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Abstract Intensity normalization is widely used to remove the confounding effect
of global change exhibited in PET or SPECT brain images such that the local activity
can be detected. Improper estimate of global change may induce a biased normal-
ization. To separate the global change from local measurements, an iterative method
is proposed to identify reference regions that are not affected by the local activity.
From more than one hundred predefined anatomical regions, the reference regions
are selected based on their intensity similarity between two groups. Weighted least
squares regression is used to compute linear intensity transformations to align inten-
sities of corresponding reference regions across all subjects. Studies with simulated
data demonstrated that the proposed method performed better in recovering real
intensity change comparing with global mean normalization and with Andersson’s
data-driven method.

Keywords Brain imaging · Glucose metabolism · Intensity normalization · PET ·
SPECT

1 Introduction

Positron emission tomography (PET) and single photon emission computed tomog-
raphy (SPECT) has been used to assess cerebral blood flow or metabolic activity
at voxel level. With images acquired at different experimental conditions, statistical
comparison can be performed between groups to discover their functional difference
voxel-wisely or over a region of interest [1, 5, 9]. In a PET or SPECT image, the
functional activity measured at each voxel is the confounding effect of a local activity
and a global change. The global change is regional independent and always exhibits
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large inter- and intra-subject variation. To localize and quantify the regional activity,
the global change needs to be removed to increase the statistical power of the group
comparison. The global change can be estimated based on a predefined reference
region which is assumed to have no local activity [4, 13]. However, selecting an
appropriate reference region is very challenging in some studies. Using different
brain regions may lead to different or even conflicting results [10, 12].

Besides the reference-based estimation, the average of all intracerebral voxels
may be used as a measurement of the global change. In the widely used global
mean normalization (GMN), the global effect is eliminated by dividing the local
measurements by the whole-brain average [8]. This method works well in studies
where a few small regions are activated by a task or cognitive challenge. In these kinds
of studies, the magnitude of the activation is moderate and the whole-brain average
is not affected by the local change. In studies with a pharmacological challenge
however, a relatively large region may be activated and the local change may alter
thewhole-brain average. In this case, the GMNproportionally reduces themagnitude
of the true activation and induces a bias in the opposite direction, thus decreasing the
sensitivity and specificity in detecting the real functional change.

To address this issue, Andersson proposed an iterative method to identify voxels
that are not affected by local activity and normalize images with the average inten-
sity of identified voxels [2]. The method uses the GMN as an initial step. Then a
voxel-wise comparison is performed between groups and all voxels with p > 0.05
are used to normalize the image. This procedure is repeated until there is no further
change in the global estimate. Th Andersson method reduced the biased global esti-
mate comparing to the GMN.However, in a studywith a large inter-subject variation,
voxels with moderate activation may be included in the global estimate due to the
initial step of GMN and the insufficient criterion of p > 0.05. If the region with
moderate activity is large enough, it will change the global estimate thus leads to a
biased normalization in the similar way as the GMN. Such issue had been observed
in a comparative study performed by Borghammer et al. [3]. Yakushev et al. pro-
posed a non-iterative two-step method where the global change was estimated by
only including “hypermetabolic” voxels [3]. This method only works for studies
where the intensities of all activated regions change in a same pre-known direction.
Moreover, the result of this method is very sensitive to the selection of the threshold
of “hypermetabolic” voxels. Global change can be easily over or under estimated if
the threshold is inappropriate [3].

In this paper, an automated region-based method is proposed by improving upon
several drawbacks of the Andersson method: first, the proposed method removes the
initial step of the GMN. Second, anatomical regions instead of individual voxels
are identified for intensity normalization. Third, both p-value and percentage dif-
ference are used in indentifying the reference regions. Forth, the proposed method
employs linear model to align the intensities of corresponding regions rather than
using ratio only. Finally, linear transformations are computed using weighted least
squares regression where the contribution of each identified region is determined
based on its size and the intensity similarity between groups. To compare the pro-
posed method with the GMN and the Andersson method, FDG-PET images from
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normal rats were divided into two groups. Artificial intensity change was added in
one group of images while the other group was used as the control. All images
were normalized using three methods to test their capabilities of recovering the real
intensity change in statistical comparisons.

