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Abstract. This paper introduces a novel variational approach for image
compression motivated by recent PDE-based approaches combining edge
detection and Laplacian inpainting. The essential feature is to encode
the image via a sparse vector field, ideally concentrating on a set of
measure zero. An equivalent reformulation of the compression approach
leads to a variational model resembling the ROF-model for image denois-
ing, hence we further study the properties of the effective regularization
functional introduced by the novel approach and discuss similarities to
TV and TGV functionals. Moreover, we computationally investigate the
behaviour of the model with sparse vector fields for compression in par-
ticular for high resolution images and give an outlook towards denoising.
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1 Introduction

Image compression is a topic of interest since the beginning of digital imaging,
remaining relevant continuously due to the ongoing improvement in image reso-
lution. While standard approaches are based on orthogonal bases and frames like
cosine transforms or wavelets, an alternative route based on ideas from partial
differential equations has emerged recently (cf. [13,14]). In the latter case partic-
ular attention is paid to compressions from which cartoons can be reconstructed
accurately avoiding the artefacts of the above mentioned standard approaches by
a direct treatment of edges. Roughly speaking, their idea is to detect edges and
store the image value in pixels on both sides of an edge. The remaining parts of
the image are completed by harmonic inpainting. An alternative interpretation
of the two-sided pixel values, worked out more clearly in the osmosis setting of
[20], is that a vector field v corresponding to the normal derivatives of the image
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at the edge location is stored. The inpainting of the image u then corresponds
to a solution of

Δu = ∇ · v in Ω , (1)

where Ω is the image domain into which v is extended by zero off the edges.
In this paper we start from reinterpretation of the PDE-based compression

in terms of sparsity, which directly translates into a variational framework. The
key observation is that with the edge detection and zero extension of v one
essentially looks for a sparse vector field that leads to a certain precision in the
reconstruction via (1). In the spirit of the predominant sparsity regularization
of imaging problems we study a direct variational approach: we minimize an
L1-type norm of the vector field subject to the constraint that u reconstructed
via (1) approximates a given image f up to a certain tolerance, i.e.

‖v‖1 → min
u,v

subject to Δu = ∇ · v , ‖u − f‖2 ≤ ε . (2)

As we shall discuss below a more rigorous statement of the problem takes into
account that v needs to be interpreted as a vectorial Radon measure on Ω
(similar to gradients of BV -functions) in a continuum setting. The properties
of a limiting continuum model appear to be of particular advantage for the
compression issues, since one expects to concentrate the measure v on a set of
Lebesgue measure zero. This means that for a suitable discrete approximation
of the model the number of pixels we need to store the vector field in divided by
the total number of pixels tends to zero. A direct consequence is an increase in
the compression rates as image resolution increases, a highly desirable property.

Apart from compression we shall investigate models like the above one as
a regularization for more general imaging problems. The relation to denoising
models can readily be seen when the above constraint of approximating f is
incorporated via a Lagrange functional. Indeed, there exists a Lagrange param-
eter λ > 0 such that (2) is equivalent to

λ

2
‖u − f‖22 + ‖v‖1 → min

u,v
subject to Δu = ∇ · v . (3)

Hence, we may also interpret the norm of v as an implicit regularization of v and
simply replace the first term by an arbitrary data term to treat other imaging
problems. This is more apparent when we replace the constraint by a natural
special solution v = ∇u. In this case (3) is just the ROF-model for denoising (cf.
[18]) and indeed an equivalence relation holds in spatial dimension one. In higher
spatial dimensions it becomes apparent that a key role is played by the curl ∇×v.
If the curl of v vanishes, v simply becomes a gradient vector field and hence we
again recover the ROF-model. This motivates to study further generalizations
of the model also penalizing ∇ × v. With the interpretation that v is related
to the gradient of u, the additional term becomes a higher order regularization
effectively. Functionals of this type are currently studied in particular to reduce
staircasing artefacts in total variation regularization (cf. [2,4,9]), and indeed we
shall be able to draw very close analogies to the recently very popular TGV-
approach (cf. [4]). The reduction of staircasing is confirmed by computational
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experiments. However, in the denoising case we shall see that the divergence part
alone does not suffice for appropriate smoothing.

The remainder of the paper is organized as follows: In Section 2 we discuss
the model and its variants. Then, we proceed to a discussion of some theoretical
properties in Section 3, which provide some insights into the sparse vector field
model. Section 4 introduces a numerical solution based on primal-dual optimiza-
tion methods, which is used for some experimental studies in Section 5. Finally,
we provide a conclusion and directions for future research.

