
PDE-Based Color Morphology Using
Matrix Fields

Ali Sharifi Boroujerdi1(B), Michael Breuß1, Bernhard Burgeth2,
and Andreas Kleefeld1

1 Faculty of Mathematics, Natural Sciences and Computer Science,
Brandenburg Technical University Cottbus-Senftenberg, 03046 Cottbus, Germany

{boroujerdi,breuss,kleefeld}@tu-cottbus.de
2 Department of Mathematics and Computer Science, Saarland University,

66123 Saarbrücken, Germany
burgeth@math.uni-sb.de

Abstract. In this work, we propose a novel way for performing oper-
ations of mathematical morphology on color images. To this end, we
convert pixelwise the rgb-values into symmetric 2 × 2 matrices. The new
color space can be interpreted geometrically as a biconal color space
structure. Motivated by the formulation of the fundamental morpholog-
ical operations dilation and erosion in terms of partial differential equa-
tions (PDEs), we show how to define finite difference schemes making use
of the matrix field formulation. The computation of a pseudo supremum
and a pseudo infimum of three color matrices is a crucial step for setting
up advanced PDE-based methods. We show that this can be achieved for
our goal by an algebraic technique. We investigate our approach by ded-
icated experiments and confirm useful properties of the new PDE-based
color morphology operations.

Keywords: PDE-based morphology · Matrix fields · Color morphol-
ogy · Finite difference schemes · FCT scheme · Pseudo supremum ·
Pseudo infimum

1 Introduction

In modern digital imagery color images are very common, as e.g. smartphones
often feature a digital camera yielding color images. With abundant sources of
available color information, it becomes increasingly important to consider this
information in the construction of image processing tools.

A fundamental class of image analysis processes are the methods of math-
ematical morphology pioneered by Serra and Matheron [16,22]. Morphologi-
cal processing is a nonlinear method consisting of operations on sets of pixels
arranged in structuring elements. The building blocks of mathematical morphol-
ogy for gray-scale images are the processes of dilation and erosion. Many other
processes such as opening, closing, top hats, and other morphological operators
such as derivatives can be derived from these two operations.
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Considering the important underlying mathematical structure of these oper-
ations, it is required that one can define a total order of the values contributing
in a structuring element. While for gray-scale images the corresponding lattice
theory framework is satisfactory and adequate, the extension of this concept to
work with colors is difficult because of the lack of a total order for vector-valued
data such as rgb values. Therefore, performing even the simplest morphological
operation on color images is not trivial.

There have been numerous attempts to establish a morphological framework
for color images. Generally speaking, the use of ranking schemes and properly
defined extremal operators as substitutes for maxima and minima are the main
building blocks in these attempts, see e.g. [3,12,13,23]. For a conceptually differ-
ent development, let us mention here the approach by Van de Gronde et al. [14]
that relies on a partial order rather than a total order. However, one may con-
clude that the optimal way to define morphological operations on color images
is still an open issue and that a proper solution might depend on the purpose of
the filtering.

In this paper, we tackle the issue from a different point of view. To this end,
we combine two existing approaches to mathematical morphology in order to
formulate our novel strategy for color image morphology.

The first approach we consider is the formulation of dilation and erosion in
terms of partial differential equations (PDEs), see [2,4,6,19,21]. Mimicking a spe-
cial wave propagation process, the arising PDEs are hyperbolic Hamilton-Jacobi
equations. Then, important numerical methods for discretizing the PDEs for dila-
tion and erosion in the gray-value setting are the schemes of Rouy and Tourin [19],
Osher and Sethian [18] and the flux-corrected transport (FCT) scheme of Breuß
and Weickert [5]. Motivated by these developments and driven by an interest to
filter data arising in diffusion tensor magnetic resonance imaging (DT-MRI), the
PDE-based approach as well as the above mentioned schemes have been gener-
alised to deal with specific matrix fields, see e.g. [7,8] and the references therein.
The matrices defining the data for these PDE-based morphological methods are
symmetric, positive semi-definite and of size three times three.

