
© Springer International Publishing Switzerland 2015
P. Díaz et al. (Eds.): IS-EUD 2015, LNCS 9083, pp. 230–235, 2015.
DOI: 10.1007/978-3-319-18425-8_21

Towards a Toolkit for the Rapid Creation
of Smart Environments

Thomas Kubitza() and Albrecht Schmidt

University of Stuttgart, Stuttgart, Germany

{thomas.kubitza,albrecht.schmidt}@vis.uni-stuttgart.de

Abstract. With the rise of rapid physical prototyping tools such as Arduino it
has become very easy for designers, makers and developers to build smart de-
vices, simple installations or other single device solutions. However, as soon as
a room, floor or building-wide (prototype-) installation should be build consist-
ing of various types of devices that need to communicate, the effort for building
these environments still remains extremely high. A lot of this is due to three
factors: programming for different platforms, bridging different communication
technologies, and physically connecting devices to network and electricity. In
this paper we present a concept that drastically reduces this efforts. Thus, de-
signers and developers can focus more on the implementation of the behaviour
of interactive environments. We have implemented this concept as a toolkit for
on-site setups that allows to easily mash-up heterogeneous sets of devices using
a common scripting language and a web-based IDE. We report from interactive
installations in office and museum environments that have been realized based
on this platform and we point towards new ways of programming environ-
ments.

Keywords: Smart environments · End user programming · Mashups

1 Introduction

Smart and interactive spaces are based on a common principle; different kinds of
devices with sensors and actuators attached are statically installed in rooms, levels,
whole buildings or are even worn by users. All these heterogeneous devices need to
talk to each other or to an entity that constantly combines system state and generates
system reactions. Multiple reasons make the setup of such environments a complex
task. Firstly, similar functionality has to be implemented on various platforms ranging
from microcontrollers to High-End computers. This requires expert knowledge in
very specific programming languages and platforms as well as the management of
various development environments (IDEs). Secondly, different communications
technologies, protocols and formats have to be bridged so that devices can actually
exchange data. Thirdly, devices have to be deployed in their target environment,
supplied with electricity and wired or wireless communication infrastructure (e.g.
WiFi access points). Especially the first two reasons put up high boundary for non-
experts in electronics and programming. This limits its usage to small and mostly only
professional user groups.

 Towards a

We believe that the right
much larger audience in t
Arduino made the access
Apps made potentially eve
phones of millions of oth
designers, scientist, designe
of a large set of truly use
addressing a broad range of

In this paper we present
for creating and programm
main pillars: (1) A client
allows to remotely access a
platform. (2) A server sof
between various communi
sensors and actuators of
development environment.

This approach allows to
without the need to reprogr
devices. JavaScript, one
languages, is used to define

A simple scenario is used

2 Simple Usage Sc

Bob wants to set up a sma
inform about local events.
enabled Arduino that is m
somebody is close. He has i
With the help of the web-b
Arduino device and an Ap
automatically pop up in the
module” to the projector a
available modules (see Fig
a new behaviour rule consis

Fig. 1. Bobs JavaScrip

During typing an auto-c
names, module-names and
approaches the sensor depl
meters the news page of his

a Toolkit for the Rapid Creation of Smart Environments

t tools can open up the creation of smart environments t
the same way as physical prototyping platforms such
to microcontrollers much easier and in the same way
eryone the programmer of his own cell phone (and
hers). By empowering groups such as user experie
ers, artists, makers and hobbyists we envision the creat
eful applications evaluated in realistic environments
f problems.
t a toolkit that drastically reduces the technical complex
ming smart environments. Our approach consists of t
software for each type of end device is provided wh

and control all its abilities and to abstract from its spec
ftware on a central computer node is provided to bri
ication-technologies and to provide unified access to
f configured devices through a web-based JavaSc

o quickly implement or change the behaviour of a syst
ram or physically access any of the associated or deplo

of the most widespread and growing programm
e the system behaviour in a single spot.
d in following paragraph to illustrate the toolkit usage.

cenario

all WiFi enabled projector in the office floor that sho
He wants to use a distance sensor connected to a W

mounted on the wall to turn on the screen only w
installed the server part of our toolkit on a spare compu
based user interface he installs the client firmware on
pp on the Android based WiFi projector. Both devi

e user interface and Bob continuous with adding a “disp
and a “IR distance sensor” to the Arduino from a lis
ure 2a). Now, he switches to the “rules”-view and crea
sting of the following JavaScript code:

pt code for controlling a projector using a distance sensor

completion feature helps Bob to choose the right dev
d properties (Figure 2b). Bob saves his new rule a
loyed in the floor. When he is in a distance closer than
s website is displayed; as soon as he leaves the distanc

231

to a
h as
y as

the
ence
tion
and

xity
two
hich
cific
idge
 all

cript

tem
oyed
ming

ould
WiFi
when
uter.

the
ices
play
st of
ates

ice-
and
1.5

ce a

232 T. Kubitza and A. Schmidt

black screen is shown. Bob decides to tweak the distance value in his rule so that the
content is only shown when somebody is closer than roughly 1 meter.

