.

Compatible with existing infrastructure — banks perceive security as an
economic and risk reduction activity. Protocols that require radical changes to
current infrastructure usually do not get adopted because of the associated high
cost. In addition, the ability to dynamically fall back to traditional authenti-
cation methods is a preferred property giving banks the ability to dynamically
deploy their new scheme and progressively enroll their users. This is why we use
this as a comparison factor with other schemes.

172 M.H. Almeshekah et al.

5 Conclusion

We propose an authentication mechanism that has many attractive features,
including compatibility with deployed authentication infrastructure; flexible use
of smartphones without requiring phone registration or storage of permanent
information in the phone; without any requirement of phone connectivity (i.e.,
using the phone as a computational device rather than as a storage or commu-
nication device); resistance to many common forms of attack; and a facility for
user-friendly (pull-down menu on the cell phone app) covert communication from
the user to the bank. The covert communication in turn makes possible different
levels of access (instead of the traditional all-or-nothing), and the use of decep-
tion (honeyaccounts) that makes it possible to dismantle a large-scale attack
infrastructure before it succeeds (rather than after the painful and slow foren-
sics that follow a successful phishing attack).

References

1. Adham, M., Azodi, A., Desmedt, Y., Karaolis, I.: How to attack two-factor authen-
tication internet banking. In: Financial Cryptography (2013)

2. Almeshekah, M.H., Atallah, M.J., Spafford, E.H.: Back channels can be use-
ful! – layering authentication channels to provide covert communication. In: Chris-
tianson, B., Malcolm, J., Stajano, F., Anderson, J., Bonneau, J. (eds.) Security
Protocols 2013. LNCS, vol. 8263, pp. 189–195. Springer, Heidelberg (2013)

3. Almeshekah, M.H., Spafford, E.H.: Planning and integrating deception into com-
puter security defenses. In: New Security Paradigms Workshop (NSPW 2014),
Victoria, BC, Canada (2014)

4. American Banking Association (ABA). Popularity of Online Banking Explodes,
September 2011

5. Chang, H., Atallah, M.J.: Protecting software code by guards. In: Sander, T. (ed.)
DRM 2001. LNCS, vol. 2320, p. 160. Springer, Heidelberg (2002)

6. Clarke, D., Gassend, B., Kotwal, T., Burnside, M., van Dijk, M., Devadas, S.,
Rivest, R.L.: The untrusted computer problem and camera-based authentica-
tion. In: Mattern, F., Naghshineh, M. (eds.) PERVASIVE 2002. LNCS, vol. 2414,
pp. 114–124. Springer, Heidelberg (2002)

7. Drimer, S., Murdoch, S.J., Anderson, R.: Optimised to fail: card readers for online
banking. In: Dingledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 184–200.
Springer, Heidelberg (2009)

8. Drokov, I., Punskaya, E., Tahar, E.: System and Method For Dynamic Multifactor
Authentication (2006)

9. Falcarin, P., Collberg, C., Atallah, M., Jakubowski, M.: Software Protection. IEEE
Software 28(2), 24–27 (2011)

10. Fazio, N., Nicolosi, A.: Cryptographic accumulators: Definitions, constructions and
applications

11. Harini, N., Padmanabhan, T.R.: 2CAuth: A New Two Factor Authentication
Scheme Using QR-Code. International Journal of Engineering and Technology
(2013)

12. Lampson, B.W.: A note on the confinement problem. Communications of the ACM
16(10), 613–615 (1973)

Enhancing Passwords Security 173

13. Lee, Y., Kim, J., Jeon, W., Won, D.: Design of a simple user authentication scheme
using QR-code for mobile device. In: Park, J.H.J., Kim, J., Zou, D., Lee, Y.S.
(eds.) Information Technology Convergence, Secure and Trust Computing, and
Data Management. LNCS, vol. 180, pp. 241–247. Springer, Dordrecht (2012)

14. Lee, Y.S., Kim, N.H., Lim, H., Jo, H., Lee, H.J.: Online banking authentica-
tion system using mobile-OTP with QR-code. In: 2010 5th International Con-
ference on Computer Sciences and Convergence Information Technology (ICCIT),
pp. 644–648. IEEE (2010)

15. Li, S., Sadeghi, A.-R., Heisrath, S., Schmitz, R., Ahmad, J.J.: hPIN/hTAN:
a lightweight and low-cost e-banking solution against untrusted computers. In:
Danezis, G. (ed.) FC 2011. LNCS, vol. 7035, pp. 235–249. Springer, Heidelberg
(2012)

16. Liao, K.-C., Lee, W.-H.: A novel user authentication scheme based on QR-code.
Journal of Networks 5(8), 937–941 (2010)

17. Mimoso, M.: Two-Factor Authentication No Cure-All for Twitter Security Woes
18. M’Raihi, D., Bellare, M., Hoornaert, F., Naccache, D., Ranen, O.: RFC 4226 -

HOTP: An HMAC-Based One-Time Password Algorithm. Technical report, IETF
(2005)

19. M’Raihi, D., Machani, S., Pei, M., Rydell, J.: RFC 6238 - TOTP: Time-Based
One-Time Password Algorithm. Technical report, IETF (2011)

20. Mukhopadhyay, S., Argles, D.: An Anti-Phishing mechanism for single sign-on
based on QR-code. In: 2011 International Conference on Information Society
(i-Society), pp. 505–508. IEEE (2011)

21. Pintor Maestre, D.: QRP: An improved secure authentication method using QR
codes (2012)

22. Risk Analytics. $70 Million Stolen From U.S. Banks With Zeus Trojan
23. Starnberger, G., Froihofer, L., Goeschka, K.M.: QR-TAN: Secure mobile transac-

tion authentication. In: International Conference on Availability, Reliability and
Security, 2009. ARES 2009, pp. 578–583. IEEE (2009)

Information Sharing and User Privacy
in the Third-Party Identity Management

Landscape

Anna Vapen1(B), Niklas Carlsson1, Anirban Mahanti2,
and Nahid Shahmehri1

1 Linköping University, Linköping, Sweden
{anna.vapen,niklas.carlsson,nahid.shahmehri}@liu.se

2 NICTA, Sydney, Australia
anirban.mahanti@nicta.com.au

Abstract. The cross-site information sharing and authorized actions
of third-party identity management can have significant privacy implica-
tions for the users. In this paper, we use a combination of manual analysis
of identified third-party identity management relationships and targeted
case studies to (i) capture how the protocol usage and third-party selec-
tion is changing, (ii) profile what information is requested to be shared
(and actions to be performed) between websites, and (iii) identify privacy
issues and practical problems that occur when using multiple accounts
(associated with these services). By characterizing and quantifying the
third-party relationships based on their cross-site information sharing,
the study highlights differences in the privacy leakage risks associated
with different classes of websites, and provides concrete evidence for how
the privacy risks are increasing. For example, many news and file/video-
sharing sites ask users to authorize the site to post information to the
third-party website. We also observe a general increase in the breadth
of information that is shared across websites, and find that due to usage
of multiple third-party websites, in many cases, the user can lose (at
least) partial control over which identities they can merge/relate and
the information that is shared/posted on their behalf.

1 Introduction

Many popular web services, such as Facebook, Twitter, and Google, rely heavily
on their large number of active users and the rich data and personal information
these users create or provide. In addition to monetizing the high service usage and
personal information, the rich user data can also be used to provide personalized
and customized user experiences that add value to their services.

With this in mind, it is perhaps not surprising that many websites are using
third-party single sign-on (SSO) [5,14] services provided by popular websites.
With SSO, a website such as Soundcloud will partner with one or more other third-
party websites (e.g., Facebook and Google), which will be responsible for user
authentication on behalf of Soundcloud. As illustrated in Figure 1(a), a user
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 174–188, 2015.
DOI: 10.1007/978-3-319-18467-8 12

Information Sharing and User Privacy 175

(a) IDP selection (b) Authentication (c) App rights

Fig. 1. Soundcloud example illustrating the login process when using IDPs, as well as
the app rights requested by Soundcloud when using Google as IDP

is given the option of using Facebook and Google for authentication. Assuming
that the user selects Google, the user is redirected to Google for authentica-
tion (Figure 1(b)). We refer to Soundcloud as a relying party (RP) and Face-
book/Google as a third-party identity provider (IDP).

In addition to providing an authentication service, at the time of account
creation or first login, the user is typically asked to approve an app-rights agree-
ment (e.g., Figure 1(c)) between the user and the RP, which (i) gives permission
to the RP to download agreed-upon information from the user’s IDP account,
and (ii) authorizes the RP to perform certain actions on the IDP, such as post-
ing information. Such permissions place great responsibility on the RPs, and can
raise significant privacy concerns for users.

Privacy concerns related to the rich information shared across websites will
likely increase as more sophisticated statistical methods are used to reveal pri-
vate information using only public data [3,10,18]. For example, public Twitter
feeds can be used to determine political views and ethnicity [10], users can be
identified across websites even when they lie about their identity [18], and even
relatively innocent information such as the music that people listen to can reveal
personal information many users want to keep private [3]. Despite many interest-
ing case studies of how this information can be misused, and our previous basic
characterization of the geographic and service-based biases in how RPs select
their IDPs [15], we are not aware of any study that characterizes the cross-site
information sharing and RP authorization in this third-party landscape. Such a
study is important to assess the current privacy risks.

This paper provides the first broad empirical analysis of the cross-site infor-
mation sharing, app-rights agreements, and account management complexities
in the current third-party identity management landscape. We place particu-
lar attention on the personal information shared and accessed between different
sites, and discuss potential privacy implications for end users. Motivated by
a high skew in website popularities [7], our analysis primarily focuses on the
cross-site information sharing associated with the 200 most popular websites.1

1 Alexa (official website), www.alexa.com.

www.alexa.com

176 A. Vapen et al.

Focusing on these sites allows us to manually identify and analyze the informa-
tion sharing, account creation process, and website interactions as observed by
the user.

1.1 Contributions and Roadmap

A high-level summary of the results were reported in a short (3-page) poster
paper [16]. Here, we first briefly present a high-level characterization of the pro-
tocol and IDP usage observed in the wild (Section 2). Our results confirm that
the use of authorization protocols such as OAuth is significantly more common
than the use of pure authentication protocols such as OpenID and that OAuth is
becoming increasingly dominant. Since OAuth allows richer cross-site informa-
tion sharing and can authorize RPs to perform actions on the IDPs, on behalf
of the user, these results reaffirm the importance of characterizing today’s app-
rights agreement usage and their privacy risks. We find that many RPs likely
select IDPs on other criteria than protocol compatibility. We also find that some
IDPs are much more frequently used in combination than on their own, and
that there is a high concentration in IDP usage. This can be a potential privacy
and security concern in itself, as the user credentials for the most popular IDPs
become more valuable to an impersonator, for each RP that adds that IDP.

Thereafter, we characterize the cross-site information sharing and authorized
app rights associated with the most popular IDPs (Section 3), responsible for the
majority of RP-IDP relationships. We categorize app-rights agreements based on
the type of information and actions granted to the RPs (Section 3.1) and iden-
tify the most commonly observed privacy risk categories (Section 3.2). We find
significant differences in the information leakage risks associated with different
RP classes (Section 3.3) and IDPs (Section 3.4).

Finally, we use targeted login and account creation tests to analyze the infor-
mation sharing in scenarios in which the users have accounts with multiple IDPs
(Section 4). Among other things, we find that there often is significant overlap in
the information that an RP may request from different IDPs (Section 4.1), that
there are significant differences in how well RPs combine the information from
multiple IDPs (Section 4.2), and that some IDPs (e.g., Facebook) are much more
likely to implicitly enable information leakage between IDP accounts through the
RP than others (Section 4.3). In many cases, we have also found that the results
depend on the order IDPs are added and that users often lose control of what is
shown in their public profile with the RP. We even found several cases in which
account merging is not possible or additional IDPs cannot be added/used.

The significant differences observed from case to case also illustrate that there
is no common API, and that RPs typically pick IDPs based on IDP popular-
ity and the information sharing and actions they enable, rather than protocol
compatibility. With each RP implementing its own solution, the user must trust
the RP and its implementation. Both OpenID and OAuth have many security
issues [1,5], even when used alone, especially if implemented incorrectly [12,17].
Many privacy issues discussed here will therefore likely take time to address.

Information Sharing and User Privacy 177

2 Protocol and IDP Selection

Today’s RP-IDP relationships are typically implemented using OpenID or OAuth.
While OpenID was designed purely for authentication and OAuth primarily is
an authorization protocol, both protocols provide an SSO service that allows
the user to access the RP by authenticating with the IDP without needing local
RP credentials. With OAuth, a local RP account is always linked with the users
IDP account, allowing information sharing between the RP and IDP. Local RP
accounts are optional with OpenID.

We primarily focus on all RP-IDP relationships that we have manually iden-
tified on the 200 most popular websites on the Web (as observed in Apr. 2012,
Feb. 2014, and Sept 2014), but will also leverage the 3,203 unique RP-IDP
relationships (3,329 before removing false positives) identified using our custom
designed Selenium-based crawling tool [15].

OAuth is the dominant protocol as observed in both manual and crawled
datasets. For example, in Apr. 2012, 121 of 180 (67%) relationships in the manual
dataset and 2,543 of 3,203 (79%) relationships in the crawled dataset are directly
classified as OAuth, compared to only 20 (11%) and 180 (6%) as OpenID rela-
tionships in the two datasets. Of the remaining relationships, 39 and 441 used
an IDP that supports both OpenID and OAuth. Since then, as measured in
Sept. 2014, we have seen a further increase of OAuth usage (+24%) and drop in
OpenID usage (-10%) among the top-200 websites.

We have found that IDP selection differs significantly depending on how many
IDPs an RP selects, and some IDPs are more likely to be selected together with
others. In total the top-5 ranked IDPs are responsible for 92% (33 of 36) and 90%
(1,111 of 1,233) of the relationships of RPs selecting one single IDP. For RPs with
2-3 IDPs, 83% and 75% of the relationships are to the top-5, but for RPs with 4
or more IDPs only 38% and 55% are to the top-5 IDPs. Facebook+Twitter is the
most popular pairing with 37% (125 of 335) of all IDP pairs, Chinese QQ+Sina
place second (19%), and Facebook+Google third (12%).

3 App Rights and Information Flows

This section considers the information sharing and actions that RPs are permit-
ted. Although it is impossible to know exactly how each RP uses the information
they obtain from the IDPs (e.g., if they use data mining to present targeted ads,
provide better services, or if they simply store the information for potential
future use), the app-rights agreements between RPs and users reveal (i) the
information that the RP will obtain from the IDP, and (ii) the actions the RP
will be allowed to perform on behalf of the user.

For this study, we have carefully recorded the app-rights agreements for the
RP-IDP relationships identified in the manual top-200 dataset. We created fake
accounts on the IDPs, initiated the account creation process for each identified
RP-IDP relationship involving this IDP, and recorded the app-rights agreements
that our fake users were requested to agree to. For the tests in this section, we

178 A. Vapen et al.

interrupt the login process after recording the app rights. Due to limited transla-
tion support, we only recorded statistics that provided app-rights agreements in
English. The use of fake identities helps remove potential biases in the app-rights
agreements presented to the users.

A few IDPs required the use of phone numbers in the registration process.
Although these phone numbers or advanced data mining techniques [18] can be
used to link the fake profiles with real identities, we have not observed anything
that would suggest that these phone numbers have impacted our results.

For this analysis we focus on the RP-IDP relationships in the top-200 dataset
from Feb. 2014. However, as Facebook has significantly changed their API since
then, from version 1.0 (Apr. 2010) to 2.0 (Apr. 2014), and again to 2.1 (Aug.
2014), we analyze recorded app rights from both Feb. 2014 and Sept. 2014.

3.1 Classification of Information

When analyzing app-rights restrictions as described in the APIs of the three
major IDPs (Facebook, Twitter and Google) as well as the actual app-rights
usage across the top-200 websites in our datasets, we have identified five different
classes of app rights, each with their own privacy implications. The first four
classes (B, P, C, and F) capture information (or content) transferred from the
IDP to the RP. The last class (A) has to do with actions being performed by
the RP, on the IDP, on behalf of the user.

– Basic information (B): Relatively non-private information that the user
is often asked to provide websites, including identifiers (e.g., email address)
to identify existing accounts, age range, language, and public information.

– Personal information (P): This class includes personal information, com-
mon in many basic “bundles” (e.g., gender, country, time zone, and friend
list), but also more sensitive information such as political views, religion,
and sexual orientation.2

– Created content (C): This class contains content directly or indirectly
created by the user, and includes images, likes, and check-in history. The
sensitivity of the data varies. For example, in some cases the user may want
to share images and video across sites, while in other cases this content may
be considered private. Also the sensitivity of “logged” content (e.g., likes,
watched video clips, location history) varies significantly on the situation.

– Friends’ data (F): This class consists of data of other users (e.g., friends of
the user). Even when of a non-sensitive nature, this data is privacy critical
since it belongs to another, potentially non-consenting, user.

– Actions taken on behalf of the user (A): This final class includes the
right to actively export data from the RP to the IDP and the right to perform
actions on behalf of the user. This may include posting information on a

2 One current Facebook bundle and two Google bundles named “Basic information”
and similar (from which the RP selects which bundle to use in the app-rights agree-
ment presented to the user) include both class B and P information.

Information Sharing and User Privacy 179

user’s IDP timeline or feed. The transferred data may include content the
user creates at the RP (e.g., images), or information about the user’s actions
on the RP (e.g., sharing read articles, or music the user has listened to).

While the current example considers a scenario with a single RP-IDP pair,
Section 4 briefly considers the multi-IDP case, in which information may be
shared/leaked across multiple sites. Here, the action (A) class is particularly
interesting when used in combination with friends’ data (F). In this case, the
RP may enable the actions by one user at one IDP to be leaked (through the
RP) to other users at another IDP.

It is perhaps for this reason that Facebook, in their recent (Sept. 2014) multi-
step app-rights agreements, does not share friend (F) data, and first request
that the user approve data sharing permissions (B, P, and C), before the RP
can ask the user to agree to optional action (A) permissions of different types.
Regardless how these action permissions were classified in Feb. 2014, in the
Feb. 2014 dataset, we include the most recent optional Facebook action (A)
permissions from Sept. 2014. For the other big IDPs there have been no major
changes in their APIs since Feb. 2014.

3.2 Risk Types

Today, many IDPs bundle the information requested into larger “bundles”, and
RPs must select which bundle to present to the users.3 This simplifies the agree-
ments, but reduces the granularity of control over information sharing, often
resulting in the user being asked to grant permissions to share more information
than the RP requires to perform the desired service.

Figure 2 summarizes all the observed app-rights agreements in our Feb. 2014
dataset. We use a Venn diagram to show all relationships involving actions in
the left square and all others in the right square. Any relationship that is not in
any of the three classes P, C, and F is in class B.

Only a handful of cases (4) limit themselves to only the basic (B) infor-
mation (without actions (A)), and most RPs are requesting significantly more
personal information from their users. These observations suggest that there is
an expectation of trust in the RPs, beyond what the user would share publically.
Generally, RPs that are performing actions (A) on behalf of their users are more
likely to request access to content (C) from the IDP. In total, 40 of the 87 clas-
sified relationships include actions (A). Of these, 14 RPs also request access to
content (C). Of the 47 app-rights agreements that does not request actions to
be performed, only 12 (9+3) also request access to content (C).

Another important observation is that within each of the two boxes there is a
clear ordering in risk types observed, suggesting that there is a natural ordering
of the risk types observed in practice. In particular, class F is only used in

3 For Twitter, the RP selected bundles (either “read”, “read + write”, or “read +
write + direct messages”) are translated into an explicit list of app rights presented
to the users.

180 A. Vapen et al.

Fig. 2. RP-IDP relationships of different app-rights classes in the top-200 dataset

Table 1. Risk types identified in dataset

Risk Class Risk Class
type combination type combination

R−
A A ∩ B R− ¬A ∩ B

RA A ∩ P R ¬A ∩ P

R+
A A ∩ P ∩ C R+ ¬A ∩ P ∩ C

R++
A A ∩ P ∩ C ∩ F R++ ¬A ∩ P ∩ C ∩ F

combination with both C and P. This combination clearly has the highest privacy
risks associated with it. Similarly, class C is only used in combination with P,
clearly distinguishing its risks with those of sites that only request personal (P)
or basic (B) information.

Motivated by these observations, we identify eight semi-ordered risk types
(strict ordering within columns). Table 1 summarizes the observed risk types.
We note that there is a strict privacy ordering in each column (from (-) to (++)),
and with regards to each row (as allowing actions implies some risk), but that
further ordering is not possible without making assumptions.

3.3 RP-Based Analysis

Using the above RP-IDP relationship type classification, we next compare the
app rights for different classes of RPs. In particular, we compare the app rights
of RPs with different (i) primary web services, or (ii) number of IDPs.

Table 2 shows the number of relationships of each type, for websites that pro-
vides different web services. Here, we use a basic service categorization inspired
by categories defined by Gill et al. [7]. With this categorization, each of the
top-200 websites was manually classified as one of nine classes.

Among the classes with at least 10 RPs, News sites and File sharing sites
are the most frequent users of actions (risk types RA and R+

A), with 55% and
50% of their relationships including actions, respectively. Also Video sharing
(67%) and Tech (63%) sites have a large fraction of relationships that include
action (A) permissions. The high action (A) permission usage is likely an effect
of these sites often wanting to promote articles, files, or videos to friends of the
user. While we express privacy concerns regarding R+

A relationships, these sites

Information Sharing and User Privacy 181

Table 2. Breakdown of risk types of the RP-IDP relationships for RPs belonging to
different websites categories, as classified based on their primary service

Sites Relationship type

Categ. RPs/Tot Tested/Tot R− R R+ R++ RA R+
A R++

A

Ads/CDN 0/9 -/- - - - - - - -

Commerce 8/26 7/16 0 5 0 0 2 0 0

File sharing 6/10 12/17 2 3 1 0 3 3 0

Info 9/14 10/16 0 5 0 1 4 0 0

News 12/20 22/40 0 4 6 0 7 5 0

Social/portal 26/81 22/65 1 10 2 2 3 4 0

Tech 7/23 8/21 1 2 0 0 2 2 1

Video 9/17 6/21 0 2 0 0 4 0 0

Total 77/200 87/196 4 31 9 3 25 14 1

Table 3. Breakdown of risk types of the RP-IDP relationships for RPs with different
numbers of IDPs

Relationship type

IDPs RPs Tested/Tot R− R R+ R++ RA R+
A R++

A

1 36 24/36 0 11 3 2 7 1 0

2 15 19/30 1 7 0 1 7 2 1

3 11 21/33 1 6 3 0 6 5 0

4+ 15 23/97 2 7 3 0 5 6 0

Total 77 87/196 4 31 9 3 25 14 1

would in fact desire that the information that their articles/content are being
read to propagate across many sites. This is also reflected in the relatively large
number of IDPs per RP for these four website categories (3.3, 2.83, 2.33, and
3.0, respectively, compared to an overall average of 2.5).

We next compare RPs with different numbers of IDPs (Table 3). Interestingly,
relationships including actions (RA and R+

A) are primarily associated with RPs
that have many IDPs. For example, while RPs with a single IDP use actions in
33% (8 of 24) of their relationships (all using Facebook), RPs with multiple IDPs
(2, 3, or 4+) use actions in 48-53% of their relationships. As with our discussion
about News sites and File sharing sites, the many IDPs of these RPs increases
the risk for cross-site information leakage.

The most restrictive type (R−) includes only OpenID relations. For content
sharing without actions (R+), OAuth is the primary protocol, even if it is possi-
ble to transfer personal data and (links to) content over OpenID. Naturally, all
relationships including actions use (and must use) OAuth.

3.4 Head-to-Head IDP Comparison

We have found that the top-three English speaking IDPs (Facebook, Twitter,
and Google) are used differently by their RPs and that the usage is relatively
independent of which other IDPs the RPs are using.

182 A. Vapen et al.

Fig. 3. Dependencies between app rights for the top-three English speaking IDPs. Here,
the top-right legend shows the labeling of RP-IDP relationship types for each IDP, and
link weights specify the number of RPs with such a relationship pair.

Table 4. Breakdown of risk types of the RP-IDP relationships associated with the
top-three English speaking IDPs

Relationship type

IDP Tot R− R R+ R++ RA R+
A R++

A Unk

Facebook 55 0 24 5 3 13 3 1 6

Twitter 15 0 0 4 0 0 11 0 0

Google 29 4 7 0 0 12 0 0 6

Table 4 breaks down the app rights for RPs using each of these three IDPs.
Google is the only IDP with type R− relationships. Most of these relationships
are due to use of Google’s OpenID-based API, which in comparison to Google’s
OAuth API typically share less information and does not allow actions.

Overall, Google’s mix of OpenID-based and OAuth-based relationships share
less information (large fraction of R−, R, and RA) than Twitter and Facebook
(who also have many R+, R++, and R+

A relationships). Furthermore, compared
to Twitter and Facebook, Google allows more fine-grained personalization of
app-rights agreements. The user is sometimes able to select which contacts (if
any) to share information with (e.g., using Google’s concept of “circles”). The
most privacy preserving choice is, however, typically not selected by default.

Facebook is dominated by R and RA relationships, and typically allows rich
datasets to be imported to the RP. For Twitter, public messages and contacts are
normally the only shared data (counted as content (C)); however, it should be
noted that there are Twitter relations in which even private messages are shared
with the RP. Twitter has the largest fraction of relationships with actions (RA

and R+
A). Twitter is particularly attractive for RPs wanting to perform actions

on behalf of their users, as it provides an API that allows a wide of range of such
actions to be performed and has a relatively active user population.

Information Sharing and User Privacy 183

While we have not found any major statistical biases when comparing the
fraction of relationship types observed when two IDPs (an IDP pairing) are
used by the same RP vs. when they do not appear in such a pairing, we have
found that there are some relatively common combinations. Figure 3 shows app-
rights selections for IDP pairs consisting of Facebook/Google (19 pairs), Face-
book/Twitter (11 pairs), and Google/Twitter (12 pairs). For example, we note
that RPs importing personal data (P) from Facebook, often do the same with
Google (with or without actions). We also observe several cases where Google
and Twitter are used together and both IDPs use actions (A) and importing
personal (P) data (being classified as RA). In general, there is a bias for select-
ing to use actions (A) with one IDP, given that actions are used with the other
IDP. For example, in 24 of 40 cases (60%) in which an RP-IDP relationship of a
pairing uses action (A) the other relationship uses actions (A) too. In contrast,
only in 16 of 44 cases (37%) in which the first RP-IDP relationship does not use
actions (A), the other does. Using one-sided binomial hypothesis testing, these
differences are significant with 98% confidence (p = 0.015, z = 2.167).

4 Multi-account Information

It is becoming increasingly common that users have accounts with multiple of
the RP’s IDPs. For example, in our original Soundcloud example (Figure 1), a
user may have accounts with both Google and Facebook. In addition, a local
RP account may be created either before connecting the account to one of the
IDPs, or when first creating the account using one of the IDPs. The use of all
these accounts and their relative dependencies can complicate the situation for
the end user, potentially increasing privacy risks.

In this section we present the highlights from a set of targeted scenario-
driven case studies that we have performed to analyze the interaction between
the different accounts, as observed in the wild. (Due to space limitations detailed
results and tables are omitted.) For this analysis, we performed tests for each
pairing of the three most popular English-speaking IDPs: Facebook, Twitter,
and Google. For each possible IDP pairing, we allowed both IDPs in the pair
to be used first in a sequence of tests. The tests were also performed both with
and without first creating local accounts at the RPs. For each test sequence, we
recorded all information Iu(α→γ) (of class B, P, C or F) that a user u agrees that
the RP γ can import from IDP α, all information Iu(γ→α) that user u agrees
that the RP can post on the IDP (through actions (A)), all information Iu(u→γ)

that the user manually inserts into its local profile, and the information Iu(p)

which ends up in the user profile.

4.1 Information Collision

When looking closer at the overlap between the information shared by the IDPs
(i.e., Iu(α→γ) and Iu(β→γ)) with the RP, we observe that contact lists (26 of 42)
are the most common overlap. As Twitter does not explicitly list email address,

184 A. Vapen et al.

profiles picture, and names in their agreements or bundles, the overlaps for these
categories are limited to Facebook+Google scenarios: 14 out of 42 cases for email
addresses, 10 of 42 for profile pictures, and 10 of 42 for names. Having said this,
we did observe cases where the profile picture and name were imported from
Twitter without asking (or being listed in the app-rights agreement), suggesting
that these numbers only provide a lower bound of the potential information
collisions.

As the shared information can be both conflicting and complementary, sig-
nificant identity management complications can arise because of overlapping
information. Yet, we have found little to suggest that the RPs provide users
with identity/information management for these instances. In fact, even among
the typically very small subset of information transferred to the user profile
(Section 4.3) there often is an overlap. For example, regardless if there exists an
initial local account or not, in 9 of 42 cases, at least some potentially conflicting
information is imported to the user’s RP profile from both IDPs.

4.2 Account Merging and Collisions

We next evaluate how well the RPs allow multiple accounts to be associated with
a single user, and if the RPs allow multiple accounts to be merged. For merging
to take place, the RP must allow the user to connect an IDP to an existing local
account, or to connect a second IDP to an account that already have an IDP
associated to it, such that both IDPs can be used to login to the RP.

Interestingly, we have found that both account merging and the information
transferred between accounts often are highly dependent on the order in which
accounts are added. Furthermore, in many cases the user is not able to merge
accounts, or control if merging should take place. For example, out of the 42
(6x7) first-login cases when using a local account, only 10 cases resulted in
optional merging and 11 in automatic merging. In 6 of the remaining cases,
temporary accounts were created that did not have full functionality, in 7 cases
the login failed altogether (typically due to collisions of email accounts between
the original local account and that used at the IDP), and in the remaining cases
a new account is created.

Similarly, out of the 2x42 (2x6x7) second-login cases with a second IDP,
starting both with and without a local account, we observe few merging oppor-
tunities: 9 optional cases and 2 automatic cases, when there is no local account
(12 and 10 cases when there is a local account). In total, a second IDP can be
added (and merged) in 33 (11+22) of 84 cases.

Our results suggest that many RPs are not designing for multi-IDP scenarios,
but that Facebook is doing the best job allowing for such relationships. The lack
of multi-IDP support can have serious negative consequences as many of these
IDPs are popular services with many users; increasing the chance that users
have accounts with multiple IDPs. In the following, we take a closer look at
information flow in the cases when two IDPs could be added.

Information Sharing and User Privacy 185

4.3 Cross-IDP Information Leakage

Not only can information Iu(α→γ) be shared from an IDP α to an RP γ, but in
some cases the app-rights agreements with another IDP β may (intentionally or
unintentionally) allow information to be moved from one IDP to another IDP
(through the RP). This occurs when this agreement allows the RP γ to post some
subset of this information to IDP β. Looking at the overlap Iu(α→γ)∩Iu(γ→β) we
observed multiple cases where such cross-IDP sharing is possible. For example,
six RPs allow personal (P) and/or content (C) from Facebook to be posted on
Twitter, and five RPs allow basic (B) information from Facebook or Google to
be transferred. We have also observed two RPs that have general posting rights
on Facebook that allow transfer from Google, and two RPs that allow Facebook
to transfer data from Twitter (although in this case Twitter would only transfer
profile picture and name to the RPs). While these results show that all IDPs
can be potential information sources and publishers of leaked information, in
general, we see that Facebook allows the richest cross-IDP leakage and Twitter
is the most likely publisher of cross-IDP leaked information.

5 Related Work

The third-party authentication landscape has gone from a situation with many
OpenID enabled accounts but very few RPs supporting login with an IDP [13] to
a landscape dominated by OAuth and Web 2.0 services that share data between
sites. Limited work has been done on characterizing this emerging landscape.

In this paper, we leverage our RP-IDP relationship identifications and man-
ual collection methodology [15], previously used to characterize and compare
the relative biases (geographic and service-based) that RPs have in their IDP
selection relative to the biases in the third-party content delivery landscape. In
contrast, this paper looks closer at the information sharing and privacy risks
associated with the observed RP-IDP relationships.

Sun et al. [14] have shown that there are misconceptions about how SSO
works and the information transfers using OAuth, which leads to many users
avoiding SSO. However, it can perhaps be argued that the users’ fear is partially
justified, as it has been shown that users become increasingly susceptible to
phishing attacks as they get used to being redirected between sites and providing
their credentials [5].

Others have proposed recommendation systems to help users make informed
choices about what data to allow on different IDPs [11] and frameworks that
provide users added control over how third-party applications (TPAs) can access
data from an online social network (OSN) [4,6]. Many of the insights in these
works are directly applicable to ours, as TPAs play a similar role as our RPs
and the OSN acts as IDP. Extending these frameworks to the general RP-IDP
landscape, characterized here, provides interesting future work.

Many researchers have used the data available on the popular IDPs, some-
times generated with the help of RPs, to illustrate how data mining and other
statistical methods can be used to determine potentially private information

186 A. Vapen et al.

from public data (such as likes, twitter feeds, etc.) [3,10,18], or correlating user
data from several websites to identify a user based on behavior [8]. This type
of cross correlations is, of course, even easier if RPs and IDPs are linked. We
see these examples as motivation for looking more closely into the increased
cross-site sharing and potential information leakage associated with the RP-IDP
relationships. Cross-site leakage and the associated privacy risks have also been
studied in the context of ad services and trackers [9].

Birrell and Schneider [2] present a privacy-driven taxonomy of the design
choices in the third-party identity management landscape. Protocol related secu-
rity problems that enable identity theft and blackmailing [17], and economic
factors [5] have also been discussed in the literature.

6 Discussion and Conclusions

This paper characterizes the cross-site information sharing and privacy risks in
the third-party identity management landscape. We show that OAuth is the
dominant protocol, and OpenID is decreasing in usage. Not only is OAuth used
by the most popular IDPs (e.g., Facebook, QQ, and Twitter) but it also enables
sharing of much richer information with RPs.

We also observe high concentration in usage of a few popular IDPs, and
that some IDPs are more frequently used in combination with others. The skew
towards a few popular IDPs, which often allow RPs to act on behalf of the users,
has privacy implications for the end users, regardless of whether the users choose
to create an account with the RP or not. For example, a user with a compromised
IDP account could easily be impersonated across all the RPs using a particular
IDP, even if the user did not originally have an account with these RPs.

We then carefully classify and analyze the app-rights agreements of the most
popular websites. Our classification of RP-IDP relationships is based on both the
information that the RPs are allowed to import (e.g., basic, personal, generated
content, or friend data) from the IDP, and if the RP is allowed to perform actions
(e.g., create, update, or delete information) on behalf of the user on the IDP.
Although we observe significant differences in the information leakage risks seen
both across classes of RPs and across popular IDPs, we find multiple high-risk
sites (e.g., RPs that both import private information and that are authorized
to perform actions) among the top-200 websites for all website classes except
Ads/CDN services. Such sites can easily become a source of information leakage.

Our multi-account case studies show that users are often asked to allow the
RP to import more information from the IDP than is needed for the local user
profile, and to enter redundant information. Furthermore, we find significant
incompatibilities and inconsistencies in scenarios involving multiple IDPs. Often
it is not possible to merge accounts with different IDPs, and the user can be
stuck with a wide range of undesirable account situations. Clearly, many RPs
are not designed to simply and securely use multiple IDPs.

We believe that more focus must be placed on multi-IDP scenarios when
defining future policies for OpenID Connect (based on OAuth2), for example.

Information Sharing and User Privacy 187

Ideally, the user should remain in control of exactly what is being shared between
the involved parties, and which information should be used and shared with
each IDP. Similar to how Google+ (and to some extent Facebook) allows users
to define circles, we believe that carefully designed protocols with added user
control can be defined in this context. Already today, these IDPs allow some
degree of personalization in their RP-IDP permission agreements, so generalizing
this concept to the context of multiple IDPs could be one possible approach.
Future work will include the definition and evaluation of such policies.

References

1. Armando, A., Carbone, R., Compagna, L., Cuellar, J., Pellegrino, G., Sorniotti,
A.: From multiple credentials to browser-based single sign-on: are we more secure?
In: Camenisch, J., Fischer-Hübner, S., Murayama, Y., Portmann, A., Rieder, C.
(eds.) SEC 2011. IFIP AICT, vol. 354, pp. 68–79. Springer, Heidelberg (2011)

2. Birrell, E., Schneider, F.B.: Federated identity management systems: A privacy-
based characterization. IEEE Security & Privacy 11(5), 36–48 (2013)

3. Chaabane, A., Acs, G., Kaafar, M.A.: You are what you like! information leakage
through users’ interests. In: Proc. NDSS (2012)

4. Cheng, Y., Park, J., Sandhu, R.: Preserving user privacy from third-party appli-
cations in online social networks. In: Proc. WWW, May 2013

5. Dhamija, R., Dusseault, L.: The seven flaws of identity management: Usability and
security challenges. IEEE Security & Privacy 6(2), 24–29 (2008)

6. Felt, A., Evans, D.: Privacy protection for social networking APIs. In: Proc. W2SP,
May 2008

7. Gill, P., Arlitt, M., Carlsson, N., Mahanti, A., Williamson, C.: Characterizing
organizational use of web-based services: Methodology, challenges, observations,
and insights. ACM Trans. on the Web 5(4), 19:1–19:23 (2011)

8. Goga, O., Lei, H., Parthasarathi, S.H.K., Friedland, G., Sommer, R., Teixeira, R.:
Exploiting innocuous activity for correlating users across sites. In: Proc. WWW,
May 2013

9. Malandrino, D., Petta, A., Scarano, V., Serra, L., Spinelli, R., Krishnamurthy, B.:
Privacy awareness about information leakage: Who knows what about me? In:
Proc. ACM WPES (2013)

10. Pennacchiotti, M., Popescu, A.-M.: Democrats, republicans and starbucks affi-
cionados: user classification in twitter. In: Proc. ACM SIGKDD (2011)

11. Shehab, M., Marouf, S., Hudel, C.: Roauth: recommendation based open autho-
rization. In: Proc. SOUPS, July 2011

12. Sun, S.-T., Beznosov, K.: The devil is in the (implementation) details: an empirical
analysis of oauth sso systems. In: Proc. ACM CCS (2012)

13. Sun, S.-T., Boshmaf, Y., Hawkey, K., Beznosov, K.: A billion keys, but few locks:
the crisis of web single sign-on. In: Proc. NSPW (2010)

14. Sun, S.T., Pospisil, E., Muslukhov, I., Dindar, N., Hawkey, K., Beznosov, K.:
Investigating user’s perspective of web single sign-on: Conceptual gaps, alterna-
tive design and acceptance model. ACM Trans. on Internet Technology 13(1),
2:1–2:35 (2013)

188 A. Vapen et al.

15. Vapen, A., Carlsson, N., Mahanti, A., Shahmehri, N.: Third-party identity man-
agement usage on the Web. In: Faloutsos, M., Kuzmanovic, A. (eds.) PAM 2014.
LNCS, vol. 8362, pp. 151–162. Springer, Heidelberg (2014)

16. Vapen, A., Carlsson, N., Mahanti, A., Shahmehri, N.: Information sharing and
user privacy in the third-party identity management landscape. In: Proc. ACM
CODASPY (2015)

17. Wang, R., Chen, S., Wang, X.: Signing me onto your accounts through facebook
and google: a traffic-guided security study of commercially deployed single-sign-on
web services. In: Proc. IEEE Symposium on S&P, May 2012

18. Zafarani, R., Liu, H.: Connecting users across social media sites: A behavioral-
modeling approach. In: Proc. ACM SIGKDD (2013)

An Iterative Algorithm for Reputation
Aggregation in Multi-dimensional
and Multinomial Rating Systems

Mohsen Rezvani1(B), Mohammad Allahbakhsh2, Lorenzo Vigentini1,
Aleksandar Ignjatovic1, and Sanjay Jha1

1 University of New South Wales, Sydney, Australia
{mrezvani,ignjat,sanjay}@cse.unsw.edu.au, l.vigentini@unsw.edu.au

2 University of Zabol, Zabol, Iran
allahbakhsh@uoz.ac.ir

Abstract. Online rating systems are widely accepted as a means for
quality assessment on the web, and users increasingly rely on these sys-
tems when deciding to purchase an item online. This fact motivates peo-
ple to manipulate rating systems by posting unfair rating scores for fame
or profit. Therefore, both providing useful realistic rating scores as well
as detecting unfair behaviours are of very high importance. Existing
solutions are mostly majority based, also employing temporal analysis
and clustering techniques. However, they are still vulnerable to unfair
ratings. They also ignore distance between options, provenance of infor-
mation and different dimensions of cast rating scores while computing
aggregate rating scores and trustworthiness of raters. In this paper, we
propose a robust iterative algorithm which leverages the information in
the profile of raters, provenance of information and a prorating function
for the distance between options to build more robust and informative
rating scores for items as well as trustworthiness of raters. We have imple-
mented and tested our rating method using both simulated data as well
as three real world datasets. Our tests demonstrate that our model calcu-
lates realistic rating scores even in the presence of massive unfair ratings
and outperforms well-known ranking algorithms.

Keywords: Online rating · Voting · Trust · Provenance · Multi-
dimensional

1 Introduction

Nowadays, millions of people generate content or advertise products online. It is
very unlikely for a customer to have a personal experience with a product or to
know how trustworthiness a seller might be. One of the widely used methods to
overcome this problem is to rely on the feedback received from the other users
who have had a direct experience with a product or have already bought it.
Online rating systems collect feedback from users of an online community and,

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 189–203, 2015.
DOI: 10.1007/978-3-319-18467-8 13

190 M. Rezvani et al.

based on the feedback, assign a quality score to every product or trustworthiness
of a user in the community. The Amazon1 online market and the eBay2 are some
of the well-known outlets which incorporate an online rating systems.

One of the big issues with the online rating systems is the credibility of the
quality ranks that they produce. For various reasons, users might have inter-
est to post unfair feedback, either individually or as an organised, colluding
group. If such unfair feedback is taken into account when ranks are computed,
the resulting quality ranks are no longer reliable. Many pieces of evidence show
that the online rating systems are widely subject to such unfair ratings [10,16].
Some studies propose methods for dealing with this problem which rely on
clustering techniques to analyze the behaviour of raters and find the abnor-
mal ones [8,11]. The main problem with such solutions is that the clustering
techniques are generally based on solutions to NP-Hard graph problems; thus
their performance is severely degraded when the size of an online systems is too
large. The other type of solutions to such problems is based on iterative fil-
tering (IF) techniques [4,6,20]. These techniques, while performing better than
the simple aggregation techniques, are still vulnerable to sophisticated collusion
attacks [13].

We have recently proposed an algorithm [1], Rating Through Voting (RTV),
which outperforms the previous IF algorithms in terms of detection and mitiga-
tion of unfair behaviour. Although RTV shows a promissing robustness against
unfair ratings, it still has limitations that require more investigations.

The first limitation is that in RTV the order of the choices is not important
and the distance between the choices is not defined. For example, when a rater
chooses the Nominee1 as the most popular candidate and another rater selects
the Nominee2, it does not make sense to talk about the distance between these
two options. However, in a movie rating system, if one of the raters chooses 4 star
rating of a movie and another chooses a 3 star rating then a distance between
there ratings is well defined and might be important for rating methods. The
distance between choices is not taken into account in the RTV algorithm.

Moreover, in a rating system, raters may assess quality of a product, a service
or a person from different aspects. For instance, in eBay’s detailed seller rating
system, buyers express their opinion on the quality of a transaction form four
different aspects3. For a reputation to be more credible, it is necessary that the
reputation system aggregates the scores received for all different aspects to build
the final reputation score. This is another limitation of the RTV algorithms.

Finally, the provenance of a rating score is another piece of information that
is ignored in the RTV algorithm. The contextual information around a cast
rating score can give the system useful hints to adjust its weight. The profile of
the rater, the time a feedback has been cast, etc., are examples of contextual
meta data that can be taken into account in the computation of the ranks.

1 http://www.amazon.com/
2 http://www.ebay.com/
3 http://www.ebay.com/gds/

http://www.amazon.com/
http://www.ebay.com/
http://www.ebay.com/gds/

An Iterative Algorithm for Reputation Aggregation 191

In this paper we propose a novel reputation system which is based on the
RTV algorithm4. The proposed method takes into account the distance between
options to fairly propagate credibility among options. We also, consider the dif-
ferent dimensions of the cast rating scores and utilize them in order to build more
realistic and credible reputation aggregation. Finally, our proposed method takes
advantage from the provenance of the cast feedback when calculating reputa-
tion and rating scores and consequently computes more informative and reliable
scores. We have assessed the effectiveness of our approach using both synthetic
and three real-world datasets. The evaluation results show superiority of our
method over three well-known algorithms in the area, including RTV.

The rest of this paper is organized as follows. Section 2 formulates the prob-
lem and specifies the assumptions. Section 3 presents our novel reputation sys-
tem. Section 4 describes our experimental results. Section 5 presents the related
work. Finally, the paper is concluded in Section 6.

2 Preliminaries

2.1 Basic Concepts and Notation

Assume that in an online rating system a set of n users cast ratings for m items.
Each user rates several items (but not necessarily all) and each item might be
rated from K different perspectives. We represent the set of ratings by a three
dimensional array An×m×K in which Ai,j,k (1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ K) is
the rating cast by user i on the item j from the kth perspective. We suppose that
rating scores are selected from a discrete set of numbers each of which represent
a quality level, for example 1-star to 5-stars.

2.2 Rating Through Voting

The RTV algorithm [1] reduces the problem of rating to a voting task. In the
algorithm, when a rater chooses a quality level, say 4-stars, to represent quality
of a product, one can say that the rater believes that 4-stars represents the
quality of the product better than the other options; thus, in a sense, he has
voted for it out of the list of 1-star to 5-stars options.

RTV assigns a credibility degree to each quality level in order to show how
credible this quality level is for representing the real quality of the item. There-
after, it aggregates the credibility of all quality levels a users has voted for to
build the users’ trustworthiness. Assume that for each item l, there is a list of
options Λl = {I l

1, . . . , I
l
nl

} and each user can choose maximum one option for
each item. We define the credibility degree of a quality level Ii on list Λl, denoted
by ρli as follow:

ρli =
∑

r : r→li (Tr)
α

√
∑

1≤j≤nl

(∑
r : r→lj (Tr)

α
)2

(1)

4 An extended version of this paper has been published as a technical report in [12].

192 M. Rezvani et al.

where r → li denotes that user r has chosen option I l
i from list Λl. α ≥ 1 is a

parameter which can be used to tune the algorithm for a particular task. Tr is
the trustworthiness of user r which is obtained as:

Tr =
∑

l,i : r→li

ρli (2)

Equations (1) and (2) show that there is an interdependency between the
credibility and trustworthiness. RTV leverages such interdependency through
an iterative procedure. Given the credibility degrees obtained by such iterative
algorithm, the aggregate rating score of item l, denoted as R(πl), is obtained as:

R(πl) =
∑

1≤i≤nl

i × ρp
li∑

1≤j≤nl
ρp

lj

(3)

where p ≥ 1 is a parameter for controlling the averaging affect.

3 Reputation Aggregation System

In this section, we extend RTV by taking into account the rating provenance as
well as credibility propagation in a multi-dimensional rating system.

3.1 Distance Between Nominal Values

In most of social rating systems, such as eBay 5-star feedback system, there is
a numerical distance between the existing options. In order to take into account
such distance in our reputation propagation method, we formulate the distance
using a decaying function.

One can use any decreasing function, symmetric around the origin, i.e., such
that d(x) = d(−x). Here we define the distance of two options i and j as d(i, j) =
q|i−j|, where q is the base distance, 0 < q < 1 and is defined as the distance value
between two consecutive options. We assume that there is a limited range for
the ratings in the rating system. The main condition is that the sum of all
distances must be equal to a constant value, we call it propagation parameter
and is denoted as b. The propagation parameter is a positive value which controls
the proportion of credibility propagation among options. By taking into account
this condition, we have

q + q2 + · · · + qnl−j + q + q2 + · · · + qj−1 = b ⇔

q

(
1 − qnl−j

1 − q

)

+ q

(
1 − qj−1

1 − q

)

= b ⇔

2 − qj−1 − qnl−j = b
1 − q

q
(4)

Note that since 0 < q < 1, Eq. (4) has only one real solution for each positive
value of b.

An Iterative Algorithm for Reputation Aggregation 193

3.2 Provenance-Aware Credibility Propagation

Given the distance function d(i, j) for computing the numerical distance between
options i and j, we update our computation equations for the credibility degree
as well as users’ trustworthiness. Firstly, we define βli as the non-normalized
credibility degree of quality level li. Considering the idea of credibility propa-
gation among the options, the credibility degree of a quality level is obtained
not only from the raters who have chosen such particular level, but also from all
raters who rated such item with proportion to the distance of their choices from
such level. In other words, we define the credibility degree for a quality level
in an item as amount of credibility which such level can obtain from all raters
who rated such an item. Therefore, we reformulate the Eq. (1) for computing
the non-normalized credibility degree of quality level li as follows:

βli =
∑

j,r : r→lj

(Tr)
α
d(i, j) (5)

As we mentioned some rating systems provide contextual information about
the ratings, we call it rating provenance. It contains attributes such as watching
duration in a movie ratings system and educational level of raters in a student
feedback system, which provides more information about either the raters or the
environment of ratings. Since the rating provenance provides informative data
about the quality of ratings, a reputation system needs to take into account
these data in the its computations. In this paper, we propose a provenance model
based on the attributes provided by a student feedback system which includes
two contextual attributes: staff/non-staff and watching behaviour of students.
We note that the approach can be easily adapted for other contextual attributes.
This provenance model is based on the approach from [17], originally proposed
in the context of participatory sensing.

The main idea of our provenance model is to define a weight function for
considering the contextual attributes provided by the rating system. To this
end, we define a weight function for each attribute and then we aggregate all the
weights from these functions using the simple product of the weights to obtain
the provenance weight. Such provenance weight is used to assess the credibility
level as well as users’ trustworthiness.

In the student feedback system, users are asked to rate the movies in an
online course. In this system, each user has an status which indicates whether
such user is staff or non-staff. Moreover, the system provides for each rating the
time spent for watching the movie. We utilize both the staff status and watching
duration as two contextual attributes to model the rating provenance. To this
end, we consider a somewhat higher credibility for the staff raters. Thus, we
define the staff weight, denoted as ws, which is set ws = 0.98 for staff raters
and ws = 0.95 for non-staff raters. Moreover, we take into account the watching
time due to the fact that a student who spends enough time to watch a movie
can provide higher quality ratings. We denote the watching time provided for
each rating and the original duration of its corresponding movie as Tr and Tv,

194 M. Rezvani et al.

respectively. Thus, we compute the gap between them by |min{Tr, Tv} − Tv|.
Now, we define the watching time weight, denoted as wt:

wt = e−|min{Tr,Tv}−Tv|×β (6)

where 0 ≤ β ≤ 1 is the duration sensitivity parameter which controls the watch-
ing time weight. Note that Eq. (6) makes wt equal to 1 when the time gap
between the watching and duration is 0 and wt approaches 0 when such gap is
large. Given both staff and watching time weights, we define provenance weight,
denoted as wp through aggregating these two weights as:

wp = ws × wt (7)

Note that in general the provenance weight can be define as the product of the
weight values for all contextual attributes, where such weights are in the range
of [0,1]. Given the provenance weight, we re-write Eq. (5) as follows:

βli =
∑

j,r : r→lj

(Tr)
α × d(i, j) × wp (8)

For normalizing the credibility degree, we use the same method used in our
previous approach which is:

ρli =
βli√∑

1≤j≤nl
(βlj)

2
(9)

The trustworthiness of a user is the weighted sum of all credibility degrees
from all quality levels of items which has been rated by such user. The weight
here is the distance between the chosen level by such user and the credible level.
Thus, we have

Tr =
∑

l,i : r→li

∑

1≤j≤nl

ρli × d(i, j) × wp (10)

Note that we formulated the uncertainty in rating systems through both cred-
ibility propagation among options and rating provenance. Thus, we considered
them in computing both credibility degrees and users’ trustworthiness.

3.3 Iterative Vote Aggregation

Given equations (8), (9) and (10), we have interdependent definitions for cred-
ibility degree and trustworthiness. Clearly, the credibility degree of a quality
level in for item depends on the trustworthiness of users who rated such item.
on the other hand, the trustworthiness of a user depends on the credibility of the
quality levels of the items which have been rated by such user. Thus, we propose
an iterative algorithm to compute both the credibility degrees and trust scores
simultaneously in a single recursive procedure. We denote the non-normalized
credibility, normalized credibility and trustworthiness at iteration l as β

(l)
li , ρ

(l)
li

An Iterative Algorithm for Reputation Aggregation 195

and T
(l)
r , respectively which are computed from the values obtained in the pre-

vious iteration of the algorithm.
Algorithm 1 shows our iterative process for computing the credibility and

trustworthiness values. One can see that the algorithm starts with identical
trust scores for all users, T

(0)
r = 1. In each iteration, it first compute the

non-normalized credibility degree βli. After obtaining the normalized credibility
degree ρli for all options, the trustworthiness for all users are updated. The iter-
ation will stop when there is no considerable changes for the credibility degrees.

Algorithm 1. Iterative algorithm to compute the credibility and trustworthi-
ness.
1: procedure CredTrustComputation(A, b, α, nl)
2: Compute q using (4)
3: d(i, j) ← q|i−j| for each 1 ≤ i, j ≤ nl

4: T
(0)
r ← 1

5: l ← 0
6: repeat
7: Compute βli using (5) for each level i and item l
8: Compute ρli using (9) for each level i and item l
9: Compute Tr using (10) for each each use r

10: l ← l + 1
11: until credibilities have converged
12: Return ρ and T
13: end procedure

3.4 Multi-dimensional Reputation

As we discussed, a reputation system needs to consider the correlation among
raters’ perceptions among multiple categories. The eBay’s feedback system and
student course evaluation in educational systems are two examples of rating
systems with multiple categories. A traditional approach is to apply the com-
putations over the ratings of each category, separately. However, the correlation
among ratings in various categories can help a reputation system to accurately
assess the quality of ratings [15].

In Eq. (3) we proposed a aggregation method for single category rating sys-
tem. In this method, the final reputation of an item is obtained from an aggregate
of the credibility values of different options for such item. In order to extend this
method to multi-dimensional rating systems, we first perform Algorithm 1 over
each category to obtain K weights for each user (Note that we have K dimen-
sions in the ratings). Then, we aggregate the weights using simple averaging to
obtain the final users’ trustworthiness. Thereafter, we employ a weighted aver-
aging method to compute the final reputation of item l in category k, as follows

R(πlk) =

∑
i,r : r→lik i × (T̂r)p

∑
i,r : r→lik(T̂r)p

(11)

196 M. Rezvani et al.

where r → lik denotes that user r chose option I l
i from list Λl for category k.

T̂r is the average of weights of user r obtained by applying Algorithm 1 over
the ratings of different categories. Moreover, constant p ≥ 1 is a parameter for
controlling the averaging affect.

4 Experiments

In this section, we detail the steps taken to evaluate the robustness and effec-
tiveness of our approach in the presence of faults and unfair rating attacks.

4.1 Experimental Environment

Although there are a number of real world datasets for evaluating reputation
systems such as MovieLens5 and HetRec 20116, none of them provides a clear
ground truth. Thus, we conduct our experiments by both real-world datasets
and generating synthetic datasets.

We generate the synthetic datasets by using statistical parameters of the
MovieLens 100k dataset, as shown in Table 1. The quality of each movie has been
uniformly randomly selected from the range [1,5]. In addition, we consider a zero
mean Gaussian noise for ratings of each user with different variance values for
the users. All ratings are also rounded to be discrete values in the range of [1,5].
We conducted parameter analysis experiments to find the values of parameters
α, p and b. The results of these experiments are reported in [12] and consequently
we choose α = 2, p = 2 and b = 0.5 for our subsequent experiments.

Table 1. MovieLens 100k dataset statistics

Parameter MovieLens 100k

Ratings 100,000
Users 943
Movies 1682

of votes per user Beta(α = 1.32, β = 19.50)

In all experiments, we compare our approach against three other IF tech-
niques proposed for reputation systems. Table 2 shows a summary of discrimi-
nant functions for these IF methods. We also call our new method PrRTV and
the previous one BasicRTV, briefly presented in Section 2.2.

4.2 Robustness Against False Ratings

In order to evaluate robustness of our algorithm against false ratings, we conduct
experiments based on two types of malicious behaviour proposed in [4] over

5 http://grouplens.org/datasets/movielens/
6 http://grouplens.org/datasets/hetrec-2011/

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/hetrec-2011/

An Iterative Algorithm for Reputation Aggregation 197

Table 2. Summary of different IF algorithms

Name Discriminant Function

dKVD-Affine [4] wl+1
i = 1 − k 1

T

∥
∥xi − rl+1

∥
∥2

2

Zhou [20] wl+1
i = 1

T

T∑

i=1

(
xt
i−x̄t

σxi

) (
rt−r̄
σr

)

Laureti [6] wl+1
i = (1

T

∥
∥xi − rl+1

∥
∥2

2
)−

1
2

the MovieLens dataset: Random Ratings, and a Promoting Attack. For random
ratings, we modify the rates of 20% of the users within the original MovieLens
dataset by injecting uniformly random rates in the range of [1,5] for those users.

In slandering and promoting attacks, one or more users falsely produce neg-
ative and positive ratings, respectively, about one or more items [2]. The attacks
can be conducted by either an individual or a coalition of attackers. We evaluate
our approach against a promotion attack by considering 20% of the users as the
malicious users involved in the attack. In this attack, malicious users always rate
1 except for their preferred movie, which they rate 5.

Let r and r̃ be the reputation vectors before and after injecting false ratings
in each scenario (random ratings and promoting attack), respectively. In the pro-
posed reputation system, the vectors are the results of Eq. (11). Table 3 reports
the 1-norm difference between these two vectors, ||r − r̃||1 =

∑m
j=1 |rj − r̃j | for

our algorithm along with other IF algorithms. Clearly, all of the IF algorithms are
more robust than Average. In addition, the PrRTV algorithm provides higher
accuracy than other methods for both false rating scenarios. The results can
be explained by the fact that the proposed algorithm effectively filters out the
contribution of the malicious users.

Table 3. 1-norm absolute error between reputations by injecting false ratings

‖r − r̃‖1

Average dKVD-Affine Laureti BasicRTV PrRTV

Random Ratings 205.32 152.40 171.55 152.75 151.54

Promoting Attack 579.65 378.29 377.72 894.25 368.81

4.3 Rating Resolutions and Users Variances

In this section, we investigate the accuracy of PrRTV over the low resolution
ratings and different variance scales using synthetic datasets. The ratings scale is
in the range of [1, R], where R is an integer number and R ≥ 2. Also, the standard
deviation σi for user i is randomly selected by a uniform distribution U[0;σmax],
where σmax is a real value in the range of [0, R−1]. We also evaluate a normalized
RMS error, RMSE/(R − 1) (see [12] for RMS Error) for each experiment. In
this section, we investigate the accuracy of our reputation system against various
values for both rating resolution R and variance scale σmax.

198 M. Rezvani et al.

1 1.5 2 2.5 3 3.5 4
0

0.02

0.04

0.06

0.08

0.1

0.12

σmax

N
o
rm

a
li
ze
d
R
M
S
E
rr
o
r Average

dKVD-Affine
Zhou
Laureti
PrRTV

(a) Variance Changes

5 6 7 8 9 10
0.04

0.06

0.08

0.1

0.12

Resolution

N
o
rm

a
li
ze
d
R
M
S
E
rr
o
r Average

dKVD-Affine
Zhou
Laureti
PrRTV

(b) Resolution Changes

Fig. 1. Accuracy with different variances and resolutions

For the first experiment, we set R = 5 and vary the value of σmax in the
range of [1, 4]. By choosing such a range at the worst case, a highest noisy user
with σi = σmax = 4 could potentially report a very low reputation for an item
with a real reputation of 5, and vice versa. Fig. 1a shows the accuracy of the
PrRTV algorithm along with the accuracy of the other IF algorithms for this
experiment. We observe that PrRTV is the least sensitive to the increasing error
level, maintaining the lowest normalized RMS error.

In order to investigate the effect of changing the ratings’ resolution, we set
σmax = R−1 and vary the value of R in the range of [5, 10], so that the maximum
possible users’ errors cover the ratings’ scale. Fig. 1b shows the accuracy of
the algorithms for this experiment. As we can see, although the accuracy of
the PrRTV algorithm is higher than the accuracy of other IF algorithms, the
algorithm provides more sensitivity for the high resolution values. In other words,
the accuracy of our reputation system significantly drops as the ratings resolution
increases. The reason of this behaviour is that Eq. (11) for computing the final
rating scores gives more credibility to the options with higher numerical values,
particularly when there is a large distance between lowest and highest options
in the ratings scales. We plan to extend our reputation aggregation method to
provide more robustness for high resolution rating systems.

4.4 Accuracy Over HetRec 2011 MovieLens Dataset

In this section, we evaluate the performance of our reputation system based on
the accuracy of the ranked movies in the HetRec 2011 MovieLens dataset. This
dataset links the movies in the MovieLens dataset with their corresponding web
pages at Internet Movie Database (IMDb)7 and Rotten Tomatoes movie critics
systems8. Thus, we use the top critics ratings from Rotten Tomatoes as the
domain experts for evaluating the accuracy of our approach.

There are 10,109 movies in the HetRec 2011 MovieLens dataset rated by
users. The dataset also includes the average ratings of the top and all critics of

7 http://www.imdb.com/
8 http://www.rottentomatoes.com/critics/

http://www.imdb.com/
http://www.rottentomatoes.com/critics/

An Iterative Algorithm for Reputation Aggregation 199

5.6

5.8

6

6.2

6.4

6.6

6.8

1 6 11 16 21 26 31 36 41 46

Av
er

ag
e

ra
tin

gs
 a

nd
 re

ut
at

io
ns

Class number

RTTopCritics BasicRTV PrRTV

(a) RTTopCritics

5.6

5.8

6

6.2

6.4

6.6

6.8

1 11 21 31 41 51 61 71 81

Av
er

ag
e

ra
tin

gs
 a

nd
 re

ut
at

io
ns

Class number

RTAllCritics BasicRTV PrRTV

(b) RTAllCritics

Fig. 2. Average reputations obtained by our algorithms and RTCritics

Rotten Tomatoes for 4645 and 8404 movies, respectively. We consider such aver-
age ratings as two ground truth to evaluate the accuracy of our approach and
we call them RTTopCritics and RTAllCritics, respectively. In order to clearly
compare the results of our reputation system with those provided by RTTopCrit-
ics and RTAllCritics, we first classify the movies by randomly assigning every
100 movies in a class. We then compute two average values for each class: the
average of reputation values given by our algorithm and the average of rating
given by RTTopCritics and RTAllCritics. Now, we use such average values to
compare the reputations given by our algorithm with the ratings of RTTopCrit-
ics and RTAllCritics. Note that this method is employed only for clarifying this
comparison over such large number of movies.

Fig. 2a and 2b illustrate the comparison between the results of our algorithm
with the ratings provided by RTTopCritics and RTAllCritics, respectively. The
results confirm that the reputation values given by our algorithm is very close
to the experts opinions given by RTCritics. Moreover, comparing the results
of PrRTV with BasicRTV shows that the PrRTV algorithm provide a better
accuracy than the BasicRTV algorithm as its aggregate ratings are more closer
to the ratings provided by Rotten Tomatoes critics. As one can see, our algorithm
ranks the movies slightly higher than RTCritics ratings for all classes. This can
be explained by the fact that the ratings of our algorithm are based on the
scores provided by public users through the MovieLens web site. However, both
RTTopCritics and RTAllCritics ratings provided by Rotten Tomatoes critics who
tend to rank the movies more critically.

4.5 Accuracy Over Student Feedback Dataset

In this section, we evaluate the effectiveness of our reputation system using
a privately accessed student feedback dataset provided by the Learning and
Teaching Unit at UNSW, called CATEI. The dataset consists of 17,854 ratings
provided by 3,910 students (221 staffs and 3,690 non-staffs) for 20 movies in an
online course presented in UNSW. In the CATEI dataset, students were asked to

200 M. Rezvani et al.

0 1 2 3 4
0

1

2

User No. (Thousands)

U
se

r
T

ru
st

w
or

th
in

es
s

(×
 1

0−
4)

UnderstandContent
FurtherExplore

Useful

(a) Affine

0 1 2 3 4
0

1

2

3

4

User No. (Thousands)

U
se

r
T

ru
st

w
or

th
in

es
s

(×
 1

0−
4)

UnderstandContent
FurtherExplore
Useful

(b) Laureti

0 1 2 3 4
0

2

4

6

8

User No. (Thousands)

U
se

r
T

ru
st

w
or

th
in

es
s

(×
 1

0−
4)

UnderstandContent
FurtherExplore

Useful

(c) Zhou

0 1 2 3 4
0

2

4

6

8

User No. (Thousands)

U
se

r
T

ru
st

w
or

th
in

es
s

(×
 1

0−
4)

UnderstandContent
FurtherExplore

Useful

(d) PrRTV

Fig. 3. Users’ weights obtained by the IF algorithms over three categories

Table 4. Correlation among users’ weights over three categories

dKVD-Affine Laureti Zhou PrRTV

U and UC 0.52 0.42 0.58 0.96

U and FE 0.61 0.40 0.61 0.97

UC and FE 0.45 0.50 0.63 0.97

rate the movies in the range of [1-5] and for three different categories: Useful (U),
UnderstandContent (UC), FurtherExplore (FE). Moreover, the dataset includes
the starting and ending times of the watching of the movie for each rating which
allow us to compute the watching duration for each rating. We also set the
duration sensitivity, β = 0.2 for computing the watching time weight of each
rating. As we mentioned in Section 3.2, the rating provenance is obtained as the
product of staff weight and watching weigh for each rating.

In the first part of the experiments over the CATEI dataset, we apply the IF
algorithms over each rating category separately and then investigate the corre-
lation between the obtained users’ weights. We expected to observe high corre-
lation among the weights on different categories. We first obtained all the users’
weights, then sorted them in an increasing order based on the Useful category.
Fig. 3 compares the users’ weights among three categories obtained by each IF
algorithm. Moreover, Table 4 reports the Pearson correlation coefficient among
such weight values. One can see in the results that our reputation system pro-
vides the highest correlation among the weights for various categories. This can
validate the effectiveness of our approach over the CATEI dataset.

In Section 3.4, we proposed the idea of aggregation of users’ weights obtained
for each category to obtain the final reputation values over multi-dimensional
rating datasets. A traditional approach is to separately apply the reputation sys-
tem over each dimension. In order to investigate the effectiveness of the proposed
approach, we evaluate the correlation among the reputation values for various
categories over the CATEI dataset for these two methods. To this end, we first
perform the IF algorithms over each category and compute the correlation among
the obtained reputation vectors for each category. After that, we perform the
proposed method in Section 3.4, and compute the correlation among the new
reputation vectors. Table 5 reports the percentage of increasing such correla-

An Iterative Algorithm for Reputation Aggregation 201

tion among categories by performing our multi-dimensional reputation method.
One can see that our approach improved the average correlation value for all
four algorithms. The results also show a significant improvement in the Zhou
algorithm. This can be explained by some negative correlations obtained by the
algorithm using the traditional reputation computation method.

Table 5. Percentage of increasing correlation among reputations by aggregating the
weights obtained through each category

dKVD-Affine Laureti Zhou PrRTV

U and UC 0.70 2.79 2.80 13.90

U and FE 0.03 8.54 72.12 -0.65

UC and FE -0.26 0.12 0.09 -0.73

Average 0.16 3.81 25.00 4.17

5 Related Work

According to several research evidences, as the reliance of the users of online
stores on the rating systems to decide on purchasing a product constantly
increases, more efforts are put in building up fake rating or reputation scores
in order to gain more unfair income [16]. To solve this problem, Mukherjee
et al., [11] proposed a model for spotting fake review groups in online rating sys-
tems. The model analyzes feedbacks cast on products in Amazon online market
to find collusion groups. In a more general setup, detection of unfair ratings has
been studied in P2P and reputation management systems; good surveys can be
found in [14]. EigenTrust [3] is a well known algorithm as a robust trust compu-
tation system. However, Lian et al. [7] demonstrate that it is not robust against
collusion. Another series of works [9,18,19] use a set of signals and alarms to
point to a suspicious behavior. The most famous ranking algorithm of all, the
PageRank algorithm [5] was also devised to prevent collusive groups from obtain-
ing undeserved ranks for webpages.

Several papers have proposed IF algorithms for reputation systems [4,6,20].
While such IF algorithms provide promising performance for filtering faults and
simple cheating attacks, we recently showed that they are vulnerable against
sophisticated attacks [13]. In this paper, we compared the robustness of our
approach with some of the existing IF methods.

The method we propose in this paper is different from the existing related
work, mainly from its ancestor RTV, from three various aspects. First, the dis-
tance between the options is taken into account in this work. Second, reputation
scores are in fact multi dimensional. Finally, the provenance of rating scores are
considered while giving credit and weight to them. To the best of our knowledge,
no existing work considers all of these issues in reputation systems.

202 M. Rezvani et al.

6 Conclusions

In this paper, we proposed a novel reputation system which leverages the dis-
tance between the quality levels, provenance of cast rating scores and multi-
dimensional reputation scores to address the problem of robust reputation aggre-
gation. The experiments conducted on both synthetic and real-world data show
the superiority of our model over three well-known iterative filtering algorithms.
Since the proposed framework has shown a promising behaviour, we plan to
extend the algorithm to propose a distributed reputation system.

References

1. Allahbakhsh, M., Ignjatovic, A.: An iterative method for calculating robust rating
scores. IEEE Transactions on Parallel and Distributed Systems 26(2), 340–350
(2015)

2. Hoffman, K., Zage, D., Nita-Rotaru, C.: A survey of attack and defense techniques
for reputation systems. ACM Comput. Surv. 42(1), 1:1–1:31 (2009)

3. Kamvar, S.D., Schlosser, M.T., Garcia-Molina, H.: The eigentrust algorithm for
reputation management in P2P networks. In: Proceedings of the 12th International
Conference on World Wide Web, pp. 640–651 (2003)

4. de Kerchove, C., Van Dooren, P.: Iterative filtering in reputation systems. SIAM
J. Matrix Anal. Appl. 31(4), 1812–1834 (2010)

5. Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of
Search Engine Rankings. Princeton University Press, February 2012

6. Laureti, P., Moret, L., Zhang, Y.C., Yu, Y.K.: Information filtering via Iterative
Refinement. EPL (Europhysics Letters) 75, 1006–1012 (2006)

7. Lian, Q., Zhang, Z., Yang, M., Zhao, B.Y., Dai, Y., Li, X.: An empirical study of
collusion behavior in the maze P2P file-sharing system. In: Proceedings of the 27th
IEEE International Conference on Distributed Computing Systems. ICDCS 2007,
pp. 56–56 (2007)

8. Lim, E.P., Nguyen, V.A., Jindal, N., Liu, B., Lauw, H.W.: Detecting product review
spammers using rating behaviors. In: Proceedings of the 19th ACM International
Conference on Information and Knowledge Management, pp. 939–948. ACM (2010)

9. Liu, Y., Yang, Y., Sun, Y.: Detection of collusion behaviors in online reputation
systems. In: 2008 42nd Asilomar Conference on Signals, Systems and Computers,
pp. 1368–1372. IEEE (2008)

10. Morgan, J., Brown, J.: Reputation in online auctions: The market for trust. Cali-
fornia Management Review 49(1), 61–81 (2006)

11. Mukherjee, A., Liu, B., Glance, N.: Spotting fake reviewer groups in consumer
reviews. In: Proceedings of the 21st International Conference on World Wide Web.
WWW 2012, pp. 191–200 (2012)

12. Rezvani, M., Allahbakhsh, M., Ignjatovic, A., Jha, S.: An iterative algorithm for
reputation aggregation in multi-dimensional and multinomial rating systems. Tech.
Rep. UNSW-CSE-TR-201502, January 2015

13. Rezvani, M., Ignjatovic, A., Bertino, E., Jha, S.: Secure data aggregation technique
for wireless sensor networks in the presence of collusion attacks. IEEE Transactions
on Dependable and Secure Computing 12(1), 98–110 (2015)

14. Sun, Y.L., Liu, Y.: Security of online reputation systems: The evolution of attacks
and defenses. IEEE Signal Process. Mag. 29(2), 87–97 (2012)

An Iterative Algorithm for Reputation Aggregation 203

15. Tang, J., Gao, H., Liu, H.: mTrust: Discerning multi-faceted trust in a connected
world. In: Proceedings of the Fifth ACM International Conference on Web Search
and Data Mining. WSDM 2012, pp. 93–102 (2012)

16. Wang, G., Wilson, C., Zhao, X., Zhu, Y., Mohanlal, M., Zheng, H., Zhao, B.Y.: Serf
and turf: crowdturfing for fun and profit. In: Proceedings of the 21st International
Conference on World Wide Web. WWW 2012, pp. 679–688 (2012)

17. Wang, X.O., Cheng, W., Mohapatra, P., Abdelzaher, T.F.: ARTSense: anonymous
reputation and trust in participatory sensing. In: INFOCOM, pp. 2517–2525. IEEE
(2013)

18. Yang, Y.F., Feng, Q.Y., Sun, Y., Dai, Y.F.: Dishonest behaviors in online rating
systems: cyber competition, attack models, and attack generator. J. Comput. Sci.
Technol. 24(5), 855–867 (2009)

19. Yang, Y., Feng, Q., Sun, Y.L., Dai, Y.: RepTrap: a novel attack on feedback-based
reputation systems. In: Proceedings of the 4th International Conference on Security
and Privacy in Communication Netowrks. SecureComm 2008, pp. 8:1–8:11 (2008)

20. Zhou, Y.B., Lei, T., Zhou, T.: A robust ranking algorithm to spamming. EPL
(Europhysics Letters) 94(4), 48002–48007 (2011)

A Comparison of PHY-Based
Fingerprinting Methods Used

to Enhance Network Access Control

Timothy J. Carbino(B), Michael A. Temple, and Juan Lopez Jr.

Air Force Institute of Technology, Electrical and Computer Engineering,
WPAFB, Ohio 45433, USA

{timothy.carbino,michael.temple,juan.lopez.ctr}@afit.edu

Abstract. Network complexity continues to evolve and more robust
measures are required to ensure network integrity and mitigate unau-
thorized access. A physical-layer (PHY) augmentation to Medium Access
Control (MAC) authentication is considered using PHY-based Distinct
Native Attribute (DNA) features to form device fingerprints. Specifically,
a comparison of waveform-based Radio Frequency DNA (RF-DNA) and
Constellation-Based DNA (CB-DNA) fingerprinting methods is provided
using unintentional Ethernet cable emissions for 10BASE-T signaling.
For the first time a direct comparison is achievable between the two
methods given the evaluation uses the same experimentally collected
emissions to generate RF-DNA and CB-DNA fingerprints. RF-DNA fin-
gerprinting exploits device dependent features derived from instanta-
neous preamble responses within communication bursts. For these same
bursts, the CB-DNA approach uses device dependent features derived
from mapped symbol clusters within an adapted two-dimensional (2D)
binary constellation. The evaluation uses 16 wired Ethernet devices from
4 different manufacturers and both Cross-Model (manufacturer) Discrim-
ination (CMD) and Like-Model (serial number) Discrimination (LMD)
is addressed. Discrimination is assessed using a Multiple Discriminant
Analysis, Maximum Likelihood (MDA/ML) classifier. Results show that
both RF-DNA and CB-DNA approaches perform well for CMD with
average correct classification of %C=90% achieved at Signal-to-Noise
Ratios of SNR ≥ 12.0 dB. Consistent with prior related work, LMD
discrimination is more challenging with CB-DNA achieving %C=90.0%
at SNR=22.0 dB and significantly outperforming RF-DNA which only
achieved %C=56.0% at this same SNR.

Keywords: Network Access Control · Physical-layer distinct native
attribute · RF-DNA · CB-DNA · Device fingerprinting · MDA/ML

1 Introduction

Network Access Control (NAC) solutions implement strategies which allow de-
vices and/or users access to a given network. There are many NAC solutions that
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 204–217, 2015.
DOI: 10.1007/978-3-319-18467-8 14

A Comparison of PHY-Based Fingerprinting Methods 205

can be employed by a network administrator to include mapping Medium Access
Control (MAC) addresses to specific ports, device credentials, and querying the
hardware and software of a device. Each of these potential solutions suffer from
weakness to include an attackers ability to spoof specific device information or
steal device credentials. As each year passes technical capability expands and
more devices are able to connect to a network. This expansion creates unique
security challenges and increases the potential for unauthorized access. Physical-
layer (PHY) augmentation of MAC based authentication processes provides one
means to improve security and network authentication reliability. The envisioned
PHY-augmented authentication process utilizes a device’s digital ID (e.g., MAC
address) and PHY features extracted from the device’s communication signal.
Ideally, the device’s fingerprint consists of unique PHY features that enable reli-
able discrimination. The final authentication decision, to allow or deny network
access, is based on 1) presentation of an authorized MAC address and 2) a sta-
tistical match between the current Distinct Native Attribute (DNA) features
of the device presenting the MAC address and the stored DNA for the actual
device assigned the MAC address.

The majority of PHY-based fingerprinting methods are based on features
generated from transient, invariant or entire burst responses as discussed in the
review presented in [1]. It is concluded in [1] that many of the PHY finger-
printing techniques discussed lack proper performance evaluation. It is the goal
of this work to conduct performance evaluation between the two most preva-
lent approaches in [1]. The contributions of the research presented in this paper
includes: 1) a direct comparison of performance in waveform-based Radio Fre-
quency DNA (RF-DNA) and Constellation-Based DNA (CB-DNA) approaches
by, 2) utilizing for the first time the same collected emissions for both approaches,
3) the CB-DNA approach is expanded for the first time to include conditional
constellation point sub-clusters, and 4) expand CB-DNA classification to include
Like-Model Discrimination (LMD).

The paper is organized as follows. Section 2 provides background information
and related work on some of the most recent works in device fingerprinting.
Section 3 discusses the experimental setup and outlines the PHY-based RF-
DNA and CB-DNA device fingerprinting approaches. This is followed by device
discrimination results in Sect. 4 and a summary and conclusions in Sect. 5.

2 Background

Device hardware fingerprinting is possible due to variations in manufacturing
processes and device components. These variations inherently induce PHY fea-
ture differences that vary across devices [2]. Amplifiers, capacitors, inductors
and oscillators also possess slight imperfections that influence device finger-
prints [2–5]. The resultant variation can cause deviation in communication sym-
bol rate, center frequency, and induce AM/FM/PM conversion [2]. Thus, it is
possible to exploit device imperfections even when the intrinsic components used
are supposedly identical [1,6].

206 T.J. Carbino et al.

As noted previously, the review in [1] focused primarily on PHY based finger-
printing techniques, with non-PHY based approaches prior to 2009 only briefly
addressed. Non-PHY based fingerprinting techniques as in [7–12] are relevant and
can be used to fingerprint devices by actively probing or passively monitoring
network packet traffic. Fingerprinting is accomplished by exploiting clock-skew
via round trip time and inter-arrival time estimation in the collected network
traces. These non-PHY based approaches are noted here for completeness and
a comparison of PHY based and non-PHY based approaches is the subject of
subsequent research.

PHY based device fingerprinting works in [6,15–19,21] generally rely on
invariant non-data modulated Region of Interest (ROI) within the burst (turn-on
transient, preamble, midamble, etc.) to extract fingerprint features. Additional
works [1–5], utilize the data modulated burst response regions to extract their
fingerprint features from device dependent modulation errors. Transient-based
approaches are generally avoided given 1) the limited duration of the transient
response, and 2) the transient response being influenced by environmental condi-
tions that affect the communication channel and limit its usefulness [4]. As noted
in Sect. 3.2, the CB approaches require a signal constellation for calculating error
statistics and thus are only applicable for CB communication applications. This
is not a constraint of the RF-DNA approach presented in Sect. 3.1 which has
been successfully used for both communication applications [15,16,18,19,21],
and non-communication applications such as discriminating between device com-
ponents and operational states [6,17,22,23].

A new approach to CB-DNA was first introduced in [20] which included
development of a 2D binary signal constellation for unintentional wired Eth-
ernet emissions using features from two binary composite constellation point
clusters. Nearest Neighbor (NN) and Multiple Discriminant Analysis, Maximum
Likelihood (MDA/ML) classifiers were used to assess device discrimination for
Cross-Model (manufacturer) Discrimination (CMD) with the MDA/ML classi-
fier out performing NN. Results here extend this earlier work by 1) exploiting
discriminating feature information in multiple conditional constellation point
sub-clusters that form the binary composite clusters, and 2) assessing Like-Model
(serial number) Discrimination (LMD) capability as required for the envisioned
network device ID authentication process.

3 Experimental Methodology

This work varies from traditional PHY fingerprinting approaches in that it is
fingerprinting wired network devices via the unintentional RF emissions given
off by the Ethernet cable. The experimental methodology here was adopted
from [24] and is summarized briefly for completeness. The emission collection
setup included interconnecting two computers using 10BASE-T Ethernet signal-
ing over a category 6 Ethernet cable. A LeCroy WavePro 760Zi-A oscilloscope
operating at a sample frequency is fs=250M Samples/Sec (MSPS) and a high
sensitivity Riscure 205HS near-field RF probe were used to collect the uninten-
tional RF emissions. An in-line baseband filter with bandwidth of WBB=32Mhz

A Comparison of PHY-Based Fingerprinting Methods 207

was used to limit the collection bandwidth. The Ethernet cable and RF probe
were placed in a test fixture to maintain relative cable-to-probe orientation while
the Ethernet cards were swapped in and out for collection.

As shown in Table 1 [20], a total of 16 network cards were tested, with four
cards each from D-Link (DL), Intel (IN), StarTech (ST), and TRENDnET (TN).
The last four MAC address digits show that some devices vary only by a single
digit and are likely from same production run. Four unique LAN transformer
markings are provided and used to analyze results. The LAN transformer is the
last part that the signal goes through prior to reaching the RJ45 output jack [20].

Table 1. Ethernet Cards Used for Emission Collection [20]

Manufacturer Reference
MAC Address

Last Four
LAN Transformer Markings

D-Link

DL1 D966 Bi-Tek IM-1178LLF 1247I
DL2 DA06 Bi-Tek IM-1178LLF 1247I
DL3 DA07 Bi-Tek IM-1178LLF 1247I
DL4 60E0 Bi-Tek IM-1178LLF 1247I

TRENDnET

TN1 9B55 Bi-Tek IM-1178LLF 1247I
TN2 9334 Bi-Tek IM-1178LLF 1247I
TN3 9B54 Bi-Tek IM-1178LLF 1247I
TN4 9B56 Bi-Tek IM-1178LLF 1247I

Intel

IN1 1586 BI HS00-06037LF 1247
IN2 1A93 BI HS00-06037LF 1247
IN3 1A59 BI HS00-06037LF 1247
IN4 1A9E BI HS00-06037LF 1247

Star Tech

ST1 32CB FPE G24102MK 1250a1
ST2 32B4 FPE G24102MK 1250a1
ST3 96F4 FPE G24102MK 1320G1
ST4 3048 FPE G24102MK 1250a1

3.1 RF-DNA Fingerprinting

The RF-DNA fingerprinting approach has been most widely used for intentional
signal responses of wireless devices [15,16,18,19]. For this work, the RF-DNA
approach adopts the technique introduced in [24] for collecting unintentional RF
emissions from Ethernet cables and producing RF-DNA fingerprints on a burst-
by-burst basis. Useful RF-DNA has been historically extracted from invariant
signal amble regions [6,15,16] and thus the 10BASE-T preamble response was
targeted here for initial assessment. RF-DNA features can be extracted from
various ROI responses, a few of which include Time Domain (TD) [16], Spectral
Domain (SD) [18], Fourier Transform (FT) [18], and Gabor Transform (GT) [15].

Instantaneous amplitude {a(k)}, phase {φ(k)}, and frequency {f(k)} are
TD sequences used for RF-DNA fingerprint generation using the preamble as
the ROI; k denotes discrete time samples. Composite RF-DNA fingerprints are
generated by 1) centering (mean removal) and normalizing {a(k)}, {φ(k)}, and

208 T.J. Carbino et al.

{f(k)}, 2) dividing each TD sequence into NR equal length subregions as illus-
trated in Fig. 1, 3) calculating three statistical features of variance (σ2), skew-
ness (γ), and kurtosis (κ) for each TD sequence to form Regional Fingerprint
F a,φ,f

Ri
as in (1) for i=1, 2, . . . , NR, and 4) concatenating F a,φ,f

Ri
to form the

final 1×(3×NR) Composite RF-DNA Fingerprint FRF
C as in (2) [17]. Statistical

features across entire ROI response are commonly included as well, hence the
regional indexing in (2) to NR+1 total elements.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Subregions: 16 Total

A
m

pl
itu

de

Fig. 1. Representative 10BASE-T Preamble Time Domain Amplitude Response Used
for Fingerprint Generation. The 6.4 µs Preamble is Divided into NR=16 Subregions.

The total number of RF-DNA features in (2) is a function of NR, TD
responses, and statistics. Varying NR provides a means to investigate perfor-
mance for various feature vector sizes. Fingerprints were generated over the
preamble ROI using three TD responses ({a(k)}, {φ(k)}, {f(k)}), three statis-
tics (σ2, γ, κ) per response, for NR=16, 31, 80 with (2) and produced RF-DNA
fingerprints having NFeat=144, 279, and 720 total features, respectively.

F a,φ,f
Ri

= [σ2
Ri

, γRi
, κRi

]1×3 (1)

FRF
C = [FRF

R1
: FRF

R2
: FRF

R3
: · · · : FRF

RNR+1
]1×(3×NR) (2)

3.2 CB-DNA Fingerprinting

As with RF-DNA fingerprinting approach, the majority of CB fingerprinting
works utilize intentional RF emissions from wireless devices with unique fea-
tures derived from modulation errors in the constellation space, i.e., differences
(error) between received projected symbol points and ideal transmitted constel-
lation points [1–3,5]. The CB-DNA approach adopted here differs from previous

A Comparison of PHY-Based Fingerprinting Methods 209

approaches by utilizing statistical features from unconditional and conditional
projected symbol clusters (not modulation errors) in a 2D constellation space.

The CB-DNA fingerprinting process used here was adopted from [20] and is
summarized here for completeness. CB-DNA fingerprints were generated from a
single burst with example constellations being illustrated in Fig. 2 for the four
card manufacturers with blue circles and black squares clusters representing
Binary 0 and Binary 1, respectively. This research expands on [20] by utilizing
for the first time conditional subclusters illustrated in Fig. 3 for card manufac-
turer StarTech. The conditional subclusters are based not only on the current
demodulated bit but the proceeding and succeeding bit as well. The eight dis-
tinct conditional sub-clusters correspond to the eight possible bit combinations
that can precede and succeed the bit being estimated i.e., bit combinations of
[0 X 0], [0 X 1], [1 X 0], and [1 X 1], where X denotes the bit being estimated.

Fig. 2. Device Constellations Consisting of Approximately 1,400 Symbols (1 Burst)
for Each of the Four Card Manufacturers. Each Composite Cluster Represents a
Binary 0 (Blue Circle) or Binary 1 (Black Square).

CB-DNA fingerprint generation begins by dividing constellation points into
their respective unconditional and conditional cluster regions for a total of
NCR=2+8=10. Statistical CB-DNA features are then calculated for each cluster
region using the mean (μ), variance (σ2), skewness (γ), and kurtosis (κ) along the
Z−

G and Z+
G dimensions shown in Fig. 3. Joint statistics in both the Z−

G and Z+
G

direction are also considered and include covariance (cov), coskewness (β1×2),

210 T.J. Carbino et al.

−5 −4 −3 −2 −1 0 1 2 3 4 5

x 10
7

−3

−2

−1

0

1

2

3

x 10
7

Z−
G

Z
+ G

000
001
101
100
010
011
111
110

Fig. 3. 2D Binary Constellation for ST1 showing each Composite Cluster Comprised
of Four Distinct Sub-Clusters Corresponding to the Four Possible Combinations of Bits
Preceding and Succeeding the Bit Being Estimated

and cokurtosis (δ1×3) which provide an extra six features per region. The resul-
tant statistics form a Regional Cluster Fingerprint FCB

Ri
given by (3), where the

superscripted −/+ sign denotes constellation dimension and i=1, 2, . . . , NCR.
The final Composite CB-DNA Fingerprint FCB

C is of dimension 1 × (14 × NCR)
and constructed by concatenating FCB

Ri
from (3) as shown in (4) [20]. The total

number of CB-DNA features in (4) is a function of NCR, statistics, and dimen-
sions i.e., Z−

G and Z+
G . Varying NCR provides a means to investigate performance

for various feature vector sizes. Fingerprints were generated using NCR=2, 8,
and 10 (μ, σ2, γ, κ, cov, β1×2, δ1×3) with 4 statistics from each of the Z−

G and
Z+

G dimensions and 6 joint statistics producing CB-DNA fingerprints having
NFeat=28, 112, and 140 total features, respectively.

FCB
Ri

=
[
μ−

Ri
, μ+

Ri
, σ2−

Ri
, σ2+

Ri
, γ−

Ri
, γ+

Ri
, κ−

Ri
, κ+

Ri
, cov, β1×2, δ1×3,

]
1×14

(3)

FCB
C =

[
FCB

R1
: FCB

R2
: FCB

R3
: · · · : FCB

RNCR

]
1×(14×NCR)

(4)

3.3 Device Discrimination

The effect of varying SNR on discrimination performance was assessed to char-
acterize the effect of varying channel conditions. This was done by adding inde-
pendent like-filtered Additive White Gaussian Noise (AWGN) NNz realizations
to each experimentally collected emission to achieve the desired SNR for Monte

A Comparison of PHY-Based Fingerprinting Methods 211

Carlo simulation. Given an average collected SNR=30.0 dB, device discrim-
inability was assessed for simulated SNR ∈ [12 32] dB in 2 dB steps. For Monte
Carlo simulation results in Sect. 4, a total of NNz=6 independent AWGN real-
izations were generated, filtered, power-scaled and added to the collected signal
responses to generated signals at the desired SNR. Given NNz =6 AWGN real-
izations and NS=1000 collected signal responses per card, a total of NF =NS ×
NNz=6000 independent fingerprints per card were available for discrimination
assessment.

Consistent with prior related work [6,15,16], device discriminability was asse-
ssed using a MDA/ML classification process. MDA/ML processing was imple-
mented for NC=4 and 16 classes using an identical number of Training (NTng)
and Testing (NTst) fingerprints for each class. A total of NF =24, 000 (CMD) and
NF =6, 000 (LMD) fingerprints were generated for each NC per Sect. 3.1 and
Sect. 3.2 for RF-DNA and CB-DNA methods, respectively. MDA/ML training
was completed for each NC using NTng=NF /2 fingerprints and K-fold cross-
validation with K=5 to improve MDA/ML reliability. This involves: 1) dividing
the training fingerprints into K equal size disjoint blocks of NTng/5 fingerprints,
2) holding out one block and training on K-1 blocks to produce projection matrix
W, and 3) using the holdout block and W for validation [25]. The W from the
best training iteration is output and used for subsequent MDA/ML testing assess-
ment. The process is repeated to generate an SNR-dependent W(SNR) for each
analysis SNR.

4 Discrimination Results

The MDA/ML classification results are presented for CMD (manufacturer) and
LMD (serial number) performance using the 16 devices in Table 1. Device fin-
gerprint generation occurs using identical burst-by-burst emissions per methods
in Sect. 3.1 and Sect. 3.2, with RF-DNA using only the burst preamble and
CB-DNA using the entire burst to include preamble. A total of 1000 bursts
are processed from each device with three AWGN realizations added to each
burst to create 3000 fingerprints per device for classification. Discrimination
results are based on two classification models created per Sect. 3.3. The CMD
results are based on NTst=12, 000 testing fingerprints and LMD results are based
on NTst=3, 000 fingerprints. An arbitrary performance benchmark of %C=90%
correct classification is used for comparative assessment with summary analy-
sis based on CI=95% binomial confidence intervals. Given the large number
of independent trials for all results in Sect. 4, the resultant CI=95% confidence
intervals are less than the vertical extent of data markers in Fig. 4 through Fig. 6
and therefore omitted for visual clarity.

Fig. 4 shows average RF-DNA results for CMD and LMD. The %C=90%
benchmark is achieved for CMD with all three NR values at SNR ≥21 dB,
with NR=80 performance starting out with %C=92% at SNR=12 dB and the
other NR=16 and NR=31 cases requiring an additional 6.0 dB and 10.0 dB
gain in SNR, respectively, to achieve %C=92%. At SNR ≈26 dB the markers

212 T.J. Carbino et al.

12 16 20 24 28 32
20

30

40

50

60

70

80

90

100

SNR (dB)

A
ve

 P
er

ce
nt

 C
or

re
ct

 (
%

C
)

CMD:N
R

 = 16

CMD:N
R

 = 31

CMD:N
R

 = 80

LMD:N
R

 = 16

LMD:N
R

 = 31

LMD:N
R

 = 80

Fig. 4. RF-DNA Fingerprinting Averages for Cross-Model Discrimination (CMD)
Using NC=4 Classes and Like-Model Discrimination (LMD) Using NC=16 Classes
with NR=16, 31 and 80 Sub-Regions

for NR=80 and NR=31 begin to overlap suggesting those two MDA/ML mod-
els yield statistically equivalent performance at SNR=26.0 dB and higher with
NR=16 %C being slightly lower. The LMD results for RF-DNA in Fig. 4 never
reach the %C=90% benchmark. However, the NR=80 case outperforms the oth-
ers by approximately 15% and 20% at SNR=30 dB. Thus, the RF-DNA model
for NR=80 was chosen for comparison with the CB-DNA model.

Fig. 5 shows CMD and LMD results for CB-DNA fingerprinting while varying
the use of composite clusters and sub-clusters. The CMD and LMD results using
NCR =2 are about 5% and 25% respectively worse in correct classification with
respect to the NCR=10 cases. For CMD the NCR=10 model achieves 96% correct
classification on average at 12 dB where the NCR=2 model peaks out at 94% at
32 db, which shows that the NCR=10 model is superior. The results for CMD
with NCR=8 are similar to NCR=10. LMD results for NCR=8 are constantly
a few percentage points lower than NCR=10 and requires an additional 4 dB
gain to achieve %C=90 over NCR=10 at 22 dB. LMD increases the complexity
of the classification and reaches an average of %C=90% across all 16 device for
NCR=10 with average collected SNR=22.0 dB.

%C classification results for RF-DNA and CB-DNA Fingerprinting are pro-
vided in Fig. 6 for CMD and LMD. The CMD comparison shows that CB-
DNA reaches %C=96% at SNR=12 dB while RF-DNA reaches %C=96% at
SNR ≈ 18 dB (approximately 6.0 dB higher). The LMD comparison shows that
CB-DNA consistently out performs RF-DNA by at least 24% at all SNR levels.

The results in Fig. 6 enable direct comparison of RF-DNA and CB-DNA Fin-
gerprinting however, average %C performance hides individual class interactions.
Thus, MDA/ML confusion matrix results for SNR=24.0 dB are introduced to
highlight cross-class misclassification for CMD (Table 2) and LMD (Table 3);

A Comparison of PHY-Based Fingerprinting Methods 213

12 16 20 24 28 32

40

50

60

70

80

90

100

SNR (dB)

A
ve

 P
er

ce
nt

 C
or

re
ct

 (
%

C
)

CMD: N
CR

 = 10

CMD: N
CR

 = 8

CMD: N
CR

 = 2

LMD: N
CR

 = 10

LMD: N
CR

 = 8

LMD: N
CR

 = 2

Fig. 5. CB-DNA Fingerprinting Averages for Cross Model Discrimination (CMD
with NC=4) and Like Model Discrimination (LMD with NC=16) Using Composite
(NCR=2), Sub-Cluster (NCR=8), and Combined (NCR=10) Constellation Statistics

matrix rows represent input class and matrix columns represent called class. The
table entries are presented as %C CB-DNA / %C RF-DNA with bold entries
denoting best or equivalent performance.

The CMD confusion matrix in Table 2 is nearly symmetric with all mis-
classification occurring between DL and TN devices. This is attributable to DL
and TN devices using identical LAN transformers as indicated in Table 1. The
diagonal entries show that CMD performance, for CB-DNA is better than or
equivalent to RF-DNA. The resultant CMD averages for CB-DNA (%C=98.9%)
and RF-DNA (%C=98.21%) are pursuant with Fig. 6.

Table 2. CMD confusion matrix for CB-DNA and RF-DNA Fingerprinting at
SNR=24 dB and 12,000 trials per class. Entries presented as % CB-DNA / % RF-DNA
with bold entries denoting best or equivalent performance.

DL IN ST TN

DL 98.10 / 96.05 0.0 / 0.0 0.0 / 0.0 1.90 / 3.95

IN 0.0 / 0.0 100.00 / 100.00 0.0 / 0.0 0.0 / 0.0

ST 0.0 / 0.0 0.0 / 0.0 100.00 / 100.00 0.0 / 0.0

TN 2.49 / 3.20 0.0 / 0.0 0.0 / 0.0 97.51 / 96.80

The LMD confusion matrix results in Table 3 summarize misclassification of
the complete 16-by-16 confusion matrix. Results are presented as individual man-
ufacturer confusion matrices with “Other” entries representing all misclassifica-
tions outside the manufacturing group. The results here are consistent with prior
CMD results in Table 2, with 1) the IN and ST devices are never misclassified as
another manufacturer, and 2) nearly 100% of the DL “Other” misclassifications

214 T.J. Carbino et al.

12 16 20 24 28 32
20

30

40

50

60

70

80

90

100

SNR (dB)

A
ve

 P
er

ce
nt

 C
or

re
ct

 (
%

C
)

CB−DNA: CMD
RF−DNA: CMD
CB−DNA: LMD
RF−DNA: LMD

Fig. 6. RF-DNA vs. CB-DNA Fingerprinting Averages for CMD (Manufacturer Dis-
crimination) Using NC=4 Classes with (NR=16) Sub-Regions and LMD (Serial Num-
ber Discrimination) Using NC=16 Classes with (NCR=10) Cluster Regions

Table 3. LMD confusion matrix for CB-DNA and RF-DNA Fingerprinting at
SNR=24.0 dB and 3,000 trials per class, highlighting errors within manufacturing
groups. The “Other” column represents all other manufacturers. Entries presented as
% CB-DNA / % RF-DNA with bold entries denoting best or equivalent performance.

DL1 DL2 DL3 DL4 Other

DL1 86.27 / 43.10 0.0 / 9.43 13.73 / 20.47 0.0 / 25.77 0.0 / 1.23

DL2 0.03 / 10.83 97.57 / 72.80 0.80 / 6.50 0.63 / 3.50 0.97 / 6.37

DL3 15.77 / 22.47 0.03 /5.40 83.93 / 57.77 0.27 / 12.40 0.0 / 1.96

DL4 0.0 / 29.30 0.37 / 7.13 0.10 / 17.07 97.20 / 45.67 2.33 / 0.83

TN1 TN2 TN3 TN4 Other

TN1 97.90 / 43.37 1.10 / 16.44 0.03 / 8.13 0.67 / 30.13 0.30 / 1.93

TN2 1.36 / 23.90 89.57 / 43.60 1.77 / 6.80 3.07 / 19.13 4.23 / 6.57

TN3 0.0 / 4.43 2.83 / 4.60 84.87 / 85.07 11.90 / 5.50 0.40 / 0.40

TN4 1.60 / 32.60 5.20 / 16.60 6.76 / 8.13 84.27 / 39.84 2.17 / 2.83

IN1 IN2 IN3 IN4 Other

IN1 91.67 / 78.43 5.63 / 9.00 2.40 / 11.40 0.30 / 1.17 0.0 / 0.0

IN2 4.50 / 9.73 94.30 / 60.67 1.20 / 14.60 0.00 / 15.00 0.0 / 0.0

IN3 1.46 / 11.00 0.67 / 17.10 97.67 / 61.77 0.20 / 10.13 0.0 / 0.0

IN4 0.0 / 4.07 0.0 / 19.13 0.0 / 12.07 100.00 / 64.73 0.0 / 0.0

ST1 ST2 ST3 ST4 Other

ST1 90.53 / 67.63 0.70 / 1.20 4.40 / 13.27 4.37 / 17.90 0.0 / 0.0

ST2 0.43 / 0.83 97.47 / 77.80 0.77 / 13.40 1.33 / 7.97 0.0 / 0.0

ST3 4.46 / 10.93 1.07 / 14.30 83.57 / 60.60 10.90 / 14.17 0.0 / 0.0

ST4 3.63 / 19.33 1.30 / 6.93 7.50 / 17.50 87.57 / 56.24 0.0 / 0.0

A Comparison of PHY-Based Fingerprinting Methods 215

being TN devices, and vice versa–this confusion is again attributed to DL and TN
devices using identical LAN transformers as indicated in Table 1. Most notably
in Table 3 are bold diagonal entries showing that CB-DNA outperformed RF-
DNA performance for all devices.

5 Summary and Conclusions

A PHY augmentation to MAC-based authentication is addressed using PHY-
based Distinct Native Attribute (DNA) features to form device fingerprints.
Specifically, a previous Radio Frequency (RF-DNA) fingerprinting approach and
new Constellation Based (CB-DNA) fingerprinting approach that exploits 2D
constellation statistics are considered. The two methods are compared using
fingerprints generated from the same set of unintentional 10BASE-T Ethernet
cable emissions. Prior to this preliminary investigation it was hypothesized that
CB-DNA would outperform RF-DNA. Considerable differences in the amount
of burst information being exploited was the basis for this conjecture, i.e., RF-
DNA fingerprinting only exploits a fraction of the Ethernet burst (64 preamble
symbols) while CB-DNA exploits the entire Ethernets burst (average of 1,400
symbols here).

When comparing RF-DNA results here to previous related work [15–17],
it is noted that Cross-Model Discrimination (CMD) results are consistent but
Like-Model Discrimination (LMD) results are poorer. One reason for this is
more stringent signaling characteristics of the Ethernet standards as well as the
devices here sharing similar LAN transformer markings.

As measured by average percentage of correct classification (%C), the final
RF-DNA vs. CB-DNA outcome shows that CB-DNA outperforms RF-DNA for
the 16 devices considered. For CMD there was only a marginal difference at
SNR=24 dB with CB-DNA at %C=98.9% and RF-DNA at %C=98.21%. Of
particular note for CMD is that 100% of the misclassification error occurred
between DL and TN devices which use the same LAN transformer. For LMD
there was considerable improvement at SNR=24 dB, with CB-DNA at
%C=91.5% and RF-DNA at %C=59.9%. LMD is generally more challenging
than CMD and results show that both approaches suffer when classifying LMD.
However, CB-DNA performance remained above the 90% threshold and only
suffered a 6.2% degradation in %C while RF-DNA dropped by more than 30%.

From a device authentication and network security perspective, LMD per-
formance is most important. Results here show that CB-DNA outperformed
RF-DNA by a considerable margin. LMD results at the collected SNR=30.0 dB
include like model %C=94% for CB-DNA and only %C=69% for RF-DNA.

These CB-DNA results are encouraging and work continues to improve per-
formance. This includes investigating alternatives such as the Generalized Rele-
vance Learning Vector Quantized-Improved (GRLVQI) classifier which provides
a direct indication of feature relevance on classifier decision [21,26]. Feature rel-
evance enables dimensional reduction analysis, which in-turn reduces processing

216 T.J. Carbino et al.

complexity and enhances real-world applicability. Furthermore, the use of CB-
DNA for device verification and rogue detection and rejection remains under
investigation as well.

References

1. Danev, B., Zanetti, D., Capkun, S.: On Physical-Layer Identification of Wireless
Devices. ACM Computing Surveys (CSUR) 45(1), 6 (2012)

2. Huang, Y., Zheng, H.: Radio frequency fingerprinting based on the constellation
errors. In: 2012 18th Asia-Pacific Conf. on Communications (APCC), pp. 900–905.
IEEE (2012)

3. Brik, V., Banerjee, S., Gruteser, M., Oh, S.: Wireless device identification with
radiometric signatures. In: Proc. of the 14th ACM Intl. Conf. on Mobile computing
and Networking, pp. 116–127. ACM (2008)

4. Danev, B., Luecken, H., Capkun, S., El Defrawy, K.: Attacks on physical-layer
identification. In: Proc. of the Third ACM Conf. on Wireless Network Security,
pp. 89–98. ACM (2010)

5. Edman, M., Yener, B.: Active Attacks Against Modulation-Based Radiometric
Identification. Technical report 0902, Rensselaer Institute of Technology (2009)

6. Cobb, W.E., Laspe, E.D., Baldwin, R.O., Temple, M.A., Kim, Y.C.: Intrinsic
Physical-Layer Authentication of Integrated Circuits. IEEE Trans on Information
Forensics and Security 7(1), 14–24 (2012)

7. Desmond, L.C.C., Cho, C.Y., Tan, C.P., Lee, R.S.: Identifying unique devices
through wireless fingerprinting. In: Proceedings of the first ACM Conference on
Wireless Network Security. ACM (2008)

8. Kohno, T., Broido, A., Claffy, K.C.: Remote physical device fingerprinting. IEEE
Transactions on Dependable and Secure Computing 2(2), 93–108 (2005)

9. Franklin, J., McCoy, D., Tabriz, P., Neagoe, V., Randwyk, J.V., Sicker, D.: Passive
data link layer 802.11 wireless device driver fingerprinting. In: Usenix Security,
vol. 6 (2006)

10. Gao, K., Corbett, C., Beyah, R.A.: A passive approach to wireless device finger-
printing. In: Proc. of IEEE/IFIP DSN, pp. 383–392 (2010)

11. Uluagac, A., Radhakrishnan, S., Corbett, C., Baca, A., Beyah, R.: A passive tech-
nique for fingerprinting wireless devices with wired-side observations. In: Proceed-
ings of the IEEE Conference on Communications and Network Security (CNS),
pp. 305–313 (2013)

12. Francois, J., Abdelnurt, H., State, R., Festort, O.: Ptf: passive temporal finger-
printing. In: Proc. of IFIP/IEEE International Symposium on Integrated Network
Management, pp. 289–296 (2011)

13. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT):
A Vision, Architectural Elements, and Future Directions. Future Generation Com-
puter Systems 29(7), 1645–1660 (2013)

14. Zhou, L., Chao, H.C.: Multimedia Traffic Security Architecture for the Internet of
Things. IEEE Network 25(3), 35–40 (2011)

15. Reising, D.R., Temple, M.A., Oxley, M.E.: Gabor-based RF-DNA fingerprinting for
classifying 802.16e WiMAX mobile subscribers. In: 2012 Intl. Conf. on Computing,
Networking and Communications (ICNC), pp. 7–13. IEEE (2012)

16. Ramsey, B.W., Temple, M. A., Mullins, B. E.: PHY foundation for multi-factor
ZigBee node authentication. In: Global Communications Conf. (GLOBECOM),
2012, pp. 795–800. IEEE (2012)

A Comparison of PHY-Based Fingerprinting Methods 217

17. Cobb, W.E., Garcia, E.W., Temple, M.A., Baldwin, R.O., Kim, Y.C.: Physical
Layer Identification of Embedded Devices using RFDNA Fingerprinting. MILI-
TARY COMMUNICATIONS Conf., MILCOM 2010, 2168–2173 (2010)

18. Williams, M.D., Munns, S., Temple, M.A., Mendenhall, M.J.: RF-DNA finger-
printing for airport WiMax communications security. In: 2010 4th Intl. Conf. on
Network and System Security (NSS), pp. 32–39 (2010)

19. Williams, M.D., Temple, M.A., Reising, D.R.: Augmenting bit- level network secu-
rity using physical layer RF-DNA fingerprinting. In: Global Telecommunications
Conf. (GLOBECOM 2010), pp. 1–6. IEEE (2010)

20. Carbino, T.J., Temple, M.A., Bihl, T.: Ethernet card discrimination using unin-
tentional cable emissions and constellation-based Fingerprints. In: 2015 Intl.
Workshop on Computing, Networking and Communications (IWCNC) (to appear,
February 2015) (Accepted)

21. Reising, D.R.: Exploitation of RF-DNA for Device Classification and Verification
Using GRLVQI Processing. Technical report DTIC Doc (2012)

22. Stone, S.J., Temple, M.A., Baldwin, R.O.: RF-based PLC IC design verification.
In: 2012 DMSMS and Stand Conf. (DMSMS12) (2012)

23. Wright, B.C.: PLC Hardware Discrimination using RF-DNA Fingerprinting. Tech-
nical Report DTIC Document (2014)

24. Carbino, T.J., Baldwin, R.O.: Side channel analysis of ethernet network cable
emissions. In: 9th Intl. Conf. on Cyber Warfare and Security, ICCWS (2014)

25. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. John Wiley and Sons
(2012)

26. Mendenhall, M.J., Merényi, E.: Relevance-Based Feature Extraction for Hyper-
spectral Images. IEEE Trans on Neural Networks 19(4), 658–672 (2008)

Model-Driven Integration and Analysis
of Access-control Policies in Multi-layer

Information Systems

Salvador Mart́ınez1(B), Joaquin Garcia-Alfaro2, Frédéric Cuppens3,
Nora Cuppens-Boulahia3, and Jordi Cabot4

1 AtlanMod Team (Inria, Mines Nantes, LINA), Nantes, France
salvador.martinez perez@inria.fr

2 RST Department, Télécom SudParis, CNRS Samovar UMR 5157, Evry, France
joaquin.garcia alfaro@telecom-sudparis.eu

3 Télécom Bretagne, LUSSI Department,
Université Européenne de Bretagne, Rennes, France
nora.cuppens-boulahia@telecom-bretagne.eu

4 ICREA - UOC, Barcelona, Spain
jcabot@uoc.edu

Abstract. Security is a critical concern for any information system.
Security properties such as confidentiality, integrity and availability need
to be enforced in order to make systems safe. In complex environments,
where information systems are composed of a number of heterogeneous
subsystems, each must participate in their achievement. Therefore, secu-
rity integration mechanisms are needed in order to 1) achieve the global
security goal and 2) facilitate the analysis of the security status of the
whole system. For the specific case of access-control, access-control poli-
cies may be found in several components (databases, networks and appli-
cations) all, supposedly, working together in order to meet the high level
security property. In this work we propose an integration mechanism for
access-control policies to enable the analysis of the system security. We
rely on model-driven technologies and the XACML standard to achieve
this goal.

1 Introduction

Nowadays systems are often composed of a number of interacting heterogeneous
subsystems. Access-control is pervasive with respect to this architecture, so that
we can find access-control enforcement in different components placed in dif-
ferent architectural levels, often following different AC models. However, these
policies are not independent and relations exist between them, as relations exist
between components situated in different architecture layers. Concretely, depen-
dency relations exist between access-control policies, so that the decision estab-
lished by rules in a policy will depend on the decisions established in another
policy.

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 218–233, 2015.
DOI: 10.1007/978-3-319-18467-8 15

Model-Driven Integration and Analysis 219

Thus, ideally, a global policy representing the access-control of the whole
system should be available, as analysing a policy in isolation does not pro-
vide enough information. However, normally, this global policy only exist in
an implicit and not always consistent manner. Consequently, integration mech-
anisms are needed in order to 1) facilitate the analysis of the security status of
the whole system and 2) achieve the global security goal of the security property.

In order to tackle the aforementioned problems, we propose here a model-
driven solution to integrate policies from different concrete components collabora-
ting in an information system in a single model representation. Two requirements
need to be met for achieving this goal: The use of a common access-control policy
model for representing the policies of each component and the recovery/represen-
tation of the implicit dependency relations between them.

Translating all the recovered access-control policies to the same policy lan-
guage, thus, representing them in a uniform way, eases the manipulation and
reusability of analysis operations. In our approach, the component policies will
be translated to the XACML[9] policy language while domain-specific informa-
tion is added/kept by the use of profiles. Then, we complete the integration
framework with a semi-automatic process for detecting the policy dependencies
and to organize the policies within a single XACML model. This enables us to
see the policies in our information systems as a whole. Finally, we provide a set
of OCL[16] operations making use this global model and an approach to detect
inter-component anomalies.

Our framework relies on the existence of high-level model representations of
the policies implemented by concrete systems and on the use of model-driven
tools and techniques. Consequently, as a previous step, our solution requires to
perform policy recovery tasks. Concrete components often implement access-
control policies by using diverse, low-level mechanisms (low level languages,
database tables) to represent the rules, adding complexity to the analysis and
manipulation tasks. Conversely, recovering these implemented policies and rep-
resenting them in form of higher-level, more abstract models reduces the com-
plexity and enables the reusability of a plethora of proved model-driven tools
and techniques. We rely on state of the art recovery approaches [11–13] for this
task.

The rest of the paper is organized as follows. In Section 2 we present a running
example and motivation. Section 3 is devoted to the presentation of the proposed
approach while in Sections 4, 5 and 6 we describe each of its steps. In Section 7
we provide details about the implementation. Finally, Section 8 discusses related
work and Section 9 presents conclusions and future work.

2 Motivation

In order to motivate our approach, we present here an information system (IS)
example that will be used through the rest of the paper.

In Figure 1, a simple, yet very common IS is depicted. This IS is composed
of several components working in different architecture layers, namely, a net-
work layer, providing networking services and enforcing access control through

220 S. Mart́ınez et al.

DBMSCMS

Other

Internal Network

Router to Public Host

FW

111.222.100.1

111.222.2.1

111.222.1.*
111.222.2.*

DMZ

FW

Fig. 1. Information System Architecture

the firewalls (using Rule-based lists implementing Non-discretionary AC), a
database layer, providing storage services and implementing role-based access-
control (RBAC)[18] through its built-in permissions schema and an application
level, where a Content Management System (CMS) provides publication services.
This CMS also enforces RBAC by using a built-in permission schema.

As we can see, three different systems enforce access-control. These systems
are not isolated but collaborate to build up the functionality of a global sys-
tem that encompasses them. Concretely, and in the case of subsystems located
in different architecture layers, the collaboration relation is a dependency rela-
tion where systems in higher layers depend on services provided by lower lay-
ers. Access-control reproduces this behaviour. Consider access-control rules as
functions where a decision is taken w.r.t. to a subject accessing a resource to
perform a given action under certain conditions and having the following form:
R(Subject, Resource,Action,Condition) → Decision

Let us take a look to the following examples:
Example 1:

RDB(RoleX, TableX,Write,8:00−16:00) → accept
RFW (Local,DBServer, Send/receive,8:00−14:00) → accept

In this example, a given role is granted permission to access a table for modi-
fication between 8:00 and 16:00. However, the access to the database server in
constrained by a firewall rule, that only allows local access to the server between
8:00 and 14:00. As the database policy depends on the firewall policy, when the
latter is more restrictive, it prevails. When asking if the role can access the table
under which conditions, both policies need to be taken into account in order to
provide a complete answer.

Example 2:

RCMS(BlacklistedIPs,Admin,Access) → deny
RDB(CMSRole, CMSSchema,Write) → accept
RFW (0.0.0.0, DBServer, Send/receive,) → accept

This example concerns the three subsystems in our IS. A rule in the CMS for-
bids the access to the admin pages to users located in blacklisted countries as
identified by its IP address. However, the user the CMS uses to connect to the
database has access for modification to the CMS database backend as stated by

Model-Driven Integration and Analysis 221

Integrated
XACML Model

Analysis

COMPONENT
SPECIFIC
POLICY MODELS

 IntegrationPro le

Pro le

Pro le

transformation

transformation

transformation

XACML

XACML

XACML

Model 1

Model 2

Model N

TRANSLATION INTEGRATION ANALYSIS

Fig. 2. Policy Integration Approach

the second rule. Moreover, the third rule, that belongs to the firewall systems,
allows to connect to the database to users in any location. Combining these
three rules, a user located in a blacklisted area may be able to access the admin
information on the CMS through the database backend.

From the examples, we can conclude that Access-control policies can not be
regarded as isolated when they belong to systems situated in different architec-
ture layers. Analysing the AC rules of a component for the absence of anomalies
requires information from the AC policies of other components it depends on.
However, this comprehensive analysis is hampered by two factors: 1) dependen-
cies between component’s policies are not explicit 2) the AC information may
be represented following a different AC model and stored in different technical
spaces requiring domain experts for its analysis.

3 Approach

In order to tackle the problems we have shown in Section 2, we propose a model-
driven approach that integrates all the policies collaborating in the enforcement
of access-control in a single model. Our approach requires a previous step, namely
the extraction of abstract models from concrete components, and then is struc-
tured in three steps (see Figure 2):

0. Policy recovery. AC policies are implemented in concrete systems using a
diverse set of mechanisms, often low level and proprietary, like ad-hoc rule
languages, specific database dictionaries, etc. As a preliminary step for our
approach we require the policies of each component to be represented in
the form of abstract models, from where the complexity arising from the
specificities of a given vendor or implementation technology is eliminated
and only the AC information is present. This requirement is met by several
previous work that investigate the recovery of access-control policies from
diverse components [11–13]. The outputs of those works are to be the inputs
of our approach.

1. Policy Translation. Taking as input the models described in the prelim-
inary step, our approach proposes to translate all the policies to the same

222 S. Mart́ınez et al.

policy language. This step includes the description of extensions of the target
language to make it able to represent component-specific information.

2. Policy Integration. With all the models translated to the same language,
the next step is to integrate them all in a single model, along with the depen-
dencies between them. This step requires the discovery of such dependencies,
normally implicit.

3. Policy Analysis Support. Having all the policies represented in the same
model and the dependencies between them made explicit enables the defi-
nition of complex analysis tasks. Prior to that, the definition of a number
of operations taking advantage of the model organization is required to ease
the building of those analysis tasks. The third step is meant to provide that
set of operations.

The following sections are devoted to a detailed description of each of the
steps.

4 Policy Translation

All the policies in the IS, potentially conforming to different access-control mod-
els and containing domain specific information need to be translated into the
same language as a previous step for the integration in a single policy. In order
to do so, first, we need to chose a policy language able to represent policies
following different policy models and to represent multiple policies in the same
resource.

4.1 XACML Policy Language

XACML[9] is an access control policy language and framework fulfilling these
requirements. It follows the Attribute-based access-control model (ABAC)[7]
what, along with its extensibility, provides to the language enough flexibility to
represent policies following different access-control models. Other approaches [15,
19] describe languages and tools able to produce flexible access-control models.
However, several reason inclined us to choose XACML. First of all, thanks to
its ABAC philosophy, XACML is able to represent a wider range of security
policies (see [7] for the capabilities of ABAC to cover other AC models), while
other extensible languages like SecureUML[10] will impose the use of RBAC.
Secondly, being an standard language, we expect a wider adoption and a more
consistent maintenance and evolution of the language.

XACML policies are composed of three main elements PolicySet, Policy and
Rule. A PolicySet can contain other PolicySets or a single Policy that is a con-
tainer of Rules (Policy and PolicySet also specify a rule-combining algorithm, in
order to solve conflicts between their contained elements). These three elements
can specify a Target that establishes its applicability, i.e., to which combination
of Subject, Resource and Action the PolicySet, Policy and Rule applies. Subject,
Resource and Action identifies subjects accessing given resources to perform

Model-Driven Integration and Analysis 223

actions. These elements can hold Attribute elements, that represent additional
characteristics (e.g., the role of the subject). Optionally, a Rule element can
hold a Condition that represents a boolean condition over a subject resource or
action. Upon an access request, these elements are used to get an answer of the
type: permit, deny or not applicable.

4.2 Translation to XACML and Profiles

Our goal is to translate all the existing policies of the system in hand to XACML
policies. However, the component-specific models will typically represent the
access-control information in a component-specific way, i.e., they will include
concepts of the domain for easing the comprehension and elaboration of policies
by domain experts. Those concepts should be preserved in order to keep the
expressivity of the policy. For that purpose, XACML profiles need to be defined.
These profiles will basically specialize the core concepts of the XACML policy
language. In general, a profile will contribute new attributes specializing the
concepts of Subject, Resource and Action although specializing other concepts
may be necessary mostly when the profile needs to reflects some special feature
of the original policy model (take as an example the XACML RBAC Profile1,
where the concepts of PolicySet and Policy are extended as well as describing
how to arrange these elements in a specific way to achieve the desired goal).

In order to demonstrate the process of defining a XACML profile, in the
following, we describe the development of a XACML profile for the domain
of relational database management systems (RDBMSs). The concepts of the
domain are extracted from a security database metamodel described in [11].

First of all, note that the domain of relational databases usually relies on a
RBAC model, what should be represented in the profile. There exists already
a XACML profile for RBAC. Therefore, our profile will complement the use of
this profile by contributing domain specific attributes for Subject, Resource and
Action.

We start by defining the profile identifier that shall be used when an identifier
in the form of a URI is required:

urn : oasis : names : tc : xacml : 3 . 0 : rdbms

Regarding the Resources, we will describe the following attributes.
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : database
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : schema
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : table
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : column
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : view
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : procedure
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : resource : trigger

As for the actions, we will describe the following attributes, being all of type
string.
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : tableOpt : insert
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : tableOpt : delete
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : tableOpt : select

1 http://docs.oasis-open.org/xacml/cd-xacml-rbac-profile-01.pdf

http://docs.oasis-open.org/xacml/cd-xacml-rbac-profile-01.pdf

224 S. Mart́ınez et al.

urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : tableOpt : update
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : dbOpt : alter
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : dbOpt : drop
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : dbOpt : create
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : permissionOpt : grant
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : permissionOpt : revoke
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : sessionOpt : set
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : sessionOpt : connect
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : action : codeOpt : execute

Finally, and regarding the subjects, the concept of role is already included in
the RBAC profile. We will only add an attribute to identify the database elements
owned by a subject, as this attribute influences the permissions (commonly, in
RDBMS, the owner of a resource has all the permissions and moreover, is allowed
to delegate those permissions to others).
urn : oasis : names : tc : xacml : 3 . 0 : rdbms : subject : owner

Once the profile is available, a transformation between the metamodel of the
model recovered from the subsystem and the XACML (plus profiles) metamodel
is defined, providing as an output XACML instance models. Note that to reflect
the access-control model used in the RDBMS, we have to explicitly create a
rule that in RDBMS is implicit, i.e., the owner has all the rights on the owned
element.

The definition of any other profile will follow a similar process. Concretely,
for the CMS we will define attributes extending the core concepts of XACML
following the types defined in [13] and then combining its use with the use of the
RBAC profile. As for the firewalls, several mappings to use as a basis for the pro-
file exists, including the use of roles [4] or not [12]. We decide to extend the
latter to include domain concepts (as host, zone, protocol, etc), discarding the
discovery/creation of implicit roles.

5 Integration

Once we have all the policies represented within the same policy language, the
next step is to organize the policies in a single global model. A key issue in this
step is to unveil the implicit dependencies between policies situated at different
architecture levels to make them explicitly appear in the model.

First of all, we need to decide the structure we will follow to represent the
policies and their dependencies in a single XACML resource. The policy of each
component will be stored in single XACML PolicySet, so that we can use the
PolicySetIdRef to link it (without inheritance semantics) to other policies in the
system. Note that some scenarios will require the policy of the component to
be split in several PolicySet and Policy elements as is the case when using the
RBAC profile. For simplicity, in the rest of the paper we will consider the policy
of a component as the element containing its rules, disregarding how they are
internally organized using XACML structural elements. Note also that the pro-
posed structure is only intended to enable analysis capabilities and not to mimic
a structure suitable, for instance, for code-generation and system deployment.

Starting from the individual policies, we need a process to discover the depen-
dencies between them, so that the references can be properly set. We propose here

Model-Driven Integration and Analysis 225

Algorithm 1
1: P←All Policies
2: for each Pi ∈ P do
3: Dependency[Pi]← ∅
4: Candidates[Pi]←P\{Pi}
5: end for
6: for each Pi ∈ P do
7: C← All Context Attributes in Pi

8: for each Ci ∈ C do
9: for each Pj ∈ Candidates[Pi] do

10: A← All Rule Attributes in Pj

11: if Ci in A then
12: Dependency[Pi]←Dependency[Pi]∪{Pj}
13: Candidates[Pj]←Candidates[Pj]\{Pi}
14: end if
15: end for
16: end for
17: end for

PolicySet:DB
Policy:DB Dependencies

PolicySet:CMS
Policy:CMS Dependencies

PolicySet:FW
Policy:FW Dependencies

Fig. 3. Policy Organization

a process based on exploiting context information (e.g., IP address or database-
backend user for a CMS) that suggests relationships between subsystem. Note
that we do not deal here with the possible heterogeneity of the properties stor-
ing the context information (different names or types) by considering that the
matching of such heterogeneities may be performed, if needed, as a previous
step. This context information is relevant not only to unveil the dependencies
but also for the analysis of the system, thus, it needs to be stored along with
the policy representation. As XACML does not provide a specific place to store
this kind of information and to minimize the language extension it may require,
we add this information in the description field of the PolicySet element. In this
field we store a string representing a key and value map with the corresponding
environment values for the Policy or PolicySet:

Context{dbUserName : anonyme; IpAddress : 192.000.111.0}
With the context information available, the process to find the dependencies

between policies is described in Algorithm 1. Basically, for each context param-
eter in a given policy it searches if there is any rule using that attribute value in
any of the other policies. If this is the case, a dependency exists between both
policies and as such it is registered. Note that the algorithm has been optimized
by considering that no circular dependencies exist. The set of candidate policies
for a Policy Pj (i.e., policies it may depend on), initialized to all the other poli-
cies in line 3, is modified in line 13 to remove Policies Pi that already depend
on it. This assumption stems from the nature of multi-layer ISs where upper
components depend only on components in lower layers. This optimization can
be dropped for other scenarios if needed.

Figure 3 shows the result of applying our approach to the IS example in
Section 2. A policySet element has been created for each of the system compo-
nents: firewall, database and CMS. These policySets contain the translated to
XACML access-control policy of each component along with references to its
dependencies as calculated by algorithm 1.

226 S. Mart́ınez et al.

Table 1. OCL Operations

Operation Description
getDependents(p:Policy) : Sequence{Policy} Given a policy P, returns the sequence of policies

having this policy as dependency.
getDependencies(p:Policy):
Sequence{Dependency}

Given a policy P, returns the sequence of direct
dependencies.

getAllDependencies(p:Policy):
Sequence{Dependency}

Given a policy P, returns the sequence of ALL the
dependencies, direct and indirect.

resolveDependency(d:Dependency) : Policy Given a dependency D, returns its target Policy
P.

getDependencySource(d:Dependency): Policy Given a dependency D, returns its source Policy
P.

getContextAttributes(p:Policy) :
Sequence{Tuple{key:String,val:String}}

Given a Policy P, returns a sequence of
tuples{key:String,Value:String}, representing the
context attributes

getRelevantRules(p:Policy,p2:Policy) :
Sequence{Rule}

Given two policies, Pi and Pj, with Pi depen-
dent on Pj, returns the rules in Pj related to the
context attributes of Pi, i.e., the set of rules of
Pj Pi depends on

Considering the following set of context attributes for each component: IpAd-
dress : 111.222.1.10 for the database; dbUserName:anonyme and IpAddress:
111.222.1.12 for the CMS; the empty set for the firewall, the results is that the
database policySet holds a dependency on the firewall policySet (due to the IP
address context attribute) while the CMS policySet holds dependencies to the
firewall and the database policySets (due to the database user and IP address
context attributes).

6 Global Analysis of Inter-Component Anomalies

We are now able to perform all kinds of security analysis and manipulation
tasks unavailable when focusing only on individual policies. The implementation
of such tasks will benefit from the use of a common XACML representation
which abstracts from irrelevant technical details and facilitates their reusability
regardless the specific components those policies come from.

In this paper we focus on one of such analysis tasks that we believe is specially
critical: the detection of inter-component anomalies. As a preparation, we will
first present a number of basic operations introduced with the purpose of easing
the manipulation of our integrated model (for this and other possible analysis).

6.1 Basic Operations

Our model can be easily queried to extract useful information by using the
OCL [16] standard query language. However, there is a set of operations that
will be commonly used and as such, we consider worth it to define them as a
reusable library. In that sense, we present here a list of useful model manipulation
operations implemented with OCL.

Table 1 presents a description of this set of basic operations. Basically, we
present operations to work with the dependencies, getDependents, getDependen-
cies, getAllDependencies resolveDependency and getDependencySource; opera-
tions to obtain the context attributes of a policy, getContextAttributes; and

Model-Driven Integration and Analysis 227

operations to obtain the rules related with context attributes in a dependency
relation, getRelevantRules.

6.2 Detection of Rule Anomalies

One important analysis task is the detection of anomalies that appear when sev-
eral policies work together, as shown in the examples in Section 2. The problems
these anomalies cause vary from simply increasing the complexity of policies
to the introduction of unexpected behaviour of a component w.r.t. its defined
policy.

Focusing on the undesired effects these anomalies may produce and consid-
ering rule ri depending on rj (as indicated by the policy dependency structure
presented in 5), we identify the following risks (defining risk as a threat caused
by an anomaly that may lead to loses in terms of money and/or reputation):

– Security Risk: The combination of ri and rj may cause a security hole. This
happens when rj allows requests for values ri does not allow. We consider
the risk partial when rj only allows some of the ri denied values. Example
2 in Section 2 belongs to this category, as the network layer, combined with
the database layer, allows request the CMS does not.

– Service Risk: The combination of ri and rj may cause the component to
which ri provides access-control not to be able to provide the expected ser-
vice. This happens when rj denies requests for values ri allows. We consider
the risk partial when rj only denies some of the ri allowed values. Example
1 in Section 2 shows a partial service risk.

– Redundancy: ri or rj may be eliminated without impact to the behaviour
in the system. This may happen when both rules deny requests for the
same values. Policies containing those rules may be refactored to reduce
complexity.

– No Risk: The combination of ri and rj does not generate any risk.

As we have seen, these anomalies depend on the relations that hold between
the set of request matched by a pair of rules. For determining that relation we
need to compare security rules. This comparison is done for the purpose of check-
ing if 1) Conditions in different rules hold for the same set of values 2) The rule
effect when the conditions hold are conflicting. This process, which we call rule
similarity evaluation following the terminology in [14], can be performed follow-
ing different approaches. Here, due to the relative simplicity of the syntactical
analysis they propose, we adapt the approach proposed in [14] to the case of
policies in different architectural layers. Other approaches could however be also
adapted to our specific case.

Rule Similarity. For risk analysis purposes, the similarity of rules can be clas-
sified in five values {Converges, Diverges, Restricts, Extends, Shuffles} with the
following definition (see the second column in Table2 for a graphical representa-
tion):

228 S. Mart́ınez et al.

Table 2. Policy rule similarity type instantiated

Rule similarity type Matched requests
RAccept

i ,

RAccept
j

RDeny
i , RDeny

j

RDeny
i ,

RAccept
j

RAccept
i ,

RDeny
j

RiConvergesRj Ri = Rj No Risk Redundancy
Security
Risk

Service
Risk

RiDivergesRj Ri Rj
Service
Risk

No Risk No Risk

No Risk

RiRestrictsRj Rj Ri No Risk No Risk
Security
Risk

Service
Risk

RiExtendsRj Ri Rj
Service
Risk*

No Risk
Security
Risk*

Service
Risk*

RiShufflesRj Ri Rj
Service
Risk*

No Risk
Security
Risk*

Service
Risk*

* partial risk

Converge: Two rules ’converge’ if the sets of values are equal with respect to
which their conditions hold.

Diverge: Two rules ’diverge’ if the sets of values do not intersect with respect
to which of their conditions hold.

Restrict and extend : A rule ’restricts’ (or ’extends’) another rule if the sets
of values with respect to which its conditions hold contain (or is contained in)
the set of values computed for the other rule.

Shuffle: Two rules ’shuffle’ if the sets of values for which their conditions hold
intersect, but no one is contained in the other.

These values are calculated by a similarity calculation algorithm presented
in [14]. We instantiate the Rule similarity types for the case of rules situated in
different architectural layers by assigning them the previously defined risk types.

Risk calculation. The assignment of risk types to rule similarity types depends
on their effect (deny, accept) and matched request sets. Table 2 shows the assign-
ment for all the possible combinations. Notice that the actual presence of anoma-
lies between two rules depends on the nature of the involved systems and how
they interact.

Algorithm 2 describes the process of instantiating the risks of rules over our
infrastructure given a rule and an attribute to check. Basically, the algorithm
iterates over the policies the policy containing the rule depends on, retrieving
relevant rules (lines 9 and 13) and retrieving the similarity value (line 18) to
produce an anomaly report (line 19). It is important to note that when the
dependency is indirect, i.e., the dependency relationship is established through
another policy, we need to get the relevant rules w.r.t. this latter policy having
the direct dependency (line 11 to 15). This is specially important because a given
policy may have both, a direct and an indirect dependency with another policy,
each one yielding a different set of relevant rules. As this information is relevant

Model-Driven Integration and Analysis 229

Algorithm 2. Risk evaluation
1: r← Initialrule, a← Initialattribute
2: P← P/r ∈ P , D← getAllDependencies(P), S← getDependencies(P)
3: for each Di ∈ D do
4: Pi← resolveDependency(Di)
5: if Di in S then
6: R← getRelevantRules(P, Pi)
7: tagRules(R,P)
8: else
9: Pj← getDependencySource(Di)

10: R← getRelevantRules(Pj , Pi)
11: tagRules(R,Pj)
12: end if
13: for each ri ∈ R do
14: if a ∈ ri then
15: sim← calculateSimilarity(ri, r, a)
16: reportAnomalyCheck(sim, ri, r,)
17: end if
18: end for
19: end for

for performing further analysis, each rule is tagged with its dependent policy
(lines 10 and 14).

Let us take a look of how the risk types instantiation is calculated for the
examples presented in Section 2. Regarding the first example, we want to know
if given the database rule RDB and its time attribute there exists an anomaly:

RDB(RoleX, TableX,Write,8:00−16:00) → accept

Following the proposed algorithm, the policy dependencies are retrieved, that
in this case consists only in a dependency towards the firewall policy. Using the
context attributes, the rules in the firewall policy related to the database are
retrieved. Finally, from this set of rules, the ones containing the time attribute
are checked for similarity with the database rule and tagged in consequence. We
can then show only those having a similarity implying an anomaly. In that subset
we will have the second rule in the example, RFW , as it uses a context attribute,
the time attribute, and the calculated similarity has the value of extend, which
may cause an anomaly of partial service risk, as shown in the Table 2.

RFW (Local,DBServer, Send/receive,8:00−14:00) → accept

As for the second example, the process starts in a similar way, by retrieving
the dependencies of the CMS policy containing the rule RCMS and the attribute
to be checked, in this case, the source IP address.

RCMS(BlacklistedIPs,Admin,Access) → deny

However, now we will have two kinds of dependencies. The CMS policy
depends directly on the database and firewall policies, but it also holds an indi-
rect dependency to the firewall policy through the database one. Thus, three sets
of rules are retrieved, those of the firewall and database policies related to the
CMS context attributes (IP address and database user) and those of the firewall
related with the context attributes of the database (IP address of the server).

The risk type instantiation calculated on the set of retrieved rules will exhibit
not only the possible anomalies the policy of the CMS has with respect to the

230 S. Mart́ınez et al.

database and the firewall directly, but also those anomalies arising from the
combination of the effects of rules in the database and firewall together. Thus,
among other possible anomalies present in the firewall or database configuration
we will retrieve the one associated with the following rule:

RFW (0.0.0.0, DBServer, Send/receive,) → accept

It gives access to the database server (back-end of the CMS) to users in a
location forbidden by the CMS policy. This rule retrieved from the database
dependency and tagged that way, informs us about an anomaly (shadowing)
between the CMS and the firewall involving the database system. The security
expert will only need to retrieve the database relevant rules w.r.t. the CMS
policy to have a complete picture of the problem.

RCMS(BlacklistedIPs,Admin,Access) → deny
RDB(CMSRole, CMSSchema,Write) → accept
RFW (0.0.0.0, DBServer, Send/receive,) → accept

Obtaining this information would not have been possible without the integration
of the policies and the discovery of their dependencies.

7 Implementation

In order to validate the feasibility of our approach, a proof-of-concept prototype
implementation has been developed under the Eclipse environment2 by using
Model-driven tools and techniques. Concretely, our implementation is based on
two features:

Model Representation. Our approach takes as input domain-specific access-
control models extracted from different components in order to translate them
to XACML models. To be able to do that, a XACML policy metamodel (models
conform to metamodels, which define the main concepts and relationships of the
domain) is required, so that models conforming to it can be created. We have
used, EMF, the de-facto modeling framework for that purpose.

Providing the XACML XSD schema3 as an input to EMF, the framework
allowed us to generate the XACML policy metamodel, and in turn, to generate
Java code plugins for the manipulation of model instances, including a tree-based
editor. Note that these models instances can be, in turn, serialized using a XML
syntax. XACML identifiers, datatypes, etc, are integrated in a similar way i.e., by
extracting a metamodel through EMF and linking it to the XACML metamodel.

Model Query and Transformations. Once the means to represent XACML
models are available, we can perform the transformations from the domain mod-
els and the operations and algorithms described in Sections 5 and 6. We have

2 https://www.eclipse.org/
3 http://docs.oasis-open.org/xacml/3.0/XSD/cs-xacml-schema-policy-01.xsd

https://www.eclipse.org/
http://docs.oasis-open.org/xacml/3.0/XSD/cs-xacml-schema-policy-01.xsd

Model-Driven Integration and Analysis 231

used the ATL[8] model-to-model transformation language for that purpose. ATL
is a hybrid (declarative with imperative facilities) language and framework that
provides the means to easily specify the way to produce target models from
source models. The following model-to-model transformation have been created:

1) A model transformation for each component model to a XACML model.
2) A library of helpers, an ATL mechanism to factorize OCL operations,

representing the basic operations in section 6
3) A model transformation for the integration algorithm in 1.
4) A model query for the detection of anomalies, following the algorithm 2.

8 Related Work

The integration of security policies is a research problem that has attired the
attention of the security research community in the recent years. Consequently,
different approaches to tackle the problem have been proposed.

From a formal perspective, in [3] the authors provide the foundations of a for-
mal framework to represent policies in different architectural layers. Similarly, in
[2] the authors analyze different combination operations for AC policies. Among
them, the combination of heterogeneous policies and the integration of hierar-
chical policies through refinement. [1] provides a logical framework to encode
multiple authorization policies into a proof-carrying authorization formalism. In
[17] Method-B is used to formalize the deployment of AC policies on systems
composed of several (network) components. Finally, by using model-driven tech-
niques, in [5] the authors formalize the policy continuum model, that represent
policies at different inter-related abstraction layers although it does not tackle
the problem of inter-related architectural layers.

The aforementioned works are valuable contributions that could be eventu-
ally used to enforce a forward engineering process to generate correct policies.
However, none of these formalization works provide the bridges necessary to
fill the gap between real deployed policies and the proposed formalisms as they
mostly aim at providing a formal framework to deploy/analyse/manipulate syn-
thetic policies. Conversely, our approach works the other way round by proposing
a more pragmatic approach, aimed at providing a solution for the integration of
real, already deployed policies.

More similar to us and working on XACML policies, in [6] the authors
describe an approach to detect anomalies while in [14] integration analysis for
policies belonging to different authorization entities is proposed. None of them
deals with dependencies between policies as we do here for the case of multi-layer
architectures. Finally, we have adapted the similarity process proposed in [14] to
compare rules and policies to the case of inter-dependent access control policies.