2 Variational Model and Regularization Functionals

In order to obtain an appropriate formulation of (3) we proceed as in [5] and
interpret v as a d-dimensional Radon measure on Ω ⊂ R

d. The regularization
functional is then

‖v‖M(Ω) = sup
ϕ∈C(Ω)d,‖ϕ‖∞≤1

∫
Ω

ϕ · dv , (4)

where (1) is to be understood in a weak form as well. Hence, (3) is rewritten as

λ

2
‖u − f‖22 + ‖v‖M(Ω) → min

u∈L2(Ω),v∈M(Ω)d
subject to Δu = ∇ · v . (5)

The model can be formulated as in recent approaches for denoising by defin-
ing w = ∇u − v (in the sense of distributions). With χ0 being the characteristic
function of the set {0} we obtain

λ

2
‖u − f‖22 + ‖∇u − w‖M(Ω) + χ0(∇ · w) → min

u∈L2(Ω),w∈D′(Ω)d
. (6)

One observes that the regularization functional is now an infimal convolution of
total variation and a functional of ∇w. The same structure is apparent in the
recently popularized TGV-model (cf. [4]), which in the analogous setting reads

λ

2
‖u − f‖22 + ‖∇u − w‖M(Ω) + ‖∇w‖M(Ω) → min

u∈L2(Ω),w∈M(Ω)d
. (7)

A major difference of the TGV approach to our new model is the fact that in
our case only the divergence of v respectively w is penalized, which might be
too weak to achieve suitable regularization properties. This can obviously be
realized if we add additional regularization terms depending on ∇ × v, which
is natural since a divergence-free vector field is constant if and only if its curl
vanishes. Note that ∇ × ∇u = 0, hence ∇ × v = −∇ × w, i.e. we can formulate
regularization either on v or on w. The most general formulation is given by

λ

2
‖u − f‖22 + ‖∇u − w‖M(Ω) + F (∇ · w) + G(∇ × w) → min

u∈L2(Ω),w∈D′(Ω)d
, (8)
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with convex functionals F and G, which however exceeds the scope of this paper
and is left as subject of future research.

We finally recast the above results in terms of the regularization they induce
on u. In this respect we also discuss the boundary conditions in (1), respectively
its weak formulation. Natural boundary conditions are no-flux conditions (∇u−
v) · n = 0 on ∂Ω, which means the used weak formulation of (1) is

∫
Ω

Δϕ u dx +
∫

Ω

∇ϕ · dv(x) = 0 ∀ϕ ∈ C2(Ω),∇ϕ · n = 0 on ∂Ω . (9)

Hence, we can define the regularization functional R : L1(Ω) → [0,∞]

R(u) := inf
v satisfying (9)

‖v‖M(Ω) . (10)

Once we have defined the regularization terms it is straight-forward to extend
the variational model to other imaging tasks, e.g. by just changing the data
fidelity. Moreover, we can consider Bregman iterations (cf. [16])

uk+1 ∈ arg min
u

(
λ

2
‖u − f‖22 + R(u) − 〈pk, u〉

)
, pk ∈ R(uk) , (11)

as well as other scale space methods such as the gradient flow (cf. [1]) ∂tu ∈
−∂R(u) and the inverse scale space method (cf. [6]).

3 Properties of Regularization by Sparse Vector Fields

In the following we further discuss some properties of the regularization func-
tional R defined via (10). To avoid obvious technicalities with constants, we
restrict ourselves to the space

L1
�(Ω) = { u ∈ L1(Ω) |

∫
Ω

u dx = 0 } (12)

if Ω is a bounded domain.
We start with some topological properties induced by R:

Theorem 1. Let Ω be a sufficiently regular domain. Then there exists a con-
stant c > 0 such that

‖u‖L1(Ω) ≤ cR(u) (13)

for all u ∈ L1
�(Ω). Moreover, dom(R) is a subspace of L1(Ω) and R is a norm

on dom(R) ∩ L1
�(Ω). Finally,

R(u) ≤ TV (u) ∀ u ∈ BV (Ω) . (14)

Proof. We have

‖u‖L1(Ω) = sup
φ∈L∞(Ω),‖φ‖∞≤1

∫
Ω

u(x)φ(x) dx . (15)
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For φ ∈ L∞(Ω) we define w as the weak solution of the Poisson equation −Δw =
φ with homogeneous Neumann boundary conditions and mean value zero. Thus,
using the weak formulations we have

