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The research related to the analysis of living structures (Biomechanics) has been a source of
recent research in several distinct areas of science, for example, Mathematics, Mechanical
Engineering, Physics, Informatics, Medicine and Sport. However, for its successful
achievement, numerous research topics should be considered, such as image processing and
analysis, geometric and numerical modelling, biomechanics, experimental analysis, me-
chanobiology and enhanced visualization, and their application to real cases must be devel-
oped and more investigation is needed. Additionally, enhanced hardware solutions and less
invasive devices are demanded.

On the other hand, Image Analysis (Computational Vision) is used for the extraction of
high level information from static images or dynamic image sequences. Examples of
applications involving image analysis can be the study of motion of structures from image
sequences, shape reconstruction from images, and medical diagnosis. As a multidisciplinary
area, Computational Vision considers techniques and methods from other disciplines, such as
Artificial Intelligence, Signal Processing, Mathematics, Physics and Informatics. Despite the
many research projects in this area, more robust and efficient methods of Computational
Imaging are still demanded in many application domains in Medicine, and their validation in
real scenarios is matter of urgency.

These two important and predominant branches of Science are increasingly considered to be
strongly connected and related. Hence, the main goal of the LNCV&B book series consists
of the provision of a comprehensive forum for discussion on the current state-of-the-art in these
fields by emphasizing their connection. The book series covers (but is not limited to):
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Computational Methods



Computational Methods for Molecular
Imaging

Fei Gao and Pengcheng Shi

Abstract Molecular imaging is a new research discipline enabling the
visualization, characterization and quantification of biologic processes taking place
at the cellular and subcellular levels within intact living subjects. Applications of
molecular imaging techniques will benefit various clinical practices including clas-
sification and tracking of chemotherapy and treatment planning of radiotherapy, as
well as drug discovery and development. Molecular imaging typically includes two
or three dimensional imaging with quantification over time, and is often applied on
molecular imaging modalities, such as Positron Emission Tomography (PET), and
Single Photon Emission Computed Tomography (SPECT). Computational methods
serve as an essential part in molecular imaging. Various computational methods are
developed to accelerate image processing, identify underlying diseases hidden in
the image volumes, evaluate the effectiveness of drug and radiotherapy etc. Com-
putational methods for molecular imaging are in a fast growing field and full of
potentials and challenges, and related topics have attracted many researchers from
both academia and industry. This book covers the selected topics in computational
methods for molecular imaging. As the start, this review provides a brief introduc-
tion to the current status of computational methods for molecular imaging and their
applications.

Keywords Computational methods · Molecular imaging · Positron emission
tomography (PET) · Clinical applications

1 Introduction to Molecular Imaging

Molecular imaging provides the images of molecular and cellular level activi-
ties inside the body. Molecular imaging enables doctors to measure the biological
processes quantitatively and reflects the functionality of organs and tissues inside
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patients. According to the definition from the Society of Nuclear Medicine and
Molecular Imaging (SNMMI), molecular imaging is the visualization, characteriza-
tion, and measurement of biological processes at the molecular and cellular levels
in humans and other living systems [52]. Molecular imaging is a noninvasive pro-
cedure and can be used to study and diagnose cancer, brain diseases and disorders,
cardiology, and various disorders in different organs and tissues. Major molecu-
lar imaging modalities are Positron Emission Tomography (PET) and Single Pho-
ton Emission Computed Tomography (SPECT), furthermore, hybrid modalities, i.e.
hybrid PET/CT [73], PET/MRI [64], PET/SPECT/CT [50] significantly enrich the
ability of molecular imaging.

PET as a biomedical research technique and clinical diagnostic procedure is one of
themost important part in nuclearmedical imaging devices. In the past three decades,
there have been significant advancements in PET scanners and image processing
methods [4, 75, 77]. Currently, PET scans are most commonly used to detect cancer,
heart problems, brain disorders and other central nervous system disorders. PET
scan can be used to track the spread of disease inside body and patient response to
drugs and therapies, which help to determine the more effective treatment plans for
individual patient. PET scans can also be used to follow-up and manage ongoing
cares. Quantitative dynamic PET imaging also offers good promise for personalized
drug treatment by accurate pharmacokinetic analysis and will enable medicine to be
tailored to each person’s needs, and improve the safety, quality and effectiveness of
healthcare for every patient.

PET scans rely on the injected radiotracers which circulate inside the body. Dif-
ferent radiotracers will reveal different diseases. Besides 18F-FDG, which is widely
used for cancer diagnosis, cardiology, neurology, there are many other radiotrac-
ers used in research and clinical applications, for example, 18F-FLT (3′-fluoro-3′-
deoxy-l-thymidine) is developed to image tumor cell proliferation [12], 11C-acetate
is developed to localize prostate cancer [57], 13N-ammonia is developed to quan-
tify the myocardial blood flow [46], 11C-dihydrotetrabenazine (DTBZ) is developed
for brain imaging, which can be used for differentiating Alzheimer’s disease from
dementia and Parkinson’s disease [45]. Labeling drugs with various biomarkers is
always a hot topic for pharmaceutical studies, where critical quantitative information
can be generated by using dynamic PET imaging.

SPECT scan uses a gamma camera that rotates around the patient to detect the
radiotracer inside body. SPECT will also produce a set of 3D images but generally
have a lower resolution. The radiotracers commonly used for SPECT scan include
99m T c [54], 188Re [39], 68Ga [84], 82Rb [24], etc. Electrocardiography (ECG)-
Gated 82Rb can also be used for myocardial perfusion PET [6]. Hybrid SPECT/CT
is also designed to providemore accurate anatomical and functional information [71].
SPECT scan differs from PET scan in that the tracer stays in your blood stream rather
than being absorbed by surrounding tissues, therefore, SPECT scan can show how
bloodflows to the heart andbrain are effective or not. SPECTscan is cheaper andmore
readily available than higher resolution PET scan. Tests have shown that SPECT scan
might bemore sensitive to brain injury than eitherMRI or CT scanning because it can
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detect reduced blood flow to injured sites. SPECT scan is also useful for presurgical
evaluation of medically uncontrolled seizures and diagnosing stress fractures in the
spine (spondylolysis), blood deprived (ischemic) areas of brain following a stroke,
and tumors [5, 9].

2 Computational Methods for Molecular Imaging

Computational methods play a critical role in the development of molecular imaging,
from image synthesis to data analysis and from clinical diagnosis to therapy individ-
ualization. They continuously deepen the visualization depth, enhance the imaging
resolution, extend themolecular scope and improve the precision. The applications of
computational methods can be in both generating images and understanding images,
with the aim to improve the accuracy and efficiency. This section will provide a
brief introduction to computational methods for molecular imaging within our topic
coverage.

2.1 Data Correction and Image Reconstruction

The first step of all processing is to generate the image from raw data, which includes
but not limit to data correction, system modeling and image reconstruction. The
computational methods are designed to either improve the quantification accuracy or
accelerate the processing. The challenges in PET data analysis come from the change
of statistical properties of measurement data after various data corrections. The qual-
ity of results from all image reconstruction algorithms depends on the accuracy of
statistical models in each data correction and image reconstruction. However, due
to the complexity of PET scan, it is nearly impossible to propose a perfect model.
Furthermore, a complicatedmodelwill apparently slowdown thewhole image recon-
struction process. The modeling and processing in data correction includes scatter
correction [37, 43, 80], attenuation correction [38, 68], partial volume effect correc-
tion [23, 67], etc. The image reconstruction includes analytical reconstruction and
model-based reconstruction [2, 26]. In the studies involving a large amount of images
from different patients, normalizing these images is also critical to the quantification
of the studies [28].

2.2 Dynamic PET Imaging and Pharmacokinetic Analysis

Dynamic PET imaging is a combination of short interval PET scans and reflects the
dynamic metabolism of injected radiotracers. Dynamic PET brings more challenges
to PET imaging due to the poorer statistical property and lowSNR from the low count
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PET data. The series of acquisitions can be used to estimate the kinetic parameters
which represent the metabolism of radiotracers in vivo.

In order to obtain the kinetic parameters, a traditional approach is first to recon-
struct the activity distributions from the dynamic PET data, and then to fit the calcu-
lated time activity curve (TAC) to a predefined kinetic model. The accuracy of this
kind of approaches relies on the reconstructed activity distributions. The complicated
statistical noise properties, especially in the low-count dynamic PET imaging, and
the uncertainties introduced by various PET data corrections will affect the activity
reconstruction and lead to a suboptimal estimation of kinetic parameters [31]. There
are also many efforts that try to estimate the kinetic parameters from PET projection
data directly and achieve better bias and variance including both linear and nonlinear
models [56, 74, 83]. The optimization algorithms are generally very complicated.
Kamasak et al. applied the coordinate descent algorithm for optimization but it is still
limited to specific kinetic models [41]. Wang et al. applied a generalized algorithm
for reconstruction of parametric images [79], however, estimating individual kinetic
parameter is still a challenging issue, which will be critical to clinical research, drug
discovery and drug development [14, 27, 75].

In drug discovery and development, quantitative pharmacokinetic analysis with
dynamic PET imaging now plays a promising role as determinants of in vivo drug
action to help select drug candidate. Fast and accurate pharmacokinetic analysis with
rapid information feedback in the early stage of drug discovery and development is
critical to obtain the in vitro and in vivo drug properties [13, 81].

2.3 Mathematical and Statistical Modeling

Mathematical and statistical models have long been used in molecular imaging [47].
For static reconstruction, researchers unitized various system probability models
[3], statistical models for data acquisition [86] and prior models [1]. For dynamic
studies, compartment models are used in many fields including pharmacokinetics,
biology, engineering etc. Compartment models are the type of mathematical models
to describe the way materials (radiotracers and their metabolite in PET and SPECT
scan) are transmitted among the compartments (different organs and tissues). Inside
each compartment, the concentration of radiotracers is assumed to be uniformly
equal. Due to their simplicity and plausibility, compartment models are widely used
in the dynamic PET scans to describe the tracer/drug kinetics. Drug kinetic models
include simple drug transport model, which generally contains equal or less than
three compartments and can be solved directly, and complicated biological models,
which can contain up to twenty compartments and generally require prior knowl-
edge to solve [32, 33]. Most of the complicated models with many compartments
can usually be decomposed into a combination of simple models with less than four
compartments. Themost basic compartment models include two compartment blood
flowmodel, standard two tissue three compartment Phelps 4Kmodel with reversible
target tissue and Sokoloff 3K model with irreversible target tissue, three tissue five
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parameter bertoldo model, standard three tissue four compartment model. More
complicatedmodels withmore compartments and parallel model withmultiple injec-
tion can be extended from aforementioned standard models [25, 42].

2.4 Feature Selection

Feature selection is widely used in computer aided diagnosis. Correctly selected
features from a large set of clinical data can be used to improve the diagnosis accu-
racy of various diseases and provide a guidance for future clinical trials. The most
commonly used method is Principal Component Analysis (PCA), which is a sta-
tistical procedure to convert a set of observation of possibly correlated variables
to a set of linearly uncorrelated variables, i.e. principal components. These princi-
ple components can then be used as the feature for following studies, for example,
comparing the functional connectivities in human brain studies [62, 70]. Machine
learning and data mining techniques have also been applied to molecular imaging
by various researchers. Researchers extract features to analyze cancer treatment out-
come [20], utilize FDG-PET scan in lymphoma byWHO classification [21], classify
the tissue in PET/MR scan with the potential for attenuation correction [53]. For
clinical applications, support vector machine can also be used to identify imaging
biomarkers of neurological and psychiatric diseases [59], and in therapy decision
[58]. The application of machine learning is also very active in cancer prediction and
prognosis [16].

2.5 Disease Specific Analysis and Image Quantification

In molecular imaging, the high activity concentrations (hot spots) are identified and
analyzed as Region of Interest (ROI). In some clinical studies, different diseases
may show similar activity concentrations inside the same organ tissue, then disease
specific dynamic analysis become a superior tool to differentiate these different dis-
eases [18, 27]. Disease specific dynamic analysis utilizes predefined disease models
and the time activity curves from molecular imaging to classify the studies into
proper disease categories. However, the accuracy of quantitative dynamic PET stud-
ies depends on various factors including kinetic models, quantitative methods and
the approximation of arterial input function from blood sampling. The most general
kinetic models used are compartment model with assumptions that physiological
process and molecular interactions are not influenced by injected radioligand. Cur-
rent clinical adopted quantitative methods are actually semi-quantitative methods,
which includemethods using reference regions or calculating Standard Uptake Value
(SUV) [8]. Methods using reference regions are easy to implement but have several
drawbacks, e.g. the reference tissue is hard to define and has low SNR due to the
low resolution of PET and SPECT scans, and the uptake of the reference tissue may
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change after the radiotherapy. SUV now is included in every clinical study, which is
calculated as a ratio of tissue radioactivity concentration and injected dose divided by
body weight, the advantage of SUV in clinical study is that the blood sampling is not
required. However, the full quantitative analysis requires both dynamic PET scans
and tracer concentration in the arterial blood plasma. The gold standard of blood
sampling is serial arterial sampling of a superficial artery, and clinical alternative
methods include venous blood sampling, image derived input function and popula-
tion based input function [34, 48]. The drawback of the full quantitative method is
only one FOV/bed position can be taken into consideration at one time. For metas-
tasized disease, not all lesions can be quantified simultaneously [69, 76].

2.6 Other Conventional Image Processing Applications

1. Image Segmentation. Image segmentation is the process of partitioning an image
into multiple different segments (group of pixels). Especially in molecular imag-
ing, the image segmentation is used to simplify the representation of an image and
extract Region of Interest (ROI) that is more meaningful and followed by image
analysis. Image segmentation is also important to find the boundaries of different
regions and organs by applying different labels. Image segmentation can also be
applied to 3D image stacks to help 3D image reconstruction [17, 87]. Compu-
tational methods for image segmentation including basic thresholding methods
[19, 22, 40], cluster based methods, which are multivariate data analysis meth-
ods using predefined criteria to partition a large number of objects into a smaller
number of clusters [82], gradient based methods, which are to find the boundary
of an object of interest with the gradient intensity observed in the images [29],
level set based methods [51, 60], 3D level set methods [85], and kinetic model
guided segmentation methods, which assume different ROIs have different tracer
kinetic properties to separate different functional regions [11].

2. Image Registration. Image registration is the process to transform different sets
of data into one coordinate system. Image registration is widely used in mole-
cular imaging, e.g. patient radiotherapy follow-up by transforming PET images
from a series of studies, diagnosis by images from multiple imaging modalities
[15, 35, 36, 65]. Major computational methods include intense based methods,
which compare intensity patterns in multiple images and register the reference
image and target image by defining correlation metrics [44], feature-based image
registration, which extract common features from the anatomical information of
organs and tissues as references [63], this method can also be used for multiple
imaging modalities [30, 49, 55]. The image registration can be improved by dif-
ferent patient preparation and pre-positioning [7], respiratory gating [10], various
tracking devices, etc. [66].
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3. Image Fusion. Image fusion is the combination of relevant information from
two or more images into one single image. The fused image will provide more
information than any single input image. Accurate image fusion from combined
PET, CT, MRI scans can significantly improve the diagnosis and provide better
understandings of diseases. Image fusion generally works together and shares
similar technologies with image registration [61, 72, 78].

3 Future Directions

Molecular imaging is a relatively new but fast-growing area for both research and
clinical applications. Although with some technical limitations, molecular imaging
modalities show the superior ability to quantitatively measure the biologic processes
in a functional way at the cellular and subcellular level within living subjects, and this
significantly improved our understanding of various diseases and greatly benefited
the clinical diagnosis. The emerging new scanner systems with new detectors will
further enhance their abilities, and bring new challenges in data correction and image
analysis at the same time.

Computational methods play a critical role in processing the images, from data
processing based on the physical natures of the molecular imaging modalities to
image reconstruction, analysis and understanding. The data processing algorithms
need to be adjusted with the properties of new system design, and new features in
detector system correspondingly. Monte Carlo simulation is a faithful way to study
the new design and provide references for validation of new methods. Application-
specific statistical models will greatly improve the image qualities of certain dis-
ease compared with generic models, and new techniques like machine learning have
shown promising prospects in classifying diseases, generating atlas based models
etc. The image post-processing including image analysis and understanding must
also adopt related changes. Researchers are actively using computing methods to
guide applicable pathological studies from a series of patient studies using dynamic
analysis, this has the great potential to apply to personalized treatment. Pharma-
ceutical companies are also interested in the accurate quantitative pharmacokinetic
analysis using PET to study the metabolism of new drugs, which has the potentials
to shorten the drug development cycle and save tons of money for the industry and
patients. With the evolution of both image pre-processing and post-processing meth-
ods, molecular imaging is believed to be able to study more complicated diseases
currently in the unknown area, and computational methods for molecular imaging
will help us to mine the potentials buried in the data and images.
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Fuzzy Connectedness Image
Co-segmentation for Hybrid
PET/MRI and PET/CT Scans
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Abstract In this paper, we presented a 3-D computer-aided co-segmentation tool
for tumor/lesion detection and quantification from hybrid PET/MRI and PET/CT
scans. The proposed method was designed with a novel modality-specific visibil-
ity weighting scheme built upon a fuzzy connectedness (FC) image segmentation
algorithm. In order to improve the determination of lesion margin, it is necessary to
combine the complementary information of tissues from both anatomical and func-
tional domains. Therefore, a robust image segmentation method that simultaneously
segments tumors/lesions in each domain is required. However, this task, named co-
segmentation, is a challenging problem due to (1) unique challenges brought by each
imagingmodality, and (2) a lack of one-to-one region and boundary correspondences
of lesions in different imaging modalities. Owing to these hurdles, the algorithm is
desired to have a sufficient flexibility to utilize the strength of each modality. In this
work, seed points were first selected from high uptake regions within PET images.
Then, lesion boundaries were delineated using a hybrid approach based on novel
affinity function design within the FC framework. Further, an advanced extension
of FC algorithm called iterative relative FC (IRFC) was used with automatically
identified background seeds. The segmentation results were compared to the refer-
ence truths provided by radiologists. Experimental results showed that the proposed
method effectively utilized multi-modality information for co-segmentation, with a
high accuracy (mean DSC of 85%) and can be a viable alternative to the state-of-the
art joint segmentation method of random walk (RW) with higher efficiency.

U. Bagci (B)
Center for Research in Computer Vision (CRCV), HEC 221, Computer Science,
University of Central Florida, Orlando, FL 32816, USA
e-mail: bagci@crcv.ucf.edu

Z. Xu · D.J. Mollura
Center for Infectious Disease Imaging, Radiology and Imaging Sciences
National Institutes of Health, Bethesda, MD 20892, USA

J.K. Udupa
Department of Radiology, University of Pennsylvania,
Philadelphia, PA 19104, USA

© Springer International Publishing Switzerland 2015
F. Gao et al. (eds.), Computational Methods for Molecular Imaging,
Lecture Notes in Computational Vision and Biomechanics 22,
DOI 10.1007/978-3-319-18431-9_2

15



16 Z. Xu et al.

Keywords Co-segmentation · Fuzzy connectedness · PET/MRI · PET/CT · Image
segmentation

1 Introduction

Multimodal imaging techniques make use of different but complementary imaging
modalities within a single system. While PET/CT sequentially acquires computed
tomography (CT) and positron emission tomography (PET) images from a patient,
PET/MRI simultaneously acquires PET and magnetic resonance (MR) images, and
provides very accurate spatial and temporal image fusion. With PET/MRI and
PET/CT, the spatial distribution of radiotracer activity from PET can be precisely
analyzed with anatomical details revealed by MRI or CT, leading to more accu-
rate localization and characterization of pathology. PET/MR and PET/CT have thus
emerged as a mean of achieving higher sensitivity and specificity than either compo-
nent modality alone. Most automated tumor/lesion segmentation methods are either
solely based on PET images and ignore complementary MRI or CT information, or
vice versa. Lately, the requirements for joint analysis of lesions in both structural
and functional image domains led researchers to develop co-segmentation methods
for robust quantification of lesions [1, 2].

In this paper, as an alternative to the state-of-the-art methods, we propose an effi-
cient framework for hybrid imaging modalities segmentation. Our proposed method
is based on a fuzzy connectedness (FC) image segmentation [3], which effectively
utilizes amodality-specific visibilityweighting scheme through a novel fuzzy affinity
function.Ourmethod is flexible towithstandvarious visibility conditions of the object
of interest in different modalities. In clinical routines, high uptake regions of radio-
tracers in PET images are usually determined by the visual assessment of radiologists
based on the fused information. This process is labor intensive and time consuming.
Thresholding, edge detection, region growing, and watershed approaches have also
been employed to determine the region boundaries [4], but these algorithms were
developed solely on functional images without incorporating anatomical informa-
tion. Therefore, the methods are limited in accuracy, robustness, and reproducibility.
Recently, a few co-segmentation methods have been proposed for quantification of
PET/CT images [1, 2, 5, 6]. Feature extraction and classification, considering both
PET and CT information for distinguishing tumor from normal tissue in the head and
neck regions, is presented in [5]. In [6], localization and initial segmentation were
performed over PET images, which is further refined by voxel classification in CT.
The above methods [5, 6] are based on classification, which lack the capability of
concurrent segmentation from both modalities. Markov Random Field (MRF) model
was employed for PET/CTco-segmentation in [1]; graphoptimizationwas performed
to simultaneously minimize the total MRF energy obtained from both PET and CT
images. The MRF-based method was shown to be effective; however, it works on a
2-D slice plane and requires a precisely defined seed set provided by user interaction.
In [2], randomwalk (RW) co-segmentationwas applied to find the correct anatomical
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boundaries in CT images, driven by the uptake regions from the corresponding PET
images. The RW-based algorithm was shown to perform better than MRF in both
accuracy and speed. In this paper, we propose an alternative method to these state-
of-the-art methods [1, 2]. An automatic 3-D co-segmentation method was designed
based on the FC framework with a novel fuzzy affinity function. Our method has
the flexibility to segment tumors/lesions jointly through a modality-specific weight
mechanism; experiments have been conducted on images from hybrid PET/MRI and
PET/CT scans.

2 Methods

In this section, the theory of FC is presented, followed by co-segmentation formula-
tion.

In the FC framework, a fuzzy topological construct characterizes how voxels
of an image hang together to form an object through a predefined function called
affinity [7]. Assuming V ⊂ Z

3 denotes a 3-D cubic grid representing the image
space, where each element of V is called a voxel, a topology on an image is given in
terms of an adjacency relation (μα). Theoretically, if p and q are α-adjacent to each
other, then μα(p, q) = 1, ‘0’ otherwise. In practice, we set α = 26 for 3-D analysis.
While affinity is intended to be a local relation, a global fuzzy relation called fuzzy
connectedness, is induced on the image domain by the affinity functions. This is
done by considering all possible paths between any two voxels p and q in the image
domain, and assigning a strength of fuzzy connectedness to each path. The level of
the fuzzy connectedness between any two voxels p and q is considered to be the
maximum of the strengths of all paths between p and q.

An affinity relation κ is the most fundamental measure of local hanging together-
ness of nearby voxels. For a path π, which is a sequence of voxels 〈p1, p2, . . . , pl〉
with every two successive voxels being adjacent, given fuzzy affinity function
μκ(pi , pi+1), the strength of the path is defined as the minimum affinity along the
path:

μN (π) = min
1≤i<l

μκ(pi , pi+1). (1)

Then, the strength of connectedness μK(p, q) between any two voxels p and q is
the strength of the strongest path between them as

μK(p, q) = max
π∈P(p,q)

μN (π), (2)

where P(p, q) denotes the set of all paths between p and q. Therefore, a fuzzy
connected object O in an image can be defined for a predetermined set of seeds
S. Since the level of FC between any two voxels p and q is considered to be the
maximum of the strengths of all paths between them, for multiple seeds, the fuzzy
object membership function for O or the strength of connectedness of O is defined
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as follows:
μO(p) = max

s∈S
μK(p, s). (3)

An efficient computational solution is presented in [3] for computing μO(p), given
κ and S and an image.

Absolute FC segmentation is based on computing the FC strength between a set
of seed points and all other voxels within the image and set a proper threshold to
the resulting FC image for generating the binary segmentation result. However, the
threshold determination is usually manual. On the other hand, IRFCmethod is based
on several seed sets Si , i = 1, 2, . . . , k. FC strength is first computed at every voxel
for each of the seed sets individually, and then the voxel is labeled as belonging the
seed set with maximum FC value. In this way, the thresholding step is avoided. In
this study, we investigated both the application of FC and IRFC.

2.1 Image Co-segmentation with Novel Affinity Function

Effectiveness of the FC/RFC algorithm depends on the choice of the affinity func-
tion. The most prominent affinities used so far are (i) adjacency-based μα, (ii)
homogeneity-based μψ , and (iii) object feature-based μφ such that fuzzy affinity
is defined as

μκ(p, q) =
{
1, if p = q;

μα(p, q)
√

μψ(p, q)μφ(p, q), otherwise,
(4)

where μψ(p, q) captures the homogeneity between p and q, with a higher value
for similar pairs. For object feature-based affinity, μφ(p, q) defines the hanging-
togetherness of p and q in the target object based on likeliness of their feature values
with respect to the expected feature distribution of the target object. The general form
of μψ(p, q) and μφ(p, q) are

μψ(p, q) = e
− | f (p)− f (q)|2

2σ2
ψ , (5)

μφ(p, q) = min

⎛
⎝e

− | f (p)−m|2
2σ2

φ , e
− | f (q)−m|2

2σ2
φ

⎞
⎠ , (6)

where σψ and σφ are two different standard deviation parameters used for homo-
geneity and object feature distribution, m is the mean object feature value, and f
denotes image intensity function: f : V → L ⊂ Z.

In order to introduce a co-segmentation framework, we introduce two intensity
functions corresponding to anatomical (A: MRI or CT) and functional (F : PET)
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image domain, f A and f F , respectively. Similarly, for each image modality A and
F , we define a new fuzzy affinity function by combining fuzzy affinity functions
corresponding to anatomical and functional images (i.e., μA

κ (p, q) and μF
κ (p, q)) as

μκ(p, q) =
{
0, ifμA

κ (p, q) or μF
κ (p, q) = 0;

wAμA
κ (p, q) + wFμF

κ (p, q), otherwise;
(7)

where weights wA and wF are used to combine affinities, and were determined by
considering target visibility of different modalities such that they were constrained
as 0 ≤ wA, wF ≤ 1, and wA + wF = 1.

We also designed a new object feature-based affinity function specific to the image
modality by analyzing the characteristics of individual imaging modalities. A non-
uniform Gaussian formulation was utilized for this purpose. The functions designed
for this purpose are illustrated in Fig. 1. As can be seen from the first row of the
figure that since the hot regions are more active for a PET image, thus inferring more
reliable target volume, we can define an expected value m from the image intensity
distribution that shapes the non-uniform Gaussian formulation as

μF
φ (x) =

⎧⎨
⎩
1, if f F (x) > m;

e
− | f F (x)−m|2

2σ2
φ , otherwise.

(8)

In a similar fashion, to model the object feature-based affinity function, higher and
lower intensity variations can be combined with respect to an object feature as
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Fig. 1 Non-uniform Gaussian formulation for object feature similarity μφ
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μA
φ (x) =

⎧⎪⎪⎨
⎪⎪⎩

e
− | f A(x)−m|2

2σ2
φH , if f A(x) > m;

e
− | f A(x)−m|2

2σ2
φL , otherwise,

(9)

where σφL < σφH. Second and third rows in Fig. 1 demonstrate the object feature-
based affinity functions used for CT and MRI modalities, respectively. Once all
affinity functions were defined, Eq.3 was solved to obtain segmentation results.

3 Experiments and Results

Data and Evaluation Metrics: A retrospective study was performed on 9 PET/MRI
and 9 PET/CT images. For comparison with the state-of-the-art algorithm of RW [2],
we have used the same dataset, reference segmentation, and evaluation crite-
rion. For PET/MRI scans, voxel sizes were 1.1 × 1.1 × 6 mm3 for MR images
and 4.17 × 4.17 × 2 mm3 for PET images. For PET/CT scans, voxel sizes were
0.97 × 0.97 × 1.5 mm3 for CT images and 2.65 × 2.65 × 3 mm3 for PET images.
Each patient’s scan was positive for at least one mass tumor in the neck, thorax,
abdomen, or pelvis pertaining to Von Hippel-Lindau disease, pheochromocytoma,
or hereditary leiomyomatosis and renal cell cancer, as previously identified (but not
circumscribed) by a radiologist. Manual delineations from two expert observers on
PET/CT and PET/MR images were used as reference for evaluation, and the seg-
mentation performance was evaluated using two conventional segmentation metrics,
the Dice Similarity Coefficient (DSC) and Hausdorff Distance (HD). Note that DSC
calculates the ratio of overlap between two segmentation results and HD measures
the boundary mismatch between two segmentations. Higher DSC and lower HD are
desirable for a segmentation algorithm. Seed points are manually determined, and
variations are allowed given that FC is the most robust method for seed selection [8].

3.1 Qualitative and Quantitative Evaluation

The experiments were conducted on a machine with 2.7 GHz CPU, 16GB memory,
andMacOSX system. Average running time for the proposed co-segmentation algo-
rithmwas less than 10 seconds.RFCdoubles the time complexity of FC, andwe found
no statistical significant difference between FC and IRFC results regarding segmenta-
tion accuracy. Figure2 shows examples of the co-segmentation results fromPET/MR
images under different visibility conditions of the target object. The second column
displays the fused images overlaid by segmentation results (green boundaries) and
manual references (blue boundaries). The first and the third columns show corre-
sponding PET and MR images. As illustrated, the visibility of the target object and
contrast with surrounding tissues are more prominent in PET for the first row (show-
ing a small tumor); the target object is almost equally visible for the second row



Fuzzy Connectedness Image Co-segmentation … 21

Fig. 2 Co-segmentation results for PET/MR images under different visibility conditions. The first
column PET images in three different anatomical levels. The second column hybrid PET/MR image
with segmentation results (green contours) and manual references (blue contours) overlaid. The
third column corresponding MR images. Target object is more visible in PET for the first row
(small tumor); almost equally visible for the second row (big tumor); and more visible in MRI for
the third row (lung mass)

(showing a larger tumor); and the target object is more prominent in MRI for the
third row (showing lung mass). Qualitatively, the co-segmentation results agree well
with the anatomical boundaries, as well as hot regions from functional images. Sim-
ilarly, results for PET/CT images are qualitatively presented in Fig. 3. The second
column is the fused images overlaid by segmentation results (green boundaries) and
manual references (blue boundaries). The first and the third columns are correspond-
ing PET and CT images. The first row illustrates a consolidation case where the
contrast between consolidation region and surrounding tissue in CT image is subtle
for the human eye, as pointed out by the red arrow (consolidation) and the yellow
arrows (blood vessels). The second row presents a tree-in-bud case where the con-
trast is higher, but the infected region contains complex structures in the CT image.
As can be observed, when contrast between the target region and the surrounding
tissue is subtle, human observers tend to rely more on the PET image, while the
automatic algorithm is able to capture the difference in both images. Note that in the
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Fig. 3 Co-segmentation results for two PET/CT images. The first column PET images in two
different anatomical levels. The second column hybrid PET/CT image with segmentation results
(green contours) and manual references (blue contours) overlaid. The third column corresponding
CT images. Contrast between target region and surrounding tissue is subtle for the first row (con-
solidation), as pointed out by the red arrow (consolidation) and the yellow arrows (blood vessels),
differentiating vessels and consolidations is almost impossible visually. Target region has higher
contrast but contains complex structures in the second row (tree-in-bud)

Fig. 4 DSCs andHDs for segmentation results, given by differentmethods andmanual delineations
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CT images in Fig. 3, the target object is only partially defined by lung and is discrim-
inant from the surrounding soft tissues with subtle contrast; therefore, segmentation
solely based on CT images is often not feasible for the experimental data. Mean and
standard deviation of the delineations’ DSCs and HDs are presented in Fig. 4. As
illustrated, co-segmentation on PET/MR and PET/CT images helps to improve the
results over MRI, CT, or PET alone, and it performs better than or comparable to
inter-observer variation. Also, although CT alone has poor intensity resolution and
gives partial description of the target object, it helps to improve the segmentation
with additional boundary constraint.

4 Discussion and Conclusion

In this paper, we proposed a co-segmentation framework using both anatomical
and functional images. The proposed method was performed in 3-D image domain,
with flexibility to segment various lesions under different visibility conditions. The
performance of the method was evaluated using PET/MR and PET/CT images, and
high accuracy was achieved. In comparison with the RW image co-segmentation [2],
which achieves a DSC of 86%, our proposed method had a similar performance with
heightened efficiency; therefore, our method can be an alternative to the state-of-the-
artmethod. Indeed, the proposed framework performs delineation of the lesions about
four times faster than the RW co-segmentation method. Note that perfect registration
is assumed for the input anatomical and functional images, and proper registration is
needed in presence of mismatches. Also, motion correction could be applied before
segmentation to account for inter- and intra-scan motions during imaging. These two
issues are important factors for the final accuracy, although they are out of the scope
of the proposed framework. Furthermore, it will be meaningful in our future work to
test the proposed method on heterogeneous tumors considering the strength of FC
in handling variations of local image intensities.
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PET/MRI/VCT: Restoration of Virtual CT
from Transmission Scan on PET/MRI
Using Joint-Anisotropic Diffusion

Kuangyu Shi, Xiaoyin Cheng, Nassir Navab, Stefan Foerster
and Sibylle I. Ziegler

Abstract CT is a mandatory imaging modality for radiation treatment planning
(RTP) while MRI and PET have advantages in tumor delineation and dose prescrip-
tions. To avoid multiple scanning and additional high radiation doses, this paper
proposes to integrate low dose transmission scan (TX) into a PET/MRI machine for
the synthesis of virtual CT (VCT) for treatment planning. TX is usually extremely
noisy with artifact spots and it is necessary to smooth the sinogram to obtain inter-
pretable images. However this results in blurred low resolution images. This study
introduces a novel joint-anisotropic diffusion (JAD) method which restores VCT
images without loss of resolution using additional anatomical images to regular-
ize the filtering. Through reshaping the anisotropic diffusion tensor using MRI, this
method guides the diffusion flux to favor the similarity between VCT and MRI lead-
ing to an increase ofmutual information. For proof of concept, virtual PET/MRI/VCT
system with conventional 68Ga ring source was implemented on GATE and realistic
TX data were simulated and tested. The results demonstrate that the new approach
improves the geometrical accuracy of VCT and provides a potential application for
RTP.

Keywords PET/MRI · Virtual CT · Transmission scan · Anisotropic diffusion ·
Treatment planning

1 Introduction

PET/MRI is an evolving hybrid imaging modality that incorporates magnetic
resonance imaging (MRI) and positron-emission tomography (PET) imaging [1, 2].
It has advantages of simultaneous acquisition of soft tissue morphological imaging
and molecular imaging, which provides advanced information supporting clinical
diagnosis and therapy planning.
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Computed tomography (CT) serves as basis for modern radiotherapy treatment
planning (RTP) which provides X-ray absorption information for radiation dose
calculation [3]. For many cancers such as brain tumors, MRI and PET are often
necessary to provide enough soft tissue contrast as well as physiological information
for tumor delineation and dose prescription. To avoid multiple scanning as well as
additional high radiation dose of CT, RTP based on only MRI images has been
investigated for several decades [4, 5]. However, MRI signal is based on the proton
density of tissues and is not directly related to the electron density. Thus it is not
possible for direct estimation of radiation absorption. Virtual CT (VCT) images must
be synthesized based on tissue classifications of MRI. However, structures such as
bone or air are difficult to exact inMRI andmany bone or cavity structures aremissing
in synthesized VCT. Although RTP can be generated based on VCT of missing
structures, which is closely related to a CT-based planning in some situations [5],
the application in a wide range is restricted. An atlas can be employed to interpolate
the missing structures. However, it depends on many factors and is insensitive to
anatomical variations, in particular abnormalities.

Transmission scan (TX) is the traditional way for PET attenuation correction
(AC), which compensates the influence of inhomogeneous γ-ray attenuation inside
the body [6]. It acquires the radiation absorption data via an external source of anni-
hilative radioactivities (68Ge/Ga) or single photon emitters of higher energy (137Cs).
A transmission scan takes usually 2–10 min and the dose is generally insignificant
(brain: 1.6% and cardiac: 2.4% compared to CT) [7]. In current PET/MRI machines
such as Siemens mMR, TX is usually not offered. Bone and air cavity structures can
be ignored for AC purpose and MRI based classification is enough for the accuracy
of PET imaging [8].

Concerning the high requirements on geometrical and radiological accuracy of
RTP, VCT based on MRI alone is generally not enough. Radiation absorption infor-
mation is necessary for VCT synthesis. Without significant systemmodification, this
can be achieved for PET/MRI, which is already equipped with radiation detectors.
In contrast to current main stream PET/MRI, this paper proposes to bring TX back
into the scanner for the acquisition of radiation absorption data and generate VCT
for RTP accordingly.