9 Conclusions and Future Work

We have presented an approach to integrate the Access-control policies collab-
orating in an Information System. It translates all the policies to the XACML

232 S. Mart́ınez et al.

policy language and organizes them in an unique model by unveiling the implicit
dependencies between them. Finally, we have presented useful operations taking
advantage of the proposed infrastructure that lead to detect possible anomalies
between the policies.

As a future work, we plan to extend our approach to include other sources
of information. Concretely, we would like to integrate in our approach the infor-
mation provided by the audit and logging systems of IS components. So far, we
can point the security experts to possible anomalies. By analysing the audits
together with them, we believe we can determine whether the anomaly is taking
place/being exploited or not. Finally, we also intend to extend our approach to
integrate different kinds of policies. Privacy, Integrity and Secrecy policies may
collaborate between them and thus, we believe they may benefit of an integration
approach as the one we have presented here.

References

1. Bauer, L., Appel, A.W.: Access Control for the Web via Proof-Carrying Autho-
rization. PhD thesis, Princeton University (2003)

2. Bonatti, P., De Capitani di Vimercati, S., Samarati, P.: An Algebra for Composing
Access Control Policies. TISSEC 5(1), 1–35 (2002)

3. Casalino, M.M., Thion, R.: Refactoring multi-layered access control policies
through (de)composition. In: CNSM, pp. 243–250 (2013)

4. Cuppens, F., Cuppens-Boulahia, N., Sans, T., Miège, A.: A formal approach to
specify and deploy a network security policy. In: FAST 2004, pp. 203–218 (2004)

5. Davy, S., Jennings, B., Strassner, J.: The Policy Continuum-Policy Authoring and
Conflict Analysis. Computer Communications 31(13), 2981–2995 (2008)

6. Hu, H., Ahn, G.-J., Kulkarni, K.: Anomaly discovery and resolution in web access
control policies. In: SACMAT 2011, pp. 165–174. ACM (2011)

7. Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access control model
covering DAC, MAC and RBAC. In: Cuppens-Boulahia, N., Cuppens, F., Garcia-
Alfaro, J. (eds.) DBSec 2012. LNCS, vol. 7371, pp. 41–55. Springer, Heidelberg
(2012)

8. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A Model Transformation
Tool. Science of Computer Programming 72(1), 31–39 (2008)

9. Lockhart, H., Parducci, B., Anderson, A.: OASIS XACML TC (2013)
10. Lodderstedt, T., Basin, D., Doser, J.: SecureUML: a UML-based modeling lan-

guage for model-driven security. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.)
UML 2002. LNCS, vol. 2460, pp. 426–441. Springer, Heidelberg (2002)

11. Mart́ınez, S., Cosentino, V., Cabot, J., Cuppens, F.: Reverse engineering of
database security policies. In: Decker, H., Lhotská, L., Link, S., Basl, J., Tjoa,
A.M. (eds.) DEXA 2013, Part II. LNCS, vol. 8056, pp. 442–449. Springer, Heidel-
berg (2013)

12. Mart́ınez, S., Garcia-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., Cabot, J.:
Model-driven extraction and analysis of network security policies. In: Moreira, A.,
Schätz, B., Gray, J., Vallecillo, A., Clarke, P. (eds.) MODELS 2013. LNCS, vol.
8107, pp. 52–68. Springer, Heidelberg (2013)

13. Mart́ınez, S., Garćıa-Alfaro, J., Cuppens, F., Cuppens-Boulahia, N., Cabot, J.:
Towards an access-control metamodel for web content management systems. In:
ICWE Workshops, pp. 148–155 (2013)

Model-Driven Integration and Analysis 233

14. Mazzoleni, P., Crispo, B., Sivasubramanian, S., Bertino, E.: XACML Policy Inte-
gration Algorithms. TISSEC 11(1), 4 (2008)

15. Mouelhi, T., Fleurey, F., Baudry, B., Le Traon, Y.: A model-based framework
for security policy specification, deployment and testing. In: Czarnecki, K., Ober,
I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301,
pp. 537–552. Springer, Heidelberg (2008)

16. OMG. OCL, version 2.0. Object Management Group, June 2005
17. Preda, S., Cuppens-Boulahia, N., Cuppens, F., Garcia-Alfaro, J., Toutain,

L.: Model-driven security policy deployment: property oriented approach. In:
Massacci, F., Wallach, D., Zannone, N. (eds.) ESSoS 2010. LNCS, vol. 5965,
pp. 123–139. Springer, Heidelberg (2010)

18. Sandhu, R., Ferraiolo, D., Kuhn, R.: The NIST Model for Role-Based Access Con-
trol: Towards A Unified Standard. RBAC 2000, pp. 47–63. ACM (2000)

19. Trninic, B., Sladic, G., Milosavljevic, G., Milosavljevic, B., Konjovic, Z.:
PolicyDSL: towards generic access control management based on a policy meta-
model. In: SoMeT, pp. 217–223 (2013)

Network Security

Authenticated File Broadcast Protocol

Simão Reis1(B), André Zúquete2(B), Carlos Faneca1, and José Vieira2

1 IEETA, University of Aveiro, Aveiro, Portugal
{simao.paulo,carlos.faneca}@ua.pt

2 DETI/IEETA/IT, University of Aveiro, Aveiro, Portugal
{andre.zuquete,jnvieira}@ua.pt

Abstract. The File Broadcast Protocol (FBP) was developed as a part
of the DETIboot system. DETIboot allows a host to broadcast an oper-
ating system image through an 802.11 wireless network to an arbitrary
number of receivers. Receivers can load the image and immediately boot
a Linux live session. The initial version of FBP had no security mech-
anisms. In this paper we present an authentication protocol developed
for FBP that ensures a correct file distribution from the intended source
to the receivers. The performance evaluations have shown that, with the
best operational configuration tested, the file download time is increased
by less than 5%.

1 Introduction

The DETIboot system is a solution that was designed and developed to quickly
install a temporary, live Linux image in an arbitrarily large number of comput-
ers [1–3]. It uses a wireless 802.11 network (WiFi), operating in ad hoc mode,
and broadcast communication to send the Linux image to nearby clients. These
load the image and immediately boot a Linux live session, which can disappear
without leaving a trace after a power down. This system has potential applica-
tions in both academic and enterprise environments. Currently we are working
on a security ecosystem for DETIboot in order to allow its use in exams using
students’ personal laptops and an hardened Linux image.

The DETIboot system uses a broadcast file distribution protocol (FBP).
The first version of FBP had no security mechanisms, which is not advised for
ensuring a correct distribution of the intended Linux image among all receivers.
In this paper we propose a broadcast authentication protocol for FBP, which
enables FBP receivers to make a correct download from an intended FBP server.

Our authentication protocol kept the basic behaviour of FBP. The authentica-
tion is performed with extra messages (authenticators) interleaved at unpredicta-
ble places within the original FBP frame transmission flow. These authenticators
enable a set of future frames to be authenticated by the receivers. The option
for sending an authenticator before its target frames was taken for preventing
receivers from accumulating frames that may never be authenticated.

Authenticators use well-known technology: SHA-1 frame digests, signed
with an RSA private key. For the envisioned exploitation scenarios we use
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 237–251, 2015.
DOI: 10.1007/978-3-319-18467-8 16

238 S. Reis et al.

high-performance RSA setups (1024 bit modulus, small public exponents) for
increasing performance without compromising security. The setup of an FBP ses-
sion is driven by parameters derived from the public key of the FBP server, which
guaranties that receivers cannot be fooled by networks deployed by attackers.

For evaluating the performance of our proposal, we did measurements in
multiple operational scenarios, considering different reception conditions, differ-
ent timings for sending authenticators and the presence of an attacker. Without
attacks, the overhead in the total download time for a more aggressive transmis-
sion of authenticators, the one with better results, was below 5%.

This paper is structured as follows. In Section 2 we present the FBP concepts
that are fundamental to understand the options we took for adding authenti-
cation, as well as its security weaknesses. In Sections 3 and 4 we present our
FBP authentication protocol and some implementation details. In Section 5 we
present the performance evaluation of FBP with authentication. In Section 6 we
present some related work in the area of broadcast authentication. Finally, in
Section 7 we present our conclusions.

2 File Broadcast Protocol

In this section the File Broadcast Protocol (FBP) is described in order to clarify
the scenario that needs to be protected.

FBP [1–3] uses Fountain Codes [4,5] to broadcast a file. Fountain Codes cre-
ate a sequence of codewords that can be generated from a given set of source
symbols such that those symbols can be recovered from any subset of the code-
words of size equal to, or only slightly larger than, the number of source symbols.

FBP starts by slicing the file to be transmitted into a set of equally-sized seg-
ments (source symbols). Pseudo-random XOR combinations of those segments
are then calculated, yielding Fountain Code codewords. FBP repetitively and
indefinitely broadcast codewords from a server to multiple clients. The transmit-
ter encodes file segments into codewords and the clients decode those codewords,
obtaining the original file segments.

FBP clients may enter at any time in the broadcast session, they do not
need to be present at the begging of the FBP transmission. Furthermore, they
are tolerant to packet losses since, in theory, it does not matter the exact set
of codewords one needs to receive (all codewords are equality good to get the
original symbols). After a given threshold of received codeword it should be
highly probably to complete the decoding and get all the original symbols.

FBP is a network protocol (layer 3 of the OSI model), identified through
the Ethernet code 0x1986 in 802.11 frames. An 802.11 codeword frame con-
veys the codeword itself and the indexes of all symbols used to generate it. The
indexes are not transmitted directly, they are derived by receivers from parame-
ters included in the frame: total number of symbols (K), degree of the codeword
(number of symbols used in its generation), and a random seed (cf. Figure 1).
The degree and the seed, together with a universal pseudo-random generator, are

Authenticated File Broadcast Protocol 239

used to generate the index set of the symbols contained in the codeword. A code-
word frame also includes a codeword index (a sequence number) for performance
evaluation purposes. We used it also for defining authentication windows.

2.1 Security Vulnerabilities/Attacker Model

FBP uses a wireless medium, through 802.11 ad-hoc networks, to broadcast
codewords of a boot image from a source to many destination laptops. Thus,
an attacker can try to impersonate a legitimate source in order to provide its
own boot image. Alternatively, the attacker may provide only a few codewords
that would act as a Trojan Horse, i.e., could change the final behavior of the
boot image while keeping most of its functionality unchanged. This is not easy,
but certainly not impossible.

Besides those attacks, where the attacker could attempt to control the down-
loaded boot image, an attacker can use Denial of Service (DoS) attacks. In this
case, it can (i) repeat previously sent codewords or (ii) prevent legitimate code-
word transmissions or receptions.

In the first case, which is a typical replay attack, it would increase the
receivers’ memory with useless codewords, but not ruin the codeword decod-
ing process (repeated codewords can, in fact, happen). In any case, it is advised
to discard repeated codewords if we are able to detect such situation.

In the second case, involving interference with a legitimate transmission and
reception, there is no definitive solution, because jamming or abusive 802.11
medium occupancy is always possible. Nevertheless, we can make an attacker’s
task harder by forcing it to interfere continuously with the legitimate transmitter.
In fact, since FBP codewords do not need to be strictly ordered and can be lost,
as long as a receiver is able to get codewords, even at a lower rate, it will
continuously evolve towards a complete codeword decoding. The only way to
avoid this is by preventing receivers to get any codewords at all.

Another type of attack involves the name resolution used in ad hoc networks.
These networks, formally referred as Independent Basic Service Sets (IBSS), can
be identified by names, which are assigned to 48-bit values (BSS IDentifiers,
BSSID). Usually, the binding between a network name and a BSSID is made by
any node that attempts a network name resolution within the neighbors and gets
no answer. Thus, it is perfectly possible to have a legitimate FBP transmitter
and an attacker with the same network name bound to different BSSID values.
In this case, FBP receivers should not resolve network names to BSSID values,
because they may get the attacker’s BSSID, thus entering its network thereafter.
In such case, the attacker could impersonate the legitimate FBP transmitter,
providing its own boot image, or remain silent, this way deploying a DoS black
hole attack. Since the name resolution is a basic 802.11 feature, which cannot be
changed or protected in any way, the obvious solution is to force the BSSID of
FBP receivers to a value known to be in use by the legitimate FBP transmitter.

Finally, assuming that FBP needs some mechanism to enable receivers to
check the validity of the codewords they receive, this mechanism should be
designed in a way that does not allow an attacker to interfere with it with a

240 S. Reis et al.

minimum effort. Otherwise, it would be easy for an attacker to force receivers
to discard all legitimate codewords. The autonomous authentication of each and
every codeword could be a solution, but the overhead costs, both in terms of data
transmission and CPU processing, could as well be excessive. On the other hand,
the transmission of a few, critical authentication control frames, which could be
used to authenticate many codewords, cannot be predictable (i.e., nobody should
be able to guess their transmission slot). Otherwise, an attacker could simply jam
those control frames to interfere with, an completely ruin, the entire codeword
reception process.

2.2 Authentication Requirements and Alternatives

As referred in [6], the solutions to reliable, point-to-point packet communica-
tions do no scale well to broadcast environments. In point-to-point is usual that
receivers request retransmission of the data in case of failure. FBP solves this
issue for broadcast communication by using Fountain Codes, which do not
require feedback. Furthermore, authentication in point-to-point communications
can be achieved with a pure symmetrical solution, such as a Message Authen-
tication Code (MAC). Both parties share a common secret key, and when a
message with a correct MAC arrives the receiver is assured that the correct
transmitter generated it. However, in a broadcast environment a MAC is not
safe. Every party knows the MAC key, therefore anyone could impersonate the
genuine source and assume the broadcast transmission. The obvious approach is
the use of an asymmetric mechanism, such as a digital signature. These have the
asymmetrical authentication property required by FBP: each source generates
signatures with its private key and the receivers can verify the signatures with
the public key of the intended source.

An FBP receiver needs to know something about a legitimate FBP transmit-
ter to authenticate it, or the codewords it sends. However, an FBP receiver should
process codewords immediately upon their reception, to maximize the decoding
CPU cycles between the reception of consecutive frames. Consequently, it is
advised to either (i) authenticate each codeword independently from the others
or (ii) to transmit a multi-codeword authentication frame prior to a transmit
the respective codewords.

The natural solution for the first option is to include in each codeword a
signature, produced by the FBP transmitter and that could be verified by each
an every receiver. However, ordinary signatures, such as the ones made with
RSA, can take a relevant space in the codeword frame. For a typical codeword
with nearly 1500 bytes, an RSA signature using a 1024-bit modulus would add
128 more bytes to a codeword. This means about 9% more data to transmit per
codeword. Since to overall decoding time is a function of the time it takes to
receive a minimum number of codewords, with this authentication strategy the
overall decoding time would increase by no less than 9%. This is not dramatic,
but we thought we could get a better solution, and we did.

The second option is to transmit authentication frames with authentica-
tion material for the frame itself and for checking a set of codewords following

Authenticated File Broadcast Protocol 241

it. A simple strategy for implementing this authentication policy would be to
include in a authentication frame a set of references and digests of future code-
words, all signed by the FBP transmitter. With a 1500-byte frame and an
128-byte RSA signature we have room for about 60 20-byte SHA-1 digests.
Without frame losses, this strategy has an overhead lower than 2% relatively
to the data transmitted, because we only need to transmit an authenticator
(and the correponding public key to validate it) before a batch of 60 codewords.
However, with frame losses the overhead is higher, because upon the loss of an
authenticator the receiver would have to discard all codewords until getting the
next authenticator.

Regarding attacks, the second option is potentially weaker than the first
against DoS attacks. In fact, if an attacker could predict the instant when authen-
ticators are transmitted, then it could jam the network during such transmission
and, with a minimum effort, could prevent the validation of all received code-
words. However, this weakness can be mitigated by adding some randomness to
the instants when authenticators are transmitted. For instance, the transmit-
ter can insert a variable number of codewords between authenticators, ranging
from 1 and up to the maximum of digests present in the previous authenticator.
With this strategy, an attacker could never anticipate the transmission of an
authenticator, therefore selective jamming would not be possible any more.

3 Authenticated File Broadcast Protocol

This section presents the authentication extension developed for the FBP proto-
col. In this extension we used the last solution presented in the previous section:
special authentication packets, interleaved from time to time with codewords,
which authenticate a fixed number of following codewords.

3.1 Design Assumptions and Options

Our authentication protocol was conceived for an operational environment where
a new, fresh asymmetric key pair can be create and used in a time-limited file
download session. For instance, it can be use to download a particular live Linux
distribution in the beginning of a class, possibly taking no more then a few min-
utes. Or we can use a daily key pair for on-demand distribution of live Linux
distributions for the computers of an organization (e.g. a demonstration distri-
bution for all laptops being presented in shelfs of a computer store).

In both cases, we take the two following assumptions: (i) key pairs can be
changed frequently, on a per-session basis, and do not need to stay stable for a
long time; and (ii) the receivers can get, from a reliable source, some elements
that allow them to verify if a public key is the correct one they should use.
In this last case, we did not consider any automatic validation strategies, such
as public key certificates or certification chains, but rather some human-driven
mechanisms, such as the validation of the equality between digests.

242 S. Reis et al.

Taking into consideration the first assumption, there is no need to use very
long asymmetric keys; we chose 1024-bit RSA keys. Furthermore, we used the
smallest Fermat prime (3), as the public exponent, which reduces to the mini-
mum the computation overhead in the receivers without bringing known security
vulnerabilities. We have chosen SHA-1 as the algorithm to compute the digest
of each codeword. Currently it has no known vulnerabilities and the digests are
not excessively long.

3.2 Key Distribution and Validation

Each authenticator carries the modulus of the public key of its generator, as
well as a signature produced by the corresponding private key. When a receiver
starts, it waits for an authenticator, checks its signature, presents a digest of
the public key to the user and waits for an accept/reject decision. This decision
must be taken upon checking, by some means, if the digest is the expected one.
For instance, in a classroom, the teacher controlling the source machine can get
the same digest and write it in the board.

For segregating communications involved in different FBP sessions, the over-
all key-related setup is slightly more complex:

1. The sender initiates the FBP server, this generates a fresh key pair for the
transmission session. Then, it computes (and displays) a digest from its
public modulus and uses part of that digest to compute (and display) the
BSSID of its ad hoc network. This BSSID can or cannot be already in use,
that is irrelevant for FBP.

2. The receiver initiates the FBP client with the BSSID being used by the
intended server, in order to enter its ad hoc network.

3. The FBP client waits for an authenticator, which it will use to present the
digest of its public modulus. If the user approves its value, the modulus is
recorded for checking future authenticators.

4. The FBP client waits for a valid (properly authenticated) codeword for
extracting the download operational parameters – number of symbols K
and size of each symbol/codeword. Once having this, the decoding process
can start (using this and the following valid codewords).

Ethernet packets have a payload of 1500 bytes. Subtracting the size of the pub-
lic RSA modulus (128 bytes), the size of the corresponding signature (128 bytes),
the remaining space can, at the maximum, accommodate 62 20-byte codeword
digests. We decided to use only 60, leaving some space in the authenticator for
some extra fields that could be necessary.

Each authenticator can authenticate 60 consecutive codewords. Considering
that authenticators are equal in size to codewords (the difference is small), at
least 1

61 (∼1.6%) of all transmitted bytes will be exclusively used for authenti-
cation. By increasing the transmission frequency of authenticators we increase
accordingly such overhead. This can be a low price to pay when transmission
losses increase, affecting the number of received authenticators. We will address
this issue in Section 5.

Authenticated File Broadcast Protocol 243

codeword index (4 bytes)

K (4 bytes)

seed (4 bytes)

degree (4 bytes)

codeword (1484 bytes)

last codeword index: x + 59 (4 bytes)

0 (4 bytes)

session identifier (4 bytes)

SHA-1 digests: dx, dx+1, · · · , dx+59 (1200 bytes)

RSA signature & public key modulus (256 bytes)

Fig. 1. FBP frame payloads for codewords (left) and authenticators for transmitting
before codeword index x (right)

3.3 Authenticator Generation

Before sending a set of 1 ≤ N ≤ 60 previously generated codewords, the
FBP server creates an authenticator to protect the next 60 ≥ N codewords
(Cx, · · · , Cx+59). For each codeword Ci, with i ∈ [x, x + 59], a digest di = h(Ci)
is calculated and inserted into the authenticator. The authenticator also carries
the index x + 59 of the codeword used to compute the last digest (dx+59), an
RSA signature of the transmitter over this index and all the digests and the
signer public key modulus (see Figure 1).

Upon checking the validity of an authenticator, an FBP client saves all its
digests to validate future codewords. For instance, if the last codeword index in
the authenticator is 2000, only the 60 codewords with an index between 1941
and 2000 can be checked and possibly accepted by the client. If in the meanwhile
another valid authenticator is received, this validation information is updated
accordingly for authenticating the following codewords.

Figure 1 shows the complete physical mapping of an authenticator’s fields.
The second field, corresponding in terms of location to a codeword’s field K,
is always 0. Since K is never 0 in codeword frames, this field can be used by
clients to distinguish codewords from authenticators. The session identifier is
used to efficiently discard authenticators belonging to a different download ses-
sion (sharing, by a very unlikely coincidence, the same 802.11 channel and the
same BSSID value). This identifier is randomly chosen by an FBP server and
adopted by a receiver upon the acceptance of an authenticator that carries the
public modulus that will be used to authenticate the traffic.

3.4 Replay Attacks Against Clients

To prevent replay attacks, authenticators with an outdated latest codeword index
(lower than the one of the current authenticator being used) are discarded by
clients without further validation.

The codewords’ index is also checked to avoid replay attacks. The client saves
the index of the last (valid) codeword and discards codewords with a previous or
equal index without further validation. Note that we are working with a one-hop
wireless network, where frames, in principle, do not get out of order.

244 S. Reis et al.

4 Implementation Details

4.1 Key Generation and Distribution

The FBP server was modified to generate an RSA key pair with the public
exponent 3. Besides including the modulus of this key in all authenticators, the
server outputs for its administrator an SHA-1 digest of the modulus and a 48-bit
BSSID extracted from part of such digest. These two values need to be conveyed,
by the best suited means, to all the users running the FBP client and wishing
to download a file from this server. The BSSID is used by the server to initiate
the ad hoc network prior to start using it.

The FBP client was modified to accept a BSSID (formerly it was using a
name-BSSID translation). Then it waits for an authenticator, displays the SHA-1
digest of its public key modulus, and prompts the user if that is the key to be
used. The user has the options to (i) use it, (ii) do not use it once, (iii) do
not use it forever, or (iv) input the SHA-1 digest or the desired modulus. Thus,
flooding attacks exploring constant or always changing modulus on each authen-
ticator can be overcome by either (i) choosing not to use a modulus forever or
(ii) providing the digest of the correct modulus, respectively.

4.2 Production of Authenticators

The server was implemented as a pipeline of 3 tasks: (i) produce the codewords,
(ii) build the authenticators and (iii) send both the codewords and the authenti-
cators. Most laptops nowadays are multiprocessor so these tasks can be assigned
to an equal number of threads (Producer, Signer and Sender), each on its own
CPU, in order to maximize the CPU usage. These tasks manage two circular
buffers that are used for queueing codewords and authenticators (see Figure 2).

Fig. 2. Tasks, buffers and actions used to coordinate the production and transmission
of codewords and authenticators

The Producer thread is the first to start. It produces as many codewords
as possible (action 1 in Figure 2). As soon as there are enough codewords
(at least 60) to fill an authenticator with their digests, the Signer thread starts.
Upon having at least one authenticator, the Sender thread starts.

There are 4 synchronization points, implemented with semaphores: two bet-
ween the Producer and the Signer; one between the Producer and the Sender

Authenticated File Broadcast Protocol 245

and one between the Sender and the Producer. These are represented by the
thick vertical lines in Figure 2. Preliminary tests indicated that synchronization
points between any pair of buffer items would cause to much computational of
overhead. So, these 4 synchronization points are done in blocks of 60 items. The
Producer needs only one block; while inside it, it produces as many codewords
as possible. The Signer needs two blocks, because each authenticator must always
protect the next 60 codewords, and some may be in the next adjacent block. The
Sender only needs one block. In total, 4 blocks of 60 items are needed.

As we can see in actions 2 and 3 in Figure 2, the Signer always saves the
authenticator in the same index as the first codeword it authenticates. In actions
4 and 5 in Figure 2, the Sender at index i of a block b checks if in the authenti-
cators’ queue there is a authenticator for the same index. If there is, it sends it,
and then it sends the codeword in the same position of the codewords’ queue.
Otherwise, it only sends the codeword in that position.

5 Performance Evaluation

The performance evaluation involved reaching two fundamental conclusions:
(i) what is the overhead, under normal conditions (i.e., when not being attacked),
of our FBP authentication and (ii) what is the preferable frequency for sending
authenticators.

To reach these conclusions we have made a series of live measurements con-
sidering all possible scenarios combining the following parameters:

– A receiver near or far away from the transmitter. For the near case we expe-
rienced an average RSSI (Received Signal Strength Indicator) of −25 dBm,
while for the far case we experienced an average RSSI of −75 dBm) (evalu-
ated with Android mobile phones using the Wifi Analizer application).

– A variable number C of codewords between each authenticator, uniformly
distributed in the intervals [1, 30] and [1, 60]. The first interval leads to an
higher frequency in the transmission of authenticators.

– The presence of another transmitter using the same wireless network (same
802.11 channel, same BSSID) and close to the receiver.

For transmissions without authentication we obtained the following indica-
tors: (i) decoding elapsed time (Time); (ii) the number of codewords effectively
used for reaching the complete file decoding (Used); (iii) the number of code-
words received by the decoder but not effectively decoded (Unused); and (iv) the
number of codewords lost in the transmission, due to physical transmission prob-
lems or overruns of reception buffers (Lost). This last value is computed from
the indexes of the first and last codewords (F and L, respectively) received by
the decoder and the total number of codewords received by the decoder (R):

Lost = L − F + 1 − R

Since R = Used + Unused, then

Lost = L − F + 1 − (Used + Unused)

246 S. Reis et al.

The (percentage of) codeword loss in the decoding process is given by

Loss =
Lost

R + Lost
=

Lost
Used + Unused + Lost

For transmissions with authentication we obtained all the previous indicators
plus the following: (i) the number of codewords from the correct source that
failed authentication (Invalid); and (ii) the number of codewords from other
sources that also failed authentication (Other). To distinguish codewords from
the correct or incorrect source we used the K of each codeword and all codeword
sources broadcast files with a different K. With authentication the calculation
of Lost is different, being given by

Lost = L − F + 1 − (Used + Unused + Invalid)

and the (percentage of) codeword loss in the decoding process is calculated as

Loss =
Invalid + Lost

Used + Unused + Invalid + Lost

In the measurements we used the following systems and data:

Legitimate transmitter: Toshiba Portégé 830-10R, with an Intel Core i7-
2620M at 2.7 GHz, 8 GiB of RAM, with an external (USB) Thomson TG123g
WiFi interface (with the TxOP option [7] for fast transmission1), running
a 64-bit Linux Lubuntu. It was used to transmitted a file with 104, 792, 660
bytes (∼100 MiB, 70615 symbols, each with 1484 bytes).

Receiver: Asus K55VM-SX083V, with an Intel Core i5-3210M Dual Core at
2.5 GHz, 8 GiB of RAM, Atheros AR9485 WiFi interface, running a 64-bit
Linux Lubuntu at runlevel 1 (single user administration mode).

Attacker: Asus F3SC-AP260C, with an Intel Core 2 Duo T5450 at 1.67 GHz,
1 GiB of RAM, running a 32-bit Linux Lubuntu.

Note that the attacker can be as powerful as intended, as it can be deployed
with different machines. In our case, the attacker was made intensionally less
powerful than the correct FBP source.

In all transmissions we used 802.11g broadcast at the maximum speed allowed
by interface drivers. For the legitimate transmitter we could set that speed to
54 Mbit/s, the 802.11g maximum. When combined with the TxOP, the non-
authenticated FBP can achieve a download performance of about 40 Mbit/s.
Without such option, the maximum performance drops to about 25 Mbit/s.

Tables 1, 2 and 3 present the average and standard deviation values observed
for the elements previously referred in the several scenarios considered. All values
were computed after 10 experiments in the same exact circumstances.

1 TxOP allows a transmitter to send batches of frames separated by the minimum
possible time, a SIFS (Short Interframe Space).

Authenticated File Broadcast Protocol 247

Table 1. Results at the end of the file decoding without authentication

Time (s) Used Unused Loss (%)
Distance Avg σ Avg σ Avg σ Avg σ

Near 20.8 0.9 72102.0 171.3 913.6 540.2 0.09 0.09
Far 70.6 6.4 72238.4 137.3 151.3 111.6 3.72 0.12

Table 2. Results at the end of the file decoding with authentication and no attackers

Time (s) Used Unused Invalid Lost Loss (%)
Distance C Avg σ Avg σ Avg σ Avg σ Avg σ Avg σ

Near
[1, 30] 21.5 0.1 72141.1 212.5 493.6 328.9 25.6 5.4 42.6 28.2 0.09 0.04
[1, 60] 21.0 0.1 72212.7 236.4 591.3 343.0 161.2 53.5 437.7 87.4 0.82 0.12

Far
[1, 30] 74.0 14.5 71989.3 132.0 228.0 310.6 8107.3 2069.3 168894.7 46626.2 69.95 6.27
[1, 60] 121.5 40.3 71943.1 156.3 147.2 270.7 30170.0 6624.8 314448.3 132831.6 81.34 4.94

Table 3. Results at the end of the file decoding with authentication and an attacker

Time (s) Used Unused Invalid Lost Loss (%) Other
Dist. C Avg σ Avg σ Avg σ Avg σ Avg σ Avg σ Avg σ

Near
[1, 30] 35.5 0.4 71949.3 145.4 616.8 262.8 820.2 101.5 23006.3 681.2 24.7 0.6 20436.3 23.9
[1, 60] 36.0 2.1 72155.2 409.9 548.2 281.4 7144.1 1329.5 20811.5 4384.4 27.6 4.0 20917.0 20.5

Far
[1, 30] 87.8 32.7 72061.8 363.9 238.3 330.3 9925.3 3728.8 209600.6 105077.0 72.3 9.3 2610.0 68.9
[1, 60] 135.8 37.2 72033.8 174.8 38.8 68.2 35275.0 5758.2 358082.8 126205.5 83.7 4.1 3265.3 75.8

Table 4. Overheads in the decoding time and codeword losses due to authentication

Distance C Δ Time (%) Δ Loss (%)

Near
1-30 3.5 0.5
1-60 1.3 773.9

Far
1-30 4.8 1780.1
1-60 72.2 2086.5

5.1 Analysis of Results

The results show a typical result of our coding policy: the number of codewords
required for completing the file decoding is fairly stable in all cases. However,
the time to get those codewords varies a lot depending on the scenario.

Regarding our first goal, compute the overhead introduced by the authentica-
tion in normal circumstances (when not being attacked), we see that the overhead
is small. Table 4 shows the overheads due to the introduction of authentication.
In terms of decoding time, the increment ranged from 3.5 to 4.8% when the
frequency of authenticators is higher (C ∈ [1, 30]), and 1.3 to 72.2% when such
frequency is lower (C ∈ [1, 60]). In terms of codeword losses, this value increased
due to the discarding of invalid codewords. The increase was between 0.5 and
1780.1% when authenticators are more frequent, and between 773.9 and 2086.5%
when authenticators are less frequent.

There is an apparently strange outcome, which is the fact that, despite a
major increase of losses with authentication, the total decoding time does not
increase on the same proportion. Notice, however, that if we have erasure rates
(total losses) εn and εf for a nearby and far way transmissions, respectively, for
reaching a threshold X of codewords in the decoder enabling it to complete the

248 S. Reis et al.

decoding we need to transmit Nn and Nf codewords, in each case, such that

X = Nn × (1 − εn)
X = Nf × (1 − εf)

which means that

Nf × (1 − εf) = Nn × (1 − εn) ⇔ Nf

Nn
=

1 − εn

1 − εf

Now, for εn = 0.0009 and an εf = 0.6995 (observed with high frequency authen-
ticators, see Table 2), we get Nf

Nn
≈ 3.325. Since there is some linear correlation

between the decoding time T and the total number of transmitted codewords
during the decoding (N), we can also anticipate that Tf

Tn
should yield a similar

value, which it does: 74.0
21.0 = 3.442. This demonstration is also applicable to the

results obtained for transmissions with less frequent authenticators.
Regarding our second goal, finding a preferable frequency for sending authen-

ticators, the tests allow us to conclude that, except in one case, it is preferable
to use a higher frequency (C ∈ [1, 30]) than a lower one (C ∈ [1, 60]). With an
higher frequency the Time and Loss indicators, the ones that are relevant to
evaluate the transmission efficiency, are usually lower than with a low frequency.
The increase of Loss is partially due to the increase of the Invalid indicator,
which grows when authenticators are transmitted less frequently.

The exception happens when the receiver is very close to the transmitter and
there is not an attack. Besides being an hard-to-find scenario (not all receivers
can be this close, specially when there are many or they are scattered along a
classroom), the difference in the average decoding time is negligible (∼ 2%) for
deciding for a lower frequency.

When an attacker is present and competes for the transmission media, it will
succeed in reducing the FBP performance. This is evident from the comparison
of the results of Tables 2 and 3. However, such results show a curious behaviour:
when the attacker and the victim are close to each other, an far away from the
genuine source, the Other indicator drops when comparing with the scenario
were all three hosts are near each other. This is probably due to transmission
collisions between the genuine source and the attacker, which have difficulties in
listening to each other traffic.

We have used SHA-1 both for computing the digests of codewords and the
authenticators’ signatures. Since SHA-1 is deprecated for digital signatures [8],
we should probably use stronger digest functions, such as SHA256 or SHA512,
for handling signatures. We did some experiments with SHA256 and the perfor-
mance results were very similar to the ones observed with SHA-1, which means
we can increase security without compromising performance.

Authenticated File Broadcast Protocol 249

6 Related Work

Regarding the authentication of Fountain Code transmissions, in [9] the authors
developed a solution for authenticating Fountain Code codewords used in the
distribution of a new image in multi-hop wireless sensor networks. Their solu-
tion is totally different from ours: they recode the original symbols to include
digests of other symbols, forming an hash chain up to a new root symbol that
needs to be transmitted authenticated and without Fountain Codes. The digests
can only be recovered when original (recoded) symbols are recovered, and for
building the complete digest tree one needs to recover (recoded) symbols with a
particular order. In the mean time, recovered symbols that could not be verified
are dropped. Although using Fountain Codes, there is an initial time for the
transmission, when the root symbol is transmitted.

Regarding the authentication of other broadcast transmissions, there are
numerous contributions using various strategies. We will not go through all indi-
vidual contributions, but rather highlight those strategies with some references.

Signature amortization methods are similar to our approach: they compute
a signature relatively to a set of frames to reduce the signature generation and
verification overhead. This approach can be complex to implement if one could
not verify a signature upon loosing a related frame (as in [10]) or if we could
not verify a signature until receiving a set of frames (as in [11]). We solved these
problems, as we tolerate codeword losses and we can immediately verify the
validity of a codeword upon its reception at the decoder, with a false negative
rate that is a function of the frequency of authenticators.

Symmetric key schemes were used in some secure broadcast approaches, such
as TESLA [12], but TESLA requires a synchronized start by all receivers (which
we do not) and frames cannot be immediately authenticated, only after receiving
a few other frames (which we do not want and we do not need to).

In [13] the author developed a mechanism, called Rapid Authentication, that
enables the use of precomputed data in the creation of RSA signatures. His goal
was to accelerate the individual signature of Command & Control Messages for
an efficient, real-time transmission. This is not a problem for us, since we do not
need to sign each and every codeword, just authenticators, and this can be done
in parallel with the production and transmission of codewords.

7 Conclusions

In this paper we have presented a solution for adding a lightweight source authen-
tication to codewords transmitted by an FBP server. The goal was to prevent a
nearby attacker to compromise codeword receptions by adding wrong codewords.

The solution we have presented uses well-known and widely accepted tech-
nologies (SHA-1 digests and RSA key pairs and signatures) to produce and check
codeword authenticators. These are transmitted before the actual transmission
of the codewords they authenticate, which enables receivers to validate code-
words immediately upon their reception. Authenticators are transmitted at a

250 S. Reis et al.

variable and unpredictable pace, which prevents attackers to make surgical jam-
ming strikes against them. Using a higher rate for sending authenticators we
achieved very good performance result, with a maximum overhead of less then
5% in the total file decoding time. Note that this overhead already includes the
public key distribution, which is performed by all authenticators.

The distribution of the public module of the RSA key pair used to authen-
ticate an FBP session was adapted to the operational scenarios where FBP was
designed to be used within DETIboot: for transmitting a file (usually a Linux
live distribution image) to an arbitrarily large population of nearby receivers
(e.g. in a classroom). Since these are sufficiently close to the transmission source
to make eye contact, the critical information regarding the public key modu-
lus (its digest) and the ad hoc network BSSID can be conveyed in a simple
and straightforward way: by writing somewhere where it could be seen by all
receivers (e.g. on the classroom board).

Acknowledgments. This research work was supported by the projects PTDC/EEI-
TEL/3006/2012 (CodeStream) and PEst-OE/EEI/UI0127/2014, both from FCT
(Foundation for Science and Technology).

References

1. Cardoso, J.: DETIboot: distribuição e arranque de sistemas Linux com redes WiFi.
Master’s thesis, University of Aveiro, Portugal (2013)

2. Faneca, C., Vieira, J., Zúquete, A.: Fast image file distribution with fountain codes
via a Wi-Fi Ad-hoc network, using low power processors. In: 16th Int. Telecom-
munications Network Strategy and Planning Symposium (NETWORKS 2014),
Funchal, Madeira, Portugal, September 2014

3. Faneca, C., Vieira, J., Zúquete, A., Cardoso, J.: DETIboot: A fast, wireless system
to install operating systems on students laptops. In: 2nd Int. Conf. on Advances in
Computing, Electronics and Communication (ACEC 2014), Zurich, Switzerland,
October 2014

4. Byers, J., Luby, M., Mitzenmacher, M.: A digital fountain approach to asyn-
chronous reliable multicast. IEEE Journal on Selected Areas in Communications
20(8), 1528–1540 (2002)

5. MacKay, D.J.C.: Fountain codes. IEE Proceedings Communications 152(6),
1062–1068 (2005)

6. Perrig, A., Tygar, J.D.: Secure Broadcast Communication: In Wired and Wireless
Networks. Springer, New York (2003)

7. IEEE Std 802.11e: Wireless LAN Medium Access Control (MAC) and Physi-
cal Layer (PHY) Specifications, Amendment 8: Medium Access Control (MAC)
Enhancements for Quality of Service (QoS) (2005)

8. Barker, E.B., Roginsky, A.L.: Transitions: Recommendation for Transitioning the
Use of Cryptographic Algorithms and Key Lengths. NIST SP - 800–131A (2011)

9. Bohli, J.M., Hessler, A., Ugus, O., Westhoff, D.: Security enhanced multi-hop over
the air reprogramming with fountain codes. In: IEEE 34th Conference on Local
Computer Networks (LCN 2009), pp. 850–857, October 2009

Authenticated File Broadcast Protocol 251

10. Park, J.M., Chong, E.K.P., Siegel, H.J.: Efficient multicast packet authentication
using signature amortization. In: Proc. of IEEE Symposium on Security and Pri-
vacy, Washington, DC, USA (2002)

11. Wong, C.K., Lam, S.S.: Digital Signatures for Flows and Multicasts. IEEE/ACM
Transactions on Networking 7(4), 502–513 (1999)

12. Perrig, A., Canetti, R., Tygar, J., Song, D.: Efficient authentication and signing
of multicast streams over lossy channels. In: Proc. of the IEEE Symposium on
Security and Privacy, pp. 56–73 (2000)

13. Yavuz, A.: An Efficient Real-Time Broadcast Authentication Scheme for Command
and Control Messages. IEEE Transactions on Information Forensics and Security
9(10), 1733–1742 (2014)

Automated Classification of C&C Connections
Through Malware URL Clustering

Nizar Kheir1(B), Gregory Blanc2, Hervé Debar2, Joaquin Garcia-Alfaro2,
and Dingqi Yang2

1 Orange Labs, 92794 Issy-Les-Moulineaux, France
nizar.kheir@orange.com

2 Institut Mines-Telecom, Telecom SudParis,
CNRS Samovar UMR 5157, 91011 Evry, France

Abstract. We present WebVisor, an automated tool to derive pat-
terns from malware Command and Control (C&C) server connections.
From collective network communications stored on a large-scale malware
dataset, WebVisor establishes the underlying patterns among samples of
the same malware families (e.g., families in terms of development tools).
WebVisor focuses on C&C channels based on the Hypertext Transfer
Protocol (HTTP). First, it builds clusters based on the statistical fea-
tures of the HTTP-based Uniform Resource Locators (URLs) stored in
the malware dataset. Then, it conducts a fine-grained, noise-agnostic
clustering process, based on the structure and semantic features of the
URLs. We present experimental results using a software prototype of
WebVisor and real-world malware datasets.

1 Introduction

Malware constitutes a serious threat to the Internet. Once it infects a termi-
nal, malware may perform a variety of actions, such as taking over the system,
connecting to Command and Control (C&C) servers, leaking information to a
dropzone, and recruiting the terminal to a botnet involved in activities such as
spam and denial of service. Efforts in the literature aim to handle malware both
at the system and network level. While traditional host-based malware detec-
tion systems suffer from low detection coverage [19], network-based detection
offers a complementary approach to detect malware through its network activ-
ity [6,7,10,12]. It usually adds network-level patterns, i.e., patterns referring
to any network activity triggered by malware instances. For instance, they can
leverage C&C activity, which is a key feature of malware operation. By com-
paring the network traffic of different malware samples, it is possible to identify
similar patterns that can be further used for malware detection.

To keep pace with the large number of malware being collected daily, current
solutions aim at automatically classifying malware and extracting appropriate
detection signatures [11,20,24]. For example, the behavioral classification sys-
tem in [20] correlates HTTP traffic from different malware samples and extracts
network signatures for detection. It observes common HTTP artifacts in order
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 252–266, 2015.
DOI: 10.1007/978-3-319-18467-8 17

Automated Classification of C&C Connections Through URL Clustering 253

to find trends that are shared among a large set of malware samples, and that
may characterize a given malware family. Another approach provided earlier by
[14] also observes network traffic for a large set of malware samples and iden-
tifies pattern signatures for detection. However, malware avoids being correctly
classified by these systems as it uses several network obfuscation mechanisms
such as encrypting its C&C traffic, injecting noise, using Domain Generation
Algorithms (DGA) [1], or embedding efficient failover strategies [17].

In this paper, we present WebVisor, an automated tool to classify malware
instances based on the features of their web-based C&C applications. These are
the set of web server applications that are installed by an attacker (i.e. botmas-
ter) in order to establish C&C communications with the remote infected bots.
WebVisor implements a behavioral-based approach that observes the network
activity of malware when executed in a sandbox. It classifies malware into fam-
ilies and generates family detection signatures. WebVisor targets malware C&C
communication channels supported by standard network protocols, such as the
Hypertext Transfer Protocol (HTTP). HTTP-based malware belonging to the
same botnet family connects to a shared infrastructure that involves the same
set of web C&C applications. Such malware C&C applications are uniquely iden-
tified and accessed using Uniform Resource Locators (URLs). The classification
process conducted by WebVisor assumes that malware belonging to the same
family shares similar C&C connection patterns, including similar sets of C&C
attributes, both in terms of parameter names, semantics, and values.

The benefits of WebVisor are threefold. First, it provides a behavioral app-
roach that classifies malware into families based on features of their network traf-
fic, with no need to analyze the system-level activity of malware on the infected
terminals. Second, it provides a malware detection system that operates semanti-
cal enrichment and density-based clustering in order to automatically reduce the
impact of noise and common obfuscation mechanisms used by malware up to a
certain level. Third, it identifies URL features common to a given malware fam-
ily. Such features are further used to detect and classify other malware instances.
To verify our claims, we present an experimental validation of a first prototype
against live Internet traffic collected from a large ISP provider.

This paper is organized as follows. Section 2 provides the background and
components underlying WebVisor. Section 3 describes our experimental results.
Section 4 surveys related work. Section 5 concludes the paper.

2 Background and System Overview

Network-based malware detection solutions can be classified into two main cat-
egories. First, solutions addressing network activities attributed to synchronized
botnet operations (e.g. [6,15]). Second, solutions executing the malware and ana-
lyzing its associated traces, to learn new malware techniques (e.g. [7,11]). The
first category works only when multiple infected terminals are using the same
botnet architecture and are controlled by a single entity. Modern botnets avoid
this type of detection through the hiding of their C&C activity by, e.g., using

254 N. Kheir et al.

fake connections and adding statistical inconsistencies in their network traffic
[21]. The second category assumes that malware belonging to the same fam-
ily (e.g., in terms of development tools) shares similar behavioral patterns that
reflect its origin and purpose [24].

WebVisor belongs to the second category. It observes HTTP traffic triggered
by malware during dynamic analysis, and identifies URL patterns that are shared
among samples of the same family. Hereinafter, we interchangeably use the terms
C&C patterns andURL patterns to refer to specific character strings in the URLs
triggered by malware during its execution in a sandbox. When these patterns are
shared among multiple variants of the same family, they characterize specific
features of their C&C applications. In the end, the patterns are used to build
appropriate detection signatures. Remaining malware URL instances that do not
convey shared C&C activity, and so they do not characterize specific malware
families, are automatically discarded by WebVisor and they are no longer used
during detection. We detail next the main blocks underlying WebVisor.

Input Data – The malware C&C communication channels addressed by Web-
Visor are supported by standard network protocols, such as HTTP, which is the
most common type of malware communication on the Internet today [4]. Malware
using HTTP-based C&C channels may efficiently bypass firewall and proxy set-
tings, by hiding the C&C exchanges within benign HTTP traffic. Furthermore,
HTTP-based malware may also evade detection by leveraging infected or legiti-
mate websites, which makes the detection very challenging [9]. The input HTTP
data processed by WebVisor are the URL methods (e.g. Get, Post, Head), the
absolute paths, and the parameters of the URLs associated to the C&C com-
munication channels. They are captured during the dynamic analysis of mal-
ware instances on a sandbox. Domain names from the stored URLs are ignored,
since they do not convey information about the structure and content of the
C&C applications. As opposed to domain names, URL paths provide the pre-
cise applications at the C&C server to handle malware requests. This highlights
common patterns that are likely to be shared among multiple variants of the
same malware family. In addition to paths, WebVisor also uses the URL param-
eters, leveraging attribute names, their semantics and values. The stored URLs
handled by WebVisor are grouped into an initial set of coarse-grained clusters,
using the statistical clustering process that we outline next.

Statistical URL Clustering – This process partitions the input data into
a collection of coarse-grained clusters based on common URL statistical fea-
tures. URLs often include patterns (e.g., /images/, /adi/, /generate 204/)
and keywords (e.g., .php, .exe, .gif) that refer to the nature and type of
resources accessible on a remote server. WebVisor leverages the distribution of
characters within URLs in order to group together malware URLs that include
similar or redundant patterns. It builds a features vector that captures the
distribution of characters within the URL. Paths and parameters are handled
separately, since they hold different structural nature and semantics. In turn,
the parameters are separated into keys and values. For instance, the following
URL ‘/doc/lat/widget?tp=2&nbr=1111&tag=11’, whose protocol identifier and

Automated Classification of C&C Connections Through URL Clustering 255

domain name are already removed, is split up into the path ‘/doc/lat/widget’;
keys ‘tp’,‘nbr’, and ‘tag’; and values ‘2’,‘1111’, and ‘11’.

Since high-level features such as the URL length, the number of paths and
number of attributes do not capture relevant pattern signatures, WebVisor lever-
ages string based features that capture shared patterns among different URL
instances. The frequency of occurrence of each single character in a given URL
is computed. For example, assuming the following path ‘/doc/lat/widget’, the
occurrence frequency of character ‘o’ is 1, ‘t’ is 2, ‘/’ is 3, ‘z’ is 0, and so on.
Following such a rationale, each URL is transformed into an m-ary vector that
captures the distribution of characters within the URL. Given that the HTTP
standard sets to 128 the number of acceptable ASCII codes for a character in
a given URL; and given that paths, keys and values in each URL are treated
separately, the value of m is settled to 384 (i.e., 3 × 128). Based on the m-ary
vector associated to each URL, the initial set is partitioned into coarse-grained
clusters. A vector quantization clustering method is used to drive the process.
For instance, the process can be conducted using incremental k-means [22], as
reported in Section 3. Finally, each coarse-grained cluster is further processed
by a second clustering process, to build the eventual fine-grained clusters whose
structure and semantic shall characterize common C&C applications. Density-
based clustering drives this second process that we outline next.

Density-based URL Clustering – After the statistical coarse-grained pro-
cess, a fine-grained density-based clustering is conducted within each of the sta-
tistical coarse-grained clusters. The process starts by an enrichment procedure
that adds meta-data to characterize the type and semantics of each URL value
field, based on the types listed in Table 1. The first column in table 1 introduces
a shortlist of the attribute types used by WebVisor, column 2 illustrates some
examples, and column 3 provides a brief description. Such meta-data is further
used to build fine clusters where URLs are associated to semantically equivalent
instances. This way, and instead of comparing values as strings via, e.g., string
distance functions, the density-based clustering process considers that two val-
ues are similar when they share the same semantics (e.g., both are timestamps).
The rationale behind this configuration is that botnets usually add encryption
and use URL encodings to evade network detection signatures, since it alters the
entropy of characters distribution in a URL. The proposed enrichment process
aims to handle such evasion techniques and remove the encoded values when
it compares two different URLs. Other non-encoded parameters in the URL,
such as IP or MAC addresses, country code and timestamps, are also compared
semantically. A ’No Type’ entry is introduced in order to handle unknown types.

After the semantic enrichment process, fine-grained clusters are built up
using a density-based classifier. For instance, assuming a density-based clas-
sifier based on DBScan [5], WebVisor builds up a similarity matrix containing
the distance between each couple of URLs. Inputs to the URL distance function
include the URL method (e.g., Get, Post, Head), the URL path, and the URL
parameters. The similarity between two URLs is computed by using the Jaro-
Winkler distance [8] to compare URL paths as string chains, and by comparing

/doc/lat/widget

256 N. Kheir et al.

Table 1. Non-exhaustive list of types used during the semantic enrichment process

Type Example Description

URL redirection
http://example.com

Phishing attacks or obfuscation using
URLs similar to legitimate websites

File path C:\test.txt File location on the victim terminal

SHA1 97d07314f735998585bb-
8e2d6b5acb5ac7956690

Cryptographic hash function including 40
hexadecimal characters

Base64 dG90bw== Encoding schemes that represent binary
data using ASCII or UTF-8 formats

MD5 4f863423326e85d44aae-
147d2d86e1c0

Cryptographic hash function consisting of
32 hexadecimal figures.

MAC address 0a:00:27:00:00:01 MAC address of the infected terminal

IP address 192.168.0.10 IP address of the infected terminal

Serial number 06AE-B34D The volume serial number on the infected
terminal

Timestamp Mar 30 2014 00:30:08 The local time on the victim terminal

No type utv42 Any value not matching a previous type

the parameters and values semantically, i.e., two parameters in two different
URLs are similar in case they have the same key and the same semantic type.

Generation of Signatures – Detection signatures are created by extracting
the longest common substrings for all URLs in a given dense cluster, using the
Generalized Suffix Trees algorithm [3]. It builds a token-subsequence starting
with the longest token in the ordered list of longest common substrings. Selected
tokens are further used as input to the Best Alignment Algorithm [18] in order
to build a pattern-based signature that characterizes all URLs that belong to
the same dense cluster.

WebVisor Prototype – A software prototype of WebVisor is available for
testing purposes at http://j.mp/WVProto. It implements all the processes intro-
duced in this section, i.e., statistical clustering, semantic enrichment, density-
based clustering, and signature generation processes. The prototype has been
used in order to process some real-world malware datasets that we describe in
section 3, with the objective of generating detection signatures. The set of signa-
tures has also been tested against live Internet traffic from a large ISP provider.
Results and discussions about our findings are provided in the following section.

3 Experimental Results

Experiments were conducted using the WebVisor prototype, on an Intel 8-core
2.67Ghz server, with 16Gb RAM. The statistical URL clustering process was
conducted using incremental k-means [22] and Euclidean distance to compare
the feature vectors. The density-based URL clustering process was conducted
using DBScan [5]. Finally, a python script is used to transform the fine-grained
clusters into regular expressions as detection signatures.

http://example.com

Automated Classification of C&C Connections Through URL Clustering 257

The malware URL C&C communication dataset used to generate the detec-
tion signatures was collected from multiple public and private sources, including
commercial feeds, public repositories (e.g., http://malware.lu/ and Malicia [16]),
and HTTP traces triggered by malware from the Anubis database [2] (during
their execution in a dynamic analysis environment). Almost a quarter million
malware samples were considered, and more than two million HTTP traces were
collected, from which duplicates and empty URLs were excluded. The MD5
hashes of malware binaries associated to each URL were also used to label our
dataset. To ease the analysis, the dataset was divided into three separate cate-
gories, according to the year of collection of the URLs (24 months, from June
2011 until July 2013). Using WebVisor, we separately processed each category,
and generated the corresponding family clusters and detection signatures.

Table 2. Dataset summary

Year Samples Families URLs Get Post Head
Coarse
Clusters

Signa-
tures

Process
Time

2011 75,398 127 886,077 68% 20% 12% 27 120 1h15min

2012 87,648 129 592,104 65% 24% 11% 27 182 2h01min

2013 85,597 84 848,998 76% 17% 7% 29 315 2h50min

To properly validate the experiments, ground truth labels indicating malware
families were generated. More than two-hundred distinct families, including each
more than a dozen malware samples, were settled by using AntiVirus (AV) signa-
tures from services such as VirusTotal (cf. http://virustotal.com/). Notice that
AV editors usually assign conflicting signatures for the same malware sample.
For example, the SpyEye malware has a kaspersky signature of Trojan-Spy.-
Win32.SpyEyes and a McAfee signature of PWS-Zbot.gen.br. To avoid errors,
the AV labels were associated to multiple keywords, and common prefixes such as
W32, Mal and Trojan were discarded. Generic malware identifiers, such as Heur,
Worm, Gen, and malware, were also discarded. The site http://spywareremove.
com/ was used to group together all aliases of a given family. For example, the
signatures win32.spammy by kaspersky and W32/Sality by McAfee were iden-
tified as aliases for the same sality malware, and considered as part of the
Sality family. Multiple malware families may cover two or more years, includ-
ing examples such as Zeus, ZeroAccess, and Sality. This overlap in families
between years is explained by the fact that samples of the same malware family
can be distributed through multiple infection campaigns.

Table 2 summarizes some of the above information, as well as the time
required for WebVisor to generate the detection signatures. We provide in the
following sections a more elaborated analysis of the experimental results, such
as evaluation of the obtained clusters and signatures, and evaluation of the sig-
natures against live Internet traffic.

http://malware.lu/
http://virustotal.com/
http://spywareremove.com/
http://spywareremove.com/

258 N. Kheir et al.

3.1 Cluster Validation

The malware clustering problem is assumed to be a classification subproblem. We
use two distinct quality metrics, precision and recall, to evaluate the quality of
each individual behavioral cluster. A cluster family is defined as being the ground
truth label associated with a maximal number of samples in a cluster. Note that
malware belongs to a cluster when it has at least one URL that is classified
by WebVisor into this same cluster. Moreover, malware may belong to multiple
clusters in case it interacts with multiple C&C applications during analysis,
and whose associated URLs are classified by our system into different clusters.
The cluster precision captures the level of mis-classifications within the cluster,
which is the rate of samples in the cluster that are not associated with the cluster
family. Let ηc be the number of malware samples in cluster c, and |Sigc| ≤ ηc the
maximal number of samples in c that have the same ground truth label. Then,
the precision index of c is computed as Pc = |Sigc|

ηc
. The cluster recall captures

the proportion of samples that should belong to a cluster, but misclassified into
other clusters. Let |Sigc| be the number of samples in the ground truth dataset
that should be classified in c, but that were misplaced into other clusters. Then,
the cluster recall index of c is computed as Rc = |Sigc|

|Sigc|+|Sigc| . Tables 3 and 4
contain the distributions of the cluster precision (Pc) and recall (Rc) coefficients
for the 617 fine-grained clusters provided by WebVisor during our experiments
(cf. Table 2, fine-grained clusters used to generate the detection signatures of
the 2011, 2012, and 2013 subsets). Left columns provide the index ranges. Right
columns provide the percentage of clusters having similar indexes. With regard to

Table 3. Cluster precision index results

Index Range Percentage

0.98 ≤ Pc < 1.0 65%

0.96 ≤ Pc < 0.98 15%

0.94 ≤ Pc < 0.96 8%

0.92 ≤ Pc < 0.94 7%

0.00 ≤ Pc < 0.92 6%

Table 4. Cluster recall index results

Index Range Percentage

0.6 ≤ Rc < 1.0 4%

0.4 ≤ Rc < 0.6 6%

0.2 ≤ Rc < 0.4 21%

0.04 ≤ Rc < 0.2 14%

0.00 ≤ Rc < 0.04 55%

the cluster precision metric, we can observe that almost 94% of the fine-grained
clusters held more than a 92% precision index. In other words, 92% of malware
in each fine-grained cluster is properly classified in the correct malware family.
This validates the accuracy of the clustering process of WebVisor. Concerning
the cluster recall metric, 67% of the fine-grained clusters hold a recall index
lower than 10%. This means that only 10% of malware were misclassified by
WebVisor into other clusters. Most of the remaining 33% of the fine-grained
clusters held a recall index ranging between 20% and 40%. A manual analysis
of these clusters revealed that certain clusters included different versions of the
same malware family (e.g., different versions of the conficker malware family).
Some other clusters were also associated with generic ground truth labels such

Automated Classification of C&C Connections Through URL Clustering 259

as Heur and Agent. These anomalies rather depend on the quality of the ground
truth labels. Therefore, they should not be considered a weakness of the system.

3.2 Evaluation of the Detection Signatures

To verify the quality of the detection signatures generated by WebVisor, we
evaluate them in terms of false positives and false negatives. We recall that
in density-based clustering, a cluster represents an area that has a relatively
higher density in the dataset, whereas the noise concept is represented as iso-
lated objects that belong to sparse areas in the same dataset. DBScan [5], used
by WebVisor to conduct the fine-grained clustering process, is a density-based
algorithm that implements the aforementioned concept. It takes as input the
minimum number of objects in a cluster and the maximum neighborhood radius
between two objects. Although these parameters affect the total number of clus-
ters, the latter is a result of the clustering process and is not required as input
of the process. DBScan creates multiple clusters. Each cluster represents a dense
area in the initial dataset. URLs belonging to sparse areas are grouped into a
single noise cluster which is further discarded by WebVisor. Each dense cluster
includes similar URLs that are shared among multiple variants of a malware
family, and that characterize a specific C&C application. Therefore, and since
WebVisor automatically discards noise into separated clusters, we also evaluate
the corresponding noise clusters.

The coverage of the signatures is evaluated by analyzing their ability to
detect malware communication not included in the experimental dataset. We
separately processed the malware samples at our disposal by the year of collec-
tion. We tested each set of signatures against the input dataset, and the datasets
collected in the following years. Due to space limitations, we discuss only the
evaluation in terms of the 2011 traffic collection. Similar results were obtained
with the other collections. Table 5 illustrates the distribution of URLs across the

Table 5. Distribution of statistical clusters

URL Range Percentage

0 to 2000 14%

2000 to 4000 37%

4000 to 8000 11%

more than 8000 38%

Table 6. Noise rate distribution

Noise Rate Percentage

less than 0.02 33%

0.02 to 0.1 30%

0.1 to 0.2 22%

more than 0.2 15%

27 statistical clusters. The left column represents the number of distinct URLs
in each statistical cluster. The right column represents the percentage of clusters
having similar number of URLs. We recall that the 2011 dataset (cf. Table 2)
contains 75, 398 distinct malware samples. According to the ground truth labels,
these samples were classified into 127 distinct families. We use the incremen-
tal k-means algorithm for statistical clustering. It starts from one centroid and
incrementally adds new centroids when the distance between a new entry and all

260 N. Kheir et al.

existing centroids exceeds an input threshold τh. Incremental k-means iterates
over the input dataset until k - which is the number of output clusters - reaches
its optimal value based on the value of τh.

The output of the statistical clustering, using an experimental threshold τh =
0.15, includes 27 clusters. Almost 14% of clusters in table 5 contained less than
two-thousand URLs, mostly including very short URLs such as ‘/a/ ’, ‘/2/ ’,
and ‘/?src=integer ’. These are irrelevant URLs that were later discarded as
noise by the density-based clustering. In terms of outliers, 6 clusters were also
discarded. These outliers contained more than twenty thousand URLs. Because
of their small number, these clusters were manually analyzed. Almost all URLs
in these clusters were associated with generic web operations, including URLs
like ‘/json?c=resolution ’, and ‘/addserver/www/... ’.

After the statistical clustering, URL enrichment and density-based clustering
was applied to each statistical cluster. An overall number of 120 distinct fine-
grained clusters (represented as detection signatures in Table 2) were generated.
The processing of each statistical cluster during the density-based clustering led
to a stable average of noise rate. We recall that noise here represents those URLs
that were further classified during the density-based clustering, by DBScan, as
noise clusters. Table 6 summarizes these results. The left column provides the
rate of noise in each statistical cluster, and that were further discared by Web-
Visor. The right column provides the percentage of statistical clusters leading to
similar noise rates. Few outlier clusters, mostly consisting of very small clusters
or including a large number of URLs, contained noise rates exceeding 20%. The
resulting 120 signatures were identified by WebVisor as being associated with
URLs that carry true C&C activity. They only describe fine-grained clusters
including URLs that have almost identical structure and semantics.

Detection Rate – We cross-validated the set of signatures against the initial
malware dataset. A signature is considered to detect malware when it matches
at least one URL during its dynamic analysis. Note that we would not expect
100% detection rate as WebVisor is grouping irrelevant URLs that belong to
sparse areas in the dataset into noise clusters during the fine-grained cluster-
ing, and so it may mistakenly discard relevant C&C URLs during this process.
Table 7 illustrates the detection rates that we obtained during the experiments.
According to Table 2, the whole dataset was divided into three subsets (from
year 2011 to 2013), according to the year at which malware samples were col-
lected. A 10-fold experiment was applied, where a 10% of the samples from the
initial dataset were repeatedly removed before building the detection signatures.
Each set of signatures was matched against the samples collected during the cor-
responding year, as well as for the remainder years. The goal is to evaluate the
ability of WebVisor for detecting malware that belongs to the families defined
in the initial training dataset. The ability of the signatures to detect samples
that were unknown at the time of generating such signatures was also evaluated.
As a result, it was obtained that WebVisor achieves near 84% average detection
rates when tested against the same year dataset. This means that the remaining
16% of undetected malware had their C&C activity mistakenly classified into

Automated Classification of C&C Connections Through URL Clustering 261

Table 7. Detection rates

Signa- Malware Dataset
tures 2011 2012 2013

2011 87% 64% 21%

2012 NA 86% 57%

2013 NA NA 81%

Table 8. Samples signatures generated by WebVisor

Signature Family

POST /includes/inc/helps/[.*].php Zeus

GET /logos[.]*.gif?[0-0,a-z]6=[0-9]* Sality

GET /streamrotator/thumbs/[a-z]2/[0-9]*.jpg Srizbi

GET /generate/software/?[A-Z]3RND=[0-9]* Zango

noise clusters (discarded by WebVisor). The detection rate drops to near 60%
for malware collected in the next year following the signatures generation, and
to almost 20% in the third year. The decrease in detection rates is explained by
new emerging malware families that use new C&C applications. To overcome
such weakness, WebVisor can be continuously fed with streams of new malware
HTTP traffic. New malware families that appear in the wild would have their
HTTP traffic processed by WebVisor to update its signatures database.

The experiment proves the ability of WebVisor to capture URL patterns
that are shared among samples of the same malware family, and that character-
ize common features of their C&C applications. In fact, binary polymorphism
modifies the malware signature but it does not affect the network behavior of
malware, including the web toolkit that is shared among samples of the same
family. While network obfuscation, including fake connections, attacks and con-
nectivity checks, makes generic network signatures less efficient, WebVisor elim-
inates noise using density-based clustering. It discards noise into separate sparse
clusters and builds detection signatures only for the main C&C connections
which are shared among samples of the same malware family.

False Positives – To evaluate false positives, we collected one day of network
activity, at March 2014, from a well protected corporate network. Terminals
connected to this network are all equipped with updated antivirus software.
Access to this network is possible only through firewall gateways and monitored
using web proxies. Although we cannot rule out the possibility of few terminals
being infected, these would be limited with respect to the large set of terminals
being connected. Hence, we may still reasonably consider this traffic to include
only benign web activity. We further developed a python script that extracts
URLs and matches them against our signatures. We collected near 1.8 million dis-
tinct URLs, including both regular web activity and scheduled software updates,
and that we tested against our entire set of 617 signatures. The collected dataset
includes all distinct URLs that are triggered by up to 3, 500 active network ter-
minals. It includes URLs towards thousands of distinct remote domains. Almost
9% of URLs were dedicated to Google search queries, while remaining URLs
included regular browsing activity such as webmails, advertising, media web-
sites, social networks and content downloads. Although our malware dataset is
relatively old compared to the benign traffic at our disposal, this does not affect
our experimental setup as we are only considering false positives. We consider all
matching signatures to be false positives. In the end, 72 alerts out of the initial
1.8 million URLs were matched with only 21 distinct signatures. Hence, WebVi-
sor achieved 0.004% false positives, and we only identified 3.4% weak signatures

262 N. Kheir et al.

(i.e., signatures that triggered false positives during evaluation). We recall that
a main property of our system is that WebVisor does not need to implement a
pruning step in order to eliminate rogue signatures. This is a tedious step as it
would require a large set of benign traffic, as well as an automated process to
generate valid ground truth from the collected benign traffic.

3.3 Evaluation Against Live Internet Traffic

We tested WebVisor against two days of real live Internet traffic from a large ISP
network. More than 150 GB of anonymized traffic, collected during September
2013, and including the entire network communications for near ten thousand
distinct IP addresses, was analyzed. We extracted URLs using the same Python
scripts that we used for the previous experiment, and we tested against our
entire set of 617 signatures. Our system triggered 173 alerts, associated with
19 distinct signatures that were matching with 93 distinct IP addresses. Since
the traffic at our disposal was few months old, we checked the domain names
reputation using the domain search functionality on services like virusTotal, and
searched for evidence on the Internet about the matching URLs. Unfortunately
we could not check the status on the infected terminals since all traffic at our
disposal was anonymized, and the ISP did not offer to contact infected clients
in order to validate our findings.

We could not verify 95 alerts that were triggered by 15 detection signatures,
including 9 weak signatures that triggered false positives in our previous exper-
iment. Domains contacted through these URLs seem to be benign domains.
We could not find signs of infection on the remote websites. Possibly these
websites have been used temporarily or as stepstones through web or system
vulnerabilities. Since we could not validate the exactness of these alerts, we
considered them as false positives. In addition, the 4 signatures in Table 8 trig-
gered almost 78 alerts, associated with 11 IP addresses. The first signature was
matching with 3 IP addresses. The detected URLs were all associated with the
domain name marytraders.in, which is identified by Zeus Tracker (cf. https://
zeustracker.abuse.ch/) as a C&C domain. The second signature was triggered
by two IP addresses (and associated with the Sality-A label in the dataset).
The corresponding domain included pornographic content and is associated with
botnet activity according to Google safe browsing. We also detected six other IP
addresses that matched with the two remaining signatures. They were confirmed
malware infections, validating the reliability of WebVisor.

3.4 Resilience to Malware Evasion

To evaluate the resilience of our system against noise, we trained WebVisor using
a dataset that we obtained by adding random benign URLs to the malware
dataset. We used for this purpose the traffic that we collected from the cor-
porate network. We computed the average cluster precision and recall indexes
for different values of Signal to Noise Ratio (SNR). Our main assumption is
that malware can use fake benign URLs in order to evade our detection system.

https://zeustracker.abuse.ch/
https://zeustracker.abuse.ch/

Automated Classification of C&C Connections Through URL Clustering 263

Therefore, we evaluate the ability of our system to discard fake URLs and keep
only common C&C patterns as input to build detection signatures. As described
in [21], malware may also trigger specific noise patterns in order to evade our
system. However, there still need to be multiple samples of such malware in our
dataset in order to interleave with our dense clusters. Although it is interesting to
evaluate the resilience of our system against such specific evasion techniques, we
focus in this paragraph only on random noise patterns. We plan in future work
to conduct a deeper evaluation of WebVisor against targeted evasion techniques,
taking into account the fact that malware herders may be aware of the process
implemented by our system. The results of our experiments are illustrated with
the ROC curve in Figure 1. WebVisor has an overall good resilience against noise.
While its performance decreases at slow rate for decreasing values of SNR, Web-
Visor achieves almost 80% cluster precision for SNR values around 40%. Yet,
we noticed a significant degradation of the quality of our malware families for
noise rates exceeding 50%. The degradation of the precision index is mainly due
to the threshold τh that we use for statistical clustering. Since we experimentally
set the value of this threshold using our malware dataset, adding 50% benign
URLs to this dataset alters its statistical consistency. WebVisor would thus clas-
sify URLs that are associated with similar C&C activities into different statistical
clusters. While the degradation of malware clusters comes as a reasonable con-
sequence to the increasing noise ratio, our system still achieves stable clustering
results for up to 40% noise in our initial malware dataset. This is a main con-
tribution of our system compared to other state of the art solutions where a
pruning process is usually required in order to eliminate rogue signatures.

Another property of WebVisor is that it processes URL parameters using
regular expressions that characterize all attributes shared between malware and
its remote C&C applications. Although WebVisor captures specific obfusca-
tion mechanisms such as encodings (e.g., base64) and hash functions (MD5 or
SHA-1), it would be unable to correctly build expressions for URLs that have
their entire set of parameters encrypted within a single chain of characters.

Fig. 1. ROC curve and SNR ratios

It associates these parameters with
the ’No type’ label, and handles
them as string values. Note that the
density-based clustering process may
still identify shared patterns in case
they appear in all encrypted URLs
for a given malware family, as previ-
ously shown in [14]. However, malware
that fully encrypts its URLs, with
no shared patterns between URLs of
the same family, would be unlikely to
be detected using our system, and so
it is more likely to be dropped into
noise clusters. This is a common lim-
itation to all network-based malware

264 N. Kheir et al.

detection systems, as long as they are unable to access the content of malware
communications with its remote C&C applications.

4 Related Work

Multiple contributions in the literature propose the use of supervised machine
processing to classify malware activities and build behavioral models for detec-
tion. Solutions in this category include tools such as Firma [23], PhishDef [13],
and JackStraws [7]. As opposed to them, WebVisor uses an unsupervised clus-
tering approach. It does not require an initial set of benign network traffic to
train the classifier prior to generating detection signatures. This is an important
issue, since obtaining valid ground truth labels for benign network activity is a
tedious task that cannot be easily automated.

Similarly to WebVisor, Perdisci et al. propose in [20] the use of unsupervised
clustering processing to analyze malware HTTP connections and build detection
signatures. As opposed to our work, their approach classifies malware families
using all kinds of HTTP requests triggered by malware executed in a sandbox.
This includes not only C&C traffic, but also any other kinds of malware activ-
ity such as benign connectivity checks. Therefore, the approach is not robust
against malware obfuscation, since it may reduce the accuracy of the resulting
detection signatures. To handle the issue, i.e., to avoid a high rate of false pos-
itives, Perdisci et al.’s approach requires to carefully verify all those generated
signatures against benign web activity. This is a tedious and error prone task.
First, obtaining a large-scale representative ground truth dataset of benign net-
work traffic to prune out unnecessary signatures is very challenging. Second, it
makes infeasible to automatically build and deploy effective detection signatures.
WebVisor offers an alternative approach to classify malware using only relevant
C&C traffic. Although it is difficult to detect C&C connections during a single
malware analysis, the C&C activity becomes more apparent when observing a
larger set of malware. Furthermore, WebVisor automatically discards noise and
identifies common C&C requests used by variants of the same malware family.

5 Conclusion

We have presented WebVisor, an automated tool for the generation of malware
detection signatures. WebVisor targets HTTP malware belonging to the same
family, e.g., malware that uses the same C&C applications and equivalent sets
of URLs. We have outlined the main design properties underlying WebVisor and
evaluated a software prototype against real-world malware datasets. Our exper-
iments verify the capability of WebVisor at identifying the main and invariant
features of malware C&C activity.

Acknowledgments. The authors thank A. Gupta, S. Martinez-Bea and A. Verez for
all their work on the implementation of the WebVisor prototype.

Automated Classification of C&C Connections Through URL Clustering 265

References

1. Antonakakis, M., Perdisci, R., Nadji, Y., Vasiloglou, N., Abu-Nimeh, S., Lee, W.,
Dagon, D.: From throw-away traffic to bots: detecting the rise of dga-based mal-
ware. In: USENIX Security, pp. 24–40 (2012)

2. Bayer, U., Kruegel, C., Kirda, E.: TTAnalyze: a tool for analyzing malware. In:
15th EICAR Conference (2006)

3. Bieganski, P., Riedl, J., Cartis, J., Retzel, E.: Generalized suffix trees for biolog-
ical sequence data: applications and implementation. In: Proc. of International
Conference on System Sciences, vol. 5, pp. 35–44 (1994)

4. Bu, Z., Bueno, P., Kashyap, R., Wosotowsky, A.: The new era of botnets. White
paper from McAfee (2010)

5. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In: Proc. of KDD (1996)

6. Gu, G., Perdisci, R., Zhang, J., Lee, W.: Botminer: clustering analysis of network
traffic for protocol and structure independent botnet detection. In: Proc. of IEEE
SSP (2008)

7. Jacob, G., Hund, R., Kruegel, C., Holz, T.: JackStraws: picking command and
control connections from bot traffic. In: USENIX Security (2011)

8. Jaro, M.A.: Advances in record-linkage methodology as applied to matching the
1985 census of tampa, florida. Journal of the American Statistical Association 4
(1989)

9. Kartaltepe, E.J., Morales, J.A., Xu, S., Sandhu, R.: Social network-based bot-
net command-and-control: emerging threats and countermeasures. In: Zhou, J.,
Yung, M. (eds.) ACNS 2010. LNCS, vol. 6123, pp. 511–528. Springer, Heidelberg
(2010)

10. Kheir, N.: Behavioral classification and detection of malware through http user
agent anomalies. Journal of Information Security and Applications (2013)

11. Kheir, N., Han, X.: PeerViewer: behavioral tracking and classification of P2P mal-
ware. In: Wang, G., Ray, I., Feng, D., Rajarajan, M. (eds.) CSS 2013. LNCS, vol.
8300, pp. 282–298. Springer, Heidelberg (2013)

12. Kheir, N., Wolley, C.: BotSuer: suing stealthy P2P bots in network traffic through
netflow analysis. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds.) CANS 2013.
LNCS, vol. 8257, pp. 162–178. Springer, Heidelberg (2013)

13. Le, A., Markopoulou, A., Faloutsos, M.: Phishdef: URL names say it all. In: IEEE
INFOCOM (2011)

14. Li, Z., Sanghi, M., Chen, Y., Kao, M.-Y., Chavez, B.: Hamsa: fast signature gen-
eration for zero-day polymorphic worms with provable attack resilience. In: Proc.
of IEEE SSP (2006)

15. Nagaraja, S., Mittal, P., Hong, C.-Y., Caesar, M., Borisov, N.: BotGrep: finding
p2p bots with structured graph analysis. In: USENIX Security (2010)

16. Nappa, A., Rafique, M.Z., Caballero, J.: Driving in the cloud: an analysis of drive-
by download operations and abuse reporting. In: Rieck, K., Stewin, P., Seifert,
J.-P. (eds.) DIMVA 2013. LNCS, vol. 7967, pp. 1–20. Springer, Heidelberg (2013)

17. Neugschwandtner, M., Comparetti, P.M., Platzer, C.: Detecting malware’s failover
C&C strategies with squeeze. In: Proc. of ACSAC (2011)

18. Newsome, J., Karp, B., Song, D.: Polygraph: automatically generating signatures
for polymorphic worms. In: Proc. of IEEE SSP, pp. 226–241. IEEE (2005)

19. Oberheide, J., Cooke, E., Jahanian, F.: CloudAV: N-version antivirus in the net-
work cloud. In: USENIX Security (2008)

266 N. Kheir et al.

20. Perdisci, R., Ariu, D., Giacinto, G.: Scalable Fine-Grained Behavioral Clustering
of HTTP-Based Malware. Special Issue on Botnet Activity: Analysis, Detection
and Shutdown 57, 487–500 (2013)

21. Perdisci, R., Dagon, D., Lee, W., Fogla, P., Sharif, M.: Misleading worm signature
generators using deliberate noise injection. In: Proc. of IEEE SSP (2006)

22. Pham, D.T., Dimov, S.S., Nguyen, C.D.: An incremental K-means algorithm. Jour-
nal of Mechanical Engineering Science 218, 783–795 (2004)

23. Rafique, M.Z., Caballero, J.: FIRMA: malware clustering and network signature
generation with mixed network behaviors. In: Stolfo, S.J., Stavrou, A., Wright, C.V.
(eds.) RAID 2013. LNCS, vol. 8145, pp. 144–163. Springer, Heidelberg (2013)

24. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classifica-
tion of malware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137,
pp. 108–125. Springer, Heidelberg (2008)

B.Hive: A Zero Configuration Forms Honeypot
for Productive Web Applications

Christoph Pohl1, Alf Zugenmaier2, Michael Meier3, and Hans-Joachim Hof1(B)

1 MuSe - Munich IT-Security Research Group,
Munich University of Applied Sciences, Munich, Germany

{christoph.pohl0,hof}@hm.edu
2 Munich University of Applied Sciences, Munich, Germany

alf.zugenmaier@hm.edu
3 Fraunhofer FKIE Cyber Defense, Bonn, Germany

michael.meier@fkie.fraunhofer.de

Abstract. Honeypots are used in IT Security to detect and gather infor-
mation about ongoing intrusions by presenting an interactive system as
attractive target to an attacker. They log all actions of an attacker for
further analysis. The longer an attacker interacts with a honeypot, the
more valuable information about the attack can be collected. Thus, it
should be one of the main goals of a honeypot to stay unnoticed as long
as possible. Also, a honeypot should appear to be a valuable target sys-
tem to motivate attackers to attacks the honeypot. This paper presents
a novel honeypot concept (B.Hive) that fulfills both requirements: it
protects existing web application in productive use, hence offering an
attractive attack target, and it uses a novel technique to conceal the
honeypot components such that it is hard to detect the honeypot even
by manual inspection. B.Hive does not need configuration or changes of
existing web applications, it is web framework agnostic, and it only has
a slight impact on the performance of the web application it protects.
The evaluation shows that B.Hive can be used to protect the majority
of the 10,000 most popular web sites (based on the Alexia Global Top
10,000 list), and that the honeypot cannot be identified by humans.

Keywords: Web application · Honeypot · Security · Web security ·
Network security

1 Introduction

Honeypots are well known and valuable components for the protection of net-
works. They can be used for attack detection or for research purposes. Usually,
a honeypot is a fake system without any function that runs in parallel to other
productive systems. Thus, all activities detected on the honeypot can be consid-
ered attacks (or unintended use). However, a honeypot can only monitor ongoing
attacks if it succeeds in tricking attackers into attacking the honeypot at first. To
do so, a honeypot must be known to an attacker and it should appear like a real
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 267–280, 2015.
DOI: 10.1007/978-3-319-18467-8 18

268 C. Pohl et al.

application or service. In order to maintain the attackers interest and to maxi-
mize the attackers interactions to gather as much information about the attack
as possible, attackers should not be able to notice that the system they are
attacking is a honeypot. The approach presented in this paper, B.Hive, blends
into already existing and running web applications (further called target applica-
tions). As the honeypot components are completely invisible to benign users, any
interaction with it is likely an attack. As an existing, productive web application
is used, attacks on this system are likely.

The contribution of this paper is twofold: It presents a zero configuration
Low Interaction Honeypot that can blend into any existing and running web
application. Furthermore, it employs a technique that makes it substantially
harder for an attacker to detect that honeypot components were integrated into
a web application, even when manually inspected by humans. B.Hive does not
need configuration for the integration, and the protected web application does
not need to be changed. B.Hive is ideal to be integrated into active protection
components like the web application firewall “All-Seeing Eye” [10].

The paper is structured as follows: The next Section 2 gives an overview on
B.Hive. Related work is described in Section 3. Design and implementation is
explained in Section 4. Section 5 validates the concept and shows that perfor-
mance of the prototype implementation would allow augmentation of all but the
busiest web applications. Section 6 summarizes the paper and gives an outlook
on future work.

2 Overview

The Open Web Application Project (OWASP) maintains a list of the ten most
prevalent attacks on web application in [7]. For four of these attacks, named A1
(Injection), A3 (Cross-Site Scripting (XSS)), A8 (Cross-Site Request Forgery
(CSRF)), and A9 (Using Components with Known Vulnerabilities), an attacker
usually inject malicious data into form fields of websites. As these attacks are
very common, using form fields as a honeypot component allows a honeypot to
detect many attackers and many different attacks. B.Hive transparently injects
form fields into existing forms of the target application. To do so, B.Hive acts as a
proxy between Internet and target web application. It intercepts web pages
served by the target web application and modifies forms if present. Additional
form fields are added to detected forms. Changes to these additional form fields
are monitored to detect attackers inserting malicious data to test for common
vulnerabilities (e.g. A1, A3, A8, A9, see above). As field manipulation is usually
part of early phases of an attack (reconnaissance phase), detecting attacks at
this point of time helps to monitor attacks. The fields injected by B.Hive can for
example be hidden fields, or the fields are made invisible using CSS or JavaScript.
In all cases, these fields are invisible to legitimate users of the web application.
B.Hive also intercepts incoming HTTP requests to the target application and
removes the injected fields again. Hence, B.Hive is invisible for the web applica-
tion as well as legitimate users. There is no impact on the functionality of the
web application.

B.Hive: A Zero Configuration Forms Honeypot 269

The crucial point in injection fields into existing form field is to find suitable
names and default values for the injected form fields. Most web applications use a
consistent naming of form fields of a form, and the naming is consistent with the
context of the web application. Hence, using random names as well as using the
same name all the time is prohibitive. Involving web developers or administrators
to define suitable field names for security components opposes the goal to build
a zero configuration honeypot suitable for a large number of frameworks. It is
the main contribution of this paper to propose a way to select suitable form field
names and field parameters for the injected form fields. B.Hive selects suitable
form fields and other parameters from a database of form fields harvested from a
large number of existing applications. B.Hive detects the context of a form and
selects a suitable field name and field parameters from this database.

3 Related Work

There are some approaches that use real applications to construct honeypots,
for example [5]. However, the honeypot is directly integrated into the target
application. Changing existing, already deployed applications is not desirable in
a productive environment with already deployed applications. In contrast, B.Hive
does not require changes of the target application. [3] describes an automated
honeypot generation using search engines output. The resulting honeypot is
a standalone non-productive web application. B.Hive in contrast protects an
existing, productive web application.

Injection form fields in a form was already described in [9,12]. However, the
developer has to implement these fields on his own in the target application or
using jQuery. In both cases, the undetectability of the honeypot heavily depends
on the developer to select suitable form field names and parameters. B.Hive does
not need any configuration to adopt the look and feel from the original web
application, hence relieves the developer from the burden of selecting suitable
form field names and parameters. The approach in [6] also uses form fields as
honeypot. In this case, form fields are duplicated and it is disguised, which is the
form field to use. For a human, such a form is easy to spot. B.Hive in contrast
puts special emphasize on staying undetected.

In comparison to related approaches, the presented zero configuration hon-
eypot solution has the advantage that it integrates into the target application
without the need of configuration. The integration is almost independent of tar-
get application technology, framework or system. The injected form fields adapt
to the context of the web page in which they are injected to stay unnoticed even
from manual inspection of the web page by a human attacker.

4 Design and Implementation

This Section describes the design of B.Hive with a special focus on the generation
of suitable form fields for the forms to protect.

270 C. Pohl et al.

4.1 Generation of Plausible Fields

The goal of the form field generation is to generate a form field for injection
that is plausible in the context of the form where it should be inserted. Plausi-
ble means that attackers as well as automated attack tools cannot distinguish
inserted fields from original fields of the form. B.Hive tries to find plausible
fields in a database of web forms harvested from the 10,000 most popular web-
sites according to Alexa [1]. Important key figures of the Global Top 10,000 list
of Alexa are described in Table 1.

Table 1. Initial database for Alexa Global Top 10,000

Websites 10,000

Extracted forms 15,255

Different field names 18,210

Average fields per form 3.8

Maximum fields per form 182

Minimum fields per form 0

For the purpose of optimized storage, the extracted form data gets prepro-
cessed. In a first step, the attribute name, the field name (f), is extracted from
every field. This attribute gets normalized as described in equation 1 where a
character at index i in f is described as ci. Ξ denotes a technical control charac-
ter for further usage in B.Hive, Θ stands for an alphabet of lowercase letters, and
Υ names an alphabet of uppercase letters. Allowed other characters are termed
by ϑ. Let u(x) be the function to bring an uppercase character to lowercase. The
function h(x) is used for preprocessing.

For 0 ≤ i < length(f)

h(ci) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ci, if ci ∈ Θ ∨ ci ∈ ϑ

u(ci), if ci ∈ Υ

Ξ, if (i − 1 �= 0 ∧ ci−1 �= Ξ ∧ ci−1 �= ∅)
∨(i − 1 = 0)

∅, other

(1)

Whenever h(x) = ∅, it will be ignored in further calculation. The result of
this preprocessing gets stored in the new attribute fclean.

The condition b(x) to store fclean in the B.Hive database is described in
equation 2.

b(fclean) =

{
true, if length(f) > 0 ∧ fclean �= {Ξ}
false, other

(2)

B.Hive: A Zero Configuration Forms Honeypot 271

The final result fclean is stored in a special Trie-structure (see [15] for details),
optimized for calculation operations with the Levenshtein Distance [4]. The Lev-
enshtein Distance is used in B.Hive as a metrics for similarity between field
names. The Levenshtein Distance is defined as “Minimum number of insertion,
deletion and substitution edits required to change one word into another” [4].
It is ideal to handle typical abbreviations used by web application developers,
e.g. to compare field names like “passwd” and “password”. Formally the Lev-
enshtein Distance lev(r, s) is defined in equation 3, using a search word s and a
reference word r as input. The search word is compared to the reference word.
The recursive function of lev(r, s) is k(|r|, |s|).

ω1(i, j) = max(i, j)
ω2(i, j) = min(k(i − 1, j) + 1, k(i, j − 1) + 1),

k(i − 1, j − 1) + 0)
ω3(i, j) = min(k(i − 1, j) + 1, k(i, j − 1) + 1,

k(i − 1, j − 1) + 1)

k(i, j) =

⎧
⎪⎨

⎪⎩

ω1(i, j) ,if min(i, j) = 0
ω2(i, j) ,if min(i, j) �= 0 ∧ r[i] = s[j]
ω3(i, j) ,other

(3)

The Trie-structure holds the preprocessed field names extracted from the
Alexa Global Top 10,000 list. At the end of a field name (the last node in a
Trie-structure) a link to the original field(s) is stored. Other parameters like
field default values, raw HTML code, forms, and pages are stored in a separate
database.

During run-time, the honeypot generator needs to find plausible form field
names for the form fields that should be injected into forms in the output of the
target application. Plausible means that attackers as well as automated attack
tools cannot distinguish inserted fields from original fields of the form. This is
done by finding forms in the candidate pool, which have similar form field names
to the original response. B.Hive includes a LR-Parser with a state machine to
extract form field names from the response. This means the full HTML source
gets parsed. While parsing, it recognizes each form and each field of a form with
its attributes. These forms and their form fields will be further used as input for
B.Hive.

To find similar forms, it is necessary to define the similarity of field names
(see equation 4). A field name is described with f and the length of f with l(f).
Φ is the set of all field names. Let Φ = {f1, f2, . . . , fn}. A form F is described
as F ⊆ Φ and the set of forms is denoted by Γ where Γ = {F1, F2, . . . , Fn}. λ is
a system parameter for tuning performance and precision. It describes the max-
imum acceptable Levenshtein Distance. The other system parameter δ ensures
that short field names (shorter than δ + λ) get compared with a lower Leven-
shtein Distance than longer field names. The key variable for the upper bound

272 C. Pohl et al.

of similarity (what is least similar) is denoted by μ.

μ =

⎧
⎪⎨

⎪⎩

λ, if min(l(f1), l(f2)) ≥ δ + λ

min(l(f1), l(f2) − λ, if δ ≤ min(l(f1), l(f2)) < δ + λ

0, other

For the similarity between two fields f1, f2 let

f1 ∼ f2 ⇔ lev(f1, f2) ≤ μ (4)

The calculation for the best matching form is described in equation 5. Based
on the similarity between field names, the definition of similarity between two
Forms F1 and F2 is: F1 ∼ F2 ⇔ {∃f1 ∈ F1∃f2 ∈ F2 : f1 ∼ f2}. The function
a(F1, F2) describes the number of similar fields in F1, F2 where: a(F1, F2) =
|{f1 ∈ F1|∃f2 ∈ F2 : f1 ∼ f2}|. Further, the number of similar forms with a field
similar to f is defined as s(f) where: s(f) =

∑
F∈Γ a({f}, F). The set of different

forms is denoted by Ψ (in contrast to Γ that could include similar forms). Ψ is
defined as: Ψ := {F1 ∈ Γ |∃f1 ∈ F1∀F2 ∈ Γ�F1 : ∀f2 ∈ F2 : lev(f1, f2) > 0}. To
identify the best matching form ΨBest for a reference form R (the form of the
target application that should be protected) equation 5 is used.

ΨBest = {F1 ∈ Ψ |∀F2 ∈ Ψ : a(R,F1) ≥ a(R,F2)} (5)

In the last step, possible plausible fields for injection are identified. First, possible
candidate fields Ω for injection are collected where:

Ω = {f ∈ ∪
F∈ΨBest

F |∀r ∈ R : lev(r, f) > 0}.

Let L[1] be the list of field names of Ω descendingly ordered by the number
of appearances in similar forms: L[1] = {f1, f2, . . . , fn}. Such that: i < j ⇒
s(fi) ≥ s(fj)).

Let L[2] be the list of field names of Ω descendingly ordered by the min-
imum Levenshtein Distance to any of the fields of the form in that the plau-
sible field should be inserted: L[2] = {f1, f2, . . . , fn}. Such that: i < j ⇒
levmin(fi, R) ≥ levmin(fj , R) where levmin(f,R) = min

r∈R
(lev(f, r) The index of

f in Lk is denoted by indexk(f).
The result score score(f) for a field f is defined by: score(f) = (α ∗

index1(f))+(β ∗ index2(f)) where α, β are factors to weight the ordering of L[1]

and L[2]. In this approach, let α = β = 1 List L[3] is the list of the field names of
Ω ascendingly sorted by the result score score(f). L[3] = {f1, f2, . . . , fn}. Such
that: i < j ⇒ score(f1) ≤ score(f2).

The field with the lowest score(f), respectively the first field in L[3], is
selected by B.Hive as the most plausible field name.

4.2 Position of Form Fields

For the injected field to be unnoticed, it is necessary to find a plausible position
of the injected form field in the form. B.Hive will inject the honeypot field at a

B.Hive: A Zero Configuration Forms Honeypot 273

position in the target form F than is similar to the position in the form H from
that the honeypot field was harvested.

L[H] is a list of field names from form H ascendingly ordered by the index of
the field names in H: L[H] = (h1, h2, . . . , hi). L[F] defines a similar list for the
form F : L[F] = (f1, f2, . . . , fi). Let hk be the honeypot field to inject into the
target form F . Let l be the index, where |l − k| is minimal and ∃m : fm ∼ hl.
The result form is defined in equation 6:

L[F ′] =

{
(f1, f2, . . . , fm−1, hk, fm, . . . , fj) ,if l − k ≥ 0
(f1, f2, . . . , fm, hk, fm+1, . . . , fj) ,if l − k < 0

(6)

4.3 Field Type and Default Value

In most of the cases from the Alexa Top 10,000 the type of a fields with the same
name is the same. Hence, it is possible to let the injected field have the same
type and default value as any one of the fields in the database. B.Hive injects
the honeypot field using the same type and default value it had in the form from
which it was originally harvested. The fields are hidden by hidden attribute.
Whenever the field from the result form contains an id, the honeypot field will
get this id too, except this id already occurs in the original page. The algorithm
for the ordering of the attributes is naive but effective. B.Hive computes the
most frequently used ordering from the original page. As ordering attributes,
name, value,id and style is used. The injected form field gets constructed with
this ordering.

5 Evaluation

This chapter provides the evaluation results of B.Hive. First, the choice of system
parameters for the evaluation is presented. Subsection 5.2 evaluates the effective-
ness of B.Hive. The following subsection evaluates the quality of the honeypot.
The last subsection evaluates the performance of B.Hive.

Every analysis uses the full set of data without snipping outliers. For the sake
of readability, histograms only show forms with less then 16 fields. Only 292 out
of the 15,255 harvested forms have more than 15 fields.

5.1 Choice of System Parameters

The most relevant system parameter for the performance and the effectiveness
of the honeypot is the maximum edit distance λ. When choosing λ there are
two computing factors: Whenever the allowed Levenshtein Distance grows, the
similarity check gets more accurate but the performance drops.

For the evaluation, one honeypot field for every Alexa Top 10,000 has been
generated with different values for λ in the range {0, 1, . . . , 5}. Table 2 shows

274 C. Pohl et al.

Table 2. Percentage of cases in which no plausible field could be found and run-time
for different values of λ

λ No result ∅ run-time sec

0 9.34% 0.026

1 6.90% 0.079

2 5.20% 0.227

3 3.78% 0.459

4 2.64% 0.731

5 1.99% 1.027

the resulting run-time as well as the percentage of cases where no plausible field
could be found for different values of λ. B.Hive has been started single threaded
with a sequential calculation.

A value of λ = 3 was chosen for all other evaluations as it provides a balanced
result for run-time and success rate. The system parameter δ was set to δ = 3.
Changing this parameter to a lower variable has no significant changes in the
accuracy, but the subjective quality of honeypot fields drops in some cases. The
subjective quality has been measured with a manual validation of the results.

5.2 Evaluation of Effectiveness

To prove that it is possible to generate honeypot fields for most existing web
application, B.Hive was used to generate honeypot fields for each website of the
Alexa Top 10,000 (list of most popular websites worldwide).

Table 3. Results of the Evaluation of Effectiveness of B.Hive when protecting each
website of the Alexa Top 10,000 list

Number of forms 15,255

Trie-Nodes 140,298

Field names 18,210

Protectable forms 146,790 ∼96.22%

∅ similar fields 2.5

∅ possible honeypot fields / form 1,023.4

Table 3 shows the results: A significant number of forms (96.22 % of all
forms) can be protected by B.Hive. Successful protection of a form means in this
context, that at least one plausible field was found for the form. B.Hive keeps
a list of unprotectable forms. Whenever there is no plausible field for a form
(3.78 % of all forms), B.Hive takes a random field from the list of unprotectable
forms. In the following evaluation, this is not regarded as success.

The evaluation of the effectiveness shows, that in average there are 2.5 similar
fields in the target form and the form from which a honeypot field is taken. In

B.Hive: A Zero Configuration Forms Honeypot 275

0 2 4 6 8 10 12 14

Number of Fields in Reference Form
0

2

4

6

8

10

12

14

N
um

be
r o

f S
im

ila
r F

ie
ld

s

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r o

f A
pp

ea
ra

nc
e

Fig. 1. Field similarity metric

0 2 4 6 8 10 12 14

Number of Fields in Reference Form
0

1000

2000

3000

4000

5000

N
um

be
r o

f
Po

ss
ib

le
 H

on
ey

po
t F

ie
ld

s

0

200

400

600

800

1000

1200

1400

1600

N
um

be
r o

f A
pp

ea
ra

nc
e

Fig. 2. Possible honeypot fields/form

average, for each form there are 1023.4 possible honeypot fields. Figure 1 and
Figure 2 describes these results in detail.

Figure 1 gives a more detailed view on the similarity of fields. This figure
shows the similarity between the target form and the result form for each form
in a site of the Alexa Top 10,000 list. This and all further histograms use less
equal calculation. This means that the upper right corner of a bin represents the
value. Figure 1 has the number of fields in the reference form (target form) on
the x-axis. On the y-axis the number of fields in the similar form (the form from
which the honeypot field was chosen by B.Hive) is given. The bins and their
colors represent the number of occurrences of a combination.

Figure 2 shows the number of potential honeypot fields per target form for
all forms of the Alexa Top 10,000 list. The x-axis describes the number of fields
in the target form. The y-axis shows the number of potential honeypot fields for
this form. The color denotes the number of occurrences of this combination. It
could be seen that there is a significant number of potential honeypot fields for
all but very small forms (forms with only one field).

In conclusion B.Hive is able to generate a proper protection for the vast
majority of the most popular 10,000 web sites.

5.3 Evaluation of Honeypot Quality

It is one of the main goals of the work presented in this paper to keep an
attacker unaware of the presence of the honeypot. Hence, it is very important,
that humans (attackers) cannot identify the injected form fields when manually
inspecting the HTML source code of a page. To evaluate, if attackers can iden-
tify injected form fields, an empirical study with 75 participants was executed.
All participants are students in a computer science program (49 in a bachelor
program, 26 in a master program). Participants of the study were presented the
content of 50 different forms of the Alexa Top 10,000 list. With a probability of
0.5, a form field was injected by B.Hive, in the other cases the original form was
presented. The students were told before that 50% of all forms include an injected

276 C. Pohl et al.

Table 4. Empirical study setting

Students 75

Evaluated number of forms 3,714

Forms without honeypot 1,798 (48.41%)

Forms with honeypot 1,916 (51.59%)

field. The students were asked to identify injected form fields or to state that
there is no injected field in a form. The default answer for each form was “I do
not want to answer” to make sure, that no “click-through” influences the results.
Table 4 summarizes the setting. The students decided in 1,919 cases (51.67%)
that a form includes an injected field. In 1,013 cases (52.79% or 27.28% of all
choices) they were right and in 906 cases(47.21% or 24.39% of all choices) they
were wrong. In 1,675 cases (45.1%) the students decided that no injected field
was present. In 825 cases (49.25% or 22.21% of all choices) they were correct and
in 850 cases (50.75% or 22.89% of all choices) they were wrong. In the remaining
120 cases (3.23% of all choices) the students did not want to answer.

In average, the students chose in 24.745 (out of 50) cases (49.49%) the correct
answer (field injected or not). The standard deviation for a correct answer is 6.74
with a maximum of 35 correct answers and a minimum of 1 correct answer.

These results are significantly near random choices, hence showing that it is
not possible for an attacker to identify the injected form fields when looking at
the field names.

In 314 cases the injected field was detected. In average the students decided in
4.077 (out of 50) cases (8.154%) for the injected field and in median they decided
in 3 cases for the injected field. The standard deviation is 2.818 with a maximum
of 12 correct answers and a minimum of 0 correct answers for all student and
50 answers. With random choices the probability to detect the honeypot field is
10.748% (with 4.8 fields per form in average when a field was injected).

This result is also significantly near random choices.
There has been no significant difference between master and bachelor students.
In conclusion, the evaluation shows that B.Hive is able to hide itself in the

vast majority of forms. Humans cannot successfully identify the injected form
fields.

In order to show that B.Hive is useful for detecting automated attacks, and
that attack tools do not avoid the fields injected by B.Hive, the breakable web
application (BREW) [11] was augmented with B.Hive and then attacked using
penetration testing tools Owasp Zed Attack Proxy Project (Owasp ZAP) [8] and
Vega [13].

In average, each form of BREW has about 2.43 fields. In conclusion it is
expected that a penetration testing tool will hit the honeypot field with about
40% of all requests. Table 5 concludes the result in one overview. In all cases
B.Hive worked correct and the penetration testing tools identified all B.Hive
fields as possible target. The row touch quota describes the expected calls to the

B.Hive: A Zero Configuration Forms Honeypot 277

Table 5. Validation with penetration testing tools

Owasp ZAP Vega
∑

Requests 783 2,097 2,880

Post Requests 524 814 1,338

Trapped Requests 206 342 548

Touch quota 99% 101% 100%

honeypot when the penetrations testing tool identify the honeypot as suitable
target.

In conclusion, each penetration testing tool recognized the injected honeypot
field as a possible target. Both tools showed the expected amount of attacks on
the target. B.Hive was able to recognize and identify each attack.

5.4 Performance Evaluation

B.Hive works as a proxy for web applications, so all traffic to the target appli-
cation passes B.Hive. Hence, it is important to evaluate if B.Hive is ready for
productive usage.

Figure 3, 4 and 5 show the performance of B.Hive without caching and
without the overhead of parsing.

0 2 4 6 8 10 12 14

Number of Fields in Reference Form
0

1

2

3

4

5

R
un

tim
e

in
 S

ec
on

ds

0

500

1000

1500

2000

2500

3000

3500

4000

N
um

be
r o

f A
pp

ea
ra

nc
e

Fig. 3. Run-time of B.Hive without
caching and without overhead of parsing

0 2 4 6 8 10

Number of Search Words
0.0

0.2

0.4

0.6

0.8

1.0

R
un

tim
e

in
 S

ec
on

ds

0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f A
pp

ea
ra

nc
e

Fig. 4. Performance number of search
words

In contrast, Figure 6 shows B.Hive under productive usage with enabled
caching and with parsing.

Figure 3 shows the run-time for B.Hive for forms of the Alexa Top 10,000
list with a different number of fields in them. The x-axis shows the number
of fields in the target form. The y-axis shows the run-time in seconds to find
a similar field. The colored bins describes the number of appearance for this
combination. It can be seen that B.Hive is able to protect a new website with a

278 C. Pohl et al.

proper run-time. The vast majority of forms can be protected under 0.5 seconds.
The average run-time for B.Hive is 0.46 seconds. However, for productive usage,
it is highly recommended to use caching for optimized run-time.

Figure 4 shows the run-time for B.Hive with different number of form fields
in the target form. The search words used are randomized strings with a length
of ten characters. It is guaranteed that the field names of the target form have
no similarity to any other word in the database. This avoids side effects during
result set building. Every number of field names has been measured 100 times.
The x-axis describes the number of reference words per evaluation. The y-axis
shows the run-time of B.Hive. The color denotes the number of occurrences of
this combination.

The evaluation shows that the run-time grows near linear with the number
of form fields in the target form, hence protecting forms with a low number of
fields is faster then protecting forms with a high number of field. Fortunately,
the evaluation of the Alexa Top 10,000 showed, that the average number of fields
per form is very low (average of 3.8).

Figure 5 shows the dependency between the run-time of B.Hive and the
length of one field name. The x-axis shows the length a of field name. The y-axis

0 2 4 6 8 10

Number of Search Words
0.0

0.2

0.4

0.6

0.8

1.0

R
un

tim
e

in
 S

ec
on

ds

0

10

20

30

40

50

60

70

80

90

100

N
um

be
r o

f A
pp

ea
ra

nc
e

Fig. 5. Performance diff. word length

0 50000 100000 150000 200000 250000 300000

Number of Character per Page
0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Ru
nt

im
e

in
Se

co
nd

s

0

80

160

240

320

400

480

560

N
um

be
r

of
A

pp
ea

ra
nc

e

Fig. 6. Performance with caching and with
parsing

shows the measured run-time. Each length between 1 − 50 has been measured
for 100 times. The figure shows that the dependency is near linear. The falloff
between a length of 1 and 6 shows the effect of the system parameter δ.

The B.Hive algorithm is designed with the possibility of multi-threading.
Each form field name analysis is atomic, a number of form field names (forms
with more fields) can be calculated in a parallel way. The result set assembling
is designed that algorithm like map reduce [2] can be used.

In conclusion, the performance evaluation shows that without caching (or
the protection of a new form, not known to the cache) B.Hive is able to protect
a web application in productive usage.

B.Hive: A Zero Configuration Forms Honeypot 279

Figure 6 shows B.Hive in a productive scenario: caching and parsing is
enabled. Injected form fields get cached and further injections do not have to
run the algorithm again but can look up a suitable field in the cache. The x-axis
of the figure shows the number of characters for each page. The y-axis shows the
measured run-time for each page. The colored bins shows the number of appear-
ances of each combination. The figure shows the correlation between the number
of characters in the raw HTML page and the runtime, which is near linear. In
average, B.Hive needs 30.5258 milliseconds to protect one page, which is 15.072
times faster than without caching. The number of forms per page does not cor-
relate with the runtime. The overhead to query the cache (measured without
parsing) is insignificant with 0.000072 milliseconds in average.

The honeypot field generation for one page is done by a single process. A load
balancing with more processes or different server can be done by starting more
instances of B.Hive and a load balancer like nginx [14].

In conclusion, B.Hive is able to protect even large and busy web applications
when using caching and parsing.

6 Conclusion and Outlook

This paper presents B.Hive, a honeypot that protects existing web applications in
productive use by transparently adding form fields to forms with a special focus
on the undetectability of the honeypot by human inspection. The evaluation of
B.Hive shows that humans are not able to identify the injected form fields, hence
an attacker cannot avoid the honeypot. This allows to gain valuable insights into
attacks. The evaluation also showed, that B.Hive only adds a slight overhead to
the total response time of a web application when using caching and parsing. It
also shows that B.Hive can protect the vast majority of web applications.

Over the course of the next year we plan to deploy B.Hive on a public web
server to gather data on how real attackers interact with it. This could also lead
to classification of attack payloads. Future work includes a extension of B.Hive
beyond form field injection.

References

1. Alexa Internet, I.: Alexa - The Web Information Company. http://www.alexa.com/
(last accessed March 13, 2014)

2. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Communications of the ACM 51(1), 107–113 (2008)

3. John, J.P., Yu, F., Xie, Y., Krishnamurthy, A., Abadi, M.: Heat-seeking honeypots.
In: The 20th International Conference, p. 207. ACM Press, New York (2011)

4. Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady 10, 707 (1966)

5. Mueter, M., Freiling, F., Holz, T., Matthews, J.: A generic toolkit for converting
web applications into high-interaction honeypots. University of Mannheim (2008)

http://www.alexa.com/

280 C. Pohl et al.

6. Nassar, N., Miller, G.: Method for two dimensional honeypot in a web application.
In: 2012 8th International Conference on Collaborative Computing: Networking,
Applications and Worksharing (CollaborateCom), pp. 681–686 (2012)

7. OWASP: Top 10 2013 - OWASP. https://www.owasp.org/index.php/Top 10 2013
(last accessed March 13, 2014)

8. Owasp: OWASP Zed Attack Proxy Project - OWASP (2014). https://www.
owasp.org/index.php/OWASP Zed Attack Proxy Project (last accessed October
23, 2014)

9. Perry, K.: Honeypot Technique of Blocking Spam - Dex Media, May 2013. http://
www.dexmedia.com/blog/honeypot-technique/ (last accessed October 20, 2014)

10. Pohl, C., Hof, H.J.: The all-seeing eye: a massive multi-sensor zero-configuration
intrusion detection system for web applications. In: SECURWARE 2013, The Sev-
enth International Conference on Emerging Security Information, Systems and
Technologies (2013)

11. Pohl, C., Schlierkamp, K., Hof, H.J.: BREW: a breakable web application. In:
European Conference of Software Engineering Education, ECSEE 2014, November
2014

12. Squiid: Honeypot: Protecting web forms * Squiid, June 2011. http://squiid.tumblr.
com/post/6176439747/honeypot-protecting-web-forms (last accessed October 20,
2014)

13. SubGraph: Vega Vulnerability Scanner (2014). https://subgraph.com/vega/ (last
accessed October 23, 2014)

14. Sysoev, I.: nginx (2014). http://nginx.org/ (last accessed October 23, 2014)
15. Wang, Y., Peng, T., Zuo, W., Li, R.: Automatic filling forms of deep web entries

based on ontology. In: Web Information Systems and Mining, pp. 376–380 (2009)

https://www.owasp.org/index.php/Top_10_2013
https://www.owasp.org/index.php/OWASP_Zed_Attack _Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack _Proxy_Project
http://www.dexmedia.com/blog/honeypot-technique/
http://www.dexmedia.com/blog/honeypot-technique/
http://squiid.tumblr.com/post/6176439747/honeypot-protecting-web-forms
http://squiid.tumblr.com/post/6176439747/honeypot-protecting-web-forms
https://subgraph.com/vega/
http://nginx.org/

Security Management and Human
Aspects of Security

© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 283–296, 2015.
DOI: 10.1007/978-3-319-18467-8_19

Investigation of Employee Security Behaviour:
A Grounded Theory Approach

Lena Connolly1(), Michael Lang1, and J.D. Tygar2

1 Business Information Systems,
National University of Ireland Galway, Galway, Ireland

y.connolly1@nuigalway.ie
2 Electrical Engineering and Computer Science,

University of California, Berkeley, Berkeley, USA

Abstract. At a time of rapid business globalisation, it is necessary to under-
stand employee security behaviour within diverse cultural settings. While gen-
eral deterrence theory has been extensively used in Behavioural Information
Security research with the aim to explain the effect of deterrent factors on
employees’ security actions, these studies provide inconsistent and even contra-
dictory findings. Therefore, a further examination of deterrent factors in the
security context is required. The aim of this study is to contribute to the emerg-
ing field of Behavioural Information Security research by investigating how a
combination of security countermeasures and cultural factors impact upon em-
ployee security behaviour in organisations. A particular focus of this project is
to explore the effect of national culture and organisational culture on employee
actions as regards information security. Preliminary findings suggest that orga-
nisational culture, national culture, and security countermeasures do have an
impact upon employee security behaviour.

Keywords: Employee security behaviour · Security countermeasures · Organi-
sational culture · National culture

1 Introduction

The majority of modern organisations are heavily relying on computerised informa-
tion systems (IS). These systems store the sensitive data necessary to run businesses
efficiently, including financial, customer, and product records. Therefore, managing
risks associated with the loss of this vital information is essential. Threats can come
from external as well as internal sources. External attacks are typically initiated by
hackers who are seeking political or financial gain. The common way to prevent ex-
ternal attacks is an implementation of technical security controls, including firewalls,
anti-malware software, and authentication controls. These measures are widely em-
ployed by organisations and are largely effective.

On the other hand, an insider threat refers to an intentional or unintentional misuse
of an organisation’s IS by employees that may negatively affect the confidentiality,
integrity, or availability of that organisation’s vital information. Maintaining em-
ployees’ compliance with information security rules is a more problematic matter as

284 L. Connolly et al.

technical controls are unable to prevent all human blunders. For instance, employees
tend to write passwords down, share them with colleagues or send confidential infor-
mation in an unencrypted form. It is estimated that at least half of information security
breaches are made by internal personnel [1]. Posey et al. [2] argue that deviant beha-
viour is best managed with a combination of technical and social measures.

Overcoming the issue of “human error” has received considerable attention in Be-
havioural Information Security (InfoSec) research. Various approaches designed to
improve employee security behaviour have been suggested by IS scholars. These
range from security awareness programmes [3] and security education and training [4]
to approaches that take into account deterrent [5] as well as cognitive [6, 7] factors.

However, a comprehensive literature review conducted for this research revealed
that a number of areas in Behavioural InfoSec research require further investigation.
To begin with, while IS researchers demonstrate the influence of security counter-
measures on employee security behaviour, the results of these studies are inconsistent
and therefore require further clarification [8]. Several IS researchers suggested that
the influence of deterrent factors may vary under the impact of other aspects [9]. A
literature review conducted for this project revealed a limited amount of studies that
investigate the influence of deterrent factors in combination with cultural aspects.
Furthermore, cross-cultural studies are particularly rare in Behavioural InfoSec re-
search, although prior research shows that national culture (NC) has an effect on or-
ganisational behaviour [10, 11]. Finally, Hu et al. [5] report that there is a general lack
of studies that examine the effect of organisational culture (OC) on employee security
behaviour and existing studies fail to illustrate strong theoretical foundations for link-
ing OC and behaviour.

This research in progress addresses the aforementioned literature gaps and attempts
to answer the following research questions:

1. How do organisational culture values affect employee security behaviour?
2. How does national culture affect employee security behaviour?
3. How do security countermeasures affect employee security behaviour?

This is a cross-cultural study conducted in the USA and Ireland. As is commonly
the situation with comparative international studies, the initial choice of these two
countries was more opportunistic than deliberate, arising as it did out of a research
exchange programme which necessitated the lead author spending extended periods
of time in both countries. Nevertheless, although the cultures of both Ireland and the
USA are often referred in the extant literature as “Western”, these two countries have
similar as well as contrasting cultural characteristics [12] and therefore are worthy of
comparison. Additionally, Ireland is an important commercial gateway between the
USA and Europe, it being the location of the European headquarters of several Amer-
ican multinational corporations. Ireland is situated at the interface of two rather dif-
ferent perspectives on privacy and data protection (i.e. EU versus USA), which is a
further reason why a cross-cultural study between Ireland and the USA is a useful
undertaking.

Investigation of Employee Security Behaviour: A Grounded Theory Approach 285

2 Theoretical Context

Fig. 1. Theoretical framework

2.1 Culture

The study of culture is rooted in sociology, social psychology, and anthropology [13].
Culture has been studied for over a hundred years in various disciplines. As a result,
numerous definitions, conceptualisations, and dimensions of culture have been pro-
duced by researchers. For example, Kroeber and Kluckhohn [14] identify 164 defini-
tions of culture. They range from simple to complex, incorporate and extend previous
definitions, and even contradict prior definitions. Consequently, viewpoints on culture
vary significantly. For example, some scholars perceive culture as a hidden or partly
hidden force and therefore culture is problematic to assess as it is not directly observ-
able [15]. In contrast, DeLong and Fahey [16] argue that culture embraces explicit
and observable artifacts and therefore can be assessed.

The two most commonly used theoretical frameworks of culture are the socio-
cultural system and the individual system [13]. Taking the socio-cultural perspective,
Mead [17] defines culture as “shared patterns of behaviour”. This definition implies
that “culture is a group-level construct, situated between the personality of individuals
and the human nature that is common to all of us” [13, p. 549]. Groups like societies,
organisations and professions are considered to have their own cultures. Hence, study-
ing culture entails more than observing and describing behaviour. On the other hand,
the individual perspective treats culture as “an individual’s characteristic way of per-
ceiving the man-made part of one’s environment” [18, p.3]. This definition assumes
that culture can be assessed by analysing an individual’s behaviour [13].

For the purpose of this research, culture is regarded as follows:

1. Culture is explicit and therefore can be observed.
2. Culture can be assessed by analysing an individual’s behaviour.

286 L. Connolly et al.

2.2 Organisational Culture and Security Behaviour

Prior research shows that OC affects behaviour. For example, Kilmann [19] describes
culture as a separate and hidden force that controls behaviours and attitudes in organi-
sations. Furthermore, Philips [20] portrays culture as a set of tacit assumptions that
guide acceptable perceptions, thoughts, feelings, and behaviour among members of
the group. Finally, Baker [15] emphasises the importance of OC as a power that can
lead a company to success or weaken its vitality because OC directly affects em-
ployee behaviour in an organisation. While the aforementioned studies show a link
between OC and behaviour, this subject area has received very little attention in Be-
havioural InfoSec research. A literature review conducted for this study revealed a
general lack of OC studies in the security context.

2.3 National Culture and Security Behaviour

Various academic works show that NC influences organisational behaviour. In partic-
ular, Hofstede [21] argues that organisations are bound by national cultures and un-
derlines the cross-national differences in the functioning of organisations and people
in them. He compares culture with an onion consisting of multiple layers, values be-
ing the inner layer of the onion, which are invisible until they become evident in be-
haviour. Ali and Brooks [13] define NC as a shared set of core values, norms and
practices in a society that shapes individuals’ behaviour within that society. However,
cross-cultural research in Behavioural InfoSec is particularly scarce and urgent calls
for more studies have been made [10]. For example, Dinev et al. [11] report differ-
ences in user behaviour toward protective information technologies in the USA and
South Korea. Flores et al. [22] state that the effect of behavioural information security
governance factors on the establishment of security knowledge sharing differs be-
tween Swedish and the USA organisations.

Cross-Cultural Dimensions. Hofstede’s [12] original taxonomy describes culture in
terms of four dimensions – power distance, uncertainty avoidance, masculinity vs.
femininity, and individualism vs. collectivism. The score difference between the USA
and Ireland’s individualism vs. collectivism dimension is 21. Thus, it may be possible
to explain the effect of NC on employee security behaviour from the perspective of
the national trait of individualism. According to Hofstede [12], the United States has a
highly individualistic culture, which affects relationships between individuals. For
example, in the USA people typically take care of themselves and their immediate
family. On the contrary, Irish people normally take into consideration group as well as
individual interests. Propensity towards individualism or collectivism in a society can
have an impact on organisational affairs. For example, Zhang et al.’s [23] study con-
ducted in the United States and China, reveal that the level of majority influence (i.e.
the attempt by the majority of group members to impose their common position on
group dissenters during group decision making) on group minorities appears to be
stronger in collectivist societies. Furthermore, Hofstede [12] points out that the level
of individualism in society will affect the organisational members’ reasons for

Investigation of Employee Security Behaviour: A Grounded Theory Approach 287

complying with organisational rules and regulations. For example, in Ireland, peer
pressure may have a stronger effect on employee security behaviour than in the USA.

Furthermore, Hofstede [12, p.217] claims that national characteristics have a strong
affect on the “nature of relationships between a person and the organisation to which
she or he belongs”. Regardless of the nature of business, organisations in different
countries vary in terms of organisational structures and processes [12]. Mintzberg
[24] stresses that five distinct coordinating mechanisms explain the fundamental ways
in which organisations manage their work, including mutual adjustment, direct super-
vision, standardisation of work processes, standardisation of work outputs, and stan-
dardisation of worker skills. These mechanisms form an organisational structure.
Hofstede [12] argues that typically Irish organisations employ a mutual adjustment
mechanism for coordinating activities and form a structure of adhocracy, in which the
support staff is the key part. Mutual adjustment achieves the coordination of work by
a simple process of informal communication and control of the work rests in the
hands of the doers [24]. On the other hand, the structure of the United States organisa-
tions takes a divisionalised form, based on standardisation of outputs, in which the
middle line is the key part. Typically, American firms standardise outputs by setting
specific goals and results [12]. Prior studies show that employees tend to circumvent
security rules when put under pressure to meet deadlines [25]. Therefore, factors that
impel employees to break security rules may be different in the United States and
Ireland due to different organisational structures.

2.4 Security Countermeasures and Security Behaviour

With the increasing occurrence of computer abuse by employees, organisations are
searching for improved ways to deter it. According to the General Deterrence Theory
(GDT), organisations can increase employee compliance with information security
rules by implementing deterrence mechanisms, including technical controls, informa-
tion security policies, and security education, training and awareness programmes
[3, 4]. Deterrence theory is one of the most widely applied theories in IS security
research [10]. Rooted in criminology [26], the classic deterrence theory posits that
individuals weigh costs and benefits before committing a crime. If an individual be-
lieves that the risk of getting caught is high and that penalties will be applied if
caught, then GDT states that the individual will not commit the crime.

D’Arcy et al. [3] present an extended deterrence theory model and report that secu-
rity countermeasures such as security policies, awareness programmes, and computer
monitoring influence perceived severity of formal sanctions, which leads to reduced
intention to misuse IS, while certainty of formal sanctions does not have any effect on
intention to misuse IS. Furthermore, Lee et al. [4] show that deterrence-based coun-
termeasures, including information security policy, security education and training
awareness programmes, and security systems, directly influence security behaviour in
organisations. In contrast, Herath and Rao [27] report that perceived severity of penal-
ties has significant but negative effect on security policy compliance intention. Addi-
tional studies inform that deterrence constructs do not have a significant influence on
employee behaviour [28]. Overall, the extant literature provides inconsistent findings

288 L. Connolly et al.

for deterrence theory in the information security context. Therefore, an additional
examination of the influence of deterrence measures on actual behaviour is needed.

3 Research Methodology

The methodology adapted for this study draws on the analytical grounded theory
(AGT) approach [29], employing the constant comparative method of Maykut and
Morehouse [30]. This methodological framework draws on the work of Lincoln and
Guba [31]. While none of the grounded theory principles were directly employed,
nevertheless this project adapts a grounded theory approach insofar as the findings of
this study are entirely rooted in the data. The AGT is the method of applying
grounded theory analytical techniques (constant comparative method) to analyse data
without a necessity to follow grounded theory principles. For example, a researcher
may start with prior theory, then go on to collect empirical data, and analyse it using
grounded theory coding techniques.

The constant comparative method is particularly appropriate for this research
project because both OC and NC can be investigated within a single study. Due to
similar characteristics, it may be hard to separate traits of OC and NC. For example,
hierarchy in an organisation could be a result of a bureaucratic culture within the or-
ganisation [32] or the effect of a NC trait of high power distance [12]. A constant
comparative method allows to overcome this challenge by first performing in-case
analysis to analyse data within each country and then cross-case analysis to compare
results between two research settings.

Data collection was carried out using semi-structured in-person interviews. Inter-
views are suitable to study behaviour [30] because interview participants are given an
opportunity to describe their past experiences and incidents. Company selection for
this project was partly opportunistic. Organisations from a diverse set of industries
were selected. Using personal connections, seven companies were interviewed in the
United States from September to November 2012, and eight companies in Ireland
from June to August 2013. Details about US and Irish companies are given in Table 1
and Table 2.

Table 1. Facts about US companies

Name

(aliases)

Industry type? When

founded, size?

Number of people interviewed and their organisational

roles

CloudSer IT; 1998; large One person – a software developer

RetCo Finance; 1932; large One person – a security executive

CivEngCo Civil Engineering; 1945;
SME

One person – a civil engineer

TechCorp IT; 1968; large Two security researchers

EducInst Education; 1868; large Two people – an administrator and a lecturer with substantial
industry experience in the security field

FinCo Finance; 1982; large One person – a security consultant

PublCo Publishing; 2005; SME One person – a business owner

Investigation of Employee Security Behaviour: A Grounded Theory Approach 289

Table 2. Facts about Irish companies

Name (alias-

es)

Industry type? When

founded, size?

Number of people interviewed and their organisa-

tional roles

TechCorp IT; 1968; large Two people – a product manager and an IT executive

CharOrg Charity; 1883; large One person – a data protection officer

BevCorp Food and Beverage Manufac-
turing; 1944; large

One person – an IT executive

PublOrg Publishing; 2000; SME One person – a chief editor

EducOrg Education; 1845; large Two people – an administrator and a lecturer with
substantial experience in information security research

TelCommCorp IT; 1984; large One person – a software developer

ResReg Energy Regulation; 1999;
SME

One person – a policy analyst

BankOrg Finance; 1982; large One person – a security executive

The interview guide was constructed following a thorough analysis of the litera-

ture. The guide included questions about OC values and security countermeasures and
their relationships with employee security behaviour. A list of the most prominent OC
frameworks used in IS research was borrowed from Leidner and Kayworth’s [33]
work. Due to the evident similarity, these values were grouped into categories, includ-
ing Solidarity, Sociability, People-Orientation, Task-Orientation, Rule-Orientation,
and Hierarchy.

Table 3. Interview guide topics

Topics Reference Examples of questions

Organisational Culture

Solidarity Goffee and Jones [34] Do you ever voluntary work overtime in order
to complete some important task?

Sociability Goffee and Jones [34] Is it common to have non-work related chats
with your colleagues during work hours?

People-orientation Cooke and Lafferty [35] How satisfying is the you are working for with
respect to employee benefits?

Task-orientation Cooke and Lafferty [35] Do you think management expects you to put
company goals before your personal goals?

Rule-orientation Denison and Mishra [36] Is it acceptable to break rules in your organisa-
tion?

Hierarchy Ouchi [37] Is it common in your organisation to disagree
with your superior’s opinion/decision?

Deterrent Security

Countermeasures

Technical Controls D’Arcy et al. [3] What information security rules and practices
are utilised in your organisation?

Information Security

Policy

D’Arcy et al. [3] Is there an information security policy in your
organisation?

Information Security

Training

D’Arcy et al. [3] Did you ever have to attend information securi-
ty training?

Employee Awareness D’Arcy et al. [3] What information security values exist in your
organisation?

290 L. Connolly et al.

With regards to security countermeasures, various classification have been offered
by IS researchers on deterrent mechanisms. This research adapts D’Arcy et al.’s [3]
taxonomy of security countermeasures, suggesting the following four topics for the
interview guide – Employee Awareness, Information Security Policy, Information
Security Training, and Technical Controls. Interview guide topics including corres-
ponding references and questions are illustrated in Table 3.

4 Preliminary Findings

Data analysis is currently ongoing but a number of interesting preliminary results
have emerged:

4.1 Organisational Culture Values and Security Behaviour

So far, preliminary results suggest that OC impacts upon employee security beha-
viour. CivEngCo is a bureaucratic organisation where rules and discipline prevail, and
segregation between management and regular employees exists. Employees in this
organisation generally comply with rules. A Civil Engineer, who is also an ambitious
and creative individual, informs:

“…typically, employees conform with information security rules”.

However, this is an organisation with established procedures and practices and

normally higher management is reluctant to except new ideas and change traditional
ways of conducting business. A motivated and striving employee would find it hard to
survive in this type of environment. The same Civil Engineer shares her disappoint-
ment:

“I remember, one time I really wanted to change the design methodol-
ogy…the manager of the project did not accept it but I had my super-
visor backing me up… so we made a big meeting-fight…it was a very
tough meeting…and finally I could convince them to change their ap-
proach... the type of practice they do is too old… and these old man-
agers…it is so hard to change their minds…”

Furthermore, the same Civil Engineer adds that the fact that she cannot challenge

management’s decision discourages her and negatively affects every aspect of her job,
including compliance with information security rules:

“…If I lose my motivation, it affects everything, in particular the quality of job
that I do, such as how I archive things, how I back up things, how I care about
everything, including organisation in general and security in particular. Of
course, it affects everything”.

EducOrg demonstrates similar traits of organisational culture, where ambitious
employees are not encouraged to strive because promotions are scarce and some man-
agers have a reputation of treating employees improperly. Since a promotion may

Investigation of Employee Security Behaviour: A Grounded Theory Approach 291

entail a migration to a different department managed by an unfair manager, staff is
reluctant to apply. Additionally, due to internal politics, promotions are not distri-
buted justly. As a result, this atmosphere creates a lax attitude towards information
security:

“…For the last few years there have not been too many opportunities to be
promoted…but if a promotion is coming up, I feel I don’t stand a chance…I
am happy in the place I am at the moment…if I go somewhere else, it might be
like walking on a frying pan…Right now there is an opportunity for a promo-
tion but I would not go there because a lot of managers in this department have
a reputation of treating staff really, really, really badly. And this atmosphere
creates a lax attitude towards sensitive information…the attitude is “it’s not my
job”.

On the contrary, in CloudSer there is an environment where employees are welcome

to express their opinions and contribute to various aspects of company’s functioning.
Employees are encouraged to provide feedback regarding information security rules and
in some instances, they are trusted to make independent decisions as this organisation
does not have rigid rules and procedures. A Software Developer reveals:

“…a security team designs and implements an information security poli-
cy…however, there have been instances when software engineers did not agree
with certain aspects of the policy…for example, two-factor authentica-
tion…but there is a communication channel…we talked it out and agreed that
two-factor authentication is vital… but if I felt a requirement was too restric-
tive and I could not challenge it, I would really view my security policy diffe-
rently…but the fact that I can challenge, changes my opinion…I feel I can
contribute…I feel it is participative…I do not feel excluded…”

 “…in terms of security rules, nobody has tried to violate the rules…we have a
fairly relaxed environment in terms of security rules…there is a lot of trust
which is placed on the employees to make the right choices...”

RetCo is a financial organisation, where employees also are encouraged to provide

feedback regarding security rules and changes have been made in the past based on
this feedback. Staff are proud to work for this organisation. Subsequently, employees
comply with organisational rules. A Security Executive Officer reports:

“…I think in our organisation some of those unwritten assumptions would be
that everybody matters in the organisation, so everybody has an opinion and
equal voice…people are very proud to work here…and as a result, there is this
assumption that everybody is going to conduct themselves in a manner that is
appropriate for that value...they are happy to be there and working there…”

“…I have not heard personally of any instance where somebody has broken a
rule, a fixed rule…”

292 L. Connolly et al.

The above analysis leads us to conclude that OC affects employee security beha-
viour. A flat organisational structure and employees’ involvement in a company’s life
have a positive effect on employee compliance with information security rules. How-
ever, employee-management segregation, poor management, and an unjust treatment
of employees lead to disappointment and ultimately to a lax attitude towards informa-
tion security.

4.2 National Culture and Security Behaviour

Although findings reveal that employees break rules in organisations in both coun-
tries, group non-compliance with rules in Ireland is more prevalent than in the United
States. Besides, a larger amount of incidents was recorded in Irish organisations than
in the United States. A Security Executive of an Irish financial institution shares the
following:

“…I would like to be a bit stricter on some of the rules. Sometimes,
after implementing a certain security measure, someone in a mana-
gerial position may ask to have an access to something that is forbid-
den to access…the rules should be there for everybody…and they are
not…once certain people ask, I have to circumvent the rule…the rule
is broken then. At the moment, really senior people want to have
access to Twitter…that will be another battle…”

An IT manager from BevCorp further confirms that rules get broken collectively in

Ireland:
“…I think breaking rules is kind of an Irish thing…‘sure that rule does
not apply to me because I have a good excuse or I can reason myself
out of why I did not follow the rules’… I have definitely seen rules
being broken…and the level of acceptance for that from peers…it is
not like one person did it and everyone was shocked…they are not
going to tell on somebody as well…”

Finally, a Software Developer at TelCommCorp verifies that Irish employees break

rules as a group:
“…One of my colleague’s laptop was stolen from her work desk…I
think there is a policy that if you leave your laptop at work, you are
supposed to chain it to the desk…she did not anyway and I never
do…I leave my laptop there every evening and I do not lock it…and a
lot of people leave their laptops at work without locking them…the
general attitude is: ‘if it is robbed, it is not my problem…it is compa-
ny’s security is lacking’ ”

In the United States, however, employees seem to be breaking rules individually

and collectively. A Civil Engineer from CivEngCo shares:

Investigation of Employee Security Behaviour: A Grounded Theory Approach 293

“…If I like the organisation, then I follow their security rules, of
course. If I get disappointed with the organisation, then I don’t care
about anything, one of them would be security”

A Security Researcher from TechCorp adds:
“…My laptop is sitting on my desk upstairs and I am not supposed to
leave it…so this is an example of a rule I have broken today…My lap-
top should be in a hibernated mode…I don’t hibernate it, I usually just
suspend it, so this is a violation of the policy”

Finally, a Professor from EducInst adds:

“…At EducInst we break rules all the time…When was the day I
didn’t break a rule?...Let me give you an example…a student needs a
resource…there is a lot of rules about handling and allocating…I
might just cut through them and make sure that a student gets the re-
source…and I am not interested about whether the right form is being
filled out”

As can be seen from the above quotes, in Irish organisations breaking rules at a

group level is more prevalent than in the United States.

4.3 Security Countermeasures and Security Behaviour

Results show that security countermeasure, including security training, policies and
awareness programmes, inform employees about organisational security rules and
encourage appropriate behaviour. A Software Developer from CloudSer shares:

“...educating employees to make the right choices is very impor-
tant…employees should understand why they should not go to certain
sites or why they should not do something within the corporate fire-
wall…”

A Security Researcher from TechCorp reveals:

“Information security policy dictates things like what should I do with
registered secret documents and I have to follow those rules… and
this is one rule [related to secret documents] I would not want to break
because if something happens, it is bad. Information security policy
definitely affects what I do”.

A Security Consultant from FinCo adds:
“…I think information security policy creates a framework that people
shape their day-to-day work around”.

Finally, Security Executive from RetCo further confirms:
 “…training affects employees’ behaviour…an alternative way to edu-
cate employees is to remind them of the safe security practices by

294 L. Connolly et al.

sending notifications and bulletins…I think this is another way em-
ployees interact with information security policy and it affects how
they do their jobs…”

Generally, the above quotes suggest that procedural security countermeasures posi-
tively affect employee security behaviour in organisational settings.

5 Conclusion

Preliminary results indicate that security countermeasures, OC, and NC impact upon
employee security behaviour in organisational settings. In terms of OC, in the organi-
sations where employees are empowered to make changes and express their opinion,
staff compliance with security rules is prevalent. However, in organisations where
employees are discouraged to implement new ideas and employee-management
segregation exists, security rules get broken. Wallach [32] labels culture based on
power and control as bureaucratic. Organisations, where bureaucracy prevails, are
resistant to implement changes. Therefore, a strong bureaucratic culture is unlikely to
attract and retain creative and ambitious people [32]. On the contrary, in companies
with supportive culture, employees are involved in organisation’s matters and are
given power to speak up. Supportive culture promotes employee autonomy, which
leads to improved overall performance of an organisation [38]. Hence, if an organisa-
tion explicitly states that information security is its vital function, employees will be
inclined to comply with rules.

Regarding NC, employee security behaviour in organisations in the United States
and Ireland shows slightly different patterns. In particular, in the United States, em-
ployee security actions are driven by a combination of factors, including individual
interests and group aspects. However, in Ireland, collective disobedience with security
rules is more prevalent. The influence of peer pressure may be stronger in Ireland as
opposed to the United States due to the difference in the score on individualism. Inte-
restingly, Zhang et al.’s [23] work demonstrate that in collectivist China the pressure
from group’s majority influence on minorities is stronger than in the United States.
Therefore, security practitioners may need to focus on group participant-led security
trainings in collectivist countries as oppose to computerised security tests performed
individually.

Security countermeasures, including security policy, awareness programmes, and
security training encourage employee compliance with security rules. These deterrent
countermeasures serve as important guidelines for employees to distinguish between
appropriate and inappropriate actions. When employee are aware of company’s secu-
rity etiquette, they are less likely to engage in illicit behaviour, which is consistent
with results reported by D’Arcy et al. [3]. Hence, companies are advised to have in
place deterrent countermeasures. Overall, based on the aforementioned findings, this
research in progress has a potential to make a valuable contribution to research and
practice.

Investigation of Employee Security Behaviour: A Grounded Theory Approach 295

References

1. Spears, J.L., Barki, H.: User participation in information systems security risk manage-
ment. MIS Quarterly 34(3), 503–522 (2010)

2. Posey, C., Bennett, R., Roberts, T.L.: Understanding the mindset of the abusive insider: an
examination of insiders’ causal reasoning following internal security changes. Computers &
Security 30(6–7), 486–497 (2011)

3. D’Arcy, J., Hovav, A., Galletta, D.: User awareness of security countermeasures and its
impact on information systems misuse: A deterrence approach. Information Systems Re-
search 20(1), 1–20 (2009)

4. Lee, S.M., Lee, S.G., Yoo, S.: An integrative model of computer abuse based on social
control and general deterrence theories. Information & Management 41(6), 707–718
(2004)

5. Hu, Q., Dinev, T., Hart, P., Cooke, D.: Managing employee compliance with information
security policies: the role of top management and organizational culture. Decision Sciences
43(4), 615–660 (2012)

6. Hu, Q., Xu, Z., Dinev, T., Ling, H.: Does deterrence work in reducing information security
policy abuse by employees? Communications of the ACM 54(6), 54–60 (2011)

7. Ifinedo, P.: Understanding information systems security policy compliance: An integration
of the theory of planned behavior and the protection motivation theory. Computers & Se-
curity 31, 83–95 (2012)

8. D’Arcy, J., Herath, T.: A review and analysis of deterrence theory in the IS security litera-
ture: Making sense of the disparate findings. European Journal of Information Systems
20(6), 643–658 (2011)

9. Son, J.-Y.: Out of fear or desire? Toward a better understanding of employees’ motivation
to follow IS security policies. Information & Management 48(7), 296–302 (2011)

10. Pavlou, P.A., Chai, L.: What drives electronic commerce across cultures? A cross-cultural
empirical investigation of the theory of planned behavior. Journal of Electronic Commerce
Research 3(4), 240–253 (2002)

11. Dinev, T., Goo, J., Hu, Q., Nam, K.: User behaviour towards protective information tech-
nologies: the role of national culture differences. Information Systems Journal 19(4), 391–
412 (2009)

12. Hofstede, G.: Culture’s Consequences: International Differences in Work-related Values.
Sage Publications, Thousand Oaks (1980)

13. Ali, M., Brooks, L.: Culture and IS: National Cultural Dimensions within IS Discipline. In:
Proceedings of the 13th Annual Conference of the UK Academy for Information Systems,
pp. 1–14 (2009)

14. Kroeber, A.L., Kluckhohn, C.: Culture: A critical review of concepts and definitions. Pea-
body Museum, Cambridge (1952)

15. Baker, E.L.: Managing organizational culture. Management Review 69, 8–13 (1980)
16. DeLong, D.W., Fahey, L.: Diagnosing cultural barriers to knowledge management. Acad-

emy of Management Executive. 14(4), 113–127 (2000)
17. Mead, M.: National character. In: Tax, S. (eds.) Anthropology Today, pp. 396–421. Uni-

versity of Chicago Press, Chicago (1962)
18. Triandis, H.C.: The Analysis of Subjective Culture. Wiley, New York (1972)
19. Kilmann, R.H.: Managing your organization’s culture. The Nonprofit World Report 3(2),

12–15 (1985)
20. Phillips, M.E.: Industry mindsets: Exploring the cultures of two macro-organizational set-

ting. Organization Science 5(3), 363–383 (1994)

296 L. Connolly et al.

21. Hofstede, G.: Culture’s Consequences. Comparing Values, Behaviors, Institutions, and
Organizations Across Nations, 3rd edn. Sage Publications, Thousand Oaks (2001)

22. Flores, W.R., Antonsen, E., Edstedt, M.: Information security knowledge sharing in organ-
izations: Investigating the effect of behavioral information security governance and nation-
al culture. Computers & Security 43, 90–110 (2014)

23. Zhang, D., Lowry, P.B., Zhou, L., Fu, X.: The Impact of Individualism-Collectivism,
Social Presence, and Group Diversity on Group Decision Making under Majority Influ-
ence. Journal of Management Information Systems 23(4), 53–80 (2007)

24. Mintzberg, H.: Structure in fives: Designing effective organizations. Prentice-Hall Int.,
Englewood Cliffs (1983)

25. Besnard, D., Arief, B.: Computer security impaired by legitimate users. Computers &
Security. 23(3), 253–264 (2004)

26. Beccaria, C.: On Crimes and Punishment. Macmillan, New York (1963)
27. Herath, T., Rao, H.: Encouraging information security behaviors in organizations: role of

penalties, pressures and perceived effectiveness. Decision Support Systems 47(2),
154–165 (2009)

28. Siponen, M., Vance, A.: Neutralization: new insights into the problems of employee in-
formation systems security policy violations. MIS Quarterly 46(5), 487–502 (2010)

29. Matavire, R., Brown, I.: Profiling grounded theory approaches in information systems
research. European Journal of Information Systems 22(1), 119–129 (2013)

30. Maykut, P., Morehouse, R.: Beginning Qualitative Research: A Philosophic and Practical
Guide. The Falmer Press, London (1994)

31. Lincoln, Y., Guba, E.: Naturalistic Inquiry. Sage Publications, Beverly Hills (1985)
32. Wallach, E.J.: Individuals and organizations: The cultural match. Training and Develop-

ment Journal 37(2), 28–36 (1983)
33. Leidner, D.E., Kayworth, T.: Review: A review of culture in information systems research:

Toward a theory of information technology culture conflict. MIS Quarterly 30, 357–399
(2006)

34. Goffee, R., Jones, G.: What holds the modern company together? Harvard Business
Review 74(6), 133–148 (1996)

35. Cooke, R.A., Lafferty, E.: Organizational Culture Inventory. Human Synergistics,
Plymouth (1987)

36. Denison, D.R., Mishra, A.K.: Toward a theory of organizational culture and effectiveness.
Organization Science 6(2), 204–223 (1995)

37. Ouchi, W., Theory, Z.: How American business can meet the Japanese challenge.
Addison-Wesley Publishing Company, Reading (1981)

38. Shrednick, H.R., Stutt, R.J., Weiss, M.: Empowerment: key to is world-class quality. MIS
Quarterly 16(4), 491–505 (1992)

© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 297–310, 2015.
DOI: 10.1007/978-3-319-18467-8_20

Practice-Based Discourse Analysis of InfoSec Policies

Fredrik Karlsson1(), Göran Goldkuhl2, and Karin Hedström1

1 CERIS, Department of Informatics, Örebro University School of Business,
SE-701 82 Örebro, Sweden

{fredrik.karlsson,karin.hedstrom}@oru.se
2 Department of Management and Engineering, Linköping University,

SE-581 83 Linköping, Sweden
goran.goldkuhl@liu.se

Abstract. Employees’ poor compliance with information security policies is a
perennial problem for many organizations. Existing research shows that about
half of all breaches caused by insiders are accidental, which means that one can
question the usefulness of information security policies. In order to support the
formulation of practical, from the employees’ perspective, information security
policies, we propose eight tentative quality criteria. These criteria were devel-
oped using practice-based discourse analysis on three information security policy
documents from a health care organisation.