∫
Ω

u(x)φ(x) dx =
∫

Ω

∇w(x) · dv(x) . (16)

Regularity of solutions of the Poisson equation yields continuity of w and the
existence of a constant c such that ‖∇w‖∞ ≤ c‖φ‖∞ = c, for all φ ∈ L∞(Ω).
Hence,

sup
φ∈L∞(Ω),‖φ‖∞≤1

∫
Ω

u(x)φ(x) dx ≤ c‖v‖M(Ω) , (17)

which yields the estimate of the L1-norm.
The one-homogeneity and triangle inequality follow in a straight-forward way

from the definition, consequently R is a norm on a subspace of L1
�(Ω). Estimate

(14) is obtained since v = ∇u satisfies (9), hence the infimum over all admissible
v is less or equal to the total variation.

A next step towards the understanding of properties of R is an investigation
of its subdifferential, with subsequent consequences for optimality conditions of
(5). For brevity we use a formal approach based on Lagrange multipliers. We
have p ∈ ∂R(u) if and only if p = ∂uL(u, v, q), for solutions (v, q) of the saddle-
point problem

inf
v

sup
q

L(u, v, q) (18)

for given u and the Lagrangian is defined as

L(u, v, q) = ‖v‖M(Ω) +
∫

Ω

Δq u dx +
∫

Ω

∇q · dv(x) . (19)

Thus, we find p = Δq and the optimality conditions for the saddle point problem
yield (9) and −∇q ∈ ∂‖v‖M(Ω).

It is instructive to compare the subgradients of R with those of TV. Indeed
with similar reasoning one can show that p ∈ ∂TV (u) if p = −∇ · g for a vector
field g ∈ ∂‖v‖M(Ω) and v = ∇u. This means that if we can write g = −∇q we also
obtain p ∈ ∂R(u). In particular this opens the door towards a simple verification
whether solutions of the ROF-model are also solutions of the sparse vector field
model (5). One simply has to inspect the subgradient in the optimality condition
and check whether the associated vector field g can be written as a gradient. We
will exemplify this in the case of the most well-known example for the ROF
model, the reconstruction of the indicator function of a ball on Ω = R

d (cf.
[15]). This function is an eigenfunction of TV, i.e. there exists λ (depending on
the radius R of the ball) such that

λu = ∇ · g ∈ ∂TV (u) . (20)
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It is easy to see that g = ∇F (b), where b is the signed distance function of the
ball (cf. [10]) and F satisfies

F ′(z) =

{
1 if z ≤ 0

R
z+R if z > 0 .

(21)

Hence, we have g = −∇q for q = −F (b), which implies that λu ∈ ∂R(u), with the
same value. The results in [3] imply that the variational model (5) reconstructs
data f being the indicator function of a ball in the form u = cf , with c < 1
depending on λ and α. Moreover, the Bregman iteration and inverse scale space
methods reconstruct f exactly after a finite number of iterations.

Finally we return to the original idea of compressing an image by encoding
a sparse vector field. For this sake it is desirable that v has support on a set of
small (or even zero) Lebesgue measure. Thinking about the continuum case as a
limit of discrete pixel images, the asymptotic property of zero Lebesgue measure
means that the image (in 2D) can be encoded by a number of values proportional
to the square root of the number of pixels. Consequently the compression rate of
such a PDE-based approach should improve with higher image resolution, which
is highly relevant given the current trend of screen and camera resolution. We
already see from the example of the indicator function of a ball above that we can
expect the method to encode a piecewise constant image by vector fields concen-
trated on the edge sets. For more complicated images the vector field potentially
needs to have a larger support to obtain a suitable reconstruction, since away
from the support of v the function u is just harmonic. A better understanding
of the compression properties would need a characterization of the structure of
minimizers, similar to [7,19]. While the one-dimensional case is equivalent to
total variation regularization and hence always yields v concentrated on a set of
zero Lebesgue measure (cf. [17]), the multi-dimensional case is less clear and left
as an interesting topic of future research. Further studies on the compression
properties will be carried out below by computational experiments.

