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Abstract Cryo-ET has recently emerged as a leading technique to investigate the
three-dimensional (3D) structure of biological specimens at close-to-native state.
The technique consists of acquiring many two-dimensional (2D) projections of the
structure under scrutiny at various tilt angles under cryogenic conditions. The 3D
structure is recovered through a number of steps including projection alignment
and reconstruction. However, the resolution currently achieved by cryo-ET is well
below the instrumental resolution mainly due to the contrast transfer function of
the microscope, the limited tilt range and the high noise power. These limitations
make the 3D reconstruction procedure very challenging. Here, we propose a new
regularized reconstruction technique based on projected gradient algorithm. Using
the gold-standard method for resolution assessment, the Fourier Shell Correlation,
we show that the proposed technique outperforms the commonly used reconstruction
methods in ET, including the filtered back projection and the algebraic reconstruction
techniques.
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Fig. 1 Cryo-ET image processing pipeline

1 Introduction

Over the last decade, cryo-Electron Tomography (cryo-ET) has drawn the attention
of researchers. It is considered the most powerful imaging technique to address
fundamental questions on biological structures at both cellular and molecular
levels [1]. It also bridges the gap between low-resolution imaging techniques
(e.g. light microscopy) and high-resolution techniques (e.g. single particle electron
microscopy). Cryo-ET merges the principles of transmission electron microscopy
(TEM) and the principle of tomographic imaging by acquiring several two-
dimensional projection images of biological structures at limited tilt range and close-
to-native condition. These two-dimensional projection images are then reconstructed
to a three-dimensional image (called tomogram), after passing through a pipeline of
alignment and restoration procedure as shown in Fig. 1. For a more in-depth descrip-
tion of the cryo-ET and the associated image processing pipeline see [2].

The resolution of the reconstructed tomogram, however, is affected by the low sig-
nal to noise ratio (SNR) of the projection images (typically 0.1–0.01) and the limited
angular coverage (typically ±60–70◦) resulting in wedge-shaped missing informa-
tion in Fourier space, the so-called “missing wedge”, making the reconstruction
process very challenging and demanding [3]. Therefore, developing a reconstruction
technique that incorporates the sparsely sampled data, the noise level, and that pre-
serves the structural edges while pushing the limits of resolution further, is highly
desirable.

One technique, that was recently investigated in the context of cryo-ET [4], is the
direct Fourier reconstruction using a non-uniform fast Fourier transform, but it is still
hampered by the high computational cost. Therefore, the current standard method in
cryo-ET is the weighted (filtered) back projection (WBP) based on Radon transform
[5], which backprojects the high-pass filtered projection data into the tomogram. One
of the main drawbacks of WBP, however, are the typical streak artifacts due to the
missing wedge of data, as well as the corresponding degraded resolution.
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Recently, due to the increasing availability of high performance computing,
variants of the algebraic reconstruction technique (ART) have been employed and
extended in the context of cryo-ET [6–8], which formulate the reconstruction prob-
lem as a large system of linear equations to be solved iteratively. In this manner, the
missing wedge effect can be minimized, but the reconstruction performance is still
degraded due to the noisy input data.

The projected gradient-based algorithm [9] has recently been used in several
applications such as compressed sensing [10], X-ray computed tomography [11] and
in sparse signal recovery [12] to solve the L2−L1 optimization problem (LASSO). In
this paper, the reconstruction problem is formulated as an unconstrained, regularized
optimization problem, using the projected gradient-based algorithm to solve the
problem on a feasible bounded set. In the following we denote this approach as
Gradient-based Projection Tomographic Reconstruction, in short GPTR.

2 Problem Formulation

2.1 Notation and Concept

The three-dimensional reconstructed tomogram is represented as a discretized, lin-
earized vector x ∈ R

n , with n ∈ N. The forward problem can be formulated using the
discrete version of the Radon Transform [5] for each measurement j ∈ {1, . . . , m}:

b j =
n∑

i=1

ai j xi or in short b = Ax, (1)

where b ∈ R
m represents the measured projection data, (a ji ) = A ∈ R

m×n rep-
resents the weighting matrix, where a ji is the weight with which each voxel in the
image vector x ∈ R

n contributes to the j th projection measurement.
For computational simplicity, we treat the three-dimensional tomogram as a stack

of two-dimensional slices, which are reconstructed individually and then stacked
together again to a three-dimensional tomogram.