Keywords: Information security policy · Discourse analysis · Communicative
analysis · Quality criteria

1 Introduction

Information and information systems have become key assets in, for example, health
care. Here is timely access to correct electronic medical records (EMR) essential in
order to provide medical care of high quality. Consequently, the importance of infor-
mation security increases; the confidentiality, availability and integrity of business
information assets need to be kept at the level regulated by laws and public adminis-
tration policies. It is argued that employees’ poor compliance with information security
policies is a perennial problem for many organizations [1, 2]. Having said that, existing
research also shows that about half of all breaches caused by insiders are accidental [3],
which means that one can question how useful today’s information security policies are
in guiding employees. Despite the importance of information security policies the
design of such artefacts is an understudied area of information security research in
general [4]. Gaskell [5], one of few who has studied the design process, has characte-
rized the information security policy design process as ad-hoc. The main input that
information security managers draw upon during such a design process is elicited
information security requirements and international security standards [6]. Standards
are general guidelines not addressing the specific context of an organisation [7], such as
the specific needs of healthcare, making the elicited requirements an important com-
plement.

298 F. Karlsson et al.

If few studies focus information security policy design, even fewer studies have
been carried out on information security policies as communicative objects and what
constitutes a useful information security policy from a communicative point of view.
Stahl et al. [8] is a notable exception, who based on a discourse analysis of information
security policies provide six advices for the development of information security poli-
cies. Of course, this is a valuable contribution, but according to Baskerville’s and
Siponen’s [4] taxonomy of information security policies, Stahl et al. [8] mainly focus
on high-level policies. With this focus they seem to leave out the problematic aspect
that employees often are exposed to several documents that together constitute the
information security policy.

We therefore take an explicit starting point in a practice-based perspective. This
means that a) we critically assess the role of the information security policy as a prac-
tical tool in the employee’s every day work, including the use of both high-level and
low-level policy documents, and b) we acknowledge the fact that there exist multiple
practices in an organisation that need to interact. To this end we view information
security policy documents as the results of the interaction (or lack thereof) between the
information security practice and the health care practice. Information security policy
documents are in this setting thus seen as communicative objectives.

The purpose of this paper is a) to illustrate the usefulness of practice-based discourse
analysis for understanding information security policy design, and b) to provide a set of
tentative quality criteria for information security policy design in health care from a
practice-based perspective. For this purpose, we carried out a case study at a Swedish
emergency hospital. We employed a practice-based discourse analysis on the hospital’s
information security policy. A practice-based discourse analysis means besides col-
lecting and analysing information security policy texts, that we also have studied the
mentioned practices through observations and interviewing. The latter is important in
order to interpret the communicative limitations of the policy from the employees’
perspective. Hence, this research responds to the call for more research on employees’
behaviour with respect to information security policies within health care [9] and it
focuses communicative aspects of the information security policy artefact, which is an
even more understudied area. As far as we know there exist no quality criteria for
information security policy design in health care anchored in a practice-based pers-
pective.

2 Information Security Policy Theories

An information security policy is a general rule for directing acceptable behaviour of
employees when using an organisation’s information assets [10]; they provide infor-
mation security management with a vehicle for establishing information security
practices in organisations [11]. Given the strategic importance of information assets it
is nowadays stressed that information security management should be integrated into
corporate governance [12]. The executive management at the strategic level outlines a
set of directives to indicate the importance of information assets, which are operatio-
nalized through the organisation’s information security policy design. While informa-
tion security governance research fail to offers detailed guidance on how to develop

 Practice-Based Discourse Analysis of InfoSec Policies 299

information security policies [e.g. 13], there exists practitioner-oriented literature that
do [14, 15]. However, this literature focuses on design guidelines without reflecting on
the end products’ usefulness from an employee perspective. Scholarly studies about
information security policy design exist as well. Gaskell [5] and Sibley [16] have
described the information security policy formulation as an ad-hoc process, although,
for example, Wood [17] has stressed the importance of a well thought out design
process. It is common in information security literature to recommend that this process
should be informed by information security standards [5, 18]. However, the use of
information security standards has been criticised, since they do not take into account
that organisations differ [4, 7], and Wood [17] argued that ‘one must understand the
special needs of an organization before one attempts to generate specific written
management directives’. Knapp et al. [19] provided a more balanced view when pro-
posing that both external and internal aspects of an organisation should influence
information security policy work.

Research on techniques for eliciting local information security requirements [e.g.
20, 21] make a valuable contribution in such cases. Although there is a large body of
research on information security policy, and much consensus can be found with regard
to the importance of information security policies, less attention has been given to how
to design the content of these policies. Wood [17] provided guidelines for the infor-
mation security policy design process, arguing that different audiences often require
tailored policies. Baskerville and Siponen [4] explored the design of information se-
curity policies, but their conclusions are limited to emerging organisations. Doherty
et al. [22] stated that ‘there are very few studies that explicitly address how the scope or
content of information security policies support the employee in their daily work.’ They
concluded that there is a wide diversity of disparate policies in use and that they contain
a low degree of detail. A somewhat broader take on how to design information security
policy content also shows a debate about the ideal number of policies in an organisation
and how they should be inter-related [e.g. 4, 23]. However, Lindup [24] has noted that
in practice organisations often have one single information security policy.

In summary, existing research stresses the importance of congruent communication,
and that information security policies should align both with business strategies and
international standards. However, we found few empirical studies that address the
communicative quality of information security policies. One exception is the study by
Stahl et al. [8] who present six advices on how to design an information security policy,
based on a critical discourse analysis of twenty-five information security policies.

3 Research Approach

3.1 The Study Object and Its Implication on Overall Research Strategy

The research approach taken in this study is discourse analysis [25]. Discourse in an
open sense ‘cover all forms of spoken interaction, formal and informal, and written
texts of all kind’ (ibid p 7). An inter-textual analysis is a natural element of discourse
analysis. So is also an action perspective: ‘Texts … do not just describe things; they do
things.’ (ibid p 6; emphasis in original). A discourse analysis of an information security

300 F. Karlsson et al.

policy will study how different text elements relate to each other; how well they con-
gruently build up the whole text. The discourse analysis will also focus how the text is
intended to influence the regulated practice and how it succeeds to comply with go-
verning statements of higher order (standards and regulations). A discourse analysis of
this kind is qualitative and interpretive with the purpose to reveal meanings of in-
ter-textual and efficacious character. As a practice-based discourse analysis, we have
besides collection and analysis of the information security policy texts also studied the
mentioned practices through observations and interviewing.

3.2 Case Study and Data Collection

This study is as a case study [26], and the analysis is based on a reading of three
documents that regulate the information security practice in one medium-size Swedish
county council. The information security policy consists of one high-level policy
document, and two low-level documents that more in detail describe information
security instructions and rules. The findings in these documents were complemented
with interviews with three high-level information security managers. The interviews
gave us deeper knowledge about the county council’s information security policies and
how they were designed. In order get an understanding of the type of practice we
studied, we selected one hospital within the county council for studies of information
security policy compliance and translation in practice. We chose a hospital with about
750 employees, 142 places of treatment that serves around 90 000 citizens. Two clinics
at the hospital were chosen as cases based on their different degrees of computerization
of patient information: one clinic had manual handling of medical records; the other has
used an EMR system for a number of years. This variety was important for providing us
with rich data concerning information security in both light and heavy computerized
settings, both of which are common in health care. We carried out twenty-four
semi-structured interviews with health care staff (e.g., nurses, physicians, administra-
tors) at the two clinics. The interviews lasted between one and two hours and concerned
how information security were translated and carried out in practice, together with the
reasons for the information security actions. The interviews were tape-recorded and
transcribed. We complemented the interviews with 28 hours of observations of the
information security practice. The observations were documented by note-taking and,
when appropriate, by photographs (for example, how medical record were stored). The
interviews and observations taken together gave us deeper knowledge about how
information security was integrated in the health care practice. During observations we
focused on the same categories as during the interviews, i.e., areas regulating the in-
formation security practice. This resulted in re-interviewing and further probing about
the rationality for information security actions in practice.

3.3 A Conceptual Framework for Practice-Based Discourse Analysis

We characterize this type of discourse analysis as practice-based. A practice is
considered to be ‘embodied, materially mediated arrays of human activity centrally
organized around shared practical understanding’ [27, p 2]. This means that language

 Practice-Based Discourse Analysis of InfoSec Policies 301

and discourse is part of a practice. A practice consists of humans and their activities
including material and semiotic elements. Thus, a study of documents (as e.g. infor-
mation security policies) cannot be made without taking into account the practices
where these documents are generated and used. Three important influences to be used
in discourse analysis have been suggested: a semiotic understanding of different lan-
guage functions; a speech act-based understanding of utterances; an ethnomethodo-
logical understanding of conversation. Consequently, they have stated these demands,
but they have not synthesised and operationalised these theoretical orientations into a
coherent approach for discourse analysis. Within information systems research there
exists several studies that use different linguistic theories, but usually only one such
theory at a time. Goldkuhl [28] has presented a socio-pragmatic communication
framework adapted to studies in information systems. It is a synthesis of speech act
theory [e.g. 29], ethnomethodological conversation analysis [30] and semiotics
[e.g. 31]. Goldkuhl’s [28] framework consists of nine communicative functions. It
emphasises a multi-functional view of language and communication, i.e. we do several
things at the same time while communicating. The nine functions are shown in Table 1
together with an explanation of each function, and the analytical questions we have
used to assess each function.

Table 1. Goldkuhl’s [28] framework of communicative functions

Communicative
function

Explanation Analytical
question

Accountable The message is comprehensible, i.e. include
sufficient self-references and arguments to
explain its role in the communication process.

What is
meant?

Carried The message is using the features of some
medium.

How? By what
means?

Constitutive The message creates changes in social states
between communicators and sometimes so-
cially broader.

What is done?

Directed The message is intended towards one or more
addressees.

To whom?

Expressive The message is an expression of the locutor’s
(the one who says the speech act) subjectivity
(e.g. desires, emotions, values).

By whom?

Referential The message is saying something about some-
thing in the world.

About what?

Pre-situationall
y compliant

The message is in accordance with general
institutions and norms and specific
pre-situational grounds.

Why? What
reasons there?

Projected future
actions

The message is an initiative for further actions. For what?

Situationally
responsive

The message is a response to prior messages
and other situational features.

Why? What
reasons there?

302 F. Karlsson et al.

We have modified the terminology of two functions (carried, constitutive) in order to
make them more intelligible. In our discourse analysis we have selected seven of these
functions to use for our study of the information security policy. We have not used the
functions of carried (since it is sufficient with a general characterization that policies
are written documents), or situationally responsive (since the demand to write a policy
has been excluded from our analysis).

3.4 Analytical Steps

A classical dilemma and choice in empirical social research is how to be open-minded
vs. to be informed by previous theories in relation to the data material. In our study we
used both strategies. We studied the text in an inductive and open-minded way, and then
in the further analysis of the text we applied Goldkuhl’s [28] framework in a
theory-informed way. We have adopted an inquiry attitude [32], i.e. searched for and
recorded what seems problematic in some way from a communicative point of view. In
our case these principles meant the following. First, the information security policy has
been read through and we have noticed all things that caught our attention as being
communicatively problematic. We made an open coding of data through this reading
[33], just stating what kind problems or other peculiarities we identified. This means
that we have selected a set of policy declarations and made annotations to be used for
further analysis.

Second we carried out the theory-informed discourse analysis using the results from
the open coding as input. The theory-informed analysis in our case meant employing
the analytical questions in Table 1. Furthermore, in order to carry out this step the
interviews and observations were necessary background information. We used this
information to interpret the policy declarations (when asking the analytical questions)
from an employee’s point of view, since a practice-based discourse analysis of an
information security policy requires taking into account the practice where it is used.
For example, we used this background understanding when interpreting what the
confidentiality instructions meant for the medical secretaries when they are to fax
patient information to another care provider. The information security policy stated that
‘Patients should be confident that sensitive information does not reach unauthorized’. A
second guideline was the following: ‘Whatever form the information has, or the way in
which it is transmitted or stored, it must always receive adequate protection.’ When
reading these statements we concluded that the instructions were directed (to whom?)
towards the medical secretaries. However, the instructions were vague when it came to
projected future actions (for what?).

Our interviews and observations revealed that the instructions were interpreted as
follows by the staff: First, the medical secretary checked whether or not the care pro-
vider requesting the medical record had the patient’s consent or not, either documented
in the medical records or provided by the inquiring part. Second, the medical secretary
removed the social security number from the physical medical record. This was done to
anonymise the medical record when sending it via fax. Third, she/he added a temporary
code, for example 2020. Finally, after faxing the medical secretary called her/his con-
tact person at the requesting care provider in order to tell the temporary code. However,
this set of actions was difficult to understand of from only reading the information
security policy.

 Practice-Based Discourse Analysis of InfoSec Policies 303

The third step was carried out to organise the analysed policy declarations into
overall themes. These themes, which were inductively generated, are to be seen as
broader problem areas based on the detailed analysis. We ended up with four themes of
importance for design of practical communicative information security policies:
external congruence, goal conflicts, internal congruence, and target group. These
themes were used when constructing the tentative quality criteria, which are found in
Section 4.2.

4 From Discourse Analysis to Tentative Quality Criteria

At the hospital the employees had to deal with three different information security
policy documents that together constituted the information security policy. One doc-
ument contained a high-level description of the information security regulations, while
additional two documents contained low-level descriptions. The presentation below is
structured according to the thematic analysis we carried out. The analysis was brought
further through the formulation of eight tentative quality criteria (Section 4.2). Table 2
shows examples from our analysis. The table has three columns. The left-most column
contains identifiers referring to the policy documents. Passages from the high-level
document are referred to using 1.x, while the two low-level documents are referred to
as 2.x and 3.x. The second column shows the policy declarations. Finally, the
right-most column contains the analysis. Due to the limited space we only present the
communicative functions that were considered problematic when analysing the policy
declarations.

4.1 Thematic Analysis of Information Security Policy

Internal congruence is our first theme. This theme includes concerns about projected
future actions that arise from incomplete explanations and definitions, inconsistent use
of terminology, inconsistent communicative function, inconsistent description of the
information security mechanisms in use, inconsistent description of the same rule and
unclear references between the different information security policy documents. The
incomplete explanations and definitions found in the three policy documents can be
exemplified with passage 2.7 in Table 2. This quote refers to ‘sensitive information’
that must be removed from the hard drive before the computer is handed over to ex-
ternal service. However, none of the three investigated policy documents contains a
definition of ‘sensitive information’. In addition, the same document also includes the
term ‘business critical information’ which is never defined and the differences between
these categories are not accounted for. It results in a lack of guidance of the employees
due to lack of definitions.

Passage 1.4 in Table 2 is to some extent related to the use of definitions, however it is
an example of inconsistent use of terminology once it is introduced. This passage gives
the impression that information security is achieved through ‘information security
policies, guidelines, and instructions’, which means that technical measures are not
necessary. However, it contradicts, for example, passage 2.6 and 2.11 that clearly
contain references to technical security controls. It is also contradicts other references
to the existence of technical security controls, such as password controls: ‘Do not

304 F. Karlsson et al.

reveal your password to others, or lend out your authorization’. Consequently, the first
and second policy documents give different impressions of what types of information
security measures that are needed, and also how the most fundamental concept in the
policy, information security, is defined.

Table 2. Practice-based discourse analysis of information security policy

No Policy declaration Analysis
1.2 ‘Information security must protect

patients, employees and the public
from harm caused by deficiencies
in information management or
disruption in information systems.
The protection of human life,
health and privacy are valued the
most.’

Pre-situational grounds: Based on
health law and security standards.
Accountable: A goal conflict between
health and privacy is built into this
policy statement. Projected future
actions: There is no guidance to users
for choice between conflicting goals.

1.3 ‘Laws and regulations shall con-
stitute the lowest level when spe-
cifying security measures and
controls.’

Pre-situational grounds: Difficulties
to know which laws and regulations
one is to pay attention to. Projected
future actions: Risk that laws and
regulations are neglected.

1.4 ‘Information security is achieved
by developing and complying with
appropriate management tools such
as information security policies,
guidelines, and instructions.’

Pre-situational grounds: Lack of
compliance with standards; neglect of
technical, physical and informal
security. Accountable: Contradictory
to other statements including tech-
nical security. Projected future ac-
tions: Risk of neglecting measures
(e.g. technical).

2.6 ‘If you leave your work place, you
must lock the PC using the
"Ctrl-Alt-Del" or log out, even if it
is just for a short while.’

Accountable: Very clear and detailed
instruction implies a shift in the text
from abstract explanations to con-
crete and detailed measures. Hard to
understand how and when this type of
shift occurs. Projected future actions:
Very clear measures specified.

2.7 ‘If your personal computer is
handed over - for external services,
you must ensure that any sensitive
information is removed from the
hard drive. It is the organisation’s
responsibility to ensure that the
drives are cleaned before the
computer goes to scrapping or
another organisation.’

Directed: Ambiguous addressee (you
vs. organisation). Accountable: Sen-
sitive information is. Constitutive:
Ambiguous responsibility is consti-
tuted. Projected future actions: Li-
mited guidance for the users to take
actions concerning file deletion when
the PC is handed over to external
parties.

 Practice-Based Discourse Analysis of InfoSec Policies 305

Table 2. (Countinued)

2.10 ‘Information classification should
be performed according to docu-
mented rules for classification of
information.’

Directed: This instruction does not
target regular users.

2.11 Examples of advice for manage-
ment of information:

• ‘Information shall not be stored
on the "own" local disc’

• Backup should always be taken

• Unauthorized access shall be
prevented’

Accountable: Why are “examples”
given; not a complete list? Constitu-
tive: What is meant by “advice” in
this regulative context? Directed:
These “advices” are addressed not
only to regular users. Unclear who the
addressees are. Projected future ac-
tions: Difficult for users to under-
stand the scope of the instructions.

2.17 The ‘Information security policy’-
document is referred to as the
IT-policy.

Referential: the reference to the
documents is incorrect. The naming
of the document is inconsistent.

3.5 ‘Do not save patient information or
other sensitive information on your
local hard drive.’

Accountable: Unclear what ‘other
sensitive information’ means. Pro-
jected future actions: Unclear what
information can be saved locally

3.7 ‘Sensitive information may only in
exceptional cases be saved on the
local hard drive.’

Accountable: Unclear what ‘sensitive
information’ means. In addition,
earlier they have stated that you are
not allowed to store sensitive infor-
mation on your local hard drive. Cf.
3.5 Projected future actions: Unclear
what actions are allowed or not.

The three documents have inconsistent communicative functions. Information se-

curity management switches from being regulative to in some parts being educational. As
discussed in Section 2 the main purpose of a policy is limiting acceptable behaviour of
employees, meaning that its primary communicative function is to be regulative. Of
course, it is sometimes necessary to educate employees, but the two types of commu-
nicative functions are highly intertwined in the documents, without clear indication
which communicative function that is in focus. For example, the detailed instructions on
how to lock a workstation (Passage 2.6), is followed by an educational passage on why
functionality to log the employees’ activities is used: ‘Logging of activities and transac-
tions are carried out in order to continuously monitor the security of the IT systems. The
purpose is to trace important events if disturbances occur in the systems. Tracing is also
used to free the innocent, and discover threats to the information security.’ Another edu-
cational passage in the document is a discussion on malware: ‘code in the form of viruses,
trojans, or worms could damage, distort or destroy information, or make sensitive in-
formation available to persons not allowed to see the information … Malware can be
said to be software’.

306 F. Karlsson et al.

In addition, Passage 2.6 is also an example of how the available information security
mechanisms are described using an inconsistent level of abstraction. This specific
passage is a very clear and detailed instruction compared to a passage similar to the
following one, which is found sentences earlier: ‘Remember that you are responsible
for everything that is registered with your user identity.’ Hence, from an employee’s
point it becomes difficult to understand the role of the document. Passages 3.5 and 3.7
are examples of inconsistent descriptions of the same rule. In this case it concerns if the
employee are allowed to store sensitive information on ‘the local hard drive’. In pas-
sage 3.5 the regular user is not allowed to store sensitive information on the computer.
While, passage 3.7 states that such information should only ‘in exceptional cases be
saved on the local hard drive’. This is an inconsistent description, where the employees
are left in the dark on how to act. Finally, as discussed earlier the investigated infor-
mation security policy consists of three documents, and they contain references to each
other. But the naming of the documents is not consistent (2.17), which means that it is
difficult for the employees to find the right related document. For example, the ‘In-
formation security policy’-document is referred to as the IT-policy in the ‘Security
instructions for county council IT users’-document.

Target group is the second theme, which covers the problem of ambiguous addressees
in three policy documents. Passage 2.7 in Table 2 shows one such case. As discussed
above, the example concerns how to handle the computer when it is handed over to a
third, external, part for service. However, the regulation is ambiguous. In the first part of
the example, there is a focus on ‘you’ as the addressee: ‘If your personal computer is
handed over - for external services, you must ensure that any sensitive information is
removed from the hard drive’. But in the next sentence it is at the same time the respon-
sibility of the organisation, which means that it is not the employee’s responsibility.
Finally, the third sentence reads ‘IT Support provides software for cleaning and can assist
with clean-up’, which yet again signals that it is the employee's responsibility. A second
example of ambiguous addresses is passage 2.10: ‘Information classification should be
performed according to documented rules for classification of information.’ Information
classification is carried out in order to determine the right level of information security
measure. It is normally an activity of information security management or general
management. If employees would carry out this activity they might start neglecting
existing information security measure based on their own classifications. Consequently, it
is not evident who the information security management is actually regulating, which in
the end means that an ambiguous responsibility is constituted.

External congruence is the third identified theme. In several occasions the three
policy documents reference other documents such as laws, regulation, or standards.
However, the congruence with these sources is not clear. Passage 1.4 claims, as dis-
cussed earlier, that information security is achieved through ‘information security
policies, guidelines, and instructions.’ Hence it is a focus on administrative routines,
neglecting technical, physical and informal information security. The same document
refers to the ISO-standard 17799, which does not described information security as
something to be addressed by administrative means only. Another problem with the
information security policy documents is that information security management ref-
erences laws and regulations in general, without specifying exactly which laws and
regulations (Passage 1.3). Consequently, it is difficult for the employees to know ex-
actly which laws and regulations they are to pay attention to.

 Practice-Based Discourse Analysis of InfoSec Policies 307

Goal conflicts are the fourth and final theme we identified. The three investigated
policy documents included a number of goal conflicts. Passage 1.2 concerns the tension
between protection of human life and health on one hand, and protection of patient
information, i.e. privacy, on the other. In the policy document it is stated that ‘protec-
tion of human life, health and privacy are valued the most.’ Another example of
conflicting goals is the following which is found in passage 2.1: ‘In addition to legal
requirements, there are additional demands from organisations and the public, stating
that information must be correct, it must be available and must be handled with respect
to privacy or publicity.’ In this case the tension is between privacy and publicity. A third
example is passage 2.11 gives advises ‘for management of information’. However,
these advises are not directed towards employees only. From an employee’s point of
view it is contradictory that information should not be stored on the local disc, but at the
same time backup should always be taken. In all these cases the information security
management leaves the employees without any guidance on how to choose between the
conflicting goals.

4.2 Towards Tentative Quality Criteria

The practice-based discourse analysis of this case material has revealed problems with
the information security policy. The analysis has aimed for abstraction and four themes
have been formulated. These abstracted themes (designating problematic areas in the
information security policy) were used for articulating general expectations on policy
features. The underlying assumption in our work is that an information security policy
should be functional in regulating employees’ actions with respect to information
security. The policy documents must be comprehensive and useful in guiding em-
ployees’ actions. The discourse analysis has been a generative basis for formulation of
tentative quality criteria for information security policies in health care. The quality
criteria express what is considered a good information security policy in health care, i.e.
they express positive design values. We have formulated them as criteria that can be
useful both in a design/formulation situation and in an evaluation situation. Our criteria
cover both the whole information security policy (possibly consisting of different
documents of both high-level and low-level character) and different parts of such
policy documents.

Quality criteria:

1. The information security policy shall not introduce goal conflicts. We identified
several goal conflicts (1.2, 2.1) that the employees were left to manage. The
policy was ambiguous with regard to employee prioritization. Theme: goal
conflicts.

2. External policies shall be translated and transformed to the current work prac-
tice when such parts are included in the information security policy. Our analysis
(1.3) showed that parts of laws and international standards were included in the
policy without paying attention to the local context, or that only vague references
were provide to laws. Theme: external congruence.

3. The information security policy (or explicit parts thereof) shall have clear and
uniformed user groups. The analysis (2.7) showed that it was unclear who were
affected by the instructions. Theme: target group.

308 F. Karlsson et al.

4. The information security policy shall contain congruent guidelines for actions
that are well adapted to the current work practice. The analysis (2.6, 3.5, 3.7)
showed that instructions are provided at a general level, which left room for
interpretation on how to implement the guidelines in the work practice. Theme:
internal congruence.

5. The information security policy shall have a clear and congruent conceptual
framework adapted to the current work practice. The analysis (1.4, 2.6, 2.11)
showed an ambiguous use of concepts, where several concepts were used for the
same phenomenon. As a consequence, the policy was ambiguous when referring
to phenomena in the work practice. Theme: internal congruence.

6. The information security policy (in whole and parts) shall have a clear structure.
Our analysis (2.7, 2.17) showed ambiguously structured documents where
phenomena concerning the same target group were discussed at multiple places.
Thus it was difficult for employees to know when they had assimilated all in-
formation concerning a specific phenomenon. Theme: internal congruence.

7. The information security policy (in whole and parts) shall have clear objectives;
implying clear communicative functions of the document. Our analysis (2.6)
showed that the communicative functions of specific parts of the documents were
unclear (regulative and educational sections are highly intertwined). Making it
difficult to identify regulatory instructions. Theme: internal congruence.

8. The information security policy shall be constitutively clear; clarifying respon-
sibilities and social commitments and expectations. The analysis (2.10) showed
that the responsibilities of the employees were unclear. Hence, it was difficult to
achieve accountability. Theme: target group.

5 Conclusions

An information security policy of high communicative quality has the potential to be a
practical and useful tool for information security management. The purpose of this
paper was a) to illustrate the usefulness of practice-based discourse analysis for un-
derstanding information security policy design, and b) to provide a set of tentative
quality criteria for information security policies in health care from a practice pers-
pective. Based on a practice-base discourse analysis that includes high-level and
low-level information security policy documents we suggest eight quality criteria for
design of information security policies in health care. Our findings are based on one
case study. We therefore see interesting venues for future research to further validate
the criteria and make them more precise. Another research task is to investigate if any
of these criteria are applicable in other business sectors, and if so to what extent. Our
quality criteria have, to some extent, similarities with the criteria presented by Stahl et
al. [8]. If we are to highlight one similarity, both studies stress the importance of using a
clear and congruent conceptual framework adapted to the current work practice. Oth-
erwise, the policies are not accessible to the employees. However, unlike Stahl et al. [8]
our quality criteria also address the importance of the structure of policy documents.
This difference is a result from Stahl et al.’s [8] choice to limit their study to high-level
policies, whereas we studied both high-level and low-level policy documents and their

 Practice-Based Discourse Analysis of InfoSec Policies 309

relationships. The criteria presented are all derived from a practice-based perspective. It
means that they emphasize information security policies as useful tools for employees.
This perspective represents an alternative and a contrast to the management perspec-
tive. When designing information security policies both perspectives need to be ac-
knowledged in order to create a balanced solution. Our list of quality criteria is one
important component in the discussion to find such a balance.

References

1. Ernst & Young: Ernst & Young 2008 Global Information Security Survey. Ernst & Young
(2008)

2. Ernst & Young: Borderless security - Ernst & Young’s 2010 Global Information Security
Survey. Ernst & Young (2010)

3. Vroom, C., von Solms, R.: Towards information security behavioural compliance.
Computers and Security 23, 191–198 (2004)

4. Baskerville, R., Siponen, M.: An information security meta-policy for emergent organiza-
tions. Logistics Information Management 15, 337–346 (2002)

5. Gaskell, G.: Simplifying the onerous task of writing security policies. In: 1st Australian
Information Security Management Workshop (2000)

6. ISO: ISO/IEC 27002:2005, Information Technology - Secuirty Techniques - Code of
Practice for Information Management Systems - Requirements. International Organization
for Standardization (ISO) (2005)

7. Baskerville, R.: Information systems security design methods: Implications for information
systems development. ACM Computing Surveys 25 (1993)

8. Stahl, B.C., Doherty, N.F., Shaw, M.: Information security policies in the UK healthcare
sector: a critical evaluation. Information Systems Journal 22, 77–94 (2012)

9. De Lusignana, S., Chanb, T., Theadoma, A., Dhoula, N.: The roles of policy and
professionalism in the protection of processed clinical data: A literature review. Interna-
tional Journal of Medical Informatics 76(4), 261–268 (2007)

10. Davis, G.B., Olson, M.H.: Management information systems: conceptual foundations,
structure, and development. McGraw-Hill Inc., New York (1985)

11. von Solms, R., von Solms, B.: From policies to culture. Computers and Security 23,
275–279 (2004)

12. von Solms, B.: Corporate Governance and Information Security. Computer & Security 20,
215–218 (2001)

13. von Solms, R., von Solms, S.H.: Information Security Governance: A model based on the
Direct-Control Cycle. Computer & Security 25, 408–412 (2006)

14. Peltier, T.R.: Information security policies and procedures - a practitioner’s reference.
Auerbach Publications, Boca Raton (2004)

15. Wood, C.C.: Information security policies made easy. Information Shield, Huston (2001)
16. Sibley, E.H.: Experiments in organizational policy representation: resuls to date.

In: Proceedings of the International Conference on Systems, Man and Cybernetics, vol. 1,
337–342 (1993)

17. Wood, C.C.: Writing InfoSec Policies. Computer & Security 14, 667–674 (1995)
18. Janczewski, L.: Managing Security Functions Using Security Standards. In: Janczewski, L.

(ed.) Internet and Intranet Security Management: Risks and Solutions, pp. 81–105. IGI
Global, Hershey (2000)

310 F. Karlsson et al.

19. Knapp, K.J., Morris Jr., R.F., Marshall, T.E., Byrd, T.A.: Information security policy: An
organizational-level process model. Computer & Security 28, 493–508 (2009)

20. Fabian, F., Gürses, S., Heisel, M., Santen, T., Schmidt, H.: A comparison of security
requirements engineering methods. Requirements Engineering 15, 7–40 (2010)

21. Mellado, D., Blanco, C., Sánchez, L.E., Fernaández-Medina, E.: A systematic review of
security requirements engineering. Computer Standards and Interfaces 32, 153–165 (2010)

22. Doherty, N., Anastasakis, L., Fulford, H.: The information security policy unpacked: A
critical study of the content of university policies. International Journal of Information
Management 29, 449–457 (2009)

23. Siponen, M.: Policies for construction of information systems’ security guidelines. In: The
15th International Information Security Conference (IFIP TC11/SEC2000), Beijing, China
(2000)

24. Lindup, K.: The Role of Information Security in Corporate Governance. Computer &
Security 15, 477–485 (1996)

25. Potter, J., Wetherell, M.: Discourse and social psychology. Beyond attitudes and behaviour.
Sage, London (1987)

26. Yin, R.K.: Case study research: design and methods. Sage, Thousand Oaks (1994)
27. Schatzki, T.R.: Introduction: Practice theory. In: Schatzki, T.R., Knorr Cetina, K., von

Savigny, E. (eds.) The Practice Turn in Contemporary Theory. Routledge, London (2001)
28. Goldkuhl, G.: The many facets of communication – a socio-pragmatic conceptualisation for

information systems studies. In: Proceedings of the Workshop on Communication and
Coordination in Business Processes, Kiruna (2005)

29. Habermas, J.: The theory of communicative action1. Reason and the rationalization of
society. Polity Press, Cambridge (1984)

30. Sacks, H.: Lectures on conversation. Blackwell, Oxford (1992)
31. Bühler, K.: Theory of language. John Benjamins Publishing, Amsterdam (2011)
32. Dewey, J.: Logic: The theory of inquiry. Henry Holt, New York (1938)
33. Corbin, J., Strauss, A.: Basics of qualitative research. Techniques and procedures for

developing Grounded Theory. Sage, Thousand Oaks (2008)

Understanding Collaborative Challenges
in IT Security Preparedness Exercises

Maria B. Line1,2(B) and Nils Brede Moe2

1 Norwegian University of Science and Technology (NTNU),
Trondheim, Norway

maria.b.line@item.ntnu.no
2 SINTEF, Trondheim, Norway

nils.b.moe@sintef.no

Abstract. IT security preparedness exercises allow for practical collab-
orative training, which in turn leads to improved response capabilities to
information security incidents for an organization. However, such exer-
cises are not commonly performed in the electric power industry. We
have observed a tabletop exercise as performed by three organizations
with the aim of understanding challenges of performing such exercises.
We argue that challenges met during exercises could affect the response
process during a real incident as well, and by improving the exercises
the response capabilities would be strengthened accordingly. We found
that the response team must be carefully selected to include the right
competences and all parties that would be involved in a real incident
response process, such as technical, managerial, and business responsi-
ble. Further, the main goal of the exercise needs to be well understood
among the whole team and the facilitator needs to ensure a certain time
pressure to increase the value of the exercise, and both the exercise and
existing procedures need to be reviewed. Finally, there are many ways
to conduct preparedness exercises. Therefore, organizations need to both
optimize current exercise practices and experiment with new ones.

Keywords: Information security · Incident management · Preparedness
exercises · Training · Decision-making · Self-managing teams

1 Introduction

Preparing for information security incident management requires training. Basic
structures such as well documented procedures and clear definitions of roles and
responsibilities need to be in place, but during an incident, there is no time
to study documentation in order to figure out the most appropriate response
strategies; involved personnel needs to be well trained and well experienced, and
hence able to make the right decisions under pressure [1]. Wrong decisions may
cause the incident to escalate and lead to severe consequences.

The electric power industry is currently implementing major technological
changes in order to achieve smart grids. These changes concern new technolo-
gies, higher connectivity and more integration, which increase the attack surface
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 311–324, 2015.
DOI: 10.1007/978-3-319-18467-8 21

312 M.B. Line and N.B. Moe

and the potential consequences of attacks [2]. At the same time, current threat
reports show that targeted attacks are on the rise, and critical infrastructures
are attractive targets [3]. However, recent studies of the electric power industry
show that preparedness exercises for IT security incidents are not commonly per-
formed [4,5] though guidelines exist for how to plan and perform such exercises
[6,7]. Reasons for not performing such exercises seem to relate to their percep-
tion of the probability of being attacked and their understanding of potential
threats and consequences, and that more pressing tasks receive higher priority.
Still, personnel from both the IT staff and the industrial control staff express
confidence in their organization’s incident response capabilities.

Motivated by the importance of collaborative training for responding to infor-
mation security incidents, and the evident problem of adopting such training,
the following research question is defined for our study:

What are the challenges of performing tabletop exercises for IT security inci-
dents?

We will discuss how these challenges might affect the incident management
process during a real-life incident and provide recommendations for how to
reduce these challenges in the setting of an exercise, as that should positively
affect a real-life incident management process as well.

The paper is structured as follows. Related work on preparedness exercises are
described in Section 2. The research method and our case context are presented
in Section 3, while Section 4 sums up the observations made during the case
study. Challenges are discussed in Section 5 along with recommendations for
preparedness exercises, and Section 6 concludes the paper.

2 Background

The purpose of an emergency preparedness exercise is to strengthen the response
capabilities of an organization by training personnel in responding to situations
that deviate from normal operations. A certain baseline of written plans and
procedures should be present. However, during an emergency there is a need
for a more dynamic process that requires coordination and improvisation, and
where exceptions and violations are managed, and experienced incident handlers
are valued. Relying on predefined documentation is what Hale and Borys refer to
as Model 1 in the use of safety rules and procedures [8], while allowing for rules
to be emerged from practical experience is referred to as Model 2. Exercises are
a way of developing Model 2. In the following we elaborate on tabletop exercises
specifically, and coordination and improvisation in the incident response process.

2.1 Tabletop Exercises

Tabletop exercises prepare personnel for responding to an emergency situation.
They allow for discussions of roles, responsibilities, procedures, coordination,

IT Security Preparedness Exercises 313

and decision-making, and are a reasonably cost-efficient way of reviewing and
learning documented plans and procedures for incident response. Tabletop exer-
cises are usually performed in a classroom without the use of any specific equip-
ment. A facilitator presents a scenario and initiates the discussion. According
to the National Institute of Standards and Technology (NIST), a tabletop exer-
cise should consist of the following four phases; Design the event by identifying
objectives and participants, Develop the scenario and guides for the facilitator
and the participants, Conduct the exercise, and Evaluate by debriefing and iden-
tifying lessons learned [6]. As a training method it suffers from the weakness that
it does not provide practical demonstrations of the effects of an incident or the
emergency management’s true response capabilities [9].

In his study of preparedness exercises initiated by the Norwegian Water and
Energy Directorate (NVE), G̊asland [10] found that there is a positive attitude
for participating in exercises and an understanding that collaboration is impor-
tant in problem-solving processes. He still found that exercises compete with
daily tasks for prioritization, and he considered it to be an obstacle to learning
if exercises are not used as a means of making improvements afterwards. Further,
he emphasized the importance of making exercises as realistic as possible. How-
ever, creating realistic scenarios is challenging [11], and even though a scenario
is successfully responded to in an exercise, it does not give any guarantees that
a real emergency situation will be successfully responded to [12].

2.2 Coordination in Preparedness Exercises

Coordination of work and making collaborative decisions are important aspects of
the incident response process and hence also of preparedness exercises. Respon-
ding to an IT security incident usually implies personnel from different parts
of an organization collaborating on solving complex problems. “Coordination
is management of interdependencies between activities” [13] and coordination
mechanisms are the organizational arrangements, which allow individuals to real-
ize a collective performance [14]. Interdependencies include sharing of resources,
synchronization of activities, and prerequisite activities. Coordination challenges
in incident response are functions of the complexity, such as processes and tech-
nology.

Further, responding to an IT security incident is creative work, as there
might not be one correct solution and a number of both uncertainties and inter-
dependencies need to be taken into account. In creative work progress towards
completion can be difficult to estimate [15] because interdependencies between
different pieces of work may be uncertain or challenging to identify. This makes
it difficult to know who should be involved in the work, and whether there is
a correct order in which parties should complete their own specialized work
[14]. Further, in creative work it is essential to improve the knowledge transac-
tions between team members. This is captured in a transactive memory system
(TMS), a shared cognitive system for encoding, storing and retrieving knowl-
edge between members of a group [16]. TMS can be understood as a shared

314 M.B. Line and N.B. Moe

understanding of who knows what and also on the degree to which individual
knowledge sets are differentiated.

Coordination can be either predefined or situated [17]. Predefined coordina-
tion takes place prior to the situation being coordinated and can be understood
as what Hale and Borys refer to as Model 1 [8] and an incident response scheme as
described by ISO/IEC 27035 – Information security incident management [18].
It typically consists of establishing written or unwritten rules, routines, proce-
dures, roles, and schedules. Situated coordination, on the other hand, occurs
when a situation is unknown and/or unanticipated, such as when an IT secu-
rity incident strikes, and can be understood as Model 2 [8]. Those involved in
the situation do not know in advance how they should contribute. They lack
knowledge of what to achieve, who does what, how the work can be divided,
in what sequence sub-activities should be done, when to act, etc. Consequently,
they have to improvise and coordinate their efforts ad hoc. In most collaborative
efforts there is a mix of predefined and situated coordination. Involved actors
may for instance already know the goal, but not who performs what, or they
may know who does what but not when to do it. To compensate for lacking
predefined knowledge of how the actual unfolding of activities in an exercise will
be, the participants must update themselves on the status of the situation.

To handle a crisis, not only does the team need to coordinate their work;
they also need to take decisions together and be responsible for managing and
monitoring their own processes and executing tasks, i.e they need to be able to
self-manage [19].

3 Method

Since the goal of this research was to explore and provide insight into challenges
experienced during IT security preparedness exercises, it was important to study
such exercises in practice. We designed a holistic multiple case study [20] of three
IT security preparedness exercises in three different organizations. According to
Yin, case studies are the preferred research strategy when a “question is being
asked about a contemporary set of events over which the investigator has little
or no control” [ibid p. 9]. In the following, we present the scenario used, the
organizations studied, and how data collection and analysis were performed.

3.1 Scenario

One scenario recently recommended by the authorities1 was used by all orga-
nizations in our study. This scenario describes an information security incident
that escalates through five phases:

1. Abnormally large amounts of data is sent to external recipients.
2. Two weeks later, the SCADA supplier wants to install a patch. The contact

is made in a different way than what is regulated in the service agreement.
1 Norwegian Water Resources and Energy Directorate (NVE).

IT Security Preparedness Exercises 315

3. Three months after the first event, one area suffers from power outage. The
monitoring systems do not display any alarms.

4. Customers start calling as more areas suffer from power outage. The moni-
toring systems do still not display any alarms.

5. Mobile communications and Internet connections are down.

The participants had 20 minutes to discuss each phase before they were given
information about the next. For each phase the participants had to describe how
they would interpret the events and which actions they would take.

3.2 Case Context

The three organizations in our study are Norwegian Distribution System Opera-
tors (DSOs) and they are among the ten largest DSOs in Norway. For organiza-
tions A and B, this was their first execution of such a collaborative exercise for
IT security. Organization C had performed a similar exercise once before, and
the Emergency Management Team performs preparedness exercises regularly for
a variety of incident types. In the following, we present the organizations and
how each of them set up their exercise, as well as all participants and their num-
ber of years of experience in the organization.

Organization A. Three groups of personnel were represented in this exercise: IT
operations, industrial control systems, and network infrastructure. Nine partic-
ipants were present, including the Preparedness Coordinator2, a representative
from external supplier of SCADA systems, and the facilitator, cf. Table 1.

Table 1. Participants in organization A

Role Exp.
IT production manager 5
IT security coordinator 25
Fiber networks manager >20
Senior engineer, fiber networks 5
Control systems manager 20
Special advisor, remote control units >30
Service engineer, supplier of control systems >30
Emergency preparedness coordinator >30
IT security coordinator for control systems (facilitator) 28

Organization B. Fourteen participants represented three different areas of
expertise: IT, control systems, and control room operations. They were divided
into three groups for the exercise, and there was one observer in each group, cf.
Table 2. “GO” indicates who was the group observer. The intention was to have
all three areas of expertise represented in each group, but last minute changes
due to sudden business-related events caused group 1 to not have anyone from
control systems. The HSE/Quality/Preparedness Coordinator, who has more
than 20 years of experience, visited all three groups and is therefore not listed
in the table in one specific group.
2 All DSOs are required to have this role assigned to someone.

316 M.B. Line and N.B. Moe

Table 2. Participants in organization B

Group 1 Group 2 Group 3
Role Exp. Role Exp. Role Exp.
Control operations eng. 10 Control operations eng. 25 Control systems engineer 6
IT infrastructures engr. 9 Control operations eng. >20 Control room manager 8
IT operations engineer 1 IT operations engineer 29 IT operations engineer >15
IT manager 4 IT operations engineer 8 IT operations engineer 8
Control sys. manager (GO) 1 IT business sys. manager >20 IT security manager (GO) 12

IT consultant 1
Control ops. manager
(GO)

>10

Organization C. Twelve employees took part in the exercise, cf. Table 3. Five
belonged to the Emergency Management Team and were called for when their
presence was needed. One person facilitated the exercise in close collaboration
with the IT security coordinator.

Table 3. Participants in organization C

Technical personnel Emergency Management Team
Role Exp. Role Exp.
Manager, Control room DSO 5 Main corporation, IT manager 3
Deputy manager, Control room DSO 34 Power production, CEO 19
Manager, Control systems 36 DSO Technical manager 28
IT operation manager 4 Emergency preparedness coordinator 30
IT network security engineer 6 DSO Manager, emerg. prep. manager 5
Marketing, Broadband, Tech. manager 8

3.3 Data Collection and Analysis

The first author contributed to the planning of all the tabletop exercises. Before
the scenario was presented to the participants, they were asked about their
expectations for the exercise. A retrospective was facilitated after the exercise,
where all participants reflected upon what worked well and what could have been
done differently. Their expectations from beforehand were discussed; whether
they were fulfilled and why/why not.

For the analysis, we described the tabletop exercises and evaluations from
each organization to achieve an understanding of what was going on during the
exercises. Then we categorized interesting expressions and observations, before
we compared findings between the organizations.

4 Results

The three organizations carried out the preparedness exercises according to gen-
erally recommended NIST practices. Plans and goals of the exercise were estab-
lished in advance, and they all discussed the five phases of the scenario. While
the three organizations used the same scenario and main agenda for the exercise,
they all had diversity in goals and the number and types of participants. Our
observations are hereby presented, as characterized by the following descriptions:

IT Security Preparedness Exercises 317

1. Knowledge exchange and process improvement (org. A)
2. Cross-functional self-managing groups (org. B)
3. Involvement of Emergency Management Team (org. C)

4.1 Knowledge Exchange and Process Improvement

In organization A the IT security coordinator for control systems planned and
facilitated the exercise. He presented his goals for the exercise in the begin-
ning: knowledge exchange across organizational boundaries, obtaining a common
understanding of what is technically possible in todays’ systems, identifying tech-
nical and organizational improvements, and ideas for future exercises. The par-
ticipants were seated around one big table. The scenario was already known to
two of the participants; the fiber networks manager and the emergency prepared-
ness coordinator; as they had participated in this exact same exercise the week
before in a different context. This was the only organization that included one
participant from their supplier.

A few participants dominated throughout the whole discussion and nobody
seemed to take charge of the group as a chair person responsible for involving all
participants and achieving consensus in the group. For the first three phases the
IT security coordinator and the fiber networks manager appeared to be quite
sure of what would be the right choices of action. Still, they were open about
lacking knowledge of systems outside their own domain and asked questions
in order to get the whole picture. The facilitator later commented that he had
expected these two participants to dominate because of their roles, competences,
and personality. He added that in a real emergency situation, only four of the
participants would be involved in the crisis management group: the two most
dominant participants, the control systems manager, and himself.

The participants were satisfied with this exercise being performed, as they
see this as an important scenario for preparedness exercises and as lacks were
revealed that they need to work on to improve their own response capabilities.
Furthermore, they approved of the initiative of making different parts of the
organization meet for an IT security exercise. However, some participants felt
that the discussion was a bit out of control, as they did not manage to keep the
focus on solving the actual problems presented in the scenario. They missed a
person facilitating the discussion. The facilitator, on the other hand, was satisfied
with the discussion, as he saw it as valuable knowledge exchange, which was one
of his main goals. At the same time, some participants would have liked to have
more time for discussions. Furthermore, some perceived the last phase of the
scenario to be unrealistic and unlikely.

One important insight obtained was that they would not be able to relate the
event in the third phase to the two events that occurred three months earlier.
Their main priority is usually to get the systems back to normal operations, while
understanding why the incident occurred typically receives less focus, if any. A
number of improvements were identified, regarding both technical and organiza-
tional aspects, in order to strengthen the response capabilities for information
security incidents affecting complex IT and control systems.

318 M.B. Line and N.B. Moe

4.2 Cross-Functional Self-Managing Groups

The exercise in organization B was prepared by a group of three managers: of IT
security, control systems, and the control room. The former had participated in
a similar exercise before. The goal of the exercise was to practice collaboration
between the departments of industrial control and IT systems. The subgoals
were to get to know persons, tasks, and responsibilities across the two involved
departments and identify improvements to existing procedures for emergency
preparedness and information security in general. The three managers acted as
observers; one for each group of participants. They were responsible for present-
ing the scenario, making sure the group made decisions for each phase of the
scenario, and assisting the group in keeping the discussion going if necessary.
Each group was seated around one table in three different meeting rooms.

The group observers reported that in general, the group discussions were
good and nobody seemed to dominate. In group 3 the control room manager
took to some extent on the role as a chair person for the group; the group
observer perceived this as natural based on his role in the organization. This
group observer further stated that the participants appeared curious on each
others’ competences and responsibilities as they lacked this insight in order to
get the big picture. The observer in group 1 would like to see more involvement
from the management level in preparedness exercises.

Each group was intended to be self-managing, with as little intervention from
the group observers as possible. Reflections from the group observers indicated
that it was difficult to keep quiet, as they wanted to contribute. This was par-
ticularly challenging for the observer in group 1, as this group suffered from the
lack of control systems personnel, and he was the only one with this competence.
He still chose to remain fairly passive. All group observers reported that they
did not need to intervene in order for the discussions to keep going. They did
not need to push their groups into making decisions either, as the groups were
focused on solving the problems as described in the scenario. While all groups
made several decisions on what would be appropriate actions for each phase of
the scenario, they did not present clear solutions to all sub-problems.

There was some criticism to the scenario description: “It is stated here that
we reinstalled (...), but we would never have done that because (...)”. Some
pointed out that the scenario was not realistic because of how their systems are
integrated, while others found the scenario to be quite realistic.

The evaluation showed that the participants were overall satisfied with the
exercise. They appreciated the opportunity to meet and get to know colleagues
from other parts of the organization and to get insight into their areas of responsi-
bilities and knowledge. The participants would have liked to have more time than
20 minutes for discussions for some of the phases. Furthermore, they lacked the
opportunity to hear how the other groups had solved the problems. A separate
meeting for this was arranged a couple of weeks later. One participant suggested
they use the existing preparedness plans and procedures actively during such an
exercise. The group observers found the thorough evaluation process to be very

IT Security Preparedness Exercises 319

valuable, and they saw it as an advantage that it was lead by an external (one
researcher) as it made the participants put extra effort into contributing.

4.3 Involvement of Emergency Management Team

In organization C the exercise was planned by the IT security coordinator and
a facilitator from the communications department. The goal of the exercise was
awareness raising and practice in responding to IT security incidents that occur
in the control systems. The participants were seated around one big table. Five
representatives from the Emergency Management Team were present during the
introduction. Three of them left the room when the scenario was presented,
while two chose to stay as passive observers. The intention was that the com-
plete Emergency Management Team should be called for at a later phase of the
scenario, when the seriousness of the incident required them to be involved, in
order to resemble a realistic situation. They were called for twice.

When the first phase of the scenario was presented, the IT operation manager
quickly claimed ownership of the incident. He said that he would be the one to get
the first alert, and that he would be the one to initiate analyses and reporting to
other stakeholders in the organization. One issue that was thoroughly discussed,
was the reporting from IT to the control room: when would that be done, if at all;
is this relevant information for the control room staff; and is this reporting line
documented. This was identified as a lack in the documented procedures when
one participant checked these during the discussion. The group still knew who
to contact. Another issue that received a lot of attention, was the question of
shutting down the control systems. The IT operation manager would recommend
this at the stage where the control room supplier calls and wants to install a
security patch in the control systems (phase two), as he was worried about
the malware infections spreading further into the systems. The control system
manager on the other hand claimed that shutting down the control systems has
extensive financial consequences for the operations, as manual operations are
expensive. The Emergency Management Team decided to shut down the control
systems in the fourth phase of the scenario.

During the evaluation it was agreed that such an incident would pose a
great challenge for the organization. They still concluded that the situation was
resolved satisfactorily in this exercise, and that they would be able to main-
tain power production and distribution by manually operating power stations.
The facilitators felt that relevant assessments and decisions were made, and that
the Emergency Management Team was involved at the right points in time. The
Emergency Management Team contributed with thorough analyses and unam-
biguous decisions.

5 Discussion

We have described a tabletop exercise as performed in three organizations. While
they all relied on the same scenario, they organized the exercise differently.

320 M.B. Line and N.B. Moe

In the following we discuss the importance of preparedness exercises, along with
our results in the light of our research question: What are the challenges of
performing tabletop exercises for IT security incidents? Then we discuss how
observed challenges could affect a real-life incident response process. Finally, we
provide recommendations for how to succeed with preparedness exercises.

Our study confirmed the importance of conducting preparedness exercises. In
organization A they realized that in a real situation they would most probably
not be able to link the third phase to the first two, i. e. events that occur three
months apart. By training they became aware that such links exist. Further, the
participants in organization B were not sufficiently aware of each others’ needs for
information. They realized how the information flow could be improved. In two
of the organizations in our study, A and B, the participants had different views
on whether the scenario was realistic or not. This difference shows a need for
developing a common perception of possible threats and potential consequences,
which can be partly achieved by performing exercises.

A single best practice on organizing tabletop exercises does probably not
exist. However, we found a number of challenges that need to be understood in
order to succeed with such training.

Having One Goal Only. For a team to have good performance and to be able
to effectively solve a complex problem, they need shared understanding of the
team goals [21]. Having several goals for the exercise might lead to the individual
members heading towards different goals. In organization A the team focused on
solving the given problem while the facilitator was just as focused on knowledge
sharing and fruitful discussions. As a consequence they had problems staying
focused during the exercise. The main goal of an exercise should be to solve the
problem, while additional goals may rather be aimed for during the evaluation
afterwards, as was done in organization B.

Recommendation: Define only one main goal for the preparedness exercise.

Enabling Self-Management and Growing Team Knowledge. For a team
to solve a crisis and make good decisions it needs to be able to self-manage.
Members of self-managing teams share decision authority jointly, rather than
having a centralized decision structure where one person makes all the decisions,
or a decentralized decision structure where team members make independent
decisions. Organization A had problems self-managing as two persons made most
of the decisions. It was later concluded that only a few of the team members
would participate in a real situation. The others should have been present as
observers to distinguish between who are part of the team and who are not.

Enabling self-management further requires the group to have the necessary
competence; otherwise the group will be training for solving the problem without
having the necessary competence available. However, because handling incidents
is creative work, it might be challenging to identify everyone that should be
present in the training up front. One of the teams in organization B clearly
suffered from the lack of competence, and both organizations B and C lacked

IT Security Preparedness Exercises 321

personnel from their external suppliers. The training outcome would have been
better with the right personnel present.

In addition to the right competence, a shared understanding of who knows
what is needed to solve a crisis effectively [16]. We found that in most teams
people did not have a good overview of what the others knew, however, the team
members became more aware of each others’ knowledge during the exercise.

Recommendation: Ensure the presence of all required competence in the
team, including personnel from external suppliers. Make it explicit who are part
of the team and who are observers. Include a facilitator to support the team
in making joint decisions and conduct exercises frequently to develop a shared
understanding of who knows what.

Availability of Personnel. Business runs continuously and might require sud-
den and unforeseen actions, which in turn might cause personnel to cancel their
presence in the exercise. This will affect the group composition as happened in
organization B, where last minute changes led to the lack of one type of com-
petence in one of the groups. Further, members of management groups tend to
have little time for exercises, but their presence is needed to have realism to the
exercise. Limiting the time spent on exercises would most likely make it easier
for key personnel to participate. All organizations experience turnover. Hence,
sudden absence of critical competence might be experienced during a real-life
incident as well.

Recommendation: Perform preparedness exercises frequently to make sure
that all personnel receive training regularly. Limit the time spent on each exercise
to make it easier for key personnel to participate.

Time Management. Having 20 minutes for discussing each phase was per-
ceived as too short for some, while sufficient for others, depending on both the
participants and the complexity of the given problems. Creating a time-pressure
for making quick decisions was understood as making the exercise more realistic.
Still, according to FEMA [9] it is wise to take the time to resolve problems. A
facilitator needs to balance the amount of time spent on the different phases
based on the progress and how well the team performs. Further, making time
for thorough reflections after the exercise is important to improve the benefits
of the exercise, as was also recommended by NIST [6]. Both organizations A
and B spent 60-70 minutes on such reflections and stated that one large benefit
was that of having an external facilitator for this, as the participants clearly put
more effort into contributing than they would usually do during internal evalu-
ations. A similar evaluation was planned for organization C, but they ran out
of time and did not prioritize a thorough evaluation after the exercise. A short
around-the-table discussion was performed.

Recommendation: Ensure time pressure by limiting the time for problem-
solving in the exercise. Allow for thorough reflections in a plenary session right
after the exercise is completed. If there is more than one group, add time for
reflection within each group as well, before the plenary session.

322 M.B. Line and N.B. Moe

Use of Existing Documentation. None of the teams actively consulted writ-
ten plans and procedures during the exercise. Such plans were made available to
the team in organization C only. Although documentation needs to be in place,
situated coordination is more important because the scenarios in the exercise are
unknown. An organization therefore needs to rely on the individuals and their
knowledge when handling a crisis. In organization C, a lack in the reporting
procedures was identified, but the participants still knew who to contact and
when. It was stated that in an emergency situation there is no time for consult-
ing documentation. Exercises contribute to develop practical knowledge and the
knowledge of who knows what, which is essential to make good decisions when
handling an incident. Still, documentation would be available during a real sit-
uation, therefore it should also be available during an exercise. One of the main
goals with a tabletop exercise is to review plans and procedures [9], and this
should be performed shortly after the exercise.

Recommendation: Make existing written documentation available during the
preparedness exercise and review the documentation in retrospective if needed.
If the available documentation is not consulted, discuss why.

Involvement of Business Management. It is essential to involve those with
the authority to make decisions influencing business operations. IT security
involves more than IT personnel, as an incident might have severe consequences
for both the organization, its customers, and society at large. In an emergency
situation the goal from a business perspective is usually to maintain normal oper-
ations as continuously as possible. However, there are different strategies that
may be used for this: to resolve the incident with as little disturbances to the
operations as possible, to understand why the incident occurred, or to make sure
that the incident will not repeat itself. These different strategies require slightly
different approaches and priorities, and it is therefore crucial that the incident
responders have a common understanding of the overall preferred strategy.

Organization C seemed to succeed with their model where the team called
for the Emergency Management Team when severity of the incident required
them to. In organization C the IT personnel wanted to shut down the control
systems quite early, due to their fear of malware infections; the control room
manager wanted to wait, due to high costs of manual operations. These costs
were compared to the consequences of an uncontrolled breakdown. We found
that priorities among different parts of the organization vary, which supports
the need for collaborative exercises and practicing joint decision-making, at the
same time as different authority levels come into play.

Recommendation: Include all personnel that will play a role during a real-life
incident, including both technical personnel and business representatives.

6 Concluding Remarks and Future Research

For industrial control organizations to withstand and/or successfully respond to
attacks, personnel from different parts of the organization need to collaborate:

IT Security Preparedness Exercises 323

IT, control systems, control room, networks/infrastructure, and business repre-
sentatives. These groups of personnel do not have a tradition for collaborating
with each other, as industrial control systems used to be isolated from adminis-
trative IT systems. A holistic view of the incident response process is needed so
that the whole organization is included in training, as it would be during a real
emergency situation.

There are many ways to conduct preparedness exercises. Therefore organi-
zations need to both optimize current exercise practices and experiment with
new ones. Regardless of how the exercises are conducted, there are a number of
challenges to be aware of, as identified in our study. Functional exercises should
be performed as a supplement to tabletop exercises in order to improve the
operational capabilities as well.

We studied organizations doing such exercises for the first time. There is
therefore a need to study which challenges are met by organizations that are
more mature when it comes to performing preparedness exercises for IT secu-
rity incidents. Such a study should also investigate what good practices these
organizations are performing in their exercises. Further, challenges met during
real-life incident response processes should be investigated, in order to make
preparedness exercises even more useful.

Acknowledgments. The authors would like to thank the three DSOs that partici-
pated in this study, and Senior Research Scientist Martin G. Jaatun, SINTEF, and Pro-
fessor Poul E. Heegaard, NTNU, for providing valuable feedback. This work was funded
by the Norwegian Research Council through the DeVID project, grant no 217528, and
by the Norwegian University of Science and Technology through the project Smart
Grids as a Critical Infrastructure.

References

1. Hollnagel, E.: The four cornerstones of resilience engineering. In: Nemeth, C.P.,
Hollnagel, E., Dekker, S. (eds.) Preparation and Restoration, Resilience Engineer-
ing Perspectives. Ashgate Studies in Resilience Engineering, vol. 2. Ashgate Pub-
lishing, Ltd. (2009)

2. Line, M.B.: Why securing smart grids is not just a straightforward consultancy
exercise. Security and Communication Networks 7(1), 160–174 (2013)

3. Batchelder, D., Blackbird, J., Felstead, D., Henry, P., Jones, J., Kulkarni, A.:
Microsoft Security Intelligence Report. Microsoft (2014)

4. Line, M.B., Tøndel, I.A., Jaatun, M.G.: Information security incident management:
planning for failure. In: 8th International Conference on IT Security Incident Man-
agement and IT Forensics (IMF), pp. 47–61 (May 2014)

5. Line, M.B., Zand, A., Stringhini, G., Kemmerer, R.A.: Targeted attacks against
industrial control systems: is the power industry prepared? In: 21st ACM Con-
ference on Computer and Communications Security and Co-located Workshops,
pp. 13–22 (November 2014)

6. Grance, T., Nolan, T., Burke, K., Dudley, R., White, G., Good, T.: NIST SP 800–
84: Guide to Test, Training and Exercise Programs for IT Plans and Capabilities.
National Institute of Standards and Technology (2006)

324 M.B. Line and N.B. Moe

7. NVE: Øvelser: En veiledning i planlegging og gjennomføring av øvelser i NVE (in
Norwegian). Norwegian Water Resources and Energy Directorate (2013)

8. Hale, A., Borys, D.: Working to rule, or working safely? Part 1: A state of the art
review. Safety Science (2012)

9. FEMA: IS 139 Exercise Design - Unit 5: The Tabletop Exercise. Federal Emergency
Management Agency - Emergency Management Institute (FEMA)

10. G̊asland, S.: Gjør øvelse mester? Om læringsfaktorer i beredskapsøvelser initiert
av NVE (in Norw.). Technical report, University of Oslo (2014)

11. Hove, C., T̊arnes, M., Line, M.B., Bernsmed, K.: Information security incident
management: identified practice in large organizations. In: 8th International Con-
ference on IT Security Incident Management and IT Forensics (IMF), pp. 27–46
(May 2014)

12. Rykkja, L.H.: Kap. 8: Øvelser som kriseforebygging. In: Organisering, Sam-
funnssikkerhet Og Kriseh̊andtering (in Norw.), 2 edn. Universitetsforlaget (2014)

13. Malone, T.W., Crowston, K.: The Interdisciplinary Study of Coordination. ACM
Computing Surveys 26(1), 87–119 (1994)

14. Okhuysen, G.A., Bechky, B.A.: Coordination in Organizations: An Integrative Per-
spective. The Academy of Management Annals 3(1), 463–502 (2009)

15. Kraut, R.E., Streeter, L.A.: Coordination in Software Development. Communica-
tions of the ACM 38(3), 69–81 (1995)

16. Lewis, K., Herndon, B.: Transactive Memory Systems: Current Issues and Future
Research Directions. Organization Science 22(5), 1254–1265 (2011)

17. Lundberg, N., Tellioğlu, H.: Understanding Complex Coordination Processes in
Health Care. Scandinavian Journal of Information Systems 11(2), 157–181 (1999)

18. ISO/IEC: ISO/IEC 27035:2011 Information technology - Security techniques -
Information security incident management (2011)

19. Hackman, J.R.: In: The psychology of self-management in organizations. American
Psychological Association, Washington, D.C. (1986)

20. Yin, R.K.: Case Study Research - Design and Methods, 4th edn. Applied Social
Research Methods, vol. 5. SAGE Publications (2009)

21. Moe, N.B., Dingsøyr, T., Dyb̊a, T.: A teamwork model for understanding an agile
team: A case study of a scrum project. Information and Software Technology 52(5),
480–491 (2010)

© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 325–338, 2015.
DOI: 10.1007/978-3-319-18467-8_22

Social Groupings and Information Security
Obedience Within Organizations

Teodor Sommestad()

Swedish Defence Research Agency (FOI),
Olaus Magnus väg 42, Linköping, Sweden

Teodor.Sommestad@foi.se

Abstract. Individuals’ compliance with information security policies is
important for the overall security of organizations. It has been suggested that
obedience cultures exist in organizations and that social processes and struc-
tures play a role for the compliance intentions and compliance behavior of
individuals. This paper investigates if individuals’ compliance intention is more
homogenous within social groups in the workplace than they are within the
workplace overall workplace and the effect these groups have are in line with
the theory of planned behavior. The results show that a considerable portion of
variance in information security policy compliance intentions is explained by
the respondents’ organizational department (15%), professional knowledge area
(17%), and the same lunch room (18%). While sizeable and significant effects
can be found on intentions the effects on attitudes, norm and perceived behavior
control are less clear. The only statistically significant (p<0.05) effect is from
department on attitudes and perceived norm, each with 6% explained variance.
This suggests that the theory of planned behavior fails to account for factors
tied to these types of social groups.

Keywords: Information security culture · Theory of planned behavior · Infor-
mation security behavior · Compliance · Obedience

1 Introduction

Information security behavior is important for the overall security of organizations. It
is also a lively research area and a considerable number of studies have been per-
formed to identify factors that influence individuals’ information security behavior. In
a recently published review we identified 29 quantitative empirical studies published
before March 2012 testing antecedents of security policy compliance attitudes, inten-
tions and behavior [1]. Meanwhile, social aspects related to information security have
gained increased attention in recent years, often discussed as information security
culture. Theory suggests that if managers can predict or control the information secu-
rity culture(s) of their organization they can manage the information security of their
organization more efficiently [2]. For instance, [3] suggests that educational efforts
should be adapted to cultural differences.

326 T. Sommestad

Information security culture is a concept that is used and interpreted in many dif-
ferent ways. However, there is a wide agreement that it is a group phenomenon where
something is shared in the group and that social context and communication play a
role. For instance, Hofstede [4] states that “cultures of work organizations are ac-
quired through socialization at the work place.” It follows that the frequency and the
way people interact ought to determine the culture they share. However, as will be
shown below, there is little known about how social processes form individuals’ in-
formation security compliance.

In this paper the relationship between social groups’ and individuals’ views of in-
formation security policy compliance is investigated. A questionnaire-based survey
within a governmental research institute in Sweden is used to assess individuals’
views on information security policy compliance and the social groups they belong.
Individuals’ views are measured as prescribed by the theory of planned behavior [5].
This theory states that the effect of social factors (like culture) on intentions to per-
form a behavior is fully mediated by attitude, perceived norms and perceived behavior
control associated with the behavior [5]. The effect of social group membership on
information security culture is measured by comparing the responses in the organiza-
tion as a whole to the responses within three types of groups within the organization
namely groups based on: organizational department, professional knowledge area,
and lunch room.

The outline of this paper is as follows. Section 2 describes the theoretical back-
ground and presents the hypotheses that are addressed. Section 3 details the method.
In section 4 the results are presented and in section 5 implications are discussed. In
section 6 conclusions are drawn.

2 Theory and Research Questions

This section will introduce some of the more central ideas needed to understand the
present focus and scope of the present study. The theory of planned behavior (TPB) is
described in section 2.1 and a broad description of information security culture is
given in 2.2. The hypotheses derived from this are described in section 2.3.

2.1 The Theory of Planned Behavior

The TPB [6] and its predecessor, the theory of reasoned action [7], offer an estab-
lished framework for predicting behavioral intentions and actual behavior. Accord-
ing to the theory, illustrated in Figure 1, behavior is influenced by people’s intentions
and actual behavior control, where actual behavior control moderates the effect of
intentions. Most applications use perceived behavior control as a proxy because of the
difficulties associated with measuring actual behavior control, as advocated by [6].
Additionally, the moderating role of perceived behavior control has been difficult to
establish empirically, and many models include it side-by-side with intentions in a
simpler additive linear model [5].

 Social Groupings and Information Security Obedience Within Organizations 327

Fig. 1. The theory of planned behavior and culture, adapted from [5]

The TPB further states that intentions are influenced by attitude, perceived norms,
and perceived behavior control. Their influences are assumed to be linear, i.e., the
effects can be modeled using additive models. Although the theory claims that these
three constructs are sufficient to explain the intentions concerning a behavior in ques-
tion, there is no universal ordering of their importance. On the contrary, the relative
importance of the constructs differs among populations and behaviors. For instance,
for behaviors over which people feel they have almost full control, the variable per-
ceived behavior control is of little value because it is equal for all respondents [6].

A recent meta-analysis of observational questionnaire based studies of information
security policy compliance behavior found the following sample-weighted correlation
coefficients between variables: attitude-intention 0.48, perceived norm-intention 0.52,
perceived behavior control-intention 0.45, intention-behavior 0.83 and actual behavior
control-behavior 0.35 [8]. Approximately 0.4 of the variance in security policy com-
pliance intentions is explained by the variables in the theory, leaving approximately
0.6 of the variance in intentions to be explained by measurement error and missing
variables.

As Figure 1 shows, the originators of the theory of planned behavior explicitly list
culture as a primary antecedent to the constructs that the theory says influence beha-
vior [5]. The study presented in this paper focuses on this link between culture and
information security compliance. More precisely, this study aims to investigate if
social groups at the work place influence the variables of the theory of planned beha-
vior in this way.

2.2 Information Security Culture

Research on information security culture rests heavily on the more general concept of
organizational culture and the theories developed related to culture in other fields.
However, this is of little help when it comes to agreeing on a definition for the con-
cept – already in 1998 a review found 54 different definitions of the concept of orga-
nizational culture in the literature [9].

Research on information security culture often focuses on policy compliance.
For example, in [10] it is argued that information security obedience (i.e., compliance
with policies) binds together information security, corporate governance and

328 T. Sommestad

corporate culture and in [11] “culture” is described as the ideal state of “compliance.
The most frequently cited their theoretical frameworks in r research on information
security culture [12] are those of Edgar Schein and Geert Hofstede. Schein’s frame-
work is a three-tiered model that explains organizational culture on the levels of
shared basic assumptions, espoused values and artifacts/behaviors [13]. Schein recent-
ly argued for a move away from discussions about abstract definitions and more con-
crete operationalizations instead, e.g., through measurement instruments [14]. Hofs-
tede, known to have developed the first empirical model of dimensions of national
cultures, provides a succinct definition of culture as “the collective programming of
the mind that distinguishes the members of one group or category of people from
another” [15].

In Hofstede’s definition, and in Schein’s model, culture can be tied to various
groupings of humans, e.g., nations, cities, organizations, work groups, occupations,
professions, and so on. Four levels of analysis for perception in organizational culture
research are distinguished in [16]: 1) individuals, 2) workgroups or teams that interact
on a face to face or virtual basis, 3) larger groups like whole organizations and 4)
societies or countries. The current study is focused on level two and aims at examin-
ing the notion that social groupings in the workplace form individuals’ information
security policy compliance. There is little knowledge on the relative importance of
different social groupings on this level, or what the relative importance depends on.
Previous research on information security culture has primarily addressed the concept
on an organizational level (e.g., [17] [2] [18]), surveyed how individuals perceive the
culture (e.g., [19][20][21]) or group norms (e.g., [22]), and occasionally on a national
level (e.g., [23]). Furthermore, there is also little known about the relative importance
of different social groups for attitudes and values related to information security, such
attitudes and values to safety. For example, no quantitative measurements on the rela-
tion between different groups and safety views can be found in the following reviews
of safety climate and safety culture measurements [24][25][26].

To summarize, information security culture is (like culture in general) difficult to
define and measure, it is relatively often coupled to policy compliance, and there is
little research on information security culture between the levels of whole organiza-
tions and single individuals. The present study does not attempt to define the concept
of culture, but use social groups within an organization as a proxy for the culture(s)
individuals belong to and use these as proxies for the culture an individual belongs to.
This paper follows the definition of Turner [27] and consider a social group to be two
or more individuals who share a common social identification of themselves or two or
more individuals who perceive themselves to be members of the same social category.

2.3 Hypotheses

Three main hypotheses together with nine sub-hypotheses are addressed in this study.
These hypotheses concern how organizational departments, professional knowledge
areas, and lunch room explain variation in constructs covered by the theory of
planned behavior. They are discussed and presented below.

 Social Groupings and Information Security Obedience Within Organizations 329

In most organizations, managers try to set goals, measure the achievement of goals
and incentivize their staff through different types of social interactions (e.g., meetings,
courses and documents). When it comes to information security, it can be expected
that middle management plays the important role of implementing information sys-
tems strategies [28] and their behavior is believed to be vital to cultural change be-
cause of the feedback they give to employees [29]. In our study’s organization, the
management structure follows, as in many other organizations, the organizational
structure and projects are heavily associated with this structure although they are not
bound by it. Thus, the organizational department a person belongs to ought to shape
its views on information security policies. The following hypotheses are therefore
posed.

H1: Intentions to comply with information security policies are more homogenous
within organizational department than within the organization as a whole.

H1.1: Attitudes to compliance with information security policies are more homo-
genous within organizational department than within the organization as a whole.

H1.2: Perceived norms with respect to compliance with information security poli-
cies are more homogenous within organizational department than within the organiza-
tion as a whole.

H1.3: Perceived behavior control over compliance with information security poli-
cies is more homogenous within organizational department than within the organiza-
tion as a whole.

In the studied organization eleven knowledge areas are defined by management.
The knowledge area an individual is part of can also be expected to influence the
culture an individual is a part of for several reasons. First, a professional knowledge
area can be associated with certain codes of ethics, symbols, role models and profes-
sional goals. An example is the Hippocratic Oath sworn by those who practice
medicine. Second, the professional knowledge area an individual works within often
coincides with a particular type of schooling and knowledge. For instance, an indi-
vidual who works with the secretive domain of electronic warfare can be expected to
treat restrictions on electromagnetic leakage from information technology with more
care than a person unaware of the risks associated with this. Third, it could be ex-
pected that individuals end up in social interactions with peers in the same knowledge
area more often than they do with people from a randomly selected (other) knowledge
area. In the studied organization most projects are within a particular knowledge area.
Thus, the professional knowledge area ought to coincide with the workgroups and
projects an individual belongs to. These factors lead to the following hypotheses.

H2: Intentions to comply with information security policies are more homogenous
within professional knowledge areas than within the organization as a whole.

H2.1: Attitudes to compliance with information security policies is more homo-
genous within professional knowledge area than within the organization as a whole.

H2.2: Perceived norms with respect to compliance with information security
policies are more homogenous within professional knowledge area than within the
organization as a whole.

H2.3: Perceived behavior control over compliance with information security poli-
cies are more homogenous within professional knowledge area than within the organ-
ization as a whole.

330 T. Sommestad

Informal social interaction, like unstructured discussions and chattering, can be ex-
pected to play a role in the formation and conservation of information security cul-
ture. For instance, rumors, stories, gossip and opinions may be vetted during informal
discussions and meetings might concern information security. To reliably group
people according to how they socialize informally is of course difficult. However, in
the present organization, located in Sweden, where “fika” (coffee breaks) is a social
institution, and lunch rooms are places where informal meeting occur multiple times
each day. Because of this, the lunch areas a person belong to captures much of an
employee’s informal social life and the following hypotheses are posed.

H3: Intentions to comply with information security policies are more homogenous
within lunch areas than within the organization as a whole.

H3.1: Attitudes to compliance with information security policies are more homo-
genous within lunch areas than within the organization as a whole.

H3.2: Perceived norms with respect to compliance with information security poli-
cies are more homogenous within lunch areas than within the organization as a whole.

H3.3: Perceived behavior control over compliance with information security poli-
cies are more homogenous within lunch areas than within the organization as a whole.

None of the abovementioned hypotheses concerns actual behavior. The reason is
not theoretical (culture is supposed to form behavior too); the reason is the costs and
privacy issues associated with measuring actual policy compliance by monitoring
employees behavior, especially without introducing observer bias.

3 Method and Materials

This section presents the measurement instrument used in this study (section 3.1), the
data collection procedure (section 3.2) and assessment of instrument validity in (sec-
tion 3.3).

3.1 Measurement Instrument

The questionnaire used contained an introductory section describing the purpose of
the survey, a section explaining the question format, questions about the respondent’s
role and the social groups the respondent belonged to, questions operationalizing
constructs in the theory of planned behavior, and other questions not directly related
to the hypotheses addressed in this research.

Through a large number of applications, tests and reviews of the theory of planned
behavior, a considerable amount of knowledge concerning how to best operationalize
the theory in general has been accumulated. The parts of this measurement instrument
associated with TPB was based on the example and template for direct scales given in
[5] and followed the guidelines it provides. Thus, both instrumental (e.g., bad-good)
and experiential (e.g., necessary-unnecessary) attitudes were measured; items of
perceived norms measured both injunctive norms (i.e., what people that are important
think) and descriptive norms (i.e., what people that are important do); perceived be-
havior control covered both autonomy (e.g., if it is under my control) and capability

 Social Groupings and Information Security Obedience Within Organizations 331

factors (e.g., if it is easy to do). Intentions were measured as outright intention predic-
tions of future behavior. As recommended by [5] a questionnaire with open-ended
questions was distributed in the target population to survey general beliefs related to
the studied constructs before items were formulated. The answers were used as input
in the formulation of the questionnaire items, e.g., to form bipolar scales for the atti-
tude items. Three to four items were used for each TPB construct. Appendix contains
a translation of the questions to English.

Questions regarding organizational department and knowledge area were formu-
lated as multiple choice questions; lunch room was asked for in the form of a free text
field with examples of the type of formulations to be used. All other questions in the
questionnaire were associated with the behavior of complying with the information
security policy and rules within the specific organization surveyed. These items were
answered using a seven-point semantic differential scale. Their mean value is used to
form the construct of interest, as proposed by [5].

The layout and understandability of the instrument was reviewed iteratively by six
employees within the surveyed organization before a final version was established. In
this review process it was also verified that respondents understood the questions
related to organizational department, knowledge area and lunch area.

3.2 Data Collection Procedure

This study surveyed perceptions of individuals within the Swedish Defence Research
Agency in Sweden (also the organization the author belongs to). This organization is
distributed over four geographical sites and has approximately 1000 employees, with
a median age of 45 years and a relatively even age distribution. Approximately 35
percent hold a PhD. Approximately 800 work as researchers and 200 as work as man-
agers or with internal services (e.g., information systems or facilities).

The internal mail service distributed one printed copy of the survey to each em-
ployee during September 2013. A reminder was distributed electronically one week
later. Surveys received within the first three months after the distribution were in-
cluded in the analysis. A total of 311 questionnaires were returned within this time
period. To ensure anonymity, respondents were encouraged to provide their depart-
ment, knowledge area, and lunch area only if they wanted and felt comfortable doing
so. Since many chose to only answer one or two of the three questions, a number of
returned surveys could not be used for the test of research questions posed in this
paper. In addition, it was deemed necessary to exclude respondents who belonged to
groups of less than two persons to obtain a meaningful statistical measurement of the
variance in the group. As a result of this filtering, only 176-178 questionnaires con-
tained the responses necessary for the analysis of the 12 hypotheses.

Visual inspection of QQ-plots and histograms suggests that all constructs are ap-
proximately normally distributed except attitude, which suffers from ceiling effects
(with many respondents answering maximum). The results of tests with ANOVA
(which is robust to deviations from the normality assumption (Schmider et al., 2010))
show that no mean differences of statistical significance (at the 5%-level) could
be found between respondents returning the survey in different months for the four

332 T. Sommestad

constructs. Nor was any statistical difference in mean values found between those
who provided all the information that was required for the analysis and those that did
not. Thus, the survey does not appear to suffer from problems due to non-response
bias. Furthermore, the number of respondents from different departments, sites and
roles match the overall distribution in the organization reasonably well, suggesting
that the respondents are representative of the organization as a whole.

3.3 Instrument Validity

Only five respondents used the feedback section to report difficulties in answering the
questions in the questionnaire. Three of these reports concerned difficulties in answer-
ing because of the abstraction level of overall policy compliance rather than specific
behavior (e.g., practices related to passwords or USB sticks). Two complained about
the language and understandability of the questions.

The constructs and relationships of the theory of planned behavior are well estab-
lished and this survey does not posit new constructs and builds on previous work on
how questions should be formulated. Therefore the construct validity of the present
survey is to some extent already given. The reliability, i.e., accuracy, of psychological
measurements can be measured using Cronbach’s alpha [30]. The reliability of all
constructs except perceived behavior control exceeded 0.70, a commonly used thre-
shold [31]. The reliability values for perceived behavior control (α=0.69) is on the
border of acceptable, meaning that the answers to the three items used to measure
these constructs are somewhat inconsistent. This might be because they are operatio-
nalized in two dimensions: perceived behavior control is supposed to capture both
autonomy and capacity.

4 Results

The hypotheses stated in section 2.3 are evaluated by assessing if variance in peoples’
views about information security policies is lower within groups than within the
organization as a whole. In other words, it is expected that a part of the variance in
respondents’ responses is explained by the group they belong to.

Table 1. Variance explained by social groupings

 Attitude Perceived
Norm

Perceived
behavior
control

Intention

Departments
(K=5, N=177)

Eta-squared 0.06 0.06 0.03 0.15
P-value 0.01 0.00 0.09 0.00

Knowledge areas
(K=11, 178)

Eta-squared 0.05 0.05 0.05 0.17
P-value 0.17 0.16 0.20 0.00

Lunch areas
(K=21, N=176)

Eta-squared 0.10 0.13 0.11 0.18
P-value 0.69 0.36 0.57 0.04

K: The number of groups
N: The number of respondents

 Social Groupings and Information Security Obedience Within Organizations 333

Table 1 describes the results of one-way ANOVA tests. The effect size Eta squared
reflects the portion of variance explained by the social groups that respondents belong
to, i.e., the quotient of sum of squares between groups and the sum of squares of the
population as a whole. The p-value reflects the probability that the effect is due to
chance.

As Table 1 shows, variance in all psychological constructs is lower within depart-
ments than within the organization as a whole. The effects are also statistically signif-
icant to the 0.05-level on all constructs except perceived behavior control. Thus, H1
and H1.1, and H1.2 are supported in this sample, but not H1.3.

The relationship to knowledge areas is not as straightforward. Considerable statis-
tical significant reductions in variance are found for intention (H2), meaning that H2
is supported. However, a more modest measured and statistically insignificant effect
is found for attitude, perceived norm, and perceived behavior control. Thus, H2.1,
H2.2, and H2.3 are not supported.

As for knowledge areas, the effect measured by lunch areas is considerable and sta-
tistically significant for intentions to comply. However, even though the effect sizes
are fairly large for attitude, perceived norm, and perceived behavior control, none of
these effects are statistically significant. In other words, H3 can be accepted, but H3.1
H3.2, and H3.3 cannot be accepted.

Overall, the results confirm the hypotheses concerning an influence of social
groups on intentions to comply with information security policies. Effects in terms of
reduced variance (i.e., Eta-squared) on intentions are between 15 and 18 percent.
These results suggest that social processes and structures play a large role in forming
the information security obedience intentions. In other words, respondents’ intentions
to comply with the information security policy is to some extent explained by which
department they work at, in which knowledge area they work, as well as who they
drink coffee with and have their lunch with.

People within organizational departments are also more homogenous when it
comes to attitudes and perceived norms. With a p-value of 0.09 the there is also a
tendency that perceived behavior control is influenced by department. However, in
contrast to what was predicted, professional knowledge areas and lunch rooms do not
appear to explain variance in attitudes, perceived norms, and perceived behavior con-
trol. Thus, while people within the same professional knowledge areas and lunch
room have homogenous intentions, there is no clear forming effect on attitudes, per-
ceptions of norms and perceptions of how much control they have.

5 Discussion

The results of this study are far from clear-cut. To assist the reader in the interpreta-
tion of the results some of the major issues with the study are discussed below. Issues
of dependence between the groups and confound variables are discussed in section
5.1, implications related to the theory of planned behavior in section 5.2, and mea-
surement issues in section 5.3.

334 T. Sommestad

5.1 Dependence Between Social Groupings and Confounding Variables

There are apparent relationships between the three types of social groups in the stu-
died organization. First, both knowledge areas and coffee rooms are, to some extent,
determined by departments. Knowledge areas are highly concentrated to specific
departments because of organizational reasons. In seven of the knowledge areas the
respondents comes from only one or two departments; within each of the departments
one to seven knowledge areas are represented. Because of a tendency to collocate
departments geographically the lunch areas are more likely to be shared by two per-
sons form the department than by two persons from different departments. Overall the
respondents use 21 lunch rooms, but within departments between one and nine lunch
rooms are used. In addition, 14 of the 21 lunch rooms are used by people from one
department only. Second, people within the same knowledge area are often collocated
because of the need to interact with each other, and therefore often share the same
lunch room. Ten lunch rooms is used by one knowledge area only and most know-
ledge areas are keep within three lunch rooms.

Unfortunately, the sample size makes it difficult to control for these dependencies
by further partitioning of the sample into sub groups (e.g., a particular knowledge area
within a specific department). Readers are therefore cautioned to treat the effects as
independent. It is likely that parts of the variance that one social grouping explains is
also explained by the other social groupings.

Furthermore, the effects on the response variables may be due to confounding
variables that have little to do with culture but are related to the social groupings. The
explained variance may be due to more direct links to influential variables than the
social interaction that follows from these three groupings. It is not necessarily because
they share the same culture (e.g., underlying assumptions or values). For example, the
effect of knowledge area on compliance intentions might simply be because informa-
tion security requirements are trickier to live up to for some types employees than
others (e.g., because of certain clients), because some researchers are better skilled in
tasks required to be compliant (e.g., are schooled in information security) or because
information security is a more important issue within some areas.

In addition, variables associated with the Swedish culture and with this particular
organization’s culture or policies may skew the results obtained. For instance, the
managers in this organization may be unusually influential, particularly homogenous
knowledge areas may not be present, and discussions during coffee breaks may be
unusually relevant or irrelevant to information security.

5.2 Theory of Planned Behavior as a Mediator of Cultural Phenomena

The theory of planned behavior states that attitudes, perceived norm and perceived
behavior control moderate the effect of culture on individuals’ intentions. Based on
this, one would expect that variables that predict behavioral intentions also predicts
attitudes, perceived norm and perceived behavior control. For departments this is the
case. Responses to all four variables within groups are more homogenous and the
forming effect of these groups may be mediated as the theory of planned behavior

 Social Groupings and Information Security Obedience Within Organizations 335

claims. However, knowledge areas and lunch areas mean a significant reduction
in variance in intentions to comply, but not attitudes, norms or perceived behavior
control.

A direct effect on intentions, without mediation by attitude, perceived norm or per-
ceived behavior control, suggests that something is missing in the theory of planned
behavior which is common to members in the social groups. As noted above, this
missing piece is not necessarily culture alone. It may be an effect of other factors
already hypothesized as antecedents to the variables of the theory of planned behavior
which are coupled to the social groups, like: knowledge, media exposure, interven-
tions, age, gender, risk perception, moods or personality. Nevertheless, factors cap-
tured by knowledge areas and lunch areas seems to influence intentions without being
mediated the way the theory of planned behavior say they should be. This warrants
further investigations of the sufficiency of this theory with respect to social processes
and structures.

5.3 Measurement Issues

The sample frame used to test the hypotheses addressed in research is well defined: a
Swedish defense research organization with highly educated employees, a fairly even
age distribution and approximately 1000 employees distributed over four geographi-
cal locations. This workplace definitely represents an organization in which informa-
tion security is of relevance and security policies are important. However, it is only
one organization, chosen because it was convenient. Clearly, to generalize from one
single organization is risky. Furthermore, the response rate (as low as 18% for some
tests) is problematic. Even though no clear signs of response bias can be observed
there are problems associated with drawing general conclusions from these results.
For example, seven managers in one organization can hardly be said to represent
managers/departments in general. And group sizes as small as two or three persons
pose another potential source of measurement error if the actual groups (e.g., using a
lunch area) are substantially bigger.

The small sample also prohibits the use of more sophisticated statistical measures
to address the hypotheses. A multilevel analysis was performed using LISREL to
identify the effect of a second level on predictions of intention. This analysis suggests
that around five percent of the variance in intentions is explained by the groups (de-
partment 8%; knowledge area 7%; lunch area 3%) when they are added to a model
that already includes the other antecedents (attitude, perceived norm and perceived
behavior control). However, with the sample size of this study the effects are insigni-
ficant and associated with considerable confidence intervals. With a larger sample,
multi-level analysis could be used to better test if these types of social groups play a
significant role in forming intentions without being mediated by attitude, perceived
norms, and perceived behavior control. This would enable assessments of how much
variance the social groupings add on top of the variables in the TPB.

336 T. Sommestad

6 Conclusion

In the studied organization, 15-18 percent of the variance in intentions to comply with
information security policies can be explained by the department they belong to,
knowledge area they work within and lunch room they use. The results are in line
with the idea that group phenomena influence security behavior and those social
processes and structures play a role for the information security obedience culture of
organizations. In addition, the explanatory power of these social groupings based on
professional knowledge areas and lunch rooms does not appear to be mediated by the
constructs of the theory of planned behavior. This suggests that this theory misses
important variables for explaining information security policy compliance.

Appendix: Questionnaire Items

Attitude

Adhering to the information security policy at [the organization] is:

(bad<->good)

(meaningless <->meaningful)

(unimportant<->important)

(unnecessary<->necessary)

Perceived norm

Most people who are important to me think I should adhere to the information security policy
that exists at [the organization]. (false<->true)

Most people whose opinion I respect would tolerate that I adhere to the information security
policy that exist at [the organization]. (improbable<->probable)

Most people I respect would adhere to the information security policy at [the organization] if
they were in my situation. (unlikely<->likely)

Most people at [the organization] who are like me follow our information security policy.
(false<->true)

Perceived behavior control

I am certain that I can adhere to the information security policy that exists at [the organiza-
tion]. (false<->true)

If I really want to, I can adhere to the information security policy that exists at [the organiza-
tion]. (disagree<->agree)

Whether I adhere to the information security policy that exists at [the organization] is entirely
within my control. (false<->true)

Intention

My intention is to henceforth adhere to the information security policy that exists at [the organ-
ization]. (false<->true)

In the future, I will adhere to all of the information security policies that exist at [the organiza-
tion]. (unlikely<->likely)

 Social Groupings and Information Security Obedience Within Organizations 337

Regardless of what happens and which situations arise, I will adhere to the information securi-
ty policy that exists at [the organization]. (unlikely<->likely)

I cannot imagine violating the information security policy that exists at [the organization] even
once in the future. (false<->true)

References

1. Sommestad, T., Hallberg, J., Lundholm, K., Bengtsson, J.: Variables influencing informa-
tion security policy compliance: a systematic review of quantitative studies. Inf. Manag.
Comput. Secur. 22, 42–75 (2014)

2. Da Veiga, A., Eloff, J.: A framework and assessment instrument for information security
culture. Comput. Secur. 29, 196–207 (2009)

3. Lacey, D.: Understanding and transforming organizational security culture. Inf. Manag.
Comput. Secur. 18, 4–13 (2010)

4. Hofstede, G.: National cultures, organizational cultures, and the role of management.
In: González, F. (ed.) Values and Ethics for the 21st Century, pp. 385–403. BBVA,
Madrid, Spain (2011)

5. Fishbein, M., Ajzen, I.: Predicting and Changing Behavior: The Reasoned Action
Approach. Psychology Press, New York, NY, USA (2010)

6. Ajzen, I.: The theory of planned behavior. Organ. Behav. Hum. Decis. Process 50,
179–211 (1991)

7. Fishbein, M.: A theory of reasoned action: Some applications and implications. Nebraska
Symp. Motiv. 27, 65–116 (1979)

8. Sommestad, T., Hallberg, J.: A review of the theory of planned behaviour in the context of
information security policy compliance. In: Janczewski, E., Wolf, H., Shenoi, S. (eds.) In-
ternational Information Security and Privacy Conference. Springer, Berlin / Heidelberg,
Auckland (2013)

9. Verbeke, W., Volgering, M., Hessels, M.: Exploring the Conceptual Expansion within the
Field of Organizational Behaviour: Organizational Climate and Organizational Culture. J.
Manag. Stud. 35, 303–329 (1998)

10. Thomson, K.-L., von Solms, R.: Information security obedience: a definition. Comput. Se-
cur. 24, 69–75 (2005)

11. Furnell, S., Thomson, K.-L.: From culture to disobedience: Recognising the varying user
acceptance of IT security. Comput. Fraud Secur. 2009, 5–10 (2009)

12. Karlsson, F., Åström, J., Karlsson, M.: Information security culture: State-of-the-art re-
view between 2000 and 2013. Inf. Comput. Secur. (in press)

13. Schein, E.: Coming to a new awareness of organizational culture. Sloan Manage. Rev. 25
(1984)

14. Schein, E.: Preface. In: Ashkanasy, C., Wilderom, M.F. (eds.) Organizational Culture and
Climate, pp. xi–xiii. Sage Publications, Inc, 2455 Teller Road, Thousand Oaks California
91320 United States (2012)

15. Hofstede, G.: Dimensionalizing cultures: The Hofstede model in context. Online readings
Psychol. Cult. 2, 1–26 (2011)

16. Yammarino, F.J., Dansereau, F.: Multilevel issues in organizational culture and climate re-
search. In: Ashkanasy, N.M., Wilderom, C.P.M., Mark F. (eds.) The Handbook of Organi-
zational Culture and Climate, pp. 50–76. SAGE Publications, Inc., 2455 Teller Road,
Thousand Oaks California 91320 United States (2011)

338 T. Sommestad

17. Malcolmson, J.: What is security culture? Does it differ in content from general organisa-
tional culture? 43rd Annual 2009 International Carnahan Conference on Security Technol-
ogy, pp. 361–366. IEEE (2009)

18. Schlienger, T., Teufel, S.: Information security culture-from analysis to change. IFIP TC11
International Conference on Information Security, Cairo, Egypt (2003)

19. Hu, Q., Dinev, T., Hart, P., Cooke, D.: Managing Employee Compliance with Information
Security Policies: The Critical Role of Top Management and Organizational Culture*.
Decis. Sci. 43, 615–660 (2012)

20. Dugo, T.M.: The insider threat to organizational information security: a sturctural model
and empirical test (2007). http://etd.auburn.edu/etd/handle/10415/1345

21. McCoy, B., Stephens, G., Stevens, K.: An Investigation of the Impact of Corporate Culture
on Employee Information Systems Security Behaviour. In: Proceedings of ACIS 2009
(2009)

22. Herath, T., Rao, H.R.: Protection motivation and deterrence: A framework for security
policy compliance in organisations. Eur. J. Inf. Syst. 18, 106–125 (2009)

23. Furnell, S.: End-user security culture: A lesson that will never be learnt? Comput. Fraud
Secur. 2008, 6–9 (2008)

24. Guldenmund, F.W.: The use of questionnaires in safety culture research – an evaluation
45, 723–743 (2007)

25. Flin, R.: Measuring safety culture in healthcare: A case for accurate diagnosis. Safety
Science 45, 653–667 (2007)

26. O’Connor, P., O’Dea, A., Kennedy, Q., Buttrey, S.E.: Measuring safety climate in avia-
tion: A review and recommendations for the future. Saf. Sci. 49, 128–138 (2011)

27. Turner, J.C.: Towards a cognitive redefinition of the social group. In: Tajfel, H. (ed.)
Social Identity and Intergroup Relations, pp. 15–40. Cambridge University Press,
Cambridge, Great britain (1982)

28. Leidner, D.E., Milovich, M.: Middle Management and Information Systems Strategy:
The Role of Awareness and Involvement. 2014 47th Hawaii International Conference on
System Sciences, pp. 4396–4405. IEEE (2014)

29. Niekerk, J. Van, Solms, R. Von: An holistic framework for the fostering of an information
security sub-culture in organizations. Information Security South Africa (ISSA) (2005)

30. Cronbach, L.J., Shavelson, R.J.: My Current Thoughts on Coefficient Alpha and Successor
Procedures. Educ. Psychol. Meas. 64, 391–418 (2004)

31. Peterson, R.A.: Meta-analysis of Alpha Cronbach’s Coefficient. J. Consum. Res. 21,
381–391 (2014)

Attack Trees with Sequential Conjunction

Ravi Jhawar1, Barbara Kordy2(B), Sjouke Mauw1, Saša Radomirović3,
and Rolando Trujillo-Rasua1

1 CSC/SnT, University of Luxembourg, Luxembourg, Luxembourg
{ravi.jhawar,rolando.trujillo,sjouke.mauw}@uni.lu

2 INSA Rennes, IRISA, Rennes, France
barbara.kordy@irisa.fr

3 Institute of Information Security, Department of Computer Science, ETH Zürich,
Zürich, Switzerland

sasa.radomirovic@inf.ethz.ch

Abstract. We provide the first formal foundation of SAND attack trees
which are a popular extension of the well-known attack trees. The SAND

attack tree formalism increases the expressivity of attack trees by intro-
ducing the sequential conjunctive operator SAND. This operator enables
the modeling of ordered events.

We give a semantics to SAND attack trees by interpreting them as sets
of series-parallel graphs and propose a complete axiomatization of this
semantics. We define normal forms for SAND attack trees and a term
rewriting system which allows identification of semantically equivalent
trees. Finally, we formalize how to quantitatively analyze SAND attack
trees using attributes.

Keywords: Attack trees · Security modeling · Sequential operators ·
SAND

1 Introduction

Attack trees allow for an effective security analysis by systematically organizing
the different ways in which a system can be attacked into a tree. The root
node of an attack tree represents the attacker’s goal and the children of a given
node represent its refinement into sub-goals. A refinement is typically either
disjunctive (denoted by OR) or conjunctive (denoted by AND). The leaves of an
attack tree represent the attacker’s actions and are called basic actions.

Since their inception by Schneier [19], attack trees have quickly become a
popular modeling tool for security analysts. However, the limitations of this for-
malism, in particular with respect to expressing the order in which the various
attack steps are executed, have been recognized by many authors (see e.g., [10]).
In practice, modeling of security scenarios often requires constructs where con-
ditions on the execution order of the attack components can be clearly specified.
This is for instance the case when the time or (conditional) probability of an
attack is considered, as in [2,21]. Consequently, several studies have extended
attack trees informally with sequential conjunctive refinements. Such extensions
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 339–353, 2015.
DOI: 10.1007/978-3-319-18467-8 23

340 R. Jhawar et al.

have resulted in improved modeling and analyses (e.g., [15,21,22]) and software
tools, e.g., ATSyRA [16].

Even though the sequential conjunctive refinement, that we denote by SAND,
is well understood at a conceptual level and even applied to real world scenar-
ios [16], none of the existing solutions have provided a rigorous mathematical
formalization of attack trees with SAND. Indeed, the extensions found in the lit-
erature are rather diverse in terms of application domain, interpretation, and
formality. Thereby, it is infeasible to answer fundamental questions such as:
What is the precise expressibility of SAND attack trees? When do two such trees
represent the same security scenario? Or what type of attributes can be syn-
thesized on SAND attack trees in the standard bottom-up way? These questions
can only be precisely answered if SAND attack trees are provided with a formal,
general, and explicit interpretation, i.e., if they are given a formal foundation.

Contributions: In this article we formalize the meaning of a SAND attack tree by
defining its semantics. Our semantics is based on series-parallel (SP) graphs, which
is a well-studied branch of graph theory. We provide a complete axiomatization
for the SP semantics and show that the SP semantics for SAND attack trees are
a conservative extension of the multiset semantics for standard attack trees [13]
(i.e., our extension does not introduce unexpected equivalences w.r.t. the multiset
semantics). To do so, we define a term rewriting system that is terminating and
confluent and obtain normal forms for SAND attack trees. As a consequence, we
achieve the rather surprising result that the domains of SAND attack trees and sets
of SP graphs are isomorphic. We also extend the notion of attributes for SAND
attack trees which enable the quantitative analysis of attack scenarios using the
standard bottom-up evaluation algorithm.

Organization: Section 2 summarizes the related work and puts our work in con-
text. Section 3 provides a formal definition of SAND attack trees and its seman-
tics using series-parallel graphs. Section 4 defines a complete set of axioms for
SAND attack trees and presents a term rewriting system which allows identifica-
tion of semantically equivalent SAND attack trees. Section 5 outlines an approach
to quantitatively analyze SAND attack trees using attributes. Finally, Section 6
concludes with an outlook on future work.

2 Related Work and Motivation

One of the goals of our work is to provide a level of abstraction that encompasses
most of the existing approaches from literature. Several extensions of attack trees
with temporal or causal dependencies between attack steps have been proposed.
We observe that there are three different approaches to achieve this goal. The
first approach is to use standard attack trees with the added assumption that the
children of an AND node are sequentially ordered from left to right. The second
approach is to introduce a mechanism for ordering events in an attack tree, for
instance by adding a new type of edge to express causality or conditionality. In
its most general case, any partial order on the events in an attack tree can be

Attack Trees with Sequential Conjunction 341

specified. The third approach consists of the introduction of a new type of node
for sequencing. Most extensions fall in this category. This approach is used by
authors who require their formalism to be backward compatible, or who need
standard, as well as ordered conjunction. We discuss for each of these approaches
the most relevant papers with respect to the present article.

Approaches with a sequential interpretation of AND. In their work on
Bayesian networks for security, Qin and Lee define a transformation from attack
trees to Bayesian networks [17]. They state that “there always exists an implicit
dependent and sequential relationship between AND nodes in an attack tree.”
Most literature on attack trees seem to contradict this statement, implying that
there is a need to explicitly identify such sequential relationships.

Jürgenson and Willemson developed an algorithm to calculate the expected
outcome of an attack tree [22]. The goal of the algorithm is to determine a
permutation of leaves for which the optimal expected outcome for an attacker can
be achieved. In essence, their input is an attack tree where an AND node represents
all possible sequences of its children. A peculiarity of their interpretation is that
multiple occurrences of the same node are considered only once, implying that
the execution of the same action twice cannot be expressed.

Approaches introducing a general order. Peine et al. introduce security
goal indicator trees [14] in which nodes can be related by a notion of conditional
dependency and Boolean connectors. The authors, however, do not formally
specify the syntax and semantics of the model. A more general approach is pro-
posed by Piètre-Cambacédès and Bouissou [15], who apply Boolean logic driven
Markov processes to security modeling. Their formalism does not introduce new
gates, but a (trigger-)relation on the nodes of the attack tree. Although triggers
can express a more general sequential relation than the SAND operator, they lack
the readability of standard attack tree operators.

Vulnerability cause graphs [1,3] combine properties of attack trees (AND and
OR nodes) and attack graphs (edges express order rather than refinement). The
interaction between the AND nodes and the order relation is defined through a
graph transformation called conversion of conjunctions, which ignores the order
between nodes. This discrepancy could be solved by considering distinct con-
junctive and sequential conjunctive nodes, as we do in this paper.

Approaches introducing sequential AND. As noted by Arnold et al. [2], the
analysis of time-dependent attacks requires attack trees to be extended with a
sequential operator. This is accomplished by defining sequential nodes as con-
junctive nodes with a notion of progress of time. The authors define a formal
semantics for this extension based on cumulative distribution functions (CDFs),
where a CDF denotes the probability that a successful attack occurs within
time t. The main difference with our work is that their approach is based on an
explicit notion of time, while we have a more abstract approach based on causal-
ity. In their semantics, the meaning of an extended attack tree is a CDF, in which
the relation to the individual basic attacks is not explicit anymore. In contrast,
in our semantics the individual basic attacks and their causal ordering remain

342 R. Jhawar et al.

visible. As such, our semantics can be considered more abstract, and indeed, we
can formulate their semantics as an attribute in our approach.

Enhanced attack trees [4] (EATs) distinguish between OR, AND and OAND
(Ordered AND). Similarly to the approach of Arnold et al. [2], ordered AND nodes
are used to express temporal dependencies between attack components. The
authors evaluate EATs by transforming them into tree automata. Intermediate
states in the automaton support the task of reporting partial attacks. However,
because every intermediate node of the tree corresponds to a state in the tree
automaton, their approach does not scale well. This problem can be addressed
by considering the normal form of attack trees, as proposed in this article.

Not every extension of attack trees with SAND refinements concerns time-
dependent attack scenarios; some aim at supporting risk analyses with conditional
probabilities. For that purpose, Wen-Ping and Wei-Min introduce improved attack
trees [21]. The concepts, however, are described at an intuitive level only.

Unified parameterizable attack trees [20] unify different extensions of attack
trees (structural, computational, and hybrid). The authors consider two types
of ordered AND connectors: priority-based connectors and time-based connectors.
The children of the former are ordered from highest to lowest priority, whereas
the children of the latter are ordered temporally. Our formalism gives a single
interpretation to the SAND operator, yet it can capture both connectors.

Khand [7] extends attack trees with a set of gates from dynamic fault tree
modeling, which includes the priority AND gate. Khand assigns truth values to
his attack trees by giving truth tables for all gates. When restricted to AND, OR,
and priority AND, the truth tables constitute an attribute which is compatible
(in the sense of [9]) with our SP semantics for SAND attack trees.

We observe that the extensions of attack trees with sequential conjunction
are rather diverse in terms of application domain, interpretation, and formality.
In order to give a clear and unambiguous interpretation of the SAND operator and
capture different application domains, it is necessary to give a formal semantics
as a translation to a well-understood domain. Note that, neither the multiset [13]
nor the propositional semantics [11] can express ordering of attack components.
Therefore, a richer semantical domain needs to be defined. The purpose of this
article is to address this problem.

3 Attack Trees with Sequential Conjunction

We extend the attack tree formalism so that a refinement of a (sub-)goal of an
attacker can be a sequential conjunct (denoted by SAND) in addition to disjuncts
and conjuncts. We first give a definition of attack trees with the new sequential
operator and then define series-parallel graphs on which the semantics for the
new attack trees is based.

3.1 SAND Attack Trees

Let B denote the set of all possible basic actions of an attacker. We formalize
standard attack trees introduced in [19] and call them simply attack trees in the

Attack Trees with Sequential Conjunction 343

become root

no-auth

gain user privileges

ftp rsh

lobf

auth

ssh rsa

OR AND SAND

Fig. 1. An attack tree with sequential and parallel conjunctions

rest of this paper. Attack trees are closed terms over the signature B∪{OR, AND},
generated by the following grammar, where b ∈ B is a terminal symbol

t ::= b | OR(t, . . . , t) | AND(t, . . . , t). (1)

The universe of attack trees is denoted by T. SAND attack trees are closed terms
over the signature B∪{OR, AND, SAND}, where SAND is a non-commutative operator
called sequential conjunction, and are generated by the grammar

t ::= b | OR(t, . . . , t) | AND(t, . . . , t) | SAND(t, . . . , t). (2)

The universe of SAND attack trees is denoted by TSAND. The purpose of OR and AND
refinements in SAND attack trees is the same as in attack trees. The sequential
conjunctive refinement SAND allows us to model that a certain goal is reached if
and only if all its subgoals are reached in a precise order.

The following attack scenario motivates the need for extending attack trees
with sequential conjunctive refinement.

Example 1. Consider a file server S, offering ftp, ssh, and rsh services. The
attack tree in Figure 1 shows how an attacker can gain root privileges on
S (become root), in two ways: either without providing any user credentials
(no-auth) or by breaching the authentication mechanism (auth). In the first case,
the attacker must first gain user privileges on S (gain user privileges) and then
perform a local buffer overflow attack (lobf). Since the attack steps must be exe-
cuted in this particular order, the use of SAND refinement is substantial. To gain
user privileges, the attacker must exploit an ftp vulnerability to anonymously
upload a list of trusted hosts to S (ftp).1 Finally, she can use the new trust condi-
tion to remotely execute shell commands on S (rsh). The second way is to abuse
a buffer overflow in both the ssh daemon (ssh) and the RSAREF2 library (rsa)
used for authentication. These attacks can be executed in any order, which is
modeled with the standard AND refinement. Using the term notation introduced

1 For readability, attack actions are named after the services that are exploited.

344 R. Jhawar et al.

in this section, we can represent the SAND attack tree from Figure 1 as

t = OR
(
SAND

(
SAND(ftp, rsh), lobf

)
, AND(ssh, rsa)

)
,

where ftp, rsh, lobf, ssh, rsa ∈ B are basic actions.

3.2 Series-Parallel Graphs

A series-parallel graph (SP graph) is an edge-labeled directed graph that has
two unique, distinct vertices, called source and sink, and that can be constructed
with the two operators for sequential and parallel composition of graphs that we
formally define below. A source is a vertex which has no incoming edges and a
sink is a vertex without outgoing edges.

Our formal definition of SP graphs is based on multisets, i.e., sets in which
members are allowed to occur more than once. We use {| · |} to denote multisets
and P(·) to denote the powerset of a set or multiset. The support M� of a
multiset M is the set of distinct elements in M . For instance, the support of the
multiset M = {|b1, b2, b2|} is M� = {b1, b2}. In order to define SP graphs, we first
introduce the notion of source-sink graphs labeled by the elements of B.

Definition 1. A source-sink graph over B is a tuple G = (V,E, s, z), where V is
the set of vertices, E is a multiset of labeled edges with support E� ⊆ V ×B×V ,
s ∈ V is the unique source, z ∈ V is the unique sink, and s �= z.

The sequential composition of a source-sink graph G = (V,E, s, z) with a source-
sink graph G′ = (V ′, E′, s′, z′), denoted by G · G′, is the graph resulting from
taking the disjoint union of G and G′ and identifying the sink of G with the
source of G′. More precisely, let ∪̇ denote the disjoint union operator and E[s/z]

denote the multiset of edges in E, where all occurrences of vertex z are replaced
by vertex s. Then we define

G · G′ = (V \ {z}∪̇V ′, E[s′/z]∪̇E′, s, z′).

The parallel composition, denoted by G ‖ G′, is defined similarly, except that
the two sources are identified and the two sinks are identified. Formally, we have

G ‖ G′ = (V \ {s, z}∪̇V ′, E[s′/s,z′/z]∪̇E′, s′, z′).

It follows directly from the definitions that the sequential composition is asso-
ciative and that the parallel composition is associative and commutative.

We write b−→ for the graph with a single edge labeled with b and define SP
graphs as follows.

Definition 2. The set GSP of series-parallel graphs (SP graphs) over B is
defined inductively by the following two rules

– For b ∈ B, b−→ is an SP graph.
– If G and G′ are SP graphs, then so are G · G′ and G ‖ G′.

Attack Trees with Sequential Conjunction 345

s z

a

b

b

c d
e

f

g

Fig. 2. A series-parallel graph

It follows directly from Definition 2 that SP graphs are connected and acyclic.
Moreover, every vertex of an SP graph lies on a path from the source to the sink.
We consider two SP graphs to be equal if there is a bijection between their sets
of vertices that preserves the edges and edge labels.

Example 2. Figure 2 shows an example of an SP graph with the source s and
the sink z. This graph corresponds to the construction

(a−→‖ b−→‖ b−→)· c−→ ·
((d−→ ·(e−→‖ f−→)

) ‖ g−→
)
.

3.3 SP Semantics for SAND Attack Trees

Numerous semantics have been proposed to interpret attack trees, including
propositional logic [12], multisets [13], De Morgan lattices [11], tree automata [4],
and Markov processes [2,15]. The choice of a semantics allows us to accurately
represent the assumptions made in a security scenario, e.g., whether actions
can be repeated or resources reused, and to decide which trees represent the
same security scenario. The advantages of formalizing attack trees and the need
for various semantics have been discussed in [9]. Since attack trees are AND/OR
trees, the most natural interpretation is based on propositional logic. However,
because the logical operators are idempotent, this interpretation assumes that
the multiplicity of an action is irrelevant. As a consequence, the propositional
semantics is not well suited to reason about scenarios with multiple occurrences
of the same action. Due to this lack of expressivity a semantics was proposed [13]
in which the multiplicity of actions is taken into account. This was achieved by
interpreting an attack tree as a set of multisets that represent different ways of
reaching the root goal. This multiset semantics is compatible with computations
that depend on the number of occurrences of an action in the tree, such as the
minimal time to carry out the attack represented by the root goal.

We now extend the multiset semantics to SAND attack trees. Since SP graphs
naturally extend multisets with a partial order, they supply a formalism in which
we can interpret trees using both commutative and sequential conjunctive refine-
ments. SP graphs therefore provide a canonical semantics for SAND trees in which
multiplicity and ordering of goals and actions are significant. The idea is to inter-
pret an attack tree t as a set of SP graphs. The semantics [[t]]SP = {G1, . . . , Gk}
of a tree t corresponds to the set of possible attacks Gi, where each attack is
described by an SP graph labeled by the basic actions of t.

346 R. Jhawar et al.

Definition 3. The SP semantics for SAND attack trees is given by the function
[[·]]SP : TSAND → P(GSP), which is defined recursively as follows: for b ∈ B,
ti ∈ TSAND, 1 ≤ i ≤ k,

[[b]]SP = { b−→}
[[OR(t1, . . . , tk)]]SP =

⋃k
i=1 [[ti]]SP

[[AND(t1, . . . , tk)]]SP = {G1 ‖ . . . ‖ Gk | (G1, ..., Gk) ∈ [[t1]]SP × ... × [[tk]]SP}
[[SAND(t1, . . . , tk)]]SP = {G1 · . . . · Gk | (G1, ..., Gk) ∈ [[t1]]SP × ... × [[tk]]SP}.

In the SP semantics, the basic actions of a SAND attack tree are the edges of
series-parallel graphs. The semantics of a disjunctive, conjunctive, and sequen-
tial conjunctive node are the union, parallel composition, and sequential compo-
sition, respectively, of all combinations of SP graphs in the sets that represent
the semantics of the node’s children.

Example 3. The SP semantics of the attack tree t depicted in Figure 1 is

[[t]]SP = { ftp−−→ rsh−−→ lobf−−→ ,
ssh−−→‖ rsa−−→}.

As shown in Example 3, the SP semantics provides an alternative graph rep-
resentation for attack trees and therefore contributes a different perspective on
an attack scenario. The SAND attack tree emphasizes the refinement of goals,
whereas SP graphs highlight the sequential aspect of attacks.

The SP semantics provides a natural partition of TSAND into equivalence
classes.

Definition 4. Two SAND attack trees t1 and t2 are equivalent with respect to
the SP semantics if and only if they are interpreted by the same set of SP graphs,
i.e., [[t1]]SP = [[t2]]SP .

By Definition 4, if the SP semantics provides accurate assumptions for an attack
scenario, then two SAND attack trees represent the same attack scenario if and
only if they are equivalent with respect to the SP semantics.

4 Axiomatization of the SP Semantics

In this section we introduce a complete axiomatization of SAND attack trees with
respect to the SP semantics. Such an axiomatization provides us with syntactic
transformation rules for SAND attack trees that preserve the trees’ SP semantics.
In other words, it allows us to manipulate SAND attack trees without the need to
convert them to SP graphs. Moreover, we derive a term rewriting system from
the axiomatization as a means to effectively decide whether two SAND attack trees
are equivalent with respect to the SP semantics. As a consequence, we obtain a
canonical representation of SAND attack trees which we prove to be isomorphic
to sets of SP graphs.

Attack Trees with Sequential Conjunction 347

4.1 A Complete Set of Axioms for the SP Semantics

Let V be a set of variables denoted by capital letters. Following the approach
developed in [9], we axiomatize SAND attack trees with equations l = r, where l
and r are terms over variables in V, constants in B, and the operators AND, OR,
and SAND. The equations formalize the intended properties of refinements and
provide semantics-preserving transformations of SAND attack trees.

Example 4. Let Sym� denote the set of all bijections from {1, . . . , �} to itself. The
axiom AND(Y1, . . . , Y�) = AND(Yσ(1), . . . , Yσ(�)), where σ ∈ Sym�, expresses that
the order between children refining a parallel conjunctive node is not relevant. In
other words, the operator AND is commutative. This implies that any two trees
of the form AND(t1, . . . , tl) and AND(tσ(1), . . . , tσ(l)) represent the same scenario.

Our goal is to define a complete set of axioms, denoted by ESP , for the SP
semantics for SAND attack trees. Intuitively, ESP is a set of equations that can
be applied to transform a SAND attack tree into any equivalent SAND attack tree
with respect to the SP semantics. Before defining the set ESP , we formalize the
notion of a complete set of axioms for a given semantics for (SAND) attack trees,
following [9].

Let T (V, Σ) be the free term algebra over the set of variables V and signature
Σ, and let E be a set of equations over T (V, Σ). The equation t = t′, where
t, t′ ∈ T (V, Σ), is a syntactic consequence of E (denoted by E 	 t = t′) if it can
be derived from E by application of the following rules. For all t, t′, t′′ ∈ T (V, Σ),
ρ : V → T (V, Σ), and X ∈ V:

– E 	 t = t,
– if t = t′ ∈ E, then E 	 t = t′,
– if E 	 t = t′, then E 	 t′ = t,
– if E 	 t = t′ and E 	 t′ = t′′, then E 	 t = t′′.
– if E 	 t = t′, then E 	 ρ(t) = ρ(t′),
– if E 	 t = t′, then E 	 t′′[t/X] = t′′[t′/X], where t′′[t/X] is the term

obtained from t′′ by replacing all occurrences of the variable X with t.

Let TV
SAND denote the set of terms constructed from the set of variables V, the

set of basic actions B (treated as constants), and operators OR, AND and SAND. Let
T
V be the set of terms constructed from the same parts, except for the operator

SAND. Using the notion of syntactic consequence, we define a complete set of
axioms for a semantics for attack trees.

Definition 5. Let [[·]] be a semantics for attack trees (resp. SAND attack trees)
and let E be a set of equations over T

V (resp. TV
SAND). The set E is a complete

set of axioms for [[·]] if and only if, for all t, t′ ∈ T (resp. TSAND)

[[t]] = [[t′]] ⇐⇒ E 	 t = t′.

We are now ready to give a complete set of axioms for the SP semantics for SAND
attack trees. These axioms allow us to determine whether two visually distinct
trees represent the same security scenario according to the SP semantics.

348 R. Jhawar et al.

Theorem 1. Given k,m ≥ 0, and � ≥ 1, let X = X1, . . . , Xk, Y = Y1, . . . , Y�,
and Z = Z1, . . . , Zm be sequences of variables. Let Sym� be the set of all bijections
from {1, . . . , �} to itself. The following set of equations over T

V
SAND, denoted by

ESP , is a complete set of axioms2 for the SP semantics for SAND attack trees.

OR(Y1, . . . , Y�) = OR(Yσ(1), . . . , Yσ(�)), ∀σ ∈ Sym� (E1)
AND(Y1, . . . , Y�) = AND(Yσ(1), . . . , Yσ(�)), ∀σ ∈ Sym� (E2)

OR
(
X, OR(Y)

)
= OR(X,Y) (E3)

AND
(
X, AND(Y)

)
= AND(X,Y) (E4)

SAND
(
X, SAND(Y), Z

)
= SAND(X,Y ,Z) (E4′)

OR(A) = A (E5)
AND(A) = A (E6)
SAND(A) = A (E6′)

AND
(
X, OR(Y)

)
= OR

(
AND(X,Y1), . . . , AND(X,Y�)

)
(E10)

SAND
(
X, OR(Y), Z

)
= OR

(
SAND(X,Y1, Z), . . . , SAND(X,Y�, Z)

)
(E10′)

OR(A,A,X) = OR(A,X) (E11)

The numbering of the axioms in ESP corresponds to the numbering of the axioms
for the multiset semantics for standard attack trees, as presented in [9], while
new axioms (involving SAND) are marked with primes.

Proof. The proof of this theorem follows the same line of reasoning as the proofs
of Theorems 4.2 and 4.3 of Gischer [5], where series–parallel pomsets are axiom-
atized. The details can be found in the extended version of this work [6]. ��

4.2 SAND Attack Trees in Canonical Form

Let [[·]] be a semantics for (SAND) attack trees. A complete axiomatization of [[·]]
can be used to derive a canonical form of trees interpreted with [[·]]. Such canon-
ical forms provide the most concise representation for equivalent trees and are
the natural representatives of equivalence classes defined by [[·]].

When SAND attack trees are interpreted using the SP semantics, their canon-
ical forms consist of either a single basic action, or of a root node labeled with
OR and subtrees with nested, alternating occurrences of AND and SAND nodes.
Canonical forms correspond exactly to the sets of SP graphs labeled by B and
they depict all attack alternatives in a straightforward way.

In the full version of this work [6], we show how to obtain canonical forms of
SAND attack trees using the complete set of axioms ESP for the SP semantics. By
orienting the equations (E3), (E4), (E4′), (E5), (E6), (E6′), (E10), (E10′), and
(E11) from left to right, we obtain a term rewriting system, denoted by RSP .
We show that RSP is terminating and confluent. The canonical representations
2 Note that the axioms are in fact axiom schemes. The operators OR, AND and SAND

are unranked, representing infinitely many k-ary function symbols (k ≥ 1).

Attack Trees with Sequential Conjunction 349

of SAND attack trees correspond to normal forms with respect to RSP . They are
unique modulo commutativity of OR and AND.

Example 5. The canonical form of the SAND attack tree t in Figure 1 is the tree

t′ = OR
(
SAND(ftp, rsh, lobf), AND(ssh, rsa)

)

shown in Figure 3. It is easily seen to be in normal form with respect to RSP .

become root

no-auth

ftp rsh lobf

auth

ssh rsa

Fig. 3. SAND attack tree t′ equivalent to SAND attack tree t from Figure 1

4.3 SP Semantics as a Generalization of the Multiset Semantics

Having a complete set of axioms for the SP semantics allows us to formalize
the relation between SAND attack trees under the SP semantics and attack trees
under the multiset semantics, denoted by [[·]]M. This is achieved by extracting a
complete set of axioms for the multiset semantics for attack trees from the set
ESP . Let EM be the subset of axioms from ESP that do not contain the SAND
operator, i.e., EM = {(E1), (E2), (E3), (E4), (E5), (E6), (E10), (E11)}.

Theorem 2. The axiom system EM is a complete set of axioms for the multiset
semantics for attack trees.

The proof can be found in a full version of this paper [6].
By comparing the complete sets of axioms ESP and EM we obtain that two

attack trees are equivalent under the multiset semantics if and only if they are
equivalent under the SP semantics. This is formalized in the following theorem.

Theorem 3. SAND attack trees under the SP semantics are a conservative exten-
sion of attack trees under the multiset semantics.

Proof. We need to prove that, for all standard attack trees t and t′, we have
[[t]]M = [[t′]]M if and only if [[t]]SP = [[t′]]SP . From EM ⊂ ESP , we conclude that
[[t]]M = [[t′]]M implies [[t]]SP = [[t′]]SP . Conversely, we remark that the equations
belonging to ESP \EM do not introduce new equalities on standard attack trees.
A complete proof of this fact is given in the full version of this work [6]. ��

350 R. Jhawar et al.

5 Attributes

Attack trees do not only serve to represent security scenarios in a graphical way.
They can also be used to quantify such scenarios with respect to a given param-
eter, called an attribute. Typical examples of attributes include the likelihood
that the attacker’s goal will be met and the minimal time or cost of an attack.
Schneier described [19] an intuitive bottom-up algorithm for calculating attribute
values of attack trees: attribute values are assigned to the leaf nodes and two
functions3 (one for the OR and one for the AND refinement) are used to propagate
the attribute value up to the root node. Mauw and Oostdijk showed [13] that
if the binary operations induced by the two functions define a semiring, then
the evaluation of the attribute on two attack trees equivalent with respect to
the multiset semantics yields the same value. This result has been generalized to
any semantics and attribute that satisfy a notion of compatibility [9] and we
briefly discuss it for SAND attack trees at the end of this section. We start with
a demonstration of how the bottom-up evaluation algorithm can naturally be
extended to SAND attack trees.

An attribute domain for an attribute Aα on SAND attack trees is a tuple
Dα = (Vα,�α,�α,♦α), where Vα is a set of values and �α,�α,♦α are families
of k-ary functions of the form Vα × · · · × Vα → Vα, associated to OR, AND,
and SAND refinements, respectively. An attribute for SAND attack trees is a pair
Aα = (Dα, βα) formed by an attribute domain Dα and a function βα : B → Vα,
called basic assignment for Aα, which associates a value from Vα with each b ∈ B.

Definition 6. Let Aα =
(
(Vα,�α,�α,♦α), βα

)
be an attribute. The attribute

evaluation function α : TSAND → Vα, which calculates the value of attribute Aα

for every SAND attack tree t ∈ TSAND, is defined recursively as follows.

α(t) =

⎧
⎪⎪⎨

⎪⎪⎩

βα(t) if t = b, b ∈ B

�α

(
α(t1), . . . , α(tk)

)
if t = OR(t1, . . . , tk)

�α

(
α(t1), . . . , α(tk)

)
if t = AND(t1, . . . , tk)

♦α

(
α(t1), . . . , α(tk)

)
if t = SAND(t1, . . . , tk)

The following example illustrates the bottom-up evaluation of the attribute
minimal attack time on the SAND attack tree given in Example 1.

Example 6. Let α denote the minimal time that the attacker needs to achieve
her goal in the scenario of Example 1. We make the following assignments to
the basic actions: ftp �→ 3, rsh �→ 5, lobf �→ 7, ssh �→ 8, rsa �→ 9. Since
we are interested in the minimal attack time, the function for an OR node is
defined by �α(x1, . . . , xk) = min{x1, . . . , xk}. The function for an AND node is
�α (x1, . . . , xk) = max{x1, . . . , xk}, which models that the children of a conjunc-
tively refined node are executed in parallel. Finally, in order to model that the

3 These are actually families of functions representing infinitely many k-ary function
symbols, for all k ≥ 2.

Attack Trees with Sequential Conjunction 351

children of a SAND node need to be executed sequentially, we let ♦α(x1, . . . , xk) =
∑k

i=1 xi. According to Definition 6, the minimal attack time is

�α

(
♦α

(
♦α(3, 5), 7

)
,�α (8, 9)

)
= min

(
Σ

(
Σ(3, 5), 7

)
,max(8, 9)

)
= 9.

In the case of standard attack trees, the bottom-up procedure uses only two
functions to propagate the attribute values to the root – one for conjunctive
and one for disjunctive nodes. This means that the same function is employed to
calculate the value of every conjunctively refined node, independently of whether
its children need to be executed sequentially or can be executed simultaneously.
Evidently, with SAND attack trees, we can apply different propagation functions
for AND and SAND nodes, as in Example 6. Therefore, SAND attack trees can be
evaluated over a larger set of attributes, and hence may provide more accurate
evaluations of attack scenarios, than standard attack trees.

To guarantee that the evaluation of an attribute on equivalent attack trees
yields the same value, the attribute domain must be compatible with a considered
semantics [9]. Our complete set of axioms is a useful tool to check for compatibil-
ity with the SP semantics. Consider an attribute domain Dα = (Vα,�α,�α,♦α),
and let σ be a mapping σ = {OR �→ �α, AND �→�α, SAND �→ ♦α}. Guaranteeing
that Dα is compatible with a semantics axiomatized by E amounts to verifying
that the equality σ(l) = σ(r) holds in Vα, for every axiom l = r ∈ E. It is an easy
exercise to show that the attribute domain for minimal attack time, considered
in Example 6, is compatible with the SP semantics for SAND attack trees.

6 Conclusions

We have formalized the extension of attack trees with sequential conjunctive
refinement, called SAND, and given a semantics to SAND attack trees in terms
of sets of series-parallel graphs. This SP semantics naturally extends the mul-
tiset semantics for attack trees from [13]. We have shown that the notion of a
complete set of axioms for a semantics and the bottom-up evaluation procedure
can be generalized from attack trees to SAND attack trees, and have proposed
a complete axiomatization of the SP semantics.

A number of recently proposed solutions focus on extending attack trees with
defensive measures [9,18]. These extensions support reasoning about security
scenarios involving two players – an attacker and a defender – and the interaction
between them. In future work, we intend to add the SAND refinement to such
trees. Afterwards, we plan to investigate sequential disjunctive refinement, as
used for instance in [2]. Our goal is to propose a complete formalization of trees
with attack and defense nodes, that have parallel and sequential, conjunctive and
disjunctive refinements. Finally, our results will be used to extend the software
application ADTool [8]. In particular, the axiomatization proposed in this paper
and its term rewriting system RSP will be implemented and used to decide on
the equivalence of SAND attack trees.

352 R. Jhawar et al.

Acknowledgments. The research leading to these results has received funding from
the European Union Seventh Framework Programme under grant agreement number
318003 (TREsPASS) and from the Fonds National de la Recherche Luxembourg under
grant C13/IS/5809105.

References

1. Ardi, S., Byers, D., Shahmehri, N.: Towards a structured unified process for soft-
ware security. In: SESS 2006, pp. 3–10. ACM (2006)

2. Arnold, F., Hermanns, H., Pulungan, R., Stoelinga, M.: Time-dependent analysis
of attacks. In: Abadi, M., Kremer, S. (eds.) POST 2014 (ETAPS 2014). LNCS,
vol. 8414, pp. 285–305. Springer, Heidelberg (2014)

3. Byers, D., Ardi, S., Shahmehri, N., Duma, C.: Modeling software vulnerabilities
with vulnerability cause graphs. In: ICSM 2006, pp. 411–422 (2006)

4. Camtepe, S., Yener, B.: Modeling and detection of complex attacks. In:
SecureComm 2007, pp. 234–243. IEEE (2007)

5. Gischer, J.L.: The Equational Theory of Pomsets. Theor. C. Sc. 61, 199–224 (1988)
6. Jhawar, R., Kordy, B., Mauw, S., Radomirović, S., Trujillo-Rasua, R.: Attack Trees

with Sequential Conjunction. CoRR abs/1503.02261 (2015). http://arxiv.org/abs/
1503.02261

7. Khand, P.A.: System level security modeling using attack trees. In: IC4 2009, pp.
1–6 (2009)

8. Kordy, B., Kordy, P., Mauw, S., Schweitzer, P.: ADTool: security analysis with
attack–defense trees. In: Joshi, K., Siegle, M., Stoelinga, M., D’Argenio, P.R. (eds.)
QEST 2013. LNCS, vol. 8054, pp. 173–176. Springer, Heidelberg (2013)

9. Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-Defense Trees. Jour-
nal of Logic and Computation 24(1), 55–87 (2014)

10. Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-Based Attack and Defense
Modeling: Don’t Miss the Forest for the Attack Trees. Computer Science Review
13–14, 1–38 (2014)

11. Kordy, B., Pouly, M., Schweitzer, P.: Computational aspects of attack–defense
trees. In: Bouvry, P., K�lopotek, M.A., Leprévost, F., Marciniak, M., Mykowiecka,
A., Rybiński, H. (eds.) SIIS 2011. LNCS, vol. 7053, pp. 103–116. Springer,
Heidelberg (2012)

12. Kordy, B., Pouly, M., Schweitzer, P.: A probabilistic framework for security scenar-
ios with dependent actions. In: Albert, E., Sekerinski, E. (eds.) IFM 2014. LNCS,
vol. 8739, pp. 256–271. Springer, Heidelberg (2014)

13. Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.)
ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006)

14. Peine, H., Jawurek, M., Mandel, S.: Security goal indicator trees: a model of soft-
ware features that supports efficient security inspection. In: HASE 2008, pp. 9–18.
IEEE Computer Society (2008)

15. Piètre-Cambacédès, L., Bouissou, M.: Beyond attack trees: dynamic security mod-
eling with boolean logic driven Markov processes (BDMP). In: EDCC 2010,
pp. 199–208. IEEE Computer Society, Los Alamitos (2010)

16. Pinchinat, S., Acher, M., Vojtisek, D.: Towards synthesis of attack trees for sup-
porting computer-aided risk analysis. In: Canal, C., Idani, A. (eds.) SEFM 2014
Workshops. LNCS, vol. 8938, pp. 363–375. Springer, Heidelberg (2015)

17. Qin, X., Lee, W.: Attack plan recognition and prediction using causal networks.
In: 20th Annual Computer Security Applications Conference, pp. 370–379 (2004)

http://arxiv.org/abs/1503.02261
http://arxiv.org/abs/1503.02261

Attack Trees with Sequential Conjunction 353

18. Roy, A., Kim, D.S., Trivedi, K.S.: Attack Countermeasure Trees (ACT): Towards
Unifying the Constructs of Attack and Defense Trees. Security and Communication
Networks 5(8), 929–943 (2012)

19. Schneier, B.: Attack Trees: Modeling Security Threats. Dr. Dobb’s Journal of Soft-
ware Tools 24(12), 21–29 (1999)

20. Wang, J., Whitley, J.N., Phan, R.C.W., Parish, D.J.: Unified Parametrizable
Attack Tree. Int. Journal for Information Security Research 1(1), 20–26 (2011)

21. Wen-ping, L., Wei-min, L.: Space based information system security risk evaluation
based on improved attack trees. In: (MINES 2011), pp. 480–483 (2011)

22. Jürgenson, A., Willemson, J.: Serial model for attack tree computations. In: Lee,
D., Hong, S. (eds.) ICISC 2009. LNCS, vol. 5984, pp. 118–128. Springer, Heidelberg
(2010)

Enhancing the Security of Image CAPTCHAs
Through Noise Addition

David Lorenzi1, Emre Uzun1, Jaideep Vaidya1(B),
Shamik Sural2, and Vijayalakshmi Atluri1

1 Rutgers University, Newark, NJ 07102, USA
{dlorenzi,emreu,jsvaidya,atluri}@cimic.rutgers.edu

2 Indian Institute of Technology, School of Information Technology,
Kharagpur, India

shamik@sit.iitkgp.ernet.in

Abstract. Text based CAPTCHAs are the de facto method of choice to
ensure that humans (rather than automated bots) are interacting with
websites. Unfortunately, users often find it inconvenient to read characters
and type them in. Image CAPTCHAs provide an alternative that is often
preferred to text-based implementations. However, Image CAPTCHAs
have their own set of security and usability problems. A key issue is their
susceptibility to Reverse Image Search (RIS) and Computer Vision (CV)
attacks. In this paper, we present a generalized methodology to transform
existing images by applying various noise generation algorithms into vari-
ants that are resilient to such attacks. To evaluate the usability/security
tradeoff, we conduct a user study to determine if the method can provide
“usable” images that meet our security requirements – thus improving the
overall security provided by Image CAPTCHAs.

1 Introduction

CAPTCHAs (Completely Automated Public Turing test to tell Computers and
Humans Apart) are now ubiquitously found on the web to ensure that the entity
interacting with a website is indeed human. While CAPTCHAs ensure that abuse
of online forms is reduced, web users are forced to suffer through increasingly
convoluted and unfriendly CAPTCHAs that negatively impact their user experi-
ence. Text-based CAPTCHAs are the most common implementation in use, due
to their scalability, robustness, and ease of implementation. However, given their
prevalence, many techniques have been developed to break such CAPTCHAs. As
a result, alternative methods of form control and human verification have been
sought for by the research community. Among the several different modalities
that have been explored, image based CAPTCHAs have emerged as a plausible
alternative, more suitable for the smartphone/mobile touch-capable environ-
ment. However, image CAPTCHAs come with their own set of problems, partic-
ularly in terms of scalability – it is hard to find large quantities of labeled/tagged
images; and robustness – there is limited variation in the challenge question and
vulnerability to single style of attack. In particular, reverse image search (RIS)
has emerged as a particularly insidious type of attack against image CAPTCHAs
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 354–368, 2015.
DOI: 10.1007/978-3-319-18467-8 24

Enhancing the Security of Image CAPTCHAs Through Noise Addition 355

[10]. In this paper, we propose a generalized methodology to transform existing
images into more resilient variants. The basic idea is to introduce noise into
the images using various noise generation algorithms which make it difficult to
automatically retrieve the exact same image from the web, while still allow-
ing humans to extract the key concepts from the image to correctly answer the
CAPTCHA. Through this transformation, image CAPTCHAs can again become
a viable alternative to text based CAPTCHAs having a similar level of security
while providing a superior level of usability.

One interesting aspect of using noise generation algorithms to secure images
is that the images produced by the algorithms we selected are very “grainy”
or “pixelated” in appearance – very similar to a snowy TV picture. The noise
introduced is primarily additive and multiplicative in nature, thus it tends to
shift around color values in various pixels based on a threshold of our choosing.
The benefit to this noise is demonstrated when the image is viewed as a matrix
of numbers (as a computer would “see” the image), the values vary wildly and
do not follow the patterns typical of a structured image. However, when viewed
by a human eye (along with a human mind behind it), the colors blend into an
image that is coherent and cognizable (the “Pointillism effect”). Strangely, this
side effect of enhancing security actually does not impact usability negatively
(to a point). In general, this effect is easier to achieve the further away your
eye is from the image, or if the image is small in dimensions (scaled down). In
honor of one of the co-creators of the Pointillism technique, 19th century French
neo-impressionist painter Paul Signac, we have named our procedure SIGNAC
(Secure Image Generation Noise Algorithms for CAPTCHAs).

Our method is similar to the concept of “emergence” - which refers to
the unique human ability to aggregate information from seemingly meaningless
pieces, and to perceive a whole that is meaningful [15]. The image CAPTCHA
utilization of this idea relies on the absence of meaningful information in local
image parts which largely hinders existing computer vision algorithms from rec-
ognizing emerging figures [9]. The difference between our proposed SIGNAC
method and emergence is that we are using an original image (I) and altering it
to a new image (I’) through a series of image transformations and alterations.
We believe this provides a stronger “concrete” foundation for the images gener-
ated by the SIGNAC method than would be created by emerging images without
giving away too many clues to segmentation/edge detection algorithms.

The rest of the paper is structured as follows. In Section 2 we review the
related work. Section 3 details attacks and defense strategies. Section 4 presents
the proposed methodology. Sections 5 and 6 present the experimental evaluation
and the usability study respectively. Finally, Section 7 concludes the paper.