4 Numerical Solution via Primal-Dual Methods

In order to solve our minimization problem (5) numerically, we at first need to
discretize it. Thereto we will adopt the notation of the continuous functions u,
v, f and the operators ∇, ∇· and Δ, but from now on, we are thereby referring
to their discretized versions, which we shall comment on in the following. For
simplification, we assume the normalized images to be quadratic, i.e. f, u ∈
[0, 1]N×N . The pixel grid can be written as {(ih, jh) : 1 ≤ i, j ≤ N}, where
h denotes the spacing size. We use forward finite differences with Neumann
boundary conditions for the discretization of the gradient of u and in order to
preserve the adjoint structure the divergence is discretized with backward finite
differences. Moreover, in this discrete setting the d-dimensional Radon measure
on Ω ⊂ R

d becomes the discrete L1-norm. Considering v as being related to the
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gradient of u, the regularization term in problem (5) can be interpreted as the
discrete total variation norm. We decided to use its isotropic version given by

‖∇u‖1 =
∑
i,j

|(∇u)i,j | =
∑
i,j

√
((∇u)1i,j)2 + ((∇u)2i,j)2 . (22)

Consequently, the minimization problem (5) reads:

λ

2
‖u − f‖22 + ‖v‖1 → min

u,v
subject to Δu = ∇ · v (23)

or equivalently:

λ

2
‖u − f‖22 + ‖v‖1 + χ0(Δu − ∇ · v) → min

u,v
, (24)

where χ0 is again the characteristic function of the set {0}. Defining

x := (u, v)T , G(x) :=
λ

2
‖u − f‖22 + ‖v‖1 , F (Kx) := χ0(Δu − ∇ · v) , (25)

one can easily see that we can calculate a solution of the above problem (24)
by applying a version of the recently very popular primal-dual algorithms (cf.
[8,11]) designed for efficiently solving general minimization problems of the form

F (Kx) + G(x) → min
x

, (26)

where F and G are proper convex lower-semicontinuous functionals.
We decided to use the first-order primal-dual algorithm as proposed by

Chambolle and Pock (cf. [8]) given by Algorithm 1.

Algorithm 1 Primal-Dual Algorithm by Chambolle and Pock
Input: τ, σ > 0, θ ∈ [0, 1]
Initialization: x0, y0, x̄0 = x0

for n ≥ 0 do
yn+1 = (I + σ∂F ∗)−1 (yn + σKx̄n)
xn+1 = (I + τ∂G)−1 (xn − τK∗yn+1

)

x̄n+1 = xn+1 + θ
(
xn+1 − xn

)

end for

Adopting their notation we can now derive the updates concerning our mini-
mization problem (24). Thereto we at first calculate the dual functional F ∗(y) =
supx{〈y, x〉 − F (x)}. Since in our case F is the characteristic function of the set
{0}, it is straightforward to see that F ∗ equals zero and hence the dual variable
y is given by yn+1 = yn + σKx̄n. Next we consider the update for the primal
variable x. As the subdifferentials of G with respect to u and v are independent
of v and u, respectively, we can update each component of x separately.
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Using the norm of the sum of the primal and dual residual given by (cf. [12])

‖Pn+1‖2 + ‖Dn+1‖2 , (27)

where

Pn+1 =
xn − xn+1

τ
−K∗(yn−yn+1) , Dn+1 =

yn − yn+1

σ
−K(xn−xn+1) , (28)

as a stopping criterion the implementation of our minimization problem (24) can
be summarized by Algorithm 2, where the two-dimensional isotropic shrinkage
operator is defined by:

shrinkage(z, γ) = max(‖z‖1 − γ)
z

‖z‖1 . (29)

Algorithm 2 Primal-Dual Algorithm for Minimization of (24)
Input: image f , λ > 0, τ, σ > 0, θ ∈ [0, 1], max no of iterations, ε > 0
Initialization: u0, v0, y0, ū0 = u0, v̄0 = v0

while primal-dual residual > ε and n < max no of iterations do
yn+1 = (I + σ∂F ∗)−1 (yn + σ∇ · (∇ūn − v̄n)) = yn + σ∇ · (∇ūn − v̄n)
un+1 = (I + τ∂uG)−1 (un − τΔyn+1

)
= 1

1+λτ

(
λτf + un − τΔyn+1

)

vn+1 = (I + τ∂dG)−1 (vn − τ∇yn+1
)

= shrinkage(vn − τ∇yn+1, τ)
ūn+1 = un+1 + θ

(
un+1 − un

)

v̄n+1 = vn+1 + θ
(
vn+1 − vn

)

end while

As already mentioned in Section 2 the model discussed so far can be further
extended by considering for example Bregman iterations as proposed by Osher
and coworkers [16]. To incorporate this iterative regularization method in our algo-
rithm, we use their “adding-back-the-noise” formulation such that the update for
u in the previously introduced routine is replaced by

un+1 =
1

1 + λτ
(λτf + hk + un − τΔyn+1) . (30)

Besides, the existing implementation is extended by an outer loop over a given
number of Bregman iterations in which h is updated by hk+1 = hk + f − u after
each complete cycle of the inner loop.

