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Abstract. Eigenvalue analysis based on linear operators has been exten-
sively used in signal and image processing to solve a variety of problems
such as segmentation, dimensionality reduction and more. Recently, non-
linear spectral approaches, based on the total variation functional have
been proposed. In this context, functions for which the nonlinear eigen-
value problem λu ∈ ∂J(u) admits solutions, are studied. When u is the
characteristic function of a set A, then it is called a calibrable set. If
λ > 0 is a solution of the above problem, then 1/λ can be interpreted as
the scale of A. However, this notion of scale remains local, and it may
not be adapted for non-local features. For this we introduce in this paper
the definition of non-local scale related to the non-local total variation
functional. In particular, we investigate sets that evolve with constant
speed under the non-local total variation flow. We prove that non-local
calibrable sets have this property. We propose an onion peel construction
to build such sets. We eventually confirm our mathematical analysis with
some simple numerical experiments.

Keywords: Non-local · Total variation · Calibrable sets · Scale · Non-
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1 Introduction

Since the seminal work by Rudin et al in [19], total variation is established
as a main tool in mathematical image processing. It has been used for many
applications such as denoising, deblurring, inpainting (see e.g. [3] and references
herein). In a series of papers, V. Caselles and his co-authors have computed
explicit solutions of the total variation flow problem [1,2,9]:{

u(x, 0) = f(x),
∂u
∂t = div

(
∇u

|∇u|
)

.
(1)

In particular, it is shown that if f = χA with A a non empty closed convex set,
such that the absolute value of its curvature is smaller than λA = Per(A)

|A| (with
Per(A) the perimeter of A and |A| its area) , then the solution of (1) is given by
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u(t) = (1 − tλA)+χA. More generally, calibrable sets evolve with constant speed
under the total variation flow. Notice that the notion of calibrable sets was also
a key ingredient to build explicit solutions of the TV − L1 problem [10,11]. The
quantity λA = Per(A)

|A| , known as the Cheeger constant, can be seen as the inverse
of a scale, and this has been used in works such as [7,15,20,21].

A calibrable set A is such that the following nonlinear eigenvalue problem
has a solution (with u = χA):

p(u) = λu, p(u) ∈ ∂J(u), (2)

where J(u) is the total variation functional and ∂J(u) is its subgradient.
In [13] a generalization of eigenfunction analysis to the nonlinear case was

proposed in the following way. Define

φ(t;x) := utt(t;x)t, (3)

where utt is the second time derivative of the solution u(t;x) of the TV-flow
(1). For f(x) admitting (2), with a corresponding eigenvalue λ, one obtains
φ(t;x) = δ(t − 1/λ)f(x). When f is composed of separable eigenfunctions with
eigenvalues λi one obtains through φ(t;x) a decomposition of the image into
its eigenfunctions at t = 1/λi. In the general case, φ yields a continuum multi-
scale representation of the image, generalizing structure-texture decomposition
methods like [4,5,17]. One can reconstruct the original image by:

f(x) =
∫ ∞

0

φ(t;x)dt + f̄ , (4)

where f̄ = 1
|Ω|

∫
Ω

f(x)dx. Given a transfer function H(t) ∈ IR, image filtering
can be performed by:

fH(x) :=
∫ ∞

0

H(t)φ(t;x)dt + f̄ .

The spectrum S(t) corresponds to the amplitude of each scale:

S(t) := ‖φ(t;x)‖L1(Ω) =
∫

Ω

|φ(t;x)|dx. (5)

The goal of this paper is to extend this notion of scale to a non-local setting.
Non-local approaches have become very popular in the last past years since the
seminal work by Buades et al [8]. A non-local version of the total variation based
on graphs was introduced in [14]. See recent related studies analyzing non-local
and double-integral functionals in [6,18]. Here we intend to propose a non-local
notion of scale, and to this end we will introduce a notion of non-local disks and
more generally of non-local calibrable sets.

The plan of the paper in the following. In section 2, we recall the non-local
setting introduced in [14], and how it connects to the classical local setting. In
section 3, we consider the graph point of view of [12,22] to define all the non-local
notions we need, and in particular a non-local scale. In section 4, we propose a
construction of non-local disks based on an onion peel analysis. We eventually
show some numerical results to illustrate our analysis in Section 5.