2 Materials and Methods

2.1 Image Acquisition and Data Simulation

Twenty two male Sprague-Dawley rats were scanned using a Focus-220 PET scan-
ner (Siemens Medical Solutions). Images were reconstructed into a 128× 128× 95
volumewith in-plane resolution of 0.6mm and slice thickness of 0.8mmwith correc-
tions for detector normalization, decay, attenuation, and scatter. The SUV (Standard
Uptake Value) of FDG uptake was calculated and used for group comparison. All
animal usage and experimental procedures were reviewed and approved by local
Animal Usage Committee (IACUC).

All SUV images were evenly assigned into two groups so that the difference of
their whole-brain average between groups was minimized (the difference was less
than 1% with p-value of 0.89 in a two tailed t-test). One group was used as control
while images of another group were multiplied with a predefined scale image. In the
first simulation, the SUV was increased by up to twenty percent in cortical regions.
Figure1 shows a representative slice of the scale image overlaid on a MRI template.

Fig. 1 A representative slice
of the predefined scale
image. The color bar
represents the scale of
intensity increase. The scale
image is served as the
ground truth in the
evaluation of different
normalization methods
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After the data manipulation, the whole-brain average of the manipulated group was
3.93% higher than the control group (p = 0.27 in a two tailed t-test).

In the second simulation study, SUV in cerebellum was increased 7% in the
manipulated group besides the SUV increase in cortical regions. This simulation
was designed to assess the performance of different intensity normalization methods
when there was a moderate signal change in a relatively large region. With the data
manipulation, the difference of the whole-brain average between the two groups was
4.59% with p-value of 0.21 in a two tailed t-test.

2.2 Normalization Method

All images were spatially aligned to a template on which more than one hundred
anatomical regions had been delineated. The mean image G was computed by aver-
aging all aligned images. Denotes the mean intensity of ith region on the G as Gi .
The proposed algorithm is summarized as follows:

1. At every voxel of the brain, compute the absolute percentage difference between
the two groups. The median percentage difference (denotes as �) is used as the
threshold of percentage difference in step 3b.

2. For each anatomical region i = 1:m,

a. Compute the mean intensity Fij for each image j = 1:n,
b. Compare the intensity difference between the two groups.
c. Get p-value and percentage difference of intensity between groups.

3. The unaffected regions (denotes as �) are selected based on following criteria,

a. The p-value of the region is greater than 0.1.
b. The percentage difference of the regional intensity is less than the � defined

in step 1.

4. For j th image Fj ,

a. Compute α j and β j by minimizing

∑

i∈�

wi (α j + β j Fij − Gi )
2

Where the wi = si∗pi are weights defined by the size (si) and p-value (pi) of
the i th region.

b. Update the intensity of image Fj by Fj = α j + β j Fj .

5. Repeat step 1 to step 4 until |β j − 1| < 0.01 and |α j | < θ j for all images. θ j is
defined as one percent of the whole-brain average.
For simplicity, this method is refered as ReDIN (Region-based Data-driven
Intensity Normalization) in the rest of the paper.
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2.3 Image Analysis

After being aligned to the template, the intensities of all SUV images were normal-
ized using the GMN, the Andersson, and the ReDIN separately. Statistical compar-
isons were performed on normalized images to detect the difference between the
two groups at voxel level or over the anatomical region of interest (ROI). The Voxel-
wise comparison was carried out using the software package AFNI (Analysis of
Functional NeuroImages, http://afni.nimh.nih.gov) where two-tailed t-test was per-
formed after all images were smoothed with a Gaussian filter (FWHM = 1.5mm).
The family-wise error rate was controlled to 0.05 when detecting clusters with sig-
nificant metabolic differences.

In ROI analysis, the mean SUV of each ROI was computed on normalized images
and compared between groups. The percentage differences and p-value of corre-
sponding ROI were reported. The percentage differences recovered from different
normalization methods were compared with the real change of the manipulation.