5 Computational Results

In the following we present some results for the cases of image compression and
denoising discussed above. As an example we chose the frequently used image
“Trui” (257 × 257 pixels), making the approach comparable to previous results
such as [13]. However, since the size of this image does not correspond to modern
HD resolutions, we also created two similar images with sizes of 1024×1024 and
4800 × 4800 pixels, respectively.
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5.1 Image Compression

We start by discussing the compression of the cartoon part of an image, which
is illustrated in Figure 1 for the Trui test image. We plot the relative error vs.
the non-zero gradient ratio, which means the number of pixels with non-zero v
divided by the total number of pixels. On the left we show a comparison of the
sparse vector field (SVF) model with the classical ROF model, which demon-
strates the improved compression properties. On the right we plot the results for
the variational SVF model compared to the Bregman iteration, which illustrates
that no significant improvement can be obtained with respect to compression by
the latter.

Fig. 1. Comparison of the non-zero gradient ratio for different parameter values

In Figure 2 we display the results of the compression and the corresponding vec-
tor fields for λ = 10. One observes that the support of v corresponds well to an
edge indicator, confirming the relation to the approach in [13]. The reconstructed
image seems to preserve the main edges well, but does not have the strict piece-
wise constant behaviour as total variation regularization, which seems attractive
for further reconstruction tasks. We also investigate the behaviour for higher

Fig. 2. From left to right: Original image, vector field v in x- and y-direction, norm of
v, and the corresponding reconstruction for λ = 10

resolution. In order to mimic increasing resolution we simply downscale the test
images to r times the number of original pixels, r ∈ (0, 1]. We then perform com-
pression at fixed error tolerance (corresponding to constant λ when appropriately
scaled) for the images of different size and finally plot the non-zero gradient ratio
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Fig. 3. Comparison of the Non-Zero Gradient Ratios of the SVF (λ = 10), the SVF-
Bregman (λ = 1 and 5 Bregman Iterations) and the ROF (λ = 10) algorithms for the
Trui test image (left) and an additional test image of size 1024x1024 pixels (right). The
latter test image is displayed in the middle.

vs. r in Figure 3. Our expectation that due to continuum limit and the potential
convergence towards a concentrated measure the ratio decreases with increasing
resolution is well-confirmed for the Trui image as well as for a similar image at
higher resolution.

Finally we display the result of the SVF model on a high definition image and
compare it to a jpg image with the same compression rate in Figure 4. Indeed we
achieve an improved PSNR with the SVF model. We also mention that several
further compression steps on v can be carried out in an analogous way to [13],
which will lead to highly improved rates, but is beyond the scope of this paper.

Fig. 4. From left to right: Original image with a resolution of 16.1068 bits per pixel,
our reconstruction at a compression of 1.1892 bits per pixel (λ = 10) with a PSNR
value of 34.0767 dB and the jpg image at the same compression rate with a PSNR
value of 33.3214 dB, corresponding difference images to original one in bottom row.

5.2 Denoising

We finally give an outlook towards other tasks such as denoising with sparse
vector fields. For this sake we compare our results to the classical ROF model and
choose in both cases λ such that the PSNR to the original image is maximized.
We illustrate the result in Figure 5, which appears to be representative for all our
tests. One observes that the reduced staircasing in the SVF model compared to
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Fig. 5. Noisy image (Gaussian noise, variance 0.05, left), ROF denoising result (λ = 5,
middle left), SVF denoising result (λ = 4, middle right), norm of vector field v in SVF
model (right).

the ROF model is less visible, which is due to point like artefacts that were not
present without noise. This results in a lower PSNR than for the ROF model,
which is consistent for all our tests. The reason for the artefacts is that v is too
sparse in this case and does not encode the contours anymore (see Figure 5).