2 Related Work

From the first introduction of the CAPTCHA [17], there has been significant
work on categorizing and creating different CAPTCHA challenges based on
alternate modalities such as images [2]. Usability is often a key challenge – Yan
et al. [18] provide a general framework for evaluating usability. In recent years,
the complexity of text-based CAPTCHAs has been steadily increasing to provide

356 D. Lorenzi et al.

robustness against attacks, but also hampering their usability. As mentioned
above, this has led to alternatives such as image based CAPTCHAs. How-
ever, given the continuous improvement in computer vision algorithms, image
CAPTCHAs have also become vulnerable to attack from methods such as edge
detection, object recognition, or pattern recognition. As demonstrated by sev-
eral studies [5,6,8,11,19], newly deployed real world CAPTCHAs frequently do
not take into account advances in computer vision research literature and make
common mistakes that could have been accounted for during their design phase.

Newer CAPTCHAs leverage the power of images to exploit the human-
machine gap. For example, image orientation [7] is comparatively easy for humans
but difficult for computers. Similarly, “scene tagging” [13] tests the ability to
recognize a relationship between multiple objects in an image that is automati-
cally generated via composition of a background image with multiple irregularly
shaped object images. IMAGINATION [4] also uses a similar “image composi-
tion” method. Image distortion [14] has also been suggested as an alternative.
One interesting recent invention is that of the GOTCHA [1], which is essentially
a randomized puzzle generation protocol, which produces unique images similar
to inkblot tests. While questions about its usability remain, it is a promising
emerging avenue of anti-bot security methods research.

The main enemy of modern image CAPTCHAs that attempt to work at
scale is the modern Content Based Image Retrieval (CBIR) engine [3]. Most
major search engines today offer some CBIR capability with their “image search”
feature, usually in the form of image retrieval, which can allow an attacker
to find an exact match (Reverse Image Search) or other uses of an image on
the web that have been used in a CAPTCHA challenge. One subset of CBIR,
Automated Image Annotation, provides an extreme threat to simple naming
image CAPTCHAs as it can provide an automated answer in the form of a tag
for what is presented in the image. Recently, Lorenzi et al. [10] have shown how
CBIR and ALA can be used to break several modern image CAPTCHAs.

3 Attack Methods and Defense Strategies

We now discuss two particular types of attack – Reverse Image Search (RIS)
engine attacks and Computer Vision (CV) attacks. These are particularly strong
against image CAPTCHAs. We also discuss the general defense strategy of
adding noise to the image to make it more robust to these attacks. As with
all CAPTCHAs, we are again faced with the challenge of balancing security
with usability. Since we are utilizing a noise addition method, the image cannot
be altered to the degree that a human observer loses the ability to recognize the
content of the image (rendering it useless for our purposes).

3.1 Stopping Image Search Attacks

First, our noise addition algorithms must stop reverse image search engines from
finding image matches indexed online (Google image search1 and Tineye 2).
1 https://www.google.com/img
2 https://www.tineye.com/

https://www.google.com/img
https://www.tineye.com/

Enhancing the Security of Image CAPTCHAs Through Noise Addition 357

Fig. 1. Reverse image search attack with metadata. (a) depicts the CAPTCHA images
without noise, (b) depicts results of a Google image search.

This is an important security enhancement as image CAPTCHAs traditionally
have problems in defending against database attacks and tag matching attacks,
which can be viewed as a scalability issue (too few unique images). The following
scenario is an example of an RIS attack in action: Imagine an image based
CAPTCHA challenge asking the user to identify which image out of a set of
images depicts a cat as shown in Figure 1. The attacker then: 1) Makes a copy
of the images from the CAPTCHA 2) Runs them through an RIS engine to find
exact matches 3) Scrapes and stores the metadata from the RIS engine 4) Uses
Regular Expressions to match the keyword “cat” to the search that locates a
copy of the image used somewhere else online with the filename “cat.jpg”, which
happened to be found on a website with the URL that contains the word “cat”
e.g. http://www.coolcatpics.com.

At this point, the attacker can probabilistically determine which image is
most likely the cat image (or eliminate the other image choices through the
same process). The bad news for those attempting to develop security measures
against RIS engine attacks is that the engines themselves are proprietary (trade
secret) and closed source, forcing the CAPTCHA security developer to devise a

http://www.coolcatpics.com

358 D. Lorenzi et al.

set of experiments that attempt to probe a “black box” to learn its behavior.
The good news is that the RIS engines are available for use by the public with
reasonable limits established (50 test images per day, up to 150 per week), and a
security expert with access to or knowledge of “image fingerprinting” and image
processing literature can use this body of knowledge to provide clues for educated
guesses as to the methods that RIS engines are utilizing to identify matches. The
noise generation method we propose works on the premise of introducing an
amount of noise such that the image used for a CAPTCHA challenge has been
altered enough from the original that the various “image fingerprinting” metrics
used to determine matches have been “tricked” - that is they no longer see the
image as a match as its information diverges from the original image beyond
their threshold/similarity metric. Technically speaking, the image returned by
the method is a different image, as the noise changes the values of the pixels in
the image. A distance metric (change from original) is useful to model the noise
alterations from original image to new image. However, the new image (post-
noise) is still functionally depicting the same content as the original, albeit in
a degraded fashion. Stopping RIS engines from finding matches means indexed
images can be used as CAPTCHA challenges again, increasing the sample space
of potential usable images significantly.

3.2 Stopping Computer Vision Attacks

Second, the noise algorithms must be able to alter the image enough to hinder or
stop altogether, general image/object recognition algorithms that would attempt
to solve image recognition challenges.

One popular CV algorithm is SIFT [12], which stands for Scale-Invariant
Feature Transform. While it has previously been used in many applications, we
are interested only in its ability to perform object recognition tasks. ASIFT [16],
which stands for affine-SIFT, is an improvement over SIFT. It considers the
lattitude and longitude angles that are ignored by SIFT and then combines that
information with SIFT to provide a more complete analysis than SIFT alone.
As such, it significantly outperforms SIFT and is more of a challenge to defeat.
By adding noise to the image, it should throw off the keypoints calculations so
that when it compares two images, the noised image does not have the same
keypoints and it fails to return a match. Note that the web application uses
grayscales and resizes the images before the CV algorithm is run.

Another important point to consider is that we used an online service to
perform the SIFT and ASIFT analysis [16]. The above computation could be
completed in approximately 7 seconds through a web form. As more of these
services move online, an attacker no longer needs to run local image matching
or CV tools, and can script a live attack that pipes the CAPTCHA challenge
through the appropriate tools to generate and even submit a correct response.

For example, in our aforementioned cat image scenario, imagine in this case
the attacker decides to use image/object recognition with a CV toolkit. The
attacker has trained and tested their algorithm of choice (e.g., SIFT) on various
images of cats gathered from around the web and can recognize them with a

Enhancing the Security of Image CAPTCHAs Through Noise Addition 359

Fig. 2. CV Attack with SIFT & ASIFT

good degree of accuracy. When he feeds the CAPTCHA challenge image into
the algorithm, it returns a high probability of the image being of a cat. Using
the noise generation algorithms, the image of the cat can be altered enough so
that the CV algorithms return a low probability or cannot determine what the
image is depicting, but a human can still determine it is showing a cat. The
intention is to use the noise to distort the edges of scenes/objects and alter
the patterns within the image enough such that various commonly used CV
techniques fail to provide meaningful results for an attacker. Also image filters
can be used to distort and move pixel neighborhoods such that detection and
mapping algorithms fail to achieve matches and/or detect similarity. Figure 2
shows that both SIFT and ASIFT can overcome scaling issues (mappings are
found to a smaller, cropped image of the cat), and ASIFT typically provides
more mappings than SIFT.

4 Methodology

Our method is designed to work with existing image CAPTCHAs that rely on a
database of images for challenges. After application of SIGNAC, we demonstrate
that the same database of images provides better security against RIS and CV
based attacks. The MATLAB image processing toolbox is used to generate the
new secure images. The function imnoise is used to add noise to the images. The
test image set contains 100 images in total, 10 images in each of 10 different cat-
egories: airplane, bird, car, cat, doll, fish, flower, monkey, robot, and train. The
categories are deliberately made “concrete” instead of abstract, as this makes
it easier to create naming and distinguishing image CAPTCHAs that will be
straightforward for user/usability testing. This also provides the CV algorithms
with an “object” to recognize.The noise functions utilized in the method are the
four generalized noise functions available in the MATLAB IPT3.

4.1 The SIGNAC Approach

As discussed above, SIGNAC is implemented using the MATLAB Image Pro-
cessing Toolbox. The script below gives an idea of the method in action. X is
3 http://www.mathworks.com/help/images/ref/imnoise.html

http://www.mathworks.com/help/images/ref/imnoise.html

360 D. Lorenzi et al.

the image at the initial starting point when it is read into the IPT. c1 through
c5 represent the image at various stages of its alteration. Note that this example
is a multimethod output, as different noise and filter functions are being used to
generate an image at each step. It is important to note that ordinality plays a
large factor in the outcome of the image’s success or failure in defeating an RIS
engine, as discussed in the following section. This script is designed to create
the image filter, read in the image file, apply noise, filter the image, then apply
noise 3 more times before writing the image to a file.

f=fspecial(’motion’,11,3)
x=imread(’1.jpg’)
c1=imnoise(x,’salt & pepper’,0.35)
c2=imfilter(c1,f)
c3=imnoise(c2,’speckle’,0.35)
c4=imnoise(c3,’gaussian’,0,0.35)
c5=imnoise(c4,’poisson’)
imwrite(c5,’1’, ’jpg’);

This script represents the final script used to create the secure image set used in
our experiments. Salt and pepper noise can be considered the most destructive
type of noise, as it is the most extreme - changing pixel values to 0’s and 1’s. The
motion filter is then applied to the image with a len of 11 pixels and a theta of 3
degrees counterclockwise, which serves to relocate the pixels that were changed
with the addition of the salt and pepper noise to new areas around the image.
This aids in obfuscation of clues about pixel values in a particular neighborhood,
i.e., multiple pixels will now be distorted with values that differ from the original.
After the filter is applied, multiplicative noise in the form of the speckle noise
function distributes its noise in a uniform fashion throughout the image, followed
by the addition of white Gaussian noise. The final step involves using the Poisson
noise function, which does not add artificial noise, instead it generates noise from
the image data and then applies it to the image using a Poisson distribution. This
serves to further obfuscate the artificial noise that was added during previous
steps by shifting the pixel values around.

4.2 RIS Engine Probing

Figure 3 shows an example of a single image test working against the RIS engine
Tineye. For the original figure (3a), Tineye provides exact match results.

Single Noise Function, Single Stage. Currently, the initial image returns 16
exact matches from across the web. These results were gathered using a single
image noise function in a single step on the original image to produce an image
that returns 0 exact matches. Note that these values are unique to this image,
and vary based on the image properties.

Enhancing the Security of Image CAPTCHAs Through Noise Addition 361

(a) RIS Probe Test
Image

(b) Gaussian Noise
with 0.2 Mean

(c) Salt & Pepper
Noise with 0.3 Mean

(d) Speckle Noise
with 0.4 Mean

Fig. 3. RIS Engine Probing

Table 1. Results of Ordinality Test

Primary Noise
Function

Permutations # of Results Primary Noise
Function

Permutations # of Results

Gaussian (G)

GKPS
GKSP
GPKS
GPSK
GSKP
GSPK

10
10
11
10
10
10

Speckle (K)

KGPS
KGSP
KPGS
KPSG
KSGP
KSPG

09
11
10
10
11
11

Salt and Pep-
per (S)

SGKP
SGPK
SKGP
SKPG
SPGK
SPKG

11
11
09
10
11
09

Poisson (P)

PGKS
PGSK
PKGS
PKSG
PSGK
PSKG

10
09
10
10
10
09

Ordinality Test. This test demonstrates the ordinality of noise functions.
These tests were run with the default settings of each noise generation function
to see if the order in which the functions are applied affects the results. Table 1
gives the results with the different orders. Note that these results were obtained
using the original cat image, and these results apply only to that image. From
these results, it is clear that order makes a difference as the range for matches is
+-2 matches, with a high of 11 matches and a low of 9 matches. We then further
investigate the chain of methods that produce the least amount of matches.

Threshold Determination. After deciding on an appropriate ordinality for
noise methods, it must be determined the minimum threshold at which zero
matches are reached - the key to our anti-RIS security criterion. A rough metric
is used first, incrementing each mean value by 0.1 until zero matches are found.
Then it decrements by 0.05 until a match and then increments or decrements by
0.01 until the minimal value is reached with zero matches. Figure 4 shows two
scripts that embody these principles in action. Note that both scripts provide
zero matches, however, the second script produces a clearer image because less
noise overall is added during the application of additional functions. This is

362 D. Lorenzi et al.

important for usability reasons - as the clearer the image is, the easier the chance
a real human will have in recognizing what it depicts.

x=imread(’cat.jpg’)

c1=imnoise(x,’salt & pepper’,0.11)

c2=imnoise(c1,’poisson’)

c3=imnoise(c2,’speckle’,0.11)

c4=imnoise(c3,’gaussian’,0,0.11)

imshow(c4)

(a) Minimal Equal Noise via (SPKG)

x=imread(’cat.jpg’)

c1=imnoise(x,’salt & pepper’,0.11)

c2=imnoise(c1,’poisson’)

c3=imnoise(c2,’speckle’,0.05)

c4=imnoise(c3,’gaussian’,0,0.05)

imshow(c4)

(b) SPKG Current Working Minimum

Fig. 4. SIGNAC MATLAB Scripts

However, the values are extremely sensitive. For example, decrementing the
mean in the initial noise function of the previous script by 0.01 to 0.1 produced 5
matches. Decrementing both means c3 and c4 by 0.01 each produced 8 matches.
It is a painstaking and involved process to tune each image for a working mini-
mum. Unfortunately, this process must be done for each image on an individual
basis and cannot be generalized beyond offering a rough threshold for which any
series will return zero matches, and this threshold is usually quite high and may
impact usability.

As such, this script serves as the endpoint for security against RIS engines, as
zero matches are returned with these values. Computer vision based attacks are
an entirely different subject, and there are no guarantees that this RIS minimum
will have any impact on the ability of CV tools to perform recognition tasks.

4.3 Noise for Anti-computer Vision

While stopping RIS engines was the primary challenge, CV tools are powerful
and have been successfully used to defeat image based CAPTCHAs in the past.
Thus, we aim to make it as difficult as possible to use them in performing object
recognition tasks. One such CV attack case is that of edge detection. This is a
key component of object recognition, and being able to foil it will go a long way
in stopping any CV attacks from performing this task on an image recognition
CAPTCHA challenge.

In Figure 5a, we can see the results of a Sobel edge detection run on the
test image. It clearly depicts a cat, while also picking up some of the wrinkles
in the sheet behind the cat. Enough detail of the cat comes through that a CV
algorithm could make a decision about what is depicted in the image. Note that
when edge detection is performed, the image is first converted from RGB to
grayscale, and then to binary (hence the black & white) after the edge detection
algorithm is run. Figure 5b shows the same Sobel edge detection method run
on the image of the cat that has been noised. It can be seen that the cat has
completely disappeared - only white dots on a black background appear. No
useful information can be gained from this image.

Enhancing the Security of Image CAPTCHAs Through Noise Addition 363

(a) Original Image Edge Detection (b) Edge Detection after Noising

Fig. 5. Edge detection tests

Fig. 6. SIFT & ASIFT image matching

5 Experimental Results and Analysis

We now describe the experimental evaluation to test image security against both
RIS engine attacks and CV attacks using the aforementioned online tools. We
have gathered 100 random indexed images from 10 categories and applied the
method described in Section 4. Note that the image filter values did not change
during the course of the experiments, only the mean values of the noise functions.

5.1 RIS Engine Testing

The goal of this experiment was to establish a baseline for which a set of noise
functions can provide zero exact matches against both Google (G) and Tineye’s
(T) reverse image search engines. As mentioned in the Methodology section,
the approach we use is more conservative from the security perspective, in that
many of the images are no longer returning matches at much lower levels of
noise overall. We consider even 1 match a failure - thus we do not report specific
numbers of matches for each image failure. The number following the search
engine designation is the number in the set of 10 for that category, e.g., car
contains 10 images total, numbered 21-30 - T22 means that image 22 failed to
produce zero matches as matches were found on Tineye (but not Google).

364 D. Lorenzi et al.

Table 2. RIS Engine Testing

CategoryID Category Noise Functions at 0.25 Mean Noise Functions at 0.30 Mean

Pass Fail Pass Fail

1 airplane T,G T,G
2 bird T,G T,G
3 car G T22 T,G
4 cat T G32 T,G
5 doll T,G T,G
6 fish T G57 T,G
7 flower T,G T,G
8 monkey T G77,G79 T,G
9 robot T84,T85,G81,G84,G85 T84,G84
10 train T,G T,G

Table 2 shows that at 0.25 mean noise, we have 8 out of 100 unique images
returning matches. Tineye has one unique hit (T22) and Google has five unique
hits (G32,G57,G77,G79,G81). There is overlap on image 84 and 85 as both
engines returned matches. This means that out of our random sample of 100
indexed images, 92 out of 100 returned zero matches. At 0.30 mean noise, we
have 1 out of 100 unique images returning a match. Tineye and Google both
return matches for the same image. This means that out of our random sample
of 100 indexed images, 99 out of 100 returned zero matches.

5.2 Computer Vision Testing

In this section, we evaluate the effectiveness of SIFT and ASIFT to provide
object detection and image matching. The key takeaway is to fool the keypoints
calculator into examining incorrect correspondences by inflating the number of
keypoints in an image or not finding any matches due to an insignificant matching
value. Figure 6 demonstrates failure to find matching keypoints on an exact
image match (original clear image vs. noised image).

It may be observed from Figure 7 that SIFT has returned zero matches, but
ASIFT has returned 31 matches. However, upon further investigation, we can
see that some of the matches are false positives. More specifically, we can see
that some of the points provided are incorrect, as it seems the noise has been
mistaken for keypoints. However, in both cases, SIFT has returned zero matches,
and caused enough doubt in the ASIFT responses, thus discouraging potential
attackers. In Figure 8, we can see that ASIFT was fooled by a similarly shaped
image. In this case the fish and the hat have a similar shape, and it was enough
to return matches, even though clearly the two images are quite different. It
is worth noting that in this example, as we scaled the size of the hat image,
the ASIFT results dropped to zero. Note that the ASIFT and SIFT engines
are sensitive to slight changes in any images (noised or otherwise), and thus
generalizing the results to all images will require more study.

Enhancing the Security of Image CAPTCHAs Through Noise Addition 365

Fig. 7. Exact Match Test: Original Vs. Noise with false positives

Fig. 8. Shape Test: Noised image with similar shape image

5.3 Limitations

As with all noise generation functions, there exists the possibility that their
alterations to the image can be significantly decreased with smoothing func-
tions/image filters or reversed entirely by an appropriate function. Sufficiently
advanced attackers with image processing experience may be able to reverse
some of the distortion effects that come as a result of the noise generation to
the degree that the image becomes vulnerable to RIS or CV attacks again. We
attempt to minimize this weakness by using randomness in the function when
applying the algorithms to the images, as well as using image specific properties
to provide alterations within the image. We believe the method has enough merit
to be explored further and that the CAPTCHA security community will provide
the appropriate level of vetting of our methodology in due time.

Secondly, there exist images that cannot be satisfactorily “noised” – more
specifically, the image will either fail to be recognizable by a human due to
the excessively high level of noise added to the image to provide the security
guarantee, or it will be recognizable to a human but fail to meet the security
guarantee because the noise level is too low. This tends to occur when the image

366 D. Lorenzi et al.

Fig. 9. CAPTCHA Styles

does not have colors (e.g. it is mostly composed of black and white.) We plan to
explore this behavior in the future and propose solutions for it.

6 Usability Study

To test the usability of the noise method on human users, we designed 4 dif-
ferent styles of image CAPTCHA with varying degrees of difficulty. Style 1
displays an image and asks the user to describe it by entering a description
(freeform response). Style 2 displays an image and provides a dropdown box
with 4 responses, with 1 of the 4 choices being the correct answer. Style 3 dis-
plays a dropdown box with 5 responses, 4 choices and not here. Style 4 asks the
user to select the image from 3 images that best represents X, where X is an
image category. The order of difficulty is (1,3,2,4) from most difficult to least dif-
ficult. All example of each is depicted in Figure 9. For this experiment, 100 noised
images were generated in total, 10 images gathered from a web search in each of
10 different categories. The 10 image categories were chosen to be “concrete”, to
lower ambiguity for the user (airplane(1), bird(2), car(3), cat(4), doll(5), fish(6),
flower(7), monkey(8), robot(9), train(10)). All 4 styles have the option to click a
link to serve up a new CAPTCHA if the user cannot understand/decipher/solve
the one they have been given. This is tallied as “no response” by our database.
The study contained approximately 60 undergraduate students who provided

Enhancing the Security of Image CAPTCHAs Through Noise Addition 367

Table 3. Results for CAPTCHA Style Responses

CAPTCHA Style % Right % Wrong % No Response

1 45% 20% 35%

2 64% 11% 24%

3 67% 21% 13%

4 78% 12% 10%

anonymous responses to a random series of CAPTCHAs served in the various
styles of previously described. The results are shown in Table 3. Not surpris-
ingly, style 1 shows the highest percentage of no response (N), which means that
the user was unable to decipher the image or felt unable to answer the question.
This is followed by style 2 at 24% and 3 and 4 at 13% and 10% respectively.
It is important to understand that styles 2(20%), 3(25%), and 4(33%) provide
clues for a chance to guess correctly to the user. As such, one can expect a
higher level of correct responses as guessing plays a factor in the results. With
the case of 3 and 4, the correct response is provided within the framework of the
CAPTCHA. From the data we gathered from users, there is an initial period
where the users familiarize themselves with the different challenge styles and
give more incorrect responses. As they continue to answer questions and become
acquainted with various styles, their accuracy and correctness increase signif-
icantly. While the number of images used for testing (100) is not very large,
the results amply demonstrate that this is a valid method that can be used by
humans to a successful degree.

7 Conclusions and Future Work

In this paper we have shown how noise addition can serve as an effective method
to solve the scalability problem of image CAPTCHAs and effectively foil Reverse
Image Search and Computer Vision attacks. In the future, we plan to test various
additional methods of image alterations. We also plan to develop and test multi-
modal CAPTCHAs, that is, CAPTCHAs that utilize one or more test methods
(text based, image based, audio based, etc.) using a combination of protection
methods and usability enhancements to provide a comfortable user experience
with the maximum level of security possible given those criteria.

References

1. Blocki, J., Blum, M., Datta, A.: Gotcha password hackers!. In: AISec 2013, pp.
25–34 (2013)

2. Chew, M., Tygar, J.D.: Image recognition captchas. In: Zhang, K., Zheng, Y. (eds.)
ISC 2004. LNCS, vol. 3225, pp. 268–279. Springer, Heidelberg (2004)

3. Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image Retrieval: Ideas, Influences, and
Trends of the New Age. ACM Comput. Surv. 40(2), 5:1–5:60 (2008)

368 D. Lorenzi et al.

4. Datta, R., Li, J., Wang, J.Z.: Imagination: a robust image-based captcha generation
system. In: MULTIMEDIA 2005, pp. 331–334 (2005)

5. El Ahmad, A.S., Yan, J., Marshall, L.: The robustness of a new captcha. In:
EUROSEC 2010, pp. 36–41 (2010)

6. Fritsch, C., Netter, M., Reisser, A., Pernul, G.: Attacking image recognition
captchas. In: Katsikas, S., Lopez, J., Soriano, M. (eds.) TrustBus 2010. LNCS,
vol. 6264, pp. 13–25. Springer, Heidelberg (2010)

7. Gossweiler, R., Kamvar, M., Baluja, S.: What’s up captcha?: a captcha based on
image orientation. In: WWW 2009, pp. 841–850 (2009)

8. Hernandez-Castro, C.J., Ribagorda, A., Saez, Y.: Side-channel attack on the huma-
nauth captcha. In: SECRYPT 2010, pp. 1–7 (2010)

9. Jian, M.-F., Chu, H.-K., Lee, R.-R., Ku, C.-L., Wang, Y.-S., Yao, C.-Y.: Emerging
images synthesis from photographs. In: ACM SIGGRAPH 2013, pp. 97:1–97:1
(2013)

10. Lorenzi, D., Vaidya, J., Sural, S., Atluri, V.: Web services based attacks against
image captchas. In: Bagchi, A., Ray, I. (eds.) ICISS 2013. LNCS, vol. 8303,
pp. 214–229. Springer, Heidelberg (2013)

11. Lorenzi, D., Vaidya, J., Uzun, E., Sural, S., Atluri, V.: Attacking image based
captchas using image recognition techniques. In: Venkatakrishnan, V., Goswami,
D. (eds.) ICISS 2012. LNCS, vol. 7671, pp. 327–342. Springer, Heidelberg (2012)

12. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV 1999,
pp. 1150–1157 (1999)

13. Matthews, P., Mantel, A., Zou, C.C.: Scene tagging: image-based captcha using
image composition and object relationships. In: ASIACCS 2010, pp. 345–350 (2010)

14. Mehrnejad, M., Bafghi, A., Harati, A., Toreini, E.: Multiple seimcha: multiple
semantic image captcha. In: ICITST 2011, pp. 196–201 (2011)

15. Mitra, N.J., Chu, H.-K., Lee, T.-Y., Wolf, L., Yeshurun, H., Cohen-Or, D.: Emerg-
ing images. In: ACM SIGGRAPH Asia 2009, pp. 163:1–163:8 (2009)

16. Morel, J.-M., Yu, G.: Asift: A New Framework for Fully Affine Invariant Image
Comparison. SIAM J. Img. Sci. 2(2), 438–469 (2009)

17. von Ahn, L., Blum, M., Langford, J.: Telling Humans and Computers Apart Auto-
matically. Commun. ACM 47(2), 56–60 (2004)

18. Yan, J., El Ahmad, A.S.: Usability of captchas or usability issues in captcha design.
In: SOUPS 2008, pp. 44–52 (2008)

19. Zhu, B.B., Yan, J., Li, Q., Yang, C., Liu, J., Xu, N., Yi, M., Cai, K.: Attacks and
design of image recognition captchas. In: CCS 2010, pp. 187–200 (2010)

Software Security

SHRIFT System-Wide HybRid Information
Flow Tracking

Enrico Lovat1, Alexander Fromm1, Martin Mohr2(B),
and Alexander Pretschner1

1 Technische Universität München, Garching bei München, Germany
{enrico.lovat,alexander.fromm,alexander.pretschner}@cs.tum.edu

2 Karlsruhe Institute of Technology, Karlsruhe, Germany
martin.mohr@kit.edu

Abstract. Using data flow tracking technology, one can observe how
data flows from inputs (sources) to outputs (sinks) of a software system.
It has been proposed [1] to do runtime data flow tracking at various
layers simultaneously (operating system, application, data base, window
manager, etc.), and connect the monitors’ observations to exploit seman-
tic information about the layers to make analyses more precise. This has
implications on performance—multiple monitors running in parallel—
and on methodology—there needs to be one dedicated monitor per layer.
We address both aspects of the problem. We replace a runtime monitor
at a layer L by its statically computed input-output dependencies. At
runtime, these relations are used by monitors at other layers to model
flows of data through L, thus allowing cross-layer system-wide tracking.
We achieve this in three steps: (1) static analysis of the application at
layer L, (2) instrumentation of the application’s source and sink instruc-
tions and (3) runtime execution of the instrumented application in com-
bination with monitors at other layers. The result allows for system-wide
tracking of data dissemination, across and through multiple applications.
We implement our solution at the Java Bytecode level, and connect it to
a runtime OS-level monitor. In terms of precision and performance, we
outperform binary-level approaches and can exploit high-level semantics.

1 Introduction

Information flow analyses try to answer the question of whether or not data
will potentially flow, or has potentially flowed, from inputs (sources) to out-
puts (sinks) of a certain system. Different analyses cater to different kind of
source-sink dependencies, mainly distinguishing between explicit information
flows (data-flow dependencies or data flows) and implicit information flows
(like e.g. dependencies caused solely by control-flow). Data flow tracking solu-
tions are generally tailored to one particular level of abstraction, like source code,
byte code, machine code, or the operating system level (cf. §5).

Recently, data flow tracking technologies have been augmented by concepts
of distributed data usage control [1–5] and performed at multiple layers of

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 371–385, 2015.
DOI: 10.1007/978-3-319-18467-8 25

372 E. Lovat et al.

abstraction, to the end of expressing and enforcing more complex policies (e.g.
“any representation of this picture must be deleted after thirty days”). Multi-
layer monitoring is important to preserve the high-level semantics of objects
(e.g. “a mail”) and events (e.g. “forward”), which is otherwise hard to capture
at lower levels. But this benefit does not come for free: even a small number of
monitors running in parallel may seriously compromise the performance of the
overall system, and dedicated high-level monitors are not always available for
every domain. In this case, the usual solution is to rely on conservative estima-
tions provided by lower layers. For instance, if a dedicated monitor for a process
is not available, an OS-level monitor would have to treat the process as a “black
box” and assume that every sensitive data it got in touch with is propagated to
every future output. This solution likely introduces many false positives and in
this sense grossly overapproximates the set of potential information flows.

We propose Shrift, an approach to mitigate this issue. The core idea behind
Shrift is to replace the runtime monitoring of how data flows through a process
(or its black-box overapproximation) by consultations of a statically precomputed
mapping between its inputs and outputs.

Operating System

FTP-Client

File 1
E

C

F

Ctrl-Socket

Password

Data-Socket

Zipper

ZipConfig File 3
E F

Source 2

Source 1 Sink 1
E F E F

Source 4

Source 3 Sink 3

Sink 2

P

P
Sink 4

File 2

E F

E F

C

C

Running Example: A com-
pany enforces the policy “upon
logout, delete every local copy of
customer data” to prevent clerks
to work with outdated material.
Upon every login, a clerk must
download from a central server
a fresh version of the customer
data he is interested in. In this
setting, a clerk uses the Zipper application to compress multiple customer data
(E, F) into a single archive file (File 3), which he then sends to the company
server using Ftp-Client.

In this example, a data-flow tracking system can help tracking down every
copy of to-be-deleted customer data in the system. However, if the tracking
is imprecise (too many false positives), additional important resources may be
accidentally deleted as well. For example, ZipConfig (Zipper’s configuration
file), which is updated during every run of Zipper, could be mistakenly marked as
containing data E and deleted upon logout, making Zipper unusable in the future.
Similar concerns also apply to the Ftp-Client: FTP works with two channels, one
for commands, and one for payload. In a black-box monitoring situation, once
sensitive data is read, every write to any of the two channels may be possibly
carrying sensitive information, and, as such, it should propagate the taint to the
socket connection, and possibly to the recipient side. In this case, the credentials
(marked as P in the figure), sent via the command channel, and the database in
which they are stored on the server side would also be marked as “to-be-deleted”.

SHRIFT System-Wide HybRid Information Flow Tracking 373

Our approach improves the precision of information-flow tracking system-
wide, i.e. through and in-between different processes/applications, like the flow
of data E and F through the Zipper application (Source 1→ Sink 1) into File
3 and then through the Ftp-Client application (Source 4 → Sink 3) till the
payload channel, with lower execution overhead than other dynamic monitors
for comparable scenarios (cf. §3).

Problem: Concurrently running multiple monitors at different layers of abstrac-
tion allows to exploit high-level semantic information (e.g., “screenshot” or
“mail”) but is performance-wise expensive and requires dedicated monitoring
technologies for every layer/application. On the other hand, relying only on esti-
mates provided by other layers (e.g., the above black-box approach) improves
performance but comes at the cost of (possibly significant) precision loss.

Solution: We propose a dynamic monitoring approach for generic processes
that replaces runtime intra-process data flow tracking by consultations of a stat-
ically computed taint-propagation table. Such a monitor is more performant than
equivalent runtime monitors for the same application and more precise than the
OS-level overapproximation adopted when such a monitor is not available.

Contribution: To the best of our knowledge, we are the first to combine static
and dynamic data-flow tracking for different levels of abstraction and through
multiple different applications. Our solution improves the precision of OS level
data flow tracking with minimal intra-process runtime tracking overhead.

2 Our Approach

We consider a setting with monitors at two levels of abstraction: a dynamic
monitor at the OS level, based on system-call interposition [2], and one or more
inline reference monitors at the application level. Our goal is to improve tracking
precision at the OS level with minimal performance penalties. Although our
approach is generic in nature and could be applied to any language or binary
code, in this work we focus on an instantiation for the Java Bytecode (JBC) level.

We use standard terminology: a source is a method invoked by the applica-
tion to get input data from the environment. A sink performs the dual output
invocation. While in some contexts one can find detailed lists of source and sink
methods [6], in general the choice is left to the analyst. In our work, a source
(sink) is the invocation of a Java standard library method that overrides any
overloaded version of InputStream.read (OutputStream.write) or Reader.read
(Writer.write), or a method that indirectly invokes one of them, e.g., Properties.
load(), which uses an input stream parameter to fill a properties table.

The idea is the following. If a source in an application is executed, the respec-
tive input’s taint mark is stored. If a sink is executed, all sources (and therefore
all taint marks) with potential flows to this sink are determined using a static
mapping of potential flows between sources and sinks. There is hence a need to
instrument sources and sinks, but not all the instructions in-between them.

374 E. Lovat et al.

1 x = 1;
2 y = 2x - 5;
3 if (y > 42) {
4 z = 1;
5 } else {
6 z = 2;
7 }

x = 1 y = 2x - 5 y > 42

z = 1

z = 2data dep.

control dep.

Fig. 1. A code snippet and its PDG

Our approach consists of three phases:

2.1. Static analysis: An application X is analyzed for possible information flows
between sources and sinks. During this phase we generate a report containing a
list of all sources and sinks in the application and a mapping between each sink
and every source it may depend on.

2.2. Instrumentation: All sinks and sources identified by the static analysis
(and those instructions only) are instrumented in the bytecode of X, allowing us
to monitor their execution.

2.3. Runtime: Every time a source or a sink is executed by the instrumented
application, information about the data being read or written is exchanged with
the OS-level monitor.

In the remainder of this section, we will describe these phases in details, using
Zipper and Ftp-Client as examples. Notice, however, that in principle our work
can be applied in a push-button fashion to any Java program.

2.1 Static Analysis

In this phase, we perform a static information flow analysis of the application and
generate a list of all sources and sinks in the application and of their respective
dependencies. To do so, we use JOANA [7,8], a static information flow analysis
tool, but the choice is not binding because our approach is generic in nature and
the techniques used by JOANA are also implemented by other tools, e.g. [9].

JOANA operates in two steps: first, it builds a Program Dependence Graph
(PDG) [10] of the application; second, it applies slicing-based information flow
analysis [11] on the PDG to find out which set of the sources influences which
sinks. In order to reduce the number of false positives, JOANA leverages several
program analysis techniques. In the following, we explain some fundamental
concepts behind JOANA.

PDGs and Slicing: A PDG is a language-independent representation of a pro-
gram. The nodes of a PDG represent statements and expressions, while edges
model the syntactic dependencies between them. There exist many kinds of
dependencies, among which the most important are data dependencies, (a state-
ment using a value produced by another statement) and control dependencies
(a statement or expression controlling whether another statement is executed or

SHRIFT System-Wide HybRid Information Flow Tracking 375

not). The PDG in Figure 1 contains a data dependency between the statements
in line 1 and in line 2 because the latter uses the value of x produced by the
former, and a control dependency between the if -statement in line 3 and the
statements in lines 4 and 6 because whether line 4 or 6 is executed depends on
the value of the expression in line 3.

PDG-based information flow analysis uses context-sensitive slicing [12], a
special form of graph reachability: given a node n of the PDG, the backwards
slice of n contains all nodes from which n is reachable by a path in the PDG
that respects calling-contexts. For sequential programs, it has been shown [13]
that a node not contained in the backwards slice of n cannot influence n, hence
PDG-based slicing on sequential programs guarantees non-interference [14]. It is
also possible to construct and slice PDGs for concurrent programs [15]. However,
in this context, additional kinds of information flows may exist, e.g. probabilistic
channels [16]. So the mere slicing is not enough to cover all possible information
flows between a source and a sink. A PDG- and slicing-based algorithm providing
such guarantee has recently been developed and integrated into JOANA [17].

Analysis Options: JOANA is highly configurable and allows to configure dif-
ferent aspects of the analysis, e.g. to ignore all control flow dependencies caused
by exceptions, or to specify different types of points-to analysis [18]. Points-
to-analysis is an analysis technique which aims to answer the question which
heap locations a given pointer variable may reference. JOANA uses points-to
information during PDG construction to determine possible information flows
through the heap and therefore depends heavily on the points-to analysis preci-
sion. JOANA supports several points-to analyses, including 0-1-CFA [19], k-CFA
[20] and object-sensitive [21] points-to analysis.

The outcome of this phase is a list of the sources and sinks in the code of the
application and a table that lists all the sources each sink depends on.

2.2 Instrumentation

1 void zipIt(String file , String srcFolder) {
2 fos = new FileOutputStream(file);
3 zos = new ZipOutputStream(fos);
4 fileList = this.generateFileList(srcFolder);
5 byte[] buffer = new byte [1024];
6 for (String file : fileList) {
7 ze = new ZipEntry(file);
8 zos.putNextEntry(ze);
9 in = new FileInputStream(file);

10 int len;
11 while ((len = in.read(buffer)) > 0)
12 zos.write(buffer , 0, len);
13 in.close ();}}

Listing 1.1. Java code fragment from Zipper

In this phase, we take the
report generated by the
static analysis and instru-
ment each identified source
and sink. For each source
or sink, the analysis reports
the signature and the exact
location (parent method
and bytecode offset).

Consider the code snip-
pet in Listing 1.1, used in
our Zipper application: static information flow analysis detects the flow from
the source at line 11 (Source1), where the files are read, to the sink at line 12
(Sink1), where they are written into the archive. Listing 1.2 shows the cor-
responding analysis report: lines 1 - 9 specify that the return value of the

376 E. Lovat et al.

read method invocation at bytecode offset 191 in method zipIt is identified
as Source1. The same holds for Sink1 (lines 12-20), but in this case the first
parameter (line 19) is a sink, not a source. In the final part, the report also
provides information about the dependency between Sink1 and Source1 (line
21 - 25), which is then used to model possible flows.

We use the OW2-ASM [22] instrumentation tool to wrap each reported source
and sink with additional, injected bytecode instructions. We refer to the set of
these additional instructions as inline reference monitor. The outcome of this
phase is an instrumented version of the original application, augmented with a
minimal inline reference monitor that interacts with the OS-level monitor when
a source or a sink is executed. This way incoming/outgoing flows of data from/to
a resource, like files or network sockets, can be properly modeled.

1 <source><id>Source1</id>
2 <location>JZip.zipIt
3 (Ljava/lang/String;Ljava/lang/String

;)V:191
4 </location>
5 <signature>
6 java.io.FileInputStream.read([B)I
7 </signature>
8 <return/>
9 </source><source><id>Source2</id>

10 ...
11 </source>
12 <sink><id>Sink1</id>
13 <location>JZip.zipIt

14 (Ljava/lang/String;Ljava/lang/String
;)V:185

15 </location>
16 <signature>
17 java.util.zip.ZipOutputStream.

write([BII)V
18 </signature>
19 <param index="1"/>
20 </sink>
21 <flows>
22 <sink id="Sink1">
23 <source id="Source1"/>
24 </sink>
25 </flows>

Listing 1.2. Static analysis report listing sinks, sources and their dependencies

2.3 Runtime

This phase represents the actual runtime data-flow tracking, where we execute
the instrumented applications in a dynamically monitored OS. At runtime a
single OS-level monitor exchanges information with multiple inlined bytecode-
level reference monitors, one per application. We assume that the information to
be tracked is initially stored somewhere in the system, e.g. in some files or coming
from certain network sockets, and marked as sensitive. In our example in §1 we
assume data E and F to be already stored in File 1 and File 2, respectively.

Once a source instruction is about to be executed, the instrumented code
queries the OS-monitor to obtain information about the tainting of the input. It
then associates this information to the source id (e.g. ZipConfig → Source2 in
our example). When a sink instruction is about to be executed, the instrumented
code fetches tainting information from all the sources the current sink depends on
according to the analysis report (Source2 → Sink2). Such information denotes
all the possible inputs the current output may depend on, but, most importantly,
it denotes all the inputs the current output does not depend on: this is where
we reduce false positives, mitigating the overapproximation of potential flows.
The tainting information is then propagated to the output.

SHRIFT System-Wide HybRid Information Flow Tracking 377

With this approach, even if the application reads additional data (like data E)
before generating the output, the tainting associated with the sink (and, conse-
quently, with the output) remains the same, as long as the input does not influ-
ence the output. In contrast, in a process treated as a black-box every output is
as sensitive as the union of all the sources encountered till then. The informa-
tion about the content being output by the current sink (Sink2 → ZipConfig)
is forwarded to the OS monitor, which will carry on the tracking outside the
boundaries of the application. Since the process described here applies to every
instrumented application, this allows us to track the flows of data between any
pair of applications, even through OS artifacts (like files), OS events (like copying
a file) and non-instrumented processes (via black-box tracking).

3 Evaluation

Our goal is to improve system-wide, i.e. OS-level, data-flow tracking precision
without the extreme overhead of process-level runtime data-flow tracking. We
evaluated our work in terms of precision (false positives1.) and performance, and
addressed the following research questions by means of case studies:

RQ1 How much more precise is this approach with respect to the estimation
provided by an OS-level monitor alone?

RQ2 How long does the static analysis phase take?
RQ3 How much slower is the instrumented application, and how do we compare

with purely dynamic solutions?

We performed our experiments on the applications described in our running
example (cf. §1), Zipper and Ftp-Client. Zipper was written by a student, while
Ftp-Client was found online [23]. The code of these applications is intentionally
minimal, in order to facilitate manual inspection of the results. Moreover, these
applications stress-test our solution because our approach instruments only entry
and exit points in the code (sources and sinks), but the vast majority of executed
instructions are indeed sources or sinks; for comparison, we also run our solution
on an application with little I/O and large amount of computation in-between:
the Java Grande Forum Benchmark Suite2, a benchmark for computationally
expensive Java applications. We chose this framework, among others, to compare
our results to those of related work [24].

3.1 Settings

Our evaluation was performed on a system with a 2.6 GHz Xeon-E5 CPU and
3GB of RAM. We ran our static analyser on all the applications using the dif-
ferent configurations described in §3.2. We report the median value for 30+ exe-
cutions of each configuration, to weed out possible environmental noise. As OS
1 We assume the static analysis to be sound: all actual flows are reported, i.e., there

are no false negatives. Limitations of our approach are discussed in §4
2 https://www2.epcc.ed.ac.uk/computing/research activities/java grande/index 1.

html

https://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
https://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html

378 E. Lovat et al.

monitor, we used an implementation from the literature [25]. All the runtime
experiments use the objsens-D (§3.2) configuration for the static analysis phase.
We decided for it because of its high precision in our tests; any other analysis,
however, would generate statistically indistinguishable runtime performances.

3.2 Precision (RQ1) and Static Analysis Performance (RQ2)

First, by construction, our approach cannot be less precise than treating the
processes as black boxes (= every output contains every input read so far),
the typical conservative estimation made by OS-level monitors [2]. Second, while
dynamic analyses usually rely on explicit flows only, static analyses consider
additional kinds of dependencies between instructions (e.g. control-flow depen-
dencies), generating more dependencies between sources and sinks. Third, even
if we configure our static analyser to consider explicit-flows only, a static app-
roach considers every possible execution at once, meaning that if at least one
execution leads to a flow, then the sink statically depends on the source.
1 in=input ();
2 if (cond) {
3 out=in;
4 }
5 output(out);

For instance, for the code on the left static analysis reports
that the sink at line 5 depends on the source at line 1, even
considering explicit flows only. A runtime monitor would
report the dependency only during those runs where condi-

tion cond at line 2 is satisfied. Replacing the runtime monitoring with a static
dependency table introduces overapproximation by making the sink depending
on the source during every execution, regardless of cond’s value.

Table 1. Static analysis results for dif-
ferent configurations

Points-To Time #Sources/ Precision
(s) #Sinks (DI / D)

F
tp-C

lient

0-1-CFA 32 9 / 46 38% / 51%
1-CFA 64 9 / 46 58% / 73%
2-CFA 153 9 / 46 58% / 73%
objsens 220 9 / 46 38% / 74%

Z
ipper

0-1-CFA 53 10 / 56 24% / 43%
1-CFA 82 10 / 55 25% / 53%
2-CFA 185 10 / 55 55% / 78%
objsens 353 10 / 55 57% / 84%

JG
F
B

S

0-1-CFA 211 8 / 84 56% / 59%
1-CFA 580 8 / 81 71% / 75%
2-CFA 626 8 / 81 71% / 77%
objsens 360 8 / 81 73% / 79%

We ran experiments on the scenario
described in §1. We created the Zip-
per’s configuration file, assigned to data
C, and two files with random content
(data E and F, respectively). In this sce-
nario, we assumed that the only data
read from the standard input is the pass-
word, marked as P. We then ran the sce-
nario (i.e. we zipped the files using Zip-
per and sent them to the server using
Ftp-Client) and looked at the sensitivity
of the content that reached the sockets.

As expected, the execution using
a black-box approach yielded a rather
coarse-grained result (all data reached
both sockets); in contrast, our solution
provided the expected result (data E
and F flowed only to the data socket, while P only to the control socket).

However, it is hard to quantify such an improvement in general. Considering
that a black-box approach would always be as precise as our approach when
every source is connected to every sink, a possible metric for precision improve-
ment could be the number of source-to-sink connections that we can safely dis-
card, thanks to static analysis. We let #flows denote the number of statically

SHRIFT System-Wide HybRid Information Flow Tracking 379

Table 2. Runtime analysis results. Underlined value taken from the literature, all
others measured. Values in italic refer to results of comparable tests (cf. §3.3). Zipper32
indicates the archiving of 261MB using internal buffers 32x bigger.

Size (bytecode)
orig.→instr.

Average overhead
per sink/source

Overhead in total

Intra Intra+OS Intra Intra+OS [26] [24] [27]

Zipper 1611 → 2192 2.06x 22.92x 2.09x 34.28x 220.4x - -
Ftp-Client 9191 → 9785 0.16x 4.37x 0.28x 6.75x 25.7x - -

Java Grande 29003 → 30123 6.33x 144.65x 0.001x 0.07x 10.5x 0.25x - 1x -

Zipper32 1611 → 2192 0.24x 7.11x 0.33x 11.61x 19.7x - 15.2x - 28.1x

computed dependencies between sources and sinks, and measure precision as
1 − (#flows/(#sources × #sinks)), where 0 indicates that every source flows
to every sink (like in the black-box approach) and 1 indicates that all sinks are
independent from the sources, i.e. no data propagation. We are not aware of any
better metric to measure precision of static analysis w.r.t dynamic monitoring.

As reported in Table 1, we ran our analysis with various points-to-analyses
(0-1-CFA [19], 1-CFA, 2-CFA, object-sensitive, cf. §2.1), considering only explicit
(D), and additional implicit (DI), information flows. According to the formula
above, the improved precision of the instrumented applications varies between
24% and 84% for Zipper, between 38% and 74% for Ftp-Client and between 56%
and 79% for Java Grande F.B.S., depending on the configuration. Although some
of these analyses are incomparable in theory, object-sensitivity tends to deliver
more precision, as was already reported for various client analyses [21]. Note
that these numbers are hard to relate to dynamic values, because they depend
on the specific application under analysis and they do not take into account how
many times a certain source/sink instruction is executed at runtime.

To answer RQ2, we also measured the time required to statically analyse our
exemplary applications: between 30 and 626 seconds were needed to perform the
static analysis (cf. Table 1), of which 80-90% are invested in building the PDG,
while the rest is spent on slicing. The choice of the points-to-analysis determines
the size of the PDG and thus directly affects the total analysis time; our PDGs
have between 104 and 106 nodes and between 105 and 107 edges.

3.3 Runtime Performance (RQ3)

We tested our approach with multiple experiments based on our scenario (§1):
transfer a 20K file to a remote server using Ftp-Client, and compress it using
Zipper. We also ran our tool on the Java Grande F.B.S., the computationally
expensive task with limited I/O used in the evaluation of [24]. We evaluated our
approach (cf. Table 2) in terms of the bytecode space overhead (column “Size
(bytecode)”), the average execution time of a single instrumented source/sink
(column “Average overhead per sink/source”), and the total execution time
of the instrumented application (column “Overhead in total”) compared to its
native execution. We measured the execution runtime overhead with both mon-
itors at the application and OS level (columns “Intra+OS”), and with just one

380 E. Lovat et al.

inlined reference monitor at the application level observing only sources’ and
sinks’ executions (columns “Intra”). In addition, we compared our work to other
approaches, either by running our tool on the same scenario used to evaluate
them [24] or, if possible, by running those tools on our tests. The latter is the
case for LibDFT [26], an intra-process data-flow tracking framework for binaries.

Zipper and Ftp-Client applications are stress-testing our approach because
they transfer data in blocks of 1KB at a time. This results in a huge number of
read/write events: for comparison, creating a zip file from 261MB of data with
our Zipper generated ∼122K write and ∼256K read events, whereas gzip, an
equivalent tool used in [27]’s evaluation, only generates 3781 writes and 7969 read
system calls for the same input and the same output. Because [27] is a dynamic
monitor that connects information flow tracking results for multiple applications
across the system, we found a comparison to this work to be particularly relevant.
To perform it, we ran a fourth experiment: archiving 261MB of linux source code
with our Zipper application after increasing the size of the internal buffers by a
factor of 32x; this way, for the same input, Zipper generates the same number
of I/O events of the tool used in [27]. We are aware that comparing different
applications is always tricky; however, since the number and type of generated
events is almost identical, we believe the comparison to be informative and likely
fair. Our results are presented in the last row of Table 2. The overhead for
archiving 261MB (11.61x) using our Zipper is smaller than the best value for
gzip mentioned in [27] (15.2x-28.1x). Similarly, on the Java Grande test, we
outperformed [24]’s analysis of one order of magnitude (0.07x vs 0.25x-0.5x).

Note that the static analysis and the instrumentation are executed only once
per application. For this reason, we excluded the time to perform them from the
computation of the relative runtime overhead (columns Intra and Intra+OS in
Overhead, Table 2). Also, the values in Table 2 do not include the time required
to boot the Java Virtual Machine, which is independent of our instrumentation
and thus irrelevant. It is worth noticing that we tried different configurations of
LibDFT but we could only reproduce overheads more than ten times larger than
those reported in the original paper [26].

4 Discussion

We now offer a general summary of our experimental results, elaborating on some
of the technical and fundamental highlights and limitations of our approach.

By combining static and dynamic data flow technologies, we manage to track
system-wide information flows between different programs and across different
application layers. Our prototype implementation performs better than existing
approaches although we are aware that this strongly depends on the application
under analysis. While we have not “tuned” our approach to the examples in the
case studies, we need to refrain from generalizing our findings. As we instru-
ment only sources and sinks, on computationally intensive tasks with little I/O,
like the Java Grande F.B.S., our tool exhibits a negligible overhead in practice
(<0.07x). In more I/O intensive scenarios, our results are comparable or better

SHRIFT System-Wide HybRid Information Flow Tracking 381

than existing approaches. Note that while the tracking overhead per source/sink
is stable (∼0.08ms “Intra”, ∼2.2ms “Intra+OS”), the time to execute specific
sources/sinks (e.g. >7ms for printing a certain string on standard output) can
be longer than for others (e.g. ∼0.011ms for reading 1KB from a file), resulting
in vastly different relative overhead.

We could improve the precision of our approach by leveraging additional
information, e.g. the context in which a certain sink/source is executed [19].
However, this requires a) the use of a context-sensitive points-to-analysis, like
1-CFA, usually more costly than a context-insensitve one (cf. §3), and b) addi-
tional instrumentation, which is the reason why we decided not to go for it. Other
options to improve the precision of static analysis are ignoring certain kinds of
flows, like those solely caused by exceptions, or manually adding declassification
annotations to the code. While the first idea is acceptable, as long as one is
fine with the respective change in the notion of soundness, we decided against
manual annotations, envisioning the application of our tool in a scenario where
static analysis is performed automatically on unknown code.

JOANA currently does not support dynamic language features like reflection
and callbacks, challenging tasks for any static information flow analysis: dealing
with reflection in a meaningful way requires approximating the possible values
of strings which are passed as class or method names or to exploit runtime infor-
mation [28], while callback-based applications (e.g. using Java Swing) require a
model that captures the way the callback handlers are invoked. In other words,
while JOANA can analyse multi-threaded programs (cf. §2.1), library-supported
asynchronous communication between threads is still a limitation.

If we configured the static analysis to ignore all implicit flows (easy to circum-
vent [29]), the combination of our OS runtime monitor and the application refer-
ence monitors would guarantee a property similar to Volpano’s weak secrecy [30].
On the other hand, a sound and precise system-wide non-interference analysis
(including all information flows), would require to analyse all applications simul-
taneously, to also capture flows caused by the concurrent interactions on shared
resources [16]. This is unfeasible even for a small number of applications and
likely leads to prohibitively imprecise results. Our approach lies somewhere in-
between: the static intra-process analysis guarantees non-interference between
inputs and outputs of each application, while data flows across applications are
captured at runtime. This property is stronger than weak secrecy, which com-
pletely ignores implicit flows, but still weaker than system-wide non-interference.

5 Related work

Approaches in the field of Information Flow Analysis can be roughly categorized
in static, dynamic and hybrid solutions.

Static approaches analyze application code before it is executed and aim
to detect all possible information flows [31,32]. A given program is certified as
secure, if no information flow between sensitive sources and public sinks can be
found. Such a static certification can for example be used to reduce the need

382 E. Lovat et al.

for runtime checks [33]. Various approaches (apart from PDGs) can be found in
the literature, usually based on type checking [32] or hoare logic [34]. Because
of their nature, static approaches have problems with handling dynamic aspects
of applications like callbacks or reflective code (§4), and are confined to the
application under analysis, i.e. no system-wide analyses.

Dynamic approaches track data flows during execution and thus can
also leverage additional information, like concrete user inputs, available only
at runtime. TaintDroid [35] is a purely dynamic data flow tracking approach
for system-wide real-time privacy monitoring in Android. Despite its relatively
small runtime overhead, TaintDroid focuses on explicit data flow tracking only.
[36] proposes ShadowReplica, a highly optimized data flow tracker that lever-
ages multiple threads to track data through binary files. While performance
in general depends on the application under analysis, on I/O-intensive tasks
ShadowReplica’s runtime overhead is comparable to ours (cf. §3). [26] presents
LibDFT, a binary-level solution to track data flows in-between registers and
memory addresses. Although LibDFT’s reported evaluation mentions little per-
formance overhead, we could not reproduce these numbers: as shown in Table 2,
LibDFT imposed a bigger performance overhead than our approach; it is also
unable to perform system-wide tracking because, in contrast to our approach, it
cannot model flows towards OS resources (e.g. files) or in-between processes.

Whole-system tainting frameworks, on the other hand, can specifically track
such kind of flows; among them we find Panorama [37], an approach at the hard-
ware and OS levels to detect and identify privacy-breaching malware behaviour,
GARM [38], a tool to track data provenance across multiple applications and
machines, and Neon[39], a fine-grained system-wide tracking approach for derived
data management. While the performance penalty they induce is comparable to
ours, because of their dynamic nature, none of these tools can cope with implicit
flows, nor exploit application-level semantics (“screenshot”, “mail”).

Hybrid approaches aim at combining static and dynamic information flow
tracking approaches, usually to mitigate runtime-overhead. [24] presents a hybrid
solution for fine-grained information flow analysis of Java applications; in this
work, statically computed security annotations are used at runtime to track
implicit information flows and to enforce security policies by denying the execu-
tion of specific method calls. In [40] the authors propose to augment a hybrid
tracking approach with declassification rules to downgrade the security levels
of specific flows and controlling information flows by allowing, inhibiting, or
modifying events. Although both [24,40] show promising results, they do not
take into account flows through OS-level abstractions, like files, nor between
different applications or abstraction layers, as we do. We did not discuss so
far the possibility of enforcing usage control requirements at the Java bytecode
level in a preventive fashion [41] (i.e. execute a certain source/sink only if the
tracker’s response is affirmative), because, while requiring only minor changes
in the instrumentation, denying method executions at this level may make the
system unstable.

Other approaches model inter-application information flows by instrument-
ing sources and sinks in the monitored applications, relying on pure dynamic

SHRIFT System-Wide HybRid Information Flow Tracking 383

tracking [27] or on static analysis results [42] for the intra-application tracking.
All of them, however, perform the inter-application flow tracking relying on the
“simultaneous” execution of a sink in the sender application and a source in the
receiver. None of them can model a flow towards an OS resource, like a file, nor
towards a non-monitored application. In these scenarios, these approaches lose
track of the data, while ours delegates the tracking to the OS level monitor.

6 Conclusions and Future Work

We described a new, generic approach to perform precise and fast system-wide
data-flow tracking. We integrated static information flow analysis results with
runtime technologies. In our case studies, our solution could track flows of data
through and in-between different applications more precisely than the black-box
approach does and faster than comparable dynamic approaches do. At present
we cannot substantiate any claim of generalization of these results to other sce-
narios, but we are optimistic. While our proof-of-concept implementation con-
nects executed Java code to an OS-level runtime monitor, other instantiations
are possible. For instance, static approximations for flows in a database could
be connected to dynamic measurements in a given application. Also, our gen-
eral methodology is not restricted to specific programming languages or tools,
so instantiations for languages other than Java are possible.

To the best of our knowledge, this is the first system-wide runtime analysis
that replaces the internal behavior of applications by their static source/sink
dependencies. Although hybrid approaches have already been proposed before,
this kind of integration of static and dynamic results is the first of its kind.

Our experiments confirmed the intuition that the improvement in precision
and performance depends on the type of information flows considered, and on
the amount of I/O instructions executed (w.r.t the total number of instructions).
Our solution is more suitable if this ratio is low, i.e. for applications that perform
large computations on few inputs to produce a limited number of outputs.

We plan to apply our work to other programming languages, or the
x86-binary level, although static analysis tools at this level exhibit bigger limi-
tations. Additionally, we want to better understand the issues described in §4,
in particular the exploitation of context-sensitive analysis information.

Acknowledgments. This work was supported by the DFG Priority Programme 1496
“Reliably Secure Software Systems - RS3” (grants PR-1266/1-2 and Sn11/12-1), and
by the Peer Energy Cloud project, funded by the German Federal Ministry of Economic
Affairs and Energy.

References

1. Pretschner, A., Lovat, E., Büchler, M.: Representation-independent data usage
control. In: Garcia-Alfaro, J., Navarro-Arribas, G., Cuppens-Boulahia, N., de
Capitani di Vimercati, S. (eds.) DPM 2011 and SETOP 2011. LNCS, vol. 7122,
pp. 122–140. Springer, Heidelberg (2012)

384 E. Lovat et al.

2. Harvan, M., Pretschner, A.: State-based usage control enforcement with data flow
tracking using system call interposition. In: Proc. Netw. and Sys. Sec. (2009)

3. Kelbert, F., Pretschner, A.: Data usage control enforcement in distributed systems.
In: Proc. 3rd ACM CODASPY (2013)

4. Lovat, E., Pretschner, A.: Data-centric multi-layer usage control enforcement: a
social network example. In: Proc. 16th SACMAT (2011)

5. Pretschner, A., et al.: Usage control enforcement with data flow tracking for X11.
In: Proc. 5th Intl. Worksh. on Sec. and Trust Man. (2009)

6. Rasthofer, S., Arzt, S., Bodden, E.: A machine-learning approach for classifying
and categorizing android sources and sinks. In: Proc. NDSS (2014)

7. JOANA. http://joana.ipd.kit.edu
8. Graf, J., Hecker, M., Mohr, M.: Using JOANA for information flow control in java

programs - a practical guide. In: Proc. 6th ATPS (2013)
9. Tripp, O., et al.: TAJ: effective taint analysis of web applications. In: Proc. PLDI

2009
10. Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and

its use in optimization. ACM Trans. Program. Lang. Syst. (1987)
11. Hammer, C., Snelting, G.: Flow-sensitive, context-sensitive, and object-sensitive

information flow control based on program dependence graphs. IJIS (2009)
12. Reps, T., Horwitz, S., Sagiv, M., Rosay, G.: Speeding up slicing. In: FSE (1994)
13. Wasserrab, D., Lohner, D.: Proving information flow noninterference by reusing a

machine-checked correctness proof for slicing. In: 6th Int. Verif. Worksh. (2010)
14. Goguen, J., Meseguer, J.: Security policies and security models. In: S & P 1982
15. Giffhorn, D.: Slicing of Concurrent Programs and its Application to Information

Flow Control. Ph.D thesis, Karlsruher Institut für Technologie (2012)
16. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE

Journal on Selected Areas in Communications (2003)
17. Giffhorn, D., et al.: A New Algorithm for Low-Deterministic Security. IJIS (2014)
18. Andersen, L.: Program Analysis and Specialization for the C Programming Lan-

guage. Ph.D thesis, University of Copenhagen (1994)
19. Grove, D., Chambers, C.: A Framework for Call Graph Construction Algorithms.

ACM Trans. Program. Lang. Syst. (2001)
20. Shivers, O.: Control flow analysis in scheme. In: Proc. PLDI (1988)
21. Milanova, A., Rountev, A., Ryder, B.G.: Parameterized Object Sensitivity for

Points-to Analysis for Java. ACM Trans. Softw. Eng. Methodol. (2005)
22. OW2-ASM instrumentation framework. http://asm.ow2.org/
23. JavaFTP. http://sourceforge.net/projects/javaftp/ (last access: 16 June 2014)
24. Chandra, D., Franz, M.: Fine-grained information flow analysis and enforcement

in a java virtual machine. In: ACSAC (2007)
25. Wuchner, T., Pretschner, A.: Data loss prevention based on data-driven usage

control. In: IEEE Software Reliability Engineering (ISSRE) (2012)
26. Kemerlis, V., et al.: Libdft: practical dynamic data flow tracking for commodity

systems. In: Proc. 8th Conf. on Virtual Execution Environments (2012)
27. Kim, H.C., Keromytis, A.D., Covington, M., Sahita, R.: Capturing information

flow with concatenated dynamic taint analysis. In: ARES (2009)
28. Bodden, E., et al.: Taming reflection: aiding static analysis in the presence of

reflection and custom class loaders. In: 33rd Int. Conf. on Softw. Eng. (2011)
29. King, D., Hicks, B., Hicks, M.W., Jaeger, T.: Implicit flows: can’t live with ‘em,

can’t live without ‘em. In: Sekar, R., Pujari, A.K. (eds.) ICISS 2008. LNCS,
vol. 5352, pp. 56–70. Springer, Heidelberg (2008)

http://joana.ipd.kit.edu
http://asm.ow2.org/
http://sourceforge.net/projects/javaftp/

SHRIFT System-Wide HybRid Information Flow Tracking 385

30. Volpano, D.: Safety versus secrecy. In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS,
vol. 1694, p. 303. Springer, Heidelberg (1999)

31. Denning, D.E.: A Lattice Model of Secure Information Flow. Comm. ACM (1976)
32. Volpano, D., et al.: A Sound Type System for Secure Flow Analysis. JCS (1996)
33. Denning, D.E., Denning, P.J.: Certification of Programs for Secure Information

Flow. Comm. ACM (1977)
34. Banatre, J., Bryce, C., Le Métayer, D.: Compile-Time Detection of Information

Flow in Sequential Programs (1994)
35. Enck, W., et al. TaintDroid: an information-flow tracking system for realtime pri-

vacy monitoring on smartphones. In: OSDI (2010)
36. Jee, K., et al.: ShadowReplica: efficient parallelization of dynamic data flow track-

ing. In: Proc. CCS (2013)
37. Yin, H., Song, D., Egele, M., Kruegel, C., Kirda, E.: Panorama: capturing system-

wide information flow for malware detection and analysis. In: CCS (2007)
38. Demsky, B.: Cross-application Data Provenance and Policy Enforcement. ACM

Trans. Inf. Syst. Secur. (2011)
39. Zhang, Q., et al.: Neon: system support for derived data management. In:

SIGPLAN Not. (2010)
40. Rocha, B.P.S., Conti, M., Etalle, S., Crispo, B.: Hybrid Static-Runtime Information

Flow and Declassification Enforcement. IEEE Inf. For. and Sec. (2013)
41. Fromm, A., Kelbert, F., Pretschner, A.: Data protection in a cloud-enabled smart

grid. In: Cuellar, J. (ed.) SmartGridSec 2012. LNCS, vol. 7823, pp. 96–107.
Springer, Heidelberg (2013)

42. Rasthofer, S., Arzt, S., Lovat, E., Bodden, E.: DroidForce: enforcing complex,
data-centric. system-wide policies in android. In: Proc. ARES (2014)

ISboxing: An Instruction Substitution Based
Data Sandboxing for x86 Untrusted Libraries

Liang Deng(B), Qingkai Zeng, and Yao Liu

State Key Laboratory for Novel Software Technology,
Department of Computer Science and Technology, Nanjing University,

Nanjing 210023, China
dengliang1214@smail.nju.edu.cn, zqk@nju.edu.cn

Abstract. Dynamically-linked libraries are widely adopted in appli-
cation programs to achieve extensibility. However, faults in untrusted
libraries could allow an attacker to compromise both integrity and con-
fidentiality of the host system (the main program and trusted libraries),
as no protection boundaries are enforced between them. Previous sys-
tems address this issue through the technique named data sandboxing
that relies on instrumentation to sandbox memory reads and writes in
untrusted libraries. However, the instrumentation method causes rela-
tively high overhead due to frequent memory reads in code.

In this paper, we propose an efficient and practical data sandbox-
ing approach (called ISboxing) on contemporary x86 platforms, which
sandboxes a memory read/write by directly substituting it with a self-
sandboxed and function-equivalent one. Our substitution-based method
does not insert any additional instructions into library code and there-
fore incurs almost no measurable runtime overhead. Our experimental
results show that ISboxing incurs only 0.32%/1.54% (average/max) over-
head for SPECint2000 and 0.05%/0.24% (average/max) overhead for
SFI benchmarks, which indicates a notable performance improvement
on prior work.

Keywords: Data sandboxing · Instruction substitution · Untrusted
libraries · Instruction prefix

1 Introduction

Applications commonly incorporate with dynamically-linked libraries to achieve
extensibility. However, a library, which might be buggy or even come from a
malicious source, could be used by attackers to disrupt both integrity and confi-
dentiality of the host system. Even though the host system contains no vulner-
abilities, bugs and malicious behaviors in the library can lead to compromise of
the entire application since no protection boundaries are enforced.

One major type of protections to address this issue is through software-based
fault isolation (SFI) which isolates untrusted libraries from a trusted host sys-
tem. The original SFI technique named sandboxing (including data sandboxing
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 386–400, 2015.
DOI: 10.1007/978-3-319-18467-8 26

ISboxing: An Instruction Substitution Based Data Sandboxing 387

and code sandboxing) was first proposed by Wahbe et al. [1]. Data sandbox-
ing prevents sandboxed libraries from accessing memory outside a designated
data region by inserting inline guards before their memory-access instructions
(memory writes and memory reads). Thus both integrity and confidentiality of
data in the trusted host system are protected. Code sandboxing instruments
indirect-jump instructions to restrict the control flows in sandboxed libraries to
a designated code region. A carefully designed and validated interface is also
required when sandboxed libraries invoke the host system. Additionally, control
flow integrity (CFI) [14] is a more restrictive enforcement than code sandboxing,
which further guarantees that the control flows must follow a static control flow
graph (CFG).

Recent work [9,15] has realized both code sandboxing and CFI with minimal
performance overhead, however data sandboxing, despite of its long history(first
proposed in 1993 [1]), still suffers from a perception of inefficiency which may
hinder practical applications.

For avoiding high overhead, many previous approaches [2,5,10] only sand-
box memory writes for integrity, but ignore protecting confidentiality due to
the high cost of sandboxing memory reads that appear more frequently in code.
However, in security-critical systems (e.g., military or financial systems), confi-
dentiality is of importance as an exploited library would read secrets in the host
system. NaCI-x86-32 [3] and Vx32 [4] leverage hardware segmentation to effi-
ciently restrain memory access. However, hardware segmentation is unavailable
on contemporary x86-64. As a result, NaCI-x86-64 [5] designed for x86-64 relies
on instrumentation to sandbox memory writes only (or both reads and writes
with significant performance overhead [12]).

Recent researches [7,8] utilize a series of performance optimizations that
remove redundant instrumentation instructions, for the case of protecting both
integrity and confidentiality. However, their methods are not so easy to imple-
ment correctly. For example, they need considerable efforts, which are complex
and error prone, to verify the security of removed checks. Their optimizations also
require static analysis (e.g., control flow analysis, register liveness analysis) and
compiler-level support, which however are not compatible with existing libraries
that are released as pure binaries. Additionally, due to the high frequency of
memory reads in code, they incur some overhead even after optimizations, e.g.,
the reported overhead in Strato [8] is 32%/62%(average/max) for SFI bench-
marks, and 17%/45%(average/max) for SPECint2000.

In this paper, we present ISboxing, an approach to sandbox both memory
reads and writes in untrusted libraries on contemporary x86-64 platforms. Unlike
previous instrumentation-based approaches, ISboxing sandboxes a memory-
access instruction by directly substituting it with a self-sandboxed and function-
equivalent one, which takes advantage of the flexibility offered by the extensive
x86 instruction set.

We argue that while recent approaches focus on improving performance, they
do not address the issue of practicality and hence are of limited applicability. In
addition, their non-trivial overhead may still be an obstacle in some applications.

388 L. Deng et al.

Instead, ISboxing trades some protection granularity for both practicality and
efficiency. We highlight three key features which distinguish ISboxing from prior
work:

– Easy-to-implement. ISboxing achieves data sandboxing efficiently without
complex optimization work. It just needs to identify each memory-access
instruction and substitute it, which is easy to implement correctly.

– Binary-only. ISboxing is implemented as pure binary transformation requir-
ing no cooperation from source code or debugging symbols, and thus compat-
ible with legacy libraries.

– Efficient. ISboxing incurs negligible overhead for sandboxing both memory
reads and writes, since the substitution-based method requires no additional
instrumentation instructions.

We have implemented ISboxing to sandbox user-space libraries on Win-
dows. The implementation has a clear architecture comprised of a disassem-
bler, a rewriter and a verifier. The disassembler disassembles a given library’s
binary executable (e.g., a PE file) and identifies memory-access instructions.
The rewriter then statically substitutes each memory-access instruction. ISbox-
ing includes a tiny verifier at the end of its workflow to validate the output of
the rewriter. In this way, we can remove the disassembler and the rewriter from
the TCB.

2 Related Work

SFI. Since SFI was first proposed by Wahbe et al. [1], a main portion of its
following work focuses on reducing the runtime overhead of sandboxing espe-
cially on popular hardware platforms (e.g., x86). PittSFIeld [2] is the first work
that applies SFI to x86 platforms which feature variable-length instructions.
NaCl-x86-32 [3] and Vx32 [4] provide efficient data sandboxing relying on x86-
32 segmentation. NaCl-x86-64 [5] further adapts SFI to contemporary x86-64
platforms, but it only sandboxes memory writes for performance and requires
compiler-level supports. XFI [6] provides a stronger and more comprehensive
protection system for executing untrusted code. Besides sandboxing, XFI pro-
vides a high-integrity stack protection model for protecting return addresses. The
system of Zeng et al. [7], on the other hand, focuses on exploring a more efficient
support for data sandboxing by combining CFI and static analysis. Strato [8]
explores the building of a re-targetable framework for CFI and data sandbox-
ing on a compiler intermediate representation where many optimizations can be
realized without sticking to a certain hardware platform. REINS [9] is the first
work that implements SFI through pure binary rewriting with trivial perfor-
mance overhead, however it actually only implements code sandboxing, without
discussing data sandboxing. Additionally, a series of papers [10,11] study how
to enforce fine-grained SFI and memory access control. MIP [13] proposes an
x86-64 SFI approach similar to ours. However, it still needs to insert additional
instructions for data sandboxing, and thus it avoids sandboxing memory reads

ISboxing: An Instruction Substitution Based Data Sandboxing 389

for performance. Its method also does not address the issue of practicability,
e.g., it requires complex compiler-level register liveness analysis to find scratch
registers.

CFI. CFI was first introduced by Abadi et al. [14] for enforcing the integrity
of a program’s CFG constructed by sophisticated pointer analysis. CFI is a
generic software methodology, which in theory can be applied to any systems
(e.g., smartphones [17,18], and commodity OS kernels [19]). However, the con-
struction of a precise CFG is difficult on pure binaries, and enforcing precise
CFG in a program often incurs high performance overhead. For practical appli-
cations, researchers have attempted to leverage a relaxed CFI model and apply
it to legacy binaries [15,16].

3 Assumptions and Attack Model

As with prior work, we assume the host system and the verifier are correct. We
assume code regions and data regions in executables to be separated. The data
regions are not executable and the code regions are not writable. This require-
ment is satisfied due to the wide deployment of W⊕X protection in modern
OSes (e.g., DEP in Windows). We assume that the libraries do not self-modify
their code or dynamically generate code. This requirement is always satisfied for
traditional executables compiled from high-level languages. We assume that the
libraries have well defined APIs which specify their parameter types and calling
conventions. This is reasonable since it is necessary for the user of a library to
understand how to use it. However, source code or debugging information is not
required.

Two sources of attacks we consider are libraries designed by malicious authors,
and libraries with bugs that could be subverted by attackers. Since untrusted
libraries run in the same address space with the host system, when compromised,
they would access arbitrary data and execute arbitrary code in memory. There-
fore, the data integrity, data confidentiality and control flow integrity of the host
system cannot be guaranteed any longer.

4 Instruction Substitution Based Data Sandboxing

4.1 Data Sandboxing Policy

ISboxing divides the address space into a protected domain and a trusted do-
main. ISboxing runs untrusted libraries in the protected domain to contain faults,
while the host system (the main program and trusted libraries) runs in the
trusted domain. Hereafter we refer to the libraries running in the protected
domain as sandboxed libraries. The data sandboxing policy dictates that both
memory reads and memory writes in sandboxed libraries must be restricted to
a designated continuous data region, so that the integrity and confidentiality
of the host system can be guaranteed. Hereafter we refer to this data region
as sandbox region. In the following, we will detail ISboxing’s data sandboxing
approach to enforce this policy. For a better understanding, we start with the
background.

390 L. Deng et al.

Fig. 1. An example to illustrate previous data sandboxing and ISboxing’s data sand-
boxing

4.2 Background: x86 Memory Addressing

We first introduce the memory addressing on x86 platforms [20]. In a memory-
access instruction, the address of its memory operand is referenced by means of
a segment selector and an offset. In x86-64, segmentation is generally disabled,
that is, the effective address of the memory operand is directly the offset. The
offset can be specified as a direct offset which is a static value encoded in code,
or an indirect offset through an address computation made up of one or more of
the following components: displacement, base register, index register and scale.
Rip-relative addressing is also available, which calculates the offset by adding a
displacement to the value of current rip register. Data sandboxing only needs
to sandbox memory-access instructions with indirect offset, because memory-
access instructions with direct offset and rip-relative addressing instructions can
be statically verified.

Operand Size and Address Size. On x86 platforms, the operand of an
instruction has an operand size and an address size [20]. The operand size selects
the size of operand and the address size determines the size of address when the
operand accesses memory. In 64-bit mode, the default address size is 64 bits and
the default operand size is 32 bits, but defaults can be overridden using instruc-
tion prefixes. For example, when an instruction uses the operand-size prefix
(0x66) or the REX opcode prefix (0x48), its default operand size (32 bits) will
be overwritten to 64 bits. When a memory-access instruction uses the address-
size prefix (0x67), its default address size (64 bits) will be overwritten to 32 bits.
As a result, it cannot address the memory outside 32 bits. The original motiva-
tion of these prefixes is to allow mixed 32/64-bit data and 32/64-bit addresses
at instruction granularity.

4.3 Previous Data Sandboxing

In Figure 1(a), we give an example of a memory-access instruction with indi-
rect offset (a memory read) in pseudo assembly syntax. In the example, the

ISboxing: An Instruction Substitution Based Data Sandboxing 391

instruction loads data from the memory operand ([rax+0x10]) to the rcx register.
The memory operand is referenced by an indirect offset computed from a base
register (the rax register) and a displacement (0x10). We show the x86 binary
encoding of the instruction within the parentheses in the figure. We assume this
instruction is a memory read in an untrusted library. In the following, we will
illustrate how to sandbox it with previous data sandboxing.

For protecting confidentiality, the memory address represented by [rax+0x10]
should be checked before the memory read. Figure 1(b) presents a sequence of
instructions that should be inserted to perform the check. In the sequence, the
register rdx is used as a scratch register for the check. Since the original value of
rdx would be needed, the sequence should first save its value on the stack and
restore it after the check. The rflags register also needs to be saved and restored
in case that the and instruction would change its value and influence the sub-
sequent computation. In the and instruction, the constant $MASK denotes the
data-region mask that guarantees the memory read is restricted to the sandbox
region.

4.4 ISboxing’s Data Sandboxing

For comparison, we use the same example to illustrate how ISboxing’s data
sandboxing works.

Overall Idea. From another perspective, the memory-read instruction
(Figure 1(a)) is unsafe because it is an ”all-powerful-addressing” instruction
whose address size is 64 bits. That is to say, an untrusted library can generate
arbitrary value in the rax register, and use this instruction to access arbitrary
memory in the whole 64-bit address space (the range of [0,264]). This observation
inspires us to sandbox the memory-read instruction by changing its address size.

Without inserting any instructions, we only substitute the memory-read
instruction. In the new substitute (as shown in Figure 1(c)), we only add the
address-size prefix (0x67) which transforms the address size from 64 bits to
32 bits (the upper 32 bits of the address will be zero-extended by the proces-
sor). In this way, the new substitute is self-sandboxed by its address-size prefix,
as if we implicitly inserted a bitwise and instruction whose data-region mask
is 0x00000000ffffffff. Therefore, the sandbox region of ISboxing is the range of
[0,232], and using the new substitute to access memory outside the sandbox
region becomes impossible.

Most importantly, to guarantee the correctness of the substitution, we must
ensure that the new substitute is function-equivalent with the original one. To
achieve this, we should ensure that the address of the memory operand is orig-
inally within the range of [0,232] (the sandbox region), so that the new substi-
tute will perform the same computation when ignoring the upper 32 bits. This
requires us to relocate all the library’s memory to the sandbox region, as detailed
in the following sections.

Handling Stack Instructions. In x86, there is one exception that the address
size of the stack is always 64 bits when stack instructions (push, pop, call and ret)

392 L. Deng et al.

are performed to read/write data on the stack. Therefore, an untrusted library
may maliciously set the stack pointer (the rsp register) to an address outside
the sandbox region and use stack instructions to access disallowed memory. In
this situation, our data sandboxing relying on address size cannot work.

We address this issue by sandboxing the rsp register based on instruction
substitution. In x86, the operand size of each instruction determines the number
of valid bits in the register (e.g., the rsp register): 64-bit operand size generates
a 64-bit result in the register, while 32-bit operand size generates a 32-bit result,
zero-extended to a 64-bit result in the register [20]. With this, we substitute
each instruction modifying rsp (hereafter named rsp-modify instruction, e.g., sub
rsp,$0x10) with an equivalent instruction (sub esp,$0x10) whose operand size is
changed to 32 bits. The substitution work is easily performed by just removing
the REX opcode prefix of the original instruction. Then the new substitute
cannot be used to set the rsp register to any value outside the sandbox region,
because the upper 32 bits of the rsp register are always zero-extended by the
processor. It seems as if we implicitly inserted a bitwise and instruction.

Additionally, in x86, stack instructions (push, pop, call and ret) can implicitly
modify the rsp register. Although they can only increase/decrease the rsp regis-
ter by at most 8 bytes for each time, an attacker would chain a number of stack
instructions to manipulate the rsp register (e.g., using ROP attacks [24,25]). We
prevent this by simply inserting a guard page at the end of the sandbox region.
The guard page is mapped as neither readable nor writable in the address space
and thus any read/write on it will cause a page fault. Specifically, when an
untrusted library uses stack instructions to modify the rsp register, the guard
page cannot be crossed since the rsp register can only be increased by 8 bytes
for each time. When the stack pointer reaches the guard page, executing any
stack instruction again will cause a page fault and crash the untrusted library.

Constraints and Analysis. Comparing to previous data sandboxing whose
sandbox region can be any size and in any position, ISboxing restricts the sand-
box region to a fixed size and a fixed position in the address space. However, this
is not a problem for sandboxing untrusted libraries in practice. First, the fixed
size of ISboxing’s sandbox region (4 GB) is large enough to contain quite a few
libraries, since the virtual memory consumption of a real-world library is much
smaller than 4 GB. In our observation, the virtual memory consumption of even
a whole application is usually much smaller than 4 GB. Second, the constraint
of the fixed position requires us to relocate libraries’ memory to the sandbox
region. As discussed in the next section, the memory relocation can be practi-
cally realized on libraries’ executable binaries without any aids from source code
or debug information.

5 Sandboxing Untrusted Libraries

Based on ISboxing’s data sandboxing approach above, we further describe how to
sandbox untrusted libraries on Windows. The implementation is realized through

ISboxing: An Instruction Substitution Based Data Sandboxing 393

pure binary transformation on application binaries without any special support
from underlying OS.

5.1 Binary Disassembling and Rewriting

We adopt CCFIR’s disassembling method [15] which can correctly disassemble
an x86 binary without source code or debug information. We take advantage
of the fact that ASLR and DEP are widely adopted on Windows, and leverage
the relocation information to disassemble binary code recursively and identify
all possible instructions. Then we can find and substitute all memory-access
instructions and rsp-modify instructions to enforce ISboxing’s data sandboxing.

5.2 Memory Relocation

Data sandboxing requires that the memory of sandboxed libraries must reside
within the sandbox region and the memory of the host system must reside outside
the sandbox region. In this way, sandboxed libraries cannot access the memory
of the host system. However, in real-world applications, their memory regions are
often overlapped with each other. For example, the libraries and the host system
often use the same Window’s API HeapAlloc to allocate heap memory from the
same heap, and their heap memory may be overlapped. In the following, we will
detail the memory relocation for sandboxed libraries. The memory relocation for
the host system is essentially identical.

Executable Relocation. Due to the ASLR mechanism, a binary executable’s
load base can be randomized without affecting the execution. To relocate an
executable, we simply disable system’s ASLR for the executable and modify the
ImageBase field in the executable’s file header which specifies the load base of
the executable. In addition, some code and data in the executable should also be
adjusted since they are generated based on the original ImageBase. Though sys-
tem’s ASLR is disabled, existing practical and more fine-grained randomization
techniques [15,26,27] can be added to ISboxing.

Stack Relocation. The host system associates a separate stack with each
thread that executes in a sandboxed library. Like XFI [6], our current imple-
mentation uses a memory pool from which host-system threads draw stacks
when they call the library. The stacks in this pool are all allocated in the sand-
box region, and managed by a state array and a single lock. The size of the pool
can be adjusted at runtime.

Heap Relocation. On Windows, applications invoke Windows APIs to allo-
cate heap memory from the heap provided by system. The address of the heap
memory is determined by system heap manager and is transparent to appli-
cations. For heap relocation, ISboxing realizes another heap manager (named
ISboxing heap manager) to satisfy heap allocations for both sandboxed libraries
and the host system. In our current implementation, ISboxing heap manager is a
simplified version of Glibc’s heap manager. It wholesales large memory chunks

394 L. Deng et al.

from the sandbox region using Windows API VirtualAllocEx and provides small
memory blocks for sandboxed libraries. In this way, sandboxed libraries’ heap
memory will always reside within the sandbox region.

File Mapping Relocation. File mapping is the association of a file’s contents
with a portion of the virtual memory (file-mapping memory). Fortunately, unlike
heap memory, applications can use Windows API (MapViewOfFileEx) to specify
the base address of file-mapping memory. This facilitates the realization of our
file mapping relocation. ISboxing reserves a range of virtual memory in the
sandbox region dedicated to file mapping for sandboxed libraries, and redirects
libraries’ file mapping requests to the API MapViewOfFileEx.

5.3 CFI Enforcement

Instead of code sandboxing, we leverage CFI, which is a more restrictive enforce-
ment, to sandbox the control flows of untrusted libraries. The CFI enforcement,
which guarantees a single stream of intended instructions, also ensures that
ISboxing’s data sandboxing cannot be bypassed. While CFI enforcement tech-
nique has been practically realized in CCFIR [15] with low performance over-
head, we adopt CCFIR’s method but use a simplified 1-ID CFI protection model.
However, the code sandboxing approach discussed in REINS [9] can also be used
as an alternative.

As with CCFIR, we introduce a code section called Springboard. For each
legal indirect target in library code, the Springboard has an associated stub con-
taining a direct jump to it. Then, we instrument each indirect jump in the library
to make sure that any indirect control flow will first jump to the Springboard
and then use its stubs (containing direct jumps) to complete the control flow
transition. Since the Springboard only contains direct jumps whose targets are
legal, the CFI is ensured. In addition, a restrictive and validated host-system
interface is enforced when the libraries invoke the host system. The interface
only allows three kinds of control flows (which can also be specified and val-
idated by host-system policies): 1) Imported function calls whose targets are
referenced by sandboxed libraries’ import address table (IAT). 2) Function calls
whose targets are resolved at runtime by special API, e.g., GetProcAddress.
3) Returns to the host system. The details of how to protect these control flows
are well discussed in CCFIR’s Section IV-D.

The CFI enforcement also inherits the deficiencies of CCFIR. For example,
the relaxed CFI enforcement was shown to be broken in face of new control-flow
attacks [21–23]. Nevertheless, it is enough to sandbox untrusted libraries’ control
flows, and is more restrictive than the code sandboxing approach in previous SFI
work.

6 Implementation

In our implementation, we have developed three major tools (a disassembler,
a rewriter and a verifier) to transform library binaries (PE executables) for

ISboxing: An Instruction Substitution Based Data Sandboxing 395

enforcing all ISboxing’s protection on them. The implementation of the disas-
sembler is similar to CCFIR and will not be repeated. The rewriter, whose input
is the output of the disassembler, mainly performs the following work. First, the
rewriter rewrites each memory-access instruction by adding the address-size pre-
fix and each rsp-modify instruction by removing the REX opcode prefix. Second,
it instruments each indirect jump and creates the Springboard section for CFI
enforcement. Third, it modifies executable’s file headers, relocation information
and redirects heap allocation APIs to realize memory relocation. A library only
needs to be rewritten once, and the rewritten binary can be shared by different
applications for code reuse. In our current implementation, the rewriter takes
about 3.5k LOC.

We provide a separate verifier to validate the correctness of ISboxing’s protec-
tion. First, the verifier identifies all possible instructions in the rewritten binary.
This is realized by scanning instructions one by one started from all indirect jump
targets (in Springboard section), export table entries and the EntryPoint of the
binary. For instructions not identified in this way, the CFI enforcement guaran-
tees that they will never be executed in the runtime, because no control flows are
allowed to be transferred to them. Then, for each possible instruction, the verifier
checks if it conforms to the following rules: 1) If it is an indirect jump, it has been
checked and redirected to the Springboard section. 2) If it is a memory-access
instruction with indirect offset, its address size has been changed to 32 bits. 3) If
it is an rsp-modify instruction, its operand size has been changed to 32 bits.
4) Memory-access instructions with direct offset, direct jumps and rip-relative
addressing instructions are also statically validated since the code may come from
a malicious source. In our current implementation, the verifier is self-contained
and takes about 2.5k LOC, most of which are interpretation for x86 opcode
decoding.

We have also developed a tool to transform host-system binaries (the main
program and libraries) so that their memory will reside outside the sandbox
region in the runtime. The tool also identifies host system’s calls to the sand-
boxed libraries and adds a communication runtime for wrapping them (e.g., by
identifying and wrapping imported function pointers and dynamically resolved
function pointers). The communication runtime, which runs as a DLL in the
host system, completes tasks such as copying arguments and results, switching
stack and enforcing host system’s policies, before transferring to the sandboxed
libraries. In addition, the ISboxing heap manager used for heap relocation is
developed as a dynamic library (a DLL in the host system) that satisfies heap
allocations for both sandboxed libraries and the host system.

We have successfully applied ISboxing’s implementation to SPECint2000, SFI
benchmarks and some third-party libraries (e.g., JPEG decoder, 7-ZIP, plugins
in Google Chrome), all of which are pure binaries (EXEs or DLLs) on Windows.
It is worth noting that all the work is performed offline and does not influence
the runtime performance.

396 L. Deng et al.

Table 1. ISboxing’s runtime overhead on SPECint2000

CFI RELOC RELOC+DS CFI+RELOC+DS

gzip 2.41% -0.37% 0.72% 3.78%
vpr 0.01% -0.33% 0.43% 0.33%
gcc 6.12% -1.55% -1.83% 5.01%
mcf 0.64% -0.55% -0.57% 0.01%

crafty 0.88% -0.08% 0.12% 0.88%
parser 8.55% -0.17% 0.14% 7.81%
eon 3.89% -1.18% -1.01% 3.14%

perlbmk 9.76% -2.81% -2.28% 7.27%
gap 4.81% 0.11% 0.00% 4.87%

vortex 5.72% -1.70% -1.23% 5.23%
bzip2 2.31% -0.59% 0.95% 1.89%
twolf 0.04% -2.49% -3.33% -2.85%

avg 3.76% -0.98% -0.66% 3.11%

Table 2. ISboxing’s runtime overhead on SFI benchmarks

CFI RELOC RELOC+DS CFI+RELOC+DS

md5 0.69% 0.01% -0.08% 0.81%
lld 0.95% -0.21% -0.21% 0.57%

hotlist 2.79% -0.05% 0.19% 3.01%

avg 1.48% -0.08% -0.03% 1.46%

7 Evaluation

7.1 Performance Evaluation

To evaluate our implementation, we conducted experiments on a Dell Optiplex
9010 computer configured with an Intel i7-3770 (4 cores) 3.40 GHz processor,
8 GB RAM, an Intel 82579LM Gigabit Ethernet card and a Windows 7 64-bit
system. We measured the execution-time overhead of sandboxing a wide range of
benchmark binaries on Windows, including SPECint2000 and SFI benchmarks.
SFI benchmarks contain three programs (hotlist, lld and md5) which have been
widely used by previous SFI work for evaluation [8]. We treat each benchmark
as if it were an untrusted library. All experiments were averaged over five runs.

Table 1 presents the execution-time percentage increases of SPECint2000,
compared to the unmodified version. The standard deviation is less than 0.8 per-
cent. The CFI column shows the results of CFI enforcement. CFI enforcement
is necessary for data sandboxing because it ensures a single stream of intended
instructions. We are pleased to see that, with CCFIR’s method, the overhead
(average/max) is only is 3.76%/9.76% for x86-64 binaries. The RELOC column
reports the overhead of the memory relocation discussed in Section 5.2. As we
see, ISboxing gains some performance improvement. Through analysis, this is
because ISboxing uses a simplified heap manager for memory relocation in our
current implementation. ISboxing’s users are free to choose other heap managers

ISboxing: An Instruction Substitution Based Data Sandboxing 397

Table 3. Code-size increase on SPECint2000

gzip vpr gcc mcf crafty parser eon perlbmk gap vortex bzip2 twolf avg

increase (%) 5.8% 6.3% 6.5% 5.8% 6.2% 6.2% 7.1% 7.2% 7.7% 7.8% 5.6% 7.6% 6.7%

either for high performance [28] or for high level of security [29]. This perfor-
mance difference can be mostly eliminated if they use a heap manager similar to
Window’s. The RELOC+DS column gives the results when both memory relo-
cation and data sandboxing(for both memory reads and writes) are enabled, yet
CFI enforcement is disabled at this time. As shown in the table, if we ignore the
performance improvement of memory relocation(RELOC+DS minus RELOC),
the pure data sandboxing overhead in ISboxing is only 0.32%/1.54%(aver-
age/max) on SPECint2000. This overhead is unsurprising as ISboxing does
not insert any additional instructions into the benchmarks to achieve data sand-
boxing. The CFI+RELOC+DS column shows the overhead when all ISboxing’s
protections are enabled.

Table 2 presents the results of SFI benchmarks. The standard deviation is
less than 0.6 percent. The results show that the pure data sandboxing overhead
is 0.05%/0.24%(average/max) for SFI benchmarks.

Performance Comparison with Related Systems. We next compare ISbox-
ing with the system of Zeng et al. [7] and Strato [8], which sandbox mem-
ory writes as well as reads with a number of optimizations to reduce runtime
overhead. The pure data sandboxing overhead reported in Strato is as large as
17%/45%(average/max) for x86-64 SPECint2000 and 32%/62%(average/max)
for SFI benchmarks (without adding CFI and memory relocation overhead).
In Zeng et al.’s system, the pure data sandboxing overhead is 19%/42%(aver-
age/max) for x86-32 SPECint2000. It does not provide the results for x86-64,
and thus the comparison is preliminary. Although other systems [2–5,13] incur
low overhead, they either ignore sandboxing memory read or use hardware seg-
mentation not available on contemporary x86 platforms.

7.2 Code-Size Increase

As a side benefit, ISboxing requires very small code-size increase to realize data
sandboxing, since no additional instrumentation instructions are added to code.
Table 3 presents the text-section size increase comparing to unmodified version
for SPECint2000. On average, the text section grows only 6.7% for data sand-
boxing when CFI is not equipped.

8 Discussion

ISboxing trades some protection granularity for both efficiency and practica-
bility. It only provides a single sandbox (the protected domain) running all
untrusted libraries isolated from the host system, but cannot further provide

398 L. Deng et al.

multiple sandboxes. Thus it cannot deal with inter-module data accesses between
untrusted libraries. Nevertheless, we believe ISboxing has a wide range of appli-
cations such as isolating untrusted third-party libraries or browser plugins from
the host system (trusted libraries and the main program), especially when source
code is unavailable and confidentiality is of importance.

In addition, an alternative method is to sandbox only memory reads (per-
formance critical) in a single sandbox with ISboxing, while further sandboxing
memory writes (less performance critical) in multiple sandboxes using previous
instrumentation methods. In this way, we can achieve a better tradeoff between
performance and granularity. In real world, security secrets (e.g., secret keys)
often reside in the host system, thus a single sandbox for memory reads is
enough to protect their confidentiality. If a library contains security secrets,
we can choose to run it in the host system.

9 Conclusion

In this paper, we present an instruction substitution based data sandboxing,
which is quite different from previous instrumentation based approaches. Unlike
pure software approaches, we explore how an x86 feature (instruction prefix) can
help build an efficient, practical and validated data sandboxing on contemporary
x86-64 platforms. We apply our approach to practically sandboxing untrusted
libraries on Windows, and perform a set of experiments to demonstrate the
effectiveness and efficiency.

Acknowledgments. This work has been partly supported by National NSF of China
under Grant No. 61170070, 61431008, 61321491; National Key Technology R&D Pro-
gram of China under Grant No. 2012BAK26B01.

References

1. Wahbe, R., Lucco, S., Anderson, T., Guaham, S.: Efficient software-based fault
isolation. In: ACM Symposium on Operating Systems Principles (1993)

2. McCamant, S., Morrisett, G.: Evaluating SFI for a CISC architecture. In: USENIX
Security Symposium (2006)

3. Yee, B., Sehr, D., Dardyk, G., Chen, J., Muth, R., Orm, T., Okasaka, S., Narula,
N., Fullagar, N.: Native client: a sandbox for portable, untrusted x86 native code.
In: IEEE Symposium on Security and Privacy (2009)

4. Ford, B., Cox, R.: Vx32: lightweight user-level sandboxing on the x86. In: USENIX
Annual Technical Conference (2008)

5. Sehr, D., Muth, R., Biffle, C., Khimenko, V., Pasko, E., Schimpf, K., Yee, B.,
Chen, B.: Adapting software fault isolation to contemporary CPU architectures.
In: Usenix Security Symposium (2010)

6. Erlingsson, U., Abadi, M., Vrable, M., Budiu, M., Necula, G.: XFI: Software guards
for system address spaces. In: Symposium on Operating Systems Design and Imple-
mentation (2006)

ISboxing: An Instruction Substitution Based Data Sandboxing 399

7. Zeng, B., Tan, G., Morrisett, G.: Combining control flow integrity and static anal-
ysis for efficient and validated data sandboxing. In: ACM Conference on Computer
and Communications Security (2011)

8. Zeng, B., Tan, G., Erlingsson, U.: Strato: a retargetable framework for low-level
inlined-reference monitors. In: USENIX Security Symposium (2013)

9. Wartell, R., Mohan, V., Hamlen, K., Lin, Z.: Securing untrusted code via compiler-
agnostic binary rewriting. In: 28th Annual Computer Security Applications
Conference (2012)

10. Castro, M., Costa, M., Martin, J., Peinado, M., Akritidis, P., Donnelly, A., Barham,
P., Black, R.: Fast byte-granularity software fault isolation. In: ACM Symposium
on Operating Systems Principles (2009)

11. Akritidis, P., Costa, M., Castro, M., Hand, S.: Baggy bounds checking: an effi-
cient and backwards-compatible defense against out-of-bounds errors. In: Usenix
Security Symposium (2009)

12. Ansel, J., Marchenko, P., Erlingsson, U., Taylor, E., Chen, B., Schuff, D., Sehr,
D., Biffle, C., Yee, B.: Language-independent sandboxing of just-in-time compi-
lation and self-modifying code. In: ACM SIGPLAN Conference on Programming
Language Design and Implementation (2011)

13. Niu, B., Tan, G.: Monitor integrity protection with space efficiency and separate
compilation. In: ACM Conference on Computer and Communications Security
(2013)

14. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control flow integrity. In: ACM
Conference on Computer and Communications Security (2005)

15. Zhang, C., Wei, T., Chen, Z., Duan, L., Szekeres, L., McCamant, L., Song, D.,
Zou, W.: Practical control flow integrity & randomization for binary executables.
In: IEEE Symposium on Security and Privacy (2013)

16. Zhang, M., Sekar, R.: Control flow integrity for cots binaries. In: USENIX Security
Symposium (2013)

17. Davi, L., Dmitrienko, A., Egele, M., Fischer, T., Holz, T., Hund, R., Nurnberger, S.,
Sadeghi, A.: MoCFI: a framework to mitigate control-flow attacks on smartphones.
In: Annual Network and Distributed System Security Symposium (2012)

18. Pewny, J., Holz, T.: Control-flow restrictor: compiler-based CFI for iOS. In: Annual
Computer Security Applications Conference (2013)

19. Criswell, J., Dautenhahn, N., Adve, V.: KCoFI: complete control-flow integrity
for commodity operating system kernels. In: IEEE Symposium on Security and
Privacy (2014)

20. Intel Corporation: Intel 64 and IA-32 architectures software developer’s manual
volume 1: Basic architecture (2013)

21. Davi, L., Sadeghi, A., Lehmann, D., Monrose, F.: Stitching the gadgets: on the inef-
fectiveness of coarse-grained control-flow integrity protection. In: USENIX Security
Symposium (2014)

22. Goktas, E., Athanasopoulos, E., Bos, H., Portokalidis, G.: Out of control: overcom-
ing control-flow integrity. In: IEEE Symposium on Security and Privacy (2014)

23. Carlini, N., Wagner, D.: Rop is still dangerous: breaking modern defenses. In:
USENIX Security Symposium (2014)

24. Shacham, H.: The geometry of ennocent flesh on the bone: return-into-libc without
function calls (on the x86). In: ACM Conference on Computer and Communications
Security (2007)

25. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A., Shacham, H., Winandy, M.:
Return-oriented programming without returns. In: ACM Conference on Computer
and Communications Security (2010)

400 L. Deng et al.

26. Wartell, R., Mohan, V., Hamlen, K., Lin, Z.: Binary stirring: self-randomizing
instruction addresses of legacy x86 binary code. In: ACM Conference on Computer
and Communications Security (2012)

27. Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.: ILR: whered my
gadgets go? In: IEEE Symposium on Security and Privacy (2012)

28. Berger, E., Zorn, B., McKinley, K.: Composing high performance memory allo-
cators. In: ACM SIGPLAN Conference on Programming Language Design and
Implementation (2001)

29. Novark, G., Berger, E.: DieHarder: securing the heap. In: ACM Conference on
Computer and Communications Security (2010)

Exploit Generation for Information Flow Leaks
in Object-Oriented Programs

Quoc Huy Do(B), Richard Bubel, and Reiner Hähnle

Department of Computer Science, TU Darmstadt, Darmstadt, Germany
{do,bubel,haehnle}@cs.tu-darmstadt.de

Abstract. We present a method to generate automatically exploits for
information flow leaks in object-oriented programs. Our approach com-
bines self-composition and symbolic execution to compose an insecurity
formula for a given information flow policy and a specification of the
security level of the program locations. The insecurity formula gives then
rise to a model which is used to generate input data for the exploit.

A prototype tool called KEG implementing the described approach
for Java programs has been developed, which generates exploits as exe-
cutable JUnit tests.

Keywords: Test generation · Symbolic execution · Information flow

1 Introduction

Analyzing programs to ensure that they do not leak secrets is necessary to
improve confidence in the ability of a system to not put the security and privacy
of its users at stake.

Information flow analysis is concerned with one aspect of this task, namely, to
ensure that an outside agent with well-defined properties cannot learn secrets by
observing (and initiating) several runs of a program. The nature of the secrets to
be protected is specified by an information flow policy. The strongest one is non-
interference, which does not allow the attacker to learn any kind of information
about the secret. This is often too strong, e.g., an authentication program leaks
the information whether an entered password is correct, hence, other policies
like declassification (see [22] for a survey) exist that allow to specify what kind
of information may be released.

Several approaches to analyze programs for secure information flow relative
to a given information flow policy exist. Many of these are either type-based
[4,15,18,21,26] or logic-based [6,11,23]. In this paper we use a logic-based app-
roach with self-composition (first introduced in [10]; the name self-composition
was coined in [6]), but our focus is not to verify that a program has secure infor-
mation flow; instead we approach the problem from a bug finding point of view.

The work has been funded by the DFG priority program 1496 “Reliably Secure
Software Systems”.

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 401–415, 2015.
DOI: 10.1007/978-3-319-18467-8 27

402 Q.H. Do et al.

For a given program we try to automatically generate exploits that demonstrate
unintended information flows. Exploits are small programs that run the program
of interest multiple times and report whether they could observe a leak. The gen-
erated exploits are well-structured and support the developer in identifying the
origin of the leak and in understanding its nature.

To generate exploits we build on work from test generation [12,16] with
symbolic execution. Our implementation outputs the found exploits as JUnit
tests such that the test fails if the program is insecure. The exploits can thus
easily be added to a regression test suite.

The paper is structured as follows: Sect. 2 introduces basic notions and tech-
niques. Sect. 3 explains the logic formalization of insecurity for noninterference
and delimited information release. In Sect. 4 we discuss the analysis of programs
containing loops and method invocations. Sect. 5 presents our tool KEG and
demonstrates the viability with case studies. We compare our work with others
in Sect. 6 and conclude with Sect. 7.

2 Background

2.1 Information Flow Policies

To analyze that a program does not leak confidential information, we need to
define the security level of the program locations (program variables and fields)
as well as an information flow policy which defines whether and what kind of
information may flow between program locations of a different security level.

In this subsection we recapture the definitions of two well-known information
flow policies which are supported by our approach.

Noninterference. Noninterference [9,26] is the strongest possible information
flow policy. It prohibits any information flow from program locations containing
confidential information (high variables) to publicly observable program loca-
tions (low variables); the opposite direction is allowed. As we consider only
deterministic programs, noninterference can be easily formalized by comparing
two program runs:

A program has secure information flow with respect to noninterference, if
any two executions of the program starting in initial states with identical values
of the low variables, also end in final states which coincide on the values of the
low variables.

Let p denote a program and Var the set of all program variables of p.

Definition 1 (Program State). A program state σ maps each program vari-
able v ∈ Var of type T to a value of its concrete domain DT , i.e.,

σ : Var → D

with σ(v : T) ∈ DT and D being the union of all concrete domains. The set of
all states for a given program p is denoted as Statesp.

Exploit Generation for IF Leaks 403

We define coincidence of program states w.r.t. a set of program variables:

Definition 2 (State Coincidence). Given a set of program variables V and
two states σ1, σ2 ∈ Statesp. We write σ1 �V σ2 iff. σ1 and σ2 coincide on V ,
i.e., σ1(v) = σ2(v) for all v ∈ V .

A concrete execution trace τ of a program p is a possibly infinite sequence of
program states τ = σ0σ1 . . . produced by starting p in state σ0. In this paper,
we are only concerned with terminating programs, and consequently, all of our
execution traces are finite. Thus, we represent a concrete execution X of a pro-
gram p as tuple 〈σX , σX

out〉, where σX ∈ Statesp is the initial program state
and σX

out ∈ Statesp is the final program state. The set of all possible concrete
executions of p is denoted as Excp.

We can now define the noninterference property as follows:

Definition 3 (Noninterference). Given a noninterference policy NI =(L,H)
where L ∪̇ H = Var s.t. L contains the low variables and H the high variables.

A program p has secure information flow with respect to NI iff. for all con-
crete executions X,Y ∈ Excp it holds that if σX �L σY then σX

out �L σY
out.

Declassification. For many practical cases noninterference is too strict. E.g.,
a login program leaks usually the information whether an entered password is
correct; or a database may be queried for aggregated information like the average
salary of the employees, but not for the income of an individual employee.

Declassification is a class of information flow policies which allows to express
that some confidential information may be leaked under specific conditions. The
paper [22] provides an extensive survey of declassification approaches.

In this paper we focus on delimited information release as introduced in [21].
Delimited information release is a declassification policy which allows to specify
what kind of information may be released. To this end so called escape hatch
expressions are specified in addition to the security level of the program loca-
tions. For instance, the escape hatch

∑
e∈Employees salary(e)

|Employees| can be used to declassify
the average of the income of all employees. The formal definition of delimited
information release is similar to Def. 3:

Definition 4 (Delimited Information Release). Given a delimited infor-
mation release policy Decl = (L,H,E) with L,H as before and E denoting a set
of escape hatch expressions.

A program p has secure information flow with respect to Decl iff. for all
concrete executions X,Y ∈ Excp it holds that if σX �L σY and for all e ∈
E : [[e]]σX = [[e]]σY then σX

out �L σY
out. The expression [[e]]σ denotes the semantic

evaluation of e in state σ.

2.2 Logic-Based Information Flow Analysis

Symbolic Execution. Symbolic Execution [16] is a versatile technique used for
various static program analyses. Symbolic execution of a program means to run

404 Q.H. Do et al.

if (x >=
0)

{
y=y-1;

}
else {

y=y+1;
}
y=2*y;

(a) Program source code

(x0, y0)

(x0, y0) (x0, y0)

(x0, y0 − 1) (x0, y0 + 1)

(x0, 2 ∗ (y0 − 1)) (x0, 2 ∗ (y0 + 1))

x0 ≥ 0 x0 < 0

(b) Symbolic execution tree for symbolic
input values (x : x0,y : y0)

Fig. 1. Program and its symbolic execution tree

it with symbolic input values instead of concrete ones. Such a run results in a
tree of symbolic execution traces, which covers all possible concrete executions.

Each node in a symbolic execution tree is annotated by its symbolic state. In
the example shown in Fig. 1b, the root node is a branching node whose outgoing
edges are annotated by their branch conditions. Here the symbolic execution
splits into two branches: the left one for the case where the symbolic value x0

is non-negative and the right one for a negative x0. Both branches might be
possible as we do not have any further information about the value of x0. The
path condition pci of a path spi is the conjunction of all its branch conditions
and characterizes the symbolic execution path uniquely. As long as the program
does not contain loops or method invocations, a path condition is a quantifier-
free formula in first order logic.

From the above tree we can extract that in case of a non-negative input
value for x, the program terminates in a final state in which the final value of x
remains unchanged (i.e., x0) while the final value of y is 2(y0 − 1).

We fix the following notations as convention: Given a path i we refer to its
path condition by pci and to the final value of a program variable v ∈ Var by fv

i .
If we want to make explicit that the final value of a program variable v depends
on the symbolic input value of a program variable u we pass it as an argument
to fv

i . For instance, fy
0 (x0, y0) := 2(y0 − 1) in case of the final value of y on the

left branch.
In case of unbounded loops or unbounded recursive method calls a symbolic

execution tree is no longer finite. We overcome this obstacle and achieve a finite
representation by making use of specifications as proposed in [14]. This app-
roach uses loop invariants and method contracts to describe the effect of loops
and method calls. The basic idea is that loop invariants and method contracts
contribute to path conditions and to the representation of the symbolic state.
The approach has been implemented as a symbolic execution engine based on the
verification system KeY [8], which we use as backend for the exploit generation
presented in this paper.

Exploit Generation for IF Leaks 405

Self-composition. Our exploit generation approach is derived from a logic-based
formalization of noninterference using self-composition as introduced in [10,11],
based on a direct semantic encoding of noninterference in a program logic. The
Hoare triple {Pre} p {Post} is valid iff. the program p started in any initial state
that satisfies formula Pre terminates, then formula Post must hold in the reached
final state. The semantic definition of noninterference as given in Definition 3
requires the comparison of two program runs. The authors of [11] achieve this by
copying the analyzed program and replacing all variables with fresh ones, such
that the original and the copied program version do not share any memory. In
more detail, let p(l,h) be the original program with l ∈ L, h ∈ H being the
only program variables occurring in program p. Further, let p(l’,h’) represent
the copied program constructed from p by renaming variable l to l′ and h to h′.
Then

{l .= l’}p(l,h); p(l’,h’){l .= l’}
is a direct formalization of noninterference. A major drawback of the formal-
ization is that it requires program p to be analyzed twice. Several refinements
have been presented since then to avoid the repeated program execution [5,24].
We make use of an approach based on symbolic execution. The fundamental
idea is to execute the program symbolically only once and then to use the path
conditions and symbolic states to construct a single first-order formula with the
same meaning as the Hoare Triple. To express the noninterference property, we
simply copy path conditions and symbolic values, replacing the symbolic input
values with fresh copies.

3 Exploit Generation for Insecure Programs

3.1 Logic Characterization of Insecurity

Our objective is to generate an exploit for a given program p which demonstrates
that p is insecure with respect to a specified information flow policy. The basic
idea is that the exploit runs p twice and throws an exception if an unintended
information flow is detected. The problem that needs to be solved is how to find
the initial states for both runs such that an information leak can be observed.

To this end we construct a first-order formula which is satisfiable, if the
program is insecure. The formula is constructed in such a way that any satisfying
model can be directly used to construct the required initial states.

For noninterference, as defined in Def. 3, that formula is constructed as fol-
lows: Let NI = (L,H) denote the noninterference policy with low variables L and
high variables H. Each path spi (i ∈ {0, . . . , n − 1}) in the symbolic execution
tree of p is uniquely characterized by its path condition pci(L,H).

To represent two independent program runs, we create a copy of all program
variables Var ′ = {v′ | v ∈ Var} and obtain the sets L′ and H ′ as copies of L and
H, i.e., L′ = {l′ | l ∈ L} (analogously H ′). Intuitively, the first run is performed
using Var , while the second one uses the copy Var ′. Both runs are independent

406 Q.H. Do et al.

as they do not share any common memory. Then the NI-insecurity formula
∨

0≤i≤j<n

((∧

l∈L,l′∈L′
l

.= l′
) ∧ pci(L,H) ∧ pcj(L′,H ′) ∧

∨

l∈L

f l
i (L,H) 	 .= f l

j(L
′,H ′)

)
(1)

is satisfied iff. there is a model (i.e., state) σ assigning values to the program
variables L,L′,H,H ′ such that there exist two paths i, j (i = j possible) with
identical low level input, consistent path conditions (i.e., both paths can actually
be taken), but for which the final value of at least one low level variable differs.
In other words, the model σ assigns concrete values to L,L′,H and H ′ such
that p produces different low level output for two runs from initial states with
identical low level input. (Formula (1) can be made more succinct by replacing
L′ with L and omitting the first conjunct, which states L

.= L′.)

Example 1. The insecurity formula (1) for the example program from Fig. 1 and
the NI policy L = {y},H = {x} becomes

x0 ≥ 0 ∧ x′
0 ≥ 0 ∧ 2(y0 − 1) 	 .= 2(y0 − 1)

∨ x0 ≥ 0 ∧ x′
0 < 0 ∧ 2(y0 − 1) 	 .= 2(y0 + 1)

∨ x0 < 0 ∧ x′
0 < 0 ∧ 2(y0 + 1) 	 .= 2(y0 + 1)

It is easy to see that the first and third disjunct are unsatisfiable, but the second
disjunct is satisfiable, e.g., for the model x0 �→ 0, x′

0 �→ −1, y0 �→ 1.

The NI-insecurity formula (1) can be rewritten into the equivalent formula

∨

l∈L

∨

0≤i≤j<n

Leak(H,L,l,i,j)
︷ ︸︸ ︷
((∧

v∈L,v′∈L′
v

.= v′) ∧ pci(L,H) ∧ pcj(L′,H ′) ∧

f l
i (L,H) 	 .= f l

j(L
′,H ′)

)
(2)

which helps us later to incorporate declassification. The formula Leak(H,L, l, i, j)
allows to ascribe leaks to a specific target, i.e., it is satisfiable, if some information
is leaked from the program variables in H to variable l.

3.2 Target Conditional Delimited Release

We extend the insecurity formula for noninterference (2) to delimited informa-
tion release (DIR) [21]. In addition to the standard version of DIR, our policy
describes not only what information might be released by using escape hatches,
but it also allows to express under which condition and to whom (target) the
information might be leaked.

Definition 5 (Target Conditional Delimited Release). Given a program p
with Var being the set of all variables occurring in p and a noninterference policy
NI = (L,H). A Target Conditional Delimited Release (TCD) policy (D,NI) is
a set of TCD specification triples where each triple (e, C, T) ∈ D consists of

Exploit Generation for IF Leaks 407

– an escape hatch expression (i.e., first order term) e over Var,
– a declassification condition formula C over Var and
– T ⊆ L, a set of program variables to which the specified escape hatch is

allowed to be leaked.

A program satisfies a given TCD policy (D,NI) if there is no information flow
from H to L, except for the cases covered by a triple (e, C, T) ∈ D which allows
the program to release the information captured by the escape hatch expression e
to a location in T , if condition C is satisfied in the initial state of a program run.

Given a TCD policy (D,NI) and a program p. We give the insecurity formula
for the case that D = {(e, C, T)} consists of a single TCD specification triple:

∨

l∈L

(
Leak(H,L, l, i, j)∧((l ∈ T ∧C(Var)∧C(Var ′)) → e(Var) = e(Var ′))

)
(3)

The formula coincides for locations l ∈ L that are not allowed release targets
(i.e., l 	∈ T) with the noninterference insecurity formula. Otherwise, the new
second conjunct adds

C(Var) ∧ C(Var ′) → e(Var) = e(Var ′)

as an additional restriction to the initial states for both runs, namely, that if
both initial states satisfy the declassification condition C then they must also
coincide on the value of the escape hatch expression. The rationale is that if there
are two runs s.t. their respective initial state coincides on the low level input and
on the escape hatches and if the final value for an allowed target differs, then
more information than just the escape hatch must have been released.

The generalization of the above formula to more than one triple is straight-
forward and omitted for space reasons.

4 Exploit Generation Using Program Specifications

In this section we discuss how to use program specifications like loop invariants
and method contracts to analyze and generate exploits for programs involving
unbounded loops or recursive method calls. These specifications need to be user-
provided at the moment, but work on automatic generation of specifications is
ongoing. We focus on the noninterference analysis case, the extension to declas-
sification is straightforward.

4.1 Loop Specification

The path conditions pc for a program p are computed by symbolic execution
of p. The problem to solve is how to symbolically execute a loop. In case a fixed
bound is known a priori the loop can simply be unwound, but this is impractical
if the bound is large and not possible at all for unbounded loops.

408 Q.H. Do et al.

In program verification, loops are handled by providing a loop specification.
A loop specification LS = (I,mod) consists of a loop invariant formula I and a
set of program variables mod which contains all program variables the loop is
allowed to modify. In [14] it is shown how to use such a specification for symbolic
execution and we can simply reuse that option in our setting.

In the following we describe briefly how a loop specification is reflected in
the NI- insecurity formula. Let b be the loop guard and LS = (I,mod) the loop
specification. The basic idea in [14] is that the loop specification describes the
state after exiting the loop. This means, we can treat the loop as a black-box
and continue execution after the loop in a state for which the variables mod that
might have been modified by the loop are set to an unknown value. Unknown
values are represented by the set of fresh symbolic variables Vmod . The only
knowledge about the values of these variables is provided by the loop invariant
and by the fact the loop guard b must be false (as we exited the loop).

Our insecurity formulas are always expressed as a constraint over the initial
state. For instance, the final value f l

i of variable l is given in terms of the initial
symbolic values of the program variables. The same holds for the path conditions.
We make this implicit weakest precondition computation here explicit for the
loop guard and the invariant, i.e., Iwp is the weakest precondition of I computed
in the state directly after the loop (similar for the loop guard).

For the sake of simplicity, we only show how to adapt Leak(H,L, l, i, j) for
the case that both paths i, j contain the same loop:

Leak(H,L, l, i, j) ≡ (
∧

v∈L

v = v′) ∧ pci(VS) ∧ pcj(V ′
S)

∧ (Iwp(VS) ∧ ¬bwp(VS)) ∧ (Iwp(V ′
S) ∧ ¬bwp(V ′

S)) ∧ f l
i (VS) 	= f l

j(V
′
S) (4)

where bwp(VS) is the symbolic value of the guard after the loop, VS = Var ∪
Vmod . If one or both of paths i, j do not contain this loop, or have other loops,
corresponding conjuncts are omitted or added accordingly.

Example 2. We illustrate formula (4). Consider the loop below with low variable
l and high variable h. The loop specification is given as (I : l ≥ 0,mod : {l})

1 l = h * h;
2 while (l > 0) { l = l - 1; }
3 l = l + h;

Let lmod , l′
mod be the fresh values representing the value of l directly after the

loop. Computing the weakest precondition of the invariant gives us lmod ≥ 0
and for the guard lmod > 0 for the first run (analog for the second run). The
resulting formula is:

l = l′ ∧ (lmod ≥ 0∧¬(lmod > 0))∧ (l′mod ≥ 0∧¬(l′mod > 0))∧ lmod +h 	= l′mod +h′

The formula is satisfiable for l = l′ = 10, lmod = l′
mod = 0, h = 1 and h′ = 2.

And actually the program is insecure. Removing the last statement would make

Exploit Generation for IF Leaks 409

it secure and the formula unsatisfiable as the comparison of the final values
would change to lmod 	= l′

mod which would be unsatisfiable.

4.2 Method Contracts

Let m denote a method. A contract Cm for m is a triple (Prem,Postm,Modm) with
precondition Prem, postcondition Postm and modifies (or assignable) clause Modm,
which enumerates all program variables that m is allowed to change.

A method satisfies its contract, if it ensures that when invoked in a state for
which the precondition is satisfied, then in the reached final state the postcondi-
tion holds and at most the program variables (locations) listed in the assignable
clause have been modified.

Analysing Noninterference w.r.t. to a Precondition. Given a method m with
contract Cm. We want to analyze whether m respects its noninterference policy
NI = (L,H) under the condition that m is only invoked in states satisfying its
precondition Prem. Changing the noninterference formula (2) is easy and only
requires adding a restriction to the initial states requiring them to satisfy the
method’s precondition:

Leak(H,L, l, i, j) ∧ Prem(L,H) ∧ Prem(L′,H ′) (5)

Analyzing Programs for Noninterference using Method Contracts. A similar
problem as for loops manifests itself when symbolically executing a program
which invokes one or more methods. One solution is to replace the method invo-
cation by the body of the invoked method. If the methods are small this is a
viable solution, but it is impractical if the invoked method is complex and is
even impossible for recursive methods without a fixed maximal recursion depth.

This problem is solved in [14] by using method contracts in a similar way
loop specifications have been used. Instead of a loop invariant, the pre- and
postconditions become parts of the path conditions. The modifies clause gives
again rise to fresh variables used to represent the symbolic value of the program
variables that might have been changed as side-effect of the method invocation.

Let m be the method that is analyzed for secure information flow and which
invokes a method n. The method contract of n is given as (Pren,Postn,Modn).
For the case that both two paths i, j contain one method call for n we get:

Leak(H,L, l, i, j) ≡ (
∧

v∈L

v = v′)∧pci(VS)∧pcj(V ′
S)∧(Prewp

n (VS)∧Postwp
n (VS))

∧ (Prewp
n (V ′

S) ∧ Postwp
n (V ′

S)) ∧ f l
i (VS) 	= f l

j(V
′
S) (6)

where VS is the set of program variables extended by the newly introduced
variables resulting from the modifies clause of method n and Prewp

n ,Postwp
n are

the weakest preconditions of Pren,Postn computed directly before (resp. after)
the method invocation. The general case is similar to loops.

410 Q.H. Do et al.

Symbolically
execute
method

Compose all
insecurity
formulas

Find models
satisfying
formulas

Generate JUnit
tests from

found models

Fig. 2. Exploit Generation by KEG

4.3 General Observations and Remarks

Using loop specifications or method contracts has one major drawback, namely,
that not all models of a formula give rise to an actual information leak, or even
worse, the insecurity formula of a secure program might become satisfiable. This
case does not effect the soundness, but triggers false warnings. The reason is that
the specifications might be too weak and allow behaviours that are not possible
in the actual program. These false warnings can be filtered out by actually
running the generated exploit. If the exploit fails to demonstrate the information
leak, we know that our model was a spurious one. We can even start a feedback
loop with a conflict clause which rules out the previously found model.

On the other side if loop or method specifications are not just too weak,
but wrong in the sense that they exclude existing behaviour, leaks might not be
detected. This can be avoided by verifying the specifications using a program
verification tool. As we are concerned with bug detection and not verification,
this case is not too bad as we do not claim to find all bugs.

5 Implementation and Experiments

5.1 The KeY Exploit Generation Tool

We implemented our approach as a tool called KeY Exploit Generation (KEG)1

based on the verification system KeY for Java [8]. KEG uses KeY as symbolic
execution (SE) engine, which supports method and loop specifications to achieve
a finite SE tree. The SMT solver Z3 is used to find models for the insecurity
formulas. KEG is able to deal with object types and arrays (to some extent).

Fig. 2 outlines KEG’s work-flow. As starting point it serves a Java method
m which is analysed for secure information flow w.r.t. a given information flow
specification. First, method m is symbolically executed (using KeY) to obtain the
SE tree with the method’s path conditions and the final symbolic values of the
program locations modified by m. Using this information the insecurity formulas
are generated and given to a model finder (in our case the SMT solver Z3). If a
model for the insecurity formula has been found, the model is used to determine
the initial states of two runs which exhibit a forbidden information flow. The
generated exploit sets then up two runs (one for each initial state) and inspects
the reached final states to detect a leak. KEG outputs the exploited program as
a JUnit test to be included into a regression test suite.

1 www.se.tu-darmstadt.de/research/projects/albia/download/
exploit-generation-tool

www.se.tu-darmstadt.de/research/projects/albia/download/exploit-generation-tool
www.se.tu-darmstadt.de/research/projects/albia/download/exploit-generation-tool

Exploit Generation for IF Leaks 411

5.2 Exploit Generation Using a Simple Example

We explain KEG using the simple example shown below:
1 public class Simple {
2 public int l; private int x, y;
3 /*! l | x y ; !*/
4

5 /*@ escapes (x*y) \to l \if x>-1; @*/
6 public void magic() { if(x>0) { l=x*y; } else { l=0; } }
7 }

Class Simple contains three integer typed fields l, x and y as well as a
method called magic() which assigns a value to l depending on the sign of field
x. The information flow policy is annotated as special comment types. Line 3 is
a class level specification and forbids any information flow from x and y to l.
Hence, here x and y are high variables and l is a low variable. However, this
strict noninterference policy is relaxed in line 5 for method magic() by providing
a target conditional release specification consisting of an escape hatch (x*y), the
target l and the condition x>-1.

Running KEG on the above example produces a symbolic execution tree
consisting of two paths; one for each branch of the conditional statement. KEG
generates for each pair of these paths the corresponding insecurity formulas and
passes them on to an SMT solver. Of the three generated insecurity formulas
only one is satisfiable and Z3 provides a model:

Insecurity Formula Model

(let ((a!1 (not (and (> self_x_1 (- 1)) (> self_x_2 (- 1))))))

(and (>= self_x_1 1) (<= self_x_2 0)

(or (not (= self_x_1 self_x_2)) (not (= self_y_1 self_y_2)))

(= self_l_1 self_l_2) (not (= (* self_y_1 self_x_1) 0))

(or a!1 (= (* self_x_1 self_y_1) (* self_x_2 self_y_2)))))

self_x_1 : 1

self_x_2 : -1

self_y_1 : -1

self_y_2 : 1

self_l_1 : 0

self_l_2 : 0

The formula comparing two runs which take different branches of the con-
ditional statement and thus leak the sign of field x. KEG generates exactly one
exploit, which is output as a well-structured and human readable JUnit test.

5.3 Experiments

We performed a number of small experiments2 for a first evaluation of our app-
roach. Table 1 shows the aggregated results. All experiments were done on an
Intel Core i7-4702HQ processor with JVM setting -Xmx4096m.

Concerning the runtime performance: A significant amount is spent for pars-
ing the program, this can be reduced by parser optimizations, e.g., by using a
hand-coded version instead of a generated parser. Model finding time can be
optimized by performing simple techniques like symmetry reduction, learning
and caching, all of which have not yet been implemented. Another factor is the
programming language Java whose optimizations are performed at runtime and,
hence, code run only a few times will not be optimized at all.
2 www.se.tu-darmstadt.de/fileadmin/user upload/Group SE/Tools/KEG/
experiments.zip

www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Tools/KEG/experiments.zip
www.se.tu-darmstadt.de/fileadmin/user_upload/Group_SE/Tools/KEG/experiments.zip

412 Q.H. Do et al.

Table 1. Case studies statistics

File Analyzed #L/MI Policy S/I TL TSE TMF TTot #GE/FW
name Method (NI/D) (ms) (ms) (ms) (ms)

Mul product 0 / 0 D I 4187 847 1188 6266 1 / 0
Mul StrongLI product 1 / 0 D I 4275 1746 1211 7274 1 / 0
Mul WeakLI product 1 / 0 D I 4214 1909 1293 7463 2 / 1
Mul WrongLI product 1 / 0 D I 4397 1678 1169 7285 0 / 0
Comp StrongMC doWork 0 / 1 NI I 4181 1491 2278 7995 3 / 0
Comp WeakMC doWork 0 / 1 NI I 4217 1383 2417 8065 3 / 3
Comp WrongMC doWork 0 / 1 NI I 4182 1395 2275 7887 0 / 0
Company calculate 1 / 1 NI I 4283 2496 1990 8816 3 / 0
ExpList magic 0 / 0 NI I 4178 1911 2535 8668 1 / 0
ExpLinkedList magic 0 / 4 NI I 4229 4690 6564 15526 2 / 0
ExpArrayList magic 0 / 5 NI I 4230 8975 11505 24752 3 / 0
ArrMax findMax 1 / 0 NI I 4215 3584 963 8804 1 / 0
ArrSearch search 1 / 0 D S 4199 2934 2400 9568 0 / 0

#(L/MI/GE/FW): nr of Loops/Method Invocations/Generated Exploits/False Warnings
NI/D: Non-Interference/Declassification, S/I: Secure/Insecure
TX : Time for Loading/Symbolic Execution/Model Finding/Total

A few observations concerning some of the concrete case studies: For the
examples Mul and Comp, we analyzed also the effect of loop specifications resp.
method specifications in case of strong, weak and wrong specifications (file-
name Strong/Weak/Wrong LI/MC). As expected in case of sufficiently strong
specifications, all insecure paths could be identified and corresponding exploits
have been generated. Weak specifications over-approximated possible behaviour
leading to false warnings, while wrong specifications excluded actual behaviours
and missed existings leaks. The analysis of method search in class ArrSearch
identified the method correctly as secure with respect to the specified declassi-
fication policy and generated no exploits.

6 Related Work

Our approach to exploit generation is based on self-composition [6,10,11]. The
paper [11] addresses also declassification. Its authors observe that in their for-
malization it is possible to express and verify that a program is insecure. Our
formalization of insecurity uses this observation. Exploit generation (extraction
of models) in our paper owes to techniques developed for automatic test gener-
ation. In particular, we build upon work presented in [12,16], where symbolic
execution is used as a means to generate test cases for functional properties.

Logic-based approaches such as [7,23] are fully precise and at the same time
can flexibly express various information flow properties beyond the policies pre-
sented in this paper. The verification process is not fully automatic, however, and
non-trivial interactions with the theorem prover are required. In [19] higher order
logic is used to express information flow properties for object-oriented programs,
which is highly expressive, but poses also a high demand on user interaction.

Exploit Generation for IF Leaks 413

Pairs of symbolic execution paths instead of standard self-composition have
been independently used in [20] to check programs for noninterference. However,
the author is only concerned with checking noninterference, but does not support
declassification. Unbounded loops and recursive methods are not addressed.

In [25], leaks are inferred automatically and expressed in a human-readable
security policy language helping programmers to decide whether the program
is secure or not, however it can not give concrete counterexamples that could
suggest further corrections. Counterexamples can be used not only to generate
executable exploits as in our approach, but also to refine declassification policies
quantifying the leakage [1,3]. However, both above approaches do not provide a
solution for unbounded loops and recursions.

ENCoVer [2] uses epistemic logic and makes use of symbolic execution (con-
colic testing) to check noninterference for Java programs. In [17], the authors
proposed a tool which checks that a C program is secure w.r.t. noninterference.
It transforms the original program and makes use of dynamic symbolic execution
to analyze the program’s information flow. Both tools check loops and recursive
method invocations only up to a fixed depth.

Type-based approaches to information flow like [15,18,21,26] or those based
on dependency graphs [13] distinguish themselves by their high performance
and ability to check large systems. Common drawbacks are lack of precision and
resulting false warnings and/or restrictions on the syntactic form of a program.

None of the logic-based and type-based approaches to noninterference anal-
ysis mentioned above does generate exploits from a failed proof or analysis. Our
work does not intend to replace their approaches, but to be used complementary.

7 Conclusion

We presented a novel approach for automatically detecting information flow
leaks in object-oriented imperative programs. Exploits are generated based on
satisfying models of insecurity formulas and output as tests so that they can
easily be integrated into regression test collections. We also showed how pro-
gram specifications such as loop invariants and method contracts can be used to
overcome the obstacle of an infinite symbolic execution tree in case of unbounded
program structures. We have built a prototypical tool (KEG) based on our app-
roach that handles sequential Java programs and we applied it to a number of
case studies.

We plan to integrate KEG with the abstraction framework presented in [27]
which allows us to automatically generate loop invariant and method contracts
to avoid the need for user-provided specifications.

414 Q.H. Do et al.

References

1. Backes, M., Kopf, B., Rybalchenko, A.: Automatic discovery and quantification
of information leaks. In: Proc. of the 30th IEEE Symp. on Security and Privacy,
pp. 141–153. SP 2009, IEEE CS (2009)

2. Balliu, M., Dam, M., Le Guernic, G.: ENCoVer: symbolic exploration for infor-
mation flow security. In: 25th IEEE Computer Security Foundations Symposium,
pp. 30–44. IEEE CS (2012)

3. Banerjee, A., Giacobazzi, R., Mastroeni, I.: What you lose is what you leak: Infor-
mation leakage in declassification policies. ENTCS 173, 47–66 (2007)

4. Banerjee, A., Naumann, D.A.: Stack-based Access Control and Secure Information
Flow. J. Funct. Program. 15(2), 131–177 (2005)

5. Barthe, G., Crespo, J.M., Kunz, C.: Relational verification using product programs.
In: Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 200–214. Springer,
Heidelberg (2011)

6. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proc. of the 17th IEEE Workshop on Computer Security Foundations,
pp. 100–114. CSFW 2004, IEEE CS (2004)

7. Beckert, B., Bruns, D., Klebanov, V., Scheben, C., Schmitt, P.H., Ulbrich, M.:
Information flow in object-oriented software. In: Gupta, G., Peña, R. (eds.) LOP-
STR 2013, LNCS 8901. LNCS, vol. 8901, pp. 19–37. Springer, Heidelberg (2014)

8. Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Soft-
ware: The KeY Approach. LNCS (LNAI), vol. 4334. Springer, Heidelberg (2007)

9. Cohen, E.S.: Information Transmission in Sequential Programs. Foundations of
Secure Computation, pp. 297–335 (1978)

10. Darvas, A., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Gorrieri, R. (ed.) Workshop on Issues in the Theory
of Security. IFIP WG 1.7, ACM SIGPLAN and GI FoMSESS (2003)

11. Darvas, A., Hähnle, R., Sands, D.: A theorem proving approach to analysis of
secure information flow. In: Hutter, D., Ullmann, M. (eds.) SPC 2005. LNCS, vol.
3450, pp. 193–209. Springer, Heidelberg (2005)

12. Engel, C., Hähnle, R.: Generating unit tests from formal proofs. In: Gurevich, Y.,
Meyer, B. (eds.) TAP 2007. LNCS, vol. 4454, pp. 169–188. Springer, Heidelberg
(2007)

13. Graf, J., Hecker, M., Mohr, M.: Using JOANA for information flow control in java
programs - a practical guide. In: Proc. of the 6th Working Conf. on Programming
Languages, pp. 123–138. LNI 215, Springer (February 2013)

14. Hentschel, M., Hähnle, R., Bubel, R.: Visualizing unbounded symbolic execution.
In: Seidl, M., Tillmann, N. (eds.) TAP 2014. LNCS, vol. 8570, pp. 82–98. Springer,
Heidelberg (2014)

15. Hunt, S., Sands, D.: On flow-sensitive security types. In: ACM SIGPLAN Notices,
vol. 41, pp. 79–90. ACM (2006)

16. King, J.C.: Symbolic Execution and Program Testing. Commun. ACM 19(7),
385–394 (1976)

17. Milushev, D., Beck, W., Clarke, D.: Noninterference via symbolic execution. In:
Giese, H., Rosu, G. (eds.) FORTE 2012 and FMOODS 2012. LNCS, vol. 7273,
pp. 152–168. Springer, Heidelberg (2012)

18. Myers, A.C.: JFlow: practical mostly-static information flow control. In: Proc. of
26th ACM Symp. on Principles of Programming Languages, pp. 228–241 (1999)

Exploit Generation for IF Leaks 415

19. Nanevski, A., Banerjee, A., Garg, D.: Verification of information flow and access
control policies with dependent types. In: Proc. of the 2011 IEEE Symp. on Security
and Privacy, pp. 165–179. SP 2011, IEEE CS (2011)

20. Phan, Q.S.: Self-composition by symbolic execution. In: Jones, A.V., Ng, N. (eds.)
Imperial College Computing Student Workshop. OASIcs, vol. 35, pp. 95–102.
Schloss Dagstuhl (2013)

21. Sabelfeld, A., Myers, A.C.: A model for delimited information release. In: Futatsugi,
K., Mizoguchi, F., Yonezaki, N. (eds.) ISSS 2003. LNCS, vol. 3233, pp. 174–191.
Springer, Heidelberg (2004)

22. Sabelfeld, A., Sands, D.: Declassification: Dimensions and Principles. Journal of
Computer Security 17(5), 517–548 (2009)

23. Scheben, C., Schmitt, P.H.: Verification of information flow properties of Java
programs without approximations. In: Beckert, B., Damiani, F., Gurov, D. (eds.)
FoVeOOS 2011. LNCS, vol. 7421, pp. 232–249. Springer, Heidelberg (2012)

24. Terauchi, T., Aiken, A.: Secure information flow as a safety problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005)

25. Vaughan, J.A., Chong, S.: Inference of expressive declassification policies. In: Proc.
of the 2011 IEEE Symp. on Security and Privacy, pp. 180–195. IEEE CS (2011)

26. Volpano, D., Irvine, C., Smith, G.: A Sound Type System for Secure Flow Analysis.
Journal of Computer Security 4(2), 167–187 (1996)

27. Wasser, N., Bubel, R.: A theorem prover backed approach to array abstraction. In:
Proc. of VSL 2014 – WING Workshop (2014)

Memoized Semantics-Based Binary Diffing
with Application to Malware Lineage Inference

Jiang Ming(B), Dongpeng Xu, and Dinghao Wu

The Pennsylvania State University, University Park, PA 16802, USA
{jum310,dux103,dwu}@ist.psu.edu

Abstract. Identifying differences between two executable binaries
(binary diffing) has compelling security applications, such as software
vulnerability exploration, “1-day” exploit generation and software pla-
giarism detection. Recently, binary diffing based on symbolic execution
and constraint solver has been proposed to look for the code pairs with
the same semantics, even though they are ostensibly different in syntac-
tics. Such logical-based method captures intrinsic differences of binary
code, making it a natural choice to analyze highly-obfuscated malicious
program. However, semantics-based binary diffing suffers from signifi-
cant performance slowdown, hindering it from analyzing large-scale mal-
ware samples. In this paper, we attempt to mitigate the high overhead
of semantics-based binary diffing with application to malware lineage
inference. We first study the key obstacles that contribute to the perfor-
mance bottleneck. Then we propose basic blocks fast matching to speed
up semantics-based binary diffing. We introduce an union-find set struc-
ture that records semantically equivalent basic blocks. Managing the
union-find structure during successive comparisons allows direct reuse of
previously computed results. Moreover, we purpose to concretize sym-
bolic formulas and cache equivalence queries to further cut down the
invocation times of constraint solver. We have implemented our tech-
nique on top of iBinHunt and evaluated it on 12 malware families with
respect to the performance improvement when performing intra-family
comparisons. Our experimental results show that our methods can accel-
erate symbolic execution from 2.8x to 5.3x (with an average 4.0x), and
reduce constraint solver invocation by a factor of 3.0x to 6.0x (with an
average 4.3x).

1 Introduction

In many tasks of software security, the source code of the program under exami-
nation is typically absent. Instead, the executable binary itself is the only avail-
able resource to analyze. Therefore, determining the real differences between two
executable binaries has a wide variety of applications, such as latent vulnera-
bilities exploration [16], automatic “1-day” exploit generation [1] and software
plagiarism detection [14]. Conventional approaches can quickly locate syntactical
differences by measuring instruction sequences [20] or byte N-grams [11]. How-
ever, such syntax-based comparison can be easily defeated by various obfuscation
techniques, such as instruction substitution [9], binary packing [19] and self-
modifying code [2]. The latest binary diffing approaches [8,15] simulate seman-
tics of a snippet of binary code (e.g., basic block) by symbolic execution and
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 416–430, 2015.
DOI: 10.1007/978-3-319-18467-8 28

Memoized Semantics-Based Binary Diffing 417

represent the input-output relations as a set of symbolic formulas. Then the
equivalence of formulas are verified by a constraint solver. Such logic-based com-
parison, capturing the intrinsic semantic differences, has been applied to finding
differences of program versions [8], comparing inter-procedural control flows [15]
and identifying code reuse [14,17].

On the other hand, malware authors frequently update their malicious code
to circumvent security countermeasures. According to the latest annual report
of Panda Security labs [18], in 2013 alone, there are about 30 million malware
samples in circulation and only 20% of them are newly created. Obviously, most
of such malware samples are simple update (e.g., apply a new packer) to their
previous versions. Therefore, hunting malware similarities is of great necessity.
The nature of being resilient to instruction obfuscation makes semantics-based
binary diffing an appealing choice to analyze highly obfuscated malware as well.
Unfortunately, the significant overhead imposed by the state-of-the-art approach
has severely restricted its application in large scale analysis, such as malware
lineage inference [10], which normally requires pair-wise comparison to identify
relationships among malware variants. In this paper, we first diagnose the two
key obstacles leading to the performance bottleneck, namely high invocations of
constraint solver and slow symbolic execution.