68 J.-F. Aujol et al.

2 Background and Definitions of Non-Local Operators

We first recall the basic non-local operators. We give the definitions in the con-
tinuous setting in order to make clear connections with respect to the classical
local variational approaches.

2.1 Non-Local Operators

Given a bounded domain Ω ⊂ R
2 we have non-negative weights w(x, y) ≥ 0

between any two points x, y ∈ Ω. These weights correspond to affinities between
the points. For simplicity, we assume that the weights are symmetric, that is
w(x, y) = w(y, x), the extension to non symmetric weights being straightforward.
In this context we have two types of functions: scalar functions and vector func-
tions. Scalars are the standard functions u : Ω → R, whereas vectors, denoted
v(x), or v(x, y), have the following mapping v : Ω × Ω → R. For example, a
non-local gradient maps a scalar to a vector function.

The inner product of two vectors v1(x) and v2(x) is defined as:

〈v1,v2〉Ω :=
∫

Ω

v1(x, y)v2(x, y)dy. (6)

We can now define the main non-local operators. The non-local gradient ∇wu(x) :
Ω → Ω × Ω is defined as:

(∇wu)(x, y) := (u(y) − u(x))
√

w(x, y), x, y ∈ Ω. (7)

The non-local divergence divw v(x) : Ω × Ω → Ω is:

(divw v)(x) :=
∫

Ω

(v(x, y) − v(y, x))
√

w(x, y)dy. (8)

Some basic properties, similar to the standard local operators, can be shown, as
for example the gradient and divergence adjoint relation:

〈∇wu,v〉 = 〈u,−divw v〉. (9)

2.2 Non-Local Total-Variation

The difference-based functional we consider is

J(u) =
∫

Ω×Ω

ψ((u(y) − u(x))2w(x, y))dydx, (10)

and its variation with respect to u reads

∂uJ(u) = −4
∫

Ω

(u(y) − u(x))w(x, y)ψ′((u(y) − u(x))2w(x, y))dy. (11)

Taking ψ(s) =
√

s/2 we define the non-local total-variation as:

JNL−TV (u) =
1
2

∫
Ω×Ω

|u(x) − u(y)|
√

w(x, y)dydx (12)
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The above functional corresponds in the local two dimensional case to the
anisotropic TV:

JTV (u) =
∫

Ω

(|ux1 | + |ux2 |)dx.

Although all the results of the paper remain true in the isotropic case, we have
decided to present in this work only the anisotropic setting. Following the clocal
TV-flow [16], we are investigating the non-local total variation flow (NL-TV-
flow): {−∂u

∂t ∈ ∂uJNL−TV (u)
u(0, x) = f(x)

(13)

Now that we have recalled the non-local notions we are interested in, we
turn in the next section to a graph setting which will prove more adapted to the
non-local framework.

3 A Graph Point of View

As soon as we consider a discrete image, the connections between pixels can be
explained with a graph representation. We will place ourselves in this setting
from now on.

3.1 Definitions

We consider a graph G (which corresponds to the bounded domain Ω considered
in the previous section). It is composed of |G| points x ∈ G and characterized by
the adjacency matrix w(x, y) : G ×G →∈ [0; 1]|G|. We assume that this matrix is
symmetric. Notice that this adjacency matrix corresponds to the non negative
weights w(x, y) introduced in the previous section. We have decided to use the
same notation for the sake of clarity.

Definition 1 (Boundary of a set). The intern boundary of a set A is defined
as:

∂A = {x ∈ A, s.t∃ y ∈ G\A, withw(x, y) > 0}.

The extern boundary of a set A is defined as:

∂A+ = {x ∈ G\A, s.t∃ y ∈ A, withw(x, y) > 0}.

Let χA be a characteristic function of A ⊂ G. We remind the reader that
χA(x) = 1 if x ∈ A and 0 otherwise.

Definition 2 (Perimeter of a set).
The perimeter of a set A is defined as:

Perw(A) = JNL−TV (χA) =
1
2

∑
G×G

|χA(x) − χA(y)|
√

w(x, y) (14)
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Definition 3 (Normal of a set). The normal of a set A is defined on its
boundary x ∈ ∂A as, for y ∈ ∂A+: νA(x, y) = −sgn(∇wχA(x, y)) = χw(x,y)>0.
The minus is a convention. Observe that Perw(A) = − 〈νa

A,∇wχA〉G×G.

