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      Relative Contribution of Nuclear 
and Membrane Progesterone 
Receptors in Respiratory Control 
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    Abstract  

  Progesterone is a steroid hormone whose physiological effects can 
affect various systems, including reproductive, immune and cardiore-
spiratory systems. In fact, there are growing evidences proving that pro-
gesterone is potent respiratory stimulant with therapeutic value for 
sleep-disordered breathing. However there is no clear understanding of 
how progesterone mediates its stimulant respiratory effects and alleviates 
apnea. Mechanistically, it was demonstrated that this hormone elicits 
some of its respiratory effect via the classical mechanism of the nuclear 
progesterone receptor (nPR), a transcription factor belonging to the 
super family of steroid hormone receptors. Moreover, experimental results 
indicate that activation of alternative non-genomic (i.e. non-nuclear) 
signaling pathways such as the membrane progesterone receptors 
(mPR) could have a key role in the regulation of the respiratory control 
system. We provide preliminary results suggesting an important role of 
mPRβ on respiratory control and ventilatory response to hypoxia in 
adult female mice.  
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30.1         Introduction 

 Breathing disorders such as obstructive sleep 
apnea, sudden infant death, and Rett syndromes 
show several sex differences in their prevalence, 
indicating that sex is primordial determinant of 
respiratory health and lending weight to the 
link of gonadal steroid hormones in respiratory 
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control (Kapsimalis and Kryger  2002 ; Chahrour 
and Zoghbi  2007 ). Progesterone is a steroid 
synthetized primarily in the gonads, the adrenal 
glands and in the placenta, but progesterone is 
also synthetized de novo in the central and 
peripheral nervous system, and can thus be 
classifi ed as a neurosteroid (Birzniece et al. 
 2006 ). Progesterone is well- known as a powerful 
respiratory stimulant with a potential therapeutic 
value for the treatment of apnea in adults 
(Shahar et al.  2003 ), and it has been suggested 
that it could also be used for the treatment 
of apnea in preterm neonates (Finer et al. 
 2006 ). However, progesterone is not clinically 
approved for respiratory disordered breathing, 
because experimental data are still scarce, and 
there is no clear mechanical studies explaining 
how progesterone infl uences the control of 
breathing and alleviates apnea. Here, we will 
briefl y focus on progesterone receptors, to 
highlight that we lack critical knowledge on 
their relative contributions in the regulation of 
the respiratory control system. However, our 
preliminary results clearly indicate that these 
receptors could play an important role in regu-
lation of breathing.  

30.2     Respiratory Effects 
of Progesterone 

 Progesterone is a potent respiratory stimulant, 
(Dempsey et al.  1986 ). Medroxyprogesterone, 
an analogue of progesterone, increases minute 
ventilation and responsiveness to hypercapnia 
or hypoxia (Skatrud et al.  1978 ; Zwillich et al. 
 1978 ). In addition, menopause is a risk factor 
for sleep apnea, and hormone replacement 
with progesterone reduces sleep disordered 
breathing in post-menopausal women (Shahar 
et al.  2003 ). Furthermore, progesterone reduces 
the occurrence of apnea in newborn and adult 
rats (Yamazaki et al.  2005 ; Lefter et al.  2007 ). 
Progesterone acts at different levels of the 
respiratory control system, including areas in 
central nervous system (Bayliss et al.  1987 ) 
and in peripheral chemoreceptors (Hannhart 
et al.  1990 ; Joseph et al.  2012 ). The direct 

application of progesterone on the dorsal 
 surface of the medulla, at the level of the 
Nucleus Tractus Solitarius (NTS), increases 
phrenic nerve activity (Bayliss et al.  1987 ), and 
the effects of progesterone on respiratory activ-
ity requires intact hypothalamic structures 
(Bayliss et al.  1990 ).  

30.3     Molecular Mechanisms by 
Which Progesterone 
Stimulates Breathing 

 Progesterone exerts it biological effects by 
genomic and non-genomic mechanisms 
(Fig.  30.1 ). We recently reported that progester-
one uses non-genomic mechanisms to increase 
VO 2  and VCO 2  (Marcouiller et al.  2014 ), most 
likely through the truncated form of the nuclear 
progesterone receptor (nPR) located on the 
external membrane of the mitochondria (Dai 
et al.  2013 ). Moreover, allopregnanolone, a neu-
roactive metabolite of progesterone, affects 
breathing in newborn rats and arterial barorefl ex 
responses in adults (Ren and Greer  2006 ; Heesch 
 2011 ). Despite the multiple potential pathways 
by which progesterone acts, little is known about 
the role of these pathways in regulating 
respiration.  