To address both factors, we propose basic blocks fast matching by reusing
previously compared results, which consists of three optimization methods to
accelerate equivalent basic block matching. Our key insight is that malware vari-
ants are likely to share common code [12]; new variant may be just protected
with a different packer or incremental updates. As a result, we exploit code sim-
ilarity by adopting union-find set [6], an efficient tree-based data structure, to
record semantically equivalent basic blocks which have already been identified.
Essentially, the union-find structure stores the md5 value of each matched basic
block after normalization. Maintaining the union-find structure during succes-
sive comparisons allows direct reuse of previous results, without the need for
re-comparing them. Moreover, to further cut down the high invocation times of
constraint solver, we purpose to concretize symbolic formulas and cache equiva-
lence queries. We have implemented these optimizations on top of iBinHunt [15]
and evaluated them when performing malware lineage inference on 12 malware
families. Our experimental results show that our methods can speed up malware
lineage inference, symbolic execution and constraint solver by a factor of 4.4x,
4.0x and 4.3x, respectively. Our proposed solution focuses on accelerating basic
blocks matching and therefore can be seamlessly woven into other binary diffing
approaches based on equivalent basic blocks. In summary, the contributions of
this paper are as follows:

1. We look into the high overhead problem of semantics-based binary diffing
and identify cruxes leading to the performance bottleneck.

2. We propose basic blocks fast matching to enable more efficient binary com-
parison, including maintaining a union-find set structure, concretizing sym-
bolic formulas and caching equivalence queries.

3. We implement our approach on a state-of-the-art binary diffing tool and
demonstrate its efficacy in malware lineage inference.

The rest of the paper is organized as follows. Section 2 provides the back-
ground information. Section 3 studies the performance bottleneck of semantics-
based binary diffing. Section 4 describes our optimization methods in detail.

418 J. Ming et al.

Basic block 1
/*mov edx, ecx*/
edx_0 = ecx_0;

Outputs

Symbolic inputs to basic block 1:
ecx_0 = i1; eax_0 = i2

eax_2 = i1 - i2 - 1;
ebx_1 = i1;
ecx_2 = 0x0;
edx_1 = i1 + 0xA;

/*mov ebx, 0x000A*/
ebx_0 = 0xA;

/*add edx, ebx*/
edx_1 = edx_0 + 0xA;

/*mov ebx, ecx*/
ebx_1 =ecx_0;
/*sub ecx, eax*/

ecx_1 = ecx_0 eax_0;
/*mov eax, ecx*/
eax_1 = ecx_1;
/*dec eax*/

eax_2 = eax_1 - 1;
/*and ecx, 0*/
ecx_2 = 0x0;

/*jmp 0x401922*/

Basic block 2 (obfuscated)
/*lea eax, [ebx]*/
eax_0 = ebx_0;

Outputs

Symbolic inputs to basic block 2:
ebx_0 = j1; ecx_0 = j2

ecx_2 = j1 - j2 - 1;
edx_1 = j1;
ebx_1 = 0x0;
eax_3 = j1 + 0xA;

/*mov edx, 0x000A*/
r_edx_2 = 0xA;

/*add eax, edx*/
eax_1 = eax_0 + 0xA;

/*mov edx, 0x000A*/
edx_0 = 0xA;

/*nop*/
/*nop*/

/*xchg eax, eax*/

/*not ecx*/
ecx_1 = - ecx_0 - 0x1;

/*add ecx, ebx*/
ecx_2 = ecx_1 + ebx_0 ;

/*lea edx, [ebx]*/
edx_1 = ebx_0 ;
/*xor ebx, ebx*/
ebx_1 = 0x0;

/*jmp 0x401A22*/

Semantically
equivalent

Fig. 1. Basic block symbolic execution

We evaluate our approach in Section 5. Related work are introduced in Section 6.
At last, we conclude the paper in Section 7.

2 Background

In this section, we introduce the background information of semantics-based
binary diffing. The core method of current approaches [8,14,15] are matching
semantically equivalent basic blocks. Basic block is a straight line code with
only one entry point and only one exit point, which makes a basic block highly
amenable to symbolic execution (e.g., without conjunction of path conditions).
Fig. 1 presents a motivating example to illustrate how semantics of a basic block
is simulated by symbolic execution. The two basic blocks in Fig. 1 are seman-
tically equivalent, even though they have different x86 instructions (listed in
bold). In practice, symbolic execution is performed on a RISC-like intermediate
language (IL), which represents complicated x86 instructions as simple Single
Static Assignment (SSA) style statements (e.g., ecx 0, edx 1).

Taken the inputs to the basic block as symbols, the output of symbolic execu-
tion is a set of formulas that represent input-output relations of the basic block.
Now determining whether two basic blocks are equivalent in semantics boils
down to find an equivalent mapping between output formulas. Note that due to
obfuscation such as register renaming, basic blocks could use different registers
or variables to provide the same functionality. Hence current approaches exhaus-
tively try all possible pairs to find if there exists a bijective mapping between

Memoized Semantics-Based Binary Diffing 419

eax_2

ebx_1

ecx_2

edx_1

Query result

false

false

true

eax_3

constant (0)

ebx_1

true
false

false

ecx_2

false

true

false

edx_1

Fig. 2. Output formulas equivalence query results

0

10

20

30

40

50

60

70

80

90

100

PingMimailDelfStartPage

R
a

ti
o

 o
f
p

ro
c
e

s
s
in

g
 t
im

e
 (

%
)

 Others

 SE

 STP

Fig. 3. Ratio of processing time of iBinHunt

output formulas. Fig. 2 shows such formulas mapping attempt for the output
formulas shown in Fig. 1. The “true” or “false” indicates the result of equiva-
lence checking, such as whether edx 1 = eax 3. After 10 times comparisons, we
identify a perfect matched permutation and therefore conclude that these two
basic blocks are truly equivalent.

Based on the matched basic blocks, BinHunt [8] computes the similarity of
control flow graphs of two binaries by graph isomorphism; iBinHunt [15] finds
semantic differences between execution traces and Luo et al. [14] detect software
plagiarism by matching “longest common subsequence of semantically equivalent
basic blocks”.

3 Performance Bottleneck

We look into the overhead imposed by semantics-based binary diffing and find
that there are two factors dominating the cost. The first is the high number of
invocations of constraint solver. Recall that current approaches check all possible
permutations of output formulas mapping. The constraint solver will be invoked
every time when verifying the equivalence of formulas. For example, two basic
blocks in Fig. 1 have 3 symbolic formulas and 1 constant value respectively. As
shown in Fig. 2, We have to employ constraint solver at most 9 times to find an
equivalent mapping between 3 output formulas. Too frequently calling constraint

420 J. Ming et al.

solver incurs a significant performance penalty. The second is the slow processing
speed of symbolic execution. Typically symbolic execution is much slower than
native execution, because it simulates each x86 instruction by interpreting a
sequence of IL statements.

To quantitatively study such performance bottleneck, we selected 4 malware
families from our evaluation dataset (see Section 5.1): 3 families have large num-
ber of samples (StartPage, Delf and Mimail) and one family (Ping) has the
maximal code size. We applied iBinHunt [15] to compare execution traces of
pair-wise samples within each family. The constraint solver we used is STP [7].
Fig. 3 shows the ratio of each stage’s processing time on average: constraint
solver solving time (“STP” bar), symbolic execution time (“SE” bar) and other
operations (“Others” bar). Apparently, STP’s processing time accounts for most
of running time of iBinHunt (more than 50%). Experiments on EXE [4] and
KLEE [3] report similar results, in which running time is dominated by the
constraint solving. Besides, the symbolic execution also takes up to about 23%
running time. Thus, an immediate optimization goal is to mitigate too frequent
invocations of constraint solver and slow symbolic execution.

4 Optimization

4.1 Union-Find Set of Equivalent Basic Blocks

When we compare malware variants to identify their relationships (a.k.a, lineage
inference [10]), our key observation is that similar malware variants are likely
to share common code [12]. For example, all of the Email-Worm.Win32.NetSky
samples in our dataset search for email addresses on the infected computer and
use SMTP to send themselves as attachments to these addresses. The net result
is we have to re-compare large number of basic blocks that have been previ-
ously analyzed. Therefore our first optimization is to utilize union-find set [6],
an efficient tree-based data structure, to reuse previous matched equivalent basic
blocks. More specifically, we first normalize basic blocks to ignore offsets that
may change due to code relocation and some nop instructions. MD5 value of
the byte sequence of each basic block is then calculated. Secondly, we dynami-
cally maintain a set of union-find subsets to record semantically equivalent basic
blocks, which are represented by their MD5 value. The basic blocks within the
same subset are all semantically equivalent to each other. Next we’ll discuss
these two steps in detail.

Normalization. Binary compiled from the same source code often have dif-
ferent address value caused by memory relocation during compilation. What’s
more, malware authors may intentionally insert some instruction idioms like
nop and xchg eax, eax to mislead calculation of hash value. The purpose of
normalization is to ignore such effects and make the hash value more general.
Taken the basic block 2 in Fig. 1 as an example, Fig. 4 presents how to normal-
ize a basic block, in which we replace address values with zeros and remove all
nop statements. After that, the MD5 value of the basic block’s byte sequence is
calculated.

Memoized Semantics-Based Binary Diffing 421

Basic block 2 (obfuscated)

lea eax, [ebx]
mov edx, 0x000A
nop
nop
add eax, edx
xchg eax, eax
not ecx
add ecx, ebx
lea edx, [ebx]
xor ebx, ebx
jmp 0x401A22

lea eax, [ebx]
mov edx, 0x000A
add eax, edx
not ecx
add ecx, ebx
lea edx, [ebx]
xor ebx, ebx
jmp 0x000000

Normalization MD5 value

Fig. 4. Basic block normalization

Maintain Union-Find Set. We define the three major operations of union-
find set as follows:

1. MakeSet: Create an initial subset structure containing one element, which is
represented by a basic block’s MD5 value. Each element’s parent points to
itself and has 0 depth.

2. Find: Determine which subset a basic block belongs to. Find operation can
be used to quickly find two basic blocks are equivalent if both of them are
within the same subset.

3. Union: Unite two subsets into a new single subset. The depth of new set will
be updated accordingly.

The elements within a subset build up a tree structure. Find operation will
always recursively traverse on the tree structure. However the tree structure
might degrade to a long list of nodes, which incurs O(n) time in the worst case
for Find. To avoid highly unbalanced searching tree, an improved path com-
pression and weighted union algorithm are applied to speed up Find operation.
Algorithm 1 shows the pseudo-code of MakeSet, Find and Union. MakeSet cre-
ates an initial set containing only one basic block. Path compression is a way
to flatten the structure of the tree when Find recursively explores on it. As a
result, each node’s parent points to the root Find returns (Line 7). Weighted
Union algorithm attaches the tree with smaller depth to the root of taller tree
(Line 17, Line 20), which only increases depth when depths are equal (Line 24).

Fig. 5 shows an example of maintaining an union-find set. Given previously
matched basic block pairs (as shown in left most block), after initial MakeSet
and Union operations, we get three subsets, that is, {a, b}, {c, d} and {e, f, g}.
Then assuming b and c, two basic blocks coming from different subsets (subset 1
and 2), have the same semantics, that means all of the basic blocks in these two
subsets are in fact equivalent. Therefore we perform weighed union and path
compression to join the two subsets to a new subset (subset 4). The resulting
tree is much flatter with a depth 1. After union, we can immediately determine
that b and d are equivalent, even if these two basic blocks were not compared
before. In addition to union-fine set, we also maintain a DiffMap to record two
subsets that have been verified that they are not equivalent. As shown in the

422 J. Ming et al.

Algorithm 1. MakeSet, Find and Union
1: function MakeSet(a) � a is a basic block
2: a.parent ← a
3: a.depth ← 0
4: end function
5: function Find(a) � path compression
6: if a.parent �= a then
7: a.parent ← Find(a.parent)
8: end if
9: return a.parent

10: end function
11: function Union(a,b) � weighted union
12: aRoot ← Find(a)
13: bRoot ← Find(b)
14: if aRoot = bRoot then
15: return
16: end if
17: if aRoot .depth < bRoot .depth then
18: aRoot .parent ← bRoot
19: else
20: if aRoot .depth > bRoot .depth then
21: bRoot .parent ← aRoot
22: else
23: bRoot .parent ← aRoot
24: aRoot .depth ← aRoot .depth + 1
25: end if
26: end if
27: end function

lower right side of Fig. 5, if we find out a and e are different, we can safely
conclude that basic blocks in subset 4 are not equivalent to the ones in subset 3,
without the need for comparing them anymore.

4.2 Concretizing Symbolic Formulas

Fig. 2 shows a drawback of semantics-based binary diffing: without knowing the
mapping of output formulas for equivalence checking, current approaches have
to exhaustively try all possible permutations. To ameliorate this issue, we intro-
duce a sound heuristic that if two symbolic formulas are equivalent, they should
generate equal values when substituting symbols with the same concrete value.
Therefore we give preference to the symbolic formulas producing the same value
after concretization. Taken the output formulas in Fig. 1 as example, we sub-
stitute all the input symbols with a single concrete value 1. In this way, we can
quickly identify the possible mapping pairs and then we verify them again with
STP. As a result, we only invoke STP 3 times, instead of 9 times as is previously
done. Note that using STP for double-check is indispensable, as two symbolic
formulas may happen to generate the same value. For example, i << 1 is equal
to i ∗ i when i = 2.

Memoized Semantics-Based Binary Diffing 423

Matched
basic block

pairs:
a vs. b
c vs. d
e vs. f
e vs. g

a

b

Subset 1

c

d

Subset 2

e

f

Subset 3

g

MakeSet &
Union if (b=c)

a

b c d

e

f

Subset 3

g

Subset 4

Yes

New query:
b=d?

if (a e)

DiffMap(4, 3) =1

Fig. 5. Example of MakeSet-Union-Find operations

4.3 Caching Equivalence Queries

Besides, in order to further reduce the invocations of STP when possible, we
manage a QueryMap to cache the result of equivalence queries, which is quite
similar to constraints caching adopted by EXE [4] and KLEE [3]. The key of
QueryMap is MD5 value of an equivalence query, such as whether edx 1 = eax 3
in Fig. 1; the value of QueryMap stores STP query result (true or false). Before
calling STP on a query, we first check QueryMap to see whether it gets a hit. If
not, we’ll create a new (key, value) entry into QueryMap after we verify this
query with STP.

4.4 Basic Blocks Fast Matching

We merge all three optimization methods discussed above together to comprise
our basic blocks fast matching algorithm (as listed in Algorithm 2). Our basic
blocks fast matching exploits syntactical information and previous result for
early pruning. When comparing two basic blocks, we first normalize the basic
blocks and compare their hash value (Line 4). This step quickly filters out
basic blocks with quite similar instructions. If two hash values are not equal,
we will identify whether they belong to the same union-find subset (Line 7).
Basic blocks within the same subset are semantically equivalent to each other.
If they are in the two different subsets, we continue to check DiffMap to find out
whether these two subsets have been ensured not equivalent (Line 10). At last,
we have to resort to comparing them with symbolic execution and STP, which
is accurate but computationally more expensive. At the same time, we leverage
heuristic of concretizing symbolic formulas and QueryMap cache to reduce the
invocations of STP. After that we update union-find set and DiffMap accordingly
(Line 15∼22).

424 J. Ming et al.

Algorithm 2. Basic Block Fast Matching
1: function FastMatching(a, b) � a, b are two basic blocks to be compared
2: a′ ← Normalize(a)
3: b′ ← Normalize(b)
4: if Hash(a′) = Hash(b′) then � a and b have the same instructions
5: return True
6: end if
7: if Find(a′) = Find(b′) then � within the same subset
8: return True
9: end if

10: if DiffMap(Find(a′), Find(b′))=1 then � semantically different subsets
11: return False
12: else
13: Perform symbolic execution on a′ and b′

14: Check semantical equivalence of a′ and b′

15: if a′ ∼ b′ then � a′, b′ are semantically equivalent
16: Union(a′, b′)
17: Update DiffMap
18: return True
19: else � a′, b′ are not semantically equivalent
20: Set DiffMap(Find(a′), Find(b′))
21: return False
22: end if
23: end if
24: end function

5 Experimental Evaluation

5.1 Implementation and Experiment Setup

We have implemented our basic blocks fast matching algorithm on top of iBin-
Hunt [15], a binary diffing tool to find semantic differences between execution
traces, with about 1, 800 Ocaml lines of code. The saving and loading of union-
find set, DiffMap and QueryMap are implemented using the Ocaml Marshal API,
which encodes arbitrary data structures as sequences of bytes and then stores
them in a disk file.

We collected malware samples from VX Heavens1 and leveraged an online
malware scan service, VirusTotal2, to classify the samples into an initial 12 fami-
lies. These malware samples range from simple virus to considerably large Trojan
horse. The dataset statistics is shown in Table 1. The experimental data are col-
lected during malware lineage inference within each family, that is, we perform
pair-wise comparison to determine relationships among malware variants. The
forth column of Table 1 lists the number of pair-wise comparison of each family
and the total number is 1, 008. Our testbed consists of Intel Core i7-3770 proces-
sor (Quad Core with 3.40GHz) and 8GB memory. The malware execution traces
are collected when running in Temu [22], a whole-system emulator. Since most
of malware are packed, we developed a generic unpacking plug-in to monitor

1 http://vxheaven.org/src.php
2 https://www.virustotal.com/

http://vxheaven.org/src.php
https://www.virustotal.com/

Memoized Semantics-Based Binary Diffing 425

Table 1. Dataset statistics

Malware Family Category #Samples #Comparison Size(kb)/Std.Dev.
Dler Trojan 10 45 28/6

StartPage Trojan 21 210 10/1
Delf Trojan 24 276 17/4
Ping Backdoor 8 28 247/41

SpyBoter Backdoor 16 120 34/16
Progenic Backdoor 6 15 88/27

Bube Virus 10 45 12/7
MyPics Worm 12 66 31/4
Bagle Worm 9 36 40/17
Mimail Worm 17 136 17/6
NetSky Worm 7 21 41/12
Sasser Worm 5 10 60/28

malware sample’s unpacking and start to record trace only when the execution
reaches the original entry point (OEP) [13].

5.2 Performance

Cumulative Effects. We first quantify the effects of the set of optimizations
we presented in our basic blocks fast matching algorithm (Algorithm 2). Fig. 6
shows the speedup of malware lineage inference within each family when applying
optimizations cumulatively on iBinHunt. Our baseline for this experiment is a
conventional iBinHunt without any optimization we proposed. The “O1” bar
indicates the effect of normalization, which can quickly identify basic block pairs
with the same byte sequences. Such simple normalization only achieve notable
improvement on several families such as Ping and Bube, in which instructions are
quite similar in syntax. The bar denoted as “O2”, captures the effect of the union-
find set and DiffMap, which record previously compared results. Optimization
O2 brings a significant speedup from 1.4x to 2.9x on average. Especially for some
highly obfuscated malware families, such as Delf and Bagle, O2 outperforms O1
by a factor of up to 3.1. The “O3” bar, denoting concretizing symbolic formulas,
introduces an improvement by 17% on average. Optimization of QueryMap (O4)
offers an enhanced performance improvement by average 30% and with a peak
value 46% to the NetSky. Particularly, since StartPage samples adopt different
implementation ways to tamper with the startup page of Internet browsers, we
observer quit large similarity distances among StartPage variants. In spite of
this, our approach still accelerate the binary code diffing greatly.

Furthermore, we study the effect of our basic blocks fast matching over time.
We choose Sasser to test because the impact of the optimizations on Sasser is
close to the average value. As shown in Fig. 7, as the union-find set is enlarged
and QueryMap is filled, our approach becomes more effective over time. The
number of executed basic blocks is normalized so that data can be collected
across intra-family comparisons.

Alleviate Performance Bottleneck. In Section 3, we identified two fac-
tors that dominate the cost of semantics-based binary diffing: namely symbolic

426 J. Ming et al.

1

2

3

4

5

6

A
verage

S
asser

N
etS

ky

M
im

ail

B
agle

M
yP

ics

B
ube

P
rogenic

S
pyB

oter

P
ing

D
elf

S
tartP

age

D
ler

S
p

e
e

d
u

p
 (

ti
m

e
s
)

 O1

 O2

 O3

 O4

Fig. 6. The impact of basic blocks fast matching on malware lineage inference: O1 (nor-
malization), O2 (O1 + union-find set and DiffMap), O3 (O2 + concretizing symbolic
formulas), O4 (O3 + QueryMap)

execution and constraint solver. In this experiment, we study the effect of our
optimizations on these two performance bottlenecks. The column 2∼4 of Table 2
lists the average symbolic execution time and speedup before/after optimization
when comparing two malware variants in each family using iBinHunt. Similarly,
the column 5∼7 shows the effect to reduce the number of STP invocations. In
summary, our approach outperforms conventional iBinHunt in terms of less sym-
bolic execution time by a factor of 4.0x on average, and fewer STP invocations
by 4.3x on average.

Optimizations Breakdown. Table 3 presents our optimizations breakdown
when performing lineage inference for the four large malware families shown in
Fig. 3. The first row shows the ratio of matched basic block pairs with the same
byte sequences after normalization (line 4 in Algorithm 2). The low ratio also
demonstrates the necessity of semantics-based binary diffing approach. The next
two rows list statistics of union-find set, including number of union-find subsets
and the maximum number of equivalent basic blocks in one subset. The row 4
and 5 present the hit rate of union-find set (line 7 in Algorithm 2) and DiffMap
(line 10 in Algorithm 2). The row 6 shows the time cost incurred by building
and managing the union-find set structure and DiffMap. The following two rows
lists hit rate and time cost for QueryMap. The saving of concretizing symbolic
formulas is shown in row 9, in which we avoid at least more than 50% output
variables comparisons. At last, we present the overall memory cost to maintain

Memoized Semantics-Based Binary Diffing 427

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

100

200

300

400

500

600

700

800

900

1000

O4

O3

O2

O1

None

M
a

lw
a

re
 L

in
e

a
g

e
 I
n

fe
re

n
c
e

 T
im

e
 (

s
)

Number of Executed Basic Blocks (Normalized)

 None

 O1

 O2

 O3

 O4

Fig. 7. The effect of our optimizations over time on Sasser family

Table 2. Improvement to performance bottleneck

Malware Family
SE Times (s) # STP Invocations

None Optimization Speedup None Optimization Speedup
Dler 10.1 2.5 4.0 1123 346 3.2

StartPage 13.5 3.3 4.1 1350 314 4.3
Delf 8.8 2.0 4.4 1685 324 5.2
Ping 32.2 10.7 3.0 6740 1926 3.5

SpyBoter 16.6 4.4 3.8 2020 493 4.1
Progenic 20.2 6.3 3.2 2566 856 3.0

Bube 5.1 1.8 2.8 847 250 3.4
MyPics 11.4 2.5 4.6 1235 257 4.8
Bagle 24.4 5.1 4.8 5570 1092 5.1
Mimail 9.0 1.7 5.3 2901 484 6.0
NetSky 20.6 4.6 4.5 4958 972 5.1
Sasser 24.2 6.2 3.9 5616 1338 4.2

Average 4.0 4.3

union-find set, DiffMap and QueryMap. Reassuringly, the overhead introduced
by our optimizations is small.

6 Related Work

Our efforts attempt to speed up semantics-based binary diffing, which can find
equivalent binary pairs that reveal syntactic differences [8,14,15,17]. We have
introduced the latest work in this direction in Section 2. In this section, we focus

428 J. Ming et al.

Table 3. Optimization breakdown

StartPage Delf Mimail Ping
Normalization ratio 9% 12% 12% 51%
union-find subsets 125 130 304 546

Max. # basic blocks in one subset 5 6 8 10
union-find hit rate 36% 44% 37% 41%
DiffMap hit rate 47% 53% 44% 54%

Union-find set and DiffMap cost (s) 9.5 14.3 12.0 13.7
QueryMap hit rate 62% 70% 65% 75%
QueryMap cost (s) 8.6 8.8 6.4 7.6
Concretizing saving 60% 65% 55% 52%
Memory cost (MB) 10 12 28 45

on the literature related to our optimization approach. Malware normalization
relies on ad-hoc rules to undo the obfuscations applied by malware develop-
ers [2,5]. Our approach first performs a simple normalization to eliminate the
effect of memory relocation and instruction idioms. Yang et al. [21] proposed
Memoise, a trie-based data structure to cache the key elements of symbolic
execution, so that successive forward symbolic execution can reuse previously
computed results. Our union-find structure is like Memoise in that we both
maintain an efficient tree-based data structure to avoid re-computation. How-
ever, our approach aims to accelerate basic blocks matching and our symbolic
execution is limited in a basic block, which is a straight line code without path
conditions. Our optimization of caching equivalence queries is inspired by both
EXE [4] and KLEE [3], which cache the result of path constraint solutions to
avoid redundant constraint solver calling. Different from the complicated path
conditions cached by EXE and KLEE, our equivalence queries are simple and
compact. As a result, our QueryMap enjoys a higher cache hit rate.

7 Conclusion

The high performance penalty introduced by the state-of-the-art semantics-
based binary diffing approaches restricts their application from large scale
application such as analyzing numerous malware samples. In this paper, we
first studied the cruxes leading to the performance bottleneck and then pro-
posed memoization optimization to speed up semantics-based binary diffing.
The experiment on malware lineage inference demonstrated the efficacy of our
optimizations with only minimal overhead. Another possible application of our
approach is to study the life cycle of metamorphic malware variants. we plan to
explore this direction in our future work.

Acknowledgments. This research is supported in part by the National Science Foun-
dation (NSF) grants CCF-1320605 and CNS-1223710.

Memoized Semantics-Based Binary Diffing 429

References

1. Brumley, D., Poosankam, P., Song, D., Zheng, J.: Automatic patch-based exploit
generation is possible: techniques and implications. In: Proceedings of the 2008
IEEE Symposimu on Security and Privacy, SP 2008 (2008)

2. Bruschi, D., Martignoni, L., Monga, M.: Using code normalization for fighting
self-mutating malware. In: Proceedings of the International Symposium of Secure
Software Engineering (2006)

3. Cadar, C., Dunbar, D., Engler, D.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Proceedings of the 2008
USENIX Symposium on Operating Systems Design and Implementation, OSDI
2008 (2008)

4. Cadar, C., Ganesh, V., Pawlowski, P.M., Dill, D.L., Engler, D.R.: EXE: automat-
ically generating inputs of death. In: Proceedings of the 2006 ACM Conference on
Computer and Communications Security, CCS 2006 (2006)

5. Christodorescu, M., Kinder, J., Jha, S., Katzenbeisser, S., Veith, H.: Malware nor-
malization. Technical Report 1539, University of Wisconsin, Madison (November
2005)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Data structures for disjoint
sets, chapter 21. In: Introduction to Algorithms, 2nd edn, pp. 498–524. MIT Press
(2001)

7. Ganesh, V., Dill, D.L.: A decision procedure for bit-vectors and arrays. In: Damm,
W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 519–531. Springer,
Heidelberg (2007)

8. Gao, D., Reiter, M.K., Song, D.: BinHunt: automatically finding semantic differ-
ences in binary programs. In: Chen, L., Ryan, M.D., Wang, G. (eds.) ICICS 2008.
LNCS, vol. 5308, pp. 238–255. Springer, Heidelberg (2008)

9. Jacob, M., Jakubowski, M.H., Naldurg, P., Saw, C.W.N., Venkatesan, R.: The
superdiversifier: peephole individualization for software protection. In: Matsuura,
K., Fujisaki, E. (eds.) IWSEC 2008. LNCS, vol. 5312, pp. 100–120. Springer,
Heidelberg (2008)

10. Jang, J., Woo, M., Brumley, D.: Towards automatic software lineage inference. In:
Presented as part of the 22nd USENIX Security Symposium, USENIX Security
2013 (2013)

11. Kolter, J.Z., Maloof, M.A.: Learning to detect malicious executables in the wild.
In: Proceedings of the 10th ACM SIGKDD Conference, KDD 2004 (2004)

12. Lindorfer, M., Di Federico, A., Maggi, F., Comparetti, P.M., Zanero, S.: Lines of
malicious code: insights into the malicious software industry. In: Proceedings of the
28th Annual Computer Security Applications Conference, ACSAC 2012 (2012)

13. Liu, L., Ming, J., Wang, Z., Gao, D., Jia, C.: Denial-of-service attacks on host-
based generic unpackers. In: Qing, S., Mitchell, C.J., Wang, G. (eds.) ICICS 2009.
LNCS, vol. 5927, pp. 241–253. Springer, Heidelberg (2009)

14. Luo, L., Ming, J., Wu, D., Liu, P., Zhu, S.: Semantics-based obfuscation-resilient
binary code similarity comparison with applications to software plagiarism detec-
tion. In: Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2014 (2014)

15. Ming, J., Pan, M., Gao, D.: iBinHunt: binary hunting with inter-procedural control
flow. In: Proceedings of the 15th Annual International Conference on Information
Security and Cryptology, ICISC 2012 (2012)

16. Ng, B.H., Hu, X., Prakash, A.: A study on latent vulnerabilities. In: Proceedings
of the 29th IEEE Symposium on Reliable Distributed Systems, SRDS 2010 (2010)

17. Ng, B.H., Prakash, A.: Exposé: discovering potential binary code re-use. In:
Proceedings of the 37th IEEE Annual Computer Software and Applications
Conference, COMPSAC 2013 (2013)

430 J. Ming et al.

18. Panda Security. Annual report 2013 summary. http://press.pandasecurity.com/
wp-content/uploads/2010/05/PandaLabs-Annual-Report 2013.pdf (last reviewed
February 12, 2014)

19. Roundy, K.A., Miller, B.P.: Binary-code obfuscations in prevalent packer tools.
ACM Computing Surveys 46(1) (2013)

20. Sikorski, M., Honig, A.: Practical Malware Analysis: The Hands-On Guide to Dis-
secting Malicious Software. No Starch Press (February 2012)

21. Yang, G., Păsăreanu, C.S., Khurshid, S.: Memoized symbolic execution. In:
Proceedings of the 2012 International Symposium on Software Testing and
Analysis, ISSTA 2012 (2012)

22. Yin, H., Song, D.: TEMU: binary code analysis via whole-system layered annotative
execution. Technical Report UCB/EECS-2010-3, EECS Department, University of
California, Berkeley (January 2010)

http://press.pandasecurity.com/wp-content/uploads/2010/05/PandaLabs-Annual-Report_2013.pdf
http://press.pandasecurity.com/wp-content/uploads/2010/05/PandaLabs-Annual-Report_2013.pdf

© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 431–445, 2015.
DOI: 10.1007/978-3-319-18467-8_29

Mitigating Code-Reuse Attacks on CISC
Architectures in a Hardware Approach

Zhijiao Zhang1, Yashuai Lü2(), Yu Chen1, Yongqiang Lü1, and Yuanchun Shi1

1 Department of Computer Science and Technology, Tsinghua University, Beijing, China
nudt_acer@163.com, {luyq,shiyc,yuchen}@mail.tsinghua.edu.cn

2 Academy of Equipment, Beijing, China
freelancer_lys@163.com

Abstract. Recently, code-reuse attack (CRA) is becoming the most prevalent
attack vector which reuses fragments of existing code to make up malicious
code. Recent studies show that CRAs especially jump-oriented programming
(JOP) attacks are hard and costly to detect and protect from, especially on CISC
processors. One reason for this is that the instructions of CISC architecture are
of variable-length, and lots of unintended but legal instructions can be exploited
by starting from in the middle of a legal instruction. This feature of CISC archi-
tectures makes the finding of so called gadgets for CRAs is much easier than
that of RISC architectures. Most of previous studies for mitigating CRA on
CISC processors rely on software-only means to tackle the unintended instruc-
tion problem, which makes their approaches either very costly or can only be
applied under restricted conditions. In this paper, we propose two hardware
supported techniques. The first, which is the main contribution of this paper, is
to eliminate the execution of an unintended instruction. This technique only re-
quires a few modifications to the processor and operating system. Furthermore,
the proposed mechanism has little performance impact on the examined SPEC
CPU 2006 benchmarks (-0.093% ~2.993%). Second, we propose using hard-
ware control-flow locking as a complementary technique to our protection me-
chanism. By using the two techniques together, an attacker will have little
chance to carry out CRAs on a CISC processor.

Keywords: CISC processor · Unintended instruction · Code-reuse attack · In-
struction execution verification

1 Introduction

As the popularity of the Internet increases, so does the number of computer security
threats from increasingly sophisticated attackers [1]. One common way to compro-
mise a normal application is exploiting memory corruption vulnerabilities and trans-
ferring the normal program execution to a location under the control of the attacker.
In these attacks, the first step is trying to overwrite a pointer in memory. Buffer
overflow [2] and format string vulnerability exploitation [3] are two well-known
techniques to achieve this goal. Once the attacker is able to hijack the control flow of

432 Z. Zhang et al.

the application, the next step is to take control of the program execution to carry out
some malicious activities. One of the typical and early attack techniques is code injec-
tion attack, in which a small payload that contains the machine code to perform the
desired task is injected into the process memory. A wide range of solutions have been
proposed to defend against memory corruption attacks, and to increase the complexity
of performing buffer overflow and format string vulnerability exploitation [4-8]. To
mitigate the code injection attack, a protection technique called W⊕X [9] was pro-
posed. Under this protection regime, a memory page is either marked as writable or
executable, but may not be both. Thus, an attacker may not inject data into a process's
memory and then execute it simply by transfer control flow to that memory. Although
the W⊕X technique is not foolproof [10, 11], it was thought to be a sufficiently
strong protection regime that both the processor venders like Intel and AMD and pre-
valent operating systems like Windows [12], Linux [13], Mac OS X, and OpenBSD
[14] now support it.

However, recently, attackers circumvented the W⊕X protection by employing
code-reuse attacks (CRAs), which reuse the functionality provided by the exploited
application. Using this technique, which was originally called return-to-libc [15], an
attacker can compromise the stack and transfer the control to the beginning of an
existing libc function. Often the system call system() is used to launch a process or
mprotect() is used to create a writable, executable memory region to bypass W⊕X.
In 2007, Shacham showed that W⊕X protection regime could be entirely evaded by
so called return-oriented programming (ROP) [16] technique. In ROP, so called gad-
gets (small snippets of code ending in ret) are weaved together to achieve Turing
complete computation without code injection. Since the advent of ROP, several effec-
tive defense techniques have been proposed [17-19]. However, a new class of code-
reuse attacks called jump-oriented programming (JOP) that does not rely on rets has
been proposed [20-22]. In these JOP attacks, the attacker chains the gadgets by using
a sequence of indirect jump instructions, rather than rets, thus bypassing the defense
mechanisms designed for ROP. Until now, there is no efficient technique can prevent
both ROP and JOP attacks.

The x86 microprocessors are the most widely used general purpose processor se-
ries today. As a typical CISC architecture, instructions on the x86 platforms are of
variable-length, and decoding an instruction from any byte offset is allowed. As a
consequence, every x86 executable binary contains a vast number of unintended code
sequences that can be accessed by jumping to an offset not on an original instruction
boundary. Both the ROP and JOP take advantage of this feature to discover useful
gadgets, which makes CRAs more easily to be carried out on CISC processors than
that of RISC processors. Some of the previous studies that target for CRA defense
tackle this problem in software-only approaches, which makes the applications of
their techniques limited to constrained circumstances.

In this paper, we propose effectively mitigating CRAs on CISC architectures in a
hardware supported approach. The main contributions of the work in this paper are:

Mitigating Code-Reuse Attacks on CISC Architectures in a Hardware Approach 433

• The unintended instruction problem of CISC processors is thoroughly resolved
with only a few hardware and software modifications, and no application binary
modification.

• The techniques are evaluated by cycle-accurate simulations of SPEC CPU 2006
benchmarks. The experimental results show that our proposed techniques have
very little performance impact on these benchmarks.

• We further propose using hardware control-flow locking as a complementary tech-
nique to our protection mechanism.

The remainder of this paper is organized as follows. Section 2 describes the related
work. The methodology and implementation details are presented in Section 3. The
experimental evaluation is presented in Section 4. Section 5 offers some concluding
remarks.

2 Related Work

The first step of a code reuse attack is to gain control of the program counter to divert
program control flow to the first gadget. An attacker then may overwrite either the
return address for the calling function or a function pointer with the address of the
first gadget to divert the program control flow. Both software and hardware approach-
es were developed to prevent attackers from exploiting software vulnerabilities
[4-8][23-26]. However, either these mechanisms are not adopted by hardware prod-
ucts or they are frequently not turned on as default when programs are compiled. As a
result, attackers can always exploit software flaws to gain control of the program
counter.

One tricky problem for CRA defense techniques on CISC platforms like x86 is the
allowing of unintended instruction execution, which makes these defense techniques
face more gadgets on CISC architectures. Before the advent of CRAs, some research-
ers of prior work [39, 40] realized that the unintended instructions could be a potential
security problem, and solved it by imposing alignment in the environment of a sand-
box. Since the advent of CRAs, previous CRA defenses rely on dynamic binary in-
strumentation tools monitoring unintended instructions without the help of hardware
[34, 35], which limits their practical use.

Another problem is unintended control flow transfers. To solve this problem, a
number of defense techniques have been proposed, and most of them are against ROP
attacks. Several approaches use a shadow stack to prevent control flow manipulation
that relies on overwritten stack values [27, 28]. Some try to detect gadget execution
by monitoring return properties [17, 18], and others proposed monitoring pairs of call
and return instructions [29, 30]. Several prevention approaches attempt to eliminate
possible gadgets in library code [31, 32], and alternative strategies include creating
binaries or kernels that lack necessary characteristics for ROP attacks [19, 33]. Most
of these techniques rely on known characteristics of ROP attacks, and some were
proved to have flaws that the defense mechanisms can be bypassed. Several ap-
proaches require recompilation of the program, library or kernel binaries, which may
pose a problem when the source code is not available.

434 Z. Zhang et al.

Since JOP is a recently proposed technique, there are only a few proposals that tar-
get for JOP defenses. Among these defense techniques, [34], [35] and [36] are pure
software approaches. To distinguish normal program execution from CRA attacks,
they rely on the software dynamic binary instrumentation. As a result, to apply their
techniques, the programs must be executed through a dynamic binary instrumentation
tool like Pin [37] or a virtual machine, which limits the practical use of their ap-
proaches. [30] and [38] are hardware supported approaches proposed by Kayaalp et
al. By using binary rewriting, the branch regulation approach in [30] inserts markers
to make jumps stay in a legal function. Branch regulation requires binary rewriting
and cannot easily protect legacy binaries. It is also possible that a function may exist
that can provide sufficient gadgets to mount an attack, and in this case security is not
completely guaranteed. The work in [38] proposes a hardware supported signature-
based protection mechanism. While this approach supports legacy software, it needs
user to configure thresholds for CRA detection. Again, it is also one type of tech-
niques that rely on known characteristics of CRAs.

3 Methodology

3.1 Elimination of Unintended Instructions

Figure 1 illustrates an example of unintended instruction sequence, which is
similar to the one showed in [30]. The x86 assembly language used in this
paper is written in Intel syntax. The disassembled code snippet is from
the _IO_vfprintf function of libc-2.12-32. This code snippet consists of three
instructions if decoded normally. However, if the decoding starts from the
third byte of the call instruction, a different instruction sequence can be de-
coded as shown at the bottom of Figure 1, which contains three entirely differ-
ent instruction. This unintended instruction sequence could possibly be used as
a gadget, as the last jump instruction can be used to direct control flow to other
gadgets (the memory location that register ebx points to). It should be noted
that finding indirect jump instructions from unintended code sequence is ex-
tremely easy on x86 platforms, as byte FF represents the opcode of an indirect
jump instruction on x86 [41], and FF is a common byte used in immediate val-
ues (bit-masks and sign bits of negative values).

Fig. 1. Example unintended instruction sequence from libc

Mitigating Code-Reuse Attacks on CISC Architectures in a Hardware Approach 435

Problem Analysis.
As well known, the processor pipeline can be roughly divided into five stages (i.e. IF,
ID, EX, MEM and WB). Of the five stages, the instruction fetch stage fetches instruc-
tions from I-Cache according to the address pointed by program counter (PC), as
illustrated in Figure 2. Therefore, it may be the most suitable stage to check whether
an instruction is an intended instruction or not.

Fig. 2. Process of instruction fetch and instruction address validation

For a variable-length instruction architecture, to know whether the current PC points
to an unintended instruction, the processor needs a list of valid instruction addresses
to be compared with, as illustrated in Figure 2. One way of acquiring the list of valid
instruction addresses is disassembling the executable binary before its execution.
When an executable binary has been loaded into memory, OS knows the location of
each binary code section in the virtual memory space, and the valid address of each
intended instruction can be obtained by sequentially disassembling the instructions
from the start of each code section. Now with the list of valid instruction addresses,
how to validate the legality of an instruction address? An inefficient preliminary solu-
tion is illustrated in Figure 3.

The solution depicted in Figure 3 first uses a recently validated address buffer
(RVAB) to validate the current PC. The RVAB can be implemented in processor and
functions similar to other LRU buffers in the processor. If the PC is not found in
RVAB, then a further lookup will be needed. A program is often composed of several
code sections, including the code sections from shared libraries. Instruction addresses
within a code section are contiguous, but different code sections may not be conti-
guous in virtual memory space. Therefore, if a PC is not hit the RVAB, then the solu-
tion in Figure 3 first needs to find which code section this PC belongs to from a code
section range list which can be derived from section information after the program has

436 Z. Zhang et al.

been loaded into memory. To save memory consumption, this preliminary solution
organizes several contiguous addresses into an address chunk. The size of the chunk
can be multiple of a byte. The first four bytes (for a 32-bit system) stores the first
address, and each following byte stores an offset from the first address. To find a
specific address, the processor must search through the address chunks of a code sec-
tion. If a binary search algorithm is used, the average time consumption can be O(log
n) (n is the number of chunks in a code section), which means a processor may need
accessing off-chip memory log n times to validate an address, and at the meantime,
the processor pipeline must be stalled in order to wait for the result of the validation.
Apparently, the overhead of this solution is too high for a modern processor.

PC

0x40967d
0x40889c
0x20936a
...

Recently Validated
Address Buffer

Start:0x016b00
End:0x1422e0

Start:0x408ae0
End:0x4e6800

Start:0x8209a0
End:0x9ae961

. . .

Code Section Range List

Start Addr.:0x408ae00

Start Addr.:0x408ae28

Start Addr.:0x408ae4c

Start Addr.:0x408ae6f

Start Addr.:0x408ae82

. . .
. . .

Address Chunks

Address Chunk
Search

Organization of an address chunk
0x408ae00
0x408ae01
0x408ae03
0x408ae05
0x408ae08
0x408ae0a
0x408ae10

. . .

04 08 ae 00
01 03 05 08
0a 10 ……

Start address:
Offsets:

Fig. 3. A preliminary solution for instruction address validation

Proposed Mechanism.
This subsection provides a more practical and efficient solution to the intended in-
struction validation problem in detail.

Recently Validated Address Buffer.
A proposed hardware implementation of RVAB is depicted in Figure 4. The buffer
storage is divided into M sets and N lines. A branch target address to be validated is
evaluated with a hash function to determine which set it belongs to. Each set contains
N validated addresses or invalid empty entries. The address to be validated is com-
pared with these addresses in parallel to quickly check whether the branch target hits
the RVAB or not. For a practical implementation, a pseudo-LRU algorithm is used as
the replacement strategy for the addresses within a set. Apparently, the hardware cost
of RVAB mainly depends on its storage size. We will evaluate the choices of M and
N in the experimental evaluation section.

Mitigating Code-Reuse Attacks on CISC Architectures in a Hardware Approach 437

Validation of Branch Target Address.
Theoretically, to ensure only intended instructions are executed, the addresses of all
instructions that are going to be executed should be compared with valid instruction
addresses. However, if we assume that the program starts from a valid instruction
address, then we only need to validate the branch targets of control transfer instruc-
tions, as a CISC processor always decodes out instructions one by one sequentially.
As a further optimization measure, if the W⊕X protection mechanism is present, we
can restrict the validations to indirect control transfer instructions. This is based on
the fact that the branch target of a direct control transfer instruction is written into the
code section which cannot be modified when W⊕X protection mechanism is applied.

Fig. 4. The structure of recently validated address buffer

Representation of Valid Instruction Addresses.
The solution in Figure 3 requires logn search times for validating an address that does
not hit RVAB, which makes the searching very inefficient. Another way of
representing instruction addresses is using one bit to indicate whether an address is
the start of a valid instruction, Figure 5 depicts this idea.

Fig. 5. Using one bit to indicate the validity of instruction address

438 Z. Zhang et al.

In Figure 5, suppose the instruction address validation data are stored beginning from
0x8a730 in memory, and the first bit represents the instruction address 0x16b00. If we
want to know whether address 0x16b16 is a valid instruction address or not, then we
can check the 7th bit of the byte at address 0x8a732 ((0x16b16 - 0x16b00)/8 +
0x8a730). Compared with the solution in Figure 3, this way of representing instruc-
tion addresses may consume more memory space (1/8 of the total code binary size),
but greatly reduces instruction address validation time.

Code Section Range Lookup Table.
If the address representation in Figure 5 is used, then the code section range list acts
more like a lookup table. The function of this code section range lookup table
(CSRLT) is described in Figure 6. A CSRLT entry contains three items: the start and
the end address of a code section and a memory pointer which points to the memory
offset of the instruction address validation data of this code section. A full CSRLT is
stored on off-chip memory and managed by OS. Like memory page TLB, some of the
recently used entries in CSRLT are cached in an on-chip buffer (denoted by
CSRLTB)

Fig. 6. The function of code section range lookup table

Integration with Processor Pipeline.
Now we explain how to integrate our proposed mechanism with an out-of-order pro-
cessor pipeline, which is illustrated in Figure 7. As there is no need to validate every
fetched instruction's address except for branch target, the validation process is better
moved from instruction fetch stage to commit stage. There are two reasons behind
this: firstly, the real branch target of a control transfer instruction can only be deter-
mined after the EX stage; secondly, some of the control instructions in EX stage may
be aborted due to failed speculation and commit stage is where precise exceptions are
usually carried out in out-of-order processors. However, validating the branch target
address when the instruction is just about to commit will stall the processor pipeline
for each validation even if the address hits RVAB. Thus, a better solution is carrying

Mitigating Code-Reuse Attacks on CISC Architectures in a Hardware Approach 439

out the validation when the control instructions are at the front of the ROB commit-
ting queue but have not reached the head yet, and using one bit to indicate the branch
target is valid or not.

Fig. 7. The integration with an out-of-order pipeline

3.2 Further Protection Measures

Statistical results in [30] shows that limiting the dispatcher gadgets to intended
instructions greatly reduces the number of potential dispatcher candidates. However,
the remaining dispatcher candidates can still be expored for carrying out JOP attacks.
As a result, we propose using control flow locking (CFL) as the complementary tech-
nique to our mechanism. CFL was proposed by Bletsch et al. in [36].

The idea of CFL is illustrated in Figure 8. This code snippet is from libssl.a. The
actual destination of indirect jump in address 0x451 is address 0x4f0. In [36], to im-
plement CFL, a small snippet of lock code is inserted before each indirect control
flow transfer. This code asserts the lock by simply changing a certain lock value in
memory, and each valid destination for that control transfer contains the correspond-
ing unlock code, which will de-assert the lock if and only if the current lock value is
deemed “valid”. In Figure 8, variable k is the control flow key, and value 1 means
locked while 0 means unlocked.

Fig. 8. An illustrative example of CFL

440 Z. Zhang et al.

As this paper focuses on hardware supported techniques to mitigate JOP attacks, we
propose using hardware to efficiently implement a weaker version of CFL. First, for
each committed indirect jump, the processor needs to record that the processor is in a
jump locking state. Second, we can devise a new instruction or just add a prefix to
current instructions to denote an indirect jump destination. The role of the new in-
struction or prefix is to unlock the jump locking state, and this unlocking instruction
must be committed just after an indirect jump instruction. Apparently, this mechanism
is not hard to implement in hardware. For the hardware CFL, the compiler is respon-
sible for correctly inserting indirect jump destination instruction or prefix when trans-
lating high level language source code into machine binary code. A difference to
software CFL is that we omit the lock value. We argue that implementing lock value
will introduce much more hardware and software cost. With the elimination of unin-
tended instructions and the support of hardware CFL, it is already extremely hard to
find out enough gadgets to carry a JOP attack.

4 Performance Evaluation

For evaluating the performance of our techniques, we used the gem5 [43] simulator to
simulate a 4-core x86 CMP. All our experiments were carried out on a high-end desk-
top computer which has a 3.4 GHz Core i7-4770 CPU with 16GB memory, and the
operating system is CentOS 6.4 x86-64. We selected 21 benchmarks from the SPEC
CPU2006 [44] benchmark suit and used test input data set for our experiments. These
benchmarks were compiled using CentOS's native GCC compiler (version 4.4.7) with
-O3 optimizations. For each benchmark, we ran the simulation for 10 billion instruc-
tions or until its completion.

Fig. 9. RVAB hit probability for validations of all control instructions

Fig. 10. RVAB hit probability for validations of indirect control instructions

0.00

20.00

40.00

60.00

80.00

100.00

H
it

 P
ro

ba
bi

lit
y(

%
)

8 sets
16 sets
32 sets
64 sets
128 sets
256 sets
512 sets

0.00

20.00

40.00

60.00

80.00

100.00

H
it

 P
ro

ba
bi

lit
y(

%
)

8 sets
16 sets
32 sets
64 sets
128 sets
256 sets
512 sets

Mitigating Code-Reuse Attacks on CISC Architectures in a Hardware Approach 441

First, we will evaluate the configurations of RVAB. In the work of this paper, we
used 4 entries for each set, and pseudo-LRU for replacement strategy. For the hash
function, we simply used lower part of the address as set index. Now we only need to
investigate how many sets will be enough for a high RVAB hit probability.

Figure 9 illustrates the RVAB hit probability when all control instructions were
considered, and Figure 10 illustrates the result when only indirect control instructions
were validated. It can be observed that for the same number of set and the same
benchmark, the hit probability of Figure 10 is higher than that of Figure 9. An impor-
tant observation is that when the number of set reaches 128, the hit probability does
not change very much, especially for 256 sets and 512 sets. For the benchmarks in
Figure 9, the average hit probabilities of 128 sets, 256 sets and 512 sets are 94.68%,
97.35% and 98.84%; and for the benchmarks in Figure 10, the average hit probabili-
ties of 128 sets, 256 sets and 512 sets are 99.11%, 99.61% and 99.70%. Based on this
observation, we selected 128 as the set number for the following experiments, and the
total number of RVAB entries is 128x4 = 512. As we can see, the hardware cost of
RVAB is very small.

We evaluated three configurations for performance impact evaluation. The first
configuration is validating all control instructions and using branch predictor as loo-
kup backup (denoted as BP & AC); the second is only validating indirect control
instructions and using BP as lookup backup (denoted as BP & IC); the third configu-
ration is only validating indirect control instructions but without using BP as backup.
Figure 11a shows the IPC results of the baseline and the three configurations. Here we
count x86 micro-ops as instruction counts. To get a clearer view, Figure 11b-11d
shows relative performance slowdown of these three configurations.

Fig. 11a. Throughput comparison (IPC) of baseline and three different configurations

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50

T
hr

ou
gh

pu
t(

IP
C

)

BASE

BP&AC

BP&IC

IC

-0.039

5.126

0.006 0.007 0.012
0.030 0.167 1.213 0.909 1.888

4.993 4.687

-0.002

2.928
1.266 0.030 0.829

-0.016

1.161
2.492

-0.20

0.80

1.80

2.80

3.80

4.80

P
er

fo
rm

an
ce

 S
lo

w
do

w
n(

%
)

442 Z. Zhang et al.

Fig. 11b. Relative performance slowdown of BP&AC configuration.

Fig. 11c. Relative performance slowdown of BP&IC configuration

Fig. 12d. Relative performance slowdown of IC configuration

From Figure 11a, we can see that the performance impacts of our proposed methodol-
ogy are very small for all three configurations. For the BP&AC configuration, the
average performance slowdown is 2.492%, the highest performance slowdown is
12.623% (omnetpp), the smallest is -0.039%(bzip2, which means IPC gets a little
increase), and there are 11 benchmarks whose performance slowdowns are below 1%.
As we expect, the BP&IC configuration gets the best performance result. Its perfor-
mance slowdown is between -0.093% and 2.993%, and is 0.284% on average. Only
two benchmarks' slowdowns exceed 1%. Without BP as backup, the performance
result of the IC configuration is a little worse than the BP&IC configuration, but bet-
ter than the BP&AC configuration. Its slowdown is between -0.043% and 5.247%,
and is 0.616% on average.

Since the W⊕X mechanism is widely used in modern systems, only validating in-
direct control instructions is safe enough. The experimental data in Figure 11 indicate
that this approach has very little impact on program performance. Even without the
help of BP, the highest performance slowdown of IC configuration is only 5.247%,
and only three benchmarks have slowdowns above 1%.

5 Concluding Remarks

In this paper, we proposed hardware supported techniques to mitigate CRAs on CISC
architectures. We addressed the CRA problem by two protection mechanisms: (1)

-0.006

0.504

-0.001

0.004

-0.001 -0.005

0.070

-0.003

0.068 0.114 0.078 0.118 0.023 0.083 0.133

-0.003

0.109

-0.017

1.341

-0.093

2.993

0.284

-0.20
0.30
0.80
1.30
1.80
2.30

P
er

fo
rm

an
ce

Sl

ow
do

w
n(

%
)

0.023

1.001

-0.001

0.003
0.001

-0.008

0.020
0.436

0.091 0.260 0.406 0.313

-0.002

0.108
0.386

0.009
0.019

-0.015

3.565

-0.043

0.616

-0.20

0.30

0.80

1.30

1.80

2.30

P
er

fo
rm

an
ce

 S
lo

w
do

w
n(

%
)

Mitigating Code-Reuse Attacks on CISC Architectures in a Hardware Approach 443

preventing executions of unintended instructions; (2) preventing unintended control
flow transfers. The work in this paper mainly focuses on the first problem, as no pre-
vious work addressed it by an effective hardware approach. We addressed the second
problem by using a hardware version of CFL. We also demonstrated that our ap-
proach has a very modest cost on both hardware and software. For the BP&IC confi-
guration, the performance loss is -0.093% ~2.993%.

Acknowledgements. This work is supported in part by the Natural Science Foundation of
China under Grant No. 61170050, National Science and Technology Major Project of China
（2012ZX01039-004）. The authors would also like to thank anonymous reviewers who have
helped us to improve the quality of this paper.

References

1. Symantec: Internet Security Threat Report (2014). http://www.symantec.com/
security_response/publications/threatreport.jsp

2. One, A.: Smashing the stack for fun and profit. Phrack Magazine 7(49), 14–16 (1996)
3. Scut, T.T.: Exploiting format string vulnerabilities (2001)
4. Cowan, C., Beattie, S., Johansen, J., Wagle, P.: Pointguard TM: protecting pointers from

buffer overflow vulnerabilities. In: Proceedings of the 12th Conference on USENIX Secu-
rity Symposium, vol. 12, pp. 91–104, August 2003

5. Cowan, C., Pu, C., Maier, D., Walpole, J., Bakke, P., Beattie, S., Hinton, H: StackGuard:
automatic adaptive detection and prevention of buffer-overflow attacks. In: Usenix Securi-
ty, vol. 98, pp. 63–78 (1998)

6. Cowan, C., Wagle, P., Pu, C., Beattie, S., Walpole, J.: Buffer overflows: attacks and de-
fenses for the vulnerability of the decade. In: Proceedings of DARPA Information Survi-
vability Conference and Exposition, DISCEX 2000, vol. 2, pp. 119–129. IEEE (2000)

7. Etoh, H., Yoda, K.: GCC extension for protecting applications from stack-smashing at-
tacks (2014). http://www.research.ibm.com/trl/projects/security/ssp/

8. Shield, S.: A stack smashing technique protection tool for Linux (2014). http://www.
angelfire.com/sk/stackshield/

9. Pax Team: Non-executable pages design and implementation. http://paxgrsecurity.
net/docs/pageexec.txt

10. Krahmer, S.: x86-64 buffer overflow exploits and the borrowed code chunks exploitation
technique (2005). http://www.suse.de/krahmer/no-nx.pdf

11. McDonald, J.: Defeating Solaris/SPARC non-executable stack protection. Bugtraq (1999)
12. Microsoft. KB 875352: A detailed description of the Data Execution Prevention (DEP)

feature in Windows XP Service Pack 2, Windows XP Tablet PC Edition 2005, and Win-
dows Server (2003). http://support.microsoft.com/KB/875352 (September 2006)

13. Designer, S.: Linux kernel patch from the Openwall project. http://www.
openwall.com/linux

14. OpenBSD Foundation. OpenBSD 3.3 release (2003). http://www.openbsd.org/33.html
15. Solar Designer.: Return-to-libc attack. Technical report, bugtraq (1997)
16. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without func-

tion calls (on the x86). In: Proceedings of the 14th ACM Conference on Computer and
Communications security, pp. 552–561. ACM (2007)

444 Z. Zhang et al.

17. Davi, L., Sadeghi, A.R., Winandy, M.: Dynamic integrity measurement and attestation:
towards defense against return-oriented programming attacks.: In: Proceedings of the 2009
ACM Workshop on Scalable Trusted Computing, pp. 49–54 (2009)

18. Chen, P., Xiao, H., Shen, X., Yin, X., Mao, B., Xie, L.: DROP: detecting return-oriented
programming malicious code. In: Prakash, A., Sen Gupta, I. (eds.) ICISS 2009. LNCS, vol.
5905, pp. 163–177. Springer, Heidelberg (2009)

19. Li, J., Wang, Z., Jiang, X., Grace, M., Bahram, S.: Defeating return-oriented rootkits with
return-less kernels. In: Proceedings of the 5th European Conference on Computer systems,
pp. 195–208. ACM (2010)

20. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a new class of
code-reuse attack. In: Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security, pp. 30–40. ACM (2011)

21. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy, M.: Re-
turn-oriented programming without returns. In: Proceedings of the 17th ACM Conference
on Computer and Communications Security, pp. 559–572. ACM. (2010)

22. Chen, P., Xing, X., Mao, B., Xie, L., Shen, X., Yin, X.: Automatic construction of jump-
oriented programming shellcode (on the x86). In: Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security, pp. 20–29. ACM (2011)

23. McGregor, J.P., Karig, D.K., Shi, Z., Lee, R.B.: A processor architecture defense against
buffer overflow attacks. In: Proceedings of the IEEE International Conference on Informa-
tion Technology: Research and Education, ITRE 2003, pp. 243–250 (2003)

24. Lee, R.B., Karig, D.K., McGregor, J.P., Shi, Z.: Enlisting hardware architecture to thwart
malicious code injection. In: Hutter, D., Müller, G., Stephan, W., Ullmann, M. (eds.) Secu-
rity in Pervasive Computing. LNCS, vol. 2802, pp. 237–252. Springer, Heidelberg (2004)

25. Davi, L., Sadeghi, A.R., Winandy, M.: ROPdefender: A detection tool to defend against
return-oriented programming attacks. In: Proceedings of the 6th ACM Symposium on In-
formation, Computer and Communications Security, pp. 40–51. ACM (2011)

26. Xu, J., Kalbarczyk, Z., Patel, S., Iyer, R.K.: Architecture support for defending against
buffer overflow attacks. In: Workshop on Evaluating and Architecting Systems for Depen-
dability (2002)

27. Davi, L., Sadeghi, A.R., Winandy, M.: ROPdefender: A detection tool to defend against
return-oriented programming attacks. In: Proceedings of the 6th ACM Symposium on In-
formation, Computer and Communications Security. pp. 40–51. ACM. (2011)

28. Francillon, A., Perito, D., Castelluccia, C.: Defending embedded systems against control
flow attacks. In: Proceedings of the first ACM Workshop on Secure Execution of Un-
trusted Code, pp. 19–26. ACM (2009)

29. Chen, P., Xing, X., Han, H., Mao, B., Xie, L.: Efficient detection of the return-oriented
programming malicious code. In: Jha, S., Mathuria, A. (eds.) ICISS 2010. LNCS, vol.
6503, pp. 140–155. Springer, Heidelberg (2010)

30. Kayaalp, M., Ozsoy, M., Abu-Ghazaleh, N., Ponomarev, D.: Branch regulation: Low-
overhead protection from code reuse attacks. In: International Symposium on Computer
Architecture (ISCA) (2012)

31. Hiser, J., Nguyen-Tuong, A., Co, M., Hall, M., Davidson, J.W.: ILR: Where’d my gadgets
go? In: IEEE Symposium on Security and Privacy, pp. 571–585. IEEE (2012)

32. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the gadgets: Hindering return-
oriented programming using in-place code randomization. In: IEEE Symposium on Securi-
ty and Privacy (SP), pp. 601–615 (2012)

Mitigating Code-Reuse Attacks on CISC Architectures in a Hardware Approach 445

33. Onarlioglu, K., Bilge, L., Lanzi, A., Balzarotti, D., Kirda, E.: G-Free: defeating return-
oriented programming through gadget-less binaries. In: Proceedings of the 26th Annual
Computer Security Applications Conference (ACSAC), pp. 49–58. ACM (2010)

34. Huang, Z., Zheng, T., Shi, Y., Li, A.: A Dynamic detection method against ROP and JOP.
In: International Conference on Systems and Informatics (ICSAI) (2012)

35. Jacobson, E.R., Bernat, A.R., Williams, W.R., Miller, B.P.: Detecting code reuse attacks
with a model of conformant program execution. In: Jürjens, J., Piessens, F., Bielova, N.
(eds.) ESSoS. LNCS, vol. 8364, pp. 1–18. Springer, Heidelberg (2014)

36. Bletsch, T., Jiang, X., Freeh, V.: Mitigating code-reuse attacks with control-flow locking.
In: Proceedings of the 27th Annual Computer Security Applications Conference,
pp. 353–362. ACM (2011)

37. University of Virginia, Pin. http://www.cs.virginia.edu/kim/publicity/pin
38. Kayaalp, M., Schmitt, T., Nomani, J., Ponomarev, D., Abu-Ghazaleh, N.: SCRAP: Archi-

tecture for signature-based protection from code reuse attacks. In: IEEE 19th International
Symposium on High Performance Computer Architecture (HPCA), pp. 258–269, February
23-27, 2013

39. McCamant, S., Morrisett, G.: Efficient, verifiable binary sandboxing for a CISC architec-
ture. In: MIT Technical Report. MIT-CSAIL-TR-2005-030 (2005)

40. Yee, B., Sehr, D., Dardyk, G., Chen, J.B., Muth, R., Ormandy, T., Fullagar, N.: Native
client: A sandbox for portable, untrusted x86 native code. In: 30th IEEE Symposium on
Security and Privacy, vol. 53(1), pp. 79–93 (2009)

41. Intel Corporation: Intel 64 and IA-32 Architectures Software Developer’s Manual, vol. 2
(2013)

42. Udis86 Disassembler Library for x86/x86-64. http://udis86.sourceforgenet/
43. Binkert, N., Beckmann, B., Black, G., Reinhardt, S.K., Saidi, A., Basu, A., Wood, D.A.:

The gem5 simulator. Computer Architecture News 39, 1–7 (2011)
44. Henning, J.L.: Spec cpu2006 benchmark descriptions. ACM SIGARCH Computer

Architecture News, 1–17 (2006)

Integrity for Approximate Joins
on Untrusted Computational Servers

Sabrina De Capitani di Vimercati1, Sara Foresti1, Sushil Jajodia2,
Stefano Paraboschi3, and Pierangela Samarati1(B)

1 Università degli Studi di Milano, 26013 Crema, Italy
{sabrina.decapitani,sara.foresti,pierangela.samarati}@unimi.it

2 George Mason University, Fairfax, VA 22030-4444, USA
jajodia@gmu.edu

3 Università di Bergamo, 24044 Dalmine, Italy
parabosc@unibg.it

Abstract. In the last few years, many efforts have been devoted to
the development of solutions aiming at ensuring the confidentiality and
integrity of data and computations in the cloud. In particular, a recent
solution for verifying the integrity of equi-join queries is based on the
insertion of checks (markers and twins) whose presence provides prob-
abilistic guarantees on the integrity of the computation. In this paper,
we propose an approach for verifying the integrity of approximate join
queries, which is based on the introduction of a discretized version of the
join attribute and on the translation of the approximate join into an equi-
join defined over the discrete attribute added to the original relations.
The proposed approach guarantees the correctness and completeness of
the join result, while causing a limited overhead for the user.

1 Introduction

Cloud computing has brought enormous benefits in terms of the availability of
a universal access to data as well as of elastic storage and computation ser-
vices. More and more often users and organizations put their (possibly sensi-
tive) data in the hands of external cloud providers, which become responsible
for the storage and management of such data [5,10,16]. A recent trend in cloud
computing is a distinction between providers of storage services and providers of
computational services. This diversification supports the development of efficient
applications that combine the functions offered by different cloud providers. In
this context, users and organizations can therefore decide to store their data at
reliable and well-known storage servers and perform computationally intensive
processes (e.g., join operations) using the computational services offered by a less
expensive and potentially untrusted computational server. Besides performance
considerations, an important advantage of relying on storage and computational
servers is due to the economic advantage of such a choice [3]. While appealing,
this approach brings inherent risks related to the confidentiality and integrity of
data and computations, which are difficult to mitigate since data are not under
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 446–459, 2015.
DOI: 10.1007/978-3-319-18467-8 30

Integrity for Approximate Joins on Untrusted Computational Servers 447

the direct control of their owners. The research community has dedicated many
efforts in developing solutions for these problems, resulting in several approaches
to protect the confidentiality and integrity of data at rest (e.g., [5]), as well as
of computations over them (e.g., [12,17,18]).

In this paper, we make a step forward and present a solution for verifying
the integrity of approximate join queries. An approximate join aims at com-
bining tuples with similar (even if not equal) values for the join attribute, and
can be needed in several applications (e.g., to detect duplicate entities in dif-
ferent databases or to identify data clusters). The current techniques can verify
the integrity of equi-join queries only (e.g., [3]) and then cannot be directly
applied to verify the integrity of approximate joins. Moreover, since data are
typically encrypted to protect their confidentiality, the evaluation of similarity
conditions characterizing an approximate join cannot be efficiently executed on
such encrypted data. A client is then not able to delegate the join operation to a
computational server without revealing the plaintext values of the join attribute.
In the remainder of this paper, after the presentation of some basic concepts and
of the problem we aim at addressing (Section 2), we illustrate an approach for
verifying the integrity of approximate joins (Section 3). Our solution consists
in adding to the original relations a discretized version of the join attribute,
translating approximate joins into equi-joins over the discretized attribute. The
equi-join is computed as a semi-join, delegating to an external computational
server the execution of the join, which is a computationally intensive operation.
The techniques in [3] are used to verify the integrity of the computation per-
formed by the computational server (Section 4). Our solution does not impact
the correctness and completeness of the join result, and provides limited over-
head for the storage servers and for the user (Section 5).

2 Basic Concepts and Problem Statement

We consider a scenario where a client wishes to evaluate an approximate join
between two relations Bl and Br stored at two trustworthy storage servers Sl

and Sr, respectively. The computation of the approximate join is delegated
to an external and potentially unreliable computational server Cs. Intuitively,
an approximate join between Bl and Br matches tuples that are sufficiently sim-
ilar, meaning that the values of their join attribute are similar. The similarity
between the values of the join attribute can be measured by choosing a distance
function (the Euclidean distance in our scenario) and a threshold α set by the
client. The query formulated by the client is of the form “select A from Bl

join Br on |Bl.I − Br.I|<α where Cl and Cr and Clr,” with A a subset of
attributes in Bl ∪Br; I the set of join attributes; |Bl.I − Br.I|<α the similarity
condition and α the threshold fixed by the client; and Cl, Cr, and Clr Boolean
formulas of conditions over attributes in Bl, Br, and Bl ∪ Br, respectively. The
evaluation of conditions Cl and Cr is pushed down to the storage servers.

Current approaches for integrity verification consider only equi-joins that are
executed as semi-joins (or regular joins) by a computational server and are based

448 S. De Capitani di Vimercati et al.

on the combined adoption of encryption on the fly (to protect data confidential-
ity), and of markers and twins (to provide integrity guarantees) [2,3]. Each stor-
age server first receives from the client the sub-query it should evaluate and the
information necessary for the adoption of encryption on the fly, markers, and
twins. It then executes the received sub-query (obtaining relations L and R)
and projects the join attribute (obtaining relations LI and RI), thus naturally
removing duplicate values. Each storage server then duplicates the tuples in its
relation that satisfy a twinning condition Ctwin defined by the client on the join
attribute (to guarantee that twins belong to the join result). Twinned tuples
are made unrecognizable to the computational server by combining the value
of the join attribute with a random salt before encryption. Each storage server
also inserts fake tuples (markers), not recognizable as such by the computational
server, into the relation before sending it to the computational server. Markers
generated by the two storage servers have the same values for the join attribute
(to guarantee their presence in the join result), and these values do not appear
in real tuples (to avoid spurious tuples). The resulting relations LI∗ and RI∗are
encrypted by the storage servers (obtaining relations LI∗

k and RI∗
k), with a key

communicated by the client and that changes at each query, and are sent to the
computational server. The computational server evaluates the equi-join between
the two relations received from the storage servers and sends the result JI∗

k to
the client. The client decrypts JI∗

k, verifies its integrity (i.e., the client checks
whether all expected markers are in the result and twinned tuples do not appear
solo), and removes markers and twins (obtaining relation JI). The client then
sends JI to both the storage servers, which return to the client all the tuples
in L and R having a value for the join attribute in JI. Upon receiving these
relations (LJ and RJ) the client recombines them with JI obtaining the join
result. Figure 1 illustrates an example of execution of an equi-join, assuming to
adopt one marker (with value m for the join attribute), and to twin tuples whose
join attribute is equal to a or d.

The semi-join approach mentioned above cannot be used for approximate
joins. In fact, the computational server should evaluate a similarity condition
|L.I − R.I|<α over encrypted attributes, which is possible only if the encryp-
tion function supports the evaluation of arithmetic operations. Such encryption
functions (e.g., homomorphic encryption) are inefficient and not suitable for all
scenarios. Also, the definition of markers and twins should be revised to comply
with the similarity condition, without revealing the nature of the tuples in the
encrypted relations.

3 Approximate Join Transformation

Our approach for verifying the integrity of an approximate join is based on a
discretization process applied on the domain of the join attribute. This discretiza-
tion allows us to translate an approximate join into an equi-join. For simplicity,
we assume that the domain D of the join attribute is the set of real, natural, or
integer numbers. We note however that our solution can be extended to operate
also over any domain characterized by a total order relationship.

Integrity for Approximate Joins on Untrusted Computational Servers 449

I L.Att R.Att

a Alice 100
b Bob 50
b Bob 250

I Att

a Alice
b Bob

I Att

a Alice
b Bob
e Eve

I

a
b
e

I

a
b
e
ā
m

Ik

α
β
ε
ᾱ
μ

Ik

α
β
ᾱ
μ

Ik

α
β
γ
δ
ᾱ
δ̄
μ

I

a
b
c
d
ā
d̄
m

I

a
b
c
d

I

a
b

I

a
b
ā
m

I Att

a 100
b 50
b 250
c 800
d 150

I Att

a 100
b 50
b 250

��πI πI
twins

markers
twins

markersenc enc

decrypt

check integrity/clean up

� �

recombine

J

JILJ RJ

L LI LI∗ LI∗k RRIRI∗RI∗k

JI∗k

JI∗

Storage server S l Storage server Sr

Client

Computational server Cs

Fig. 1. Equi-join execution as a semi-join

3.1 Discretized Domain

The discretization process redefines the domain of the join attribute, transform-
ing it into a (coarser grained) discrete domain. In this way, the similarity con-
dition |L.I − R.I|<α can be transformed into an equality condition over the
discretized join attribute, transforming the approximate join into an equi-join.

The discretization of domain D requires to define a discrete domain D̂ and a
mapping function f that maps original values into discrete values. To this aim,
we chose a granularity γ of the discrete domain, which corresponds to the dis-
tance between two consecutive values in D̂, and a reference point p. The reference
point p is a value in the original domain D that belongs also to the discretized
domain D̂ and that, together with γ, can be used to determine the values in D̂.
We define the values in D̂ to be at a distance multiple of γ from p. Formally, a
discretized domain is defined as follows.

Definition 1 (Discretized domain). Let D be a continuous domain, γ be a
granularity, and p be an element in D. A discretized domain D̂ of D is defined
as the set of values in D whose distance from p is a multiple of γ, that is,
D̂={v ∈ D : v − p = xγ, with x ∈ Z}.

450 S. De Capitani di Vimercati et al.

Customer – L
Name Availability

Alice 11
Bob 48
Carol 18
David 62

Product – R
Id Price

p1 27
p2 8
p3 14
p4 46

L̂

Name Availability Î

Alice 11 10
Bob 48 50
Carol 18 20
David 62 60

R̂

Id Price Î

p1 27 20
p1 27 30
p2 8 0
p2 8 10
p3 14 10
p3 14 20
p4 46 40
p4 46 50

(a) original relations (b) discretized relations

5 3530252015100 656055504540

5 3530252015100 656055504540 70

0 10 20 30 50 6040 70

L

R

. . .

. . .

. . .

(c) mapping

Fig. 2. An example of two relations (a), their discretization with α = 5 (b), and the
corresponding mapping of the join attribute (c)

For instance, a discretized domain of the natural numbers N, which is the
domain of attribute Availability in relation Customer in Figure 2(a), is
domain D̂={0, 10, 20, . . .}, assuming 0 as reference point and 10 as granularity.

The discretized domain of the join attribute should be the same for both the
relations involved in the join operation to permit the correct evaluation of the
equi-join condition between them. However, the mapping function used to map
each tuple in L to a value in D̂ (i.e., the partitioning of D into intervals of size
γ and their association with discrete values) may be different from the mapping
function used for the tuples in R, as discussed in the following.

3.2 Choosing the Correct Granularity

Each relation stored at the two storage servers Sl and Sr is complemented with
an additional attribute, denoted Î, whose values have been obtained through the
discretization of the corresponding join attribute domain. The similarity condi-
tion |L.I − R.I|<α is then transformed into an equi-join condition of the form
L.Î = R.Î. The set of tuples returned by the evaluation of this equi-join condi-
tion should be correct , meaning that all tuples satisfying the original similarity
condition should be part of the result, and should include a limited number of
spurious tuples (i.e., tuples that do not satisfy the similarity condition).

To guarantee the correctness of the join result and to reduce the number of
spurious tuples, the granularity γ and the mapping function f should be carefully
chosen. In fact, a too coarse granularity may cause the presence of an excessive
number of spurious tuples, and a too fine granularity could cause the absence of
tuples from the join result. Analogously, a bad mapping function could cause the
incompleteness of the join result. (The reference point p influences neither the
number of spurious tuples nor the correctness of the join). The correctness of

Integrity for Approximate Joins on Untrusted Computational Servers 451

the join result is guaranteed when the values at distance lower than α are mapped
to the same discrete value. Suppose to choose γ = α, and a mapping function
f :D→D̂ that associates with each tuple t in L and R the value v in D̂ closest
to t[I] (i.e., f(t[I])={v ∈ D̂ : |v − t[I]| < 0.5γ}). In this case, the equi-join
result would not be correct because some tuples satisfying the original similarity
condition would be omitted. For instance, consider relations Customer and
Product in Figure 2(a) and assume α=5 and p = 0. The discrete domain D̂ is
{0, 5, 10, . . .} and f maps: values in the interval [0,2.5) to 0, values in the interval
[2.5,7.5) to 5, and so on (we assume that the upper bound of each interval is
excluded from the interval itself). Value 18 (associated with Carol) and value
14 (associated with p4) would then be mapped to different discrete values (i.e.,
20 and 15, respectively), even if the difference between them is 4. Therefore, the
pair 〈Carol,p4〉 satisfies the similarity condition but does not satisfy the equi-
join condition over the discrete attributes. This problem happens independently
from the granularity chosen. In fact, values at distance lower than α may be
associated with different discrete values by function f . Consider, as an example,
two values 1.5γ+ε and 1.5γ−ε, with ε an arbitrarily small value, and assume that
D̂={0,γ, 2γ, . . .}. It is easy to see that, independently from the granularity γ,
the first value is mapped by f to 2γ, while the second value is mapped by f to γ.
Hence, the corresponding tuples will not satisfy the equi-join condition even if
the difference between the two original values is 2ε ≤ α.

Our solution consists in replicating the tuples in the original relations and
in associating a different discrete value with each replica. The number of copies
to be generated for each tuple depends on the granularity γ (i.e., the finer the
granularity, the higher the number of necessary replicas). Let us consider γ = α.
In this case, it is necessary to duplicate each tuple in L and each tuple in R, and to
associate each tuple t with the two values closest to t[I] in D̂. Hence, the mapping
function f is defined as f :D→D̂×D̂ with f(t[I])={v1, v2 ∈ D̂:|v1−(t[I]−0.5γ)| <
0.5γ and |v2 − (t[I] + 0.5γ)| < 0.5γ}. This approach, although effective, has
the drawback of doubling the data transferred from the storage servers to the
computational server. If instead γ = 2α, only the tuples in one of the two
relations (say R) should be duplicated. In this case, it is sufficient to associate
each tuple l in L with the discrete value nearest to l[I]. Each tuple r in R is
instead duplicated and associated with the two discrete values nearest to r[I].
This approach limits the communication overhead as only one of the two relations
(possibly the smallest) is duplicated. Further, increasing γ does not provide
advantages and causes a higher number of spurious tuples in the equi-join result.
A good balance between the number of spurious tuples in the join result and
the number of additional tuples in the relations is then γ = 2α. Figure 2(c)
illustrates how the values of attributes Availability and Price are mapped
assuming α = 5 and p = 0. The mapping function for relation Customer
is fL(t[I])={v ∈ D̂:|v − t[I]| < 5}, while the function for relation Product
is fR(t[I])={v1, v2 ∈ D̂:|v1 − (t[I] − 5)| < 5 and |v2 − (t[I] + 5)| < 5}. The
original domain is then partitioned in a different way for the two relations. In
particular, there is a shift of α=5, which guarantees an intersection between

452 S. De Capitani di Vimercati et al.

the intervals of original values associated with the same discrete values in L
and R, guaranteeing the effectiveness of the equi-join condition. As an example,
values in [5,15) in Customer are mapped to 10, as well as the values in [0,20) in
Product (intervals [0,10) and [10,20)), with an intersection of width γ=10. The
relations resulting from the discretization are then formally defined as follows.

Definition 2 (Discretized tables). Let L(I,Attr) and R(I,Attr) be two rela-
tions, I be the join attribute defined over domain D, and α be the threshold fixed
by the similarity condition. The discretized versions L̂ of L and R̂ of R are two
relations defined over schema (I,Attr,Î) where the domain of Î is the discretized
domain D̂ of D with γ = 2α, and:

– ∀l∈L, ∃l̂∈L̂ s.t. l̂[I]=l[I], l̂[Attr]=l[Attr], and l̂[Î]=fL(l[I]), with fL : D →
D̂ and fL(l[I])={v ∈ D̂ : |v − l[I]| < α};

– ∀r∈R, ∃r̂1,r̂2∈R̂ such that r̂1[I]=r̂2[I]=r[I], r̂1[Attr]=r̂2[Attr]=r[Attr], and
(r̂1[Î],r̂2[Î])=fR(l[I]), with fR : D → D̂ × D̂ and fR(r[I])={v1, v2 ∈ D̂:|v1 −
(r[I] − α)| < α and |v2 − (r[I] + α)| < α}.
Figure 2(b) represents the discretized version of relations Customer and

Product in Figure 2(a), obtained considering the discretized domain in
Figure 2(c). Note that each original tuple in Product is replaced by two tuples
with discrete values representing the end-points of the interval to which the orig-
inal value belongs. The size of the discretized relation is then twice as the size
of the original relation.

4 Join Evaluation and Correctness of the Approach

Like for the execution of an equi-join, the storage and computational servers do
not need to coordinate for join execution. The client sends to the storage servers
their sub-queries along with the information necessary to encrypt their relations,
to generate markers and twins, and to perform the discretization process. The
storage servers execute their sub-query and on the resulting relations apply the
discretization process illustrated in Section 3. The storage servers then project
attribute Î, insert markers and twins, and encrypt the resulting relations. The
execution of the join then proceeds according to the semi-join strategy described
in Section 2. Due to the discretization process, the relation Ĵ , resulting from the
recombination performed by the client and the integrity check and clean up
phase, may include spurious tuples. In fact, the maximum distance between two
(non discretized) values in D that map to the same discrete value in D̂ is 3α
(e.g., 6 in L and 19 in R are both mapped to 10). The client will then filter spu-
rious tuples from Ĵ to obtain the approximate join result J . For instance, with
reference to relations Customer and Product in Figure 2(a), consider a query
that aims to return, for each customer, the products that have a price within a
range of 5 with respect to what the customer is willing to spend (which is rep-
resented by attribute Availability). Figure 3 illustrates the evaluation of such
an approximate join query with similarity condition |Availability−Price|<5,

Integrity for Approximate Joins on Untrusted Computational Servers 453

Client

Storage server SrComputational server Cs

twins
markers πÎ

Î

0
10
20
30
40
50
1̄0
4̄0
m

R̂I∗
Î

0
10
20
30
40
50

R̂I
Îk

α
β
γ
δ
ε
ζ
β̄
ε̄
μ

R̂I∗k

enc

Id Price Î

p1 27 20
p1 27 30
p2 8 0
p2 8 10
p3 14 10
p3 14 20
p4 46 40
p4 46 50

R̂

Id Price

p1 27
p2 8
p3 14
p4 46

Rdiscretize

�

��

Î

10
20
50
1̄0
m

ˆJI∗

decrypt

Îk

β
γ
ζ
β̄
μ

ˆJI∗k

Storage server S l

twins
markersπÎ

Î

10
20
50
60

L̂I
Î

10
20
50
60
1̄0
m

L̂I∗

enc

Name Avail Î

Alice 11 10
Bob 48 50
Carol 18 20
David 62 60

L̂

Name Avail

Alice 11
Bob 48
Carol 18
David 62

L discretize

Îk

β
γ
ζ
η
β̄
μ

L̂I∗k

check integrity/clean up

�

Name Avail Î

Alice 11 10
Carol 18 20
Bob 48 50

L̂J
Id Price Î

p2 8 10
p3 14 10
p1 27 20
p3 14 20
p4 46 50

R̂J
Î

10
20
50

ĴI

recombine

filter spurious tuples

Name Avail Id Price

Alice 11 p2 8
Alice 11 p3 14
Bob 48 p4 46
Carol 18 p3 14

J

Name Avail Î Id Price

Alice 11 10 p2 8
Alice 11 10 p3 14
Bob 48 50 p4 46
Carol 18 20 p1 27
Carol 18 20 p3 14

Ĵ

Fig. 3. An example of execution of an approximate join

adopting the discretized domain in Figure 2(c). Relation Ĵ includes one spuri-
ous tuple combining Carol (with value 18 mapped to 20) with p1 (with value
27 mapped to 20 and 30) even if the difference between their values is 9 (hence
greater than 5). We note that spurious tuples can be filtered from the result only
when the join result has been completely reconstructed. However, this filtering
can be combined with the evaluation of possible selection conditions involving
attributes in both relations (i.e., condition Clr) that only the client can evaluate.

The adoption of encryption on the fly, markers, and twins guarantees the
correctness and completeness of the equi-join result [2]. More precisely, the prob-
ability ℘ that the omission of d tuples by the computational server go undetected
is equal to ℘m · ℘t, where ℘m = (1 − d/F)m is the probability that no marker
is omitted and ℘t = ((1 − d/F)2 + (d/F)2)t is the probability of either omitting

454 S. De Capitani di Vimercati et al.

or preserving every pair of twins without detection by the client, with F the
number of tuples in the join result (including m markers and t twins). We note
that, as discussed in [2], a limited number of markers and twins provide strong
protection guarantees (e.g., 50 markers and 5% twins reduce to 0.007 the prob-
ability that an omission of 50 tuples goes undetected, independently from the
number of tuples in the join result). To demonstrate the correctness of our app-
roach, we only need to prove that the discretization process does not discard
tuples that satisfy the approximate join condition from the equi-join result, as
stated by the following theorem. (The proof has been omitted from the paper
for space constraints.)

Theorem 1 (Completeness). Let L and R be two relations, L̂ and R̂ be their
discretized version (Definition 2). Relation Ĵ resulting from the equi-join between
L̂ and R̂ includes all the tuples in the result of the approximate join between L
and R with similarity condition |L.I − R.I|<α.

If the computational server behaves correctly, the equi-join result includes all
the tuples of the approximate join formulated by the client and some additional
spurious tuples, which can be easily identified and removed. The discretization
process does not compromise data confidentiality. In fact, the computational
server only receives the encrypted values of the discretized join attribute. Fur-
thermore, the frequency distribution of discretized join values is not revealed to
the computational server, because it operates on relations including the discrete
join attribute only where the duplicate values have been removed by projection.

5 Experimental Results

To evaluate the performance of the proposed approach, its effectiveness, and the
amount of spurious tuples introduced by the discretization process, we imple-
mented a Java prototype enforcing our protection techniques. We tested the
prototype using a machine with Intel Core i5-2400, 3.10GHz CPU and 8.00GB
RAM. We randomly generated between 1, 000 and 5, 000 tuples in the two rela-
tions. The join attribute values have been generated following a Zipf probability
distribution with ζ between 0 and 1 (lower values of ζ correspond to more occur-
rences of fewer values), and with a domain including between 1, 000 and 2, 500
different values. We fixed the number of markers to 100 and the number of twins
to 25% of the tuples in the original relations, which is much more than the val-
ues we expect to be used in real-world scenarios. The experimental results are
computed as the average of five runs.

Spurious tuples. Figure 4 compares the percentage of spurious tuples obtained
with parameter ζ of the Zipf function equal to 0.1, 0.5, and 1, varying the value
of threshold α, and with relations of 1, 000 tuples (Figure 4(a)) and 5, 000 tuples
(Figure 4(b)). The number of spurious tuples is not influenced by the number
of tuples in the original relations but grows with α. In fact, a higher threshold
implies a higher number of matching tuples in the approximate join result, but

Integrity for Approximate Joins on Untrusted Computational Servers 455

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50

%
 o

f s
pu

rio
us

 tu
pl

es

threshold α

Zipf 1
Zipf 0.5
Zipf 0.1

 0

 10

 20

 30

 40

 50

 60

 0 5 10 15 20 25 30 35 40 45 50

%
 o

f s
pu

rio
us

 tu
pl

es

threshold α

Zipf 1
Zipf 0.5
Zipf 0.1

(a) (b)

Fig. 4. Percentage of spurious tuples in the equi-join result varying threshold α and
the Zipf parameter ζ, with relations including 1, 000 (a) and 5, 000 (b) tuples

also a larger grain of discretization. The number of false positive matches then
grows since the values mapped to the same discrete value becomes larger. Also
the distribution of the frequency of the join attribute values influences the per-
centage of spurious tuples. Figure 4 shows that the percentage of spurious tuples
is always below 5% when ζ is 0.1, and below 15% when ζ is 0.5. The percentage
grows when ζ is 1 and, for high values of α, reaches 45%.

Response time. A second set of experiments was aimed at analyzing the
response time of an approximate join query. We focused on the overhead caused
by the discretization and filtering processes, which are specific of the translation
of an approximate join into an equi-join. We considered configurations character-
ized by relations of different sizes, generated in such a way that the distribution
of the join attribute values follow a Zipf distribution with parameter ζ = 0.5.

Figure 5(a) illustrates the time required for the discretization process, which
takes place at the storage servers, varying threshold α. The figure compares the
values obtained considering relations of three different sizes. As expected, the
discretization time grows with the size of the relations. In fact, the storage server
needs to associate one (or two) discrete value(s) with each tuple in its relation.
The discretization time is instead not affected by the value of α since the compu-
tation of the discrete values does not depend on the granularity of the discretized
domain. It is interesting to note that the time necessary for the discretization
process is always very low (less than 10ms).

Figure 5(b) reports the time for the client to filter spurious tuples, varying
threshold α and comparing three configurations obtained with relations of dif-
ferent sizes. Like for the discretization process, the time necessary for filtering
spurious tuples does not depend on α, but it depends on the number of tuples in
the relations, and then also in the join result. In fact, the client needs to check
every tuple in the join result to discard spurious tuples. The overhead caused
by filtering is however limited, remaining below 7s even for relations with 5, 000
tuples (less than 0.05s for relations with 1, 000 tuples).

456 S. De Capitani di Vimercati et al.

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40 45 50

tim
e

(m
s)

threshold α

Num tuple 5,000
Num tuple 2,500
Num tuple 1,000

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40 45 50

tim
e

(s
)

threshold α

Num tuple 5,000
Num tuple 2,500
Num tuple 1,000

(a) (b)

Fig. 5. Time taken by the discretization process (a) and by the filtering process (b)
varying α and the number of tuples in the relations

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30 35 40 45 50

tim
e

(s
)

threshold α

Num tuple 5,000
Num tuple 2,500
Num tuple 1,000

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30 35 40 45 50

tim
e

(s
)

threshold α

communication
computation

(a) (b)

Fig. 6. Time taken by the client to recombine the join result (a) and its computation
and communication components (b), varying α and the number of tuples in the relations

The adoption of a semi-join, in contrast to a regular join, strategy for query
evaluation implies an additional overhead for the client due to the recombination
of the join result computed over the join attribute with the semi-tuples received
from the storage servers. Figure 6(a) illustrates the overhead of the recombi-
nation phase, obtained summing the communication time of sending the semi-
tuples to the client and the computation time for the client to obtain the final
result. As expected, the recombination time grows with the size of the join result,
but it is not affected by the discretization threshold α. Figure 6(b) illustrates
the communication and computation components of the recombination overhead
obtained with relations of 1, 000 tuples. As expected, the communication time
is higher than the computation time.

Figure 7(a) compares the (total) response time for the computation of an
approximate join of configurations obtained varying the number of tuples in the
original relations. The response time is higher for relations with a higher num-
ber of tuples, and does not depend on α. Figure 7(b) compares the response times
obtained joining relations with 1,000 tuples each, but generated with different
values for the parameter ζ of the Zipf distribution. We can observe that the
response time is not affected by this parameter.

Integrity for Approximate Joins on Untrusted Computational Servers 457

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25 30 35 40 45 50

tim
e

(s
)

threshold α

Num tuple 5,000
Num tuple 2,500
Num tuple 1,000

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5 10 15 20 25 30 35 40 45 50

tim
e

(s
)

threshold α

Zipf 1
Zipf 0.5
Zipf 0.1

(a) (b)

Fig. 7. Overall response time varying the number of tuples in the relations (a) and the
parameter ζ of the Zipf distribution (b)

 0

 2

 4

 6

 8

 10

 12

 5 10 15 20 25 30 35 40 45 50

tim
e

(s
)

threshold α

equi-join
recombination

filtering
discretization

Fig. 8. Components contributing to the response time

To better assess the impact of the discretization process in the computation
of an approximate join result, we analyzed the impact of each component of the
response time. Figure 8 illustrates the contribution to the total response time due
to each phase of the process. The figure shows that the discretization time has
a very limited impact (0.27% on average), as well as the filtering phase (nearly
11.20% on average). The time necessary for the recombination is higher (22.52%
on average), but it also includes communication costs. However, the most time
consuming phase is the evaluation of the equi-join (nearly 66.02% on average of
the response time) and is delegated to the computational server. We can then
conclude that also approximate joins can benefit from the presence of inexpensive
external computational servers (especially if threshold α is low).

6 Related Work

Previous related work has been devoted to protect the confidentiality of data
outsourced to honest-but-curious servers (e.g., [8,15,16]). Most of these solutions
encrypt data before outsourcing and complement them with indexes designed to
support different kinds of SQL clauses (e.g., [5,8]).

458 S. De Capitani di Vimercati et al.

Other works have considered the problem of guaranteeing integrity when
the external server is not trusted. These solutions are based on the adoption of
authenticated data structures or on probabilistic approaches. Approaches that
rely on authenticated data structures (e.g., Merkle trees [12] and signature-based
schemas [13]) return, together with the query result, a verification object that
is used by the client to verify the correctness and completeness of the result.
Authenticated data structures provide deterministic guarantees but they are
defined over a specific attribute and only queries operating on it can be verified.
Probabilistic approaches can be adopted with any query, but provide probabilis-
tic guarantees only (e.g., [3,17,18]). The approach in [18] inserts into the origi-
nal relation a set of fake tuples, generated according to a deterministic function,
before outsourcing the relation. Absence of the expected fake tuples in a query
result signals its incompleteness. The solution in [17] duplicates a subset of the
tuples in the original relation and encrypts them with a different key. Since the
external server cannot recognize duplicated tuples, their absence from the query
result signals a misbehavior. The use of twins and markers for the join integrity
verification has been first introduced in [2–4]. Here, we extend these propos-
als to the support of approximate joins. Besides correctness and completeness,
techniques aimed at providing freshness by periodically changing the verification
object have also been proposed (e.g., [19]).

A related, but different, line of work is represented by discretization app-
roaches. The solutions proposed for producing a discrete version of continu-
ous domains have the goal of making data suitable to machine learning and/or
data mining applications, of supporting proximity tests, or of anonymizing pseu-
donyms (e.g., [6,9,11,14]). These solutions are therefore not suited to the sce-
nario considered in this paper. The goal of works studying the evaluation of
approximate joins is to limit the performance impact due to the evaluation of
conditions based on distance measures (e.g., [1,7]). These solutions cannot then
be adopted in our scenario as they do not not operate over encrypted data and
hence do not translate approximate into equality conditions.

7 Conclusions

We have presented an approach that enables a user to assess the integrity of
the result of an approximate join query, leveraging on the techniques introduced
for equi-join queries. We have proposed a discretization of the join attribute to
translate an approximate join into an equi-join query. Due to the discretization
process, the join result may include additional (spurious) tuples that the client
must remove. Also, the experimental evaluation has confirmed the effectiveness of
our approach and has demonstrated its limited overhead. Our work leaves space
to further investigations, including the consideration of non-Euclidean distance
metrics, possibly also operating in multidimensional scenarios.

Acknowledgments. The authors would like to thank Riccardo Moretti for support
in the implementation of the system and in the experimental evaluation. This work was

Integrity for Approximate Joins on Untrusted Computational Servers 459

supported in part by: the EC within the 7FP under grant agreement 312797 (ABC4EU)
and within the H2020 under grant agreement 644579 (ESCUDO-CLOUD), the Italian
Ministry of Research within PRIN project “GenData 2020” (2010RTFWBH), and NSF
under grant IIP-1266147.

References

1. Das, A., Gehrke, J., Riedewald, M.: Approximate join processing over data streams.
In: Proc. of ACM SIGMOD, San Diego, CA (June 2003)

2. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Livraga, G., Paraboschi, S.,
Samarati, P.: Integrity for distributed queries. In: Proc. of CNS, San Francisco,
CA (October 2014)

3. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Integrity for join queries in the cloud. IEEE TCC 1(2), 187–200 (2013)

4. De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.:
Optimizing integrity checks for join queries in the cloud. In: Atluri, V., Pernul, G.
(eds.) DBSec 2014. LNCS, vol. 8566, pp. 33–48. Springer, Heidelberg (2014)

5. De Capitani di Vimercati, S., Foresti, S., Samarati, P.: Managing and accessing
data in the cloud: Privacy risks and approaches. In: Proc. of CRiSIS, Cork, Ireland
(October 2012)

6. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization
of continuous features. In: Proc. of ICML, San Francisco, CA (July 1995)

7. Gravano, L., Ipeirotis, P., Jagadish, H., Koudas, N., Muthukrishnan, S., Srivastava,
D.: Approximate string joins in a database (almost) for free. In: Proc. of VLDB,
Rome, Italy (September 2001)

8. Hacigümüş, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted
data in the database-service-provider model. In: Proc. of SIGMOD, Madison, WI
(June 2002)

9. Han, J., Kamber, M.: Data Mining, Southeast Asia Edition: Concepts and Tech-
niques. Morgan Kaufmann (2006)

10. Jhawar, R., Piuri, V., Samarati, P.: Supporting security requirements for resource
management in cloud computing. In: Proc. of CSE 2012, Paphos, Cyprus
(December 2012)

11. Kerschbaum, F.: Distance-preserving pseudonymization for timestamps and spatial
data. In: Proc. of WPES, Alexandria, VA (October 2007)

12. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Authenticated index structures
for aggregation queries. ACM TISSEC 13(4), 32:1–32:35 (2010)

13. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. ACM TOS 2(2), 107–138 (2006)

14. Nielsen, J., Pagter, J., Stausholm, M.: Location privacy via private proximity test-
ing. In: NDSS, San Diego, CA (February 2011)

15. Ren, K., Wang, C., Wang, Q.: Security challenges for the public cloud. IEEE
Internet Computing 16(1), 69–73 (2012)

16. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing scenar-
ios: Issues and directions. In: Proc. of ASIACCS, Beijing, China (April 2010)

17. Wang, H., Yin, J., Perng, C., Yu, P.: Dual encryption for query integrity assurance.
In: Proc. of CIKM, Napa Valley, CA (October 2008)

18. Xie, M., Wang, H., Yin, J., Meng, X.: Integrity auditing of outsourced data.
In: Proc. of VLDB, Vienna, Austria (September 2007)

19. Xie, M., Wang, H., Yin, J., Meng, X.: Providing freshness guarantees for outsourced
databases. In: Proc. of EDBT, Nantes, France (March 2008)

Applied Cryptography

Fast Revocation of Attribute-Based Credentials
for Both Users and Verifiers

Wouter Lueks(B), Gergely Alpár, Jaap-Henk Hoepman, and Pim Vullers

Radboud University, Nijmegen, The Netherlands
{lueks,gergely,jhh,pim}@cs.ru.nl

Abstract. Attribute-based credentials allow a user to prove properties
about herself anonymously. Revoking such credentials, which requires
singling them out, is hard because it is at odds with anonymity. All revo-
cation schemes proposed to date either sacrifice anonymity altogether,
require the parties to be online, or put high load on the user or the
verifier. As a result, these schemes are either too complicated for low-
powered devices like smart cards or they do not scale. We propose a new
revocation scheme that has a very low computational cost for users and
verifiers, and does not require users to process updates. We trade only a
limited, but well-defined, amount of anonymity to make the first practi-
cal revocation scheme that is efficient at large scales and fast enough for
smart cards.

1 Introduction

More and more governments are issuing electronic identity (eID) cards to their
citizens [18,23,25]. These eID cards can be used both offline and online for
secure authentication with the government and sometimes with other parties,
like shops. Attribute-based credentials (ABCs) [9] are an emerging technology
for implementing eID cards because of their flexibility and strong privacy guar-
antees, and because they can be fully implemented on smart cards [29]. Every
credential contains attributes that the user can either reveal or keep hidden. Such
attributes describe properties of a person, like her name and age. ABCs enable
a range of scenarios from fully-identifying to fully-anonymous.1 When using a
credential fully anonymously (i.e., without revealing any identifying attributes),

An extendend version of this paper is available in the Cryptology ePrint Archive [21].
The work described in this paper has been supported under the ICT theme of the
Cooperation Programme of the 7th Framework Programme of the European Com-
mission, GA number 318424 (FutureID) and the research program Sentinels (www.
sentinels.nl) as project ‘Mobile IDM’ (10522) and ‘Revocable Privacy’ (10532). Sen-
tinels is being financed by Technology Foundation STW, the Netherlands Organi-
zation for Scientific Research (NWO), and the Dutch Ministry of Economic Affairs.
This research is conducted within the Privacy and Identity Lab (PI.lab) and funded
by SIDN.nl (http://www.sidn.nl).

1 This is why we prefer the term ‘attribute-based credentials’ over the more traditional
term ‘anonymous credentials’.

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 463–478, 2015.
DOI: 10.1007/978-3-319-18467-8 31

www.sentinels.nl
www.sentinels.nl
http://www.sidn.nl

464 W. Lueks et al.

proper ABC technologies guarantee that the credential is unlinkable: it is not
possible to connect multiple uses of the same credential.

When ABCs are applied, the carriers on which the credentials are stored
(for example, smart cards) can be lost or stolen. In such cases, it is important
that users can revoke these credentials to ensure that they can no longer be
(ab)used. This is also necessary when the owner of the credential herself abuses
it. Revocation may, in fact, happen often. As an example, the nationwide Belgian
eID system’s revocation list contains more than 375 000 credentials [8] for just
over 10 million citizens. A practical revocation scheme must therefore efficiently
deal with such large revocation lists.

Unfortunately, the unlinkability of ABCs precludes the use of standard,
identity-based revocation. There exist many privacy-friendly revocation schemes,
with different trade-offs in terms of efficiency (both for users and verifiers), con-
nectivity requirements, and anonymity. It turns out to be hard to satisfy all of
these simultaneously. In particular, all revocation schemes proposed so far suffer
from at least one of the following two problems: (1) they rely on computation-
ally powerful users, making the scheme unsuitable for smart cards, the obvious
carrier for a national eID; or (2) they place a high load on verifiers, resulting in
long transaction times.

The IRMA Project. This research is part of the ongoing research project “I
Reveal My Attributes” (IRMA).2 The goal of this project is to demonstrate the
practicality of attribute-based credentials. We implemented the entire user-side
of the credentials on a smart card [29]. In this paper we focus on this setting.

Our Contribution. Our contribution is a new revocation scheme that has very
low computational cost for users and verifiers alike; it is efficient even in the
smart card setting, and can therefore be used in practice. We introduce the main
idea in Section 2, introduce ABCs in Section 3, and describe the full scheme in
Section 4. In our scheme, verifiers need only constant time on average to check
revocation status, making it as fast as traditional non-anonymous revocation
schemes. Furthermore, the users’ computational overhead is small (and updates
to reflect revocations are not necessary). Our scheme is based on epochs that
divide time in short (configurable) intervals. Our scheme is unlinkable, except
if the user uses her credential more than once per epoch at the same verifier.
Our revocation scheme works with most credential schemes. As an example, we
instantiate it for Idemix [15] in Section 5. We give pointers for implementing our
scheme in practice, and give experimental results as evidence of feasibility of our
scheme in Section 6. Finally, we review related work in Section 7 and conclude
our paper in Section 8.

2 See http://www.irmacard.org.

http://www.irmacard.org

Fast Revocation of Attribute-Based Credentials for Both Users and Verifiers 465

2 The Idea

Our scheme enables efficient and privacy-friendly revocation of credentials. As
it resembles verifier-local revocation (VLR) schemes [1,4,6], we describe those
first.

2.1 Verifier-Local Revocation

The setting is a cyclic group G with prime order q. Every credential encodes a
random revocation value r ∈ Zq. If a credential has to be revoked, its revoca-
tion value r is added to the global revocation list RL. When the user shows the
credential to a verifier, the verifier needs to check whether the user’s revocation
value r appears on the revocation list RL. To facilitate this check without reveal-
ing r itself, the user chooses a random revocation generator h ∈R G, calculates
the revocation token R = hr , and sends

(h,R) (1)

to the verifier during showing. The user also proves that the revocation value r
embedded into R corresponds to credential she is showing. This proof depends
on the type of credential—see Section 5 for an example. Each verifier holds a
copy of the revocation list RL = {r1, . . . , rk}. To check whether the credential is
still valid, the verifier checks whether hrj = R for each rj ∈ RL and rejects the
credential if one of these equalities holds. This form of verifier-local revocation
has some problems in practice:

1. Because the user chooses the revocation generator h at random, the work
for the verifier increases linearly with the number of items on the revocation
list. This quickly causes performance problems.

2. The scheme is not forward-secure. Once the verifier obtains a revocation
value ri, the verifier can link all past and future interactions involving this
value, if it stores the tuples (h,R) from (1). Some solutions have been pro-
posed to solve this problem—see Section 7—but they are not efficient enough
for our purposes.

Our scheme addresses these two disadvantages.

2.2 Our Scheme

We propose to split time into epochs and to use one generator per epoch and
per verifier. This limits the user to one showing per verifier per epoch if she
wants to remain unlinkable (which is not a problem when epochs are small) but
makes revocation checking very fast for the verifier. The user uses the per-epoch
per-verifier generator gε,V to create the values in (1). In particular, she sends
R = gr

ε,V to the verifier.

466 W. Lueks et al.

To check whether the credential is revoked the verifier does not need to know
the raw revocation values. Instead, a semi-trusted party, the revocation authority
(RA), can store these, and provide the verifier with a revocation list:

RLε,V = {gr1
ε,V , . . . , grk

ε,V }.

The credential is revoked if R ∈ RLε,V . This operation takes only O(1) time
on average using associative arrays. The average time complexity thus decreases
from linear to constant in the length of the revocation list RLε,V . While some
computation load shifts to the RA, the RA does no more work creating the list
than a verifier in the VLR scheme does for every verification. Also, the verifier
can no longer link transactions in different epochs since it does not have the bare
revocation values.

Epochs and Generators. The length of an epoch must be sufficiently short so
that a user normally never shows her credential twice within the same epoch to
the same verifier. If the generator is reused, the corresponding activities of the
user become linkable.

The generators form an attack vector for a malicious adversary to link users’
activities. It is not sufficient for the user to keep track of the generators she used
before. A malicious verifier could take one fixed generator gε,V , and then create
a new one by picking a random exponent x ∈R Zq and sending gx

ε,V to the user.
All revocation tokens are then easily reduced to the same base gε,V , without the
user ever seeing a similar generator.

To prevent this attack, users should calculate the generators themselves. The
easiest method—and the one we propose here—is to use a hash function and let
the generator gε,V for a verifier V and epoch ε equal H(ε ‖ V), where H is a
hash function from the strings to the group G and the epoch ε is derived from
the current time.

3 A Primer on ABCs

Attribute-based credentials are a cryptographic alternative to traditional cre-
dentials like driver’s licenses and passports. ABCs contain a set of attributes,
typically encoded as numbers, that a user can selectively reveal to the verifier.
Even when attributes are hidden, the verifier can still assess the validity of the
credential.

A typical attribute-based credential scheme comprises the following three
parties.

Issuer. The issuer issues credentials to users. It ensures that the correct data
are stored in the credential. A typical credential scheme has multiple issuers.

User. The user holds a set of credentials, obtained from one or more issuers.
She can disclose a (user defined) selection of attributes from any number of
her credentials to a verifier to obtain a service.

Fast Revocation of Attribute-Based Credentials for Both Users and Verifiers 467

Verifier. The verifier, sometimes called relying party or service provider, checks
that the credential is valid, the revealed attributes are as required, and the
credential is not revoked. Based on the outcome, it may provide a service to
the user.

When the credential scheme supports revocation, another party is present.

Revocation Authority. The revocation authority is responsible for revoking
credentials. It determines when to revoke, and stores all information nec-
essary to do so. If necessary, it sends revocation information to users and
verifiers.

Our scheme is independent of the choice of credential scheme, but we impose
three restrictions on it:

1. The credential must be able to encode a revocation value r from a sufficiently
large set.3 This value can identify a credential if it is revoked. We use the
notation C(r) to denote a credential that contains the revocation value r.
Depending on the type of credential, other attributes may be present.

2. The issuer should be able to issue a credential C(r) without learning the
revocation value r. Otherwise, the issuer can use it to trace credentials.
Most credential schemes support blind issuing, which makes this possible.

3. The showing protocol must be extendible to provide the verifier with the
revocation token R = gr

ε,V and a proof that R and C(r) contain the same
revocation value r. Fortunately, most credential schemes already rely on zero-
knowledge proofs, and these can readily be extended to include the required
proof of equality.

Furthermore, we assume that the credential scheme authenticates the verifiers.
(This is without loss of generality. It is easy to add such a layer if it is missing.)

4 The Full Scheme

We now describe the full scheme. It expands on the intuition described in
Section 2 by explicitly stating how the revocation authority (RA) operates and
how it deals with verifiers. Section 6 shows how to implement this scheme.

The revocation authority runs the SetupRA algorithm once.

SetupRA(1�) This algorithm takes as input a security parameter 1�. It chooses
a cyclic group G of prime order q with generator g such that the DDH
problem is hard in G and q has � bits. Furthermore, it picks a hash function
H : {0, 1}∗ → G that maps strings onto this group. It outputs (G, g, q,H).
These parameters are public and known to all other parties. The RA keeps

3 For simplicity, we focus on attribute-based credentials, but this is not strictly neces-
sary. Any credential scheme that can encode the revocation value and that satisfies
the second restriction can be used with our scheme. One example would be to use
the user’s private key as the revocation value.

468 W. Lueks et al.

track of the current epoch ε, which it initializes to 0, and the initially empty
master revocation list MRL containing revoked credentials identified by their
revocation values.

Users and verifiers run the algorithms SetupU and SetupV respectively.

SetupU() The user keeps track of the current epoch ε. She also stores sets TC

of the verifiers that she has shown credential C to in this epoch. Initially,
TC = ∅.

SetupV() The verifier calls GetRevocationList to get an initial revocation list
from the revocation authority—see below. It also keeps track of the current
epoch ε.

At the beginning of a new epoch, all parties increase the current epoch ε by 1.
In particular, we assume that all users know the current epoch.4 At the start
of a new epoch, users additionally clear the list TC of verifiers that have seen
credential C in this epoch. Every verifier V runs the GetRevocationList protocol
with the revocation authority to get its revocation list for the current epoch.

GetRevocationList() This protocol is run between a verifier V and the revoca-
tion authority. The parties execute the following steps:
1. The verifier V authenticates itself to the revocation authority.5
2. The revocation authority

(a) calculates the generator gε,V = H(ε ‖ V) ∈ G for verifier V ;
(b) computes the sorted list RLε,V = sort({gr

ε,V | r ∈ MRL}); and
(c) sends RLε,V to verifier V.

Sorting the revocation lists RLε,V ensures that unlinkability is preserved for all
previous activities, even for revoked users (if |MRL| > 1).6

To revoke a credential, the Revoke protocol is run with the revocation author-
ity.

Revoke(r) When the revocation authority is asked to revoke a credential with
revocation value r, it adds r to the master revocation list MRL.

In a deployed system, it is the RA’s responsibility to decide whether to grant the
revocation request. In Section 6.1 we discuss how a credential can be revoked in
practice.

When showing a credential, the user and the verifier follow the ShowCredential
protocol. Using this protocol, the user first authenticates the verifier. Then, she
gives a revocation token to the verifier and proves that she has a corresponding
credential. The verifier checks the validity of the credential and whether it has
been revoked.
4 As we explain in Section 6.2, epochs are represented as time intervals. Users test

their knowledge of the current time against this interval to make sure the interval is
not in the past.

5 The verifier reuses the authentication mechanism in the credential scheme.
6 For this purpose, it suffices to sort on the representation of the elements. All that

matters is that the order depends only on information in the list itself.

Fast Revocation of Attribute-Based Credentials for Both Users and Verifiers 469

ShowCredential(C, V) This protocol is run between a user holding credential C
and a verifier V. It proceeds as follows.
1. The verifier authenticates itself to the user. The user aborts if the authen-

tication is unsuccessful or if V ∈ TC .
2. The user calculates the verifier (and epoch) specific generator gε,V =

H(ε ‖ V), and adds V to the list of seen verifiers TC .
3. The user sends its revocation token R = gr

ε,V to the verifier. Here, r is
the revocation value encoded into the user’s credential C(r).

4. The user and the verifier run the normal showing protocol for the user’s
credential C(r), but in addition the user proves that its revocation token
R is well-formed, i.e., that the exponent r is the same as the revocation
value encoded in the credential. Section 5 shows an example of such a
proof for Idemix.

5. The verifier checks the validity of the credential and whether R is well-
formed. Finally, it confirms that R is not on its revocation list RLε,V for
the current epoch. It aborts if any of these checks fail.

The list TC and the epoch ε uniquely determine the generators that the user has
used for credential C in this epoch. The checks above ensure that the user never
reuses a generator. Also, the user always calculates the generators herself. This
prevents the verifier from cheating with the generators.

Checking that R �∈ RLε,V can be done in constant time (on average) if the
verifier processes the revocation list RLε,V into an associative array. Some tricks
help keep the size of the revocation lists manageable—see Section 6.5.

4.1 Sketch of the Security of the Scheme

A good revocation scheme needs to satisfy two properties: (1) non-revoked cre-
dentials are still unlinkable, and (2) a revoked credential is no longer usable. Our
scheme satisfies these two properties in a reasonable security model.

To model unlinkability, the adversary can interact with credentials in the
system as often as it wants, in any epoch and as any verifier. It can also revoke
credentials. In the challenge phase, it picks a verifier, an epoch and two cre-
dentials i0 and i1 that were not revoked in any earlier epoch nor shown to it
in the chosen epoch (since our scheme does not guarantee unlinkability when
a credential is shown twice in one epoch to to the same verifier). It is shown
one of these credentials; it must determine which one. In the full version of this
paper, we show that, assuming the random oracle model and the hardness of the
Diffie-Hellman problem, it is not possible to make this distinction [21]. Because
credentials can be revoked in epochs past the challenge epoch, this implies for-
ward security.

It is also not possible for an adversary to avoid revocation. The proof in step
4 of ShowCredential binds the revocation token to the revocation value in the
credential. Since credentials cannot be forged (by assumption on the credential
scheme), the adversary cannot change its revocation value, and hence cannot
avoid revocation. A full security model and proof is in the full version of this
paper [21].

470 W. Lueks et al.

5 Showing Protocol for Idemix

In this section, we give a brief overview of the Idemix [15] attribute-based creden-
tial system and how our revocation scheme can be incorporated into it to enable
revocation without losing anonymity. We focus on the way our revocation scheme
can be incorporated and omit some of the cryptographic details.

In Idemix, a credential is a Camenisch–Lysyanskaya [11] signature (A, e, v) on
the block of messages consisting of the user’s private key skU and the attributes
a1, . . . , aL. We can easily incorporate an extra attribute containing the revoca-
tion value r into the signature:

A ≡
(

Z

Sv · RskU

K · Rr
R · ∏L

i=1 Rai
i

)1/e

(mod n),

where the credential issuer’s public key consists of the integers Z, S,RK , RR, R1,
. . . , RL, n. Both skU and r should be chosen from a large set. The construction
of the signature guarantees that the user cannot change any of the values in the
exponents. In the issuing protocol, the revocation value r and the private key
skU should be hidden.

Given a block of messages skU , r and a1, . . . , aL the validity of the signature
can be verified by checking that

Z
?≡ Ae · Sv · RskU

K · Rr
R ·

L∏

i=1

Rai
i (mod n).

When the signature is part of a credential scheme, some of these values can never
be shown to the verifier as they would make the credential linkable. Instead,
during verification the user uses the following two functions to show a credential
anonymously. First, the user randomizes the signature to ensure unlinkability.
Second, the user selectively discloses only those attributes appropriate for the
application (the private key and the revocation value are never revealed).

A user randomizes the value A of a signature (A, e, v) as follows. If (A, e, v)
is a valid signature on skU , r and a1, . . . , aL, then (Â, e, v̂) is also a valid sig-
nature where Â := A · S−� (mod n), v̂ := v + e� for any randomly chosen � (in
some large interval). This does not yet provide unlinkability by itself—e remains
unchanged—but the selective disclosure proof described below also hides the
value e.

The selective disclosure protocol is a (non-interactive) zero-knowledge proof
constructed by the user. Such a proof reveals a subset of the attributes deter-
mined by the index set D and proves that a (randomised) signature contains
these attribute values. To make revocation possible, we also include a predicate
that demonstrates that (a) the revocation token R was honestly computed using
the generator gε,V and (b) the revocation value r corresponds to this credential.

Fast Revocation of Attribute-Based Credentials for Both Users and Verifiers 471

The proof is as follows:7

PK
{

(e, v̂, skU , r, (ai)i/∈D) : Z
∏

i∈D
R−ai

i ≡ ÂeSv̂RskU

K Rr
R

∏

i/∈D
Rai

i (mod n)

∧ R = gr
ε,V in G

}
.

In the congruence above, all the exponents on the left-hand side are known to
the verifier (selectively disclosed attributes (ai)i∈D), while the exponents on the
right-hand side remain hidden and the user only proves knowledge of them.
The above proof realizes the user’s side of steps 4 and 5 in the ShowCredential
algorithm—see Section 4.

6 Implementation

We now address some implementation challenges when using our revocation
scheme.

6.1 Obtaining Revocation Information

To revoke a credential, one needs to know its revocation value. However, this
value also introduces a privacy risk: the party that stores it could revoke the
credential and hence detect its use. Many revocation schemes suffer from this
problem, see Section 7. We discuss three options for storing and using revocation
values.

In all cases, the user herself generates the revocation value. The issuer will
include this revocation value in the credential without ever learning its value.8

Option 1: Only the user knows the revocation value. The privacy of the credential
owner is best protected when only she knows the revocation value. When she
loses her credential, she reveals the revocation value to the RA, who then uses
this to revoke the credential. To get even better privacy, she can calculate the
future revocation tokens herself. This is computationally intensive, but lowers
the trust in the RA significantly.

When a smart card acts on behalf of the user, there is another difficulty to
overcome: how does the user access the revocation values when the card is lost
or stolen? We propose to use a trusted terminal to print the (card-generated)
revocation values (for example, as a QR code) when the credential is issued. The
user can then store the revocation values separately from the card and use them
to revoke credentials.
7 We use a simplified version of the Camenisch–Stadler notation [13] for zero-

knowledge proofs of knowledge. Only the prover knows the values in front of ‘:’,
other values are also known by the verifier. We also omited the range proofs; see the
Idemix specification [15] for details.

8 The method for encoding these attributes is similar to the ‘blind’ encoding of the
user’s private key in a credential. Idemix and U-Prove support this.

472 W. Lueks et al.

Option 2: a trusted third party stores revocation information. A second option
is for a (possibly distributed) trusted third party (TTP) to store the revocation
values. During issuance, the user creates not only a revocation value, but also a
verifiable encryption [12] of the revocation value (for example, Idemix supports
this). The user proves that the TTP can decrypt its revocation value, and the
issuer verifies this proof before issuing the credential to the user. Hence, the user
cannot avoid revocation later on.

In theory, this allows the TTP to revoke a credential when it is abused.
However, the credentials do still provide anonymity, so it is not easy to pinpoint
the abuser. This is where the final option comes in.

Option 3: revocation information is escrowed during showing. For the third
option, the user escrows the revocation value during a showing proof using veri-
fiable encryption. When abuse is detected, the ciphertext can be used to recover
the revocation value and thus revoke the user.

The latter two solutions do reduce the efficiency of the underlying credential
scheme, and introduce a lot of trust in the third party. In practice, one has to
weigh whether it is better to accept some abuse or to decrease efficiency and
privacy.

6.2 Instantiating Epochs

To keep the protocol description simple, we assumed that all parties are aware
of the current epoch. To achieve this, epochs are, in practice, based on time.
The revocation authority determines the length of an epoch, by specifying its
start time ts and end time te, so the current epoch ε is modelled by the tuple
ε = (ts, te).

In step 2 of the ShowCredential protocol, the user checks that ts ≤ t ≤ te
where t is the current time. If this equation is not correct, the user aborts. In
this way, users always use the correct generator.

Embedded Devices. The above description does not suffice for smart cards,
our target platform, as they lack a built-in clock, and thus have no notion of time.
Nevertheless, an embedded device must also be able to calculate the generators
itself, to prevent a verifier from adversarially choosing them.

We propose the following solution, similar to the method used in Machine
Readable Travel Documents, like the new European passport [7]. The embedded
device keeps track of an estimate t∗ of the current time. The estimate is always
at or before the current time. Every time the embedded device interacts with a
verifier, it

1. receives a description of the current epoch (ts, te) signed by the RA;
2. confirms that the epoch (ts, te) is possible given its time estimate t∗ by check-

ing that t∗ ≤ te (this is done in step 1 of the ShowCredential protocol); and
3. updates its estimate t∗ ← max(ts, t∗) if the signature is valid.

Fast Revocation of Attribute-Based Credentials for Both Users and Verifiers 473

The signature by the revocation authority on the epoch makes it impossible
for verifiers to trick the device into creating a too futuristic estimate t∗ of the
current time.

6.3 How to Choose the Epochs

Epochs determine during what period a credential is linkable. Ideally, at most
one showing happens at each verifier within an epoch. The period between two
showings wildly differs among applications. For example, a citizen credential may
be used only a couple of times a year for filing tax returns with the government,
while it may be used weekly to prove having reached legal drinking age in a pub
or a store. A credential for accessing an online newspaper subscription could
even be used daily.

At the same time, computing revocation lists for every epoch can become
computationally intensive and transferring uses bandwidth. Therefore, we pro-
pose not to have a global epoch, but instead create epochs per verifier. The length
of the epoch should be chosen in such a way that no credential is normally reused
within the epoch for that particular verifier.9 Using time to instantiate epochs
(as described in Section 6.2) allows us to use verifier-specific epochs easily.

6.4 Experiments

We did two experiments to prove the validity of our scheme: we estimated the
performance impact on an existing smart card implementation and tested the
impact on the revocation authority. As the extra work for the verifier is extremely
small, we did not measure its overhead.

Fast Smart Card Implementation. We estimate the efficiency of this scheme
based on the work by Vullers and Alpár [29] in the IRMA project. To assess the
performance of the implementation, we compare it to its version without revo-
cation. As described in Section 5, we add an extra attribute to every credential
to hold the revocation value.

As group G, we use the quadratic residues modulo a 1024-bit safe prime (this
is somewhat small, but matches the security level used in the implementation
of Vullers and Alpár [29]). This group is cyclic and the DDH problem is hard.
Furthermore, hashing onto this group is easy. It takes five 256-bit hash calcu-
lations (to get a statically uniformly random element) and a squaring (which
can be precomputed as part of the revocation value). Calculating a 256-bit hash
takes about 10 milliseconds. We estimate a total extra time of 390 milliseconds
for including the revocation value as an attribute, generating the revocation

9 Note that when a user does use her credential more often within the same epoch
a lot of anonymity remains. The uses within this epoch are linkable, but they are
still unlinkable to uses in other epochs or at other verifiers. In particular, this will
usually not reveal the user’s identity.

474 W. Lueks et al.

token and adding the equality proof [26]. This is very practical. Since showing a
credential takes 1.0–1.5 seconds, the overhead is limited too.

We did not implement the verification of the certificate for the epoch yet,
but we believe that the cost of doing this to be approximately 150 milliseconds.

Fast Revocation List Calculation. The main remaining burden of the revo-
cation scheme is on the revocation authority, which has to generate revocation
lists for all verifiers, and has to do so for each epoch. This can amount to a
large number of exponentiations. However, the reader should be aware that the
amount of work the revocation authority has to do per generator (i.e., per epoch
and per verifier) equals the work that a verifier has to do for every verification
in the standard VLR setting.

We implemented the calculation of the revocation list to confirm that this
approach is valid. The efficiency of this calculation depends on the group. For
the Idemix setting, we created a (non-optimized) implementation that calculates
about 7 500 revocation tokens per second. However, one can do much better, as
is shown by our optimized implementation for the ECC library by Bernstein
et al. [2]. This implementation calculates about 50 000 revocations per second.
These results show that even for large scale systems revocation lists can be
generated sufficiently fast.

6.5 The Size of a Revocation List

At the start of every epoch, verifiers retrieve new revocation lists. It might seem
that when the revocation lists are big, the storage and transfer costs become
prohibitive. This is not the case. Since our scheme does not do group operations
on revocation tokens, it suffices to store their hashes. Furthermore, if one is
willing to accept a false positive rate of 10−7, Bloom filters [3] reduce the storage
requirements by another order of magnitude. This allows, for example, 250 000
elements to be stored in only 1 MiB.

7 Related Work

Revocation has been widely studied in the literature; we refer to, for example,
Lapon et al. [17] for a nice overview of current revocation techniques for attribute-
based (Idemix) credentials. Traditional revocation techniques, like CRLs and
OCSPs, require credentials to have a unique identifier that is always visible to
the verifier. A certificate revocation list (CRL) [14] is a list of revoked credential
identifiers, published by the issuer. Alternatively, the verifier can ask the issuer if
a credential is still valid using the Online Certificate Status Protocol (OCSP) [27].
Both situations require the credential to be recognizable, which is undesirable for
ABCs. However, revocation is fast: there is no extra work required on the side of
the user, and the verifier can test validity in constant time.

Domain-specific pseudonyms [5,15,16] only slightly improve the situation:
instead of being globally linkable, different uses are only linkable by the same

Fast Revocation of Attribute-Based Credentials for Both Users and Verifiers 475

Table 1. We compare CRLs [14], accumulators [8,10,24], traditional VLR schemes [1,
4,6], VLR schemes with backward unlinkability (VLR-BU) [22], blacklistable anony-
mous credentials (BLAC) [28], and our scheme. We compare the complexity of the
operations and data transfers. A proving time of 1 means that it is constant, while a
proving time of |RL| means that it scales linearly with the size of the revocation list.
Of all the constant-time proving schemes, the accumulator has the biggest overhead.
Our scheme is the only privacy-friendly scheme that has constant-time proving and
verification while users do not need to receive updates.

CRL Accumulators VLR VLR-BU BLAC Our scheme

User can be offline � × � � � �
Data to verifier

per epoch |RL| 1 |RL| |RL| |RL| |RL|
per update 1 1 1 1 1 1

Proving (time) 1 1 1 1 |RL| 1

Verifying (time) 1 1 |RL| |RL| |RL| 1

Security - + +/- + + +

verifier, but not across different verifiers. We believe this still weakens the unlink-
ability too much.

We now focus our attention on solutions that do offer sufficient privacy guar-
antees for the user. Table 1 compares these schemes with our scheme and the
CRL scheme. A digital accumulator is a constant-sized representation of a set of
values. Every value in the accumulator comes with a witness, which enables effi-
cient membership checks. Camenisch and Lysyanskaya [10] proposed an updat-
able accumulator that can be used for revocation. A credential is unrevoked as
long as it appears on the whitelist, represented by the accumulator. Another
approach is to accumulate revoked credentials to create a blacklist. A credential
is unrevoked if it is not on this blacklist [19,24].

Accumulators change. For whitelists, this is after an addition; for blacklists,
this is after a revocation. Thus users need to receive updates (for schemes like
Camenisch et al. [8], these updates are public and can be provided by the verifier)
and process them, inducing extra load on carriers like smart cards. Additionally,
the (non-)membership proofs are expensive. Lapon et al. [17] show an overhead
of 300% in the showing protocol. Other schemes, like Libert et al. [20] are equally
inefficient, making them impractical.

Where accumulators place the load on the users—who need to get new
witnesses after revocations or additions—and the revocation authority—who
needs to create those witnesses—verifier-local revocation (VLR) [1,4,6] places
the majority of the load at the verifier. As we saw in Section 2, the verifier needs
to do a check that is linear in the length of the revocation list, however, apart
from sending the extra revocation token, the extra work for the user is minimal.

A downside of traditional VLR schemes is that once a user is revoked, all of
its transactions (also past ones) become linkable. Nakanishi and Funabiki [22]
proposed a VLR scheme that is backward unlinkable, like our scheme. Similar to

476 W. Lueks et al.

our scheme, they create different revocation tokens per epoch, so that verifiers
cannot use the revocation token for the current epoch and apply it to earlier
ones. However, their scheme is still linear in the number of revoked users, and
needs to perform a pairing operation per revoked user. This makes it less efficient
than previous and our solutions. The security of their scheme hinges on the fact
that the per-epoch revocation tokens are maintained by a trusted party. It thus
requires the same trusted party as our scheme does.

Finally, blacklistable anonymous credentials (BLAC) [28] take a different
approach to revocation: misbehaving users can be blacklisted without requiring
a TTP to provide a revocation token. In every transaction, the user provides a
ticket, similar to our revocation token, that is bound to the user. To blacklist
a user, the verifier places this ticket on the blacklist. In the second step of
the authentication, the user proves that her ticket is not on the blacklist. The
complexity of this proof is linear in the number of items on the blacklist, so this
scheme places a high load on the user. Even if a user’s credential is revoked, the
verifier does not learn her identity, nor can the verifier trace her.

8 Discussion and Conclusion

Our revocation scheme is fast. It can be combined with ABC showing protocols
and can be fully implemented on a smart card. It incurs minimal overhead,
while at the same time the revocation check can be performed efficiently by the
verifier. We created a security model for our scheme and proved that our scheme
is forward secure as long as the revocation authority is trusted. The proofs are
included in the full version of this paper [21]. We showed that we can remove
this trust assumption when the users calculate the revocation tokens themselves.

To obtain this speedup, we traded some traceability, but with an appropriate
choice of epoch length this should not be a problem in practice. The fact that
this enables us to create a revocation system that is truly practical makes this
a worthwhile trade-off.

We believe our scheme is a valuable contribution to making large scale
attribute-based credentials possible. It would be interesting to investigate pro-
tocols that further reduce the trust assumption on the revocation authority.

References

1. Ateniese, G., Song, D.X., Tsudik, G.: Quasi-Efficient revocation in group sig-
natures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer,
Heidelberg (2003)

2. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2(2), 77–89 (2012)

3. Bloom, B.H.: Space/Time Trade-offs in Hash Coding with Allowable Errors.
Communications of the ACM 13(7), 422–426 (1970)

4. Boneh, D., Shacham, H.: Group signatures with verifier-local revocation. In: CCS
2004, pp. 168–177. ACM (2004)

Fast Revocation of Attribute-Based Credentials for Both Users and Verifiers 477

5. Brands, S., Demuynck, L., De Decker, B.: A practical system for globally revok-
ing the unlinkable pseudonyms of unknown users. In: Pieprzyk, J., Ghodosi, H.,
Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp. 400–415. Springer, Heidelberg
(2007)

6. Brickell, E., Camenisch, J., Chen, L.: The DAA scheme in context. In: Mitchell,
C.J. (ed.) Trusted Computing, Professional Applications of Computing, vol. 6, ch.
5, pp. 143–174. Institution of Electrical Engineers (2005)

7. BSI: Advanced security mechanisms for machine readable travel documents -
extended access control (eac). Tech. Rep. TR-03110, Bundesamt für Sicherheit
in der Informationstechnik (BSI), Bonn, Germany (2006)

8. Camenisch, J., Kohlweiss, M., Soriente, C.: An accumulator based on bilinear maps
and efficient revocation for anonymous credentials. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. LNCS, vol. 5443, pp. 481–500. Springer, Heidelberg (2009)

9. Camenisch, J., Krontiris, I., Lehmann, A., Neven, G., Paquin, C., Rannenberg, K.,
Zwingelberg, H.: D2.1 Architecture for Attribute-based Credential Technologies.
Tech. rep., ABC4Trust (2011)

10. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: Yung, M. (ed.) CRYPTO 2002. LNCS,
vol. 2442, pp. 61–76. Springer, Heidelberg (2002)

11. Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 2002. LNCS, vol. 2576, pp. 268–289.
Springer, Heidelberg (2003)

12. Camenisch, J., Shoup, V.: Practical verifiable encryption and decryption of discrete
logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144.
Springer, Heidelberg (2003)

13. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer,
Heidelberg (1997)

14. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile. RFC 5280 (Proposed Standard), updated by RFC 6818, May 2008

15. IBM Research Zürich Security Team: Specification of the Identity Mixer crypto-
graphic library, version 2.3.4. Tech. rep., IBM Research, Zürich, February 2012

16. Kuty�lowski, M., Krzywiecki, �L., Kubiak, P., Koza, M.: Restricted identification
scheme and Diffie-Hellman linking problem. In: Chen, L., Yung, M., Zhu, L. (eds.)
INTRUST 2011. LNCS, vol. 7222, pp. 221–238. Springer, Heidelberg (2012)

17. Lapon, J., Kohlweiss, M., De Decker, B., Naessens, V.: Analysis of revocation
strategies for anonymous idemix credentials. In: De Decker, B., Lapon, J., Naessens,
V., Uhl, A. (eds.) CMS 2011. LNCS, vol. 7025, pp. 3–17. Springer, Heidelberg
(2011)

18. Lehmann, A., Bichsel, P., Bichsel, P., Bruegger, B., Camenisch, J., Garcia, A.C.,
Gross, T., Gutwirth, A., Horsch, M., Houdeau, D., Hühnlein, D., Kamm, F.M.,
Krenn, S., Neven, G., Rodriguez, C.B., Schmölz, J., Bolliger, C.: Survey and Analy-
sis of Existing eID and Credential Systems. Tech. Rep. Deliverable D32.1, FutureID
(2013)

19. Li, J., Li, N., Xue, R.: Universal accumulators with efficient nonmembership proofs.
In: Katz, J., Yung, M. (eds.) ACNS 2007. LNCS, vol. 4521, pp. 253–269. Springer,
Heidelberg (2007)

20. Libert, B., Peters, T., Yung, M.: Group signatures with almost-for-free revoca-
tion. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417,
pp. 571–589. Springer, Heidelberg (2012)

478 W. Lueks et al.

21. Lueks, W., Alpár, G., Hoepman, J.H., Vullers, P.: Fast revocation of attribute-
based credentials for both users and verifiers. Cryptology ePrint Archive, Report
2015/237 (2015). http://eprint.iacr.org/

22. Nakanishi, T., Funabiki, N.: Verifier-local revocation group signature schemes with
backward unlinkability from bilinear maps. In: Roy, B. (ed.) ASIACRYPT 2005.
LNCS, vol. 3788, pp. 533–548. Springer, Heidelberg (2005)

23. Naumann, I., Hogben, G.: Privacy features of European eID card specifications.
Network Security 2008(8), 9–13 (2008)

24. Nguyen, L., Paquin, C.: U-prove designated-verifier accumulator revocation exten-
sion. Tech. Rep. MSR-TR-2014-85, Microsoft Research, June 2014

25. OECD: National Strategies and Policies for Digital Identity Management in OECD
Countries (2011)

26. de la Piedra, A., Hoepman, J.-H., Vullers, P.: Towards a full-featured implemen-
tation of attribute based credentials on smart cards. In: Gritzalis, D., Kiayias,
A., Askoxylakis, I. (eds.) CANS 2014. LNCS, vol. 8813, pp. 270–289. Springer,
Heidelberg (2014)

27. Santesson, S., Myers, M., Ankney, R., Malpani, A., Galperin, S., Adams, C.: X.509
Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP. RFC
6960 (Proposed Standard), June 2013

28. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: Blacklistable Anonymous Cre-
dentials: Blocking Misbehaving Users without TTPs. In: CCS 2007, pp. 72–81.
ACM (2007)

29. Vullers, P., Alpár, G.: Efficient selective disclosure on smart cards using idemix. In:
Fischer-Hübner, S., de Leeuw, E., Mitchell, C. (eds.) IDMAN 2013. IFIP AICT,
vol. 396, pp. 53–67. Springer, Heidelberg (2013)

http://eprint.iacr.org/

Chaotic Chebyshev Polynomials Based
Remote User Authentication Scheme

in Client-Server Environment

Toan-Thinh Truong1(B), Minh-Triet Tran1,
Anh-Duc Duong2, and Isao Echizen3

1 University of Science, VNU-HCM, Ho Chi Minh City, Vietnam
{ttthinh,tmtriet}@fit.hcmus.edu.vn

2 University of Information Technology, VNU-HCM, Ho Chi Minh City, Vietnam
ducda@uit.edu.vn

3 National Institute of Informatics, Tokyo City, Japan
iechizen@nii.ac.jp

Abstract. Perfect forward secrecy is considered as the most important
standard to evaluate a strong authentication scheme. There are many
results researched to achieve this property without using hard problems.
Recently, the result of Chang et al has some advances such as, the cor-
rectness of schemes mutual authentication and session key agreement
demonstrated in BAN-logic or the overheads reduction of system imple-
mentation. However, in this paper, we prove that their scheme is still vul-
nerable to impersonation attacks and session key leakage. To overcome
those limitations and be practical, we use different notion to propose time
efficient scheme conducted in experiment. Our proposed method can be
applied for remote user authentication in various scenarios, including
systems with user authentication using mobile or wearable devices.

Keywords: Authentication · Anonymity · Impersonation · Session key ·
Chaotic chebyshev polynomials

1 Introduction

Nowadays, wireless communication is the necessary fundamental. With non-stop
growth of handheld and wearable devices, there are many online services widely
deployed on the Internet. Customers demand an immediate response, privacy
and cryptography in their transactions with service providers. Therefore, incor-
porating mathematical results into user authentication schemes is an inevitable
trend.

User authentication is the first task which any online service needs to per-
form. It is said that two basic standards a scheme should achieve are the security
and time efficiency. However, simultaneously obtaining those goals is a difficult
mission. As for security, there are many criteria and one of them is exactly user
identification. Basic method [1] is storing a verification table including records
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 479–494, 2015.
DOI: 10.1007/978-3-319-18467-8 32

480 T.-T. Truong, et al.

(identity/password) on server side. When a user logins, the server checks the
existence of identity and password in the table. Although simple, this method
is vulnerable to stolen verification attack. Furthermore, providing static identity
through common channel is not suitable for some applications, such as mobile
pay-TV [2] or online voting. To overcome those limitations, some authors pro-
posed the notion of dynamic identity [3–5], but these results still have some
drawbacks such as, symmetric message easy to replay attack or poor design
easy to information injection attack. In general, most schemes employ one-way
hash function which does not provide scheme with strong security. To enhance
security, however, a method of using hard problems is more and more given
consideration.

Typically, RSA [6] is one of popular methods incorporated into user authen-
tication scheme, but main disadvantage is using certificates leading to additional
computations to its verification. Clearly, this is not suitable for resource-limited
handheld or wearable devices. Some authors publish the results [7–9] based on
elliptic curve are considered reasonable for time efficiency and security. How-
ever, those results use a special kind of hash function, Map-To-Point which has
non-negligible cost and is not standardized. Also, Chebysev polynomial is given
consideration [10,11] and its semi-group property is widely applied in global
mobile networks environment [12] or public key based cryptosystems [13]. There
are some algorithms [14] used in public key cryptosystem based on this approach.
It is said that authentication scheme using Chebysev polynomial is better way
to keep the tradeoff between time efficiency and security.

In 2013, Chang et al proposed the time efficiency scheme [15] with one-way
hash assumption about collision resistant. Besides, the correctness of the scheme
is proved based on BAN-logic [16]. Their scheme truly has some successes, for
example, providing mutual authentication, achieving session key establishment
and without using time-synchronized mechanism. However, their basic limita-
tions are that challenge is only derived from server side and distribution of
common secret information to all valid members. In this paper, we prove that
Chang et al.’s scheme does not resist impersonation attack and fail to protect ses-
sion key. Furthermore, it does not provide users anonymity in their transactions.
Next, we apply semi-group of Chevbysev polynomial for tradeoff balance and
session key protection in generic client-server environment in which this app-
roach has not been considered. In addition, our design has challenges derived
from two parties, client and server, to make the fairness in transaction. Also,
our scheme is proven correct according to BAN-logic. It is said that our result
truly is enhanced security and efficiency in practice, including systems with user
authentication using handheld or wearable devices to create smart interactive
environments.

The remainder of this paper is organized as follows: section 2 quickly reviews
Chang et al.’s scheme and discusses its limitations. Then, proposed scheme is
presented in section 3, while section 4 discusses the security and efficiency of
proposed scheme. Finally, our conclusions are presented in section 5.