3 Results

3.1 Simulation I Study

The results of voxel-wise analysis is displayed in Fig. 2where the detected clusters are
highlighted by color. The red color represents the SUV increase of the manipulated
group compared to the control group and the blue color shows the SUV decrease.
Color bars indicate the percentage difference. After the GMN, only a part of SUV
increase can be detected and an artificial SUV decrease was found in a large region

Fig. 2 The influence of different normalization methods on voxel-wise comparison in simulation I.
The identified clusters were highlighted by colors that represented the detected percentage change
of the manipulated group over the control group. Red color shows the regions with SUV increase
and blue color indicates the SUV decrease

http://afni.nimh.nih.gov
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(left panel). The Andersson method improved the GMNmethod by recovering more
regions with real SUV increase and inducing smaller region with the artificial SUV
decrease (middle panel). ReDIN recovered most regions with SUV increase without
inducing SUV decrease (right panel).

With ROI analysis, the influence of different normalization methods can be com-
pared quantitatively. Table1 shows the percentage difference and p-value between
the two groups after normalizing data with different methods. The true change is the
real percentage change applied to images of the manipulated group. With the GMN,
themagnitude of SUV increase was reduced and around 5% artificial signal decrease
was induced in hippocampus and thalamus. With Andersson and ReDIN methods,
the results were close to the real change.

3.2 Simulation II Study

In the second simulation study, a moderate SUV increase was introduced in cere-
bellum. Because the whole-brain average of the manipulated group is 4.59% higher
than the control group, the GMN reduced the intensity increase of the manipulated
group and made the intensity change in cerebellum undetectable. In the Andersson
normalization, cerebellum may be included in the global estimate after the initial
step of the GMN. Considering the size of cerebellum, the global change was overes-
timated, therefore pushing the intensity of all voxels to an opposite direction of the
real SUV change. Such influence is demonstrated by Fig. 3 and Table2. Both GMN
and Andersson method recovered only a part of real SUV increase and induced a
large artificial SUV decrease. ReDIN did not suffer such issue.

4 Discussion

We presented an image normalization method and compared the proposed method
with the GMN and the Andersson method. Simulation studies demonstrated that
the proposed method yielded the best result in recovering the real metabolic change.
The GMN suffered problems when the whole-brain average was affected by the local
activities. The performance of the Andersson method is somewhere in between the
GMN and the proposed method.

The propose method identifies anatomical regions instead of individual voxels
for intensity normalization. The region-based method has two benefits: it reduced
the computational cost by reducing the least squares regression from more than
ten thousand voxels to less than a hundred of regions. Secondly, we can report the
name of anatomical regions instead of using pictures to illustrate the region used
for normalization. When preferred, some regions can be excluded based on prior
knowledge.
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Fig. 3 In simulation II, moderate signal increase was added to some regions of cerebellum. Both
the Andersson’s method and the GMN created large areas of false SUV decrease (showed in blue
color) where ReDIN method was not affected

Besides the applications in functional image analysis, the proposed method can
be used in anatomical MRI analysis as well. For example, in tensor-base morphom-
etry, Jacobian determinant is used to characterize the structural difference between
groups at voxel level. To reduce the inter-subject variation, some studies calculated
the Jacobian determinant only based on the deformation field and ignored the struc-
tural difference captured in affine registration. In Alzheimer’s disease (AD) research,
Affine transformation needs to be included in Jacobian determinant because there
may be a whole brain atrophy in AD patients. In this case, the proposed method can
be used to reduce the inter-subject variation in group comparison.

Although ReDIN normalization is developed based on preclinical data, it is
straightforward to extend this method to clinical applications. In presented studies,
a rigid body registration was used for spatial normalization due to the low resolution
of PET image relative to the brain size of the rat. In clinical studies, more accurate
deformable registration may be used if anatomical MRI of same subject is available.
Software packages have been developed by different groups and were evaluated by
Klein et al. [11].
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