Definition 4 (Curvature of a set). The curvature of a set A ⊂ G is

κw(χA)(x) = divw(−sgn(∇wχA(x, y))) (15)

We assume that the domain G, the set A and its complement G\A are all con-
nected sets.

3.2 Sets With Constant Curvature

Now that we have introduced the necessary material, we can characterize the sets
with constant curvatures. Notice that in the classical local setting, these sets are
just balls (whose shape depends on the considered norm). As we will see in
the following, we get a necessary and sufficient condition to characterize sets
with constant curvature. Sets with constant curvature will be key ingredients to
introduce non-local calibrable sets.

Proposition 1. A necessary and sufficient condition for κw(χA)(x)|x∈∂A =
K ∈ IR is: ∑

y∈∂A+

√
w(x, y) = a+ ∈ IR+, ∀x ∈ ∂A.

The curvature value at the boundary ∂A is K = 2a+.

Proof. We can use the definition (15) of the mean curvature for χA, the char-
acteristic function of A ⊂ G. For x ∈ ∂A, as w(x, y) = 0, ∀y ∈ G\(A ∪ ∂A+) we
get:

κw(χA)(x) = −
∑

y∈G
(sgn ((χA(y) − χA(x))wxy) − sgn ((χA(x) − χA(y))wxy)) wxy

= −
∑

y∈A∪∂A+

(sgn ((χA(y) − 1)wxy) − sgn ((1 − χA(y))wxy)) wxy

= −
∑

y∈A

(sgn(0) − sgn(0)) wxy dy +
∑

∂A+

(sgn(−wxy) − sgn(wxy)) wxy

=2
∑

y∈∂A+

wxy,

since wxy =
√

w(x, y) ≥ 0. A necessary and sufficient condition for κw(χA)
(x)|x∈∂A = 2a+ ∈ IR+ is then∑

y∈∂A+

√
w(x, y) = a+ ∈ IR+, ∀x ∈ ∂A.
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In the same way, we get:

κw(χA)(x) =

⎧⎪⎪⎨
⎪⎪⎩

2a+ if x ∈ ∂A
0 if x ∈ A\∂A
−2a− if x ∈ ∂A+

0 if x ∈ G\(A ∪ ∂A+),

(16)

under the assumption
∑

y∈∂A

√
w(x, y) = a− ∈ IR+, ∀x ∈ ∂A+.

From the last proposition, the curvature is constant iff:

• for x ∈ ∂A,
∑

y∈∂A+

√
w(x, y) = a+ > 0

• for x ∈ ∂A+,
∑

y∈∂A

√
w(x, y) = a− > 0

A set with constant curvature in its intern and extern boundaries is then
characterized with the parameters (a+, a−).

Proposition 2 (Sets with constant curvature). When the intern and extern
curvature sof a set A are constants with parameters (a+, a−), the perimeter reads:

Perw(A) =
1
2
(|∂A|a+ + |∂A+|a−) = |∂A|a+.

Proof. We have:

Perw(A) =
1

2

∑

G×G
|χA(x)− χA(y)|

√
w(x, y)

=
1

2

∑

x∈∂A, y∈G
|χA(x)− χA(y)|

√
w(x, y) +

1

2

∑

x∈∂A+, y∈G
|χA(x)− χA(y)|

√
w(x, y)

=
1

2
(|∂A|a+ + |∂A+|a−)

and as w is symmetric, we have that the total weights a+ going from ∂A
to ∂A+ is the same than the weights a− going from ∂A+ to ∂A: |∂A|a+ =∑

x∈∂A, y∈G |χA(x)−χA(y)|√w(x, y) =
∑

x∈∂A+, y∈G |χA(x)−χA(y)|√w(x, y) =
|∂A+|a−.