Chaotic Chebyshev Polynomials Based Remote User Authentication Scheme 481

2 Review and Cryptanalysis of Chang et al.’s Scheme

In this section, we review Chang et al.’s scheme [15] and show that their scheme is
vulnerable to impersonation attack. Besides, it cannot provide user’s anonymity.

2.1 Review of Chang et al.’s Scheme

In this subsection, we review Chang et al.’s scheme. Their scheme includes four
phases: registration phase, authentication phase, password change phase, and
lost card revocation phase. Below are some important notations in this scheme:

– U i: i th user.
– id i: U i’s identity.
– pw i: U i’s password.
– S : Remote server.
– ids: S ’s identity.
– x, y : The secret keys of remote server.
– h(.): A cryptographic one-way hash function.
– sni: Smart card’s serial number.
– SK : Common session key.
– SC : Smart-card.
– ⊕: exclusive-or operation.
– ‖: concatenation operation.

Registration Phase. U i freely chooses a fixed length id i and pw i. Then U i

has to submit his/her id i, pw i to S through a secure channel. When receiving
U i’s message, S performs following steps.

– S randomizes 128-bit sized integer r i. Then, S computes R1 = h(id i ‖ x ‖
r i), R2 = gxy mod p, where p is a large prime number and g is a primitive
element in Z ∗

p, and R3 = h(id i ‖ R2) ⊕ h(pw i).
– S issues a SC with a 32-bit sized sni, where sni has a specific format. Then,

S combines sni with U i’s id i as SID i = (id i ‖ sni).
– Finally, S saves R1, R2, R3, SID i and h(.) into SC and send it to U i via a

secure channel.

In this registration phase, we see that there are some problems: Because U i

sends plain pw i to S, S knows user’s true password and may try using it in
another system. Furthermore, using two secret keys x and y is more security,
but we should use only one with high entropy for enough security. Therefore, we
will change this in our registration.

Authentication Phase. When U i accesses S, U i inserts SC into terminal
device and provides id i and pw i. Then SC performs following steps.

– SC computes C 1 = R3 ⊕ h(pw i) and V 1 = R1 ⊕ C 1.

482 T.-T. Truong, et al.

– Next, SC randomly generates a 160-bit sized integer n1, then computes and
DID i = h(R2 ‖ n1) ⊕ SID i.

– Finally, SC sends m1 = {DID i, V 1, n1} to S via common channel.
– Upon receiving m1 from U i, S re-computes SID i = DID i ⊕ h((gxy mod p) ‖

n1). Then, S retrieves id i and sni and checks their format. If they are valid,
S continues to compute R∗

1 = V 1 ⊕ h(id i ‖ (gxy mod p)) and randomly
generates 160-bit sized integer n2.

– Next, S computes V 2 = h(R∗
1 ‖ ids ‖ n1), V 3 = h(h(id i ‖ (gxy mod p)) ‖

n1) ⊕ n2 and send m2 = {ids, V 2, V 3} to U i via common channel.
– Upon receiving m2 from S, SC computes V ∗

2 = h(R1 ‖ ids ‖ n1) and check
if V ∗

2 ?= V 2. If it holds, S is successfully authenticated; otherwise, the
connection is terminated.

– SC obtains random value n2 = V 3 ⊕ h(C 1 ‖ n1) and generates SK = h(n1

‖ SID i ‖ R2 ‖ n2).
– Finally, SC computes V 4 = h(SK ‖ (n2 + 1)) and send m4 = {V 4} to S

via common channel.
– After receiving m4 from U i, S computes SK = h(n1 ‖ SID i ‖ (gxy mod p)

‖ n2) and V ∗
4 = h(SK ‖ (n2 + 1)). Next, S check if V ∗

4 ?= V 4. If it holds,
U i is successfully authenticated. Otherwise, the connection is terminated.

In their authentication phase, we see that only S generates random value
n2 to challenge U i, while U i’s n1 is opened in a common channel. This design
will limit random value’s power in scheme. Furthermore, user’s identity can be
leaked because their scheme distributes gxy mod p to all users. We will analyze
in next section.

Password Change Phase. When U i wants to change his/her pw i, U i can
perform following steps.

– U i inserts SC into another terminal device, and enters id i, pw i.
– SC computes Q1 = h(id i ‖ R2) and Q∗

1 = R3 ⊕ h(pw i) and compares with
each other. If Q1 = Q∗

1, SC goes to next step; otherwise, the procedure is
terminated.

– SC computes R
′
3 = h(id i ‖ R2) ⊕ h(pw i) ⊕ h(pw i) ⊕ h(pw

′
i) and replace

R3 with R
′
3.

In their password change phase, we see that password update is performed
without interacting with S. In our scheme, we will inherit this idea from [15].

Lost Card Revocation Phase. When U i discovers SC ’s information is leaked,
U i can request S to revoke SC via a secure channel. When receiving revocation
request, S validates U i by checking U i’s secret personal information. After suc-
cessfully validation, S saves sni of revoked SC in the database and issue a new
SC with new sn

′
i for U i. Finally, U i chooses a new pw i similarly to the steps in

registration phase.

Chaotic Chebyshev Polynomials Based Remote User Authentication Scheme 483

2.2 Cryptanalysis of Chang et al.’s Scheme

In this subsection, we present our results on Chang et al.’s scheme. We demon-
strate that their scheme is vulnerable to impersonation and session-key stolen
attacks. Besides, their scheme does not provide user’s anonymity.

Inability to Protect User Anonymity. In Chang et al.’s scheme, we see that
another user sends m1 = {DID i, V 1, n1}. However, important information (gxy

mod p) is distributed to all valid users. Hence, anyone who is legitimate user can
steal other users’ identity by performing following steps:

– Malicious user captures m1 = {DID i, V 1, n1}
– Next, he/she obtains SID i= DID i ⊕ h((gxy mod p) ‖ n1)
– Finally, he/she extracts id i and sni from SID i and knows who is authenti-

cating with S.

Clearly, their scheme does not defend user’s anonymity against attackers.

Impersonation Attack. Because of inappropriate design, Chang et al.’s scheme
is vulnerable to server and user impersonation attack. First of all, we present
the steps which another malicious user employs to masquerade as the server:

– Similarly to above steps, malicious user obtains another user’s id i and sni.
– With id i, he/she computes R∗

1 = V 1 ⊕ (id i ‖ (gxy mod p)) and V ∗
2 = h(R∗

1

‖ idS ‖ n1), which V 1 and n1 belongs to m1 = {DID i, V 1, n1} which is
captured by him/her.

– Next, he/she generates a random value n∗
2 and computes V ∗

3 = h(h(id i ‖
(gxy mod p)) ‖ n1) ⊕ n∗

2.
– Finally, he/she sends m∗

2 = {idS , V ∗
2, V

∗
3} to user.

Upon receiving m∗
2, U i re-computes V 2 = h(R1 ‖ idS ‖ n1) and compares it

with V ∗
2. Clearly, they are equal and malicious user successfully impersonates S.

Furthermore, he can impersonate another U i authenticating with S. Following
are some steps to masquerade as legitimate user.

– Malicious user captures m1 = {DID i, V 1, n1}, he/she extracts SID i by
computing SID i = DID i ⊕ h(R2 ‖ n1), where R2 is his/her smartcard’s
information.

– Afterwards, he/she generates a random value n∗
1 and re-computes DID∗

i =
h(R2 ‖ n∗

1) ⊕ SID i.
– Next, he/she sends m∗

1 = {DID∗
i , V 1, n1} to S.

– After receiving m∗
1, S computes and re-sends m2 = {idS , V 2, V 3} to

him/her. In this time, he/she computes n2 = V 3 ⊕ h(h(id i ‖ R2) ‖ n∗
1),

where id i is obtained by him/her.
– With n2, he/she computes SK ∗ = h(n∗

1 ‖ SID i ‖ R2 ‖ n2) and V ∗
4 = h(SK ∗

‖ (n2 + 1)).
– Finally, he/she sends m∗

3 = {V ∗
4} to S.

After receiving m∗
3, S computes V 4 and compares it with V ∗

4. Clearly, they
are equal and malicious user successfully impersonate another legitimate U i.

484 T.-T. Truong, et al.

Session Key Attack. Another malicious user can observe outside and compute
common session-key SK by performing following steps:

– First of all, he captures three packages m1, m2 and m3 in common channel.
– Next, he computes SID i = DID i ⊕ h((gxy mod p) ‖ n1) and extracts id i.
– Afterwards, he obtains n2 by performing n2 = V 3 ⊕ h((id i ‖ R2) ‖ n1).
– Finally, he computes SK = h(n1 ‖ SID i ‖ R2 ‖ n2).

Clearly, all data encrypted with session-key will be revealed.

3 Proposed Scheme

At first, we depict Chebysev polynomial [17] which is our scheme’s security
foundation. Chebysev polynomial has the form: Tn(x) = cos(n * arccos(x)),
where n is an integer degree and x ∈ [-1, 1]. Besides, we have its recurrent
formulas:

– T 0(x) = 1
– T 1(x) = x
– ...
– Tn+1(x) = 2xTn(x) - Tn−1(x) and n ≥ 2.

Moreover, our scheme utilizes polynomial’s semi-group property: T q(Tw(x)) =
cos(q * arccos(cos(w * arccos(x)))) = cos(qw * arccos(x)) = cos(wq * arccos(x))
= cos(w * arccos(cos(q * arccos(x)))) = Tw(T q(x)).

Next, we propose an improved scheme that eliminates aforementioned secu-
rity problems. Before presenting each phase, we present general ideas in our
scheme. In registration phase, our main objective includes providing authenti-
cation key h(X S ‖ e) and storing h(id i) ⊕ X S in server’s database to check
identity’s validity. Especially, random value e helps to create different keys at
different time. In login and authentication phases, we use two random values
RU and RS combined with Chebysev polynomials for challenge. In addition,
we employ three-way challenge-response handshake technique to better resist
replay and impersonation attacks [9]. Eventually, it is essential to obtain SK for
encrypting data transmitted between user and server after successfully authen-
tication phase. Our scheme is also divided into five phases of registration, login,
mutual authentication, password update and lost card revocation.

3.1 Registration Phase

Before presenting this phase, we suggest three conditions which registration
phase should satisfy: Firstly, user’s password should be concealed from the server.
In our scheme, although the server generates user’s password, the user will change
his/her password after receiving it from the server. Secondly, the server must pro-
vide different authentication keys at different time. By using random value, our
scheme completely achieves this requirement. Thirdly, the server should store

Chaotic Chebyshev Polynomials Based Remote User Authentication Scheme 485

user’s identity for later checking in next phases such as login or authentication
phase. Our scheme is designed to achieve these fundamentals.

When U i registers to S, he/she must submit his/her chosen id i via a secure
channel. When receiving this information, S performs following steps:

1. S generates pw i and random value e.
2. Next, S computes authentication key K = h(X S ‖ e) , masked key M = K

⊕ h(id i ‖ pw i) and confirmation L = h(K ‖ id i ‖ pw i), where X S is S ’s
master key.

3. Afterwards, S stores h(id i) ⊕ X S in S ’s database for later checking.
4. Finally, S sends {pw i, SC (M, L, e, h(.), T s(x))} via a secure channel, where

{x, T s(x)} is S ’s public information.

After receiving SC and pw i, U i updates pw i via our password-update phase.

3.2 Login Phase

In login phase, checking user’s identity and password must be performed at client
side to prevent the attackers from overwhelming the server with a false identity
and password in order to busy the server for a long time. Besides, login-message
should be dynamic at different time to protect user’s information especially
identity. Our login phase is also designed to satisfy these requirements.

When U i inputs his/her id i and pw i to login S, then SC performs:

1. SC computes K = M ⊕ h(id i ‖ pw i) and L∗ = h(K ‖ id i ‖ pw i).
2. Next, it compares L∗ with L. If they are the same, id i and pw i are correct

and SC goes to next steps; otherwise, it terminates the session.
3. Afterwards, SC generates a random large integer rU , computes RU = T rU

(x),
DID i = id i ⊕ h(RU ‖ K) and R2 = h(K ‖ id i ‖ RU).

4. Finally, it sends {e, RU , R2, DID i} to S via common channel.

3.3 Authentication and Session Key Agreement Phase

In authentication phase, both user and server must challenge each other to prove
their legitimacy. Additionally, they should obtain common session-key after suc-
cessful authentication. Our phase has these two important features.

In this session, after receiving U i’s {e, RU , R2, DID i} in login phase. S
performs the steps to authenticate U i.

1. S computes h(X S ‖ e) and extracts id i = DID i ⊕ h(RU ‖ h(X S ‖ e)).
2. Next, S check id i by performing h(id i) ⊕ X S , and searches its existence in

S ’s database. If it exists, id i is valid; otherwise, S terminates the session.
3. Afterwards, S computes R∗

2 = h(h(X S ‖ e) ‖ id i ‖ RU) and compares R∗
2

with R2. If they are the same, S goes to next step; otherwise, S terminates
the session.

4. S generates rS , computes RS = T rS
(x), SK = h(T rS

(RU) ‖ h(X S ‖ e) ‖
id i) and R4 = h(h(X S ‖ e) ‖ id i ‖ SK).

486 T.-T. Truong, et al.

5. Finally, S sends {RS , R4} to U i via common channel.
6. After receiving S ’s {RS , R4}, U i re-computes SK = h(T rU

(RS) ‖ K ‖ id i),
R∗

4 = h(K ‖ id i ‖ SK) and compares R∗
4 with R4. If they are the same, U i

successfully authenticates S.
7. U i computes R5 = h(SK) and sends to S via common channel.
8. After receiving U i’s {R5}, S re-computes R∗

5 = h(SK) and compares it with
R5. If they are the same, S successfully authenticates U i.

3.4 Password Update Phase

When U i wants to change pw i, U i performs:

1. U i inserts SC and inputs id i and pw i.
2. Next, SC computes K = M ⊕ h(id i ‖ pw i) and L∗ = h(K ‖ id i ‖ pw i).
3. Afterwards, SC compares L∗ with L stored in it. If they are the same, SC

accepts user’s request; otherwise, it terminates the session.
4. U i inserts new password pw inew. Then, SC computes M new = K ⊕ h(id i ‖

pw inew) and Lnew = h(K ‖ id i ‖ pw inew)
5. Finally, SC replaces L, M with Lnew, M new.

3.5 Lost Card Revocation Phase

If U i losts his/her SC, U i must notify S. Then, S will re-issue new SC with the
old U i’s id i.

1. U i re-submits id i and request-re-issue-smart-card to S via a secure channel.
2. After receiving U i’s request, S computes h(id i) ⊕ X S and searches its exis-

tence in S ’s database. If it exists, S accepts U i’s request; otherwise, S ter-
minates the session.

3. Next, S generates a new random value enew and performs steps which are
the same as registration phase’s. Finally, S re-issues new SC to U i via a
secure channel.

4 Security and Efficiency Analysis

In this section, we analyze our scheme on two aspects: security and efficiency.
Before further analysis, we introduce three basic computational assumptions
which proposed scheme employs, that are one-way hash function ([15] for more
details), Chebysev discrete logarithm problem (CDLP) and Diffie-Hellman prob-
lem (CDHP)([11,18] for more details).

– Chebysev Discrete Logarithm Problem: Given x ∈ [-1, 1], Tn(x), where n, s
∈ N, the discrete logarithm problem is to find unknown degree n.

– Chebysev Diffie-Hellman Problem: Given x ∈ [-1, 1], T q(x) and T s(x), where
q, s ∈ N, the computational Diffie-Hellman problem is to find T q∗s(x) or
T s∗q(x), where T q∗s(x) = T q(T s) = T s(T q) = T s∗q(x) ∈ [-1, 1].

Chaotic Chebyshev Polynomials Based Remote User Authentication Scheme 487

4.1 Correctness Proof

To correct evaluate about authentication scheme, we employ BAN-logic [16]
proposed by Burrows. We introduce some basic symbols used in this method as
follows: symbols P and Q stand for principals, X and Y range over statements,
and K represent the cryptographic key. For more details about the notations and
postulates, please refer to Burrows’ result. In the following, we use BAN-logic
to prove proposed scheme achieves correct mutual authentication and session
key agreement. In stead of using P, Q, we let Ui, S stand for user and server
participating in the scheme. Furthermore, we formalize our goals denoted as Gj ,
where j ∈ [1, 8] as follows:

1. U i |≡ U i
idi↔ S

2. U i |≡ S |≡ U i
idi↔ S

3. S |≡ U i
idi↔ S

4. S |≡ U i |≡ U i
idi↔ S

5. U i |≡ U i
SK↔ S

6. U i |≡ S |≡ S SK↔ U i

7. S |≡ S SK↔ U i

8. S |≡ U i |≡ U i
SK↔ S

Then, we idealize proposed scheme as follows:

– DID i = <U i
idi↔ S, T rU

, U i
h(XS‖e)↔ S>

– R2 = <U i
idi↔ S, U i

h(XS‖e)↔ S, T rU
>

– R4 = <U i
h(XS‖e)↔ S, U i

idi↔ S, U i
SK↔ S>

– R5 = <T rS
(RU), U i

h(XS‖e)↔ S, U i
idi↔ S>

Next, we give some assumptions (denoted as At, where t ∈ [1, 8]) about
proposed scheme’s initial states

1. U i |≡ U i
idi↔ S

2. U i |≡ U i
h(XS‖e)↔ S

3. U i |≡ S ⇒ U i
SK↔ S

4. S |≡ U i ⇒ U i
idi↔ S

5. S |≡ U i ⇒ U i
SK↔ S

6. S |≡ S
h(XS‖e)↔ U i

7. U i |≡ #(T rS
)

8. S |≡ #(T rU
)

Finally, with At and BAN-logic’s postulates, we demonstrate our scheme
successfully achieves Gj .

– U i registers id i with S, so we achieve G1

488 T.-T. Truong, et al.

U i |≡ U i
idi↔ S

– With A6 and DID i, applying the message-meaning rule to derive

S|≡S
h(XS‖e)↔ Ui,S�(Ui

idi↔S,TrU
,Ui

h(XS‖e)↔ S)h(XS‖e)

S|≡Ui|∼Ui
idi↔S,TrU

,Ui
h(XS‖e)↔ S

(1)

– With A8 and applying freshness rule to infer

S|≡#(TrU
)

S|≡#(Ui
idi↔S,TrU

,Ui
h(XS‖e)↔ S)

(2)

– With (1) and (2), applying the nonce - verification rule to derive

(1),(2)

S|≡Ui|≡Ui
idi↔S,TrU

,Ui
h(XS‖e)↔ S

(3)

– With (3), applying believe rule to derive

(3)

S|≡Ui|≡Ui
idi↔S

(G4)

– With G4 and A4, applying jurisdiction rule to infer

S|≡Ui⇒Ui
idi↔S,S|≡Ui|≡Ui

idi↔S

S|≡Ui
idi↔S

(G3)

– With A2 and R4, applying the message-meaning rule to derive

Ui|≡Ui
h(XS‖e)↔ S,Ui�(Ui

h(XS‖e)↔ S,Ui
idi↔S,Ui

SK↔ S)h(XS‖e)

Ui|≡S|∼Ui
h(XS‖e)↔ S,Ui

idi↔S,Ui
SK↔ S

(4)

– With (4) and A7, applying the freshness rule to derive

(4),Ui|≡#(TrS
)

Ui|≡#(Ui
h(XS‖e)↔ S,Ui

idi↔S,Ui
SK↔ S)

(5)

– With (4) and (5), applying the nonce - verification rule to derive

(4),(5)

Ui|≡S|≡Ui
h(XS‖e)↔ S,Ui

idi↔S,Ui
SK↔ S

(6)

– With (6), applying the believe rule to derive

(6)

Ui|≡S|≡Ui
idi↔S

(G2)

With G1, G2, G3, and G4, we prove U i and S can mutually authenticate
with dynamic identity. Next, we demonstrate U i and S can share SK as follows.

– With R4 and A2, applying the message-meaning rule to derive

Ui|≡Ui
h(XS‖e)↔ S,Ui�(Ui

h(XS‖e)↔ S,Ui
idi↔S,Ui

SK↔ S)h(XS‖e)

Ui|≡S|∼Ui
h(XS‖e)↔ S,Ui

idi↔S,Ui
SK↔ S

(7)

– With R4 and A7, applying the freshness rule to derive

Chaotic Chebyshev Polynomials Based Remote User Authentication Scheme 489

Ui|≡#(TrS
)

Ui|≡#(Ui
h(XS‖e)↔ S,Ui

idi↔S,Ui
SK↔ S)

(8)

– With (7) and (8), applying the nonce - verification rule to derive
(7),(8)

Ui|≡S|≡Ui
h(XS‖e)↔ S,Ui

idi↔S,Ui
SK↔ S

(9)

– With (9), applying the believe rule to derive
(9)

Ui|≡S|≡S
SK↔ Ui

(G6)

– With A3 and G6, we apply the jurisdiction rule to infer

Ui|≡S⇒Ui
SK↔ S,Ui|≡S|≡Ui

SK↔ S

Ui|≡Ui
SK↔ S

(G5)

– With R5 and A6, applying the message-meaning rule to derive

S|≡S
h(XS‖e)↔ Ui,S�(TrU∗rS

,Ui
h(XS‖e)↔ S,Ui

idi↔S)h(XS‖e)

S|≡Ui|∼TrU∗rS
,Ui

h(XS‖e)↔ S,Ui
idi↔S

(10)

– With R5 and A8, applying the freshness rule to derive
S|≡#(TrU

)

S|≡#(TrU∗rS
,Ui

h(XS‖e)↔ S,Ui
idi↔S)

(11)

– With (10) and (11), applying the nonce - verification rule to derive
(10),(11)

S|≡Ui|≡TrU∗rS
,Ui

h(XS‖e)↔ S,Ui
idi↔S

(12)

– With (12) and A6, applying the believe rule to infer

(12),S|≡S
h(XS‖e)↔ Ui

S|≡Ui|≡Ui
SK↔ S

(G8)

– With (12) and A5, applying the message-meaning rule to infer

(12),S|≡Ui⇒Ui
SK↔ S

S|≡TrU ∗rS
,Ui

h(XS‖e)↔ S,Ui
idi↔S

(13)

– With (13), applying the believe rule to derive
(13)

S|≡S
SK↔ Ui

(G7)

With G5, G6, G7 and G8, we prove both S and U i believe the other believes
SK shared between U i and S. Below are common kinds of attacks proposed
scheme can withstand.

4.2 Resistance to Common Attacks

In this subsection, we prove our scheme can withstand many common kinds
of attacks based on above two basic assumptions. Our context is that both
server and user are authenticating in open channel. Hence, anyone is capable of
intercepting all messages transmitted between them. Besides, we assume anyone
can obtain SC ’s information.

490 T.-T. Truong, et al.

Replay Attack. In this kind of attack, adversary captures the user’s old mes-
sages for next transaction. It is hard to perform in proposed scheme. For example,
when adversary sends package {e, RU , R2, DID i} at another session to cheat
the server, he/she needs to resend R5 at the end of the session. Clearly, knowing
U i’s rU , id i and h(X S ‖ e) is impossible to adversary. It is said that proposed
scheme can withstand replay attack.

User And Server Impersonation Attack. In this kind of attack, adversary
has two options, which are user and server impersonation. Firstly, we consider
the case of user impersonation. In the users login message, only two messages
that adversary can forge are e and RU = T rU

(x) because they do not include
identity information. Consequently, adversary randomly chooses r∗

U to compute
R∗

U = T r∗
U
(x), where e∗ is adversary’s own random value. Finally, he/she sends

{e∗, R∗
U , R2, DID i} to server. When receiving, server computes h(X S ‖ e∗) and

extracts id i by computing DID i ⊕ h(R∗
U ‖ h(X S ‖ e∗)) = id i ⊕ h(RU ‖ h(X S

‖ e)) ⊕ h(R∗
U ‖ h(X S ‖ e∗)). Clearly, we see the result of this computation

is nonsense. Therefore, server will detect and terminate this session. Secondly,
we consider the case of server impersonation. We see that adversary needs to
successfully compute {RS , R4} and this is impossible because R4 = h(h(X S ‖
e) ‖ id i ‖ SK ∗) , where SK ∗ is random session key computed from adversary’s
random value r∗

S . Hence, adversary needs U i’s h(X S ‖ e) and id i. In short,
proposed scheme can resist two-side impersonation attack.

User Anonymity Protected. In this kind of attack, adversary wants to know
whose transaction this is. Therefore, he/she will find the way to extract identity
from the message DID i. We see that user’s identity is combined with random
value RU and key K = h(X S ‖ e). With two values, adversary has no chance to
extract true identity. Specially, DID i is different at each session due to random
value RU . Also, adversary does not know whether or not DID i and DID

′
i belong

to the same person. Hence, proposed scheme achieves strong user anonymity.

Perfect forward secrecy (PFS). In this kind of attack, assume that long-
term key of the server and all users is leaked, so the system is broken. However,
the previously transactions should be secured from the adversary and this means
that generated session keys should be secured. In proposed scheme, in case of
leakage of server S ’s X S and user U i’s h(X S ‖ ei), the adversary has RU =
T rU

(x), RS = T rS
(x) and id i. Nevertheless, computing T rS

∗ rU
(x) is the same

as computing the CDHP. It is said that proposed scheme can achieve PFS
based on CDHP.

Chang et al.’s ideas are inherited by proposed scheme. For example, no using
password or state table due to the increase of computational overload, or using
random value instead of time-stamp to save time-synchronization mechanism
cost. Likewise, using cryptographic hash function allows the users to freely choose
their password without worrying about bit-length. In short, those properties

Chaotic Chebyshev Polynomials Based Remote User Authentication Scheme 491

Table 1. The comparison between our scheme and previous ones for security

Items Das’s[19] Wang’s[20] Chang’s[15] Ours

Mutual authentication No Yes Yes Yes

Password chosen by users Yes No Yes Yes

User anonymity Yes No No Yes

Without registration table Yes Yes Yes Yes

Withstand impersonation attack No No No Yes

Without time-synchronized mechanism No No Yes Yes

Session key establishment No No Yes Yes

Perfect forward secrecy No∗ No∗ No Yes

∗ Do not provide session key establishment

completely exist in proposed scheme. Table 1 is the comparison between our
scheme and previous schemes including Chang et al.’s for security.

4.3 Efficiency Analysis

To compare efficiency between our scheme and previous ones, we let H be the
hash operation, ↑ be modular exponentiation operation, ⊕ be exclusive-or oper-
ation and T be computational operation of polynomial. At registration phase,
Das’s scheme needs 1×⊕, 2×H ; Wang’s needs 2×⊕, 2×H ; Chang’s needs 1×⊕,
3×H, 1×↑; Ours needs 2×⊕, 4×H. At login and authentication phases, Das’s
scheme needs 14×⊕, 7×H ; Wang’s needs 14×⊕, 6×H ; Chang’s needs 7×⊕,
10×H, 1×↑; Ours needs 4×⊕, 14×H, 4×T. Compared with previous schemes,
our scheme’s computational cost increases perceptibly. However, this is essential
because of enhancement of security. Furthermore, in according to [14], we believe
if practical implemented, our scheme will be still efficient enough. The theorical
comparison of cost at this phase is presented in Table 2.

Let tH , t⊕, tT , t↑ denote running-time corresponding to each operation H,
⊕, T, ↑. We see that t⊕ << tH << t↑ < tT , so we only compare between two
algorithms, modular exponentiation and Chebysev polynomial which are used in
Chang’s scheme and ours. To relatively compare, we re-implement Tn(g) mod
p using BigInteger class in Java. Also, we re-use ’ModPow’ function in Java to
stand for gn mod p. Our experiment is conducted in personal computer, Intel
Core 2 Quad CPU 2.66GHz. By measuring running-time between two algorithms
with prime numbers which range from 10 to 400 digits, we propose using 512-bit

Table 2. A comparison of computation costs

Items Authentication Login Registration

Das[19] 3×H, 7×⊕ 4×H, 7×⊕ 2×H, 1×⊕
Wang[20] 4×H, 10×⊕ 2×H, 4×⊕ 2×H, 2×⊕
Chang[15] 8×H, 4×⊕, 1×↑ 2×H, 3×⊕ 3×H, 1×⊕, 1×↑
Ours 10×H, 2×⊕, 3×T 4×H, 2×⊕, 1×T 4×H, 2×⊕

492 T.-T. Truong, et al.

Fig. 1. Comparison of time cost between Tn(g) mod p and gn mod p

prime number to guarantee time efficiency (≈ 150ms) and security because of
solution space up to 2512 when facing CDLP. Although running-time between
gn mod p used by Chang’s scheme and Tn(g) mod p used by ours is a little

different, practical running-time of our scheme
4∑

i=1

tT ≈ 0.6s when using prime

number with appropriate bit amount. Therefore, it is said that our scheme is
still enough efficiency when practically implemented. Experiment’s result with
different prime numbers is presented in Figure 1.

5 Conclusions

In this paper, we review Chang et al.’s scheme. Although their scheme has some
positive characteristics but it is vulnerable to impersonation attack. Further-
more, it cannot provide user’s anonymity and does not have the property of
perfect forward secrecy. Hence, we suggest a different improved scheme using
Chebysev polynomial to overcome such pitfalls. Compared with Chang’s scheme
schemes, our scheme has the following main advantages; (1) A user need not
choose the password at first. (2) It provides user’s anonymity. (3) It does not
maintain verification table. (4) It provides property of perfect forward secrecy.

From our security evaluation, our proposed method can resist known methods
of attacks. As the proposed scheme can be used in various client-server environ-
ment for remote user authentication, it can be applied for systems that accept
user authentication with mobile or wearable devices to create smart interactive
environments. Furthermore we also study to integrate biometric features into
Chebyshev polynomial-based authentication scheme.

Chaotic Chebyshev Polynomials Based Remote User Authentication Scheme 493

Acknowledgments. This research is supported by National Institute of Informatics
(Japan) and funded by Vietnam National University HoChiMinh City (VNU-HCM)
under grant number B2015-18-01.

References

[1] Lamport, L.: Password authentication with insecure communication. Communi-
cations of the ACM 24(11), 770–772 (1981)

[2] Chen, T.H., Chen, Y.C., Shih, W.K., Wei, H.W.: An efficient anonymous authenti-
cation protocol for mobile pay-tv. Journal of Network and Computer Applications
34(4), 1131–1137 (2011)

[3] Shin, S., Kim, K., Kim, K.-H., Yeh, H.: A remote user authentication scheme with
anonymity for mobile devices. International Journal of Advanced Robotic Systems
9(13), 1–7 (2012)

[4] Liao, I.E., Lee, C.C., Hwang, M.S.: Security enhancement for a dynamic id-based
remote user authentication scheme. In: International Conference on Next Gener-
ation Web Services Practices, vol. 6(2), pp. 517–522 (2005)

[5] Yoon, E.-J., Yoo, K.-Y.: Improving the dynamic ID-based remote mutual authen-
tication scheme. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Work-
shops. LNCS, vol. 4277, pp. 499–507. Springer, Heidelberg (2006)

[6] Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM 21(2), 120–126 (1978)

[7] Yang, J.-H., Chang, C.-C.: An ID-based remote mutual authentication with key
agreement scheme for mobile devices on elliptic curve cryptosystem. Computers
and Security 28(3–4), 138–143 (2009)

[8] Yoon, E.-J., Yoo, K.-Y.: Robust ID-based remote mutual authentication with key
agreement scheme for mobile devices on ECC. In: IEEE International Conference
on Computational Science and Engineering, vol. 2, pp. 633–640 (2009)

[9] Islam, S.H., Biswas, G.P.: A more efficient and secure ID-based remote mutual
authentication with key agreement scheme for mobile devices on elliptic curve
cryptosystem. Journal of Systems and Software 84(11), 1892–1898 (2011)

[10] Wang, K., Pei, W.J., Zou, L.H., Cheung, Y.M., He, Z.Y.: Security of public key
encryption technique based on multiple chaotic system. Journal of Physics Letters
A 360(2), 259–262 (2006)

[11] Zhang, L.: Cryptanalysis of the public key encryption based on multiple chaotic
systems. Journal of Chaos, Solitons & Fractals 37(3), 669–674 (2008)

[12] Guo, C., Chang, C.-C., Sun, C.-Y.: Chaotic maps-based mutual authentication and
key agreement using smartcards for wireless communications. Journal of Informa-
tion Hiding and Multimedia Signal Processing 4(2), 99–109 (2013)

[13] Prasadh, K., Ramar, K., Gnanajeyaraman, R.: Public key cryptosystems based on
chaotic chebyshev polynomials. Journal of Engineering and Technology Research
1(7), 122–128 (2009)

[14] Zhi-Hui, L., Yi-Dong, C., Hui-Min, X.: Fast algorithms of public key cryptosystem
based on chebyshev polynomials over finite field. The Journal of China Universities
of Posts and Telecommunications 18(2), 86–93 (2010)

[15] Chang, C.-C., Lee, C.-Y.: A smart card-based authentication scheme using user
identify cryptography. International Journal of Network Security 15(2), 139–147
(2013)

[16] Burrows, M., Abadi, M., Needham, R.: A logic of authentication. ACM Transac-
tions on Computer System 8, 18–36 (1990)

494 T.-T. Truong, et al.

[17] Xiao, D., Liao, X., Wong, K.: An efficient entire chaos-based scheme for deniable
authentication. Journal of Chaos, Solitons & Fractals 23(4), 1327–1331 (2005)

[18] Bergamo, P., Arco, P., Santis, A., Kocarev, L.: Security of public key encryption
technique based on multiple chaotic system. IEEE Transactions on Circuits and
Systems I 52(7), 1382–1393 (2005)

[19] Das, M.L., Saxena, A., Gulati, V.P.: A dynamic ID-based remote user authentica-
tion scheme. IEEE Transactions on Consumer Electronics 50(2), 629–631 (2004)

[20] Wang, Y.Y., Kiu, J.Y., Xiao, F.X., Dan, J.: A more efficient and secure dynamic
ID-based remote user authentication scheme. Computer Communications 32(4),
583–585 (2009)

A Secure Exam Protocol Without
Trusted Parties

Giampaolo Bella1, Rosario Giustolisi2(B),
Gabriele Lenzini2(B), and Peter Y.A. Ryan2

1 Dipartimento di Matematica e Informatica, Università di Catania, Catania, Italy
2 SnT, University of Luxembourg, Luxembourg, Luxembourg

{rosario.giustolisi,gabriele.lenzini}@uni.lu

Abstract. Relying on a trusted third party (TTP) in the design of a
security protocol introduces obvious risks. Although the risks can be
mitigated by distributing the trust across several parties, it still requires
at least one party to be trustworthy. In the domain of exams this is
critical because parties typically have conflicting interests, and it may
be hard to find an entity who can play the role of a TTP, as recent exam
scandals confirm. This paper proposes a new protocol for paper-based
and computer-based exams that guarantees several security properties
without the need of a TTP. The protocol combines oblivious transfer and
visual cryptography to allow candidate and examiner to jointly generate
a pseudonym that anonymises the candidate’s test. The pseudonym is
revealed only to the candidate when the exam starts. We analyse the
protocol formally in ProVerif and prove that it satisfies all the stated
security requirements.

1 Introduction

This paper considers written exams and studies how to guarantee secure and
fair examination although any participant can cheat.

The security of exam protocols has been brought to the public attention by
recent surveys and scandals [11,14,15]. They show that information technology
makes cheating easier and that candidates and authorities have interest in frauds.
For example, in the Atlanta public school scandal [11], the authorities raised all
the markings to improve the school’s ranking and get more public funds. In
spite of that, previous exam systems still consider candidate’s cheating as the
sole security threat, while exam authorities and examiners are assumed to be
fully trusted. A deeper understanding of the exam’s threats would be also useful
for similar assessment systems, such as public tenders, personnel selections, and
project reviews. As in the case of exams, the security of such systems should not
rely on TTP.

Recently a few works argued about the security of exam with corrupted
examiners (e.g., [4,16]); however, their designs still assume some trusted parties.

G. Lenzini—Supported by CORE-FNR, project C11/IS/1183245 STAST.

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 495–509, 2015.
DOI: 10.1007/978-3-319-18467-8 33

496 G. Bella et al.

We propose a new security protocol for exams that requires no trusted party
while meeting a set of stringent security properties that extend the requirements
for ones defined by Dreier et al. [8,9]. Our protocol relies on oblivious transfer
and visual cryptography techniques to generate a pseudonym that anonymises
a candidate’s test. No participant learns the pseudonyms until the exam starts.
Candidates take the exam in a test center, and testing is the only face-to-face
phase, while the other phases are remote. Our protocol suits both paper-based
and computer-based examination.

Contribution. This paper provides three main contributions. First, it extends a
set of security requirements for exams with three new authentication and one
accountability property. Second, it proposes a new exam protocol that satisfies
the extended requirements without relying on a TTP. Finally, it formalises the
protocol in ProVerif and proves the protocol ensures all the properties.1

Outline. The paper is organized as follows. Section 2 outlines the related work.
Section 3 describes and formalises the desired properties our protocol aims to
ensure, and defines the threat model. Section 4 details the protocol. Section 5
describes the formal analysis of our protocol in ProVerif [5], and discusses the
results. Section 6 outlines future work and concludes the paper.

2 Related Work

The majority of works on exam protocols describe security requirements only
informally (e.g., [3,22]) with a few exceptions. Dreier et al. [8] propose a for-
mal framework in the applied π-calculus to define and analyse authentication
and privacy requirements for exams. They analyse two existing electronic exam
protocols as case studies. Foley et al. [12] introduce a formalisation of confi-
dentiality requirements for Computer Supported Collaborative Working. They
propose exams as case study with no references to specific exam protocols.

Other works propose secure exam protocols, but argue informally their secu-
rity. Castella-Roca et al. [6] introduce an exam protocol which guarantees a
number of authentication and privacy properties in presence of a fully trusted
exam manager. Bella et al. [4] describe WATA IV, a protocol that also relies on
visual cryptography and considers corrupted examiner, but assumes an honest-
but-curious anonymiser. Huszti and Pethő [16] propose an exam protocol with
minimal trust requirements, but a trusted registry. Giustolisi et al. [13] describe
Remark!, an internet-based exam protocol that ensures authentication and con-
ditional anonymity requirements with minimal trust assumption. The protocol
generates pseudonyms via an exponentiation mixnet, which assumes at least one
honest mix server.

Maffei et al. [18] suggest anonymous credential schemes to guarantee privacy
in course evaluation systems without relying on a TTP. Their approach seems
to be alternative to ours, as we use oblivious transfer and visual cryptography.
1 Our code is available at http://apsia.uni.lu/stast/codes/exams/pv isec15.tar.gz

http://apsia.uni.lu/stast/codes/exams/pv_isec15.tar.gz

A Secure Exam Protocol Without Trusted Parties 497

Formal approaches have been proposed in the area of conference manage-
ment systems, a domain close to exams. Arapinis et al. [2] propose and formally
analyse ConfiChair, a cryptographic protocol that addresses secrecy and privacy
risks coming from a malicious cloud. Their work has been recently extended to
support any cloud-based system such as public tender management and recruit-
ment process. Kanav et al. [17] introduce CoCon, a formally verified implemen-
tation of conference management system that guarantees confidentiality. All of
the mentioned systems, however, assume trusted managers.

3 Security Requirements and Threat Model

An exam basically involves two main roles: the candidate, who takes the test,
and the examiner, who evaluates it. A typical exam runs in phases: at prepara-
tion, the exam is set up, for instance, the candidate registers and questions are
generated; at testing the candidate gets the questions and takes the exam, while
the examiner collects the answered test; at marking the examiner evaluates the
test; at notification, the candidate is informed of her mark. Some duties may
be assigned to sub-roles. For instance, an administrative office might ensure the
registration of candidates, and notify them the marks.

We start considering the security requirements that other works argued to be
relevant for exams [4,8], and extend this set with five new requirements, including
novel authentication and accountability properties. To express our requirements
unambiguously, we use the applied π-calculus [1] as done in [8]. Therefore, we
assume that our requirements refer to a model of an exam modelled as applied
π-calculus process. The applied π-calculus defines events to formulate correspon-
dence assertions (authentication), and uses observational equivalence to express
indistinguishability (privacy).

Authentication. In the applied π-calculus, an event is a message output e(�a):
e is the event channel and �a a, possible empty, list of arguments. The message
appears in the trace as soon as the execution of the process reaches the event.
To formalise authentication, we use some of the events defined in [8] as follows.

The term idc is the candidate’s identity, pid is the form identifier, ques indi-
cates the exam questions, ans indicates the candidate’s answers, mark is the
mark. The event reg(idc) denotes a successful registration of the candidate idc .
The event submitted(idc , ques, ans, pid) is emitted when the candidate submits
her answer, while collected(idc , ques, ans, pid) is emitted by the examiner when
he collects the answer. Finally, the event notified(idc ,mark , pid) is emitted when
the examiner notifies and registers a mark to the candidate.

We add requested(idc , pid) to the set of events outlined above. It is emitted
by the candidate process at notification, where candidate idc sends the request
to learn her mark using the identifier form.

The first requirement we consider is Answer Authenticity, which informally
says that the examiner collects the answer as submitted by the candidate.

498 G. Bella et al.

Definition 1 (Answer Authenticity). An exam protocol ensures Answer
Authenticity if the event collected(idc , ques, ans, pid) is preceded by the event
submitted(idc , ques, ans, pid) in every execution trace of the protocol.

Answer Origin Authentication says that the examiner only collects answers
originated by registered candidates.

Definition 2 (Answer Origin Authentication). An exam protocol ensures
Answer Origin Authentication if the event collected(idc , ques, ans, pid) is pre-
ceded by the event reg(idc) in every execution trace of the protocol.

We define three novel authentication requirements: Mark Authenticity, Can-
didate Authorisation, and Notification Request Authentication.

Definition 3 (Mark Authenticity). An exam protocol ensures Mark Authen-
ticity if the event notified(idc ,mark , pid) is preceded by the event submitted(idc ,
question, answer , pid) in every execution trace of the protocol

Mark Authenticity says that the mark is correctly registered to the corre-
sponding candidate. Dreier et al. defines it as “the candidate is notified with the
mark delivered by the examiner” [8]. Despite looking similar, our formulation
expresses something different: in ours the authenticator is the examiner because
he emits the event notified , while in Dreier et al. the authenticator is the candi-
date, since the event is emitted in the candidate process. We think that Def. 3
avoids overlapping definitions because, as we shall see later, Mark Verifiability
considers the candidate as authenticator. It describes that a candidate can check
if she has been notified with the correct mark despite a corrupted examiner.

The second novel requirement, Candidate Authorisation, describes that only
registered and authenticated candidates can take the exam.

Definition 4 (Candidate Authorisation). An exam protocol ensures Candi-
date Authorisation if the event submitted(idc , ques, ans, pid) is preceded by the
event reg(idc) in every execution trace of the protocol.

The last additional requirement is Notification Request Authentication. It
says that a mark can be associated with the candidate only if she requests to
learn her mark. This unusual requirement is useful in the exam scenarios of some
universities, where candidates have to skip the next exam session if they get a
fail, unless they withdraw from the exam before notification.

Definition 5 (Notification Request Authentication). An exam protocol
ensures Notification Request Authentication if the event notified(idc ,mark) is
preceded by the event requested(idc , pid) in every execution trace of the protocol.

Privacy. For reason of space, we present only the informal definitions of the
privacy requirements. The formal definition in applied π-calculus can be found
in [8].

A Secure Exam Protocol Without Trusted Parties 499

The first relevant privacy requirement is Anonymous Marking, which says
that no one can learn the author of a test before it is marked. In other words,
no one but the author can link the test with the candidate identity until after
the marking phase. Question Indistinguishability says that no candidate learns
the question before the testing phase. A strong requirement is Mark Privacy,
which describes that no one, besides the examiner and the concerned candi-
date, learns the marks. It implies that marks cannot be public. The last privacy
requirement is Mark Anonymity, which says that no one, besides the examiner
and the concerned candidate, can learn the mark assigned to a candidate. Note
that Mark Privacy is intuitively stronger than Mark Anonymity: a system that
publishes the marks cannot guarantee Mark Privacy while may still ensure Mark
Anonymity provided no one can link a mark to a candidate identity.

Verifiability and Accountability. We propose two properties, one for ver-
ifiability, and one for accountability of exams. Generally speaking, a protocol
is verifiable with respect to a specific property if the protocol provides a test
for the property, and the test is sound and complete [9]. Mark Verifiability says
that the candidate can verify she has been notified with the mark assigned to
her test. Mark Verifiability subsumes the existence of an algorithm testMV that
outputs true if the candidate has been notified with the mark assigned to her
test, or false otherwise. In the applied π-calculus, testMV is a process that emits
the event OK (idc , pid ,mark) when it is supposed to output true and KO when
it supposed to output false. The event published(pid) is emitted when a test
identified with pid is available. The event assigned(idc , pid ,mark) is emitted by
the candidate at end of notification.

We say that testMV is sound if the event OK (idc , pid ,mark) is preceded by
the events assigned(idc , pid ,mark) and published(pid) in every execution trace
of the protocol. We say that testMV is complete if the event KO is emitted in
no execution trace of the protocol when the test fed with correct data.

Definition 6 (Mark Verifiability). An exam protocol ensures Mark Verifia-
bility if testMV is sound and complete.

Finally, we introduce an accountability requirement, namely Testing Dispute
Resolution. Accountability allows to identify which party is responsible for a
protocol failure. In the case of exam, a candidate should be able to submit a
test and receive the corresponding mark. If she fails in any of these, Testing
Dispute Resolution describes that the participant who caused such failure can
be identified.

We formally model Testing Dispute Resolution similarly to Mark Verifiabil-
ity, with a difference: we use (non)reachability of the event Cguilty or Eguilty
also to prove soundness. In the applied π-calculus, dispute is a process that
emits the event Cguilty when the candidate is the culprit and Eguilty if the
examiner is the culprit. If the protocol executes the process dispute then either
the examiner or the candidate is corrupted. Thus, regarding soundness, the idea

500 G. Bella et al.

is to check that dispute cannot return an honest party instead of the corrupted
one.

We say that dispute is sound with respect to a corrupted examiner and
honest candidate if the event Cguilty is emitted in no execution trace of the
protocol. Similarly, we say that dispute is sound with respect to a corrupted
candidate and honest examiner if the event Eguilty is emitted in no execution
trace of the protocol. Finally, we say that dispute is complete if neither the
event Eguilty nor Cguilty are emitted in any execution trace of the protocol
with honest roles.

Definition 7 (Testing Dispute Resolution). An exam protocol ensures
Testing Dispute Resolution if dispute is sound and complete.

3.1 Threat Model and Assumptions

According our exam terminology, we consider the threats coming from the three
following adversaries. (1) Corrupted candidates, who want to be assigned with
a mark higher than an objective evaluation of their answers deserve. They thus
may not follow the protocol and collude each other to achieve their goal. (2) A
corrupted examiner, who wants to assess a candidate unfairly. (3) An intruder,
who wants to get exam’s private information or tamper with tests and marks,
and may corrupt candidates or the examiner.

We assume that (a) remote communications between examiner and candi-
date occur via TLS; (b) model answers are kept secret from candidates until
after testing; (c) during the testing, invigilators supervise candidates to mitigate
cheating, and (d) an authenticated append-only bulletin board is available.

4 The Protocol

In a nutshell, the protocol works as follows. At preparation, candidate and exam-
iner jointly generate the candidate’s pseudonym (an alphanumeric pid) as a pair
of visual cryptography shares, by means of an oblivious transfer scheme. One
share is hold by the candidate, who prints it on a paper sheet together with the
candidate ID and signatures meant for integrity and accountability purposes.
The other share is held by the examiner, who prints it on a transparency print-
out. Each share alone does not reveal the pseudonym, which is revealed only when
the shares are overlapped. This is possible only at testing, when the candidate
and the examiner physically meet, and the examiner hands his transparency to
the candidate. Any dispute that happens at testing can be solved thanks to the
signatures printed with the printouts. The candidate can write the pseudonym
down into the answer sheet, and the testing concludes when all answer sheets
are returned to the examiner. At marking, the examiner evaluates the answers,
and assigns a mark to each pseudonym, which she commits and publishes on
a bulletin board. At notification, a candidate can retrieve her mark by proving
she owns the share that (re)-reveals the pseudonym. The examiner’s share is

A Secure Exam Protocol Without Trusted Parties 501

1. Candidate calculates yi = gxihγi where:
- xi ∈R Z

∗
q .

- γi ∈R [1, k].
- i = 1, 2, . . . , l with l > n.

2. Candidate→Examiner : y1, y2, . . . , yl.
3. Examiner calculates βij ←πR (αi ⊕ cj), ωij = 〈aij , bij〉 ← 〈grij , βij

(
yi
hj

)rij 〉,
com = hs

l∏

i=1

gi
αi , and sign1 = SignSSKE {idC, ex, com} where:

- αi ∈R [0, 1]t×u.
- s, rij ∈R Z

∗
q .

- gi ∈R Gq.
- i = 1, 2, . . . , l.
- j = 1, 2, . . . , k.

or runs the challenge procedure against y1, y2, . . . , yl.
4. Examiner→Candidate: (ω11, . . . , ω1k), . . . (ωl1, . . . , ωlk) and sign1 .
5. Candidate calculates χi ∈ [1, l] and σj ∈ [1, l] where:

- i = 1, 2, . . . , m.
6. Candidate→Examiner : χ1, χ2, . . . , χm and σ1, σ2, . . . , σn.
7. Examiner calculates evχi = 〈αχi , (βχi1, βχi2, . . . , βχik), (rχi1, rχi2, . . . , rχik)〉 and

sign2 = SignSSKE {idC, ex, (σ1, σ2, . . . , σn)} where
- i = 1, 2, . . . , m.
- j = 1, 2, . . . , k.

and prints transp = 〈(ασ1 , ασ2 , . . . , ασn), idC, ex, QR3〉 where
- QR3 = idC, ex, (α1, α2, . . . , αl, s).

8. Examiner→Candidate: evχ1 , evχ2 , . . . , evχm and sign2 .

9. Candidate checks evχi , calculates βσj =
bσjγj

(aσjγj
)
xσj

where

- i = 1, 2, . . . , m.
- j = 1, 2, . . . , n.

and prints paper = 〈(βσ1 , βσ2 , . . . , βσn), idC, ex, QR1, QR2〉 where
- QR1 = idC, ex, sign1 .
- QR2 = idC, ex, sign2 .

10. Candidate
hands−−−−→Examiner : idC′

11. Examiner checks if idC′=idC
12. Examiner

hands−−−−→Candidate: transp, test question
13. Candidate calculates pid = (α1, α2, . . . , αn) ⊕ (β1, β2, . . . , βn) and writes

test answer = (answers, pid)
or runs the Testing Dispute Resolution algorithm if no pseudonym appears.

14. Candidate
hands−−−−→Examiner : test answer

15. Examiner calculates c = gvhmark and sign3 = SignSSKE {pid , c} where:
- v ∈R Z

∗
q .

- mark ∈ M .
16. Examiner→ BB: sign3
17. Candidate→Examiner :(β1, β2, . . . , βn), sign1 , sign2 , sign3
18. Examiner calculates sign4 = SignSSKE {idC, ex, pid,mark , v}
19. Examiner→Candidate: sign4

Fig. 1. Our protocol divided in phases

502 G. Bella et al.

required for this phase, but there is no need for the candidate and the examiner
to meet. The candidate sends her share and the signatures to the examiner, and
any dispute happening at notification can be again solved using the signatures
associated with the shares.

The protocol combines a few cryptographic primitives, namely visual cryp-
tography, commitment, and oblivious transfer schemes:

Visual Cryptography. It is a secret sharing scheme, first devised by Naor and
Shamir [19] that allows a visual decryption of a ciphertext. A secret image is
“encrypted” by splitting it into a number of image shares. In the 2-out-of-2
version, which is the one adopted in our protocol, the secret image is split into
two shares. When the shares are overlapped, they reveal the secret image. Many
schemes for visual cryptography have been proposed over the years. We use the
Naor and Shamir scheme for our protocol, but we conjecture that any other
visual scheme can be used as well.

Commitment Schemes. A commitment scheme is used to bind a committer to a
value. The committer publishes a commitment that hides a value, which remains
secret until the committer reveals it. Should he reveal a different value, this
would be noticed, because two identical commitments hide the same value. Our
protocol uses a generalized Pedersen commitment scheme [20], which guarantees
unconditional hiding and allows the commitment to many values at once.

Oblivious Transfer. Oblivious transfer schemes allow a chooser to pick some
pieces of information from a set a sender offers him, in such a way that (a) the
sender does not learn which pieces of information the choosers picks, and (b)
the chooser learns no more than the pieces of information he picks. Our protocol
adopts Tzeng’s oblivious transfer scheme [21]. In Tzeng’s scheme, the chooser
commits to some elements from a set, and sends the commitments to the sender.
This, in turn, obfuscates all the set’s elements, and the chooser will be able to
de-obfuscate only the elements he has committed to. It guarantees unconditional
security for the receiver’s choice, and it is efficient since it works with the sender
and receiver’s exchanging only two messages.

4.1 Description of the Protocol in Detail

We describe our protocol in reference to the four exam phases. In the description
we assume a few public parameters, namely:

n length of the candidate’s pseudonym

C = {s1, . . . , sk} alphabet of pseudonym’s characters

cj ∈ {0, 1}t×u, j = 1, . . . , k (t × u)-pixel representation of a character

idC candidate ID

ex exam code

SPKE examiner’s public key

M set of possible marks

g, h ∈R Gq commitment generators

A Secure Exam Protocol Without Trusted Parties 503

Preparation. The goal of preparation is to generate a candidate’s pseudonym,
which is a string of n characters taken from alphabet C, and to encode it into
two visual cryptographic shares. Both candidate and examiner cannot know the
pseudonym until they meet at testing, when the candidate learns her pseudonym
by overlapping the examiner’s share with hers. The underlying idea is that the
candidate provides a commitment to an index into an array. The examiner fills
the array with a secret permutation of the characters, and only when the two
secrets are brought together is the selection of a character determined.

This phase is inspired by one of the schemes used to print a secret, proposed
by Essex et al. [10]. We tailor the scheme in such a way to be able to generate
a pseudonym. More specifically, we extend it to support an algorithm to resolve
a dispute that may arise when the overlapping of the shares will not reveal any
intelligible pseudonym. The main technical differences between our preparation
and the original scheme are: (a) a modified oblivious transfer protocol that copes
with several secret messages in only one protocol run; (b) the generation of
signatures that will be used for accountability in the resolution of disputes.

Figure 1 gives the description of the steps of preparation. The protocol begins
with the candidate providing a sequence of l commitments yi to an index into
an array of length k. (steps 1-2).

In detail, the parameter l, is chosen so that the l − n elements can be later
used for a cut-and-choose audit. The examiner can challenge the candidate to
check whether the committed choices are in fact in the interval [1, k]. Otherwise,
the examiner generates a sequence of randomly chosen t × u images, indicated
as α1, . . . , αl in Figure 1. A sequence of k images, (βi1, . . . , βik), are generated
from αi and each possible character cj . The sequence is randomly permuted and
repeated for all i, resulting in l sequences of (β11, . . . , β1k), . . . , (βl1, . . . , βlk).
The secret permutation and the commitment allow that the selection of character
is determined only when the two secrets are brought together.

The examiner then generates the obfuscation ωij from each βij and gener-
ates a commitment on each αi, indicated as com (step 3), which is signed and
sent with the sequences of obfuscations (ω11, . . . , ω1k),. . . , (ωl1, . . . , ωlk) to the
candidate (step 4). The obfuscation allows the candidate to retrieve only the
elements whose indexes correspond to the choices she committed in step 1 (yi).

The candidate performs a cut-and-choose audit, selecting a random set of l−n
sequences amongst the ω. Doing so, she can check whether the examiner gener-
ated the sequence of images correctly. The remaining substitutions σ1, σ2, . . . , σn

select the indexes of the images that make the pseudonym. Thus, the visual share
of the examiner consists of the concatenated images (ασ1 , . . . , ασn

) (step 5-6).
The examiner then generates the proofs for the cut-and-choose audit, and

prints the visual share in a transparency printout. This also include all the
elements α1, . . . , αl and the value used for their commitment (step 7), which
are stored in the form of QR code. The examiner then sends the proofs and
the signed substitutions σ to the candidate (step 8). In turn, the candidate
checks the proofs, de-obfuscates the elements ω, and retrieves the visual share
consisting of the concatenated image (βσ1 , βσ2 , . . . , βσn

). She finally prints the

504 G. Bella et al.

share, together with the two signatures, on a paper printout (step 9). At this
point, both candidate and examiner have a visual share, which once overlapped
reveal an intelligible sequence of characters that serves as pseudonym.

The candidate’s paper printout includes two QR codes (QR1, and QR2) while
the examiner’s transparency only one (QR3). All the three QR codes share the
same candidate identity idC and exam identifier ex. QR1 and QR2 encode the
two signatures of the examiner, respectively on commitment of the elements α
and on the substitutions σ, while QR3 encodes the elements α.

Testing. The candidate brings the paper printout, and the examiner the trans-
parencies. The examiner authenticates the identity of the candidate by checking
her identity document (step 10-11). He then gives the candidate her correspond-
ing transparency and a copy of the questions (step 12). The candidate overlaps
her paper printout with the transparency, and learns her pseudonym, which
writes it on the answer sheet (step 13). If no pseudonym appears, then this may
happen only if the candidate or the examiner misprinted their printouts, and
the Testing Dispute Resolution outlined in Algorithm 1 reveals the party that
is accountable for the misbehaviour. At the end of the phase, the candidate
returns the answer sheet anywhere in the pile of tests (step 14), and takes both
transparency and paper printouts home.

Marking and Notification. At marking the examiner evaluates the anony-
mous tests; at notification, the candidate to learn her mark, but only if she
wants to. The examiner evaluates the answers and generates a commitment on
the assigned mark (step 15). Then, he signs both mark and pseudonym found
on the answer sheet, and publishes the signature on a bulletin board (step 16).

Notification opens for a fixed time, during which the candidate can remotely
request to learn and register her mark. She has to send the ordered sequences of
β1, . . . , βn and all the signatures so far she collected to examiner (step 17). The
examiner checks the signatures, overlaps the given sequence with the correspond-
ing sequences of α1, . . . , αn, and learns the pseudonym. Again, if no registered
pseudonym appears, Dispute Resolution reveals the party who misbehaved. The
examiner signs the mark and the secret parameter used to commit the mark
(step 18), and sends the signature to the candidate (step 19). In so doing, the
candidate can verify the assigned mark against the bulletin board.

Dispute Resolution. A corrupted examiner may misprint the visual share
printed on the transparency. Thus, the candidate retrieves no intelligible
pseudonym when she overlaps the visual shares, making her answers impossi-
ble to be anonymous. On the other hand, a corrupted candidate may misprint
her paper printout and charge the examiner for misprinting the transparency.
Should, such a dispute would arise, Algorithm 1 provides an efficient way to find
the culprit.

We assume that the invigilator has an electronic device with a camera, such as
a smart phone or tablet, which stores the public key of the examiner. The input

A Secure Exam Protocol Without Trusted Parties 505

Data: Public parameters: (C, n, gi, h, idC, SPKE)

- paper = ((βσ1 , βσ2 , . . . , βσn), idC′, ex′, sign1 , sign2) where:
- sign1 = SignSSKE {idC′′, ex′′, com}
- sign2 = SignSSKE {idC′′′, ex′′′, (σ′

1, σ
′
2, . . . , σ

′
n)}

- transp = (ασ′′
1
, ασ′′

2
, . . . , ασ′′

n
), idC′, ex′, (α′

1, α
′
2, . . . , α

′
l, s).

Result: Corrupted participant
if sign1 is verifiable with SPKE and sign2 is verifiable with SPKE and
idC = idC′ = idC′′ = idC′′′ and ex = ex′ = ex′′ = ex′′′ then

if com �= hs
l∏

i=1

gi
α′

i or pid=(α′
σ′
1
, α′

σ′
2
, . . . , α′

σ′
n
) ⊕ (βσ1 , βσ2 , . . . , βσn) then

return Examiner
else

return Candidate
else

return Candidate

Algorithm 1. Dispute resolution

of the Algorithm are the two QR codes printed on the paper printout (QR1 and
QR2) and the QR code printed on the transparency (QR3), which the invigilator
scans with the device camera.

First, the algorithm checks the correctness of the signatures encoded in QR1
and QR2. It also checks whether the candidate identity and the exam identifier
reported on the paper printout match the ones in QR1 and QR2. If any one of
the checks fails then the candidate misprinted her paper printout thus she is the
culprit. Otherwise, the algorithm uses the data in QR3 to check the correctness
of the examiner’s commitment and that no pseudonym appears using the α
elements indexed with the σ substitutions encoded in QR3. If any one of these
checks fails then the examiner misprinted the transparency and thus he is guilty,
otherwise the candidate is the culprit.

5 Analysis

We analyse our protocol in ProVerif, a security protocol verifier that allows the
automatic analysis of authentication and privacy properties in the Dolev-Yao
model [7]. The input language of ProVerif is a variant of the applied π-calculus.

5.1 Modelling Choices

No private Channels. We model TLS and face-to-face communications among
the roles using shared key cryptography rather than private channels. This choice
is motivated because the attacker cannot monitor communications via ProVerif’s
private channels, and even know if any communication happens. We think this
is a too strong assumption that may miss attacks. By renouncing to private
channels, we achieve stronger security guarantees when analysing our protocol.

506 G. Bella et al.

Moreover, our choice has a triple advantage: it allows the attacker to learn when
a candidate registers for the exam or is notified with a mark; it suffices to share
the key with the attacker when either the candidate or the examiner is corrupted;
it increases the chance the ProVerif verification terminates. Thus, the attacker
has more discretional power because he can observe when a candidate is given
the questions and when she submits the answers.

Equational Theory. We use the following equational theory to model the cryp-
tographic primitives needed in our protocol.

Probabilistic symmetric key sdec(senc(m, k, r), k) = m

Signature
getmess(sign(m, ssk)) = m

checksign(sign(m, ssk), spk(ssk)) = m

Visual cryptography
overlap(share, gen share(m, share)) = m

overlap(share, share) = share

Obfuscation deobf (obf (r, m, sel, commit(r′, sel)), r′) = m

The theory for probabilistic symmetric key and signature specifications are
well-known in ProVerif. We introduce a novel theory to model oblivious transfer
and visual cryptography. The function obf allows the examiner to obfuscate the
elements β1, . . . , βi, while the function deobf returns the correct element βsel

to the candidate, depending on the choice she committed. We also provide the
theory for the Pedersen commitment scheme with the function commit . Finally,
we model the generation of a visual cryptography share with gen share, and
their overlapping with the function overlap.

We verify Anonymous Marking in presence of a corrupted examiner. We
add the process collector that simulates the desk where candidates leave their
tests. Question Indistinguishability considers corrupted candidates, while Mark
Privacy and Mark Anonymity both consider corrupted eligible candidates. To
analyse Mark Verifiability, we define the algorithm testMV for our protocol as
depicted in Algorithm 2. We model an honest candidate, corrupted examiner
and co-candidates to prove the soundness of testMV. In particular, we use cor-
respondence assertions to verify the soundness of the algorithm in ProVerif,
and (non)reachability of the event KO to verify completeness. We check the
two soundness properties that regard Testing Dispute Resolution considering a
corrupted examiner in one, and corrupted candidates in the other.

A limitation of the formal model is the specification of the cut-and-choose
audit due to the powerful ProVerif’s attacker model. In fact, if the attacker plays
the cutter’s role, he might cut the set of elements such that the subset audited
by the chooser is correct, while the other subset not. Although in reality the
probability of success of this attack for a large set of elements is small, it is a
valid attack in ProVerif irrespective of the number of elements. In our case, the
chooser is the candidate and the cutter the examiner. We thus have a false attack
when the examiner is corrupted, namely controlled by the attacker. In this case,
we avoid this situation by allowing the candidate to check all the elements of

A Secure Exam Protocol Without Trusted Parties 507

Data: Public parameters: (g, h, SPKE)
- sign3 = SignSSKE {pid , c}
- idC , pid ′,mark , v.

Result: Whether the candidate was notified with the mark assigned to her test.
if pid = pid ′ and c = gvhmark then

return true

else
return false

Algorithm 2. The testMV for our protocol

the set. This is sound because the candidate plays the role of the chooser, thus
she is honest and follows the protocol although she knows the extra information.

Results. Table 1 outlines the results of our analysis. ProVerif confirms that
our protocol guarantees all the authentication properties despite allowing an
unbounded number of corrupted eligible co-candidates. Thus, our properties hold
although the attacker can register to the exam. Concerning privacy properties,
ProVerif proves that our protocol guarantees Anonymous Marking, Question
Indistinguishability, Mark Privacy, and Mark Anonymity. Finally, our protocol
is Mark Verifiable because testMV is sound and complete, and ensures Testing
Dispute Resolution: ProVerif shows that our protocol charges the misbehaving
party and not the honest, if the dispute algorithm is executed (soundness),
and the algorithm is not executed when both examiner and candidate roles are
honest (completeness).

Table 1. The result of the formal analysis in ProVerif with a machine Intel i7, 8GB

Property Result Time

Candidate Authorisation � 8s

Answer Authenticity � 7s

Answer Origin Auth. � 7s

Notification Request Auth. � 8s

Mark Authenticity � 8s

Property Result Time

Anonymous Marking � 27s

Question Indist. � <1s

Mark Privacy � 28m 41s

Mark Anonymity � 52m 12s

Mark Verifiability � <1s

Testing Dispute Res. � <1s

6 Conclusion and Future Work

We propose a new protocol for exams without the requirement of a trusted role.
The underlying idea is to combine oblivious transfer and visual cryptography
to generate a pseudonym which anonymises the test for the marking. A formal
analysis in ProVerif confirms the protocol ensures all the stated properties.

As future work we intend to extend our design to yield a larger set of
verifiability properties. Moreover, to extend the application scenarios of our

508 G. Bella et al.

protocol, we intend to modify the notification phase in order to avoid the involve-
ment of the candidate at notification. To achieve this, we envisage a temporal
deanonymization solution similar to the one in Remark! [13]. Regarding the for-
mal analysis, we aim to study compositional proofs that integrate computational
proofs of the cryptographic primitives used in our protocol with the symbolic
ones obtained in ProVerif. Finally, we intend to implement a prototype of the
protocol, and verify if different visual cryptography schemes can be used to
increase the perceptual security of an examination.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL 2001. ACM (2001)

2. Arapinis, M., Bursuc, S., Ryan, M.: Privacy-supporting cloud computing by in-
browser key translation. J. of Computer Security 21(6), 847–880 (2013)

3. Auernheimer, B., Tsai, M.: Biometric authentication for web-based course exami-
nations. In: HICSS 2005, p. 294b. IEEE (2005)

4. Bella, G., Giustolisi, R., Lenzini, G.: Secure exams despite malicious management.
In: PST 2014, pp. 274–281. IEEE (2014)

5. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
CSFW 2001, pp. 82–96. IEEE (2001)

6. Castella-Roca, J., Herrera-Joancomarti, J., Dorca-Josa, A.: A secure e-exam man-
agement system. In: ARES 2006. IEEE (2006)

7. Dolev, D., Yao, A.C.: On the Security of Public Key Protocols. IEEE Trans. on
Information Theory 29(2), 198–208 (1983)

8. Dreier, J., Giustolisi, R., Kassem, A., Lafourcade, P., Lenzini, G., Ryan, P.Y.A.:
Formal analysis of electronic exams. In: SECRYPT 2014. SciTePress (2014)

9. Dreier, J., Giustolisi, R., Kassem, A., Lafourcade, P., Lenzini, G.: On the verifia-
bility of (electronic) exams. Tech. Rep. TR-2014-2, Verimag (2014)

10. Essex, A., Clark, J., Hengartner, U., Adams, C.: How to print a secret. In: HotSec
2009. USENIX Association (2009)

11. Flock, E.: APS embroiled in cheating scandal. Washington Post, July 2011
12. Foley, S.N., Jacob, J.L.: Specifying Security for Computer Supported Collaborative

Working. J. of Computer Security 3, 233–253 (1995)
13. Giustolisi, R., Lenzini, G., Ryan, P.Y.A.: Remark!: A secure protocol for remote

exams. In: Christianson, B., Malcolm, J., Matyáš, V., Švenda, P., Stajano, F.,
Anderson, J. (eds.) Security Protocols 2014. LNCS, vol. 8809, pp. 38–48. Springer,
Heidelberg (2014)

14. Guénard, F.: La Fabrique des Tricheurs: La fraude aux examens expliquée au
ministre, aux parents et aux professeurs. Jean-Claude Gawsewitch (2012)

15. Hallak, J., Poisson, M.: Corrupt Schools, Corrupt Universities: What Can be
Done?. Ethics and corruption in education, Education Planning, UNESCO (2007)

16. Huszti, A., Pethö, A.: A secure Electronic Exam System. Publicationes Mathemat-
icae Debrecen 77(3–4), 299–312 (2010)

17. Kanav, S., Lammich, P., Popescu, A.: A conference management system with ver-
ified document confidentiality. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS,
vol. 8559, pp. 167–183. Springer, Heidelberg (2014)

18. Maffei, M., Pecina, K., Reinert, M.: Security and privacy by declarative design. In:
CSF 2013, pp. 81–96. IEEE (2013)

A Secure Exam Protocol Without Trusted Parties 509

19. Naor, M., Shamir, A.: Visual cryptography. In: De Santis, A. (ed.) EUROCRYPT
1994. LNCS, vol. 950, pp. 1–12. Springer, Heidelberg (1995)

20. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret
sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992)

21. Tzeng, W.G.: Efficient 1-out-of-n Oblivious Transfer Schemes with Universally
Usable Parameters. IEEE Trans. on Computers 53(2), 232–240 (2004)

22. Weippl, E.: Security in E-Learning, Advances in Information Security, vol. 16.
Springer (2005)

Mobile and Cloud Services Security

ApkCombiner: Combining Multiple Android
Apps to Support Inter-App Analysis

Li Li1(B), Alexandre Bartel2, Tegawendé F. Bissyandé1,
Jacques Klein1, and Yves Le Traon1

1 Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg, Luxembourg, Luxembourg

{Li.Li,tegawende.bissyande,Jacques.Klein,Yves.LeTraon}@uni.lu
2 EC SPRIDE, Technische Universität Darmstadt, Darmstadt, Germany

Alexandre.Bartel@ec-spride.de

Abstract. Android apps are made of components which can leak infor-
mation between one another using the ICC mechanism. With the growing
momentum of Android, a number of research contributions have led to
tools for the intra-app analysis of Android apps. Unfortunately, these
state-of-the-art approaches, and the associated tools, have long left out
the security flaws that arise across the boundaries of single apps, in
the interaction between several apps. In this paper, we present a tool
called ApkCombiner which aims at reducing an inter-app communica-
tion problem to an intra-app inter-component communication problem.
In practice, ApkCombiner combines different apps into a single apk on
which existing tools can indirectly perform inter-app analysis. We have
evaluated ApkCombiner on a dataset of 3,000 real-world Android apps,
to demonstrate its capability to support static context-aware inter-app
analysis scenarios.

1 Introduction

Everyday, millions of users exploit their handheld devices, such as smartphones,
for online shopping, social networking, banking, email, etc. At the Google I/O
2014, it was revealed that there are now more than 1 billion active Android
users and over 50 billion app downloads so far. Thus, mobile applications are
increasingly playing an essential role in our daily life, making the safety guards in
mobile operating systems an important concern for researchers and practitioners.
Because the Android OS accounts for more than 80% of the global smartphone
shipments, it has become a primary target of hackers who are now developing
malicious apps at an industrial scale [1]. Kaspersky has even reported in a recent
security bulletin that, 98% of mobile malware found target the Android platform.

An Android app is a combination of components that use a special inter-
action mechanism to perform Inter-Component Communication (ICC). This
communication model has been exploited by developers to design rich appli-
cation scenarios by reusing existing functionality. Unfortunately, because many
Android developers have limited expertise in security, the ICC mechanism has
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 513–527, 2015.
DOI: 10.1007/978-3-319-18467-8 34

514 L. Li et al.

brought a number of vulnerabilities [4,18]. Examples of known ICC vulnerabili-
ties 1 include the Activity Hijacking vulnerability (where a malicious Activity is
launched in place of the intended Activity) and the Intent spoofing vulnerability
(where a malicious app sends Intents to an exported component which originally
does not expect Intents from that app). In previous work [17], we have shown
that Android components can exploit such ICC vulnerabilities to leak private
data. More recent works have further demonstrated that Android apps exhibit
various privacy leaks that are built around the ICC mechanism [13,16,20].

The privacy leaks in Android are further exacerbated by the fact that several
applications can interact and “collaborate” to leak data using the inter-app
communication (IAC) mechanism. IAC and ICC are similar in Android, and
thus present the same vulnerabilities. Unfortunately, state-of-the-art analysis
tools are focused on ICC by analyzing a single app at a time. Consequently,
inter-app privacy leaks cannot be identified and managed by existing tools and
approaches from the literature.

In this paper we propose to empower existing static analysis tools for Android
to work beyond the boundaries of a single app, so as to highlight security flaws
in the interactions between two or more apps. To that end we have designed
and developed a tool called ApkCombiner which takes as input several apps
that may cohabit in the same device, and yields a single app package (i.e.,
apk) combining the different components from the different apps. The resulting
package is ensured to be ready for analysis by existing tools. Thus, since the IAC
mechanism is the same as the ICC mechanism, by combining apps, ApkCombiner
reduces an IAC problem to an ICC problem, allowing existing tools to indirectly
perform inter-app analysis without any modification.

During the combination of multiple Android apps, some classes may conflict
with one another. In this paper, we take into account two types of conflict:
1) the conflicted classes are exactly same (same name and same content), we
solve this type of conflicts by simply dropping the duplicated classes and 2) the
conflicted classes are different (same name but different content), we solve this
type of conflicts by first renaming the conflicted classes, and then ensuring that
all dependencies and calls related to those classes are respected throughout the
app code.

The contribution of this paper are as follows:

– We discuss the need for tools to support inter-app analysis, and present a
non-intrusive approach that can be leveraged by existing tools which are
focused on intra-app analysis.

– We provide a prototype implementation of ApkCombiner2, using an effective
algorithm to solve different conflicts which may arise during the combination
of multiple Android apps into one.

– We propose an evaluation of ApkCombiner on both a motivating example
and on a dataset of real-world Android apps. The experimental results show

1 Refer to Section 2.1 for the concept of component, Activity and Intent in Android.
2 We make available our full implementation, along with the experimental results at:

https://github.com/lilicoding/ApkCombiner

https://github.com/lilicoding/ApkCombiner

ApkCombiner: Combining Multiple Android Apps 515

that state-of-the-art intra-app analyzers can efficiently leverage our approach
to indirectly perform inter-app analyses.

2 Background and Motivation

In this section we first briefly introduce different concepts that are specific to
Android (cf. Section 2.1). Then, we motivate our work by highlighting the limita-
tions of state-of-the-art static analysis approaches targeting the Android system
(cf. Section 2.2). Finally, we discuss in Section 2.3 an IAC vulnerability through
a running example.

2.1 Android IAC Overview

In Android, the inter-component communication (ICC) mechanism allows two
components to exchange data and invoke each other. The Android inter-app
communication (IAC) mechanism works in the same way and exploits the ICC
mechanism to make components from different apps interact. An ICC is typically
triggered by one of several specific Android methods which are related to the
different components in presence (i.e., either an Activity, Service, Content
Provider, Broadcast Receiver). Those methods3 take as parameter a special
kind of object, called Intent, which specifies the target component(s), either
explicitly, by setting the name of the target component’s class, or implicitly, by
setting the action, the category and the input data to perform. Since it is hard
for developers to predict which other apps will be available at the same time,
IAC invocations are almost always performed through implicit Intents. In order
to receive implicit Intents, target components in separate apps need to declare
their capabilities, through an Intent Filter, in the app manifest file so that the
Android system may match them when requested by a given app.

2.2 Static Analysis for Android Apps

Static program analysis has been widely used to address security issues, e.g.,
related to data integrity and confidentiality of information flow [7], as well as
for anomaly detection [11,19]. More recently, static analysis techniques have also
been applied for dissecting Android applications [9,12,14]. However, we note that
current approaches still present a number of limitations when they are targeted
to code from the Android system.

In the most common case, a static analysis of Android is reduced to an intra-
app analysis, where the bytecode of an app is extracted, and parsed to produce
a control-flow graph (CFG) to further perform specific analysis. For example,
FlowDroid [2], a state-of-the-art Android analysis approach, builds CFG for
static taint analysis. When the analysis must take into account the interaction
between two or more apps, it is referred to as an inter-app analysis and may
operate in three different ways as illustrated in Fig. 1.
3 Except Content Provider related methods.

516 L. Li et al.

m1

m2

m1 m2

m3 m4

m3

m4

m1 m4

m1

m2

m3

m4

m1 m4

(1)

(f1)

approach (B1):
combine the

resulting flows

(f2)

app 1

app 2

approach (B2):
combine the

resulting CFGs

approach (C):
combine the

apps

analysing
the apps

separately

CFG 1

CFG 2

m1

m2

CFG 1

m3

m4 CFG 2

combine
the apps first

Fig. 1. Different approaches for Enabling Inter-App analysis of Android apps

At a high level, there are two options for enabling inter-app analysis: (1)
perform intra-app analysis of each app independently from the others and rely
on these analysis results to infer inter-app analysis output; or (2) combine the
apps first before performing the analysis.

In scenario (B1), the results of the intra-app analyses (i.e., flows f1 and f2)
are combined to yield a potential flow between the apps. However, because the
combination is performed after the analysis, no context data (e.g., variable values
such as data handled by the Intents) is available, and thus the scenario requires
to approximate the flows between the apps (e.g., here line (1)). This scenario
may thus lead to a significant number of false positives.

Scenario (B2) is an improved version of (B1) where it is no longer the results
that are combined but the CFGs instead. This scenario thus supports a context-
aware inter-app analysis by operating on a combined CFG and on a data depen-
dence graph (DDG) between the apps. Nevertheless, such an approach cannot
be generalized to any instances of CFG. In practice for example, the workload
for combining CFGs generated by Soot [15] can not even be applied in the case
of CFGs generated by Wala4. Thus, specific development effort must be put into
each and every static intra-app analyzer to support inter-app analysis.

Scenario (C) considers the caveats of all previous approaches by further
improving scenario (B2) to yield a general approach for enabling context-
aware inter-app analysis of Android apps. Thus, instead of combining separate
CFGs from different apps as in scenario (B2), the approach consist in combining
the complete apps at the bytecode level. The generated single app package is thus
immediately ready for analysis with static intra-app analysis tools. The analysis
results will then contain information that could only be obtained through inter-
app analysis. This paper presents the design and implementation of a tool for
4 http://wala.sourceforge.net/wiki/index.php

http://wala.sourceforge.net/wiki/index.php

ApkCombiner: Combining Multiple Android Apps 517

supporting such an approach where no modification of current state-of-the-art
tools will be required to perform inter-app analyses.

Table 1 summarizes the fact that most state-of-the-art static analysis approa-
ches for Android only deal with intra-app analysis. DidFail [13], the only app-
roach that considers inter-app analysis, falls under scenario (B1) described above.
Yet, as reminded by the classification in Table 2, this scenario leads to a context-
unaware analysis, and thus to many false positives in the results.

Table 1. State-of-the-art approaches

Intra-App(Inter-Comp) Inter-App

IccTA [16] DidFail [13]
AmanDroid [20]
ScanDroid [10]

SEFA [21]
CoChecker [5]

Table 2. Classification of scenarios for
static inter-app analysis approaches. (B1),
(B2) and (C) refer to the scenarios illus-
trated in Fig. 1.

Non-General General

Context-Unaware (B1)

Context-Aware (B2) (C)

2.3 A Running Example

Fig. 2 presents a running example that shows an IAC vulnerability. The example
is extracted from a test case of DroidBench5 referred among its list as InterApp-
Communication sendBroadcast1. The example consists of two Android applica-
tions, referred to as sendBroadcast1 source and sendBroadcast1 sink.

11: class InFlowActivity extends Activity
12: {
13: protected void onCreate(Bundle b) {
14: Intent i = getIntent();
15: String imei = i.getStringExtra("DroidBench");
16: Log.i("DroidBench", imei);
17: }}

1: class OutFlowActivity extends Activity{
2: protected void onCreate(Bundle b) {
3: //tm = default TelephonyManager;
4: String imei = tm.getDeviceId();
5: Intent i = new Intent();
6: i.setAction("lu.uni.serval.iac_sendbroadcast1.ACTION");
7: i.putExtra("DroidBench", imei);
8: sendBroadcast(i); }}

21: <activity android:label="@string/app_name" android:name="lu.uni.serval.iac_sendbroadcast1_sink.InFlowReceiver">
22: <intent-filter>
23: <action android:name="lu.uni.serval.iac_sendbroadcast1.ACTION" />
24: <category android:name="android.intent.category.DEFAULT" />
25: </intent-filter>
26: </activity>

App1: sendbroadcast1_source App2: sendbroadcast1_sink

App2: AndroidManifest

Fig. 2. A running example that shows an inter-app vulnerability

App sendBroadcast1 source contains a simple Activity component, named
OutFlowActivity, which first obtains the device ID (line 4) and then stores

5 DroidBench is a set of hand-crafted Android apps used as a ground truth dataset to
evaluate how well static and dynamic security tools find data leaks. https://github.
com/secure-software-engineering/DroidBench

https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench

518 L. Li et al.

it into an Intent (line 7) which is then forwarded to other components (poten-
tially in other applications since the Intent is implicit (line 6)). App sendBroad-
cast1 sink contains a component called InFlowActivity, which first extracts
data from the received Intent and then logs it onto disk.

In this example, we consider device ID, which is protected by a permission
check of the Android system, to be sensitive data. We also consider the log()
method to be dangerous behavior since it writes data onto disk, therefore leaving
it accessible to any applications, including anyone which does not have permis-
sion to access the device ID through the Android OS. Thanks to the declarations
in the Manifest file in the package of sendBroadcast1 sink, OutFlowActivity
is able to communicate with InFlowActivity using the sendBroadcast() ICC
method. Thus, through the interaction between these two apps, a sensitive data
can be leaked.

Unfortunately, the current state-of-the-art static analysis tools, including
FlowDroid and IccTA, cannot tackle this kind of IAC problem. Since these tools
have already proven to be efficient in statically identifying bugs and leaks across
components inside a single app, we aim at enabling them to do the same across
applications. We further put a constrain on remaining non intrusive, i.e., to avoid
applying any modification on them, so as to avoid introducing limitations or new
bugs in these tools. We thus propose ApkCombiner, which, by combining multiple
apps into one, reduces the IAC problem to an ICC problem that state-of-the-art
tools can solve in an intra-app analysis.

3 ApkCombiner

We now discuss the design and implementation of ApkCombiner. First we present
an overview of the approach in Section 3.1 before providing details on how we
address the case of conflicting code, typically same-name classes, when combining
apps (cf. Section 3.2). Although, for the sake of simplicity, we describe the case of
merging two apps, the approach, and the prototype tool, can merge any number
of apps.

3.1 Overview

The main objective of our work is to enable Android-targeted state-of-the-art
static analysis tools, which have proven to be effective in intra-app analyses, to
perform as well in inter-app analyses. ApkCombiner takes a set of Android apps
as input and yields a new Android app as output. The newly generated app
contains all the features of the input apps except for their IAC features: there is
no more IAC but only ICC in the new generated app.

The different steps of how ApkCombiner works are shown in Fig. 3. Each app
is first disassembled into smali files and a Manifest file using a tool for reverse
engineering Android apk files, namely android-apktool6. Second, all files from
6 https://code.google.com/p/android-apktool/

https://code.google.com/p/android-apktool/

ApkCombiner: Combining Multiple Android Apps 519

the apps are checked together for conflicts and integrated (with conflicts solved)
into a directory. The Manifest files, one from each app, are merged into a single
Manifest file. Finally, ApkCombiner assembles the smali files and the Manifest
file along with all other resources, such as image files, into a single apk. Although
potential conflicts on such extra-resources may be met, ApkCombiner does not
take them into account since the objective is not to produce a runnable apk, but
an apk that can be analyzed statically.

App 1 Smali Files + Manifest1

Conflicts
Solving

Smali Files

Merged
ManifestApp 2 Smali Files + Manifest2

New
App

Fig. 3. Working steps of ApkCombiner

3.2 Resolution of Conflicts

Our prototype of ApkCombiner is focused on solving conflicts that may arise
in the merging of code from two different apps. Such conflicts occur when
two classes have the same name (up to the package level, i.e., the absolutely
full qualified name). Thus, given class c1 in app a1 and class c2 in app a2, if
name(c1) = name(c2), we consider that there is a conflict between a1 and a2.

Fig. 4 illustrates the process of conflict checks we use. ApkCombiner considers
that there is no conflict when two classes are named differently. If the name of
two classes are the same, ApkCombiner distinguishes two cases according to the
content of the classes. In a first type of conflict, the classes share the same name
and their content is also the same (after verification of their footprint with the
cryptographic hash), In this case, one copy of the class files is simply dropped.
In the second type of conflict, i.e., when the content of the conflicting files are
different, a thorough refactoring is necessary. This type of conflict occurs when,
for example, two classes are actually from two different versions of the same
library used in the two apps.

Fig. 4. The conflict checking process of ApkCombiner. Class cls1 and cls2 are from
different apps.

Algorithm 1 details the described strategy for solving conflicts during merging
as implemented by the procedure CheckAndSolveConflicts(). Given two sets
(set1 and set2) of class files corresponding to the code of two apps (a1 and a2),
the algorithm must identify and manage all conflicts.

520 L. Li et al.

Algorithm 1. Checking and solving conflicts
1: procedure CheckAndSolveConflicts(set1, set2)
2: confliSameMap ← new Map()
3: confliDiffMap ← new Map()
4: for all cls1 ∈ set1 do
5: if set2.contain(cls1) then
6: cls2 ← set2.get(cls1)
7: if hash(class(cls1)) == hash(class(cls2)) then
8: confliSameMap.put(cls1, cls2)
9: else

10: confliDiffMap.put(cls1, cls2)
11: end if
12: end if
13: end for
14: if empty(confliSameMap, confliDiffMap) then
15: return
16: end if
17: for all cls1, cls2 ∈ confliSameMap do
18: remove class(cls2)
19: if isComponent(cls2) then
20: remove cls2 from Manifest2
21: end if
22: end for
23: for all cls1, cls2 ∈ confliDiffMap do
24: rename cls2
25: solvingDependence(cls2, set2)
26: if isComponent(cls2) then
27: rename cls2 in Manifest2
28: end if
29: end for
30: end procedure

First, two maps, referred to as confliSameMap and confliDiffMap are
created to keep track of the classes that belong to the two types of conflict
(lines 2-3). After identifying the kind of conflict that exists for each pair of classes
across the two sets, the algorithm can attempt to solve the eventual conflicts.
This resolution is performed in a two-step process. In step 1 (lines 17-22), the
algorithm addresses the cases of type 1 conflicts. In step 2, type 2 conflicts are
solved by refactoring the code.

Refactoring the code to solve conflicts is not as straightforward as renaming
the conflicting classes. Indeed, there is a lot of dependencies to consider within
the code of other classes. Procedure solvingDependence(), in line 25, is used
to handle these dependencies, where we take into account three types of depen-
dencies: 1) for a given class c we need to rename, another class ci may use it
as one of its attribute, 2) method mi of class ci may hold a parameter of c
and 3) statement si of method mi may use c as a variable. For the third type
of dependency, we deal with statements that instantiate the variable as well as

ApkCombiner: Combining Multiple Android Apps 521

access the variable’s attributes and methods because only such statements hold
information related to class c.

To combine multiple Android apps to one, we need not only to integrate
the different apps’ bytecode, but also to merge their Manifest files. In particular
the merge of Manifest files must take into account the fact that some classes
where dropped while others were renamed. If those classes represent Android
components, and not helper code, these changes should be reflected in the final
Manifest of the new app (line 20 and 27).

4 Evaluation

To assess the efficiency of our approach, we must evaluate the run time perfor-
mance of ApkCombiner to ensure that this does not hinder its practical usability
(cf. Section 4.1). Then, using a dataset with real-world apps, we check whether
our approach is, in the end, capable of enabling state-of-the-art intra-app ana-
lyzers to support inter-app analysis (cf. Section 4.2).

Hypotheses. To run our experiments, we start with the assumption that the
inter-app analysis may reveal significant security issues when a malicious appli-
cation can exploit a leak in another, or when two apps can collude to leak data.
To that end, we select a dataset containing both benign and malicious apps, and
assume that, by pairs, they may cohabit on the same device.

Experimental Setup. We select two app sets G and M for our evaluation,
where G is a set of apps randomly selected from Google Play store and M
is a set of malicious apps. These malicious apps were recognized as such after
analysis by VirusTotal antivirus products: we consider that an app is “really”
malicious when at least 20 different antivirus flag it as such. Both G and M
consist each of 3,000 Android apps. Then, for each app gi randomly selected
from G, we associate an app mi, also randomly selected from M . This random
combination only considers the possibility that two apps in one device may be
independently installed by a user on his device. This kind of association provides
3000 opportunities of merging to ApkCombiner.

Our prototype tool succeeded in combining 2, 648 (88.3%) pairs of apps.
Most failures were actually due to the limitations of android-apktool7. A few
failures must however be attributed to the current implementation strategy of
the refactoring process in ApkCombiner. These failures however are currently
under investigation to improve the tool.

During the process of successful combinations, ApkCombiner solved 1,789 first
type conflicts in 322 (12.2%) cases of combining pairs of apps. ApkCombiner also
addressed 3,557 second type conflicts in 493 (18.6%) combination cases.

7 Android-apktool often throws brut.common.BrutException for some combinations
(e.g., could not exec command or Too many open files).

522 L. Li et al.

●

●●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●● ●
●

●
●

●

● ● ●●●

●

●●

●

●

●

●
●

●
●

●

●

●●

● ●
●

●

●

●
●●● ●

●

●
●

● ●
●

●

●● ● ●

●●

● ●●●
●

● ● ●●

● ●

●

●
●

●●

●
●

●

●
●●

●

●

● ●
●

●●
●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

● ●

●
●●● ●

●
●●

●

●● ●
●

●
●

●

●

● ●
●

●

●

●

●

●
● ●

● ●

●
●

● ●
●●

●

● ●
●

●
●

●
● ●●

●

●

●

●

●
● ●

●

●
●

●
●●

●●

●

●
●

● ●
●

●
●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

● ●

●

●
●

● ●

●

●
●

●

●●
●

●

●
●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●●●
●

●
●

●
●●

●

●●

●

● ●

●

●

●

●

●

●
●●

● ●
● ●

●

●●
●

●

●●
●

●

●

●

●

●

● ●
●● ●

●
●

●
●

●●
● ●● ●●

●

● ●
●

●

●

●

● ●

●
●●

●

●
●

●

●
● ●●

●

● ●

●

●
●●

●●
●● ●

●

●

●

●

●

●

●
●

●

● ●
●●

●
● ●

●

●
●●

●
●

●

●

●

●

●

● ●●

●

●

●
●

●●●●●●

●

●●

●

●
●

●

●

●
●

●
●

●

●
●●

●
●

●
●

●●
●●

● ● ●●

●
●

●● ●

●
●

●
● ●

●●● ●

●●

●
●

●

●

●●

●
●

●

●
●●

●
●●●

●

● ●
●

●

●●

●

●
●● ●

●

●

● ●
●

●
● ●

●●●

●
●

● ●
●

●

●

●

●

●

●

● ●

●

●
●

●
●

●

●● ●

●
●

●

● ●

● ●●
●

● ● ●●●

●●

● ● ●

●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●
●●

●
● ●●

●

● ● ●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
● ● ●

●

●
●

● ●●

●●

●●

●

●

●

●

●

●● ●
●

●
●

●
● ●

●

●

●
●

●

●

●●

●
●●

●
●

●●

●
●

●●
●

●

●
● ●

●

●

●

●

●
●

● ●
●●

●

●

●
●

●

● ●

●

●
● ●

● ● ●

●

●

●
●

●
●

● ●

●
●

●●

● ●

●

●

●

●

●
●

●

●●

●●
●●

● ●●

●

●

●
●

● ●

● ●
●

●

● ●●

● ●
●

●●
●

●

●

● ● ●●
●

●

●

●
●

●
●

●

●

●

●

●●● ●●
●

●

●●
●

●

●

●

●

●

●

●●

●
●

●
●

● ●
●●

●
● ●

●●

●●

●
●

●

●
●

●
●●

●
●

●

●●

●●

●
●

●
●

●●

●

●

●
● ● ●●●●

●

●

●

●●
●

● ●

●
●

●

●● ●●

●

●

●

● ●

●

●●● ●●
●●

● ●
●

●●

●

●
●

●●

●

● ●

●●
●

●

●

●

●
●

●

●● ●
● ●

●
●●

●
●

●

●

●
● ●

●
● ●

●
●

●●

● ●

●

●

●

●

●
●●●●

●
● ●

●

●●

●

●●

●

●

●
●●

●

●
●

●●

●

●

●●

● ●●

●

●

● ●

●

●
●

● ●●
●●●

●
●

●

●●

●●
●

●
●

●

●

●

●
●

●● ●●●

●

●
●

●
●

●

●

● ●
● ●●

●●
● ●●

●

●●●
● ●●

●

●●●
●

●

●
●

●

●
●

●

●

●●●
●

●
●

●
●

●

●
●

●
●

●● ●

●●

●

● ●
●

●

●●●

●

●

●

● ●
●●

● ●

●

●●

●

●
●

●

● ●
●

●
●

●

●
●

●

●● ●

●

●

●

●

●

● ●

●

●● ●

●

●

●

●
●●

●
●

● ●● ●
●

●

●

●

● ●

●

●

●

●●
●

●

●

●●

● ●

●
●
●

●●
●

● ●●

●

●

●

●

●

●● ●●

●

●● ●

●
●

●
●

●
●●

●●
● ●

●
●

●
●

●
●

●●

● ●

●

●

●●

●
●

●
●●

●

●●

●

●●
●

●●●●
● ●

● ●
●

●
●

●

●
●

●● ●

●
●

●
●

●

●

●
●

●

●●
●

● ●●

●●

●

●

●

●

●

●
●

●
●●

●

●

●●
●●

●

●

●

●

●●

●
●

●
●●

●

●

●
●

●

●
●

●

●●

●

●●

●

●
●

●
●

●
● ●

●

●

●
●●

●

●
●●

●

●

●●

● ●

●
●● ●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●●
● ●● ●●●●

●
●

●

●

●●
●

●
●

● ●●
●●

●
●●

●●●

●

●

●
●

●
●

● ●
● ●
●
● ●

●
●

●●●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●●● ●

●

●

●

●

●●●
●

●
●

●

●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●
●

●
●
●

●●●

●

●●
●●

●

●

●

●

●

●

●

●
●●

●

●● ●●

●

●●

●

●
●

●

●

●

●
● ●●

●●
● ●

●●

●

●
● ●●

●

●

●

●
● ●

●
●

●

●

●

●●

●

●

●

●
●

●●

●

●●
●●

●

● ●●
●●

●

●
●

● ●

●

●
●

●

●●

●

●

●
●●

●●

●

●

●

●● ●
●

●●●●
●

●
●

●
●●●●

●

● ●●
●

●

●

●
●

●

●● ●
● ● ●●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●●
●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

● ●●● ●
●

●

●
●

● ●●
● ●

●
●

●

●

●●● ●

●

●●

●

●

●

●●●

●
●●

●
●

●
●●

●

●

●

●

● ●
●● ●●

●

●

●

●
● ●

● ●●●
●

●

●
●

●●

●

●

●

●

●

●

●

● ●

●

●

●●●
●

●

●
●

●

●

●
●

●●

●
●

●

●

●
●●

●

●● ●●
●

● ●
●

●

●
● ●

● ●
●

● ●
●● ●●●
● ●

●

●

●● ●
●

●●

● ●●
● ●●

●
●●
●●●

● ●●

●
●

●●
●

●

●

●
● ●● ●

●

●

●

●

●
●●● ●●

●

●

●
●● ●● ●

●

●

●●

●

●
●●●

● ●
● ●

● ●
●

●●
●

●

●
●

● ●●

●

●

●

●
●

●● ●

●

●

●

●

● ●
●●

● ●

●

●

●
●

●

●

●

●

●

● ●
●

● ●
●●

●

●

●●●
●●

●
●
●

●

●
●

● ●

●

●

●

●

●

● ●
●● ●●●

● ● ●
●●

●● ●
● ●

●
●

●●

●

●
●

●
●●

● ●

●

● ●●
●

●●

●

●

●

● ●●

●

●
●

●
● ●

●

●

●

●
●

● ●

●
●

●
● ●
●●●

●

●

●
●

●
●●

●

●

● ●●●
●●● ●

●

●

●

●

● ●

●

●●
●●

●

●

●●● ●

●

●

●

●● ●●
● ●

●

●
●

●

●

●
● ●●●●

●
●

●

●
●

●

●

●

●●

●●● ● ●
●

●
●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
● ●

● ●

●

● ●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●●●

●
●● ●

●
●●●

●
●●

●
● ●●

●
●

● ●
●

●

●● ●
●●

●
●

●

●
● ●●

● ●
●●● ●

●

●

●

●

●●

●
●●

●

●
●

●
●

●

●
●

●●

●

● ●

●
●
●

●
●

●

●●

●

●
●

●
●

● ●

●●

●

● ●● ●
●

●

●

●

●

●

●●

●

●●

●

●

●
●

●

●
● ● ●

●

●

●

●
●

●
●●

●●●
●

●

● ●
●

●

●●

●
●
● ●
●

●

●●

●

●
●

●
●

●

●

● ●
●

●
●

●● ●●●●
●

●
●

●●
●●

● ●● ●

●

●
●

●

●
●

●●
●

●

●

●

●●

●●
●●

●

●● ●●
●●

●

●

●

● ●

●

●
●

●

●
●

●
●

●●●

●

●

●

0 200 400 600 800 1000 1200

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

The bytecode size (KB)

T
h

e
 r

u
n

n
in

g
 t

im
e

 (
s)

y= 18.019 + 0.246 x

(a) C1 ∪ C2 ∪ C1 ∪ C2

●●
●

●
●

●●

●
●

●

●

●
●

●● ●
●

●
●● ● ●●●

●●

●

●
●

●
●

●

●● ●
●

●

●

●
●●● ●

●

●
●

●
●

●● ● ●

●

● ●●●
●

● ● ●●

● ●

●

●
●

●●

●
●
●

●●
●● ●

●

●●
●● ●●

●
●

●

●
●

●●
●

●

●
●

●

●
●

● ●

●
●●● ●

●
●●

●

●● ●
●●

● ●
● ●

●

●
● ●

●

●
●

● ●
●●● ●

●

●
●

●
● ●

●

●

●

●

●
● ●

●

●
●

●
●●

●●

●

●
●

● ●
●

●
●

●●
●●

●
●

●

●

●

●

●

●

●

●
●●

● ●
●

●
● ●

●
●

●●
●

●

●
●

●● ●
●

●
●●

●●●●
●

●
●

●
●●

●

●●● ●●
●●

●
● ●

●●
●

●

●●●
●

●

● ●
●● ●

●
●

●

●●
● ●● ●●● ●

●

●

● ●

●
●●

●

●
●

●

●
● ●●

●

● ●●
●● ● ●
●

● ●
●
● ●

●●

●
● ●

●
●●

●
●

●

●

●

●

● ●●

●
●

●

●●●●●● ●●

●

●
●

●

●

●
●

●
●

●

●●

●
●

●
●

●●
●●

● ● ●●

●

● ●

●
●

●
● ●

●●● ●

●●

●
●

●

●

●

●
●

●

●
●●

●
●●●

●

● ●
●

●●
●

●● ●

●

● ●
●

●
● ●

●●

●

●
●●

●

●●

●

●

●
●

●
● ●● ●

●
●

●

●●
●

● ● ●●●

●

● ● ●

●

●

●
●

●

●

●

●
●

●
●

●●

●
● ●●

●

● ● ●●

●

●

●

●●●●

●
● ●

●
●

●
●

●
●

● ● ●
●

●
● ●● ●

●

●

●

●

●

●● ●●
●

●
● ●●

●
●

●

●●

●
●●

●
●

●●

●
●●

●

●
● ●

●

●

●

●
●

● ●
●

●

●

●
●● ●

●
● ●

● ● ●

●

●

●
●

●
●

●

●

●● ●

●

●●●

●●

●
●●

● ●●

●

●

●
●

● ●
● ●●

●

●●
●

●

●

● ● ●●
●

●●●
●

●

●

●

●

●

●●● ●●
●●●

●●

●

●

●

●

●●
●

●

● ●
●●

● ●

●

●●

●
●

●
●●

●

●

●●

●

●
●

●
●

●● ●

●

● ●●●●
●

●

●●
●

● ●

●
●●● ●●

●

●

●

●

●●● ●●
●●

●
●

●● ●●●

● ●

●●
●

●

● ●
●

●

●● ●
● ●

●
●●

●
●

●

●
● ●

●
● ●

● ●

●
●

●

●
●●●

●
● ●

●

● ●●
●

●●

●
●●

●●

● ●●

●

● ●●
● ●●

●●●●

●

●●
●

●

●
●

●
●● ●●

●

●
●

●
● ●

●
●

●●
● ●● ●●●

●● ●●●
● ●

●
●● ●●●●●

●
●

●
●

●
●

● ●

●●
● ●

● ●●●

●

● ●
●●

● ●●●●
●● ●

●

●
●

●
● ●● ●●

●

● ●●● ●
●

●
●

● ●● ●
● ●● ●

●

●●●●
●●

●
●
●

●●
●

● ●●

●●

●

●● ●●

●

●● ●
●

●
●●

●●
● ●

●
●

●
●

●
●

●●

●

●

●
●

●● ●●●
●

●●●●
● ●

● ●
●

●
●

●
●

●● ●

●
●

●
●

●

●
●

●●
●

● ●●

●●

●

●

●

●●
●

●

●

●

●●
●●

●

●

●

●

●●

●
●

●
●●

●
●

●
●

●

●●
●●●

●
●

●

● ●

●●
●●●

●
●

●●

●

●
●● ●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●●
● ●● ●●●●

●
●

●
●●

●
●

● ●●
●●

●
●●

●●●

●

●

●
●●

●
● ●
●
● ●

●
●

●●●
●

●

●● ●

●

●●●●●● ●
●

● ●●●
● ●

●
●

● ●
●

●●●
●●

●

● ●●●
●

●

●
●●●

●

●●
●●

●
●

●
●

●●●● ●●●●

●

●
●

● ●
● ●●

●●
● ●

●●
●

● ●●

●

●
● ●

●
●

●

●

●

●●

●
●

●
●● ●●

●●● ●●
●●

●

●
●

●

●
●●●

●

●

●
●●

●●●
●● ●

●
●●●●

●
●

●
●

●●●● ● ●
●

●

●

●
● ●● ●

● ● ●●
●

● ●

●
●

● ●
●

●
●●

●
●

●

●●
●

●
●●●●●

●

●

●

● ●●● ●
●

●
●

● ●●
●

●
●

●● ●●

●

●●●

●
●●

●
●

●
●● ●

● ●
●● ●●

●

●
●

●
● ●●●

●
●

●
●

●●

●

● ●

●

● ●●●●
●

●

●

●
●

●●

●

●●
●● ●● ●●
●

● ●
●

●
● ●

● ●
●

● ●
●● ●●●
● ●

●● ●
●

● ●●
● ●●

●
●●
●●●

● ●● ●●
●

●
●

● ●● ●
●

●
●●● ●●

●

●

●
●● ● ●

●

●

●●
●

●●●

● ●
● ●

● ●
●

●
●

●

●
● ●●

●
●

●
●● ●

●

●

●

● ●
●

● ●●

●

●

●

● ● ●
●

● ●
●●

●

●

●●●
●●

●
●
●

●

●
●

● ●

●

●

●

● ●
●● ●●●

● ● ●
●●

●● ●
● ●

●

●● ●
●

●
●●

● ●

●

● ●●
●

●●
●● ●● ●

●
●

● ●●

●

●
●

● ●

●
●

● ●
●●●

●

●
●

●
●●

●
● ●●●

●●● ●
●

●

●

● ●●●
●●

●

●●● ● ●

●

●● ●●
● ●

●

●
●

●● ●●●●

●
●

●
●

●
●

●●

●●● ●●
●

●●

●
●

●

●

●

●
●

●
● ●

●

●

●

●

●

● ●
● ●●

● ●
● ●● ●

●

● ●
●

●
●

●
●● ●●●●

●
●● ●

●
●●●

●●
● ●●

●

● ●
●

●

●● ●●
● ●

● ●●

● ●
●●● ●●

●●

●
●●

●

●
●

●
●

●

●
●

●●
● ●

●
●
●

●
● ●●

●
●

● ●

●●

●

● ●● ●
●

●
● ●

●●
●●●
●

●

●
● ● ●

●
●

●
●

●●
●●●

●

●

● ●
● ●●

●
●
● ●
●

●●

●

●
●● ●

●
●

●
●● ●●●●

●

●
●

●●
●●

● ●●●
●

●

●
●

●●
●

●

●●

●●
●●

●

●● ●●
●●

●

●

●

●

●

●
●

●
●

●
●

●●●
●

0 200 400 600 800 1000 1200

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

The bytecode size (KB)

T
h

e
 r

u
n

n
in

g
 t

im
e

 (
s)

y= 22.566 + 0.157 x

(b) C1 ∪ C2

●●

●

●

●

●

●

● ●
●

●
●●

●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●
●

●

●
●

●

●●

●

●

●
●

●
●

●

●

●

● ●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●●

●
●

●

●

●

●
●

●

●
●●

●

●

●
●

●

●

●

● ●

●● ●

●

●
●

●

● ●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●
●

●

●

● ●
●●

●
●

●

●
●

●

●

●
●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●
●

●
●

●

●

●●

0 200 400 600 800 1000 1200

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

The bytecode size (KB)

T
h
e
 r

u
n
n
in

g
 t
im

e
 (

s)

y= 82.931 + 0.206 x

(c) C1 ∪ C2 (d) C1 (e) C2

Fig. 5. Time performance against the byte code size. C1 represent the set of combina-
tions where first type conflicts were solved, while C2 represents the set of combinations
with second type conflicts.

4.1 Time performance

The evaluation of time performance investigates the scalability of our approach.
Indeed, a user may have on its device dozens apps that cohabit together. Thus,
the inter-app analysis may require a fast combination of all those apps. Fig. 5
plots the running times8 of ApkCombiner for each combined app. The running
time is plotted against the sum size of each pair of apps (we use the bytecode
size, as resource files that are not considered in the merging may introduce a
bias).

Let C1 and C2 represent the successful combinations where conflicts of,
respectively, first type and second type were solved. Consequently, C1 ∪ C2 ∪
C1 ∪ C2 represents all the successful combinations.

Fig. 5a plots the time performance for all combinations. The linear regression
between the plots shows that there is a correlation between the execution time
and the bytecode size. Comparing with Fig. 5b, we note that the slope of the
regression is lower when we do not consider combinations that lead to conflicts.
8 Note that in this paper we consider the wall clock time (from start to finish of the

execution). That means not only the actual CPU time but also the waiting time
(e.g., waiting for I/O) are taken into account.

ApkCombiner: Combining Multiple Android Apps 523

The limited difference in slope values (0.246 against 0.157) indicates that the
conflict solving module is not a runtime bottleneck.

The differences between Fig. 5c, Fig. 5d and Fig. 5e further confirm how
the resolution of second type conflicts requires more execution time than the
resolution of first type conflicts.

4.2 Inter-app analysis

We consider IccTA [16], a state-of-the-art Android intra-app analysis tool, which
originally aims at detecting inter-component privacy leaks inside a single Android
app. We select IccTA to validate our approach by investigating the effectiveness
of ApkCombiner in supporting existing tools for performing inter-app analyses.

With ApkCombiner we build app packages by combining pairs of apps. We
then feed IccTA with these newly generated apps and assess its analysis results.
We evaluate the use of IccTA in combination with ApkCombiner in two steps.
In the first step, we evaluate the impact of ApkCombiner on DroidBench, which
includes three test cases related to inter-app communication leaks. We found that
IccTA is able to report inter-app privacy leaks for the analyzed apps by analyzing
the combined package provided by ApkCombiner. To the best of our knowledge,
DidFail is currently the only tool which claims to be able to perform static inter-
app analysis for privacy leaks. We therefore compare DidFail with our approach
associated to an existing state-of-the-art tool for intra-app analysis. The results
in Table 3 based the DroidBench benchmark show that IccTA, while it cannot
handle inter-app analysis alone, outperforms DidFail when it is supported by
ApkCombiner. The reason why DidFail fails on two test cases is that at the
moment DidFail only focuses on Activity-based privacy leaks.

Table 3. Comparison between IccTA, DidFail and ApkCombiner+IccTA

Test Case (from DroidBench) IccTA DidFai�l ApkCombiner+IccTA

InterAppCommunication startactivity1 ✗ ✓ ✓

InterAppCommunication startservice1 ✗ ✗ ✓

InterAppCommunication sendbroadcast1 ✗ ✗ ✓

In the second step, we evaluate ApkCombiner on 3,000 real Android apps.
We first build an IAC graph through the results of our extended Epicc [16,18],
where an app stands for a node and an inter-app communication is modeled as
an edge. For each of such edges, we launched ApkCombiner on the associated
pair of apps and then used IccTA on the generated app.

We were thus able to discover an IAC leak between app Ibadah Evaluation9

and app ClipStore10. In the Ibadah Evaluation apk code, the source method find-
ViewById is called in component com.bi.mutabaah.id.activity.Statistic,
where the data of a TextView is obtained. Then this data is stored into an Intent
9 https://worldapks.com/ibadah-evaluation/, com.bi.mutabaah.id in our dataset.

10 https://worldapks.com/clipstore/, jp.benishouga.clipstore in our dataset.

https://worldapks.com/ibadah-evaluation/
https://worldapks.com/clipstore/

524 L. Li et al.

a1

t = 2

t = 3

Fig. 6. An example of an IAC graph and a trade-off threshold t

along with two extras, a subject named android.intent.extra.SUBJECT and
the text referred to as android.intent.extra.TEXT. Subsequently, the trigger-
ing method startActivity is used to transfer the Intent data to the ClipStrore app
which extracts the data from the Intent with the same extra names and writes
all the data into a file named clip.txt. Note that we consider saving sensitive
data onto disk as a leak.

5 Discussion

Scalability. As introduced in Section 4.1, ApkCombiner scales linearly with
the bytecode size. Unfortunately, in practice, when increasing the bytecode size
(e.g., increasing the number of apps to combine), the processing time and mem-
ory requirement of Android analysis tools (e.g., IccTA or FlowDroid) also grow
significantly. Thus such approaches may not be scalable when running on top of
ApkCombiner. To limit the impact of this scalability issue, a possible approach is
to limit the number of Android apps to combine. This is a reasonable limitation,
as the number of apps obstructs the work of attackers as well. For example, the
more number of apps involved in an attack, the more complex to build such an
attack and the less likely that all the involved apps are installed by a single user.
Our solution is to build an IAC graph to represent the dependencies among apps,
the idea being that if there is no link (edge) between two apps (nodes) there is
no need to combine them. Based on the IAC graph, we introduce a threshold t
to denote the maximum number of apps ApkCombiner may combine together.
The trade-off limitation length t enables existing intra-app analyzers to remain
scalable when used with ApkCombiner.

Let us take Fig. 6 as an example, which shows an IAC graph and the concept
of threshold t. For app a1, if we set t = 2, then we only need to run ApkCombiner
6 times (the small circle) and most importantly we only need to combine 2 (or t)
apps each time. Notice that with the built IAC graph, new apps can be added to
the graph in an iterative and incremental manner. When new apps are involved,
we only need to add them to the existing IAC graph. We do not need to run the
previously computed apps again when adding the new apps. In short, by building
an IAC graph and setting up a threshold t, the original set of Android apps is
split into multiple small sets that both ApkCombiner and the state-of-the-art
intra-app analysis tools can analyze.

ApkCombiner: Combining Multiple Android Apps 525

Limitations. At the moment, we do not offer a guarantee that the newly gen-
erated app can be executed. Except from the bytecode and Manifest, we simply
combine all the other resources such as native code, layout files without checking
whether they are conflicted or not. This may result in errors for analysis tools
that rely on such resources.

6 Related Work

To the best of our knowledge, in the Android community, our approach is the first
work that attempts to complement existing state-of-the-art intra-app analysis
tools to indirectly support inter-app analyses. Our approach is also the first
proposal that supports context-aware inter-app analysis. However, research on
detecting IAC vulnerabilities is not new.

Privilege escalation attack, an IAC vulnerability, has been studied by a large
body of works [3,6,8]. Davi et al. [6] show that a genuine app can be exploited at
runtime and a malicious app can escalate granted permissions. Prominent exam-
ples of privilege escalation attacks are confused deputy and collusion attacks [3].
Confused deputy attack is about the possibility for malicious app to exploit
another privileged (but confused) app’s vulnerable interface. Collusion attack
concerns the collusion of apps that combine their permissions to be able to per-
form actions beyond their individual privileges. Our approach differs from theirs
because we are focusing on supporting static inter-app analysis, while they are
using dynamic testing to detect such vulnerabilities.

ComDroid [4] analyzed inter-app communication in Android apps and dis-
covered IAC vulnerabilities such as Broadcast Injection and Activity Hijacking.
Epicc [18] is another tool that dedicated to identify IAC vulnerabilities in Android
apps. Besides, Epicc records the actual values of IAC objects, which makes it
appropriate to build inter-component (or inter-app) links. ContentScope [22] is
another tool which detects Content Provider based vulnerabilities. It argues that
a Content Provider component can leak sensitive data to other apps and mali-
cious apps can also pollute data maintained by a Content Provider. More recently,
PCLeaks [17] was proposed to perform data-flow analysis on the top of IAC vul-
nerabilities to discover potential component leaks, which may leak private data
across Android apps. While the above static approaches are tackling IAC vulner-
abilities, they are actually only analyzing one app at a time and their outputs are
so-called potential results. Our approach is able to complement them by enabling
them to indirectly perform inter-app analysis and give them an opportunity to
conform that the aforementioned potential vulnerabilities are exploitable in real-
world apps.

To the best of our knowledge, there is only one, recent, static approach,
DidFail [13], which is able to perform static inter-app analysis. However, as
shown in Section 2.2 (type (B1)), DidFail simply combines the results of intra-
app analyses following an approach which is neither context-aware nor general.
In contrast, our approach is able to provide a general context-aware inter-app
analysis, and therefore, all intra-app analyzers can benefit from it.

526 L. Li et al.

7 Conclusion

We discussed ApkCombiner, a tool-based approach for reducing an Inter-App
Communication problem into an intra-app Inter-Component Communication
problem by combining multiple Android apps into one. After the combina-
tion, existing intra-app analysis approaches can be applied on the generated
Android app to indirectly report inter-app results. Since we combine apps at
code level, our approach is context-aware and general. We evaluate ApkCombiner
to demonstrate that, despite a conflict resolution algorithm that requires a time-
consuming refactoring process, the approach is scalable. We further showed that
it can improve the capabilities of existing state-of-the-art tools. For example, we
showed that using ApkCombiner can enable tools such as IccTA to discover IAC
privacy leaks in real-world apps.

Acknowledgments. This work was supported by the Fonds National de la Recherche
(FNR), Luxembourg, under the project AndroMap C13/IS/5921289, by the BMBF
within EC SPRIDE, by the Hessian LOEWE excellence initiative within CASED and
by the DFGs Priority Program 1496 Reliably Secure Software Systems and the project
INTERFLOW.

References

1. Allix, K., Jerome, Q., Bissyande, T.F., Klein, J., State, R., Traon, Y.L.: A forensic
analysis of android malware-how is malware written and how it could be detected?
In: COMPSAC. IEEE (2014)

2. Arzt, S., Rasthofer, S., Bodden, E., Bartel, A., Klein, J., Le Traon, Y., Octeau, D.,
McDaniel, P.: Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-
aware taint analysis for android apps. In: PLDI 2014 (2014)

3. Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., Shastry., B.:
Towards taming privilege-escalation attacks on android. In: NDSS (2012)

4. Chin, E., Felt, A.P., Greenwood, K., Wagner, D.: Analyzing inter-application com-
munication in android. In: MobiSys. ACM, New York (2011)

5. Cui, X., Yu, D., Chan, P., Hui, L.C., Yiu, S., Qing, S.: Cochecker: Detecting capa-
bility and sensitive data leaks from component chains in android. In: ACISP 2014
(2014)

6. Davi, L., Dmitrienko, A., Sadeghi, A.-R., Winandy, M.: Privilege escalation attacks
on android. In: Burmester, M., Tsudik, G., Magliveras, S., Ilić, I. (eds.) ISC 2010.
LNCS, vol. 6531, pp. 346–360. Springer, Heidelberg (2011)

7. Denning, D.E., Denning, P.J.: Certification of programs for secure information
flow. Communications of the ACM 20(7), 504–513 (1977)

8. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.:
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: OSDI (2010)

9. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A study of android application
security. In: USENIX Security (2011)

10. Fuchs, A.P., Chaudhuri, A., Foster, J.S.: Scandroid: Automated security certifica-
tion of android applications. Univ. of Maryland, Manuscript (2009)

ApkCombiner: Combining Multiple Android Apps 527

11. Giffin, J.T., Jha, S., Miller, B.P.: Efficient context-sensitive intrusion detection. In:
NDSS (2004)

12. Haris, M., Haddadi, H., Hui, P.: Privacy leakage in mobile computing: Tools, meth-
ods, and characteristics (2014). arXiv preprint arXiv:1410.4978

13. Klieber, W., Flynn, L., Bhosale, A., Jia, L., Bauer, L.: Android taint flow analysis
for app sets. In: SOAP@PLDI, pp. 1–6. ACM (2014)

14. La Polla, M., Martinelli, F., Sgandurra, D.: A survey on security for mobile devices.
IEEE Communications Surveys & Tutorials 15(1) 446–471

15. Lam, P., Bodden, E., Lhoták, O., Hendren, L.: The soot framework for java pro-
gram analysis: a retrospective. In: CETUS (2011)

16. Li, L., Bartel, A., Bissyandé, T.F., Klein, J., Le Traon, Y., Arzt, S., Rasthofer, S.,
Bodden, E., Octeau, D., Mcdaniel, P.: IccTA: detecting inter-component privacy
leaks in android apps. In: ICSE (2015)

17. Li, L., Bartel, A., Klein, J., Le Traon, Y.: Automatically exploiting potential com-
ponent leaks in android applications. In: TrustCom. IEEE (2014)

18. Octeau, D., McDaniel, P., Jha, S., Bartel, A., Bodden, E., Klein, J., Le Traon,
Y.: Effective inter-component communication mapping in android with epicc: An
essential step towards holistic security analysis. In: USENIX Security (2013)

19. Wagner, D., Dean, D.: Intrusion detection via static analysis. In: S&P (2001)
20. Wei, F., Roy, S., Ou, X., et al.: Amandroid: A precise and general inter-component

data flow analysis framework for security vetting of android apps. In: CCS (2014)
21. Wu, L., Grace, M., Zhou, Y., Wu, C., Jiang, X.: The impact of vendor customiza-

tions on android security. In: CCS, pp. 623–634. ACM (2013)
22. Zhou, Y., Jiang, X.: Detecting passive content leaks and pollution in android appli-

cations. In: NDSS (2013)

http://arxiv.org/abs/1410.4978

Assessment of the Susceptibility
to Data Manipulation of Android
Games with In-app Purchases

Francisco Vigário(B), Miguel Neto, Diogo Fonseca,
Mário M. Freire, and Pedro R.M. Inácio

Instituto de Telecomunicações, Department of Computer Science, University of Beira
Interior, Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal

{fvigario,miguel.neto,diogompaf}@penhas.di.ubi.pt
{mario,inacio}@di.ubi.pt

Abstract. This paper describes a study for assessing how many free
Android games with in-app purchases were susceptible to data manip-
ulation via the backup utility. To perform this study, a data set with
more than 800 games available in the Google Play store was defined.
The backup utility, provided by the Android Operating System (OS),
was used to backup the app files into a Personal Computer (PC) in order
to find and manipulate sensitive data. In the cases where sensitive data
was found, the applications were restored and the games tested to assess
if the manipulation was successful and if it could be used to the benefit
of the user. The results included show that a significant percentage of the
analyzed games save the user and app information in plaintext and do
not include mechanisms to detect or prevent data from being modified.

Keywords: Android · Data manipulation · Integrity · Mobile operating
system · Security · storage

1 Introduction

In the last few years we have witnessed an significant growth in the use of mobile
devices [15]. The massive adoption of these devices led several companies, as
Google and Apple, to direct their efforts into the development of mobile Operat-
ing Systems (OSs), driven by the needs of users. Along with these OSs, they also
provide app stores, (Google Play [12] and Apple Store [3]), which offer point and
click access to commercial or free applications to their users. Internetworking is
also increasing with the adoption of mobile devices, all contributing to a rich and
heterogeneous environment where sensitive data is sometimes flowing in the net-
work, or stored in mobile devices in an insecure manner. This data is a tempting
target for malicious users or developers, which try to exploit vulnerabilities to
steal it or manipulate it for their own profit.

Similarly, to traditional computer software, games comprise a substantial part
of the revenue of this industry, reflected either in number of existing games or in
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 528–541, 2015.
DOI: 10.1007/978-3-319-18467-8 35

Assessment of the Susceptibility to Data Manipulation 529

the effort to develop them. There are several business strategies for such applica-
tions and, in the case of mobile applications, some developers prefer to provide
their games for free, to then offer the users the possibility to expand the game
or add functionalities in return for a payment or several micro-payments. These
are nowadays known as in-app purchases. Many developers choose to ask for a fee
during the installation process. Sometimes, the applications come with the addi-
tional functionalities already implemented, but blocked. Some programming logic
prevents the user from accessing those parts of the application before the pur-
chase. This programming logic may be based on the values of variables, which are
stored as app information in the internal storage of the device. As such, it is often
assumed that the internal storage is protected (e.g., by the OS) against manipu-
lation by other applications, and difficult to directly access by the user.

In mobile applications, in-app purchases are used to remove advertisements
included in the free versions of apps, and add additional advanced or premium func-
tionalities. In the case of Android games, which are addressed in this work, these
purchases can also be used to unlock additional levels, get extra points, progress
faster in the game and obtain hidden items, apart from the aforementioned ones.
This mechanism is, thus, an important block in the business model of developers.

This paper describes a study concerning the possibility of accessing and
manipulating internal data storage of Android games with in-app purchase, using
the backup utility provided by the Android OS. The data set used for this anal-
ysis consists of more than 800 free games offering in-app purchases, which were
downloaded from the Google Play store. All games of the data set were sub-
ject to human analysis after their installation in a non-rooted smartphone and
transfer to a Personal Computer (PC). The procedure includes backing up the
applications to a PC, searching for interesting data, changing it, and restoring
the application back to the smartphone, to then assess if the behavior of the
game changes as a result of the manipulation. The results show that a notable
part of the analyzed games are susceptible to data manipulation, which can be
easily exploited by users. Sometimes, the procedure applied in the scope of this
paper may be applied, by typical users, to enjoy blocked functionalities without
paying for them. Results clearly show that developers should pay more attention
to data integrity and encryption mechanisms in mobile OSs.

This paper is structured as follows. Related works and the motivation under-
lying this study are included in section 2. Section 3 discusses the data set used
in the scope of this work and elaborates on the type of applications used. The
method used to perform the analysis is described in detail on section 4. Section 5
discusses the results of the analysis, as well as the number and type of appli-
cations that are susceptible to data manipulation using the described method.
The main conclusions and some lines of future work are described in section 6.

2 Related Work

Due to the popularity of the Android OS and also to the personal nature of mobile
devices, security involving this OS is nowadays a hot research topic. The sub-topic

530 F. Vigário et al.

discussed herein is also receiving a lot of attention lately, as shown by the recent
works on this area, discussed below. In 2011, the non-for-profit organization Open
Web Application Security Project (OWASP) began a project with focus on threats
to the mobile environment. At the end of 2014, the threat occupying the first posi-
tion of the OWASP Top 10 Mobile Risks was Weak Server Side Controls, with
Insecure Data Storage and Insufficient Transport Layer Protection coming up next
in the second position [14], which also motivated this work.

C. H̊aland, in his Masters thesis entitled An Application Security Assessment
of Popular Free Android Applications [5], includes a study of 20 popular free
applications, testing them for the OWASP Top 10 mobile risks. He found several
vulnerabilities of this list in the applications, namely Insecure Data Storage,
Weak Server Side Controls, Insufficient Transport Layer Protection, etc. The
author states that most of the attacks were only possible in rooted devices. For
example, he mentions that, with root privileges, the owner of the device can
access any file or folder, which comprises a Insecure Data Storage problem. He
was able to change the value of the coins used in the 4Pics1Word game, without
paying for that feature, by simply searching the files storing the status of the
application. Wordfeud Free was another application with a similar problem but,
in this case, he was able to retrieve the username and password of the Facebook
account that was used to login in the application, because the credentials were
stored in plaintext in an Extensible Markup Language (XML) file.

C. Xiao, a researcher in Palo Alto Networks, delivered a talk entitled Insecure
Internal Storage in Android in the Taiwan Conference (HITCON) [6] regarding
the subject at hands. He processed a total of 12,351 applications downloaded
from Google Play, having concluded that, from these applications, only 556 were
not allowing backup by means of the backup utility, and that only other 156
applications were implementing a BackupAgent to protect the data. In other
words, approximately 94,2% of the most popular applications allow transfer-
ring the package and all the internal storage files to a computer in a packed
format. The authorization to backup applications can be set up by adjusting
the android:allowBackup property to true or false in the manifest file. His
study was focused on the applications with at least 500,000 downloads. The
idea of manipulating data from Android apps via the backup utility was already
circulating in specialized forums and its genesis is hard to obtain.

In the Masters thesis entitled Android Application Security with OWASP
Mobile Top 10 2014 [13], James King analyzed the FourGoats Android appli-
cation, in which he identified several types of vulnerabilities, including Insecure
Data Storage. The version of the application under analysis was using a local
database file to store the credentials of the users in plaintext, and an attacker
with physical access to the device could thus obtain them, even without root
privileges (e.g., using the method described in section 4). In the Masters thesis,
the author also describes problems related with Insufficient Transport Layer Pro-
tection, stating that the majority of the applications selected for analysis were
not using encryption to transmit data over the network, which leaves them vul-
nerable to Man-In-The-Middle (MITM) attacks. In some cases, the credentials

Assessment of the Susceptibility to Data Manipulation 531

of users could also be obtained from traffic sniffing (because they were sent
unencrypted). Other vulnerabilities discussed in this study include Poor Autho-
rization and Authentication, Broken Cryptography, Improper Session Handling
and Lack of Binary Protections related problems.

In [8], Fahl et al. tried to assess how, and to which extent, Secure Sockets
Layer (SSL)/Transport Layer Security (TLS) was being used to protect the
contents of network communications from Android applications. The inadequate
usage or integration of the protocol could be as serious as not using it at all,
and both situations lead to MITM related vulnerabilities. In the scope of their
work, the authors developed MalloDroid, which is a small tool that can be used
to find broken SSL certificate validation procedures in Android apps. A total
number of 13,500 popular free apps downloaded from Google Play were then
analyzed with this tool. They concluded that approximately 8% of the analyzed
applications (1,074 apps) were potentially vulnerable to MITM attacks.

This paper is focused on the manipulation of locally stored data (no MITM
attacks were performed). Nonetheless, the procedure described herein may be
combined with MITM attacks to perhaps obtain an even higher success rate,
since it was noticed that some apps were using the network to store values and
to detect data modification.

3 Data Set

The analysis described in this paper was performed on a fairly large data set of
Android games, which are free to download but have the in-app purchase char-
acteristic. Even though simple tasks of this work used automated scripts, most
of the analysis was performed manually, meaning that all games were subject to
human analysis. The data set was collected between September and November
of 2014 and it is consists of 849 games from the 15 different categories defined
in Google Play for this type of software [12]. Table 1 summarizes the number
of games-per-category considered in the analysis. Although some applications
without in-app purchases were also analyzed in the meantime, they were not
considered in the scope of this particular work, because the main objective was
to evaluate whether a user could use the method described below to use premium
or paid functionalities without purchasing them, i.e., by only modifying internal
data.

Prior studies on Android OS security (e.g., [4,7,9,10]) have mainly focused
their analysis on the most popular apps available in Google Play (or Android
Market, as it was designated previously). This work takes the number of down-
loads into account in the analysis of the results, but the popularity of the appli-
cations was not considered when choosing the games for installation. As such,
our approach differs from some of the previously described ones in two ways: (i)
all applications were subject to manual analysis, so that minor details concern-
ing the way that data was stored by different applications was not overlooked;
(ii) the study is not limited to popular or to a small set of applications.

In order to give an idea of the popularity of the games comprising the data
set, Table 2 shows the number of games in the data set for each of the 11 different

532 F. Vigário et al.

Table 1. Number of analyzed games by category

Category

A
ct

io
n

A
rc

a
d
e

P
u
zz

le

C
a
su

a
l

S
tr

a
te

g
y

S
p
o
rt

s

R
a
ci

n
g

S
im

u
la

ti
o
n

A
d
v
en

tu
re

R
o
le

P
la

y
in

g

C
a
rd

W
o
rd

F
a
m

il
y

T
ri

v
ia

M
u
si

c

Number of

Games
141 138 99 91 91 58 50 39 37 35 34 16 13 6 1

download intervals defined by Google Play. A large slice of the data set was in
the 1 to 5 billion download interval (approximately 35%), and approximately
71% had more than 1 billion downloads.

Notice that, not limiting the data set to the most popular games also provided
a way to later on assess if there was an obvious relation between popularity and
the problems related with Insecure Data Storage.

Table 2. Number of games in the data set per number of downloads

Number of Downloads Number of Games-per-Interval

100 000 000 - 500 000 000 13

50 000 000 - 100 000 000 16

10 000 000 - 50 000 000 111

5 000 000 - 10 000 000 110

1 000 000 - 5 000 000 296

500 000 - 1 000 000 106

100 000 - 500 000 157

50 000 - 100 000 23

10 000 - 50 000 11

5 000 - 10 000 4

1 000 - 5 000 2

4 Method

The method to perform the analysis described in this paper required the usage
of a smartphone and a PC with specific software installed. The smartphone was
running a non-rooted Android OS (version 4.4.2). Nonetheless, any version of the

Assessment of the Susceptibility to Data Manipulation 533

(a) RSA Key fingerprint (b) Backup utility dialog

Fig. 1. Screenshots of important steps of the method used in the scope of this work.
(a) Screenshot of the RSA key fingerprint dialog for enabling USB debugging from a
given computer; (b) Screenshot of the Backup utility provided by the OS.

OS higher than 4.0.0 would suffice for all purposes of this work, since the backup
utility (which is critical for the method) was provided natively from that version
on [2]. As further explained below, a snapshot of each analyzed game needs to be
copied to the PC. This was done via an Universal Serial Bus (USB) cable and the
communications were managed by the Android Debug Bridge (ADB) tool [1],
which was installed in the computer. The PC was running a Linux based OS
also, with the following tools installed: pax, tar, OpenSSL, dd and grep. Some
of these tools (e.g., OpenSSL and grep) come natively with most of the Linux
distributions available, while others are very simple to obtain, e.g., via package
managers. These tools were used to handle the package transferred from the
smartphone. Typically, OpenSSL is used to perform cryptographic tasks but, in
this case, it was used to compress and decompress packages resorting to the
zlib library. pax was used to read and write files and copy directory hierarchies.
dd and tar were responsible for converting and extracting files with the .tar
format, respectively. Finally, grep was used for searching patterns in the data
files of an application.

After the establishment of the initial setup and installation of the tools
described above, a set of steps to explore the data storage problems was applied.
The method can be divided into 10 different steps. Each step resorts to a set
of commands, which are entered in a traditional shell. It should be emphasized
that, apart from the already available and aforementioned tools, no particular
secondary application needs to be developed to apply this method, and parts of
it can be found online in specialized forums (e.g., [11]), which contributes to the
severity of this problem. The method explained below presumes that the game
to be analyzed was previously installed in the system. The steps are described
with more detail as follows:

1. The first step consists of connecting the mobile device to the computer via
USB. The debug mode should be active when the connection is performed

534 F. Vigário et al.

(or needs to be activated on the device). The OS normally asks the user to
allow the communication in debug mode, exhibiting a dialog with an RSA
public key fingerprint, as shown on Figure 1a. The connection needs to be
explicitly allowed for the method to work.

2. The app backup to the computer is performed in the second step, by issuing
a command similar to the following one in the terminal:

adb backup -f data.ab -apk PATH

The PATH parameter represents the fully qualified path of the game in the
smartphone internal storage. This command will trigger the backup utility in
the Android OS, illustrated on Figure 1b, that asks the explicit permission
to perform the backup operation for that app. An optional password for
encrypting the package may be provided.
Once the command is successfully executed, a compressed and non-encrypted
archive (in this case referred to as data.ab), which contains a small header
with 24 bytes, and the files composing the app, is transferred to the PC.

3. The third step consists of removing the header and converting the data.ab
into a tar file, so as to enable the extraction of the compressed files in the
subsequent step. This can be achieved by piping the following commands:

dd if=data.ab bs=1 skip=24 | openssl zlib -d > data.tar

4. The fourth step consists of obtaining an exact snapshot of the names of the
files and directory structure inside of the data.tar archive with:

tar -tf data.tar > data.list

This will enable packaging the application back perfectly after file manipu-
lation and before restoring.

5. The fifth step is the one were the data.tar archive is decompressed using a
command similar to the next one:

dd if=data.ab bs=1 skip=24 | openssl zlib -d | tar -xvf -

6. The sixth step is where one tries to manipulate the data of the applica-
tion. This work was just focused on trying to change data that could enable
accessing paid functionalities or changing the behavior of the game without
paying for them. For example, we were interested in changing the number
of coins in a game. To achieve this objective, a simple procedure based on
human analysis of the files and resorting to the grep tool was applied with
commands similar to:

grep -R "xxx" app/PATH/

Several strategies were adopted to try to find out the interesting values.
Some were based on thorough (human) analysis of the files. Another one,
which proved to be very successful, consisted in playing the game in the
smartphone for a limited period of time, leaving it with a given number
of coins or in a given game level (which are numbers). Afterwards, those

Assessment of the Susceptibility to Data Manipulation 535

numbers were searched in the data files of the application using grep and all
occurrences were further analyzed and manipulated. For example, we would
legitimately play a game until 1234 coins were generated, to then look for
and modify that value in this step. Sometimes, the sqlite3 tool had to
be used to perform the modification, as some apps use sqlite3 to store the
data. This stage included the modification of XML, sqlite, JavaScript Object
Notation (JSON) and text files.

7. The seventh step begins the app restore process. First of all, it is necessary
to compress all app files in the exact same order they were decompressed
using the information saved in the data.list file:

cat data.list | pax -wd > newdata.tar

8. The header that was previously stripped out needs to be properly inserted
again so that the file has the right format, using:

echo -e "ANDROID BACKUP\n1\n1\nnone" > backup.ab

9. The application can then be compressed and concatenated to the end of the
backup.ab file, which already contains the header:

openssl zlib -in newdata.tar >> backup.ab

The backup.ab is an archive compatible the Android OS.
10. The last step consists of issuing the command to restore the archive to the

device, which will trigger a dialog similar to the one in Figure 1b.:

adb restore backup.ab

Notice that, all previous steps were performed on each one of the games
included in the data set. After concluding the last step of the method success-
fully, the game was once again executed in the Android OS and it was assessed
if the data modifications were producing the expected results. Sometimes, this
procedure was repeated several times, to minimize the possibility of having over-
looked some minor artifact. If the behavior of the game was changed without
detection (some games detect modifications by storing values in the network) as
a consequence of the manipulation, it was considered vulnerable. The results are
discussed below.

5 Discussion and Results

The data set used in the scope of this work is constituted by 849 free (to down-
load) games with the in-app purchase characteristic. From those 849, a total of
148 were susceptible to data manipulation performed using the method described
in section 4, which corresponds to 17,43% of the tested games. This percentage
is significant, taking into account that it refers to cases where developers are
dependent of that specific income (the game is free to download, only the add-
ons are paid). Also, worth of note is the fact that the method does not depend,

536 F. Vigário et al.

in any way, of having the OS rooted or not and that the tools to perform data
modification are readily available. Actually, it would be easy to automate the
described method and pack the required tools to construct a program for crack-
ing a given game, based on these findings.

The chart in Figure 2 compares the number of games that were found to be
susceptible to data manipulation with the total number of games in the data
set for each one of the Google Play categories. The results suggest that Trivia is
the most affected category (with 50% of vulnerable games), but it is also one of
the ones containing fewer games (only 6). Some of these games work both online
and offline, and the paid add-ons are often aids to which the user may resort to
answer questions right. In the vulnerable games, it was noticed that the access
to such functionalities was controlled by values stored in plaintext files without
any integrity mechanism.

 0

 20

 40

 60

 80

 100

 120

 140

 160

A
ct

io
n

A
dv

en
tu

re

A
rc

ad
e

C
ar

d

C
as

ua
l

Fam
ily

M
us

ic

Puz
zl

e

R
ac

in
g

R
ol

e
Pla

yi
ng

Sim
ul

at
io

n

Spo
rts

Stra
te

gy

Triv
ia

W
or

d

N
u
m

b
e
r

o
f

G
a
m

e
s

Categories

Number of Games Analyzed
Number of Games Vulnerables

Fig. 2. Total number of games versus the number of games susceptible to data manip-
ulation, per category

After Trivia, the two categories with the most expressive results were Racing
and Arcade, where 28% and 26% of the games were susceptible to data manip-
ulation, respectively. In these types of games, the paid add-on or functionality
is also normally comprised by means to have more virtual money or faster ways
to progress in levels, namely by buying certain virtual items. The results derive
from the fact that the money balance of a game is frequently stored in plaintext
XML or text files, or in SQLite databases, without integrity or authentication
codes, which are easy to find and modify.

The categories of Role Playing, Family and Music had no vulnerable games.
These results are mostly due to the fact that, in this type of games, in-app pur-
chases are used to remove advertisements or to, for example, buy the whole game
or expansions (new levels, weapons or characters). In such cases, the purchase
typically requires downloading new files (or a new version of the game) to the

Assessment of the Susceptibility to Data Manipulation 537

system and, therefore, these files were not previously available for manipulation.
Purchases requiring the user to interact with a remote server are inherently less
susceptible to data manipulation because, in such cases, it is not about changing
the flow or status information of the application. Role Playing games usually
have a higher longevity, and they are updated more times than, e.g., Arcade
games. Some updates address previously known issues, namely the ones related
with Insecure Data Storage when crack tools leak into the Internet. Probably,
the effort in implementing security features in these categories is larger.

The Cards and Strategy categories had 2.9% and 6.5% of the games suscepti-
ble to data manipulation, respectively. These low values are related with the fact
that both types of games are typically played online, which means that applica-
tion information is either stored remotely or checked frequently against the last
known (or normal) snapshot of such values. Some games allowed changing some
app related values in the PC, but they were then restored when the connection
was again established.