Secondly, we consider the developments in the recent work [11]. There, color
images are embedded into matrix fields consisting of symmetric 2 × 2 matrices.
For these, matrix-based operations are described that mimic dilation and erosion
in the spirit of the classical, set-theoretic approach.

As indicated we combine in this work the above mentioned developments in
defining PDE-based methods for mathematical morphology of color images. We
employ the framework presented in [11] to transform rgb data into a bicone-
shaped color space that corresponds to symmetric 2 × 2 matrices. For such
matrices we define finite difference schemes that describe in the discrete sense
the PDEs of morphological dilation/erosion.

While on the technical side this translation of the schemes as described e.g. in
[7] to the color matrix framework seems at a first glance to be relatively straight-
forward, let us comment on several issues. First, let us note that the matrices we
deal with here are not positive semidefinite. Thus, taking over technical parts
from methods developed in the aforementioned DT-MRI context may not lead
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to useful results. Secondly, and as a technical difference to the proceeding in [11],
we do not employ here the procedures of addition and subtraction motivated by
Einstein addition in Hilbert spaces. Furthermore, and again in the light of the
many attempts in previous literature [3,12,13,23], let us stress that it is not at
all self-evident that one obtains reasonable numerical results when constructing
a method for the purpose of color morphology. However, for our approach we
confirm experimentally that it does not give so-called false colors, cf. [23]. This
means, that our PDE-based dilation and erosion processes may only lead to
color modifications in the sense that they appear in higher and lower saturated
versions of contributing colors, and not as a completely different color.

Paper Organisation. In accordance to the described paper contents, in Section 2
some background on the basic morphological operators is presented. In Section 3,
the PDE concept behind our approach is introduced. Section 4 is devoted to recall-
ing the transfer of rgb images to matrix fields. In Section 5, the solution of find-
ing pseudo suprema and infima of three matrices is discussed which we need to
define numerical schemes. Section 6 contains experimental results. We conclude
the paper with some remarks in Section 7.

2 Morphological Operations and PDEs

Morphological Operations. We first give a brief account of the two operations
that are at the basis of our developments, namely morphological dilation and
erosion. As we seek to emphasize the underlying ideas here, we stick to a simple
presentation.

A structuring element E is a mask that allows us to specify neighborhood
structures in an image. Then one may use SEs to define morphological operators
acting on them. For a given, initial image f we write the dilation and the erosion
with such a structuring element E as

f ⊕ E := sup{f(x − x′, y − y′) | (x′, y′) ∈ E} and (1)
f � E := inf{f(x − x′, y − y′) | (x′, y′) ∈ E} (2)

respectively. Making use of these building blocks, one can define e.g. morpholog-
ical derivative operators. One which is useful in the context of this work is the
so-called morphological Laplacian [23] which reads as

ΔEf := (f ⊕ E) − 2f + (f � E) (3)

As it is evident, the morphological Laplacian is a morphological counterpart of
the second derivative of a function. It allows to distinguish regions influenced by
brightness minima and maxima in an image. This is useful for defining so-called
shock filters, see e.g. [17]. In the gray-value setting, one step of shock filtering
applied pixelwise at an image f may be described as

SEf :=

⎧
⎨

⎩

f ⊕ E , ΔEf < 0
f , ΔEf = 0
f � E , ΔEf > 0

(4)
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As can be seen by considering (4), shock filtering amounts to applying dilation
and erosion in order to enlarge brightness maxima and minima, respectively,
while the transition line between these regions is managed by the morphological
Laplacian. In a PDE-based setting as already described in [17], the dilation and
erosion PDEs are solved iteratively in accordance to the process (4).

PDEs for Mathematical Morphology. Thinking of a gray-valued image as
a discrete representation of a continuous-scale function, some of the geometric
characteristics of continuous morphology are omitted in its discrete version. As
an example, the definition of a disk-shaped structuring element is easy in the
continuous plane but especially on a small scale this is difficult or even impossible
to realize conveniently on a discrete grid.