3.3 Subdifferential of JNL−TV

Another ingredient needed to introduce non-local calibrable sets is the subdif-
ferential of non-local TV . As recalled in [22], the subdifferential of NL − TV is
characterized by:

∂JNL−TV (u) = {divw(z) / max |z| ≤ 1 and 〈divw z, u〉G = JNL−TV (u)} (17)

Denoting z = −sign(∇wu), with sign(0) ∈ [−1, 1], the subdifferential of JNL−TV

is:
∂JNL−TV (u) = divw(z). (18)

From Definition 3, it can be noticed that

∂JNL−TV (χA) = divw(νA). (19)
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3.4 Non-Local Calibrable Sets

We have all the required material to define non-local calibrable sets. As we will
see later, such sets evolve with constant speed with the non-local total variation
flow.

Definition 5 (Non-local calibrable set). A is a non-local calibrable set
iff there exists λA > 0 and divw(z) ∈ ∂JNL−TV (χA) such that (divw z)(x) =
λAχA(x) + c, ∀x ∈ A, c ∈ R. Such z is called a calibration of the set A.

Remark 1. Notice that contrary to the continuous local case (see e.g. [1]), there
are no boundary conditions such as Neuman boundary conditions. We have
these boundary conditions for free here since the non-local divergence operator
was defined as the opposite of the adjoint of the non-local gradient operator.
Moreover, as noted in [22], the value of the divergence outside A is irrelevant,
so that we just focus on finding a flow with constant divergence inside A.

Proposition 3. If z is a calibration of a non-local set A, then

(divw z)(x) =
Perw(A)

|A| χA (20)

and thus λA = Perw(A)
|A| . Moreover, z(x, y) = νA(x, y) for x ∈ ∂A, y ∈ ∂A+.

Proof. From Definition 5, we can observe that 〈divw z, χA〉G = λA|A|. Hence, as
z ∈ ∂JNL−TV (χA), relation (17) gives 〈divw z, χA〉G = JNL−TV (χA) = Perw(A)
so that λA = Perw(A)

|A| .
Moreover, from Definition 3, we have that Perw(A) = −〈νA,∇wχA〉. Since

〈divw z, χA〉G = −〈z,∇wχA〉G×G , we deduce that z(x, y) = νA(x, y) for x ∈ ∂A,
y ∈ ∂A+.

3.5 Non-Local TV Flow

For a set A ∈ G, the non-local TV flow evolution equation is Eq. (13) with
u(t = 0) = χA.

Proposition 4. If A is a non-local calibrable set, then u(t) = (1 − tλA)+χA is
a solution of Problem (13), with λA = Perw(A)

|A| .

We remind the reader that (1 − tλA)+ = max(0, 1 − tλA). This result shows
that a non-local calibrable set evolves with constant speed with the non-local
total variation flow. We know that such sets exist (and the onion peel story of
section 4 is a way to build such sets).

Proof. With the above results, if A is a non-local calibrable set, then we can
build a flow z such that ||z||∞ ≤ 1, z = νA on ∂A ∪ ∂A+ and (divw z)(x) = λA

for x ∈ A. We therefore have 〈divw z, χA〉G = λA|A| = Perw(A) = JNL−TV (χA).
From the definition (17) of the NL-TV functional, we also have JNL−TV (u) =
sup||z||∞≤1

∫
Ω×Ω

(divw z)u.
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We can see that the z we built is such that divw z belongs to the sub-
differential of JNL−TV so that (divw z)(x) = λA for x ∈ A. Hence, by defin-
ing u(t) = (1 − tλA)+χA, we have for t > 0 that ∂tu = −λAχA so that
−∂tu ∈ JNL−TV (u) and u is a solution of problem (13).

3.6 Non-Local Scale

From the previous proposition, it makes sense to define the non-local scale in
the following way:

Definition 6 (Non-local scale). The non-local scale of a point in an image is
defined as the inverse of its average speed of decrease under the non-local total
variation flow.

Remark 2. In the case when a point x belongs to a non-local disk A, then its
speed of decrease under the non-local total variation flow is the one of A, that is
λA = Perw(A)

|A| . Hence the scale of x is 1
λA

. This generalizes the local case, where
λA is the Cheeger constant of A [2,11].

4 The Onion Peel Decomposition

The purpose of this section is to show a way to build non trivial non-local cali-
brable sets. In the following, we denote as {Br}R

r=1 a partition of A (∪R
r=1Br = A

and Br ∩ Br′ = ∅, for r �= r′) and define Ar = ∪r
i=1Bi. The idea developed here

is inspired from the local discrete case: if we remove the boundary of a calibrable
set, the resulting set is also calibrable.