2.2 Formulation as an Optimization Problem

The tomographic reconstruction problem of solving b = Ax for the unknown x
in cryo-ET is underdetermined due to the limited tilt angles, as well as ill-posed,
for example due to the measurement noise. Hence a direct solution is not feasible.
Instead, a least squares approach is adopted to find an approximate solution
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xLS = arg min
x

‖b − Ax‖2
2, (2)

where ‖ · ‖2 denotes the Euclidean norm. This least squares problem can be solved
iteratively following a weighted gradient descent approach,

xk+1 = xk + sk gk, k = 0, 1, . . . , (3)

with a starting value x0, step size sk and a weighted gradient gk = QAT D(b − Axk).
Standard techniques such as SIRT or SART can be expressed in this form by choosing
sk and gk appropriately (for example we can get SIRT by setting Q and D to the
identity matrix in gk , and sk ∈ [0, 2]). This is also true for the recently developed
techniques I-SIRT, M-SART or W-SIRT [6–8]. To accelerate convergence, a standard
numerical method like the LSQR variant of the conjugate gradient algorithm [13]
can be used instead.

However, due to the strong measurement noise, a least squares approach will lead
to noise amplification in later iterates xk . To combat this, a regularization term φ(x)

is added to stabilize the solution,

xopt = arg min
x∈Ω

‖b − Ax‖2
2 + βφ(x) (4)

with a Lagrangian multiplier β > 0 describing the strength of the regularizer, and
further restricting the solution to a feasibility region Ω = {

x = (xi ) ∈ R
n : xi ∈

[l, u]}, where l, u ∈ R denote lower and upper bounds of the signal.
A popular choice for the regularization term is the isotropic total variation,

φ(x) = ‖Dx‖1, where D is an operator computing the gradient magnitude using
finite differences and circular boundary conditions, and ‖ · ‖1 denotes the �1-norm.
However, isotropic TV is non-smooth and thus poses problems for the optimization
procedure.

3 Methodology

3.1 Problem Statement

We investigate the regularized optimization problem as in Eq. (4), that is optimizing
the objective function

f (x) = ‖b − Ax‖2
2 + βφ(x). (5)

To overcome the non-smoothness of isotropic total variation, we use the smooth
Huber function φhuber [14], replacing the �1-norm of total variation. φhuber is illus-
trated in Fig. 1 and is expressed by



Gradient Projection for Regularized Cryo-Electron Tomographic Reconstruction 47

φhuber(z) =
{

0.5 |z|2 |z| ≤ τ

τ |z| − 0.5τ 2 else,
(6)

where the threshold parameter τ is estimated by the median absolute deviation,
τ = median(|z − median(z)|). Using φ(x) := φhuber(Dx) the objective function
f (x) is now smooth and convex, so the projected gradient method can be applied to
find a feasible solution x ∈ Ω .

3.2 Projected Gradient Algorithm

The projected gradient method [9] is an extended version of gradient descent, where
the solution is iteratively projected onto the convex feasible set Ω , as illustrated in
Fig. 1. Starting with an initial value x0, it is expressed by:

xk+1 = PΩ(xk + sk gk), k = 0, 1, . . . , niter (7)

where gk = ∇ f (x) is the gradient of the objective function in (5), and sk is the step
size. The step size sk is computed using an inexact line search, limiting the gradient
step by the Armijo conditions [15], ensuring the curvature and a sufficient decrease
of the objective function as follows:

f (x(sk)) − f (x) ≤ α

sk
‖x(sk) − x‖2 , (8)

where α is a scalar constant.
The algorithm Gradient Projection for Tomographic Reconstruction (GPTR) is

illustrated in Fig. 1 and can be described as follows:

1. Input: The algorithm is fed with the aligned projections b associated with the tilt
angle, and the forward projector matrix A [16].

2. Set the initial conditions: The initial reconstructed tomogram is set to x0 ∈ Ω ={
x = (xi ) ∈ R

n : xi ∈ [l, u]} with lower and upper bounds l, u ∈ R, a tolerance
and the maximum number of iterations niter.