Two major strengths of our approach are pointed out in this scenario: The central
unified access to completely different devices and their easy mash-up. Access to
devices is implemented via objects (api.device.). This allows using the full
power of the JavaScript language and thus the implementation of short and simple
rules as well as very complex ones (low threshold, high ceiling).

3 System Concept and Implementation

Conceptually our toolkit strictly follows a master-slave architecture; the client side
software allows to treat each client device as a source of sensor events, a sink for
actuation commands, or both. It allows abstracting from the underlying operation
system and hardware as well as the communication technology and protocol. For each
end device platform a specific client firmware has to be implemented. However, this
implementation effort is done just once by experts for this specific platform; after
that, users of our toolkit just need to install the firmware once and from that point on
they can access and control all its abilities from the central server node.

The central server node provides a web-based user interface for the configuration
of devices and the creation of behaviour rules. It includes a rule engine that triggers
events and runs rules as soon as sensor data is received. Rules may then again trigger
actuator commands which are instantly sent to the appropriate devices. In our
example a change of the distance sensor value triggered the execution of Bob’s rule,
which resulted in the actuation of the Wifi projector output if the value was within a
certain range.

The system components of the toolkit consist of one computer that runs the server
software, an arbitrary number of client devices and an optional external network
infrastructure (e.g. WiFi access points). A number of sensor and/or actuators can be
attached to a client device (depends on a devices’ abilities).

The server software is fully implemented in NodeJS - a framework specialized on
the implementation of high-performance multi-protocol applications. This allows the
server to be installed on any computer platform (e.g. Windows, Linux) and even on
platforms with very limited resources (e.g. Raspberry Pi). The server node can be
equipped with various (wireless) communication adapters such as Ethernet, Wifi,
Bluetooth / BLE, XBee and RF Link which all work in parallel. The centralized
approach allows to completely hide the network layer from the developer. Auto-
discovery mechanisms allow a client to find a local server immediately after installing
its client software. The web-based interface gives access to all functionalities from the
device configuration to rule creation and monitoring. Its web-based nature especially
allows to run the development environment on tablets; those can be taken into a smart
environment and used to monitor and modify behavior on-site.

A good range of popular client devices is already supported at this stage. The list
includes various Arduino devices, .NET Gadgeteer devices [1] and modules,
Raspberry Pi, Beaglebone, Intel Edison, various Bluetooth Low Energy devices as

 Towards a

well as Android and iPhon
of these devices have the fo
functionality of a device t
between server and clients
yet unsupported devices.

4 User Interface

Fig. 2. a) Device config

The toolkit user interfac
Devices, Events and Rules.
after the installation of their
modules configured; this m
configuration view, modul
actuator modules (Figure 2
assigned to a compatible a
right attachment of sensors
visual hints about the righ
instantly pushed to the devi

In the rules-view an ove
groups and consist of a nam
tie together rules which are
environment (e.g. “Office
individually which allows
whole environments. Single
immediately. Syntax highli
shimmy along available de
previous knowledge; advan
referencing of objects. T
applications in different env

a Toolkit for the Rapid Creation of Smart Environments

ne smartphones, tablets and projectors. The client softw
orm of firmware, PC software or Apps and expose the
to the central server. Communication protocols and A
are well documented to allow an easy future integration

guration view, b) Rules overview, c) Code auto-completion

ce runs in any browser and is structured in three sectio
. New devices automatically appear in the device overv
r specific client software. In its initial state a device has

means no sensor or actuators are activated yet. In the dev
les can be selected from a list of supported sensors
2a). By double-clicking on a module, it is automatic

and free port; this way users don’t need to care about
s beforehand, the device configuration steps already g
ht ports to connect to. After saving a configuration, i
ice where the selected modules are activated.
erview of available rules is given. These are structured

me, a description and an execution priority. Groups allow
e logically associated or only apply to a certain space in
Floor 1”). Groups and rules can be enabled and disab
easy instant switching of behaviour for single spaces

e rules can be edited any time and the changes are appl
ighting and auto-completion features help novice users
vices, modules and their individual properties without
nced users benefit from the coding speedup and corr

The following section briefly describes two exempl
vironments that where realized using our toolkit.

233

ware
full

APIs
n of

ons:
view
s no
vice
and
ally
the

give
it is

d in
w to

the
bled
s or
lied
s to
any
rect
lary

234 T. Kubitza and A. Sc

5 Applications

Fig. 3. a) Intel Edison BLE sca
d) Plinth with distance sensors

The first setup is created
and the same number of BL
key fob is associated to a p
always indicates whether
located; an “out of office”
been seen for a while. This
of 45 lines of code. The sys

The second example s
hexagonal plinths are place
Pico projector hidden in a
equipped with a RFID rea
exhibition objects on top of
people around the plinth. T
around the plinth. One use
direction and movement of
replicas on the plinth in ord
surface.