To this end, it is necessary to specify continuous mathematical morphology
from the angle of curve evolution. By this method, discrete mathematical mor-
phology can be interpreted as the numerical implementation of a continuous-scale
evolution.

According to [20] dilation can be performed at infinitesimal steps. This
motion generates a set of velocity vectors, one for each point on the bound-
ary of the disk-shaped (or more generally, convex) structuring element. For this
purpose, let us parameterize these vectors by the angle θ running over all pos-
sible angles about a central point in the plane, so that θ ∈ [0, 2π]. For a given
initial image f := f(x, y), where (x, y) denotes a point in the image domain Ω,
let u := u(x, y, t) be the image evolving under the process of interest in time t.
Then we have

∂tu = sup
θ

{R(θ) · ∇u} , (5)

where R(θ) is a function representing the boundary of the convex structuring
element. In this way, the following velocities are obtained for popular structuring
elements S:

sup
θ

{R(θ) · ∇u} =

⎧
⎪⎨

⎪⎩

‖∇u‖1 , S = diamond
‖∇u‖2 , S = disk
‖∇u‖∞ , S = square

(6)

Focusing again on the use of a disk-shaped structuring element and generalising
the process to include erosion, we obtain the PDEs for gray-value dilation (+)
and erosion (−) as

∂tu = ±‖∇u‖2 = ±
√

(∂xu)2 + (∂yu)2 on Ω × (0,∞) (7)

which we supplement by Neumann boundary conditions

∂nu = 0 on ∂Ω × (0,∞) (8)

and the initial condition defined by an input image f

u(x, y, 0) := f(x, y) ∀(x, y) ∈ Ω (9)

While it is possible to describe already at this point a matrix-valued counterpart
of the PDEs as in (7) as can be seen in [7,8], we refrain from this here for
shortness of presentation.
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3 Numerical Methods for the PDEs of Dilation and
Erosion

In this part, we briefly survey the schemes mentioned in the introduction that
we will also consider here for realizing our PDE-based approach. These are the
first-order accurate Rouy-Tourin (RT) scheme which is proposed in [19], the
second-order method of Osher and Sethian (OS) [18], and as a state-of-the-art
approach we consider the flux corrected transport (FCT) algorithm [5].

Notice that we apply the symbol of un
i,j as the gray-value of the evolving

image u at the pixel located in the ith row and jth column of the image at the
nth time step during the morphological progress. We recall standard notations
for backward and forward differences in x- and y-directions as follows:

Dx
−un

i,j = un
i,j − un

i−1,j , Dx
+un

i,j = un
i+1,j − un

i,j ,

Dy
−un

i,j = un
i,j − un

i,j−1 , Dy
+un

i,j = un
i,j+1 − un

i,j

(10)

Let us now consider a uniform pixel width h in both spatial grid directions in
an image and a numerical time step size τ for the evolution. Our aim is now to
discretise the PDE (7), sticking thereby for the presentation here to the case of
dilation with a disk-shaped structuring element.

Then, in the RT scheme, the dilation operation is expressed by

un+1
i,j = un

i,j +
τ

h

√

(max(0,Dx
+un

i,j ,−Dx−un
i,j))2 + (max(0,Dy

+un
i,j ,−Dy

−un
i,j))2

(11)
while the second-order OS method is given by

un+1
i,j =

un
i,j

2
+

u−n+1
i,j

2
+

τ

2h
L

(
u−n+1, i, j

)
) (12)

where
u−n+1

i,j = un
i,j +

τ

h
L (un, i, j)) (13)

and

L(un, i, j) =

[(

min
{

Dx
−un

i,j +
1
2
mm(Dx

−Dx
+un

i,j ,D
x
−Dx

−un
i,j), 0

})2

+
(
max

{
Dx

+un
i,j − 1

2mm(Dx
+Dx

+un
i,j ,D

x
−Dx

+un
i,j), 0

})2

+
(
min

{
Dy

−un
i,j + 1

2mm(Dy
−Dy

+un
i,j ,D

y
−Dy

−un
i,j), 0

})2

+
(
max

{
Dy

+un
i,j − 1

2mm(Dy
+Dy

+un
i,j ,D

y
−Dy

+un
i,j), 0

})2
] 1

2

(14)