3. Iterate for k = 0, 1, . . . , niter

a. Compute the objective function f (x): The data fidelity term ‖b − Axk‖2
2

and the regularization term φ(xk) = φhuber(Dxk) are computed.
b. Compute the gradient gk : The gradient gk = ∇ f (xk) is computed.
c. Compute the gradient step sk : Initialize sk = 1. Check the Armijo condition

in Eq. (8) and iteratively reduce sk by 90 % until the condition is met (or a
maximum number of iterations are performed).

d. Update the solution estimate xk+1: Compute xk+1 by computing the gradient
descent update step xk + sk gk and projecting it onto Ω as in Eq. (7).
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4. Output: xk+1 is the output once the iteration has converged (i.e. the tolerance
was reached) or the maximum number of iterations has been reached.

Convergence of the GPTR algorithm with a regularized objective function has
not been investigated yet. However, a detailed analysis for a similar problem can be
found in [17].

4 Experiments and Results

The proposed reconstruction method has been examined on real data, a tomographic
tilt series of a vitrified freeze-substituted section of HeLa cells [18], which were
collected from −58 to 58◦ at 2◦ intervals and imaged at a pixel size of 1.568 nm using
Tecani T10 TEM, equipped with 1k×1k CCD camera. To keep the computational
complexity manageable, the projection data was down-sampled by a factor of eight.
The solution of the proposed technique GPTR was compared with those of the
most commonly used techniques in the field of cryo-ET, namely WBP, LSQR, and
SART. The parameters were set to β = 0.1, a tolerance of 10−2, niter = 50 and
[u, l] = [0.01, 1000].

4.1 Fourier Shell Correlation

The Fourier Shell Correlation (FSC), the typical quantitative analysis of the resolu-
tion within the cryo-EM and cryo-ET community [19], was applied to the different
reconstruction methods to assess the resolution. The tomograms were reconstructed
from even and odd projections separately and the Fourier transform of each tomo-
gram was calculated (Fn and Gn for even and odd tomograms respectively). Then
the Fourier plane was binned into K shells from 0 to the Nyquist frequency as shown
in Fig. 2b. The FSC is calculated as follows:

FSC(K ) =
∑

n∈K FnG∗
n√∑

n∈K |Fn|2 ∑
n∈K |Gn|2

, (9)

where K is the Fourier shell and ∗ is the conjugate Fourier transform.
The results are shown in Fig. 2a. The 0.5-FSC-criterion is usually used as an

indicator of the achieved resolution. It is quite clear that the FSC of the GPTR method
crosses the 0.5-FSC-line at high spatial frequencies, outperforming the FSCs of the
traditional methods. Moreover, the high frequency components (noise) are attenuated
in GPTR (indicating robustness to noise), while the noise was aligned with the data
in the SART technique. Also, we observed that the GPTR reached the tolerance in
6–8 iterations, while the LSQR did not converge in 10 iterations.
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Fig. 2 FSC curves for different reconstruction techniques (WBP, LSQR, SART and GPTR) with
their cutoff frequency 0.164, 0.216, 0.28 and Inf respectively. a FSC curves. b Fourier shells
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Fig. 3 Reconstructed tomograms and their line profiles (LP). a WBP. b LSQR. c SART. d GPTR.
e The intensity LP. f The un-normalized intensity LP

4.2 Line Profile

Another experiment was performed using niter = 7, leaving the other parameters
unchanged. Then an intensity line profile (LP), the dashed line in Fig. 3b, was drawn
for the different reconstructed tomograms from Fig. 3a–d to investigate the edge
preservation, the noise effects and the non-negativity of the intensity values. The LP
was drawn for both the normalised sections in Fig. 3e and the un-normalised ones in
Fig. 3f. It is clear from Fig. 3f that the LP behaviour of GPTR is similar to theSART,
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which follows the underlying object smoothly, while the GPTR preserves the edges
better. Additionally, GPTR by construction produces positive intensities, while WBP
and LSQR are affected clearly by the noise and the negative values.

5 Conclusion

In this paper, the gradient projection for tomographic reconstruction (GPTR) was
proposed to solve the regularized optimization problem for the Electron tomographic
reconstruction. A proof of principle was demonstrated on real ET data using the
gold standard for resolution measurement, FSC. A gain of several nanometers in
resolution (0.5-FSC criterion) was achieved without affecting the sharpness of the
structure (line-profile criterion). Extending the work for large data sets and/or in the
field of cryo-ET is currently under development.
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