Definition 7 (Onion peel partition). Let A be a connected set. We say that
A can be partitioned into onion peels if there exists a partition that checks:

(i) ∂Ar = Br, ∀r = 1 · · · R.
(ii) ∂A+

r = Br+1, ∀r = 1 · · · R − 1

We then have ∂A = BR since A = AR.

Definition 8 (Non-local Disk). A is a non-local disk iff A is a non-local
calibrable set with constant curvature on ∂A.

Proposition 5 (Calibrable onion peel). If (i) A can be partitioned into an
onion peel {Br}R

r=0, (ii) Ar = ∪r
i=0Bi has a constant curvature (a+

r , a−
r ) and (iii)

A = AR = argmin
r

Perw(Ar)/|Ar|, then A is a non-local disk, and its non-local

scale is |A|
Perw(A) .

Proof. We build a calibration z for an onion peel. By definition of the onion
peel, we first recall that for x ∈ Br, w(x, y) = w(y, x) > 0 iff y ∈ Br−1 or y ∈ Br

or y ∈ Br+1. From proposition 2, we can observe that a+
r |Br| = a−

r |Br+1| and
Perw(Ar) = 1

2 (|∂Ar|a+
r + |∂A+

r |a−
r ) = |∂Ar|a+

r . We recall that a−
r denotes the

constant curvature value of points ∂A+
r with respect to the set Ar.
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We define K0 = 0, a−
0 = 0, initialize z = 0 and consider a value α > 0. Then

for r = 1 · · · R we can do the following recursive construction: ∀x ∈ Br, find

the y ∈ Br+1 such that w(x, y) > 0 and set z(x, y) = Kr =
a−
r−1Kr−1+α

a+
r

. We
then have z(x, y) = Kr > 0 for x ∈ Br, y ∈ Br+1 and w(x, y) > 0 and z = 0
otherwise. With such a construction, we have that, for x ∈ Br, 0 ≤ r ≤ R:

(divw z)(x) =
∑

y

(z(x, y) − z(y, x))
√

w(x, y)

=
∑

y∈Br+1

z(x, y)
√

w(x, y) −
∑

y∈Br−1

z(y, x)
√

w(x, y)

= Kr

∑

y∈Br+1

√
w(x, y)dy − Kr−1

∑

y∈Br−1

√
w(x, y)dy

=
a−

r−1Kr−1 + α

a+
r

a+
r − Kr−1a

−
r−1

= α,

For x ∈ A, we have that ||z(x)||∞ ≤ maxr Kr = K∗. We then obtain that
||z(x)/K∗||∞ ≤ 1 and (divw z/K∗)(x) = α/K∗, for x ∈ A.

Next, with our assumption on the constant curvature of the onion peel par-
tition (see Definitions 7 and 5) , we know that: a+

r |Br| = a−
r |Br+1|: the total

weights a+
r going from Br to Br+1 is the same as the weights a−

r going from
Br+1 to Br. Since K1 = α/a+

1 , we have that

K2 =
a−
1 K1 + α

a+
1

=
a−
1 α/a+

1 + α

a+
2

=
α

a+
2

(
1 +

|B1|
|B2|

)
=

α(|B1| + |B2|)
a+
2 |B2|

We can prove by induction that for r = 1 · · · R:

Kr =
α

∑r
i=0 |Bi|

a+
r |Br|

=
α|Ar|

a+
r |∂Ar|

=
α|Ar|

Perw(Ar)

Hence, K∗ = maxr Kr = α/λA where

λA = min
Ar⊂A

Perw(Ar)
|Ar| .

We then have that, for x ∈ A, (divw z/K∗)(x) = α/K∗ = λA. Hence: 〈divw z,
χA〉 = λA|A|. If A = AR = argminrPerw(Ar)/|Ar|, then K∗ = KR. We thus
obtain that ||z(x, y)/K∗|| = 1 for x ∈ ∂A, y ∈ ∂A+ and w(x, y) > 0 so that
the flow corresponds to the normal of the set at these points: z(x, y) = νA(x, y)
(see Definition 3) and A is a non-local disk from definition 8. In this case, it also
means that 〈divw z, χA〉 = λA|A| = Perw(A).