The function mm(· , · ) indicates the minmod function which is given as

mm(α, β) :=

⎧
⎨

⎩

max(α, β) , α < 0, β < 0
min(α, β) , α > 0, β > 0
0 , otherwise

(15)
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Let us also give a brief account of the FCT scheme. The main concept in the
FCT scheme is to use the RT scheme in a predictor step in a first phase. Then
the unwanted blurring effects generated by the first-order upwind derivatives in
the RT scheme are measured to reverse the associated quantity in a corrector
step that performs stabilized inverse diffusion.

Let us now write the values obtained after the predictor step performed by
the RT scheme in the format up

i,j at pixel (i, j). With the definitions

gi+1/2,j := mm
(
Dx

−up
i,j ,

τ

2h
Dx

+up
i,j , Dx

+up
i+1,j

)
, (16)

gi,j+1/2 := mm
(
Dy

−up
i,j ,

τ

2h
Dy

+up
i,j , Dy

+up
i,j+1

)
, (17)

where mm(· , · , · ) is a straightforward extension of (15) and

Qh :=

√
( τ

2h

∣
∣up

i+1,j − up
i−1,j

∣
∣
)2

+
( τ

2h

∣
∣up

i,j+1 − up
i,j−1

∣
∣
)2

, (18)

Ql :=
√

(δup
i )

2 +
(
δup

j

)2
, (19)

where the stabilized inverse diffusive fluxes are given by

up
i :=

τ

2h

∣
∣up

i+1,j − up
i−1,j

∣
∣ + gi+1/2,j − gi−1/2,j , (20)

up
j :=

τ

2h

∣
∣up

i,j+1 − up
i,j−1

∣
∣ + gi,j+1/2 − gi,j−1/2 , (21)

we can write the subsequent corrector step of the FCT scheme as

un+1
i,j = up

i,j + Qh − Ql (22)

To summarise, a subsequent application of scheme (11) for obtaining predicted
data up

i,j – instead of un+1
i,j in (11) – and the corrector step (22) making use of

the predicted values is equivalent to the FCT scheme.

Finite Difference Methods for Dilation/Erosion of Color Data. Finally,
our aim is to work with fields of symmetric 2 × 2 matrices which represent
color data instead of gray-values. For the definition of corresponding numeri-
cal schemes, we proceed in a straightforward fashion building upon (10)–(22).
Instead of the evolving gray-values un

i,j we will plug in the 2 × 2 matrices Un
i,j ,

with U0
i,j := fi,j where f corresponds to a given color image. This implicitly

defines underlying color-valued PDEs.
Obviously, in order to give a meaning to the formulae (10)–(22) in the latter

setting, we must define suitable notions for maximum and minimum of up to
three matrices, and we must give useful expressions for the square root and the
absolute value of occuring matrices. This will be done in Section 5.
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4 Color Images and Matrix Fields

In this section, we briefly recall the conversion of rgb values to matrices as in
[11]. Given an rgb image we transform it in two steps into a matrix field of equal
dimensions, i.e. we assign each pixel of the image a symmetric 2 × 2 matrix.

In the first step, we transform the rgb color values to the hcl color space,
assuming that red, green and blue intensities are normalized to [0, 1]. For a
pixel with such intensities r, g, b, we obtain its hue h, chroma c and luminance
l via M = max{r, g, b}, m = min{r, g, b}, c = M − m, l = 1

2 (M + m), and h =
1
6 (g−b)/M modulo 1 if M = r, h = 1

6 (b−r)/M + 1
3 if M = g, h = 1

6 (r−g)/M + 2
3

if M = b, cf. [1].
Replacing then luminance l with l̃ := 2l−1,

Fig. 1. Color bi-cone, figure
adapted from [11]

and interpreting c, 2πh, and l̃ as radial, angular
and axial coordinates of a cylindrical coordi-
nate system, we have a bijection from the unit
cube of triples (r, g, b) onto a solid bi-cone, see
Figure 1.

