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Abstract. With the rise of rapid physical prototyping tools such as Arduino it 
has become very easy for designers, makers and developers to build smart de-
vices, simple installations or other single device solutions. However, as soon as 
a room, floor or building-wide (prototype-) installation should be build consist-
ing of various types of devices that need to communicate, the effort for building 
these environments still remains extremely high. A lot of this is due to three 
factors: programming for different platforms, bridging different communication 
technologies, and physically connecting devices to network and electricity. In 
this paper we present a concept that drastically reduces this efforts. Thus, de-
signers and developers can focus more on the implementation of the behaviour 
of interactive environments. We have implemented this concept as a toolkit for 
on-site setups that allows to easily mash-up heterogeneous sets of devices using 
a common scripting language and a web-based IDE. We report from interactive 
installations in office and museum environments that have been realized based 
on this platform and we point towards new ways of programming environ-
ments. 
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1 Introduction 

Smart and interactive spaces are based on a common principle; different kinds of 
devices with sensors and actuators attached are statically installed in rooms, levels, 
whole buildings or are even worn by users. All these heterogeneous devices need to 
talk to each other or to an entity that constantly combines system state and generates 
system reactions. Multiple reasons make the setup of such environments a complex 
task. Firstly, similar functionality has to be implemented on various platforms ranging 
from microcontrollers to High-End computers. This requires expert knowledge in 
very specific programming languages and platforms as well as the management of 
various development environments (IDEs). Secondly, different communications 
technologies, protocols and formats have to be bridged so that devices can actually 
exchange data. Thirdly, devices have to be deployed in their target environment, 
supplied with electricity and wired or wireless communication infrastructure (e.g. 
WiFi access points). Especially the first two reasons put up high boundary for non-
experts in electronics and programming. This limits its usage to small and mostly only 
professional user groups.  
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black screen is shown. Bob decides to tweak the distance value in his rule so that the 
content is only shown when somebody is closer than roughly 1 meter. 

Two major strengths of our approach are pointed out in this scenario: The central 
unified access to completely different devices and their easy mash-up. Access to 
devices is implemented via objects (api.device.). This allows using the full 
power of the JavaScript language and thus the implementation of short and simple 
rules as well as very complex ones (low threshold, high ceiling). 

3 System Concept and Implementation 

Conceptually our toolkit strictly follows a master-slave architecture; the client side 
software allows to treat each client device as a source of sensor events, a sink for 
actuation commands, or both. It allows abstracting from the underlying operation 
system and hardware as well as the communication technology and protocol. For each 
end device platform a specific client firmware has to be implemented. However, this 
implementation effort is done just once by experts for this specific platform; after 
that, users of our toolkit just need to install the firmware once and from that point on 
they can access and control all its abilities from the central server node.  

The central server node provides a web-based user interface for the configuration 
of devices and the creation of behaviour rules. It includes a rule engine that triggers 
events and runs rules as soon as sensor data is received. Rules may then again trigger 
actuator commands which are instantly sent to the appropriate devices. In our 
example a change of the distance sensor value triggered the execution of Bob’s rule, 
which resulted in the actuation of the Wifi projector output if the value was within a 
certain range. 

The system components of the toolkit consist of one computer that runs the server 
software, an arbitrary number of client devices and an optional external network 
infrastructure (e.g. WiFi access points). A number of sensor and/or actuators can be 
attached to a client device (depends on a devices’ abilities). 

The server software is fully implemented in NodeJS - a framework specialized on 
the implementation of high-performance multi-protocol applications. This allows the 
server to be installed on any computer platform (e.g. Windows, Linux) and even on 
platforms with very limited resources (e.g. Raspberry Pi). The server node can be 
equipped with various (wireless) communication adapters such as Ethernet, Wifi, 
Bluetooth / BLE, XBee and RF Link which all work in parallel. The centralized 
approach allows to completely hide the network layer from the developer. Auto-
discovery mechanisms allow a client to find a local server immediately after installing 
its client software. The web-based interface gives access to all functionalities from the 
device configuration to rule creation and monitoring. Its web-based nature especially 
allows to run the development environment on tablets; those can be taken into a smart 
environment and used to monitor and modify behavior on-site. 

A good range of popular client devices is already supported at this stage. The list 
includes various Arduino devices, .NET Gadgeteer devices [1] and modules, 
Raspberry Pi, Beaglebone, Intel Edison, various Bluetooth Low Energy devices as 
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5 Applications 
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based on HTTP request, supported very simple sensor to actuator relations and didn’t 
abstract from hardware or communication technology. In [6] a rather simple scripting 
language has been introduced for smart home setups; by using JavaScript in our 
toolkit we cover these very simple “If-this-then-that” use cases but also allow for the 
creation of highly complex rule sets. Another recent trend is the movement of full 
development environments into the web [7]. The strengths of this approch are for 
example demonstrated by the mBed IDE; a web-based toolchain for ARM 
microcontrollers. 

7 Conclusion and Future Work 

In this paper we have presented a toolkit for the creation and programming of smart 
and interactive environments that reduces much of the technical complexity and al-
lows users to focus on programming the system behaviour. By choosing JavaScript as 
scripting language and providing a single web-based IDE we intend to empower a 
large user group, from novice to expert users, to create and experiment with their own 
smart environments. 

This toolkit is part of an EU project and it is in ongoing development. Two major 
medium-term milestones are: the implementation of an easy sharing mechanism of 
smart setups for an online community using “recipes” as well as the experimentation 
with code that is automatically generated by physically demonstrating actions to smart 
environments. Further, assistive and visual programming aids (such as Blockly) that 
can lie on top of the JavaScript layer are currently evaluated. These approaches will 
be evaluated with cultural heritage professionals from three of our partner museums 
who will take the role of the smart environment developers. 
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