Remark 3. Notice that since Kr =
a−
r−1Kr−1+α

a+
r

, then a sufficient condition to

have a disk through K∗ = KR is a−
r−1 ≥ a+

r , which means that for each x ∈ Br

the total weights of its links with Br−1 is larger than with Br+1. With respect
to the aniotropic local case and a 4-neighborhood system with weights w(x, y) ∈
{0; 1}, such property is trivially checked since a+

r = a−
r = 2.
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5 Numerical Experiments

In this section, we show some simple numerical experiments which confirm the
theoretical results presented in the previous sections. We consider synthetic
images representing the characteristic function of some objects and build two
graphs. First, we consider a local graph corresponding to a 4 neighborhood sys-
tem to compute the anisotropic TV flow. The local adjacency matrix thus reads
wL(x, y) = 1 if x and y are neighbors in the image domain and 0 otherwise.
Then, a full non-local graph is built from self-similarities between patches cen-
tered on every pixels of a considered image f . The adjacency matrix is in this
case defined as: wNL(x, y) = exp(−||P f

x − P f
y ||2), where P f

x denotes the image
patch centered on pixel x. This corresponds to a non-local mean graph construc-
tion for the image f . The non-local TV flow (13) is then applied to the synthetic
images for the two graph settings giving us two sequences uL(t, x) and uNL(t, x).
We then compute the NL-TV spectral transform φ(t, x) and spectrum S(t) as in
Eqs. (3) and (5), respectively, with u(t, x) the NL-TV flow solution of (13). High
amplitudes in S(t) indicate the dominant scales contained in the image. Notice
that the non-local TV flow, derived from the the local graph with weights wL,
is in fact the classical TV flow. In our illustrations, we considered two objects
of different scales for each tested image. As illustrated in Fig. 1, in the local
setting, each object has a different scale, since two main peaks appear in SL(t).
On the other hand, with the non-local weights, the two objects are considered
as a single one as SNL(t) only contains one peak.

In the first row of Fig. 1, the objects are squares so that they correspond
to a disk for the local anisotropic TV flow. As the local anisotropic Cheeger
constants of the two squares are 8/3 and 4/3, we see from proposition 4 that the
objects vanish with the TV flow for t = 3/8 and t = 3/4, which correspond to
the positions of the two peaks of SL(t). With the non-local graph represented
by wNL, the non-local scale of the union of the two squares can thus be deduced
from SNL(t) where the most important peak is at time t = 0.015. As the non-
local curvature of the shape is not constant, we nevertheless observe a spread
peak and the union of the two squares is just a raw approximation of a non-local
calibrable set for the graph wNL.

In the second row, the example is composed of non-rectangular shapes, the
objects are not calibrable sets anymore for the local graph wL. This is exhibited
by the spread peaks of SL(t). It is difficult to assess the presence of two objects
with the local framework since SL(t) contains 4 peaks. With the full non-local
graph, one peak is recovered and its non-local scale is almost the same as in
the square example. The non-local curvature is here almost constant so that we
recover a main peak. This shows that these objects approach non-local calibrable
sets for the graph wNL.

These results give an interesting point of view of the non-local means beha-
viour. When constructing a graph with respect to the similarities contained in an
image and applying the NL-TV flow to this image, one can expect that groups
of similar patterns will have a constant speed of decrease.
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f SL(t) SNL(t)

Fig. 1. Examples of scale computation. First column: images f ; second column: local
scale SL(t); third column: non-local scale SNL(t). The non-local scale gives indeed the
same scale to the two shapes, whereas the local version give two different scales and
even badly characterize the 2 objects for the second row.

6 Conclusion

The paper formulates a platform for spectral analysis related to the non-local
total variation functional. Non-local calibrable sets, which are nonlinear eigen-
functions in the sense of (2), or atoms of the functional, are defined. A construc-
tive way to build a subset of them is given. New structures such as non-local
disks are examined through this framework, extending the standard geometrical
concepts. The framework is a first step toward a better analysis and design of
non-local, image-driven and patch-based algorithms, which have shown to yield
state-of-the-art results in image processing and computer vision in recent years.
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