The bi-cone is then transformed to the Car-
tesian coordinates via x = c cos(2πh), y = c sin
(2πh), z = l̃. The second step takes the coor-
dinates (x, y, z) and maps them to symmetric
matrices A ∈ Sym(2) via

A :=
√

2
2

(
z − y x

x z + y

)

(23)

Note that the mapping Ψ : R
3 → Sym(2) in (23) is bijective.

Denoting by M ⊂ Sym(2) the set of all matrices A that correspond to points
of the bi-cone, we have in fact by (23) a bijection between the rgb color space
and the bi-cone M. The inverse transform is obtained in a straightforward way,
cf. [11].

5 Pseudo Supremum and Infimum and Functions
of Matrices

As indicated at the end of Section 3, we need to give meaning to the maximum
and minimum of up to three matrices of Sym(2), as well as to the square root and
the absolute value of such matrices. Thereby we rely on corresponding notions
as discussed e.g. in [7].

Let us recall that any matrix A ∈ Sym(2) can be decomposed into the format
A = V diag(λ1, λ2)V � where V := (v1, v2) accumulates the eigenvectors v1, v2 of
A as column vectors and λ1,2 denote the corresponding eigenvalues. Then one
may define a function ϕ of a matrix A via

ϕ(A) := V diag(ϕ(λ1), ϕ(λ2))V � (24)
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in terms of its standard scalar representation. With ϕ(·) =
√· and ϕ(·) = |·| we

thus obtain square root and absolute value of a symmetric matrix, respectively.
Regarding the formulae of numerical schemes in Section 3, we need to cal-

culate the maximum and minimum of up to three symmetric matrices. It will
turn out that instead of maximum and minimum we will seek a supremum and
infimum, respectively, and it will suffice to elaborate in detail on the supremum.

Let us consider matrices A,B,C ∈ Sym(2). Determining the supremum of
two such matrices can be done making use of (24) by

sup(A,B) :=
A + B

2
+

|A − B|
2

(25)

adopting a corresponding scalar relation. Obviously, we can proceed by

sup1 := sup(A, sup(B,C)) ,

sup2 := sup(B, sup(A,C)) ,

sup3 := sup(C, sup(A,B))
(26)

But generally, for A,B,C ∈ Sym(2) we have

sup1 �= sup2 �= sup3 �= sup1 (27)

Consequently, we approximate the supremum of {A,B,C} by calculating the
average of sup1, sup2 and sup3, as the supavg which is an upper bound of each
initial matrix.

To improve this often very generous upper bound, we find the optimal value
of η ≥ 0 in such a way that

supavg − ηI ≥ W , W ∈ {A,B,C} , (28)

where I is the 2× 2 identity matrix. The optimal amount ηopt of η in (28) is the
minimum eigenvalue of (supavg −A), (supavg −B), and (supavg −C). At the end
of this process, we obtain a proper supremum of {A,B,C} as

supopt(A,B,C) := supavg − ηoptI (29)

To obtain an infimum of three matrices, one may simply set

infopt(A,B,C) := supopt(−A,−B,−C) (30)

6 Experiments

As the first experiment we test if our color morphology operations retrieve gray-
scale morphology, since this may be considered a necessary condition to obtain
a reasonable extension of the latter. To this end, we employ rgb values for black
and white and use the new color-valued FCT scheme as described in Section 3.
In Fig. 2 we exhibit the result of dilation and erosion on the yin-yang image of
size 256 × 256.
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Fig. 2. Centre. Input image yin-yang defined using rgb values for black and white.
Left. Ten times dilation with color-valued FCT. Right. Ten times erosion with color-
valued FCT.

Operations are performed ten times with time step size τ = 1/2 and the disk-
shaped stucturing element. As observed, outcomes are equivalent to gray-scale
morphology.