30.3.1     Genomic Mechanisms 

 The nuclear progesterone receptor (nPR) belongs 
to the superfamily of the steroid hormone recep-
tors. In the classical model of nPR activation, 
progesterone, a lipophilic molecule, diffuses 
through the cellular and nuclear membranes to 
bind to a nPR. When bound by progesterone, 
nPR undergoes conformational changes, dissoci-
ates from chaperone proteins, dimerizes, and 
directly interacts with specifi c response elements 
in the promoter regions of target genes through 
its DNA-binding domain (Mani  2006 ). The nPR 
gene (located on chromosome 11 in humans) 
encodes a single mRNA that, through alternative 
splicing, generates two major PR isoforms 
(nPR-A and nPR-B). These isoforms regulate 
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the expression of different target genes and, 
therefore, different functions in cells (Mani 
 2006 ; Camacho-Arroyo et al.  2007 ; González-
Flores et al.  2011 ). Several other isoforms have 
been identifi ed. Because some of these isoforms 
have a defective DNA-binding domain and lack 
the nuclear localization signal, they are expected 
to be localized in the cytosol or on cell 
membranes, rather than in the nucleus, and 
activate the mitogen- activated protein kinase 
(MAPK) signaling cascade (Maller  2003 ; 
Brinton et al.  2008 ). 

 In the central nervous system, nPR is localized 
in the preoptic, paraventricular, ventromedial, 
dorsomedial, and arcuate hypothalamic nuclei 
and more importantly, in brainstem areas 
involved in respiratory control, such as the NTS 
(the major site of peripheral chemoreceptors 
integration in the brainstem), the motor nuclei 
of the Xth and XIIth cranial nerves, and the 
locus coeruleus (Romeo et al.  2005 ; Helena 
et al.  2006 ; Brinton et al.  2008 ). In the periph-
eral nervous system, nPR immunostaining is 
localized in cells in the carotid bodies of adults, 
newborn and fetal rats (Joseph et al.  2006 ). 
Thus, localization of nPR in these areas of the 
peripheral and central nervous system are highly 

suggestive that nPR are involved in respiratory 
control. Indeed, intraperitoneal injection of 
progesterone decreases the frequency of apneic 
episodes recorded during sleep (identifi ed by 
behavioral criteria) by 50 % in 14-week-old 
male rats and by almost 80 % in 26- week-old 
rats. This effect is abolished when mifepristone, 
an nPR antagonist, is injected 1.5 h before pro-
gesterone injection (Yamazaki et al.  2005 ). 
Moreover, in anesthetized cats, i.v. progesterone 
administration enhances phrenic nerve activity, 
this effect is not elicited by other steroids, and is 
blocked by pre-treatment with mifepristone sug-
gesting that it is mediated by nPR. Progesterone 
also enhances the peripheral chemoreceptor 
response to hypoxia (Hannhart et al.  1990 ) and 
enhances ventilatory activity by decreasing the 
synthesis of dopamine, an inhibitory neuro-
transmitter in peripheral chemoreceptors 
(Joseph et al.  2002 ); nPR-A signaling regulates 
the expression of tyrosine hydroxylase, the 
rate-limiting enzyme in dopamine synthesis 
(González-Flores et al.  2011 ). Our recent data 
suggest that nPR is an important modulator of 
respiratory control during sleep and in chemore-
fl ex sensitivity. Specifi cally, adult female mice 
in which nPR is deleted (PRKO mice) have a 

  Fig. 30.1    Potential mechanisms of action by which pro-
gesterone might produce its respiratory effects. 
Progesterone, either from systemic circulation or pro-
duced locally in the neuronal system, can bind and signal 
throughout the classical nuclear receptor, membrane pro-

gesterone receptor (mPRα to mPRξ), and the Progesterone 
receptor membrane component (Pgrmc) 1 and 2. In addi-
tion, allopregnanolone, a metabolite of progesterone, can 
bind GABA A  receptor       
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higher frequency of sighs and post-sigh apneas 
during non-REM sleep and reduced responses 
to hypercapnia after chronic treatment with 
administration of progesterone (Marcouiller 
et al.  2014 )  