One main challenge here is that TX measures the radiation absorption via lines-
of-response (LOR) of detector pairs in contrast to conventional CT. The directly
reconstructed images are extremely noisy with lots of artifact spots due to low imag-
ing statistics. Smoothing the sinogram can generate interpretable images with the
sacrifice of resolution. We propose a novel approach to include the MRI structural
information in the restoration of VCT using a joint-anisotropic diffusion (JAD),
which filters out the irrelevant spots while preserving the anatomical similarity to
MRI. Mutual information between VCT and MRI is introduced to select a proper
input MRI image and to control the number of iterations of diffusion. For the proof
of concept of PET/MRI/VCT, conventional 68Ga ring sources were configured on
a virtual PET/MRI machine implemented using a dedicated imaging system simu-
lation software GATE [9]. The restored VCT demonstrated improved geometrical
accuracy and provides potential for RTP.
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2 Joint-Anisotropic Diffusion

Anisotropic diffusion (AD) is an image restoration method which reduces noise
while preserving structures [10]. However, it is not possible to filter out artifact spots,
which are not distinguishable from structures. Joint-anisotropic diffusion (JAD) is
developed here to filter out such spots with additional structural information. Given
an noisy image u(x) with artifact spots and a structural image g(x), where x ∈ �

and u(x) and g(x) capture the same object with different modalities, JAD is achieved
by solving a diffusion equation,⎧⎨

⎩
∂u/∂t = (1 − α)div(D(u)∇u) + αdiv(D(g)∇u)

u(x, 0) = u(x)

< [(1 − α)D(u) + αD(g)]∇u, n >= 0
(1)

whereD(u) andD(g) are anisotropic diffusion tensors obtained from the correspond-
ing images and div is the divergence operator. n denotes the norm direction of image
board and the flux across the board is 0, which makes sure that the mass conserves. α
is a constant to control the influence of image g(x) during the restoration and α = 0
is equivalent to conventional AD. The diffusion tensor D( f ) of image f ( f can be
u or g) is constructed based on a structure tensor Jρ( f ) = ∇ fρ∇ fρT , where ∇ is
the gradient operator and fρ is the image after convolution of a Gaussian kernel ρ.
Suppose λ1 and λ2 (λ1 > λ2) are two eigenvalues of Jρ, and thus D is configured
as following: ⎧⎪⎨

⎪⎩
ζ1(λ1) =

{
1 (λ1 ≤ 0)

1 − exp
( −Cm

(λ1/s)m

)
(λ1 > 0)

ζ2 = 1

(2)

where ζ1, ζ2 are eigenvalues of D and Cm , m and s are constants to control the
anisotropy of the diffusion tensor. The diffusion tensorD relates to the edge direction
and contrast. It is mirror invariant (D(∇ fρ) = D(−∇ fρ)).

JAD reshapes the diffusion tensor D = (1 − α)D(u) + αD(g) to combine the
internal and external structural information for the filtering. For a spatial location
x , if g and u have the same edge as shown in Fig. 1a, JAD will enhance the edge
further; if the edge of g conflicts with u as shown in Fig. 1b, JAD leads to smoothing
of the edge in u. In general, JAD will locally guide the diffusion flux to the direction
which favors the common structure of u and g as shown in Fig. 1c. Globally JADwill
lead to an increase of the similarity between the two images, which can be described
using mutual information (MI) of u and g:

m(u(x), g(x)) =
∫

x∈�

p(u(x), g(x))log

(
p(u(x), g(x))

p(u(x))p(g(x))

)
dx (3)
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Fig. 1 Joint diffusion tensor when u and g has a similar edge b conflict edge c general relation in
local coordinate system of u at position x

where p(u) and p(g) is the marginal probability density function and p(u, g) is
the joint probability density function [3]. MI can be used to control the number of
iterations of JAD until the increase δm below a threshold ε. Note that during the
iterations, the local reorganization of the mass may reduce the similarity temporally.
MI may get fluctuated although its general trend increases. A smooth window of size
L (mi = ∑i

j=i−L+1 m j ) of MI is considered to avoid immature termination of the
iterations.

3 Restoration of Virtual CT

TXmeasures tissue attenuation coefficients concerning γ-ray photons emitted by the
transmission source while CT relates to attenuations of X-ray photons. To synthesize
VCT from TX, the measured γ attenuation coefficients need be transformed into
correct Hounsfield units (HU) [11]:

CT =
{
1000μT X/μT X

W − 1000 μT X ≤ μT X
W

1000(μT X − μT X
W )(μCT

B − μCT
W )/(μT X

B − μT X
W ) μT X > μT X

W

(4)

where μT X is the measured attenuation value, μT X
W ,μT X

B are the known attenuation
coefficients of water and bone for TX and μCT

W ,μCT
B are the known attenuation

coefficients of water and bone for CT.
Similar to PET, TX acquires the data via LOR of detector pairs. It is extremely

noisy with lots of artifact spots, which are not distinguishable from normal struc-
tures [6]. A general smoothing of sinogramwill lead to a sacrifice of image resolution.
In PET/MRI, a series of MRI images can be acquired together with TX, which pro-
vides additional structural information. Instead of nonspecific smoothing, JAD is
applied here to selectively filter the noise according to MRI structures using Eq. 1.
A selection of MRI images with large starting MI is preferred for JAD.
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Fig. 2 a Configuration of transmission source in PET/MRI; b simulation of transmission scans
with PET/MRI detector

3.1 PET/MRI/VCT System Configuration and TX Simulation

For the proof of concept, an example virtual machine is proposed with the integration
of a 68Ga ring source in a typical PET/MRI system as shown in Fig. 2. It was imple-
mented inGATE,which is a dedicated simulation system for PET,CT or radiotherapy
based on realistic modeling of radiologic interaction and detection process [9]. The
system was modeled based on the Siemens Biograph mMR including 56× 8 APDs,
8 × 8 LSO crystals per APD and a 1cm thick body coil (Fig. 2b) [12]. A 100 MBq
68Ga ring source (1mm thick, 15cm radius) was placed in the center. CT images
were classified into bone, muscle, brain, adipose and air and then placed in the center
of the field of view of the virtual PET/MRI/VCT system. The TX and blank scan
were simulated for 6min. The acquisitions were then binned into sinograms with 344
radial bins, 252 projection viewswithout any smoothing and corrected with the blank
scan. TX was reconstructed using maximum-likelihood expectation-maximization
(MLEM) for 50 iterations.

4 Result

The algorithm was tested on a patient data set with CT and Dixon MRI images (fat,
water, in phase, opposedphase) acquiredon the sameday.TheCT image is transferred
to the virtual PET/MRI/VCT system on GATE for simulation of realistic TX data.
One example slice of CT and the corresponding simulated TX are shown in Fig. 3a, b.
After mapping the γ-ray attenuation coefficients to HU values, a noisy VCT image
is shown in Fig. 3c, where the artifact spots destroy the diagnostic quality. Figure3d
shows aVCTbased on reconstructed TXwith general sinogram smoothing. Figure3e
shows the restoration result using conventional AD (Cm = 0.3314, m = 4, s = 3.6,
500 iterations). The artifact spots become enhanced as well. JAD (Cm = 0.3314,
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Fig. 3 Result of on example slice: a original CT; b simulated TX; c mapped VCT; d VCT using
nonspecific smooth; e VCT using AD; f , g Dixon fat MRI and corresponding VCT using JAD;
h, i strongest PC image after PCA on 4 Dixon MRI images and corresponding VCT using JAD;
j MI course during JAD iterations; k correlation between VCT and original CT

m = 4, s = 3.6, α = 0.5, ε = 10−10, L = 16) was applied with two different
input of MRI image. Figure3f shows the Dixon fat MRI image which highlights the
fat structure. The corresponding VCT using JAD is shown in Fig. 3g. The diffusion
stops after 521 iterations and the changes of MI during the iterations are displayed in
Fig. 3i. Principal component analysis (PCA)was applied to the 4MRI images and the
strongest principal component (PC) image (Fig. 3g) was sent to JAD. The restored
VCT and the corresponding MI development are illustrated in Fig. 3h, j. Although
the intensities of fat and PC images are quite different, their influences on the results
of JAD are not significant. JAD is stable even with a poor structural input. With more
structural information, the PC image has higher MI to start JAD and the quality of
the results is improved. A higher starting MI is preferred for JAD to select a good
structural image.

From the restored VCT using JAD (Fig. 3i), the main bone structures and pharynx
(air) are clearly distinguished, which are usually difficult to extract solely with MRI
images. Figure4a shows a result of MRI based classification by clustering of 4
Dixon MRI images. Each spatial location is associated with a 4 element vector
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Fig. 4 a One tissue classification based on 4 Dixon MRI images; (b–e) maps of misclassifications
without distinction of air and bone based on: b MRI, c VCT without restoration, d smooth VCT
and e VCT using JAD

field and Euclidean distance was taken as similarity metrics for vector based K-
Means algorithm. One cluster of the results denotes air and bone. Without additional
information, it is not possible to separate bone further from air. The corresponding
map of misclassifications without distinction of air and bone is shown in Fig. 4b.
Similarly,maps ofmisclassifications usingVCT in PET/MRI are displayed in Fig. 4c,
d. The numbers of false positive (FP) and false negative (FN) voxels are displayed
on the images accordingly. The TX based VCT has generally less misclassifications,
evenwhenmixing air and bone. RestoredVCT using JAD can reduce both FP and FN
compared to original VCT and smooth VCT. The test of overall 5 simulated TX data
shows that VCT using JAD can improve the accuracy of 39.8–94.7% compared to
MRI classification, 1.1–27.6% compared to noisy VCT and 38.3–74.5% compared
to smooth VCT. The differentiation of bone from air is obvious for VCT while not
straightforward for MRI and the real improvements compared to MRI without Atlas
support can be even larger.

Note that the contrasts of the real CT and the restored VCT are different here. The
difference is already observable before JAD. A scatter plot of the correlation between
VCT and CT (Fig. 3k) shows that the real CT has a wide value range (−1000 to 2000
HU) while VCT has even before JAD a range of−1000 to 500 HU. This is caused by
the simulation of TX data which considers only 5 tissue materials offered by GATE.
The detailmaterials such as high density bones are not possible tomodel and therefore
reveal system bias, which is not a problem for real measurements. Nevertheless, the
simulation is realistic in physical procedures and generates noisy images resembling
real measurements. It is practical in testing the restoration algorithms and proving
the system concept.

In general, JADconserves themass,where the total radiation absorption properties
on a large scale do not vary. The difference between the original image and the
restored image are constrained locally. This reduces the spread of possible errors for
RTP.
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5 Conclusion

This paper proposed a novel approach to restore proper VCT from noisy TX for the
purpose of RTP. In particular, we have made the following contributions: (1) we pro-
posed the concept to integrate low dose TX in PET/MRI system to generate virtual
CT; (2)we developed a joint-anisotropic diffusion algorithm to regularize noise filter-
ing with additional structural data; (3) we introduced mutual information as a criteria
to select a proper structural image and to control the number of iterations for JAD.Our
algorithm was tested on realistic simulated TX data and demonstrated an improved
geometrical accuracy. This provides a potential application of PET/MRI/VCT in
RTP.

There is still debate about the suitability of MRI based AC, additional TX infor-
mation can enhance the AC for PET/MRI. The current TX is configured with a
conventional ring source. More advanced TX configurations such as rotating rod
source or single photon source can be adapted to PET/MRI/VCT system similarly.
The simultaneous acquisition of TX during PET/MRI is potentially also possible [6].

Sophisticated MRI based classification methods such as pattern recognition with
Atlas support [13] are not discussed here but can be extended as future work. The
extraction of tissues such as fat can add more detail into VCT which may further
improve the accuracy for RTP. Another limitation of the current approach is that the
patient-specific geometrical distortion ofMRI [4] is not corrected.With the available
TX scan, it may be solved by an elastic registration [3] between MRI and TX. The
application of PET/MRI/VCT in real RTP needs to be investigated and validated.
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Large Scale Simplex Optimisation
to Accelerate Kinetic Analysis

Nicholas Dowson, Paul Thomas, Jye Smith, Olivier Salvado
and Stephen Rose

Abstract Although Positron Emission Tomography images are implicitly dynamic
and the temporal variation of tracers often holds relevant information, kinetic analy-
sis of the data is seldom performed due to its computational expense, especially
when flexible ODE-based formulations are used. Kinetic analysis at the voxel scale
remains expensive even with recent formulations relying on the closed form sum-
mation of convolution of exponentials. This work proposes a scheme to accelerate
the kinetic analysis of large populations of time activity curves, by selectively shar-
ing tailored simplex optimisations between them. Experiments on synthetic and real
data demonstrate that the approach not only accelerates kinetic analysis, but main-
tains equivalent or better fitting accuracy than existing approaches that optimise time
activity curves individually.

Keywords Kinetic analysis · Positron emission tomography · Optimisation

1 Introduction

The raw (list-mode) data of Positron Emission Tomography images is implicitly
dynamic, and the temporal evolution of tracer activity holds potentially relevant
information. The temporal information is typically discarded in the clinical setting,
possibly because the reconstructed data needs further processing to obtain biolog-
ically meaningful parameters. Such processing can be computationally expensive
when performed at the scale of voxels; when using ordinary differential equation
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(ODE) based formulations, optimisation can take several hours to optimise a typical
1.5 million voxel PET scan with 26 time frames (single-threaded). Although other
more computationally efficient formulations exist such as Gjedde-Patlak analysis
[2, 13] and Logan analysis [7], ODE formulations have the greatest flexibility in
describing biological system and are hence the focus of this paper.

The temporal evolution of voxel intensities are referred to as a time activity curves
(TACs), Tp, where p is a spatial index. The temporal resolution is limited to a set
of time-frames, ti , indexed by i . Typically an iterative process is used to generate
simulated TACs, S(k), based on a set of parameters, k, and a blood input function,
B(t). Iterative optimisation is utilised to find a set of parameters that minimise a
fitting score, D:

k(opt)
p ← argk min D(Tp, S(k)). (1)

In previous work, several authors have demonstrated strategies that reduce the
expense of kinetic analysis. In the context of Magnetic Resonance (MR) imaging,
Martel proposed generating a finite set of initial parameters and associated simulated
TACs. The fit of each TAC, Tp, to each simulation, Sa , is measured in a brute force
manner and the parameters of the best fitting simulation stored [9]. This approach
is robust, but the size of the initial set of parameters scales with the resolution at
which the parameter is explored to the power of the number of the parameter ele-
ments. Computational efficiency is also dependent on the formulation of the model
used for kinetic analysis. After introducing a formulation using ordinary differential
equations, Phelps et al. present an equivalent formulation relying on a summation of
terms in which a blood input function is convolved with exponential functions [14].
Gunn et al. proposed creating a set of such convolution terms and storing them in a
dictionary. Subsequently an efficient optimisation algorithm called basis pursuit is
used to select a minimal number of dictionary entries and estimate their coefficients
[3]. Smith et al. obtain simulations in closed form by restricting the blood input func-
tion to be a sum of exponentials [16]. Basis pursuit retains much of the flexibility of
ODE formulations compromising only on the resolution with which parameters are
known. Kadrmas and Oktay take the approach of performing optimisation only over
the non-linear parameters, and internally performing a non-negative least squares
optimisation to obtain the linear parameters [4].

Previous work has focused on improving the efficiency with which TACs can
be optimised individually. This work proposes an alternative approach: to share the
simulations generated during the optimisation of one TAC with other TACs. This
approach is based on two observations. Firstly, many time activity curves closely
resemble each other, so parameter updates that improve the cost function for one
TAC are likely to have a similar effect on another. Secondly, the evaluation of D only
requires simple element-wise operations and hence fewer computational cycles than
the evaluation of S, which at the very least requires the convolution of B with one
or more exponentials.
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2 Method

The components of a kinetic analysis algorithm comprise: a model formulation, a
fitting function, an initialisation method and an optimisation algorithm. The efficient
formulation proposed by Kadrmas and Oktay [4] for a two compartment model is
used here:

S(t j ; k) = κ0B j + κb
∫ t j

t=0 B(τ )dτ + κ1
∫ t j

t=0 e−ν1(t j −τ )B(τ )dτ

+κ2
∫ t j

t=0(e
−ν2(t j −τ ) − e−ν1(t j −τ ))B(τ )dτ

, (2)

with the parameter vector being formulated as follows: k = (κ0,κb,κ1, ν1,κ2, ν2).
The non-linear parameters are ν1 and ν2; the remaining parameters are linear. (2) can
be converted to a one compartment model by removing the fourth term, i.e. setting
κ2 to zero. The distance function selected is a normalised sum of square distance
function:

D(Tp, S(k)) = min{κb,κ0,κ1,κ2}
∑

i [Tp(ti ) − S(ti ; k)]2∑
i [Tp(ti )]2 . (3)

The minimum function indicates the use of non-negative least squares, using [5]
to minimise D as a function of the linear parameters in (2). The normalisation is
included to remove the effect ofmagnitude from the individual TACs for the purposes
of comparison, i.e. only mismatches in the shape of the TAC are reported. This
has no influence on optimisation because of the use of non-negative least squares
optimisation within each non-linear iteration (as proposed in [4]). Non-negative least
squares is accompanied by a risk of bias when data is noisy [10], which must traded
off against the improvement in computational efficiency.

For initialisation, a small set of parameters is generated on a grid within a
region of values defined as plausible in the literature [15]. The linear parameters
{κb,κ0,κ1,κ2} are all temporarily fixed to be one with the grid generated over the
non-linear parameters. This approach is made possible by the use of non-negative
least squares optimisation in evaluating D. Since there are two non-linear parame-
ters (ν1 and ν2) the number of initial parameters only expands quadratically with the
grid resolution. The parameters are stored with their corresponding simulation in an
initialisation dictionary, K = {ka; S(ka) | a ∈ [1; Na]}, where Na is the number of
dictionary elements. Each TAC is initialised by computing D(Tp, S(ka)) for every
entry in K and ordering the results such that D(Tp, S(kr1)) < D(Tp, S(kr2)) <

D(Tp, S(kr3)) < D(Tp, S(k∀r∈[1,Na ]\{r1,r2,r2}). The collection of top ranked u
indices is referred to as R(u)(K ).

For the non-linear optimisation the simplex algorithm proposed by Nelder and
Mead [12] is used. This algorithm relies on a set of heuristic rules for manipulating a
set of points in the space of parameters. The number of points is the number of (non-
linear) parameters plus one forming a simplex. For initialisation the three simplex
points are obtained using the ranking operation, R(3)({k(1),k(2),k(3),k(new)}).
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The simplex algorithm is described, because the implementation used was mod-
ified. In each iteration, we calculate the centre of gravity kc = 1

3

∑3
a=1 k(a) of the

simplex. Although the number of points (3) is explicitly stated, it is trivial to include
more points formore complexmodel formulations.One of four transformations to the
simplex can be performed to propose a new set of parameters (point in Fig. 1), knew,
depending on the mode m p: reflection of the entire simplex (the default transform),
expansion of the simplex (if reflection successfully reduces D: D(knew) < D(k(1))),
contraction (if reflection failed produce any improvement (D(knew) > D(k(3))) or
reduction if contraction also failed (D(knew) > D(k(3)) again). In all cases, knew

replaces the worst ranked point if D(knew) < D(k(3)). Four parameters are used to
control the extent of each transformation: e.g. α = 1, γ = 2, ρ = − 1

2 and σ = 1
2 .

The simplex algorithm and mathematical expressions used for each operation are
illustrated in Fig. 1.

Using the four components just described, kinetic analysis may be performed for
individual voxels by iterating the selected optimisation algorithm until the variations
in k or D fall below a predefined threshold, or until a certain number of iterations
has been performed as illustrated in Fig. 2a.

The proposed approach differs in some ways from individual optimisation that
are highlighted in Fig. 2b. Firstly, a TAC, Tp, is randomly selected from all the set of

(a) Reflect

k(new) ← kc + α(kc − k(3))

k(1)

k(3) k(2)

kc

k(new)

If k(new) < k(1)

(b) Expand

k(new) ← kc + γ(kc − k(3))

k(1)

k3

k(2)

kc

k(new)

If k(3) > k(new) > k(2)

k(new) ← kc + ρ(kc − k(3))

k(1)

k3

k(2)

kc

k(new)

If k(new) > k(3)

(c) Contract (d) Reduce

k(new)
a ← k(1) + σ(k(1) − ka)

k(1)

k(3)

k(2)

k(new2)

k(new3)

Otherwise

Fig. 1 The simplex algorithm consists of four modes. In all modes, existing points concatenated
withknew are reordered such that (k(1),k(2),k(3)) ← R(3)(k(1),k(2),k(3),knew). Note thek entries
here consist solely of the nonlinear parameters ν1 and ν2

(a) Individual Optimisation (b)Proposed Approach
1 For each TAC
2 Initialise using R(3)(K) operation
3 For i ∈ [0;Niterations]

4 For each TAC
Y k(new) ←Simplex(mp,k(1),k(2),k(3))
5 Compute D(Tp, S(k(new)))
6 (k(1),k(2),k(3)) ←

R(3)(k(1),k(2),k(3),k(new))
7 Update simplex mode, mp (Fig. 1)

1 For each TAC
2 Initialise using R(3)(K) operation
3 For i ∈ [0;Niterations]
X Select random TAC Tp

Y k(new) ←Simplex′(mp,k(1),k(2),k(3)) + ε

4 For each TAC

5 Compute D(Tp, S(k(new)))
6 (k(1),k(2),k(3)) ←

R(3)(k(1),k(2),k(3),k(new))
7 Update simplex mode, mp (Fig. 1)

Fig. 2 Differences between a individual optimisation and b the proposed approach
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TACs. Secondly, outside the loop over TACs, a new set of parameters is generated
using the simplex algorithm for Tp, illustrated by the shift in line Y to be above line
4 in Fig. 2b. Thirdly, a small random offset, ε, is added to the proposed point. Finally,
in the reduction mode only k(3) is reduced to generate a single knew.

The selection of a single TAC and generation of a single parameter set, relies on
the observation that many TACs in images are similar to each-other. Hence, a new
set of parameters that reduces D for one TAC is likely to reduce D for others. Also
the evaluation of D is generally lower than the evaluation of S, even in efficient
formulations. So in some cases it is more efficient to evaluate D multiple times than
to evaluate S.

All the TACs are initialised from the same dictionary K , so several TACsmay have
the same combination of simplex points. On occasion two such TACs, p1 and p2 may
be consecutively selected and k(new)

p1 may be such that D improves for the Tp1 , but

not for Tp2 . At some later stage when Tp2 is selected, k(new)
p2 is generated, but this is

the same as k(new)
p1 . Having been generated before, this will offer no improvement for

any TACs, wasting the computational cycles expended on evaluating S(k(new)
p2 ) and

the overhead of the iteration. In practice, such occurrences are frequent, motivating
for the insertion of a random offset, ε on line Y in Fig. 2b. The offset is generated
from a normal distribution with standard deviation of 5% of the magnitude of k(r1).

In the reduce phase of the simplex algorithm, the simplex points k(2) and k(3)

are shifted towards the highest ranked point, k(1). In the proposed approach, this is
modified so that only the lowest ranked point, k(3), is manipulated in this manner,
because the algorithm as presented in Fig. 2b only caters for a single k(new) each
iteration. Modifying the proposed approach further to cater for multiple generated
parameters and comparing TACs against both sets of parameters will be examined
in future work.

The proposed approach and comparison methods were implemented in Matlab,
but in all cases the code was vectorised to maintain efficiency. For comparison, a
Levenberg-Marquardt [6, 8] algorithm for individual optimisation was also imple-
mented.

3 Experiments and Results

Experiments were performed using synthetically generated data and real data. For
the synthetic experiment a set of TACs were simulated from randomly generated
parameters. The parameters were distributed uniformly in a biologically plausible
range of values as reported in the literature [15]. The restriction that ν2 < ν1 [4] was
enforced by sorting the non-linear parameters. Poisson distributed noise was added,
but assuming large numbers of event counts, allowing approximation by a normal
distribution. The standard deviations added ranged from 5 to 25% as suggested by
the literature [1, 11] (plus a margin).
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Fig. 3 Results of experiments on synthetic data. Plots of a mean cost function and b computational
cost as a function of iteration are shown. Also c mean cost function and d mean root mean square
error in k are shown as a function of noise level

The real-data experiment used an available image of a late stage glioma patient
imaged using 6-[18F] fluoro-l-dopa (FDOPA)on aPhillipsGeminiGXLscanner. The
scan consisted of eight 15 s frames, two 30s frames, two 1min frames and fourteen
5min frames. The final volume consisted of ninety 128 × 128 planes with isotropic
voxels 2mm on a side. The blood input function was extracted from 20 connected
voxels in the left and right carotid arteries that had the highest intensity during the first
2min of scanning. The blood input function and frame lengths were re-used for the
synthetic experiments. Optimisationwas performed using the proposed approach and
by performing individual optimisation using the simplex and Levenberg-Marquardt
optimisation algorithms.

The results of the synthetic experiment are presented in Fig. 3. Figure3a, b respec-
tively report the mean cost function and computational cost as a function of iteration.
All the algorithms converge by 100 iterations, but the proposed approach obtains an
improved mean cost in comparison to the other methods. The proposed approach has
the lowest computational cost, by nearly an order of magnitude. The lower compu-
tational cost of the proposed method arises from the fact that it reduces the number
of evaluations of S. The reduction in computational cost is only partly offset by the
increased number of evaluations of D. Of the two individual optimisation approaches,
Levenberg-Marquardt was more efficient, because a tolerance of 10−9 was applied
to variations in new k values. New k values insufficiently distinctive from the k(1)

were not evaluated. The lower mean cost of the proposed approach could potentially
arise from the existence of local minima. The sharing of simulations enables TACs
to escape local minima, but this relies on TACs having some similarity to each-other,
i.e. k(new)

p is relevant to multiple TACs.
Figure3c, d show mean cost and mean root mean square error (RMSE) in k as

a function of noise. In both cases, error increases with noise as would be expected.
In terms of mean cost, the bulk of the difference between the proposed approach
and other methods resides at high noise levels, where local minima would be more
likely. Notably, the differences between optimisation approaches aremore distinctive
for mean RMSE in k than for the cost function, D, implying that many choices of
parameters give similar cost functions (i.e. local minima exist).
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Fig. 4 Results of experiments on real data. a shows a single slice from the test data set. Plots of b
mean cost function and c computational cost as a function of iteration are also shown

The upper range of noise was set relatively high to act as a proxy for the cases
where poor outlier voxels were continually selected by the method, because the high
noise ensures a many (if not most) samples have only a limited relationship to their
neighbours. The model degrades gracefully as the noise levels are increased, even at
high levels. The high noise also tests the case where the model is a poor reflection of
the data. In addition, the synthetic experiment with its randomly selected parameters,
acts a substitute for test data typified by different biological and tracer characteristics,
or where tissue biology is heterogeneous.

The results of the real data experiment are shown in Fig. 4 along with a single slice
from the data set in Fig. 4a. Figure4b, c respectively report the mean cost function
and computational cost as a function of iteration. One hundred iterations is sufficient
for all algorithms to converge. As for the synthetic data, the proposed approach
obtains a lower mean cost than when performing individual optimisation, with less
computational expense.

4 Conclusion

This paper has proposed an alternative approach to improving computational effi-
ciency, which instead of reducing the cost of evaluating S, relies on sharing the
simulations between multiple time activity curves, reducing the number of evalu-
ations of S. This is particularly advantageous for the flexible but computationally
expensive ODE formulations for biological systems. Testing with synthetic and real
data demonstrated that this approach improves computational efficiency by an order
of magnitude while obtaining the same or better quality of fit as measured by the
cost function. Synthetic experimentsmight not necessarily completely represent real-
world cases of heterogeneous tissue or inappropriate model selection, and in future
work a wider range of real test data will be sought. Comparisons to basis pursuit
were not included due to limited space, but are also of interest as they may allow
similar fit error at similar speeds. Future work will also explore more sophisticated
strategies to select the TAC from which k is generated.
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Gradient Projection for Regularized
Cryo-Electron Tomographic
Reconstruction

Shadi Albarqouni, Tobias Lasser, Weaam Alkhaldi, Ashraf Al-Amoudi
and Nassir Navab

Abstract Cryo-ET has recently emerged as a leading technique to investigate the
three-dimensional (3D) structure of biological specimens at close-to-native state.
The technique consists of acquiring many two-dimensional (2D) projections of the
structure under scrutiny at various tilt angles under cryogenic conditions. The 3D
structure is recovered through a number of steps including projection alignment
and reconstruction. However, the resolution currently achieved by cryo-ET is well
below the instrumental resolution mainly due to the contrast transfer function of
the microscope, the limited tilt range and the high noise power. These limitations
make the 3D reconstruction procedure very challenging. Here, we propose a new
regularized reconstruction technique based on projected gradient algorithm. Using
the gold-standard method for resolution assessment, the Fourier Shell Correlation,
we show that the proposed technique outperforms the commonly used reconstruction
methods in ET, including the filtered back projection and the algebraic reconstruction
techniques.
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Fig. 1 Cryo-ET image processing pipeline

1 Introduction

Over the last decade, cryo-Electron Tomography (cryo-ET) has drawn the attention
of researchers. It is considered the most powerful imaging technique to address
fundamental questions on biological structures at both cellular and molecular
levels [1]. It also bridges the gap between low-resolution imaging techniques
(e.g. light microscopy) and high-resolution techniques (e.g. single particle electron
microscopy). Cryo-ET merges the principles of transmission electron microscopy
(TEM) and the principle of tomographic imaging by acquiring several two-
dimensional projection images of biological structures at limited tilt range and close-
to-native condition. These two-dimensional projection images are then reconstructed
to a three-dimensional image (called tomogram), after passing through a pipeline of
alignment and restoration procedure as shown in Fig. 1. For a more in-depth descrip-
tion of the cryo-ET and the associated image processing pipeline see [2].

The resolution of the reconstructed tomogram, however, is affected by the low sig-
nal to noise ratio (SNR) of the projection images (typically 0.1–0.01) and the limited
angular coverage (typically ±60–70◦) resulting in wedge-shaped missing informa-
tion in Fourier space, the so-called “missing wedge”, making the reconstruction
process very challenging and demanding [3]. Therefore, developing a reconstruction
technique that incorporates the sparsely sampled data, the noise level, and that pre-
serves the structural edges while pushing the limits of resolution further, is highly
desirable.

One technique, that was recently investigated in the context of cryo-ET [4], is the
direct Fourier reconstruction using a non-uniform fast Fourier transform, but it is still
hampered by the high computational cost. Therefore, the current standard method in
cryo-ET is the weighted (filtered) back projection (WBP) based on Radon transform
[5], which backprojects the high-pass filtered projection data into the tomogram. One
of the main drawbacks of WBP, however, are the typical streak artifacts due to the
missing wedge of data, as well as the corresponding degraded resolution.
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Recently, due to the increasing availability of high performance computing,
variants of the algebraic reconstruction technique (ART) have been employed and
extended in the context of cryo-ET [6–8], which formulate the reconstruction prob-
lem as a large system of linear equations to be solved iteratively. In this manner, the
missing wedge effect can be minimized, but the reconstruction performance is still
degraded due to the noisy input data.

The projected gradient-based algorithm [9] has recently been used in several
applications such as compressed sensing [10], X-ray computed tomography [11] and
in sparse signal recovery [12] to solve the L2−L1 optimization problem (LASSO). In
this paper, the reconstruction problem is formulated as an unconstrained, regularized
optimization problem, using the projected gradient-based algorithm to solve the
problem on a feasible bounded set. In the following we denote this approach as
Gradient-based Projection Tomographic Reconstruction, in short GPTR.

2 Problem Formulation

2.1 Notation and Concept

The three-dimensional reconstructed tomogram is represented as a discretized, lin-
earized vector x ∈ R

n , with n ∈ N. The forward problem can be formulated using the
discrete version of the Radon Transform [5] for each measurement j ∈ {1, . . . , m}:

b j =
n∑

i=1

ai j xi or in short b = Ax, (1)

where b ∈ R
m represents the measured projection data, (a ji ) = A ∈ R

m×n rep-
resents the weighting matrix, where a ji is the weight with which each voxel in the
image vector x ∈ R

n contributes to the j th projection measurement.
For computational simplicity, we treat the three-dimensional tomogram as a stack

of two-dimensional slices, which are reconstructed individually and then stacked
together again to a three-dimensional tomogram.

2.2 Formulation as an Optimization Problem

The tomographic reconstruction problem of solving b = Ax for the unknown x
in cryo-ET is underdetermined due to the limited tilt angles, as well as ill-posed,
for example due to the measurement noise. Hence a direct solution is not feasible.
Instead, a least squares approach is adopted to find an approximate solution
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xLS = arg min
x

‖b − Ax‖2
2, (2)

where ‖ · ‖2 denotes the Euclidean norm. This least squares problem can be solved
iteratively following a weighted gradient descent approach,

xk+1 = xk + sk gk, k = 0, 1, . . . , (3)

with a starting value x0, step size sk and a weighted gradient gk = QAT D(b − Axk).
Standard techniques such as SIRT or SART can be expressed in this form by choosing
sk and gk appropriately (for example we can get SIRT by setting Q and D to the
identity matrix in gk , and sk ∈ [0, 2]). This is also true for the recently developed
techniques I-SIRT, M-SART or W-SIRT [6–8]. To accelerate convergence, a standard
numerical method like the LSQR variant of the conjugate gradient algorithm [13]
can be used instead.

However, due to the strong measurement noise, a least squares approach will lead
to noise amplification in later iterates xk . To combat this, a regularization term φ(x)

is added to stabilize the solution,

xopt = arg min
x∈Ω

‖b − Ax‖2
2 + βφ(x) (4)

with a Lagrangian multiplier β > 0 describing the strength of the regularizer, and
further restricting the solution to a feasibility region Ω = {

x = (xi ) ∈ R
n : xi ∈

[l, u]}, where l, u ∈ R denote lower and upper bounds of the signal.
A popular choice for the regularization term is the isotropic total variation,

φ(x) = ‖Dx‖1, where D is an operator computing the gradient magnitude using
finite differences and circular boundary conditions, and ‖ · ‖1 denotes the �1-norm.
However, isotropic TV is non-smooth and thus poses problems for the optimization
procedure.

3 Methodology

3.1 Problem Statement

We investigate the regularized optimization problem as in Eq. (4), that is optimizing
the objective function

f (x) = ‖b − Ax‖2
2 + βφ(x). (5)

To overcome the non-smoothness of isotropic total variation, we use the smooth
Huber function φhuber [14], replacing the �1-norm of total variation. φhuber is illus-
trated in Fig. 1 and is expressed by
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φhuber(z) =
{

0.5 |z|2 |z| ≤ τ

τ |z| − 0.5τ 2 else,
(6)

where the threshold parameter τ is estimated by the median absolute deviation,
τ = median(|z − median(z)|). Using φ(x) := φhuber(Dx) the objective function
f (x) is now smooth and convex, so the projected gradient method can be applied to
find a feasible solution x ∈ Ω .

3.2 Projected Gradient Algorithm

The projected gradient method [9] is an extended version of gradient descent, where
the solution is iteratively projected onto the convex feasible set Ω , as illustrated in
Fig. 1. Starting with an initial value x0, it is expressed by:

xk+1 = PΩ(xk + sk gk), k = 0, 1, . . . , niter (7)

where gk = ∇ f (x) is the gradient of the objective function in (5), and sk is the step
size. The step size sk is computed using an inexact line search, limiting the gradient
step by the Armijo conditions [15], ensuring the curvature and a sufficient decrease
of the objective function as follows:

f (x(sk)) − f (x) ≤ α

sk
‖x(sk) − x‖2 , (8)

where α is a scalar constant.
The algorithm Gradient Projection for Tomographic Reconstruction (GPTR) is

illustrated in Fig. 1 and can be described as follows:

1. Input: The algorithm is fed with the aligned projections b associated with the tilt
angle, and the forward projector matrix A [16].

2. Set the initial conditions: The initial reconstructed tomogram is set to x0 ∈ Ω ={
x = (xi ) ∈ R

n : xi ∈ [l, u]} with lower and upper bounds l, u ∈ R, a tolerance
and the maximum number of iterations niter.

3. Iterate for k = 0, 1, . . . , niter

a. Compute the objective function f (x): The data fidelity term ‖b − Axk‖2
2

and the regularization term φ(xk) = φhuber(Dxk) are computed.
b. Compute the gradient gk : The gradient gk = ∇ f (xk) is computed.
c. Compute the gradient step sk : Initialize sk = 1. Check the Armijo condition

in Eq. (8) and iteratively reduce sk by 90 % until the condition is met (or a
maximum number of iterations are performed).

d. Update the solution estimate xk+1: Compute xk+1 by computing the gradient
descent update step xk + sk gk and projecting it onto Ω as in Eq. (7).
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4. Output: xk+1 is the output once the iteration has converged (i.e. the tolerance
was reached) or the maximum number of iterations has been reached.

Convergence of the GPTR algorithm with a regularized objective function has
not been investigated yet. However, a detailed analysis for a similar problem can be
found in [17].

4 Experiments and Results

The proposed reconstruction method has been examined on real data, a tomographic
tilt series of a vitrified freeze-substituted section of HeLa cells [18], which were
collected from −58 to 58◦ at 2◦ intervals and imaged at a pixel size of 1.568 nm using
Tecani T10 TEM, equipped with 1k×1k CCD camera. To keep the computational
complexity manageable, the projection data was down-sampled by a factor of eight.
The solution of the proposed technique GPTR was compared with those of the
most commonly used techniques in the field of cryo-ET, namely WBP, LSQR, and
SART. The parameters were set to β = 0.1, a tolerance of 10−2, niter = 50 and
[u, l] = [0.01, 1000].