In order to assess if there was a relation between the popularity of a game
and its susceptibility to data manipulation, an analysis similar to the previous
one was conducted for the same data set segregated by number of downloads.
The chart in Figure 3 summarizes this part of the work.

 0

 50

 100

 150

 200

 250

 300

10
00

00
00

0
- 5

00
00

00
00

50
00

00
00

 -
10

00
00

00
0

10
00

00
00

 -
50

00
00

00

50
00

00
0

- 1
00

00
00

0

10
00

00
0

- 5
00

00
00

50
00

0
- 1

00
00

00

10
00

00
 -

50
00

00

50
00

0
- 1

00
00

0

10
00

0
- 5

00
00

50
00

 -
10

00
0

10
00

 -
50

00

N
u
m

b
e
r

o
f

G
a
m

e
s

Number of Downloads

Number of Games Analyzed
Number of Games Vulnerables

Fig. 3. Total number of games versus the number of games susceptible to data manip-
ulation, segregated by popularity

The most vulnerable games are the ones with the number of downloads in the
ranges 5000–10000 and 50000–100000, though the first interval only contained 4
games (of which 2 were vulnerable to the method applied herein). In the second
interval, 7 games were vulnerable, corresponding to approximately 30% of the
total number of games in that range. The results suggest that the number of
vulnerable games is not dependent of their popularity, even though no vulnerable

538 F. Vigário et al.

games were found in the range 50000000–100000000 (there were only 16 games
in this interval). In the range with most of the games (1000000–5000000), 15.4%
were vulnerable to data manipulation, which corresponds to 46 games in a total
of 296.

Focusing only on the vulnerable games, Figure 4 emphasizes the type of files
used to sale application data in the internal storage of the Android OS. As
shown in the pie chart, 76% of the vulnerable games resort to XML files, while
9% use SQLite databases and 14% use .txt or JSON files. This distribution was
expected since XML comprises a simple and standard format for storing data
and, in Android, one of the suggested storage options for saving application
related data is known as Shared Preferences, which is used to save values from
primitive JAVA types in XML format. Nonetheless, these results also show that
manipulation is possible in a variety of formats. Data stored within SQLite
databases is also stored in ASCII, except if encoded using application logic,
which also enables one to easily find patterns in the files.

Fig. 4. Type of file used to save application data in Android internal storage in vul-
nerable games

Finally, it should be mentioned that only 21 games, corresponding to approx-
imately 2.5% of the data set, had the property android:allowBackup set to
false in the AndroidManifest.xml. By default, this property is set to true,
which means that, if the developer does not explicitly adjust it to false, the
game will be inherently more prone to the method described herein. The possi-
bility to backup an application is a commodity utility for the user and it makes
sense to exist. The problem is that it can be easily exploited with different inten-
tions. Setting the aforementioned property to false will solve the problem in
non-rooted OSs, but legitimate users may miss the functionality. Apart from
that, such setting would not solve the issue in rooted OSs.

Due to the reasons mention in the previous paragraph, integrating data
integrity mechanisms into the application may comprise the best means to

Assessment of the Susceptibility to Data Manipulation 539

address this issue or, at least, make the exploitation more difficult. For exam-
ple, developers may use hash functions, Message Authentication Code (MAC) or
digital signature algorithms to calculate and store digests, MACs or signatures
for the files where the sensitive data is stored (databases, text or implementa-
tion files, etc.). Encrypting the files will have a similar effect. Nonetheless, this
imposes some additional computational burden, since the application needs to
calculate the aforementioned codes when the contents of the files change and ver-
ify them at each execution. If encryption is used, the application needs to decrypt
and encrypt the data before accessing or storing it in the files, respectively. Since
the cryptographic secrets, used in these mechanisms, need to be available for the
application, a specially motivated attacker may still try to manipulate the data
by finding the keys and the data integrity mechanisms. If the cryptographic
secrets are transferred with the backup, the manipulation is harder to achieve,
but still within reach. As such, this topic needs more attention.

Curiously, 3.2% of the games in the data set (corresponding to 27 games)
were publicized with the in-app purchase characteristic in Google Play, but had
really nothing to buy in the application. In another 3.9% of the data set (i.e.,
27 games), the in-app purchase was to remove advertisements or to buy their
respective full version, which involves downloading additional files and, as such,
they are not vulnerable to data manipulation.

6 Conclusions and Future Work

This paper is focused on the Insecure Data Storage threat defined by OWASP for
mobile devices. It elaborates on the specific problem of manipulating application
data from Android games to get free access to paid add-ons or functionalities.
Herein, it was discussed that the backup and restore functionalities, provided
natively with recent versions of the Android OS, could be used to transfer games
to and from a PC, in which they could be tampered to obtain access to the
aforementioned add-ons or functionalities. This procedure does not require the
system to be rooted, only the users consent (for allowing the USB connection
and for transferring the specific application). This procedure is already used by
some tools for cheating some games since it can be easily automated for a specific
application.

In order to quantify the problem, a total of 849 games offering in-app pur-
chases were downloaded, from Google Play, and then manually analyzed using a
method based on searching patterns on the data transferred with the application
during the backup. An expressive number of 148 games were found vulnerable
to this method, meaning that it was possible to change the application flow or
status by searching for ASCII patterns on XML, JSON, txt or SQLite files.
Results suggest that the vulnerability is not related with the popularity of the
games and we argue that disabling the backup feature for a game should not
be seen as a preventive measure against this problem, though it would certainly
contribute for its attenuation. The possibility to backup the applications con-
stitutes a commodity utility and it should not be disabled. Data integrity and

540 F. Vigário et al.

encryption mechanisms comprise the best mechanisms to prevent Insecure Data
Storage problems, like the ones discussed herein.

A possible line of future work consist on performing a similar assessment for
other mobile OSs. For example, iOS provides also a means to transfer applica-
tions to a PC, e.g., for the cases when the user wants to switch phones.

Another line of work consists of expanding the data set to other types of
applications and broaden the scope of the analysis. During the study described
herein, a few other (non-game) applications were analyzed and it was found that
many of them were saving user related data in plaintext files. Worst than that,
some applications were enabling the access to others users online profiles via
data manipulation, because they were storing other users information locally. A
more detailed analysis is nonetheless required.

Acknowledgments. Authors acknowledge the financial support from EyeSee, Lda.
This work was performed in the scope of the R&D Unit 50008, financed by the appli-
cable financial framework (FCT/MEC through national funds and when applicable
co-funded by FEDER – PT2020 partnership agreement).

References

1. Android Developers: Android Debug Bridge (2014). http://developer.android.
com/tools/help/adb.html (accessed December 2014)

2. Android Developers: Dashboards — Android Developers (2014). https://developer.
android.com/about/dashboards/index.html (accessed December 2014)

3. Apple: Official Apple Store (20). http://store.apple.com/us (accessed January
2015)

4. Barrera, D., Kayacik, H.G., van Oorschot, P.C., Somayaji, A.: A methodology
for empirical analysis of permission-based security models and its application to
android. In: Proceedings of the 17th ACM Conference on Computer and Commu-
nications Security, CCS 2010, pp. 73–84. ACM, New York (2010). http://doi.acm.
org/10.1145/1866307.1866317

5. H̊aland, C.: An Application Security Assessment of Popular Free Android Appli-
cations. Master’s thesis, Norwegian University of Science and Technology (2013)

6. Xiao, C., Olson, R.: Insecure Internal Storage in Android - Palo Alto Networks
BlogPalo Alto Networks Blog (2014). http://researchcenter.paloaltonetworks.com/
2014/08/insecure-internal-storage-android/ (accessed December 2014)

7. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security, CCS 2009, pp. 235–245. ACM, New York (2009). http://doi.
acm.org/10.1145/1653662.1653691

8. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why eve and mallory love android: An analysis of android ssl (in)security. In: Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Secu-
rity, CCS 2012, pp. 50–61. ACM, New York (2012). http://doi.acm.org/10.1145/
2382196.2382205

9. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions demys-
tified. In: Proceedings of the 18th ACM Conference on Computer and Communi-
cations Security, CCS 2011, pp. 627–638. ACM, New York (2011). http://doi.acm.
org/10.1145/2046707.2046779

http://developer.android.com/tools/help/adb.html
http://developer.android.com/tools/help/adb.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
http://store.apple.com/us
http://doi.acm.org/10.1145/1866307.1866317
http://doi.acm.org/10.1145/1866307.1866317
http://researchcenter.paloaltonetworks.com/2014/08/insecure-internal-storage-android/
http://researchcenter.paloaltonetworks.com/2014/08/insecure-internal-storage-android/
http://doi.acm.org/10.1145/1653662.1653691
http://doi.acm.org/10.1145/1653662.1653691
http://doi.acm.org/10.1145/2382196.2382205
http://doi.acm.org/10.1145/2382196.2382205
http://doi.acm.org/10.1145/2046707.2046779
http://doi.acm.org/10.1145/2046707.2046779

Assessment of the Susceptibility to Data Manipulation 541

10. Felt, A.P., Greenwood, K., Wagner, D.: The effectiveness of application permis-
sions. In: Proceedings of the 2nd USENIX Conference on Web Application Devel-
opment, WebApps 2011, p. 7. USENIX Association, Berkeley (2011). http://dl.
acm.org/citation.cfm?id=2002168.2002175

11. Forums, X.: GUIDE How to extract, create or edit android adb backups — Android
Development and Hacking — XDA Forums (20). http://forum.xda-developers.
com/showthread.php?t=2011811 (accessed January 2015)

12. Google: Google Play (2014). https://play.google.com/store (accessed December
2014)

13. King, J: Android Application Security with OWASP Mobile Top 10 2014. Master’s
thesis, Lule̊a University of Technology (2014)

14. OWASP: Projects/OWASP Mobile Security Project - Top Ten Mobile Risks -
OWASP (2014). https://www.owasp.org/index.php/Projects/OWASP Mobile
Security Project - Top Ten Mobile Risks (accessed November 2014)

15. Pieterse, H., Olivier, M.: Android botnets on the rise: Trends and characteristics.
In: Information Security for South Africa (ISSA 2012), pp. 1–5, August 2012

http://dl.acm.org/citation.cfm?id=2002168.2002175
http://dl.acm.org/citation.cfm?id=2002168.2002175
http://forum.xda-developers.com/showthread.php?t=2011811
http://forum.xda-developers.com/showthread.php?t=2011811
https://play.google.com/store
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Top_Ten_Mobile_Risks

An Empirical Study on Android for Saving
Non-shared Data on Public Storage

Xiangyu Liu1, Zhe Zhou1, Wenrui Diao1, Zhou Li2, and Kehuan Zhang1(B)

1 The Chinese University of Hong Kong, Hong Kong, China
khzhang@ie.cuhk.edu.hk

2 RSA Laboratories, Cambridge, USA

Abstract. With millions of apps provided from official and third-party
markets, Android has become one of the most active mobile platforms
in recent years. These apps facilitate people’s lives in a broad spectrum
of ways but at the same time touch numerous users’ information, raising
huge privacy concerns. To prevent leaks of sensitive information, espe-
cially from legitimate apps to malicious ones, developers are encouraged
to store users’ sensitive data into private folders which are isolated and
securely protected. But for non-sensitive data, there is no specific guide-
line on how to manage them, and in many cases, they are simply stored
on public storage which lacks fine-grained access control and is almost
open to all apps.

Such storage model appears to be capable of preventing privacy leaks,
as long as the sensitive data are correctly identified and kept in private
folders by app developers. Unfortunately, this is not true in reality. In this
paper, we carry out a thorough study over a number of Android apps to
examine how the sensitive data are handled, and the results turn out to
be pretty alarming: most of the apps we surveyed fail to handle the data
correctly, including extremely popular apps. Among these problematic
apps, some directly store the sensitive data into public storage, while oth-
ers leave non-sensitive data on public storage which could give out users’
private information when being combined with data from other sources.
An adversary can exploit these leaks to infer users’ location, friends and
other information without requiring any critical permission. We refer to
both types of data as “non-shared” data, and argue that Android’s stor-
age model should be refined to protect the non-shared data if they are
saved to public storage. In the end, we propose several approaches to
mitigate such privacy leaks.

1 Introduction

The last decade has seen the immense evolution of smartphone technologies.
Today’s smartphones carry much more functionalities than plain phones, includ-
ing email processing, social networking, online shopping, etc. These emerging

All vulnerabilities described in this paper have been reported to corresponding com-
panies. We have got the IRB approval before all experiments related to human
subjects.

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 542–556, 2015.
DOI: 10.1007/978-3-319-18467-8 36

An Empirical Study on Android 543

functionalities are largely supported by mobile applications (apps). As reported
by [1], the number of Android apps on Google Play is hitting 1.55 million.

Most of the apps need to access some kind of users’ data, like emails, contacts,
photos, service accounts, etc. Among them, some data are to be shared with
other apps by nature, like photos from camera apps, while others are not to be
shared (which is called “app-private data” in this paper), like temporary files,
user account information, etc. To protect these app-private data, Android has
provided multiple security mechanisms. A private folder is assigned in internal
storage that can only be accessed by the owner app.

App developers tend to further divide app-private data into sensitive and
non-sensitive ones (the reasons are discussed in Section 7). The sensitive data,
like user authentication information, are saved to internal storage, while the data
deemed as non-sensitive are saved to public storage (including external SD card
and shared partition in built-in Flash memory) which lacks fine-grained access
control and is open to almost all other apps 1. At first glance, it seems reasonable
and secure to differentiate and save those “non-sensitive” data to public storage.
However, this is a dangerous practice for two reasons. First, app developers
prone to make mistakes on identifying sensitive data, especially when the data
are massive and complicated. Second, some data could be turned into sensitive
when combined with data from other apps or publicly available information,
even though they are non-sensitive when being examined individually.

In this paper, we investigated a large number of apps, and the results show
that many app developers indeed have failed to make right decisions and app-
private data that are originally thought as “non-sensitive” could actually leak
lots of user privacy (more details are described in Section 4). We also demonstrate
one concrete attack example on inferring user’s location by exploiting those “non-
sensitive” information in Section 5, which further proves the seriousness of the
problem.

We argue that the problem identified in this paper is distinct from previous
works. It reveals the gap between the assumptions of Android security design
(i.e., the security relies on the knowledge of app developers and permissions) and
the limitations in real-world (i.e., apps always need to be compatible with all
Android versions and all devices and app developers are not security experts).
Our study suggests a vast number of Android apps fall into the trap due to
this gap, which is much more serious than people’s thought before and needs
to be addressed urgently. However, such problem neither originates from system
vulnerability nor is introduced when user is fooled, and the existing protection
mechanisms are therefore ineffective. To bridge the gap, we believe that app
developers should scrutinize their code and avoid saving any non-shared data
to public storage, no matter if they are identified as sensitive or not. In other
words, “public storage” can only be used to save data to be publicly shared
1 Although an app needs the corresponding permissions (like READ EXTERNAL STORAGE

or WRITE EXTERNAL STORAGE, READ and WRITE for short) to access public storage,
these permissions are very common and are usually granted by users without any
hesitation since they are requested by most apps.

544 X. Liu et al.

with other apps. Another less painful approach requires the update of Android
infrastructure by bringing fine-grained access control to current public storage
model, which essentially converts shared public storage to non-shared storage.

Our Contributions. We summarize our contributions as follows:

– We revisit Android’s public storage model, including its evolution and access
control mechanism.

– Our study is the first to examine the privacy leakage on public storage by
investigating real-world apps. Some discovered issues are critical and should
be fixed as soon as possible. We manually checked the most popular Android
apps on whether they store the data correctly, and the results show that most
of them (with billions of installations in total) leave user’s private information
on public storage. Our large-scale automated analysis further indicates that
such a problem exists in a large number of apps. We also show it is possible
to harvest sensitive information from very popular apps through a showcase.

– We suggest several approaches to protect app-private data on public storage.

2 Adversary Model

The adversary studied in this paper is interested in stealing or inferring device
owners’ sensitive information by exploiting the app-private data located at public
storage. In order to acquire app-private data, it is assumed that a malicious app
with the ability to read data on public storage (by requiring the READ or WRITE
permission) and access the Internet (by requiring INTERNET permission) has been
successfully installed on an Android device. The app will read certain app-private
folders selectively on public storage, extract data that can be used for privacy
attacks, and then upload them to a malicious server where the data are analyzed
to infer victim’s sensitive information.

The above assumptions are easy to be satisfied. First, the app requires only
two very common permissions. A statistical analysis on 34369 apps (crawled by
us) shows that about 94% of apps request INTERNET permission, and about 85%
of apps request the permission to access public storage, ranking No.1 and No.3
respectively. This malicious app should hardly raise alarm to the device owners
during installation. Second, it only uploads data when Wi-Fi is available and
therefore it is hard to be detected by looking into data usage statistics. Finally,
the app does not exhibit obvious malicious behaviors, like sending out message
to premium number or manipulating the device like bot-client, and could easily
stay under the radar of anti-virus software.

3 Background of Android Public Storage

Android provides 5 options for an app to store data, including shared prefer-
ences, internal storage, external storage (“public storage” referred in this paper),
SQLite databases and remote storage. In this paper, we focus on public storage
since the protection enforced is weaker than the other options.

An Empirical Study on Android 545

Evolution. Before Android 3.0, external storage only includes real external SD
card. Since the size of built-in Flash memory is limited in the early stage of
Android, external storage is a preferable option for app developers, especially
to store large files, like audio files and images. In recent years, we have seen a
significant growth of the size of built-in Flash memory (e.g., 64GB), and it turns
out internal storage can also hold large files. However, app developers still prefer
to consider external storage to hold app’s data for two reasons: First, the Android
devices with limited built-in Flash memory are still popular, especially in less
developed countries or areas; second, the external and internal storage run with
different model and are operated with different APIs, which forces the developers
to make unneglectable changes if switching to internal storage. To maximize the
use of its storage without incurring additional overhead to developers, Android
adopts FUSE [4] to emulate a sdcard daemon (mounted as /data/media) inside
userdata partition (/data). File operations on this partition resembles the ones
on external SD card and we consider both as public storage.
Access Control Model on External Storage. Access to external storage is
protected by various Android permissions, however, our attack aims to retrieve
users’ private information and hence we only elaborate the details of read access.
Before Android 4.1, there is no permission restricting read operations on public
storage. READ permission is added to Android since then, and an app has to be
granted with such permission to read files on public storage. This permission is
supported through attaching a Linux GID sdcard r to all the files on public
storage and an app (corresponding to a process in Linux) has to be granted with
GID sdcard r as well before visiting any file there. A fundamental issue with
this model is that there is no finer-grained control over what files are accessible
to one app if sdcard r is granted, which exposes one app’s private data to
all other apps. It is worth noting that the permission WRITE MEDIA STORAGE
introduced from Android 4.4 enforces finer-grained control over write operations,
but nothing has been changed for read operations.

4 Survey on Information Leaks from Public Storage

It is true that some app-private data is not sensitive. However, the model of letting
apps write their private data to public storage relies on a strong assumption that
app developers can make right decisions to tell sensitive data from non-sensitive
ones. In this section, we present a survey of the information leaks through app-
private data stored on public storage, which shows that such an assumption is
problematic. The survey includes two parts: the first is a detailed examination on
17 most popular apps, and the other is a more general and large scale study.

4.1 Investigation on Popular Apps

What Apps Have been Surveyed. According to our adversary model, the
attackers are interested in privacy attacks over app-private data, so we have
selected 17 most popular apps from three categories: “social networking”,

546 X. Liu et al.

“instant messaging” and “online shopping&payment”, which are believed to be
more likely to touch users’ sensitive information. The categories, versions and
total users of these apps are shown in Table 1.

How to Check App-Private Data. These apps are installed on three Sam-
sung Galaxy S3 mobile phones. Then we manually simulate three different users
on three phones, including account registration, adding good friends, sending
message, and etc. Finally, we check the public storage, search sensitive data for
each app and classify them.

How the Information is Leaked. By studying the popular apps, we found 10
of them leak various sensitive information through app-private data on public
storage, as shown in Table 2. Such information is leaked in different forms which
are discussed as below, and the details are elaborated in Appendix A.

Table 1. The categories, versions and total users of the popular apps

Category App Name Installed Version
Total Users
(Millions)

Social networking

Facebook 13.0.0.13.14 900M

Instagram 6.2.2 100M

Twitter 5.18.1 310M

Linkedin 3.3.5 300M

Vine 2.1.0 40M

Weibo 4.4.1 500M

Renren 7.3.0 194M

Momo 4.9 100M

Instant messaging

WhatsApp 2.11.186 450M

Viber 4.3.3.67 300M

Skype 4.9.0.45564 300M

Line 4.5.4 350M

KakaoTalk 4.5.3 100M

Tencent QQ 4.7.0 816M

WeChat 5.2.1 450M

EasyChat 2.1.0 60M

Online shopping
&payment

Alipay 8.0.3.0320 300M

Table 2. Sensitive information acquired from the popular apps

Sensitive Information App Name Content/Remarks

User Identity
Weibo, Renren UID

Linkedin User’s profile photo

Phone Number Viber, Alipay, EasyChat User’s phone number

Email Weibo, Renren Registered email

Account
Tencent QQ,Viber,Renren,Momo,Weibo UID

WeChat QQ UID / Phone number

Connection

EasyChat Call records

Linkedin Profile photos of friends

KakaoTalk Chatting buddies

Renren Friends’ UIDs

WhatsApp Phone numbers of friends

An Empirical Study on Android 547

Fig. 1. The result of searching a user’s Linkedin profile photo

Leak through text files. Some apps store user’s profile into a text file. For example,
Viber directly saves user’s name, phone number into a plain text file without
any encryption. User’s username, email address2 are stored by Weibo in a file
named by the user’s UID. Some apps also keep text logs which reveal quite rich
information, i.e., EasyChat keeps call records in a file, so caller’s number, callee’s
number and call duration can be easily recovered by simply parsing each record.

Leak through file names. We found several apps organize data related to the
user or her friends into a dedicated file named with sensitive or non-obvious
sensitive information. For example, a file created by Weibo is named as user’s
UID, WhatsApp stores user’s friends photos with that friend’s phone number as
file name. They seem meaningless but could have significant privacy implications
when combined with other public information, i.e., the owners of the phone
numbers acquired from WhatsApp can be found by comparing these acquired
portraits with photos from user’s social networks.

Leak through folder names. Some apps use account name as folder name directly,
like Renren and Momo. While KakaoTalk will create folders with the same name
in both two users’ phones if they chat with each other, files (i.e., photos) sent
to each other will be saved in the folder and also with the same name. Such
a naming convention reveals the connections among people, and even can be
leveraged to infer user’s chat history.

Leak through photos. The social networking apps usually cache user’s profile
photos in public storage, like LinkedIn in our study. The photo itself is non-
sensitive if without knowing who is in the photo, however, our study shows that
user’s LinkedIn profile photo can be linked to her identity by Google image
search, as shown in Fig. 1.
2 If the user uses her email to register Weibo account. The user also can use phone

number to register an account.

548 X. Liu et al.

Table 3. Privacy protection level of the 17 popular apps

Privacy Level App Name Issues

��� Facebook, Twitter, Instagram, Skype -

�� Line, Vine, WeChat Audio files without encryption

� WhatsApp, Linkedin, Viber, KakaoTalk, Momo
Tencent QQ, Alipay, Renren, Weibo, EasyChat

Detailed problems are
shown in Appendix A

Leak through specific patterns. We could use the command /system/bin/sh -c
grep -r @xxx.com path to match and extract email addresses from files in public
storage. If the files are stored by apps, the corresponding emails are very likely
belong to the phone’s owner. It is worth noting that the email found by grep
command in Table 2 is from a log.txt file left by Renren old version (5.9.4).

What Information has been Leaked. As shown in Table 2, there is indeed
some important sensitive information leaked through the app-private data. To
better understand the privacy implication of such leaks, we use Personal Identi-
fiable Information (PII) [11], a well-known definition for private data, to classify
and evaluate the leaked information. We defined two categories of sensitive data,
Obvious sensitive data and Non-obvious sensitive data, by refining the concept
of PII as below:

– Obvious sensitive data. It contains identifiers in PII related to user’s real-
world identity, including full name, phone numbers, addresses, date of birth,
social security number, driver’s license id, credit card numbers, and etc.

– Non-obvious sensitive data. It contains identifiers in PII related to user’s
virtual-world identity and also her friends’ information. The virtual-world
identifiers include email addresses, account name, profile photos, and etc.

How to Infer User’s Identity. As shown in Table 2, attackers can exploit
the sensitive data left by several apps to infer user’s identity information. For
example, A user’s identity can be acquired from her personal homepage by using
her Renren UID, Weibo Username/UID, Linkedin profile photo. Moreover, We
could find someone on Facebook with a high probability by the email addresses
extracted from public storage and also the usernames acquired from other apps,
since people prefer to use the same username and email address among their
various social networking apps [5].

We divided the apps into three categories with privacy protection level from
high to low, and shown in Table 3. Apparently, leaking obvious sensitive data
should be prohibited and requires immediate actions from the app developers and
Android development team. While our study also demonstrates the feasibility to
infer obvious sensitive data from non-obvious ones, therefore the latter should
also be well protected.

4.2 Investigation on Apps with a Large Scale

Our study on the popular apps indicates that the sensitive information of device
owners could be leaked even from very popular apps. To understand the scale of
this problem, we launched a large-scale study on more apps through a customized

An Empirical Study on Android 549

static analysis tool. Specifically, we first decompile app’s apk to smali code using
Apktool [2] and then search for APIs or strings which indicate storing private
data to public storage. Our analysis is conducted on smali code instead of
decompiled Java code (done by [8,10]) since information could be lost during
the code transformation of latter approach. Dynamic analysis, though usually
producing more accurate results, is not used here, because it takes long time for
even one app to reach proper states (e.g., registration, sending messages, etc.).
Again, we focus on the categories described in Table 1 and totally select 1648
different apps from our app repository (34369 apps) for analysis.

Ultimately, our tool should be able to classify the information kept on pub-
lic storage as sensitive or not, which turns out to be very challenging or nearly
impossible without intensive efforts from human. Whether a piece of data is truly
sensitive to the device owner depends on the context. We therefore simplifies this
task and only checks whether an app intends to store sensitive information on
public storage. Particularly, if the names of the private folders or files on public
storage created by an app contain specific keywords, it is considered as suspi-
cious. Our keywords list include log, files, file, temp, tmp, account, meta,
uid, history, tmfs, cookie, token, profile, cache, data, and etc., which are
learned from the problematic apps and are usually associated with sensitive con-
tent. Some keywords (e.g., cache and data) appear to be unrelated to sensitive
information, but they turn out to be good indicators based on our study, as
shown in Appendix A.

For each app, we build a control flow graph (CFG) based on its smali code
to confirm whether the “sensitive” data is truly written to public storage. We
demonstrate our approach as follows: we start from extracting the method block
in smali code by finding the texts between keywords .method and .end method.
Next, we select instructions beginning with keywords invoke-static, invoke-direct,
invoke-virtual to construct CFG for the method. Then, we check if the methods
listed in Table 4 are used to access public storage and whether files or folders
are created there (by inspecting methods like mkdir and FileOutputStream).
Finally, we check whether the strings sent to these methods contain keywords in
our list. Each function f in the CFG will be marked based on the three criteria.
To notice, we do not consider special methods like touch as they are also used
for other purposes by developers.

We implemented Algorithm 1 on the marked CFG, the depth parameter
of the DFS procedure was set as 3 empirically, since it resulted in reasonable
resources consumption and also yielded high accuracies when examining the
known problematic apps. The results show that 497 apps from the 1648 apps
being analyzed intend to write some “sensitive” app-private data on public stor-
age, which indicate that the privacy leakage problem revealed in this paper is
widely exist among apps. However, this method may lead to false positives when
an app stores “sensitive” data in other places. To have a verification, we ran-
domly chose 30 apps from the suspicious apps, and manually checked them. We
found that as large as 27 apps truly wrote “sensitive” app-private data on public

550 X. Liu et al.

Table 4. Methods of accessing public storage

Category Methods

API Call
getExternalFilesDir(), getExternalFilesDirs()
getExternalCacheDir(), getExternalCacheDirs()
getExternalStorageDirectory(), getExternalStoragePublicDirectory()

Hardcoded Path “/sdcard”, “/sdcard0”, “/sdcard1”

storage, suggesting this simple static method is valid. This result also suggests
there are common patterns among app developers on dealing with sensitive data.

5 Inferring User’s location

In this section, we present an example attack based on the non-obvious sensitive
information extracted from app-private data. We begin with a brief introduction
to the design of a malicious Android app called SAPD (“Smuggle App-Private
Data”), followed by detailed description of the attack.

5.1 Attack Preparation

The weakest part of the malicious app might be the potential outstanding net-
work traffic footprint, especially for users with limited 3G plan. We implemented
two optimizations in our app prototype SAPD to get around this limitation.
First, try to minimize the uploaded data since it is reasonable to assume that
attackers have already studied the vulnerable apps. Another optimization is to
upload data only when Wi-Fi network is available. Instead of using WiFiManager
which needs to require ACCESS WIFI STATE permission, SAPD is able to know
whether a WiFi network is connected or not by reading public files (procfs), since
Android puts the parameters of ARP in the file /proc/net/arp and other wire-
less activities in /proc/net/wireless. In addition, to minimize the possibilities
of being caught due to suspicious CPU usage or abnormal battery consumptions,
SAPD will only reads and uploads filtered useful data, and it will never perform
any kind of intensive computations.

5.2 Attack Framework

Location of a phone user is considered as sensitive from the very beginning
and there are already a lot of research works on inference attacks and also
protections [15–17]. In recent years, location-based social discovery (LBSD) is
becoming popular and widely adopted by mobile apps, i.e., WeChat and Momo
investigated in this paper. Though apps adopt some protection mechanisms,
i.e., only distance between the user and the viewer is revealed, such location
inference attacks are still feasible. Our attack also aims to infer user’s location
from LBSD networks, but we make improvements since the profile information
is extracted from victim’s phone, thus leads to a realistic threat. As a showcase,
we demonstrate our attack on WeChat app.

An Empirical Study on Android 551

Algorithm 1. Detecting suspicious apps
Input: Class set C, Keyword Patterns set KS, Path set PA, Write set WA
Output: bool sensitive
1: for class c in C do
2: for function f in c do � Each f has been marked following the rules
3: condition.clear();
4: DFS(f, depth);
5: if condition == Union(KS, PA, WA) then � All the criteria are met
6: return true; � Marked as suspicious app
7: end if
8: end for
9: end for

10: return false;
11:
12: procedure DFS(function f, int depth)
13: if depth == 0 then
14: return;
15: end if
16: for all element e in f.mark do
17: condition(e) = true;
18: end for
19: for all callee ce of f do
20: DFS(ce, depth− 1);
21: end for
22: end procedure

The LBSD module in WeChat is called “People Nearby”, through which, the
user can view information of other users within a certain distance, including
nick name, profile photo, posts (called What’s Up), region (city-level) and gen-
der. Though WeChat UID is not stored on public storage, QQ UID and phone
number are stored instead, they are bound to WeChat account and has to be
unique for each user. As described in section 4.1, this information has been col-
lected by SAPD and sent to one of our servers (denoted as S1). These servers are
installed with emulated Android environment for running WeChat app. S1 will
first create a database by querying the server of Tencent (the company operat-
ing WeChat) for profile information. Then, the attacker needs to instruct another
server (denoted as S2) to run WeChat using fake geolocations, to check People
Nearby and to download all the profile information and their corresponding dis-
tances. The profile information stored on S1 is then compared with the grabbed
profile information (downloaded by S2) in another server (denoted as S3) fol-
lowed the steps shown in Fig. 2. If a match happens, S2 will continue to query
People Nearby for two more times using different geolocations (faked) to get two
new distances. Finally, the target’s location can be calculated using the three
point positioning method. We elaborate the details of two key steps as below:

Getting Users’ Profile Information. The attacker uses QQ userid or phone
number to query Tencent server for user’s profile information. The returned pro-
file consists of 5 fields: nick name, profile photo, posts (What’s Up), region and

552 X. Liu et al.

Region? Nickname? What’s Up?
Yes

No

Yes Yes

No

NoNo

Same Person

What’s Up?
Update our
database

No

Yes Nickname &
What’s Up?

Yes

Different Person

Fig. 2. The diagram of profile information comparison

gender. Our task is to assign the location information for each profile. Unfortu-
nately, this profile is updated according to the user’s location. What we do here
is to frequently retrieve profiles and distances information by faking to different
locations. A challenge here is to extract the profiles and distances from WeChat,
as there is no interface exposed from WeChat to export this information. After
we decompile its code, we found the app invokes an Android API setText from
android.widget.TextView to render the text on screen whenever a profile is
viewed. We therefore instrument this API and dump all the texts related to
profiles into log files. This helps us to extract three fields of a profile, including
Region, Nickname and What’s Up and also its corresponding distance.

Comparing Process. The comparison processes performed in S3 are shown in
Fig. 2, which is based on such an observation: People can be distinguished from
each other by the three fields (Region, Nickname and What’s Up). Note that we
ignore the special case that different people have the same values of the three
fields, since such a possibility is very low due to we require that any of the three
fields should not be blank. To avoid the situation that people may have changed
her Nickname or What’s Up information before our comparison, we will update
her profile by querying Tencent server if only one of them is matched with the
data stored in our database.

An app called “Fake GPS location” [3] is leveraged to fake server’s GPS to
different places. For the densely populated places, we added several more anchor
points, since People Nearby only display limited amount of users (about 100). In
addition, we use a monkeyrunner script to automatically refresh People Nearby.
For each point, to load all the people’s profile information, the script will scan
people’s profile one-by-one through triggering event KEYCODE DPAD DOWN until
loading the last one’s information. This process has to request data from Tencent.
To avoid raising alarm from Tencent, the script sleeps a while before changing
to a new anchor point.

Attack Evaluation. We evaluate our attack on 20 participants. Each partici-
pant has installed WeChat with People Nearby turned on (so their profiles will
be open to view). Our attack successfully revealed the live locations for 17 partic-
ipants and have been verified by them. Note that some of the inferred locations
are not exact where the user stays, but they are all within the acceptable range,
i.e., in a specific residential district.

An Empirical Study on Android 553

6 Mitigations

We demonstrate the feasibility of our attacks through the examples above. With-
out probable countermeasures, more devastating consequences would be caused.
Hence, we suggest two approaches enforced by app developers and Android sys-
tem. The details are described below:

Fixing by App Developers. The first suggestion is to ask developers to write
ALL app-private data to internal storage, which can only be accessed by the
folder owner. Though the threat is mitigated, app’s functionality could be inter-
rupted when running on devices with limited capacity of internal storage. More-
over, millions of developers are expected to make such change and it is hard to
be achieved in the near future.

Patching Android System. On the contrary, modifying the Android sys-
tem and pushing the upgrades to users’ devices would be a more practical
way to mitigate the security issues. For this purpose, we propose to augment
the existing security framework on public storage by instrumenting the API
checkPermission(), the framework is described as below:

Architecture. We design a new module named ownership checker, which works
on Android Middleware layer and can achieve mandatory access control (MAC)
for app-private data. Specifically, when the targets are public resources, like
music directory, the access is permitted. When the target files are placed under
app’s private folder, the access is only permitted when the calling app matches
the owner. Otherwise, ownership checker will return PERMISSION DENIED even
if the app has been granted READ or WRITE permission. To enforce such rule,
we create a system file owner checker.xml storing the mapping between apps
and resources, similar to Access Control Lists (ACL) of Ext4 file system. The
system code within checkPermission() is modified to read the mapping and
check the ownership before actual file operations happen. An exception will be
thrown if mismatch happens. Alternatively, we could leverage other frameworks
like SEAndroid [6] to enforce MAC and protect app-private data.

Ownership Inference. The ownership mappings between apps and resources need
to be established. This task turns out be non-trivial, since we have to deal with
the case that the public storage has already stored apps’ data before our module
is installed and the owner of data is not tracked therefore. To fix the missing
links, we exploit the naming convention: an app usually saves data to a folder
whose name is similar to its package name, which can be acquired from pack-
ages.xml under /data/system). As a starting point, we initialize the mappings
by scanning all the resources. For a given resource, we assign the owner app
if the resource location and app package name share a non-trivial portion. To
notice, this initialization step could not construct the mapping when an app
stores the data in a folder whose name is irrelevant. The access to such resources
will be blocked, and we provide an interface for users to manage the owner-
ships. A new mapping will be added if the ownership is assigned by the user.

554 X. Liu et al.

To reduce hassles to users, user-driven access control model [13] can be integrated
to automatically assign ownership based on user’s actions.

7 Discussion

Why does the Problem Persist? In the early stage, Android phone has
limited on-board Flash memory (only 256MB for the first android phone, HTC
Dream). On the other hand, its storage can be expanded through large volume
external SD card, which is usually shipped together. This storage model forces
app developers to differentiate sensitive data from non-sensitive data and save
the latter (most of the data) to public storage. App developers follow this practice
even after recent changes on Android’s storage model which offers more flexible
storage options (i.e., the sdcard dameon (fused) and userdata /data share the
same partition dynamically).

Limitations of App Study. We built a tool running static analysis on app’s
smali code and use a set of heuristics to determine if the app saves “sensitive”
app-private data to unprotected public storage. This simple tool identifies a large
number of potentially vulnerable apps and shows reasonable accuracy from our
sampling result. However, it is inevitably suffers from false negatives (e.g., the
file name does not contain the keywords we used) and false positives (e.g., the
information saved is not sensitive). We leave the task of building a more accurate
detector as future work.

8 Related Work

Attacks like stealing users’ chat history [7] have been proved feasible in the real
world. However, these attacks usually depend on certain vulnerabilities identified
from the victim apps, while our attacks exploit a more general problem related
to Android’s storage model. In addition to steal user’s sensitive information
directly, a lot of research focused on inferring user’s location. The authors of
[15] showed a set of location traces can be de-anonymized through correlating
their contact graph with the graph of a social network in spite of the data
has been obfuscated. Based on a large-scale data set of call records, Zang et
al. [16] proposed an approach to infer the “top N” locations for each user. A
recent work [17] by Zhou et al. targeted to infer information of users from more
perspectives, including identities, locations and health information.

To defend against the existing or potential attacks tampering user’s privacy, a
bunch of defense mechanisms have been proposed. Ongtang et al. proposed a finer-
grained access control model (named Saint) over installed apps [12]. FireDroid [14],
proposed by Russello et. al., was a policy-based framework for enforcing security
policies on Android. Roesner et al. proposed user-driven access control to manage
the access to private resources while minimizing user’s actions [13]. Besides, efforts
have also been paid on code analysis to block the information leakage. Enck et al.
developed TaintDroid [9] to prevent users’ private data from being abused by third
party apps.

An Empirical Study on Android 555

9 Conclusion

It is known that public storage on Android is insecure, due to its coarse-grained
access model. Therefore, it is highly recommended that the sensitive data should
be avoided from saving there. In this paper, we carry out a large-scale study on
existing apps on whether app developers follow this rule and the result turns out
to be glooming: a significant number of apps save sensitive data into the insecure
storage, some of the problematic apps are even ranked top in Android market.
By exploiting these leaked data, it is possible to infer a lot of information about
the users, drastically violating users’ privacy. We urge app developers to fix the
vulnerabilities. Besides, we also propose an approach to patch Android system
with MAC support and envision it could mitigate the threat in the short term.

Acknowledgments. We would like to thank the anonymous reviewers for their valu-
able comments. This work was supported by the Direct Grant of The Chinese University
of Hong Kong with project number C001-4055006.

A The Details of User Private Data

Viber. The text file .userdata in .../.viber/ 3 reveals lots of user’s information,
including real name, phone number, and the path of user’s profile photo.
WhatsApp. The user’s profile photo is stored in .../.shared/ with file name
tmpt. The profile photos of user’s friends are saved under .../Profile pictures/,
and they are named by profile owners’ phone numbers without any obfuscation.
Linkedin. This app cache the photos into the directory /Android/-
data/.../li images/. The user’s profile photo can be distinguished by file size
and modified time.
KakaoTalk. If user A has chatted with user B, the app will create a content
folder with the same name in both users’ phones, under the path /Android/-
data/.../contents/. The files, i.e., photos, on the two phones also have the same
name, size and the same path.
Tencent QQ. User’s account can be got from log files in the path .../mobileqq/.
Weibo. A file named as user’s UID is saved under the path .../page, and we
can acquire the user’s username and her email address. User’s username and
UID can be leveraged to access her homepage by constructing specific URLs,
i.e., http://www.weibo.com/UID.
Alipay. User’s phone number can be obtained from the meta file in .../cache/,
it also points out the other file which discloses the user’s phone number.
Renren. A folder named by user’ UID is stored in /Android/data/.../cache/.
Even user’ visit histories are also stored in this folder, which contains the
name, UID of user’s friends. The audio files are named as the format
UID+hash value. We can find the user’s personal home page by the URL
http://www.renren.com/UID in a browser.
3 We use ... to represent part of the full path since sometimes the full path is too long.

556 X. Liu et al.

Momo. A folder named as user’s account is saved in .../users/. By the account,
we can not only get her profile information, but also infer her location.
EasyChat. The file pjsip log.txt in /Yixin/log/ contains all the call records
information.
Audio files. Instant message apps, like WhatsApp, Line, WeChat, Tencent QQ,
and KakaoTalk, store the audio files into public storage without encryption.

References

1. Android apps on google play. http://www.appbrain.com/stats/
number-of-android-apps

2. Apktool. http://code.google.com/p/android-apktool/
3. Fake gps location. https://play.google.com/store/apps/details?id=com.lexa.

fakegps
4. Filesystem in userspace. http://fuse.sourceforge.net/
5. like it or not, sharing tools spur privacy concerns. http://usatoday30.usatoday.

com/tech/news/2011-07-05-social-media-privacy-concerns n.htm
6. Seandroid. http://seandroid.bitbucket.org/
7. Whatsapp user chats on android liable to theft due to file system flaw. http://www.

theguardian.com/technology/2014/mar/12/whatsapp-android-users-chats-theft
8. Au, K.W.Y., Zhou, Y.F., Huang, Z., Lie, D.: Pscout: analyzing the android per-

mission specification. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, pp. 217–228. ACM (2012)

9. Enck, W., Gilbert, P., Chun, B.-G., Cox, L.P., Jung, J., McDaniel, P., Sheth, A.:
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: OSDI, vol. 10, pp. 1–6 (2010)

10. Gibler, C., Crussell, J., Erickson, J., Chen, H.:. AndroidLeaks: automatically
detecting potential privacy leaks in android applications on a large scale (2012)

11. McCallister, E.: Guide to protecting the confidentiality of personally identifiable
information. Diane Publishing (2010)

12. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically rich
application-centric security in android. Security and Communication Networks
5(6), 658–673 (2012)

13. Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H.J., Cowan, C.: User-
driven access control: Rethinking permission granting in modern operating systems.
In: 2012 IEEE Symposium on Security and Privacy (SP) (2012)

14. Russello, G., et al.: Firedroid: hardening security in almost-stock android. In:
Proceedings of the 29th Annual Computer Security Applications Conference,
pp. 319–328. ACM (2013)

15. Srivatsa, M., Hicks, M.: Deanonymizing mobility traces: Using social network as
a side-channel. In: Proceedings of the 2012 ACM Conference on Computer and
Communications Security, pp. 628–637. ACM (2012)

16. Zang, H., Bolot, J.: Anonymization of location data does not work: A large-scale
measurement study. In: Proceedings of the 17th Annual International Conference
on Mobile Computing and Networking (MobiCom), pp. 145–156. ACM (2011)

17. Zhou, X., Demetriou, S., et al.: Identity, location, disease and more: Inferring your
secrets from android public resources. In: Proceedings of the 2013 ACM SIGSAC
Conference on Computer & Communications Security, pp. 1017–1028. ACM (2013)

http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
http://code.google.com/p/android-apktool/
https://play.google.com/store/apps/details?id=com.lexa.fakegps
https://play.google.com/store/apps/details?id=com.lexa.fakegps
http://fuse.sourceforge.net/
http://usatoday30.usatoday.com/tech/news/2011-07-05-social-media-privacy-concerns_n.htm
http://usatoday30.usatoday.com/tech/news/2011-07-05-social-media-privacy-concerns_n.htm
http://seandroid.bitbucket.org/
http://www.theguardian.com/technology/2014/mar/12/whatsapp-android-users-chats-theft
http://www.theguardian.com/technology/2014/mar/12/whatsapp-android-users-chats-theft

The Dual-Execution-Environment Approach:
Analysis and Comparative Evaluation

Mohamed Sabt1,2(B), Mohammed Achemlal1,3, and Abdelmadjid Bouabdallah2

1 Orange Labs, 42 rue des coutures, 14066 Caen, France
{mohamed.sabt,mohammed.achemlal}@orange.com

2 Heudiasyc, Centre de recherche Royallieu, Sorbonne universités,
Université de technologie de Compiègne, 60203 Compiègne, France

{madjid.bouabdallah,mohamed.sabt}@hds.utc.fr
3 Greyc ENSICAEN, 6 Bd Maréchal Juin, 14050 Caen, France

Abstract. The dual-execution-environment approach (dual-EE) is a
trusted model that was defined to allow mobile smart devices to guaran-
tee tamper-resistant execution for highly sensitive applications. Although
various solutions implementing dual-EE have been proposed in the liter-
ature, this model has not been formalized yet. In this paper, we revisit
the dual-EE approach and propose a theoretical framework to system-
atize the design of dual-EE solutions regarding well-established prim-
itives defined in the Multiple Independent Levels of Security (MILS)
architecture. We provide a general classification of the different dual-
EE proposals based on their isolation properties. We introduce a com-
parative framework allowing dual-EE solutions to be evaluated across
a common set of criteria. The relevance of our framework is examined
by applying it on three technologies, each one represents one category
in our classification. Results are consistent and explain some hidden and
unexpected properties of each technology. For instance, we find that bare-
metal hypervisors are ill-adapted to provide high assurance security even
though they might improve the overall security level of the system.

Keywords: Trusted computing · Separation kernel · MILS · TrustZone

1 Introduction

The wide use of modern mobile devices spurs service providers to propose access
to their services via smart devices. The growing number of attacks against such
devices puts mobile applications under potential security risks. Thus, smart
devices are not ideal for services requiring trusted platforms with proved secu-
rity. Examples include enterprise applications and NFC-based payment solutions.
Indeed, the adoption of mobile devices in sensitive business environments has
been hindered by the lack of appropriate level of security.

Sensitive-service providers require that their applications run on tamper-
resistant execution environment. Such an environment should at least guarantee

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 557–570, 2015.
DOI: 10.1007/978-3-319-18467-8 37

558 M. Sabt et al.

the following three properties [23]: (1) authenticity : the code under execution
should not have been changed; (2) integrity : runtime states (e.g. CPU registers,
memory and sensitive I/O) should not have been tampered with; and (3) pri-
vacy : code, data and runtime states should not be observable by unauthorized
applications or even underlying OS that might have been compromised.

The default protection mechanisms of smart devices are insufficient to provide
tamper-resistant environment. This is due to the fact that these protection mech-
anisms are mainly based on the operating system, and thus as long as the oper-
ating system has not been compromised, sensitive applications are considered
as protected. Unfortunately, despite continued efforts to improve the security of
operating systems of smart devices [9,20], they are still essentially untrustwor-
thy for two reasons. First, they are complex and often developed using unsafe
languages. Therefore, they are inherently error prone because design flaws and
implementation bugs are unavoidable. Second, they allow poor isolation among
applications. Indeed, a process with the root privilege can easily access private
data and tamper with the execution of other processes. Meanwhile, using spe-
cially tailored operating systems can only have very limited success due to their
restricted features and compatibility to existing applications.

To remedy this situation, there have been numerous efforts aimed at pro-
viding tamper-resistant execution environments. Generally, those efforts can be
classified into three categories. First, architectural enhancements based app-
roach, such as XOMOS [19] and AEGIS [24], allows sensitive applications to run
on untrustworthy operating system. This approach requires nontrivial modifica-
tions to the core processor architecture. Second, micro-kernel based approach,
such as SeL4 [16], tries to reduce the trusted computer base (TCB) by run-
ning a limited code in the privileged mode. This approach requires a redesign
of operating systems, thereby requiring nontrivial modifications to port existing
applications. Third, the dual-execution-environment approach (dual-EE), such
as TLR [22], solves the problem by multiplexing the feature-rich OS and a spe-
cialized OS with restricted functionalities on the same smart device. It relies
on the specialized OS to provide tamper-resistant capabilities. Applications that
demand tamper-resistant protection run only on the specialized trustworthy OS.

Compared to other approaches, the dual-EE is considered as a promising
approach intended for practical use [10]. The literature is full of proposals [2,
10,13,17,27]. However, proposals differ substantially from each other in their
design objectives. Some address very specific environments, while others silently
seek generic solutions that fit all environments. Too often, authors claim the
superiority of their solutions and their assertion is based on self-defined criteria.
To make progress, we believe that knowledge regarding the dual-EE approach
must be systematized. There is a need to provide a theoretical framework which
defines how best to evaluate dual-EE proposals.

In this paper, we analyze the dual-EE approach in the context of the trusted
computing domain and the MILS architecture. We propose a standard bench-
mark and framework allowing dual-EE solutions to be rated across a com-
mon, broad spectrum of criteria. Our work provides insights which prove useful

The Dual-EE Approach: Analysis and Comparative Evaluation 559

in designing more efficient dual-EE schemes. To the best of our knowledge,
this is the first comparative evaluation of the dual-EE solutions available on
mobile smart devices. Moreover, we believe that our comparative framework
is extendable and sufficiently general to be used to evaluate more fine-grained
classifications.

Summary of Contributions: We make the following contributions:

– We construct a compact security model of the dual-EE approach using the
separation kernel model that provides a relevant abstraction level, thereby
contributing to a deeper understanding of the dual-EE approach. We rein-
terpret well-known security technologies, such as UICC card and TrustZone,
in the light of this model.

– We provide a framework to evaluate the dual-EE solutions. Our criteria are
divided into three categories: (1) functional criteria: schemes are evaluated
whether they implement all the requirements of a tamper-resistant environ-
ment; (2) security criteria: the properties of the separation kernel layer of the
scheme are analyzed; and (3) deployability criteria: schemes are evaluated
whether they could be easily deployed in a real context.

– We provide a classification of the different dual-EE solutions. Nevertheless,
our goal is not to provide a comprehensive survey, but to show the relevance
and the interest of our abstraction by providing a general classification on
which our comparative framework could be applied.

This paper is structured as follows: Section 2 gives a background informa-
tion on the MILS architecture. In Section 3, we give a general classification of
the dual-EE solutions. Section 4 explains our comparison methodology and thor-
oughly defines our chosen set of criteria. We apply our comparative framework to
our classification in Section 5. The resulted comparative evaluation is discussed
in Section 6. Section 7 surveys related work, and we end with a brief summary.

2 Background

Building a secure system has traditionally been a cat and mouse game. No
sooner are new security mechanisms integrated into systems than hackers find
how to bypass them. Research on trusted computing aims to replace this endless
game with a methodical process. The domain of trusted computing provides the
abstract concepts as well as the theoretical base on which ideal secure systems
are built [11]. It introduces various security models, called trusted models. Each
trusted model defines a set of security objectives, a threat model, and security
requirements to be satisfied by the component that enforces the security policy.
In this paper, we focus on the ‘separation kernel’ trusted model introduced by
John Rushby [21], or more precisely, on MILS [25].

MILS stands for Multiple Independent Levels of Security. This architecture
was developed in order to resolve the difficulty to evaluate the assurance level
of the widely deployed trusted model ‘reference monitor’ [18] because of its

560 M. Sabt et al.

Fig. 1. An Overview of the MILS Architecture

continually growing complexity. MILS adopts a divide-and-conquer approach.
It separates a complex system that includes various modules requiring different
levels of security into smaller, hence verifiable components. Thus, instead of
evaluating the whole complex system, these small components are individually
evaluated. An abstract view of the MILS architecture is depicted in figure 1.
The primary component of MILS is the separation kernel layer (SK). This layer
is responsible for creating a set of isolated functional units called partitions. All
communication between partitions is monitored by the SK layer. MILS is based
on separation technology and secure inter-partition communication.

In order to work properly, the SK layer must satisfy several requirements. The
SK should be designed so that it cannot be modified or disabled by rogue par-
titions. In addition, all inter-partition communication requests must go through
it. Furthermore, it must be well-structured and small enough, so that its cor-
rectness can be validated. In other words, the SK must be (1) tamper-proof, (2)
always invoked, and (3) evaluable. These properties correspond respectively to
the three principles: isolation, completeness and verifiability.

The dual-EE approach can be seen as a particular case of the MILS archi-
tecture where the separation kernel creates two partitions only. The next section
provides more details.

3 Dual-EE Solutions

There is an increasing need to use smart mobile devices for applications requir-
ing high security levels, such as enterprise and payment applications. However,
their openness and complexity impose fundamental limitations on the security
which these devices are able to provide. The dual-EE approach attempts to
resolve these limitations by providing trust and high-assurance security while
keeping the rich model of smart devices. It brings the best properties of open
and trusted systems to smart devices without any compromise. It partitions the
system into two execution environments running side-by-side: general-purpose
execution environment (GPEE), and secure execution environment (SEE).The

The Dual-EE Approach: Analysis and Comparative Evaluation 561

Fig. 2. Representation of the Dual-EE Approach in the MILS Abstraction

GPEE runs the legacy, complex operating system, while the SEE runs a special
trusted OS with a selection of applications designed specifically for it. The SEE
is designed to be trustworthy to provide tamper-resistant capabilities.

Secure isolation is essential for the dual-EE approach. Generally, the security
of a system is reduced to that of its most vulnerable component. In dual-EE,
the security level is, by definition, supposed to be that of the GPEE. However,
the two execution environments are strongly isolated so that the compromise
of the GPEE does not impact the SEE. Figure 2 depicts the representation
of the dual-EE approach in the MILS architecture. In this paper, we consider
MILS as the abstract trusted model of the dual-EE approach in which only
two partitions exist and the strong isolation is guaranteed by the SK layer. The
main advantage of this representation is to use MILS properties as primitives to
better understand and thoroughly analyze the dual-EE approach. For instance,
MILS defines a set of design principles for the SK layer. These principles provide
an abstract model to define the isolation properties required between the two
execution environments. We discuss these principles in the next section.

According to their isolation technology, we classify the dual-EE solutions into
three categories:

1. Isolation based on external hardware module: this category consists
in introducing an additional secure coprocessor or integrated circuit to smart
devices. A secure coprocessor is a hardware module containing CPU, boot-
strap ROM, and secure non-volatile memory. This hardware module is phys-
ically shielded from illegal access, and the I/O interface to the module is
the only way to access its internal states. Hardware modules cannot only
store cryptographic keys without risk of release, but also they can perform
arbitrary computations using their CPU. In dual-EE, the SEE runs inside
the secure coprocessor. Tamper-resistant execution is guaranteed, since the
GPEE and the SEE run on physically two separated memories. Popular
examples are UICC card and baseband processor;

2. Isolation based on bare-metal hypervisor: this category consists in exe-
cuting a hypervisor in the most privilege mode of the processor. A hypervisor

562 M. Sabt et al.

is a software layer that implements the same instruction-set architecture as
the hardware on which it is executed. Thus, it allows multiple operating sys-
tems to coexist on the same hardware. Full-virtualization is not possible on
ARM processors, which represents 95% of the market of smart devices [1],
since ARM is not a virtualizable architecture [7]. ARM introduced hardware
virtualization support with the ARMv7 architecture. However, the use of
hardware-supported virtualization on ARM is still limited. Instead, para-
virtualization approach is prevalent and a myriad of solutions exists [15]. In
para-virtualization, OS needs to be modified in order to run on the under-
lying hypervisor. In dual-EE, the hypervisor plays the role of the SK layer,
and the number of virtual machines is limited to two;

3. Isolation based on special processor extensions: this category con-
sists in enhancing general-purpose processors with new hardware extensions.
These newly-introduced extensions allow the execution of secure code within
a potentially compromised OS. The most prevalent secure extensions target-
ing smart devices is ARM TrustZone [4]. In this paper, we only consider ARM
TrustZone because, to the best of our knowledge, it is the most deployed secu-
rity extensions in practice. A processor with TrustZone extensions provides
a special form of virtualization. It enables two virtual processors with two
security domains: the “secure” zone and the “normal” zone. In dual-EE, the
GPEE resides in the normal zone and the SEE resides in the secure zone.
The isolation of both zones or “worlds” is implemented by a complex mech-
anism using hardware controllers, a configuration bit and a new execution
mode called monitor mode.

4 Comparison Methodology

In order to evaluate dual-EE solutions, we define three categories of criteria:
functional, security and deployability.

4.1 Functional Criteria

Schemes are evaluated whether they implement all the requirements of a tamper-
resistant environment. The SEE should provide the following features [12]:

– Protected Execution. The execution of secure applications should be pro-
tected from any interference caused by malicious software. Runtime states
of the SEE should be protected from being observed or tampered with.

– Sealed Storage. The integrity, secrecy and freshness of secure applications’
content should be protected. Content includes code as well as data.

– Protected Input. The SEE should protect their input data from being sniffed
or tampered with by malicious applications, such as key loggers.

– Protected Output. The integrity and the confidentiality of the output data
are protected. Protected input and output do not only concern user interface.

– Attestation. The SEE should provide mechanisms allowing secure applica-
tions to authenticate themselves to remote trusted parties.

The Dual-EE Approach: Analysis and Comparative Evaluation 563

4.2 Security Criteria

In dual-EE, isolation–an essential task to implement–is provided by the SK layer.
Schemes are evaluated whether the design principles of the SK layer [3] are
implemented in software or hardware in order to ensure:

– Data Separation. Data within one partition, namely execution environment,
cannot be read or modified by other partitions.

– Information Flow Control. Communication between partitions cannot occur
unless explicitly permitted by the SK layer.

– Sanitization. Shared resources cannot be used to leak information into other
partitions.

– Damage Limitation. Security breach in one partition cannot spread to other
partitions.

4.3 Deployability Criteria

The dual-EE approach is intended to be implemented in a real context. Thus, we
evaluate how easy schemes can be deployed. Deployability criteria are numerous.
In our study, we only consider the following properties:

– Support of Legacy Systems. We evaluate the amount of modifications needed
for the GPEE to run on the underlying SK layer. Ideally, no modification,
except for the inter-EE communication driver, is required.

– Cost. The addition of any software architecture has a cost. We only evaluate
the extra silicon cost that the scheme generates. For instance, the addition
of hardware module or internal processor extensions are factors which make
schemes costly.

– Overhead. Schemes should have minimal impact on applications that do
not require tamper-resistant protection. They should not incur too much
overhead to the SEE either.

– SEE Performance. We evaluate how fast the SEE could execute complex
operations.

Throughout the paper, for brevity and consistency, each criterion is referred
to with an italicized mnemonic title. In our study, we will rate each solution based
on its capability to offer the criteria described above. We emphasize that it would
be naive to rank dual-EE solutions simply by counting how many criteria each
satisfies. Some criteria clearly deserve more weight than others. In this paper, we
do not suggest any weights, since providing appropriate weights depend strongly
on the specific goal for which the dual-EE solutions are being compared.

5 Comparative Evaluation

We now use our criteria to evaluate three different solutions of the dual-EE
approach. Due to space constraints, we only explain one particular solution for
each category. We emphasize that, in selecting a particular solution, we do not
necessarily endorse it as better than alternatives–merely that it is reasonably
representative, or illuminates in some way what the category can achieve.

564 M. Sabt et al.

5.1 External Hardware Module: Smart Card

A smart card is essentially a minimal computing environment composed of a
CPU, ROM, EEPROM, RAM, and I/O port. It is capable of running applications
(called applets or cardlets) with a high level of security. In smart devices, smart
cards come in several flavors. They could be implemented either by an embedded
smart card chip, in an SD card that could be inserted in the device, or in the
SIM/UICC which is used by mobile operators to authenticate subscribers to
their network. In most cases, the SEE consists of Java Card OS, and the GPEE
can be any commodity operating system.

Smart cards physically shield the SEE from all types of software attacks
coming from the GPEE. Thus, no interference is possible during the execution
of secure applications. Moreover, tamper-resistant hardware prevents protected
data from being extracted by hardware attacks like microprobing and fault gen-
eration. To sum up, smart cards provide protected execution and sealed storage.
Attestation is guaranteed, since only authenticated code can run in the SEE.
However, smart cards fail to provide protected input and protected output. In
practice, smart cards are designed in a way that there is no direct communica-
tion link with the I/O devices. Smart cards, for instance, cannot control user
interface to allow users to securely enter their PIN code.

Regarding the SK layer, it is almost implemented in hardware. Both execu-
tion environments, namely the GPEE and the SEE, run in two different CPU
with their own memory and I/O devices. As a result, the software part of the
SK layer does not need to take care of either data separation or sanitization.
However, damage limitation depends on how well the inter-EE communication
is controlled. The information flow control is implemented in the SEE. In fact,
the SEE includes the SK part which is responsible for protecting the SEE from
accidental or malicious communication attempts that violate the system policy.

For reasons of silicon cost, smart cards are often made with limited resources.
An additional CPU increases the power consumption and the global cost of
the device. Cost and power consumption constraints lead to design smart cards
with limited processing power, slow processing speed and small permanent and
temporary memory [27]. Therefore, secure applications have low performance
and cannot perform complex computations. Clearly, smart cards support legacy
systems and incurs no overhead to the SEE.

5.2 Bare-Metal Hypervisor: KVM/ARM

KVM/ARM is the ARM hypervisor in the mainline Linux kernel [7]. It is the first
hypervisor to leverage ARM hardware virtualization support to run unmodified
operating systems on ARM hardware. It builds on KVM and leverages existing
infrastructure in the Linux kernel. KVM/ARM is a hosted bare-metal hypervisor,
where the hypervisor is integrated with a host kernel. It runs the hypervisor
in normal privileged CPU modes to leverage existing OS mechanisms without
modification, while at the same time leveraging ARM hardware virtualization.
In contrast to standalone bare-metal hypervisors (e.g. Xen), it supports a wide

The Dual-EE Approach: Analysis and Comparative Evaluation 565

range of ARM devices despite the fact that there is no standard hardware in the
ARM world. In dual-EE, the two execution environments (GPEE and SEE) are
two virtual machines running on the underlying hypervisor.

Hypervisors provide isolation properties to prevent potentially malicious VM
(GPEE) from attacking another VM (SEE). However, hypervisors only defend
against software-based attacks and do not take hardware attacks into account.
This isolation property works fine for data centers, but the threat model of
mobile smart devices includes hardware attacks. We illustrate the threat by two
examples. First, an attacker with physical access to the system can read any
data present in memory using the cold boot attack [14]. This attack is based on
the fact that RAMs retain their contents for several seconds after power is lost.
Second, an attacker with access to the system disk can run a modified version
of KVM/ARM that integrates malicious introspection mechanisms to snoop on
the runtime states of the SEE. The KVM/ARM hypervisor provides protected
execution, but not sealed storage because encryption keys can be retrieved using,
for instance, the cold boot attack. Furthermore, it defines several mechanisms
to provide I/O virtualization and interrupt virtualization. Thus, it provides pro-
tected input and protected output. The KVM/ARM alone does not provide attes-
tation; trust anchors, such as TPM, are required. It is worth noting that any
person who has physical access to the smart device can easily clone the SEE and
capture its internal states. This might result in serious attacks, such as rolling
back security updates, thus leaving the system vulnerable.

Regarding the SK layer, it is entirely implemented in software. All of its
design principles are performed by the KVM/ARM hypervisor. Therefore, the
hypervisor must be tamper-resistant and evaluable. To the best of our knowledge,
KVM/ARM is the smallest bare-metal hypervisor. It is comprised of only 12,883
lines of code. However, it is still too big to be formally verified.

For KVM/ARM, platforms with hardware virtualization capabilities are req-
uired. Hardware-based virtualization is not supported on all platforms. There-
fore, it presents an additional cost to the system. The fact that KVM/ARM
leverages hardware virtualization support presents two advantages. First, it can
run legacy systems, unlike hypervisors based on para-virtualization. Second, the
incurred overhead is minimal in comparison with other virtualization solutions.
For example, it uses Stage-2 translations to achieve low I/O performance over-
head with very little implementation effort. However, KVM/ARM still generates
within 10% of overhead over a multicore. In some contexts of smart devices, 10%
of overhead is not negligible.

5.3 Special Processor Extensions: TrustZone

ARM TrustZone technology can be seen as a special kind of virtualization with
hardware support for memory, I/O and interrupt virtualization [4]. This vir-
tualization enables ARM core to provide an abstraction of two virtual cores
(VCPUs): secure VCPU and non-secure VCPU. The monitor is seen as a mini-
mal hypervisor whose main role is the control of information flow between the
two virtual cores. In dual-EE, the SEE runs on the secure VCPU, while the

566 M. Sabt et al.

GPEE runs on the non-secure VCPU. It is worth mentioning that ARM Trust-
Zone was designed and optimized to implement the dual-EE approach. Indeed,
it implements all the hardware extensions defined in [3] and which the SK layer
requires in order to work properly.

Similar to bare-metal hypervisor, ARM TrustZone provides protected execu-
tion, protected input and protected output, but it does not provide sealed storage
or attestation. However, TrustZone is often completed with additional features,
such as secure boot and root of trust (RoT) hardware module, which allow
TrustZone to satisfy all the requirements of a tamper-resistant environment.

Regarding the SK layer, it is mainly implemented in hardware. The software
components to be trusted are minimal, hence evaluable. For instance, most CPU
registers are banked. Thus, saving and restoring CPU registers are performed by
the processor. In addition, TrustZone enables the co-existence of cache entries
of both SEE and GPEE. Thus, cleaning the cache memory during a context
switch is not required. As a result, the sanitization process performed during a
context switch is both fast and secure, since it is almost done by the hardware.
Data flow is well controlled. To enter the secure world, only a well-defined set
of interfaces exist. Any transition between the two worlds must go through the
monitor mode. This allows the SK layer to satisfy the completeness engineering
principle.

TrustZone incurs a limited execution overhead. The performance is nearly
native because both execution environments can access their corresponding re-
sources directly without going through an abstraction layer. Moreover, it can
run legacy systems without modifications, since each world has its own user and
privileged modes, and thereby removing the necessity of instruction emulation.
It is true that TrustZone presents an additional cost as it requires some mod-
ifications to the core processor, but these modifications are already extensively
deployed and implemented in a wide range of ARM platforms.

6 Discussion

A summary of our comparative evaluation is presented in table 1. We note that
the size of the SK layer is directly proportional to the number of the isolation
properties implemented in software [11]. A small SK is better for security because
the property of verifiability cannot be satisfied when the SK layer is too complex.
Therefore, solutions with many isolation properties provided by hardware are
considered better than those implementing their SK layer in software.

To our surprise, bare-metal hypervisors achieve the lowest score in our frame-
work. We did not expect this result, since the literature is abundant of solutions
presenting hypervisors as a promising approach to improve system security
[7,13,15]. In this paper, we showed that this approach inherently suffers from
three main shortcomings. First, hypervisors come from the world of data centers,
and therefore their threat model does not include stolen devices. Even simple
physical attacks, like cold boot attacks, can compromise the privacy requirement
of tamper-resistant execution. Second, the isolation properties are entirely imple-
mented in software, thereby negatively impacting the verifiability characteristic

The Dual-EE Approach: Analysis and Comparative Evaluation 567

Table 1. Summary of our Comparative Evaluation of Dual-EE Solutions

Comparison Category Comparison Criteria Smart Card KVM TrustZone

Security Requirements

Protected Execution
Sealed Storage
Protected Input
Protected Output
Attestation

√
√

×
×√

√

×√
√

×

√
√∗
√
√
√∗

Isolation Properties

Data Separation
Information Flow Control
Sanitization
Damage Limitation

HW
SW
HW
HW

SW
SW
SW
SW

HW
HW

HW/SW
HW

Deployability Criteria

Legacy Systems
Low Overhead
Low Cost
High Performance

√
√

×
×

√

×
×√

√
√
√∗
√

√
: satisfies the criterion; ×: does not satisfy the criterion;√∗: needs widely available additional hardware modules to satisfy the criterion;

HW: satisfied by hardware module; SW: satisfied by software implementation.

of the SK layer. Third, although dedicating the whole virtualization layer to host-
ing security tools present numerous advantages, it is not practical because it will
deprive the system from using other virtualization capabilities. Furthermore, it is
true that hardware-based virtualization solutions produce better overhead and
fewer modifications to existing systems compared to para-virtualization solu-
tions. However, they require specific extensions that are not supported on all
platforms. For example, the widely-used Qualcomm Snapdragon MSM8974 and
APQ8084 processors do not implement the hypervisor extension.

On the contrary, external hardware modules achieve the highest score in
terms of security. Our results are expected, as these modules provide a confined
execution environment which protects the application’s authenticity, integrity
and privacy against even sophisticated physical attacks. Nevertheless, external
hardware modules do not fit to a certain kind of secure applications that need
user interaction and better processing speed.

As for ARM TrustZone, it comes close to perfect score. Our results are con-
sistent and expected because TrustZone implements all the hardware extensions
that the SK layer requires in order to work properly. TrustZone provides a bal-
anced trade-off between bare-metal hypervisors and external hardware modules.
Indeed, it does not resist against some physical attacks and it requires a part
of the SK to be implemented in software [4]. In addition, TrustZone does not
provide sealed storage and attestation without additional hardware modules.
However, it is more secure than solutions based on bare-metal hypervisors and
more flexible than those based on external hardware modules. Our framework
shows that TrustZone-based solutions are efficient for real contexts. Once again,
our results are consistent with existing work. At present, millions of devices

568 M. Sabt et al.

integrate TrustZone-based technologies. Examples are ObC in Lumia phones [17],
TIMA/TZ-RKP in Samsung smartphones [6], and <t-base of Trustonic [2].

7 Related Work

The two main research directions that our work targets is trustworthy execution
and trusted computing in mobile smart devices. Extensive discussion of trusted
computing solutions for mobile devices is found in [5]. Authors in [26] evalu-
ate existing hardware security features available on mobile devices for creating
tamper-resistant execution. However, these surveys fail to identify dual-EE as a
promising model that brings trusted computing for smart devices.

Earlier works focus solely on a particular dual-EE technology discussing the
advantages that it presents compared to other existing technologies. For instance,
the case of TrustZone is presented in [27] and that of bare-metal hypervisors
is presented in [13]. Too often, authors assert the superiority of their solution
without explicitly stating their evaluation criteria. As such, consensus is unlikely
as objective comparison between different solutions is not possible.

The closest work to ours is [8], both of which propose a standard benchmark
and framework allowing dual-EE solutions to be evaluated across a common
set of criteria. Authors in [8] construct their comparative framework on security
functions which they define to cover the security risks for enterprise mobile appli-
cations. On the other hand, we construct our comparative framework on MILS,
a well-known trusted model. The main advantage of using MILS is to provide
a deeper comprehension of many hidden properties of the dual-EE approach. In
addition, some may argue the impartiality of any framework built on self-cooked
criteria, while the relevance and the objectivity of our criteria are guaranteed,
since they are based on a thoroughly defined trusted model.

8 Conclusions and Future Work

In this paper, we revisited the dual-EE approach, a model that allows mobile
smart devices to guarantee a tamper-resistant execution for highly sensitive
applications. We introduced the dual-EE approach in the context of trusted
computing. The domain of trusted computing gives us convenient abstract mod-
els to better represent the characteristics of the dual-EE approach.

In this paper, we also provided a general classification of the dual-EE solu-
tions defined in the literature. The goal of this classification is not to provide
an extensive survey, but to examine our framework by applying it on a rep-
resentative of each class. Results are consistent with related work and some-
times unexpected. They show that TrustZone provides a balanced compromise
to implement the dual-EE approach. They also show that systems requiring
the maximum level of security should adopt external hardware modules, while
hypervisors are ill-adapted to provide high assurance security even though they
might improve the overall security level of the system.

The Dual-EE Approach: Analysis and Comparative Evaluation 569

We believe that our work can be easily extended to include other compari-
son criteria. An interesting aspect is the scheduling techniques present on MILS.
In some smart devices, it is necessary that malicious allocation of hardware
resources (e.g. CPU time) do not impact the SEE execution. Despite their high
importance, temporal constraints are rarely taken into account in dual-EE solu-
tions. Our abstract model forms a theoretical basis that systematizes the design
of dual-EE solutions regarding primitives defined in the MILS architecture.

Some might think that dual-EE is nothing but a special case of the multi-EE
approach in which an arbitrary number of execution environments runs on the
SK layer. However, we prove by induction that the opposite is true: all dual-
EE solution can construct a multi-EE architecture. Due to space constraint, we
do not include our proof in this paper. Future work will focus on extending
our model to include more properties related to the SK layer, a comprehensive
evaluation of more dual-EE solutions and formal proofs related to our work.

References

1. ARM Holdings plc. Annual report 2013: Strategic report (2013)
2. Trustonic (2014). https://www.trustonic.com (accessed: January 2, 2015)
3. Alves-Foss, J., Oman, P.W., Taylor, C., Harrison, W.S.: The MILS Architecture for

High-Assurance Embedded Systems. International Journal of Embedded Systems
2(3), 239–247 (2006)

4. ARMLtd. ARM Security Technology - Building a Secure System using TrustZone
Technology (2009)

5. Asokan, N., Ekberg, J.E., Kostiainen, K., Rajan, A., Rozas, C., Sadeghi, A.R.,
Schulz, S., Wachsmann, C.: Mobile Trusted Computing. Proceedings of the IEEE
102(8), 1189–1206 (2014)

6. Azab, A.M., Ning, P., Shah, J., Chen, Q., Bhutkar, R., Ganesh, G., Ma, J., Shen,
W.: Hypervision across worlds: real-time kernel protection from the ARM trustzone
secure world. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2014, pp. 90–102. ACM, New York (2014)

7. Dall, C., Nieh, J.: KVM/ARM: The Design and Implementation of the Linux ARM
Hypervisor. SIGPLAN Not. 49(4), 333–348 (2014)

8. El-Serngawy, M.A., Talhi, C.: Securing business data on android smartphones. In:
Awan, I., Younas, M., Franch, X., Quer, C. (eds.) MobiWIS 2014. LNCS, vol. 8640,
pp. 218–232. Springer, Heidelberg (2014)

9. Enck, W., Ongtang, M., McDaniel, P.: Understanding Android Security. IEEE
Security and Privacy 7(1), 50–57 (2009)

10. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: Terra: A Virtual
Machine-based Platform for Trusted Computing. SIGOPS Oper. Syst. Rev. 37(5),
193–206 (2003)

11. Gasser, M.: Building a Secure Computer System. Van Nostrand Reinhold Co.,
New York (1988)

12. Grawrock, D.: The Intel Safer Computing Initiative: Building Blocks for Trusted
Computing. Books by engineers, for engineers. Intel Press (2006)

13. Gudeth, K., Pirretti, M., Hoeper, K., Buskey, R.: Delivering secure applications
on commercial mobile devices: the case for bare metal hypervisors. In: Proceedings
of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile
Devices, SPSM 2011, pp. 33–38. ACM, New York (2011)

https://www.trustonic.com

570 M. Sabt et al.

14. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino,
J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest We Remember: Cold-boot
Attacks on Encryption Keys. Commun. ACM 52(5), 91–98 (2009)

15. Hwang, J.-Y., Suh, S.-B., Heo, S.-K., Park, C.-J., Ryu, J.-M., Park, S.-Y., Kim,
C.-R., Xen, A.R.M.: System virtualization using xen hypervisor for ARM-based
secure mobile phones. In: Proceedings of the 5th IEEE International Conference
on Consumer Communications and Networking, CCNC 2008, pp. 257–261, January
2008

16. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive Formal Verification of an OS Microkernel. ACM Trans.
Comput. Syst. 32(1), 2:1–2:70 (2014)

17. Kostiainen, K., Ekberg, J.-E., Asokan, N., Rantala, A.: On-board credentials with
open provisioning. In: Proceedings of the 4th International Symposium on Infor-
mation, Computer, and Communications Security, ASIACCS 2009, pp. 104–115.
ACM, New York (2009)

18. Lampson, B.W.: Protection. SIGOPS Oper. Syst. Rev. 8(1), 18–24 (1974)
19. Lie, D., Thekkath, C.A., Horowitz, M.: Implementing an Untrusted Operating

System on Trusted Hardware. SIGOPS Oper. Syst. Rev. 37(5), 178–192 (2003)
20. Pandya, V.R., Stamp, M.: iPhone Security Analysis. Journal of Information Secu-

rity 1(2), 74–87 (2010)
21. Rushby, J.M.: Design and Verification of Secure Systems. SIGOPS Oper. Syst.

Rev. 15(5), 12–21 (1981)
22. Santos, N., Raj, H., Saroiu, S., Wolman, A.: Using ARM Trustzone to Build a

Trusted Language Runtime for Mobile Applications. SIGARCH Comput. Archit.
News 42(1), 67–80 (2014)

23. Seshadri, A., Luk, M., Shi, E., Perrig, A., van Doorn, L., Khosla, P.: Pioneer:
Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy
Systems. SIGOPS Oper. Syst. Rev. 39(5), 1–16 (2005)

24. Suh, G.E., Clarke, D., Gassend, B., van Dijk, M., Devadas, S.: AEGIS: architec-
ture for tamper-evident and tamper-resistant processing. In: Proceedings of the
17th Annual International Conference on Supercomputing, ICS 2003, pp. 160–171.
ACM, New York (2003)

25. Vanfleet, M.W., Luke, J.A., Beckwith, W.R., Taylor, C., Calloni, B., Uchenick, G.:
MILS: Architecture for High-Assurance Embedded Computing. CrossTalk: Journal
of Defence. Software Engineering 18(8), 12–16 (2005)

26. Vasudevan, A., Owusu, E., Zhou, Z., Newsome, J., McCune, J.M.: Trustworthy
execution on mobile devices: what security properties can my mobile platform
give Me? In: Katzenbeisser, S., Weippl, E., Camp, L.J., Volkamer, M., Reiter, M.,
Zhang, X. (eds.) Trust 2012. LNCS, vol. 7344, pp. 159–178. Springer, Heidelberg
(2012)

27. Wilson, P., Frey, A., Mihm, T., Kershaw, D., Alves, T.: Implementing Embedded
Security on Dual-Virtual-CPU Systems. IEEE Des. Test 24(6), 582–591 (2007)

On the Privacy, Security and Safety of Blood
Pressure and Diabetes Apps

Konstantin Knorr1,2(B), David Aspinall1, and Maria Wolters1

1 University of Edinburgh, Edinburgh, UK
knorr@hochschule-trier.de,

{david.aspinall,maria.wolters}@ed.ac.uk
2 Trier University of Applied Sciences, Trier, Germany

Abstract. Mobile health (mHealth) apps are an ideal tool for monitor-
ing and tracking long-term health conditions. In this paper, we examine
whether mHealth apps succeed in ensuring the privacy, security, and
safety of the health data entrusted to them. We investigate 154 apps
from Android app stores using both automatic code and metadata anal-
ysis and a manual analysis of functionality and data leakage. Our study
focuses on hypertension and diabetes, two common health conditions
that require careful tracking of personal health data.

We find that many apps do not provide privacy policies or safe com-
munications, are implemented in an insecure fashion, fail basic input
validation tests and often have overall low code quality which suggests
additional security and safety risks. We conclude with recommendations
for App Stores, App developers, and end users.

1 Introduction

Mobile health (mHealth) applications cover all areas of health IT, from health
information databases to personal electronic medical records. They are very
popular—according to appbrain.com, in December 2014, Google Play had 21,457
apps in the medical category and 3% of these have been downloaded more than
50,000 times. mHealth apps for Android and iOS are currently largely unreg-
ulated [17]. Many of these apps are written by individuals or small companies
who see a market niche, or by pharma and drugstore companies that seek to
provide added value and collect information about their customer base [23].

Around 20% of medical apps cost money, on average US $9.78, making them
the most expensive category. This suggests that users attach a high value to
mHealth apps. But does this buy data protection?

Many mHealth apps handle highly sensitive data that require particular pri-
vacy and security precautions [13]. For example, insurers demand full disclosure
of pre-existing conditions. If insurers find mHealth data that suggest an unre-
ported condition, the applicant may be denied coverage or their policy may be
downgraded.

In this paper, we examine how far a representative sample of 154 mHealth
Android apps for two common long-term conditions, diabetes and hypertension,
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 571–584, 2015.
DOI: 10.1007/978-3-319-18467-8 38

572 K. Knorr et al.

succeed in ensuring the privacy, security, and safety of the health data entrusted
to them. While previous work has considered relatively diverse samples of 40–50
mHealth apps at once [3,6,9,10], we focus on a the management of long-term
conditions which require users to regularly track key health indicators. Such
conditions are an ideal mHealth use case. Well-designed apps allow users to
enter data when and where they choose, to communicate with carers and health
care professionals, and to discover trends and patterns in their own medical data.

Contributions. We introduce a novel method that takes into account the files
contained in the APK (i.e., the downloaded package of the app), the dynamic
behaviour of the installed app, and the app’s privacy policy. We also consider
input validation and source code quality. This comprehensive evaluation goes
beyond previous studies, which mainly examined permissions and network traffic.
In addition, our clear focus on long-term conditions allows an in-depth discussion
of the specific privacy concerns.

The rest of the paper is structured as follows: Sect. 2 introduces mHealth
apps and the categories we examine in detail; we explain the high-level func-
tionality they provide, and discuss potential privacy threats. Sect. 3 describes
the proposed methodology, while Sect. 4 gives the corresponding results and its
discussion following the structure of the methodology. Suggestions for improving
the current privacy issues of mHealth apps and future work conclude the paper
in Sect. 5.

2 Hypertension and Diabetes

We focus on two long-term health conditions, hypertension and diabetes. Peo-
ple with hypertension suffer from chronically elevated blood pressure, which
increases the risk of many serious illnesses including cardiovascular disease,
stroke, and chronic kidney disease. Diabetes is a group of diseases that are char-
acterised by elevated blood sugar levels. Controlling blood sugar is therefore the
main aim of treatment.

Both conditions can be tracked using a simple numerical indicator, blood
pressure (hypertension) and blood glucose level (diabetes), both are highly preva-
lent in the population1, and for both conditions, self-monitoring is an important
part of clinical management [14,19].

The key function of a monitoring app is to capture a reading of the indicator
measure at a given point in time. Fig. 1 shows a sample user interface for manual
input of hypertension with a basic set of fields. Fields may not have a clearly
defined use, such as “My Item” in our example, and others can contain free text,
such as “Note”.

Typical additional functionality includes providing reminders; data analy-
sis and reporting; and backup, sharing, and export of recorded data. Some
1 Hypertension affects 25%–55% of the population depending on the country and the

definition, while diabetes affects 8.5% of Europeans.

On the Privacy, Security and Safety of Blood Pressure and Diabetes Apps 573

apps support several user profiles, while others include functionality for emer-
gency texts and telephone calls. The main menu screen of Diabetes Journal
(com.suderman.diabeteslog, Fig. 2) shows how this functionality is typically
implemented. “Averages” and “Charts” cover the data analysis and reporting
function, the “Calendar” supports reminders, “Entries” leads to an entry screen
for blood glucose values, and “Profiles” allows users to switch profiles.

Fig. 1. Input in iBP Blood Pressure Fig. 2. Functions of Diabetes Journal

For both blood pressure and blood glucose levels, there are well documented
clinical guidelines that govern their interpretation, such as those issued by the
UK National Institute for Clinical Excellence (NICE). But integrating values
collected using mHealth apps into clinical management is difficult. As long as
most apps rely on manual data entry [7], data quality is questionable, especially
given that, as we will see in Sect. 4, apps may fail to perform basic validity
checks on the health data they receive from the user.

2.1 Privacy Threats and Relevant Regulation

In the US, the Health Insurance Portability and Accountability Act (HIPAA)
sets legal security and privacy standards for electronically transmitted health
information; in the EU, there are diverse country-specific laws that need to be
respected [5]. Devices that collect measurements which are used for monitoring,
treatment, or diagnosis of health conditions are medical devices and these are
regulated by the Food and Drug Administration in the US. The key medical
device directive in the EU is Directive 93/42/EEC, which was updated in 2007.

Smartphone apps for monitoring diabetes and hypertension, in particular
those that do not directly receive data from a validated blood pressure or blood
glucose meter, fall into a grey area that is not adequately covered by current

574 K. Knorr et al.

standards [11,17], and finding a good balance between encouraging innovation
and ensuring privacy is challenging [22].

Several frameworks have been proposed for classifying the threat that mHealth
applications pose to the privacy of health information (e.g. [13]). Most of these
focus on information that would make the patient identifiable, in particular ID
or social security numbers. While many self-management apps do not collect
those data, they do often store name, gender, and date of birth. Privacy threats
also depend on the type of mHealth app [11], and on the condition that is being
managed.

Fig. 3. An mHealth app in context. The heart indicates medical data.

2.2 Threat Scenarios for mHealth Apps in Use

Fig. 3 shows a smart phone with mHealth apps installed. Medical data like blood
pressure or glucose values can be input by the user or, less commonly, received
from external medical devices via Bluetooth or NFC. The smartphone stores the
app’s data internally either in a database or the internal file structure. The SD
card is used for database backups and restores, and to export reports or selected
medical data. Mobile networks are used for emergency SMS and calls.

Five types of servers are potentially connected to the smartphone and app.
The App Shop is used to initially download and possibly pay for the app. Subse-
quently, connections for licensing and billing e.g. for in-app purchases or upgrades
of the app are maintained. Many of the apps display ads, which are provided
by Ad Servers, most prominently Admob by Google. App developers also use
Analytics such as Google Analytics to track user behaviour. Many apps allow
to upload, backup or synchronize the data to Social Media, Storage Services or
a dedicated external App Web Server provided by the app developer or coop-
erating third parties. This server may provide interfaces to other parties like
insurance companies, doctors, or hospitals. Most apps allow sending e-mails
with medical data. This is typically done via an Android e-mail “intent” which
connects to a (implicitly trusted) email app on the phone. Overall, the complex-
ity in this picture emphasises the privacy challenges faced by a user trying to
keep control over his/her medical data.

On the Privacy, Security and Safety of Blood Pressure and Diabetes Apps 575

3 Methodology

We selected mHealth apps for diabetes and blood pressure which: (1) had an
English or German user interface; (2) would run on a Google Nexus 7 test
device with Android 4.4.2 installed; (3) had over 10,000 downloads (for free
apps) or over 1,000 (for paid). Most apps came from the medical category and
were specifically developed for diabetes and blood pressure monitoring. We ended
up with 154 apps in the final test set (55% diabetes, 35% blood pressure, 10%
both) that were installed on the Nexus 7. The most popular apps are My Heart
(com.szyk.myheart) and BP Watch (com.boxeelab.healthlete.bpwatch)
which each have between one and five million downloads.2

3.1 Our Method

The investigation has four parts: (A) static analysis; (B) dynamic analysis;
(C) web server security and (D) privacy policy inspection. Fig. 4 shows a pic-
ture of the method. The results were gathered in a database. Static analysis was
applied to the full set of 154 apps; other analysis stages were applied to subsets.

Database

File
System

Nexus 7

App Stores

Select, buy,
download Apps

Extract APKs

Retrieve Meta Data
like Price, URL of Privacy Policy,
Number of Downloads

Vendors WebSite

(B) Dynamic Analysis

(A) Static Analysis

Retrieve
Privacy
Policies

(D) Analysis of
Privacy Policy

APKs

Privacy Policies

Generate
Statistics

Statistics
and Findings

Save results of
Testing in Database
and File System

Web Server

(C) Web Server
Security

App Store

Fig. 4. Analysis method

(A) Static Analysis. The static analysis is based on the information contained
in the APK file, including the manifest and the compiled code (in the file
classes.dex). Results for the top 10 apps are shown in Table 1. We used Mal-
loDroid [8] to identify faulty SSL usage, such as the failure to check certificate
chains; this would allow man-in-the-middle attacks which enable an attacker to
2 The full details of the apps analysed, along with a database of our results and details

about the tools used can be found at the URL http://tinyurl.com/mhealthapps. A
more comprehensive description of the method can be found in [12].

http://tinyurl.com/mhealthapps

576 K. Knorr et al.

access all medical data transmitted. OpenSSL was used to extract certificate
information and find certificates with poorly chosen cryptologic parameters [4].

We checked Android content providers and debugging flags using Drozer.
The ContentProvider class allows sharing data between applications, with its
own access control model. A careful implementation will prevent unauthorized
access to sensitive data. When the debug flag for Android is set, the application
can be debugged, even when running on a device in user mode, thereby possibly
revealing medical information.

Addons Detector was used to identify and classify the add-on libraries used
by the apps. Health apps were scanned for malicious code, security vulnerabili-
ties and privacy failings using Snoopwall Privacy App, Clueful, AVG Antivirus
Security, AVAST, McAfee, and the Recap vulnerability scanner.

We assessed code quality by using FindBugs to count the number of likely-
bug patterns occurring in apps; high numbers indicate a likely poor code qual-
ity, which suggests possible unreliable behaviour, giving additional security and
safety risks.

(B) Dynamic Analysis. We analysed the 72 most frequently downloaded apps,
including all those with web interfaces to external servers. We set up Facebook,
Twitter, Dropbox, and Gmail accounts for a patient for whom some values were
out of the physiologically normal range. The patient was 170 cm tall, weighed 99
kg, had dangerously high blood pressure (200 mmHg/120 mmHg), a physiologi-
cally improbable heart rate (333 bpm) and a blood glucose level of 111 mmol/L,
which is lethal and indicates that the user confused mg/dL with mmol/L.

We generated Facebook, Twitter and Dropbox accounts for the patient and
tested all available export routes for the data. We investigated whether abnormal
and illegal inputs were accepted, and how exported data was stored or trans-
mitted. Using the Android debugger command adb pull and the adb logcat
command, we tested whether the backups or log data contained unencrypted
medical data. We also established whether the app included a feature to erase
all stored medical data, whether there was a privacy policy for the app, and
whether the permissions required by the app were reasonable.

(C) Web Server Connection. For apps that can interface with a dedicated web
server (n=20) using a user account for uploading data, we checked whether a
sensible password policy was enforced on the web site and tested the Web Server
connection. We recorded the URLs used for connections and noted if they used
a secure transport (https:). We recorded traffic to see if passwords or medical
data in textual or graphical form could be sniffed in clear text.

(D) Inspection of Privacy Policies. Only 19% of apps in (A) have a privacy
policies. This is far lower than the proportion found by Sunyaev et al. [18] in
their survey of the 600 most commonly used apps, where 30% of all apps had
some form of privacy policy. Since storage of medical data on an external server
further stresses privacy concerns, we limited the test to the same apps as in (C).

On the Privacy, Security and Safety of Blood Pressure and Diabetes Apps 577

We assessed privacy policies on basic information provided (URL to privacy pol-
icy, length in words, version, and country of origin), completeness (information
about the OECD criteria accountability, security safeguards, openness, purpose,
individual participation [2]), and invasiveness (possible use for other purposes,
storage by third party, potential to be passed on to third parties) by asking basic
questions and trying to find answers in the documents.

4 Results and Discussion

Table 1. Analysis results for the top 20 downloaded apps. Columns: lack of a privacy
policy, existence of MalloDroid errors, debug flag enabled, missing access protection of
content provider, poor certificate parameters, usage of ad and analytics addons, more
than 300 FindBugs errors, usage of more than 5 Android permissions, lack of input
validation for input data, absence of a wipe feature.

Package D
ow

nl
oa

ds

T
yp

e

la
ck

s
pr

ip
ol

ba
d

SS
L

de
bu

g
se

t
c’
pr

ov
id

er
po

or
ce

rt
pa

rs

an
al
yt

ic
s?

ad
s?

F
in

dB
ug

s
>
30

0

>
5

pe
rm

s
fa
il

sa
fe
ty

B
P

fa
il

sa
fe
ty

G
L

fa
il

sa
fe
ty

pu
ls
e

no
w
ip

e
S
co
re

com.boxeelab.healthl 1000000 BP × × × × × × × 7
com.szyk.myheart.... 1000000 BP × × × × 4
com.ptashek.bplog... 500000 BP × × × × 4
com.gexperts.ontrack 500000 DIAB × × × × × 5
com.fourtechnologies 100000 BP × × × × × × 6
com.orangekit.bpress 100000 BP × × × × 4
com.szyk.diabetes... 100000 DIAB × × × × 4
net.klier.blutdruck. 100000 BP × × × × × × 6
com.skyhealth.glucos 100000 DIAB × × × × 4
org.fruct.yar.bloodp 100000 BP × × × × × × × 7
com.freshware.bloodp 100000 BP × × × × × × 6
com.jucdejeb.bloodpr 100000 BP × × × × × × × 7
com.suderman.diabete 50000 DIAB × × × × × × × × 8
com.zlamanit.blood.p 50000 BP × × × × × 5
com.freshware.dbees. 50000 DIAB × × × × × 5
com.squaremed...typ1 50000 DIAB × × × × 4
com.squaremed...andr 50000 DIAB × × × × × × × 7
com.mydiabetes...... 50000 DIAB × × × × × × 6
kr.co.openit.bpdiary 50000 BP × × × × × 5
com.sidiary.app..... 50000 DIAB × × × × × × 6

Tables 1 and 2 give an overview of our results. In both Tables, × is used to
indicate a problem, and the score is the number of problems found.

We found that paid apps tend to use fewer ads (even though some keep the
ad libraries code) and offer more functionality (like e-mail or SD card export).
Concerning the other tests, we could not find major differences. Especially com-
paring “twin apps” (free and paid version of same app) produced similar results.

578 K. Knorr et al.

Static Analysis. The number of permissions used ranges from 0 (28 apps) to
17 with an average of 4.35. The most frequently requested Android permis-
sions are INTERNET (126 times), followed by WRITE EXTERNAL STORAGE (117),
and ACCESS NETWORK STATE (109). The permission BLUETOOTH is used 18 times,
NFC 3 times. Of the 126 apps using the INTERNET permission, 15 do not cor-
rectly verify certificates or certificate paths, allowing for MITM attacks. Six apps
had the debuggable flag set to “true” in their manifest, possibly allowing debug
connections to inspect medical data. 17 apps use content providers that were
accessible to other apps on the device, and four revealed medical data to all
other apps on the device.

Apps are infested by ad and analytic addons on a large scale. The addons
in the Advertising (74 apps, Admob being dominant) and Analytics (27 apps,
Google Analytics dominant) category have been identified as a major privacy
problems transferring device IDs and other data. Eight apps use Facebook or
Twitter addons.

All apps used self-signed certificates, although using an acknowledged CA
could establish additional trust. Certificates of 4 apps have a life time of ∼1,000
years, another 6 of ∼100 years. Most of them are valid for ∼30 years. The
majority use SHA1, and only 17% the more secure SHA256. Only 40 certificates
give more information than the name of the developer, thereby not establishing
additional trust by adding more detailed information.

The Clueful tool gave a privacy score of 56 out of 100 for the apps on the
test device and identified no high risk app and 57 moderate risk apps. The
ranking is purely based on permissions. Snoopwall also just lists permissions
for each app. Recap is a vulnerability scanner based on 1,800 CVE numbers.
All its findings were OS related. We additionally checked if the apps in our
test set in its current or earlier version are listed in the National Vulnerabil-
ity Database http://www.nvd.org (NVD) and found no entries. AVG classified
com.stevenmz.BloodPressureDiary as malware and MMSL.BGGlucoDiary as
“Potentially Unwanted Program” without giving a detailed explanation3. Avast
and McAfee did not find any malware, privacy or security issue.

Dynamic Analysis. 43 of 50 blood pressure apps allow users to enter alarmingly
high blood pressure values of 200 / 120 mmHg with the current time, some
marking this (e.g. colouring the values read), some not. 20 of 50 blood glucose
monitoring apps allow the meaningless reading of 111 mmol/L, and 24 of 46
apps that monitor pulse allow a value of 333 bpm (s. Figs. 5 and 6). Some of
the apps even allowed to input letters instead of numerical values. This raises
serious safety concerns. Lacking input validation stands for poor code quality
and is a precondition for attacks like SQL injection, XSS, and XSRF.

The majority of apps do not protect the medical data when stored in the
internal storage. An attacker gaining physical access to the device can thereby
access or manipulate these data. This attack can be impeded but not entirely
3 We did not find any suspicious network traffic caused by these two apps during the

dynamic analysis.

http://www.nvd.org

On the Privacy, Security and Safety of Blood Pressure and Diabetes Apps 579

Fig. 5. BloodPressure Record Lite allows
to enter lethal blood pressure values

Fig. 6. Diabetes Journal (Suderman)
allows to enter lethal blood sugar values

prevented by using the phone’s security mechanisms like PIN protection and
device encryption. In contrast to [9,10] we did not find any sensitive data in
Android’s main and event log. Only 4 apps allowed to protect the app with an
extra password.

49 of 72 apps export medical data to SD card. All but one of these do not
protect the data when doing so. The one exception is MyLists, which is not
a specific health app. Thus, an attacker with physical access to the device can
steal the SD card and gain thereby access to the medical data. This finding is
surprising as some of the developer tools included in the apps like PDFTron would
allow encryption. This also indicates dead code in the APKs. Only 32% of the
apps provide a “wipe” feature to delete all medical data entered. Unfortunately,
the SD card is often omitted from this wipe.

68% of the apps allowed to send e-mails. None of these allowed for sending
encrypted messages or attachments. This could allow attackers with access to the
network infrastructure (e.g. in WLANs) to sniff or even manipulate e-mails in
transit. Besides export to 20 different web servers, we successfully exported data
to Facebook (2 apps), Twitter (2), Google Drive (6), and Dropbox (8) without
receiving a privacy warning by the app.

Several ad networks transmit the app’s package name plus other device and
app specific data in clear text which allows a passive eavesdropper to gather
the information which device is using which app. This can often traced back
to individual users thereby laying open that a user has diabetes or is track-
ing their blood pressure. We found this among others in HTTP traffic related
to doubleclick.net, googleapis.com, gstatic.com, applovin.com. Similar findings
(albeit not for mHealth) have been reported in [21].

doubleclick.net
googleapis.com
gstatic.com
applovin.com

580 K. Knorr et al.

Web Applications. 35% of all analysed apps transmit medical data in textual
or other forms (like pictures, charts, files) in clear text using HTTP. This is
not limited to blood pressure or glucose values but also includes weight, BMI,
and pulse (Fig. 7). The same percentage of passwords can be sniffed in clear-
text. The password policies also leave much to be desired. One app allows empty
passwords, 5 are fine with one character passwords, and only 3 ask for or generate
passwords of 8 characters or more. Additionally, 17 of 20 apps accept password
consisting just of numbers in a chronological order which allows easy brute force
and dictionary attacks.

Table 2. Results of the privacy policy and web security analysis

Package D
ow

nl
oa

ds

H
T
T
P?

pa
ss
w
or
d
le
n
<
7

cl
ea

rt
ex

t
pa

ss
w
or
d

cl
ea

rt
ex

t
m
ed

ic
al

ac
co

un
ta
bi
lit
y

sa
fe
gu

ar
ds

op
en

ne
ss

pu
rp

os
e
sp

ec
ifi
ed

in
di
vi
du

al
pa

rt
ic
ip
at
io
n

da
ta

fo
r
ot
he

r
pu

rp
os
es

3r
d
pa

rt
y
st
or
ag

e

se
ll
w
ith

co
m
pa

ny

sh
ar
e
w
ith

3r
d
pa

rt
ie
s

air.com.softbycloud.glico 1000 - - - - - - - - -
androidhive.diabetes..... 1000 × × - - - - - - - - -
com.diabetesstudio.client 500 × × × × × × × × × - × -
com.fourtechnologies.myne 100000 × × × × × × × × × × ×
com.freshware.dbees...... 50000 × × × × × - - ×
com.glooko.logbook....... 5000 × × × × × × - × ×
com.kiwihealthcare.glubud 5000 × × × × - - - - - - - - -
com.leadingedgeapps.ibp.. 5000 × × × × × × × × × - - -
com.mysugr.android.compan 50000 × × × × × × - -
com.nabdacare.diabetes... 1000 × - - - - - - - - -
com.oxygenhealthcom.lsmea 1000 × × × × × × × × - - × ×
com.sidiary.app....... 50000 × - - - ×
com.socialdiabetes.androi 10000 × × × × × × × × × × - -
com.squaremed.diabetescon 50000 × × × × × × × - -
com.squaremed.diabetesplu 50000 × - - - - - - - - -
de.davidfroehlich.diabete 500 × × - - - -
it.bytewave.glucowave.... 500 × × × × × × × - - -
net.klier.blutdruck...... 100000 × × × × - -
org.fruct.yar.bloodpressu 100000 × - - - - - - - - -

Privacy Policy. Only 19% of all 154 refer to a privacy policy in the app stores, but
this number increases to 67% for apps which allow users to sync data with web
servers. On average, the policies are 632 words long. Only 6 policies stem from
2014, the others being older, 4 give no date. mHealth is a global business with a
trend towards USA and Germany. While the majority of the policies cover the
OECD privacy principles of accountability, security safeguards, openness, and
purpose at least partly, over half of the policies do not address the rights of the
individual like the right of data deletion. None of the policies denies using the
data internally e.g., for marketing or research. 9 policies explicitly say that they

On the Privacy, Security and Safety of Blood Pressure and Diabetes Apps 581

Fig. 7. Clear text blood pressure reading (com.oxygenhealthcom.lsmeasure)

do so. All policies addressing mergers note that medical data may be transferred
or even sold. 50% of the apps (that address this issue) say that medical data can
be passed on to other 3rd parties (other than required by law).

5 Conclusions

Through our in-depth analysis, we found clear evidence of privacy, safety, and
security concerns for the majority of the apps we analysed. Current health pol-
icy strongly encourages people to manage chronic conditions themselves, and
mHealth is seen as a key tool for effective self management. But the apps people
use should not leave them vulnerable to cyberattacks. While the consequences of
such attacks may be relatively mild for the conditions we studied, hypertension
and diabetes, they may be more severe for stigmatised conditions such as HIV+
or mental illness.

Some of the issues, such as the pervasive lack of encryption, indicate secu-
rity is not a priority for developers. Reports, charts, and tables of medical data
are often stored without any protection, giving thieves and eavesdroppers easy
access. Another important threat is advertising. Of the 154 apps tested, 74
include advertisement addons. These addons often transmit the app’s package
name in clear text in the HTTP header which discloses the usage of this app
(which is, per se, sensitive) to eavesdroppers. We also pointed out that current
malware and privacy scanners fail to identify privacy issues in mHealth apps.

On the user interface side, we found that input data was often not validated
or badly validated. This is a major concern when users want to share their
self-curated data with health care professionals. The problems that arise from
badly validated and designed data input forms have been studied extensively,
and design guidelines have been formulated, but many app developers (and many
medical device manufacturers) still fail to adhere to them [20].

App developers also rarely provide privacy policies. Although most users are
unlikely to read such policies [15], we would still expect that privacy policies
offer a reasonably complete summary of all major privacy issues for people who

582 K. Knorr et al.

do read them. Most of the policies we analysed fell far short of this goal. Quote4:
“Sinovo endeavours to use on the data minimally. The customer expressly agrees
to the use of data in this context.”

Recommendations. Due to the manifold concerns over the privacy and security
of health data that users enter into mHealth apps in good faith, we suggest that
app shops should mandate and enforce the existence of a privacy policy for apps
that would like to be listed in the Health section. They could provide a template
which systematically addresses the major principles and encourage automated
security checking of apps with tools like MalloDroid or Drozer.

Such a step would automatically encourage developers to invest time and
effort in ensuring users’ privacy. Secure coding guidelines like [1] are a good
start. Developers should leverage existing tools to encrypt all data stored both
on the device and on external servers. Finally, developers should also ensure that
the privacy policy is up to date, follows the OECD principles, and informs end
users about use of their data and data protection.

Ad Networks, an important revenue source for free medical apps, are also
a major source of privacy leaks. Here, many concerns could be addressed by
mandating the usage of SSL to protect the HTTP traffic.

Looking at the Android operating system, the INTERNET permission seems
too coarse. Currently it is not possible to differentiate whether a mHealth app
wants to communicate with a health care provider or if an ad server is contacted.
A possible solution could be the inclusion of firewall features in future Android
versions, but this might conflict with Google’s ad driven business model.

The recommendation to end users is to perform due diligence, including
reading the description, privacy policy, and commenting on security issues, trying
to take advantage of scores for privacy measures such as ours and those given by
others [3,6]. But the information currently available prior to installation is not
enough for users to make these informed decisions. Therefore, a privacy aware
user needs to use additional mechanisms like Android’s phone encryption, ad
block apps, or encryption apps. This is only feasible for technically savvy users.

Related Work. Work closest to our contribution stems from [3,6,9,10]. Njie
[6] analyses 43 popular iOS and Android health and fitness apps based on a
spreadsheet with the focus on network analysis and mentions the need to restrict
future studies to a more specific category of apps. He et al. [9,10] analyse 47
randomly selected iOS and Android mHealth apps in a series of two studies
regarding Internet usage, logging, content provider, SD cards, and usage of cloud
services and Bluetooth. Adhikari et al. [3] examine the 40 most popular iOS and
Android mHealth apps by answering 9 privacy questions yielding a privacy score.

In contrast these studies, our work focuses (1) on apps for specific purposes,
rather than selecting randomly from the broad category of mHealth apps and
(2) only on Android apps. This gives us a more homogeneous population which
can be closely tested and compared, in particular, it allowed us to check input
4 http://www.sinovo.org/?id=144

http://www.sinovo.org/?id=144

On the Privacy, Security and Safety of Blood Pressure and Diabetes Apps 583

validation for specific blood pressure and glucose reading ranges. Our testing
also goes further than previous work: while permissions and network traffic have
been considered, we additionally analyse the APKs and the underlying code and
privacy policies, and source code quality.

Future Work. Our methodology is sensitive enough to uncover many privacy and
security concerns, and it can be easily extended to apps for conditions that are
more stigmatised than diabetes and hypertension, such as mental health [16].

We propose to extend our technical work in three ways. First, we want to
extend static analysis to more of the 27 topics in [1], integrating formal usability
assessment, and developing automatic tools that might be used to screen new
candidate apps for mHealth. Given the prevalence of web servers associated with
apps, assessing web application security is an integral part of a full analysis; we’d
like to extend this to consider vulnerability to attacks like SQL injection, XSS,
and XSRF. Finally, apps that use communication links like Bluetooth and NFC
to regulated measurement devices deserve to be examined in detail too, especially
in a “wearable scenario”.

In order to link our results to the eHealth field, we plan to investigate the
motivations of users of mHealth apps and their attitude to the safety, security,
and privacy problems we found. We also plan to investigate reasons why devel-
opers create insecure apps through a questionnaire study.

References

1. CERT secure coding standards for Android. https://www.securecoding.cert.org
(accessed December 28, 2014)

2. OECD guidelines on the protection of privacy and transbor-
der flows of personal data. http://www.oecd.org/internet/ieconomy/
oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm.
(accessed December 29, 2014)

3. Adhikari, R., Richards, D., Scott, K.: Security and privacy issues related to the
use of mobile health apps. ACIS (2014)

4. Allix, K., Jerome, Q., Bissyande, T.F., Klein, J., State, R., Traon, Y.L.: A Forensic
Analysis of Android Malware: How is Malware Written and How It Could Be
Detected?. In: Proc. of the 38th COMPSAC, pp. 384–393. IEEE (2014)

5. Avancha, S., Baxi, A., Kotz, D.: Privacy in mobile technology for personal health-
care. ACM Computing Surveys 45(1), 1–54 (2012)

6. Njie, C.M.L.: Technical analysis of the data practices and privacy risks of 43 pop-
ular mobile health and fitness applications. Technical report, PrivacyRights Clear-
inghouse (2013)

7. Eng, D.S., Lee, J.M.: The promise and peril of mobile health applications for
diabetes and endocrinology. Pediatric Diabetes 14(4), 231–238 (2013)

8. Fahl, S., Harbach, M., Muders, T., Baumgärtner, L., Freisleben, B., Smith, M.:
Why eve and mallory love Android: An analysis of Android SSL (in) security.
In: Proceedings of the 2012 ACM Conference on Computer and Communications
Security, pp. 50–61. ACM (2012)

9. He, D.: Security threats to Android apps. Master’s thesis, University of Illinois at
Urbana-Champaign (2014)

https://www.securecoding.cert.org
http://www.oecd.org/internet/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm.
http://www.oecd.org/internet/ieconomy/oecdguidelinesontheprotectionofprivacyandtransborderflowsofpersonaldata.htm.

584 K. Knorr et al.

10. He, D., Naveed, M., Gunter, C.A., Nahrstedt, K.: Security concerns in Android
mHealth apps. In: Proceedings of the AMIA 2014 (2014)

11. Helm, A.M., Georgatos, D.: Privacy and mHealth: How Mobile Health ’Apps’ Fit
into a Privacy Framework Not Limited to HIPAA. Syracuse Law Review 64, (May
2014)

12. Knorr, K., Aspinall, D.: Security Testing for Android mHealth Apps. In: Pro-
ceedings of the 6th International Workshop on Security Testing SECTEST, Graz,
Austria, April 13, 2015

13. Kotz, D.: A threat taxonomy for mHealth privacy. In: 3rd International Conference
on Communication Systems and Networks, COMSNETS 2011 (2011)

14. Labeit, A., et al.: Changes in the prevalence, treatment and control of hypertension
in Germany? A clinical-epidemiological study of 50.000 primary care patients. PloS
One 7(12), e52229 (2012)

15. Nissenbaum, H.: A Contextual Approach to Privacy Online. Daedalus 140(4)
(2011)

16. Roeloffs, C., Sherbourne, C., Unützer, J., Fink, A., Tang, L., Wells, K.B.: Stigma
and depression among primary care patients. General Hospital Psychiatry 25(5),
311–315

17. Schulke, D.F.: Regulatory arms race: Mobile-health applications and agency pos-
turing, the. BUL Rev. 93, 1699 (2013)

18. Sunyaev, A., Dehling, T., Taylor, P.L., Mandl, K.D.: Availability and quality of
mobile health app privacy policies. Journal of the American Medical Informatics
Association (2014)

19. Tamayo, T., Rosenbauer, J., Wild, S.H., Spijkerman, A.M.W., Baan, C., Forouhi,
N.G., Herder, C., Rathmann, W.: Diabetes in Europe: an update. Diabetes research
and clinical practice 103(2), 206–217 (2014)

20. Thimbleby, H.: Improving safety in medical devices and systems. In: Proceedings
IEEE International Conference on Healthcare Informatics (2013)

21. Vallina-Rodriguez, N., Shah, J., Finamore, A., Grunenberger, Y., Haddadi, H.,
Papagiannaki, K., Crowcroft, J.: Breaking for commercials: characterizing mobile
advertising. In: Proceedings of the 2012 ACM Conference on Internet Measurement
Conference, pp. 343–356. ACM (2012)

22. Jason, C.: Wang and Delphine J Huang. The HIPAA conundrum in the era of
mobile health and communications. JAMA 310(11), 1121–1122 (2013)

23. Wolters, M.: The minimal effective dose of reminder technology. In: CHI 2014
Extended Abstracts (2014)

A Cloud-Based eHealth Architecture
for Privacy Preserving Data Integration

Alevtina Dubovitskaya1,2(B), Visara Urovi1, Matteo Vasirani2,
Karl Aberer2, and Michael I. Schumacher1

1 AISLab, HES-SO VS, Sierre, Switzerland
{alevtina.dubovitskaya,visara.urovi,michael.schumacher}@hevs.ch

2 LSIR, EPFL, Lausanne, Switzerland
{matteo.vasirani,karl.aberer}@epfl.ch

Abstract. In this paper, we address the problem of building an
anonymized medical database from multiple sources. Our proposed solu-
tion defines how to achieve data integration in a heterogeneous network
of many clinical institutions, while preserving data utility and patients’
privacy. The contribution of the paper is twofold: Firstly, we propose
a secure and scalable cloud eHealth architecture to store and exchange
patients’ data for the treatment. Secondly, we present an algorithm for
efficient aggregation of the health data for the research purposes from
multiple sources independently.

Keywords: Access control · Interoperability · Point-of-care system

1 Introduction

While building an anonymized database from multiple sources of individuals’
sensitive data the privacy of a person may be violated. Even if the data are locally
anonymized, their aggregation can still reveal sensitive information, especially if
the data about an individual are distributed between different local databases
[2,3]. Several models in the area of distributed privacy-preserving data publish-
ing have already been proposed (i.e., pseudonymization [9,26], secure multi-party
computations (SMC) [6], microaggregation [22], cloning [2]). However, those
models significantly affect the utility of the data, and, therefore, an efficient
independent release of the data from multiple sources and their aggregation
without violation of privacy remains an open problem [10].

This problem is of great interest especially in the case of secondary use of
medical data. This includes the analysis of patients healthcare data in order to
enhance their health care experiences and the expansion of knowledge about
different diseases and appropriate treatment. Datasets containing health related
information about an individual are increasingly becoming “open”. In this paper,
we focus on the medical data to address the following question: How is it possible
to share and aggregate medical data for research purposes?

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 585–598, 2015.
DOI: 10.1007/978-3-319-18467-8 39

586 A. Dubovitskaya et al.

Collecting medical data raises privacy concerns as these data are of a personal
nature to the patient. Additionally, in medical settings, the following require-
ments have to be considered: the ability to update the data about a patient
(without creating multiple entries corresponding to the same person), and the
possibility to recontact the patient through the caregiver that uploaded the data.

Our aim is to create an infrastructure for medical data management that
allows the healthcare professionals to release patients’ data for research pur-
poses while insuring patients’ privacy. To achieve this we employ generalization
and pseudonymization techniques. We use binary trees to represent the data
generalization and multi-key searchable encryption for generating pseudonyms.

The contribution of this paper is the following: we propose a secure frame-
work for independently and asynchronously sharing, aggregating and searching
health data in the cloud, therefore without trust to the server that stores the
health data. We have chosen the cloud-based approach because it allows patients
and caregivers to access aggregated healthcare data from everywhere anytime
(according to the access control policy specified by the patient). Moreover, it
facilitates the aggregation of the data and the creation of the database for the
research purposes (RSDB).

The rest of the paper is organized as follows. In Section 2 we present a use
case scenario, in Section 3 we provide the knowledge about encryption scheme
and anonymity approach that we use in our work, and we compare our solution
with the existing approaches. In Section 4 we describe the architecture of our
proposed eHealth system, the protocol for sharing and accessing patients’ data
in the cloud, and our algorithm for constructing research database. In Section 5
we discuss privacy threats and countermeasures. We present the conclusion and
future work in Section 6 of the paper.

2 Use Case Scenario

The treatment of certain diseases, such as cancer, HIV, or other serious medical
conditions, relies on the administration of critical drugs used to keep those life-
threatening diseases under control. Those drugs (e.g. Efavirenzum, Imatinib)
have a narrow therapeutic range and a poorly predictable relationship between
the dose and the drug concentration in the blood, which may greatly vary among
individuals. Therapeutic Drug Monitoring (TDM) aims at improving patient
care by monitoring drug levels in the blood and adjust a dosage individually.

In order to ensure a better prediction of the relationship between dose and drug
concentration a Bayesian TDM approach [12] has been developed. This approach
requires population health data to be collected and analyzed by researchers, there-
fore, building databases for medical research is of a high importance [8]. We con-
sider a patient, P, who visits several caregivers during the treatment (e.g., when
there is a need for a consultation from particular specialists, in case of traveling,
or if patient has moved). We expect that the patient P is able to access his health-
care information and to decide with whom to share it. Storing data in the cloud
allows an access from anywhere anytime. However, the question of privacy has to
be addressed.

A Cloud-Based eHealth Architecture for Privacy Preserving Data Integration 587

Fig. 1. Use case scenario

A widespread use of the the electronic identity cards and the cards provided
by the insurance companies shows that having a smartcard is not a burden in
everyday life. Therefore, we assume that a patient could use a smartcard to
store a set of cryptographic keys for encryption/decryption of the sensitive data
(contained in EHR) in order to prevent an un-authorised access.

For example, as it is shown on Figure 1, a set of the Electronic Health Records
(EHRs) may belong to the same patient but could be generated by different
caregivers. Each EHR then will be encrypted with the key shared between the
patient and the caregiver that generated this EHR. The access control policy
can be based on sharing the keys with the caregivers to allow access to the data
for the treatment. Patients’ data can also be collected for the secondary use.
Anonymization algorithms are required to preserve patient privacy.

3 Related Work

In this section, first, we recall the details of multi-key searchable encryption
scheme [20] that we employ in our solution to generate pseudonyms and annotate
EHRs. Second, we describe (k, km) − anonymity property [21] that we impose
on the research database and preserve while updating RSDB in the distributed
environment. Finally, we present an overview of the related work and specify
how they differ from our approach.

3.1 Multi-key Searchable Encryption

Without loss of generality we can assume that the server stores documents (a
set of EHRs) encrypted with m different keys k1, ...km, and a user (patient, or
caregiver) that possesses n keys (n ≤ m) wants to search for T words (e.g.,
diagnosis, date of visit, etc.) w1, ...wT in the documents.

According to the prior work [5,23], in order to perform the search of a word
over the documents encrypted using different keys a user has to compute a token

588 A. Dubovitskaya et al.

Fig. 2. An example of the access graph

for each word under every key. In this case the complexity of the search will be
O (nT). However, with an approach proposed in [20] the complexity of the
multi-key search over encrypted data does not exceed O (n+T). The multi-key
searchable scheme is constructed using bilinear maps on elliptic curves [4]. The
pseudocode for the multi-key searchable encryption scheme and its implementa-
tion can be found in [13].

According to the scheme if a user has an access to the keys k1, ...km in order
to search for a word w he needs to compute only a single search token for this
word: tkki

w using the key ki, and deltas, {Δki→kj
}, an additional information

that allows to adjust the token (tkki
w), computed with the key ki, to the tokens

corresponding to the keys k1, ...km ({tk
kj
w : j �= i, j ∈ {1...m}}). These deltas

represent the user’s access to the documents, and, most important, these deltas
can be reused for every search, so the user needs to generate them only once.
Efficiency of the scheme has been evaluated and it was shown that performance
overheads of using multi-key searchable encryption scheme are modest [13].

In the paper [20] the authors use graphs to represent an access to the shared
key. We modify the structure of the access graph by using the labeled graph
instead. This allows us to reduce the complexity of the graph. For p patients
and c caregivers access graph according to the approach used in [20] will contain
at most p+c+p∗c nodes and p∗(1+c) edges, while in case of using labeled graph
it will take as most p+c nodes and p∗c edges for the complete access graph. This
makes access control policy easier to interpret and manage. Each node of the
graph represents a patient or a caregiver. Figure 2 shows an example of access
graph. The edge (between Pi and Cj) shows that Pi visited Cj (e.g., P1 visited
caregivers C1, C2 and C3), therefore patient Pi and caregiver Cj connected with
the edge share the key that Cj will use to create a pseudonym and encrypt the
data about Pi. Labels on the edge shows the keys Pi shared with the caregiver
Cj , (e.g., P1 shares with C1 the keys P1 generated together with C2 and C3,
therefore allowing C1 access the data about P1 generated by C2 and and C3,),
however no label on the edge between P1 and C3 indicates that the only data
about P1 that C3 can access are the data generated by C3.

3.2 Anonymity of Medical Data

A variety of models, (e.g., ε–differential privacy, k − anonymity [24], (km) −
anonymity, l − diversity, etc. [11]) can be used for privacy preserving data pub-
lishing. However, Poulis et al. show that all these methods are not appropriate

A Cloud-Based eHealth Architecture for Privacy Preserving Data Integration 589

for the anonymization of the datasets containing both relational (i.e., single-
valued) and transaction (i.e., set-valued) attributes, such as medical datasets
that contain patient demographics and diagnosis information together [21].

(k, km)−anonymity proposed in [21] ensures that for any record r in the dataset
and any set of m or less items in transaction attribute of r, there should be at least
(k − 1) records that are indistinguishable from record r. However, k − anonymity
for relational attributes (i.e., existence of at least (k−1) records that are indistin-
guishable from record r with respect to relational attributes of the record r) and
(km) − anonymity for transaction attribute do not imply (k, km) − anonymity.
Poulis et al. developed two frameworks that produce (k, km)−anonymous datasets
with bounded information loss in one attribute type (relational or transaction)
and minimal information loss in the other (transaction or relational). Our algo-
rithmic solution (presented in the Section 4) addresses the problem of maintaining
(k, km) − anonymization property in a distributed environment.

3.3 Existing Approaches

Using encryption combined with pseudonymization techniques [9,17,26] has been
proposed recently for building eHealth system in the cloud. There exists also a
number of architectures that employ Attribute-Based encryption (ABE) scheme
[14–16,19,27]. However, these approaches have several limitations. ABE still
can leak information from the access control policy. Encryption, in general, may
affect the system performance especially when there is a need to search over
encrypted data for a particular information. In our work we use multi-key search-
able encryption scheme [20], for which it was shown that performance overheads
of using this scheme are modest [13]. In [17,26] the authors suggest a patient-
centric architecture and propose to use the smartcards for the key management.
If the smartcard is lost it is very difficult to recover the keys. However, in our
solution the keys can be recovered through the caregivers.

Urovi et al. in [25] proposed a secure mechanism for EHR exchange over a
Peer to Peer (P2P) agent based coordination framework. In this approach the
encrypted heterogeneous data are exposed over a P2P network. The authors pro-
vide the algorithms for searching and for publishing the EHRs in the untrusted
P2P network without compromising the privacy, integrity and the authenticity
of the shared data. This work, however, does not cover the aggregation of the
data for the research purposes, as we propose here.

Using unambiguous pseudonym for the patient [18] allows one to infer addi-
tional information about a patient by linking the data from different sources.
In case of using multiple pseudonyms, as in [26], their efficient management is
problematic. To solve these issues we generate patients’ pseudonyms with the
means of the multi-key searchable encryption scheme proposed in [20]. We also
use this scheme to enable efficient search over the EHRs.

In [6] the authors describe privacy-preserving distributed k−anonymity algo-
rithm that allows merging two local k − anonymous datasets while preserving
k − anonymity property in the resulting dataset. However, the solution is not

590 A. Dubovitskaya et al.

Fig. 3. Architecture overview

scalable and requires using SMC, sharing data is not independent among dif-
ferent sources contributing to the RSDB. Baig et al. [2] suggest a model called
ε-cloning for privacy protection in multiple independent data publications. How-
ever, it cannot be applied in our settings because it significantly affects the utility
of the data. In [3] the authors proposed an architecture that allows collecting
the patients consents for sharing their data for the research in an anonymous
way. However, the authors assume that the data are already anonymized.

4 Proposed e-Health Architecture

In this section, we describe our proposed eHealth system. Figure 3 shows an
architecture that consists of the following entities: Databases (Local Database,
on the client side, Data Repository, and Research Database, both hosted on the
cloud server); Cryptographic Module on the side of the client; Anonymization
Module (on both sides); and standalone Certification Authority. Local Database,
LDB, belongs to the caregiver and contains healthcare data about the patients
that receive treatment from this caregiver. Data Repository, DR, is hosted on
the untrusted cloud server and stores EHR generated in different medical insti-
tutions. Anonymized patients data for the research purposes are stored on the
cloud server in Research Database, RSDB. Cryptographic Module consists of
three parts and its functionalities are the following: to perform multi-key search-
able encryption; to encrypt EHR before uploading to the cloud server in order
to share with the other caregivers, as well as to decrypt when accessing EHR

A Cloud-Based eHealth Architecture for Privacy Preserving Data Integration 591

according to the access control policy specified by the patient; and, to generate
the signature to ensure the authenticity of the data. Anonymization Module is
a realization of the algorithm for medical data anonymization presented further
in this paper. Certification Authority, CA, is a service that is responsible for
issuing certificates of public keys and smartcads for storing private keys that are
protected with the PIN known only to the owner of the smartcard.

4.1 Data Structure

Hereafter we describe the structure of the data that are stored in the databases.

– Pseudonym(s) – a set of uniquely identifiable patient data, IDP , (such as
combination of date of birth, place of birth and the name) that is encrypted
using multi-key searchable encryption scheme proposed in [20], stored in all
databases: DR, LDB and RSDB.

– QID – quasi-identifiers – a set of the attributes ({qid}) that in combination
can uniquely identify the person (e.g., single-valued qid, such as age, gender,
address (i.e., ZIP code) and set-valued qid, such as diagnosis codes), gnrlQID
– a combination of generalized qid (in a form of a binary string), with which
the data about P have been uploaded to the RSDB.

– Healthcare data – drug intakes (time, dosage, drug name), co-medications,
concentration measurements (time, measurement) – multiple attributes, that
can be set-, or single-valued)).

– Cryprographic keys and deltas – a set of the deltas for the keys (KS
P,Cj

, j ∈
1,N , i �= j) related to the patient and shared with Ci (see Subection 3.1 for
more details).

– Encrypted data – health data, or, EHR, encrypted with symmetric cipher
(e.g., AES).

– Searchable data – EHR or a list of the attributes that describe the content
of the EHR (encrypted using multi-key searchable encryption scheme).

– Anonymized data – consist of generalized QID (gnrlQID) and a subset of
healthcare data from LDB.

StRSDB – is a table that characterizes the current state of the (k, km) −
anonymous RSDB. For each combination of qid that are presented in RSDB,
StRSDB stores the following information: PsNumber – a number of different
pseudonyms from RSDB associated with the same QID set and the sources of
data (Ci that uploaded the data, and PsNumberi, a number of pseudonyms asso-
ciated with this QID). One has to notice that as RSDB is (k, km) − anonymous,
PsNumber ≥ k and

∑
i∈1,N PsNumberi = PsNumber. Figure 4(c) presents an

example of StRSDB.
We also assume that each database stores date/time of inserting a record;

in DR and RSDB the signature of every record is stored together with PKC,
public key of a caregiver that uploaded the data and sigh them. Figure 4 shows
the examples of LDB (a), RSDB (b) and the representation of the metadata of
RSDB, StRSDB, on Figure 4(c). The data from this particular example show
the dosage of the drug and its actual concentration in the blood for a group of
patients.

592 A. Dubovitskaya et al.

(a)

(b)

(c)

Fig. 4. Example of data representation in LDB (a) RSDB (b) and StRSDB (c)

4.2 Sharing and Accessing Patient’s Data for the Treatment

Hereafter we present a protocol for storing and accessing patients’ data in DR.

– Step 1. Patient generates a shared key (using a hash-function H and a
random number r1′) with Caregiver (C1) he visits, this key will to be used
for multi-key searchable encryption scheme: KS

P,C1
= H(SKP ‖ r1′) .

Since this scheme does not support decryption, the data need to be
encrypted twice: once for searching, and once with a traditional encryp-
tion scheme like AES, for decryption. Unique AES encryption key (KD

P,C1
)

also has to be generated for the caregiver visited by the patient.
The keys are generated from the Patient’s secret key with the use of a

smartcard or a mobile device.
– Step 2. At the Caregiver’s office Patient has to transmit the keys to Care-

giver’s machine using card-reader device in the Caregiver’s office or through
a secured channel in the encrypted form: CT 1 = Enc

(KS
P,C1

,KD
P,C1

)

PKC1
.

To ensure integrity Patient’s signature (Sign (CT 1)SKP
) and Patient’s public

key (PKP) for verification are also required.
– Step 3. When the EHR is generated the content is encrypted with the shared

keys (CT 2) and signed with the secret key of Caregiver (Sign (CT 2)SKC1
),

CT 2 = 〈EncS (EHR)KS
P,C1

,Enc (EHR)KD
P,C1

〉.

To improve efficiency the indexable version of the encryption scheme proposed
in [13] can be used. One can also apply encryption algorithm for searching only to

A Cloud-Based eHealth Architecture for Privacy Preserving Data Integration 593

(a) (b)

Fig. 5. Binary trees for qids: age and gender (a), and any set-valued qid (b)

the list of the keywords that describes the content of the EHR, such as patient’s
ID (IDP), caregiver’s qualification, date of the visit, symptoms, etc. Pseudonym,
with which EHR can be associated in LDB of C1: PS1

P = (EncS (IDP)KS
P,C1

) is
generated using patient’s set of uniquely identifiable patient data encrypted with
the shared key for search. Therefore, a Caregiver will be able to find and update
the data about Patient in an efficient way.

Visiting a caregiver Patient can decide what data stored at DR he wants to
share. For instance, to provide Caregiver 1 an access to the EHR generated by
Caregiver 2, he only needs to share with Caregiver 1 the keys shared between
Caregiver 2 and Patient:

(KS
P,C2

,KD
P,C2

)
. To be able to retrieve Patient’s EHR(s)

based on the pseudonyms (or an attribute of EHR) a caregiver has to submit
to Cloud Platform, CP, a token generated for the IDP (or an attribute), as well
as the deltas for other keys related to the patient, in order to let CP adjust the
token. Token and deltas are to be computed according to the scheme described
in [20].

4.3 Anonymization of Patients’ Data for Research Purposes

In this subsection we present a description of the algorithm that allows to release
medical data for the research purposes from different LDBs independently, while
preserving the anonymity property of RSDB. We ensure that given the consent
of the patient caregivers will be able to update RSDB with the data about the
patient without creating multiple entries that correspond to the same person.
Our solution also provides a possibility to recontact the patient through a care-
giver that uploads the data.

We consider N Caregivers that may upload the data to RSDB. We assume
that RSDB is initialized as (k, km) − anonymous, i.e., an algorithm to achieve
(k, km) − anonymity proposed in [21] had been applied to the local dataset to
build the initial version of RSDB. For each qid there exist a binary tree, according
to which generalization is performed. Figure 5 presents an example of binary
trees that are constructed for the single-valued QID: age and gender (Figure 5(a))
and also shows an example of representing a set-valued attribute (Figure 5(b)).
Our algorithm scales for any number of qids.

Figure 6 shows the pseudocode of the RSDB update algorithm and the gen-
eralization procedure used in the algorithm. The algorithm for RSDB update
has to be executed every time a caregiver Ci wants to update RSDB with the
data about patient P. First, Ci has to check whether he already uploaded the

594 A. Dubovitskaya et al.

1: PSP ←LDB
PSP
PS

P

2: helthcareData←LDBhelthcareData
PS

P

3: if LDB
gnrlQID

PSi
P

is not empty then

4: gnrlQID = LDB
gnrlQID

PSi
P

5: else
6: tempPS←SearchOver(PSP , {ΔKS

P,Ci
→KS

P,Cj

})

7: if tempPS �= ∅ then
8: if ‖ tempPS ‖= 1 then
9: gnrlQID←tempPS.LEASTgnrlQID()

10: PSP ←tempPS.PSP
11: else
12: gnrlQID←MergePseud(k, tempPS)
13: end if
14: else
15: gnrlQID←Gener(QID)
16: end if
17: end if
18: insert(PSP , gnrlQID, helthcareData)

(a)

procedure Gener(QID)
V IEW←StRSDB
for i = 0; i < (‖ QID ‖ −1); i + + do

di = 0
depthi = qid.length()
newTqid = ε
newFqid = ε
while (di �=

depthi) ∨ (∃gnrlqidT , gnrlqidF : (gnrlqidT =
V IEW.QID[i]) ∨ (gnrlqidF = V IEW.QID[i]) ∨
(newTqid is a prefix of gnrlqidT) ∨
(newFqid is a prefix of gnrlqidF)) do

newFqid =
newTqid+�QID[i].substring(d, d + 1)
newTqid = newTqid+QID[i].substring(d, d+1)

di = di + 1
end while
V IEW←V IEW ∨ (V IEW.QID[i] =

newFqid.substring(0, (d − 1)))
end for

return V IEW.QID
end procedure

(b)

Fig. 6. Pseudocode of the RSDB Update Algorithm (a) and Generalization (b)

data about P to the RSDB. He can query his LDB with the patient pseudonym
PSi

P , generated using the shared between P and Ci key KS
P,Ci

. If the value in a
column gnrlQID in a raw that corresponds to the PSi

P is not empty, then some
data about P are already presented in RSDB with a combination of generalized
QID that is described by the vector of binary strings, each represents gnrlqid.
In this case Ci associates the data of P with these gnrlQID that corresponds
to PSi

P (lines 3,4 of the algorithm presented in Figure 6(a)). Otherwise, Ci has
to perform a SearchOver procedure to check whether there are some data
about P that had been upload to RSDB by another caregiver Cj , j �= i (line 6).
However, this is only possible if P trusts Ci to check this (i.e., if P gave Ci an
access to the KS

P,Cj
– key shared between P and Cj).

If SearchOver procedure returns a single pseudonym, Ci will update RSDB
with the P’ data with gnrlQID that corresponds to PSj

P (lines 8-10). If the result
of SearchOver contains more than one pseudonym, Ci checks whether there is
a possibility to merge the pseudonyms related to P by applying MergePseud
procedure (line 12). Afterwards, Ci will update RSDB by uploading the data of
P with (the least generalized) gnrlQID that corresponds to PSj

P . If SearchOver
procedure returns empty set, then the Gener procedure is performed (line 15),
and as its output, a combination of the least generalized gnrlQID is generated
based on the StRSDB and the P’s QID.

SearchOver(PSP , {ΔKS
P,Ci

→KS
P,Cj

}) procedure takes as an input the follow-

ing data: patient’s pseudonym (PSP) generated with the key shared between the
patient and caregiver Ci (KS

P,Ci
); and a set of the deltas ({ΔKS

P,Ci
→KS

P,Cj

}) – val-

ues generated for the keys ({KS
P,Cj

, j ∈ 1,N , i �= j}) related to the patient and
shared with the caregiver Ci. Then, according to the schema proposed in [20], a
server, which hosts RSDB, can perform a search for all the pseudonyms ({PSP })
generated by different caregivers with their keys (KS

P,Cj
, j ∈ 1,N) (adjusting a

A Cloud-Based eHealth Architecture for Privacy Preserving Data Integration 595

pseudonym generated by the caregiver Ci with key (KS
P,Ci

) to the one generated
by the caregiver Cj with key (KS

P,Cj
) without learning neither identity of P, nor

the key KS
P,C) over the column that stores pseudonyms in RSDB. As a result a

set of pseudonyms together with gnrlQID that corresponds to each pseudonym
are being returned.

MergePseud(k, tempPS) allows to check whether it is possible to merge
pseudonyms that correspond to the same patient but generated by different
caregivers. It returns the least generalized gnrlQID and merges pseudonyms if
does not violate anonymity property of RSDB. The input is a parameter k and
a set of pseudonyms discovered at the previous step.

Figure 6(b) shows the pseudocode for Gener(QID) procedure that is per-
formed to create the least generalized gnrlQID for the QID of the patient whose
data have not been yet upload to RSDB (or the data about the patient P might
have been uploaded by the caregiver Cj , but a caregiver Ci that wants to upload
the data about patient P for the first time does not possess the key KS

P,Cj
). Input

of the procedure is QID – an array of binary strings, each corresponds to one
qid. Binary strings are constructed according to the representation of the QID
using binary trees. During the execution each qid is considered one after another
(the order is based on the importance of the qid) and generalized qid is formed
by querying first gnrlQID column of StRSDB, and then a view created based
on the previously generalized qid. The goal is to find the least generalized set
gnrlQID for a QID of the patient such that StRSDB already contains at least k
entries with this set gnrlQID without disclosing the QID.

5 Discussion

In this section we analyze the limitations of our model and possible privacy
threats. We also suggest the countermeasures against the threats.

5.1 Limitations

We assume that caregiver is trusted, meaning that he respects the medical ethic
and will share the data about his patient (including the data produced by other
caregivers for the treatment of this patient) only according to the access control
policy specified by the patient. However, if (by any reason) the patient does not
want the caregiver to be able to access patients’ data that are stored in the
cloud, a new key has to be created, the data have to be re-encrypted on the
server side, e.g., with the means of a proxy re-encryption scheme [1]. We also
require an existence of a certification authority that provides the certificates for
public keys and is able to check the identity of a caregiver to ensure that the
data aggregated in RSDB have been uploaded by a real doctor. However, CA
does not have an access to the patients healthcare data.

A caregiver C can perform a MergePseud procedure only before he makes
the first update of RSDB. Therefore, in order to merge pseudonyms the following
strategy can be applied. According to the access control policy specified by the

596 A. Dubovitskaya et al.

patient a caregiver that possesses the largest number of the keys may perform
SearchOver and MergePseud procedures every time after de-generalization
protocol is executed. This will decrease the number of pseudonyms, with which
the information about the patient had been uploaded by different caregivers.

With the proposed algorithm we only preserve the utility of the RSDB. How-
ever, to improve utility of the data from RSDB, the possibility to de-generalize
the data from RSDB without violation of patients’ privacy (during bounded time
interval) need to be considered. To define the requirements and selection criteria
for gnrlqid to be de-generalized are the next steps in our future work.

Generalization step (procedure Gener of the algorithm) requires going
through all the qid one by one. However, we assume that the number of qids
stored in the RSDB is not high and qids are ordered based on their importance
with respect to the requirements to the RSDB.

5.2 Possible Threats and Countermeasures

If a patient loses his smart card, all the keys can be recovered from the LDBs of
the caregivers that treat the patient. If the smartcard was stolen it is still difficult
access the data or to modify the access control policy for anybody except the
patient, because the card is protected with PIN code that is known only to the
owner of the card. The limit of attempts to insert a valid PIN code can be set
up to prevent brute-force attack.

We assume that the cloud server, where RSDB and DR are hosted, is honest
but curious (it executes protocols and the algorithm correctly but tries to learn
about the patient as much as possible). For example, some additional location
information can be inferred from the IP address of the device that transmits
the data from LDB, and these data could be more precise then gnrlqid that
stands for the patient address. Therefore, this can violate (k, km) − anonymity.
A straightforward countermeasure is to hide the IP address from the cloud server,
e.g., using HTTP proxies or anonymous communication service like Tor [7].

Caregivers could potentially link pseudonyms related to the same patient
using the column PrevPS in case of pseudonyms merging. To prevent this during
the procedure of merging the pseudonyms, the previous pseudonym has to be
encrypted together with the information about the caregiver that had created
this pseudonym. The cipher text and a parameter that will indicate how many
times the pseudonym had been updated will be stored in the column PrevPS.
Then, it will be possible to find the caregiver that initially uploaded the data
(i.g., in case of legal issues), through the caregiver(s) that merged pseudonyms.

6 Conclusion and Future Work

In this paper, we proposed an architecture of a secure and scalable privacy-
preserving eHealth cloud system (that allows to store and efficiently search over
patient data used for the treatment), and an algorithm that allows to build a
database with patients’ data for the research purposes.

A Cloud-Based eHealth Architecture for Privacy Preserving Data Integration 597

In future work we will focus on the implementation of the architecture pro-
posed in this paper and on its evaluation using a synthetic dataset (http://omop.
org/OSIM2), and real patient data from our medical partners in the framework
of ISyPeM2 project (www.nano-tera.ch/projects/368.php). We will also work
towards de-generalization of RSDB to improve utility of the data. Finally, we
will focus on improving efficiency of proposed solution by extending representa-
tion of the QID (from binary trees to n-ary trees) and employing agent based
coordination model for the construction of RSDB.

Acknowledgments. This work was supported by the Nano-Tera initiative, in the
framework of an RTD project ISyPeM2: developing therapeutic drug monitoring by
designing a point-of-care system to measure drug concentration in blood samples and
adjust dosage accordingly.