In our second test we aim to observe dilation and erosion in color space with
the RT scheme. The reasoning is here, that independently from its usefulness
by its own the RT scheme serves as the basis of the FCT method and it is very
similar to the first-order method that the OS scheme builds upon. Therefore, it
is of fundamental importance for our PDE-based approach that the RT scheme
yields reasonable results, as otherwise the more advanced OS and FCT schemes
cannot be expected to do something valuable.

As observed in Fig. 3 we can confirm that the RT scheme performs as
expected. Taking the classic Lena test image of resolution 128 × 128 as input
image, we see that after six iterations of dilation and erosion with time step size
τ = 1/2 that bright and dark colors are enhanced, respectively. The blurring
we observe here is the standard numerical artefacts resulting from the first-
order upwind discretization. In an extension of these experiments, we compute
the morphological Laplacian and show results of shock filtering based on our
framework using also the RT scheme with τ = 1/2. As observed, we obtain
visually very plausible results for this process. Let us note that for the purpose
of shock filtering the RT scheme is the optimal PDE-based method since the
shock-filtering process is designed to give sharp edges.

Our next experiment serves two purposes. On the one hand we compare the
quality of the numerical schemes RT, OS, and FCT in our new framework in
order to see if the non-linear operations performed in the algorithms still give
reasonable, interpretable results. On the other hand, we compare here with the
method of Burgeth and Kleefeld (BK) [11] that is technically more similar to
classic, lattice-based morphology than our PDE-based schemes. Let us emphasize
in the latter context again, that the BK method employs the same color space
yet with a different means of addition and subtraction of color matrices. Let
us note that we employ in BK a cross-shaped structuring element here as the
approximation of a disk on a 3 × 3 grid.

To this end, we employ a test image based on a micro biological scene, based
on an oil painting of Carolyn K. Snyder. It is of resolution 128×128 and features
diverse colors as well as round structures, see Fig. 4.
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Fig. 3. Top row. Original Lena image, and results of dilation and erosion computed
with the RT scheme. Bottom row. Morphological Laplacian and results of five and
ten iterations of shock filtering with the RT scheme.

Fig. 4. Input image for com-
parison of numerical methods

The results of our comparison are displayed
in Fig. 5 where we show the images after several
dilation steps. They show that all of the PDE-
based methods give results of expected quality.
The RT scheme yields a blurry dilated image and
the FCT scheme very sharp edges while the OS
method is somewhere in between those schemes.
We also see no obvious color distortions, and
round shapes evolve in a round way as by the
underlying disk-shaped structuring element used
for the PDE-based methods. In the result of the
BK method for discrete morphology, we recog-
nize the influence of the cross-shaped structuring
element while we do not observe other color effects as in the results of the PDE-
based schemes, although these employ different addition and subtraction rules.
Note that the PDE-based FCT method gives visually as sharp edges as the BK
method.

Our next and final experiment is dealing with the influence of the color space.
Obviously, the value of the pseudo supremum resp. infimum of two colors in the
dilation resp. erosion process is dependent on the location of those colors in the
bi-conal color structure. Generally, the pseudo supremum of any color faced with
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RT OS FCT BK

Fig. 5. Results of eight time steps dilation with τ = 1/2 for indicated PDE-based
schemes and in accordance four times erosion of BK method.

white is white and the pseudo infimum of any color faced with black is black.
Thus we will not see any new appearing color at the edge to a black or white
region.

Also in other cases, if one of the primary colors equals the pseudo supremum
or infimum of them, then we do not have any color changes in the border of those
colors during basic morphological operations. Some examples of this situation are
indicated in Fig. 6 by yellow frames. But, if the pseudo supremum or infimum
of the two colors equals another color, it appears as a modified color. Some
situations like these are marked with black frames in Fig. 6. Note that the new
colors are not false colors [23] but appear as more resp. less saturated versions
of bordering colors.