4.1 Fourier Shell Correlation

The Fourier Shell Correlation (FSC), the typical quantitative analysis of the resolu-
tion within the cryo-EM and cryo-ET community [19], was applied to the different
reconstruction methods to assess the resolution. The tomograms were reconstructed
from even and odd projections separately and the Fourier transform of each tomo-
gram was calculated (Fn and Gn for even and odd tomograms respectively). Then
the Fourier plane was binned into K shells from 0 to the Nyquist frequency as shown
in Fig. 2b. The FSC is calculated as follows:

FSC(K ) =
∑

n∈K FnG∗
n√∑

n∈K |Fn|2 ∑
n∈K |Gn|2

, (9)

where K is the Fourier shell and ∗ is the conjugate Fourier transform.
The results are shown in Fig. 2a. The 0.5-FSC-criterion is usually used as an

indicator of the achieved resolution. It is quite clear that the FSC of the GPTR method
crosses the 0.5-FSC-line at high spatial frequencies, outperforming the FSCs of the
traditional methods. Moreover, the high frequency components (noise) are attenuated
in GPTR (indicating robustness to noise), while the noise was aligned with the data
in the SART technique. Also, we observed that the GPTR reached the tolerance in
6–8 iterations, while the LSQR did not converge in 10 iterations.
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4.2 Line Profile

Another experiment was performed using niter = 7, leaving the other parameters
unchanged. Then an intensity line profile (LP), the dashed line in Fig. 3b, was drawn
for the different reconstructed tomograms from Fig. 3a–d to investigate the edge
preservation, the noise effects and the non-negativity of the intensity values. The LP
was drawn for both the normalised sections in Fig. 3e and the un-normalised ones in
Fig. 3f. It is clear from Fig. 3f that the LP behaviour of GPTR is similar to theSART,
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which follows the underlying object smoothly, while the GPTR preserves the edges
better. Additionally, GPTR by construction produces positive intensities, while WBP
and LSQR are affected clearly by the noise and the negative values.

5 Conclusion

In this paper, the gradient projection for tomographic reconstruction (GPTR) was
proposed to solve the regularized optimization problem for the Electron tomographic
reconstruction. A proof of principle was demonstrated on real ET data using the
gold standard for resolution measurement, FSC. A gain of several nanometers in
resolution (0.5-FSC criterion) was achieved without affecting the sharpness of the
structure (line-profile criterion). Extending the work for large data sets and/or in the
field of cryo-ET is currently under development.
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Joint Direct Motion Estimation/Kinetic
Images Reconstruction from Gated
PET Data

Alexandre Bousse, Jieqing Jiao, Kris Thielemans, David Atkinson,
Simon Arridge, Sébastien Ourselin and Brian F. Hutton

Abstract In this paper we propose a unified framework for joint motion
estimation/kinetic image reconstruction from gated dynamic PET data. The method
is a generalisation of previous work to include gated data. The kinetic and motion
parameters are estimated jointly bymaximisation of the penalised likelihood. Kinetic
parameters are estimated with an optimisation transfer approach, and the non-rigid
motion is estimated with a quasi-Newton algorithm. Results on synthetic phan-
tom data show that there is an advantage in jointly estimating motion and kinetics
compared to pre-estimating the motion field for motion-compensated kinetic image
reconstruction.
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Keywords Dynamic PET · Parametric imaging · Optimisation transfer · Kinetic
analysis · Gating · Non-rigid registration

1 Introduction

Respiratory and cardiacmotion are severe sources of degradation inwhole-body PET
imaging. Since the motion is quasi-periodic and a PET acquisition lasts for multiple
cycles, gating the data by a series of motion phases for PET image reconstruction can
reduce the motion artefacts, but potentially leads to increased noise when only a sub-
set of the data is used.Motion can be pre-estimated (for compensated reconstruction)
or jointly estimated with the activity distribution [1, 2].

Furthermore, in a dynamic PET scan, where the data is recorded immediately after
the injection of radioactive tracer to monitor the in vivo pharmacokinetic process,
the tracer kinetics can be estimated directly from PET raw data. This problem is
addressed in several papers (see [3] for a review), but to our knowledge the current
direct methods do not estimate motion.

We addressed the problem of joint motion estimation/compensation kinetic image
reconstruction in [4] for brain rigidmotion. In this paperwe extendourmethod to joint
kinetic image reconstruction from gated data with non-rigid motion. The motion and
kinetic parameters are estimated from raw data by penalised maximum likelihood.
The algorithm is similar to [4] with extensions to handle gated data and to tackle
non-rigidmotion. Our joint kinetic motion estimation (JKM) algorithmwas tested on
a 2-D+t torso dynamic PET phantom for the reconstruction of the parametric image
related to the influx rate. We compared our method with a motion-compensated
kinetic image reconstruction with a pre-estimated motion field (PMK).

2 Method

2.1 Kinetic Model

In this work we use the Gjedde-Patlak approach [5] to model the irreversible tracer
kinetics, although the same framework can be applied to other linear models. In
whole-body PET, a significant number of the scans are intended to assess the irre-
versible retention of a tracer, for example FDG, an analogue of glucose widely used
in cancer imaging and cardiac imaging. When at least one irreversible compartment
exists, after the equilibrium is reached between the reversible compartments and
plasma, the ratio of free tracer in tissue and in plasma becomes time-independent,
and the total tracer concentration in tissue CT(t) can be described as

CT(t) = KI

∫ t

0
CP(τ ) dτ + κCP(t)
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where CP(t) is the tracer concentration in plasma, KI is the influx rate that represents
the irreversible uptake of the tracer and κCP(t) is the reversible component. For PET
data that are divided into frames, the activity at frame m is

∫ te,m

ts,m
CT(t) dt = Fm(ϑ) = [Bϑ]m = [

bm,1 bm,2
] [

ϑ1
ϑ2

]
,

where [ϑ]q = ϑq , ϑ1 = KI, ϑ2 = κ , [B]m,1 = bm,1 = ∫ te,m
ts,m

∫ t
0 CP(τ ) dτ dt ,

[B]m,2 = bm,2 = ∫ te,m
ts,m

CP(t) dt , ts,m and te,m are the starting and ending times of
frame m. Note that this linear representation is not FDG-specific and can be applied
to other tracers [4].

2.2 Gating

The perpetual motion of the patient is assumed to be cyclic (e.g. respiratory or
cardiac motion) in order to regroup PET data into ng gates, each gate l ∈ {1, . . . , ng}
corresponding to a patient position in the cycle. In dynamic PET, gating should
be performed in accordance with the separation of dynamic data into frames m ∈
{1, . . . , nt}. Since motion cycles are short compared to kinetic time frames, we will
assume each frame covers at least one cycle. Figure1 is an illustration of the double
gate/frame time indexation: in this example each cycle comprises of 3 states; frame
m = 1 contains 1 cycle and each gate corresponds to 1 dataset, m = 3 contains 5
cycles and each gate corresponds to 5 datasets, etc.

At gate l, frame m, the collected PET data is a vector gl,m ∈ N
nb , where nb is the

number of detector bins, and gi
l,m = [gl,m]i ∈ N is the number of collected counts

at bin i . For simplicity, a pair ‘gate l-frame m’ is referred to as a ‘state’ (l, m). The
complete collection of data at each state is g = (gl,m)

ng,nt
l,m=1 ∈ N

ng×nt×nb .

Fig. 1 Schematic representation of the gate/frame temporal indexation
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2.3 Penalised Log-likelihood

In absence of motion, the PET dynamic activity is determined by the kinetic model
F = (Fm)

nt
m=1, Fm : Rnk×nv → R

nv , and the parametric images Θ = (ϑ j )
nv
j=1 ∈

R
nk×nv , where ϑ j ∈ R

nk is the collection of kinetic parameters in voxel j , and nt , nv
and nk are respectively the number of time frames, voxels and kinetic parameters. The
qth parameter value at voxel j is [Θ]q, j = [ϑ j ]q = ϑq, j . Each row [ϑq,1, . . . , ϑq,nv ]
of Θ is a parametric image. The activity volume distribution at frame m takes the
form of a vector Fm(Θ) = (Fm(ϑ j ))

nv
j=1 ∈ R

nv , and Fm(ϑ j ) = [Bϑ j ]m ∈ R is
the activity at frame m and voxel j . B is a nt × nk matrix. In this work nk = 2,
but larger dimension models can be applied [4]. Note that although we focus on the
influx constant KI, the two components of each ϑ j , ϑ1, j = KI, j and ϑ2, j = κ j , are
estimated.

When patient motion is present, the activity distribution is deformed by amapping
ϕα : R3 → R

3 parametrised by α ∈ R
nw where nw is the number of parameters of

the warping model. Introducing the voxel grid G = {xk, k = 1, . . . , nv} ⊂ R
3 and

using the framework from [1], the operator associated to ϕα and G is the nv × nv
square matrix Wα defined by [Wα] j,k = w(ϕα(x j ) − xk), where w : R3 → R

+ is
an interpolating function. Assuming that PET data are divided into ng gates and nt
time frames, and that the motion between the gates is consistent for all time frames,
the activity distribution image at state (l, m) is WαlFm(Θ), where αl is the motion
parameter at gate l.

The PET measured data at state (l, m) is a Poisson random vector gl,m ∈ N
nb

with independent entries and of mean

gl,m(Θ,αl) = PWαlFm(Θ) + rl,m ∈ R
nb

where P ∈ R
nb×nv is the PET system matrix i.e. [P]i, j = pi, j is the probability that

an annihilation occurring in j is detected in i , rl,m is the average background at state
(l, m). Let A = (αl)

ng
l=1 ∈ R

ng×nw be the collection of motion parameters at each
gate. The log-likelihood given the complete dynamic gated data g is

L(g|Θ, A) =
ng∑

l=1

nt∑
m=1

nb∑
i=1

gi
l,m log gi

l,m(Θ,αl) − gi
l,m(Θ,αl)

in which gi
l,m = [gl,m]i (constants were omitted). Penalised maximum-likelihood

(PML) joint estimation of Θ, A consists of maximising

Φ(Θ, A) = L(g|Θ, A) + βU (Θ) + γ V (A) (1)

where U (Θ) and V (A) are penalty terms on kinetic and warping parameters respec-
tively. Here U (Θ) is a quadratic penalty function on the dynamic volumesFm(Θ):
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U (Θ) = −1

8

nt∑
m=1

nv∑
j=1

∑
k∈N j

ω j,k(Fm(ϑ j ) − Fm(ϑk))
2

where N j is neighbourhood of j and the ω j,m’s are weights satisfying ω j,k = ωk, j .
In this work the maximisation of Φ(Θ, A) is performed in alternation between

Θ and A.

2.4 Kinetic Image Reconstruction

In this section A is fixed. We used the methodology from [6] with some modifica-
tions for gated data. For compactness, Φ(Θ, A), L(g|Θ, A) and gi

l,m(Θ,αl) are

temporarily denoted Φ(Θ), L(Θ) and gi
l,m(Θ). The motion compensated system

matrix PWαl is denoted P l , with [P l ]i, j = pl
i, j . We focus on the maximisation of

Φ(Θ) = L(Θ) + βU (Θ).
LetΘold = (ϑold

j )
nv
j=1 be a current estimate ofΘ . TomaximiseΦ(Θ), we proceed

as in our previous work [4] but with gated dynamic data. As in [6], we followed [7,
8] to derive the voxel-separating surrogate functions QL(Θ|Θold) ≤ L(Θ) and
QU (Θ|Θold) ≤ U (Θ) for L and U :

QL(Θ|Θold) =
nv∑
j=1

q L(ϑ j ; f em, j , p j ), QU (Θ|Θold) =
nv∑
j=1

qU (ϑ j ; f reg, j , ω j ),

(2)

∀ϑ, f em, p = (pl)
ng
l=1, q L(ϑ; f em, p) =

ng∑
l=1

pl
nt∑

m=1

f eml,m logFm(ϑ) − Fm(ϑ),

(3)

∀ϑ, f reg, ω, qU (ϑ; f reg, ω) = −1

2
ω

nt∑
m=1

(Fm(ϑ) − f regm )2,

and the parameters in (2) are p j = (pl
j )

ng
l=1, pl

j = ∑nb
i=1 pl

i, j , ω j = ∑
k∈N j

ω j,k .

f em, j = ( f em, j
l,m )

ng,nt
l,m=1 and f reg, j = ( f reg, j

m )
nt
m=1 are defined for each voxel j and

state (l, m) as

f em, j
l,m = Fm(ϑold

j )

pl
j

nb∑
i=1

pl
i, j g

i
l,m

gi
l,m(Θold)

,

f reg, j
m = 1

2ω j

∑
k∈N j

ω j,k

(
Fm(ϑold

j ) + Fm(ϑold
k )

)
.
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Unlike [4], there are no time frame weights in the sum over m in (3), as the gates
and frame indices are separated. The voxel separation in (2) allows to compute each
ϑ j independently as

ϑnew
j = argmax

ϑ∈Rnk+
q L(ϑ; f em, j , p j ) + βqU (ϑ; f reg, j , ω j ) . (4)

Note that u = q L +βqU is strictly concave as theHessianmatrix of qU is−ωB� B <

0 (B is a nt × nk matrix with strictly positive entries and nt > nk = 2). Besides, the
set D = {ϑ ∈ R

nk+ , u(ϑ) ≥ u(1)} ⊂ R
nk+ is compact (u is continuous and coercive)

and convex so the existence and uniqueness of ϑnew
j ∈ D is guaranteed.

Again, in order to achieve (4), we applied the optimisation transfer from [6]. The
task is the same for each voxel so index j is omitted. Given the hyper-parameters
f em, f reg, p and ω in (4), we derive the parameter-separating surrogate function
H L(ϑ |ϑold) ≤ q L(ϑ; f em, p) and HU (ϑ |ϑold) ≤ qU (ϑ; f reg, ω):

H L(ϑ |ϑold) =
nk∑

q=1

hL(ϑq;ϑem
q , cq), HU (ϑ |ϑold) =

nk∑
q=1

hU (ϑq;ϑ
reg
q , ωaq) (5)

where the parameter-wise surrogate functions hL and hU are defined as

hL(ϑ;ϑem, c) = c(ϑem logϑ − ϑ), hU (ϑ;ϑ reg, a) = −a

2
(ϑ − ϑ reg)2

and the hyper-parameters in (5) are cq = bq
∑ng

l=1 pl , pl = [ p]l , bq = ∑nt
m=1 bm,q ,

aq = ∑nt
m=1 bm,q

∑nk
q ′=1 bm,q ′ ,

ϑem
q =

∑ng
l=1 plϑ

em,l
q∑ng

l=1 pl
with ϑem,l

q = ϑold
q

bq

nt∑
m=1

bm,q f eml,m

[Bϑold]m

and

ϑ
reg
q = ϑold

q − a−1
q

nt∑
m=1

(
bm,q [Bϑold]m − f regm

)
.

Note that the intermediary parameter ϑem
q corresponds to a weighted average across

the gates of the intermediary parameter found in [4]. Each parameter ϑq is updated
from ϑold independently as

ϑnew
q = argmax

ϑ∈R+

{
hL(ϑ;ϑem

q , cq) + βhU (ϑ;ϑ
reg
q , ωaq)

}
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and corresponds to the unique positive root of a second degree polynomial (see [4]).
The overall scheme is a nested algorithm with 2 iteration indices (one index per
optimisation transfer). A complete algorithm description is given in [4].

2.5 Motion Estimation

Similarly to Sect. 2.4, L(g|Θ, A) is temporarily denoted L(A). In addition, we
denote f m = Fm(Θ), and gl,m(Θ,αl) is replaced by gl,m(αl) = PWαl f m + rl,m .
Similarly Φ(A) replaces Φ(Θ, A). The log-likelihood term L(A) can be written as
a sum over the gates, L(A) = ∑ng

l=1 Λl(αl) with

Λl(αl) =
nt∑

m=1

nb∑
i=1

gi
l,m log gi

l,m(αl) − gi
l,m(αl).

We also assume the penalty on A can be rewritten as

V (A) =
ng∑

l=1

vl(αl).

We have

Φ(A) =
ng∑

l=1

φl(αl)

where φl = Λl + vl , so that each αl can be computed independently. We utilised
a quasi-Newton (QN) algorithm, which requires the computation of ∇φl and an
approximation of the Hessian matrix ∇2φl . For the rest of this section we assume
the gradient and Hessian of vl are tractable so we focus on Λl . The gradient is
∇φl(αl) = ∇Λl(αl) + γ∇vl(αl) with

∇Λl(αl) =
nt∑

m=1

J(Wαl f m)P�[gl,m/gl,m(αl) − 1],

where J(Wαl f m) is the Jacobian in αl of the warped volume. The gradient can be
computed with nt backprojections. For rigid motion (i.e. αl ∈ R

6), the Hessian of
the likelihood term was approximated in [4] following

∇2Λl(αl) �
nt∑

m=1

J(Wαl f m)� P� Dl,m P J(Wαl f m) (6)
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where Dl,m = −diag
{

gi
l,m/gi

l,m(αl), i = 1, . . . , nb

}
. Computing (6) is performed

by projecting each of the 6 columns of J(Wαl f m). For large-dimensional αl (non-
rigid motion), this approximation is not tractable. Instead we computed a QN step
as h(αl) = −Gl(αl)∇φl(αl) where Gl(αl) is an approximation of [∇2φl(αl)]−1

using the limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm
[9]. The update on αl is

αnew
l = αold

l + δh(αold
l )

with
δ = argmax

δ≥0
φl(α

old
l + δh(αold

l )).

3 Results

We compared JKM with a pre-estimated motion field motion-compensated kinetic
image reconstruction (PMK), where A is estimated by registration of reconstructed
activity images at each gate l (i.e. from the gl = ∑nt

m=1 gl,m’s). The registrations
were performed with Kullback-Leibler divergence minimisation. For a fixed A, Θ

was estimated following the scheme presented in Sect. 2.4. This estimation of the
motion does not account for kinetics.

We used a 2-D version of the torso PET phantom from [10]. It consists of 9
volumes at different phases of the respiratory cycle. For each volume, we generated
28 [18F]FDG frames using a two-tissue compartmentmodelwith K1, k2 and k3 values
taken from clinical studies for various regions. The 9 × 28 volumes were projected
with a blurred line integral operator to generate the noiseless gl,m projections at each
state (l, m). Poisson noise was added to each gl,m . We reconstructed KI using both
methods and compared it to the ground truth K 

I = K1k3/(k2 + k3).
The parametric image Θ was reconstructed from 20 Poisson noise realisations,

with 7 different values for β. Using the noise replicate, we estimated the mean
variance of the PML estimator obtained with JKM and PMK. Figure2 shows the
estimated variance and the mean square error ‖K 

I − K̂I‖22 in a region of interest
containing the liver and 3 tumours. Results show that for all variance levels, JKM
has a lower square bias than PMK. Figure3 shows reconstructed KI using JKM,
PMK and ignoring motion (i.e. PMK with A = 0). The displayed JKM and PKM
images correspond to 2 β values chosen using Fig. 2 such that the mean square bias
is the same in both images. The PMK image appears to be more noisy than the JKM
image.
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Fig. 2 Mean square error versus mean variance of the reconstructed images using JKM and PMK
for different values of β. On both curves each data point corresponds to a single value of β

Fig. 3 Reconstructed images with: a JKM; b PMK; c no motion compensation. JKM and PMK
images have the same mean square bias

4 Conclusion

We have presented a novel method to estimate the kinetic and non-rigid motion
parameters directly from the dynamic gated PET raw data, by maximisation of the
penalised log-likelihood. The maximisation is performed by alternating between
the 2 parameters. A double optimisation transfer approach was used to derive an
update of the kinetic parameters, andwe utilised a quasi-newton algorithm to estimate
the motion. Results on simulated [18F]FDG data with respiratory motion show that
estimating motion and kinetics jointly achieves better performance than using a pre-
estimated motion field.
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The Effect of Mouth Motion on the
Attenuation Correction in Neurological
PET Studies

Joaquin L. Herraiz, Angel Torrado-Carvajal, Juan A. Hernandez-Tamames
and Norberto Malpica

Abstract In each newgeneration of PET scanners, the axial field-of-view (FOV) has
been increased as a way to improve their sensitivity and obtain better images, faster
and with lower injected doses. Nevertheless, in neurological studies, the use of larger
axial FOV can introduce errors in the PET attenuation correction (AC), as possible
movements of the patient’s mouth are not currently considered. This effect happens
when oblique PET sinograms containing both the jaw and the brain are used. In this
work we have studied the bias that mouth motion can introduce in the PET AC, for
two different scanners. The average effect over large regions in the brain is around
1% for a moderate mouth motion, although some voxels show differences of up to
18%. These results indicate that if scanners with large axial FOV and acceptance
angles are going to be used in the future, possible movements of patient’s mouth
should be considered in the AC procedure.

Keywords Attenuation correction · Dual modality · Extended FOV · Motion
correction · PET/MR · Tissue classification
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1 Introduction

Since the origins of PositronEmissionTomography (PET), the number of detectors in
PET scanners has been increasing in the axial direction. Currently, there are clinical
PET scanners with 64 rings, covering an axial FOV of more than 25cm [1]. Even
larger scanners have been proposed [2, 3]. The goal is to get higher sensitivity in order
to obtain images with better signal-to-noise (SNR) ratio, and reduce the acquisition
time or the amount of radioactivity injected to the patient. For the same reason, the
maximum ring difference (MRD), which represents the maximum oblique angle that
it is accepted in the data has been also increasing. In contrast to the initial 2D-mode
acquisitions (with septa), now 3D-mode acquisition with large MRD are common.
Despite these advantages, there is a potential source of error in the quantification
of brain studies caused by the movement of the tongue and the mouth during the
acquisition. Due to the large difference in the linear attenuation coefficients of bone,
brain, soft-tissue and air (Table1), small movements of the mouth may produce a
bias in the attenuation correction applied to the brain region.

As it is clear from Fig. 1, the impact of mouth motion in the AC in the brain
becomes more important when larger oblique angles are considered.

The quantitative accuracy of PET studies depends on a goodAC. The combination
of PET and Computerized Tomography (CT) in a single scanner provided a simple

Table 1 Linear Attenuation Coefficients (AC) for the annihilation gamma rays used in PET for
different tissues

Tissue AC for 511keV (cm−1)

Air 8.7E-5

Brain (WM, GM) 0.096

Muscle 0.096

Bone 0.154

Fig. 1 Effect of the mouth motion in the attenuation of the gamma rays emitted from the brain in
a neurological PET study
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Table 2 Increase in the axial FOV in the different generations of Siemens Biograph PET scanners

Scanner Axial FOV (cm)

True Point [9] 16.2

True Point TV [9] & mCT [1] 21.8

mMR [1] 25.8

way to obtain the AC for PET. The images of CT provide the information of the atten-
uation of X-rays in the different regions of the body, which can be extrapolated to the
attenuation of the 511-keV gamma-rays used in PET [4]. In contrast to CT imaging,
MRI does not provide direct information concerning tissue attenuation properties,
and there is therefore no direct way to obtain the required information for PET AC
purposes. Most of the approaches currently proposed in clinical PET/MR systems
for PET AC are based on the combination of specific MR sequences (ultrashort echo
time (UTE) sequences able to display tissues with very short T2* like bone) [5, 6]
and/or subsequent image segmentation [7].

Motion correction methods in PET-CT imaging have been mainly focused in
respiratory and cardiac motion [8]. To the best of our knowledge, the impact of
the possible motion of the mouth in a neurological PET studies have not yet been
considered. This is mainly caused by the fact that in PET acquisitions performed in
2D-mode [3] or 3D mode with low accepted oblique angle, the attenuation in the
mouth region does not affect the brain region. Nevertheless, this effect can become
a problem if larger axial FOV are going to be used in the future (Table2).

2 Methods

Two MR volumes of the head (one with the mouth completely closed and the
other with the jaw relaxed) were acquired on a General Electric Signa HDxt 3.0T
MR scanner using the body coil for excitation and an 8-channel quadrature brain
coil for reception. Imaging was performed using an isotropic 3D T1-weighted IR
sequence with a TR= 10.024ms, TE= 4.56ms, TI= 600ms, NEX= 1, acquisition
matrix= 288 × 288, resolution = 1 × 1 × 1mm, flip angle = 12. The different
tissues (white matter, gray matter, cerebrospinal fluid, skull, muscle, fat, and skin)
were segmented using the automatic segmentation pipeline proposed in [10]. This
method estimates the skull using a CT multi-atlas and label-fusion based approach
[11]. Figure2 shows both acquisitions and their correspondent tissue segmentations.
Each of the 7 materials in the segmented images was assigned a typical value of
FDG-PET activity concentration and a linear attenuation coefficient (Table1).

As we are mainly interested in the bias introduced by an inaccurate AC and not
in the noise, we generated the acquisition sinograms as a projection of the activity
image (i.e. without any Monte Carlo code), with a Siddon ray-tracer algorithm with
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Fig. 2 MRI volumes of the head with the mouth completely closed and with the jaw relaxed (up)
with their correspondent tissue segmentations. A slight relaxation introduces a notorious change in
the mouth

a gaussian kernel (4mm FWHM) to incorporate the blurring effects in PET (positron
range, non-collinearity, pitch size). Isotropic images were reconstructed with resolu-
tion= 2×2×2mm, FOV= 400 mm, Axial FOV= 258mm.We assigned activities
to the different tissues according to these relative values (GM: 2.7, WM and soft
tissue: 1.0, CSF: 0.0, bone: 0.3) [12].

For the attenuation, we generated a sinogram for each of the two attenuation
maps with the same projection code, in this case without any blurring. The “ideal"
emission sinogram was “attenuated” using the image with the mouth completely
closed and then it was corrected with an erroneous attenuation projection, obtained
from the image with the mouth relaxed. This final sinogram was reconstructed with
the OSEM algorithm (3 iterations 20 subsets) [13] and the differences between the
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images reconstructed with the proper attenuation correction (which corresponds to
the image obtained from the emissions sinogram) were studied.

This effect of an erroneous AC was studied for the mCT and the mMR scanners,
which main properties are shown in Table3 [1].

3 Results

An example of the images reconstructed is shown in Fig. 3(left). In this case it corre-
sponds to the mMR scanner with a correct attenuation correction. The relative error
between the reconstructed image obtained with the incorrect AC respect to the one
with the correct AC for different tissues of interest is shown in Fig. 3(right). The
maximum values in each region are shown.

Table4 shows the maximum relative differences (in %) for the two hybrid modal-
ities, PET/CT and PET/MR.

Table 3 Main parameters of the PET scanners considered in this work

Biograph

mCT scanner (cm) mMR scanner (cm)

Axial FOV 21.8 25.8

Maximum ring difference 49 60

Diameter of the scanner 84.2 65.6

Fig. 3 Example of the reconstructed image (left) and image of relative differences (in %) between
the image reconstructed with the correct and the erroneous AC for the mMR scanner

Table 4 Maximum error in each region of interest for the two PET scanners considered, when an
erroneous AC is used

Biograph

mCT scanner (%) mMR scanner (%)

Cerebellum 4 5

White matter 7 7

Gray matter 16 18
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4 Discussion

As expected, the most significant impact of the use of an erroneous AC occurs in the
region close to the mouth. Nevertheless, the reconstructed PET images are not only
affected in that region. Errors up to 18% are found in some voxels in the cerebellum,
as well as in gray and white matter. This is caused by the propagation of the errors
between regions during the reconstruction. The average error over large regions in
the tissues of interest is around 1% in all cases, but its effect in small local regions
can be significant in some studies. It is clear that these effects will be even more
important when the mouth is moved much more than what it was considered in this
study. Furthermore, the effects will be more important in scanners with larger axial
FOV and acceptance angles, as can be seen comparing our results from the mCT and
the mMR scanners. In these cases, we propose to monitor the mouth motion with
some specific fast MR acquisitions [12, 14, 15] to be able to properly correct them.

5 Conclusions

As PET scanners with larger axial FOV become available, the motion of the mouth
should be considered to avoid possible errors in the quantification of neurological
studies from the attenuation correction. The errors can be significant in a scanner
such as the Biograph mMR.
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Dual Estimation of Activity Maps and Kinetic
Parameters for Dynamic PET Imaging

Jingjia Xu, Huafeng Liu, Pengcheng Shi and Fei Gao

Abstract Due to rapid adoption of dynamic PET, the dual estimations of the activity
maps and kinetic parameters have been attracting a lot of attention. In this paper, we
propose a novel approach to solve this problem by using Dual-Kalman Filter (DKF)
based on state space framework. One Kalman Filter is adopted to reconstruct the
activity maps and the other is to estimate the kinetic parameters, where each filter
uses the estimation results from the other one as initialization, then the two filters
are solved iteratively until convergence. In addition, this approach combines the
compartmental model guided activity map reconstruction and the state space based
kinetic parameter estimation. The simulation experiments are presented by both
utilizing DKF and other methods based on fitting the compartmental model. The
final results show the more robust and accurate performance using proposed method.

Keywords Positron emission tomography · Parameter estimation · Dynamic
reconstruction · Compartmental model · Dual filter

1 Introduction

In nuclear medicine, PET (Positron Emission Tomography) is emerging as one of
the leading modalities in the biomedical research and clinical diagnostic procedure.
Dynamic PET imaging plays a more and more important role in research, which
reveals the dynamic metabolism of specific organs and tissues through imaging the
spatiotemporal distributions of injected radiotracers in vivo. The dynamic changes
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of these spatiotemporal distributions reflect several complex events and can be
represented by compartment models and kinetic parameters [3]. The compartmen-
tal model describes the tracer metabolism and is widely used in the dynamic PET
research. The kinetic parameters are used to quantify the distribution of the radio-
tracer throughout the tissues or the organs.

The estimation methods for activity maps include conventional ExpectationMax-
imization (EM) methods, accelerated Ordered Subset Expectation Maximization
(OSEM), Maximum A Priori (MAP) and state space framework [1]. The estima-
tion of kinetic parameters is more difficult [2, 5, 8]. Generally, the methods include
indirect and direct methods. The indirect methods first reconstruct the activity maps
and then fit the results to specific compartment models. These methods are simple
and easy to implement, because activity reconstruction and kinetic modeling are
performed in two separate steps. However, the noise distribution which should be
spatially variant and object dependent is not modeled in the kinetic analysis, this
will lead to suboptimal results. The direct methods estimate parametric images from
dynamic PET sinograms directly, and theoretically they should be more efficient,
however, the algorithms are often difficult to implement and are limited to the spe-
cific models.

In this paper, we proposed a novel method for dual estimation of activity maps and
kinetic parameters for dynamic PET imaging. Formulating the two estimations by
using DKF based on our state space frameworks which have inherent ability to deal
with noise distribution,we set oneKalmanFilter to reconstruct the activitymaps from
dynamic PET data and the other to estimate the kinetic parameters, where each filter
uses the estimation results from the other one as initialization, then the two filters are
solved iteratively until convergence. The DKF method combines the compartment
model guided activity map reconstruction [7] and state space based kinetic parameter
estimation, and the merits of this iterative estimation yield more robust and accurate
estimation of both activity maps and kinetic parameters. Data sets from computer
simulations are conducted for quantitative analysis and validation.

2 Methodology

2.1 Compartmental Model

In thePET tracer kinetic research, there aremanymodels,such as none-compartmental
model and compartmental model, proposed to describe the process of tracer distribu-
tion in the organs and tissues. Compartmental model is generally utilized to describe
movement of tracer between different physically or chemically distinct state and
compartments. In this paper, a two-tissue compartmental model, widely validated in
many radioligand tracers, is the main algorithm in dynamic PET research. The two-
tissue compartmental model use the the first-order ordinary differential equations to
depicted the exchange of tracer between the compartments illustrate in Fig. 1 and
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Fig. 1 The two-tissue
compartmental model

Eqs. (1–3):
dCFi

dt = k1i CP (t) + k4i CBi (t) − (k2i + k3i )CFi(t)
dCBi

dt = k3i CFi(t) − k4i CBi(t)

CMi(t) = CFi(t) + CBi(t)

(1)

where the CP (t), CFi(t) and CBi(t) represent the tracer concentration in the plasma,
the tracer concentration in the tissues and the metabolites of tracer concentration in
the tissues, respectively. The model depends on the kinetic parameters k1, k2, k3 and
k4, which specify tracer exchange rates between the compartments in the units of
inverse minutes (min−1), and CMi is the total tissue activity.

The other parameter Kr = k1k3/(k2+ k3) is proportional to the regional cerebral
metabolic rate for metabolized tracers and to the uptake of tracer, which is one of
the main parameters used to evaluate the accuracy of our proposed method.

2.2 Compartment Model Guided Activity Map Estimation

The activity map estimation has been specifically interpreted in the [7], which puts
forward the state space representation for the dynamic reconstruction where the
compartmental model is guided as a continuous-time system equation and the image
data is expressed in a measurement equation. The general form of the framework for
the activity map reconstruction for voxel i as follows:

ẋi (t) = ai xi (t) + bi C̃P (t) + ν(t)
Y = DX (t) + e(t)

(2)

where X (t) = {x1(t), x2(t), . . . , xn(t)} describes all the pixels in one frame image,

and each pixel is defined as ẋi (t) =
[ ˙CFi(t)˙CBi(t)

]
, a =

[ −(k2i + k3i ) k4i

k3i −k4i

]
and

b = [
k4i 0

]
; and measurement matrix is D = CTr , where C is the image matrix

and Tr is the transformation matrix with the block diagonal; ν(t) and e(t) are the
process and measurement noise, respectively, which are Gaussian distribution with
zero mean and the covariance matrix of the process and measurement Q and R,
respectively.
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2.3 State Space Formulation of Kinetic Parameter Estimation

State Space Formulation The state equation. As discussed in the previous Sect. 2.1,
the parameters k1, k2, k3 and k4 represent tracer exchange rates between the com-
partments and the values of the parameters are assumed to be barely changed for one
tracer in the same organ or tissue. The form of state equation of parameter estimation
adopted in current study assumes a static, discrete-time linear function as follows:

[
k1 k2 k3 k4

]
(t) =

[
k1 k2 k3 k4

]
(t−1) (3)

Defining Ti = [
k1 k2 k3 k4

]T
i and also introducing a system noise term ν̃(t), the

state equation for all voxels expresses as:

T (t) = T (t − 1) + ν̃(t) (4)

The measurement equation. By applying the compartmental model to all the vox-
els, the measurement equation for any voxel i is governed from the Eqs. (1) and (2)
as: [ ˙CFi (t)˙CBi (t)

]
=

[
CP (t) −CFi(t) −CFi(t) CBi(t)
0 0 CFi(t) −CBi(t)

]
× Ti (5)

With the subscript i denoting different voxel locations, the abovemeasurement equa-
tion can be expressed in a compact notation as:

y(t) = Di · Ti (t) + μ̃(t) (6)

where
y(t) = [

ĊFi(t) ĊBi(t)
]T

Di =
[

CP (t) −CFi(t) −CFi (t) CBi(t)
0 0 CFi(t) −CBi(t)

]
and μ̃(t) is the measurement noise.

Equations (7) and (9) have formed a standard state-space representation for esti-
mating kinetic parameters, in which the parameters serve as static variable state
equation and the reconstruction data convey the discrete sampling in the measure-
ment equation.

Kalman Filter Solution The Kalman Filter (KF) strategy, which has been applied
to solve the state space equations, estimates a process by using a form of feedback
control: the filter estimates the state at some time and then obtains feedback in the
form of measurement. Thus the equations for KF are divided into two groups: the
time update equations and the measurement update equations [6]. The KF has been
proved that can resolve the estimate problem in the state space principles for PET
image reconstruction. KF uses the feedback controlmethod to reach convergence and
obtain the optimal solution, and the detail of this algorithm explains in the [4]. The
specific equations for the time and measurement updates are presented as follows:
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Time-update equations:
x(t) = Ax(t−) + Bμ (7)

P(t) = AP(t−)AT + Q (8)

Measurement-update equations:

x(t) = x(t−) + K (y − Dx(t−)) (9)

P(t) = (I − KD)P(t−) (10)

K = PD(DPD + R)−1 (11)

where the term P(t) denotes the covariance of the estimation error and P(t−) denotes
the covariance of the estimation error of x(t−). K is called the KF gain.

The above solutions are to estimate the state of a discrete-time controlled process
that is governed by a discrete-time linear stochastic difference equation. However,
the process to be estimated is continuous-time sometimes. In this case, the time and
measurement update equations are required to do some transformations [6]:

ẋ = Ax− + Bu (12)

Ṗ = AP− + P−AT + Q (13)

K = PDT R−1 (14)

2.4 Dual Estimation Framework

The first Kalman Filter: the PET data as the observation y(t) and kinetic parameters
as the known variable, a KF estimate the activity map quantity X f , where the f
means the frame of the reconstruction images. In this process, this framework of the
state-space, as Eq. (1), is a continuous-time system, and the compartmental model is
the priori, so that the processing noise covariance matrix Q is very little.

The second Kalman Filter: estimate the kinetic parameters from the sequence of
X f . The set of Eqs. (7) and (8) defines the discrete-time state-space representation
employed to estimate the kinetic parameters k1, k2, k3 and k4.

Hence, the process of DKF algorithm is expressed in Fig. 2. the first KF is to
reconstruct the activity maps using the kinetic parameters as known parameters,
while the other is to estimate the kinetic parameters using the estimation of activity
maps as known parameter. Every iteration using the update activity maps and the
update kinetic parameters as the known condition respectively to optimize the results
until both of the estimations are convergence.



76 J. Xu et al.

Fig. 2 The principle of the
Dual Kalman Filter

3 Experiment and Result

3.1 Experiments with Zubal Phantom

The computer simulation experiments are used to evaluate the accuracy and robust-
ness of the proposed method. Our simulation experiments are based on a Zubal
Phamtom. Figure3a shows a schematic representation of the Zubal Phamtom with
three ROIs selected and a background, indicated ROI 1, 2, 3 respectively. The simu-
lated tracer is 11C-acetate and the phantom is digitized at 96×96 pixels and forward
parallel projection data is calculated at 96×96. Time frames of emission images are
generated using two-tissue compartmental model and the plasma function, CP (t), is
generated using the Feng Input function [1]:

Cacetate
P (t) =

[
1− 0.88

(
1− e

−
(
2ln2
15 t

))]
CFDG

P (t) (15)

CFDG
P (t) = (A1t − A2 − A3)e

−λ1t + A2e−λ2t + e−λ3t (16)

With A1 = 851.1225µCi/mL/min, A2 = 20.8113µCi/mL, A3 = 21.8798
µCi/mL, λ1 = 4.133859min−1, λ2 = 0.01043449min−1, λ3 = 0.1190996min−1.