6 Related Work

We focus the discussion o
software for the creation of

Two popular framework
Arduino and .NET Gadgete
be simply attached without
for programming and deplo
these platforms focus on t
toolkit integrates both platf
the integration of massivel
sources for data [2]. Furt
WebClip [3] allow the attac

The idea to use a ce
environments using simple

chmidt

anner, b) BLE key fob worn by users, c) Electric Imp doorscr
s, e) Projector lamp above plinth

d in an office environment. It consists of 10 door scre
LE scanner devices and BLE key fobs (Figure 3abc). E
person and the door-screen in front of this persons’ off
and where within the building the person is curren
indication is given when the key fob of a person has

s behaviour has been realized with a single rule consist
stem is in daily use since multiple months.
setup consists of an installation for museums. Th
ed within an exhibition room. Each is accompanied b
lamp above each plinth (Figure 3d-e). The plinth itsel

ader and six IR distance sensors; this allows recognis
f the plinth as well as movement (direction and distance
The projector permits projecting arbitrary content onto
e case is the adaption of exhibit related content based
f people around. Another use case lets museum visitors
der to receive related digital information on the surround

of related work on frameworks for rapid protoyping
mash-ups and web-based programming.

ks for the rapid physical prototyping of smart devices
eer [1]. Latter, provides an ecosystem of modules that
any need for soldering. Both provide a desktop based I

oying firmware on single devices. In contrast to our too
the creation of single standalone devices. However,
forms and its module ecosystems. Other systems focus
y widespread smartphones and their integrated sensors

ther, peripheral connectors for phones such as IOIO
chment of external sensors and actuators.
entralised web hub for mashing up devices in lo
rules has been introduced in [4] and [5]. The system w

reen,

eens
Each
ffice
ntly
not

ting

hree
by a
lf is
sing
e) of
and

d on
put

ding

and

are
can

IDE
olkit

our
s on
s as

O or

ocal
was

 Towards a Toolkit for the Rapid Creation of Smart Environments 235

based on HTTP request, supported very simple sensor to actuator relations and didn’t
abstract from hardware or communication technology. In [6] a rather simple scripting
language has been introduced for smart home setups; by using JavaScript in our
toolkit we cover these very simple “If-this-then-that” use cases but also allow for the
creation of highly complex rule sets. Another recent trend is the movement of full
development environments into the web [7]. The strengths of this approch are for
example demonstrated by the mBed IDE; a web-based toolchain for ARM
microcontrollers.

7 Conclusion and Future Work

In this paper we have presented a toolkit for the creation and programming of smart
and interactive environments that reduces much of the technical complexity and al-
lows users to focus on programming the system behaviour. By choosing JavaScript as
scripting language and providing a single web-based IDE we intend to empower a
large user group, from novice to expert users, to create and experiment with their own
smart environments.

This toolkit is part of an EU project and it is in ongoing development. Two major
medium-term milestones are: the implementation of an easy sharing mechanism of
smart setups for an online community using “recipes” as well as the experimentation
with code that is automatically generated by physically demonstrating actions to smart
environments. Further, assistive and visual programming aids (such as Blockly) that
can lie on top of the JavaScript layer are currently evaluated. These approaches will
be evaluated with cultural heritage professionals from three of our partner museums
who will take the role of the smart environment developers.

Acknowledgements. This work is funded by the European Project meSch (http://mesch-
project.eu, Grant Agreement No. 600851).

References

1. Hodges, S., Taylor, S., Villar, N., Scott, J.: Prototyping connected devices for the internet of
things. IEEE Computer 46(2), 26–34 (2013)

2. Shirazi, A., Winkler, C., Schmidt, A.: SENSE-SATION: an extensible platform for integra-
tion of phones into the Web. IoT (2010)

3. Kubitza, T., Pohl, N., Dingler, T., Schmidt, A.: WebClip: a connector for ubiquitous physi-
cal input and output for touch screen devices. Ubicomp, pp. 387–390 (2013)

4. Holloway, S., Stovall, D., Lara-Garduno, J., Julien, C.: Opening pervasive computing to the
masses using the SEAP middleware. IEEE Pervasive, pp. 1–5, March 2009

5. Holloway, S., Julien, C.: The case for end-user programming of ubiquitous computing envi-
ronments. FoSER 2010, p. 167 (2010)

6. García-Herranz, M., Haya, P., Alamán, X.: Towards a Ubiquitous End-User Programming
System for Smart Spaces. J. UCS 16(12), 1633–1649 (2010)

7. Kubitza, T., Pohl, N., Dingler, T., Schneegaß, S.: Innovations in Ubicomp Products Ingre-
dients for a New Wave of Ubicomp Products. IEEE Pervasive Comp., pp. 5–8 (2013)

	Towards a Toolkit for the Rapid Creation of Smart Environments
	1 Introduction
	2 Simple Usage Sc cenario
	3 System Concept and Implementation
	4 User Interface
	5 Applications
	6 Related Work
	7 Conclusion and Future Work
	References