30.3.2     Non-genomic Mechanisms 

 Activation of the nuclear progesterone receptor 
is expected to induce measurable physiological 
responses coinciding with  de novo  protein syn-
thesis (within 30–45 min). However, steroid- 
induced effects may occur rapidly (within 
2–3 min); these effects are likely initiated by cell 
surface receptors (Revelli et al.  1998 ). Based on 
these data, the search for membrane progester-
one receptors (mPR) has been of great interest, 
culminating in the discovery of a gene and a cor-
responding protein with the characteristics of a 
fully functional mPR in sea trout ovaries (Zhu 
et al.  2003b ). Structural and phylogenetic analy-
ses have revealed the presence of similar genes 
in other species, including humans and mice 
(Zhu et al.  2003a ), and three distinct mPR genes 
(mPRα, mPRβ, and mPR    ) have been origi-
nally identifi ed. The family of mPR include fi ve 
different members (mPRα, mPRβ, mPR    , 
mPRδ and mPRξ) (Singh et al.  2013 ), which 
belong to the progestin and adipoQ receptor 
(PAQR) family. mPR proteins are located in the 
plasma membrane and have seven transmem-
brane domains with extracellular and intracellu-
lar terminals that respectively confer selective 
progesterone binding and activation of intracel-
lular Gi proteins. When bound by progesterone, 
mPRα inhibits cAMP production to activate 
MAPK, which in turns activates the extracellular 
signal-regulated kinase (Erk1 and Erk2) signal-
ing pathway. mPRα is predominantly expressed 
in reproductive tissues, mPRβ in the brain, and 
mPR     in the kidneys (Zhu et al.  2003b ). In 
mice, mPRα and mPRβ proteins and mRNA are 

expressed in the spinal cord with a distinct 
staining pattern that likely underlies the impor-
tant trophic and protective effects of progesterone 
at this level (Labombarda et al.  2010 ). In rats, the 
mRNAs for mPRα and mPRβ are expressed in 
the cortex and thalamic nuclei (Intlekofer and 
Petersen  2011 ). 

 The pioneer study conducted by Pascual et al. 
( 2002 ) showed that progesterone is able to restore 
the decreased transmission of afferent signals in 
the NTS during hypoxia, which could explain the 
stimulatory effect of progesterone in response to 
this stimulus. Because these effects required 
between 2 and 3 min to occur, it was suggested 
that a non-genomic mechanism of action was 
involved (Pascual et al.  2002 ). Based on these 
preliminary data, we sought to determine the 
expression of mPRβ and mPRα in the brainstem 
of adult female mice by immunohistochemistry 
(see (Labombarda et al.  2010 ), and found stain-
ing in the NTS, and the motor nuclei of the Xth 
and XIIth cranial nerves (Fig.  30.2 ). We have 
tested the functional role of mPRβ in adult female 
mice that were treated for 14 days with an intra-
cerebro- ventricular infusion of a specifi c siRNA 
against mPRβ (0.04 mg/day; Stealth Select 
RNAi™, Life Technologies, Burlington, ON, 
Canada) in the IVth ventricle, to abolish its 
expression in central areas of respiratory control. 
Preliminary results indicate that the deletion of 
mPRβ induces a depression of the ventilatory 
response to hypoxia as shown in Fig.  30.3 . 
Interestingly, while hypoxic exposure induced a 
rapid increase of respiratory frequency in control 
mice, we observed a mean delay of 4.5 ± 1.1 min 
before any observable response occurred in mice 
treated with the siRNA against mPRβ. The effi -
ciency of the knock-down of mPRβ has been 
verifi ed by immunohistochemistry, showing a 
wide-spread absence of staining in the brainstem 
(not shown). These preliminary results support a 
key role for mPRβ, in respiratory control in adult 
mice.     
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  Fig. 30.2    Immunohistochemistry for mPRα and mPRβ 
in the dorsal region of the adult mouse brainstem. ( a ) 
Neuroanatomical drawing at bregma – 7.76 mm (from 
Franklin and Paxinos) and corresponding staining at this 
level (100, 200, or 400×). ( b ) Neuroanatomical drawing at 
bregma – 7.08 mm and corresponding staining (100, 200, 
or 400×). Note the staining for mPRα in cell bodies on the 

NTS (SolM, SolC) and XIIthMN (12 N) at both bregma 
levels, and for mPRβ on neurites in the NTS. ( c ) Sagittal 
view (lateral 0.12 mm) of the brainstem; coronal planes at 
bregma −7.76 and −7.08 mm. CC: central canal, SolM, 
SolC, SolG, SolDL, SollM, SolV,… subdivision of the 
NTS. 12 N: hypoglos-sal nucleus, 10 N: vagal nucleus. 
Scale bar at 100× = 100 μm; at 200× = 50 μm       
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30.4     Conclusion 

 With growing awareness of the potent respiratory 
effects of progesterone, further experiments are 
required to elucidate its mechanisms of action with 
the perspective to develop novel pharmacological 
approaches for the treatment of respiratory disor-
dered due to unstable respiratory control system. 
Specifi c knockdown of PR in-–vivo with siRNA 
infusion, or knock-out models appear as promising 
tools to elucidate the relative contributions of the 
different members from the large PR family.     
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