Fig. 3 The schematic representation of the experiments, a is Zubal Phantom. b is the segmentation
of activity map
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Fig. 4 The estimated activity maps including the 3rd, 7th, 11th, 15th, 20th, 25th time frame

28 frames of dynamic acquisition are performed as 7× 0.2min, 8× 0.5min, 5×
1min, 4× 2min and 4× 5min, total scan time is 40min.

To evaluate the estimation performances, we take quantitative analysis on the
results, by defining the error between the reconstruct result and ground truth as
follow:

bias = 1

Np

Np∑
i=1

|X Ri − XTi |
XTi

(17)

where Np is the total number of pixels, X Ri is the final estimation result of pixel
i , and XTi is the true value of corresponding pixel i . Figure4 shows the estimated
activity maps from the dynamic PET data, at frame 3, 7, 11, 15, 20 and 25, and
the Table1 summarizes the calculated bias value of the reconstructed images from
different time frames. The reconstructed images preserve the image quality at the
same level as the results in [7].

Meanwhile, the parameters estimated are summarized in the Table2. To reduce
the calculation time during the experiment, we segment the activity maps as the
Fig. 3b, and get the average value of the kinetic parameters via calculating the mean
of each ROI.

Comparative study of parameter estimationwas taken between existing techniques
and our proposed method. The technique, we apply in the comparative study, is the
LMWLS estimation algorithm from the COMKAT, which is a software package
for compartmental modeling oriented for biomedical image quantification. It should
be noted that, for fair comparison, in the fitting procedures, the activity maps from
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Table 1 Statistical studies of activity maps

frame3 frame7 frame11

bias 0.0282 0.0235 0.0124

frame15 frame20 frame25

bias 0.0160 0.0155 0.0968

Table 2 The parameters estimation using DKF and the LMWLS, compared with the true value
(TV)

ROI1 k1 k2 k3 k4 Kr

TV 0.6518 0.2276 0.0531 0.0388 0.1252

DKF 0.6484 0.2199 0.0526 0.2111 0.1233

LMWLS 0.8302 0.2705 0.0232 0.0009 0.0656

ROI2 k1 k2 k3 k4 Kr

TV 0.4504 0.2287 0.0725 0.0141 0.1085

DKF 0.4469 0.2172 0.0716 0.0200 0.1108

LMWLS 0.7491 0.3381 0.0044 0.9768 0.0096

ROI3 k1 k2 k3 k4 Kr

TV 0.7307 0.5369 0.1776 0.0143 0.1816

DKF 0.7252 0.5176 0.1672 0.0109 0.1771

LMWLS 0.9616 0.7192 0.1851 0.0789 0.1968

the our estimation framework are used as the input activity curves for the LMWLS
algorithm to estimate the kinetic parameters.

The calculated bias values of the estimated parameters from two methods are
demonstrated in the Table3. Comparing with the variance calculation, it is demon-
strate that the variance calculation has no priority to the bias calculation and at the
same time it is limited by the four pages requirement, so in this paper, we don’t dis-
play the variance calculation. The bias of k1 from our method is about 0.01, but that
from the LMWLS is more than 0.25. At the same time, k2 estimation is 0.05 in our
methodwhile around 0.35 in the LMWLS.Aswe all known, in parameter estimations
of 2 compartment model based problem, k4 is the most difficult one to estimate. By
our method, the bias of k4 is less than 4.4, however, the biggest bias of the LMWLS
reaches 66.515. Consequently, the parameter Kr is also adopted to evaluate the algo-
rithm. To some extent it shows that our method can maintain higher accuracy in dual
estimation of activity maps and kinetic parameters.
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Table 3 Statistical studies of estimated parameters

ROI1 k1 k2 k3 k4 Kr

biasDKF 0.0053 0.0341 0.0096 4.4379 0.0154

biasLMW 0.2735 0.1882 0.5632 0.9768 0.4680

ROI2 k1 k2 k3 k4 Kr

biasDKF 0.0079 0.0503 0.0128 0.4114 0.0212

biasLMW 0.6630 0.4783 0.9393 66.515 0.9115

ROI3 k1 k2 k3 k4 Kr

biasDKF 0.0076 0.0359 0.0583 0.9235 0.0248

biasLMW 0.3159 0.3394 0.0422 4.5375 0.0837

4 Conclusions

Dual estimation of the activitymaps and kinetic parameters for dynamic PET imaging
is presented in this paper. The procedure is realized by DKF, where one KF is to
reconstruct the dynamic images and the other is to estimate the kinetic parameters,
and each one uses the results from the other one as initialization, finally, the two filters
are solved iteratively until convergence.The simulated experiments indicate thatDKF
can estimate the activity maps and kinetic parameters robustly and accurately.
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Time-Activity Curve Based Sinogram
Decomposition for Streak Artifacts
Reduction in Dynamic PET Reconstruction

Xiaoyin Cheng, Jun Liu, Jakob Vogel, Zhen Liu, Nassir Navab,
Sibylle Ziegler and Kuangyu Shi

Abstract This paper developed a novel dynamic PET reconstruction algorithm to
reduce the severe streak artifacts due to the existence of overwhelmingly higher
signals such as bladder than other areas. This is achieved by a clustering of temporal
development into comparable signal levels and decomposition in projection space
accordingly. The results show a significant improvement in quality of reconstructed
images as well as an improvement in quantification comparedwith conventional FBP
reconstruction.

Keywords Streak artifact reduction · FBP · Dynamic PET

FBP is considered to be the reconstruction method with low system bias and is thus
popularly applied in physiological quantification, e.g. kinetic modeling, of dynamic
PET (dPET) [1]. Although there may exist streak artifacts in FBP-reconstructed
images for routine PET with a limited number of projections, these artifacts are
typically far smaller than the normal signal and do not influence the quantitative
analysis—and thus can generally be ignored. However, due to overwhelmingly high
uptake in some organs—a situation often observed in practice—, these artifacts get
amplified, thus suppressing and destroying the normal signal. For instance, the streak
artifacts due to high activity in the bladder hamper the application of FBP in the
abdomen area, and complicate the diagnosis of prostate or cervical cancer [2].

Streak artifacts have been extensively studied in CT, where they are causedmainly
by metallic implants heavily attenuating the X-rays. Efforts have been focused
on either linear/higher-order interpolations between two successive projections [3]
or adding more constraints using modified iterative methods [4]. Although these
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methods generate promising results, their applications inPETare not straightforward,
where acquisitions are measured via lines-of-response (LOR) for each detector pair.
In addition, quantitative analysis with dPET is more sensitive to errors introduced
by improper interpolation or constraints.

This paper proposes a novel method to automatically reduce streak artifacts for
the FBP reconstruction of dPET images by decomposing the measured signal in
the projection space. The feasibility of sinogram decomposition in projection space
based on temporal information has been theoretically investigated in [5]. Concerning
the strong artifacts due to the existence of incomparable signal levels, we developed
a framework to extract the characteristic temporal course, i.e. time-activity curve
(TAC), of each comparable signal level by clustering areas of similar tracer evolu-
tion in image space. The characteristic TACs serve as basis function for sinogram
decomposition in the projection space, which enables the reduction of streak artifacts
in the final reconstruction. The image quality and the quantitative accuracy of the
new method were compared with conventional FBP and show a clear improvement.

1 Methods

The proposed algorithm consists of four steps as sketched in Fig. 1: 1.
pre-reconstruction; 2. separation of TACs of comparable levels; 3. decomposition
in projection space based on the separated characteristic TACs; 4. reconstruction
from decomposed sinograms and reassembling.

1.1 Extraction of Characteristic TACs

Given dPET measurements contain in total L temporal frames. Conventional FBP
is applied on each frame and the vector x′(t) ∈ R

N represents the pre-reconstructed

Fig. 1 The flow chart of the proposed algorithm
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image of N voxels at the tth frame. Investigating the intensity of the ith voxel over
time, x ′

i (t) = [x ′
i (1), x ′

i (2), . . . , x ′
i (L)]T ∈ R

L represents a TAC of length L . The
whole dynamic image set x′ consisting of L images (of N voxels each) can be
also considered as a set of N TACs (of length L). The K-Mean algorithm with
the Euclidean distance as similarity metrics is applied to separate these TACs x ′

i (t)
into K clusters with the mean curve c̄k(t) and variance σk of each cluster k (k =
1, 2, . . . , K , K � N ) with the condition:

σk � σ/K

where σ is the variance of x ′
i (t).

1.2 Decomposition in Projection Space

For 4D dPET, individual temporal courses are associated with spatial regions of
specific physiological properties relating to distinct components in projection space.
With the discrimination of TACs in the temporal domain, sinograms in the projection
space can be distinguished [5].

Given dPET measurements at tth temporal frame in projection space y(t) ∈ R
M ,

where M is the number of LORs. Its relation to the reconstructed image x(t) ∈ R
N

can be written as y(t) = Ax(t). A = (a j,i ) ∈ R
M×N is the system matrix and a j,i

the probability of a photon originating from the ith voxel and being detected by the
jth LOR.

For the dynamic image set, the characteristic TACs of each physiological region
in image space are considered as temporal basis functions, and the sinogram in
projection space can be decomposed into weightings of each basis function. Given a
set of K characteristic TACs c(t) ∈ R

K , each TAC ck(t) = [ck(1), ck(2), . . . , ck(L)]
corresponds to a physiological region, then sinogram y(t) can be expressed as:

y(t) = Bc(t) (1)

where B = (b j,k) ∈ R
M×K and b j,k is the weighting for voxels detected by the jth

LOR and meanwhile possessing the same kth characteristic TAC. Thus the matrix B
contains the decomposed sinograms corresponding to each of the K TACs. To obtain
a stable solution of B from (2), the �2-norm and regularization constant λ are added,
leading to a minimization of the following term:

argmin
B

(‖y − Bc‖2 + λ‖B‖2) (2)

Bik = (
∑

t

yi t cT
kt ) × ((

∑
kt

ckt cT
kt + λ))−1; (3)
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The optimization of B are analytically calculated in Eq.3. The inversion can be
calculated using numerical algorithms such as singular value decomposition (SVD).
The clustered mean curves c̄k(t) in Sect. 1.1 are taken as characteristic TACs here
for sinogram decomposition. Considering the incomparable signals usually appear
after a few minutes when the radioactive tracer has metabolized for a while, the
decomposition starts from the frame l0 when obvious incomparable signals appear
(max(c̄k,l0)/min(c̄k,l0) > α, α is a constant).

The decomposed sinograms are reconstructed individually using FBPwith a ramp
filter. The strong streak artifacts in the reconstructed images can be easily filtered
out using standard algorithms such as clustering. The final images are reassembled
from all the reconstructions of decomposed sinograms.

2 Results

2.1 Numerical Phantom and Simulations

A numerical abdomen phantom was constructed with realistic anatomical structures
including bladder, prostate, rectum, bones, spine, fat and muscle as shown in Fig. 2.
A 18F-FDG dynamic PET for 60 minutes was simulated on this phantom [6], where
the time course (TACs) of each tissue was calculated based on the physiological
parameters taken from literatures. The phantom consists of 256× 256 pixels and 43
frames (frame duration: 1 s–2.5min) according to a real PET protocol. The tracer
was continuously cleaned during the metabolism and accumulated in the bladder,
leading to at least 30 times higher activity concentration than in other tissues in last
20 minutes. Each image slice was forward-projected and binned into a sinogram
(128 bins, 64 projections). Poisson noise was generated in each LOR. In total, the
simulated acquisition consisted of 43 frames and 128 × 64 LORs per frame.

The sinogram acquisitionwas pre-reconstructed into an image series (256×256×
43) using conventional FBP. Here, the activity had two comparable levels (bladder
and regular tissue). TACs of the reconstruction were clustered into two categories
with two mean curves (Fig. 3a). The clustered TACs were taken as the basis function

Fig. 2 a the abdomen phantom; b realistic TACs associated to each tissue; c zoom into the tissue
TACs on low activity level
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Fig. 3 a TACs assigned to tissues (dash) and extracted TACs by clustering (solid); A sinogram
(34th frame) includes: b a normal activity part and c a high activity part

Fig. 4 FBP reconstruction of sinogram with: a normal activity; b high activity. c the segmented
bladder area using cluster

Fig. 5 An example image (34th frame) reconstructed by: a proposed algorithm; b FBP; c ground
truth

for sinogram decomposition. Here α = 20 is taken and leads to decomposition
on frames from 28 to 43. The decomposed sinogram (λ = 270) includes a high
activity concentration part (Fig. 3c) corresponding to the bladder and anormal activity
concentration part (Fig. 3b) to rest tissues.

Decomposed sinograms were reconstructed using conventional FBP (Fig. 4a,
b). The streak artifacts in reconstructed images of the high activity part were fil-
tered out using a clustering algorithm (Fig. 4c). The cleaned bladder image was
added to the reconstruction obtained from the normal intensities, yielding the final
result. Figure5a, b show a comparison of images using the proposed algorithm and
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Fig. 6 K1 image generated by: a proposed algorithm; b FBP; c ground truth

Table 1 RMSE of kinetic parameters and tracer activity concentration

k1 K3 Ki Activity distribution

Projec-
tions

32 64 128 32 64 128 32 64 128 32 64 128

FBP 0.04 0.03 0.03 0.44 0.29 0.14 0.06 0.04 0.04 102.8 63.7 57.8

New
Method

0.022 0.019 0.019 0.069 0.064 0.064 0.01 0.01 0.01 19.24 15.19 14.55

Improve
(%)

43.6 40.6 36.7 84.1 78.2 54.6 90.5 84.2 82.9 81.3 76.2 74.8

conventional FBP. The ramp filter is used avoiding any loss of high frequency infor-
mation [3]. The proposed method achieved a significant reduction of artifacts com-
pared to FBP.

A typical irreversible two-tissue compartmental model is applied on the recon-
structed images to assess the quantitative accuracy of different algorithms (Fig. 6).
The resulting parametric images were compared with the ground truth in terms of
RMSE as shown in Table1 (K1, k3 and Ki = K1k3

k2+k3
are presented.). Note that

the bladder is not applicable for the two-tissue compartment model which is usually
excluded from quantitative analysis. Thus we did not consider the bladder for RMSE.
The quantitative accuracy such as the border of bladder in Fig. 6b is affected by the
severe artifacts of conventional FBP, which is not noticeable for the new method. To
study the influence of the number of projections, data sets with 32 or 128 projections
were also simulated and reconstructed under the same condition for comparison. The
result shows that the reconstruction using the new method has a better quantification
accuracy than FBP that a 37 to 91% improvement is gained.

The reconstructed image quality is assessed by comparing the tracer activity con-
centration in terms of RMSE, which is calculated from the difference between the
reconstructed imageswith the ground truth. On the average of all frames a 77%±3%
improvement is obtained (Table1). The improvement can be further confirmed by
Fig. 7: the RMSEs at frames where the new method was applied (frame 28 to 43) is
significantly lower compared with conventional FBP.
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Fig. 7 RMSE of tracer activity concentration over time between the ground truth and FBP (dash)
or the new method (solid)

Fig. 8 Lambda versus RMSE of image quality

Note that the parameter λ in Eq. (2) is case-dependent. The accuracy of the recon-
struction varies as λ changes (Fig. 8). Nevertheless an optimum can be usually found
within a relatively wide range (220–330) and is almost independent of the number of
projections, thus the selection ofλ does not influence the result significantly.λ = 270
is chosen in this study to optimize the performance of the proposed method at 128
projections.

2.2 Physical Phantom and Real Measurements

To evaluate the algorithm in real measurements, a dynamic PET scan of a physical
phantomwas performedwith a Siemens Inveon PET. The phantom consists of 7 holes
for insertable eppendorf tubes which can be filled with 18F-FDG tracer (Fig. 9a).
The dynamic scan is made up by 35 static scans where tubes with different tracer
concentration were imaged according to realistic TACs. In total, the dynamic scan
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Fig. 9 a Phantom; b Clustering results; The separated sinogram (35th frame) corresponding to the
high (c) and low (d) activity areas; The 35th slice of: e FBP; f proposed algorithm

contains 35 frames: 5 s for 8 frames, 10 s for 2 frames, 30 s for 8 frames, 150s for 12
frames, and 300s for 5 frames. The resulting acquisition consists of 128×160 LORs
and 159 planes per frame. Data are corrected for decay to the starting time point of
the experiment.

The reconstruction of this dynamic acquisition shows a clear improvement in
image quality using the proposed method (α = 20;λ = 270) in comparison with
FBP (Fig. 9b, c). Due to technical problems of this complicated experiment, a small
portion of data is missing and is completed by interpolation. A repeat experiment is
scheduled.

3 Conclusion

This paper proposed a novel dynamic PET reconstruction algorithm to reduce streak
artifacts of FBP while preserving the quantitative accuracy. Tests on realistic numer-
ical simulations show a clear improvement in image quality as well as quantitative
accuracy using the new algorithm. The evaluation on physical phantom further proves
that better images can be achieved with the proposed method. For future work, this
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method will be extended to 3D reconstruction, which has the potential to prompt
dynamic 3D-FBP for practical use. Further evaluation needs to be done on clinical
studies.
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4-D PET-MR with Volumetric Navigators
and Compressed Sensing

Stefano Pedemonte, Ciprian Catana and Koen Van Leemput

Abstract Hybrid PET-MR scanners acquire multi-modal signals simultaneously,
eliminating the requirement of software alignment between the MR and PET imag-
ing data. However, the acquisition of high-resolution MR and PET images requires
long scanning times, therefore movement of the subject during the acquisition deteri-
orates both the PET and theMR images. In this work we have developed an approach
for tightly integrated PET-MR imaging, making use of volumetric MR navigators to
inform, in real-time, both the MR acquisition and the PET reconstruction. The inte-
grated imaging procedure that we describe exploits the simultaneity of MR and PET
in hybrid PET-MR systems, producing inherently-aligned motion-free MR and PET
images. We describe the system setup, the algorithm for motion-corrected recon-
struction, an adaptive sinogram binning algorithm and software design decisions
aimed at integrating tightly the MR and PET subsystems. Application of the inte-
grated motion-corrected acquisition procedure to a phantom study and to a volunteer
subject demonstrates the validity of the approach for a variety of motion patterns.

Keywords Unified PET-MR · 4-D Tomographic reconstruction · Motion aware
imaging

1 Introduction

Hybrid PET-MR scanners acquire multi-modal signals simultaneously, eliminating
the requirement of software alignment between the MR and PET imaging data.
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However, the acquisition of high-resolution MR and PET images requires long scan-
ning times. Movement of the subject during the acquisition determines a deteriora-
tion of both the PET and the MR images. In the context of neuro-imaging, recent
advancements of MR technology have seen the development of prospective motion
correction algorithms [1, 2] based on the insertion, in the MR sequences, of navi-
gators designed to acquire information about the position of the head. In this work
we have developed an approach for tightly integrated PET-MR imaging, making use
of navigators to inform both the MR acquisition and the PET reconstruction. The
integrated imaging procedure that we describe exploits the simultaneity of PET and
MR, producing inherently-aligned motion-free PET and MR images. The method-
ology that we describe is based on a spatio-temporal model of PET imaging that
enables the inclusion of sparsity constraints. We describe a reconstruction algorithm
based on the Alternating Direction Method of Multipliers that enables the use of
the non-smooth sparsity prior while incorporating efficiently the information from
multiple time frames.

2 Method

2.1 Volumetric Navigators

High resolution tissue contrast images are acquired with theMEMPRAGE sequence,
widely employed for morphometry studies. In order to acquire motion information,
sampling of k-space is interleaved with the acquisition, during the dead time of
each repetition (TR) of a volumetric navigator (vNav) [2]. The vNav consists of a
323 isotropic volume 3D-encoded with EPI, requiring 275ms to acquire. Motion
estimation is performed using the PACE [3] library to register each vNav’s image
to the reference vNav acquired in the first TR. Due to the low resolution of the
vNav image, this is performed reliably in under 100ms on current scanner hardware
(Siemens Biograph mMR). The direction of the MR gradient for the acquisition of
each new slice of k-space for the MEMPRAGE sequence is adjusted in real-time
according to the pose estimate provided by the vNav, effectively acquiring all of
k-space in the moving frame attached to the head of the subject.

2.2 Compressive Model-Based Motion Correction

The PET list-mode data is binned into Nt sinograms qt
d , with t = 1, 2, . . . , Nt

indexing the time frames and d indexing the lines-of-response (LOR) of the scanner.
Let pvd be the probability that a decay event at location Xv within the imaging
volume of the scanner is detected in LOR d; let Lt be the [4 × 4] transformation
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matrix that maps the coordinate system attached to the head of the patient to the
coordinate system of the PET scanner and let L̃ t be the corresponding [Nv × Nv]
resampling operator, with Nv voxels of the imaging volume. The model is framed in
the probabilistic setting. In order to account for motion, in this first formulation, we
introduce the assumption that the activity in the coordinate system attached to the
head of the patient is constant: λ = λ1, . . . ,λv, . . . ,λNv . Under this assumption,
the conditional probability distribution associated to the number of counts in LOR d
at time t is given by:

p(qt
d |λ, L̃ t ) = P

(∑
v

pvd [L̃ tλ]v; qt
d

)
(1)

We assume a sparsifying L1-norm prior probability distribution for the activity:

p(λ) ∝ e−β‖λ‖1 (2)

2.3 Alternating Direction Method of Multipliers

The most commonly employed algorithm for PET reconstruction is Maximum Like-
lihood Expectation Maximization—MLEM (and its variant OSEM). Compared to
other optimization algorithms, MLEM has the advantage of not requiring the selec-
tion of the step size, providing a simple and reliable solution. However MLEM is
only applicable to the unconstrained reconstruction (see e.g. [4]). Although approx-
imations of MLEM have been devised to include differentiable constraints, there
use of a non-differentiable prior such as the sparsity prior (2) poses an additional
challenge. Here, in order to include the sparsity prior, we adopt a data-augmentation
method, the Alternating Direction Method of Multipliers (ADMM). As discussed in
the review of ADMMpresented in [5], in order to derive the ADMMupdate formula,
for the maximum probability problem, we reformulate the problem as a constrained
linear program with equality constraints:

λ̂ = argmin−
∑

t

log p(qt
d |λt , L̃ t ) − log p(λ) (3)

subject to λt = λ, for each t (4)

The point is that the variables λi must ultimately equal each other, but they can tem-
porarily be unequal while they separately try to satisfy different cost functions. This
optimization problemcorresponds to themaximizationof the augmentedLagrangian:
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L(λ,λ1, . . . ,λt , u1, . . . , ut ) = −
∑

t

log p(qt
d |λt , L̃ t ) − log p(λ)+ (5)

+
∑

t

uT
t (λ − λt ) + ρ

2

∑
t

‖λ − λt‖22, (6)

where ut are the Lagrange multipliers and ρ
2

∑
t ‖λ−λt‖22 is the augmentation term.

Minimization of the augmented Lagrangian with dual descent yields the ADMM
algorithm [5]:

λn+1
t := argmin

v
− log p(qt

d |v, L̃ t ) + ρ

2
‖v + un

t − λn‖22 (7)

λn+1 := S ρ
β

(
1

Nt

∑
t

λn+1
t + 1

ρN

∑
t

un
t

)
(8)

un+1
t := un

t + λn+1
t − λn+1, (9)

where S ρ
β
is the soft-thresholding operator (see [5]). For the update ofλn+1

t we adopt

a single iteration of OSEM with warm start (i.e. initializing v at λn
t ) and with the

One Step Late approximation proposed by Green [4]. In order to account for scatter
and randoms, we adopt the Ordinary Poisson version, obtaining:

λn+1
t,v = λn

t,v[L̃ t ]T

⎡
⎢⎢⎣ 1∑

d∈Dt

pvd − ρ(λn
t + un

t − λn)

∑
d∈Dt

pvdqt
d∑

v′
pv′d [L̃ tλ]v′ + r t

d + st
d

⎤
⎥⎥⎦,

whereDt are time-dependent subsets of the LORs of the scanner. In the experiments
that follow, time-dependent randoms rates r t

d are estimated from single crystal event
rates obtained by instantiating singles sinograms for each time frame; the scatter
estimates st

d are obtained by weighting, by the duration of the time frames, the
scatter estimate obtainedby single scatter simulation (SSS) [6] basedon the static, non
motion-corrected, reconstruction. The estimate of the attenuationmap is derived from
a radial-VIBEMR image acquired right before the first TR of the vNavMEMPRAGE
sequence. As dictated by the model, projections and back-projections account for
the attenuation by transforming the attenuation map by L̃ t at each time frame.

2.4 Extraction of the Motion Events

In order to optimize the computing resources, binning of the list-mode data into the
4-D sinogram qt

d is performed adaptively. Let us index with t ′ = 1, 2, . . . the MR

repetitions and denote by Mt ′ the [4× 4] transformation matrix that maps the vNav
at time t ′ to the first vNav. After each vNav acquisition and registration, at time t ′, the
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binning algorithm decides whether amotion event has occurred by setting a threshold
on the extent of motion since the previous motion event t ′∗ (starting with t ′∗ = 1).
As the measure of the extent of motion, we employ the mean voxel displacement in
the imaging volume:

wt ′ = 1

Nv

Nv∑
v=1

‖Mt ′∗ Xv − Mt ′ Xv‖ (10)

Each time a motion event is detected, the PET time frame index t is increased; a new
sinogram is instantiated and Lt is set to Lt = Mt ′ MMR→PET, where the calibration
matrix MMR→PET is computed initially according to the MR acquisition settings,
the geometry of the system and the position of the bed of the scanner. In the current
implementation, interaction events acquired during the period TR preceding each
motion event are discarded.

2.5 Software Framework for 4-D Reconstruction

A considerable software design effort was necessary in order to implement the
4-D reconstruction algorithm that processes the list-mode data, synchronizing the
MR and PET subsystems. Projection and back-projection algorithms based on ray-
tracing have been designed with the aim of computing, without overhead, the spatial
transformations required by the algorithm of Eq. (10). The projection and back-
projection algorithms operate directly on compressed 4-D sinograms designed to
enable storage of the full sequence on the memory of a single Graphics Processing
Unit (GPU).

3 Experiments

Experiments were performed on a Siemens scanner Biograph mMR. TR was set to
2.5 s and the threshold of wt ′ was set to 0.5mm.

Phantom study—Apineapple with attached a helicoidal capillary filled with 1.5 mCi
of FDG was scanned for 400s. The phantom was translated periodically by 12mm
along the axis of the scanner every 40s. Figure1a reports the motion estimates.
Figure1b-g display the reconstructions with and without motion correction and with
and without sparsity constraint (sparsity parameter β = 0.1).

Healthy volunteer—Ahealthy volunteer was scanned for 400s, 20min post injection
of 4.7 mCi of FDG. Figure2 reports the motion estimates, the extent of motion, the
motion events, and the unconstrained reconstructions without motion correction and
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Fig. 1 Pineapple with helicoidal FDG capillary source. a Estimated motion profiles (tanslation
along the axis of the scanner Z and rotation around Z). Each gray box corresponds to a sinogram.
b–d Volume renderings of the PET reconstructions without motion correction (b), with motion
correction (c), with motion correction and sparsity (d). e–g Representative slice of fused MR and
PET images without motion correction (e), with motion correction (f), with motion correction and
sparsity constraint (g)

the constrained motion corrected reconstruction. The subject was scanned again for
400s after insertion of a 3cm-thick latex pillow. Note that in case of continuous
motion, as displayed in Fig. 3, the algorithm of paragraph 2.4 adapts the duration of
the sinograms according to the rate of change of the extent of motion. Note, in Figs. 2
and 3, that the binning algorithm generated, in both experiments, 11 time frames.
The reconstruction time, which scales linearly with the number of time frames, was
14min.

http://dx.doi.org/10.1007/978-3-319-18431-9_2
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Fig. 2 Healthy volunteer. a Estimatedmotion profiles and extent of motionwt ′ . b, c Representative
slices of the fused MR and PET images without motion correction (b) and with motion correction
and sparsity constraint (c)



100 S. Pedemonte et al.

Fig. 3 Healthy volunteer on 3cm-thick latex pillow. The adaptive binning algorithm produces
sinograms with longer duration (gray boxes) when the pillow is fully compressed

4 Conclusion

We have developed an integrated approach to PET-MR that enables the reconstruc-
tion of motion-free PET and MR images in the same frame of reference. The
model-based approach for PET reconstruction that we have described enables us
to account for attenuation, randoms and scatter, while integrating motion infor-
mation. The event-based methodology based on a relative measure of extent of
motion enables the correction of large motion events and of slow drifts, adapting the
demand of computing resources to the motion patterns. The optimization algorithm,
based on the Alternating Direction Method of Multipliers, enables the inclusion of
a sparsity constraint, which improves image quality. The GPU accelerated software
implementation (http://niftyrec.scienceontheweb.net) enables reconstruction times
comparable to static reconstruction. In future work we will explore the inclusion of

http://niftyrec.scienceontheweb.net
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pharmacokinetics in the imaging model, the acquisition of multiple MR sequences
with embedded volumetric navigators and non-rigid motion.
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Robust Feature Selection to Predict Lung
Tumor Recurrence

Hongmei Mi, Caroline Petitjean, Pierre Vera and Su Ruan

Abstract The recurrence of cancer increases the risk of death. The ability to predict
such recurrence could be beneficial to planning treatment. We aim to find a predictive
feature subset from a series of spatiotemporal PET image characteristics, including
SUV-based and texture features, in order to predict lung tumor recurrence one year
after treatment. To overcome the small sample size, class imbalance problem, we
propose a hierarchical forward selection algorithm to select the smallest feature
subset that results in the best prediction performance. As the SUV-based features
have been recognized as significant predictive factors for a patient’s outcome, we
propose incorporating this prior knowledge into the selection procedure to improve
its robustness and accelerate its convergence. By fixing the first feature as one SUV
parameter, the proposed hierarchical forward selection yields a small robust feature
subset with promising prediction performance.

Keywords Hierarchical forward selection · Robustness · Prior knowledge · Tumor
recurrence prediction · Small sample · PET

1 Introduction

A proportion of lung cancer patients, even when treated with curative intent, develop
post-treatment recurrence, which increases the risk of death. The ability to pre-
dict such recurrence prior to or even during the treatment could be of clinical
value with regard to determining a treatment strategy. Imaging can play a cru-
cial role as it allows for a non-invasive following up the tumor. Indeed, functional
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information gathered by positron emission tomography (PET) using the radiotracer
FDG has already shown its predictive value for tumor response to treatment in sev-
eral cancers, including esophageal [10], lung [7], and cervix [8]. The well-explored
FDG-PET imaging features include, but are not limited to, metabolic tumor volume
(MTV), total lesion glycolysis (TLG), as functional indices describing metabolic
tumor burden, and standardized uptake values (SUVs) describing FDG uptake within
a region of interest (ROI), e.g. SUVmean, SUVpeak, or single pixel (SUVmax) [8,
10]. Characterization of PET images through analysis of texture [3, 11], tumor shape
[3], and intensity volume histogram [3] may also have potential predictive value for
treatment outcome, providing additional and complementary indices. However, there
is no clear consensus regarding the optimum predictive factors. This study therefore
aims at finding predictive PET image characteristics that accurately anticipate the
lung tumor recurrence through feature selection techniques. It is indeed of practical
importance to make a prognosis based on a small subset of features. Furthermore,
our dataset, as often in the medical domain, is small and imbalanced: there are more
recurrence cases than non-recurrence ones, for a total of a few dozen of samples.

Several feature selection algorithms have been proposed to overcome the small
sample problem. Authors in [2] propose a feature ranking method called FAST
(Feature Assessment by Sliding Thresholds) based on the area under the receiver
operating characteristic which is generated by sliding threshold value in one dimen-
sional feature space. However, univariate ranking methods like FAST overlook the
interaction between features. Guyon and Elisseeff [4] have pointed out that features
which are irrelevant on their own can be useful in conjunction with other features,
and the combination of two highly correlated features can be more useful than either
feature independently. Feature subset selection methods evaluate subsets of features
together, as opposed to ranking features according to their individual discrimination
power. Feature selection with kernel class separability (KCS) ranks feature subsets
according to their class separability. KCS is claimed robust to small size samples
and to the presence of noisy features [12]. However, as for other feature ranking
methods, a threshold value or a number of features should be specified by users to
obtain the final subset. Enlightened by the outstanding generalization performance of
Support Vector Machines (SVM), Guyon et al. propose a method using SVM based
on Recursive Feature Elimination, named SVMRFE [5]. Starting with the whole
feature space, SVMRFE progressively eliminates the least promising one(s) whose
removal minimizes the variations of feature weights, until a user-defined number
of features remains, which yields nested feature subsets. SVMRFE still retains the
risk of removing useful features as complementary to others. In addition to a good
accuracy, robustness of feature selection is a desirable property. Robustness can be
viewed as the property of an algorithm to produce a consistent feature subset under
varying conditions such as perturbations of training data [13]. It is particularly dif-
ficult for a feature selection algorithm to obtain a robust feature subset dealing with
small data sets.

In this paper, we are interested in selecting a minimum subset of features, thus we
consider the forward selection for its good performance when the optimal subset is
small. In such a search strategy, features are progressively incorporated into larger
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and larger subsets until a certain criterion is satisfied. Forward selections thus produce
nested feature subsets. To improve the probability of obtaining the most discriminant
feature subset, we propose a feature selection algorithm that hierarchically forward
searches for the smallest subset that produces the best prediction. The second point
of our paper deals with prior information, which is often available in the medical field
(e.g. organ shape, patient characteristics, ...). With respect to predictive factors for
patient’s outcome, many researches have shown that SUV-based features are of great
significance [7, 8, 10]. The idea is that this prior knowledge should be incorporated
into the feature selection procedure. We thus propose to incorporate this knowledge
to the hierarchical forward selection, by fixing the first one feature as one of the
SUV-based features, to obtain a robust feature subset more efficiently.

2 Methods

2.1 Feature Extraction

To follow up the tumor response to treatment, several PET scans, including base-
line (PET0) and two following-ups (PET1−2) are performed. As seen in Fig. 1, PET
uptake longitudinal distributions show great intra- and inter- class variability, which
is challenging. The same ROI (semiautomatically delineated) is used on three scans.
Five SUV-based features are extracted on each PET: SUVmax, SUVmean, SUV-
peak (mean value inside 3×3×3 neighborhood of SUVmax), MTV (defined by a
thresholding of 40 % of SUVmax on PET0), TLG (SUVmean × MTV). Comple-
mentary to these SUV-based features, texture analysis allows us to explore spatial
uptake heterogeneity information. We use gray level size zone matrices (GLSZM)
[11], which have shown good properties on PET image characterization, from which
eight regional heterogeneity parameters can be computed (please see [11] for more
details).

Considering that the longitudinal change of image characteristics may provide
predictive value, we calculate temporal changes between baseline and follow-ups
features. Let Y denote the final spatiotemporal feature set, of length d = 52. Features
are rescaled to the range of [0,1] to make them comparable.

2.2 Hierarchical Forward Selection (HFS)

In the following, we describe the measure to evaluate the “goodness” J (S) of a feature
subset S, and the search strategy for our HFS wrapper feature selection algorithm.
For the evaluation measure, we use the leave-one-out (LOO) gmean [6]:

gmean = √
sensitivity × specificity, (1)
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Fig. 1 Illustration of PET scans at baseline and following-ups for three patients with (top two rows)
and without (bottom row) recurrence, shown with the same color scale

which is an accuracy measure balancing the classification between imbalanced
classes. Under the small sample size assumption, the classification accuracy exhibits
only a few possible values. While the subset feature space can easily be of the order of
thousands (2d −1), there is a high probability that some feature subsets will produce
the same classification accuracy, making it difficult to distinguish different feature
subsets. To improve the possibility of finding the best feature subset, we propose to
search the feature subsets hierarchically in an iterative manner.

In the kth iteration, denote Fk the set of the current candidate solutions, whose
elements are feature subsets of the original feature set Y , and of the same size k.
Define the operation A(X, T ) = {X ∪ {e}|∀e : e ∈ T }, which returns the set with
each element of set T added to the set X . Denote J the gmean based evaluation
function. Starting with the initial candidate solution F0 = {∅} and lowerbound value
J l

0 and upperbound final value J u , k = 0,

1. Generate successors Gk+1 of Fk : Gk+1 = {A(E,Y\E)|∀E : E ∈ Fk}.
2. Select the feature subset E in Gk+1 that outperforms the best feature subset of

the preceding k th iteration, i.e. Fk+1 = {E ∈ Gk+1|∀E : J (E) > J l
k}.

3. If Fk+1 = ∅, then go to 6; else go to 4.
4. Update:

a. k = k + 1;
b. J l

k = maxE∈Fk J (E).

5. If J l
k ≥ J u ∨ Jk = 100 %, then go to 6; else go to 1.

6. Stop and return Fk .
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Fig. 2 An example of hierarchical forward selection from an original feature set Y =
{x1, x2, x3, x4} of length 4. Feature subsets are input into the selector ➊, and those yielding better
LOOCV accuracy than preceding iteration are retained. As a result, the size of subsets of features
obtained progressively increases and the accuracy of the retained subsets increases as well. The
forward search stops when the accuracy stops increasing, i.e., at the 3rd iteration in this example.
More than one subset of features are retained in F2. A unique subset of features is then selected by
selector ➋, where the extremal margin is the selection criterion

Figure 2 illustrates the proposed HFS algorithm via an example, from where we
can see that the structure of iterative candidate solutions is hierarchical. In fact,
sequential forward selection can be considered as a special case of our HFS method:
linear hierarchy, in which the maximum branching degree of any item is 1. While
items in ours can have a branching degree of 1, 2 or more, so that the possibility of
finding the optimal solution is greater.