Let us investigate this phenomenon at hand of an example dealing with the
colors light magenta (lm), dark magenta (dm) and cyan (cy). Light magenta has
the rgb values (252, 58, 157), the numbers are (217, 57, 153) for dark magenta,

Fig. 6. Original image of size 256×256 (left) and result after five iterations of dilation
using FCT with τ = 1/2 and a disk-shaped structuring element. Black frames indicate
new colors that appear by use of the supremum rule and the yellow ones mark color
interaction without new colors.
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and (62, 186, 212) for cyan. The equivalent matrices of these colors are as follows
(entries rounded):

lm =
[

0.427 0.463
0.463 −0.122

]

, dm =
[

0.314 0.359
0.359 −0.208

]

, cy =
[

0.128 −0.409
−0.409 −0.022

]

(31)
By computing corresponding pseudo suprema of two matrices, we obtain
(rounded):

sup (lm,dm) =
[

0.429 0.461
0.461 −0.119

]

, sup (dm,cy) =
[

0.616 −0.025
−0.025 0.280

]

(32)

The rgb amounts of the first pseudo supremum are (252, 59, 157), while in the
second one we gain (200, 178, 239).

These observations show that during a dilation process, for

Fig. 7. Colors
in the example

the left inner edge as seen in Fig. 7, we have a color almost like
light magenta which appears at the border as the extension of
the light magenta color, while in the right inner border, a new
color emerges as the supremum of the dark magenta and the
cyan areas. However, observe also here that this is not a false
color.

7 Conclusion

In this paper, we have proposed a new approach for implementing various mor-
phological operators for color images using PDE-based methods. The numerical
experiments done with Matlab show that we obtain qualitatively competitive
results to a recent approach from the literature [11], while our approach offers
the conceptual benefits of digital scalability and potential sub-pixel accuracy.
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3. Aptoula, E., Lefèvre, S.: A Comparative Study on Multivariate Mathematical Mor-
phology. Pattern Recognition 40(11), 2914–2929 (2007)

4. Arehart, A.B., Vincent, L., Kimia, B.B.: Mathematical morphology: The Hamilton-
Jacobi connection. In: Proc. Fourth International Conference on Computer Vision
pp. 215–219 (1993)

5. Breuß, M., Weickert, J.: A Shock-Capturing Algorithm for the Differential Equa-
tions of Dilation and Erosion. Journal of Mathematical Imaging and Vision 25(2),
187–201 (2006)



PDE-Based Color Morphology Using Matrix Fields 473

6. Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphol-
ogy, In: Proc. IEEE International Conference on Acoustics, Speech and Signal
Processing vol. 3, 125–128 (1992)

7. Burgeth, B., Breuß, M., Didas, S., Weickert, J.: PDE-based Morphology for Matrix
Fields: Numerical Solution Schemes, Tensors in Image Processing and Computer
Vision, pp. 125–150 (2009)

8. Burgeth, B., Bruhn, A., Didas, S., Weickert, J., Welk, M.: Morphology for tensor
data: ordering versus PDE-based approach. Image and Vision Computing 25(4),
496–511 (2007)

9. Burgeth, B., Kleefeld, A.: An approach to color-morphology based on Einstein
addition and Loewner order. Pattern Recognition Letters 47, 29–39 (2014)

10. Comer, M.L., Delp, E.J.: Morphological operations for color image processing. J.
Electron. Imaging 8(3), 279–289 (1999)

11. Goutsias, J., Heijmans, H.J.A.M., Sivakumar, K.: Morphological operators for
image sequences. Computer Vision and Image Understanding 62, 326–346 (1995)

12. van de Gronde, Jasper J., Roerdink, Jos B.T.M.: Group-invariant frames for colour
morphology. In: Hendriks, Cris LLuengo, Borgefors, Gunilla, Strand, Robin (eds.)
ISMM 2013. LNCS, vol. 7883, pp. 267–278. Springer, Heidelberg (2013)

13. Haralick, R.M., Sternberg, S.R., Zhuang, X.: Image analysis using mathematical
morphology. IEEE Trans. Pattern Anal, Machine Intell 9(4), 532–550 (1987)
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