References

1. Ateniese, G., Fu, K., Green, M., Hohenberger, S.: Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur. 9(1), 1–30 (2006)

2. Baig, M.M., Li, J., Liu, J., Wang, H.: Cloning for privacy protection in multiple
independent data publications. In: Proceedings of the 20th ACM International
Conference on Information and knowledge Management, CIKM 2011, p. 885 (2011)

3. Benoist, E., Sliwa, J.: How to Collect Consent for an Anonymous Medical Database.
HEALTHINF (2014)

4. Blake, I., Seroussi, G., Smart, N., Cassels, J.W.S.: Advances in Elliptic Curve
Cryptography. Cambridge University Press, New York (2005)

5. Boneh, D., Di Crescenzo, G., Ostrovsky, R., Persiano, G.: Public Key Encryption
with Keyword Search. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 506–522. Springer, Heidelberg (2004)

6. Clifton, C., Jiang, W.: CERIAS Tech Report 2005–134 Information Assurance and
Security Privacy-Preserving Distributed k -Anonymity (2005)

7. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The second-generation onion
router. In: Proceedings of the 13th USENIX Security Symposium (2004)

8. Dubovitskaya, A., Urovi, V., Vasirani, M., Aberer, K., Fuchs, A., Buclin, T.,
Thoma, Y., Schumacher, M.: Privacy preserving interoperability for personalized
medicine. Swiss Medical Informatics (September 2014)

9. Elger, B.S., Iavindrasana, J., Lo Lacono, L., Müller, H., Roduit, N., Summers, P.,
Wright, J.: Strategies for health data exchange for secondary, cross-institutional
clinical research. Computer Methods and Programs in Biomedicine 99, 230–251
(2010)

10. Gkoulalas-Divanis, A., Loukides, G.: Anonymization of Electronic Medical Records
to Support Clinical Analysis. Springer Briefs in Electrical and Computer Engineer-
ing (2013)

11. Gkoulalas-Divanis, A., Loukides, G., Sun, J.: Publishing data from electronic health
records while preserving privacy: A survey of algorithms. Journal of Biomedical
Informatics 50, 4–19 (2014)

12. Gotta, V., Widmer, N., Montemurro, M., Leyvraz, S., Haouala, A., Decosterd,
L.A., Csajka, C., Buclin, T.: Therapeutic drug monitoring of imatinib. Clinical
Pharmacokinetics 51(3), 187–201 (2012)

598 A. Dubovitskaya et al.

13. Helfer, J., Valdez, S., Popa, R.A., Stark, E., Zeldovich, N., Frans Kaashoek, M.,
Balakrishnan, H.: Building web applications on top of encrypted data using Mylar.
In: Proceedings of the 11th USENIX Conference on Networked Systems Design and
Implementation, pp. 157–172 (2014)

14. Ibraimi, L., Asim, M., Petko, M.: Secure Management of Personal Health Records
by Applying Attribute-Based Encryption. In: 6th International Workshop on Wear-
able Micro and Nano Technologies for Personalized Health (pHealth) (2009)

15. Li, M., Yu, S., Ren, K., Lou, W.: Securing Personal Health Records in Cloud
Computing: Patient-Centric and Fine-Grained Data Access Control in Multi-owner
Settings. In: Jajodia, S., Zhou, J. (eds.) SecureComm 2010. LNICST, vol. 50, pp.
89–106. Springer, Heidelberg (2010)

16. Li, M., Yu, S., Zheng, Y.: Scalable and Secure Sharing of Personal Health Records
in Cloud Computing Using Attribute-Based Encryption. IEEE Tranyactions on
Parallel and Distributed Systems 24(1), 131–143 (2013)

17. Li, Z.-R., Chang, E.-C., Huang, K.-H., Lai, F.: A secure electronic medical record
sharing mechanism in the cloud computing platform. In: 2011 IEEE 15th Interna-
tional Symposium on Consumer Electronics (ISCE), pp. 98–103, June 2011

18. Lo Iacono, L.: Multi-centric universal pseudonymisation for secondary use of the
EHR. Studies in Health Technology and Informatics 126, 239–247 (2007)

19. Lounis, A., Hadjidj, A., Bouabdallah, A., Challal, Y.: Secure Medical Architecture
on the Cloud Using Wireless Sensor Networks for Emergency Management. In:
Eighth International Conference on Broadband and Wireless Computing, Commu-
nication and Applications, pp. 248–252 (2013)

20. Popa, R.A., Zeldovich, N.: Multi-key searchable encryption. Cryptology ePrint
Archive, Report 2013/508 (2013)

21. Poulis, G., Loukides, G., Gkoulalas-Divanis, A., Skiadopoulos, S.: Anonymizing
Data with Relational and Transaction Attributes. In: Blockeel, H., Kersting, K.,
Nijssen, S., Železný, F. (eds.) ECML PKDD 2013, Part III. LNCS, vol. 8190,
pp. 353–369. Springer, Heidelberg (2013)

22. Solanas, A., Martinez-Balleste, A., Mateo-Sanz, J.: Distributed architecture with
double-phase microaggregation for the private sharing of biomedical data in mobile
health. IEEE Transactions onInformation Forensics and Security (2013)

23. Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: Proceedings of the 2000 IEEE Symposium on Security and Privacy (2000)

24. Sweeney, L.: K-anonymity: A model for protecting privacy. Int. J. Uncertain. Fuzzi-
ness Knowl.-Based Syst. 10(5), 557–570 (2002)

25. Urovi, V., Olivieri, A.C., Brugués de la Torre, A., Bromuri, S., Fornara, N.,
Schumacher, M.: Secure P2P cross-community health record exchange in IHE com-
patible systems. International Journal on Artificial Intelligence Tools 23(1) (2014)

26. Xu, L., Cremers, A.B.: A Decentralized Pseudonym Scheme for Cloud-based
eHealth Systems. HEALTHINF (2014)

27. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving Secure, Scalable, and Fine-grained
Data Access Control in Cloud Computing. In: INFOCOM. IEEE (2010)

Cyber-physical Systems and Critical
Infrastructures Security

Application of a Game Theoretic Approach
in Smart Sensor Data Trustworthiness Problems

Konstantinos Maraslis(B), Theodoros Spyridopoulos, George Oikonomou,
Theo Tryfonas, and Mo Haghighi

Cryptography Group, University of Bristol, Bristol, UK
{k.maraslis,th.spyridopoulos,g.oikonomou,
theo.tryfonas,m.haghighi}@bristol.ac.uk

Abstract. In this work we present an Intrusion Detection (ID) and an
Intrusion Prevention (IP) model for Wireless Sensor Networks (WSNs).
The attacker’s goal is to compromise the deployment by causing nodes to
report faulty sensory information. The defender, who is the WSN’s oper-
ator, aims to detect the presence of faulty sensor measurements (ID) and
to subsequently recover compromised nodes (IP). In order to address the
conflicting interests involved, we adopt a Game Theoretic approach that
takes into consideration the strategies of both players and we attempt to
identify the presence of Nash Equilibria in the two games. The results are
then verified in two simulation contexts: Firstly, we evaluate the model in
a middleware-based WSN which uses clustering over a bespoke network
stack. Subsequently, we test the model in a simulated IPv6-based sensor
deployment. According to the findings, the results of both simulation
models confirm the results of the theoretic one.

1 Introduction

Wireless Sensor Networks (WSNs) have been playing a major role in the field
of monitoring and controlling complex processes remotely. Their application on
industry has facilitated the automation of large, complex and distributed indus-
trial control processes. However, the plethora of applications that they can be
used for, including their utilisation in sensitive fields such as military and med-
ical applications, or the Critical National Infrastructure (CNI), renders WSNs
an attractive target for a variety of cyber-attacks. Therefore, protecting such
networks is of topmost importance. In order to maintain their security, WSNs
require a set of policies effectively implemented in an automated fashion, so that
faster and more efficient security-related decisions can be made.

Much research has been conducted into the security aspect of WSNs in an
attempt to address the aforementioned issue [1,2]. However, due to the significant

The research leading to these results has received funding from the European Union’s
Seventh Framework Programme (FP7/2007-2013) under grant agreement no 609094.
This work has also been supported by Bristol’s Systems Centre and Fraser-Nash
Consultancy.

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 601–615, 2015.
DOI: 10.1007/978-3-319-18467-8 40

602 K. Maraslis et al.

resource constraints in WSNs’ hardware and long unsupervised operations, key
challenge in the protection of WSNs is the development of lightweight methods
that will be able to efficiently detect and confront attacks under constrained
computational resources.

In this work, we utilise the principles of Game Theory to develop two discrete
models for the protection of WSNs; an Intrusion Detection System (IDS) and
an Intrusion Prevention System (IPS). Our models provide optimal cost-efficient
strategies for the detection of an intrusion (IDS model) and the protection of the
system (IPS model). Additionally, their ability to take into account all related
costs (sensor price, cost of recovery, attack cost etc.) along with the ability to
apply their results as a security policy in the WSN without constantly updating
the network, renders them an energy-efficient protection solution. Our models
provide automated procedures based on which, network operators can either dis-
regard bogus data from compromised sensors or find the optimal way to recover
the compromised sensors depending on their capabilities.

To validate our findings, we run two sets of simulations. Initially, we simulate
a middleware-based WSN that uses network clustering and a bespoke network
stack using Sensomax [3], an agent-based WSN middleware, which supports
executing multiple applications with regards to their operational paradigms.
Subsequently, we use the Cooja simulator, which is distributed as part of the
Contiki1 open source Operating System for the Internet of Things.

The next section offers some basic background knowledge in the area of WSN
protection and Section 3 discusses the key related work in this field. Section 4
presents the models for both the IDS and the IPS, including the results of their
simulations. The validation of our models in a cluster-based deployment is pro-
vided in Section 5, while Section 6 presents a validation of our models utilising
an IPv6-based Deployment. Finally, Section 7 provides the conclusions of our
work and some paths for further work.

2 Basic Background

Wireless Sensor Networks (WSNs) are typically composed of self-powered sen-
sors (nodes) that communicate with each other and/or with a base station. The
topology of a WSN varies from a simple star-shaped network to more advanced
multi-hop wireless mesh networks, while the number of sensors that comprise
them can fluctuate between different deployments. Sensors have inherent limi-
tations in terms of storage capacity, processing power, energy availability and
network bandwidth. Thus, implementing encryption-based security mechanisms
is a challenging task [4].

Various threats like eavesdropping, lack of physical protection of the sensors,
Denial of Service (DoS) attacks and injection of malicious data necessitate their
protection [5]. This is a challenging task, especially when users and/or nodes
take autonomous decisions, which in turn raise non-cooperative behaviours and
conflicting interests [6].
1 http://www.contiki-os.org

http://www.contiki-os.org

Application of a Game Theoretic Approach 603

Conventional WSN security systems mainly use Rule/Signature-based detec-
tion mechanisms, which can effectively detect known attacks based on predefined
rules, or anomaly-based mechanisms that can detect new attacks by comparing
patterns or resource utilization [1]. However, the application of such methods
should be driven by security policies that take into account the related resource
constrains.

In solving decision making problems of this kind, Game Theory seems to be a
suitable approach as it suits situations where adversarial interests are included.
Every participant can choose an action within a set of predefined actions and
for every possible combination of those there is a reward/utility that occurs for
each participant. These situations are called games, the participants are called
players and the actions are called strategies. The notion of ”solution” that a
game theoretic approach can offer can have many forms, most of which require
that the players are rational, meaning that they only seek the maximisation
of their personal reward/utility. In addition, there are many kinds of games,
depending generally on the piece of information that is disclosed to the players,
their relationship and the type of their communication, if any. In this work
we only deal with two-player games where every player’s loss is equal to the
other’s reward (zero-sum game). The concept of game solution adopted here is
the detection, at the beginning of the (static) game, of strategies such that every
player’s chosen strategy is the best response to the other player’s chosen strategy.
In other words, when both players follow their computed optimal strategies, none
of them would be tempted to unilaterally change it, because that would only lead
to a reduced individual reward, compared to the existing. The concept described,
is known as Nash Equilibrium of the game [7–9].

3 Related Work

Game Theory has been used in the past for simulating and solving security-
related problems in WSNs. For example, the authors of [2] investigate the case
where a clustered WSN is under attack. In this project, the attacker targets the
cluster heads in an attempt to crowd the data flow or drop it. The underlying
IDS monitors the data transfers and attempts to keep the WSN functioning by
detecting malicious nodes in the forward path. This situation is modelled as a
two-player, non-cooperative, zero-sum game and it is proved that the game has
no pure Nash Equilibria. This means that the game is unstable, and therefore
does not provide a state at which we would expect the game to be stabilised after
a large number of iterations. In the resource-constraint environment of WSNs
this instability is translated into increased power demands.

In [10] the behaviour of a system under a Distributed Denial of Service
(DDoS) attack is under investigation based on previous work of [11]. The target
environment there is a network, however the model is generic and based on the
same networking principles that apply to WSNs. The attacker aims to perform a
DDoS attack at a system that has implemented a firewall. The attacker’s strat-
egy is defined by the number of occupied nodes and the distribution according

604 K. Maraslis et al.

to which they transmit malicious traffic. The defender on the other hand can
control the settings of the system’s firewall. This situation was modelled as a
two-player, static, non-cooperative, zero-sum game. The research concludes with
suggestions for the strategy of the defender which maximize the minimum payoff
of the defender regardless of attacker’s decision and behaviour.

Authors in [12] try to improve the security and energy efficiency of a WSN by
applying a reputation system on its nodes where low-reputed ones are shut down.
Every node can improve its reputation by forwarding incoming packages. How-
ever, this forwarding causes draining of their batteries. Since conflicting interests
are present, a game theoretic model is adopted in order for the maximum pos-
sible battery life of the nodes to be assured while sustaining an unproblematic
operation. In addition, there are malicious nodes that can cause package drops,
making the proper flow of data even more difficult. On all scenarios of the WSN
games of this work, the authors solve the problem by finding the network’s Nash
Equilibrium. Under the assumption that the involved players are rational, the
authors find the optimal strategies for both the defender and the attacker that
ensure an upper limit for the expected losses when they are followed. As far as
the security and power conservation are concerned, the network improves sig-
nificantly in all three cases, comparing to the scenario were the model was not
applied.

Compared to those works, our is about a different scenario. Additionally,
the aforementioned works do not address cases where more than one parameters
affect each player’s strategy simultaneously. Our IPS and IDS models incorporate
this capability making the problem multi-dimensional, which not only adds to
its complexity but, most importantly, offers the ability to describe a far wider
range of problems. A method similar to the one of this work, can be used for
even more parameters. However, the complexity and computational workload
will increase considerably.

4 Examining Smart Sensor Data Trustworthiness

In our models, the attacker modifies compromised nodes in order to make them
report erroneous values. We make the following assumptions about the deploy-
ment: 1) All network traffic is encrypted, 2) all sensor measurements are signed
and 3) the deployment’s topology is not publicly available, which is a reasonable
assumption since the logical network topology (e.g. routing topology or cluster
membership) is created and maintained at runtime by an algorithm that relies
on criteria which can change over time and are not known a-priori, such as the
quality of radio links.

For the attacker, we make the following assumptions: 1) S/he is external to
the system and highly motivated. 2) S/he can actively initiate attacks against
nodes (the firmware running on nodes is susceptible to bugs already discovered
by the attacker and therefore, an attack against a node is always successful).
3) S/he has high time availability, but not enough to break cryptography and
signature schemes. 4) Due to the inability to break signatures, the attacker can

Application of a Game Theoretic Approach 605

introduce neither her/his own traffic nor malicious nodes. Therefore, the only
option is to compromise existing, legitimate nodes. 5) Due to her/his inability
to break cryptography, the attacker can passively overhear traffic but cannot
understand the contents of network packets. As such, s/he cannot synthesise
the deployment’s topology from passive eavesdropping. 6) Lastly, the attacker
has high, yet not unlimited financial resources. Thus, s/he can choose to attack
the entire network, but the criterion is to optimise the financial benefit of an
attack. 7) The attacker can choose the number of nodes to attack, but being
oblivious about the network topology has no way of identifying which nodes
would maximise damage to the network.

4.1 Modification Detection Model

In this model a game between the defender who wants to monitor a specific area
and the attacker who randomly chooses which sensors to attack and tries to make
the network transmit as much incorrect information as possible, is deployed.
The first question that rises for the defender is what should be the density of
sensors (i.e. number of sensors per area unit) that should be chosen, as this
affects directly the strategy of the attacker. Since the area under investigation
is predefined, it is only the number of sensors that can affect the density. Hence,
the number of sensors is part of defender’s strategy and in the game s/he tries
to find the most beneficial value within a set of possible choices.

In addition, every sensor has a coefficient of significance. This coefficient is
proportional to the level of trust that is related to the information transmitted by
this particular sensor and echoes the probability that the measurements provided
by the sensor are true. The reasons that this coefficient differs from sensor to
sensor vary from the type of measurements that are taken, to the structural
features of the sensing elements.

Tolerance is another strategy of the defender and it is a property of the whole
network. Having defined untrusted / trusted / total information as the sum of
significance coefficients of untrusted / trusted / all sensors respectively, toler-
ance denotes the minimum portion of the total information that the untrusted
information should be, in order for the latter to be believed by the defender.
In other words, it denotes the minimum value that the following fraction can
have in order for the incorrect information that has been injected into the net-
work to be treated as correct. We call this fraction Attack Coefficient: AC =
Untrusted Information/Total Information. This is part of the defender’s
strategy since s/he is the one to decide which piece of information is treated as
valid. The choice of tolerance can directly affect players’ tactics due to
formula (1).

At this point it is essential that some basic assumptions of the model are
presented: 1) Players are rational. 2) Full area coverage is desired. 3) Two sen-
sors of the same network with identical specifications, operating under identical
conditions can still report slightly different values. 4) A compromised sensor
cannot affect the information that other sensors transmit. 5) The attacker’s goal

606 K. Maraslis et al.

is to make a sensor transmit faulty data that demonstrate noteworthy devia-
tion from the data that uncompromised sensors transmit (otherwise the attack
is pointless). 6) Compromised network is the network into which the injected
faulty information is believed by the defender.

Under those assumptions, the network operators try to take into account only
the non-compromised data without knowing in advance which piece of data is
compromised. Therefore, if the attack coefficient is greater than tolerance then
the incorrect information is considered to be accurate, correct data is disposed
and the attempt for compromising the network is considered successful, which
in turn increases attacker’s payoff. Otherwise, the network is not considered
compromised, which implies a lower payoff for the attacker. Thus, the algorithm
and, in turn, the defender can judge whether the network is under attack by
the percentage of the believed information out of the total information which
justifies its inclusion in the IDM category. Intuitively, tolerance should only be a
value greater than 0.5 (50%) and of course less or equal to 1 (100%). In this way,
the weighted information that will be ultimately “believed” by the defender will
correspond to at least half of the total weight. Our goal is to help the defender
choose the best options (i.e. options that will lead to the highest possible payoff)
about the number of sensors that will constitute the network and the tolerance
adopted.

The attacker can only affect the number of sensors attacked considering that
each one of these attacks bears a cost. Therefore, the optimal strategies are not
obvious and a game theoretic approach would be suitable. The payoff function
(1), with the help of which a payoff matrix will be populated, is affected by the
aforementioned parameters.

AP = (
is

ts
≥ t) × rcn + s × cps − a × cpa + t × tc (1)

where, AP = Attacker’s Payoff, is = incorrect sum (i.e. the sum of significance
coefficients of the actually compromised sensors), ts = total sum (i.e. the sum of
significance coefficients of all sensors), t = tolerance, rcn = reward for compro-
mising the network, s = number of sensors, cps = cost per sensor, a = attacks,
cpa = cost per attack, tc = tolerance cost and:

(
is

ts
≥ t) =

{
1 if inequality holds
0 if inequality does not hold (2)

As the formula denotes, the attacker will only be rewarded with rcn if
s/he manages to compromise the network (is/ts ≥ t) which is equivalent to
[(is/ts ≥ t) = 1], whereas s/he bears the cost of attacks, regardless their impact.
Since the players are antagonistic, the attacker takes advantage of the defender’s
expenses. Thus, everything that has a cost for the defender, like the total cost
of sensors (s × cps) or the total tolerance cost (t × tc), is added to the attacker’s
reward in formula 1. The necessity of tolerance cost lies in the fact that the
greater the tolerance is, the greater part of the whole information, should be
faulty in order for it to be ”believed”. That motivates the attacker for a more

Application of a Game Theoretic Approach 607

comprehensive attack and therefore a less possible recovery by the operators of
the network. Under this perspective, it could be preferable for the network to
suffer a mild assault that will compromise the network temporarily, than risk
suffering a massive one that will render it totally useless or unaffordable to be
fixed. It should be noted that the payoff function has no units of measurement.
It is just a necessary quantification of the advantage derived for each player due
to the actions taken so that the problem can be solved and resembles the role of
a utility function.

It is worth noting that although the defender is not aware of which piece of
information is compromised, it is still possible to use the outcome of formula 1. In
other words, although the defender cannot distinguish between correct and faulty
data, s/he is aware of the payoff that s/he receives when both players choose
specific strategies. Furthermore, there is a chance that (cs/ts) < (is/ts) < t,
where cs = correct sum. In this case, the compromised information will not be
believed although it is greater portion of the total information than the correct
information is and therefore no reward for compromised network is given to the
attacker. This is only possible for t > 0.5 (50%).

Since every strategy of the defender consists of a pair (m, n) where m is
the number of sensors used and n is the acceptable tolerance, we have two-
dimensional strategy sets. One way for this to be tackled and thus for the opti-
mal strategies to be found, is the procedure we outline here. The algorithm is
described by the following piece of pseudo-code along with Fig. 1. In this figure,
green denotes the parameters that are chosen by the defender and constitute
their strategy (Number of Sensors and Tolerance) while orange is used for the
parameter that is chosen by the attacker and constitute their strategy (Attacks
which is the number of attacks performed). Sensor weights are the aforemen-
tioned significance coefficients of the sensors which can shape defender’s strategy,
but their value is not chosen by the defender and therefore it is in grey colour.
These parameters shape the values of Attacker′s Payoff (formula (1)) which
populate Attacker′s Payoff Matrix that is seen in Fig. 1. This is the matrix of
the game, based on which we will later look for Nash Equilibria. Its pseudo-code
is:

f o r s = Smin to Smax

SC(all sensors) = 1/follow Uniform/follow Normal
given the s t r a t e gy s e t s f o r number of attacks and tolerance level

−populate APMs based on formula (1)
−c a l c u l a t e ne(APMs) and AR(ne(APMs))

end f o r
NE = {ne(APMs), ∀ s}
NEG = {ne(APMs) ∈ NE : AR(ne(APMs)) = min{AR(NE)}}
f i nd which s t r a t e g i e s l ead to NEG

where s is the number of sensors in the network, Smin and Smax are the
minimum and maximum possible number of sensors, respectively, SC() denotes
the significant coefficient of deployed sensors, APMs is the Attacker’s Payoff
Matrix (Fig. 1) that occurred for number of sensors = s, ne() is the Nash

608 K. Maraslis et al.

Number of Sensors

Sensor Weights

Tolerance

Attacker's Payoff
Matrix

A
tta

ck
s

Defender

A
tta

ck
er

Fig. 1. Schematic description of the IDS
model

Number of Sensors

Recoveries

Attacker's Payoff
Matrix

A
tta

ck
s

Defender

A
tta

ck
er

Mean

Attacker's Payoff
Matrix

A
tta

ck
s

Mean

Attacker's Payoff
Matrix

A
tta

ck
s

Mean

D
is

tr
ib

ut
io

ns

Fig. 2. Schematic description of the IPS
model

Equilibrium/a of a sub-game, AR(ne()) is the attacker’s reward that corresponds
to ne() and NEG is the Nash Equilibrium/a of the whole game.

4.2 Modification Correction Model

In this model’s use case there is an attacker who attacks sensors and a defender
that protects them, but there are three key differences from the detection instance.
Firstly, the defender in this game knows which sensors are compromised and has
the ability to recover them. Secondly, there are now two parameters that affect the
attacker’s strategies, instead of one and thirdly, the game now is repeated for many
rounds. However all decisions are made at the beginning and remain unchanged
for the whole game, which makes the game static although in a repeated form.
Attacker’s goal is once more to compromise the network with the least possible
cost while defender’s is to keep the network uncompromised with the least possi-
ble cost. Our scope is to help the defender choose the best options regarding the
number of sensors that will constitute the network and the number of recoveries
that will be required. Again, the best choices for the attacker are considered the
ones that will lead to the highest possible payoff.

The schematic representation of this model is shown in Fig. 2. The logic of the
colours is the same as in Fig. 1, therefore the attacker’s strategies are defined
by Distributions (i.e. the distribution that the number of attacks follow) and
their Mean (i.e. the mean value of the distribution) while defender’s strategies
are defined by the Number of Sensors that constitute the WSN and Recoveries
which denotes the maximum number of recoveries performed in each round and
remains the same for all rounds. Attacks occur as a result of the choice of
Distributions and their Mean values (as in the pseudo-code that follows) and
affect formula (3) based on which Attacker’s Payoff Matrix is populated. We
then seek for Nash Equilibria on that matrix. At any round of the game the
attacker can only make as many attacks as the uncompromised sensors in the
network and the defender can only make as many recoveries as the compromised
sensors in the network. The payoff this time is computed as the function:

AP = ta × (rcs − ac) + tr × (rcps − rcs) + s × sc + (
cse

tns
≥ t) × rcn (3)

Application of a Game Theoretic Approach 609

where, AP = Attacker’s Payoff, ta = total attacks, rcs = reward for compro-
mising a sensor, ac = attack cost, tr = total recoveries, rcps = recovery cost
per sensor, rcs = reward for compromised sensor, sc = sensor cost, cse = com-
promised sensor at the end, tns = total number of sensors and for n number of
rounds:

total attacks (or recoveries) =
n∑

i=1

attacks (or recoveries) at round i (4)

(
cse

tns
≥ t) =

{
1 if inequality holds
0 if inequality does not hold (5)

Again, as a zero-sum game, everything costly for the defender rewards the
attacker. For example, an attack has a cost ac for the attacker but as a result
a compromised sensor occurs which rewards the attacker (rcs) since it is harm-
ful for the defender. Thus, the total number of attacks (ta) is multiplied by
(rcs − ac). The same logic explains the terms tr × (rcps − rcs) and s × sc while
the term (cse/tns ≥ t)×rcn is equivalent to the term (is/ts ≥ t)×rcn in formula
(1). In this case the algorithm may choose to intentionally allow mild attacks
since that will save the defender of the recovery costs and will still bear a cost
for the attacker although the latter will not be rewarded with the rcn, causing
an overall small damage. Additionally, there should be rcs < ac and rcps < rcs.
The first inequality ensures that the attacker will seek the additional reward
for compromising the network (rcn) and that his optimal strategy is not nec-
essarily to attack as many sensors as possible. The second inequality ensures
that the defender will not overspend his resources protecting more sensors than
necessary. As in the previous model, if [(cse/tns) ≥ t] = 1, then the network is
considered compromised and the corresponding reward is given to the attacker.
The pseudo-code for this model is:

f o r s = Smin to Smax

f o r every D ∈ Distributions = {Normal, Poisson,Exponential}
f o r every m ∈ MeanV alues

−Generate attacks(i), i = 1, . . . , 5 that f o l l ow D(m)
−Let attacks(i), i = 1, . . . , 5 be p o s s i b l e number o f a t tacks

Given the s t r a t e gy s e t s o f attacks and recoveries
−populate APMs based on formula (3)
−c a l c u l a t e ne(APMs) and AR(ne(APMs))

end f o r
end f o r

end f o r
NE = {ne(APMs), ∀ s}
NEG = {ne(APMs) ∈ NE : AR(ne(APMs)) = min{AR(NE)}}
f i nd which s t r a t e g i e s l ead to NEG

where, MeanV alues is the set of all possible mean values and is described
later on. By D(m) we mean that the variable follows distribution D with mean m.
In the case of Normal distribution, there is also variance (σ2) needed but is omit-
ted from the pseudocode for simplicity. However, it is taken into account in the

610 K. Maraslis et al.

execution of the real code. That variance remains unchanged through the model
and has been chosen in a way such that all the values that are generated and fol-
low N(m,σ2) lie within the defined range. In addition, the procedure of generat-
ing attacks has been designed in a way such that {attacks that follow D(mi)}∩
{attacks that follow D(mj)} = ∅, for i �= j, ∀ D ∈ Distributions.

4.3 Model Results

In this section we present our models’ simulation results visualized as a threefold
graph. The distributions used to describe attacker’s behaviour and significance
coefficients, are commonly used to describe various elements of network activ-
ity [13,14].

For the IDS model, the sample values that were used for formula (1) are:
Sensors: [500, 600], t: [0.55, 0.9], Attacks: [500, 600], Significance coefficients: All
equal to 1, follow Uniform(1,4) and Normal(2.5, 0.25), rcn = 10, cpa = 1.2, cps
= 2.3, tc = 10. Conclusions can be extracted by Fig. 3. We interpret the figure,
bearing in mind that we help defender to take the best possible decision regarding
the maximization of his payoff. In Fig. 3, we can see the Nash Equilibria of all
the sub-games that occurred. The horizontal axis in all sub-graphs of the figure
is the number of Sensors. A Nash Equilibrium can be seen, as a vertical line that
goes through all three sub-figures. If (x, y1), (x, y2) and (x, y3) are the points
that this line cuts the blue lines of sub-figures 1, 2 and 3 (starting from the
upper one) respectively, that means that the best option for the defender would
be to deploy x sensors and tolerance equal to y3 for the WSN. The best response
to that for the attacker is to perform y2 attacks. That strategy would lead to a
payoff for the attacker equal to y1. The pair (x, y3) represents the best strategy
that the defender can choose in order to respond to attacker’s y2 strategy and
vice versa. Since every vertical line that goes through all sub-figures is a Nash
Equilibrium (for the values of x that the graphs exist), we want the one that
leads to the least payoff for the attacker which is represented by y axis in the
top sub-figure. Fig. 3 depicts the outcome of the game for the scenario where all
significance coefficients are equal to 1 and from that we see that the the least
possible attacker’s payoff is 703.3 which is achieved when the defender deploys
511 sensors (x axis) in a WSN with tolerance equal to 0.8 (bottom sub-figure)
and the attacker performs 400 attacks (middle sub-figure). Thus, the defender’s
optimal strategy is (x, y3) = (511, 0.8) and the optimal strategy for the attacker
is y2 = 400. This leads attacker’s payoff equal to 703.3.

The gaps of Fig. 3 are observed close to the values that correspond to com-
binations of strategies that would make the equality is/ts = t from formula (1)
to hold. Graphs for the other two scenarios of significance coefficients’ distri-
bution, Uniform(1,4) and Normal(2.5, 0.25), are not demonstrated due to their
similarity. However, they would be interpreted the same way. The results for all
distributions are included in Table 1.

For the IPS model, values for the involved parameters in formula (3) are: Sen-
sors: [200, 400], Recoveries: [1, 70], Distribution of number of attacks: Normal,
Poisson, Exponential, rcs = 1.5, ac = 3, Mean values created per distribution

Application of a Game Theoretic Approach 611

Fig. 3. Attackers Payoff, Number of
Attacks and Tolerance for the Nash
Equilibrium that occurs for different
num. of Sensors when all significance
coefficients are equal to 1

Fig. 4. Attacker’s Payoff (Value),
Mean values and Number of Recover-
ies of the Nash Equilibria found in the
Iterated model

= 5, rcps = 5, sc = 4, rcn = 2000, t = 0.5, Attacks: [10, 120]. Interpreta-
tion of Fig. 4 is almost identical to the one of Fig. 3. The only difference is
that there are now all three distributions in the same figure. Therefore, the
Nash Equilibrium of this game will be the one that leads to the minimax price
(i.e. the minimum price out of the highest possible ones) of Value. Given that
every vertical line that goes through all sub-figures is a Nash Equilibrium of
the game and (x, yi

1), (x, yi
2), (x, yi

3), i ∈ {Normal, Poisson, Exponential} are
the 9 points that this line cuts all graphs of all sub-figures then if the defender
chooses a specific number of sensors x, the attacker will choose as a response,
out of points {(x, yi

1), i ∈ {Normal, Poisson,Exponential}} the distribution i
for which max{yi

1, i ∈ {Normal, Poisson, Exponential}} is achieved. Thus,
assuming that (x, yi

1) are the points that the vertical line that goes through x
cuts all graphs of the first sub-figure, the defender should choose x for which
min{max{ordinate(x, yi

1)}} is achieved. The strategies that correspond to the
points found that way are Nash Equilibria since they follow the definition of
Nash Equilibrium mentioned earlier.

5 Validation in a Cluster-Based Deployment

In this section we conduct a number of experiments to validate both the IPS
and the IDS utilising the clustering facilities offered by Sensomax which allows
us to validate our simulation with a hardware-in-the-loop approach. In all our
experiments, both models were programmed as two separate applications in
every sensor node. Those two applications can be executed concurrently in order
to detect and prevent attacks, whilst sensor nodes are carrying out their normal

612 K. Maraslis et al.

Table 1. Aggregated Results

Intrusion Detection Model

Significance Coefficients Optimal # of Sensors Optimal Tolerance Optimal # of Attacks

All equal to 1 511 0.8 400
Uniform(1,4) 503 0.85 400

Normal(2.5, 0.25) 500 0.85 400

Intrusion Prevention Model

Type Optimal # of Sensors Optimal # of Recoveries Optimal # of Attacks

Non-Iterated 200 1 Expon.(mean: 92.5)
Iterated 200 1 Poisson (mean: 65)

operation and meeting the requirements of their given task. The application
itself resides in a single node, known as the cluster-head, where all the top-level
executions happen. The IDS and IPS applications (i.e. model logic) are present
in every sensor node, whilst being executed only in the cluster-heads.

For the first phase of our experiment a network of 600 virtual nodes was
created in SensomaX Companion Simulator (SXCS) [15], incorporating 30 clus-
ters, each containing 20 nodes. As a way of a sensing application, all nodes were
programmed to constantly report Temperature readings at 1-second intervals.
A second network containing 600 nodes without any clustering mechanism was
also created to report false temperature readings. Each experiment reported in
this section was repeated 100 times to gain the average values. Fig. 5a demon-
strates the average number of attacks required before detection. For a 510-node
network, the average number of attacks is 398. This result is on par with the
results reported in Fig. 3, given the standard deviation, which covers the 400
attacks reported earlier. Fig. 5b depicts the number of nodes required for the
IPS model to operate successfully based on a variable number of attacks. The
results reported in this figure are also relatively on par with the results reported
in Fig. 4, given the standard deviation around the mean values. The impact on
the energy consumption of the network is depicted at Fig.5c.

6 Validation in an IPv6-Based Deployment

In this Section we make use of Cooja [16], the network simulator distributed
with the Contiki Operating System for the Internet of Things. Within Cooja,
we simulate an IPv6-based wireless sensor network. Network nodes use IPv6 over
Low-Power Wireless Personal Area Networks (6LoWPAN) [17] and the Routing
Protocol for Low Power and Lossy Networks (RPL) [18]. We simulate a network
with 1 traffic sink and 40 traffic sources, distributed in a 200x200 grid. Node
distribution is entirely random, with the only limitation being that all sources
must have a network path to the sink. We choose to simulate a network of 40
nodes in order to achieve full area coverage, as is the assumption in the model.
We use 10 different random topologies and for each topology we repeat the
experiment 10 times using a new random seed for each iteration.

In the remainder of the section, we use the following notation: n is the index of
a node, N = {n : n ∈ Z

+ ∧ n ≤ 40}, C = {n : n ∈ N ∧ node n is compromised},

Application of a Game Theoretic Approach 613

(a) (b)

(c)

Fig. 5. (a), (b) IDS’s & IPS’s required number of nodes vs. number of attacks, respec-
tively (c) Impact of IDM & IPM on energy consumption

t is the defender’s chosen tolerance, Dn : n ∈ N is the degree of node n discussed
below, Sn : n ∈ N is the significance of node n, also discussed below. In the
model, the choice of node significance is based on a random distribution. In
our simulations we model node significance as a function of network density.
We first calculate the node degree Dn for each each network device, which is
calculated as the number of other network nodes within communication range.
The significance Sn for node n is subsequently calculated as Sn = max({Di :
i ∈ N})/Dn.

Thus, Sn corresponds to the maximum node degree observed in the network,
divided by the node’s own degree. Since, all nodes in the network have a path
to the sink, they have at least one other node within communication range.
Hence, Dn > 0 and the significance calculation’s denominator is always non-
zero. This way, nodes in dense areas will have lower significance, while nodes in
sparse areas will have a high one. That is because the network is used to gather
sensory information about an environmental parameter in a geographical region.
Even between two identical devices, measurements are likely to be slightly differ-
ent due to manufacturing inaccuracies and slight fluctuations of environmental
parameters even within the same area. Thus, in an area where multiple nodes
are reporting, each node’s measurement will be of lower significance, whereas in
a sparse area where only a few nodes are reporting, it will bear more weight.

According to the model, the optimal attacker strategy is to compromise
78.27% of the total number of nodes in the network (400 out of 511). With
this in mind, in each experiment the attacker compromises a random set of
31 nodes (| C | = 31). Furthermore, defender’s optimal strategy is to select
tolerance level T = 0.85. An attack is successful if the defender believes the
erroneous value to be accurate and this is only true if Attack’s Coefficient
(AC) =

∑
j∈C Sj/

∑
i∈N Si > T .

614 K. Maraslis et al.

Fig. 6 illustrates the densities of the ten network deployments under investi-
gation. For all deployments, the minimum node degree Dn was between 1 and 3,
whereas maximum node degree was between 7 (topology 1) and 13 (topologies
3 and 5).

Fig. 6. Topology densities Fig. 7. Attack Coefficients per experiment

Fig. 7 illustrates attack coefficients for each iteration. Across the entire exper-
iment set the attacker was successful only three times. For all other iterations
detection was possible. The three successful attacks were observed in topologies
3 and 5, i.e. the ones with the highest network density. This suggests there may
be a relation between the model’s accuracy and the network density. We shall
investigate this in the future.

7 Conclusions

In this paper we show how Game Theory can be used to detect and prevent
intrusions in WSNs. These models are applicable to a wide range of use cases,
including applications of the Internet of Things, smart metering etc. We demon-
strated the effectiveness of the models by two methods of validation. Firstly, with
Sensomax where its results matched the ones of the analytical models. Secondly,
by using Cooja we investigated the effectiveness of the detection model in an
IPv6-connected network of smart objects.

As future work, we aim to extend the model to include quantitative estima-
tion (forecasting), which could be applied on the results of the iterated game
with multiple rounds. By fixating the parameters and running the aforemen-
tioned game for many different numbers of rounds, one could apply forecasting
methods in order to make an approximation of a player’s payoff, given the num-
ber of iterations. Additionally, we aim to conduct further validation of the pre-
vention model and investigate its applicability in networks of varying densities
as well as its scalability with increasing network size.

References

1. Alrajeh, N.A., Khan, S., Shams, B.: Intrusion detection systems in wireless sensor
networks: a review. International Journal of Distributed Sensor Networks 2013
(2013)

Application of a Game Theoretic Approach 615

2. Reddy, Y.B.: A game theory approach to detect malicious nodes in wireless sensor
networks. In: Third International Conference on Sensor Technologies and Applica-
tions, SENSORCOMM 2009, pp. 462–468. IEEE (2009)

3. Haghighi, M., Cliff, D.: Sensomax: An agent-based middleware for decentralized
dynamic data-gathering in wireless sensor networks. In: 2013 International Confer-
ence on Collaboration Technologies and Systems (CTS), pp. 107–114, May 2013

4. Ilia, P., Oikonomou, G., Tryfonas, T.: Cryptographic Key Exchange in IPv6-Based
Low Power, Lossy Networks. In: Cavallaro, L., Gollmann, D. (eds.) WISTP 2013.
LNCS, vol. 7886, pp. 34–49. Springer, Heidelberg (2013)

5. Walters, J.P., Liang, Z., Shi, W., Chaudhary, V.: Wireless sensor network security:
A survey, in book chapter of security. In: Xiao, Y. (ed.) Distributed, Grid, and
Pervasive Computing, pp. 0–849. CRC Press (2007)

6. Omic, J., Orda, A., Van Mieghem, P.: Protecting against network infections: A
game theoretic perspective. In: INFOCOM 2009, pp. 1485–1493. IEEE (2009)

7. Spyridopoulos, T., Oikonomou, G., Tryfonas, T., Ge, M.: Game Theoretic
Approach for Cost-Benefit Analysis of Malware Proliferation Prevention. In:
Janczewski, L.J., Wolfe, H.B., Shenoi, S. (eds.) SEC 2013. IFIP AICT, vol. 405,
pp. 28–41. Springer, Heidelberg (2013)

8. Tambe, M., An, B.: Game theory for security: A real-world challenge problem for
multiagent systems and beyond. In: AAAI Spring Symposium: Game Theory for
Security, Sustainability, and Health (2012)

9. Roy, S., Ellis, C., Shiva, S., Dasgupta, D., Shandilya, V., Wu, Q.: A survey of
game theory as applied to network security. In: 2010 43rd Hawaii International
Conference on System Sciences (HICSS), pp. 1–10. IEEE (2010)

10. Spyridopoulos, T., Karanikas, G., Tryfonas, T., Oikonomou, G.: A game theoretic
defence framework against dos/ddos cyber attacks. Computers & Security 38,
39–50 (2013)

11. Wu, Q., Shiva, S., Roy, S., Ellis, C., Datla, V.: On modeling and simulation of game
theory-based defense mechanisms against dos and ddos attacks. In: Proceedings
of the 2010 Spring Simulation Multiconference, Society for Computer Simulation
International, 159 (2010)

12. Asadi, M., Zimmerman, C., Agah, A.: A game-theoretic approach to security and
power conservation in wireless sensor networks. IJ Network Security 15(1), 50–58
(2013)

13. Chandrasekaran, B.: Survey of network traffic models. Waschington University in
St. Louis CSE 567 (2009)

14. Bedi, H.S., Roy, S., Shiva, S.: Game theory-based defense mechanisms against ddos
attacks on tcp/tcp-friendly flows. In: 2011 IEEE Symposium on Computational
Intelligence in Cyber Security (CICS), pp. 129–136. IEEE (2011)

15. Haghighi, M.: An agent-based multi-model tool for simulating multiple concurrent
applications in wsns. In: Journal of Advances in Computer Networks (JACN), 5th
International Conference on Communication Software and Networks (2013)

16. Österlind, F.: A sensor network simulator for the contiki os. SICS Research Report
(2006)

17. Montenegro, G., Kushalnagar, N., Hui, J., Culler, D.: Transmission of ipv6 packets
over ieee 802.15. 4 networks. Internet proposed standard RFC 4944 (2007)

18. Winter, T.: Rpl: Ipv6 routing protocol for low-power and lossy networks (2012)

Securing BACnet’s Pitfalls

Jaspreet Kaur(B), Jernej Tonejc, Steffen Wendzel, and Michael Meier

Fraunhofer FKIE, Bonn, Germany
{jaspreet.kaur,jernej.tonejc,

steffen.wendzel,michael.meier}@fkie.fraunhofer.de

Abstract. Building Automation Systems (BAS) are crucial for moni-
toring and controlling buildings, ranging from small homes to critical
infrastructure, such as airports or military facilities. A major concern in
this context is the security of BAS communication protocols and devices.
The building automation and control networking protocol (BACnet) is
integrated into products of more than 800 vendors worldwide. However,
BACnet devices are vulnerable to attacks. We present a novel solution
for the two most important BACnet layers, i.e. those independent of the
data link layer technology, namely the network and the application layer.
We provide the first implementation and evaluation of traffic normaliza-
tion for BAS traffic. Our proof of concept code is based on the open
source software Snort.

Keywords: BACnet · Network · Security · Attack · Intrusion detec-
tion · Traffic normalization · Building automation · Snort

1 Introduction

BACnet (Building Automation and Control Networking Protocol) is an open data
communication protocol developed by ASHRAE (American Society of Heating,
Refrigerating and Air Conditioning Engineers), standardized by ISO 16484-5 [1]
and used for building automation systems (BAS). In general, BAS are integrated
in and capable of controlling and monitoring buildings. Moreover, BAS form
networks which can be interconnected with other buildings and the Internet (e.g.,
for remote monitoring purposes). In order to support interoperability, BACnet
can use different lower level network protocols to perform its functions [2]. In
addition to BACnet, the European Installation Bus (EIB)/Konnex (KNX), and
the Local Operating Network (LON) are the most common BAS protocols used in
practice. The main goals of BAS are to improve the energy efficiency of buildings,
to increase the comfort and safety of the people living or working in a building,
and to decrease a building’s operational costs.

Because of the immense growth of BAS, especially BACnet, the need for
secure interconnection between BAS devices is increasing. Currently, there are
neither intrusion detection nor intrusion prevention systems which are capable
of detecting or preventing various network and application layer based attacks

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 616–629, 2015.
DOI: 10.1007/978-3-319-18467-8 41

Securing BACnet’s Pitfalls 617

on BACnet devices. Although security features for BAS protocols are speci-
fied in their standards and have improved over time, they are, as highlighted
in discussions with our industry partners, usually neither integrated in devices
nor used in practice. Due to the Internet connectivity of BACnet systems and
the fact that BACnet devices can be found using the SHODAN search engine
(cf. www.shodanhq.com), remote attacks on BACnet devices can also be per-
formed. Such attacks can, for instance, compromise smoke detectors or other
critical BAS equipment. According to [3], there were more than 100,000 Internet-
connected smart devices (including media players, smart televisions and at least
one refrigerator) interconnected to a network of computers, which were able to
send 750,000 spam emails between December 23, 2013 and January 6, 2014.
In addition, the so-called smart building botnets could extend the capabilities of
today’s botnets by taking advantage of a building’s physical capabilities (sensors
and actuators) [4].

In this paper, we show how to prevent the exploitation of vulnerabilities at
the BACnet network and application layers. In particular, devices which inter-
act with humans have to be both secure and safe; otherwise they can threaten
and compromise human life. We improve network and application reliability
and security with traffic normalizers (also known as protocol scrubbers [5] from
TCP/IP networks). In TCP/IP networks, traffic normalization is capable of pre-
venting various attacks on TCP/IP stack implementations [7]. So far, there is
no BAS protocol for which traffic normalization has been applied. The building
automation devices usually remain in buildings for decades, possess limited pro-
cessing power and insecure firmware, and often cannot cope with malformed or
malicious packets, hence there is an increased need for such normalizers.

We analyze the BACnet network and the application layer with its poten-
tial vulnerabilities and its potential non-compliant behavior, with the goal of
ensuring that BACnet devices receive correctly formed messages. In addition,
we study the well-known attacks from TCP/IP and adapt them to the corre-
sponding BACnet network and application layer, in order to design effective
countermeasures. Based on the discovered vulnerabilities, we present the first
implementation of traffic normalization for building automation systems in the
form of a Snort [6] extension. Additionally, our normalization rules provide a
means to counter fuzzing attacks and protect BACnet devices which are are not
usually updated because patching is a challenging task for BAS. We design our
system to normalize traffic between BAS subnets (e.g., between different floors
of a building or between separate buildings). Our normalizer implementation
ensures that the transferred packets reach the receiver well-formed according to
the protocol standard, without protocol vulnerabilities. The Snort extension is
implemented in a way that gives us an opportunity to either limit or prevent the
initiated intrusions mentioned in this paper.

The rest of the paper is structured as follows. We summarize the related work
in the area of BACnet security in Sect. 2. In order to make our method of protect-
ing vulnerabilities in the BACnet network and application layer understandable,
we provide a short overview on the relevant parts of the BACnet protocol in
Sect. 3. Section 4 lists several vulnerabilities that were found by looking at the

www.shodanhq.com

618 J. Kaur et al.

specifications of the standard, together with the adaptations of the TCP/IP
attacks. Our normalization rules are presented in Sect. 5. The overview of the
testing environment is presented in Sect. 6. In Sect. 7, we evaluate and summa-
rize our results and discuss future work.

2 Related Work

Earlier installations of BAS were designed to work as isolated standalone sys-
tems with minimal security features. As the BAS functionality requirements
increased, interconnectivity, interoperability, and especially Internet access for
BAS became significant features. However, the interconnectivity of BAS enables
remote attacks. Attacks on BAS can focus on gaining physical access to a build-
ing [8] (e.g., by exploiting window or door actuators), on gaining access to an
organizational intranet [9], on terrorist attacks [8] (e.g., turning off fire alarms
before a fire is placed), on monitoring inhabitants [10], or on disabling a build-
ing’s functionality via denial-of-service (DoS) attacks [11]. Celeda et al. [12] and
Szlósarczyk et al. [13] showed that different types of DoS attacks exist for BAS.
As pointed out by Bowers [14], BACnet devices are not robust enough to deal
with abnormal traffic, since protocol implementations are vulnerable to mal-
formed packets and various forms of attacks. The BACnet Attack Framework
(BAF) [14] introduces attack techniques, namely attacks on the BACnet rout-
ing, network mapping, DoS and spoofing. The existing work provides a good
estimate of the current attack surface for BAS networks.

In terms of defense against (some of) the attacks mentioned above, the BAC-
net Firewall Router (BFR) [15] is the first approach integrating simple firewall
functionality in BACnet. BFR is an open source project that implements filters
for BACnet messages and is capable of performing NAT, software-side network
switching, and routing. However, the BFR does not possess any normalization
capabilities. In comparison to the previous work, we present the first traffic nor-
malization for BAS capable of

– countering typical attacks known from TCP/IP networks,
– ensuring compliance, and
– increasing robustness against vulnerability tests and fuzzing attacks.

3 Structure of BACnet NPDU and APDU

BACnet’s purpose is to handle a number of application areas such as lighting,
fire alarms, and heating, ventilation, and air-conditioning (HVAC) in a cost
effective, interoperable, and reliable manner [16]. BACnet defines four layers
(physical, data link, network, and application layer), similar to the particular
functions of the OSI layers (shown in Fig. 1) and is designed to adapt to different
data link and physical layer technologies to achieve data link layer-independent
communication. BACnet network layer messages can be encapsulated in UDP
(referred to as BACnet/IP), the BACnet-specific protocol MS/TP (RS485) or

Securing BACnet’s Pitfalls 619

LonTalk ZigBee. The BACnet model differs from the OSI layer model in that the
BACnet application layer is additionally responsible for performing and handling
the message segmentation and reassembly, a feature usually accomplished by the
transport layer.

OSI Layer BACnet Stack Protocol

Application BACnet Application Layer

Network BACnet Network Layer

Data Link BACnet/IP over
ISO 8802-2 LLC

MS/TP
LONTalk

PTP BVLL BZLL

Physical Ethernet ARCNET RS485 RS232 UDP/IP ZigBee

Fig. 1. BACnet OSI Layers, from [1]

Our work focuses on the network and application layers. Therefore, we need
to introduce the addressing scheme and the structure of the BACnet Network
Protocol Data Unit (NPDU) and the Application Protocol Data Unit (APDU).

Each BACnet device has a medium access control (MAC) address which is
combined with the BACnet (sub)net number to form the network level address.
An essential feature in BACnet is broadcasting. Due to the nature of BACnet
topology, three types of broadcasts are supported: local, global, and remote.

NPCI

Octets Description
1 Version
1 NPCI Control Octet (CO)
2 Destination Network (DNET)
1 Destination Address Length (DLEN)

Variable Destination Address (DADR)
2 Source Network (SNET)
1 Source Address Length (SLEN)

Variable Source Address (SADR)
1 Hop Count

NSDU Variable
Network Layer Message or
Application Layer Protocol
Data Unit (APDU)

Bit Description
7 Indication

6 Reserved

5 Dest. Specifier

4 Reserved

3 Source Specifier

2 Expecting Reply

1
Priority

0

Fig. 2. BACnet NPDU format (left) and NPCI control octet (right). In NPCI control
octet, Bit 7 indicates whether the NSDU contains a network layer message (bit is set)
or an APDU (bit is unset). Based on [1].

3.1 Network Layer

Even if the BACnet network layer is embedded into various data link layer
protocols, the NPDU structure remains unchanged. We will focus on BACnet/IP,

620 J. Kaur et al.

i.e. BACnet encapsulated in UDP sent over IPv4 [1], for which we define our
normalization rules. The structure of the BACnet NPDU is shown in Fig. 2.

3.2 Application Layer

An application program which uses the BACnet protocol interacts with a BAC-
net peer device. The purpose of the interaction itself is mainly to invoke device-
specific behavior, e.g. switching on/off a lighting device or ringing an alarm bell
of an alarm device. To realize application-specific behavior, so-called objects are
specified for functional behavior and services are specified for the interaction
with the devices. The application layer then defines all required objects and
services for a device’s interaction with an application program. Notice that the
application itself is independent of the application layer and is outside the scope
of the BACnet ISO standard. In particular, the standard does not specify the
Application Programming Interface (API).

For normalization, the relevant part of the APDU is the first region, called
the Application Protocol Control Information (APCI), which is always present
and whose length varies from 2 to 6 bytes depending on the PDU type. An
example of a Confirmed Request PDU is shown in Fig. 3.

0 3 4 7

PDU Type SF MF SA 0

0
max response
seg. accepted

max APDU length
accepted

Invoke ID

Sequence Number

Proposed Window Size

Service Choice

· · ·

Fig. 3. BACnet APCI for Confirmed Request PDU (PDU Type = 0). From [1, p. 538].

4 Exploiting the BACnet Network and Application Layer

We base our normalization rules and the need for traffic normalization by looking
at the potential security deficits in BACnet. We group our attacks on BACnet/IP
into two main categories: attacks adapted from TCP/IP, and attacks specific
to BACnet. Each category represents the possible vulnerabilities allowing the
exploitation of BACnet devices by taking advantage of primitive vulnerabili-
ties in the network or application layer. We give a brief overview of the general
attacker model. In this model, the attacker is outside the BACnet network with
a goal to exploit a BACnet device. He is sending packets remotely to a BACnet
device (e.g. fire alarm, HVAC or a simple door) through a BACnet Broadcast

Securing BACnet’s Pitfalls 621

Management Device (BBMD), which forwards all the packets to the correspond-
ing device. This scenario can be considered as the standard approach to attack
BACnet environments remotely as BBMDs are always present to handle broad-
casts between BACnet devices. The model is graphically depicted in Fig. 4 left.

Fig. 4. General Attacker model (left) and an attack through a controlled BACnet
device (right)

4.1 Attacks Adapted from TCP/IP

Covert Channels. As shown in [10], BACnet allows for creating network covert
channels, i.e. the policy-breaking communication channels capable of transferring
data in a stealthy manner which can enable hidden command and control com-
munication for botnets. Disguised as BACnet traffic, malware could use BAC-
net covert channels to hide illegitimate or confidential data within unobtrusive
Internet-based traffic.

Many hiding techniques for network covert channels are based on the idea of
embedding hidden information in the unused NPDU and APDU fields. In the
case of BACnet, all reserved bits can serve the purpose of embedding hidden
information. Moreover, the use of particular BACnet message types and timing
variations between BACnet messages can signal hidden information [10].

Abnormal Behavior Leading to Botnets in BAS. Referring to the example
of a refrigerator sending spam mails (cf. Sect. 1), we extended our research to
examine the compromised BACnet devices, including BBMDs. Our concern is
to provide security measures for the BACnet protocol against the abnormal
behavior. Celeda et al. [12] introduced two examples of attacks that can serve as
a backdoor for an attacker in a BACnet network. The WriteProperty attack can
cause a BBMD or a BACnet device to switch on/off, resulting in an opportunity
for an attacker gaining access to the restricted BACnet network. In general,
the WriteProperty attack and disabling of network connection are possible by

622 J. Kaur et al.

changing values in BACnet’s object properties, respectively misusing BACnet
services, i.e. in application layer [12].

In addition, after successfully attacking a BACnet device, an attacker has an
opportunity to use the device’s communication channel within the subnet. One
of the possible examples of such a scenario is shown in Fig. 4 right. We assume
the attacker has determined the details of both BACnet devices in the subnet
with the help of probing. If he takes over the lighting device, as shown in Fig. 4
right, then he gains the ability to transfer any kind of message he wants.

For instance, he can send a packet with an APDU containing a BACnet-
Confirmed-Request to the elevator device in which the service-related data indi-
cates the elevator should stop immediately. Because the lighting device is in
the subnet, it is trusted whenever authenticity checks are performed, hence the
attacker is able to bypass this security mechanism. The elevator accepts the
request, sends a BACnet-Simple-ACK, and stops immediately.

4.2 Attacks Specific to BACnet/IP

Standard Non-conformance. We start by simply listing the vulnerabilities
which are tolerated by the standard. We distinguish the following terms, related
to the packets: compliant traffic fulfill the requirements given by the standard
and non-compliant traffic contain packets that do not conform to the standard,
e.g. malformed packets. Malicious packets are defined as packets designed to
exploit a threat. Malicious packets can either be compliant or not. We present
the following two examples to illustrate:

1. Network Mapping : An attacker is able to map the network with standard-
compliant messages like Who-is requests. Additionally, he is able to send
NPDUs containing application-specific APDU messages to probe the net-
work. The messages with reachable destination addresses are always for-
warded by the BBMD to the corresponding BACnet devices [17]. If a device
understands the service-related data contained in the payload, it gives a valid
response, otherwise the device returns an error. On getting a response, the
attacker knows which kind of devices can be addressed, e.g. fire alarm, HVAC
or a door. As all BACnet devices send responses, he is additionally able to
infer where (i.e. in which subnet) a device is located since the requests and
responses contain the destination and source addresses.

2. Flooding Attack : In this case, we consider the malformed packets, i.e. each
packet must possess at least one incorrect bit, according to the standard,
either in NPDU or APDU. Since BACnet devices do not drop the packets
but instead try to accept and process any request, the incorrectly set bits in
NPCI and APCI pose a threat to them.
Thus, an attacker can break a device by sending a flood of identical or
different packets, making the number of packets received by the device far
higher than normal. As a consequence, this can cause a denial-of-service, or
force unintentional behavior by the device.

Securing BACnet’s Pitfalls 623

Vulnerable Protocol Design. By analyzing the protocol structure of BACnet
and behavior of devices during communication procedure of certain messages,
we categorize the following attacks.

1. Smurf Attack : In BACnet, if an attacker is able to modify the source (SADR
and SNET) at the network layer, he will be able to spoof the address of
broadcast requests and can cause a denial-of-service for selected BACnet
devices. A smurf attack on BACnet is feasible as many BACnet devices
are either old (BAS hardware is seldom altered over decades) or possess
substantially lower processing capabilities than today’s desktop computers
and smart phones.

2. Router Advertisement Flooding : A similar attack is possible if an attacker is
able to spoof a target device’s source address and source network (SADR and
SNET) to send a Who-is-Router-to-Network message (requesting a router
advertisement for a given network). The result is that the target will receive
router advertisements from all the routers in the local network. If the attacker
repeats this procedure and sends too many repeated messages, the target
is likely to receive more responses in a time window than it can normally
handle, causing a denial-of-service.

3. Traffic Redirection: An attacker can spoof I-Am-Router-to-Network [12] or
Router-Available-to-Network messages, i.e. messages indicating the availabil-
ity of a router, with the goal to redirect selected traffic over itself to gain
confidential monitoring data (e.g., presence sensor data of a given room to
plan a physical break-in [13]).

4. Re-Routing DoS, Type 1 : To cause a message flood on a router R or a BBMD,
an attacker can broadcast spoofed I-Am-Router-To-Network messages to the
network using the source address of R. Therefore, all possible destination
network addresses can be used as a parameter for the router advertisement.
This attack forces R to handle all responses to the I-Am-Router-To-Network
message and, moreover, forces R to handle all remote traffic.

5. Re-Routing DoS, Type 2 : If the target device of the Type 1 attack is not
a router, an attacker can redirect all the traffic for remote networks to a
device incapable of forwarding messages, thus, isolating the communication
of a subnet. The scenario is similar to the one where the victim’s address
can be spoofed in a Router-Available-to-Network message. It is important
to mention that broadcast floods in BACnet networks can also be caused
by devices which are not configured properly. At least three examples from
practice are known [13]: i) the wrong setup of layer two switches that can
lead to loops; ii) the use of multiple broadcasting BBMDs in a chain with-
out a broadcast-limiting router device in the chain; iii) the combination
of BACnet/Ethernet ISO 8802-3 and BACnet/IP routers within the same
infrastructure configured to use the same UDP port (leads to permanent
broadcast exchanges between the two layers).

624 J. Kaur et al.

5 A Snort-Based BACnet Normalizer

We implemented a Snort-based normalizer extension capable of normalizing
BACnet/IP traffic based on a configuration file. Supporting BACnet/IP allows
extending our work to non-IP-based data link-layer protocols used by BACnet.
The Snort extension includes countermeasures for each discussed attack vec-
tors. The rules serve to remove ambiguities within the traffic in order to achieve
compliant traffic.

5.1 Standard Conformity

Ensuring robustness for the protocol stacks of BACnet devices is essential as
firmware is seldom updated. Therefore, malformed packets violating the rules
of the BACnet standard must be modified or discarded to achieve specificity.
We list countermeasures in the form of normalization rules for the variants of
malformed packets which succeed in compromising a BACnet device or the whole
network, as mentioned in Sect. 4. The rules are split into five categories: NPCI
field, BACnet non-security message types, BACnet security message types, APCI
field, and the handling of BACnet priority messages.

NPCI Field. Being an ever present component of a BACnet NPDU, the NPCI
field including the NPCI control octet (CO) can always be normalized. Reasons
to DROP messages:

1. Protocol Version Number != 0x01
2. DNET = 0, or SNET = 0, or SNET = 0xFFFF
3. Multicasts and local broadcasts with DNET=0xFFFFFFFFFFFF using ISO 8802-

3, DNET=0x00 using ARCNET or LonTalk, DNET=0xFF using MS/TP
4. Bit 3 of CO is 1 and SLEN = 0
5. Unicast message with DNET = 0xFFFF

Reasons to MODIFY messages:

1. Set DLEN = 0 and DADR=0 if the message is a remote broadcast
2. Set bits 6 and 4 of CO to 0

BACnet Non-Security Message Types. As explained in Sect. 3, bit 7 of the
NPCI control octet indicates whether a BACnet message represents a network
layer message or an APDU. Table 1 shows the possible network layer message
types. We determined the following normalization rules for non-security network
layer message types. We DROP the message, if the message type is any of the
following:

1. 0x02, 0x03, 0x08 or 0x13, and 4 or more bytes follow the type field
2. 0x01, 0x04 or 0x05, and an odd number of bytes follows the type field
3. 0x06 or 0x07, and more than 4× NUMBER OF PORTS +

Sum of all PORT INFO LENGTHs bytes follow the type field
4. 0x00 or 0x09, and more than 2 bytes follow after message type field

Securing BACnet’s Pitfalls 625

Table 1. BACnet Network Layer Message Types. Security message types are marked
with ∗.

Type Description Type Description
0x00 Who-Is-Router-To-Network 0x0B∗ Security-Payload
0x01 I-Am-Router-To-Network 0x0C∗ Security-Response
0x02 I-Could-Be-Router-To-Network 0x0D∗ Request-Key-Update
0x03 Reject-Message-To-Network 0x0E∗ Update-Key-Set
0x04 Router-Busy-To-Network 0x0F∗ Update-Distribution-Key
0x05 Router-Available-To-Network 0x10∗ Request-Master-Key
0x06 Initialize-Routing-Table 0x11∗ Set-Master-Key
0x07 Initialize-Routing-Table-Ack 0x12 What-Is-Network-Number
0x08 Establish-Connection-To-Network 0x13 Network-Number-Is
0x09 Disconnect-Connection-To-Network 0x14-0x7F Reserved for use by ASHRAE

0x0A∗ Challenge-Request 0x80-0xFF Available for vendor proprietary messages

5. 0x00: Limit the number of messages to m per second
6. 0x01 and the message is not transmitted with a broadcast MAC
7. 0x12 and the message is not transmitted with a local address, or if Hop-Count > 0,

or if SADR is the same during n minutes
8. 0x13 and SNET/SADR or DNET/DADR is set or the message is sent to a local

unicast address

Parameters m and n are configurable and depend on the particular hardware
used (for example, in collaboration with industry partners we determined m =
180 as a reasonable value).

BACnet Security Message Types. We define rules for security messages as
stated in [17]. Error messages in each case should always be sent signed-trusted.
We DROP the message, if the message type is any of the following:

1. 0x0A, 0x0E, 0x0F or 0x11, and the message is broadcast
2. 0x0A and more than 9 bytes follow the type field
3. 0x0B and more payload is transferred than specified
4. 0x0C and

(a) the RESPONSE CODE (RC) is 0x06 and the length � of
RESPONSE SPECIFIC PARAMETERS is > 4, or

(b) RC=0x07 and � > 2, or
(c) RC=0x0E and � is even and the first byte is not 0x00, or
(d) RC=0x0F and � > 2, or
(e) RC=0x15 and � > 1, or
(f) RC=0x16 and � > 3, or
(g) RC=0x17 and � > 2, or
(h) RC=0x18 and � > 1

5. 0x0D and more than 19 bytes follow the type field
6. 0x0E and more than 21 bytes + bytes of keys follow the type field
7. 0x0F and more than 1 byte + bytes of keys follow the type field

We MODIFY the messages as follows:

1. Set bit 2 of CO to 1 if the type is 0x0A, 0x0D, 0x0E, 0x0F or 0x11
2. Set bit 2 of CO to 0 if the type is 0x0C or 0x10

626 J. Kaur et al.

APCI Field. Whenever bit 7 of the NPCI control octet is 0, the content of
the NSDU is an APDU, in which case the APCI field is present and can thus
be normalized. Therefore, we implemented additional normalization rules. We
MODIFY the messages as follows (cf. Fig. 3):

1. Set the first bit in PDU Type to 0
2. Set bits 7 and 8 of APCI to 0 if PDU Type is 0
3. Set bits 4 – 7 of APCI to 0 if PDU Type is 1, 2, 5 or 6
4. Set bits 6 and 7 of APCI to 0 if PDU Type is 3
5. Set bits 4 and 5 of APCI to 0 if PDU Type is 4
6. Set bits 4 – 6 of APCI to 0 if PDU Type is 7

Handling of BACnet Priority Messages. BACnet allows assigning each
message a priority [1, pp. 68]. The priority is indicated by bits 1 and 0 within
the NPCI control octet (11=Life Safety, 10=Critical Equip, 01=Urgent, 00=Nor-
mal). The highest possible priority of a packet is the life safety message and can
be handled in a prioritized way by the receiving devices. However, in practice
this feature is rarely used. We aim to introduce normalization for packets of all
priority levels if they are not well-formed according to the ISO standard [1]. Nev-
ertheless, we must take into account that not all malformed packets are caused
by an attacker, and that dropping a life safety message can result in significant
side-effects if the message is not delivered but contains life-essential informa-
tion. Therefore, we require that life safety messages must be modified (in order
to match compliant NPDUs according to the standard as closely as possible)
and always forwarded, and should never be dropped. We are aware of the fact
that an attacker could explicitly take advantage of such a rule. In order to miti-
gate such attacks, one could require that BACnet messages sent with life-safety
priority MUST always have a trusted level, i.e. they must be either encrypted or
physically secured according to [17], so that the receiving device is aware of the
sending device. Life safety messages not encoded this way would be dropped.
This approach, however, requires the support in the devices, which is not always
possible.

5.2 Prevention of Network Covert Channels

The covert storage channels that an attacker could embed in the reserved bits
of the BACnet NPDU and APDU are disabled, as the normalizer clears these
bits. It is important to mention that other covert channels (especially timing
channels) cannot be eliminated with this approach and that many additional
hiding techniques for network covert channels are available. To counter additional
covert channels, extensions for caching packets before forwarding them would be
required, in order to limit the capacity of covert timing channels.

5.3 Closing Protocol Security Flaws

Unconstrained broadcasting in BACnet networks is a problem and allows for a
wide spectrum of attacks, as outlined in Sect. 4. In order to prevent flooding and

Securing BACnet’s Pitfalls 627

spoofing attacks, the appropriate limits for broadcast messages per time interval
must be defined. These limits depend on the particular BACnet devices and
are thus vendor-specific. In one empirical study, performed in co-operation with
a vendor of BACnet products, we measured that most tested BACnet devices
cannot process more than 180 messages per second.

6 BACnet Testbed

Our test environment is implemented using the open source BACnet stack (avail-
able at http://bacnet.sourceforge.net) and the virtual machines, each represent-
ing multiple BACnet devices (see Fig. 5).

Linux VM 1
(Sender)

Fuzzer +
BACnet Stack

non-compliant−−−−−−−−−−−→
BACnet

test traffic

Linux VM 2
(Normalizer)

Snort-BACnet

compliant−−−−−−−−−−→
BACnet

test traffic

Linux VM 3
(Receiver)

Wireshark +
BACnet Stack

Fig. 5. BACnet testbed for evaluating the Snort extension [13]

We setup the testing environment using three virtual machines (VMs). VM
1 represents the attacker who sends non-compliant BACnet traffic using the
fuzzer. The messages are first examined by the normalizer (VM 2) before they
are forwarded to the virtual BACnet device (VM 3). The destination host VM
3 monitors the received packets using Wireshark.

The fuzzer is implemented using the Scapy packet manipulation tool [19]. It
sends invalid and malformed packets to our test system in order to measure the
behavior and the performance of the test system. The fuzzer follows the rules
related to the structure of the messages as described in the ISO standard. To
simulate the denial-of-service scenarios we implemented the packet sending in
C, thus achieving very high packet send rates (upwards of 800,000 packets per
second).

The normalizer is created as an extension of the existing Snort [6] code with
our normalization rules for BACnet messages. Our extension is able to recognize
BACnet messages which are sent through UDP over IPv4. Each byte of the
NPDU and APDU can be analyzed in order to decide whether to forward, drop
or modify each packet according to a predefined rule set.

7 Evaluation and Future Work

The purpose of implementing the testbed is to verify the correctness and the
performance of the Snort-based normalizer by testing the prevention of attacks

http://bacnet.sourceforge.net

628 J. Kaur et al.

(described in Sect. 4). To achieve this, we divided the BACnet/IP packets into
two sets, for each normalization rule (rules described in Sect. 5). The first set
contained non-compliant and malformed packets and the second set contained
compliant and legitimate packets. We created at least one malformed packet
for each normalization rule individually. Each set was further subdivided into
various subsets of different message types. We created different unit and generic
test cases to examine the behavior of packets from both sets.

As per the test environment setup, the messages were sent from VM 1 to
VM 3. For generic testing, we transmitted the messages using a fuzzer which
has the capability to send thousands of messages of a particular message type
at a time. This helps to evaluate the performance of the system in handling
flooding of messages. We tested scenarios with between 10,000 and 100,000 mes-
sages. By using Wireshark on the destination VM (VM 3), we observed that
the non-compliant messages were either dropped/blocked or modified correctly,
and compliant messages were transmitted to the destination without any inter-
ruptions, so that all the received packets were handled as stated in Sect. 5.
We carried out this scenario (as stress-testing) to measure performance of the
destination, VM 3 – the virtual machine representing the attacked BACnet –
with and without a preceding normalizer. We flooded the device with a various
numbers of malformed packets. Without the normalizer, the target device was
unable to cope with the traffic. When the normalizer was enabled, none of the
malformed packets reached the device. During the test, the CPU load on the
normalizer VM (VM 2) was below 65% at all times.

For unit testing, we created 48 non-compliant test messages for different
message types. Each packet was created to test the normalization rules laid
down in Sect. 5. We also created 45 compliant test messages. These test messages
were sent individually to test the behavior of the normalizer VM 2. Our tests
showed that the normalizer was clearly able to differentiate between compliant
and non-compliant traffic and performed necessary actions whenever required
before forwarding packets to the destination VM 3.

Our future work will focus on the problem of detecting abnormal behavior
of infected or exploited BACnet devices. Celeda et al. [12] introduced a net-
work flow-based detection tool and provided a theoretical comparison to deter-
mine anomalies in BACnet control flows using their network monitor tool. The
authors were able to record key information in order to detect a flood. Preven-
tion techniques, however, were not implemented in the tool. We plan to expand
our Snort normalizer extension to include detection and prevention of abnor-
mal traffic. By analyzing data collected from actual BACnet networks we will
develop application-specific rules and create a state machine that can distinguish
abnormal states from compliant ones. Furthermore, we plan to expand the nor-
malizer to handle segmentation-based attacks by performing packet reassembly
and caching within the normalizer.

Securing BACnet’s Pitfalls 629

References

1. ISO 16484–5:2012 Building automation and control systems - Part 5: Data com-
munication protocol

2. Merz, H., Hansemann, T., Hübner, C.: Building Automation: Communication sys-
tems with EIB/KNX, LON and BACnet. Signals and Communication Technology.
Springer (2009)

3. Proofpoint Inc.: Proofpoint Uncovers Internet of Things (IoT) Cyberattack. Report
(January 2014). http://goo.gl/ENgpTR

4. Wendzel, S., Zwanger, V., Meier, M., Szlósarczyk, S.: Envisioning Smart Building
Botnets. In: GI Sicherheit. LNI, vol. 228, pp. 319–329 (2014)

5. Malan, G.R., Watson, D., Jahanian F. and Howell, P.: Transport and applica-
tion protocol scrubbing. In: Proc. IEEE Conf. Computer Communications (INFO-
COM), pp. 1381–1390 (2000)

6. Snort - open source network intrusion prevention system and network intrusion
detection system. https://www.snort.org/

7. Handley, M., Paxson, V., Kreibich, C.: Network Intrusion Detection: Evasion, Traf-
fic Normalization, and End-to-End Protocol Semantics. In: Proc. USENIX Security
Symposium, Berkeley (2001)

8. Holmberg, D.G.: Enemies at the gates. BACnet Today, B24–B28, November 2003
9. Soucek, S., Zucker, G.: Current developments and challenges in building automa-

tion. e&i (Elektrotechnik und Informationstechnik) 129(4), 278–285 (2012)
10. Wendzel, S., Kahler, B., Rist, T.: Covert Channels and their Prevention in Building

Automation Protocols - A Prototype Exemplified Using BACnet. In: Proc. 2nd
Workshop on Security of Systems and Software Resiliency, pp. 731–736. IEEE
(2012)

11. Granzer, W., Kastner, W., Neugschwandtner, G., Praus, F.: Security in networked
building automation systems. In: Proc. 2006 IEEE International Workshop on
Factory Communication Systems, pp. 283–292 (2006)

12. Čeleda, P., Krejč́ı, R., Krmı́ček, V.: Flow-Based Security Issue Detection in Build-
ing Automation and Control Networks. In: Szabó, R., Vidács, A. (eds.) EUNICE
2012. LNCS, vol. 7479, pp. 64–75. Springer, Heidelberg (2012)

13. Szlósarczyk, S., Wendzel, S., Kaur, J., Meier, M., Schubert, F.: Towards Suppress-
ing Attacks on and Improving Resilience of Building Automation Systems - an
Approach Exemplified Using BACnet. In: GI Sicherheit. LNI vol. 228, pp. 407–418
(2014)

14. Bowers, B.: How to Own a Building: Exploiting the Physical World with BacNET
and the BACnet Attack Framework, Shmoocon (2013). http://goo.gl/Ea1LZu

15. Holmberg, D.G., Bender, J., Galler, M.: Using the BACnet firewall router. BACnet
Today, B10–B14, November 2006

16. Tom, S.: BACnet for a City - Saving Energy one Small Building at a Time; BACnet
Today and the Smart Grid, B4–B9, November 2012

17. ASHRAE: Proposed Addendum ai to Standard 135–2012, BACnet - A Data Com-
munication Protocol for Building Automation and Control Networks (2014)

18. Wendzel, S.: The Problem of Traffic Normalization in a Covert Channel’s Network
Environment Learning Phase. In: Sicherheit 2012. LNI, vol. 195, pp. 149–161. GI
(2012)

19. Biondi, P.: The Scapy community: Scapy Documentation, Release 2.1.1 (2010).
http://goo.gl/nPEUFx

http://goo.gl/ENgpTR
https://www.snort.org/
http://goo.gl/Ea1LZu
http://goo.gl/nPEUFx

On the Secure Distribution of Vendor-Specific
Keys in Deployment Scenarios

Nicolai Kuntze, Andreas Fuchs, and Carsten Rudolph(B)

Fraunhofer Institute for Secure Information Technology,
Rheinstraße 75, 64295 Darmstadt, Germany

{kuntze,andreas.fuchs,rudolphc}@sit.fraunhofer.de

Abstract. Product counterfeit is a tremendous challenge for vendors in
many areas. Particularly important is a prevention of product counter-
feit where products like telecommunication devices interact with other
systems and thus a malfunctioning of a single device can jeopardize the
complete system. This can also deteriorate the reputation of the ven-
dor. Furthermore, violation of intellectual properties can cause financial
losses. Detection of product counterfeit can be based on tracking back
each device to the production process of the vendor to ensure the product
origin. Devices without a verified source can then be considered coun-
terfeit with a high potential to be malicious or of low quality. Vendors
already apply vendor-specific security technologies protecting the distri-
bution. These often employ special hardware-based security mechanisms
specifically designed for a particular range of products.

This publication shows the usage of the already available Trusted
Platform Module to allow for distribution channel protection and to
leverage overall security by allowing the secure identification of a spe-
cific device. It also explains a few additional Trusted Platform Module
functionalities that can be used.

1 Introduction

Today’s international collaboration and outsourcing of production processes
results in a separation of device design and device production. One example
is the production of network equipment such as routers or switches. The vendor
controls the design but other companies (the manufacturers) are subcontracted
to actually produce and assemble the devices. Thus, device blueprints and pro-
duction is not under the direct control of the vendor, but controlled by the
manufacturer. One core concern of the vendor is to be able to control that no
additional devices are produced and sold bypassing the vendor. The manufac-
turer could in principle produce more devices and directly bring them to the
market. Thus, the manufacturer would diminish the revenue of the vendor. Even
worse, clients might believe they buy original products and request support and
maintenance from the vendor. This creates additional costs.

Furthermore, outsourcing the production and other steps in the actual cre-
ation of the final product results in perils to the vendor’s business and to the

An erratum to this chapter is available at 10.1007/978-3-319-18467-8 43
c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, pp. 630–644, 2015.
DOI: 10.1007/978-3-319-18467-8 42

On the Secure Distribution of Vendor-Specific Keys in Deployment Scenarios 631

end users [1]. The manufacturerers have the knowledge and technology to also
build counterfeit products that cannot be easily distinguished from the original
devices, but may have less quality, do not comply to the specification, or have
back-doors and other malicious software installed. Counterfeit devices with low
quality or malicious behaviour also cause a loss of reputation and endanger the
brand experience if they cannot be reliably recognized.

The vendor is in a paradoxical situation. All information on how to build the
device needs to be given to the manufacturer, while at the same time the vendor
wants to keep control on the number and properties of devices being built and
sold under the vendor’s name. One possible approach to this catch-22 situation
is to create individual registrations of each single device and track devices from
manufacturer to the customer.

The identification of each single device can be based on individual vendor-
specific keys to be inserted into device or on a subsequent registration process
using a vendor key not known to the manufacturer. Such a key needs to be
protected against duplication. One aspect hereby is that a vendor specific key is
only issued to devices after production and final tests to restrict keys to devices
being sold. However this would require each device to be inspected by the vendor
in a controlled environment, which adds a lot of additional costs.

The state of the art is based on vendor-specific or commercial off-the-shelf
hardware tokens providing random-number generation and asymmetric cryptog-
raphy. These tokens are developed by security hardware vendors and included by
the contracted manufacturer into the devices. Tokens can be pre-equipped with
unique keys, keys can be generated within the token or the vendor can directly
inject a device identity into this hardware token. Through this process each
device can be uniquely identified and the vendor can track these devices without
requiring direct access to the complete final device in a controlled environment.

By controlling the hardware tokens, the vendor also keeps control over the
number and identity of devices being shipped or getting into the market. This
approach can provide some protection against counterfeit products, but it also
has some disadvantages. First, an additional piece of hardware needs to be
included that has no other benefit in the product. These hardware tokens are
in many cases single purpose chips and in comparison to a multi-purpose com-
mercial off the shelf chip relatively expensive due to smaller production numbers
and additional overhead for logistics. Further, the process for establishing keys
creates additional overhead, because the used security hardware does not sup-
port protocols suitable for a zero-touch registration and initialization. Another
option is to use radio frequency identification (RFID) tags to create unique
device identities (see [2]). The drawback with a RFID based solution is that any
kind of (remote) enforcement is not applicable and that it requires RFID readers
at various places in the value creation chain. It might be more efficient to use
general purpose security hardware in the devices that also provides more generic
security functionality useful for all other parts of the device’s life-cycle.

Security industry has developed various approaches for hardware security
anchors. Examples include TrustZone, SmartCards or the Trusted Platform

632 N. Kuntze et al.

Module (TPM) as specified by the TCG. The value of TrustZone strongly
depends on additional security functions provided by the platform, while Smart-
Cards are usually not integrated into a platform but considered to be removable
devices suitable e.g. for user authentication or digital signatures. In contrast
to this, the Trusted Platform Module is a self-contained chip integrated into
the device which offers an interesting basis to implement protection schemes
suitable for industry. It provides a hardware-protected identity, various security
functionalities and the possibility to establish device-specific keys that cannot
be extracted or migrated to other devices. The goal of this paper is to present
an approach to use one type of such generic commercial of the shelf security
hardware, namely the TPM, to satisfy the industry demand for IP protection
and control on logistic processes. Further, this publication will show additional
benefits when using the TPM for authentication-only approaches.

This paper presents a concept for the establishment of vendor specific crypto-
graphic keys using the Trusted Platform Module. In the remainder of the paper
a more detailed scenario and first requirements towards the distribution process
are defined in Section 2. Section 3 presents necessary basic concepts of the TPM
for the context of this use case. Based on the requirements and TPM concepts a
solution architecture is detailed in Section 4, followed by an analysis in Section 5.
The publication concludes in Section 6 showing advanced uses for strengthening
the customer’s experience as an additional use of the security functionality.

2 Scenario

Given the setting of a vendor (i.e. the equipment manufacturer) outsourcing pro-
duction to the actual manufacturer (i.e. the assembler) as described above, this
section provides a structured and more detailed analysis of the addressed scenario.
To counter product counterfeit an understanding of the involved stake-holders and
their interactions in the course of the production of equipment is required.

Stake-holders. The value creation chain of a product involves mainly Original
Equipment Manufacturer (OEM), Device Assembler, Distribution Partner and
End User. The role of the OEMdiffers in various business cases which impacts
the counterfeit techniques suitable. In more detail, the workflow of producing a
device can involve the following stake-holders:

OEM represents the publicly know vendor of the device. The OEM often cre-
ates the design, owns the intellectual property, and provides product liability
and device support to the End User. Actual production of the equipment is
very often outsourced to contractors to allow the OEM to concentrate on
development and marketing and to reduce production costs.

Device Assembler represents the contractor of the OEM that produces and/or
assembles the hardware device. This may actually be several companies not
even in the same country (and not under the same jurisdiction) as the OEM.

Distribution Partner receives the devices directly from the Device Assembler in
the name of the OEM and sells the device to the End User. Devices in stock
are not handled by the OEM but by subcontractors.

On the Secure Distribution of Vendor-Specific Keys in Deployment Scenarios 633

End User buys and uses the device which is perceived as a product of OEM.

In addition to these stake-holders, the secure distribution of devices introduces
additional security-critical stake-holders to the described scenario. For the pro-
posed solution, the TPM Supplier is a vendor that produces and sells TPM
hardware modules. The TPM can come with a security certification and pre-
established key so-called Endorsement Key that also should be certified by the
TPM Supplier. Given the security critical focus of these hardware chips, these
vendors need to be trustworthy to the OEM and usually already have imple-
mented secure production arrangements.

Functional ProductionWorkflow. Ignoring the steps for anti-counterfeit solutions,
the following workflow describes the production of a device from a functional
perspective. The OEM designs a new device using its resources and intellectual
property. Then the OEM contracts a Device Assembler to actually build a larger
number of devices. This includes committing the blueprints of the new design
and giving all information necessary to build the device to the Device Assembler.
The Device Assembler produces devices according to the blueprints of the OEM ’s
design and might provide evidence, test results, production logs, etc. to the OEM.
The devices are delivered from the Device Assembler ’s site directly to the Distri-
bution Partner. The Distribution Partner sell and ship the final device to the End
Userwho then can register the device with the OEM.

Security Analysis. Given the above work flow, obviously, by contracting of the
Device Assembler, the OEM loses control of the production process. In this
step, the OEM provides the Device Assembler with all blueprints necessary
to produce the device. After this step, the OEM has no direct control over
the amount of devices produced or sold. It completely relies upon the Device
Assembler ’s and/or Distribution Partner ’ accounting of devices shipped. The
Device Assembler possibly colluding with one of the Distribution Partner has
various options to cheat in this process.

Threats. The Device Assembler possesses the required blueprints and capabilities
to manufacture devices. It might sell these to counterfeit producers or itself pro-
duce and sell more devices than it accounts for with the OEM. An involvement
of Distribution Partner and the requirement for call for bids further increase
potential for counterfeits purchases by End User. Neither End User nor OEM
would be able to reliably recognize counterfeits (beyond potential alterations in
production blueprints). Thus, several types of malicious actions by the Device
Assembler can be distinguished. (i) Device Assembler builds a higher number of
devices in accordance with the blueprint of the OEM. These devices cannot be
distinguished from original devices. The only difference is, that the OEM does
not get any revenue from these devices and the Device Assembler gets a much
bigger share. Clearly, the OEM loses revenue and at the same time is responsi-
ble for maintenance, warranty, etc. (ii) Device Assembler builds a higher number
of the same devices, but sells them under a different brand name, stealing the
OEM ’s IPR. (iii) Device Assembler builds devices that are of lower quality,

634 N. Kuntze et al.

use cheaper hardware elements or have other (possibly intentionally malicious)
changes to increase its revenue. This decreases the OEM ’s revenue and also
creates additional risks for the End User using the devices.

Security Requirements. The threats described above yield the following security
requirements. (i) The OEM needs to be able to identify non-counterfeit products
and to track all devices sold with the OEM ’s brand. (ii) Counterfeit devices
must be distinguishable to the OEM and (depending on the type of device),
remote detection of deployed counterfeit products can be necessary. (iii) End
User need to be able to distinguish counterfeits from original products. This
might require the help of the OEM. (iv) The End User should to be able to
recognize counterfeits using an offline scheme without active work of the OEM.

3 Trusted Computing Basics

According to the mission statement of the Trusted Computing Group (TCG),
Trusted Computing based on hardware roots of trust has been developed by
industry to protect computing infrastructure and end points. The TPM provides
the core security functions and serves as a root of trust for each individual device.

TCG defines the currently used and market available TPM in version 1.2
but also provides a specification for the next generation of TPMs in form of
the version 2.0. Both versions of the TPM design share underlying principles
regarding the functionality and functions provided. The TPM is regarded as a
trust anchor bound to an individual system. Trust is defined within the TCG
to convey an expectation of behaviour. Hereby it needs to be emphasized that
a predictable behaviour does not constitute behaviour that is secure or worth
to be trusted. However, various security properties for platforms can be satis-
fied and controlled based on the TPM. For example, to determine the trust in
a certain platform, it is required to identify the identity of the platform. The
TPM provides a unique identity for a platform which can either used to directly
identify a specific platform or provide for pseudonymous identification. The next
sections give a more detailed presentation of how a TPM is used to implement
its dedicated role as a root of trust. Specifically, it is shown how different roots
of trust in a system design complement each other to build platforms with par-
ticular security properties. A more detailed description and also explanation of
the TPM commands used can be found in the book by Chris Mitchell [3].

3.1 Roots of Trust

The high level concept of Trusted Computing as defined by the TCG introduces
different roots of trust in the system design providing complementary security
functions (see also [4]). To attest on the health of a system each software com-
ponent needs to be measured beginning from the initialization of the device.
In the reference design according to TCG, the initial start of a system begins
with the Root of Trust for Measurement (RTM). A RTM measures itself
and is implemented using platform features to ensure the tamper resistance of

On the Secure Distribution of Vendor-Specific Keys in Deployment Scenarios 635

the RTM. The RTM measures the next stage in the boot process and trans-
fers control to it. By this, the RTM already behaves according to the measure
before execute approach underpinning the overall measurement of the boot pro-
cess and of software subsequently started on the system. The second component
is the Root of Trust for Storage (RTS), which is usually implemented by
protected non-volatile storage within the TPM hardware. The RTS mainly has
three roles. First it needs to provide secure storage for the cryptographic identity
of the TPM. Second, it also provides secure storage for the keys that are used to
encrypt data to be securely stored on (insecure) storage media on the platform
or outside the platform (e.g. symmetric keys for bulk encryption). Finally, the
third role includes particular protected registers used to store the measurement
information as hash-values (i.e. chains of hash values represented by the final
value in the chain.). These registers are called Platform Configuration Registers
(PCR). The final root of trust is a securely stored cryptographic key (Endorse-
ment Key EK), the Root of Trust for Reporting (RTR). This key is used
to create so called Attestation Identity Keys (AIKs) that are then used to dig-
itally sign PCR content in a TPM Quote and to certify non-migrateable keys
generated by the TPM. AIKs can be used to identify a platform with different
levels of pseudonymity [5].

3.2 Basic Trusted Platform Features

The TPM provides a large set of security functionalities. The secure distribution
of vendor-specific keys in deployment scenarios builds on and uses authentica-
tion, attestation and protected location functionalities. Authentication can be
easily based on the Endorsement Key (EK) that is either established in the TPM
by the producer of the TPM or implanted to the TPM in a later stage of the pro-
duction process. Together with a certificate for the EK, this key is used to build
subsequent authentication processes. Attestation in this context describes the
process of reliably reporting the platform status. The TPM provides the func-
tionality for secure remote attestation. Thus, remote entities can get digitally
signed information on the current content of PCRs. Protocols for remote attes-
tation are defined in the TCG standards. Protected Location for keys and
other data transferred to the platform is provided by the TPM. In the TPM
context, the process of encrypting data with a key protected by the TPM and
binding this encrypted data to a particular state of the platform (i.e. particular
PCR values) is called Sealing. Thus, sealed data can only be decrypted when two
conditions are satisfied. First, the same TPM needs to be used with the correct
key loaded to the TPM (and optional the correct authentication value/password
for the key is given) and second, the platform is in the correct state that the
PCR values match.

4 Vendor Specific Key Establishment

As described in the previous section, TPMs provide a different kind of unique
identities. These identities allow to establish secure channels to the TPMs or

636 N. Kuntze et al.

respectively a given device. These unique identities are implemented as crypto-
graphic keys that are protected by hardware inside the TPMs. This ensures a
higher protection level compared to solely software based solutions.

Based on the concepts of the TPM, there are several ways to establish vendor
and end user specific identification keys. These keys may be generated externally
and injected into the TPM, where they are stored securely, or the TPM’s internal
Random Number Generator and Key Generator can be used to create keys and
their binding to a certain TPM can be validated. Both of these schemes are
presented in this section using different characteristics. The logistics processes
involved with each of these approaches are also outlined.

4.1 TPM Generated versus Vendor Injected Keys

The usage of the Endorsement Key is restricted to only very few operations. In
particular, it cannot be used for digital signatures at all and for decryption only
during a very constrained set of operations. These restrictions are in place, in
order to use the TPM in scenarios (such as Consumer Electronics) where a unique
identification of devices is not desired. However, TPMs provide additional means
to establish context related identities that can be used for the given scenario of
counterfeit protection. Generally, vendor established keys can be based on either
of two approaches – Generated externally and injected into a device / TPM or
generated by the TPM and recorded / certified in a secure way.

Key Injection. In the case of key injection, the OEM or End User create keys
to be used as (context related) identification externally and inject them into the
TPM. After the key injection, the keys are protected by the TPM and can be
utilized as a primary identity credential for a given device. Based on these keys,
the device can proof its origin and identity. This can also be utilized in other
technical as well as organizational processes. To ease the process, the OEM or
End User may issue certificates for these injected keys.

TPM Created Keys. The TPM has the ability to create keys on its own, using
a strong random number generator. These keys are then protected by the TPM
chip, such that the private portion is never known or usable outside of the spe-
cific TPM that generated it. In order to achieve an authentication against the
OEM or End User, the public portions of these keys may be read out in a pro-
tected environment and stored in a database or the OEM or End User may
issue corresponding certificates. Furthermore, it is possible to certify the origin
of these keys using the TPM’s functionalities themselves based upon previously
established identity keys. An establishment of TPM generated keys is even possi-
ble remotely without a protected environment or channel, given that an identity
relation has been established before using another key.

4.2 Local Establishment of a TPM 1.2

The workflow for the local establishment of vendor specific key material with
a certain TPM works similarly to the deployment of custom security tokens.

On the Secure Distribution of Vendor-Specific Keys in Deployment Scenarios 637

The OEM or TPM Supplier generates key material and injects it into the secu-
rity chip (in this case the TPM) in a protected environment. The public portion
is stored for identification and the private portion is usually deleted, such that
it only exists inside the TPM.

Logistics. The logistics process of physical objects (focused on the TPM chip)
in this approach acts are as follows. (i) The TPM Supplier produces a TPM
(optionally without an Endorsement Key (EK) and EK certificate). (ii) The
TPM chip is delivered to a protected environment at the TPM Supplier or the
OEM facilities. (iii) Local, in the protected environment, keys are created by
or injected into the TPM and their public portions recorded in the OEM ’s
database. (iv) The TPM chip is delivered to the Device Assembler. (v) The
TPM chip is assembled into the target device. (vi) The target device is shipped
and distributed. (vii) Remotely, at any time after assembly (from testing at the
Device Assembler to the End User), additional keys can be created by the TPM
or injected into the TPM using the previously established keys.

Identity Establishment. In this usage scenario an establishment of the TPM
provided identity means is not necessary, since it is used in a protected envi-
ronment. The logistics process and trustworthiness between the TPM Supplier
and the OEM need to ensure that a specification conform TPM is used. The
TPM needs to be owned (using TPM TakeOwnership) in order to enable its
Root of Trust for Storage, which also activates the ownership of the EK for
identity reporting. The End User may change the credentials for identity usage
after deployment without invalidating the keys. The only constraint is that the
ownership may not be cleared, since this would invalidate the vendor supplied
keys.

Local Injection of Key. Whilst the TPM is in the protected environment at the
TPM Supplier or OEM facilities, it is possible to inject vendor specific keys
(for storage, signing and binding; not for identity) into the TPM key hierarchy.
To do so, the TPM Supplier or OEM generate a new key-pair and construct
a MigrationBlob that is targeted at the TPM’s Storage Root Key (SRK) using
TPM ConvertMigrationBlob for importing. In order to do so, the TPM must
have been taken into ownership before (the SRK’s authorization value can be
set to the “well-known secret” as defined by the TCG). This process can be
repeated several times. Also, if one of the newly created keys is a storage key,
this may be used for further key injections as parent. The public portions of
these keys (or their fingerprint) are securely saved in the OEM ’s database for
established keys, such that they can be validated in the future. Alternatively,
the TPM Supplier or OEM may issue according certificates to be shipped with
the TPM and later stored on the assembled device. The private portions can
be deleted, as they are wrapped in TPM bound key blobs. These wrapped key
blobs must be shipped with the TPM to the Device Assembler to be accessible
inside the assembled device (the (limited) TPM non-volatile storage area can be
used for this).

638 N. Kuntze et al.

Local TPM-based Key Creation. Whilst the TPM is in the protected environ-
ment, it is possible to let the TPM generate new keys using its internal Random
Number Generator (using TPM CreateWrapKey or TPM MakeIdentity) for use
as vendor specific keys (for storage, signing, binding as well as identity and seal-
ing). To do so, the TPM must have been taken into ownership before. The SRK
is one of these TPM generated keys and can be used as vendor specific storage
key itself (without having to be stored in an additional wrap key blob). The pub-
lic portions of these TPM generated keys can be read (from the public portion of
the KeyStorageBlobs) and must be stored in the OEM ’s database for established
keys or an according certificate must be shipped. The private portions are only
known to this TPM and are wrapped in TPM bound key blobs. These wrapped
key blobs must be shipped with the TPM to the Device Assembler (except for
the SRK; the TPM’s NV storage area can be used for the other keys).

Remote TPM-based Key Generation or Injection after Assembly. If one of the
keys that were created in the protected environment is a signing key, it is possible
to remotely create new keys and use these vendor specific signing keys to certify
(using TPM CertifyKey) that the newly created keys were generated inside the
same TPM and the signing key. This is similar to the Remote Establishment of a
TPM 1.2. If one of the keys that were created in the protected environment is a
storage key, it is possible to remotely inject new keys and use the vendor specific
storage key as target for a MigrationBlob containing this newly created key via
the TPM ConvertMigrationBlob. (This is similar to the Remote Establishment
of a TPM 1.2) Both of these processes can happen while the device is at the
Device Assembler, Distribution Partner or even End User.

4.3 Remote Establishment of a TPM 1.2

The workflow for the Remote Establishment of vendor specific key material in
a TPM 1.2 does not require the existence of a protected environment under
the control of the OEM. Instead, TPM chips are shipped directly to the Device
Assembler and the key material is established after device assembly (potentially
during a testing and registration phase). It does however require and active
network session from the newly assembled device to the OEM.

Logistics. The logistics process of physical objects (focused on the TPM chip)
in this approach acts are as follows. (i) The TPM Supplier produces a TPM
(typically shipped with an Endorsement Key (EK) and EK certificate). (ii) The
TPM chip is directly delivered to the Device Assembler. (iii) The TPM chip is
assembled into the target device. (iv) Remotely, keys are created by or injected
into the TPM by the OEM and their public portions recorded in the OEM ’s
database. (v) The target device is shipped and distributed. (vi) Remotely, at any
time after assembly (from testing at the Device Assembler to the End User),
additional keys can be created by the TPM or injected into the TPM using the
previously established keys.

On the Secure Distribution of Vendor-Specific Keys in Deployment Scenarios 639

Identity Establishment. The approach requires an establishment of a
(pseudonym) identity inside the TPM. This can be done with standard TPMs
that provide an EK certificate via several approaches (such as [6]) or the OEM
may have requested certain custom identity establishment from the TPM Sup-
plier. This identity only needs to account that it actually belongs to a TPM
and is free of collisions. The counting of TPM identities is used to cross check
the Device Assembler ’s production accountings. As a result of this step, there
exists an Attestation Identity Key with the TPM that can be used for further
operations.

TPM-based Key Creation. It is now possible to remotely use the TPM to
generate key pairs (via TPM CreateWrapKey and TPM MakeIdentity) using
the TPM’s internal Random Number Generator (for storage, signing, bind-
ing, identity and sealing). Then the Identity Key can be used to certify (via
TPM CertifyKey) that the newly generated key was actually generated by the
same TPM that the Identity Key is bound to. From the certificate, the OEM may
store the public portion (or the fingerprint) of the certified key in the database
for established vendor keys or issue a certificate to be shipped with the device.
This process may also be performed again after sales of the device at the End
User, even with newly created identity keys instead of the previously established
Identity Key. The original Identity Key can even be deleted.

Injection of Key. It is also possible to remotely inject keys generated by
the OEM (for storage, signing and binding; not for identity). To do so, the
OEM generates a key pair and creates a MigrationBlob using one of the cer-
tified TPM residing key. This may also include using the Storage Root Key
directly. These MigrationBlobs can be imported into the TPM key hierarchy
using TPM ConvertMigrationsBlob and serve as additional vendor specific keys.
The OEM would save the public portions of these key pairs in its database and
delete the private portions, that would be saved in wrapped key blobs on the
device. This process may also be performed again after sales of the device at the
End User, even with newly created identity keys (must be TPM-based Created)
instead of the previously established Identity Key. The original Identity Key can
even be deleted.

4.4 Local Establishment of a TPM 2.0

With the specification of TPM 2.0 an additional key hierarchy has been intro-
duced that can be used by OEM s without interfering with End User ’ use of
the TPM. This key hierarchy is called platform hierarchy. With the OEM being
the designer and administrator of the platform, this key hierarchy is exclusively
used by him. The presented approach again requires a protected environment
for secure establishment of some keys. Additional keys may be introduced in the
future. We do not provide a remote establishment here as the necessary identity
establishment is out of scope for this contribution.

640 N. Kuntze et al.

Logistics. The logistics process of physical objects (focused on the TPM chip)
in this approach acts are as follows. (i) The TPM Supplier produces a TPM
2.0 (optionally without an Endorsement Key (EK) and EK certificate). (ii) The
TPM chip is delivered to a protected environment at the TPM Supplier or the
OEM facilities. (iii) Local, in the protected environment, a Platform Hierarchy
primary key is generated in the TPM the public portion recorded in the OEM ’s
database. (iv) Local, in the protected environment, any number of additional
keys in the Platform Hierarchy can be created and their public portions recorded
in the OEM ’s database. (v) The TPM chip is delivered to the Device Assembler.
(vi) The TPM chip is assembled into the target device. (vii) The target device is
shipped and distributed. (viii) Remotely, at any time after assembly (from testing
at the Device Assembler to the End User), additional keys can be created by
the TPM or injected into the TPM using the previously established keys.

Identity Establishment. In this scenario, an establishment of TPM identity is
not necessary, since it is operated in a protected environment. In the protected
environment at the site of the TPM Supplier or OEM the primary key for the
Platform Hierarchy is created using TPM2 CreatePrimary. This key serves as
a root key for this hierarchy and protects all subsequently created OEM keys.
The OEM reads and stored the public portion of this key in its database via
TPM2 ReadPublic. This can be used for the remote key creation in the future.

Injection of Key. Under the Platform Hierarchy the OEM can import any num-
ber of keys for different purposes using TPM2 LoadExternal and TPM2 Import.
In contrast to TPM 1.2 it is possible to also assign advanced usage policies to
these keys. It is now possible to import symmetric keys into the TPM.

TPM-based Key Creation. Under the Platform Hierarchy, the OEM can create
any number of keys for different purposes using TPM2 Create. It can then read
out the public keys inside the TPM and store it in the database for vendor keys.

Injection of Keys Remotely. Using TPM2 LoadExternal and TPM2 Import of
the TPM 2.0, it is possible to encrypt a new key with an established key. This
way, it is possible to ensure that only the TPM that was targeted can decrypt and
use a newly generated key. This allows the OEM to inject additional keys into the
TPM even after assembly, when the TPM is not in the protected environment.

TPM-based Key Creation Remotely. The TPMs Key Generation capabilities can
be used remotelyusing TPM2 Create. The TPM is instructed to generate a new
key under the Platform Hierarchy. Then an established storage key is used with
the concept of TPM2 ActivateCredential to attest that the newly created key
belongs to the same TPM as the previously established key.

5 Analysis

The OEM now has the ability to establish vendor specific keys with its devices
that can be used for many applications. This section revisits the requirements

On the Secure Distribution of Vendor-Specific Keys in Deployment Scenarios 641

and analyses their fulfilment. Further, it discusses additional functionalities
of TPMs that can be utilized and analyses potential residual threats in this
approach.

5.1 Requirement Fulfillment

Given the requirements from Section 2 we come to the following analysis
of requirement fulfilment. First, the OEM needs to be able to identify non-
counterfeit products and can track all devices sold with the OEM ’s brand name.
The OEM is able to establish an identity key with the TPMs that allows it
to identify an original device and track them. Second, counterfeit devices must
be distinguishable to the OEM and (depending on the type of device) remote
detection of deployed counterfeit products can be necessary. The OEM is able to
distinguish counterfeit devices from original ones even remotely. Note the poten-
tial for Relay Attacks on this. Third, End User need to be able to distinguish
counterfeits from original products. This might require the help of the OEM.
Similar to the above requirements, the End User can request a device validation
by the OEM, e.g. via a device management platform. End User help via e.g. a
management platform helps in the detection of Relay Attacks. Fourth, the End
User should to be able to recognize counterfeits using an offline scheme without
active contribution of the OEM. If the OEM provides certificates for the public
portions of the TPM established identity keys, then the End User can validate
the originality of a given device without active contribution of the OEM.

5.2 Additional TPM Functionalities

Given the installation of a TPM there are additional functionalities that can
be leveraged by the OEM as well as End User. As described in Section 3, one
of the most valuable features of the TPM are the RTM and the RTR. These
features allow the OEM and the End User to assert that a given version of the
firmware or configuration is booted on a given device. These may be utilized
for reporting but also in order to protect credentials that the device possesses
against disclosure or misuse. Note that these depend on the integrity of the
RTM as discussed in the section on Residual Attacks below. Furthermore, the
TPM offers a certain amount of secure storage space (Non-Volatile memory).
This memory can be used for arbitrary data and protected via several means,
including passwords, software configuration and advanced policies in case of the
TPM 2.0. Finally, there exist slight differences between the possibilities of TPM
ownership between TPM 1.2 and TPM 2.0.

TPM 1.2 Ownership. In the case of a TPM 1.2 deployment, the OEM is required
to take ownership of the TPM in order to deploy its keys. Though this still allows
End User to change the authentication values and use the TPM for their own
purposes additionally, it means that a clearing of the ownership is not possible.
This may pose a problem for resale of used devices, since a clearing of ownership
is the only way to protect all TPM-bound resources from reuse by the future

642 N. Kuntze et al.

new device owner. However, the scheme for Remote Establishment of TPM1.2
as described above could be reenacted for a resale scenario. The OEM would
need to employ an according functionality in its management software.

TPM 2.0 Ownership. With the introduction of the Platform Hierarchy in TPM
2.0, it is now possible to completely separate the ownerships between OEM and
End User. Accordingly, the End User may clear their ownership for resale and a
new device owner make claim ownership of the TPM again without gaining access
to the previous owner’s secret material. Given the standard scheme for TPMs
in consumer electronics, the End User and OEM interactions with the different
platforms are distributed between OS and firmware. For devices as discussed in
this scenario however these distributions may be realized differently, since there
is no actual general purpose OS installation planned.

5.3 Residual Threats

Given the presented solutions, the following residual attacks still pose a (minor)
threat. These threats are now discussed and their practical relevance evaluated.

Root of Trust for Measurement Manipulation. The integrity of the RTM is under
the direct responsibility of the Device Assembler. Since the Device Assembler
acts as one of the potential attackers in this scenario, it seems contradictory
to entrust it with this integrity requirement. However, the given scenario in
which the Device Assembler is a potential attacker was solved without the use
of the RTM. The RTM is intended for leveraging the additional TPM function-
alities as described above. For these scenarios, a potential mistrust in the Device
Assembler cannot be technically solved anyways, since the Device Assembler
may always add additional components into a given device that provide so-called
“backdoors”. This can create a majour risk for devices in critical infrastructures
and cannot be prevented by a TPM. However, the identification of the device
based on the TPM will not be affected and, accordingly, the risk potential for
successful attacks on the mechanism introduced in teh paper is not as high, but
should of course be assessed.

Relay Attacks. A relay attack could be performed from counterfeit products in
such a way that devices are assembled without a TPM and any TPM-related
request to this device if forwarded to an original device. In this case, however the
counterfeiter would require one original device per counterfeited device, which
would increase the attack costs beyond the counterfeiter’s gain, and could be
detected by the End User by the additional communication channel from the
counterfeited device to the original device. If the counterfeiter would attempt to
relay several counterfeited devices to the same original device (which would be
profitable), then the End User could still detect the additional communication
and the OEM would recognize the n-to-1 mapping between devices and TPMs,
since e.g. a firmware update would be applied n times for only one device.

On the Secure Distribution of Vendor-Specific Keys in Deployment Scenarios 643

6 Conclusion and Outlook

TPM chips in the current version 1.2 as well as in the upcoming generation 2.0
provides a large set of hardware-based security functionality. It is a generic mass-
market product and billions of devices are estimated to be currently equipped
with a TPM. Many of these TPMs are installed in PCs, where they are mostly
not used. The counterfeit scenario concentrates on other types of devices, such as
routers, embedded systems and other special purpose devices, where hardware-
based security functionalities are are often not readily available. The TPM-based
approach to counterfeit protection describes a new use-case for this security chip.
The process shows that the security functionality provided by the TPM is suit-
able to establish counterfeit prevention and detection for outsourcing scenarios.

It should be noted that the integration of a TPM as well as the imple-
mentation of the initial key enrollment process as part of the anti-counterfeit
scheme can be the basis for the efficient and cost-effective realisation of var-
ious additional security processes. One example is the remote attestation of
software actually running on the system by feeding measurement information
into the TPM through a Integrity Measurement Architecture (IMA) [7] and
using TPM Quote to generate securely report these measurements. This infor-
mation can then be validated by comparing it to the expected status available
through current remote software management systems that only know about
software installed through the regular process. Changes due to attacks to the
device will be recognized by changed hash values for the software that is loaded.
into memory and reported by the TPM. Protocols like Trusted Network Con-
nect or trusted mobile ad-hoc networks [8] use this feature to continuously or
regularly determine the health by checking the software running with reference
values.

Another example of an efficient management process based on the TPM
results from the ability to automatically distribute initial configurations to
the device without the need to touch it. This zero touch configuration proto-
col [6] only requires network access and can be implemented without any pre-
configuration for particular clients. Also credentials for user authentication can
be protected using the TPM. In the context of future production environments
and cross-organization processes, a multi purpose trust anchor like the TPM can
also be used to implement strong concepts for intellectual property protection.

References

1. Stradley, J., Karraker, D.: The electronic part supply chain and risks of counterfeit
parts in defense applications. IEEE Transactions on Components and Packaging
Technologies 29(3), 703–705 (2006)

2. Devadas, S., Suh, E., Paral, S., Sowell, R., Ziola, T., Khandelwal, V.: Design and
implementation of puf-based “unclonable” rfid ics for anti-counterfeiting and secu-
rity applications. In: 2008 IEEE International Conference on RFID. IEEE (2008)

3. Mitchell, C., Mitchell, C., Mitchell, C.: Trusted computing. Springer (2005)

644 N. Kuntze et al.

4. Parno, B., McCune, J.M., Perrig, A.: Bootstrapping trust in commodity computers.
In: 2010 IEEE Symposium on Security and Privacy (SP). IEEE (2010)

5. Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proceedings
of the 11th ACM Conference on Computer and Communications Security. ACM
(2004)

6. Kuntze, N., Rudolph, C.: On the automatic establishment of security relations for
devices. In: Proceedings of the IFIP/IEEE International Symposium on Integrated
Network Management. IFIP/IEEE (2013)

7. Sailer, R., Zhang, X., Jaeger, T., Van Doorn, L.: Design and implementation of a tcg-
based integrity measurement architecture. In: Proceedings of the 13th Conference
on USENIX Security Symposium, vol. 13, pp. 16–16 (2004)

8. Oberle, A., Rein, A., Kuntze, N., Carsten, R., Paatero, J., Andrew, L., Racz, P.:
Integrating Trust Establishment into Routing Protocols of Today’s MANETs. In:
2013 IEEE Wireless Communications and Networking Conference (WCNC 2013),
Shanghai, China, pp. 1403–1408, April 2013

Erratum to: On the Secure Distribution of
Vendor-Specific Keys in Deployment Scenarios

Nicolai Kuntze and Carsten Rudolph(B)

Fraunhofer Institute for Secure Information Technology,
Rheinstraße 75, 64295 Darmstadt, Germany
{kuntze,rudolphc}@sit.fraunhofer.de

Erratum to: Chapter 42 in:
H. Federrath and D. Gollmann (Eds.)
ICT Systems Security and Privacy Protection
DOI: 10.1007/978-3-319-18467-8 42

By mistake in the initial version of the paper the author Andreas Fuchs was
not included in the author list. Therefore an updated version of the contribution
with the authors ”Nicolai Kuntze, Andreas Fuchs, and Carsten Rudolph” has
been published.

The online version of the updated chapter can be found under
DOI: 10.1007/978-3-319-18467-8 42

c© IFIP International Federation for Information Processing 2015
H. Federrath and D. Gollmann (Eds.): SEC 2015, IFIP AICT 455, p. E1, 2015.
DOI: 10.1007/978-3-319-18467-8 43

Author Index

Abadi, Aydin 3
Aberer, Karl 585
Achemlal, Mohammed 557
Allahbakhsh, Mohammad 189
Almeshekah, Mohammed H. 159
Alpár, Gergely 463
Aspinall, David 571
Atallah, Mikhail J. 159
Atluri, Vijayalakshmi 354

Bansal, Chetan 97
Bartel, Alexandre 513
Bella, Giampaolo 495
Bissyandé, Tegawendé F. 513
Blanc, Gregory 252
Blanco-Justicia, Alberto 18
Bouabdallah, Abdelmadjid 557
Bubel, Richard 401

Cabot, Jordi 218
Carbino, Timothy J. 204
Carlsson, Niklas 174
Chen, Yu 431
Connolly, Lena 283
Cuppens, Frédéric 218
Cuppens-Boulahia, Nora 218

De Capitani di Vimercati, Sabrina 446
Debar, Hervé 252
Deng, Liang 386
Diao, Wenrui 542
Do, Quoc Huy 401
Domingo-Ferrer, Josep 18
Dong, Changyu 3
Dubovitskaya, Alevtina 585
Duong, Anh-Duc 479

Echizen, Isao 479
Erdin, Esra 51

Faneca, Carlos 237
Fonseca, Diogo 528

Foresti, Sara 446
Freire, Mário M. 528
Fromm, Alexander 371
Fuchs, Andreas 630

Garcia-Alfaro, Joaquin 218, 252
Giustolisi, Rosario 495
Goldkuhl, Göran 297
Gunduz, Gurhan 51
Gunes, Mehmet Hadi 51

Haghighi, Mo 601
Hähnle, Reiner 401
Hedström, Karin 297
Hoepman, Jaap-Henk 463
Hof, Hans-Joachim 267
Hu, Jinwei 112

Ignjatovic, Aleksandar 189
Inácio, Pedro R.M. 528
Isazadeh, Ayaz 82

Jajodia, Sushil 446
Jamroga, Wojciech 67
Jha, Sanjay 189
Jhawar, Ravi 339

Karimpour, Jaber 82
Karlsson, Fredrik 297
Kaur, Jaspreet 616
Kesdogan, Dogan 35
Kheir, Nizar 252
Klein, Jacques 513
Klukovich, Eric 51
Knorr, Konstantin 571
Kordy, Barbara 339
Kumar, Amrit 126
Kuntze, Nicolai 630

Lang, Michael 283
Lauradoux, Cédric 126
Lenzini, Gabriele 495
Li, Li 513

Li, Zhou 542
Line, Maria B. 311
Liu, Xiangyu 542
Liu, Yao 386
Lopez Jr., Juan 204
Lorenzi, David 354
Lovat, Enrico 371
Lü, YaShuai 431
Lü, Yongqiang 431
Lueks, Wouter 463

Mahanti, Anirban 174
Mantel, Heiko 112
Maraslis, Konstantinos 601
Martínez, Salvador 218
Mauw, Sjouke 339
Meier, Michael 616, 267
Milic-Frayling, Natasa 97
Ming, Jiang 416
Moe, Nils Brede 311
Mohr, Martin 371

Neto, Miguel 528
Noroozi, Ali A. 82

Oikonomou, George 601

Paraboschi, Stefano 446
Pham, Dang Vinh 35
Pohl, Christoph 267
Preibusch, Sören 97
Pretschner, Alexander 371

Radomirović, Saša 339
Reis, Simão 237
Rezvani, Mohsen 189
Rudolph, Carsten 630
Ruhleder, Sebastian 112
Ryan, Peter Y.A. 495

Sabt, Mohamed 557
Samarati, Pierangela 446
Schumacher, Michael I. 585
Shahmehri, Nahid 174

Shi, Yuanchun 431
Sommestad, Teodor 325
Spafford, Eugene H. 159
Spyridopoulos, Theodoros 601
Sural, Shamik 354

Tabatabaei, Masoud 67
Temple, Michael A. 204
Terzis, Sotirios 3
Tonejc, Jernej 616
Tran, Minh-Triet 479
Traon, Yves Le 513
Trujillo-Rasua, Rolando 339
Truong, Toan-Thinh 479
Tryfonas, Theo 601
Tygar, J.D. 283

Urovi, Visara 585
Uzun, Emre 354

Vaidya, Jaideep 354
Vapen, Anna 174
Vasirani, Matteo 585
Vieira, José 237
Vigário, Francisco 528
Vigentini, Lorenzo 189
Vullers, Pim 463

Wendzel, Steffen 616
Wolters, Maria 571
Wu, Dinghao 416
Wu, Qianhong 18

Xu, Dongpeng 416

Yamada, Asahiko 145
Yang, Dingqi 252

Zeng, Qingkai 386
Zhang, Kehuan 542
Zhang, Zhijiao 431
Zhou, Zhe 542
Zugenmaier, Alf 267
Zúquete, André 237

646 Author Index

	Preface
	Organization
	Contents
	Privacy
	O-PSI: Delegated Private Set Intersection on Outsourced Datasets
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Security Model
	3.2 Homomorphic Encryption
	3.3 Polynomial Representation of Sets

	4 O-PSI: Delegated Private Set Intersection on Outsourced Datasets
	4.1 Polynomials in Point-value Form
	4.2 O-PSI Protocol

	5 Proof of Security
	6 Extensions
	6.1 Dataset Integrity Verification
	6.2 Multiple Clients

	7 Evaluation
	8 Conclusions and Future Work
	References

	Flexible and Robust Privacy-Preserving Implicit Authentication
	1 Introduction
	1.1 Contribution and Plan of this Paper

	2 Background
	2.1 Implicit Authentication
	2.2 Privacy-Preserving Implicit Authentication

	3 Dissimilarity Between Sets Depending on the Data Type
	3.1 Case A: Independent Nominal Feature Values
	3.2 Case B: Correlated Categorical Feature Values
	3.3 Case C: Numerical Feature Values

	4 Robust Privacy-Preserving Set Intersection for Implicit Authentication
	4.1 Implicit Authentication in Case A
	4.2 Implicit Authentication in Case B
	4.3 Implicit Authentication in Case C

	5 Privacy, Security and Complexity
	5.1 Privacy and Security
	5.2 Complexity

	6 Experimental Results
	7 Conclusions and Future Research
	A Background on Privacy-Preserving Set Intersection
	B Paillier's Cryptosystem
	C Correctness
	C.1 Set-up Protocol
	C.2 Implicit Authentication Protocol

	References

	Towards Relations Between the Hitting-Set Attack and the Statistical Disclosure Attack
	1 Introduction
	1.1 Related Works
	1.2 Structure

	2 Mix and Attacker Model
	2.1 Attacker Model
	2.2 Hitting-Set Attack

	3 Mean Number of Observations for Unique Identification
	3.1 Mean Number of Observations for k-Exclusivity
	3.2 Relation to Statistical Disclosure Attack

	4 Evaluation
	5 Conclusion
	A Proof of Claim
	References

	POSN: A Personal Online Social Network
	1 Introduction
	2 Cloud as Storage
	3 Friendship Establishment
	4 Data Dissemination
	5 Privacy Protection
	6 Commenting
	7 Search Optimization
	8 Data Distribution Optimization
	9 Discussion
	9.1 Social Challenges
	9.2 Security Challenges

	10 Related Work
	11 Conclusions
	References

	Strategic Noninterference
	1 Introduction
	2 Preliminaries: Noninterference and Strategies
	2.1 Standard Concept of Noninterference
	2.2 Strategies and Their Outcomes

	3 Strategic Noninterference
	3.1 Goal-Driven Strategic Noninterference
	3.2 Private vs. Public Strategies

	4 Formal Characterization of Strategic Noninterference
	4.1 Unwinding Relations for Standard Noninterference
	4.2 Unwinding for Strategic Noninterference
	4.3 Strategy-Specific Unwinding Relations

	5 Conclusions
	References

	Verifying Observational Determinism
	1 Introduction
	2 Preliminaries
	3 Observational Determinism
	4 Verification of Observational Determinism
	5 Related Work
	6 Conclusion
	References

	Web Security
	Cache Timing Attacks Revisited:Efficient and Repeatable Browser History,OS and Network Sniffing
	1 Introduction
	2 Related Work
	2.1 Browsing History Extraction
	2.2 Cache Timing for Inference of Private Information and Identity

	3 Attack Principles and Improvements
	3.1 Attack Mechanics
	3.2 Improved CTAs

	4 Case Studies
	4.1 Online Banking Security Images
	4.2 User Identification in Social Networks
	4.3 Monitoring Search Queries in Real-time

	5 Potential Defences and Their Limits
	5.1 Failed Mitigations
	5.2 HTTPS and Private Browsing Don’t help
	5.3 Our Proposed Mitigations

	6 Discussion and Concluding Remarks
	6.1 Cyber-Espionage of Corporate Intranets
	6.2 Policy Recommendations and Managerial Implications

	7 Summary and Future Work
	References

	Enforcing Usage Constraints on Credentials for Web Applications
	1 Introduction
	2 Preliminaries and Problem Statement
	3 Algorithm
	4 Implementation
	4.1 Browser Extension
	4.2 Reference Monitor

	5 Experiments
	5.1 Credential Generator
	5.2 Experimental Credential Sets
	5.3 Experimental Results

	6 Related Work and Conclusion
	A The Helper Functions
	References

	A Survey of Alerting Websites: Risks and Solutions
	1 Introduction
	2 Alerting Websites: Risks
	3 Privacy-Friendly Solutions: Private vs. Public Database
	4 Solutions for Private Databases
	5 Solutions for Public Databases
	5.1 Tools
	5.2 Membership Query Using PIR
	5.3 Extension with PBR Protocol

	6 Practicality of the Solutions
	6.1 Applicability of PIR
	6.2 Experimental Analysis

	7 Conclusion
	References

	Access Control, Trust and Identity Management
	A Generalization of ISO/IEC 24761 to Enhance RemoteAuthentication with Trusted Product at Claimant
	1 Introduction
	2 Current Technologies
	3 ISO/IEC 24761, A Related Work in Biometric Authentication
	4 Problem Definition
	5 Assumptions
	6 Proposal
	6.1 Production Process
	6.2 Registration Process
	6.3 Authentication Process

	7 Considerations
	7.1 Comparison with the Qualified Certificate Model
	7.2 Application of the Proposal to ITU-T X.1085 | ISO/IEC 17922 BHSM
	7.3 Future Works

	8 Conclusion
	References

	Enhancing Passwords Security Using Deceptive Covert Communication
	1 Introduction
	2 Background
	2.1 Authentication Schemes
	2.2 Use of Smartphones
	2.3 Use of Deception and Covert Messages

	3 Technical Specification
	3.1 Attack Scenarios
	3.2 Scheme -- Setup
	3.3 Scheme -- Login
	3.4 Incorporating Deception and Covert Communication
	3.5 Security Analysis
	3.6 Scheme -- Enhancements

	4 Comparison with Other Schemes
	5 Conclusion
	References

	Information Sharing and User Privacy in the Third-Party Identity Management Landscape
	1 Introduction
	1.1 Contributions and Roadmap

	2 Protocol and IDP Selection
	3 App Rights and Information Flows
	3.1 Classification of Information
	3.2 Risk Types
	3.3 RP-Based Analysis
	3.4 Head-to-Head IDP Comparison

	4 Multi-account Information
	4.1 Information Collision
	4.2 Account Merging and Collisions
	4.3 Cross-IDP Information Leakage

	5 Related Work
	6 Discussion and Conclusions
	References

	An Iterative Algorithm for Reputation Aggregation in Multi-dimensional and Multinomial Rating Systems
	1 Introduction
	2 Preliminaries
	2.1 Basic Concepts and Notation
	2.2 Rating Through Voting

	3 Reputation Aggregation System
	3.1 Distance Between Nominal Values
	3.2 Provenance-Aware Credibility Propagation
	3.3 Iterative Vote Aggregation
	3.4 Multi-dimensional Reputation

	4 Experiments
	4.1 Experimental Environment
	4.2 Robustness Against False Ratings
	4.3 Rating Resolutions and Users Variances
	4.4 Accuracy Over HetRec 2011 MovieLens Dataset
	4.5 Accuracy Over Student Feedback Dataset

	5 Related Work
	6 Conclusions
	References

	A Comparison of PHY-Based Fingerprinting Methods Used to Enhance Network Access Control
	1 Introduction
	2 Background
	3 Experimental Methodology
	3.1 RF-DNA Fingerprinting
	3.2 CB-DNA Fingerprinting
	3.3 Device Discrimination

	4 Discrimination Results
	5 Summary and Conclusions
	References

	Model-Driven Integration and Analysis of Access-control Policies in Multi-layer Information Systems
	1 Introduction
	2 Motivation
	3 Approach
	4 Policy Translation
	4.1 XACML Policy Language
	4.2 Translation to XACML and Profiles

	5 Integration
	6 Global Analysis of Inter-Component Anomalies
	6.1 Basic Operations
	6.2 Detection of Rule Anomalies

	7 Implementation
	8 Related Work
	9 Conclusions and Future Work
	References

	Network Security
	Authenticated File Broadcast Protocol
	1 Introduction
	2 File Broadcast Protocol
	2.1 Security Vulnerabilities/Attacker Model
	2.2 Authentication Requirements and Alternatives

	3 Authenticated File Broadcast Protocol
	3.1 Design Assumptions and Options
	3.2 Key Distribution and Validation
	3.3 Authenticator Generation
	3.4 Replay Attacks Against Clients

	4 Implementation Details
	4.1 Key Generation and Distribution
	4.2 Production of Authenticators

	5 Performance Evaluation
	5.1 Analysis of Results

	6 Related Work
	7 Conclusions
	References

	Automated Classification of C&C Connections Through Malware URL Clustering
	1 Introduction
	2 Background and System Overview
	3 Experimental Results
	3.1 Cluster Validation
	3.2 Evaluation of the Detection Signatures
	3.3 Evaluation Against Live Internet Traffic
	3.4 Resilience to Malware Evasion

	4 Related Work
	5 Conclusion
	References

	B.Hive: A Zero Configuration Forms Honeypot for Productive Web Applications
	1 Introduction
	2 Overview
	3 Related Work
	4 Design and Implementation
	4.1 Generation of Plausible Fields
	4.2 Position of Form Fields
	4.3 Field Type and Default Value

	5 Evaluation
	5.1 Choice of System Parameters
	5.2 Evaluation of Effectiveness
	5.3 Evaluation of Honeypot Quality
	5.4 Performance Evaluation

	6 Conclusion and Outlook
	References

	Security Management and Human Aspects of Security
	Investigation of Employee Security Behaviour:A Grounded Theory Approach
	1 Introduction
	2 Theoretical Context
	2.1 Culture
	2.2 Organisational Culture and Security Behaviour
	2.3 National Culture and Security Behaviour
	2.4 Security Countermeasures and Security Behaviour

	3 Research Methodology
	4 Preliminary Findings
	4.1 Organisational Culture Values and Security Behaviour
	4.2 National Culture and Security Behaviour
	4.3 Security Countermeasures and Security Behaviour

	5 Conclusion
	References

	Practice-Based Discourse Analysis of InfoSec Policies
	1 Introduction
	2 Information Security Policy Theories
	3 Research Approach
	3.1 The Study Object and Its Implication on Overall Research Strategy
	3.2 Case Study and Data Collection
	3.3 A Conceptual Framework for Practice-Based Discourse Analysis
	3.4 Analytical Steps

	4 From Discourse Analysis to Tentative Quality Criteria
	4.1 Thematic Analysis of Information Security Policy
	4.2 Towards Tentative Quality Criteria

	5 Conclusions
	References

	Understanding Collaborative Challenges in IT Security Preparedness Exercises
	1 Introduction
	2 Background
	2.1 Tabletop Exercises
	2.2 Coordination in Preparedness Exercises

	3 Method
	3.1 Scenario
	3.2 Case Context
	3.3 Data Collection and Analysis

	4 Results
	4.1 Knowledge Exchange and Process Improvement
	4.2 Cross-Functional Self-Managing Groups
	4.3 Involvement of Emergency Management Team

	5 Discussion
	Having One Goal Only.
	Enabling Self-Management and Growing Team Knowledge.
	Availability of Personnel.
	Time Management.
	Use of Existing Documentation.
	Involvement of Business Management.

	6 Concluding Remarks and Future Research
	References

	Social Groupings and Information SecurityObedience Within Organizations
	1 Introduction
	2 Theory and Research Questions
	2.1 The Theory of Planned Behavior
	2.2 Information Security Culture
	2.3 Hypotheses

	3 Method and Materials
	3.1 Measurement Instrument
	3.2 Data Collection Procedure
	3.3 Instrument Validity

	4 Results
	5 Discussion
	5.1 Dependence Between Social Groupings and Confounding Variables
	5.2 Theory of Planned Behavior as a Mediator of Cultural Phenomena
	5.3 Measurement Issues

	6 Conclusion
	Appendix: Questionnaire Items
	References

	Attack Trees with Sequential Conjunction
	1 Introduction
	2 Related Work and Motivation
	3 Attack Trees with Sequential Conjunction
	3.1 SAND Attack Trees
	3.2 Series-Parallel Graphs
	3.3 SP Semantics for SAND Attack Trees

	4 Axiomatization of the SP Semantics
	4.1 A Complete Set of Axioms for the SP Semantics
	4.2 SAND Attack Trees in Canonical Form
	4.3 SP Semantics as a Generalization of the Multiset Semantics

	5 Attributes
	6 Conclusions
	References

	Enhancing the Security of Image CAPTCHAs Through Noise Addition
	1 Introduction
	2 Related Work
	3 Attack Methods and Defense Strategies
	3.1 Stopping Image Search Attacks
	3.2 Stopping Computer Vision Attacks

	4 Methodology
	4.1 The SIGNAC Approach
	4.2 RIS Engine Probing
	4.3 Noise for Anti-computer Vision

	5 Experimental Results and Analysis
	5.1 RIS Engine Testing
	5.2 Computer Vision Testing
	5.3 Limitations

	6 Usability Study
	7 Conclusions and Future Work
	References

	Software Security
	SHRIFT System-Wide HybRid Information Flow Tracking
	1 Introduction
	2 Our Approach
	2.1 Static Analysis
	2.2 Instrumentation
	2.3 Runtime

	3 Evaluation
	3.1 Settings
	3.2 Precision (RQ1) and Static Analysis Performance (RQ2)
	3.3 Runtime Performance (RQ3)

	4 Discussion
	5 Related work
	6 Conclusions and Future Work
	References

	ISboxing: An Instruction Substitution Based Data Sandboxing for x86 Untrusted Libraries
	1 Introduction
	2 Related Work
	3 Assumptions and Attack Model
	4 Instruction Substitution Based Data Sandboxing
	4.1 Data Sandboxing Policy
	4.2 Background: x86 Memory Addressing
	4.3 Previous Data Sandboxing
	4.4 ISboxing's Data Sandboxing

	5 Sandboxing Untrusted Libraries
	5.1 Binary Disassembling and Rewriting
	5.2 Memory Relocation
	5.3 CFI Enforcement

	6 Implementation
	7 Evaluation
	7.1 Performance Evaluation
	7.2 Code-Size Increase

	8 Discussion
	9 Conclusion
	References

	Exploit Generation for Information Flow Leaks in Object-Oriented Programs
	1 Introduction
	2 Background
	2.1 Information Flow Policies
	2.2 Logic-Based Information Flow Analysis

	3 Exploit Generation for Insecure Programs
	3.1 Logic Characterization of Insecurity
	3.2 Target Conditional Delimited Release

	4 Exploit Generation Using Program Specifications
	4.1 Loop Specification
	4.2 Method Contracts
	4.3 General Observations and Remarks

	5 Implementation and Experiments
	5.1 The KeY Exploit Generation Tool
	5.2 Exploit Generation Using a Simple Example
	5.3 Experiments

	6 Related Work
	7 Conclusion
	References

	Memoized Semantics-Based Binary Diffing with Application to Malware Lineage Inference
	1 Introduction
	2 Background
	3 Performance Bottleneck
	4 Optimization
	4.1 Union-Find Set of Equivalent Basic Blocks
	4.2 Concretizing Symbolic Formulas
	4.3 Caching Equivalence Queries
	4.4 Basic Blocks Fast Matching

	5 Experimental Evaluation
	5.1 Implementation and Experiment Setup
	5.2 Performance

	6 Related Work
	7 Conclusion
	References

	Mitigating Code-Reuse Attacks on CISCArchitectures in a Hardware Approach
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Elimination of Unintended Instructions
	3.2 Further Protection Measures

	4 Performance Evaluation
	5 Concluding Remarks
	References

	Integrity for Approximate Joins on Untrusted Computational Servers
	1 Introduction
	2 Basic Concepts and Problem Statement
	3 Approximate Join Transformation
	3.1 Discretized Domain
	3.2 Choosing the Correct Granularity

	4 Join Evaluation and Correctness of the Approach
	5 Experimental Results
	6 Related Work
	7 Conclusions
	References

	Applied Cryptography
	Fast Revocation of Attribute-Based Credentials for Both Users and Verifiers
	1 Introduction
	2 The Idea
	2.1 Verifier-Local Revocation
	2.2 Our Scheme

	3 A Primer on ABCs
	4 The Full Scheme
	4.1 Sketch of the Security of the Scheme

	5 Showing Protocol for Idemix
	6 Implementation
	6.1 Obtaining Revocation Information
	6.2 Instantiating Epochs
	Embedded Devices.

	6.3 How to Choose the Epochs
	6.4 Experiments
	Fast Smart Card Implementation.
	Fast Revocation List Calculation.

	6.5 The Size of a Revocation List

	7 Related Work
	8 Discussion and Conclusion
	References

	Chaotic Chebyshev Polynomials Based Remote User Authentication Scheme in Client-Server Environment
	1 Introduction
	2 Review and Cryptanalysis of Chang et al.'s Scheme
	2.1 Review of Chang et al.'s Scheme
	Registration Phase.
	Authentication Phase.
	Password Change Phase.
	Lost Card Revocation Phase.

	2.2 Cryptanalysis of Chang et al.'s Scheme
	Inability to Protect User Anonymity.
	Impersonation Attack.
	Session Key Attack.

	3 Proposed Scheme
	3.1 Registration Phase
	3.2 Login Phase
	3.3 Authentication and Session Key Agreement Phase
	3.4 Password Update Phase
	3.5 Lost Card Revocation Phase

	4 Security and Efficiency Analysis
	4.1 Correctness Proof
	4.2 Resistance to Common Attacks
	Replay Attack.
	User And Server Impersonation Attack.
	User Anonymity Protected.
	Perfect forward secrecy (PFS).

	4.3 Efficiency Analysis

	5 Conclusions
	References

	A Secure Exam Protocol Without Trusted Parties
	1 Introduction
	2 Related Work
	3 Security Requirements and Threat Model
	3.1 Threat Model and Assumptions

	4 The Protocol
	4.1 Description of the Protocol in Detail

	5 Analysis
	5.1 Modelling Choices

	6 Conclusion and Future Work
	References

	Mobile and Cloud Services Security
	ApkCombiner: Combining Multiple Android Apps to Support Inter-App Analysis
	1 Introduction
	2 Background and Motivation
	2.1 Android IAC Overview
	2.2 Static Analysis for Android Apps
	2.3 A Running Example

	3 ApkCombiner
	3.1 Overview
	3.2 Resolution of Conflicts

	4 Evaluation
	4.1 Time performance
	4.2 Inter-app analysis

	5 Discussion
	6 Related Work
	7 Conclusion
	References

	Assessment of the Susceptibility to Data Manipulation of Android Games with In-app Purchases
	1 Introduction
	2 Related Work
	3 Data Set
	4 Method
	5 Discussion and Results
	6 Conclusions and Future Work
	References

	An Empirical Study on Android for Saving Non-shared Data on Public Storage
	1 Introduction
	2 Adversary Model
	3 Background of Android Public Storage
	4 Survey on Information Leaks from Public Storage
	4.1 Investigation on Popular Apps
	4.2 Investigation on Apps with a Large Scale

	5 Inferring User's location
	5.1 Attack Preparation
	5.2 Attack Framework

	6 Mitigations
	7 Discussion
	8 Related Work
	9 Conclusion
	A The Details of User Private Data
	References

	The Dual-Execution-Environment Approach: Analysis and Comparative Evaluation
	1 Introduction
	2 Background
	3 Dual-EE Solutions
	4 Comparison Methodology
	4.1 Functional Criteria
	4.2 Security Criteria
	4.3 Deployability Criteria

	5 Comparative Evaluation
	5.1 External Hardware Module: Smart Card
	5.2 Bare-Metal Hypervisor: KVM/ARM
	5.3 Special Processor Extensions: TrustZone

	6 Discussion
	7 Related Work
	8 Conclusions and Future Work
	References

	On the Privacy, Security and Safety of Blood Pressure and Diabetes Apps
	1 Introduction
	2 Hypertension and Diabetes
	2.1 Privacy Threats and Relevant Regulation
	2.2 Threat Scenarios for mHealth Apps in Use

	3 Methodology
	3.1 Our Method

	4 Results and Discussion
	5 Conclusions
	References

	A Cloud-Based eHealth Architecture for Privacy Preserving Data Integration
	1 Introduction
	2 Use Case Scenario
	3 Related Work
	3.1 Multi-key Searchable Encryption
	3.2 Anonymity of Medical Data
	3.3 Existing Approaches

	4 Proposed e-Health Architecture
	4.1 Data Structure
	4.2 Sharing and Accessing Patient's Data for the Treatment
	4.3 Anonymization of Patients' Data for Research Purposes

	5 Discussion
	5.1 Limitations
	5.2 Possible Threats and Countermeasures

	6 Conclusion and Future Work
	References

	Cyber-physical Systems and Critical Infrastructures Security
	Application of a Game Theoretic Approach in Smart Sensor Data Trustworthiness Problems
	1 Introduction
	2 Basic Background
	3 Related Work
	4 Examining Smart Sensor Data Trustworthiness
	4.1 Modification Detection Model
	4.2 Modification Correction Model
	4.3 Model Results

	5 Validation in a Cluster-Based Deployment
	6 Validation in an IPv6-Based Deployment
	7 Conclusions
	References

	Securing BACnet's Pitfalls
	1 Introduction
	2 Related Work
	3 Structure of BACnet NPDU and APDU
	3.1 Network Layer
	3.2 Application Layer

	4 Exploiting the BACnet Network and Application Layer
	4.1 Attacks Adapted from TCP/IP
	Covert Channels.
	Abnormal Behavior Leading to Botnets in BAS.

	4.2 Attacks Specific to BACnet/IP
	Standard Non-conformance.
	Vulnerable Protocol Design.

	5 A Snort-Based BACnet Normalizer
	5.1 Standard Conformity
	NPCI Field.
	BACnet Non-Security Message Types.
	BACnet Security Message Types.
	APCI Field.
	Handling of BACnet Priority Messages.

	5.2 Prevention of Network Covert Channels
	5.3 Closing Protocol Security Flaws

	6 BACnet Testbed
	7 Evaluation and Future Work
	References

	On the Secure Distribution of Vendor-Specific Keys in Deployment Scenarios
	1 Introduction
	2 Scenario
	3 Trusted Computing Basics
	3.1 Roots of Trust
	3.2 Basic Trusted Platform Features

	4 Vendor Specific Key Establishment
	4.1 TPM Generated versus Vendor Injected Keys
	4.2 Local Establishment of a TPM 1.2
	4.3 Remote Establishment of a TPM 1.2
	4.4 Local Establishment of a TPM 2.0

	5 Analysis
	5.1 Requirement Fulfillment
	5.2 Additional TPM Functionalities
	5.3 Residual Threats

	6 Conclusion and Outlook
	References

	Erratum to: On the Secure Distribution of Vendor-Specific Keys in Deployment Scenarios
	Author Index