We define the stopping criterion as follows (step 5): the value of J does not
increase from one iteration to another, or it surpassed a prefixed upperbound value
J u , or it achieves 100 %. As several feature subsets may provide the same J value
at the final iteration, we propose an auxiliary criterion to produce a unique solution
when the stopping criterion is met, based on the output extremal margin (EM) of the
SVM classifier:

EM = min
i∈1,··· ,s D f (xi ) · yi (2)

where D f is the decision function, x are support vectors, and y corresponding labels.
It is the minimum distance between the outputs of support vectors and decision
surface. Notice that an extremal margin may be computed on each LOO training set.
A mean value may then be used as the final criterion.
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2.2.1 Prior Knowledge

As the SUV-based features are known for their significant values to predict patient’s
treatment outcome [7, 8, 10], we propose incorporating this prior knowledge into the
feature selection algorithm to improve the robustness. Among the 20 temporal SUV-
based features, the feature with the maximum distance of sample mean of two classes
is fixed as the first one feature, denoted by f(1), in the feature selection algorithm.
This prior-based version of hierarchical forward selection (pHFS) starts thus from
an initial solution F1 = { f(1)} and J l

1 = J ( f(1)).

3 Experimental Results

In the following, we assess our HFS algorithm on a real-world data set, as well
its prior-based version pHFS, and compare it to state-of-the-art feature selection
techniques.

3.1 Data

Twenty-five patients with stage II–III non small cell lung cancer treated with cura-
tive intent chemo-radiotherapy are considered in this study. The patients are treated
with chemotherapy, then radiotherapy (of total dose at 60–70 Gy delivered in daily
fractions of 2 Gy, 5 days a week) with possible concomitant chemotherapy. Baseline
and following-up FDG-PETs at different time points are performed: PET1 before the
treatment, PET2 after chemotherapy, and PET3 during radiotherapy at about 45 Gy
dose radiation. The images are 4.06 mm × 4.06 mm pixel size and 2 mm slice spac-
ing. Each patient’s following-up scans are manually registered to the baseline scan,
with nearest-neighbor interpolation. For longitudinal analysis, all PET scans are con-
verted into SUV which is a standardized decay-corrected value of FDG activity per
unit volume of body weight (MBq/kg). Our definition of recurrence at one year after
the treatment is primarily clinical, based on the evaluation by the clinician, with
biopsy and PET/CT. Local or distant recurrence is diagnosed on 19 patients, and no
recurrence is reported on the remaining 6 patients (Fig. 1).

3.2 Results

The numerical experiments are implemented using Matlab 7.8, whose embedded
SVM package is used for training and classification. In the feature selection process,
gaussian kernel SVM with sigma = 1 and C = 1 (the box constraint value for the soft
margin) is chosen empirically as the classifier. For the data base under investigation,
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Table 1 Prediction accuracy (%) of different methods using leave-one-out cross-validation

Methods Sensitivity Specificity Gmean Accuracy

No selection 100 0 0 76

FAST 74 83 78 76

KCS 84 100 92 88

SVMRFE 95 83 89 92

HFS 100 100 100 100

the lowerbound initial value J l
0 is set to 80 %, and the upperbound final value J u for

the stopping criterion is set to 100 %. The proposed HFS is compared to three other
feature selection techniques, including FAST [2], KCS [12] and SVMRFE [5] (using
the toolbox released by [1]). For these three methods, the user has to fix a cutoff
value either on ranking scores or subset size to get the final subset. In our case, the
cutoff values are found through a rough grid search. Experiments with all features
are also carried out as baseline results.

3.2.1 Prediction Performance

The predictive value of a feature subset can be evaluated through its classification
performance on test data. Because of the small sample size, we use LOO cross-
validation to evaluate the prediction performance. The same classifier as in feature
selection process is then used to compute the prediction performance on the unseen
patient. The metrics include sensitivity, specificity, gmean, and accuracy, in which
recurrence is labeled positive and non-recurrence negative. The prediction results of
the proposed HFS, as well as the best performance of the other three, are reported in
Table 1. The poor results produced with all features make it very clear that feature
selection is necessary. Without any selection, a classifier tends to classify all sam-
ples into the majority class. The proposed HFS produces promising results: 100 %
of sensitivity and specificity. KCS yields 100 % specificity, while 84 % sensitivity.
SVMRFE achieves 95 % sensitivity; however, the sensitivity is only 83 %.

3.2.2 Prior Knowledge and Robustness

To investigate the role that prior knowledge can play, we carry out experiments
in which the prior knowledge is incorporated into HFS, and the other three feature
selection methods. It turns out that, among all, prior-based version of HFS (pHFS) and
SVMRFE (pSVMRFE) benefit the most from this prior knowledge. This benefit can
be well measured in terms of robustness. The robustness is measured using the relative
weighted consistency from [9]. It allows the comparison of different sized subsets,
based on feature occurrence (frequency) statistics, originating from the different folds
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Fig. 3 Normalized frequencies of each feature after LOO feature selection (left) and robustness
and subset sizes for HFS and SVMRFE with and without prior knowledge (right). The robustness
is improved for both methods when prior knowledge is incorporated

of the LOO. Its values range from 0 to 100 %, with 0 % indicating empty intersection
between all subsets and 100 % indicating that all subsets are identical. pHFS not
only predicts accurately with 100 %, also the robustness is improved, moving from
89 to 100 %. For pSVMRFE, the specificity improves from 83 to 100 %, and the
robustness from 56 to 92 %. Figure 3 shows the frequency statistics, which reveals
the improvement of robustness. It is of great interest that the optimal feature subsets
for pHFS and pSVMRFE correspond very well.

3.2.3 Selected Features

The first fixed feature, as the prior knowledge, turns out to be the SUVmax extracted
from PET2 during radiotherapy (#8 in Fig. 3). This SUV parameter is widely used
in clinic, where doctors usually apply a threshold based on this value, to help them
make the decision. However, this only parameter is not sufficient, given that it yields
84 % sensitivity and 83 % specificity as prediction results on our data set. It is thus
necessary to find other features combined with SUVmax so as to better predict tumor
recurrence. Our method selects two other features based on GLSZM. The feature
indexed as #43 is the temporal change between PET2 and PET0 of gray-level-non-
uniformity, which is used to calculate the variability of gray level homogenous zones.
The other texture feature indexed as #50 is the temporal change between PET1 and
PET0 of zone-percentage, which is the ratio of the number of homogeneous zones
to overall ROI size. These parameters corresponding to variability in the intensity or
size of homogeneous areas, combined with SUVmax on PET2, show good potential
for differentiating patients in terms of tumor recurrence. Doctors who provided us
with the dataset have confirmed the results.
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3.2.4 Computational Cost

The average computational times on one LOO training set, for FAST, KCS, SVM-
RFE, HFS are all in the order of one minute, on an Intel i5 PC (3.3 GHz CPU, 8 GB
RAM). More precisely, the computational cost for HFS has been empirically com-
pared to that of the exhaustive search. Three features are selected by our methods.
Compared to exhaustive search in feature subset spaces of size 1–3, i.e.

∑3
k=1

(d
k

)
,

HFS searches only in a subspace of 4.1 %, and pHFS 2.5 %. pHFS accelerates the
convergence of the process.

4 Conclusion

In this paper, we aim to find the minimum features for tumor recurrence prediction.
We propose a hierarchical forward selection based on SVM, which selects the small-
est subset with the best prediction performance. We also propose to incorporate prior
knowledge into feature selection algorithms to improve the robustness. We will next
include a larger data set to further investigate our method.
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Region-Based Data-Driven Intensity
Normalization for Group Comparison
of Functional Brain Images

Zhiyong Xie, Aijun Zhu, Laigao Chen and Timothy McCarthy

Abstract Intensity normalization is widely used to remove the confounding effect
of global change exhibited in PET or SPECT brain images such that the local activity
can be detected. Improper estimate of global change may induce a biased normal-
ization. To separate the global change from local measurements, an iterative method
is proposed to identify reference regions that are not affected by the local activity.
From more than one hundred predefined anatomical regions, the reference regions
are selected based on their intensity similarity between two groups. Weighted least
squares regression is used to compute linear intensity transformations to align inten-
sities of corresponding reference regions across all subjects. Studies with simulated
data demonstrated that the proposed method performed better in recovering real
intensity change comparing with global mean normalization and with Andersson’s
data-driven method.

Keywords Brain imaging · Glucose metabolism · Intensity normalization · PET ·
SPECT

1 Introduction

Positron emission tomography (PET) and single photon emission computed tomog-
raphy (SPECT) has been used to assess cerebral blood flow or metabolic activity
at voxel level. With images acquired at different experimental conditions, statistical
comparison can be performed between groups to discover their functional difference
voxel-wisely or over a region of interest [1, 5, 9]. In a PET or SPECT image, the
functional activity measured at each voxel is the confounding effect of a local activity
and a global change. The global change is regional independent and always exhibits
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large inter- and intra-subject variation. To localize and quantify the regional activity,
the global change needs to be removed to increase the statistical power of the group
comparison. The global change can be estimated based on a predefined reference
region which is assumed to have no local activity [4, 13]. However, selecting an
appropriate reference region is very challenging in some studies. Using different
brain regions may lead to different or even conflicting results [10, 12].

Besides the reference-based estimation, the average of all intracerebral voxels
may be used as a measurement of the global change. In the widely used global
mean normalization (GMN), the global effect is eliminated by dividing the local
measurements by the whole-brain average [8]. This method works well in studies
where a few small regions are activated by a task or cognitive challenge. In these kinds
of studies, the magnitude of the activation is moderate and the whole-brain average
is not affected by the local change. In studies with a pharmacological challenge
however, a relatively large region may be activated and the local change may alter
thewhole-brain average. In this case, the GMNproportionally reduces themagnitude
of the true activation and induces a bias in the opposite direction, thus decreasing the
sensitivity and specificity in detecting the real functional change.

To address this issue, Andersson proposed an iterative method to identify voxels
that are not affected by local activity and normalize images with the average inten-
sity of identified voxels [2]. The method uses the GMN as an initial step. Then a
voxel-wise comparison is performed between groups and all voxels with p > 0.05
are used to normalize the image. This procedure is repeated until there is no further
change in the global estimate. Th Andersson method reduced the biased global esti-
mate comparing to the GMN.However, in a studywith a large inter-subject variation,
voxels with moderate activation may be included in the global estimate due to the
initial step of GMN and the insufficient criterion of p > 0.05. If the region with
moderate activity is large enough, it will change the global estimate thus leads to a
biased normalization in the similar way as the GMN. Such issue had been observed
in a comparative study performed by Borghammer et al. [3]. Yakushev et al. pro-
posed a non-iterative two-step method where the global change was estimated by
only including “hypermetabolic” voxels [3]. This method only works for studies
where the intensities of all activated regions change in a same pre-known direction.
Moreover, the result of this method is very sensitive to the selection of the threshold
of “hypermetabolic” voxels. Global change can be easily over or under estimated if
the threshold is inappropriate [3].

In this paper, an automated region-based method is proposed by improving upon
several drawbacks of the Andersson method: first, the proposed method removes the
initial step of the GMN. Second, anatomical regions instead of individual voxels
are identified for intensity normalization. Third, both p-value and percentage dif-
ference are used in indentifying the reference regions. Forth, the proposed method
employs linear model to align the intensities of corresponding regions rather than
using ratio only. Finally, linear transformations are computed using weighted least
squares regression where the contribution of each identified region is determined
based on its size and the intensity similarity between groups. To compare the pro-
posed method with the GMN and the Andersson method, FDG-PET images from
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normal rats were divided into two groups. Artificial intensity change was added in
one group of images while the other group was used as the control. All images
were normalized using three methods to test their capabilities of recovering the real
intensity change in statistical comparisons.

2 Materials and Methods

2.1 Image Acquisition and Data Simulation

Twenty two male Sprague-Dawley rats were scanned using a Focus-220 PET scan-
ner (Siemens Medical Solutions). Images were reconstructed into a 128× 128× 95
volumewith in-plane resolution of 0.6mm and slice thickness of 0.8mmwith correc-
tions for detector normalization, decay, attenuation, and scatter. The SUV (Standard
Uptake Value) of FDG uptake was calculated and used for group comparison. All
animal usage and experimental procedures were reviewed and approved by local
Animal Usage Committee (IACUC).

All SUV images were evenly assigned into two groups so that the difference of
their whole-brain average between groups was minimized (the difference was less
than 1% with p-value of 0.89 in a two tailed t-test). One group was used as control
while images of another group were multiplied with a predefined scale image. In the
first simulation, the SUV was increased by up to twenty percent in cortical regions.
Figure1 shows a representative slice of the scale image overlaid on a MRI template.

Fig. 1 A representative slice
of the predefined scale
image. The color bar
represents the scale of
intensity increase. The scale
image is served as the
ground truth in the
evaluation of different
normalization methods
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After the data manipulation, the whole-brain average of the manipulated group was
3.93% higher than the control group (p = 0.27 in a two tailed t-test).

In the second simulation study, SUV in cerebellum was increased 7% in the
manipulated group besides the SUV increase in cortical regions. This simulation
was designed to assess the performance of different intensity normalization methods
when there was a moderate signal change in a relatively large region. With the data
manipulation, the difference of the whole-brain average between the two groups was
4.59% with p-value of 0.21 in a two tailed t-test.

2.2 Normalization Method

All images were spatially aligned to a template on which more than one hundred
anatomical regions had been delineated. The mean image G was computed by aver-
aging all aligned images. Denotes the mean intensity of ith region on the G as Gi .
The proposed algorithm is summarized as follows:

1. At every voxel of the brain, compute the absolute percentage difference between
the two groups. The median percentage difference (denotes as �) is used as the
threshold of percentage difference in step 3b.

2. For each anatomical region i = 1:m,

a. Compute the mean intensity Fij for each image j = 1:n,
b. Compare the intensity difference between the two groups.
c. Get p-value and percentage difference of intensity between groups.

3. The unaffected regions (denotes as �) are selected based on following criteria,

a. The p-value of the region is greater than 0.1.
b. The percentage difference of the regional intensity is less than the � defined

in step 1.

4. For j th image Fj ,

a. Compute α j and β j by minimizing

∑
i∈�

wi (α j + β j Fij − Gi )
2

Where the wi = si∗pi are weights defined by the size (si) and p-value (pi) of
the i th region.

b. Update the intensity of image Fj by Fj = α j + β j Fj .

5. Repeat step 1 to step 4 until |β j − 1| < 0.01 and |α j | < θ j for all images. θ j is
defined as one percent of the whole-brain average.
For simplicity, this method is refered as ReDIN (Region-based Data-driven
Intensity Normalization) in the rest of the paper.
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2.3 Image Analysis

After being aligned to the template, the intensities of all SUV images were normal-
ized using the GMN, the Andersson, and the ReDIN separately. Statistical compar-
isons were performed on normalized images to detect the difference between the
two groups at voxel level or over the anatomical region of interest (ROI). The Voxel-
wise comparison was carried out using the software package AFNI (Analysis of
Functional NeuroImages, http://afni.nimh.nih.gov) where two-tailed t-test was per-
formed after all images were smoothed with a Gaussian filter (FWHM = 1.5mm).
The family-wise error rate was controlled to 0.05 when detecting clusters with sig-
nificant metabolic differences.

In ROI analysis, the mean SUV of each ROI was computed on normalized images
and compared between groups. The percentage differences and p-value of corre-
sponding ROI were reported. The percentage differences recovered from different
normalization methods were compared with the real change of the manipulation.

3 Results

3.1 Simulation I Study

The results of voxel-wise analysis is displayed in Fig. 2where the detected clusters are
highlighted by color. The red color represents the SUV increase of the manipulated
group compared to the control group and the blue color shows the SUV decrease.
Color bars indicate the percentage difference. After the GMN, only a part of SUV
increase can be detected and an artificial SUV decrease was found in a large region

Fig. 2 The influence of different normalization methods on voxel-wise comparison in simulation I.
The identified clusters were highlighted by colors that represented the detected percentage change
of the manipulated group over the control group. Red color shows the regions with SUV increase
and blue color indicates the SUV decrease

http://afni.nimh.nih.gov
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(left panel). The Andersson method improved the GMNmethod by recovering more
regions with real SUV increase and inducing smaller region with the artificial SUV
decrease (middle panel). ReDIN recovered most regions with SUV increase without
inducing SUV decrease (right panel).

With ROI analysis, the influence of different normalization methods can be com-
pared quantitatively. Table1 shows the percentage difference and p-value between
the two groups after normalizing data with different methods. The true change is the
real percentage change applied to images of the manipulated group. With the GMN,
themagnitude of SUV increase was reduced and around 5% artificial signal decrease
was induced in hippocampus and thalamus. With Andersson and ReDIN methods,
the results were close to the real change.

3.2 Simulation II Study

In the second simulation study, a moderate SUV increase was introduced in cere-
bellum. Because the whole-brain average of the manipulated group is 4.59% higher
than the control group, the GMN reduced the intensity increase of the manipulated
group and made the intensity change in cerebellum undetectable. In the Andersson
normalization, cerebellum may be included in the global estimate after the initial
step of the GMN. Considering the size of cerebellum, the global change was overes-
timated, therefore pushing the intensity of all voxels to an opposite direction of the
real SUV change. Such influence is demonstrated by Fig. 3 and Table2. Both GMN
and Andersson method recovered only a part of real SUV increase and induced a
large artificial SUV decrease. ReDIN did not suffer such issue.

4 Discussion

We presented an image normalization method and compared the proposed method
with the GMN and the Andersson method. Simulation studies demonstrated that
the proposed method yielded the best result in recovering the real metabolic change.
The GMN suffered problems when the whole-brain average was affected by the local
activities. The performance of the Andersson method is somewhere in between the
GMN and the proposed method.

The propose method identifies anatomical regions instead of individual voxels
for intensity normalization. The region-based method has two benefits: it reduced
the computational cost by reducing the least squares regression from more than
ten thousand voxels to less than a hundred of regions. Secondly, we can report the
name of anatomical regions instead of using pictures to illustrate the region used
for normalization. When preferred, some regions can be excluded based on prior
knowledge.
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Fig. 3 In simulation II, moderate signal increase was added to some regions of cerebellum. Both
the Andersson’s method and the GMN created large areas of false SUV decrease (showed in blue
color) where ReDIN method was not affected

Besides the applications in functional image analysis, the proposed method can
be used in anatomical MRI analysis as well. For example, in tensor-base morphom-
etry, Jacobian determinant is used to characterize the structural difference between
groups at voxel level. To reduce the inter-subject variation, some studies calculated
the Jacobian determinant only based on the deformation field and ignored the struc-
tural difference captured in affine registration. In Alzheimer’s disease (AD) research,
Affine transformation needs to be included in Jacobian determinant because there
may be a whole brain atrophy in AD patients. In this case, the proposed method can
be used to reduce the inter-subject variation in group comparison.

Although ReDIN normalization is developed based on preclinical data, it is
straightforward to extend this method to clinical applications. In presented studies,
a rigid body registration was used for spatial normalization due to the low resolution
of PET image relative to the brain size of the rat. In clinical studies, more accurate
deformable registration may be used if anatomical MRI of same subject is available.
Software packages have been developed by different groups and were evaluated by
Klein et al. [11].
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A Reaction-Diffusion Simulation Model
of [18F]FDG PET Imaging for the
Quantitative Interpretation of Tumor
Glucose Metabolism

Qian Wang, Zhen Liu, Sibylle I. Ziegler and Kuangyu Shi

Abstract Positron emission tomography (PET) using 18F-fludeoxyglucose
([18F]FDG) improves the cancer diagnosis by visualizing the pathological pathway
of Warburg effect. As an analog of glucose, FDG uptake is mediated by glucose
transporter (GLUT) and hexokinase (HK), which can be overexpressed under tumor
hypoxia conditions. Quantitative interpretation of the images to the feature of tumor
microenvironment is important to improve tumor staging and localization. How-
ever, it is usually difficult for such kind of quantitative analysis due to the complex
metabolic procedure of multi-substance system within tumor. This study proposes a
novel reaction-diffusion model to simulate the procedures of FDG: transported into
tumor cells, catalyzed by GLUT and phosphorylated by HK leading to the produc-
tion of FDG-6-phosphate (FDG6P) similar to glucose-6-phosphate (G6P). Hypoxia
induced factor-1 (HIF-1) is incorporated to control the upregulations of GLUT and
HK. The simulation results are compared with dynamic PET scans of nudemice with
lymphoma xenograft tumors, which confirmed that the simulation can approach to
realmeasurements.With this quantitative simulationmodel, the interaction of FDG to
the substances, oxygen, HIF-1, glucose, G6P, and FDG6P within the tumor microen-
vironment is investigated under various vascularizations. By controlling the expres-
sion factor of GLUT and HK, their influences on FDG uptake is further assessed.
The preliminary results of the simulation model have shown a potential to improve
the quantification of FDG PET image and to assist cancer diagnosis and therapy
prognosis.
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1 Introduction

18F-fluorodeoxyglucose ([18F]FDG), the most commonly used tracer for clinic and
pre-clinic applications of positron emission tomography (PET), is essentially a kind
of glucose analog and as a result, its uptake and intracellular metabolism are similar
with those of glucose. FDG and glucose are both imported into tumor cells with the
help of GLUTs, among which GLUT1 has been documented elevating its expression
in most cancers [1] and a more than 2-fold increase of FDG uptake due to GLUT
upregulationwas observed [2]. After being transported inside cells, FDG and glucose
are subsequently metabolized in reactions mediated by enzymeHK and get phospho-
rylated, producing FDG-6-phosphate (FDG6P) and glucose-6-phosphate (G6P) [3].
G6P serves as the intermediate product of tumor respiration and glycolysis, while
FDG6P undergoes very slow degradation compared in the time frame of PET imag-
ing. HKI and II belonging toHK family are especially involved in tumormetabolisms
and they have different kinetic properties. HKII is quite sensitive to oxygenations
and its expression will be promoted almost 3-fold under hypoxic conditions [4].

The tumor microenvironment is spatiotemporally heterogeneous due to limited
metabolite diffusion, perfusion, local consumption and transportation, etc. [5, 6].
Tumor hypoxia is the typical feature of tumor heterogeneity and encourages the over-
expression of many proteins enhancing the proliferation of tumors, such as hypoxia
induce factor-1 (HIF-1), vascular endothelial growth factor (VEGF), glucose trans-
porter (GLUT), hexokinase (HK), etc. [7–13].

One of the factors responsible for the upregulation of GLUT1 and HK in tumor
cells is HIF-1. The transcription factor HIF-1 is a key regulator for the induction of
genes facilitating adaptation and survival of tumor cells [8]. The immunohistochem-
ical analyses have demonstrated the detectable levels of HIF-1α in benign tumors
and elevated HIF-1α levels in malignant tumors, in contrast to its absence in normal
tissue [7, 8]. HIF-1 is exclusive with regards to oxygen availability and is stabilized
by hypoxic conditions [7]. It upregulates many gene products which include GLUT1,
HKI, HKII involved in tumor glucose metabolism [8, 14]. The inhibition of HIF-1
activity has marked effects on tumor growth [8].

Although FDG is widely applied in clinic oncology, the quantitative interpreta-
tion of FDG accumulation to the underlying pathophysiological understanding is still
elusive. To overcome this, a mathematical model of FDG metabolism is proposed in
this study. This model integrates the tumor microenvironment heterogeneity and the
procedures of transportation and consumption of FDG and glucose in the mediation
of GLUT and HK. The over-expressions of GLUT and HK driven by HIF-1 are also
encompassed. The modeled time activity curve (TAC) is compared with experimen-
tal TAC from mice FDG scans. The correlations among involving substrates were
evaluated. This modeling has the potential to bridge the gap between FDG imaging
and tumor phenotypes.
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2 Model

In order to have an in-depth understanding of the pathophysiology of FDG uptake
by tumor cells, a two dimensional (2D) HIF-driven FDG model is established as
shown in Fig. 1. In the model, glucose and FDG supplied by tumor microvessels
are imported by GLUT. After the import, glucose and FDG are phosphorylated with
the catalyzation of HK and transformed into glucose-6-phosphate (G6P) and FDG-
6-phosphate (FDG6P) in tumor cells, respectively. Unlike G6P, FDG6P cannot be
metabolized for further glycolysis or other usages due to the absence of 2′ hydroxyl
group (-OH) and therefore trapped in cells. Because of the limited availability of
GLUT and HK, FDG will compete with glucose for them during the cellular uptake.
The expression levels of GLUT and HK are regulated by HIF-1 concentrations. As
these exists more HIF-1 in hypoxic regions, the expressions of GLUT and HK are
promoted, which leads to higher rates of FDG and glucose uptake (transport and
metabolism). The model implementation steps are presented in Fig. 2, each of which
will be illustrated in the following sections.

Fig. 1 Schematic presentation of the physiological processes of FDG and glucose uptake by tumor
cells

Fig. 2 Flow chart of the
model implementation.
Glucose and FDG compete
for the mediators: GLUT and
HK for their uptake. The
expressions of GLUT and
HK are regulated by HIF-1
level, which is determined by
local oxygen concentrations
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2.1 Microvasculature

As the origin site of nutrients and oxygen, the tumor vasculature is premature and
chaotic. Its geometrical characteristics have been estimated by means of quantita-
tive microvascular casting [15, 16]. With consideration of the microvessel diameter
and intervascular distance ranges reporte, the 2D microvasculature is formed based
on the assumption of log-normal distributed intervascular distances and uniform
microvessel diameter, which are consistent with the previous articles [17, 18]. For
further selection of the microvasculature satisfying the log-normal distribution, the
Kolmogorov-Smirnov test is adopted to test the vascular map generated.

2.2 Oxygenation

The oxygen distribution in solid tumors is highly heterogeneous. Some areas distant
from the microvessels are deprived of oxygen due to limited oxygen diffusion and
local consumption. A region with oxygen tension less than 2.5 mmHg is known as
the hypoxic region [17]. The spatio-temporal distribution of oxygen can be described
by a reaction-diffusion equation [17–22], in which the convective oxygen transport
in the tumor microenvironment is not considered and a constant diffusivity is used
for the field of interest. Oxygen can traverse cell membrane, vessel membrane freely
because of low molecular mass, dimension and tumor vessel leakage. The oxygen
concentration [O2]= [O2](x, y, t) is therefore described as

∂[O2]
∂t

= DO2∇2 [O2] − P([O2]) (1)

where DO2 denotes the oxygen diffusivity. P([O2]) represents the oxygen consump-
tion rate, as well as a Michaelis-Menten term. It is determined by local oxygen
concentration, maximum oxygen consumption rate Vmax,O2 and Michaelis-Menten
constant Km,o2 .

P([O2]) = Vmax,O2 [O2] /([O2] + Km, o2) (2)

2.3 HIF-1 Expression

Tumor cells shift a large part of their metabolisms toward glycolysis, some of which
are regulated byHIF-1.HIF-1 acts as a critical intermediator between tissue oxygena-
tion and stimulation factors (e.g. metabolic enzymes and transporters, signal factors)
[14, 23, 24]. The oxygen content is a factor influencing the HIF-1 expressions and
a negative correlation between them have been reported [25]. HIF-1 affects tumor
metabolisms by regulating the expressions of transports and enzymes. In particular,
GLUT and HK, the mediators of glucose metabolism, are regulated by HIF-1 in a



A Reaction-Diffusion Simulation Model of [18F]FDG PET Imaging … 127

positive manner. To explore HIF-1 effect on tumor metabolism, it is introduced in
the proposed model. Production of cellular HIF-1 is dependent on both the intrin-
sic capability to synthesis, which is assumed constant, and the degradation due to
oxygen existence [26, 27]

d[HIF]
dt

= rH − Vmax,HIF

(
[O2]

[O2] + Km,HIF

)
[HIF] (3)

where [HIF] is the cellular HIF-1 concentration. rH is the HIF synthesizing rate.
Vmax,HIF and Km,HIF indicate the maximum HIF-1 degradation rate and the HIF
concentration at which the degradation rate is half-maximal. The equilibrium HIF-1
distribution can be acquired when d[HIF]

dt = 0. In the model implementation, the
spatial-varying [HIF] is normalized by the maximum value in the field of interest.

2.4 Glucose Transport and Metabolism

Cellular glucose uptake is facilitated by the transporter GLUT. Subsequently, intra-
cellular glucose is metabolized with catalyzation by HK and then transformed into
glucose-6-phosphate (G6P) before being metabolized. In this model, glucose is
divided into three physiological compartments: extracellular, intracellular andmetab-
olized glucoses. The spatio-temporal evolutions of their concentrations are described
by [28]:

∂[Gex]
∂t

= DG∇2 [Gex] − T ([Gex] − [Gin]) (4)

∂[Gin]
∂t

= T ([Gex] − [Gin]) − P([Gin]) (5)

∂[Gme]
∂t

= P([Gin]) (6)

where [Gex], [Gin], and [Gme] are the concentrations of extracellular, intracellu-
lar and metabolized glucose, respectively. T([Gex]− [Gin]) and P([Gin]) represent
the transmembrane transport rate and the intracellular metabolic rate of glucose.
T([Gex]− [Gin]) is determined by the concentration difference and kinetic parame-
ters of GLUT and is regulated by HIF-1 levels.

T ([Gex] − [Gin]) = Vmax,GLUTKm,GLUT ([Gex] − [Gin])(
Km,GLUT + [Gex]

) (
Km,GLUT + [Gin]

) (1 + kGLUT[HIF])
(7)

where Vmax,GLUT and Km,GLUT are the maximum transport rate and Michaelis-
Menten constant of GLUT for glucose transport. It is assumed that GLUT have
identical kinetic parameters at both sides of the cell membranes based on the
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consideration that the transmembrane transport of glucose uses facilitated diffusion
in most tumors rather than active (ATP-dependent) transport [29–31]. The HIF-1
regulation on glucose transport and metabolism is integrated by (1 + kGLUT[HIF])
[27]. kGLUT, named as the overexpression factor of GLUT, is a factor indicating the
maximum fold that HIF-1 can upregulate the GLUT expression in hypoxic condition.

The metabolic rate P[Gin] is represented by a Michaelis-Menten term:

P([Gin]) = Vmax,HK [Gin]

Km,HK + [Gin]
(1 + kGLUT[HIF]) (8)

where Vmax,HK and Km,HK are the maximum transport rate and Michaelis-Menten
constant of HK for glucose phosphorylation. Similar with GLUT, the influence of
HKoverexpression is introduced bymultiplying (1+kHK[HIF]). The overexpression
factor kHK indicates the maximum fold that HK can get overexpressed due to highest
HIF-1 level.

2.5 FDG Uptake

As an analog of glucose, FDG have similar metabolic characteristics with glucose
except that it cannot be further metabolized after the phosphorylation. To simulate
its uptake procedure, FDG is divided into extra- and intra-cellular FDG and trapped
(or phosphorylated) FDG (FDG6P), whose concentrations are [FDGex], [FDGin]
and [FDGtr], respectively. The FDG competition with glucose for GLUT and HK
is considered (glucose is almost not influenced by the addition of FDG since its
concentration is normally several orders higher than FDG concentration) [29]. The
evolutions of extra- and intra-cellular FDG and trapped FDG satisfy:

∂[FDGex]
∂t

= DFDG∇2 [FDGex] − T ([FDGex] − [FDGin]) (9)

∂[FDGin]
∂t

= T ([FDGex] − [FDGin]) − P([FDGin]) (10)

∂[FDGtr]
∂t

= P([FDGin]) (11)

where T ([FDGex] − [FDGin]) and P([FDGin]) are the transport and metabolic rate
of FDG with consideration of its competition with glucose. T ([FDGex] − [FDGin])
is determined by the difference between Tcis (import rate) Ttrans and (export rate).

T ([FDGex] − [FDGin]) = (Tcis − Ttrans)(1 + kFGLUT[HIF]) (12)
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Tcis = Km,GLUTV F
max,GLUT [FDGex]

Km,GLUT [FDGex] + K F
m,GLUT [Gex] + Km,GLUTK F

m,GLUT

(13)

Ttrans = Km,GLUTV F
max,GLUT [FDGin]

Km,GLUT [FDGin] + K F
m,GLUT [Gin] + Km,GLUTK F

m,GLUT

(14)

where V F
max,GLUT and K F

m,GLUT are the maximum transport rate and the Michaelis-
Menten constant for FDG transport, respectively. The term implying the HIF-1
upregulation (1 + K F

GLUT[HIF]) is also applied on the FDG transport term with
overexpression factor K F

GLUT.

P([FDGin]) with HIF-1 regulation is given by

P([FDGin]) = Km,HKV F
max,HK[FDGin]

Km,HK[FDGin] + K F
m,HK[Gin] + Km,HKK F

m,HK

(1 + kFHK[HIF])
(15)

V F
max,HK and K F

m,GLUT are maximum phosphorylation rate and Michaelis-Menten

constant of FDG, respectively. K F
HK is the HK overexpression factor for FDG phos-

phorylation.

3 Methods

All simulations are programmed in C++ (Microsoft Visual Studio 2008) and the
reaction-diffusion equations are solved using finite-difference methods (FDM). The
region of interest is a 1mm × 1mm micro-tissue-phantom, which is tessellated into
100 × 100 elements with a grid size of 10 µm. The temporal iteration step size was
set to 1 ms. The partial differential equations are iteratively solved up to the system
equilibrium.

The no-flux boundary condition is applied on the edge of the region of the simu-
lated domain. The vessel walls serve as barriers for glucose and FDG entering tumor
tissue. Therefore the Neumann boundary condition is applied on the microvessels.
The Neumann boundary condition for a neutral substance S on a blood vessel can
be written as follows [32, 33]:

⇀nsDs∇[S] = μs([S]v − [S]) (16)

where [S]v and [S] are the substance concentration in the blood and the substance
concentration in the element immediately adjacent to the vessel,⇀ns is the outward unit
normal vector to the vessel surface. μs represents the permeability of substance S.

The parameters used in the simulation are listed in Table1. The FDG plasma input
functions are extracted from left ventriclewith partial volume correction and spillover
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Table 1 Parameters used in the simulation

Symbol Parameter Value References

CO2 Plasma O2
concentration

6.8 × 10−2 mM [17]

CG Plasma glucose
concentration

5.5 mM [33]

DO2 O2 diffusivity 2 × 10−5 cm2/s [18]

DG Glucose diffusivity 5.5 × 10−7 cm2/s [34]

DFDG FDG diffusivity 5.5 × 10−7 cm2/s [34]

μG Glucose permeability 3 × 10−5 cm/s [32]

μFDG FDG permeability 3 × 10−5 cm/s [32]

Km,O2 Michaelis-Menten
constant for O2
consumption

2.5 mmHg [18]

Vmax,O2 Max. consumption
rate of O2

15 mmHg/s [18]

Km,GLUT Michaelis-Menten
constant of glucose
transport via GLUT

26.2 mM [35]

Km,HK Michaelis-Menten
constant for glycolysis
catalyzed by HK

0.13 mM [3]

K F
m,GLUT Michaelis-Menten

constant of FDG
transport via GLUT

26.2 mM [35]

K F
m,HK Michaelis-Menten

constant for FDG
phosphorylation
catalyzed by HK

0.17 mM [3]

Vmax,GLUT Max. glucose transport
rate by GLUT

6 µM/s [36–38]

Vmax,HK Max. glucose
glycolytic rate by HK

4.3 µM/s [37, 39]

V F
max,GLUT Max. FDG transport

rate by GLUT
6 µM/s [36–38]

V F
max,HK Max. FDG

phosphorylation rate
by HK

2.6 µM/s [3, 37, 39]

rH HIF-1 synthesis rate 1.2 × 10−4 s−1 [27]

Vmax,HIF Max. HIF-1
degradation rate

2.3 × 10−3 s−1 [27]

Km,HIF Michaelis-Menten
constant for FDG
degradation

2.5 mmHg [18, 27]
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correctionusing additionblood samples. The tissue-to-blood ratio indicating theFDG
retention in tumor tissues, is defined as the FDG tissue activities (the summation
between extracellular, intracellular and trapped FDG over temporal span of plasma
input function) normalized by the plasma input of FDG activity at the last sampling
point.

The subtypes of GLUT and HK are not specified in this study to broaden model
applicability. GLUT and HK are both documented sensitive to oxygen contents and
HIF-1 levels, and have elevated expressions and/or activities in most cancers [1,
3, 4]. It is found that the transport rate is raised 2.53 ± 0.79 folds under hypoxia
for human breast carcinoma cell line MCF7 and this is postulated to the [2]. By
evaluating the mRNA and protein levels, HKI and HKII overexpress 1.5- and 5.5-
fold respectively in human glioblastoma multiforme (GBM) center and 0.9- and
1.2-fold respectively in GBM periphery [13]. HKII expression increases 1.5 and 10
folds for hepatocellular carcinoma andmetastatic liver cancer [11]. To investigate the
influences of HIF-dependent protein expression/activity on the tumor metabolism,
the overexpression factors of GLUT and HK are adapted from 1 to 10, which fall
in the ranges of data reported in the literature. In addition, the vascular density is
adapted from 20 to 200 vessels/mm2 within the range of empirical tumor vascular
densities in the literature, to assess its influence on the glucose and FDG uptake
[15, 16].

In order to quantify the influence of physiological factors on tumor glucose
metabolism, the response rate is proposed, which represents the glucose and FDG
concentration/activity adaptions in responses to the unit change of overexpression
factors. As an alternative parameter, the response rate can be normalized by mediator
(i.e. GLUT and HK) expression levels for the estimation of substrate sensitivity to
the mediator level variations [28]. The mediator expression is characterized by both
maximum protein-facilitated transport or catalyzing rate (Vmax) and the overexpres-
sion factor in the proposed model.