6 Conclusion

We have introduced the SVF model for image compression motivated by diffusion
inpainting and found several interesting connections to TV-type regularization
methods. The SVF approach leads to significantly sparser vector fields than
the gradients of total variation, which appears useful for compression. Besides,
it seems not to suffer from staircasing artefacts, which is attractive for other
reconstruction tasks. However, the denoising performance of the SVF model
is not convincing, since it creates point artefacts at reasonable choice of the
regularization parameter. This is probably due to the fact that the norm induced
by the corresponding regularization is too weak (there is an upper but no lower
bound in terms of TV). For future improvement it seems natural to consider
regularization on the curl of the vector field as well, such that v becomes again
concentrated on contours rather than scattered points. In particular we suggest
to study the more general problem

λ

2
‖u − f‖22 + ‖∇u − w‖1 + β‖∇ × w‖1 + γ‖∇ · w‖1 → min

u,w
(31)

for positive β and γ where again w = ∇u − v (see (8)). Due to the exact
penalization properties of one-norms we expect that the ROF model corresponds
to the case of β and γ sufficiently large, while the SVF model in this paper is
β = 0 and γ sufficiently large.
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thank Tim Löpmeier (Münster) and Johannes Hjorth (Cambridge) for the acquisition
of HD photographs used as test data.



202 E.-M. Brinkmann et al.

References

1. Andreu, F., Ballester, C., Caselles, V., Mazon, J.M.: Minimizing total variation
flow. Differential and integral equations 14, 321–360 (2001)

2. Benning, M., Brune, C., Burger, M., Müller, J.: Higher-order TV methods:
Enhancement via Bregman iteration. J Sci Comput 54, 269–310 (2013)

3. Benning, M., Burger, M.: Ground states and singular vectors of convex variational
regularization methods. Methods and Applications of Analysis 20, 295–334 (2013)

4. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging
Sci. 3, 492–526 (2010)

5. Bredies, K., Pikkarainen, H.K.: Inverse problems in spaces of measures. ESAIM:
Control, Optimisation and Calculus of Variations 19, 190–218 (2013)

6. Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods.
Communications in Mathematical Sciences 4, 179–212 (2006)

7. Chambolle, A., Caselles, V., Cremers, D., Novaga, M., Pock, T.: An introduction
to total variation for image analysis. In: Fornasier, M. (ed.) Theoretical Founda-
tions and Numerical Methods for Sparse Recovery, pp. 263–340. DeGruyter, Berlin
(2010)

8. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems
with applications to imaging. J. Math. Imaging Vis. 40, 120–145 (2011)

9. Chan, T., Marquina, A., Mulet, P.: High-order total variation-based image restora-
tion. SIAM Journal on Scientific Computing 22, 503–516 (2000)

10. Delfour, M.C., Zolesio, J.-P.: Shapes and geometries: metrics, analysis, differential
calculus, and optimization. SIAM, Philadelphia (2011)

11. Esser, E., Zhang, X., Chan, T.: A general framework for a class of first order primal-
dual algorithms for convex optimization in imaging science. SIAM J. Imaging Sci.
3(4), 1015–1046 (2010)

12. Goldstein, T., Esser, E., Baraniuk, R.: Adaptive Primal-Dual Hybrid Gradient-
Methods for Saddle-Point Problems. arXiv Preprint arxiv:1305.0546v1 (2013)

13. Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S.: Edge-based compres-
sion of cartoon-like images with homogeneous diffusion. Pattern Recognition 44(9),
1859–1873 (2011)

14. Mainberger, M., Weickert, J.: Edge-based image compression with homogeneous
diffusion. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 476–483.
Springer, Heidelberg (2009)

15. Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equa-
tions. AMS, Providence (2001)

16. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An Iterative Regularization
Method for Total Variation-Based Image Restoration. Multiscale Model. Simul. 4,
460–489 (2005)

17. Ring, W.: Structural properties of solutions to total variation regularization prob-
lems. ESAIM: Math. Modelling Numer. Analysis 34, 799–810 (2000)

18. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Physica D 60, 259–268 (1992)

19. Valkonen, T.: The jump set under geometric regularisation. Part 1: Basic technique
and first-order denoising. arXiv preprint arXiv:1407.1531 (2014)

20. Weickert, J., Hagenburg, K., Breuß, M., Vogel, O.: Linear osmosis models for visual
computing. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.)
EMMCVPR 2013. LNCS, vol. 8081, pp. 26–39. Springer, Heidelberg (2013)

1305.0546v1
http://arxiv.org/abs/1407.1531

	Regularization with Sparse Vector Fields: From Image Compression to TV-Type Reconstruction
	1 Introduction
	2 Variational Model and Regularization Functionals
	3 Properties of Regularization by Sparse Vector Fields
	4 Numerical Solution via Primal-Dual Methods
	5 Computational Results
	5.1 Image Compression
	5.2 Denoising

	6 Conclusion
	References