4 Model Implementation and Results

The model is implemented on tumor tissue phantoms with different microvessel
densities, and expressions of GLUT and HK. An example of model implementation
is shown in Fig. 3, where the phantom has a microvessel density of 40 vessels/mm2

and 3-fold maximum overexpressions for both GLUT and HK (kGLUT = kHK = 3).
Figures (a) and (b) are the maps of oxygen (unit: mmHg) and normalized HIF-1
distributions, respectively. Figures (c)–(e) present the distributions of extra-, intra-
cellular glucose (unit: mM) and glucose metabolic rate (unit: µM/s), respectively.
The corresponding extra-, intra-cellular FDG (unit: mM) and FDG trapping rate
(unit: µM/s) are exhibited in figures (f)–(h), respectively.

The average oxygen tension over the selected phantom is 3.5 mmHg, which fall
in the range of published tumor pO2 values (Eppendorf data): 0–60 mmHg [40, 41].
Based on the proposed model, the average oxygen tensions simulated in different
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Fig. 3 Substrate concentration maps. Figures a and b are the 2D oxygen (mmHg) and normalized
HIF-1 distributions. Figures c–h present the 2D distributions of extra-, intra-cellular glucose (mM)
and glucose metabolic rate (µM/s), and extra-, intra-cellular FDG (mM) and FDG trapping rate
(µM/s), respectively. The average values of these parameters are marked by black arrows pointing
to the colorbars of each map

pathophysiological conditions vary from 1.6 to 23.5 mmHg, which also falls into
the range of Eppendorf data. The average extracellular glucose concentration is 2.9
mM, which is much higher than the intracellular glucose concentration (0.02 mM
on average). The extracellular glucose in tumor tissue has been reported within the
range of 0.5–3.7 mM for several types of tumor cells [6].

In addition, the average values for normalized HIF-1, glucose metabolic rate,
extra- and intra-cellular FDG concentration and FDG trapping rate are 0.26, 0.75
µM/s, 4.6 × 10−9 mM, 7.0 × 10−11 mM and 2.8 × 10−8µM/s, respectively. They
are marked by black arrows pointing to the colorbars of each map in Fig. 3.

Figure4a shows the simulated TACs (blue curves) of tumor tissue phantoms with
different vascular densities (20–200 vessels/mm2). They are compared with themea-
sured one (red curve), which shares the same plasma input function displayed in
Fig. 4b. The tissue-to-blood (T/B) ratios for simulated TACs change from 1.4 to 4.6
as compared to 4.4 for measured TAC. Using other parameters (such as higher vas-
cular density) promoting the FDG retention, the T/B can reach 6.5 in this model. The
T/B measured in clinical and preclinical studies have been reported within the range
of 1.3–17.2 for different types of tumors [42, 43].

The influences of GLUT and HK overexpressions in terms of overexpression fac-
tor adaptions on the glucose concentration and FDG activities are investigated using
the tumor tissue phantoms containing different vascular densities as shown in Fig. 5.



A Reaction-Diffusion Simulation Model of [18F]FDG PET Imaging … 133

Fig. 4 a Simulated TACs (blue curve) under different vascular densities (20–200 vessels/mm2) as a
comparison with measured TAC (red curve) using the plasma input function displayed in figure (b)

Fig. 5 Glucose concentrations as the functions of GLUT (figure (a)) and HK (figure (b)) overex-
pression factors, andFDGactivities as the functions ofGLUT(figure (c)) andHK(figure (d)) overex-
pression factors. The curves are plotted in different vascular densities (blue curves 20 vessels/mm2;
green curves 60 vessels/mm2; red curves 100 vessels/mm2). The error bars for each data point are
added on each curve
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Table 2 The response rates of glucose and FDG with respect to the GLUT and HK upregulations
in terms of overexpression factors (OF) under different vascular densities

Glucose FDG

Vascular density
(vessels/mm2)

20 60 100 20 60 100

Response rate to
GLUT OF (mM)

0.06 0.12 0.13 11.2 30.0 31.6

Response rate to HK
OF (kBq/ml)

0.003 −0.01 −0.03 0.48 −0.71 −0.51

The FDG activity indicates the tissue activity that can be imaged by PET and contains
the extra- and intra-cellular FDG activities and FDG activity that are accumulated
in tumor cells over the time span of plasma input function (3300 s). Similar with
FDG, the glucose concentration encompasses the extra- and intra-cellular glucose
concentrations and the integral concentration of glucose that are metabolized during
the past 3300 s. Each curve point takes the average of 20 repeated simulations to
decrease the heterogeneity of microvasculature. The error-bars are added on each
data point in the figures. The glucose concentrations and FDG activities as the func-
tions of the overexpression factors are presented in the conditions of low, medium
and high vascular densities: 20 (blue curve), 60 (green curve) and 100 (red curve)
vessels/mm2

Bothglucose concentration andFDGtissue activity showmore activated responses
to the altered overexpression factors of GLUT than that of HK. HK upregulation
exerts little influence on glucose and FDG uptake using the current pathophysio-
logical parameters. The response rates (the glucose and FDG concentration/activity
adaptions in responses to the unit change of overexpression factors) are presented
in Table2. They are also associated with vascular densities. In particular for GLUT,
higher response rate is found for phantoms with higher vascular densities.

As the transport and metabolic kinetics of glucose and FDG are very similar in
tumors, we evaluate the correlations between glucose metabolism and FDG uptake
to validate the efficacy of FDG PET images in reflecting the glucose metabolism.
The correlation coefficient between FDG tissue activity and glucose concentration
that are accumulated over a same period is 0.97 (P � 0.05) with consideration of
various pathophysiological conditions (such as different GLUT andHK upregulating
levels, and vascular distributions).

5 Discussions

A tumor pathophysiological model, which simulates the glucose and FDG uptake
procedures, is proposed in this study. The oxygen-dependent HIF-1 is especially
introduced to regulate the expressions ofGLUTandHK.With themediationofGLUT
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and HK, extra- and intra-cellular and phosphorylated glucose and FDG distributions
in tumors are emulated simultaneously. We validate the model by comparing the
simulated substrate concentrations, FDG T/B and TAC curve with the experimental
data. This model bridges the discrepancies between pathophysiological factors and
tumor metabolisms, and enables the quantitative interpretation of glucose turnover
and FDG accumulation in terms of pathophysiological understanding.

The cellular HIF-1 evolution is described by a reaction equation, which encom-
passes a constant synthesis rate (without consideration of the effect of HIF-1 synthe-
sis saturation) and an oxygen-dependent degradation rate [26], therefore the HIF-1
level only depends on the local oxygen content in the proposed model. It has been
reported that the HIF-1 levels change exponentially over a physiologically relevant
range of oxygen tension in human cervical carcinoma HeLa cells [25]. Although the
existence of such relationship, it is constrained to a specific tumor cell line. Thus,
the equation-driven HIF-1 distribution is applied in the current model. By adjust-
ing the parameters, the simulated HIF-1 distribution can approach the experimental
distributions in different physiological situations. As to HIF-1 regulation on glucose
and FDG uptake, the transport and metabolic rates are both assumed linearly corre-
lated with HIF-1 levels. This simplified and analytic relationship can reflect the basic
tendency of HK and GLUT expressions in response to the HIF-1 regulation and has
been adopted by othermodeling studies [27].Moreover the experimental correlations
are still elusive or not straight forward to the best of our knowledge. Therefore the
linear relationship between HIF-1 levels and mediator expressions is utilized. The
more sophisticated HIF-1 regulation function with physiological indications will be
further explored.

The simulation results indicate that GLUT is more influential on the glucose and
FDG uptake than HK. GLUT function is a critical factor in cellular glucose supply
before the intracellular breakdown of glucose occurs. It can influence the further
reactions during glucose metabolism and may form a bottleneck for the downstream
metabolic steps. As an upstream factor of the HK-involved metabolisms, GLUT is
therefore more determinate on the glucose and FDG concentrations. The relatively
constant responses of glucose and FDG to HK upregulations may result from the
counteraction between the enhanced metabolic rates and decreased intracellular glu-
cose/FDG concentrations (refer to Eqs. (8) and (15)).

The model is validated by comparing (1) the simulated substrate concentrations
with empirical data in the literature, and (2) the simulated TACs with measured TAC
using the same blood input function. They are not completely direct validations.
The direct validation indicates the comparison between simulated and measured
metabolisms originated from the same set of pathophysiological factors extracted
by immunohistochemical approaches. This study cannot achieve a complete direct
validation due to the bottleneck of co-registration between macroscopic molecular
imaging and microscopic tumor imaging [28]. Nevertheless, we try our best to verify
that most simulated substrate concentrations fall in the range of experimental data
reported in the literature, although not all the investigated properties has quantitative
values due to the limited availability of literature data
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6 Conclusion

We developed a realistic model to simulate FDG uptake in tumor microenviron-
ment, which could assist the quantitative interpretation of PET imaging to oncologic
metabolisms of substance and offers the potential to improve the clinic diagnosis.
The preliminary results show that the simulation can approach to measurement and
further validations will be carried out in the following up studies.
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Generation of MR-Based Attenuation
Correction Map of PET Images in the Brain
Employing Joint Segmentation of Skull
and Soft-Tissue from Single Short-TE MR
Imaging Modality
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Mohammadreza Ay and Hamidreza Saligheh Rad

Abstract Recently introduced PET/MRI scanners present significant advantages
in comparison with PET/CT, including better soft-tissue contrast, lower radiation
dose, and truly simultaneous imaging capabilities. However, the lack of an accurate
method for generation of MR-based attenuation map (µ-map) at 511 keV is hamper-
ing further development and wider acceptance of this technology. Here, we present
a new method for the MR-based attenuation correction map (µ-map), employing a
proposed short echo-time (STE) MR imaging technique along with the nearly auto-
matic segmentation. This method repeatedly applies active contours inhomogeneity
correction, multi-class spatial fuzzy clustering (SFCM), followed by shape analysis,
to classify the images into cortical bone, air, and soft tissue classes. The proposed
segmentation method returned sensitivity of 81% for cortical bone and above 90%
for soft tissue and air. These results suggest that this technique is accurate, efficient,
and robust for discriminating bony structures from the neighboring air and soft tissue
in STE-MR images, which is suitable for generating MR-based µ-maps.
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1 Introduction

Attenuation correction plays an important role in providing accurate and quantitative
reconstruction of positron emission tomographic (PET). In this light, deriving an
attenuation correction map (µ-map) from magnetic resonance (MR) volumes has
become an important problem in hybrid PET/MR imaging [1].

Due to short T2 relaxation times, a major problemwithMR-basedµ-map genera-
tion arises due to the weak signal of bone, close to the signal intensity of its proximal
air in conventional MR images, which makes it almost impossible to differentiate
the bone from air. As air and bone manifest different attenuation properties and mis-
classification of bone tissue leads to significant errors in PET images quantification,
correct segmentation of these tissue types is important [2]. Recently, ultra-short echo-
time (UTE) MRI sequences have been developed, which facilitate the separation of
the cortical bone and air [3]. UTE sequences are capable of capturing cortical bone
signals before decaying; thus, they can be used to derive µ-map for MR attenua-
tion correction (MRAC) of head and neck PET images. Unfortunately, sequential
application of these sequences is time-consuming, complicates image registration
and hence is not plausible in routine clinical practice. Besides, the prediction at the
bone/air or soft-tissue/air interfaces occurring in the sinuses is challenging in UTE
MR-based µ-maps.

Recently, development of short echo-time (STE) MR imaging sequences, has
shown promise in differentiating cortical bone from air [4, 5]. On STE-MR images,
cortical bone appears with adequate signal to facilitate its differentiation from air,
but with discontinuous boundaries. Therefore, techniques based on segmentation,
such as thresholding [4] or fuzzy C-means [5], fail to homogeneously delineate
bone boundaries. The performance of these methods become further complicated in
the presence of intrinsic noise and intensity inhomogeneity artifacts. Methods that
predict attenuation coefficients, on a continuous scale usually either register an atlas
of CT or a PET transmission scan template or use techniques frommachine learning,
which may be time-consuming, and the robustness of these methods to anatomical
variability must be carefully evaluated. On the other hand, methods that perform
segmentation based on MR voxel intensity are relatively robust and do not require
external sources of information apart fromMRIdata, if the appropriateMRsequences
are used. They are generally computationally efficient and easy to implement in the
clinical workflow, but they may lack quantification accuracy in brain imaging.

The mentioned issues have been our main motivation to design and implement
a clinically-efficient pulse sequence, namely “short echo-time (STE) MRI”, which
is capable of acquiring short T2∗ of the bone, in combination with a spatial fuzzy
C-means (SFCM) segmentation approach to differentiate the tissue classes. SFCM
algorithm relies on the assumption of intensity inhomogeneity within a specific tissue
class. This assumption becomes essentially invalid in the presence of intensity inho-
mogeneity. To overcome this problem, we incorporated an intensity inhomogeneity
correction and shape analysis in our segmentation framework.
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2 Materials and Methods

Here, the acquired STE-MR images were employed to derive a relevant µ-map
of the area under imaging at 511 keV using the combined imaging and automatic
segmentation approach. The overall flow diagram of the proposed method is shown
in Fig. 1, which is described in more details as follow:

2.1 MRI Data Acquisition

Short TE (STE)-MR images of five normal volunteers were acquired on a clinical
1.5T MRI System, MAGNETOM Avanto (Siemens Medical Solution, Erlangen,

Fig. 1 The overall flow diagram of MR-based attenuation map correction, which is composed of
four main steps: (1) intensity inhomogeneity correction by a level set-based intensity correction
technique; (2) SFCM segmentation to classify the images into four clusters (air, a part of soft tissue
and bone, and two other soft tissue classes); (3) shape factor analysis to remove the eyes, that show
close signal intensity to that of bone; and (4) µ-map generation by downsampling and assigning
attenuation coefficients to the corresponding segmented tissues
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Germany), using a FLASH 3D pulse sequence with TE = 1.1ms,TR = 12ms, flip
angle = 18◦, voxel size = 1.2 × 1.2 × 2mm3, and an overall acquisition time of
7:42min.

2.2 Intensity Inhomogeneity Correction

Magnetic resonance images are commonlydeterioratedby intensity inhomogeneities,
resulting in erroneous quantification outcomes. Most of the automatic segmentation
methods, such as clustering- and region-basedmethods, rely on the assumption that a
given tissue is represented by similar voxel intensities throughout the image. Conse-
quently, any estimated parameter from inhomogeneous data will be highly affected
by the presence of this artifact. In order to diminish the effect of this phenomena, here,
we employed the method proposed in [6], which uses a clustering-based level set
approach for modeling and correcting the intensity inhomogeneity over consequent
iterations of level-set evolution. In this technique, k-means clustering is applied to
estimate the intensity properties of each region for bias field correction simultane-
ously with the level-set segmentation. This algorithm incorporates both intensity and
spatial information to define continuous boundaries. This is an essential step to help
separate air and bone in the regions with high inhomogeneity, like the nasal areas.

2.3 Spatial Fuzzy Clustering

The main challenges with STE-MR segmentation are the ambiguous boundary
between air and soft tissue in sinuses, unclear border between soft tissue and bone,
and similar intensity values of air and bone in ear area. Fuzzy C means (FCM) is
an unsupervised clustering method widely utilized in medical image segmentation,
which can account for inherent fuzzy boundaries in the STE-MR images. Nonethe-
less, FCM technique merely relies on image intensity information and is highly
sensitive to noise. In this light, spatial FCM (SFCM) technique has been developed,
by incorporating the spatial neighborhood information into the standard FCM clus-
tering algorithm.

Here, SFCM was applied to segment the images into four clusters including air,
a part of soft tissue and bone, and two other soft tissue classes. Upon this step,
the air cluster would be accurately separated (Fig. 1); this is possible as STE-MR
imaging has captured bone signal, which could be discriminated from air with no
signal through intensity clustering.
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2.4 Shape Analysis

In the next step, the bone class which includes some parts of soft tissue (eyes with
close signal intensity to that of bone) should be further processed, so themisclassified
tissue could be assigned to its correct class. Here, shape factor analysis was applied
as a filter, to eliminate the eyes from bone class. The shape factor (SF) is a measure
of circularity or compactness of a shape, represented by:

SF =
4π A

P2 (1)

where A is the area and P is the perimeter of the shape. Here, the SF analysis can
remove the water in the eye area (that manifests close signal intensity to that of bone)
and allocate it to the soft tissue class (Fig. 1).

2.5 Smoothing and Down-Sampling

As the final step, in order to create a suitableµ-map, which is compatible with image
resolution and matrix size of Discovery 690 PET/CT scanner (GE Healthcare Tech-
nologies, WI, USA), the segmented image was down-sampled to 128 × 128 matrix
size and smoothed using a Gaussian filter with 6 mm full width at half maximum.

2.6 Validation

We assessed sensitivity and specificity of the proposed combined imaging and seg-
mentation approach, by comparing the results of STE-MRI segmentation of each
region, i.e. bone, air and soft tissue, with the respective regions in CT images of
each subject. For this purpose, CT images of the same volunteers were acquired on
a multi-slice CT scanner, with no gantry tilt, kVp = 80 kV, tube current = 10mA
and rotation time = 0.5 s. The CT images of each subject were co-registered with
their corresponding STE-MR images using FLIRT 3D registration method [7], with
affine transformation model and normalized mutual information similarity measure.

3 Results

The results of the proposed segmentation technique for categorizing the brain image
into the three comprising tissue classes, i.e. bone, air and soft tissue, are illustrated
in Fig. 2. In the left column, three selected slices of CT images of a subject are
shown, alongwith their corresponding STE-MR images in themiddle column and the
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Fig. 2 The results of segmentation of STE-MR images in three selected slices of a subject: (left
column) CT images, (middle column) the corresponding STE-MR image, (right column) the result
of segmentation of STE-MR image into three classes: air (black), bone (white) and soft tissue (gray)

segmentation results on the STE-MR images using the proposed technique. Quanti-
tative evaluation indicated sensitivity of more than 95% for air and soft tissue and
about 81% in the bony region, and specificity of over 95% for all tissue classes, in
all of the subjects.

The results of constructed MR-based attenuation maps (µ-map) from the seg-
mented tissue classes are demonstrated in Fig. 3.
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Fig. 3 MR-based attenuationmap correction using the proposedmethod: (left column) the acquired
STE image which has been acquired with STE pulse sequence, (middle column) the result of STE-
MR image segmentation based on the suggested approach; and (right column) the constructed
µ-map, which has been derived from the STE-MR images
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4 Discussions

Generating MR-based attenuation correction map (µ-map) for quantitative recon-
struction of PET images still remains a challenge in hybrid PET/MRI systems. The
issue is mainly due to the fact that in conventional MR images, cortical bone struc-
tures are indistinguishable from proximal air cavities, e.g. in facial sinuses in the
head images [1]. To overcome this problem, several segmentation approaches have
been proposed, such as a combination of consequent thresholding and mathematical
morphological operations [8] or CT-derived model-based segmentation algorithms
[9]. However, due to close signal intensity of cortical bone to that of air, these meth-
ods fail to robustly separate bony structures from proximal air cavities. In recent
years, ultrashort echo-time (UTE) MRI acquisition techniques have been developed
for head segmentation, which are capable of imaging the tissues with short T2∗ relax-
ation time [3]. Nonetheless, UTE-MRI techniques are costly and time-consuming,
and hence not plausible in routine clinical practice.

To overcome the mentioned problems, in the present study, we introduced a new
fully automatic and reproducible STE-MRsegmentation approach exploiting a single
short TE (STE)-MR imaging technique along with an efficient automatic segmenta-
tion approach, exploiting spatial fuzzy C-means (SFCM) algorithm and shape factor
analysis to reliably segment the bone from soft tissue and air.

Considering the limitations of employing UTE-MRI in whole-body imaging, the
proposed combined imaging and processing method seems to be used as a substitute
for UTE-based PET attenuation correction.

Oneof the problemswithUTE-basedmethods ismisclassification ofwater and eye
tissue as bone, due to their proximal signal intensity to that of bone.This issuewas also
present in STE-based imaging method, which was overcome by applying a measure
of circularity for eliminating the eyes. The accuracy of cortical bone segmentation
was about 88% in the air and bone interface region, where susceptibility artifact
exists.

This work has some limitations that need to be refined in future. As shown in
Fig. 3, some parts of bone appear with discontinuity. This is the reason that the sensi-
tivity of bone segmentation is about 81%. This issue calls for further investigation of
segmentation and intensity correctionmethods to achieve optimal performance of the
technique in cortical bone discrimination and accurate µ-map generation. Neverthe-
less, this approach should be assessed on a larger population to confirm its potentials.
Moreover, the generated attenuation map must be evaluated in comparison with the
state-of-the-art techniques for constructing µ-map in hybrid PET/MR systems.

Fromvisual inspection of the segmentation results and the quantitative assessment
outcomes, it can be concluded that the proposed STE-MR imaging in combination
with the segmentation technique can provide reliable segmentation of human brain
skull and soft tissue from a single clinical MR imaging modality. Hence, this method
can be used efficiently to generate accurate MR-based attenuation correction maps.
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Query by Image of Brain SPECT Database

David S. Wack, Feyza Erenler and Robert Miletich

Abstract In contrast to search engines for medical image databases that use age,
gender, or disease classification, Query by Image search allows an image to be
presented as input to the search engine. Images together with clinical reports are
returned that best match the presenting image. Work on query by image systems
have been ongoing for more than two decades, predominately in fields outside of
medical imaging. In these fields, features are often identified and used in the search
for similar images. Corresponding strategies have been taken in medical imaging,
especially MRI where it is reasonable to match based on a feature. However, in brain
SPECT imaging, clinicians are often interested in the global pattern of brain activity
for making diagnoses such as Small Vessel Disease, Mild Cognitive Impairment,
Parkinson’s or Alzheimer’s Disease, which have some commonalities as “Global
Brain Impairment” patterns. By utilizing robust spatial normalization methods to
transform images to a common stereo-tactic space, we are able to use simplemethods
for measuring and ranking the closeness between the presenting image and images
in the database. Our decomposition of the Brain SPECT dataset shows that images
within the dataset have very high similarity. However, subtle differences can be reli-
ably utilized for selecting best image matches. Throughout testing, highly relevant
cases were consistently returned for our image queries. Our method is fast, robust,
intuitive for users, and practical.

Keywords Query by image · Brain SPECT database · Data-mining · SVD
1 Introduction

An ultimate goal of many researchers working within medical imaging informatics
is to provide automated diagnosis from medical images. This is a grand challenge
that can lead to complicated approaches. Our goal here is to present a simple query
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by image search engine that we believe is a strong mid-point goal, between an
unassisted humanexpert readingof the image and that of a fully algorithmic approach.
There have been several previous methods that have explored query by image search
across many disciplines. In finding matching images, the fundamental question is
“are two images close”. For example, if one was trying to find similar photographs
to a presenting picture, one method might try to match faces, whereas another might
look for similar colors, etc. For our application, we use query by image to match
global features of SPECT images. Characteristics of brain SPECT image datasets
allow us to take a simple robust approach for a solution.

Query by Image Content (QBIC) methods originated over two decades ago [1–3].
Following this work, Cheng et al. [4] developed the system SMIRE (similar Medical
Image Retrieval Engine). Image similarity values were calculated using the his-
tograms after some preprocessing. Furthermore, for 2 D images there is the free and
openly available “GNU Image Finding Tool” (www.gnu.org/software/gift). These
methods also use user feedback to improve search results. Other methods became
known as “Content based medical image retreival” methods, and are seen as part of
medical image data-mining efforts [5, 6]. Finally, there is a large amount of work in
facial recognition, and object identification in other fields.

Fundamentally, in developing a search engine to match images based on global
pattern of activity of SPECT images, we need to be able to measure the distance
between two images. This measure should be robust and invariant to global differ-
ences in dose and global uptake, and most dependent on the overall pattern of the
images. While we will use singular value decomposition to form “eigen-images” of
the data set to explore the overall patterns of activity across the set of images, a simple
similarity value between two images is Spearman linear correlation, such that image
pairs with higher correlation are judged to be closer. We choose to use correlation
over, say, Euclidean distance as a straightforward way to compare images because it
automatically accounts for global dosing differences.

We believe that the scans within the database have clear patterns relating to dis-
ease states. We believe that linear correlation can be utilized to provide ranking
of images in a database such that images with the highest correlations will have
similar diagnoses.

2 Methods

Clinical data was collected from a double head ADAC Atlas SPECT scanner
using Neurolite tracer. Patient images and reports were linked together and then
anonymized. This analysis project was approved by the University at Buffalo, Health
Sciences IRB. Multiple frames were summed to provide activity between 0 and
40min. These volumes were spatially normalized using SPM8 to an in house SPECT
template in the Montreal Neurological Institute (MNI) coordinate system. Resulting
spatially normalized images had voxel size of 2× 2× 2mm and X, Y, Z dimensions
of 79, 95, 68 voxels. 2198 patient scans and matching reports were used to form

www.gnu.org/software/gift
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the database. These patients represented a full cross section of the clinic’s patient
population. The clinical diagnosis included patients with Small Vessel Disease,
Hydrocephalus, Parkinson’s, and Alzheimer’s Disease.

Singular Value Decomposition: By representing each image volume as a 1-d vector,
the 2198 scans with dimensions 79 × 95× 68, were represented as a single matrix,
M, with dimensions 510340× 2198. Matlab (Natick, MA) was used to calculate the
singular value decomposition of M, as [ U S V] = svd(M,0). The 0 parameter selects
the “economy size” decomposition and limits the number of columns calculated for
U to 2198. Resulting “eigen-images” were formed from reshaping the columns of
U to the image volume dimensions, eigenvalues from the diagonal of S, and image
coefficients from the columns of V. The relative size of the first eigen-values to the
remaining values gives an indication of the overall similarity of images across the
data set. The eigen-images show commonalities in the differences found between
images. The image coefficients provide information based on how they cluster when
plotted, and give an indication of whether there are distinct subsets of images or if
the images represent more of a continuum of disease states.

Queries by Image: The Spearman correlation was used to determine the similarity
between the input image and the database images. For the Input, BestMatch (database
case whose image has the highest correlation to the input image), and Median Match
(database case whose image has the 1099th highest correlation to the input image),
the highlights of the clinical reports were recorded. Twenty image queries were
performed, and the report findings of the input imagewere comparedwith thefindings
from the closest match, and the image/report from the median match (to provide a
control). The belief is that the best match image/report will share stronger similarities
with the input image/report than that of from the median match.

3 Results

The min/mean/max of the twenty queries of the best matching case was 0.933/0.974/
0.985. The min/mean/max of the twenty queries of the median matching case was
0.861/0.947/0.968. Across the entire data set the mean correlation tested between
all pairs of images was 0.94, and over 64% of image pair correlations were above
0.95. These high correlation values were consistent with the eigen-values given in
Fig. 1, which demonstrates that the first eigen-value was considerably larger than
the rest. Despite the much lower values for the second and above eigen-values, the
corresponding eigen-images formed showed clear structure well past the first 10
components. The first four eigen-images are shown in Fig. 2. Only mild clustering
sets can be observed from the image coefficients (columns of V) indicating that
images likely provide a continuum of disease states, Fig. 3.

In all cases, the associated case reports from the best image match had stronger
similarities with the report associated with input image than the median match. All
best matches were judged to have at least good relevance to the input image, and all
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Fig. 1 Magnitude of the first ten eigen-values from SVD of 2198 brain SPECT image dataset

Fig. 2 First four eigen-images from singular values decomposition of brain SPECT dataset
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Fig. 3 Image coefficients of the 2198 brain SPECTs. First graph coefficient of the 1st component
versus the 2nd component (first two columns of matrix V). Second graph Coefficients of the 2nd
component versus the 3rd

had better relevance than the median match image. Because this is a clinical data
set, even the median match image could have relevance with the input image. For
example, many of the images were clinically judged to show at least possible signs
of Small Vessel Disease. Highlights of the input, best, and median case reports for
the first five queries are provided in Table1, together with the correlation values. The
spatially normalized input, best match, and median match images for the first query
are shown in Fig. 4. A query took approximately 1 s to determine the best match.

4 Discussion

We were successful in demonstrating a straightforward approach, which uses linear
correlation between spatially normalized images, to implement a query by image sys-
tem for brain SPECT scans. This despite the very small separation between images,
such that the mean correlation between two images was over 0.94, and over 65% of
correlations had a better than 0.95 correlation. A significant advantage of our problem
set is that spatial normalization for SPECT images is very robust. We choose corre-
lation over a voxel-wise distance, such as sum of squares, to provide a natural means
of accounting for global dose differences. We used linear correlation as a means to
provide a simple bench mark, so that future, and likely more complex methods, can
be compared to this straightforward, and well performing standard.

Singular Value Decomposition: The first eigen-image is equivalent to finding the
mean of the set of images and because of the relative size of the first eigen-value
this represents an overwhelming commonality between images, which is consis-
tent with the high overall correlation between images. Another way to view this
is that to an untrained eye, the difference between a healthy normal subject and
subject with impairment may be too subtle to be reliably observed. We believe the
second and third eigen-images (Fig. 2), which display frontal and striatal patterns,
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Table 1 First five reports of input, best and median match reports from image search

Query
number

Image class Corr. Clinical report highlights

1 Input 1 Suspicion of Lewy body disease

Moderate hypo-perfusion consistent with SVD

Best 0.970 Suggestive of diffuse Lewy body disease

hypo-perfusion consistent with SVD

Median 0.949 Suspicion of SVD

2 Input 1 Frontal hypo-perfusion

WM hypo-perfusion consistent with SVD

Best 0.932 Frontal hypo-perfusion

WM hypo-perfusion consistent with SVD

Median 0.867 Hypo perfusion left anterior temporal lobe

Possible very mild SVD

3 Input 1 Hydrocephalus present

Hypo-perfusion seen in GM supratentorially

Best 0.977 Hydrocephalus present

Hypo-perfusion seen in WM

Median 0.955 Findings suggestive of neurodegenerative disease and
consistent with Alzheimer disease

Hypo-perfusion in WM consistent with SVD

4 Input 1 Moderate pattern of multifocal WM hypo-perfusion
consistent with SVD

Best 0.978 At worst moderate SVD seen within WM

Median 0.962 Severe extensive pattern of WM hypo-perfusion. Most
consistent with neurodegenerative disease and vascular
disease

5 Input 1 Cortical changes suggestive of Alzheimer’s disease.
Widespread cerebral atrophy

WM hypo-perfusion consistent with SVD

Best 0.980 Cortical changes suggestive of Alzheimer’s disease. WM
hypo-perfusion consistent with SVD

Median 0.960 Likely Lewy body disease

WM hypoperfusion consistent with SVD

Abbreviations Small Vessel Disease (SVD), White Matter (WM)

are particularly interesting, and believe that they provide insight to global brain
impairment diseases [7]. As these components explain differences between images
beyond scaling the mean, we believe these eigen-image patterns can be eventually
used to represent the image patterns associatedwith different diseases, and ultimately
lead to a more sophisticated distance index. As there is not a relevant temporal order-
ing to the images, we did not use complex singular values decomposition, as we have
previously [8].
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Fig. 4 Notice similar frontal pattern between input and best match images. All show decreaseWM
activation, but this is predominate on median match image

Query by Image: Our method of comparing the best and median match images
demonstrated that many images in our database not only appear similar (Fig. 4), but
they also have similar diagnostic reports (Table1). This should not be surprising, and
simply demonstrates that we have a very fine covering of images for more common
disease states, while other disease states/images are rarer. This is also shown by a
range of correlation values for the median match image as well as the few sparse
clusters seen in Fig. 3. Our overall approach has obvious similarities with nearest
neighbor pattern recognition methods. Indeed, we believe future methods could rely
on classification measures internally used in various pattern recognition methods
such as Stochastic Discrimination [9, 10].

We used a similar number of query trials as Cheng et al. [1], however we made
use of a control image findings by listing the highlights of the clinical report of the
median image, whereas Cheng et al. used raters to rate the findings as relevant or not.
Given the tight clustering of most images (Fig. 3), and the high mean correlation of
images, a similar approachwould be unfairly lenient because there aremany common
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elements within a large fraction of the image database—such as the many reports
that are consistent with Small Vessel Disease (Table1). Our approach instead used
a control by reporting the findings of the clinical report of the median match image.
The commonalities of both the best and median match images allow the reader to
see how some image traits are more prevalent than others. For example in our first
query (Table1), we see that Lewy Body Disease was in common between the best
match and input image (but not the median match image), but all three reports had
mention of small vessel disease.

Future Directions: Our approach gives a straight forward way to better utilize our
database of SPECT images by opening a new line of searching for commonalities
between scans. We believe that weighted correlations and correlations limited to
specific regions represent promising next steps, alongwithmore complicatedmetrics
that can be borrowed frompattern recognition approaches. Regardless of the specifics
of a next approach, the linear correlation approach described here provides an easy
to implement benchmark that new approaches can be tested against.
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Age-Related Glucose Metabolism
Changes in Brain

Xiaoyan Shen, Zhiliang Liu, Zhenghui Hu and Huafeng Liu

Abstract Normal aging is associated with a progressive decline in cognitive per-
formance, including perception, attention, language and memory. Cerebral glucose
metabolism is a reliable index of neural activity and may provide evidence for brain
function in healthy adults. To explore the metabolic topography of brain with nor-
mal aging, we studied the correlation between cerebral glucose metabolism and
age under the resting-state in male and female groups respectively with position
emission tomography (PET). In addition, many studies about brain network have
suggested that normal aging is associated with alterations in coordinated patterns of
the large-scale brain functional and structural systems. However, age-related changes
in functional networks constructed via PET data are still barely understood. Here,
large-scale functional networks in younger and older age groups were constructed
by computing the partial correlation matrices of the regional mean intensity values
from PET data to investigate the brain functional topological properties.
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1 The Metabolic Topography of Normal Aging

It is nowwell established that normal aging is associatedwith a progressive decline in
cognitive performance, including perception, attention, language andmemory [1–4].
Although the causes of age-related cognitive decline remain elusive, many studies
point out that the normal aging is accomplished by a decline of synaptic activity,
which may impact the cognitive functions [5–9]. Parkin et al. [7] and Miller et al. [5]
found that age-related memory deficits were associated with a decreased neuronal
activity in frontal and temporal lobes, and the influences of hippocampal synaptic
activity on memory impairment had also been observed by Geinisman et al. [9].
Moreover, Pardo et al. [6] reported a positive correlation between the neuron activity
in the prefrontal lobe and semantic fluency. Therefore, understanding age-related
brain activity changes is essential for assessing the elderly presenting with cognitive
complaints and preventing potential cognitive impairment with aging.

In the resting state, the level of cerebral glucosemetabolism is considered as a reli-
able index of neural activity [10]. Synapses are the key sites for information transfer
between neurons in the brain. Phelps et al. [11] studied the cerebral metabolic rate
of glucose in resting state and found that up to 75% of the glucose consumption in
the brain was used to maintain a baseline synaptic activity. Therefore, measuring the
resting cerebral glucose metabolic with PET is available for detecting age-related
brain activity changes. In the past few years, considerable efforts have been done
in studying the age-related brain activity changes by measuring the resting cere-
bral metabolic rate of glucose with [18F] fluoro-2-deoxyglucose (FDG)-PET and
an age-related glucose metabolism decline prominently appears in the frontal lobe
[6, 10, 12–15].

However, previous reports about the relationship between the regional cerebral
glucose metabolism and age are discrepant in a number of brain areas, sometimes
conflicting. For example, one study indicated a decreased glucose metabolism with
age in the thalamus [6], while Willis et al. reported an increased glucose metabolism
in the same region [15]. The divergence in results may be due to the different method-
ologies, screen criteria and range of subject ages, especially the sample size which
is one of the key issues to obtain consistent, statistical results. On the other hand,
most early studies on age-related glucose metabolism use region of interest (ROI)
analysis [14, 16–23]. In recent years, voxel-based quantitative analysis methods such
as statistical parametric mapping (SPM) have been widely used [6, 10, 15]. SPM
offers a statistical mapping of whole brain by an automated and voxel-based analysis,
which helps to detect the areas missed in region of interest (ROI) analysis and avoid
subjectivity variation. Here, we used resting state FDG-PET data from a large sample
of health adults (in total 234 subjects) across a wide range of age, analyzed by SPM
to identify the correlation of the regional cerebral glucose metabolism changed with
normal aging. As various studies have reported the sex differences in brain function
[4, 17, 24], it is reasonable to analyze the age effects on regional cerebral glucose
metabolism for females and males separately. We expect to find a consistency effect
of aging on the regional brain activities.
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1.1 Materials and Methods

1.1.1 Subjects

We studied 234 consecutive subjects from a clinical database, and all subjects were
gavewritten informed consent for their information to be used for the future research.
The study was reviewed and approved by the ethics committee of Zhejiang Univer-
sity and the experiments were conducted according to the Declaration of Helsinki.
The subjects consisted of 108 females aged from 26 to 71years (mean ± S.D.
= 45± 10 years) and 126 males aged from 28 to 77years (mean ± S.D. = 49± 11
years). All subjects had a normal physical examination before imaging. The subjects
were selected according to the following criteria: no significant acute or chronic dis-
ease was found at the time of the study. Subjects reported no history of brain injury,
neurological illness or clinical evidence of significant cognitive decline beyond the
expected for normal aging.

1.1.2 PET Imaging

All PET investigations were performed at the Medical PET Center of Zhejiang Uni-
versity. PET images were acquired with Hamamatsu SHR 22000 whole-body PET
scanner in two-dimensional mode. The scanner has a 600 mm patient aperture and an
axial field-of-view of 225 mm, which can cover the whole human head. The spatial
resolution of the scanner is 3.2 mm full width at half maximum (FWHM) in axial
plane and 3.5 mm FWHM in sagittal or coronal plane. A 10-min transmission scan
was performed before the emission scan using a 68Ge source for attenuation correc-
tion. All subjects rested in a quiet, dark room with eyes closed and ears open for 40
min after 333–444MBq (9–12mCi) FDGwas injected intravenously. Then emission
scans were acquired under the resting state (lying quietly with eyes closed) for 8 min.
PET images were reconstructed with a ramp filter to the Nyquist frequency, using
the maximum-likelihood expectation maximization (MLEM) algorithm.

1.1.3 Data Analysis

The tissue concentration of FDG can be calculated from the pixel intensity values of
the PET images as described by Kumar et al. [25] The regional cerebral metabolic
rates for glucose were derived form the relationship between the tissue concentra-
tion and the integrated plasma levels of FDG by using a modified Sokoloff equation
[26]. Therefor, the regional cerebral metabolic rates for glucose can be represented
by pixel intensity values of the PET images, which can be quantitatively used for
statistical analysis. PET images were analyzed using matlab 6.5 (MathWorks Inc.,
Notich, MA, USA) and Statistical Parametric Mapping (SPM5, Wellcome Depart-
ment of Cognitive Neurology, London, UK) software. Prior to statistical analysis,
raw PET data were converted into Analyze format using ImageJ (Wayne Rasband,
National Institute ofMental Health, USA) andMRIcro software (www.mricro.com).

www.mricro.com
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All PET images were spatially normalized into the Montreal Neurological Institute
(MNI, McGill University, Montreal, Canada) standard template using SPM5. After
normalization, spatial smoothing was performed by convolution, using an isotropic
Gaussian kernelwith 12mmFWHMto increase the signal-to-noise ratio.All subjects
were separated into two groups (the female group and the male group) and analyzed
respectively. Statistical test of age effect on cerebral glucose metabolism was per-
formed through voxel-based analysis using a general linermodel (GLM). In theGLM
analysis, age was a covariate to study the relationship between glucose uptake and
normal aging. T-test was used to examine the regression coefficient. Global nuisance
effects were eliminated by including the global covariate in the general linear model.
In SPM maps, we searched the brain areas with a significant correlation using a
statistical threshold of p < 0.05, family wise error (FWE)-corrected for the problem
of multiple comparisons, with an extent threshold of 100 voxels. For the whole brain
of 228 resels, the uncorrected p values were 2.19e−4. The significant areas were
overlaid on a T1-weighted MRI image slice by slice. The MNI coordinates were
converted to the Talairach coordinates, and the Talairach Client was used for local-
ization. In order to measure the effect of age on regional cerebral glucose metabolism
quantitatively, correlation analysis were obtained by calculating the Pearson correla-
tion coefficient (r ) for each significant cluster. Scatter plotted using local maximum
activity of each cluster versus age.

1.2 Results

1.2.1 Effects of Aging on Glucose Metabolism in the Female Group

The result of one-sample t-test of correlation between glucose metabolism and age
in the female group was shown in Fig. 1. The map illustrated the regions of negative
correlation with a statistical threshold of p < 0.05 FWE-corrected and an extend
threshold of 100 voxels. Three clusters in the frontal lobe and the temporal lobe
showed the significant negative correlations: the left medial frontal gyrus (BA 9,
p < 0.001 FWE-corrected, r = 0.4837), the left inferior frontal gyrus (BA 47,
p = 0.0038 FWE-corrected, r = −0.4599) and the right superior temporal gyrus
(BA 38, p = 0.0044 FWE-corrected, r = −0.4573). More detailed information was
listed in Table1.

Figure2 showed the scatterplots of glucose metabolism in local maximum of each
cluster versus age, and a quadratic polynomial fitting was used to express a trend
of decreased glucose uptake with aging. For the left medial frontal gyrus and the
left inferior frontal gyrus, the curves were nearly horizontal before 40 years of age,
and after that the curve appears an accelerated declining trend. For the right superior
temporal gyrus, the curve remained an almost constant non-zero curvature and slow
downward trend.

In the female group, regions of positive correlation between glucose metabolism
and age were not found.
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Fig. 1 Areas of negative correlation between glucose metabolism and age in the female group. The
significant areas overlaid on a T1-weighted MRI image are displayed with a statistical threshold of
p < 0.05 FWE-corrected and an extend threshold of 100 voxels. The number of slices correspond
to the z values in Talairach coordinate system which defined form inferior to superior. Clusters 1–3
represent the left medial frontal gyrus/right cingulate gyrus, the left inferior frontal gyrus and the
right superior temporal gyrus respectively. Color scale denotes t value
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Table 1 Clusters of glucose metabolism decrease with normal aging in the female group

Cluster Region name BA Talairach coordinates
x y z (mm mm mm)

p FWE-corr r Voxels

1 Medial
frontal gyrus
(L)

9 0 43 13 <0.001 −0.4837 1263

Cingulate
gyrus (R)

32 4 23 36 0.0016 −0.4751

2 Inferior
frontal gyrus
(L)

47 −42 17 −11 0.0038 −0.4599 282

3 Superior
temporal
gyrus (R)

38 51 13 −11 0.0044 −0.4573 132

BA: Brodmann area; (x, y, z), local maximum activity of cluster in Talairach coordinate system;
p: significance level; r : Pearson correlation; Voxels: number of voxels within cluster; L: left;
R, right
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Fig. 2 Scatterplots of glucose metabolism in local maximum of each cluster versus age in the
female group. A quadratic polynomial fitting is used to express the relationship between glucose
uptake and age. a Left medial frontal gyrus, r2 = 0.23; b Left inferior frontal gyrus, r2 = 0.21; c
Right superior gyrus, r2 = 0.21
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1.2.2 Effects of Aging on Glucose Metabolism in the Male Group

Figure3 showed the areas of negative correlation between glucose metabolism and
age in themale groupwith the same threshold set as above.Areas of relative decreased

Fig. 3 Areas of negative correlation between glucose metabolism and age in the male group. The
significant areas overlaid on a T1-weighted MRI image are displayed with a statistical threshold of
p < 0.05 FWE-corrected and an extend threshold of 100 voxels. The number of slices correspond
to the z values in Talairach coordinate system which defined form inferior to superior. Clusters
1–4 represent the left superior temporal gyrus, the right superior temporal gyrus, the medial frontal
gyrus, and the caudate/left subcallosal gyrus respectively. Color scale denotes t value
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Table 2 Regions of glucose metabolism decrease with normal aging in the male group

Cluster Region name BA Talairach coordinates
x y z (mm mm mm)

p FWE-corr r Voxels

1 Superior temporal
gyrus (L)

38 −46 11 −7 <0.0000001 −0.5880 1682

2 Superior temporal
gyrus (R)

38 48 13 −11 <0.0001 −0.4998 566

3 Medial frontal
gyrus (L)

10 0 53 8 0.0021 −0.4419 531

Medial frontal
gyrus (R)

10 4 64 −8 0.0189 −0.4033

4 Caudate (L) −8 10 3 0.0090 −0.4170 282

Subcallosal gyrus
(L)

25 −2 13 −11 0.0110 −0.4134

Caudate (R) 6 12 1 0.0121 −0.4116

BA: Brodmann area; (x, y, z), local maximum activity of cluster in Talairach coordinate system; p:
significance level; r : Pearson correlation; Voxels: number of voxels within cluster; L: left; R, right

glucose uptake with age emerged bilaterally in the superior temporal gyrus (BA 38,
p < 0.001 FWE-corrected, r = −0.5880 for the left and r = −0.4998 for the
right), the medial frontal gyrus (BA 10, p = 0.0021 FWE-corrected, r = −0.4419
for the left; p = 0.0189 FWE-corrected, r = −0.4033 for the right) and the caudate
(p = 0.0090 FWE-corrected, r = −0.4170 for the left; p = 0.0121 FWE-corrected,
r = −0.4116 for the right) and in the left subcallosal gyrus (BA 25, p = 0.0011
FWE-corrected, r = −0.4134). Table2 listed the detailed information for each
cluster.

In Fig. 4, scatterplots of glucose metabolism in local maximum of each cluster
versus age were fitted with quadratic polynomial method. As shown in Fig. 4a, b,
the decline with aging in the left superior temporal gyrus was steeper than in the
right superior temporal gyrus. For each of the four clusters, the curvature of curve
increased with aging.

In the male group, significant age-related increasing in glucose metabolism was
evident in the lentiform nucleus in the right sub-lobar (p < 0.00001 FWE-corrected,
r = 0.5378) (Fig. 5, Table3). The positive correlations were also found in the left
thalamus, the left paracentral lobule (BA 5), the right middle frontal gyrus (BA 10)
and the right precuneus (BA 7). Figure6 showed scatterplots of glucose metabolism
versus age in the brain area with positive correlation.

1.3 Discussion

Age related gyral narrowing and sulcal widening can cause artifacts in glucose
metabolism. Some studies found that a decline glucose uptake with normal aging
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Fig. 4 Scatterplots of glucose metabolism in local maximum of each cluster versus age in the
male group (negative correlation). A quadratic polynomial fitting is used to express the relationship
between glucose uptake and age. a Left superior temporal gyrus, r2 = 0.35; b Right superior
temporal gyrus, r2 = 0.25; c Left medial frontal gyrus, r2 = 0.20; d Left caudate, r2 = 0.17

becomes insignificant after taking the partial volume effects into account [27, 28].
However, the structure atrophy is not able to fully explain the age related declines
in glucose metabolism. First, studies that investigated the cortical changes across
the life span showed a prominent atrophy in the prefrontal cortex, while the cortical
thinning in the temporal cortex was noted to a less extent [29, 30]. Furthermore, in
the frontal cortex, the age effects on structural atrophy [29] showed a different pattern
from the age effects on hypometabolism in our study (Figs. 2 and 4). With increasing
age, gray matter intensity declines quickly before 40 years of age and then remains
relatively stable [29], while in our study the glucose metabolism keep stable before
age 40 and then acceleration decrease. This suggests that the results we reported at
least partially reflect the declines in glucose metabolism.
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Fig. 5 Areas of positive correlation between glucose metabolism and age in the male group. The
significant areas overlaid on a T1-weighted MRI image are displayed with a statistical threshold of
p < 0.05 FWE-corrected and an extend threshold of 100 voxels. The number of slices correspond
to the z values in Talairach coordinate system which defined form inferior to superior. Clusters 1–5
represent the right lentiform nucleus, the left thalamus, the left paracentral lobule, the right middle
frontal gyrus and the right precuneus respectively. Color scale denotes t value

In our analysis of the resting-state PET images, the glucose metabolism in the
frontal lobe declines with normal aging in both the female and the male groups.
It is consistent with the results of prior studies which have also used a voxel-based
analysis [6, 13, 15]. The frontal lobe plays a key role in reasoning, planning, language,
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Table 3 Regions of glucose metabolism increase with normal aging in the male group

Cluster Region name BA Talairach coordinates
x y z (mm mm mm)

p FWE-corr r Voxels

1 Lentiform nucleus
(R)

22 −15 3 <0.00001 0.5378 460

2 Thalamus (L) −16 −14 −1 <0.001 0.4802 289

3 Paracentral lobule
(L)

5 −16 −29 47 <0.001 0.4738 222

4 Middle frontal
gyrus (R)

10 28 47 −2 <0.001 0.4594 131

5 Precuneus (R) 7 20 −46 43 0.0055 0.4257 110

BA: Brodmann area; (x, y, z), local maximum activity of cluster in Talairach coordinate system; p:
significance level; r : Pearson correlation; Voxels: number of voxels within cluster; L: left; R, right

attention, emotions and movement [6, 31, 32]. The decline of glucose metabolism
with normal aging in the frontal lobe may explain why the mental efficiency reduces
in the elderly.

The decline of glucose metabolism in the superior temporal gyrus with aging is
significant in both sexes. Willis et al. [15] reported a similar correlation in cerebral
glucose uptake with aging. Comparing the Fig. 2c with Fig. 4c, d, we find the decline
trend of glucose metabolism in the male group is faster than in the female group
in the temporal lobe. In prior MRI studies, Murphy et al. [17] and Gur et al. [33]
reported that the age-related brain atrophy in men is greater than in women, which
may explain the result obtained in our statistical analysis. Another interpretation for
this sex-related variance is that men tend to be more prone to age-related cognitive
decline than women. However, more experiments are needed to further clarify this
conclusion.

Another observedphenomenon from this study is the asymmetryof themetabolism
decline in frontal and temporal lobes, which is predominant in the male group. As
described in Figs. 1 and 3, the metabolism decline with normal aging in the left cere-
brum shows greater significance and larger range compared with the right cerebrum.
This result may provide additional evidences to support the model of HAROLD
(hemispheric asymmetry reduction in older adults) [34, 35]. HAROLD model states
that younger adults show a prominent lateralization of cerebral function in the frontal
lobe, but the activity during cognitive performance trends to bemore bilateral in older
adults, which also happens in the temporal and parietal lobes [36]. According to the
research by Reuter-Lorenz et al. [37], the elders who displayed a bilateral pattern of
activity had a better performance in the verbal working memory task.

A negative correlation between glucose metabolism and age in the caudate is
observed in the male group with a less significance relatively. It has been reported
by Kawachi et al. [38] in females, however, not in males. The caudate nucleus is a
small structure that is located in the subcortical region of the brain. A moderate age-
related atrophy of the caudate was studied by [24] using MRI images. The decrease
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20 30 40 50 60 70 80
3800

4000

4200

4400

4600

4800

5000

5200

5400

5600

Age (years)

G
lu

co
se

 m
et

ab
ol

is
m

Middle frontal gyrus (R)  (r2=0.21)(d)
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Fig. 6 Scatterplots of glucose metabolism in local maximum of each cluster versus age in the
male group (positive correlation). A quadratic polynomial fitting is used to express the relationship
between glucose uptake and age. a Right lentiform nucleus, r2 = 0.29; b Left thalamus, r2 = 0.23;
c Left paracentral lobule, r2 = 0.22; d Right middle frontal gyrus, r2 = 0.21; e Right precuneus,
r2 = 0.18
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of glucose metabolism with age in the caudate will be resulted by partial volume
effects of PET due to the limited spatial resolution.

In the male group, the regions of the lentiform nucleus, thalamus, paracentral
lobule, middle frontal gyrus and precuneus show the positive correlation between
glucose uptake and age from our studies. The phenomenon can be explained for
an increase in activity in these regions to compensate for the other regions of
neuron dysfunction or loss. Scarmeas et al. [39] suggested that the age-related
increase of metabolism in some regions may be interpreted to compensate for the
regions of metabolism decline to cope with the decrease of brain function in a mem-
ory condition. The functional preserve is the ability as well as in the resting state. The
other interpretation for this aging effect is the different patterns of task performance
between the youth and the elderly [31]. As described in the results section, we didn’t
found regions with positive correlation in the female group. In this study, a statistical
threshold of p < 0.05 FWE-corrected and an extend threshold of 100 voxels were
used for image display and region estimate. When we relax any of these conditions
of use, regions with positive correlation appears in the female group. This indicates
that both sexes have similar patterns of age-related glucose metabolism but different
significance level.

Several limitations of this study should be illustrated. First, as described above, the
partial volume effect ignored in this study is a confounding effect in analysis of age-
related changes in the metabolism. Another issue is that estrogen use may influence
cerebral glucose metabolism in adults [40]. Rasgon et al. found that estrogen use
may protect cerebral metabolic from decline in postmenopausal women. We do not
exclude the women with estrogen use in this study, which should be considered in
the analysis of our results in the female. Further analysis of handedness effects on
brain symmetry of glucose metabolism decline are needed to determine whether this
is a factor. In addition, since all of the data derived from clinical database, we were
unable to take cognitive performance test such as MMSE for each subject at this
stage. It will be considered in the future work.

2 Functional PET Brain Network with Normal Aging

Function decline and organs aging is an inevitable physiological law of life. As
one of the most important organs, aging brain tends to produce some specific alter-
ations in morphological, physiological pathology and functional aspects. It is well
known that normal aging is associated with a progressive decline in cognitive perfor-
mance, including perception, attention, language and memory [3, 4, 41, 42]. Mean-
while, normal senescence is also highly related to some specific encephalopathies,
such as Alzheimer’s disease (AD) [43] and Parkinson’s disease (PD) [44]. There-
fore, aiming to assess the declining cognitive ability and supply a guiding for age-
related encephalopathy in clinical, it is necessary to deeply understand the age-related
changes in healthy brain.
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An emerging approach for studying human brain system is graph theory which is
represented by a set of nodes and links. It has been widely adopted to quantify com-
plex system, e.g., in social sciences, biology or technology [45, 46]. The functional
and structural systems of the human brain reveal age-related topological properties
of complex networks, such as small-world characteristics, highly connected hubs,
modularity, and network robustness [45–49]. Small-world properties, characterized
by a high degree of clustering and a short average distance between any two nodes
[50, 51], were analysed to reveal age-related global and local efficiency of infor-
mation transfer in brain system. Some recent studies reported that, along with the
normal aging, small-world network showed changed topological efficiency [48, 52–
54]. For instance, a recent study on functional brain networks suggested that an older
age group showed significantly reduced cost efficiency in comparison to a younger
group [55]. A similar degeneration process of economical small-world networks was
also found in a previous study about AD [56, 57]. Furthermore, changes in modu-
lar organization of human brain networks were proven to be associated with normal
aging [47, 53]. Simultaneously, highly connected hubs are alteredwith normal aging,
which has been reported in some previous studies [45, 47]. In addition, previous stud-
ies also found that normal aging processes significantly affect default mode network
(DMN) [58–61], which is typically deactivated during external stimulation [62, 63].
Thus, a gradually forming evaluated system of brain networks with neural imaging
technologies was adopted in assessing the aging brain and provided a guiding for
age-related encephalopathy in clinical [45, 46].

However, up to now, few studies have constructed functional network via positron
emission tomography (PET) data. Compared with other functional signals, PET can
offer amore immediate way to indicate brain activity by offering the index of cerebral
glucose metabolism. Here, for evaluating the age-related brain changes in normal
individuals, the large-scale human brain functional networkwas constructed by node,
defined as regional average cerebral glucose metabolism from PET data. Four main
reasons indicate that the definition is reasonable and effective for assessing age-
related brain functional changes. Firstly, during the resting state, the level of cerebral
glucosemetabolism is considered as a reliable index of neural activity [64]. Secondly,
synapses are considered as the key sites for transferring information betweenneurons,
and up to 75% of the glucose consumption in the brain is used to maintain a baseline
synaptic activity [11]. Thirdly, many studies have reported that the normal aging is
accomplished by a decline of synaptic activity, which impacts the cognitive functions
[6, 8]. Lastly, effective connectivity between PET regions has been found in previous
studies [65, 66]. Thus, the definition of PET nodes can provide a complementary
and convincible way to improve the evaluation of brain functional networks.

In the present study, large-scale functional networks (90 regions) in two age groups
(110 older subjects, 113 younger subjects) were constructed by computing the partial
correlationmatrices of the regionalmean intensity values fromPETdata. Afterwards,
we investigated the brain functional topological properties, including small-world
characteristics, hub regions and network robustness, revealing the brain functional
changes associatedwith normal aging.Methodological robustness in the construction
of PET network was also assessed.
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2.1 Materials and Methods

2.1.1 Subjects

Two hundred and twenty-three healthy human subjects were selected from a physical
examination database, and written informed consents for the future research were
obtained from all subjects. They were separated into two age groups, 110 older sub-
jects aged 51–65 years (mean age = 56.3 years, 73 male) and 113 younger subjects
aged 26–40 years (mean age = 36.5 years, 73 male). Health status of all subjects
were evaluated with a normal physical examination before imaging. Individuals with
significant chronic or acute disease were excluded from subjects. Other criteria of
subjects physical condition were as follows: nativeMandarin Chinese speaker, right-
handed, same average education years, no history of neurological disease, no brain
trauma or clinical evidence of cognitive impairment.

2.1.2 PET Data Acquisition

All PET investigations were implemented with Hamamatsu SHR 22000 whole-body
PET scanner system located at the Medical PET Center of Zhejiang University. The
spatial resolution of the scanner is 3.5 mm full width at half maximum (FWHM) in
sagittal or coronal plane and 3.2mmFWHM in axial plane. There is a 600mmpatient
aperture and an axial field-of-view of 225 mm in the scanner, which can deal with
the whole head. A 68Ge source for attenuation correction was used in the emission
scan after a 10 min transmission scanning. All subjects were injected intravenously
with 333–444 MBq (9–12 mCi) fluorodeoxyglucose (FDG) before resting in a dark,
quiet room with ears open and eye closed for 50 min. Then each subject was scanned
lying quietly at rest with eyes closed for 8 min. Nyquist frequency was acquired,
after a ramp filter with the maximum-likelihood expectation maximization (MLEM)
algorithm was used in reconstructions of PET images. Additionally, the acquisitions
were performed with the approval of the Health Science Research Ethics Committee
of Zhejiang University.

2.1.3 PET Data Preprocessing and Regional Parcellation

After using ImageJ (Wayne Rasband, National Institute of Mental Health, USA)
and MRIcro software (http://www.mricro.com), Analyze Formats were acquired
from raw PET data. Then the preprocessing was performed using matlab 6.5 (Math-
Works Inc., Notich, MA, USA) and Statistical Parametric Mapping (SPM5, Well-
come Department of Cognitive Neurology, London, UK) software. Each data was
normalized into the Montreal Neurological Institute (MNI, McGill University, Mon-
treal, Canada) standard template using SPM5. An isotropic Gaussian kernel with 8
mm FWHMwas used in spatial smoothing to increase the signal-to-noise ratio after

http://www.mricro.com
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normalization. Then the proportional scaling was used for the intensity normaliza-
tion [67–69]. Regional parcellation was completed using the anatomically automatic
labeled (AAL) template image previously validated by Tzourio-Mazoyer et al. [70].
The brain was divided into 90 anatomical regions of interest (45 regions for each
hemisphere) using this parcellation. Then we calculated mean intensity values of
each region which represented the regional cerebral metabolic rates for glucose.

2.1.4 Partial Correlation Analysis

The functional connection was defined as statistical associations in the intensity val-
ues across subjects. Such a connection concept has been introduced by the previous
studies [71, 72]. It is reasonable to investigate brain functional systems (networks)
by calculating connectivity of the PET regions, since effective connectivity between
PET regions has been found previously [65, 66]. So, the analytical procedure was
performed by analysing the regional relation obtained above. The interregional corre-
lationmatrix Pi j (i, j = 1, 2, . . . , n, here n = 90) of each group (Fig. 7)was acquired
by calculating the partial correlation coefficients across individuals between themean
intensity value of every pair of regions. The conditional dependences of arbitrary two
regions partialled out the effects of the other 88 regions defined in the AAL template
were represented by the partial correlations between them.

Fig. 7 The correlation matrices of two groups. The graphs show the correlation matrices acquired
by calculating partial correlations (left for the older group and right for the younger group). The
color bar in the middle indicates the partial correlation coefficient between regions. The rank and
row successively represent the 90 brain regions (see Table 8 (Appendix))
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Fig. 8 The binarized matrices (S = 16%) of two groups. The graphs show the binarized matrices
(left for the older group and right for the younger group) which are generated by setting threshold
to the correlation matrices. The rank and row successively represent the 90 brain regions (see Table
8 (Appendix)). Such a threshold (S = 16%) ensures that the networks of both of the groups have
the same number of nodes and links, and also show changed efficiency of information transfer (C p ,
L p , Eglobal ). In this graph, white and black indicate the 1 and 0

2.1.5 Construction of Functional Network

According to the prior studies [45, 67], functional networks of both groups could
be acquired from their partial correlation matrices. The partial correlation matrix of
each groupwas converted into a binarizedmatrix Bi j [ bi j ] (Fig. 8) by setting a thresh-
old. Element of Bi j was 0 if the absolute value of the correlation between regions
i and j was smaller than given correlation threshold and 1 otherwise. Topological
organization of the human functional networks was represented by the binary matri-
ces. Then a binary graph theoretical analysis [45, 46]was performed in the following.

2.1.6 Graph Theoretical Analysis

Sparsity selection. To perform a graph theoretical analysis, the binarized matrix Bi j

is described as a network (graph) G defined by n nodes and k edges, where nodes
indicate regions and edges indicate undirected links between regions according to
nonzero elements of Bi j . A fixed sparsity S of each network, which was defined as
the total number of edges k in a graph divided by the maximum possible number
of edges, would be calculated after its correlation matrix was thresholded into the
binarized matrix. It was stated briefly that same correlation threshold would lead to
different number of edges (k, or S) between the both resulting graphs because of
the difference in the low-level correlations (see Fig. 7). Therefore, alterations in the
topological organization would not be solely reflected by the between-group differ-
ence in network parameters. Hence, a sparsity-specific threshold was set to ensure
that the both undirected graphs had the same number of edges (k) or wiring cost



174 X. Shen et al.

[55, 56]. Because a single and definitive threshold could not be selected currently,
graphs with wide range of sparsity (10% < S < 50%) was generated by repeatedly
thresholding each correlation matrix, then properties of them were estimated at each
threshold value. Then small-world parameters between the two groups were com-
pared as a function of independent sparsity of the precise selection of threshold. The
range of sparsity (10% < S) also ensured that every nodal pairs in both graphs had
a connecting path (mentioned below) [73]. Then we estimated network properties
including clustering coefficient, path length, global efficiency, nodal centrality and
network robustness in the following steps.

Clustering coefficient. A cluster of node i is formed by directly connected nearest
neighbours of the node [45]. Clustering coefficient Ci of a node i quantifies the
number of connections existing in the cluster as a proportion of maximum possible
connections [50]. C p (Fig. 9) of a network is defined as the average of Ci over all
nodes in a network and indicates the extent of local cliquishness or local efficiency
of information transfer [50, 51].

Path length and global efficiency. Path length Li j between node i and node j is
defined as theminimumnumber of edges traversed fromnode i to node j . L p (Fig. 10)
is defined as the average Li j of the all pairs nodes of the network and quantifies the
ability of global efficiency of parallel information transfer [51]. Global efficiency
(Eglobal , Fig. 11) inversely related to L p but numerically easier to indicate the global
efficiency of parallel information transfer was also estimated. Eglobal measure is
Eglobal = 1

n(n−1)

∑
i �= j /∈G

1
Li j

, Li j means the path length of the node i and node j . Of

Fig. 9 Clustering coefficient (C p) as a function of sparsity. The graph shows that, at a wide range
of sparsity (10% < S < 50%), the older subjects (red line) have larger C p value than the younger
subjects (black line)
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Fig. 10 Path length (L p) as a function of sparsity. The graph shows that two groups have same
L p value when sparsity ranges from 33 to 50% and the older group (red line) have larger L p at
10% < S < 33%

Fig. 11 Global efficiency (Eglobal ) as a function of sparsity. Eglobal is numerically easier to indicate
the global efficiency than L p (see Materials and Methods). As the sparsity thresholds increase from
10% to 33%, Eglobal of both groups increase, and younger subjects (black line) have larger Eglobal
values. At high sparsity threshold (33% < S < 50%), two groups show equal Eglobal values

note, the problem about the definition of L p caused by nodal pairswithout connecting
path, can been eliminated by the range of sparsity (10% < S, mentioned above).

Small-world analysis. In this study, small-world properties of networks in two
groups were examined according to the C p and L p measured in the above steps.
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Fig. 12 Small-world parameters of networks. The graphs show the changes in δ (red line), γ (green
line) and λ (blue line) in the networks of older (left panel) and younger (right panel) groups as a
function of sparsity thresholds. At a wide range of sparsity, both networks have δ > 1, that implies
prominent small-world properties (see Materials and Methods). Note that, as the values of sparsity
thresholds increase, the δ and γ values decrease rapidly, but the λ values decrease rapidly when
sparsity range from 10 to 30% then change slightly

A small-world network should meet the following criteria: λ = Lreal
p /Lrand

p ≈ 1
and λ = Creal

p /Crand
p > 1 [50], or σ = γ /λ [74, 75] (see Fig. 12), where the Lrand

p

and Crand
p are the mean path length and clustering coefficient of 1000 suitable ran-

dom networks with the same number of nodes, edges, and degree (the degree ki of
a node i is the number of connections to that node) as the real network [50, 76].
Random graphs were generated by the random rewiring procedure [77, 78].

Betweeness centrality. The centrality (Bi ) of node i is defined as the number of the
shortest paths between all other node pairs pass through it [79]. A node with high
value Bi is crucial to efficient communication in the network and is considered as
the hub of the network [45]. Here Bi was calculated by using theMatlabBGLpackage
(http://www.stanford.edu/~dgleich/programs/matlab_bgl/). Then normalized
betweenness (bi = Bi/B, see Fig. 13) wasmeasured to estimate nodal characteristics
of the networks, where B was the average Bi over all nodes in the network.

Network robustness. In this step, a simple analysis about network robustness was
performed. Network robustness associated with the stability of a complex network
refers to the degree of tolerance against random failures and targeted attacks [45]. In
the current studies, robustness (tolerance) of the networks was investigated through
removing nodes in the networks [75, 80, 81]. Firstly, to test the the nodal failure
tolerance, one node was removed from the networks and changes in the size of
the largest connected component were measured. Then other nodes were removed

http://www.stanford.edu/~dgleich/programs/matlab_bgl/
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Fig. 13 Betweenness centrality (bi ) of two groups. The below graph shows the comparison (red bar
for younger group andblue bar for older group) of normalizedbetweenness (bi ) in eachnode (region)
between two groups. The upper graph shows the regional changes (Δbi ,Δbi = biolder −biyounger )
in normalized betweenness (bi ) between two groups. The regions labeled in the upper graph indicate
significant changes in bi between two groups (see Table7). Note that these results were obtained
from the brain networks with a sparsity of 16%. Regions in networks of two groups showing high
bi value (bi > 2.0) have been listed in the Tables5 and 6

sequentially at random (Fig. 14). To address the attack tolerance, the above processes
were repeated but we removed the nodes of high bi value in the targeted position
(20 nodes of high bi value were removed from N O.21 to N O.40 in abscissa axis,
showed in Fig. 14). To investigate the comparison of the network robustness between
two groups, the procedureswere repeated 1000 times for the networks of both groups.
Then we calculated the mean relative of largest component (Fig. 14). Additionally, in
order to investigate statistical differences, the 95 percentile points of each distribution
were used as the critical values for a two-tailed test of the null hypothesis with a
probability of type I error of 0.05, with every number of the removed nodes under
two attacks.

2.1.7 Statistical Analysis

Correlation differences in statistical analysis. It is necessary to validate the sig-
nificance difference of these correlations in two groups with statistical analysis of
correlations between4005pairs of regions. The Z values approximately normally dis-
tributed were generated from correlation coefficients, after Fishers r -to-z transform.
Then the transformed z values were compared by A − Z statistic to determine the
significance of the between-group differences in correlations [82]. A false discovery
rate (FDR) procedure [64] was performed to adjust to the the multiple comparisons
at a q value of 0.05.
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Fig. 14 Topological robustness in networks of two groups. The graphs show the relative size of the
largest connected component as a function of the fraction of removed nodes by random failures or
targeted attacks. As the response to random failures (left panel), the brain network in the older group
(red line) is approximately as robust as that in the younger group (black line). Right graph shows
that the older network displays remarkably reduced stability against targeted attack compared with
the younger. Additionally, the statistical significant differences (p < 0.05) of two groups was found
with the ranges of 23 < NO.node < 35 and 40 < NO.node < 45 in the right graph

Statistical differences in topological parameters. A nonparametric permutation
test method was applied to determine statistical significance of the between-group
differences. First of all, C p, L p, Egobal and bi of the two-groups networks with a
given sparsity were separately computed. Secondly, to test the null hypothesis that
the group differences might occur by chance, we then randomly reallocated each
individual set of regional cerebral glucose metabolism to one or the other of the two
groups. Thirdly, after recomputing the correlation matrix and obtaining binarized
matrix, we recalculated the network parameters for each randomized group, using
the same method. Lastly, this randomization procedure was repeated 1000 times and
the 95 percentile points of each distribution were used as the critical values for a
one-tailed test of the null hypothesis with a probability of type I error of 0.05. Then
the procedure was repeated at every sparsity threshold value of the networks.

2.1.8 Methodological Robustness Analysis

It is necessary to test the methodological robustness in the construction of networks,
because thePETnetworks are barely constructed by calculating the partial correlation
matrices. In this study, the methodological robustness was estimated by reducing
sample size in each group. Firstly, 5 individuals were separately removed from the
both groups at random, to test methodological robustness against the reductions of
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(a) (b)

(c) (d)

Fig. 15 Small-world properties in smaller-sample networks. a and b, The graphs show the small-
world parameters (δ, γ and λ) of smaller-sample networks in older (a) and younger (b) groups. At
a wide range of sparsity, both networks have δ > 1, that implies prominent small-world properties
(seeMaterials andMethods). c This graph shows that older subjects (red line) have larger C p values
than the younger subjects (black line). In the original networks, similar result of C p was also shown
in Fig. 9. d This graph shows the global efficiency (Eglobal ) as a function of sparsity. As the sparsity
thresholds increase from 5 to 30%, Eglobal of both groups increase and younger subjects (black
line) have larger Eglobal values

samples size in both groups. It is noted that quantities (5 nodes) of the removal
individuals are limited by the size of the whole sample. After the above step was
repeated 50 times, the mean smaller-sample networks (105 in older group and 108
in younger group) were obtained. As a comparison to the former networks, the
small-world parameters (λ,γ and δ, see Fig. 15a, b), global efficiency (Fig. 15d)
and local efficiency (Fig. 15c) in smaller-sample networks were calculated via the
above methods. Furthermore, in order to determine statistical significance of the
neo-networks differences, the nonparametric permutation test method was applied
on C[ p] and Egobal . Methodological robustness was analysed by comparing the
small-world properties between networks with different samples.

2.2 Results

2.2.1 Correlations of Regions in Two Groups

As is shown in Fig. 7, the interregional correlation matrices represent complex
correlation patterns of both age groups. Statistical analysis further demonstrates
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significant between-group correlation differences (p < 0.05, FDR-corrected) in
various pairs of regions (Table4). For instance, older subjects are found to show
increased positive correlations in various pairs of cortical regions involved in the
frontal, precentral and postcentral. In addition, decreased positive correlations in
older group are observed in pairs of regions including hippocampus, amygdala. We
also note several changed negative correlations in the older group. All pairs of regions
with significant between-group changed correlation coefficients are listed in Table4.

2.2.2 Small-World Topology Functional Networks

It has been demonstrated in the previous studies [67, 76, 83] that functional network
of humans has small-world characteristics. In a small-world network, the nodes of the
network have larger local interconnectivity than a random network, but the shortest
path length between any pair of nodes is approximately equivalent to a comparable
random network [50]. The small-world attributes of the functional networks in two
age groups were also examined in the current study. As expected, both functional net-
works demonstrate small-world characteristics (Fig. 12, left for older group and right
for younger group, δ > 1 red line) over a wide range of sparsity (10% < S < 50%).
Compared with the matched random networks, they have larger local cliquishness
(γ > 1, green line) but an almost identical path length (λ ≈ 1, blue line). Using
computational modeling simulation approaches, Sporns et al. [84] propose the emer-
gence of small-world topology when networks are evolved for high complexity of
dynamic behavior defined as an optimal balance between global integration and local
specialization. Therefore, our findings additionally support hypothesis that human
brain has evolved into a complex but efficient neural architecture to maximize the
power of information processing [76, 85].

2.2.3 Different Small-World Parameters Between Two Age Groups

As shown in Fig. 9, clustering coefficient (C p) in networks of older group (red line
in Fig. 9) are larger than those of younger group (black line in Fig. 9) over a wide
range of sparsity (10% < S < 50%). Global efficiency (Fig. 11) in networks of
younger group (red line in Fig. 11) are larger than those of older group (black line in
Fig. 11), when sparsity ranged from 10% to 33%. Both groups show different small-
world parameters, reduced global efficiency (Eglobal , Figs. 10 and 11) and increased
local cliquishness (Fig. 9) in older group. Additional statistical analysis also reveals
significant differences (p < 0.05) in the Cp values at 10% < S < 50%, Lp values
at 11% < S < 25% and Eglobal at 11% < S < 25%. These results imply that
older subjects are probably related to the loss of small-world characteristics in the
large-scale functional brain systems. In addition, approximate results were obtained
in previous studies about normal aging and even AD [54, 56, 57, 67].
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Table 4 Comparisons of correlation between two groups

Regions Correlation, r , (Z )

Young Old

Increased positive correlation in older group

Left orbitofrontal cortex
(middle)

Left supplementary motor
area

−0.15(−0.15) 0.66(0.79)

Left orbitofrontal cortex
(superior)

Right inferior parietal
lobule

−0.08(−0.08) 0.72(0.91)

Left orbitofrontal cortex
(middle)

Right orbitofrontal cortex
(inferior)

0.03(0.03) 0.57(0.65)

Left orbitofrontal cortex
(middle)

Left orbitofrontal cortex
(superior)

0.04(0.04) 0.56(0.63)

Left orbitofrontal cortex
(middle)

Left olfactory 0.03(0.03) 0.57(0.65)

Left precental gyrus Left supplementary motor
area

0.02(0.02) 0.62(0.73)

Right precental gyrus Right supplementary motor
area

0.13(0.13) 0.65(0.78)

Left inferior frontal gyrus
(opercular)

Right supplementary motor
area

0.01(0.01) 0.53(0.59)

Right orbitofrontal cortex
(middle)

Left superior frontal gyrus
(medial)

0.12(0.12) 0.64(0.76)

Left olfactory Left superior frontal gyrus
(medial)

0.04(0.04) 0.60(0.69)

Left inferior frontal gyrus
(triangular)

Right inferior parietal
lobule

0.09(0.09) 0.64(0.76)

left postcentral gyrus Left supramarginal gyrus 0.10(0.10) 0.61(0.71)

Decreased positive correlation in older group

Left hippocampus Left amygdala 0.72(0.91) −0.13(−0.13)

Left superior frontal gyrus
(dorsal)

Left middle frontal gyrus 0.62(0.73) −0.23(−0.23)

Right rolandic operculum Right precuneus 0.58(0.66) 0.06(0.06)

Increased negative correlation in older group

Right orbitofrontal cortex
(inferior)

Left supplementary motor
area

0.01(0.01) −0.65(−0.78)

Right inferior frontal gyrus
(triangular)

Left superior frontal gyrus
(medial)

0.11(0.11) −0.64(−0.76)

Left orbitofrontal cortex
(middle)

Left posterior cingulate
gyrus

−0.03(−0.03) −0.62(−0.73)

Left orbitofrontal cortex
(middle)

Right inferior parietal
lobule

−0.14(−0.14) −0.66(−0.79)

Left orbitofrontal cortex
(middle)

Left middle occipital gyrus −0.01(−0.01) −0.53(−0.59)

Left orbitofrontal cortex
(middle)

Right putamen −0.04(−0.04) −0.57(−0.65)

(continued)
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Table 4 (continued)

Regions Correlation, r , (Z )

Young Old

Right middle occipital gyrus Right precuneus −0.08(−0.08) −0.59(−0.68)

Left thalamus Right orbitofrontal cortex
(middle)

−0.08(−0.08) −0.61(−0.71)

Left thalamus Left olfactory −0.03(−0.03) −0.60(−0.69)

Left thalamus Right calcarine cortex −0.01(−0.01) −0.58(−0.66)

Right paracentral lobule Right superior temporal
gyrus

0.01(0.01) −0.56(−0.63)

Right hippocampus Left temporal pole
(superior)

0.04(0.04) −0.61(−0.71)

Left caudate Right middle temporal
gyrus

0.03(0.03) −0.56(−0.63)

Right precuneus Right Temporal pole
(middle)

0.01(0.01) −0.56(−0.63)

Decreased negative correlation in older group

Left rolandic operculum Right calcarine cortex −0.55(−0.62) −0.01(−0.01)

Left rolandic operculum Right precuneus −0.61(−0.71) −0.09(−0.09)

Left paracentral lobule Left heschl gyrus −0.54(−0.60) 0.01(0.01)

This table lists pairs of regions with significant changed coefficients (change is larger than 0.5)
between two groups. Coefficients in bold represent significant interregional association within
group. The comparison of coefficients between two groups are also shown in Fig. 7. To determine
the significance of between-group differences in correlation, a Z statistic was used in this study
(see Materials and Methods). All Z value are significant (p < 0.05, FDR-corrected)

2.2.4 Hub Regions

The functional networks were constructed at a sparsity threshold of 16% to inves-
tigate the nodal characteristics of each region in two age groups. After normalized
betweenness centrality (bi ) of each region (Fig. 13) in both networks was measured
(seeMaterials andMethods), hubswere defined as the regionswith high betweenness
centrality (bi > 2, mean + sd). In the older group, 12 regions (Table5) are identified
as the hubs because of large values in bi . In another group, 10 regions are identified as
the hubs (Table6). Our finding of some hub regions (including supplementary motor
area, left hippocampus,) is consistent with a previous brain functional network study
age-related changes [47].

2.2.5 Changed Regional Nodal Characteristics Between Two Groups

The regions (Fig. 14) with between-group changes in betweenness centrality are
examined in this study.Comparedwith the younger subjects, the older show increased
betweenness centrality (Δbi > 2) in 3 regions (ORBmid.L,ORBmid.R, INS.R, listed
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Table 5 Regions showing high betweenness (bi > 2) in the network of older group

Regions Abbreviations Class bi Degree, ki

Left orbitofrontal cortex (middle) ORBmid.L paralimbic 3.84 41

Right orbitofrontal cortex (middle) ORBmid.R paralimbic 4.27 37

Left inferior frontal gyrus (triangular) IFGtriang.L association 3.48 29

Right inferior frontal gyrus (triangular) IFGtriang.R association 2.11 24

Left supplementary motor area SMA.L association 2.23 30

Left superior frontal gyrus (medial) SFGmed.L association 2.00 23

Right insula INS.R association 2.39 24

Right calcarine cortex CAL.R primary 2.07 27

Right inferior parietal lobule IPL.R association 2.46 28

Right precuneus PCUN.R association 2.53 33

Right putamen PUT.R subcortical 2.13 29

Left thalamus THA.L subcortical 2.61 28

This table lists the hub regions (bi > 2) in the network of older group. Regions in bold show
increased normalized betweenness (bi ) in older group compared with younger group (see Table7).
ki denotes the the degree of region i . Note that these results were acquired from the brain networks
with a sparsity of 16%

Table 6 Regions showing high betweenness (bi > 2) in the network of younger group

Regions Abbreviations Class bi Degree, ki

Left inferior frontal gyrus (triangular) IFGtriang.L association 3.14 22

Left supplementary motor area SMA.L association 2.28 18

Right superior frontal gyrus (medial) SFGmed.R association 4.38 27

Right posterior cingulate gyrus PCG.R paralimbic 2.02 12

Left hippocampus HIP.L paralimbic 3.67 24

Right amygdala AMYG.R paralimbic 2.54 22

Left calcarine cortex CAL.L subcortical 2.42 29

Left heschl gyrus HES.L association 3.33 32

Right heschl gyrus HES.R association 2.03 23

Right inferior temporal gyrus ITG.R association 2.58 26

This table lists the hub regions (bi > 2) in the network of younger group. Regions in bold show
decreased normalized betweenness (bi ) in older group compared with younger group (see Table7).
ki denotes the degree of the region i . Note that these results were acquired from the brain networks
with a sparsity of 16%

in Table7) and decreased betweenness centrality in 4 regions (SFGmed.R, HIP.L,
AMYG.R,HES.L, listed in Table7). Additional statistical analysis reveals significant
differences (p < 0.05) in betweenness centrality of these regions. The changed
nodal characteristics (Δbi ) of each region are also showed in Fig. 14 (upper panel).
Together, our findings suggest that the roles of regions in managing information are
profoundly affected by age [47].
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Table 7 Regions showing significant changes in normalized betweenness (bi ) between two groups

Regions Abbreviations Normalized betweenness, bi Δbi

Old group Young
group

Increased bi in old group

Left orbitofrontal cortex (middle) ORBmid.L 3.84 0.47 +3.37

Right orbitofrontal cortex (middle) ORBmid.R 4.27 0.20 +4.07

Right insula INS.R 2.39 0.33 +2.06

Decreased bi in old group

Right superior frontal gyrus (medial) SFGmed.R 0.55 4.38 −3.83

Left hippocampus HIP.L 0.99 3.67 −2.68

Right amygdala AMYG.R 0.39 2.54 −2.15

Left heschl gyrus HES.L 0.72 3.33 −2.61

This table shows regions with changes in normalized betweenness (bi ) between two groups. Nor-
malized betweenness (bi ) in bold indicate the betweenness centrality of the hub regions which are
also showed in Tables5 and 6

2.2.6 Reduced Network Robustness in Older Subjects

Figure14 shows the network robustness of two age groups under the targeted attack
and random failures. Both groups reveal similar network robustness to the random
failures (Fig. 14). When the nodes were randomly removed, the sizes of the largest
connected component in both groups reduced steadily and approximately (Fig. 14,
left). Although network robustness of both groups reduced sharply due to the remov-
ing of 20 central nodes from N O.21 to N O.40, the younger network displayed
remarkably stability against targeted attack compared with the older (Fig. 14, right).
In addition, the statistical significant differences (p < 0.05) of two groups are only
found in the targeted-attack procedure. The specific ranges are 23 < N O.node < 35
and 40 < N O.node < 45.

2.2.7 Small-World Parameters in Smaller-Sample Networks

Figure15 shows the methodological robustness, in response to the decrease of
samples size in both age groups. In the smaller sample networks, small-world
characteristics are also revealed according to δ > 1 (red lines) shown in Fig. 15a,
b. Simultaneously, larger local efficiency (Fig. 15c) and lower global efficiency
(Fig. 15d) in older group are found in smaller sample networks. Additional statisti-
cal analysis reveals significant differences (p < 0.05) in the C p values at all range
(10% < S < 50%), and Eglobal values at 11% < S < 23%. These findings of two
groups are compatible with the former results in the original networks.
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2.3 Discussion

The current study, for the first time, demonstrates age-related changes in the topo-
logical organization of large-scale functional brain networks by utilizing PET data.
Our main results are as follows: (1) that the observed data demonstrate age-related
alterations in functional correlations among selective subsets of regions, (2) that the
global topological organization of functional networks in older subjects are disrupted
as indicated by altered small-world parameters, (3) that the regional nodal charac-
teristic (centrality) is changed in older subjects, (4) that the functional network of
older group shows reduced network robustness in response to the targeted attack, (5)
that the methods to construct the functional PET networks demonstrate reasonable
robustness.

2.3.1 Small-World Characteristics and Age-Related Changes

Our findings of high global and local efficiency in functional brain networkswith both
age groups are consistent with some previous studies [45, 55, 67, 86, 87]. Especially,
another PET study [67], which compared the properties of whole-brain functional
networks of normal, mild cognitive impairment (MCI) and AD individuals by using
FDG-PET data, has reported that brain functional PET networks of all show small-
world property. Experimental studies [88] and computational modeling simulations
approaches [84] have also proposed the emergence of smallworld topology when
networks evolved for high complexity of dynamic behavior defined as an optimal
balance between global integration and local specialization [89]. Thus, Our findings
provide additional support for the hypothesis that the human brain has evolved to
maximize the cost efficiency of parallel information processing [84, 85].

We also find age-related changes of global and local efficiency (Figs. 9, 10 and
11) in the functional networks. The network may develop into a more local and
less distributed organization, in the normal processes of brain senescence. This phe-
nomenon suggests a degeneration process with normal aging, been proposed that in
comparison to small-world networks, the lattice-like networks have a slow signal
propagation speed and synchronizability [89]. Many psychiatric and neurological
disorders described as dysconnectivity syndromes are associated with the regular
topological organization that disturbs the optimal balance of a small-world network
[90]. Previous studies have proposed the regular topological organization of brain
networks in patients with diseases such as AD or schizophrenia [56, 86]. These
convergent evidences from methodologically disparate studies suggest that both AD
and schizophrenia are related to abnormal topological organization of structural and
functional brain networks [45]. Therefore, our finding about the degeneration process
shows that normal aging has high risk for dysconnectivity syndromes.

In particular, the above results in functional brain networks are conformed to a pre-
vious study about structural brain networks [54], which the middle group (mean age
= 51 years) shows higher values in the global efficiency and lower values difference
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in the local efficiency compared with the old group (mean age = 68 years). These
evidencesmay suggest that age-related alterations in cortical functional networks can
be related to structural deficits. Honey et al. [91] have found that the spontaneous
neuronal which has been reported in some previous studies [45, 76]. It has dynamics
can be structured at multiple temporal scales, proposing a tight association between
functional and structural networks. Thus, it could be speculated that the age-related
alterations in functional networks shown here are likely to be caused by structural
impairments.

2.3.2 Betweenness Centrality and Age-Related Alterations

In a complex system, node betweenness represents an crucial metric which can be
used to determine the relative importance of a node with a network and identify
the pivotal nodes in the network [92]. As indicated above (see Results), 12 and 10
global hub regions (see Tables5, 6 and Fig. 13) are identified in the older and younger
respectively. These hub regions are mainly considered as recently evolved associ-
ation and primitive limbic regions. It has been proven in the previous study that
association regions contribute to the integrity of multiple functional systems, such
as memory and attention systems, and are mainly involved in intelligent process-
ing and maintenance of the senior spiritual activity [93]. Meanwhile, limbic regions
which are highly interconnected with the prefrontal regions and subcortical regions,
are closely related to emotion and a conscious state of mind [93]. Previous studies
have reported that identified global hubs were mainly prefrontal and parietal regions,
supplying a potential explanation for their well-documented activation by many cog-
nitive functions [45]. In this study, the frontal and parietal regions are also considered
as hub regions, especially in older group (see Tables5 and 6). Furthermore, although
the identified global hubs vary among two age groups, most of these regions are
found to show high node betweenness in the functional and structural human brain
networks [75, 88, 94, 95, 95]. In addition, it is noted that the substantial discrepancies
of identified global hubs between this study and the previous studies can be caused
by the different neuroimaging modalities, subjects characteristics and computational
methods.

Age-related alterations of hub regions (e.g., SFG and HIP) are also found in this
study (see Table5 and Fig. 14). The most of these identified hub regions are associa-
tion cortices regions (6/7 out of 10/12) in both age groups. This result is consistent
with a previous study that association cortices regions tend to be hubs of the brain
functional network regardless of age [55]. From younger group to older group, asso-
ciation cortices show significant changed node betweenness (see Tables5, 6 and 7).
These results support the view that age-related changes are characteristic of associ-
ation cortex as opposed to primary cortex [96]. We find significant changes in node
betweenness with decreasing and increasing in normal aging. This result is also sim-
ilar to the finding by a previous study which indicated both negative and positive age
effects on the regional efficiency in cortical regions [97]. Our finding is also con-
sistent with a previous study that the ageing is associated with significantly reduced
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nodal efficiency in the frontal neocortex [55]. Above results suggest that frontal
which manage movement (see Tables5 and 6) plays important roles in contacting
information of both groups, but the importance of hippocampus closely related to
mental activity is reduced in the older group, indicating the relative degradation of
the aged mental activities. The similar findings have been reported in previous stud-
ies [96, 98, 99]. Overall, our finding demonstrates age-related changes in the nodal
ability to manage information flow of PET networks.

In addition, PET investigations have revealed that the precuneus/posterior cingu-
late cortex and the medial prefrontal cortex, previously shown to be part of the DMN,
display an elevated level of metabolic activity [100]. This result is consistent with
our study that some elevated regions in DMN are the hubs (e.g. PCG.R, PCUN.R)
which show nodal ability to manage the whole-brain PET network. Furthermore, a
former study [58] has reported that magnitude of DMN co-activation in some regions
(e.g. HIP.L and SFGmed.R) decreases with normal aging. In this study, these regions
also show decreased centrality in older group. Hence, our whole-brain PET networks
reveal similar regional characteristics to the previous DMN studies.

2.3.3 Topological Vulnerability in Functional Networks in Older Group

It has been demonstrated that small-world brain networks with embedded hubs
exhibit surprising resilience to random failures and targeted attacks [75, 81]. Assum-
ing that dynamic behavior of a network is strongly related to its fundamental configu-
ration, it seems reasonable to suppose that the changes in network parameters reflect
the disruptions in the general performance of the network such as stability and robust-
ness. This hypothesis is supported by our results that the networks in older group
are significantly vulnerable to targeted attacks on its pivotal nodes (hub regions)
compared with younger group. The reduced topological stability is associated with
senescent functional organization in older group such as smallworld architecture,
and nodal centrality shown previously. Moreover, former studies have reported the
vulnerable topological organization of brain structural cortical networks in patients
with AD [57]. Thus, this evidence from our study suggests that normal senescence
has risk for AD.

2.3.4 Methodology

In this study, we constructed large-scale human brain functional networks via PET
data. It is reasonable to conclude that cerebral glucose metabolism from PET data
represent the regional functional activity [10, 11]. Effective connectivity between
PET regions has also been revealed in previous studies about investigating brain
functional systems [65, 66].

According to results about methodological robustness, the similar small-world
parameters (see Fig. 15) are obtained in responses to the decrease of the sample
size. Small-world properties in both groups (Fig. 15a, b), reduced global efficiency
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(Fig. 15d) and increased local efficiency (Fig. 15d) in older group are also found.
Thus, it is reasonable to consider that this method demonstrates sufficiently reliable.
While this study was a cross-sectional study, a longitudinal analysis would also be
useful to investigate the changes of functional brain networks with normal aging.
In future studies of functional brain network development, younger individuals are
expected to be involved in farther experiments.

2.4 Conclusion

Asmentioned above, by usingPETdatawith graph theory analysis, this study demon-
strates age-related changes in the topological organization of large-scale functional
brain networks constructed via a robust method. These results indicate that nor-
mal senescence has a notable effect on the topological organization of functional
brain networks. Our findings are also compatible with previous studies about the
small-world properties, hub regions and network robustness of brain functional and
structural networks, thus enhancing our understanding of the underlying physiology
of normal aging in human brain.

Appendix

See Table 8

Table 8 Regions of interest included in AAL-atlas

Labels Regions Regions Abbreviations

1 Precentral_L Precental gyrus PreCG.L

2 Precentral-R Precental gyrus PreCG.R

3 Frontal_L Superior frontal gyrus,
dorsolateral

SFGdor.L

4 Frontal_R Superior frontal gyrus,
orbital part

ORBsup.L

5 Frontal_Sup_Orb_L Superior frontal gyrus,
orbital part

ORBsup.L

6 Frontal_Sup_Orb_R Superior frontal gyrus,
orbital part

ORBsup.R

7 Frontal_Mid_L Middle frontal gyrus MFG.L

8 Frontal_Mid_R Middle frontal gyrus MFG.R

9 Frontal_Mid_Orb_L Middle frontal gyrus,
orbital part

ORBmid.L

(continued)
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Table 8 (continued)

10 Frontal_Mid_Orb_R Middle frontal gyrus,
orbital part

ORBmid.R

11 FrontalJnf_Oper_L Inferior frontal gyrus,
opercular part

TFGoperc.L

12 FrontalJnf_Oper_R Inferior frontal gyrus,
opercular part

TFGoperc.R

13 Frontal Tnf Tri L Inferior frontal gyrus,
triangular part

TFGtriang.L

14 FrontalJnf_Tri_R Inferior frontal gyrus,
triangular part

TFGtriang.r

15 FrontalJnf_Orb_L Inferior frontal gyrus,
orbital part

ORBinf.L

16 FrontalJnf_Orb_R Inferior frontal gyrus,
orbital part

ORBinf.R

17 Rolandic_Oper_L Rolandic operculum ROL.L

18 Rolandic_Oper_R Rolandic operculum ROL.R

19 Supp_Motor_Area_L Supplementary motor
area

SMA.L

20 Supp_Motor_Area_R Supplementary motor
area

SMA.R

21 Olfactory _L Olfactory cortex OLF.L

22 Olfactory _R Olfactory cortex OLF.R

23 FrontaLSup_Medial_L Superior frontal gyrus,
medial

SFGmed.L

24 FrontaLSup-Medial-R Superior frontal gyrus,
medial

SFGmed.R

25 Frontal_Mid_Orb_L Superior frontal gyrus,
medial orbital

ORBsupmed.L

26 Frontal_Mid_Orb_R Superior frontal gyrus,
medial orbital

ORBsupmed.R

27 Rectus_L Gyrus rectus REC.L

28 Rectus_R Gyrus rectus REC.R

29 Insula_L Insula TNS.L

30 Tnsula_R Insula TNS.R

31 Cingulum_Ant_L Anterior cingulate and
paracingulate gyri

ACG.L

32 Cingulum_Ant_R Anterior cingulate and
paracingulate gyri

ACG.R

33 Cingulum_Mid_L Median cingulate and
paracingulate gyri

DCG.L

34 Cingulum_Mid_R Median cingulate and
paracingulate gyri

DCG.R

(continued)
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Table 8 (continued)

Labels Regions Regions Abbreviations

35 Cingulum_Post_L Posterior cingulate
gyrus

PCG.L

36 Cingulum_Post_R Posterior cingulate
gyrus

PCG.R

37 Hippocampus_L Hippocampus HTP.L

38 Hippocampus_R Hippocampus HTP.R

39 ParaHippocampal_L ParaHippocampal
gyrus

PHG.L

40 ParaHippocampal_R ParaHippocampal
gyrus

PHG.R

41 Amygdala_L Amygdala AMYG.L

42 Amygdala_R Amygdala AMYG.R

43 Calcarine_L Calcarine fissure and
surrounding cortex

CAL.L

44 Calcarine_R Calcarine fissure and
surrounding cortex

CAL.R

45 Cuneus_L Cuneus CUN.L

46 Cuneus_R Cuneus CUN.R

47 Lingual_L Lingual gyrus LING.L

48 Lingual_R Lingual gyrus LING.R

49 Occipital_Sup_L Superior occipital
gyrus

SOG.L

50 Occipital_Sup_R Superior occipital
gyrus

SOG.R

51 Occipital_Mid_L Middle occipital gyrus MOG.L

52 Occipital_Mid_R Middle occipital gyrus MOG.R

53 OccipitalJnf_L Inferior occipital gyrus IOG.L

54 OccipitalJnf_R Inferior occipital gyrus IOG.R

55 Fusiform_L Fusiform gyrus FFG.L

56 Fusiform_R Fusiform gyrus FFG.R

57 Postcentral_L Postcentral gyrus PoCG.L

58 PostcentraLR Postcentral gyrus PoCG.R

59 Parietal_Sup_L Superior parietal gyrus SPG.L

60 Parietal_Sup_R Superior parietal gyrus SPG.R

61 ParietalJnf_L Inferior parietal, but
supramarginal

IPL.L

and angular gyri

62 Parietal_Inf_R Inferior parietal, but
supramarginal

IPL.R

and angular gyri

63 SupraMarginal_L SupraMarginal gyrus SMG.L

64 SupraMarginal_R SupraMarginal gyrus SMG.R

(continued)
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Table 8 (continued)

65 Angular_L Angular gyrus ANG.L

66 Angular_R Angular gyrus ANG.R

67 Precuneus_L Precuneus PCUN.L

68 Precuneus_R Precuneus PCUN.R

69 Paracentral_Lobule_L Paracentral lobule PCL.L

70 Paracentral_Lobule_R Paracentral lobule PCL.R

71 Caudate_L Caudate nucleus CAU.L

72 Caudate_R Caudate nucleus CAU.R

73 Putamen_L Lenticular nucleus,
putamen

PUT.L

74 Putamen_R Lenticular nucleus,
putamen

PUT.R

75 Pallidum_L Lenticular nucleus,
pallidum

PAL.L

76 Pallidum_R Lenticular nucleus,
pallidum

PAL.R

77 Thalamus_L Thalamus THA.L

78 Thalamus_R Thalamus THA.R

79 Heschl_L Heschl gyrus HES.L

80 HeschLR Heschl gyrus HES.R

81 Temporal_Sup_L Superior temporal
gyrus

STG.L

82 Temporal_Sup_R Superior temporal
gyrus

STG.R

83 Temporal_Pole_Sup_L Temporal pole:
superior temporal
gyrus

TPOsup.L

84 Temporal_Pole_Sup_R Temporal pole:
superior temporal
gyrus

TPOsup.R

85 Temporal_Mid_L Middle temporal
gyrus

MTG.L

86 Temporal_Mid_R Middle temporal
gyrus

MTG.R

87 Temporal_Pole JMid_L Temporal pole:
middle temporal
gyrus

TPOmid.L

88 Temporal_Pole_Mid_R Temporal pole:
middle temporal
gyrus

TPOmid.R

89 Temporal_Inf_L Inferior temporal
gyrus

ITG.L

90 Temporal_Inf_R Inferior temporal
gyrus

ITG.R
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Abstract Previous studies have demonstrated that quantification of 18F-florbetapir
uptake in the brain can be used to distinguish between populations of Alzheimers
disease (AD) patients and healthy controls. Typically, quantification involves the
calculation of standardised uptake value ratios (SUVRs), which requires registration
to a template space in which regions of interest are defined. Consequently, SUVRs
could be affected by the registration method used. We examine the effect of PET-
based, MR-based and joint PET-MR registration on the SUVR. To achieve this, we
introduce a joint-modality image-to-template registration framework that allows for
variable contributions of PET and MR data to the registration process. We extend
this further by proposing a method to determine the optimum combination of PET
and MR information at each voxel. Following registrations of 100 subjects from
the Alzheimers Disease Neuroimaging Initiative database, we show that there is a
significant separation inmeanSUVRbetweenpopulations ofADpatients and healthy
controls for all registration methods. MR-only and PET-MR based methods slightly
outperformed PET-only registration, however, diagnostic power was not affected by
the registration method.
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1 Introduction

One of the pathologic biomarkers of Alzheimer’s disease (AD) is the presence of
neuritic plaques composed of the amyloid peptide, Aβ42. To quantitatively assess
the burden of Aβ in an individuals brain, the ratio of cortical-to-cerebellar binding
of the 18F-florbetapir positron emission tomographic (PET) tracer is often used [3].
This ratio is known as the standardised uptake value ratio (SUVR). Usually, prior
to SUVR calculation, the PET image is registered to a template space in which the
cortical regions of interest are defined.

Although PETmeasures functional information, 18F-florbetapir PET images con-
tain some structural information that can be used for registration to a template. Florbe-
tapir uptake inwhitematter is non-specific, and high in amyloid-positive and negative
cases. However, in amyloid-positive individuals, the boundary between white matter
and grey matter is lost, as specific tracer uptake occurs in grey matter (see Fig. 1).

Current methods for registration of 18F-florbetapir data typically involve affinely
or non-linearly registering the PET volume directly to a template [3, 5]. Neverthe-
less, it is widely accepted that using a structural magnetic resonance (MR) image to
drive the registration is a suitable, or even preferable, alternative. It was shown that
significantly different SUVRs were obtained when using a PET-based registration
method and an MRI-based method with grey matter segmentation [7]. Neverthe-
less, the specific impact of the registration method without including grey matter
segmentation has not been investigated.

If a patient has undergone both a PET scan and an MR scan, it may be beneficial
to take advantage of all of the available information during the registration process.
Therefore, another reasonable technique for registering the PET volume to a template
spacewould be to use a joint-modality approach that combines information fromboth
PET and MR.

In thiswork,we comparePET-based andMR-basedmethods forAβ quantification
using non-linear registration. Furthermore, we investigate the influence of joint-
modality PET-MR registration on the final SUVRs, by introducing a novel joint-
modality registration framework, that allows for variable contributions of thePETand

Fig. 1 An axial slice from MR and 18F-florbetapir volumes of a cognitively normal individual (a,
b) and an Alzheimer’s disease patient (c, d). Non-specific tracer uptake in white matter is visible in
both cases (red arrows), but specific uptake only occurs in the grey matter of the diseased individual
(blue arrows)
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MR data during spatial normalisation to a PET-MR template space. To achieve this,
we extend the log-domain local correlation coefficient (LCC) demons algorithm [6]
by introducing a dual-modality cost function. Similarly to [2], the contribution of each
modality to the registration process is controlled by a weighting parameter. We also
extend the method to allow for a locally adaptive modality weighting (LAMW) that
selects from a set of weighting factors, the best combination of PET and MR to give
the maximum LCC at each voxel. Following affine and non-linear registrations, we
compared cortex-to-cerebellar SUVRs of 100 subjects (50 AD, 50 healthy controls)
from theAlzheimer’sDiseaseNeuroimaging Initiative (ADNI).1 We investigated five
separate weightings of modality contributions (ranging from PET-only to MR-only),
and tested our LAMW method.

The rest of this paper is structured as follows: In Sect. 2 we briefly review the log-
domain LCCdemons framework used for the non-linear registrations, and outline our
contributions, namely the dual-modality LCC cost function and the LAMWmethod.
In Sect. 3 we detail the dataset and template construction. Sections4 and 5 present
the experiments and results, respectively. Finally, Sect. 6 discusses the effect of PET-
based versus MR-based versus joint-modality registration for Aβ quantification, and
concludes this work.

2 Methods

2.1 Log-Domain Demons

The log-domain demons algorithm estimates the diffeomorphic transform between
a fixed image F and a moving image M [9]. The transformation s is defined as the
Lie group exponential map s = exp(v), where v is a stationary velocity field. The
algorithm can be cast as the minimisation of a global energy function, consisting of
a similarity criterion, used to measure the resemblance of the aligned images, and
a regularisation term. In order for the optimisation to be well-posed, an auxiliary
correspondence field c is introduced, to decouple the minimisation into two simple
steps at each iteration.

E(F, M, c, s) = 1

σ 2
i

Sim(F, M, c) + 1

σ 2
x
‖ log(s−1 ◦ c)‖2 + 1

σ 2
T

Reg(s) (1)

where σi accounts for the noise in the image, σx accounts for the spatial uncertainty
of the correspondences, and σT controls the regularisation strength.

1http://adni.loni.ucla.edu/.

http://adni.loni.ucla.edu/
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To account for locally varying intensity biases, Cachier et al. [1] proposed the
local correlation coefficient (LCC) ρ as a similarity measure:

ρ(F, M) =
∫

F M√
F2 · M2

(2)

where F is the local mean image of F , defined by Gaussian smoothing Gσ with a
kernel size σ .

Given two images F ′ and M ′, and a symmetric formulation F = F ′ ◦ exp(− v
2 )

and M = M ′ ◦ exp( v
2 ), Lorenzi et al. [6] showed that optimisation of the energy

function with respect to the update u can be computed:

u = − 2Λ

‖Λ‖2 − 4
ρ2

σ 2
i

σ 2
x

(3)

where

Λ =
(

Gσ ∗ (F∇MT − M∇FT )

Gσ ∗ (F M)
+ Gσ ∗ (F∇FT )

Gσ ∗ (F2)
− Gσ ∗ (M∇MT )

Gσ ∗ (M2)

)
(4)

2.2 Joint-Modality PET-MR LCC-Demons

Given a pair of PET and MR volumes, we extend the energy function to allow for
two modalities:

E = − α

σ 2
iM

ρ2(FM , MM , u) − (1 − α)

σ 2
iP

ρ2(FP , MP , u) + 1

σ 2
x
‖u‖2 (5)

where α controls the contribution of each modality, and subscripts M and P denote
MR and PET, respectively. Therefore, the update becomes:

u = − 2(αρ2
MΛM + (1 − α)ρ2

PΛP )

αρ2
M‖ΛM‖2 + (1 − α)ρ2

P‖ΛP‖2 − 4
σ 2

i
σ 2

x

(6)

Hence, the PET-MR LCC-demons algorithm can be described by the following
iterations:
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2.2.1 Algorithm 1

Joint Modality PET-MR LCC-Demons Registration

• Given the current transformation s = exp(v), use (6) to compute update u
• For fluid-like regularisation, regularise u by convolving with a Gaussian filter,
such that u ← G ∗ u

• Let v ← v + u
• For diffusion-like regularisation, regularise v by convolving with a Gaussian filter,
such that v ← G ∗ v

2.3 Locally Adaptive Modality Weighting

Fixing the modality weighting α for all subjects and all brain regions could be
improved upon by using a personalised, locally variable weighting. Therefore, we
extend our proposed PET-MR registrationmethod, by introducing an adaptiveα map.
Given a set of α values {α1, . . . , αn}, the algorithm selects the best value at each
voxel, resulting in a locally varying α map for each subject. This can be summarised
in Algorithm 2:

2.3.1 Algorithm 2

PET-MR LCC-Demons Registration with LAMW

• For each iteration:

– For i = 1, . . . , n:
Run one iteration of Algorithm 1 with αi . This generates FMi , MMi , FPi , and
MPi

Compute the mean squared correlation
MSLCCi = 1

2 (ρ(FMi , MMi )
2 + ρ(FPi , MPi )

2)

– Create a spatially-varying α map by selecting the α value which gives the largest
MSLCC at each voxel.

– Run one iteration of Algorithm 1 using the α map. This generates the final fixed
and moving images for this iteration.
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3 Materials

3.1 ADNI Data and Initialisation

T1-weighted MR and 18F-florbetapir PET volumes for 110 subjects were collected
from the ADNI database. In our proposed registration method we assume that PET
and MR volumes of each subject are rigidly registered. Therefore prior to PET-MR
registration, PET volumes were registered to their corresponding MR volume using
SPM8,2 and results were checked visually. A brain mask was then constructed from
the tissue segmentations of the MR images (obtained using SPM8), and all of the
images were skull-stripped. Finally, the MR volumes were rigidly registered to the
nonlinear MNI152 brain template used by FSL.3 The resulting transformations were
also applied to the PET volumes.

3.2 Template Construction

An MR template was constructed iteratively from five AD brains and five healthy
brains (chosen at random from the set of 110 subjects), using the method proposed in
[4]. This removes the bias associatedwith selecting a single subject as the template. To
ensure that the PET-MR registration is not influenced by any residual misregistration
between the PET andMR templates, a synthetic PET template was constructed from
the MR template, using weighted combinations of its tissue segmentations. The two
templates are shown in Fig. 2.

4 Experiments

4.1 Affine and Non-linear Registration

TheMR volumes of the 100 subjects (50 AD, 50 healthy controls) excluded from the
template creation were affinely registered to the MR template using FSL’s FLIRT.
The resulting transformations were applied to the corresponding PET volumes. The
100 subjects then underwent PET-MRLCC-demons registrations for a range of fixed
modality weightings: α = {0, 0.25, 0.5, 0.75, 1}. The values α = 0 and α = 1 cor-
respond to single modality PET-to-PET and MR-to-MR LCC-demons registrations,
respectively. Following this experiment, the subjects were registered to the templates
using the LAMWmethod described in Sect. 2.3. The set of combination weightings
used to determine the locally optimal was α = {0, 0.25, 0.5, 0.75, 1}.

2http://www.fil.ion.ucl.ac.uk/spm/software/spm8/.
3http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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Fig. 2 An axial slice from 3D registration results using the LAMW method, for a healthy control
(top) and anAlzheimer’s disease patient (bottom). The columns (left to right) show: affine-registered
PET image, pseudo-PET template, LAMW-registered PET image, α map (white PET-only regis-
tration updates, black MR-only registration updates), LAMW-registered MR image, MR template,
affine-registered MR image

4.2 Standardised Uptake Value Ratio

Following the registrations, SUVRs were computed from the ratio of florbetapir
retention in regions of interest (ROIs) to the cerebellum. The cortical regions we
used were shown to have prominent uptake of Aβ in AD versus control [3]: ante-
rior cingulate, posterior cingulate, parietal, temporal, precuneus and medial orbital
frontal. A t-test was used to determine if there was a significant separation between
themean SUVRs of the two groups (AD and healthy control). Using the mean SUVR
as a discrimination threshold, receiver operating characteristic (ROC) analyses were
performed for each registration method. The areas under the curve (AUC) were cal-
culated, in addition to the sensitivity and specificity at the SUVR threshold proposed
in [3] (identifiable Aβ for SUVR > 1.08).

4.3 Dice Overlap

To quantitatively evaluate the accuracy of the registration results, the Dice overlap
was computed between cortical regions in each subject’s MR and the MR template
[10]. To create the cortical region atlases, the MR images (in native space) were first
non-linearly registered to MNI space using SPM8. Then, using the resulting inverse
transformation, the Automatic Anatomic Labelling (AAL) atlas [8] was resampled
into native space. Finally, any transformations applied to the MR volumes were also
applied to the corresponding atlas. Paired t-tests between each registration method
and every other were used to assess whether any differences in Dice overlap were
statistically significant.
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Table 1 Mean (standard deviation) Dice overlap of all regions over all subjects, mean SUVR, area
under curve (AUC), and sensitivity and specificity at a cut-off of 1.08, by registrationmethod: affine,
PET-only (α = 0), combined PET-MR with fixed combination weighting (α = {0.25, 0.5, 0.75}),
MR-only (α = 1), and joint-modality with a locally adaptive modality weighting (LAMW)

Affine α = 0 α = 0.25 α = 0.5 α = 0.75 α = 1 LAMW

Dice overlap 0.68
(0.15)

0.69
(0.16)

0.70
(0.16)

0.71
(0.16)

0.71
(0.16)

0.71
(0.16)

0.70
(0.16)

SUVR AD 1.37
(0.29)

1.35
(0.27)

1.37
(0.27)

1.38
(0.28)

1.39
(0.29)

1.40
(0.29)

1.37
(0.28)

SUVR controls 1.07
(0.27)

1.07
(0.24)

1.07
(0.25)

1.08
(0.25)

1.08
(0.25)

1.08
(0.26)

1.07
(0.25)

AUC 0.77 0.78 0.78 0.78 0.78 0.78 0.78

Sensitivity1.08 (%) 80 78 80 82 82 82 82

Specificity1.08 (%) 68 70 70 70 68 68 70

The best results are highlighted in bold

5 Results

Table1 presents the mean (standard deviation) Dice overlap of all regions over all
subjects, mean (standard deviation) SUVR, AUC, and sensitivity and specificity at a
cut-off of 1.08. For all registration methods, AD patients and controls were clearly
separated by mean SUVR, which was significantly higher in AD versus control
(p < 0.01, corrected). Following ROC analyses, all of the non-linear registration
methods resulted in the sameAUC, suggesting that thesemethods have similar overall
performance with respect to classification of Alzheimer’s disease versus healthy
control. This is further indicated by the sensitivity and specificity at a cut-off of
1.08, which do not vary greatly between registration methods. Mean Dice values
were significantly greater for non-linear registration methods compared to affine
registration methods (p < 0.05, corrected for 21 comparisons).

Example registration results for the LAMW method, and their final spatially-
varying α maps, are shown in Fig. 2. Whilst, the LAMW method only outperforms
PET-to-PET registration, the spatially-varying maps in Fig. 2 suggest that the opti-
mum combination of modalities is spatially variant.

6 Discussion and Conclusion

This work provides a first investigation into the direct effect of registration on 18F-
florbetapir quantification. Our results suggest that using some structural informa-
tion during registration of PET volumes to a template could be beneficial, and
could further inform the registration process. Our results also suggest that the opti-
mum combination ofmodalities is spatially-varying, although further investigation is
required to refine the estimation of the α map. We have demonstrated that non-linear
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methods produce more accurate registration results, even whenMR data are unavail-
able. Although rigid PET-to-MR registration may have influenced our results, this
was not the focus of our investigation, and we therefore used a well-tested, off-the-
shelf package for this step (SPM8), and checked the results visually. Regardless of
the registration methods presented here, there is a significant separation between
populations of AD and healthy controls. Although the absolute difference in mean
SUVR differs with the registration method used, classification of Alzheimers disease
patients versus cognitively normal controls based purely on SUVR is not affected by
the registration method.
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